Olson, J.A.; Zoback, M.L.
1998-01-01
We examine relocated seismicity within a 30-km-wide crustal block containing San Francisco Bay and bounded by two major right-lateral strike-slip fault systems, the Hayward and San Andreas faults, to determine seismicity distribution, source character, and possible relationship to proposed faults. Well-located low-level seismicity (Md ??? 3.0) has occurred persistently within this block throughout the recording interval (1969 to 1995), with the highest levels of activity occurring along or directly adjacent to (within ???5 km) the bounding faults and falling off toward the long axis of the bay. The total seismic moment release within the interior of the Bay block since 1969 is equivalent to one ML 3.8 earthquake, one to two orders of magnitude lower than activity along and within 5 km of the bounding faults. Focal depths of reliably located events within the Bay block are generally less than 13 km with most seismicity in the depth range of 7 to 12 km, similar to focal depths along both the adjacent portions of the San Andreas and Hayward faults. Focal mechanisms for Md 2 to 3 events within the Bay block mimic focal mechanisms along the adjacent San Andreas fault zone and in the East Bay, suggesting that Bay block is responding to a similar regional stress field. Two potential seismic source zones have been suggested within the Bay block. Our hypocentral depths and focal mechanisms suggest that a proposed subhorizontal detachment fault 15 to 18 km beneath the Bay is not seismically active. Several large-scale linear NW-trending aeromagnetic anomalies within the Bay block were previously suggested to represent large through-going subvertical fault zones. The two largest earthquakes (both Md 3.0) in the Bay block since 1969 occur near two of these large-scale linear aeromagnetic anomalies; both have subvertical nodal planes with right-lateral slip subparallel to the magnetic anomalies, suggesting that structures related to the anomalies may be capable of brittle failure. Geodetic, focal mechanism and seismicity data all suggest the Bay block is responding elastically to the same regional stresses affecting the bounding faults; however, continuous Holocene reflectors across the proposed fault zones suggest that if the magnetic anomalies represent basement fault zones, then these faults must have recurrence times one to several orders of magnitude longer than on the bounding faults.
Hanich, L.; Zouhri, L.; Dinger, J.
2011-01-01
The aquifer of early Cretaceous age in the Meskala region of the Essaouira Basin is defined by interpretation of geological drilling data of oil and hydrogeological wells, field measurement and analysis of in situ fracture orientations, and the application of a morphostructural method to identify lineaments. These analyzes are used to develop a stratigraphic-structural model of the aquifer delimited by fault zones of two principal orientations: NNE and WNW. These fault zones define fault blocks that range in area from 4 to 150km2. These blocks correspond either to elevated zones (horsts) or depressed zones (grabens). This structural setting with faults blocks of Meskala region is in accordance with the structure of the whole Essaouira Basin. Fault zones disrupt the continuity of the aquifer throughout the study area, create recharge and discharge zones, and create dip to the units from approximately 10?? to near vertical in various orientations. Fracture measurements and morphometric-lineament analyzes help to identify unmapped faults, and represent features important to groundwater hydraulics and water quality within fault blocks. The above geologic features will enable a better understanding of the behaviour and hydro-geo-chemical and hydrodynamics of groundwater in the Meskala aquifer. ?? 2010 Elsevier Ltd.
Orndorff, Randall C.
2012-01-01
The method of emplacement and sequential deformation of major thrust zones may be deciphered by detailed geologic mapping of these important structures. Thrust fault zones may have added complexity when horse blocks are contained within them. However, these horses can be an important indicator of the fault development holding information on fault-propagation folding or fold-to-fault progression. The North Mountain fault zone of the Central Appalachians, USA, was studied in order to better understand the relationships of horse blocks to hanging wall and footwall structures. The North Mountain fault zone in northwestern Virginia and eastern panhandle of West Virginia is the Late Mississippian to Permian Alleghanian structure that developed after regional-scale folding. Evidence for this deformation sequence is a consistent progression of right-side up to overturned strata in horses within the fault zone. Rocks on the southeast side (hinterland) of the zone are almost exclusively right-side up, whereas rocks on the northwest side (foreland) of the zone are almost exclusively overturned. This suggests that the fault zone developed along the overturned southeast limb of a syncline to the northwest and the adjacent upright limb of a faulted anticline to the southeast.
NASA Astrophysics Data System (ADS)
Dixon, Timothy H.; Xie, Surui
2018-07-01
The Eastern California shear zone in the Mojave Desert, California, accommodates nearly a quarter of Pacific-North America plate motion. In south-central Mojave, the shear zone consists of six active faults, with the central Calico fault having the fastest slip rate. However, faults to the east of the Calico fault have larger total offsets. We explain this pattern of slip rate and total offset with a model involving a crustal block (the Mojave Block) that migrates eastward relative to a shear zone at depth whose position and orientation is fixed by the Coachella segment of the San Andreas fault (SAF), southwest of the transpressive "big bend" in the SAF. Both the shear zone and the Garlock fault are assumed to be a direct result of this restraining bend, and consequent strain redistribution. The model explains several aspects of local and regional tectonics, may apply to other transpressive continental plate boundary zones, and may improve seismic hazard estimates in these zones.
Preliminary report on the Nelson and Radovan copper prospects, Nizina district, Alaska
Sainsbury, C.J.
1952-01-01
Renewed copper exploration by Alaska Copper Mines, Incorporated, at the Nelson and Radovan prospects, Nizina district, Alaska, led the Geological Survey in 1951 to map in detail the Nelson fault block, and to re-examine the old workings. In addition, two new prospects were studied. The Nelson fault block is cut by many dominantly strike-slip faults of small displacement, and by bedding faults. Slickensided chalcocite shows post-mineral movement, and chalcocite veinlet in a filled solution cavity indicates that some of the chalcocite is secondary, perhaps very recent. Structural relations indicate two overthrust faults cut the block. The Radovan Greenstone prospect shows massive chalcocite, up to 3 feet wide, in a silicified, epidotized fault zone in the Nikolai greenstone. Ore indicated by surface exposures may amount to 450 tons of chalcocite. The Radovan Low-Contact prospect is on a continuation of the same fault approximately 3 miles southwest of the Greenstone prospect, and 150 feet above the contact of the Nikolai greenstone and the overlying Chitistone limestone. Limonite staining is widespread in bedding planes and small faults near the fault zone; mineralization in the fault zone consists of pyrite, chalcocite, bornite, malachite, realgar, orpiment and stibnite. The sulphides in the fault zone, plus the widespread silicification and epidotization indicate a strong zone of hydrothermal activity which merits extensive prospecting.
3D Model of the Tuscarora Geothermal Area
Faulds, James E.
2013-12-31
The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern portion of the model are tilted 5-30 degrees toward the Independence Mountains fault zone. Fault blocks in the western portion of the model are tilted toward steeply east-dipping normal faults. These opposing fault block dips define a shallow extensional anticline. Geothermal production is from 4 closely-spaced wells, that exploit a west-dipping, NNE-striking fault zone near the axial part of the accommodation zone.
NASA Astrophysics Data System (ADS)
Graymer, R. W.; Simpson, R. W.
2014-12-01
Graymer and Simpson (2013, AGU Fall Meeting) showed that in a simple 2D multi-fault system (vertical, parallel, strike-slip faults bounding blocks without strong material property contrasts) slip rate on block-bounding faults can be reasonably estimated by the difference between the mean velocity of adjacent blocks if the ratio of the effective locking depth to the distance between the faults is 1/3 or less ("effective" locking depth is a synthetic parameter taking into account actual locking depth, fault creep, and material properties of the fault zone). To check the validity of that observation for a more complex 3D fault system and a realistic distribution of observation stations, we developed a synthetic suite of GPS velocities from a dislocation model, with station location and fault parameters based on the San Francisco Bay region. Initial results show that if the effective locking depth is set at the base of the seismogenic zone (about 12-15 km), about 1/2 the interfault distance, the resulting synthetic velocity observations, when clustered, do a poor job of returning the input fault slip rates. However, if the apparent locking depth is set at 1/2 the distance to the base of the seismogenic zone, or about 1/4 the interfault distance, the synthetic velocity field does a good job of returning the input slip rates except where the fault is in a strong restraining orientation relative to block motion or where block velocity is not well defined (for example west of the northern San Andreas Fault where there are no observations to the west in the ocean). The question remains as to where in the real world a low effective locking depth could usefully model fault behavior. Further tests are planned to define the conditions where average cluster-defined block velocities can be used to reliably estimate slip rates on block-bounding faults. These rates are an important ingredient in earthquake hazard estimation, and another tool to provide them should be useful.
Stein, W.G.; Ozuna, G.B.
1995-01-01
The faults in northern Bexar County are part of the Balcones fault zone. Although most of the faults in this area trend northeast, a smaller set of cross-faults trend northwest. Generally, the faults are en echelon and normal, with the downthrown blocks typically toward the coast.
NASA Astrophysics Data System (ADS)
Karson, J.; Horst, A. J.; Nanfito, A.
2011-12-01
Iceland has long been used as an analog for studies of seafloor spreading. Despite its thick (~25 km) oceanic crust and subaerial lavas, many features associated with accretion along mid-ocean ridge spreading centers, and the processes that generate them, are well represented in the actively spreading Neovolcanic Zone and deeply glaciated Tertiary crust that flanks it. Integrated results of structural and geodetic studies show that the plate boundary zone on Iceland is a complex array of linked structures bounding major crustal blocks or microplates, similar to oceanic microplates. Major rift zones propagate N and S from the hotspot centered beneath the Vatnajökull icecap in SE central Iceland. The southern propagator has extended southward beyond the South Iceland Seismic Zone transform fault to the Westman Islands, resulting in abandonment of the Eastern Rift Zone. Continued propagation may cause abandonment of the Reykjanes Ridge. The northern propagator is linked to the southern end of the receding Kolbeinsey Ridge to the north. The NNW-trending Kerlingar Pseudo-fault bounds the propagator system to the E. The Tjörnes Transform Fault links the propagator tip to the Kolbeinsey Ridge and appears to be migrating northward in incremental steps, leaving a swath of deformed crustal blocks in its wake. Block rotations, concentrated mainly to the west of the propagators, are clockwise to the N of the hotspot and counter-clockwise to the S, possibly resulting in a component of NS divergence across EW-oriented rift zones. These rotations may help accommodate adjustments of the plate boundary zone to the relative movements of the N American and Eurasian plates. The rotated crustal blocks are composed of highly anisotropic crust with rift-parallel internal fabric generated by spreading processes. Block rotations result in reactivation of spreading-related faults as major rift-parallel, strike-slip faults. Structural details found in Iceland can help provide information that is difficult or impossible to obtain in propagating systems of the deep seafloor.
Preliminary geologic map of the Murrieta 7.5' quadrangle, Riverside County, California
Kennedy, Michael P.; Morton, Douglas M.
2003-01-01
The Murrieta quadrangle is located in the northern part of the Peninsular Ranges Province and includes parts of two structural blocks, or structural subdivisions of the province. The quadrangle is diagonally crossed by the active Elsinore fault zone, a major fault zone of the San Andreas fault system, and separates the Santa Ana Mountains block to the west from the Perris block to the east. Both blocks are relatively stable internally and within the quadrangle are characterized by the presence of widespread erosional surfaces of low relief. The Santa Ana Mountains block, in the Murrieta quadrangle, is underlain by undifferentiated, thick-layered, granular, impure quartzite and well-layered, fissile, phyllitic metamorphic rock of low metamorphic grade. Both quartzite and phyllitic rocks are Mesozoic. Unconformably overlying the metamorphic rocks are remnants of basalt flows having relatively unmodified flow surfaces. The age of the basalt is about 7-8Ma. Large shallow depressions on the surface of the larger basalt remnants form vernal ponds that contain an endemic flora. Beneath the basalt the upper part of the metamorphic rocks is deeply weathered. The weathering appears to be the same as the regional Paleocene saprolitic weathering in southern California. West of the quadrangle a variable thickness sedimentary rock, physically resembling Paleogene rocks, occurs between the basalt and metamorphic rock. Where not protected by the basalt, the weathered rock has been removed by erosion. The dominant feature on the Perris block in the Murrieta quadrangle is the south half of the Paloma Valley ring complex, part of the composite Peninsular Ranges batholith. The complex is elliptical in plan view and consists of an older ring-dike with two subsidiary short-arced dikes that were emplaced into gabbro by magmatic stoping. Small to large stoped blocks of gabbro are common within the ring-dikes. A younger ring-set of hundreds of thin pegmatite dikes occur largely within the central part of the complex. These pegmatite dikes were emplaced into a domal fracture system, apparently produced by cauldron subsidence, and include in the center of the complex, a number of flat-floored granophyre bodies. The granophyre is interpreted to be the result of pressure quenching of pegmatite magma. Along the eastern edge of the quadrangle is the western part of a large septum of medium metamorphic grade Mesozoic schist. A dissected basalt flow caps the Hogbacks northeast of Temecula, and represents remnants of a channel filling flow. Beneath the basalt is a thin deposit of stream gravel. Having an age of about 10Ma, this basalt is about 2-3Ma older than the basalt flows in the Santa Ana Mountains. The Elsinore fault zone forms a complex of pull-apart basins. The west edge of the fault zone, the Willard Fault, is marked by the high, steep eastern face of the Santa Ana Mountains. The east side of the zone, the Wildomar Fault, forms a less pronounced physiographic step. In the center of the quadrangle a major splay of the fault zone, the Murrieta Hot Springs Fault, strikes east. Branching of the fault zone causes the development of a broad alluvial valley between the Willard Fault and the Murrieta Hot Springs Fault. All but the axial part of the zone between the Willard and Wildomar Faults consist of dissected Pleistocene sedimentary units. The axial part of the zone is underlain by Holocene and latest Pleistocene sedimentary units.
Ryan, H.F.; Parsons, T.; Sliter, R.W.
2008-01-01
A new fault map of the shelf offshore of San Francisco, California shows that faulting occurs as a distributed shear zone that involves many fault strands with the principal displacement taken up by the San Andreas fault and the eastern strand of the San Gregorio fault zone. Structures associated with the offshore faulting show compressive deformation near where the San Andreas fault goes offshore, but deformation becomes extensional several km to the north off of the Golden Gate. Our new fault map serves as the basis for a 3-D finite element model that shows that the block between the San Andreas and San Gregorio fault zone is subsiding at a long-term rate of about 0.2-0.3??mm/yr, with the maximum subsidence occurring northwest of the Golden Gate in the area of a mapped transtensional basin. Although the long-term rates of vertical displacement primarily show subsidence, the model of coseismic deformation associated with the 1906 San Francisco earthquake indicates that uplift on the order of 10-15??cm occurred in the block northeast of the San Andreas fault. Since 1906, 5-6??cm of regional subsidence has occurred in that block. One implication of our model is that the transfer of slip from the San Andreas fault to a fault 5??km to the east, the Golden Gate fault, is not required for the area offshore of San Francisco to be in extension. This has implications for both the deposition of thick Pliocene-Pleistocene sediments (the Merced Formation) observed east of the San Andreas fault, and the age of the Peninsula segment of the San Andreas fault.
NASA Technical Reports Server (NTRS)
Abrams, Michael; Verosub, Ken; Finnerty, Tony; Brady, Roland
1987-01-01
The Garlock and Death Valley fault zones in SE California are two active strike-slip faults coming together on the east side of the Avawatz Mtns. The kinematics of this intersection, and the possible continuation of either fault zone, are being investigated using a combination of field mapping, and processing and interpretation of remotely sensed image data. Regional and local relationships are derivable from Thematic Mapper data (30 m resolution), including discrimination and relative age dating of alluvial fans, bedrock mapping, and fault mapping. Aircraft data provide higher spatial resolution over more limited areas. Hypotheses being considered are: (1) the Garlock fault extends east of the intersection; (2) the Garlock fault terminates at the intersection and the Death Valley fault continues southeastward; and (3) the Garlock fault has been offset right laterally by the Death Valley fault which continues to the southeast. Preliminary work indicates that the first hypothesis is invalid. From kinematic considerations, image analysis, and field work the third hypothesis is favored. The projected continuation of the Death Valley zone defines the boundary between the Mojave crustal block and the Basin and Range block.
NASA Astrophysics Data System (ADS)
Cochran, W. J.; Spotila, J. A.
2017-12-01
Measuring long-term accumulation of strike-slip displacements and transpressional uplift is difficult where strain is accommodated across wide shear zones, as opposed to a single major fault. The Eastern California Shear Zone (ECSZ) in southern California accommodates dextral shear across several strike-slip faults, and is potentially migrating and cutting through a formerly convergent zone of the San Bernardino Mountains (SBM). The advection of crust along the San Andreas fault to the SE has forced these two tectonic regimes into creating a nexus of interacting strike-slip faults north of San Gorgonio Pass. These elements make this region ideal for studying complex fault interactions, evolving fault geometries, and deformational overprinting within a wide shear zone. Using high-resolution topography and field mapping, this study aims to test whether diffuse, poorly formed strike-slip faults within the uplifted SBM block are nascent elements of the ECSZ. Topographic resolution of ≤ 1m was achieved using both lidar and UAV surveys along two Quaternary strike-slip faults, namely the Lake Peak fault and Lone Valley faults. Although the Lone Valley fault cuts across Quaternary alluvium, the geomorphic expression is obscured, and may be the result of slow slip rates. In contrast, the Lake Peak fault is located high elevations north of San Gorgonio Peak in the SBM, and displaces Quaternary glacial deposits. The deposition of large boulders along the escarpment also obscures the apparent magnitude of slip along the fault. Although determining fault offset is difficult, the Lake Peak fault does display evidence for minor right-lateral displacement, where the magnitude of slip would be consistent with individual faults within the ECSZ (i.e. ≤ 1 mm/yr). Compared to the preservation of displacement along strike-slip faults located within the Mojave Desert, the upland region of the SBM adds complexity for measuring fault offset. The distribution of strain across the entire SBM block, the slow rates of slip, and the geomorphic expression of these faults add difficulty for assessing fault-slip evolution. Although evidence for diffuse dextral faulting exists within the formerly uplifted SBM block, future work is needed along these faults to determine if the ECSZ is migrating west.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Zhang, Dongli; Li, Xiaojun; Huang, Bei; Zheng, Wenjun; Wang, Yuejun
2018-02-01
Continental thrust faulting earthquakes pose severe threats to megacities across the world. Recent events show the possible control of fault structures on strong ground motions. The seismogenic structure of the 2008 Wenchuan earthquake is associated with high-angle listric reverse fault zones. Its peak ground accelerations (PGAs) show a prominent feature of fault zone amplification: the values within the 30- to 40-km-wide fault zone block are significantly larger than those on both the hanging wall and the footwall. The PGA values attenuate asymmetrically: they decay much more rapidly in the footwall than in the hanging wall. The hanging wall effects can be seen on both the vertical and horizontal components of the PGAs, with the former significantly more prominent than the latter. All these characteristics can be adequately interpreted by upward extrusion of the high-angle listric reverse fault zone block. Through comparison with a low-angle planar thrust fault associated with the 1999 Chi-Chi earthquake, we conclude that different fault structures might have controlled different patterns of strong ground motion, which should be taken into account in seismic design and construction.
Structural Evolution of Transform Fault Zones in Thick Oceanic Crust of Iceland
NASA Astrophysics Data System (ADS)
Karson, J. A.; Brandsdottir, B.; Horst, A. J.; Farrell, J.
2017-12-01
Spreading centers in Iceland are offset from the regional trend of the Mid-Atlantic Ridge by the Tjörnes Fracture Zone (TFZ) in the north and the South Iceland Seismic Zone (SISZ) in the south. Rift propagation away from the center of the Iceland hotspot, has resulted in migration of these transform faults to the N and S, respectively. As they migrate, new transform faults develop in older crust between offset spreading centers. Active transform faults, and abandoned transform structures left in their wakes, show features that reflect different amounts (and durations) of slip that can be viewed as a series of snapshots of different stages of transform fault evolution in thick, oceanic crust. This crust has a highly anisotropic, spreading fabric with pervasive zones of weakness created by spreading-related normal faults, fissures and dike margins oriented parallel to the spreading centers where they formed. These structures have a strong influence on the mechanical properties of the crust. By integrating available data, we suggest a series of stages of transform development: 1) Formation of an oblique rift (or leaky transform) with magmatic centers, linked by bookshelf fault zones (antithetic strike-slip faults at a high angle to the spreading direction) (Grimsey Fault Zone, youngest part of the TFZ); 2) broad zone of conjugate faulting (tens of km) (Hreppar Block N of the SISZ); 3) narrower ( 20 km) zone of bookshelf faulting aligned with the spreading direction (SISZ); 4) mature, narrow ( 1 km) through-going transform fault zone bounded by deformation (bookshelf faulting and block rotations) distributed over 10 km to either side (Húsavík-Flatey Fault Zone in the TFZ). With progressive slip, the transform zone becomes progressively narrower and more closely aligned with the spreading direction. The transform and non-transform (beyond spreading centers) domains may be truncated by renewed propagation and separated by subsequent spreading. This perspective provides an analog for the evolution of migrating transforms along mid-ocean ridge spreading centers or other places where plate boundary rearrangements result in the formation of a new transform fault in highly anisotropic oceanic crust.
Timing of terrane accretion in eastern and east-central Maine
NASA Astrophysics Data System (ADS)
Ludman, Allan
1986-05-01
The Norumbega fault zone is often cited as a post-Acadian suture between exotic blocks, even though stratigraphic, structural, and metamorphic data indicate that there is little offset of the Silurian-Devonian strata that the zone cuts in eastern Maine. Similarly, the Kingman fault zone has been shown by gravity and geochemical studies to separate distinct crustal blocks, whereas mapping shows that it lies entirely within a Silurian turbidite package. These conflicts are resolved if the two fault zones represent boundaries between Ordovician or older crustal blocks that had accreted to form a composite terrane prior to deposition of the cover sequences. The faults now mapped within these younger rocks formed by reactivation of the pre-Silurian boundaries during late Acadian time; movement continued until the late Carboniferous. Most of the accretionary history of Maine had thus ended before the Silurian. A complex composite terrane may have formed during Cambrian-Ordovician time that (1) interacted with cratonic North America during the Taconian orogeny and (2) became the “basement” upon which the Silurian and Lower Devonian strata of eastern Maine were deposited.
Kinematic evolution of the Maacama Fault Zone, Northern California Coast Ranges
NASA Astrophysics Data System (ADS)
Schroeder, Rick D.
The Maacama Fault Zone (MFZ) is a major component of the Pacific-North American transform boundary in northern California, and its distribution of deformation and kinematic evolution defines that of a young continental transform boundary. The USGS Quaternary database (2010) currently defines the MFZ as a relatively narrow fault zone; however, a cluster analysis of microearthquakes beneath the MFZ defines a wider fault zone, composed of multiple seismogenically active faults. The surface projection of best-fit tabular zones through foci clusters correlates with previously interpreted faults that were assumed inactive. New investigations further delineate faults within the MFZ based on geomorphic features and shallow resistivity surveys, and these faults are interpreted to be part of several active pull-apart fault systems. The location of faults and changes in their geometry in relation to geomorphic features, indicate >8 km of cumulative dextral displacement across the eastern portion of the MFZ at Little Lake Valley, which includes other smaller offsets on fault strands in the valley. Some faults within the MFZ have geometries consistent with reactivated subduction-related reverse faults, and project near outcrops of pre-existing faults, filled with mechanically weak minerals. The mechanical behavior of fault zones is influenced by the spatial distribution and abundance of mechanically weak lithologies and mineralogies within the heterogeneous Franciscan melange that the MFZ displaces. This heterogeneity is characterized near Little Lake Valley (LLV) using remotely sensed data, field mapping, and wellbore data, and is composed of 2--5 km diameter disk-shaped coherent blocks that can be competent and resist deformation. Coherent blocks and the melange that surrounds them are the source for altered minerals that fill portions of fault zones. Mechanically weak minerals in pre-existing fault zones, identified by X-ray diffraction and electron microprobe analyses, are interpreted as a major reason for complex configurations of clusters of microearthquakes and zones of aseismic creep along the MFZ. Analysis of the kinematics of the MFZ and the distribution of its deformation is important because it improves the understanding of young stages of transform system evolution, which has implications that affect issues ranging from seismic hazard to petroleum and minerals exploration around the world.
NASA Astrophysics Data System (ADS)
Hamburger, M. W.; Johnson, K. M.; Nowicki, M. A. E.; Bacolcol, T. C.; Solidum, R., Jr.; Galgana, G.; Hsu, Y. J.; Yu, S. B.; Rau, R. J.; McCaffrey, R.
2014-12-01
We present results of two techniques to estimate the degree of coupling along the two major subduction zone boundaries that bound the Philippine Mobile Belt, the Philippine Trench and the Manila Trench. Convergence along these plate margins accommodates about 100 mm/yr of oblique plate motion between the Philippine Sea and Sundaland plates. The coupling estimates are based on a recently acquired set of geodetic data from a dense nationwide network of continuous and campaign GPS sites in the Philippines. First, we use a kinematic, elastic block model (tdefnode; McCaffrey, 2009) that combines existing fault geometries, GPS velocities and focal mechanism solutions to solve for block rotations, fault coupling, and intra-block deformation. Secondly, we use a plate-block kinematic model described in Johnson (2013) to simultaneously estimate long-term fault slip rates, block motions and interseismic coupling on block-bounding faults. The best-fit model represents the Philippine Mobile Belt by 14 independently moving rigid tectonic blocks, separated by active faults and subduction zones. The model predicts rapid convergence along the Manila Trench, decreasing progressively southwards, from > 100 mm/yr in the north to less than 20 mm/yr in the south at the Mindoro Island collision zone. Persistent areas of high coupling, interpreted to be asperities, are observed along the Manila Trench slab interface, in central Luzon (16-18°N) and near its southern and northern terminations. Along the Philippine Trench, we observe ~50 mm/yr of oblique convergence, with high coupling observed at its central and southern segments. We identify the range of allowable coupling distributions and corresponding moment accumulation rates on the two subduction zones by conducting a suite of inversions in which the total moment accumulation rate on a selected fault is fixed. In these constrained moment inversions we test the range of possible solutions that meet criteria for minimum, best-fit, and maximum coupling that still fit the data, based on reduced chi-squared calculations. In spite of the variable coupling, the total potential moment accumulation rate along each of the two subduction zones is estimated to range from 3.98 x 1019 to 2.24 x 1020 N-m yr-1, equivalent to a magnitude Mw 8.4 to 8.9 earthquake per 100 years.
Geometry and kinematics of adhesive wear in brittle strike-slip fault zones
NASA Astrophysics Data System (ADS)
Swanson, Mark T.
2005-05-01
Detailed outcrop surface mapping in Late Paleozoic cataclastic strike-slip faults of coastal Maine shows that asymmetric sidewall ripouts, 0.1-200 m in length, are a significant component of many mapped faults and an important wall rock deformation mechanism during faulting. The geometry of these structures ranges from simple lenses to elongate slabs cut out of the sidewalls of strike-slip faults by a lateral jump of the active zone of slip during adhesion along a section of the main fault. The new irregular trace of the active fault after this jump creates an indenting asperity that is forced to plow through the adjoining wall rock during continued adhesion or be cut off by renewed motion along the main section of the fault. Ripout translation during adhesion sets up the structural asymmetry with trailing extensional and leading contractional ends to the ripout block. The inactive section of the main fault trace at the trailing end can develop a 'sag' or 'half-graben' type geometry due to block movement along the scallop-shaped connecting ramp to the flanking ripout fault. Leading contractional ramps can develop 'thrust' type imbrication and forces the 'humpback' geometry to the ripout slab due to distortion of the inactive main fault surface by ripout translation. Similar asymmetric ripout geometries are recognized in many other major crustal scale strike-slip fault zones worldwide. Ripout structures in the 5-500 km length range can be found on the Atacama fault system of northern Chile, the Qujiang and Xiaojiang fault zones in western China, the Yalakom-Hozameen fault zone in British Columbia and the San Andreas fault system in southern California. For active crustal-scale faults the surface expression of ripout translation includes a coupled system of extensional trailing ramps as normal oblique-slip faults with pull-apart basin sedimentation and contractional leading ramps as oblique thrust or high angle reverse faults with associated uplift and erosion. The sidewall ripout model, as a mechanism for adhesive wear during fault zone deformation, can be useful in studies of fault zone geometry, kinematics and evolution from outcrop- to crustal-scales.
NASA Astrophysics Data System (ADS)
Pizzati, Mattia; Balsamo, Fabrizio; Iacumin, Paola; Swennen, Rudy; Storti, Fabrizio
2017-04-01
In this contribution we describe the architecture and petrophysical properties of the Rocca di Neto extensional fault zone in loose and poorly lithified sediments, located in the Crotone forearc basin (south Italy). To this end, we combined fieldwork with microstructural observations, grain size analysis, and in situ permeability measurements. The studied fault zone has an estimated maximum displacement of 80-90 m and separates early Pleistocene age (Gelasian) sands in the footwall from middle Pleistocene (Calabrian) silty clay in the hangingwall. The analysed outcrop consists of about 70 m section through the fault zone mostly developed in the footwall block. Fault zone consists of four different structural domains characterized by distinctive features: (1) <1 m-thick fault core (where the majority of the displacement is accommodated) in which bedding is transposed into foliation imparted by grain preferential orientation and some black gouges decorate the main slip surfaces; (2) zone of tectonic mixing characterized by a set of closely spaced and anastomosed deformation bands parallel to the main slip surface; (3) about 8 m-thick footwall damage zone characterized by synthetic and antithetic sets of deformation bands; (4) zone of background deformation with a few, widely-spaced conjugate minor faults and deformation bands. The boundary between the relatively undeformed sediments and the damage zone is not sharp and it is characterized by a progressive decrease in deformation intensity. The silty clay in the hangingwall damage zone is characterized by minor faults. Grain size and microstructural data indicate that particulate flow with little amount of cataclasis is the dominant deformation mechanism in both fault core rocks and deformation bands. Permeability of undeformed sediments is about 70000 mD, whereas the permeability in deformation bands ranges from 1000 to 18000 mD; within the fault core rocks permeability is reduced up to 3-4 orders of magnitude respect to the undeformed domains. Structural and petrophysical data suggest that the Rocca di Neto fault zone may compartmentalize the footwall block due to both juxtaposition of clay-rich lithology in the hangingwall and the development of low permeability fault core rocks.
Cenozoic pull-apart basins in southwest Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruppel, E.T.
1991-06-01
Faults and fault zones bounding the mountain ranges of southwest Montana commonly have been described as normal faults, and the region has been considered to be a northern extension of the Basin and Range. New geologic mapping suggests, however, that Cenozoic movements along most of the zones of steep faults in southwest Montana and in east-central Idaho have been strike-slip, and the intermontane basins appear to be pull-aparts. The principal fault zones trend about north, northwest, east, and north-northeast; the north-trending zones are Cenozoic in age, but the others are of Archean ancestry and are rooted in basement rocks. Thesemore » faults break the region into rhomboidal mountain blocks separated by broad basins with parallel sides. The basins are as much as 5,000 m deep, and their floors are deeply indented by centers of subsidence wherre they are crossed by major fault zones. The basins are floored by Archean or Proterozoic rocks and are filled with tuffaceous sedimentary rocks of late Oligocene to late Miocene age. The Big Hole basin and the smaller basins in upper Grasshopper Creek and Horse Prairie are interpreted to be pull-aparts between zones of east-trending right-lateral faults. The cratonic basins farther east in southwest Montana are interpreted to be basement-floored openings between mountain blocks that have been separated by subcrustal flow to the northwest. The interpretations suggest that significant accumulations of oil or gas are not likely to be found in this region.« less
NASA Astrophysics Data System (ADS)
Demurtas, Matteo; Fondriest, Michele; Clemenzi, Luca; Balsamo, Fabrizio; Storti, Fabrizio; Di Toro, Giulio
2015-04-01
Fault zones cutting carbonate sequences represent significant seismogenic sources worldwide (e.g. L'Aquila 2009, MW 6.1). Though seismological and geophysical techniques (double differences method, trapped waves, etc.) allow us to investigate down to the decametric scale the structure of active fault zones, further geological field surveys and microstructural studies of exhumed seismogenic fault zones are required to support interpretation of geophysical data, quantify the geometry of fault zones and identify the fault processes active during the seismic cycle. Here we describe the architecture (i.e. fault geometry and fault rock distribution) of the well-exposed footwall-block of the Campo Imperatore Fault Zone (CIFZ) by means of remote sensed analyses, field surveys, mineralogical (XRD, micro-Raman spectroscopy) and microstructural (FE-SEM, optical microscope cathodoluminescence) investigations. The CIFZ dips 58° towards N210 and its strike mimics that of the arcuate Gran Sasso Thrust Belt (Central Apennines). The CIFZ was exhumed from 2-3 km depth and accommodated a normal throw of ~2 km starting from the Early-Pleistocene. In the studied area, the CIFZ puts in contact the Holocene deposits at the hangingwall with dolomitized Jurassic carbonate platform successions (Calcare Massiccio) at the footwall. From remote sensed analyses, structural lineaments both inside and outside the CIFZ have a typical NW-SE Apenninic strike, which is parallel to the local trend of the Gran Sasso Thrust. Based on the density of the fracture/fault network and the type of fault zone rocks, we distinguished four main structural domains within the ~300 m thick CIFZ footwall-block, which include (i) a well-cemented (white in color) cataclastic zone (up to ~40 m thick) at the contact with the Holocene deposits, (ii) a well-cemented (brown to grey in color) breccia zone (up to ~15 m thick), (iii) an high strain damage zone (fracture spacing < 2-3 cm), and (iv) a low strain damage zone (fracture spacing > 10 cm). Other than by the main boundary normal fault, slip was accommodated in the cataclastic zone by minor sub-parallel synthetic and antithetic normal faults and by few tear strike-slip fault; the rest of the footwall shows progressively less pervasive damage down to the background intensity of deformation. High strain domains include (1) pervasively fragmented dolostones with radial fractures (evidence of in-situ shattering), (2) shiny (mirror-like) fault surfaces truncating dolostone clasts, (3) mm-thick ultra-cataclastic layers with lobate and cuspate boundaries, (4) mixed calcite-dolomite "foliated cataclasites". The above microstructures can be associated with seismic faulting. Fluids infiltration during deformation is attested by the occurrence of multiple generations of carbonate-filled veins, often exploited as minor faults with a mylonite-like fabric (e.g. presence of micrometer in size euhedral calcite grains). The attitude of the studied segment of the CIFZ, the thickness of the footwall block and the kinematics of the minor faults compares well with the hypocentral and focal mechanisms distribution typical of the earthquake sequences in the Apennines. In particular, the CIFZ can be considered as an exhumed analogue of the normal fault system that caused the L'Aquila 2009 seismic sequence.
NASA Astrophysics Data System (ADS)
Wallace, Laura M.; Beavan, John; McCaffrey, Robert; Berryman, Kelvin; Denys, Paul
2007-01-01
The landmass of New Zealand exists as a consequence of transpressional collision between the Australian and Pacific plates, providing an excellent opportunity to quantify the kinematics of deformation at this type of tectonic boundary. We interpret GPS, geological and seismological data describing the active deformation in the South Island, New Zealand by using an elastic, rotating block approach that automatically balances the Pacific/Australia relative plate motion budget. The data in New Zealand are fit to within uncertainty when inverted simultaneously for angular velocities of rotating tectonic blocks and the degree of coupling on faults bounding the blocks. We find that most of the plate motion budget has been accounted for in previous geological studies, although we suggest that the Porter's Pass/Amberley fault zone in North Canterbury, and a zone of faults in the foothills of the Southern Alps may have slip rates about twice that of the geological estimates. Up to 5 mm yr-1 of active deformation on faults distributed within the Southern Alps <100 km to the east of the Alpine Fault is possible. The role of tectonic block rotations in partitioning plate boundary deformation is less pronounced in the South Island compared to the North Island. Vertical axis rotation rates of tectonic blocks in the South Island are similar to that of the Pacific Plate, suggesting that edge forces dominate the block kinematics there. The southward migrating Chatham Rise exerts a major influence on the evolution of the New Zealand plate boundary; we discuss a model for the development of the Marlborough fault system and Hikurangi subduction zone in the context of this migration.
Fault architecture and deformation processes within poorly lithified rift sediments, Central Greece
NASA Astrophysics Data System (ADS)
Loveless, Sian; Bense, Victor; Turner, Jenni
2011-11-01
Deformation mechanisms and resultant fault architecture are primary controls on the permeability of faults in poorly lithified sediments. We characterise fault architecture using outcrop studies, hand samples, thin sections and grain-size data from a minor (1-10 m displacement) normal-fault array exposed within Gulf of Corinth rift sediments, Central Greece. These faults are dominated by mixed zones with poorly developed fault cores and damage zones. In poorly lithified sediment deformation is distributed across the mixed zone as beds are entrained and smeared. We find particulate flow aided by limited distributed cataclasis to be the primary deformation mechanism. Deformation may be localised in more competent sediments. Stratigraphic variations in sediment competency, and the subsequent alternating distributed and localised strain causes complexities within the mixed zone such as undeformed blocks or lenses of cohesive sediment, or asperities at the mixed zone/protolith boundary. Fault tip bifurcation and asperity removal are important processes in the evolution of these fault zones. Our results indicate that fault zone architecture and thus permeability is controlled by a range of factors including lithology, stratigraphy, cementation history and fault evolution, and that minor faults in poorly lithified sediment may significantly impact subsurface fluid flow.
Study on 3-D velocity structure of crust and upper mantle in Sichuan-yunnan region, China
Wang, C.; Mooney, W.D.; Wang, X.; Wu, J.; Lou, H.; Wang, F.
2002-01-01
Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others appear the characteristic of tectonic boundary, indicating that the faults litely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the Sichuan-Yunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the Indian and the Asian plates. The crustal velocity in the Sichuan-Yunnan rhombic block generally shows normal.value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.
Analysis of tectonic features in US southwest from Skylab photographs
NASA Technical Reports Server (NTRS)
Abdel-Gawad, M. (Principal Investigator); Tubbesing, L.
1975-01-01
The author has identified the following significant results. Skylab photographs were utilized to study faults and tectonic lines in selected areas of the U.S. Southwest. Emphasis was on elements of the Texas Zone in the Mojave Desert and the tectonic intersection in southern Nevada. Transverse faults believed to represent the continuation of the Texas Zone were found to be anomalous in strike. This suggests that the Mojave Desert block was rotated counterclockwise as a unit with the Sierra Nevada. Left-lateral strike-slip faults in Lake Mead area are interpreted as elements of the Wasatch tectonic zone; their anomalous trend indicates that the Lake Mead area has rotated clockwise with the Colorado Plateau. A tectonic model relating major fault zones to fragmentation and rotation of crustal blocks was developed. Detailed correlation of the high resolution S190B metric camera photographs with U-2 photographs and geologic maps demonstrates the feasibility of utilizing S190B photographs for the identification of geomorphic features associated with recent and active faults and for the assessment of seismic hazards.
NASA Astrophysics Data System (ADS)
Hsu, Y. J.; Yu, S. B.; Loveless, J. P.; Bacolcol, T.; Woessner, J.; Solidum, R., Jr.
2015-12-01
The Sunda plate converges obliquely with the Philippine Sea plate with a rate of ~100 mm/yr and results in the sinistral slip along the 1300 km-long Philippine fault. Using GPS data from 1998 to 2013 as well as a block modeling approach, we decompose the crustal motion into multiple rotating blocks and elastic deformation associated with fault slip at block boundaries. Our preferred model composed of 8 blocks, produces a mean residual velocity of 3.4 mm/yr at 93 GPS stations. Estimated long-term slip rates along the Manila subduction zone show a gradual southward decrease from 66 mm/yr at the northwest tip of Luzon to 60 mm/yr at the southern portion of the Manila Trench. We infer a low coupling fraction of 11% offshore northwest Luzon and a coupling fraction of 27% near the subduction of Scarborough Seamount. The accumulated strain along the Manila subduction zone at latitudes 15.5°~18.5°N could be balanced by earthquakes with composite magnitudes of Mw 8.7 and Mw 8.9 based on a recurrence interval of 500 years and 1000 years, respectively. Estimates of sinistral slip rates on the major splay faults of the Philippine fault system in central Luzon increase from east to west: sinistral slip rates are 2 mm/yr on the Dalton fault, 8 mm/yr on the Abra River fault, and 12 mm/yr on the Tubao fault. On the southern segment of the Philippine fault (Digdig fault), we infer left-lateral slip of ~20 mm/yr. The Vigan-Aggao fault in northwest Luzon exhibits significant reverse slip of up to 31 mm/yr, although deformation may be distributed across multiple offshore thrust faults. On the Northern Cordillera fault, we calculate left-lateral slip of ~7 mm/yr. Results of block modeling suggest that the majority of active faults in Luzon are fully locked to a depth of 15-20 km. Inferred moment magnitudes of inland large earthquakes in Luzon fall in the range of Mw 7.0-7.5 based on a recurrence interval of 100 years. Using the long-term plate convergence rate between the Sunda plate and Philippine Sea plate as well as seismic moment release rate, we calculate the moment budget for the entire Luzon plate boundary zone that could be balanced by earthquakes with a composite magnitude of ~Mw 9 based on recurrence intervals of 500-1000 years.
Fault zone architecture within Miocene-Pliocene syn-rift sediments, Northwestern Red Sea, Egypt
NASA Astrophysics Data System (ADS)
Zaky, Khairy S.
2017-04-01
The present study focusses on field description of small normal fault zones in Upper Miocene-Pliocene sedimentary rocks on the northwestern side of the Red Sea, Egypt. The trend of these fault zones is mainly NW-SE. Paleostress analysis of 17 fault planes and slickenlines indicate that the tension direction is NE-SW. The minimum ( σ3) and intermediate ( σ2) paleostress axes are generally sub-horizontal and the maximum paleostress axis ( σ1) is sub-vertical. The fault zones are composed of damage zones and fault core. The damage zone is characterized by subsidiary faults and fractures that are asymmetrically developed on the hanging wall and footwall of the main fault. The width of the damage zone varies for each fault depending on the lithology, amount of displacement and irregularity of the fault trace. The average ratio between the hanging wall and the footwall damage zones width is about 3:1. The fault core consists of fault gouge and breccia. It is generally concentrated in a narrow zone of ˜0.5 to ˜8 cm width. The overall pattern of the fault core indicates that the width increases with increasing displacement. The faults with displacement < 1 m have fault cores ranging from 0.5 to 4.0 cm, while the faults with displacements of > 2 m have fault cores ranging from 4.0 to 8.0 cm. The fault zones are associated with sliver fault blocks, clay smear, segmented faults and fault lenses' structural features. These features are mechanically related to the growth and linkage of the fault arrays. The structural features may represent a neotectonic and indicate that the architecture of the fault zones is developed as several tectonic phases.
Structural control on the CO2 release west of Mt. Epomeo resurgent block (Ischia, Italy)
NASA Astrophysics Data System (ADS)
de Vita, S.; Marotta, E.; Ventura, G.; Chiodini, G.
2003-04-01
Volcanism at Ischia started more than 150 ka B.P. and continued until the last eruption occurred in 1302 A.D. Ischia is dominated by the caldera forming eruption of Mt. Epomeo Green Tuff (55 ka), which was followed by block resurgence inside the caldera from 33 ka B.P. Resurgence influenced the volcanic activity determining the conditions for magma ascent mainly along the eastern edge of the resurgent block. The resurgent area has a poligonal shape resulting from reactivation of regional faults and by activation of faults related to volcanotectonism. The western sector is bordered by inward dipping, high angle strike-slip/reverse faults testifying a compressional stress regime in this area. These features are cut by late outward dipping normal faults due to gravitational stress. The activity of the volcanic system is testified by seismicity and thermal manifestations. Fumarolic activity concentrates along the faults that borders westward the Mt. Epomeo resurgent block, where the Green Tuff overlies fractured lavas. The structural data show that, outside the most active degassing zone, fractures show a NNW-SSE strike and dip toward Mt. Epomeo. These fractures delimit the northern sector of Mt. Epomeo and show strike and dip consistent with the inward dipping reverse faults. Inside the degassing area fractures show a NW-SE strike and dip outward Mt. Epomeo. These gravity-related faults cut the lavas where the hydrothermal circulation is active. The dip direction of the NW-SE striking fractures within the degassing zone is not consistent with that of the strike-slip/reverse faults (i.e. towards NE) but agrees well with that of the gravity-induced faults (dip direction towards SW). Inside the degassing zone, NW-SE striking faults with lengths not exceeding the hydrothermalized extension occur. This arrangement indicate that the syn-resurgence faults act as permeability barriers, whereas the youngest faults act as the main fluid pathway.
Marshak, S.; Nelson, W.J.; McBride, J.H.
2003-01-01
The continental interior platform of the United States is that part of the North American craton where a thin veneer of Phanerozoic strata covers Precambrian crystalline basement. N- to NE-trending and W- to NW-trending fault zones, formed initially by Proterozoic/Cambrian rifting, break the crust of the platform into rectilinear blocks. These zones were reactivated during the Phanerozoic, most notably in the late Palaeozoic Ancestral Rockies event and the Mesozoic-Cenozoic Laramide orogeny - some remain active today. Dip-slip reactivation can be readily recognized in cross section by offset stratigraphic horizons and monoclinal fault-propagation folds. Strike-slip displacement is hard to document because of poor exposure. Through offset palaeochannels, horizontal slip lineations, and strain at fault bends locally demonstrate strike-slip offset, most reports of strike-slip movements for interior-platform faults are based on occurrence of map-view belts of en echelon faults and anticlines. Each belt overlies a basement-penetrating master fault, which typically splays upwards into a flower structure. In general, both strike-slip and dip-slip components of displacement occur in the same fault zone, so some belts of en echelon structures occur on the flanks of monoclinal folds. Thus, strike-slip displacement represents the lateral components of oblique fault reactivation: dip-slip and strike-slip components are the same order of magnitude (tens of metres to tens of kilometres). Effectively, faults with strike-slip components of displacement act as transfers accommodating jostling of rectilinear crustal blocks. In this context, the sense of slip on an individual strike-slip fault depends on block geometry, not necessarily on the trajectory of regional ??1. Strike-slip faulting in the North American interior differs markedly from that of southern and central Eurasia, possibly because of a contrast in lithosphere strength. Weak Eurasia strained significantly during the Alpine-Himalayan collision, forcing crustal blocks to undergo significant lateral escape. The strong North American craton strained relatively little during collisional-convergent orogeny, so crustal blocks underwent relatively small displacements.
NASA Astrophysics Data System (ADS)
Lopes de Castro, David; Hilário Bezerra, Francisco; Adolfo Fuck, Reinhardt; Vidotti, Roberta Mary
2016-04-01
This study investigated the rifting mechanism that preceded the prolonged subsidence of the Paleozoic Parnaíba basin in Brazil and shed light on the tectonic evolution of this large cratonic basin in the South American platform. From the analysis of aeromagnetic, aerogravity, seismic reflection and borehole data, we concluded the following: (1) large pseudo-gravity and gravity lows mimic graben structures but are associated with linear supracrustal strips in the basement. (2) Seismic data indicate that 120-200 km wide and up to 300 km long rift zones occur in other parts of the basins. These rift zones mark the early stage of the 3.5 km thick sag basin. (3) The rifting phase occurred in the early Paleozoic and had a subsidence rate of 47 m Myr-1. (4) This rifting phase was followed by a long period of sag basin subsidence at a rate of 9.5 m Myr-1 between the Silurian and the late Cretaceous, during which rift faults propagated and influenced deposition. These data interpretations support the following succession of events: (1) after the Brasiliano orogeny (740-580 Ma), brittle reactivation of ductile basement shear zones led to normal and dextral oblique-slip faulting concentrated along the Transbrasiliano Lineament, a continental-scale shear zone that marks the boundary between basement crustal blocks. (2) The post-orogenic tectonic brittle reactivation of the ductile basement shear zones led to normal faulting associated with dextral oblique-slip crustal extension. In the west, pure-shear extension induced the formation of rift zones that crosscut metamorphic foliations and shear zones within the Parnaíba block. (3) The rift faults experienced multiple reactivation phases. (4) Similar processes may have occurred in coeval basins in the Laurentia and Central African blocks of Gondwana.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Losh, S.; Eglinton, L.; Schoell, M.
1999-02-01
Data from sediments in and near a large growth fault adjacent to the giant South Eugene Island Block 330 field, offshore Louisiana, indicate that the fault has acted as a conduit for fluids whose flux has varied in space and time. Core and cuttings samples from two wells that penetrated the same fault about 300 m apart show markedly different thermal histories and evidence for mass flux. Sediments within and adjacent to the fault zone in the US Department of Energy-Pennzoil Pathfinder well at about 2200 m SSTVD (subsea true vertical depth) showed little paleothermal or geochemical evidence for through-goingmore » fluid flow. The sediments were characterized by low vitrinite reflectances (R{sub {omicron}}), averaging 0.3% R{sub {omicron}}, moderate to high {delta}{sup 18}O and {delta}{sup 13}C values, and little difference in major or trace element composition between deformed and undeformed sediments. In contrast, faulted sediments from the A6ST well, which intersects the A fault at 1993 m SSTVD, show evidence for a paleothermal anomaly (0.55% R{sub {omicron}}) and depleted {delta}{sup 18}O and {delta}{sup 13}C values. Overall, indicators of mass and heat flux indicate the main growth fault zone in South Eugene Island Block 330 has acted as a conduit for ascending fluids, although the cumulative fluxes vary along strike. This conclusion is corroborated by oil and gas distribution in downthrown sands in Blocks 330 and 331, which identify the fault system in northwestern Block 330 as a major feeder.« less
Clustering of GPS velocities in the Mojave Block, southeastern California
Savage, James C.; Simpson, Robert W.
2013-01-01
We find subdivisions within the Mojave Block using cluster analysis to identify groupings in the velocities observed at GPS stations there. The clusters are represented on a fault map by symbols located at the positions of the GPS stations, each symbol representing the cluster to which the velocity of that GPS station belongs. Fault systems that separate the clusters are readily identified on such a map. The most significant representation as judged by the gap test involves 4 clusters within the Mojave Block. The fault systems bounding the clusters from east to west are 1) the faults defining the eastern boundary of the Northeast Mojave Domain extended southward to connect to the Hector Mine rupture, 2) the Calico-Paradise fault system, 3) the Landers-Blackwater fault system, and 4) the Helendale-Lockhart fault system. This division of the Mojave Block is very similar to that proposed by Meade and Hager. However, no cluster boundary coincides with the Garlock Fault, the northern boundary of the Mojave Block. Rather, the clusters appear to continue without interruption from the Mojave Block north into the southern Walker Lane Belt, similar to the continuity across the Garlock Fault of the shear zone along the Blackwater-Little Lake fault system observed by Peltzer et al. Mapped traces of individual faults in the Mojave Block terminate within the block and do not continue across the Garlock Fault [Dokka and Travis, ].
Duffield, Wendell A.; Stieltjes, Laurent; Varet, Jacques
1982-01-01
Piton de la Fournaise, on the island of La Réunion, and Kilauea volcano, on the island of Hawaii, are active, basaltic shield volcanoes growing on the flanks of much larger shield volcanoes in intraplate tectonic environments. Past studies have shown that the average rate of magma production and the chemistry of lavas are quite similar for both volcanoes. We propose a structural similarity — specifically, that periodic displacement of parts of the shields as huge landslide blocks is a common mode of growth. In each instance, the unstable blocks are within a rift-zone-bounded, unbuttressed flank of the shield. At Kilauea, well-documented landslide blocks form relatively surficial parts of a much larger rift-zone-bounded block; scarps of the Hilina fault system mark the headwalls of the active blocks. At Fournaise, Hilina-like slump blocks are also present along the unbuttressed east coast of the volcano. In addition, however, the existence of a set of faults nested around the present caldera and northeast and southeast rift zones suggests that past chapters in the history of Fournaise included the slumping of entire rift-zone-bounded blocks themselves. These nested faults become younger to the east southeast and apparently record one of the effects of a migration of the focus of volcanism in that direction. Repeated dilation along the present set of northeast and southeast rift zones, most recently exemplified by an eruption in 1977, suggests that the past history of rift-zone-bounded slumping will eventually be repeated. The record provided by the succession of slump blocks on Fournaise is apparently at a relatively detailed part of a migration of magmatic focus that has advanced at least 30 km to the east-southeast from neighboring Piton des Neiges, an extinct Pliocene to Pleistocene volcano.?? 1982.
Deformation pattern during normal faulting: A sequential limit analysis
NASA Astrophysics Data System (ADS)
Yuan, X. P.; Maillot, B.; Leroy, Y. M.
2017-02-01
We model in 2-D the formation and development of half-graben faults above a low-angle normal detachment fault. The model, based on a "sequential limit analysis" accounting for mechanical equilibrium and energy dissipation, simulates the incremental deformation of a frictional, cohesive, and fluid-saturated rock wedge above the detachment. Two modes of deformation, gravitational collapse and tectonic collapse, are revealed which compare well with the results of the critical Coulomb wedge theory. We additionally show that the fault and the axial surface of the half-graben rotate as topographic subsidence increases. This progressive rotation makes some of the footwall material being sheared and entering into the hanging wall, creating a specific region called foot-to-hanging wall (FHW). The model allows introducing additional effects, such as weakening of the faults once they have slipped and sedimentation in their hanging wall. These processes are shown to control the size of the FHW region and the number of fault-bounded blocks it eventually contains. Fault weakening tends to make fault rotation more discontinuous and this results in the FHW zone containing multiple blocks of intact material separated by faults. By compensating the topographic subsidence of the half-graben, sedimentation tends to slow the fault rotation and this results in the reduction of the size of the FHW zone and of its number of fault-bounded blocks. We apply the new approach to reproduce the faults observed along a seismic line in the Southern Jeanne d'Arc Basin, Grand Banks, offshore Newfoundland. There, a single block exists in the hanging wall of the principal fault. The model explains well this situation provided that a slow sedimentation rate in the Lower Jurassic is proposed followed by an increasing rate over time as the main detachment fault was growing.
Langenheim, V.E.; Powell, R.E.
2009-01-01
The Eastern Transverse Ranges, adjacent to and southeast of the big left bend of the San Andreas fault, southern California, form a crustal block that has rotated clockwise in response to dextral shear within the San Andreas system. Previous studies have indicated a discrepancy between the measured magnitudes of left slip on through-going east-striking fault zones of the Eastern Transverse Ranges and those predicted by simple geometric models using paleomagnetically determined clockwise rotations of basalts distributed along the faults. To assess the magnitude and source of this discrepancy, we apply new gravity and magnetic data in combination with geologic data to better constrain cumulative fault offsets and to define basin structure for the block between the Pinto Mountain and Chiriaco fault zones. Estimates of offset from using the length of pull-apart basins developed within left-stepping strands of the sinistral faults are consistent with those derived by matching offset magnetic anomalies and bedrock patterns, indicating a cumulative offset of at most ???40 km. The upper limit of displacements constrained by the geophysical and geologic data overlaps with the lower limit of those predicted at the 95% confidence level by models of conservative slip located on margins of rigid rotating blocks and the clockwise rotation of the paleomagnetic vectors. Any discrepancy is likely resolved by internal deformation within the blocks, such as intense deformation adjacent to the San Andreas fault (that can account for the absence of basins there as predicted by rigid-block models) and linkage via subsidiary faults between the main faults. ?? 2009 Geological Society of America.
Chasing the Garlock: A study of tectonic response to vertical axis rotation
NASA Astrophysics Data System (ADS)
Guest, Bernard; Pavlis, Terry L.; Golding, Heather; Serpa, Laura
2003-06-01
Vertical-axis, clockwise block rotations in the Northeast Mojave block are well documented by numerous authors. However, the effects of these rotations on the crust to the north of the Northeast Mojave block have remained unexplored. In this paper we present a model that results from mapping and geochronology conducted in the north and central Owlshead Mountains. The model suggests that some or all of the transtension and rotation observed in the Owlshead Mountains results from tectonic response to a combination of clockwise block rotation in the Northeast Mojave block and Basin and Range extension. The Owlshead Mountains are effectively an accommodation zone that buffers differential extension between the Northeast Mojave block and the Basin and Range. In addition, our model explores the complex interactions that occur between faults and fault blocks at the junction of the Garlock, Brown Mountain, and Owl Lake faults. We hypothesize that the bending of the Garlock fault by rotation of the Northeast Mojave block resulted in a misorientation of the Garlock that forced the Owl Lake fault to break in order to accommodate slip on the western Garlock fault. Subsequent sinistral slip on the Owl Lake fault offset the Garlock, creating the now possibly inactive Mule Springs strand of the Garlock fault. Dextral slip on the Brown Mountain fault then locked the Owl Lake fault, forcing the active Leach Lake strand of the Garlock fault to break.
NASA Astrophysics Data System (ADS)
Li, W.; Shi, Y.; Zhang, H.; Cheng, H.
2017-12-01
The Hexi Corridor, located between the Alax block and the Caledon fold belt in the North Qilian Mountains, is the forefront area of northward thrust of the Tibet Plateau. Most notably, this active tectonic region consists of a series of faults and western-northwest trending Cenozoic basins. Therefore, it's a pivotal part in terms of recording tectonic pattern of the Tibet Plateau and also demonstrating the northward growth of Tibetan Plateau. In order to explain the mechanism of formation and evolution of the paired basins in the Hexi Corridor and based on the visco-elasticity-plasticity constitutive relation, we construct a 3-D finite element numerical model, including the Altun Tagh fault zone, the northern Qilian Shan-Hexi corridor faults system and the Haiyuan fault zone in northeast of the Tibet Plateau.The boundary conditions are constrained by GPS observations and fault slip rate provided by field geology, with steady rate of deformation of north-south compression and lateral shear along the approximately east-west strike fault zones.In our numerical model, different blocks are given different mechanical features and major fault zones are assumed mechanical weak zones. The long-term (5Ma) accumulation of lithospheric stress, displacement and fault dislocation of the Hexi Corridor and its adjacent regions are calculated in different models for comparison. Meanwhile, we analyze analyzed how the crustal heterogeneity affecting the tectonic deformations in this region. Comparisons between the numerical results and the geological observations indicate that under compression-shear boundary conditions, heterogeneous blocks of various scales may lead to the development of en echelon faults and basins in the Hexi corridor. And the ectonic deformation of Alax and the North Qilian Mountains are almost simultaneous, which may be earlier than the initiation of en echelon basins in the Hexi Corridor and the faults between the en echelon basins. Calculated horizontal and vertical deformation rate are in agreement with geological data. The calculation of deformation process is helpful for understanding the geological evolution history of the northeastwards growth of the Tibetan Plateau.
Active Tectonics of the Far North Pacific Observed with GPS
NASA Astrophysics Data System (ADS)
Elliott, J.; Freymueller, J. T.; Jiang, Y.; Leonard, L. J.; Hyndman, R. D.; Mazzotti, S.
2017-12-01
The idea that the tectonics of the northeastern Pacific is defined by relatively discrete deformation along the boundary between the Pacific and North American plates has given way to a more complex picture of broad plate boundary zones and distributed deformation. This is due in large part to the Plate Boundary Observatory and several focused GPS studies, which have greatly increased the density of high-quality GPS data throughout the region. We will present an updated GPS velocity field in a consistent reference frame as well as a new, integrated block model that sheds light on regional tectonics and provides improved estimates of motion along faults and their potential seismic hazard. Crustal motions in southern Alaska are strongly influenced by the collision and flat-slab subduction of the Yakutat block along the central Gulf of Alaska margin. In the area nearest to the collisional front, small blocks showing evidence of internal deformation are required. East of the front, block motions show clockwise rotation into the Canadian Cordillera while west of the front there are counterclockwise rotations that extend along the Alaska forearc, suggesting crustal extrusion. Farther from the convergent margin, the crust appears to move as rigid blocks, with uniform motion over large areas. In western Alaska, block motions show a southwesterly rotation into the Bering Sea. Arctic Alaska displays southeasterly motions that gradually transition into easterly motion in Canada. Much of the southeastern Alaska panhandle and coastal British Columbia exhibit northwesterly motions. Although the relative plate motions are mainly accommodated along major faults systems, including the Fairweather-Queen Charlotte transform system, the St. Elias fold-and-thrust belt, the Denali-Totschunda system, and the Alaska-Aleutian subduction zone, a number of other faults accommodate lesser but still significant amounts of motion in the model. These faults include the eastern Denali/Duke River system, the Castle Mountain fault, the western Denali fault, the Kaltag fault, and the Kobuk fault. Based on the expanded GPS data set, locked or partially locked sections of the Alaska subduction zone may extend as far north and east as the eastern Alaska Range.
NASA Astrophysics Data System (ADS)
Molli, G.; Cortecci, G.; Vaselli, L.; Ottria, G.; Cortopassi, A.; Dinelli, E.; Mussi, M.; Barbieri, M.
2010-09-01
We studied the geometry, intensity of deformation and fluid-rock interaction of a high angle normal fault within Carrara marble in the Alpi Apuane NW Tuscany, Italy. The fault is comprised of a core bounded by two major, non-parallel slip surfaces. The fault core, marked by crush breccia and cataclasites, asymmetrically grades to the host protolith through a damage zone, which is well developed only in the footwall block. On the contrary, the transition from the fault core to the hangingwall protolith is sharply defined by the upper main slip surface. Faulting was associated with fluid-rock interaction, as evidenced by kinematically related veins observable in the damage zone and fluid channelling within the fault core, where an orange-brownish cataclasite matrix can be observed. A chemical and isotopic study of veins and different structural elements of the fault zone (protolith, damage zone and fault core), including a mathematical model, was performed to document type, role, and activity of fluid-rock interactions during deformation. The results of our studies suggested that deformation pattern was mainly controlled by processes associated with a linking-damage zone at a fault tip, development of a fault core, localization and channelling of fluids within the fault zone. Syn-kinematic microstructural modification of calcite microfabric possibly played a role in confining fluid percolation.
Pore pressure control on faulting behavior in a block-gouge system
NASA Astrophysics Data System (ADS)
Yang, Z.; Juanes, R.
2016-12-01
Pore fluid pressure in a fault zone can be altered by natural processes (e.g., mineral dehydration and thermal pressurization) and industrial operations involving subsurface fluid injection/extraction for the development of energy and water resources. However, the effect of pore pressure change on the stability and slip motion of a preexisting geologic fault remain poorly understood; yet they are critical for the assessment of seismic risk. In this work, we develop a micromechanical model to investigate the effect of pore pressure on faulting behavior. The model couples pore network fluid flow and mechanics of the solid grains. We conceptualize the fault zone as a gouge layer sandwiched between two blocks; the block material is represented by a group of contact-bonded grains and the gouge is composed of unbonded grains. A pore network is extracted from the particulate pack of the block-gouge system with pore body volumes and pore throat conductivities calculated rigorously based on the geometry of the local pore space. Pore fluid exerts pressure force onto the grains, the motion of which is solved using the discrete element method (DEM). The model updates the pore network regularly in response to deformation of the solid matrix. We study the fault stability in the presence of a pressure inhomogeneity (gradient) across the gouge layer, and compare it with the case of homogeneous pore pressure. We consider both normal and thrust faulting scenarios with a focus on the onset of shear failure along the block-gouge interfaces. Numerical simulations show that the slip behavior is characterized by intermittent dynamics, which is evident in the number of slipping contacts at the block-gouge interfaces and the total kinetic energy of the gouge particles. Numerical results also show that, for the case of pressure inhomogeneity, the onset of slip occurs earlier for the side with higher pressure, and that this onset appears to be controlled by the maximum pressure of both sides of the fault. We conclude that the stability of the fault should be evaluated separately for both sides of the gouge layer, a result that sheds new light on the use of the effective stress principle and the Coulomb failure criterion in evaluating the stability of a complex fault zone.
Clustering of GPS velocities in the Mojave Block, southeastern California
NASA Astrophysics Data System (ADS)
Savage, J. C.; Simpson, R. W.
2013-04-01
find subdivisions within the Mojave Block using cluster analysis to identify groupings in the velocities observed at GPS stations there. The clusters are represented on a fault map by symbols located at the positions of the GPS stations, each symbol representing the cluster to which the velocity of that GPS station belongs. Fault systems that separate the clusters are readily identified on such a map. The most significant representation as judged by the gap test involves 4 clusters within the Mojave Block. The fault systems bounding the clusters from east to west are 1) the faults defining the eastern boundary of the Northeast Mojave Domain extended southward to connect to the Hector Mine rupture, 2) the Calico-Paradise fault system, 3) the Landers-Blackwater fault system, and 4) the Helendale-Lockhart fault system. This division of the Mojave Block is very similar to that proposed by Meade and Hager []. However, no cluster boundary coincides with the Garlock Fault, the northern boundary of the Mojave Block. Rather, the clusters appear to continue without interruption from the Mojave Block north into the southern Walker Lane Belt, similar to the continuity across the Garlock Fault of the shear zone along the Blackwater-Little Lake fault system observed by Peltzer et al. []. Mapped traces of individual faults in the Mojave Block terminate within the block and do not continue across the Garlock Fault [Dokka and Travis, ].
Present-day crustal deformation and strain transfer in northeastern Tibetan Plateau
NASA Astrophysics Data System (ADS)
Li, Yuhang; Liu, Mian; Wang, Qingliang; Cui, Duxin
2018-04-01
The three-dimensional present-day crustal deformation and strain partitioning in northeastern Tibetan Plateau are analyzed using available GPS and precise leveling data. We used the multi-scale wavelet method to analyze strain rates, and the elastic block model to estimate slip rates on the major faults and internal strain within each block. Our results show that shear strain is strongly localized along major strike-slip faults, as expected in the tectonic extrusion model. However, extrusion ends and transfers to crustal contraction near the eastern margin of the Tibetan Plateau. The strain transfer is abrupt along the Haiyuan Fault and diffusive along the East Kunlun Fault. Crustal contraction is spatially correlated with active uplifting. The present-day strain is concentrated along major fault zones; however, within many terranes bounded by these faults, intra-block strain is detectable. Terranes having high intra-block strain rates also show strong seismicity. On average the Ordos and Sichuan blocks show no intra-block strain, but localized strain on the southwestern corner of the Ordos block indicates tectonic encroachment.
Dynamics of seismogenerating structures in the frontal zone of the Kolyma-Omolon superterrane
NASA Astrophysics Data System (ADS)
Imaeva, L. P.; Imaev, V. S.; Koz'min, B. M.
2016-07-01
To develop a model for the dynamics of seismogenerating structures in the frontal zone of the Kolyma-Omolon superterrane (Chersky seismotectonic zone), the following aspects are analyzed: structural-tectonic position, deep structure parameters, active faults, and fields of tectonic stresses as revealed from solutions of focal mechanisms of strong earthquakes and kinematic types of Late Cenozoic fold deformations and faults. It is found that a certain dynamic setting under transpressional conditions takes place and it was caused by the interaction between structures of the Eurasian, North American, and Okhotsk lithospheric plates within regional segments of the Chersky zone (Yana-Indigirka and Indigirka-Kolyma). These conditions are possible if the Kolyma-Omolon block located in the frontal zone of the North American Plate was an indenter. Due to this, some terranes of different geodynamic origin underwent horizontal shortening, under which particular blocks of segments were pushed out laterally along the orogenic belt, on a system of conjugated strike-slip faults of different directions and hierarchical series, in the northwest and southeast directions, respectively, to form the main seismogenerating reverse-fault and thrust structures with the maximum seismic potential ( M ≥ 6.5).
Consequences of Rift Propagation for Spreading in Thick Oceanic Crust in Iceland
NASA Astrophysics Data System (ADS)
Karson, J. A.
2015-12-01
Iceland has long been considered a natural laboratory for processes related to seafloor spreading, including propagating rifts, migrating transforms and rotating microplates. The thick, hot, weak crust and subaerial processes of Iceland result in variations on the themes developed along more typical parts of the global MOR system. Compared to most other parts of the MOR, Icelandic rift zones and transform faults are wider and more complex. Rift zones are defined by overlapping arrays of volcanic/tectonic spreading segments as much as 50 km wide. The most active rift zones propagate N and S away from the Iceland hot spot causing migration of transform faults. A trail of crust deformed by bookshelf faulting forms in their wakes. Dead or dying transform strands are truncated along pseudofaults that define propagation rates close to the full spreading rate of ~20 mm/yr. Pseudofaults are blurred by spreading across wide rift zones and laterally extensive subaerial lava flows. Propagation, with decreasing spreading toward the propagator tips causes rotation of crustal blocks on both sides of the active rift zones. The blocks deform internally by the widespread reactivation of spreading-related faults and zones of weakness along dike margins. The sense of slip on these rift-parallel strike-slip faults is inconsistent with transform-fault deformation. These various deformation features as well as subaxial subsidence that accommodate the thickening of the volcanic upper crustal units are probably confined to the brittle, seismogenic, upper 10 km of the crust. At least beneath the active rift zones, the upper crust is probably decoupled from hot, mechanically weak middle and lower gabbroic crust resulting in a broad plate boundary zone between the diverging lithosphere plates. Similar processes may occur at other types of propagating spreading centers and magmatic rifts.
NASA Astrophysics Data System (ADS)
Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.
2012-12-01
We mapped a ~94-km-long portion of the right-lateral Hosgri Fault Zone from Point Sal to Piedras Blancas in offshore central California using high-resolution seismic reflection profiles, marine magnetic data, and multibeam bathymetry. The database includes 121 seismic profiles across the fault zone and is perhaps the most comprehensive reported survey of the shallow structure of an active strike-slip fault. These data document the location, length, and near-surface continuity of multiple fault strands, highlight fault-zone heterogeneity, and demonstrate the importance of fault trend, fault bends, and fault convergences in the development of shallow structure and tectonic geomorphology. The Hosgri Fault Zone is continuous through the study area passing through a broad arc in which fault trend changes from about 338° to 328° from south to north. The southern ~40 km of the fault zone in this area is more extensional, resulting in accommodation space that is filled by deltaic sediments of the Santa Maria River. The central ~24 km of the fault zone is characterized by oblique convergence of the Hosgri Fault Zone with the more northwest-trending Los Osos and Shoreline Faults. Convergence between these faults has resulted in the formation of local restraining and releasing fault bends, transpressive uplifts, and transtensional basins of varying size and morphology. We present a hypothesis that links development of a paired fault bend to indenting and bulging of the Hosgri Fault by a strong crustal block translated to the northwest along the Shoreline Fault. Two diverging Hosgri Fault strands bounding a central uplifted block characterize the northern ~30 km of the Hosgri Fault in this area. The eastern Hosgri strand passes through releasing and restraining bends; the releasing bend is the primary control on development of an elongate, asymmetric, "Lazy Z" sedimentary basin. The western strand of the Hosgri Fault Zone passes through a significant restraining bend and dies out northward where we propose that its slip transfers to active structures in the Piedras Blancas fold belt. Given the continuity of the Hosgri Fault Zone through our study area, earthquake hazard assessments should incorporate a minimum rupture length of 110 km. Our data do not constrain lateral slip rates on the Hosgri, which probably vary along the fault (both to the north and south) as different structures converge and diverge but are likely in the geodetically estimated range of 2 to 4 mm/yr. More focused mapping of lowstand geomorphic features (e.g., channels, paleoshorelines) has the potential to provide better constraints. The post-Last-Glacial Maximum unconformity is an important surface for constraining vertical deformation, yielding local fault offset rates that may be as high as 1.4 mm/yr and off-fault deformation rates as high as 0.5 mm/yr. These vertical rates are short-term and not sustainable over longer geologic time, emphasizing the complex evolution and dynamics of strike-slip zones.
The southern Whidbey Island fault: An active structure in the Puget Lowland, Washington
Johnson, S.Y.; Potter, C.J.; Armentrout, J.M.; Miller, J.J.; Finn, C.; Weaver, C.S.
1996-01-01
Information from seismic-reflection profiles, outcrops, boreholes, and potential field surveys is used to interpret the structure and history of the southern Whidbey Island fault in the Puget Lowland of western Washington. This northwest-trending fault comprises a broad (as wide as 6-11 km), steep, northeast-dipping zone that includes several splays with inferred strike-slip, reverse, and thrust displacement. Transpressional deformation along the southern Whidbey Island fault is indicated by alongstrike variations in structural style and geometry, positive flower structure, local unconformities, out-of-plane displacements, and juxtaposition of correlative sedimentary units with different histories. The southern Whidbey Island fault represents a segment of a boundary between two major crustal blocks. The Cascade block to the northeast is floored by diverse assemblages of pre-Tertiary rocks; the Coast Range block to the southwest is floored by lower Eocene marine basaltic rocks of the Crescent Formation. The fault probably originated during the early Eocene as a dextral strike-slip fault along the eastern side of a continental-margin rift. Bending of the fault and transpressional deformation began during the late middle Eocene and continues to the present. Oblique convergence and clockwise rotation along the continental margin are the inferred driving forces for ongoing deformation. Evidence for Quaternary movement on the southern Whidbey Island fault includes (1) offset and disrupted upper Quaternary strata imaged on seismic-reflection profiles; (2) borehole data that suggests as much as 420 m of structural relief on the Tertiary-Quaternary boundary in the fault zone; (3) several meters of displacement along exposed faults in upper Quaternary sediments; (4) late Quaternary folds with limb dips of as much as ???9??; (5) large-scale liquefaction features in upper Quaternary sediments within the fault zone; and (6) minor historical seismicity. The southern Whidbey Island fault should be considered capable of generating large earthquakes (Ms ???7) and represents a potential seismic hazard to residents of the Puget Lowland.
NASA Astrophysics Data System (ADS)
Wadas, S. H.; Tanner, D. C.; Tschache, S.; Polom, U.; Krawczyk, C. M.
2017-12-01
Subrosion, the dissolution of soluble rocks, e.g., sulfate, salt, or carbonate, requires unsaturated water and fluid pathways that enable the water to flow through the subsurface and generate cavities. Over time, different structures can occur that depend on, e.g., rock solubility, flow rate, and overburden type. The two main structures are sinkholes and depressions. To analyze the link between faults, groundwater flow, and soluble rocks, and to determine parameters that are useful to characterize hazard zones, several shear-wave (SH) reflection seismic profiles were surveyed in Thuringia in Germany, where Permian sulfate rocks and salt subcrop close to the surface. From the analysis of the seismic sections we conclude that areas affected by tectonic deformation phases are prone to enhanced subrosion. The deformation of fault blocks leads to the generation of a damage zone with a dense fracture network. This increases the rock permeability and thus serves as a fluid pathway for, e.g., artesian-confined groundwater. The more complex the fault geometry and the more interaction between faults, the more fractures are generated, e.g., in a strike slip-fault zone. The faults also act as barriers for horizontal groundwater flow perpendicular to the fault surfaces and as conduits for groundwater flow along the fault strike. In addition, seismic velocity anomalies and attenuation of seismic waves are observed. Low velocities <200 m/s and high attenuation may indicate areas affected by subrosion. Other parameters that characterize the underground stability are the shear modulus and the Vp/Vs ratio. The data revealed zones of low shear modulus <100 MPa and high Vp/Vs ratio >2.5, which probably indicate unstable areas due to subrosion. Structural analysis of S-wave seismics is a valuable tool to detect near-surface faults in order to determine whether or not an area is prone to subrosion. The recognition of even small fault blocks can help to better understand the hydrodynamic groundwater conditions, which is another key factor to understand the subrosion process. The elastic parameters derived from seismic velocities can help to identify possible zones of instability.
NASA Astrophysics Data System (ADS)
Qiang, H.
2015-12-01
The lithospheric stress states and interlayer coupling interaction is of great significant in studying plate driven mechanism and seismogenic environment. The coupling relationship between mantle convection generated drag stress in the lithospheric base and seismogenic layer stress in the crust represents the lithospheric mechanical coupling intensity level. We calculate the lithospheric bottom mantle convection stress field of the southeastern Tibetan Plateau using 11~36 spherical harmonic coefficients of gravity model EGM2008. Meanwhile we collect and organize the focal mechanism of 1131 earthquakes that occurred from 2000 to now in Sichuan-Yunnan region. The current seismogenic layer stress and stress field before Lushan earthquake are calculated by the damping regional stress tensor inversion. We further analyze the correlation between the two kinds of stress fields, then discuss the relation between mechanics coupling situation and strong earthquakes in different regions. The results show that: (1) Most of Sichuan-Yunnan region is located in the coupling and decoupling intermediate zone. Coupling zones distribute on the basis of block, the eastern South China block has strong coupling, and the coupling phenomenon also exists in parts of the northern Tibet block, Balyanlkalla block in the northwest and southwest Yunnan block. The decoupling mainly occurs in Songpan-Ganzi block, connecting with the strong coupling South China block and Longmenshan fault zone is their boundary. (2) We have analyzed seismogenic mechanism, then proposed the border zone of strong and weak coupling relation between mantle convection stress and seismogenic layer stress exists high seismic risk. The current coupling situation shows that Longmenshan fault zone is still in the large varying gradient area of coupling intensity level, it has conditions to accumulate energy and develop earthquakes. Other dangerous areas are: Mingjiang, Xianshuihe, Anninghe, Zemuhe, the Red River, Nantinghe fault zone and their neighboring areas.
NASA Astrophysics Data System (ADS)
Lee, J.; Stockli, D.; Gosse, J.
2007-12-01
Two different mechanisms have been proposed for fault slip transfer between the subparallel NW-striking dextral- slip faults that dominant the Eastern California Shear Zone (ECSZ)-Walker Lane Belt (WLB). In the northern WLB, domains of sinistral-slip along NE-striking faults and clockwise block rotation within a zone of distributed deformation accommodated NW-dextral shear. A somewhat modified version of this mechanism was also proposed for the Mina deflection, southern WLB, whereby NE-striking sinistral faults formed as conjugate faults to the primary zone of NW-dextral shear; clockwise rotation of the blocks bounding the sinistral faults accommodated dextral slip. In contrast, in the northern ECSZ and Mina deflection, domains of NE-striking pure dip-slip normal faults, bounded by NW-striking dextral-slip faults, exhibited no rotation; the proposed mechanism of slip transfer was one of right-stepping, high angle normal faults in which the magnitude of extension was proportional to the amount of strike-slip motion transferred. New geologic mapping, tectonic geomorphologic, and geochronologic data from the Queen Valley area, southern Mina deflection constrain Pliocene to late Quaternary fault geometries, slip orientations, slip magnitudes, and slip rates that bear on the mechanism of fault slip transfer from the relatively narrow northern ECSZ to the broad deformation zone that defines the Mina deflection. Four different fault types and orientations cut across the Queen Valley area: (1) The NE-striking normal-slip Queen Valley fault; (2) NE-striking sinistral faults; (3) the NW-striking dextral Coyote Springs fault, which merges into (4) a set of EW-striking thrust faults. (U-Th)/He apatite and cosmogenic radionuclide data, combined with magnitude of fault offset measurements, indicate a Pliocene to late Pleistocene horizontal extension rate of 0.2-0.3 mm/yr across the Queen Valley fault. Our results, combined with published slip rates for the dextral White Mountain fault zone (0.3-0.8 mm/yr) and the eastern sinistral Coaldale fault (0.4 mm/yr) suggest that transfer of dextral slip from the narrow White Mountains fault zone is explained best by a simple shear couple whereby slip is partitioned into three different components: horizontal extension along the Queen Valley fault, dominantly dextral slip along the Coyote Springs fault, and dominantly sinistral slip along the Coaldale fault. A velocity vector diagram illustrating fault slip partitioning predicts contraction rates of <0.1 to 0.5 mm/yr across the Coyote Springs and western Coaldale faults. The predicted long-term contraction across the Mina deflection is consistent with present-day GPS data.
Quaternary crustal deformation along a major branch of the San Andreas fault in central California
Weber, G.E.; Lajoie, K.R.; Wehmiller, J.F.
1979-01-01
Deformed marine terraces and alluvial deposits record Quaternary crustal deformation along segments of a major, seismically active branch of the San Andreas fault which extends 190 km SSE roughly parallel to the California coastline from Bolinas Lagoon to the Point Sur area. Most of this complex fault zone lies offshore (mapped by others using acoustical techniques), but a 4-km segment (Seal Cove fault) near Half Moon Bay and a 26-km segment (San Gregorio fault) between San Gregorio and Point Ano Nuevo lie onshore. At Half Moon Bay, right-lateral slip and N-S horizontal compression are expressed by a broad, synclinal warp in the first (lowest: 125 ka?) and second marine terraces on the NE side of the Seal Cove fault. This structure plunges to the west at an oblique angle into the fault plane. Linear, joint0controlled stream courses draining the coastal uplands are deflected toward the topographic depression along the synclinal axis where they emerge from the hills to cross the lowest terrace. Streams crossing the downwarped part of this terrace adjacent to Half Moon Bay are depositing alluvial fans, whereas streams crossing the uplifted southern limb of the syncline southwest of the bay are deeply incised. Minimum crustal shortening across this syncline parallel to the fault is 0.7% over the past 125 ka, based on deformation of the shoreline angle of the first terrace. Between San Gregorio and Point Ano Nuevo the entire fault zone is 2.5-3.0 km wide and has three primary traces or zones of faulting consisting of numerous en-echelon and anastomozing secondary fault traces. Lateral discontinuities and variable deformation of well-preserved marine terrace sequences help define major structural blocks and document differential motions in this area and south to Santa Cruz. Vertical displacement occurs on all of the fault traces, but is small compared to horizontal displacement. Some blocks within the fault zone are intensely faulted and steeply tilted. One major block 0.8 km wide east of Point Ano Nuevo is downdropped as much as 20 m between two primary traces to form a graben presently filling with Holocene deposits. Where exposed in the sea cliff, these deposits are folded into a vertical attitude adjacent to the fault plane forming the south-west margin of the graben. Near Point Ano Nuevo sedimentary deposits and fault rubble beneath a secondary high-angle reverse fault record three and possibly six distinct offset events in the past 125 ka. The three primary fault traces offset in a right-lateral sense the shoreline angles of the two lowest terraces east of Point Ano Nuevo. The rates of displacement on the three traces are similar. The average rate of horizontal offset across the entire zone is between 0.63 and 1.30 cm/yr, based on an amino-acid age estimate of 125 ka for the first terrace, and a reasonable guess of 200-400 ka for the second terrace. Rates of this magnitude make up a significant part of the deficit between long-term relative plate motions (estimated by others to be about 6 cm/yr) and present displacement rates along other parts of the San Andreas fault system (about 3.2 cm/yr). Northwestward tilt and convergence of six marine terraces northeast of Ano Nuevo (southwest side of the fault zone) indicate continuous gentle warping associated with right-lateral displacement since early or middle Pleistocene time. Minimum local crustal shortening of this block parallel to the fault is 0.2% based on tilt of the highest terrace. Five major, evenly spaced terraces southeast of Ano Nuevo on the southwest flank of Mt. Ben Lomond (northeast side of the fault zone) rise to an elevation of 240 m, indicating relatively constant uplift (about 0.19 m/ka and southwestward tilt since Early or Middle Pleistocene time (Bradley and Griggs, 1976). ?? 1979.
Katzman, Rafael; ten Brink, Uri S.; Lin, Jian
1995-01-01
We model the three-dimensional (3-D) crustal deformation in a deep pull-apart basin as a result of relative plate motion along a transform system and compare the results to the tectonics of the Dead Sea Basin. The brittle upper crust is modeled by a boundary element technique as an elastic block, broken by two en echelon semi-infinite vertical faults. The deformation is caused by a horizontal displacement that is imposed everywhere at the bottom of the block except in a stress-free “shear zone” in the vicinity of the fault zone. The bottom displacement represents the regional relative plate motion. Results show that the basin deformation depends critically on the width of the shear zone and on the amount of overlap between basin-bounding faults. As the width of the shear zone increases, the depth of the basin decreases, the rotation around a vertical axis near the fault tips decreases, and the basin shape (the distribution of subsidence normalized by the maximum subsidence) becomes broader. In contrast, two-dimensional plane stress modeling predicts a basin shape that is independent of the width of the shear zone. Our models also predict full-graben profiles within the overlapped region between bounding faults and half-graben shapes elsewhere. Increasing overlap also decreases uplift near the fault tips and rotation of blocks within the basin. We suggest that the observed structure of the Dead Sea Basin can be described by a 3-D model having a large overlap (more than 30 km) that probably increased as the basin evolved as a result of a stable shear motion that was distributed laterally over 20 to 40 km.
Interplay of plate convergence and arc migration in the central Mediterranean (Sicily and Calabria)
NASA Astrophysics Data System (ADS)
Nijholt, Nicolai; Govers, Rob; Wortel, Rinus
2016-04-01
Key components in the current geodynamic setting of the central Mediterranean are continuous, slow Africa-Eurasia plate convergence (~5 mm/yr) and arc migration. This combination encompasses roll-back, tearing and detachment of slabs, and leads to back-arc opening and orogeny. Since ~30 Ma the Apennnines-Calabrian and Gibraltar subduction zones have shaped the western-central Mediterranean region. Lithospheric tearing near slab edges and the accompanying surface expressions (STEP faults) are key in explaining surface dynamics as observed in geologic, geophysical and geodetic data. In the central Mediterranean, both the narrow Calabrian subduction zone and the Sicily-Tyrrhenian offshore thrust front show convergence, with a transfer (shear) zone connecting the distinct SW edge of the former with the less distinct, eastern limit of the latter (similar, albeit on a smaller scale, to the situation in New Zealand with oppositely verging subduction zones and the Alpine fault as the transfer shear zone). The ~NNW-SSE oriented transfer zone (Aeolian-Sisifo-Tindari(-Ionian) fault system) shows transtensive-to-strike slip motion. Recent seismicity, geological data and GPS vectors in the central Mediterranean indicate that the region can be subdivided into several distinct domains, both on- and offshore, delineated by deformation zones and faults. However, there is discussion about the (relative) importance of some of these faults on the lithospheric scale. We focus on finding the best-fitting assembly of faults for the transfer zone connecting subduction beneath Calabria and convergence north of Sicily in the Sicily-Tyrrhenian offshore thrust front. This includes determining whether the Alfeo-Etna fault, Malta Escarpment and/or Ionian fault, which have all been suggested to represent the STEP fault of the Calabrian subduction zone, are key in describing the observed deformation patterns. We first focus on the present-day. We use geodynamic models to reproduce observed GPS velocities in the Sicily-Calabria region. In these models, we combine far-field velocity boundary conditions, GPE-related body forces, and slab pull/trench suction at the subduction contacts. The location and nature of model faults are based on geological and seismicity observations, and as these faults do not fully enclose blocks our models require both fault slip and distributed strain. We vary fault friction in the models. Extrapolating the (short term) model results to geological time scales, we are able to make a first-order assessment of the regional strain and block rotations resulting from the interplay of arc migration and plate convergence during the evolution of this complex region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Losh, S.
1998-09-01
The Pathfinder core, collected in the South Eugene Island Block 330 field, offshore Louisiana, provides an outstanding sample of structures associated with a major growth fault that abuts a giant oil field and that is thought to have acted as a conduit for hydrocarbon migration into the producing reservoirs. The fault zone in the core consists of three structural domains, each characterized by a distinct rock type, distribution of fault dips and dip azimuths, and distribution of spacing between adjacent faults and fractures. Although all of the domains contain oil-bearing sands, only faults and fractures in the deepest domain containmore » oil, even though the oil-barren fault domains contain numerous faults and fractures that are parallel to those containing oil in the deepest domain. The deepest domain is also distinguished from the other two domains by a greater degree of structural complexity and by a well-defined power-law distribution of fault and fracture spacings. Even though oil is present in sands throughout the core, its restriction to faults and fractures in the youngest sampled portion of the fault zone implies that oil migrated only through that part of the fault that was active during the time when oil had access to it. The absence of oil in fractures or faults in the other, probably older, fault domains indicates that the oil was never sufficiently pressured to flow up the fault zone on its own, either by hydraulic fracture or by increased permeability as a result of decreased effective stress. Instead, fluid migration along faults and fractures in the Pathfinder core was enhanced by permeability created in response to relatively far-field stresses related to minibasin subsidence.« less
NASA Astrophysics Data System (ADS)
Gourley, Jonathan R.; Byrne, Timothy; Chan, Yu-Chang; Wu, Francis; Rau, Ruey-Juin
2007-12-01
Data sets of collapsed earthquake locations, earthquake focal mechanisms, GPS velocities and geologic data are integrated to constrain the geometry and kinematics of a crustal block within the accreted continental margin rocks of Taiwan's northeastern Central Range. This block is laterally extruding and exhuming towards the north-northeast. The block is bound on the west-southwest by the previously recognized Sanyi-Puli seismic zone and on the east by a vertical seismic structure that projects to the eastern mountain front of the Central Range. Focal mechanisms from the Broadband Array of Taiwan Seismicity (BATS) catalog consistently show west-side-up reverse displacements for this fault zone. A second vertical structure is recognized beneath the Slate Belt-Metamorphic Belt boundary as a post-Chi-Chi relaxation oblique normal fault. BATS focal mechanisms show east-side-up, normal displacements with a minor left-lateral component. The vertical and lateral extrusion of this crustal block may be driven by the current collision between the Philippine Sea Plate and the Puli basement high indenter on the Eurasian Plate and/or trench rollback along the Ryukyu subduction zone. In addition, the vertical extent of the two shear zones suggests that a basal décollement below the eastern Central Range is deeper than previously proposed and may extend below the brittle-ductile transition.
Recent faulting in the Gulf of Santa Catalina: San Diego to Dana Point
Ryan, H.F.; Legg, M.R.; Conrad, J.E.; Sliter, R.W.
2009-01-01
We interpret seismic-reflection profiles to determine the location and offset mode of Quaternary offshore faults beneath the Gulf of Santa Catalina in the inner California Continental Borderland. These faults are primarily northwest-trending, right-lateral, strike-slip faults, and are in the offshore Rose Canyon-Newport-Inglewood, Coronado Bank, Palos Verdes, and San Diego Trough fault zones. In addition we describe a suite of faults imaged at the base of the continental slope between Dana Point and Del Mar, California. Our new interpretations are based on high-resolution, multichannel seismic (MCS), as well as very high resolution Huntec and GeoPulse seismic-reflection profiles collected by the U.S. Geological Survey from 1998 to 2000 and MCS data collected by WesternGeco in 1975 and 1981, which have recently been made publicly available. Between La Jolla and Newport Beach, California, the Rose Canyon and Newport-Inglewood fault zones are multistranded and generally underlie the shelf break. The Rose Canyon fault zone has a more northerly strike; a left bend in the fault zone is required to connect with the Newport-Inglewood fault zone. A prominent active anticline at mid-slope depths (300-400 m) is imaged seaward of where the Rose Canyon fault zone merges with the Newport-Inglewood fault zone. The Coronado Bank fault zone is a steeply dipping, northwest-trending zone consisting of multiple strands that are imaged from south of the U.S.-Mexico border to offshore of San Mateo Point. South of the La Jolla fan valley, the Coronado Bank fault zone is primarily transtensional; this section of the fault zone ends at the La Jolla fan valley in a series of horsetail splays. The northern section of the Coronado Bank fault zone is less well developed. North of the La Jolla fan valley, the Coronado Bank fault zone forms a positive flower structure that can be mapped at least as far north as Oceanside, a distance of ??35 km. However, north of Oceanside, the Coronado Bank fault zone is more discontinuous and in places has no strong physiographic expression. The San Diego Trough fault zone consists of one or two well-defined linear fault strands that cut through the center of the San Diego Trough and strike N30??W. North of the La Jolla fan valley, this fault zone steps to the west and is composed of up to four fault strands. At the base of the continental slope, faults that show recency of movement include the San Onofre fault and reverse, oblique-slip faulting associated with the San Mateo and Carlsbad faults. In addition, the low-angle Oceanside detachment fault is imaged beneath much of the continental slope, although reflectors associated with the detachment are more prominent in the area directly offshore of San Mateo Point. North of San Mateo Point, the Oceanside fault is imaged as a northeast-dipping detachment surface with prominent folds deforming hanging-wall strata. South of San Mateo point, reflectors associated with the Oceanside detachment are often discontinuous with variable dip as imaged in WesternGeco MCS data. Recent motion along the Oceanside detachment as a reactivated thrust fault appears to be limited primarily to the area between Dana and San Mateo Points. Farther south, offshore of Carlsbad, an additional area of folding associated with the Carlsbad fault also is imaged near the base of the slope. These folds coincide with the intersection of a narrow subsurface ridge that trends at a high angle to and intersects the base of the continental slope. The complex pattern of faulting observed along the base of the continental slope associated with the San Mateo, San Onofre, and Carlsbad fault zones may be the result of block rotation. We propose that the clockwise rotation of a small crustal block between the Newport-Inglewood-Rose Canyon and Coronado Bank fault zones accounts for the localized enhanced folding along the Gulf of Santa Catalina margin. Prominent subsurface basement ridges imaged offshore of Dana Point m
NASA Astrophysics Data System (ADS)
Demurtas, Matteo; Fondriest, Michele; Balsamo, Fabrizio; Clemenzi, Luca; Storti, Fabrizio; Bistacchi, Andrea; Di Toro, Giulio
2016-09-01
The Vado di Corno Fault Zone (VCFZ) is an active extensional fault cutting through carbonates in the Italian Central Apennines. The fault zone was exhumed from ∼2 km depth and accommodated a normal throw of ∼2 km since Early-Pleistocene. In the studied area, the master fault of the VCFZ dips N210/54° and juxtaposes Quaternary colluvial deposits in the hangingwall with cataclastic dolostones in the footwall. Detailed mapping of the fault zone rocks within the ∼300 m thick footwall-block evidenced the presence of five main structural units (Low Strain Damage Zone, High Strain Damage Zone, Breccia Unit, Cataclastic Unit 1 and Cataclastic Unit 2). The Breccia Unit results from the Pleistocene extensional reactivation of a pre-existing Pliocene thrust. The Cataclastic Unit 1 forms a ∼40 m thick band lining the master fault and recording in-situ shattering due to the propagation of multiple seismic ruptures. Seismic faulting is suggested also by the occurrence of mirror-like slip surfaces, highly localized sheared calcite-bearing veins and fluidized cataclasites. The VCFZ architecture compares well with seismological studies of the L'Aquila 2009 seismic sequence (mainshock MW 6.1), which imaged the reactivation of shallow-seated low-angle normal faults (Breccia Unit) cut by major high-angle normal faults (Cataclastic Units).
Structurally controlled 'teleconnection' of large-scale mass wasting (Eastern Alps)
NASA Astrophysics Data System (ADS)
Ostermann, Marc; Sanders, Diethard
2015-04-01
In the Brenner Pass area (Eastern Alps) , closely ahead of the most northward outlier ('nose') of the Southern-Alpine continental indenter, abundant deep-seated gravitational slope deformations and a cluster of five post-glacial rockslides are present. The indenter of roughly triangular shape formed during Neogene collision of the Southern-Alpine basement with the Eastern-Alpine nappe stack. Compression by the indenter activated a N-S striking, roughly W-E extensional fault northward of the nose of the indenter (Brenner-normal fault; BNF), and lengthened the Eastern-Alpine edifice along a set of major strike-slip faults. These fault zones display high seismicity, and are the preferred locus of catastrophic rapid slope failures (rockslides, rock avalanches) and deep-seated gravitational slope deformations. The seismotectonic stress field, earthquake activity, and structural data all indicate that the South-Alpine indenter still - or again - exerts compression; in consequence, the northward adjacent Eastern Alps are subject mainly to extension and strike-slip. For the rockslides in the Brenner Pass area, and for the deep-seated gravitational slope deformations, the fault zones combined with high seismic activity predispose massive slope failures. Structural data and earthquakes mainly record ~W-E extension within an Eastern Alpine basement block (Oetztal-Stubai basement complex) in the hangingwall of the BNF. In the Northern Calcareous Alps NW of the Oetztal-Stubai basement complex, dextral faults provide defacement scars for large rockfalls and rockslides. Towards the West, these dextral faults merge into a NNW-SSE striking sinistral fault zone that, in turn, displays high seismic activity and is the locus of another rockslide cluster (Fern Pass cluster; Prager et al., 2008). By its kinematics dictated by the South-Alpine indenter, the relatively rigid Oetztal-Stubai basement block relays faulting and associated mass-wasting over a N-S distance of more than 60 kilometers - from the Brenner Pass area located along the crestline of the Alps to mount Zugspitze near the northern fringe of the Northern Calcareous Alps. Major fault zones and intercalated rigid blocks thus can 'teleconnect' zones of preferred mass-wasting over large lateral distances in orogens. Reference: Prager, C., Zangerl, C., Patzelt, G., Brandner, R., 2008. Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas. Natural Hazards and Earth System Science 8, 377-407.
NASA Astrophysics Data System (ADS)
Yıldırım, Cengiz; Tüysüz, Okan
2017-11-01
The Almacık Block is one of the key morphotectonic units in the eastern Marmara Region associated with the long-term slip partitioning within the North Anatolian Fault Zone (NAFZ). In this study, we provide new geomorphic reconstructions of offset drainage basins, morphometric analysis of topography, and longitudinal profiles of the rivers crossing different flanks of the Almacık Block. Our geomorphic reconstructions of offset drainage basins along the Hendek and Karadere faults imply mean offsets of 2.3 ± 0.4 km and 8.4 ± 0.7 km, respectively, during the Quaternary. Our dataset also imply that slip partitioning occurs in a broader zone than previously proposed, and that the total 10.7 ± 0.6 km offset along the Hendek and Karadere faults of the northern strand must be taken into account for long-term slip partitioning in the Eastern Marmara Region. Together with previously suggested 10 km offset along the southern strand (Yaltırak, 2002), 16 ± 1.0 km offset along the middle strand (Özalp et al., 2013) and the 52 ± 1.0 km offset along the Mudurnu Segment of the northern strand (Akbayram et al., 2016) our newly proposed geomorphic markers raise the cumulative offset in the eastern Marmara region associated with the NAF to 89 ± 1.0 km since the Latest Pliocene - Quaternary. In addition to these lateral displacements, our morphometric analysis and longitudinal profiles of the rivers imply up to 1130 ± 130 m surface uplift of the Almacık Block as a combined result of vertical displacement within the deformation zone of the northern strand of the NAFZ. Finally, by assuming that river basins act as passive deformation markers, our basin azimuth analyses imply 20° ± 2° clockwise rotation of the Almacık Block associated with the NAFZ.
NASA Astrophysics Data System (ADS)
Weiwei, W.; Yaling, W.
2017-12-01
We restore the seismic source spectrums of 1012 earthquakes(2.0 ≤ ML ≤ 5.0) in the mid-northern part of Sichuan-Yunnan seismic block(26 ° N-33 ° N, 99 ° E-104 ° E),then calculate the source parameters.Based on the regional seismic tectonic background, the distribution of active faults and seismicity, the study area is divided into four statistical units (Z1 Jinshajiang and Litang fault zone, Z2 Xianshuihe fault zone, Z3 Anninghe-Zemuhe fault zone, Z4 Lijiang-Xiaojinhe fault zone). Seismic source stress drop results show the following, (1)The stress at the end of the Jinshajiang fault is low, strong earthquake activity rare.Stress-strain loading deceases gradually from northwest to southeast along Litang fault, the northwest section which is relatively locked is more likely to accumulate strain than southeast section. (2)Stress drop of Z2 is divided by Kangding, the southern section is low and northern section is high. Southern section (Kangding-Shimian) is difficult to accumulate higher strain in the short term, but in northern section (Garzê-Kangding), moderate and strong earthquakes have not filled the gaps of seismic moment release, there is still a high stress accumulation in partial section. (3)High stress-drop events were concentrated on Z3, strain accumulation of this unit is strong, and stress level is the highest, earthquake risk is high. (4)On Z4, stress drop characteristics of different magnitude earthquakes are not the same, which is related to complex tectonic setting, the specific reasons still need to be discussed deeply.The study also show that, (1)Stress drops display a systematic change with different faults and locations, high stress-drop events occurs mostly on the fault intersection area. Faults without locking condition and mainly creep, are mainly characterized by low stress drop. (2)Contrasting to what is commonly thought that "strike-slip faults are not easy to accumulate stress ", Z2 and Z3 all exhibit high stress levels, which may be due to that the magnitude and intensity of medium-strong earthquakes are not enough to release the accumulated energy. On the other hand, when the tectonic unit blocking fault movement and its contribution to accumulation of stress play a key role, the earthquake of same magnitude will release higher stress drop.
NASA Astrophysics Data System (ADS)
Mazzoni, S.; Moore, J.; Bish, D. L.
2002-12-01
The apparently weak nature of the San Andreas fault system poses a fundamental geophysical question. The San Gregorio fault at Moss Beach, CA is an active splay of the right-lateral San Andreas fault zone and has a total offset of about 150 km. At Moss Beach, the San Gregorio fault offsets Pliocene sedimentary rocks and consists of a clay-rich gouge zone, eastern sandstone block, and western mudstone block. In the presence of fluids, smectite clays can swell and become very weak to shearing. We studied a profile of samples across the fault zone and wall rocks to determine if there is a concentration of smectite in the gouge zone and propose a possible formation mechanism. Samples were analyzed using standard quantitative X-ray diffraction methods and software recently developed at Los Alamos National Lab. XRD results show a high smectite/illite (weak clay/strong clay) ratio in the gouge (S/I ratio=2-4), lower in the mudstone (S/I ratio=2), and very low in the sandstone (S/I ratio=1). The variability of smectite/illite ratio in the gouge zone may be evidence of preferential alteration where developed shear planes undergo progressive smectite enrichment. The amount of illite layers in illite/smectites is 5-30%, indicating little illitization; therefore, these fault rocks have not undergone significant diagenesis above 100 degrees C and illite present must be largely detrital. Bulk mineralogy shows significant anti-correlation of smectite with feldspar, especially in the gouge, suggesting authigenic smectite generation from feldspar. Under scanning-electron microscope inspection, smectites have fibrous, grain coating growth fabrics, also suggesting smectite authigenesis. If in situ production of smectite via chemical alteration is possible in active faults, it could have significant implications for self-generated weakening of faults above the smectite-to-illite transition (<150 degrees C, or 5-7km).
Deformation associated with the Ste. Genevieve fault zone and mid-continent tectonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, A.; Baker, G.S.; Harrison, R.W.
1992-01-01
The Ste. Genevieve fault is a northwest-trending deformation zone on the northeast edge of the Ozark Dome in Missouri. The fault has been described as a high-angle block fault resulting from vertical uplift of Proterozoic basement rocks, and also as a left-lateral, strike-slip or transpressive wrench fault associated with the Reelfoot rift. Recent mapping across the fault zone documents significant changes in the style of deformation along strike, including variations in the number and the spacing of fault strands, changes in the orientation of rocks within and adjacent to the fault zone, and changes in the direction of stratigraphic offsetmore » between different fault slices. These data are inconsistent with existing Ste. Genevieve models of monoclinal folding over basement upthrusts. Mesoscopic structural analysis of rocks in and near the fault zone indicates highly deformed noncylindrical folds, faults with normal, reverse, oblique, and strike-slip components of movement, and complex joint systems. Fabric orientation, calcite shear fibers, and slickensides indicate that the majority of these mesoscopic structures are kinematically related to left-lateral oblique slip with the southwest side up. Within the fault zone are highly fractured rocks, microscopic to coarse-grained carbonate breccia, and siliciclastic cataclasite. Microscopic deformation includes twinning in carbonate rocks, deformation banding, undulose extinction, and strain-induced polygonization in quartz, tectonic stylolites, extension veining, microfractures, and grain-scale cataclasis. Data are consistent with models relating the Ste. Genevieve fault zone to left-lateral oblique slip possibly associated with New Madrid tectonism.« less
NASA Astrophysics Data System (ADS)
Elliott, J.; Freymueller, J. T.; Larsen, C. F.; Motyka, R. J.
2010-12-01
GPS data from southern Alaska and the northern Canadian Cordillera have helped redefine the region’s tectonic landscape. Instead of a comparatively simple interaction between the Pacific and North American plates, with relative motion accommodated on a single boundary fault, we find a margin made up of a number of small blocks and deformation zones with relative motion distributed across a variety of structures. Much of this complexity can be attributed to the Yakutat block, an allochthonous terrane that has been colliding with southern Alaska since the Miocene. We present a GPS-derived tectonic model for the Yakutat block collision and its effects on southern Alaska and eastern Canada. The Yakutat block moves NNW at a rate of 50 mm/a, resulting in ~ 45 mm/a of NW-directed convergence with southern Alaska. Along its eastern edge, the Yakutat block is deforming, represented in our model by two small northwesterly moving blocks outboard of the Fairweather fault. Part of the strain from the collision is transferred east of the Fairweather - Queen Charlotte fault system, causing the region inboard of the Fairweather fault to undergo a distinct clockwise rotation into the northern Canadian Cordillera. Further south, the region directly east of the Queen Charlotte fault displays a much slower clockwise rotation, suggesting that it is at least partially pulled along by the northern block motion. About 5% of the relative motion is transferred even further east, causing small northeasterly motions well into the northern Cordillera. The northwestern edge of the Yakutat block marks the main deformation front between that block and southern Alaska. Multiple narrow, northwesterly moving blocks bounded by N- to NW-dipping thrust faults are required to explain the GPS data between the Malaspina Glacier and the Bagley Ice Valley. These “blocks” may be more aptly termed crustal slivers or deformation zones due to their size and because their bounding faults may sole out into a main thrust instead of cutting through the lithosphere. In contrast with the region to the east, relative convergence is accommodated over a fairly short distance across the St. Elias Mountains. West of the deformation front, the en echelon blocks and faults continue until the vicinity of the Bering Glacier, where the GPS data reveal a rotation towards the north as the tectonic regime transitions from the collision and accretion of the Yakutat block to subduction along the Aleutian Megathrust. North of the Chugach and St. Elias Ranges, the Southern Alaska block rotates counterclockwise.
Chimney damage in the greater Seattle area from the Nisqually earthquake of 28 February 2001
Booth, D.B.; Wells, R.E.; Givler, R.W.
2004-01-01
Unreinforced brick chimneys in the greater Seattle area were damaged repeatedly in the Benioff zone earthquakes of 1949, 1965, and 2001. A survey of visible chimney damage after the 28 February 2001 Nisqually earthquake evaluated approximately 60,000 chimneys through block-by-block coverage of about 50 km2, identifying a total of 1556 damaged chimneys. Chimney damage was strongly clustered in certain areas, in particular in the neighborhood of West Seattle where prior damage was also noted and evaluated after the 1965 earthquake. Our results showed that damage produced by the 2001 earthquake did not obviously correspond to distance from the earthquake epicenter, soft soils, topography, or slope orientation. Chimney damage correlates well to instrumented strong-motion measurements and compiled resident-reported ground-shaking intensities, but it offers much finer spatial resolution than these other data sources. In general, most areas of greatest chimney damage coincide with best estimated locations of strands of the Seattle fault zone. The edge of that zone also coincides with areas where chimney damage dropped abruptly over only one or two blocks' distance. The association between shaking intensity and fault-zone structure suggests that abrupt changes in the depth to bedrock, edge effects at the margin of the Seattle basin, or localized trapping of seismic waves in the Seattle fault zone may be significant contributory factors in the distribution of chimney damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schermer, E.R.
1993-04-01
New structural and stratigraphy data from the NE Mojave Block (NEMB) establish the timing and style of Cenozoic deformation south of the Garlock fault and west of the Avawatz Mts. Unlike adjacent areas, most of the NEMB did not undergo early-mid Miocene extension. Major fault zones strike EW; offset markers and small-scale shear criteria indicate left-lateral strike slip with a small reverse component. Lateral offsets average ca. 1--6 km and vertical offset is locally >200m. Pre-Tertiary markers indicate minimum cumulative sinistral shear of ca. 15 km in the area between the Garlock and Coyote Lake faults. Tertiary strata are deformedmore » together with the older rocks. Along the Ft. Irwin fault, alluvial fan deposits interpreted to be <11Ma appear to be displaced as much as Mesozoic igneous rocks. EW sinistral faults S. of the Garlock fault cut unconsolidated Quaternary deposits; geomorphologic features and trench exposures along segments of the McLean Lake fault and the Tiefort Mt. fault suggest Late Quaternary activity. The EW faults do not cut modern drainages and are not seismically active. NW-striking faults are largely absent within the NEMB; the largest faults bound the domain of EW-striking faults. Offset of Cretaceous and Miocene rocks suggests the W boundary (Goldstone Lake fault) has <2km right separation. Along the E boundary (Soda-Avawatz fault zone), the presence of distinctive clasts in mid-late Miocene conglomerates west of the Avawatz Mts. supports the suggestion of Brady (1984) of ca. 20 km dextral displacement. Other NW-striking faults are cut by EW faults, have unknown or minor dextral displacement (Desert King Spring Fault, Garlic Spring fault) or are low- to moderate-angle left-oblique thrust faults (Red Pass Lake fault zone).« less
Escape tectonics and the extrusion of Alaska: Past, present, and future
Redfield, T.F.; Scholl, D. W.; Fitzgerald, P.G.; Beck, M.E.
2007-01-01
The North Pacific Rim is a tectonically active plate boundary zone parts of which may be characterized as a laterally moving orogenic stream. Crustal blocks are transported along large-magnitude strike-slip faults in western Canada and central Alaska toward the Aleutian-Bering Sea subduction zones. Throughout much of the Cenozoic, at and west of its Alaskan nexus, the North Pacific Rim orogenic Stream (NPRS) has undergone tectonic escape. During transport, relatively rigid blocks acquired paleomagnetic rotations and fault-juxtaposed boundaries while flowing differentially through the system, from their original point of accretion and entrainment toward the free face defined by the Aleutian-Bering Sea subduction zones. Built upon classical terrane tectonics, the NPRS model provides a new framework with which to view the mobilistic nature of the western North American plate boundary zone. ?? 2007 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Rood, D. H.; Burbank, D. W.; Luyendyk, B. P.
2005-12-01
We document the geometry, timing, rates, and kinematic style of Late Tertiary deformation between Sonora Pass and Mono Basin, central Sierra Nevada, California. Observed mismatches between geodetic and geologic deformation rates in the western Great Basin may be primarily due to underestimates of true geologic deformation. Relatively little attention has been paid to the role of permanent deformation between faults, i.e. folding or crustal block rotation. Current slip discrepancies may be accounted for if a significant component of off-fault transrotational deformation is present. We use geologic and paleomagnetic data to address the kinematic development of the Sierra Nevada frontal fault zone (SNFFZ), and to quantify both the elastic and inelastic strain accumulated across the Sierra Nevada-Basin and Range transition since ~9 Ma. The complex structure of this transition, between the regions of Sonora Pass and Mono Basin, may be a result of three distinct modes of dextral shear accommodation (transtensional, transpressional, and crustal thinning). The study area is characterized by four important structural elements that lie between the SNFFZ and Walker Lane Belt: (1) N- to NNW-striking normal and oblique faults, dominantly E-dipping, and associated W-tilted fault blocks; (2) NW-striking dextral faults; (3) ENE- to NE-striking left-lateral oblique faults that may accommodate overall dextral shear through clockwise vertical axis rotations of fault blocks; (4) E- to NE-trending folds, which may accommodate N-S shortening at large-scale left steps in the dextral transtensional fault system. Between Bridgeport and Mono Basins, a regional E- to NE-trending fold is present that affects both the Tertiary volcanic strata and a Quaternary glacial outwash surface. To the west, normal faulting rates on the SNFFZ are 1-2 mm/yr (Bursik and Sieh, 1989). This slip decreases to the north, into the folded region of the Bodie Hills. This kinematic relationship suggests that the region may be an accommodation zone between two linking faults, possibly an active fold that accommodates N-S shortening at a large-scale left step in the range front fault system. We collected ~200 paleomagnetic samples from the Late Miocene Eureka Valley Tuff of the Stanislaus Group at 21 sites over a 125-km-long, E-W transect (from the Sierra Nevada foothills to east of Mono Basin). Stepwise AF demagnetization reveals a stable characteristic remnant magnetization. Our preliminary data suggest 20-40 degrees of clockwise rotation adjacent to faults of the SNFFZ. An expanded dataset aims to identify specific structural domains, quantify differential vertical axis block rotations, and test geometric models of transrotation (i.e. block-specific versus gradational) during transtensional lithospheric deformation.
NASA Astrophysics Data System (ADS)
Jordan, T. A.; Ferraccioli, F.; Ross, N.; Siegert, M. J.; Corr, H.; Leat, P. T.; Bingham, R. G.; Rippin, D. M.; le Brocq, A.
2012-04-01
The >500 km wide Weddell Sea Rift was a major focus for Jurassic extension and magmatism during the early stages of Gondwana break-up, and underlies the Weddell Sea Embayment, which separates East Antarctica from a collage of crustal blocks in West Antarctica. Here we present new aeromagnetic data combined with airborne radar and gravity data collected during the 2010-11 field season over the Institute and Moeller ice stream in West Antarctica. Our interpretations identify the major tectonic boundaries between the Weddell Sea Rift, the Ellsworth-Whitmore Mountains block and East Antarctica. Digitally enhanced aeromagnetic data and gravity anomalies indicate the extent of Proterozoic basement, Middle Cambrian rift-related volcanic rocks, Jurassic granites, and post Jurassic sedimentary infill. Two new joint magnetic and gravity models were constructed, constrained by 2D and 3D magnetic depth-to-source estimates to assess the extent of Proterozoic basement and the thickness of major Jurassic intrusions and post-Jurassic sedimentary infill. The Jurassic granites are modelled as 5-8 km thick and emplaced at the transition between the thicker crust of the Ellsworth-Whitmore Mountains block and the thinner crust of the Weddell Sea Rift, and within the Pagano Fault Zone, a newly identified ~75 km wide left-lateral strike-slip fault system that we interpret as a major tectonic boundary between East and West Antarctica. We also suggest a possible analogy between the Pagano Fault Zone and the Dead Sea transform. In this scenario the Jurassic Pagano Fault Zone is the kinematic link between extension in the Weddell Sea Rift and convergence across the Pacific margin of West Antarctica, as the Dead Sea transform links Red Sea extension to compression within the Zagros Mountains.
Fethiye-Burdur Fault Zone (SW Turkey): a myth?
NASA Astrophysics Data System (ADS)
Kaymakci, Nuretdin; Langereis, Cornelis; Özkaptan, Murat; Özacar, Arda A.; Gülyüz, Erhan; Uzel, Bora; Sözbilir, Hasan
2017-04-01
Fethiye Burdur Fault Zone (FBFZ) is first proposed by Dumont et al. (1979) as a sinistral strike-slip fault zone as the NE continuation of Pliny-Strabo trench in to the Anatolian Block. The fault zone supposed to accommodate at least 100 km sinistral displacement between the Menderes Massif and the Beydaǧları platform during the exhumation of the Menderes Massif, mainly during the late Miocene. Based on GPS velocities Barka and Reilinger (1997) proposed that the fault zone is still active and accommodates sinistral displacement. In order to test the presence and to unravel its kinematics we have conducted a rigorous paleomagnetic study containing more than 3000 paleomagnetic samples collected from 88 locations and 11700 fault slip data collected from 198 locations distributed evenly all over SW Anatolia spanning from Middle Miocene to Late Pliocene. The obtained rotation senses and amounts indicate slight (around 20°) counter-clockwise rotations distributed uniformly almost whole SW Anatolia and there is no change in the rotation senses and amounts on either side of the FBFZ implying no differential rotation within the zone. Additionally, the slickenside pitches and constructed paleostress configurations, along the so called FBFZ and also within the 300 km diameter of the proposed fault zone, indicated that almost all the faults, oriented parallel to subparallel to the zone, are normal in character. The fault slip measurements are also consistent with earthquake focal mechanisms suggesting active extension in the region. We have not encountered any significant strike-slip motion in the region to support presence and transcurrent nature of the FBFZ. On the contrary, the region is dominated by extensional deformation and strike-slip components are observed only on the NW-SE striking faults which are transfer faults that accommodated extension and normal motion. Therefore, we claim that the sinistral Fethiye Burdur Fault (Zone) is a myth and there is no tangible evidence to support the existence of such a strike-slip fault zone. The research for this paper is supported by TUBITAK - Grant Number 111Y239. Key words: Fethiye Burdu Fault Zone, Paleomagnetism, paleostress inversion, normal fault, Strike-slip fault, SW Turkey
NASA Astrophysics Data System (ADS)
Villani, Fabio; D'Amico, Sebastiano; Panzera, Francesco; Vassallo, Maurizio; Bozionelos, George; Farrugia, Daniela; Galea, Pauline
2018-01-01
The Victoria Lines Fault (island of Malta) is a >15 km-long and N260°-striking segmented normal fault-system, which is probably inactive since the late Pliocene. In the westernmost part, the Fomm Ir-Rih segment displays comparable geologic throw and escarpment height ( 150-170 m), moreover its hangingwall hosts thin patches of Middle Pleistocene clastic continental deposits (red beds), which are poorly preserved elsewhere. We acquired two seismic transects, by collecting ambient vibration recordings, processed by using horizontal-to-vertical spectral ratios, complemented by one high-resolution 2-D refraction tomography survey crossing this fault where it is locally covered by red beds and recent colluvial deposits. We found a resonance peak at 1.0 Hz in the hangingwall block, whereas clear peaks in the range 5.0-10.0 Hz appear when approaching the subsurface fault, and we relate them to the fractured bedrock within the fault zone. The best-fit tomographic model shows a relatively high-Vp shallow body (Vp 2200-2400 m/s) that we relate to the weathered top of the Miocene Upper Coralline Limestone Fm., bounded on both sides by low-Vp regions (<1400 m/s). The latter are the smeared images of steep fault zones. Tomography further reveals a thick ( 15-20 m) low-Vp (<1000 m/s) zone, which could be a syn-tectonic wedge of colluvial deposits developed in the downthrown block. Surface waves analysis indicates lateral changes of the average shallow shear wave velocity, with Vs 130 m/s within the inferred fault zone, and Vs >230 m/s above the weathered top-bedrock. Our results depict a clear seismic signature of the Victoria Lines Fault, characterized by low seismic velocity and high amplification of ground motion. We hypothesize that, during the Middle Pleistocene, faulting may have affected the basal part of the red beds, so that this part of the investigated complex fault-system may be considered inactive since 0.6 Myr ago.
NASA Astrophysics Data System (ADS)
Kendrick, K. J.; Matti, J. C.
2015-12-01
The San Gorgonio Pass (SGP) region of southern California is a locus of extensive Quaternary deformation surrounding a complex section of the San Andreas Fault (SAF) zone. The geomorphology of the SGP region reflects the complicated history of geologic events in the formation of this structural 'knot'. Critical questions remain in assessing earthquake hazard for this region: What is the likelihood that rupture will propagate through the SGP? If rupture is able to propagate, what pathway will connect the various fault strands? To address these questions, we focus on the geology and geomorphology of the SGP region. We have identified fault-bounded blocks, and focus on three that are developed within crystalline bedrock: the Yucaipa Ridge block (YRB) block, the Kitching Peak block (KPB), and the Pisgah Peak block (PPB). The latter two blocks are positioned south of the YRB, and partially separated from each other by the San Bernardino strand; this strand cannot be mapped at the surface as an active connection between fault strands. Both KPB and PPB are bounded to the south by the San Gorgonio Pass Fault Zone. Morphometric analyses consistently demonstrate distinctions between KPB and PPB, though the bedrock lithologies are the same. Geologic mapping of the region highlights the differences in Quaternary units within the blocks. These geomorphic and geologic distinctions lead to our interpretation that KPB and PPB have experienced markedly different uplift histories that constrain the history of dextral slip on the SAF through SGP. Specifically, although the latest Quaternary geologic setting of SGP raises questions about modern slip transfer through the Pass, the contrasting uplift histories of KPB and PPB strongly suggest that earlier in Quaternary time SGP was not a barrier to slip transfer between the Coachella Valley to the SE and the San Bernardino Basin to the NW.
NASA Astrophysics Data System (ADS)
Duong, Nguyen Anh; Sagiya, Takeshi; Kimata, Fumiaki; To, Tran Dinh; Hai, Vy Quoc; Cong, Duong Chi; Binh, Nguyen Xuan; Xuyen, Nguyen Dinh
2013-12-01
We present a horizontal velocity field determined from a GPS network with 22 sites surveyed from 2001 to 2012 in northwestern Vietnam. The velocity is accurately estimated at each site by fitting a linear trend to each coordinate time series, after accounting for coseismic displacements caused by the 2004 Sumatra and the 2011 Tohoku earthquakes using static fault models. Considering the coseismic effects of the earthquakes, the motion of northwestern Vietnam is 34.3 ± 0.7 mm/yr at an azimuth of N108° ± 0.7°E in ITRF2008. This motion is close to, but slightly different from, that of the South China block. The area is in a transition zone between this block, the Sundaland block, and the Baoshan sub-block. At the local scale, a detailed estimation of the crustal deformation across major fault zones is geodetically revealed for the first time. We identify a locking depth of 15.3 ± 9.8 km with an accumulating left-lateral slip rate of 1.8 ± 0.3 mm/yr for the Dien Bien Phu fault, and a shallow locking depth with a right-lateral slip rate of 1.0 ± 0.6 mm/yr for the Son La and Da River faults.
Quaternary tectonic setting of South-Central coastal California
Lettis, William R.; Hanson, Kathryn L.; Unruh, Jeffrey R.; McLaren, Marcia; Savage, William U.; Keller, Margaret A.
2004-01-01
Recent geodetic, geologic, and seismologic studies show that the south-central coast of California is a region of active Quaternary deformation. Northeast-directed crustal shortening is occurring in a triangular-shaped region between the Hosgri-San Simeon fault system on the west, the Southern Coast Ranges on the northeast, and the western Transverse Ranges on the south. We informally call this region the Los Osos domain. In this study, we conducted detailed geological, seismological, and geophysical investigations to characterize the nature and rates of deformation in the domain. Locations of active and potentially active faults and folds are compiled at a scale of 1:250,000 for the entire domain based primarily on onshore geologic data and offshore geophysical data. Crustal shortening in the domain is accommodated by a series of prominent northwest-trending reverse faults and localized folding. The reverse faults separate distinct structural blocks that have little or no internal deformation. Hangingwall blocks are being uplifted at rates of up to 0.2 mm/yr. Footwall blocks are either static or slowly subsiding at rates of 0.1 mm/yr or less, except for localized areas of concentrated subsidence directly adjacent to some faults. The cumulative rate of crustal shortening is about 1 to 2 mm/yr across the northern part of the domain based on observed geologic deformation. Cumulative shortening across the central and southern parts of the domain is poorly constrained by geologic data and may approach 2 to 3 mm/yr. Historical and instrumental seismicity generally are spatially associated with the uplifted blocks and bordering reverse faults to depths of about 10 km. Together with near-surface geological data and deeper crustal geophysical imaging that show high-angle faulting, the seismicity data indicate that the reverse faults probably extend to the base of the seismogenic crust. The base of the seismogenic crust may correspond with a mid-crustal detachment or decollement surface into which the reverse faults root. We speculate that the detachment may coincide, in part, with the top of a northeast-dipping slab of oceanic crust that extends beneath the western margin of the continent or with the brittle-ductile transition above the subducted slab. The Los Osos domain of north-northeast/south-southwest crustal shortening is structurally detached from the offshore Hosgri Fault Zones. Both the pattern and regional extent of deformation in the Los Osos domain contrast sharply with that of the offshore Santa Maria Basin. The basin is undergoing minor east-northeast/west-southwest crustal shortening at rates of less than 0.1 mm/yr and is moving northwestward at a rate of about 1 to 3 mm/yr relative to the Los Osos domain along the San Simeon and Hosgri Fault Zones. Geodetic data and the kinematics of north-northeast-directed crustal shortening of the Los Osos domain east of the Hosgri Fault Zone show that the rate and cumulative amount of right-slip along the Hosgri Fault Zone progressively decrease southward. Quaternary deformation within the Los Osos domain is related to distributed dextral simple shear associated with Pacific-North American plate motion. Paleomagnetic data show that clockwise rotation of the western Transverse Ranges has occurred along the southern boundary of the domain during the past 6 m.y. During this time, the Salinian crustal block, which forms the eastern boundary of the Los Osos domain, has remained relatively stable. Internal shortening of the Los Osos domain has accommodated the relative motions of these bordering crustal blocks, particularly the rotation of the western Transverse Ranges.
Basement structure based on gravity anomaly in the northern Noto peninsula, Central Japan
NASA Astrophysics Data System (ADS)
Mizubayashi, T.; Sawada, A.; Hamada, M.; Hiramatsu, Y.; Honda, R.
2012-12-01
Upper crustal block structures are usually defined by using surface information, such as geological and morphological data. The northern Noto Peninsula, central Japan, is divided into four geological block structures from tectonic geomorphologic perspectives (Ota and Hirakawa, 1979). This division is based on the surface crustal movement. To image the geological blocks three-dimensionally, it is necessary to construct a subsurface structure model. Gravity survey can clarify the detailed subsurface structure with dense gravity measurement. From the detailed Bouguer anomalies in the northwestern Noto Peninsula, Honda et al. (2008) suggested that the rupture size of the 2007 Noto Hanto earthquake was constrained by the geological block structures. Hiramatsu et al. (2008) also suggested the active faults on the seafloor, such as the source fault of the 2007 Noto Hanto earthquake plays a major role for the formation of the geological block structures. In this study, we analyze subsurface density structure based on the Bouguer anomaly and estimate the distribution of basement depth in the northern Noto Peninsula. We focus the relationship among the basement depth, the block structures and the active faults on the seafloor and discuss the block movement in the northern Noto Peninsula. We compiled the data measured and published previously (Gravity Database of Southwest Japan, 2001; Geological survey of Japan, 2004; Geographical survey institute of Japan, 2006; The Gravity Research Group in Southwest Japan, 2001; Komazawa and Okuma, 2010; Hokuriku electric power Co. Ltd., undisclosed) and calculated Bouguer anomaly in the northern Noto Peninsula. Based on this Bouguer anomaly, we analyzed subsurface density structures along 13 northeastern-southwestern profiles and 35 northwestern-southeastern profiles with the interval of 2 km using the two dimensional Talwani's method (Talwani et al., 1959). In the analysis, we assumed a density structure with four layers: basement (density is 2670kg/m3), Neocene volcanic rock (density is 2400kg/m3, or 2550kg/m3), Neocene sedimentary rock (density is 2200kg/m3), and Quaternary sedimentary rock (density is 1800kg/m3, or 1500kg/m3) (Honda et al., 2008). To compare our basement model to the geological block structures, we focus on a transition zone of the basement depth. We recognize that two of three geological block boundaries correspond to the transition zones. These boundaries also correspond to the boundary of active fault segments on the seafloor. Therefore, based on the relationship between the source fault of the 2007 Noto Hanto earthquake and the geological block, we suggest that the movement of those geological blocks is possibly controlled by the corresponding active fault segments. However, we find that the other block boundary doesn't correspond to the transition zone.
NASA Astrophysics Data System (ADS)
Hernandez, O.; Alexander, G. C.; Garzon, F.
2013-05-01
Satellite geodetics shows the existence of the rigid Panama microplate converging on west to east with The North Andean block. Seismic studies indicate that this plate boundary zone has compressive east-west stresses. Interpretation from magnetic and gravity data suggest that the thickness of the sedimentary sequence of The Atrato basin, reaches 10.5 km and that the Mande magmatic arc is a tectonic pillar, bounded by faults. The interpretation of seismic lines shows the basement of the Urabá Basin is affected by normal faults that limit blocks sunk and raised, a sedimentary sequence that is wedged against the Mande magmatic arc and becomes thicker towards the east. It also shows a thrust fault that connects Neogene sediments of Sinu fold belt with the Urabá Basin. The collision of the Panama arc with the Western Cordillera leads to the existence of a low-angle subduction zone inclined to the east involving the partition of the oceanic plate, drawing up of a trench and subducting plate bending. Before the Panama arc collision with the Western Cordillera, granitic intrusion had occurred that gave rise to the Mande magmatic arc, causing bending and rise of the oceanic crust. This effort generated tensional bending at the top of the crust that led to the formation of raised and sunken blocks bounded by normal faults, within which lies the tectonic pillar which forms the Mande magmatic arc. Upon the occurrence of the collision, it was launched the end of the connection between the Pacific Ocean and Caribbean Sea and the formation of the Uraba forearc basins and the Atrato basin. Panama - North Andes Plate boundary Zone 2d Modeling of the Panama - North Andes Plate Bounday Zone
NASA Astrophysics Data System (ADS)
Jiménez-Bonilla, Alejandro; Balanya, Juan Carlos; Exposito, Inmaculada; Diaz-Azpiroz, Manuel; Barcos, Leticia
2015-04-01
Strain partitioning modes within migrating orogenic arcs may result in arc-parallel stretching that produces along-strike structural and topographic discontinuities. In the Western Gibraltar Arc, arc-parallel stretching has operated from the Lower Miocene up to recent times. In this study, we have reviewed the Colmenar Fault, located at the SW end of the Subbetic ranges, previously interpreted as a Middle Miocene low-angle normal fault. Our results allow to identify younger normal fault segments, to analyse their kinematics, growth and segment linkage, and to discuss its role on the structural and relief drop at regional scale. The Colmenar Fault is folded by post-Serravallian NE-SW buckle folds. Both the SW-dipping fault surfaces and the SW-plunging fold axes contribute to the structural relief drop toward the SW. Nevertheless, at the NW tip of the Colmenar Fault, we have identified unfolded normal faults cutting quaternary soils. They are grouped into a N110˚E striking brittle deformation band 15km long and until 3km wide (hereafter Ubrique Normal Fault Zone; UNFZ). The UNFZ is divided into three sectors: (a) The western tip zone is formed by normal faults which usually dip to the SW and whose slip directions vary between N205˚E and N225˚E. These segments are linked to each other by left-lateral oblique faults interpreted as transfer faults. (b) The central part of the UNFZ is composed of a single N115˚E striking fault segment 2,4km long. Slip directions are around N190˚E and the estimated throw is 1,25km. The fault scarp is well-conserved reaching up to 400m in its central part and diminishing to 200m at both segment terminations. This fault segment is linked to the western tip by an overlap zone characterized by tilted blocks limited by high-angle NNE-SSW and WNW-ESE striking faults interpreted as "box faults" [1]. (c) The eastern tip zone is formed by fault segments with oblique slip which also contribute to the downthrown of the SW block. This kinematic pattern seems to be related to other strike-slip fault systems developed to the E of the UNFZ. The structural revision together with updated kinematic data suggest that the Colmenar Fault is cut and downthrown by a younger normal fault zone, the UNFZ, which would have contributed to accommodate arc-parallel stretching until the Quaternary. This stretching provokes along-strike relief segmentation, being the UNFZ the main fault zone causing the final drop of the Subbetic ranges towards the SW within the Western Gibraltar Arc. Our results show displacement variations in each fault segment of the UNFZ, diminishing to their tips. This suggests fault segment linkage finally evolved to build the nearly continuous current fault zone. The development of current large through-going faults linked inside the UNFZ is similar to those ones simulated in some numerical modelling of rift systems [2]. Acknowledgements: RNM-415 and CGL-2013-46368-P [1]Peacock, D.C.P., Knipe, R.J., Sanderson, D.J., 2000. Glossary of normal faults. Journal Structural Geology, 22, 291-305. [2]Cowie, P.A., Gupta, S., Dawers, N.H., 2000. Implications of fault array evolution for synrift depocentre development: insights from a numerical fault growth model. Basin Research, 12, 241-261.
Seismic anisotropy in central North Anatolian Fault Zone and its implications on crustal deformation
NASA Astrophysics Data System (ADS)
Licciardi, A.; Eken, T.; Taymaz, T.; Piana Agostinetti, N.; Yolsal-Çevikbilen, S.
2018-04-01
We investigate the crustal seismic structure and anisotropy around the central portion of the North Anatolian Fault Zone, a major plate boundary, using receiver function analysis. The characterization of crustal seismic anisotropy plays a key role in our understanding of present and past deformation processes at plate boundaries. The development of seismic anisotropy in the crust arises from the response of the rocks to complicated deformation regimes induced by plate interaction. Through the analysis of azimuthally-varying signals of teleseismic receiver functions, we map the anisotropic properties of the crust as a function of depth, by employing the harmonic decomposition technique. Although the Moho is located at a depth of about 40 km, with no major offset across the area, our results show a clear asymmetric distribution of crustal properties between the northern and southern blocks, divided by the North Anatolian Fault Zone. Heterogeneous and strongly anisotropic crust is present in the southern block, where complex intra-crustal signals are the results of strong deformation. In the north, a simpler and weakly anisotropic crust is typically observed. The strongest anisotropic signal is located in the first 15 km of the crust and is widespread in the southern block. Stations located on top of the main active faults in the area indicate the highest amplitudes, together with fault-parallel strikes of the fast plane of anisotropy. We interpret the origin of this signal as due to structure-induced anisotropy, and roughly determine its depth extent up to 15-20 km for these stations. Away from the faults, we suggest the contribution of previously documented uplifted basement blocks to explain the observed anisotropy at upper and middle crustal depths. Finally, we interpret coherent NE-SW orientations below the Moho as a result of frozen-in anisotropy in the upper mantle, as suggested by previous studies.
NASA Astrophysics Data System (ADS)
Samant, Hrishikesh; Pundalik, Ashwin; D'souza, Joseph; Sheth, Hetu; Lobo, Keegan Carmo; D'souza, Kyle; Patel, Vanit
2017-02-01
The Panvel flexure is a 150-km long tectonic structure, comprising prominently seaward-dipping Deccan flood basalts, on the western Indian rifted margin. Given the active tectonic faulting beneath the Panvel flexure zone inferred from microseismicity, better structural understanding of the region is needed. The geology of Elephanta Island in the Mumbai harbour, famous for the ca. mid-6th century A.D. Hindu rock-cut caves in Deccan basalt (a UNESCO World Heritage site) is poorly known. We describe a previously unreported but well-exposed fault zone on Elephanta Island, consisting of two large faults dipping steeply east-southeast and producing easterly downthrows. Well-developed slickensides and structural measurements indicate oblique slip on both faults. The Elephanta Island fault zone may be the northern extension of the Alibag-Uran fault zone previously described. This and two other known regional faults (Nhava-Sheva and Belpada faults) indicate a progressively eastward step-faulted structure of the Panvel flexure, with the important result that the individual movements were not simply downdip but also oblique-slip and locally even rotational (as at Uran). An interesting problem is the normal faulting, block tectonics and rifting of this region of the crust for which seismological data indicate a normal thickness (up to 41.3 km). A model of asymmetric rifting by simple shear may explain this observation and the consistently landward dips of the rifted margin faults.
NASA Astrophysics Data System (ADS)
Harris, Peter T.; Barrie, J. Vaughn; Conway, Kim W.; Greene, H. Gary
2014-06-01
Faulting commonly influences the geomorphology of submarine canyons that occur on active continental margins. Here, we examine the geomorphology of canyons located on the continental margin off Haida Gwaii, British Columbia, that are truncated on the mid-slope (1200-1400 m water depth) by the Queen Charlotte Fault Zone (QCFZ). The QCFZ is an oblique strike-slip fault zone that has rates of lateral motion of around 50-60 mm/yr and a small convergent component equal to about 3 mm/yr. Slow subduction along the Cascadia Subduction Zone has accreted a prism of marine sediment against the lower slope (1500-3500 m water depth), forming the Queen Charlotte Terrace, which blocks the mouths of submarine canyons formed on the upper slope (200-1400 m water depth). Consequently, canyons along this margin are short (4-8 km in length), closely spaced (around 800 m), and terminate uniformly along the 1400 m isobath, coinciding with the primary fault trend of the QCFZ. Vertical displacement along the fault has resulted in hanging canyons occurring locally. The Haida Gwaii canyons are compared and contrasted with the Sur Canyon system, located to the south of Monterey Bay, California, on a transform margin, which is not blocked by any accretionary prism, and where canyons thus extend to 4000 m depth, across the full breadth of the slope.
NASA Astrophysics Data System (ADS)
Karson, J. A.
2017-11-01
Unlike most of the Mid-Atlantic Ridge, the North America/Eurasia plate boundary in Iceland lies above sea level where magmatic and tectonic processes can be directly investigated in subaerial exposures. Accordingly, geologic processes in Iceland have long been recognized as possible analogs for seafloor spreading in the submerged parts of the mid-ocean ridge system. Combining existing and new data from across Iceland provides an integrated view of this active, mostly subaerial plate boundary. The broad Iceland plate boundary zone includes segmented rift zones linked by transform fault zones. Rift propagation and transform fault migration away from the Iceland hotspot rearrange the plate boundary configuration resulting in widespread deformation of older crust and reactivation of spreading-related structures. Rift propagation results in block rotations that are accommodated by widespread, rift-parallel, strike-slip faulting. The geometry and kinematics of faulting in Iceland may have implications for spreading processes elsewhere on the mid-ocean ridge system where rift propagation and transform migration occur.
NASA Astrophysics Data System (ADS)
Balsamo, Fabrizio; Nogueira, Francisco; Storti, Fabrizio; Bezerra, Francisco H. R.; De Carvalho, Bruno R.; André De Souza, Jorge
2017-04-01
In this contribution we describe the structural architecture and microstructural features of fault zones developed in Cretaceous, poorly lithified sandstones of the Rio do Peixe basin, NE Brazil. The Rio do Peixe basin is an E-W-trending, intracontinental half-graben basin developed along the Precambrian Patos shear zone where it is abutted by the Porto Alegre shear zone. The basin formed during rifting between South America and Africa plates and was reactivated and inverted in a strike-slip setting during the Cenozoic. Sediments filling the basin consist of an heterolithic sequence of alternating sandstones, conglomerates, siltstone and clay-rich layers. These lithologies are generally poorly lithified far from the major fault zones. Deformational structures in the basin mostly consist of deformation band-dominated fault zones. Extensional and strike-slip fault zones, clusters of deformation bands, and single deformation bands are commonly well developed in the proximity of the basin-boundary fault systems. All deformation structures are generally in positive relief with respect to the host rocks. Extensional fault zones locally have growth strata in their hangingwall blocks and have displacement generally <10 m. In map view, they are organized in anastomosed segments with high connectivity. They strike E-W to NE-SW, and typically consist of wide fault cores (< 1 m in width) surrounded by up to few-meter wide damage zones. Fault cores are characterized by distributed deformation without pervasive strain localization in narrow shear bands, in which bedding is transposed into foliation imparted by grain preferred orientation. Microstructural observations show negligible cataclasis and dominant non-destructive particulate flow, suggesting that extensional fault zones developed in soft-sediment conditions in a water-saturated environment. Strike-slip fault zones commonly overprint the extensional ones and have displacement values typically lower than about 2 m. They are arranged in conjugate system consisting of NNW-SSE- and WNW-ESE-trending fault zones with left-lateral and right-lateral kinematics, respectively. Compared to extensional fault zones, strike-slip fault zones have narrow fault cores (few cm thick) and up to 2-3 m-thick damage zones. Microstructural observations indicate that cataclasis with pervasive grain size reduction is the dominant deformation mechanisms within the fault core, thus suggesting that late-stage strike-slip faulting occurred when sandstones were partially lithified by diagenetic processes. Alternatively, the change in deformation mechanisms may indicate faulting at greater depth. Structural and microstructural data suggest that fault zones in the Rio do Peixe basin developed in a progression from "ductile" (sensu Rutter, 1986) to more "brittle" deformation during changes from extensional to strike-slip kinematic fields. Such rheological and stress configuration evolution is expected to impact the petrophysical and permeability structure of fault zones in the study area.
East Cameron Block 270, offshore Louisiana: a Pleistocene field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, D.S.; Sutley, C.E.; Berlitz, R.E.
1976-01-01
Exploration of the Plio-Pleistocene in the Gulf of Mexico since 1970 has led to the discovery of significant hydrocarbon reserves. One of the better gas fields found to date has been the East Cameron Block 270 field, offshore Louisiana. Utilization of a coordinated exploitation plan with Schlumberger Offshore Services has allowed Pennzoil Co., as operator, to develop and put the Block 270 field on production in minimum time. The structure at Block 270 field is a north-south-trending, faulted nose at 6000 ft (1825 m). At the depth of the ''G'' sandstone (8700 ft or 2650 m), the structure is closed;more » it is elongated north-south and dips in all directions from the Block 270 area. Closure is the result of contemporaneous growth of the east-bounding regional fault. Structural and stratigraphic interpretations from dipmeters were used to determine the most favorable offset locations. The producing zones consist of various combinations of bar-like, channel-like, and distributary-front sandstones. The sediment source for most of the producing zones was southwest of the area, except for two zones which derived their sediments from the north through a system of channels paralleling the east-bounding fault. Computed logs were used to convert conventional logging measurements into a more readily usable form for evaluation. The computed results were used for reserve calculations, reservoir-quality determinations, and confirmation of depositional environments as determined from other sources.« less
Swan, F.H.; Wesling, J.R.; Angell, M.M.; Thomas, A.P.; Whitney, J.W.; Gibson, J.D.
2001-01-01
Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern zone of fractures is within Quaternary alluvial sediments, but no bedrock was encountered in trenches and soil pits in this part of the prospective surface facilities site; thus, the direct association of this zone with one or more bedrock faults is uncertain. No displacement of lithologic contacts and soil horizons could be detected in the fractured Quaternary deposits. The results of these investigations imply the absence of any appreciable late Quaternary faulting activity at the prospective surface-facilities site.
Geologic map of the Topock 7.5’ quadrangle, Arizona and California
Howard, Keith A.; John, Barbara E.; Nielson, Jane E.; Miller, Julia M.G.; Wooden, Joseph L.
2013-01-01
The Topock quadrangle exposes a structurally complex part of the Colorado River extensional corridor and also exposes deposits that record landscape evolution during the history of the Colorado River. Paleoproterozoic gneisses and Mesoproterozoic granitoids and intrusive sheets are exposed through tilted cross-sectional thicknesses of many kilometers. Intruding them are a series of Mesozoic to Tertiary igneous rocks including dismembered parts of the Late Cretaceous Chemehuevi Mountains Plutonic Suite. Plutons of this suite in Arizona, if structurally restored for Miocene extension, formed cupolas capping the Chemehuevi Mountains batholith in California. Thick (1–3 km) Miocene sections of volcanic rocks, sedimentary breccias, conglomerate, and sandstone rest nonconformably on the Proterozoic rocks and record the structural and depositional evolution of the Colorado River extensional corridor. Four major Miocene low-angle normal faults and a steep block-bounding fault that developed during this episode divide the deformed rocks of the quadrangle into major structural plates and tilted blocks in and east of the Chemehuevi Mountains core complex. The low-angle faults attenuate crustal section, superposing supracrustal and upper crustal rocks against gneisses and granitoids originally from deeper crustal levels. The transverse block-bounding Gold Dome Fault Zone juxtaposes two large hanging-wall blocks, each tilted 90°, and the fault zone splays at its tip into folds in layered Miocene rocks. A synfaulting intrusion occupies the triangular zone where the folded strata detached from an inside corner along this fault between the tilt blocks. Post-extensional upper Miocene to Quaternary strata, locally deformed, record post-extensional landscape evolution, including several Pliocene and younger aggradational episodes in the Colorado River valley and intervening degradation episodes. The aggradational sequences include (1) the Bouse Formation, (2) fluvial deposits correlated with the alluvium of Bullhead City, (3) the younger fluvial boulder conglomerate of Bat Cave Wash, (4) the fluvial Chemehuevi Formation and related valley-margin deposits, and (5) fluvial Holocene deposits under the river and the valley floor. These fluvial records of Colorado River deposition are interspersed with piedmont alluvial fan deposits of several ages.
NASA Astrophysics Data System (ADS)
Ferraccioli, F.; Bozzo, E.
1999-11-01
Aeromagnetic images covering a sector of the Transantarctic Mountains in Victoria Land as well as the adjacent Ross Sea are used to study possible relationships between tectonic blocks along the Cenozoic and Mesozoic West Antarctic rift shoulder and prerift features inherited mainly from the Paleozoic terranes involved in the Ross Orogen. The segmentation between the Prince Albert Mountains block and the Deep Freeze Range-Terra Nova Bay region is related to an inherited NW to NNW ice-covered boundary, which we name the "central Victoria Land boundary." It is interpreted to be the unexposed, southern continuation of the Ross age back arc Exiles thrust system recognized at the Pacific coast. The regional magnetic high to the west of the central Victoria Land boundary is attributed to Ross age calc-alkaline back arc intrusives forming the in-board Wilson "Terrane," thus shifting the previously interpreted Precambrian "shield" at least 100 km farther to the west. The high-frequency anomalies of the Prince Albert Mountains and beneath the Polar Plateau show that this region was extensively effected by Jurassic tholeiitic magmatism; NE to NNE trending magnetic lineations within this pattern could reflect Cretaceous and/or Cenozoic faulting. The western and eastern edges of the Deep Freeze Range block, which flanks the Mesozoic Rennick Graben, are marked by two NW magnetic lineaments following the Priestley and Campbell Faults. The Campbell Fault is interpreted to be the reactivated Wilson thrust fault zone and is the site of a major isotopic discontinuity in the basement. To the east of the Campbell Fault, much higher amplitude magnetic anomalies reveal mafic-ultramafic intrusives associated with the alkaline Meander Intrusive Group (Eocene-Miocene). These intrusives are likely genetically linked to the highly uplifted Southern Cross Mountains block. The NW-SE trends crossing the previously recognized ENE trending Polar 3 Anomaly offshore of the Southern Cross Mountains are probably linked to Cenozoic reactivation of the Paleozoic Wilson-Bowers suture zone as proposed from recent seismic interpretations. The ENE trend of the anomaly may also be structural, and if so, it could reflect an inherited fault zone of the cratonal margin.
NASA Astrophysics Data System (ADS)
Bertrand, Lionel; Géraud, Yves; Diraison, Marc; Damy, Pierre-Clément
2017-04-01
The Scientific Interest Group (GIS) GEODENERGIES with the REFLET project aims to develop a geological and reservoir model for fault zones that are the main targets for deep geothermal prospects in the West European Rift system. In this project, several areas are studied with an integrated methodology combining field studies, boreholes and geophysical data acquisition and 3D modelling. In this study, we present the results of reservoir rock analogues characterization of one of these prospects in the Valence Graben (Eastern France). The approach used is a structural and petrophysical characterization of the rocks outcropping at the shoulders of the rift in order to model the buried targeted fault zone. The reservoir rocks are composed of fractured granites, gneiss and schists of the Hercynian basement of the graben. The matrix porosity, permeability, P-waves velocities and thermal conductivities have been characterized on hand samples coming from fault zones at the outcrop. Furthermore, fault organization has been mapped with the aim to identify the characteristic fault orientation, spacing and width. The fractures statistics like the orientation, density, and length have been identified in the damaged zones and unfaulted blocks regarding the regional fault pattern. All theses data have been included in a reservoir model with a double porosity model. The field study shows that the fault pattern in the outcrop area can be classified in different fault orders, with first order scale, larger faults distribution controls the first order structural and lithological organization. Between theses faults, the first order blocks are divided in second and third order faults, smaller structures, with characteristic spacing and width. Third order fault zones in granitic rocks show a significant porosity development in the fault cores until 25 % in the most locally altered material, as the damaged zones develop mostly fractures permeabilities. In the gneiss and schists units, the matrix porosity and permeability development is mainly controlled by microcrack density enhancement in the fault zone unlike the granite rocks were it is mostly mineral alteration. Due to the grain size much important in the gneiss, the opening of the cracks is higher than in the schist samples. Thus, the matrix permeability can be two orders higher in the gneiss than in the schists (until 10 mD for gneiss and 0,1 mD for schists for the same porosity around 5%). Combining the regional data with the fault pattern, the fracture and matrix porosity and permeability, we are able to construct a double-porosity model suitable for the prospected graben. This model, combined with seismic data acquisition is a predictable tool for flow modelling in the buried reservoir and helps the prediction of borehole targets and design in the graben.
NASA Astrophysics Data System (ADS)
Guns, K. A.; Bennett, R. A.; Blisniuk, K.
2017-12-01
To better evaluate the distribution and transfer of strain and slip along the Southern San Andreas Fault (SSAF) zone in the northern Coachella valley in southern California, we integrate geological and geodetic observations to test whether strain is being transferred away from the SSAF system towards the Eastern California Shear Zone through microblock rotation of the Eastern Transverse Ranges (ETR). The faults of the ETR consist of five east-west trending left lateral strike slip faults that have measured cumulative offsets of up to 20 km and as low as 1 km. Present kinematic and block models present a variety of slip rate estimates, from as low as zero to as high as 7 mm/yr, suggesting a gap in our understanding of what role these faults play in the larger system. To determine whether present-day block rotation along these faults is contributing to strain transfer in the region, we are applying 10Be surface exposure dating methods to observed offset channel and alluvial fan deposits in order to estimate fault slip rates along two faults in the ETR. We present observations of offset geomorphic landforms using field mapping and LiDAR data at three sites along the Blue Cut Fault and one site along the Smoke Tree Wash Fault in Joshua Tree National Park which indicate recent Quaternary fault activity. Initial results of site mapping and clast count analyses reveal at least three stages of offset, including potential Holocene offsets, for one site along the Blue Cut Fault, while preliminary 10Be geochronology is in progress. This geologic slip rate data, combined with our new geodetic surface velocity field derived from updated campaign-based GPS measurements within Joshua Tree National Park will allow us to construct a suite of elastic fault block models to elucidate rates of strain transfer away from the SSAF and how that strain transfer may be affecting the length of the interseismic period along the SSAF.
Uemachi flexure zone investigated by borehole database and numeical simulation
NASA Astrophysics Data System (ADS)
Inoue, N.; Kitada, N.; Takemura, K.
2014-12-01
The Uemachi fault zone extending north and south, locates in the center of the Osaka City, in Japan. The Uemachi fault is a blind reverse fault and forms the flexure zone. The effects of the Uemachi flexure zone are considered in constructing of lifelines and buildings. In this region, the geomorphological survey is difficult because of the regression of transgression. Many organizations have carried out investigations of fault structures. Various surveys have been conducted, such as seismic reflection survey in and around Osaka. Many borehole data for construction conformations have been collected and the geotechnical borehole database has been constructed. The investigation with several geological borehole data provides the subsurface geological information to the geotechnical borehole database. Various numerical simulations have been carried out to investigate the growth of a blind reverse fault in unconsolidated sediments. The displacement of the basement was given in two ways. One is based on the fault movement, such as dislocation model, the other is a movement of basement block of hanging wall. The Drucker-Prager and elastic model were used for the sediment and basement, respectively. The simulation with low and high angle fault movements, show the good agree with the actual distribution of the marine clay inferred from borehole data in the northern and southern Uemachi fault flexure zone, respectively. This research is partly funded by the Comprehensive Research on the Uemachi Fault Zone (from FY2010 to FY2012) by The Ministry of Education, Culture, Sports, Science and Technology (MEXT).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, E.W.
1996-09-01
The San Antonio relay ramp, a gentle southwest-dipping monocline, formed between the tips of two en echelon master faults having maximum throws of >240 in. Structural analysis of this relay ramp is important to studies of Edwards aquifer recharge and ground-water flow because the ramp is an area of relatively good stratal continuity linking the outcrop belt recharge zone and unconfined aquifer with the downdip confined aquifer. Part of the relay ramp lies within the aquifer recharge zone and is crossed by several southeast-draining creeks, including Salado, Cibolo, and Comal Creeks, that supply water to the ramp recharge area. Thismore » feature is an analog for similar structures within the aquifer and for potential targets for hydrocarbons in other Gulf Coast areas. Defining the ramp is an {approximately}13-km-wide right step of the Edwards Group outcrop belt and the en echelon master faults that bound the ramp. The master faults strike N55-75{degrees}E, and maximum displacement exceeds the {approximately}165-m thickness of the Edwards Group strata. The faults therefore probably serve as barriers to Edwards ground-water flow. Within the ramp, tilted strata gently dip southwestward at {approximately}5 m/km, and the total structural relief along the ramp`s southwest-trending axis is <240 in. The ramp`s internal framework is defined by three fault blocks that are {approximately}4 to {approximately}6 km wide and are bound by northeast-striking faults having maximum throws between 30 and 150 m. Within the fault blocks, local areas of high fracture permeability may exist where smaller faults and joints are well connected.« less
Tectonic implications of the 2017 Ayvacık (Çanakkale) earthquakes, Biga Peninsula, NW Turkey
NASA Astrophysics Data System (ADS)
Özden, Süha; Över, Semir; Poyraz, Selda Altuncu; Güneş, Yavuz; Pınar, Ali
2018-04-01
The west to southwestward motion of the Anatolian block results from the relative motions between the Eurasian, Arabian and African plates along the right-lateral North Anatolian Fault Zone in the north and left-lateral East Anatolian Fault Zone in the east. The Biga Peninsula is tectonically influenced by the Anatolian motion originating along the North Anatolian Fault Zone which splits into two main (northern and southern) branches in the east of Marmara region: the southern branch extends towards the Biga Peninsula which is characterized by strike-slip to oblique normal faulting stress regime in the central to northern part. The southernmost part of peninsula is characterized by a normal to oblique faulting stress regime. The analysis of both seismological and structural field data confirms the change of stress regime from strike-slip character in the center and north to normal faulting character in the south of peninsula where the earthquake swarm recently occurred. The earthquakes began on 14 January 2017 (Mw: 4.4) on Tuzla Fault and migrated southward along the Kocaköy and Babakale's stepped-normal faults of over three months. The inversion of focal mechanisms yields a normal faulting stress regime with an approximately N-S (N4°E) σ3 axis. The inversion of earthquakes occurring in central and northern Biga Peninsula and the north Aegean region gives a strike-slip stress regime with approximately WNW-ESE (N85°W) σ1 and NNE-SSW (N17°E) σ3 axis. The strike-slip stress regime is attributed to westward Anatolian motion, while the normal faulting stress regime is attributed to both the extrusion of Anatolian block and the slab-pull force of the subducting African plate along the Hellenic arc.
NASA Astrophysics Data System (ADS)
Galgana, G. A.; Mahdyiar, M.; Shen-Tu, B.; Pontbriand, C. W.; Klein, E.; Wang, F.; Shabestari, K.; Yang, W.
2014-12-01
We analyze active crustal deformation in South America (SA) using published GPS observations and historic seismicity along the Nazca Trench and the active Ecuador-Colombia-Venezuela Plate boundary Zone. GPS-constrained kinematisc models that incorporate block and continuum techniques are used to assess patterns of regional tectonic deformation and its implications to seismic potential. We determine interplate coupling distributions, fault slip-rates, and intraplate crustal strain rates in combination with historic earthquakes within 40 seismic zones crust to provide moment rate constraints. Along the Nazca subduction zone, we resolve a series of highly coupled patches, interpreted as high-friction producing "asperities" beneath the coasts of Ecuador, Peru and Chile. These include areas responsible for the 2010 Mw 8.8 Maule Earthquake and the 2014 Mw 8.2 Iquique Earthquake. Predicted tectonic block motions and fault slip rates reveal that the northern part of South America deforms rapidly, with crustal fault slip rates as much as ~20 mm/a. Fault slip and locking patterns reveal that the Oca Ancón-Pilar-Boconó fault system plays a key role in absorbing most of the complex eastward and southward convergence patterns in northeastern Colombia and Venezuela, while the near-parallel system of faults in eastern Colombia and Ecuador absorb part of the transpressional motion due to the ~55 mm/a Nazca-SA plate convergence. These kinematic models, in combination with historic seismicity rates, provide moment deficit rates that reveal regions with high seismic potential, such as coastal Ecuador, Bucaramanga, Arica and Antofagasta. We eventually use the combined information from moment rates and fault coupling patterns to further constrain stochastic seismic hazard models of the region by implementing realistic trench rupture scenarios (see Mahdyiar et al., this volume).
NASA Astrophysics Data System (ADS)
Gürsoy, H.; Tatar, O.; Piper, J. D. A.; Koçbulut, F.; Akpınar, Zafer; Huang, Baochun; Roberts, A. P.; Mesci, B. L.
2011-05-01
The Anatolian accretionary collage between Afro-Arabia and Eurasia is currently subject to two tectonic regimes. Ongoing slip of Arabia relative to Africa along the Dead Sea Fault Zone in the east is extruding crustal blocks away from the indenter by a combination of strike-slip and rotation. This zone of compression gives way to an extensional province in western Turkey, which also includes the eastern sector of Aegean Province. Although it is now well established that rotational deformation throughout Anatolia is distributed and differential, the sizes of the blocks involved are poorly understood. As a contribution towards evaluating this issue in central-east Turkey, we report palaeomagnetic study of the mid-Miocene Kepezdağ and Yamadağ volcanic complexes in central-south Anatolia (38-39.5°N, 37.5-39°E). A distributed sample through the Yamadağ complex identifies eruption during an interval of multiple geomagnetic field reversals (40 normal, 36 reversed, 8 intermediate sites) with a selected mean defined by 63 sites of D/ I = 335.4/51.1° ( α95 = 4.4°). The smaller Kepezdağ complex (8 reversed, 4 normal and 1 intermediate site) yields a comparable mean direction from 12 sites of 338.7/49.8° ( α95 = 14.1°). In the context of a range of radiometric age evidence, two thick normal polarity zones within the Yamadağ succession probably correlate with zones C5ACn and C5ADn of the Geomagnetic Polarity Time Scale and imply that the bulk of the volcanic activity took place between ˜15 and 13.5 Ma. Comparison of the palaeomagnetic results with the adjoining major plate indenters shows that the Yamadağ complex has rotated CCW by 29.3 ± 5.2° relative to Eurasia; the much smaller dataset from the Kepezdağ complex indicates a comparable CCW rotation of 26.0 ± 11.8° with respect to Eurasia. The Arabian Indenter has also been rotating CCW since mid Miocene times, and the block incorporating these two volcanic complexes north of the East Anatolian Fault Zone (EAFZ) is determined to have rotated 18.2 ± 6.0° CCW relative to the northern perimeter of Arabia. Comparison with data to the north identifies quasi-uniform rotation across a ˜200 km wide block extending from the Central Anatolian Fault Zone in the northwest to close to the East Anatolian transform fault zone in the south east. Although absence of suitable younger rocks does not permit the timing of this rotation to be determined in the study area, analogies with results from the Sivas Basin suggest that it is young, and followed establishment of the major transform faults. Rotation has evidently taken place around bounding arcuate faults and accompanied westward expulsion as the accretionary collage north of Arabia has been subject to ongoing post-collisional indentation.
NASA Astrophysics Data System (ADS)
Karaş, Mustafa; Tank, Sabri Bülent; Özaydın, Sinan
2017-08-01
This study attempts to reveal the fault zone characteristics of the locked Ganos Fault based on electrical resistivity studies including audio-frequency (AMT: 10,400-1 Hz) and wide-band (MT: 360-0.000538 Hz) magnetotellurics near the epicenter of the last major event, that is, the 1912 Mürefte Earthquake ( M w 7.4). The AMT data were collected at twelve stations, closely spaced from north to south, to resolve the shallow resistivity structure to 1 km depth. Subsequently, 13 wide-band MT stations were arranged to form a grid enclosing the AMT profile to decipher the deeper structure. Three-dimensional inverse modeling indicates highly conductive anomalies representing fault zone conductors along the Ganos Fault. Subsidiary faults around the Ganos Fault, which are conductive structures with individual mechanically weak features, merge into a greater damage zone, creating a wide fluid-bearing environment. This damage zone is located on the southern side of the fault and defines an asymmetry around the main fault strand, which demonstrates distributed conduit behavior of fluid flow. Ophiolitic basement occurs as low-conductivity block beneath younger formations at a depth of 2 km, where the mechanically weak to strong transition occurs. Resistive structures on both sides of the fault beneath this transition suggest that the lack of seismicity might be related to the absence of fluid pathways in the seismogenic zone.[Figure not available: see fulltext.
Slip Rates of Main Active Fault Zones Through Turkey Inferred From GPS Observations
NASA Astrophysics Data System (ADS)
Ozener, H.; Aktug, B.; Dogru, A.; Tasci, L.; Acar, M.; Emre, O.; Yilmaz, O.; Turgut, B.; Halicioglu, K.; Sabuncu, A.; Bal, O.; Eraslan, A.
2015-12-01
Active Fault Map of Turkey was revised and published by General Directorate of Mineral Research and Exploration in 2012. This map reveals that there are about 500 faults can generate earthquakes.In order to understand the earthquake potential of these faults, it is needed to determine the slip rates. Although many regional and local studies were performed in the past, the slip rates of the active faults in Turkey have not been determined. In this study, the block modelling, which is the most common method to produce slip rates, will be done. GPS velocities required for block modeling is being compiled from the published studies and the raw data provided then velocity field is combined. To form a homogeneous velocity field, different stochastic models will be used and the optimal velocity field will be achieved. In literature, GPS site velocities, which are computed for different purposes and published, are combined globally and this combined velocity field are used in the analysis of strain accumulation. It is also aimed to develop optimal stochastic models to combine the velocity data. Real time, survey mode and published GPS observations is being combined in this study. We also perform new GPS observations. Furthermore, micro blocks and main fault zones from Active Fault Map Turkey will be determined and homogeneous velocity field will be used to infer slip rates of these active faults. Here, we present the result of first year of the study. This study is being supported by THE SCIENTIFIC AND TECHNOLOGICAL RESEARCH COUNCIL OF TURKEY (TUBITAK)-CAYDAG with grant no. 113Y430.
Yerkes, R.F.; Wentworth, Carl M.
1965-01-01
The Corral Canyon nuclear power plant site consists of about 305 acres near the mouth of Corral Canyon in the central Santa Monica Mountains; it is located on an east-trending segment of the Pacific Coast between Point Dume and Malibu Canyon, about 28 miles due west of Los Angeles. The Santa Monica Mountains are the southwesternmost mainland part of the Transverse Ranges province, the east-trending features of which transect the otherwise relatively uniform northwesterly trend of the geomorphic and geologic features of coastal California. The south margin of the Transverse Ranges is marked by the Santa Monica fault system, which extends eastward near the 34th parallel for at least 145 miles from near Santa Cruz Island to the San Andreas fault zone. In the central Santa Monica Mountains area the Santa Monica fault system includes the Malibu Coast fault and Malibu Coast zone of deformation on the north; from the south it includes an inferred fault--the Anacapa fault--considered to follow an east-trending topographic escarpmemt on the sea floor about 5 miles south of the Malibu Coast fault. The low-lying terrain south of the fault system, including the Los Angeles basin and the largely submerged Continental Borderland offshore, are dominated by northwest-trending structural features. The Malibu Coat zone is a wide, east-trending band of asymmetrically folded, sheared, and faulted bedrock that extends for more than 20 miles along the north margin of the Santa Monica fault system west of Santa Monica. Near the north margin of the Malibu Coast zone the north-dipping, east-trending Malibu Coast fault juxtaposes unlike, in part contemporaneous sedimentary rock sections; it is inferred to be the near-surface expression of a major crustal boundary between completely unrelated basement rocks. Comparison of contemporaneous structural features and stratigraphic sections (Late Cretaceous to middle Miocene sedimentary, rocks and middle Miocene volcanic and intrusive igneous rocks on the north; middle and upper Miocene sedimentary and middle Miocene volcanic rocks on the south) across the fault demonstrates that neither strike slip of less than 25 miles nor high-angle dip slip can account for this juxtaposition. Instead, the Malibu Coast fault is inferred to have been the locus of large-magnitude, north-south oriented, horizontal shortening (north, or upper, block thrust over south block). This movement occurred at or near the northern boundary of the Continental Borderland, the eastern boundary of which is inferred to be the northwest-trending known-active Newport-Inglewood zone of en echelon right lateral strike-slip faults in the western Los Angeles basin. Local structural features and their relation to regional features, such as those in the Malibu Coast zone, form the basis for the interpretation that the Malibu Coast fault has acted chiefly as a thrust fault. Within the Malibu Coast zone, on both sides of the Malibu Coast fault, structural features in rocks that range in age from Late Cretaceous to late Miocene are remarkably uniform in orientation. The predominant trend of bedding, axial surfaces of numerous asymmetric folds, locally pervasive shear surfaces, and faults is approximately east-west and their predominant dip is northward.. The axes of the folds plunge gently east or west. Evidence from faults and shears within the zone indicates that relative movement on most of these was north (upper) over south. Beyond the Malibu Coast zone to the north and south the rocks entirely lack the asymmetric folds, overturned beds, and the locally abundant shears that characterize the rocks within the zone; these rocks were therefore not subjected to the same deforming forces that existed near the Malibu Coast fault. Movement on the Malibu Coast fault and deformation in the Malibu Coast zone occurred chiefly during the interval between late Miocene and late Pleistocene time. The youngest-known faulting in the Malibu Coast zone is late Pl
NASA Astrophysics Data System (ADS)
Studnikigizbert, C.; Eich, L.; King, R.; Burchfiel, B. C.; Chen, Z.; Chen, L.
2004-12-01
Seismological (Holt et. al. 1996), geodetic (King et. al. 1996, Chen et. al. 2000) and geological (Wang et. al. 1995, Wang and Burchfiel 2002) studies have shown that upper crustal material north and east of the eastern Himalayan syntaxis rotates clockwise about the syntaxis, with the Xianshuihe fault accommodating most of this motion. Within the zone of rotating material, however, deformation is not completely homogenous, and numerous differentially rotating small crustal fragments are recognised. We combine seismic (CSB and Harvard CMT catalogues), geodetic (CSB and MIT-Chengdu networks), remote sensing, compilation of existing regional maps and our own detailed field mapping to characterise the active tectonics of a clockwise rotating crustal block between Zhongdian and Dali. The northeastern boundary is well-defined by the northwest striking left-lateral Zhongdian and Daju faults. The eastern boundary, on the other hand, is made up of a 80 km wide zone characterised by north-south trending extensional basins linked by NNE trending left-lateral faults. Geological mapping suggests that strain is accommodated by three major transtensional fault systems: the Jianchuan-Lijiang, Heqing and Chenghai fault systems. Geodetic data indicates that this zone accommodates 10 +/- 1.4 mm/year of E-W extension, but strain may be (presently) preferentially partitioned along the easternmost (Chenghai) fault. Not all geodetic velocities are consistent with geological observations. In particular, rotation and concomitant transtension are somehow transferred across the Red River-Tongdian faults to Nan Tinghe fault with no apparent accommodating structures. Rotation and extension is surmised to be related to the northward propagation of the syntaxis.
History of displacement along Ste. Genevieve Fault Zone, Southwestern Illinois
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwalb, H.R.
1983-09-01
The Ste. Genevieve fault zone extends eastward from Missouri across the Mississippi River into Jackson County, Illinois, about 75 mi (120 km) southeast of St. Louis. Outcrop studies have dated movement along portions of the zone as pre-Middle Devonian, post-Mississippian, and post-Pennsylvanian. Present displacement is down to the north and east with throw ranging up to 3,000 ft (915 m). However, pre-Middle Devonian movement was down to the south and west. The present upthrown block shows no evidence of vertical movement during the Cambrian and Ordovician. Nor is there any indication that the fault zone was part of the northernmore » border of the Reelfoot basin, where earliest Paleozoic sediments infilled an aulacogen at the northern end of the Mississippi embayment.« less
NASA Astrophysics Data System (ADS)
Xia, Kan-yuan; Huang, Ci-liu; Jiang, Shao-ren; Zhang, Yi-xiang; Su, Da-quan; Xia, Si-gao; Chen, Zhong-rong
1994-07-01
A comparison of the tectonics and geophysics of the major structural belts of the northern and the southern continental margins of South China Sea has been made, on the basis of measured geophysical data obtained by ourselves over a period of 8 years (1984-1991). This confirmed that the northern margin is a divergent one and the southern margin is characterized by clearly convergent features. The main extensional structures of the northern margin are, from north to south: (1) The Littoral Fault Belt, a tectonic boundary between the continental crust and a transitional zone, along the coast of the provinces of Guangdong and Fujian in South China. It is characterised by earthquake activities, high magnetic anomalies and a rapid change in crustal thickness. (2) The Northern and Southern Depression zones (i.e., the Pearl River Mouth Basin), this strikes NE-ENE and is a very large Cenozoic depression which extends from offshore Shantou westwards to Hainan Island. (3) The Central Uplift Zone. This includes the Dongsha Uplift, Shenhu Uplift and may be linked with the Penghu uplift and Taiwan shoals to the east, forming a large NE-striking uplift zone along the northern continental slope. It is characterized by high magnetic anomalies. (4) Southern Boundary Fault Belt of the transitional crust. This has positive gravity anomalies on the land side and negative ones on the sea side. (5) The Magnetic Quiet Zone. This is located south of the southern Boundary Fault Belt and between the continental margin and the Central Basin of the South China Sea. Magnetic anomalies in this belt are of small amplitude and low gradient. We consider the Magnetic Quiet Zone to be a very important tectonic zone. The major structures of southern continental margin southwards are: (1) The Northern Fault Belt of the Nansha Block. This extends along the continental slope north of the Liyue shoal (Reed Bank) and Zhongye reef, and is a tectonic boundary between oceanic crust and the Nansha Block continental crust. (2) The Nansha Block Uplift Zone. Due to the development of reefs and shoals, there are many channels and valleys. Our long-distance multichannel seismic profiles indicated that there are thick Paleogene sediments and thin Neogene sediments all over the central part of the block. (3) The Nansha Trough, a nappe structure formed by the southeastward drifting of Nansha Block and northwestward overthrusting of Palawan-northwest Borneo. (4) Zengmu Shoal Basin, southwest of the Nansha Block; the maximum thickness of Cenozoic strata is over 9 km in this important petroliferous basin.
NASA Astrophysics Data System (ADS)
Alatorre-Zamora, Miguel Angel; Campos-Enríquez, José Oscar; Fregoso-Becerra, Emilia; Quintanar-Robles, Luis; Toscano-Fletes, Roberto; Rosas-Elguera, José
2018-03-01
The Ameca tectonic depression (ATD) is located at the NE of the Jalisco Block along the southwestern fringe of the NW-SE trending Tepic-Zacoalco Rift, in the west-central part of the Trans-Mexican Volcanic Belt, western Mexico. To characterize its shallow crustal structure, we conducted a gravity survey based on nine N-S gravity profiles across the western half of the Ameca Valley. The Bouguer residual anomalies are featured by a central low between two zones of positive gravity values with marked gravity gradients. These anomalies have a general NW-SE trend similar to the Tepic-Zacoalco Rift general trend. Basement topography along these profiles was obtained by means of: 1) a Tsuboi's type inverse modeling, and 2) forward modeling. Approximately northward dipping 10° slopes are modeled in the southern half, with south tilted down faulted blocks of the Cretaceous granitic basement and its volcano-sedimentary cover along sub-vertical and intermediate normal faults, whereas southward dipping slopes of almost 15° are observed at the northern half. According to features of the obtained models, this depression corresponds to a slight asymmetric graben. The Ameca Fault is part of the master fault system along its northern limit. The quantitative interpretation shows an approximately 500 to 1100 m thick volcano-sedimentary infill capped by alluvial products. This study has several implications concerning the limit between the Jalisco Block and the Tepic-Zacoalco Rift. The established shallow crustal structure points to the existence of a major listric fault with its detachment surface beneath the Tepic-Zacoalco Rift. The Ameca Fault is interpreted as a secondary listric fault. The models indicate the presence of granitic bodies of the Jalisco Block beneath the TMVB volcanic products of the Tepic-Zacoalco rift. This implies that the limit between these two regional structures is not simple but involves a complex transition zone. A generic model suggests that the extension related normal faulting has been operating as a mechanism in the evolution of this rift. Analysis of seismicity affecting the study area and neighborhood indicates the inferred faults are active.
NASA Astrophysics Data System (ADS)
Schuba, C. Nur; Gray, Gary G.; Morgan, Julia K.; Sawyer, Dale S.; Shillington, Donna J.; Reston, Tim J.; Bull, Jonathan M.; Jordan, Brian E.
2018-06-01
A new 3-D seismic reflection volume over the Galicia margin continent-ocean transition zone provides an unprecedented view of the prominent S-reflector detachment fault that underlies the outer part of the margin. This volume images the fault's structure from breakaway to termination. The filtered time-structure map of the S-reflector shows coherent corrugations parallel to the expected paleo-extension directions with an average azimuth of 107°. These corrugations maintain their orientations, wavelengths and amplitudes where overlying faults sole into the S-reflector, suggesting that the parts of the detachment fault containing multiple crustal blocks may have slipped as discrete units during its late stages. Another interface above the S-reflector, here named S‧, is identified and interpreted as the upper boundary of the fault zone associated with the detachment fault. This layer, named the S-interval, thickens by tens of meters from SE to NW in the direction of transport. Localized thick accumulations also occur near overlying fault intersections, suggesting either non-uniform fault rock production, or redistribution of fault rock during slip. These observations have important implications for understanding how detachment faults form and evolve over time. 3-D seismic reflection imaging has enabled unique insights into fault slip history, fault rock production and redistribution.
NASA Astrophysics Data System (ADS)
Paul, A.
2017-12-01
The eastern Ladakh-Karakoram zone, the northwest part of the Trans-Himalayan belt, bears signature of this collisional process in the form of suture zones, exhumed blocks that underwent deeper subduction and also intra-continental fault zones. The seismotectonic scenario of northwest part of India-Asia collision zone is studied by analyzing the local earthquake data (M 1.4-4.3) recorded by a broadband seismological network consisting of 14 stations. Focal Mechanism Solution (FMS) of 13 selected earthquakes were computed through waveform inversion of three-component broadband records. Depth distribution of the earthquakes and FMS of local earthquakes obtained through waveform inversion reveal the kinematics of the major fault zones present in Eastern Ladakh. The most pronounced cluster of seismicity is observed in the Karakoram Fault (KF) zone up to a depth of 65 km (Fig.1). The FMS reveals transpressive environment with the strike of inferred fault plane roughly parallel to the KF. It is inferred that the KF at least penetrates up to the lower crust and is a manifestation of active under thrusting of Indian lower crust beneath Tibet. Two clusters of micro seismicity is observed at a depth range of 5-20 km at north western and southeastern fringe of the Tso Morari gneiss dome which can be correlated to the activities along the Zildat fault and Karzok fault respectively. The FMSs estimated for representative earthquakes show thrust fault solutions for the Karzok fault and normal fault solution for the Zildat fault. It is inferred that the Zildat fault is acting as detachment, facilitating the exhumation of the Tso Morari dome. On the other hand, the Tso Morari dome is underthrusting the Karzok ophiolite on its southern margin along the Karzok fault, due to gravity collapse.
Significant role of structural fractures in Ren-Qiu buried-block oil field, eastern China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fei, Q.; Xie-Pei, W.
1983-03-01
Ren-qui oil field is in a buried block of Sinian (upper Proterozoic) rocks located in the Ji-zhong depression of the western Bohai Bay basin in eastern China. The main reservoir consists of Sinian dolomite rocks. It is a fault block with a large growth fault on the west side which trends north-northeast with throws of up to 1 km (0.6 mi) or more. The source rocks for the oil are Paleogene age and overlie the Sinian dolomite rocks. The structural fractures are the main factor forming the reservoir of the buried-block oil field. Three structural lines, trending northeast, north-northeast, andmore » northwest, form the regional netted fracture system. The north-northeast growth fault controlled the structural development of the buried block. The block was raised and eroded before the Tertiary sediments were deposited. In the Eocene Epoch, the Ji-zhong depression subsided, but the deposition, faulting, and related uplift of the block happened synchronously as the block was gradually submerged. At the same time, several horizontal and vertical karst zones were formed by the karst water along the netted structural fractures. The Eocene oil source rocks lapped onto the block and so the buried block, with many developed karst fractures, was surrounded by a great thickness of source rocks. As the growth fault developed, the height of the block was increased from 400 m (1300 ft) before the Oligocene to 1300 m (4250 ft) after. As the petroleum was generated, it migrated immediately into the karst fractures of the buried block along the growth fault. The karst-fractured block reservoir has an 800-m (2600-ft) high oil-bearing closure and good connections developed between the karst fractures.« less
NASA Astrophysics Data System (ADS)
Sun, Hanshen; Li, Jianhua; Zhang, Yueqiao; Dong, Shuwen; Xin, Yujia; Yu, Yingqi
2018-05-01
The Shaoxing-Jiangshan fault zone (SJFZ), as a fundamental Neoproterozoic block boundary that separates the Yangtze Block from the Cathaysia Block, is the key to understanding the evolution of South China from Neoproterozoic block amalgamation to early Paleozoic crustal reworking. New structural observations coupled with geochronological ages from the Chencai domain indicate that intense ductile deformation and metamorphism along the SJFZ occurred at ∼460-420 Ma, in response to the early Paleozoic orogeny in South China. To the east of the SJFZ, the deformation involves widespread generations of NE-striking foliation, intrafolial folds, and local development of sinistral-oblique shear zones. The shearing deformation occurred under amphibolite facies conditions at temperatures of >550 °C (locally even >650 °C). To the west of the SJFZ, the deformation corresponds to sinistral-oblique shearing along NE-striking, steep-dipping zones under greenschist facies conditions at temperatures of 400-500 °C. These deformation styles, as typical mid-crustal expressions of continental reworking, reflect tectonic reactivation of the pre-existing, deeply rooted Neoproterozoic block boundary in the early Paleozoic. We infer that the tectonic reactivation, possibly induced by oblique underthrusting of north Cathaysia, facilitated ductile shearing and burial metamorphic reactions, giving rise to the high-strain zones and high-grade metamorphic rocks. With respect to pre-existing mechanical weakness, our work highlights the role of tectonic reactivation of early structures in localizing later deformation before it propagates into yet undeformed domains.
Minor, Scott A.; Hudson, Mark R.
2006-01-01
Motivated by the need to document and evaluate the types and variability of fault zone properties that potentially affect aquifer systems in basins of the middle Rio Grande rift, we systematically characterized structural and cementation properties of exposed fault zones at 176 sites in the northern Albuquerque Basin. A statistical analysis of measurements and observations evaluated four aspects of the fault zones: (1) attitude and displacement, (2) cement, (3) lithology of the host rock or sediment, and (4) character and width of distinctive structural architectural components at the outcrop scale. Three structural architectural components of the fault zones were observed: (1) outer damage zones related to fault growth; these zones typically contain deformation bands, shear fractures, and open extensional fractures, which strike subparallel to the fault and may promote ground-water flow along the fault zone; (2) inner mixed zones composed of variably entrained, disrupted, and dismembered blocks of host sediment; and (3) central fault cores that accommodate most shear strain and in which persistent low- permeability clay-rich rocks likely impede the flow of water across the fault. The lithology of the host rock or sediment influences the structure of the fault zone and the width of its components. Different grain-size distributions and degrees of induration of the host materials produce differences in material strength that lead to variations in width, degree, and style of fracturing and other fault-related deformation. In addition, lithology of the host sediment appears to strongly control the distribution of cement in fault zones. Most faults strike north to north-northeast and dip 55? - 77? east or west, toward the basin center. Most faults exhibit normal slip, and many of these faults have been reactivated by normal-oblique and strike slip. Although measured fault displacements have a broad range, from 0.9 to 4,000 m, most are <100 m, and fault zones appear to have formed mainly at depths less than 1,000 m. Fault zone widths do not exceed 40 m (median width = 15.5 m). The mean width of fault cores (0.1 m) is nearly one order of magnitude less than that of mixed zones (0.75 m) and two orders of magnitude less than that of damage zones (9.7 m). Cements, a proxy for localized flow of ancient ground water, are common along fault zones in the basin. Silica cements are limited to faults that are near and strike north to northwest toward the Jemez volcanic field north of the basin, whereas carbonate fault cements are widely distributed. Coarse sediments (gravel and sand) host the greatest concentrations of cement within fault zones. Cements fill some extension fractures and, to a lesser degree, are concentrated along shear fractures and deformation bands within inner damage zones. Cements are commonly concentrated in mixed zones and inner damage zones on one side of a fault and thus are asymmetrically distributed within a fault zone, but cement does not consistently lie on the basinward side of faults. From observed spatial patterns of asymmetrically distributed fault zone cements, we infer that ancient ground-water flow was commonly localized along, and bounded by, faults in the basin. It is apparent from our study that the Albuquerque Basin contains a high concentration of faults. The geometry of, internal structure of, and cement and clay distribution in fault zones have created and will continue to create considerable heterogeneity of permeability within the basin aquifers. The characteristics and statistical range of fault zone features appear to be predictable and consistent throughout the basin; this predictability can be used in ground-water flow simulations that consider the influence of faults.
NASA Astrophysics Data System (ADS)
Wallace, Laura M.; Stevens, Colleen; Silver, Eli; McCaffrey, Rob; Loratung, Wesley; Hasiata, Suvenia; Stanaway, Richard; Curley, Robert; Rosa, Robert; Taugaloidi, Jones
2004-05-01
The island of New Guinea is located within the deforming zone between the Pacific and Australian plates that converge obliquely at ˜110 mm/yr. New Guinea has been fragmented into a complex array of microplates, some of which rotate rapidly about nearby vertical axes. We present velocities from a network of 38 Global Positioning System (GPS) sites spanning much of the nation of Papua New Guinea (PNG). The GPS-derived velocities are used to explain the kinematics of major tectonic blocks in the region and the nature of strain accumulation on major faults in PNG. We simultaneously invert GPS velocities, earthquake slip vectors on faults, and transform orientations in the Woodlark Basin for the poles of rotation of the tectonic blocks and the degree of elastic strain accumulation on faults in the region. The data are best explained by six distinct tectonic blocks: the Australian, Pacific, South Bismarck, North Bismarck, and Woodlark plates and a previously unrecognized New Guinea Highlands Block. Significant portions of the Ramu-Markham Fault appear to be locked, which has implications for seismic hazard determination in the Markham Valley region. We also propose that rapid clockwise rotation of the South Bismarck plate is controlled by edge forces initiated by the collision between the Finisterre arc and the New Guinea Highlands.
NASA Astrophysics Data System (ADS)
Martinez Pina, Carlos Manuel
Crustal rupture structures reactivated in the course of the tectonic history of northern Mexico are the surface expressions of planes of weakness, in the form of simple or composite rectilinear features or slightly curved, defined as lineaments. Unless otherwise defined as strike-slip faults, lineaments are part of parallel and sub-parallel oblique convergent or oblique divergent tectonic zones cross cutting the Sierra Madre Occidental and northern Mexico, in a NW trend. These shear zones are the response to the oblique subduction of the Farallon plate beneath North America. Kinematic analysis of five selected sites in northern Mexico, three basins and two compressional shear zones, proved possible a combination of shear mechanism diagram and models from analogue materials, with satellite imagery and geographic information systems, as an aid to define strike-slip fault motion. This was done using a reverse engineering process by comparing geometries. One of the sites assessed, involving the Parras Basin, Coahuila Block (CB), San Marcos fault, a postulated PBF-1 fault, allowed for palinpastic reconstruction of the CB that corroborated the results of the vector motion defined, in addition to an extension of ˜25% in a northwest southeast direction. A GIS-based compilation and georeferenced regional structural studies by several researchers were used as ground control areas (GCA); their interpolation and interpretation, resulted in a tectonic framework map of northern Mexico. In addition, shaded relief models overlaid by the lineaments / fault layer allowed structural analyses of basins related to these major structures. Two important results were obtained from this study: the Tepehuanes-San Luis-fault (TSL) and the Guadalupe fault, named herein, displaces the Villa de Reyes graben, and the Aguascalientes graben, respectively, to the SE, confirming their left lateral vector motion; afterwards TSL was displaced south by the right lateral strike slip Taxco-San Miguel de Allende fault. The second result refers to the hypothesis that the Mesa Central was brought to its present location by a subduction zone located to the north. This subduction zone coincides with several researchers who postulated the idea. The compressional zones refer to segments of the Sinforosa and a postulated Aquinquari fault located in the stratotectonic Guerrero Terrane regarded as a highly mineralized zone. Negative anomalies near -200 milligals are strongly suggestive of a cratonic block identified in western Chihuahua, it being named the Western Chihuahua Cratonic Block (WCCB). In the southwestern portion of the North American craton the age provinces are well documented, but the block versus mobile belt idea has not been put forth or emphasized. The present study combines data of several types, sedimentological, structural, igneous geochemistry, and geochronologic data to evaluate this behavior in SW NA, and the proposed block is tested against these data. The presence of the WCCB is supported by a wide variety of data. Basins, troughs, aulacogens, bimodal volcanism, and other rift and rift shoulder features, characterize the spatially constrained mobile belts. Mobile belts surrounding the WCCB contain geologic records of the events going back to 1.4 Ga, with different aspects being dominant over geologic time. Mobile belts will participate in compression,(subduction), extension (rifting), and transform (lateral) faulting. The WCCB may have been derived from closely, adjacent, North American craton by mobile belt action. This study has shown that integration of data is essential, because allows detection of differences in hypotheses for the same event in the same area. This integration capability is what makes integrated geographic information systems a powerful tool, not only for their synergy, but because they can be combined with specific techniques that provide data before going to conduct fieldwork. Whether the issue of defining the tectonic framework of northern Mexico can be resolved or not, depends on the viability of integrating volumes of data from research, hypotheses, or maps, and put together under the same geographic frame.
NASA Astrophysics Data System (ADS)
García, Helbert; Jiménez, Giovanny
2016-08-01
We report paleomagnetic, magnetic fabric and structural results from 21 sites collected in Cretaceous marine mudstones and Paleogene continental sandstones from the limbs, hinge and transverse zones of the Zipaquira Anticline (ZA). The ZA is an asymmetrical fold with one limb completely overturned by processes like gravity and salt tectonics, and marked by several axis curvatures. The ZA is controlled by at least two (2) transverse zones known as the Neusa and Zipaquira Transverse Zones (NTZ and ZTZ, respectively). Magnetic mineralogy methods were applied at different sites and the main carriers of the magnetic properties are paramagnetic components with some sites being controlled by hematite and magnetite. Magnetic fabric analysis shows rigid-body rotation for the back-limb in the ZA, while the forelimb is subjected to internal deformation. Structural and paleomagnetic data shows the influence of the NTZ and ZTZ in the evolution of the different structures like the ZA and the Zipaquira, Carupa, Rio Guandoque, Las Margaritas and Neusa faults, controlling several factors as vergence, extension, fold axis curvature and stratigraphic detatchment. Clockwise rotations unraveled a block segmentation following a discontinuos model caused by transverse zones and one site reported a counter clockwise rotation associated with a left-lateral strike slip component for transverse faults (e.g. the Neusa Fault). We propose that diverse transverse zones have been active since Paleogene times, playing an important role in the tectonic evolution of the Cundinamarca sub-basin and controlling the structural evolution of folds and faults with block segmentation and rotations.
NASA Astrophysics Data System (ADS)
Özacar, Arda A.; Abgarmi, Bizhan
2017-04-01
The North Anatolian Fault Zone (NAFZ) is an active continental transform plate boundary that accommodates the westward extrusion of the Anatolian plate. The central segment of NAFZ displays northward convex surface trace which coincides partly with the Paleo-Tethyan suture formed during the early Cenozoic. The depth extent and detailed structure of the actively deforming crust along the NAF is still under much debate and processes responsible from rapid uplift are enigmatic. In this study, over five thousand high quality P receiver functions are computed using teleseismic earthquakes recorded by permanent stations of national agencies and temporary North Anatolian Fault Passive Seismic experiment (2005-2008). In order to map the crustal thickness and Vp/Vs variations accurately, the study area is divided into grids with 20 km spacing and along each grid line Moho phase and its multiples are picked through constructed common conversion point (CCP) profiles. According to our results, nature of discontinuities and crustal thickness display sharp changes across the main strand of NAFZ supporting a lithospheric scale faulting that offsets Moho discontinuity. In the southern block, crust is relatively thin in the west ( 35 km) and becomes thicker gradually towards east ( 40 km). In contrast, the northern block displays a strong lateral change in crustal thickness reaching up to 10 km across a narrow roughly N-S oriented zone which is interpreted as the subsurface signature of the ambiguous boundary between Istanbul Block and Pontides located further west at the surface.
The Eastern California Shear Zone as the northward extension of the southern San Andreas Fault
Thatcher, Wayne R.; Savage, James C.; Simpson, Robert W.
2016-01-01
Cluster analysis offers an agnostic way to organize and explore features of the current GPS velocity field without reference to geologic information or physical models using information only contained in the velocity field itself. We have used cluster analysis of the Southern California Global Positioning System (GPS) velocity field to determine the partitioning of Pacific-North America relative motion onto major regional faults. Our results indicate the large-scale kinematics of the region is best described with two boundaries of high velocity gradient, one centered on the Coachella section of the San Andreas Fault and the Eastern California Shear Zone and the other defined by the San Jacinto Fault south of Cajon Pass and the San Andreas Fault farther north. The ~120 km long strand of the San Andreas between Cajon Pass and Coachella Valley (often termed the San Bernardino and San Gorgonio sections) is thus currently of secondary importance and carries lesser amounts of slip over most or all of its length. We show these first order results are present in maps of the smoothed GPS velocity field itself. They are also generally consistent with currently available, loosely bounded geologic and geodetic fault slip rate estimates that alone do not provide useful constraints on the large-scale partitioning we show here. Our analysis does not preclude the existence of smaller blocks and more block boundaries in Southern California. However, attempts to identify smaller blocks along and adjacent to the San Gorgonio section were not successful.
The Eastern California Shear Zone as the northward extension of the southern San Andreas Fault
NASA Astrophysics Data System (ADS)
Thatcher, W.; Savage, J. C.; Simpson, R. W.
2016-04-01
Cluster analysis offers an agnostic way to organize and explore features of the current GPS velocity field without reference to geologic information or physical models using information only contained in the velocity field itself. We have used cluster analysis of the Southern California Global Positioning System (GPS) velocity field to determine the partitioning of Pacific-North America relative motion onto major regional faults. Our results indicate the large-scale kinematics of the region is best described with two boundaries of high velocity gradient, one centered on the Coachella section of the San Andreas Fault and the Eastern California Shear Zone and the other defined by the San Jacinto Fault south of Cajon Pass and the San Andreas Fault farther north. The ~120 km long strand of the San Andreas between Cajon Pass and Coachella Valley (often termed the San Bernardino and San Gorgonio sections) is thus currently of secondary importance and carries lesser amounts of slip over most or all of its length. We show these first order results are present in maps of the smoothed GPS velocity field itself. They are also generally consistent with currently available, loosely bounded geologic and geodetic fault slip rate estimates that alone do not provide useful constraints on the large-scale partitioning we show here. Our analysis does not preclude the existence of smaller blocks and more block boundaries in Southern California. However, attempts to identify smaller blocks along and adjacent to the San Gorgonio section were not successful.
Seismotectonics of the Trans-Himalaya, Eastern Ladakh, India
NASA Astrophysics Data System (ADS)
Paul, A.
2016-12-01
The eastern Ladakh-Karakoram zone is the northwest part of the trans-Himalayan belt which bears signature of the India-Asia collision process in the form of suture zones and exhumed blocks that underwent deep subduction and intra-continental crustal scale fault zones.The seismotectonic scenario of northwest part of India-Asia collision zone has been studied by analyzing the local earthquake data (M 1.4-4.3) recorded by a broadband seismological network consisting of 14 stations. Focal Mechanism Solution (FPS) of 13 selected earthquakes were computed through waveform inversion of three-component broadband records. Depth distribution of the earthquakes and FPS of local earthquakes obtained through waveform inversion reveal the kinematics of the major fault zones present in Eastern Ladakh. The most pronounced cluster of seismicity is observed in the Karakoram Fault (KF) zone up to a depth of 65 km. The FPS reveals transpressive environment with the strike of inferred fault plane roughly parallel to the KF. It is inferred that the KF at least penetrates up to the lower crust and is a manifestation of active under thrusting of Indian lower crust beneath Tibet. Two clusters of micro seismicity is observed at a depth range of 5-20 km at north western and southeastern fringe of the Tso Morari gneiss dome which can be correlated to the activities along the Zildat fault and Karzok fault respectively. The FPSs estimated for representative earthquakes show thrust fault solutions for the Karzok fault and normal fault solution for the Zildat fault. It is inferred that the Zildat fault is acting as detachment, facilitating the exhumation of the Tso Morari dome. On the other hand, the Tso Morari dome is thrusting over the Karzok ophiolite on its southern margin along the Karzokfault, due to gravity collapse.
Three-dimensional models of deformation near strike-slip faults
ten Brink, Uri S.; Katzman, Rafael; Lin, J.
1996-01-01
We use three-dimensional elastic models to help guide the kinematic interpretation of crustal deformation associated with strike-slip faults. Deformation of the brittle upper crust in the vicinity of strike-slip fault systems is modeled with the assumption that upper crustal deformation is driven by the relative plate motion in the upper mantle. The driving motion is represented by displacement that is specified on the bottom of a 15-km-thick elastic upper crust everywhere except in a zone of finite width in the vicinity of the faults, which we term the "shear zone." Stress-free basal boundary conditions are specified within the shear zone. The basal driving displacement is either pure strike slip or strike slip with a small oblique component, and the geometry of the fault system includes a single fault, several parallel faults, and overlapping en echelon faults. We examine the variations in deformation due to changes in the width of the shear zone and due to changes in the shear strength of the faults. In models with weak faults the width of the shear zone has a considerable effect on the surficial extent and amplitude of the vertical and horizontal deformation and on the amount of rotation around horizontal and vertical axes. Strong fault models have more localized deformation at the tip of the faults, and the deformation is partly distributed outside the fault zone. The dimensions of large basins along strike-slip faults, such as the Rukwa and Dead Sea basins, and the absence of uplift around pull-apart basins fit models with weak faults better than models with strong faults. Our models also suggest that the length-to-width ratio of pull-apart basins depends on the width of the shear zone and the shear strength of the faults and is not constant as previously suggested. We show that pure strike-slip motion can produce tectonic features, such as elongate half grabens along a single fault, rotated blocks at the ends of parallel faults, or extension perpendicular to overlapping en echelon faults, which can be misinterpreted to indicate a regional component of extension. Zones of subsidence or uplift can become wider than expected for transform plate boundaries when a minor component of oblique motion is added to a system of parallel strike-slip faults.
Three-dimensional models of deformation near strike-slip faults
ten Brink, Uri S.; Katzman, Rafael; Lin, Jian
1996-01-01
We use three-dimensional elastic models to help guide the kinematic interpretation of crustal deformation associated with strike-slip faults. Deformation of the brittle upper crust in the vicinity of strike-slip fault systems is modeled with the assumption that upper crustal deformation is driven by the relative plate motion in the upper mantle. The driving motion is represented by displacement that is specified on the bottom of a 15-km-thick elastic upper crust everywhere except in a zone of finite width in the vicinity of the faults, which we term the “shear zone.” Stress-free basal boundary conditions are specified within the shear zone. The basal driving displacement is either pure strike slip or strike slip with a small oblique component, and the geometry of the fault system includes a single fault, several parallel faults, and overlapping en echelon faults. We examine the variations in deformation due to changes in the width of the shear zone and due to changes in the shear strength of the faults. In models with weak faults the width of the shear zone has a considerable effect on the surficial extent and amplitude of the vertical and horizontal deformation and on the amount of rotation around horizontal and vertical axes. Strong fault models have more localized deformation at the tip of the faults, and the deformation is partly distributed outside the fault zone. The dimensions of large basins along strike-slip faults, such as the Rukwa and Dead Sea basins, and the absence of uplift around pull-apart basins fit models with weak faults better than models with strong faults. Our models also suggest that the length-to-width ratio of pull-apart basins depends on the width of the shear zone and the shear strength of the faults and is not constant as previously suggested. We show that pure strike-slip motion can produce tectonic features, such as elongate half grabens along a single fault, rotated blocks at the ends of parallel faults, or extension perpendicular to overlapping en echelon faults, which can be misinterpreted to indicate a regional component of extension. Zones of subsidence or uplift can become wider than expected for transform plate boundaries when a minor component of oblique motion is added to a system of parallel strike-slip faults.
Gravity anomaly and crustal density structure in Jilantai rift zone and its adjacent region
NASA Astrophysics Data System (ADS)
Wu, Guiju; Shen, Chongyang; Tan, Hongbo; Yang, Guangliang
2016-08-01
This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical characteristics are very complex. The analysis is carried out in terms of the ratio of elevation and Bouguer gravity anomaly, the normalized full gradient of a section of the Bouguer gravity anomaly ( G h ) and the crustal density structure reveal that (1) the ratio of highs and lows of elevation and Bouguer gravity anomaly is large between Zhengyiguan fault (F4) and Helandonglu fault (F6), which can be explained due to crustal inhomogeneities related to the uplift of the Qinghai-Tibet block in the northeast; (2) the main active faults correspond to the G h contour strip or cut the local region, and generally show strong deformation characteristics, for example the Bayanwulashan mountain front fault ( F1) or the southeast boundary of Alxa block is in accord with the western change belt of G h , a belt about 10 km wide that extends to about 30 km; (3) Yinchuan-Pingluo fault ( F8) is the seismogenic structure of the Pingluo M earthquake, and its focal depth is about 15 km; (4) the Moho depth trend and Bouguer gravity anomaly variation indicates that the regional gravity field is strongly correlated with the Moho discontinuity.
NASA Astrophysics Data System (ADS)
Yassaghi, A.; Naeimi, A.
2011-08-01
Analysis of the Gachsar structural sub-zone has been carried out to constrain structural evolution of the central Alborz range situated in the central Alpine Himalayan orogenic system. The sub-zone bounded by the northward-dipping Kandovan Fault to the north and the southward-dipping Taleghan Fault to the south is transversely cut by several sinistral faults. The Kandovan Fault that controls development of the Eocene rocks in its footwall from the Paleozoic-Mesozoic units in the fault hanging wall is interpreted as an inverted basin-bounding fault. Structural evidences include the presence of a thin-skinned imbricate thrust system propagated from a detachment zone that acts as a footwall shortcut thrust, development of large synclines in the fault footwall as well as back thrusts and pop-up structures on the fault hanging wall. Kinematics of the inverted Kandovan Fault and its accompanying structures constrain the N-S shortening direction proposed for the Alborz range until Late Miocene. The transverse sinistral faults that are in acute angle of 15° to a major magnetic lineament, which represents a basement fault, are interpreted to develop as synthetic Riedel shears on the cover sequences during reactivation of the basement fault. This overprinting of the transverse faults on the earlier inverted extensional fault occurs since the Late Miocene when the south Caspian basin block attained a SSW movement relative to the central Iran. Therefore, recent deformation in the range is a result of the basement transverse-fault reactivation.
Berberich, Gabriele; Schreiber, Ulrich
2013-01-01
Simple Summary In a 1.140 km² study area of the volcanic West Eifel, approx. 3,000 Red Wood Ant (RWA; Formica rufa-group) mounds had been identified and correlated with tectonically active gas-permeable faults, mostly strike-slip faults. Linear alignment of RWA mounds and soil gas anomalies distinctly indicate the course of these faults, while clusters of mounds indicate crosscut zones of fault systems, which can be correlated with voids caused by crustal block rotation. This demonstrates that RWA are bioindicators for identifying active fault systems and useful where information on the active regime is incomplete or the resolution by technical means is insufficient. Abstract In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO2, Helium, Radon and H2S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H2S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel. PMID:26487413
An Integrated View of Tectonics in the North Pacific Derived from GPS
NASA Astrophysics Data System (ADS)
Elliott, J.; Freymueller, J.; Marechal, A.; Larsen, C.; Perea Barreto, M. A.
2015-12-01
Textbooks show a simple picture of the tectonics of the North Pacific, with discrete deformation along the boundary between the Pacific and North American plates along the Aleutian megathrust and Fairweather/Queen Charlotte fault system. Reality is much more complex, with a pattern of broadly distributed deformation. This is in part due to a number of studies and initiatives (such as PBO) in recent years that have greatly expanded the density of GPS data throughout the region. We present an overview of the GPS data acquired and various tectonic interpretations developed over the past decade and discuss a current effort to integrate the available data into a regional tectonic model for Alaska and northwestern Canada. Rather than discrete plate boundaries, we observe zones of concentrated deformation where the majority of the relative plate motion is accommodated. Within these zones, there are major fault systems, such as the Fairweather-Queen Charlotte transform and the Aleutian megathrust, where most of the deformation occurs along a main structure, but often motion is instead partitioned across multiple faults, such as the fold-and-thrust belt of the eastern St. Elias orogen. In zones of particular complexity, such as the eastern syntaxis of the St. Elias orogen, the deformation is better described by continuum deformation than localized strain along crustal structures. Strain is transferred far inboard, either by diffuse deformation or along fault system such as the Denali fault, and outboard of the main zones of deformation. The upper plate, if it can be called such, consists of a number of blocks and deforming zones while the lower plate is segmented between the Yakutat block and Pacific plate and is also likely undergoing internal deformation.
Upper Neogene stratigraphy and tectonics of Death Valley - A review
Knott, J.R.; Sarna-Wojcicki, A. M.; Machette, M.N.; Klinger, R.E.
2005-01-01
New tephrochronologic, soil-stratigraphic and radiometric-dating studies over the last 10 years have generated a robust numerical stratigraphy for Upper Neogene sedimentary deposits throughout Death Valley. Critical to this improved stratigraphy are correlated or radiometrically-dated tephra beds and tuffs that range in age from > 3.58 Ma to < 1.1 ka. These tephra beds and tuffs establish relations among the Upper Pliocene to Middle Pleistocene sedimentary deposits at Furnace Creek basin, Nova basin, Ubehebe-Lake Rogers basin, Copper Canyon, Artists Drive, Kit Fox Hills, and Confidence Hills. New geologic formations have been described in the Confidence Hills and at Mormon Point. This new geochronology also establishes maximum and minimum ages for Quaternary alluvial fans and Lake Manly deposits. Facies associated with the tephra beds show that ???3.3 Ma the Furnace Creek basin was a northwest-southeast-trending lake flanked by alluvial fans. This paleolake extended from the Furnace Creek to Ubehebe. Based on the new stratigraphy, the Death Valley fault system can be divided into four main fault zones: the dextral, Quaternary-age Northern Death Valley fault zone; the dextral, pre-Quaternary Furnace Creek fault zone; the oblique-normal Black Mountains fault zone; and the dextral Southern Death Valley fault zone. Post -3.3 Ma geometric, structural, and kinematic changes in the Black Mountains and Towne Pass fault zones led to the break up of Furnace Creek basin and uplift of the Copper Canyon and Nova basins. Internal kinematics of northern Death Valley are interpreted as either rotation of blocks or normal slip along the northeast-southwest-trending Towne Pass and Tin Mountain fault zones within the Eastern California shear zone. ?? 2005 Elsevier B.V. All rights reserved.
Dickinson, William R.; Ducea, M.; Rosenberg, Lewis I.; Greene, H. Gary; Graham, Stephan A.; Clark, Joseph C.; Weber, Gerald E.; Kidder, Steven; Ernst, W. Gary; Brabb, Earl E.
2005-01-01
Reinterpretation of onshore and offshore geologic mapping, examination of a key offshore well core, and revision of cross-fault ties indicate Neogene dextral strike slip of 156 ± 4 km along the San Gregorio–Hosgri fault zone, a major strand of the San Andreas transform system in coastal California. Delineating the full course of the fault, defining net slip across it, and showing its relationship to other major tectonic features of central California helps clarify the evolution of the San Andreas system.San Gregorio–Hosgri slip rates over time are not well constrained, but were greater than at present during early phases of strike slip following fault initiation in late Miocene time. Strike slip took place southward along the California coast from the western fl ank of the San Francisco Peninsula to the Hosgri fault in the offshore Santa Maria basin without significant reduction by transfer of strike slip into the central California Coast Ranges. Onshore coastal segments of the San Gregorio–Hosgri fault include the Seal Cove and San Gregorio faults on the San Francisco Peninsula, and the Sur and San Simeon fault zones along the flank of the Santa Lucia Range.Key cross-fault ties include porphyritic granodiorite and overlying Eocene strata exposed at Point Reyes and at Point Lobos, the Nacimiento fault contact between Salinian basement rocks and the Franciscan Complex offshore within the outer Santa Cruz basin and near Esalen on the flank of the Santa Lucia Range, Upper Cretaceous (Campanian) turbidites of the Pigeon Point Formation on the San Francisco Peninsula and the Atascadero Formation in the southern Santa Lucia Range, assemblages of Franciscan rocks exposed at Point Sur and at Point San Luis, and a lithic assemblage of Mesozoic rocks and their Tertiary cover exposed near Point San Simeon and at Point Sal, as restored for intrabasinal deformation within the onshore Santa Maria basin.Slivering of the Salinian block by San Gregorio–Hosgri displacements elongated its northern end and offset its western margin delineated by the older Nacimiento fault, a sinistral strike-slip fault of latest Cretaceous to Paleocene age. North of its juncture with the San Andreas fault, dextral slip along the San Gregorio–Hosgri fault augments net San Andreas displacement. Alternate restorations of the Gualala block imply that nearly half the net San Gregorio–Hosgri slip was accommodated along the offshore Gualala fault strand lying west of the Gualala block, which is bounded on the east by the current master trace of the San Andreas fault. With San Andreas and San Gregorio–Hosgri slip restored, there remains an unresolved proto–San Andreas mismatch of ∼100 km between the offset northern end of the Salinian block and the southern end of the Sierran-Tehachapi block.On the south, San Gregorio–Hosgri strike slip is transposed into crustal shortening associated with vertical-axis tectonic rotation of fault-bounded crustal panels that form the western Transverse Ranges, and with kinematically linked deformation within the adjacent Santa Maria basin. The San Gregorio–Hosgri fault serves as the principal link between transrotation in the western Transverse Ranges and strike slip within the San Andreas transform system of central California.
Analytic Study of Three-Dimensional Rupture Propagation in Strike-Slip Faulting with Analogue Models
NASA Astrophysics Data System (ADS)
Chan, Pei-Chen; Chu, Sheng-Shin; Lin, Ming-Lang
2014-05-01
Strike-slip faults are high angle (or nearly vertical) fractures where the blocks have moved along strike way (nearly horizontal). Overburden soil profiles across main faults of Strike-slip faults have revealed the palm and tulip structure characteristics. McCalpin (2005) has trace rupture propagation on overburden soil surface. In this study, we used different offset of slip sandbox model profiles to study the evolution of three-dimensional rupture propagation by strike -slip faulting. In strike-slip faults model, type of rupture propagation and width of shear zone (W) are primary affecting by depth of overburden layer (H), distances of fault slip (Sy). There are few research to trace of three-dimensional rupture behavior and propagation. Therefore, in this simplified sandbox model, investigate rupture propagation and shear zone with profiles across main faults when formation are affecting by depth of overburden layer and distances of fault slip. The investigators at the model included width of shear zone, length of rupture (L), angle of rupture (θ) and space of rupture. The surface results was follow the literature that the evolution sequence of failure envelope was R-faults, P-faults and Y-faults which are parallel to the basement fault. Comparison surface and profiles structure which were curved faces and cross each other to define 3-D rupture and width of shear zone. We found that an increase in fault slip could result in a greater width of shear zone, and proposed a W/H versus Sy/H relationship. Deformation of shear zone showed a similar trend as in the literature that the increase of fault slip resulted in the increase of W, however, the increasing trend became opposite after a peak (when Sy/H was 1) value of W was reached (small than 1.5). The results showed that the W width is limited at a constant value in 3-D models by strike-slip faulting. In conclusion, this study helps evaluate the extensions of the shear zone influenced regions for strike-slip faults.
Geological modeling of a fault zone in clay rocks at the Mont-Terri laboratory (Switzerland)
NASA Astrophysics Data System (ADS)
Kakurina, M.; Guglielmi, Y.; Nussbaum, C.; Valley, B.
2016-12-01
Clay-rich formations are considered to be a natural barrier for radionuclides or fluids (water, hydrocarbons, CO2) migration. However, little is known about the architecture of faults affecting clay formations because of their quick alteration at the Earth's surface. The Mont Terri Underground Research Laboratory provides exceptional conditions to investigate an un-weathered, perfectly exposed clay fault zone architecture and to conduct fault activation experiments that allow explore the conditions for stability of such clay faults. Here we show first results from a detailed geological model of the Mont Terri Main Fault architecture, using GoCad software, a detailed structural analysis of 6 fully cored and logged 30-to-50m long and 3-to-15m spaced boreholes crossing the fault zone. These high-definition geological data were acquired within the Fault Slip (FS) experiment project that consisted in fluid injections in different intervals within the fault using the SIMFIP probe to explore the conditions for the fault mechanical and seismic stability. The Mont Terri Main Fault "core" consists of a thrust zone about 0.8 to 3m wide that is bounded by two major fault planes. Between these planes, there is an assembly of distinct slickensided surfaces and various facies including scaly clays, fault gouge and fractured zones. Scaly clay including S-C bands and microfolds occurs in larger zones at top and bottom of the Mail Fault. A cm-thin layer of gouge, that is known to accommodate high strain parts, runs along the upper fault zone boundary. The non-scaly part mainly consists of undeformed rock block, bounded by slickensides. Such a complexity as well as the continuity of the two major surfaces are hard to correlate between the different boreholes even with the high density of geological data within the relatively small volume of the experiment. This may show that a poor strain localization occurred during faulting giving some perspectives about the potential for reactivation and leakage of faults affecting clay materials.
Tectonics of the Jemez Lineament in the Jemez Mountains and Rio Grande Rift
NASA Astrophysics Data System (ADS)
Aldrich, M. J., Jr.
1986-02-01
The Jemez lineament is a NE trending crustal flaw that controlled volcanism and tectonism in the Jemez Mountains and the Rio Grande rift zone. The fault system associated with the lineament in the rift zone includes, from west to east, the Jemez fault zone southwest of the Valles-Toledo caldera complex, a series of NE trending faults on the resurgent dome in the Valles caldera, a structural discontinuity with a high fracture intensity in the NE Jemez Mountains, and the Embudo fault zone in the Española Basin. The active western boundary faulting of the Española Basin may have been restricted to the south side of the lineament since the mid-Miocene. The faulting apparently began on the Sierrita fault on the east side of the Nacimiento Mountains in the late Oligocene and stepped eastward in the early Miocene to the Canada de Cochiti fault zone. At the end of the Miocene (about 5 Ma) the active boundary faulting again stepped eastward to the Pajarito fault zone on the east side of the Jemez Mountains. The north end of the Pajarito fault terminates against the Jemez lineament at a point where it changes from a structural discontinuity (zone of high fracture intensity) on the west to the Embudo fault zone on the east. Major transcurrent movement occurred on the Embudo fault zone during the Pliocene and has continued at a much slower rate since then. The relative sense of displacement changes from right slip on the western part of the fault zone to left slip on the east. The kinematics of this faulting probably reflect the combined effects of faster spreading in the Española Basin than the area north of the lineament (Abiquiu embayment and San Luis Basin), the right step in the rift that juxtaposes the San Luis Basin against the Picuris Mountains, and counterclockwise rotation of various crustal blocks within the rift zone. No strike-slip displacements have occurred on the lineament in the central and eastern Jemez Mountains since at least the mid-Miocene, although movements on the still active Jemez fault zone, in the western Jemez Mountains, may have a significant strike-slip component. Basaltic volcanism was occurring in the Jemez Mountains at four discrete vent areas on the lineament between about 15 Ma and 10 Ma and possibly as late as 7 Ma, indicating that it was being extended during that time.
Modelling Fault Zone Evolution: Implications for fluid flow.
NASA Astrophysics Data System (ADS)
Moir, H.; Lunn, R. J.; Shipton, Z. K.
2009-04-01
Flow simulation models are of major interest to many industries including hydrocarbon, nuclear waste, sequestering of carbon dioxide and mining. One of the major uncertainties in these models is in predicting the permeability of faults, principally in the detailed structure of the fault zone. Studying the detailed structure of a fault zone is difficult because of the inaccessible nature of sub-surface faults and also because of their highly complex nature; fault zones show a high degree of spatial and temporal heterogeneity i.e. the properties of the fault change as you move along the fault, they also change with time. It is well understood that faults influence fluid flow characteristics. They may act as a conduit or a barrier or even as both by blocking flow across the fault while promoting flow along it. Controls on fault hydraulic properties include cementation, stress field orientation, fault zone components and fault zone geometry. Within brittle rocks, such as granite, fracture networks are limited but provide the dominant pathway for flow within this rock type. Research at the EU's Soultz-sous-Forệt Hot Dry Rock test site [Evans et al., 2005] showed that 95% of flow into the borehole was associated with a single fault zone at 3490m depth, and that 10 open fractures account for the majority of flow within the zone. These data underline the critical role of faults in deep flow systems and the importance of achieving a predictive understanding of fault hydraulic properties. To improve estimates of fault zone permeability, it is important to understand the underlying hydro-mechanical processes of fault zone formation. In this research, we explore the spatial and temporal evolution of fault zones in brittle rock through development and application of a 2D hydro-mechanical finite element model, MOPEDZ. The authors have previously presented numerical simulations of the development of fault linkage structures from two or three pre-existing joints, the results of which compare well to features observed in mapped exposures. For these simple simulations from a small number of pre-existing joints the fault zone evolves in a predictable way: fault linkage is governed by three key factors: Stress ratio of s1 (maximum compressive stress) to s3(minimum compressive stress), original geometry of the pre-existing structures (contractional vs. dilational geometries) and the orientation of the principle stress direction (σ1) to the pre-existing structures. In this paper we present numerical simulations of the temporal and spatial evolution of fault linkage structures from many pre-existing joints. The initial location, size and orientations of these joints are based on field observations of cooling joints in granite from the Sierra Nevada. We show that the constantly evolving geometry and local stress field perturbations contribute significantly to fault zone evolution. The location and orientations of linkage structures previously predicted by the simple simulations are consistent with the predicted geometries in the more complex fault zones, however, the exact location at which individual structures form is not easily predicted. Markedly different fault zone geometries are predicted when the pre-existing joints are rotated with respect to the maximum compressive stress. In particular, fault surfaces range from evolving smooth linear structures to producing complex ‘stepped' fault zone geometries. These geometries have a significant effect on simulations of along and across-fault flow.
Kellogg, K.S.; Schmidt, C.J.; Young, S.W.
1995-01-01
Two major Laramide fault systems converge in the northwestern Madison Range: the northwest-striking, southwest-vergent Spanish Peaks reverse fault and the north-striking, east-vergent Hilgard thrust system. Analysis of foliation attitudes in basement gneiss north and south of the Spanish Peaks fault indicates that the basement in thrusted blocks of the Hilgard thrust system have been rotated by an amount similar to that of the basement-cover contact. Steeply dipping, north-striking breccia zones enclosing domains of relatively undeformed basement may have permitted domino-style rotation of basement blocks during simple shear between pairs of thrusts. No hydrocarbon discoveries have been made in this unique structural province. However, petroleum exploration here has focused on basement-cored anticlines, both surface and subthrust, related to the two major Laramide fault systems and on the fault-bounded blocks of Tertiary rocks within the post-Laramide extensional basins. -from Authors
NASA Astrophysics Data System (ADS)
Gorynski, Kyle E.; Stockli, Daniel F.; Douglas Walker, J.
2013-06-01
(AHe) and Zircon (ZHe) (U-Th)/He thermochronometric data from the southern Wassuk Range (WR) coupled with 40Ar/39Ar age data from the overlying tilted Tertiary section are used to constrain the thermal evolution of an extensional accommodation zone and tilt-domain boundary. AHe and ZHe data record two episodes of rapid cooling related to the tectonic exhumation of the WR fault block beginning at ~15 and ~4 Ma. Extension was accommodated through fault-block rotation and variably tilted the southern WR to the west from ~60°-70° in the central WR to ~15°-35° in the southernmost WR and Pine Grove Hills, and minimal tilting in the Anchorite Hills and along the Mina Deflection to the south. Middle Miocene geothermal gradient estimates record heating immediately prior to large-magnitude extension that was likely coeval with the extrusion of the Lincoln Flat andesite at ~14.8 Ma. Geothermal gradients increase from ~19° ± 4°C/km to ≥ 65° ± 20°C/km toward the Mina Deflection, suggesting that it was the focus of Middle Miocene arc magmatism in the upper crust. The decreasing thickness of tilt blocks toward the south resulted from a shallowing brittle/ductile transition zone. Postmagmatic Middle Miocene extension and fault-block advection were focused in the northern and central WR and coincidentally moderated the large lateral thermal gradient within the uppermost crust.
McLaren, Marcia K.; Hardebeck, Jeanne L.; Van Der Elst, Nicholas; Unruh, Jeffrey R.; Bawden, Gerald W.; Blair, James Luke
2008-01-01
We use data from two seismic networks and satellite interferometric synthetic aperture radar (InSAR) imagery to characterize the 22 December 2003 Mw 6.5 San Simeon earthquake sequence. Absolute locations for the mainshock and nearly 10,000 aftershocks were determined using a new three-dimensional (3D) seismic velocity model; relative locations were obtained using double difference. The mainshock location found using the 3D velocity model is 35.704° N, 121.096° W at a depth of 9.7±0.7 km. The aftershocks concentrate at the northwest and southeast parts of the aftershock zone, between the mapped traces of the Oceanic and Nacimiento fault zones. The northwest end of the mainshock rupture, as defined by the aftershocks, projects from the mainshock hypocenter to the surface a few kilometers west of the mapped trace of the Oceanic fault, near the Santa Lucia Range front and the >5 mm postseismic InSAR imagery contour. The Oceanic fault in this area, as mapped by Hall (1991), is therefore probably a second-order synthetic thrust or reverse fault that splays upward from the main seismogenic fault at depth. The southeast end of the rupture projects closer to the mapped Oceanic fault trace, suggesting much of the slip was along this fault, or at a minimum is accommodating much of the postseismic deformation. InSAR imagery shows ∼72 mm of postseismic uplift in the vicinity of maximum coseismic slip in the central section of the rupture, and ∼48 and ∼45 mm at the northwest and southeast end of the aftershock zone, respectively. From these observations, we model a ∼30-km-long northwest-trending northeast-dipping mainshock rupture surface—called the mainthrust—which is likely the Oceanic fault at depth, a ∼10-km-long southwest-dipping backthrust parallel to the mainthrust near the hypocenter, several smaller southwest-dipping structures in the southeast, and perhaps additional northeast-dipping or subvertical structures southeast of the mainshock plane. Discontinuous backthrust features opposite the mainthrust in the southeast part of the aftershock zone may offset the relic Nacimiento fault zone at depth. The InSAR data image surface deformation associated with both aseismic slip and aftershock production on the mainthrust and the backthrusts at the northwest and southeast ends of the aftershock zone. The well-defined mainthrust at the latitude of the epicenter and antithetic backthrust illuminated by the aftershock zone indicate uplift of the Santa Lucia Range as a popup block; aftershocks in the southeast part of the zone also indicate a popup block, but it is less well defined. The absence of backthrust features in the central part of the zone suggests range-front uplift by fault-propagation folding, or backthrusts in the central part were not activated during the mainshock.
Collisional zones in Puerto Rico and the northern Caribbean
NASA Astrophysics Data System (ADS)
Laó-Dávila, Daniel A.
2014-10-01
Puerto Rico is an amalgamation of island arc terranes that has recorded the deformational and tectonic history of the North American-Caribbean Plate boundary. Four collisional zones indicate the contractional events that have occurred at the plate boundary. Metamorphism and deformation of Middle Jurassic to Early Cretaceous oceanic lithosphere during the Early Cretaceous indicate the earliest collisional event. Then, an ophiolitic mélange, mostly comprised of blocks of the metamorphosed oceanic lithosphere, was formed and emplaced in the backarc region during the Turonian-Coniacian deformational event. A possible collision with a buoyant block in the North American Plate caused late Maastrichtian-early Paleocene contraction that created fold-and-thrust belts and the remobilization and uplift of serpentinite bodies in the Southwest Block. Late Eocene-early Oligocene transpression was localized along the Southern and Northern Puerto Rico fault zones, which occur north and south of large granodiorite intrusions in the strong Central Block. The deformation was accommodated in pure shear domains of fold-and-thrust belts and conjugate strike-slip faults, and simple shear domains of large mostly left-lateral faults. In addition, it reactivated faults in the weak Southwest Block. This island-wide transpression is the result of a Greater Antilles arc and continental North American collision. The kinematic model of the structures described in Puerto Rico correlate with some structures in Hispaniola and Cuba, and shows how the northern boundary of the Caribbean Plate was shortened by collisions with continental lithosphere of the North American Plate throughout its history. The tectonic evolution of the Greater Antilles shows a history of collisions, in which the latest collision accretes Cuba to the North American Plate, reorganizes the plate boundary, and deforms with transpression Hispaniola and Puerto Rico. The latest collision in Puerto Rico shows the case in which an arc collides obliquely with buoyant crust producing left-lateral transpression and converges obliquely with dense oceanic lithosphere.
NASA Astrophysics Data System (ADS)
Kendrick, K. J.; Matti, J. C.
2012-12-01
The San Gorgonio Pass (SGP) region of southern California is a locus of long-continued Quaternary deformation and landscape evolution within a structural complexity, colloquially referred to as a knot in the San Andreas Fault (SAF) zone. The geomorphology of the SGP region reflects the complex history of geologic events involved in the formation and resolution of this structural knot. We recognize five morphologically distinct terrains in and around SGP; the San Gorgonio Block (SGB), Yucaipa Ridge (YRB), Pisgah Peak (PPB), Kitching Peak (KPB), and Devil's Garden blocks (DGB). Morphometric analyses, including drainage density, hypsometry, topographic profiles, and stream-power measurements and discontinuities, consistently demonstrate distinctions between the blocks. Our focus in this study is on the KPB and PPB terrains, both developed in crystalline rocks of San Gabriel Mountains type. KPB is bounded on the north by the Mission Creek strand of the SAF and on the east by the Whitewater Fault; PPB is bounded on the north by the San Bernardino strand of the SAF, which continues southeastward into the core of SGP and there separates PPB from KPB. KPB has significantly greater topographic relief than PPB, and the two blocks have internal morphometric and geologic characteristics that differ significantly. Canyons in KPB lack thick Quaternary alluvial fills, and hillslopes have shed numerous bedrock landslides. Canyons in PPB contain large volumes of Middle-Pleistocene through Holocene alluvium, associated with areally extensive relict geomorphic surfaces. We use the geomorphic differences, along with geologic factors, to reconstruct tectonically driven landscape evolution over the last 100-200 Ka years. The KPB and PPB both are bounded southward by contractional structures of the San Gorgonio Pass Fault zone (SGPFZ), but geologic complexity within this zone differs markedly south of each block. South of KPB, the SGPFZ consists of multiple thrust-fault strands, some older than 500 ka, has a wide spatial footprint along a N-S axis, and Holocene alluvium is disrupted by numerous fault scarps. By contrast, south of PPB the SGPFZ consists of fewer thrust-fault strands, has a relatively narrow footprint, and faults breaking Holocene deposits are uncommon. The San Bernardino strand of the SAF intersects the SGPFZ at about the boundary between these two domains. Morphometric data indicate that the KPB has undergone significantly greater uplift than the PPB since inception of the San Bernardino strand, proposed by Matti and Morton (1993) to have occurred at ~125ka. Age estimates associated with the PPB and DGB allow us to broadly estimate relative uplift rates. Drainage reconstruction of the Whitewater River and its tributaries across the YRB likewise allow us to validate and refine the uplift estimated by Spotila and others (2001). YRB has been uplifted relative to SGB since the inception of the Mill Creek Strand of the SAF.
Alternative interpretation for the active zones of Cuba
NASA Astrophysics Data System (ADS)
Rodríguez, Mario Octavio Cotilla
2014-11-01
An alternative explanation to the seismoactivity of Cuban faults is presented. The model is a consequence of the interaction between Caribbean and North American plates. It is made with 12 geodynamic cells form by a set of 13 active faults and their 14 areas of intersection. These cells are recognized morpho-structural blocks. The area between Eastern Matanzas and Western Cauto-Nipe is excluded because of the low level of seismic information. Cuba has two types of seismogenetic structures: faults and intersection of faults.
Elongation Of The North Anatolian Fault Zone in the Sea of Marmara
NASA Astrophysics Data System (ADS)
Kurtulus, C.; Canbay, M. M.
2003-04-01
The North Anatolian Fault Zone (NAFZ) is a 1500 km long, seismically active, right lateral strike sleep fault that accommodates the relative motion between the Anatolian and Pontide blocks. The Sea of Marmara is an intra-continental sea lying along the western part of the NAFZ. There are two major fault systems in the Sea of Marmara one of which consists of the east-west striking faults and the other one is made up of NE-SW-trending faults that dissect the first group. The east, middle and the south parts of the Sea of Marmara are interpreted as pull-apart basins characterized by shear stresses. The interpretation of the structural framework indicates that the northern strand of the NAFZ traverses the Gulf of Izmit and deep Marmara to bind the Gulf of Saros and the middle strand of it traverses the Gulf of Gemlik, Bandirma and the Gulf of Erdek.
NASA Astrophysics Data System (ADS)
MacDonald, Ken. C.; Castillo, David A.; Miller, Stephen P.; Fox, Paul J.; Kastens, Kim A.; Bonatti, Enrico
1986-03-01
The Vema transform fault, which slips at a rate of 24 mm/yr, displaces the Mid-Atlantic Ridge (MAR) 320 km in a left-lateral sense. High-resolution deep-tow studies of the Vema ridge-transform intersection (RTI) and the eastern 130 km of the active transform fault reveal a complex pattern of dip-slip and strike-slip faults which evolve in time and space. At the intersection, both the neovolcanic zone and the west wall of the MAR rift valley curve counterclockwise toward the transform fault along trends approximately 30° oblique to the regional north-south trend of the spreading axis. The curving of extensional structures in the rift valley, such as normal faults and the axial zone of dike injection, appears to be related to transmission of transform related shear stresses into the spreading center domain. Intermittent locking of the American and African lithospheric plates across the RTI causes shear stresses to penetrate up to 4 km into the MAR axial neovolcanic zone where the lithosphere is relatively thin and up to 12 km into the block-faulted west wall of the rift valley where the lithosphere is thicker. The degree of shear coupling across the RTI may vary with time due to changes in the thickness of the lithosphere along the axis (0-10 km), the strength of a "mantle weld" at depth, and the presence or absence of an axial magma chamber, so that extensional structures at the RTI may be either spreading center parallel when coupling is weak or oblique when coupling is strong. Oblique extension across the RTI in addition to other factors may account for some of the down dropping of lithosphere within the deep nodal basin. The easternmost 20 km of the active transform fault zone near the RTI displays a braided network of three to nine tectonically active grabens and V-shaped furrows in a zone 2-4 km wide, interpreted to consist of interwoven Riedel shears, P shears, and oblique normal faults. Clay cake deformation experiments and deep-tow observations suggest that P shears and R shears, which are 10°-20° oblique to the transform slip direction, develop during the initial stages of transform faulting near the RTI as the newly accreted lithosphere accelerates to full plate velocity. Some of the R shears propagate along strike and intercept the oblique normal faults resulting in sharply curving scarps at the RTI. Subsequent to this merging of the two fault types, some of the R shears develop a significant component of dip slip, while other R shears merge with P shears creating a complex anastomosing fault pattern up to 4 km wide. A continuous strand within this braided pattern of faults is interpreted to be the principal transform displacement zone near the RTI. Twenty kilometers west of the RTI the active transform fault zone narrows to a furrow generally less than 100 m wide with only a few short discontinuous splays. This narrow groove cuts through thinly sedimented basalt 20-40 km west of the RTI and continues as a narrow furrow (less than 100 m wide) through up to 1.5 km of layered turbidite fill most of the way to the western RTI. Such a narrow zone of deformation typifies the mature stages of transform faulting where the lithosphere on both sides of the transform fault is relatively old, thick, and rigid and has completed its acceleration to full plate velocity. The transform fault zone is closely associated with a partially buried median ridge and widens to 1-2 km where it transects exposed portions of the ridge. The transform parallel median and transverse ridges create the highest topography associated with the transform fault and may be serpentinized ultramafic intrusions capped by displaced crustal blocks of gabbro, metagabbro, and basalt.
NASA Astrophysics Data System (ADS)
Ott, B.; Mann, P.
2015-12-01
The offshore Nicaraguan Rise in the western Caribbean Sea is an approximately 500,000 km2 area of Precambrian to Late Cretaceous tectonic terranes that have been assembled during the Late Cretaceous formation of the Caribbean plate and include: 1) the Chortis block, a continental fragment; 2) the Great Arc of the Caribbean, a deformed Cretaceous arc, and 3) the Caribbean large igneous province formed in late Cretaceous time. Middle Eocene to Recent eastward motion of the Caribbean plate has been largely controlled by strike-slip faulting along the northern Caribbean plate boundary zone that bounds the northern margin of the Nicaraguan Rise. These faults reactivate older rift structures near the island of Jamaica and form the transtensional basins of the Honduran Borderlands near Honduras. Recent GPS studies suggest that small amount of intraplate motion within the current margin of error of GPS measurements (1-3 mm/yr) may occur within the center of the western Caribbean plate at the Pedro Bank fault zone and Hess Escarpment. This study uses a database of over 54,000 km of modern and vintage 2D seismic data, combined with earthquake data and results from previous GPS studies to define the active areas of inter- and intraplate fault zones in the western Caribbean. Intraplate deformation occurs along the 700-km-long Pedro Bank fault zone that traverses the center of the Nicaraguan Rise and reactivates the paleo suture zone between the Great Arc of the Caribbean and the Caribbean large igneous province. The Pedro Bank fault zone also drives active extension at the 200-km-long San Andres rift along the southwest margin of the Nicaraguan Rise. Influence of the Cocos Ridge indentor may be contributing to reactivation of faulting along the southwesternmost, active segment of the Hess Escarpment.
Implications of river morphology response to Dien Bien Phu fault in NW Vietnam
NASA Astrophysics Data System (ADS)
Lai, K.; Chen, Y.; Lam, D.
2007-12-01
In northern Vietnam, most rivers are flowing southeastward sub- or parallel to the valley of Red River and characterized by long but narrow catchments. The Dien Bien Phu fault is associated with the most seismically active zone in Vietnam and situated in the potential eastern boundary of the rotating southeastern Tibetan block. It cuts the Da River, the largest tributary of Red River in northwest Vietnam and has distorted the drainage basin resulting in complex river patterns. To assess the river morphology response to active Dien Bien Phu fault, we use 1/50,000 topographic data and ASTER images to map the precise river courses and digital elevation model data of SRTM to retrieve and analyze the river profiles. From the mapping results, the N-S striking fault results in three conspicuous north-trending river valleys coincided with the different fault segments to facilitate the measurement and reconstruction of the offsets along the fault. Further combining the longitudinal profile analysis we obtain ca. 10 km offsets by deflected river as the largest left-lateral displacement recorded along the active fault. The restored results show the downstream paleochannel of the Da River had been abandoned and becomes two small tributaries in opposite flow directions at present due to differential crustal uplift. Also the present crisscross valley at the junction of the Da River and the fault is resulted from the capture by another river which has been also deflected by the neotectonics. Based on our observations on river response, the Dien Bien Phu fault is a sinistral dominant fault with an uplift occurring in its eastern block. Furthermore the active Dien Bien Phu fault does not cut through the Red River northward indicating the western block of the fault can not be regarded as a single rigid block. There should be possible to find NW-SE trending faults paralleling to Red River to accommodate the deformation of the western block of the fault.
Implications of river morphology response to Dien Bien Phu fault in NW Vietnam
NASA Astrophysics Data System (ADS)
Lai, K.; Chen, Y.; Lam, D.
2004-12-01
In northern Vietnam, most rivers are flowing southeastward sub- or parallel to the valley of Red River and characterized by long but narrow catchments. The Dien Bien Phu fault is associated with the most seismically active zone in Vietnam and situated in the potential eastern boundary of the rotating southeastern Tibetan block. It cuts the Da River, the largest tributary of Red River in northwest Vietnam and has distorted the drainage basin resulting in complex river patterns. To assess the river morphology response to active Dien Bien Phu fault, we use 1/50,000 topographic data and ASTER images to map the precise river courses and digital elevation model data of SRTM to retrieve and analyze the river profiles. From the mapping results, the N-S striking fault results in three conspicuous north-trending river valleys coincided with the different fault segments to facilitate the measurement and reconstruction of the offsets along the fault. Further combining the longitudinal profile analysis we obtain ca. 10 km offsets by deflected river as the largest left-lateral displacement recorded along the active fault. The restored results show the downstream paleochannel of the Da River had been abandoned and becomes two small tributaries in opposite flow directions at present due to differential crustal uplift. Also the present crisscross valley at the junction of the Da River and the fault is resulted from the capture by another river which has been also deflected by the neotectonics. Based on our observations on river response, the Dien Bien Phu fault is a sinistral dominant fault with an uplift occurring in its eastern block. Furthermore the active Dien Bien Phu fault does not cut through the Red River northward indicating the western block of the fault can not be regarded as a single rigid block. There should be possible to find NW-SE trending faults paralleling to Red River to accommodate the deformation of the western block of the fault.
Tectonics, recent geodynamics and seismicity of Azerbaijan part of the Greater Caucasus
NASA Astrophysics Data System (ADS)
Aliyev, Fuad; Kangarli, Talat; Rahimov, Fuad; Murtuzov, Zaur; Aliyev, Ziya
2016-04-01
Transition area of the Eastern Caucasus - Caspian Megadepression corresponds to a periclinal submergence zone of the mountain folded structure of the Greater Caucasus under Pliocene-Holocenic sedimentary complex of Caspian megabasin. Being a part of Alpine-Himalayan folded belt, Greater Caucasus has formed during alpine stage of tectogenesis under geodynamic conditions of convergent interactions between Northern and Southern Caucasus continental microplates. This process has been accompanied by pseudosubduction of the first plate under the second with formation of allochtonous accretion prism above underthrust zone. Modern folding and napping structure of the orogeny has formed as a result of the horizontal movements of different phases and subphases of alpine tectogenesis, that are presented represented by Late Cimmerian - Wallachian tectonic phases within Azerbaijan territory. Limited by meridional fault-slip zones, Caspian megadepression present itself as a young structure that layered on sublatitudinal convergent zone and developed during Late Miocene (10 million years ago) as a flexure zone between two indenters which actively move northward provoking their separation from the African continent and Arabian plate in the west and secession from Central Iranian plate of the Lut block in the east. The acting movement of Arabian plate to the north results in accumulation of the horizontal stress at the current stage of tectogenesis. Current process reveals itself both in the fragmentation of Southern and Northern Caucasus continental microplates into various-size blocks along the general and anti-Caucasus trended faults, and in consideration horizontal and vertical movements within the convergence zone. All these factors define the complexity of geodynamic condition revealed here, in which seismic activity of a transition zone become apparent. There exist the seismic zones here that are confined both to a convergence line and to the fault zones that confine Caspian megadepression or complicate its' inner structure. Under lateral compression conditions, the small-size dynamic blocks that form the inner structure of the earth crust in a transition zone is standing as a reason of formation of the transpressive deformations, which combine moving along bordering of transversal dislocations with the compression structures like Main Caucasus strike faults in a trend of convergent (pseudosubduction) interaction of Southern and Northern Caucasus continental microplates. During such regime a multiple elastic stress accumulation zones are developing, that are confined to mentioned dislocations and their connection knots. Namely, exceeding of a breakage point of the rocks by accumulated elastic deformations, results in earthquakes and destructions in such tectonically vulnerable transition zones.
Graham, Garth; Hitzman, Murray W.; Zieg, Jerry
2012-01-01
The northern margin of the Helena Embayment contains extensive syngenetic to diagenetic massive pyrite horizons that extend over 25 km along the Volcano Valley-Buttress fault zone and extend up to 8 km basinward (south) within the Mesoproterozoic Newland Formation. The Sheep Creek Cu-Co deposit occurs within a structural block along a bend in the fault system, where replacement-style chalcopyrite mineralization is spatially associated mostly with the two stratigraphically lowest massive pyrite zones. These mineralized pyritic horizons are intercalated with debris flows derived from synsedimentary movement along the Volcano Valley-Buttress fault zone. Cominco American Inc. delineated a geologic resource of 4.5 Mt at 2.5% Cu and 0.1% Co in the upper sulfide zone and 4 Mt at 4% Cu within the lower sulfide zone. More recently, Tintina Resources Inc. has delineated an inferred resource of 8.48 Mt at 2.96% Cu, 0.12% Co, and 16.4 g/t Ag in the upper sulfide zone. The more intact upper sulfide zone displays significant thickness variations along strike thought to represent formation in at least three separate subbasins. The largest accumulation of mineralized sulfide in the upper zone occurs as an N-S–trending body that thickens southward from the generally E trending Volcano Valley Fault and probably occupies a paleograben controlled by normal faults in the hanging wall of the Volcano Valley Fault. Early microcrystalline to framboidal pyrite was accompanied by abundant and local barite deposition in the upper and lower sulfide zones, respectively. The sulfide bodies underwent intense (lower sulfide zone) to localized (upper sulfide zone) recrystallization and overprinting by coarser-grained pyrite and minor marcasite that is intergrown with and replaces dolomite. Silicification and paragenetically late chalcopyrite, along with minor tennantite in the upper sulfide zone, replaces fine-grained pyrite, barite, and carbonate. The restriction of chalcopyrite to inferred synsedimentary E- and northerly trending faults and absence of definitive zonation with respect to the Laramide Volcano Valley Fault in the lower sulfide zone suggest a diagenetic age related to basin development for the Sheep Creek Cu-Co-Ag deposit.
Anisotropic Rayleigh-wave phase velocities beneath northern Vietnam
NASA Astrophysics Data System (ADS)
Legendre, Cédric P.; Zhao, Li; Huang, Win-Gee; Huang, Bor-Shouh
2015-02-01
We explore the Rayleigh-wave phase-velocity structure beneath northern Vietnam over a broad period range of 5 to 250 s. We use the two-stations technique to derive the dispersion curves from the waveforms of 798 teleseismic events recoded by a set of 23 broadband seismic stations deployed in northern Vietnam. These dispersion curves are then inverted for both isotropic and azimuthally anisotropic Rayleigh-wave phase-velocity maps in the frequency range of 10 to 50 s. Main findings include a crustal expression of the Red River Shear Zone and the Song Ma Fault. Northern Vietnam displays a northeast/southwest dichotomy in the lithosphere with fast velocities beneath the South China Block and slow velocities beneath the Simao Block and between the Red River Fault and the Song Da Fault. The anisotropy in the region is relatively simple, with a high amplitude and fast directions parallel to the Red River Shear Zone in the western part. In the eastern part, the amplitudes are generally smaller and the fast axis displays more variations with periods.
Tabor, R.W.
1994-01-01
The Helena-Haystack melange (HH melange) and coincident Darrington-Devils Mountain fault zone (DDMFZ) in northwestern Washington separate two terranes, the northwest Cascade System (NWCS) and the western and eastern melange belts (WEMB). The two terranes of Paleozoic and Mesozoic rocks superficially resemble each other but record considerable differences in structural and metamorphic history. The HH melange is a serpentinite-matrix melange containing blocks of adjacent terranes but also exotic blocks. The HH melange must have formed between early Cretaceous and late middle Eocene time, because it contains tectonic clasts of early Cretaceous Shuksan Greenschist and is overlain by late middle Eocene sedimentary and volcanic rocks. The possible continuation of the DDMFZ to the northwest as the San Juan and the West Coast faults on Vancouver Island suggests that the structure has had a major role in the emplacement of all the westernmost terranes in the Pacific Northwest. -from Author
Geodetic evidence for continuing tectonic activity of the Carboneras fault (SE Spain)
NASA Astrophysics Data System (ADS)
Echeverria, Anna; Khazaradze, Giorgi; Asensio, Eva; Masana, Eulalia
2015-11-01
The Carboneras fault zone (CFZ) is a prominent onshore-offshore strike-slip fault that forms part of the Eastern Betic Shear Zone (EBSZ), located in SE Spain. In this work, we show for the first time, the continuing tectonic activity of the CFZ and quantify its geodetic slip-rates using continuous and campaign GPS observations conducted during the last decade. We find that the left-lateral motion dominates the kinematics of the CFZ, with a strike-slip rate of 1.3 ± 0.2 mm/yr along the N48° direction. The shortening component is significantly lower and poorly constrained. Recent onshore and offshore paleoseismic and geomorphic results across the CFZ suggest a minimum Late Pleistocene to present-day strike-slip rate of 1.1 mm/yr. Considering the similarity of the geologic and geodetic slip rates measured at different points along the fault, the northern segment of the CFZ must have been slipping approximately at a constant rate during the Quaternary. Regarding the eastern Alpujarras fault zone corridor (AFZ), located to the north of the CFZ, our GPS measurements corroborate that this zone is active and exhibits a right-lateral motion. These opposite type strike-slip motion across the AFZ and CFZ is a result of a push-type force due to Nubia and Eurasia plate convergence, which, in turn, causes the westward escape of the block bounded by these two fault zones.
NASA Astrophysics Data System (ADS)
Loveless, S. E.; Bense, V.; Turner, J.
2011-12-01
Many aquifers worldwide occur in poorly lithified sediments, often in regions that experience active tectonic deformation. Faulting of these sediments introduces heterogeneities that may affect aquifer porosity and permeability, and consequently subsurface fluid flow and groundwater storage. The specific hydrogeological effects of faults depend upon the fault architecture and deformation mechanisms. These are controlled by factors such as rheology, stratigraphy and burial depth. Here, we analyse fault permeability in poorly lithified sediments as a function of fault displacement. We have carried out detailed outcrop studies of minor normal faults at five study sites within the rapidly extending Corinth rift, Central Greece. Gravel conglomerates of giant Gilbert delta facies form productive but localised shallow aquifers within the region. Exposures reveal dense (average 20 faults per 100 m) networks of minor (0.1 to 50 m displacement) normal faults within the uplifted sequences, proximal to many of the crustal-scale normal faults. Analysis of 42 faults shows that fault zones are primarily composed of smeared beds that can either retain their definition or mix with surrounding sediment. Lenses or blocks of sediment are common in fault zones that cut beds with contrasting rheology, and a few faults have a clay core and/or damage zone. Fault thickness increases at a rate of about 0.4 m per 10 m increase in displacement. Comparison of sediment micro-structures from the field, hand samples and thin sections show grain-scale sediment mixing, fracturing of clasts, and in some cases cementation, within fault zones. In faults with displacements >12 m we also find a number of roughly parallel, highly indurated shear planes, up to 20 mm in thickness, composed of highly fragmented clasts and a fine grained matrix. Image analysis of thin sections from hand samples collected in the field was used to quantify the porosity of fault zones and adjacent undeformed sediment. These data show a reduction in average porosity from 21% (± 4) in undisturbed sediments to 14% (± 8) within fault zones. We find that fault zone porosity decreases by approximately 5% per 1 m displacement (up to 2 m displacement), as sediments undergo greater micro-scale deformation. Porosity within the shear planes of larger displacement faults (> 12 m) is significantly less than 5%. In summary, with an increase in fault displacement there is an increase in fault thickness and decrease in fault zone porosity, in addition to the occurrence of extremely low porosity shear planes. Consequently, the impact of faults in poorly lithified sediment on fluid flow is, to a large degree, dependent upon the magnitude of fault displacement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleveland, K. Michael; VanDeMark, Thomas F.; Ammon, Charles J.
We report that double-difference methods applied to cross-correlation measured Rayleigh wave time shifts are an effective tool to improve epicentroid locations and relative origin time shifts in remote regions. We apply these methods to seismicity offshore of southwestern Canada and the U.S. Pacific Northwest, occurring along the boundaries of the Pacific and Juan de Fuca (including the Explorer Plate and Gorda Block) Plates. The Blanco, Mendocino, Revere-Dellwood, Nootka, and Sovanco fracture zones host the majority of this seismicity, largely consisting of strike-slip earthquakes. The Explorer, Juan de Fuca, and Gorda spreading ridges join these fracture zones and host normal faultingmore » earthquakes. Our results show that at least the moderate-magnitude activity clusters along fault strike, supporting suggestions of large variations in seismic coupling along oceanic transform faults. Our improved relative locations corroborate earlier interpretations of the internal deformation in the Explorer and Gorda Plates. North of the Explorer Plate, improved locations support models that propose northern extension of the Revere-Dellwood fault. Relocations also support interpretations that favor multiple parallel active faults along the Blanco Transform Fault Zone. Seismicity of the western half of the Blanco appears more scattered and less collinear than the eastern half, possibly related to fault maturity. We use azimuthal variations in the Rayleigh wave cross-correlation amplitude to detect and model rupture directivity for a moderate size earthquake along the eastern Blanco Fault. Lastly, the observations constrain the seismogenic zone geometry and suggest a relatively narrow seismogenic zone width of 2 to 4 km.« less
NASA Astrophysics Data System (ADS)
Fondriest, M.; Demurtas, M.; Bistacchi, A.; Fabrizio, B.; Storti, F.; Valoroso, L.; Di Toro, G.
2017-12-01
The mechanics and seismogenic behaviour of fault zones are strongly influenced by their internal structure, in terms of both fault geometry and fault rock constitutive properties. In recent years high-resolution seismological techniques yielded new constraints on the geometry and velocity structure of seismogenic faults down to 10s meters length scales. This reduced the gap between geophysical imaging of active seismic sources and field observations of exhumed fault zones. Nevertheless fundamental questions such as the origin of geometrical and kinematic complexities associated to seismic faulting remain open. We addressed these topics by characterizing the internal structure of the Vado di Corno Fault Zone, an active seismogenic normal fault cutting carbonates in the Central Apennines of Italy and comparing it with the present-day seismicity of the area. The fault footwall block, which was exhumed from < 2 km depth, was mapped with high detail (< 1 m spatial resolution) for 2 km of exposure along strike, combining field structural data and photogrammetric surveys in a three dimensional structural model. Three main structural units separated by principal fault strands were recognized: (i) cataclastic unit (20-100 m thick), (ii) damage zone (≤ 300 m thick), (iii) breccia unit ( 20 thick). The cataclastic unit lines the master fault and represents the core of the normal fault zone. In-situ shattering together with evidence of extreme (possibly coseismic) shear strain localization (e.g., mirror-like faults with truncated clasts, ultrafine-grained sheared veins) was recognized. The breccia unit is an inherited thrust zone affected by pervasive veining and secondary dolomitization. It strikes subparallel to the active normal fault and is characterized by a non-cylindrical geometry with 10-100 m long frontal and lateral ramps. The cataclastic unit cuts through thrust flats within the breccia unit, whereas normal to oblique inversion occur on frontal and lateral ramps. A comparable structural setting was imaged South-West of the study area, during the 2009 L'Aquila seismic sequence. Here at 2 km depth, the master normal fault cross-cuts a 10 km long flat structure and clear lateral ramps are illuminated, suggesting the superposition of normal seismic faulting on inherited compressional structures.
Enigmatic rift-parallel, strike-slip faults around Eyjafjörður, Northern Iceland
NASA Astrophysics Data System (ADS)
Proett, J. A.; Karson, J. A.
2014-12-01
Strike-slip faults along mid-ocean ridge spreading centers are generally thought to be restricted to transform boundaries connecting rift segments. Faults that are parallel to spreading centers are generally assumed to be normal faults associated with tectonic extension. However, clear evidence of north-south (rift-parallel), strike-slip displacements occur widely around the southern portion of Eyjafjörður, northern Iceland about 50 km west of the Northern Rift Zone. The area is south of the southernmost strand (Dalvík Lineament) of the NW-SE-trending, dextral-slip, Tjӧrnes Fracture Zone (where N-S, sinistral, strike-slip "bookshelf" faulting occurs). Faults in the Eyjafjörður area cut 8.5-10 m.y. basaltic crust and are parallel to spreading-related dikes and are commonly concentrated along dike margins. Fault rocks range from fault breccia to gouge. Riedel shears and other kinematic indicators provide unambiguous evidence of shear sense. Most faults show evidence of sinistral, strike-slip movement but smaller proportions of normal and oblique-slip faults also are present. Cross cutting relations among the different types of faults are inconsistent and appear to be related to a single deformation event. Fault slip-line kinematic analysis yields solutions indicating sinistral-normal oblique-slip overall. These results may be interpreted in terms of either previously unrecognized transform-fault bookshelf faulting or slip accommodating block rotation associated with northward propagation of the Northern Rift Zone.
NASA Astrophysics Data System (ADS)
Schobelock, J.; Stamps, D. S.; Pagani, M.; Garcia, J.; Styron, R. H.
2017-12-01
The Caribbean and Central America region (CCAR) undergoes the entire spectrum of earthquake types due to its complex tectonic setting comprised of transform zones, young oceanic spreading ridges, and subductions along its eastern and western boundaries. CCAR is, therefore, an ideal setting in which to study the impacts of long-term tectonic deformation on the distribution of present-day seismic activity. In this work, we develop a continuous tectonic strain rate model based on inter-seismic geodetic data and compare it with known active faults and earthquake focal mechanism data. We first create a 0.25o x 0.25o finite element mesh that is comprised of block geometries defined in previously studies. Second, we isolate and remove transient signals from the latest open access community velocity solution from UNAVCO, which includes 339 velocities from COCONet and TLALOCNet GNSS data for the Caribbean and Central America, respectively. In a third step we define zones of deformation and rigidity by creating a buffer around the boundary of each block that varies depending on the size of the block and the expected deformation zone based on locations of GNSS data that are consistent with rigid block motion. We then assign each node within the buffer a 0 for the deforming areas and a plate index outside the buffer for the rigid. Finally, we calculate a tectonic strain rate model for CCAR using the Haines and Holt finite element approach to fit bi-cubic Bessel splines to the the GNSS/GPS data assuming block rotation for zones of rigidity. Our model of the CCAR is consistent with compression along subduction zones, extension across the mid-Pacific Rise, and a combination of compression and extension across the North America - Caribbean plate boundary. The majority of CCAR strain rate magnitudes range from -60 to 60 nanostrains/yr. Modeling results are then used to calculate expected faulting behaviors that we compare with mapped geologic faults and seismic activity.
Imaging of Fine Shallow Structure Beneath the Longmenshan Fault Zone from Ambient Noise Tomography
NASA Astrophysics Data System (ADS)
Zhao, P.; Campillo, M.; Chen, J.; Liu, Q.
2016-12-01
Short period seismic ambient noise group velocity dispersion curve, obtained from cross correlation of vertical component of 57 stations around the Longmenshan fault zone deployed after the Wenchuan earthquake and continuously observed for 1 year, is used to inverse the S wave velocity structure of the top 25 km of the central to northern part of Longmenshan fault zone. A iterative correction method based on 3-D simulation is proposed to reduce the influence of elevation. After 7 times of correction, a fine shllow S-wave velocity structure comes out. The results show that (1) Velocity structure above 10 km keeps good consistency with the surface fault system around Longmenshan, and controls the deep extension features of most major faults. Below the depth of 15 km, the velocity structure presents cross tectonic frame work along both Longmenshan and Minshan. The complex structure may have affected the rupture process of the Wenchuan earthquake. (2) The depth velocity structure profiles give good constraint for the deep geometry of main faults. The characteristics of the high angle, listric, reverse structure of the Longmenshan faults is further confirmed by our results.(3) At southern part of the study area, low-velocity structure is found at about 20km depth beneath the Pengguan massif, which is related to the low velocity layer in the middle crust of Songpan-Ganzi block. This may be an evidence for the existence of brittle-ductile transition zone in southern part of the rupture zone of the Wenchuan earthquake at the depth around 22km. Our results show the great potential of short period ambient noise tomography with data from densepassive seismic array in the study of fine velocity structure and fault zone imaging.
NASA Astrophysics Data System (ADS)
Little, Timothy A.
1990-08-01
The Border Ranges fault system (BRFS) bounds the inboard edge of the subduction-accretion complex of southern Alaska. In Eocene time a central segment of this fault system was reactivated as a zone of dextral wrench- and oblique-slip faulting having a cumulative strike-slip offset of at least several tens of kilometers, but probably less than 100 km. Early wrench folds are upright, trend at less than 45° to the strike of adjacent faults and developed with fold axes oriented subparallel to the axis of maximum incremental stretch λ1. These en echelon folds rotated and tightened with progressive deformation and then were overprinted by younger wrench folds that trend at about 60° to adjacent throughgoing faults. The latter folds are interpreted as forming during a late increment of distributed wrench deformation within the BRFS that included a component of extension (divergence) orthogonal to the mean strike of the fault system. A sharp releasing bend in exposures of a strike-slip fault originally at >4 km depth today coincides with a narrow pull-apart graben bounded by oblique-normal faults that dip toward the basin. Widening of this pull-apart graben by brittle faulting and dike intrusion accommodated less than 2 km of strike-slip and was a late-stage phenomenon, possibly occurring at supracrustal levels. Prior to formation of this graben during a period of predominantly ductile deformation at deeper structural levels, wrench-folded rocks on one side of the nonplanar fault were translated around the releasing bend without significant faulting or loss of coherence. Kinematically, the earlier deformation was accomplished by fault-bend folding and rotation of a relatively deformable block as it passed through a system of upright megakinks. Such a ductile mechanism of fault block translation around a strike-slip bend may be typical of intermediate levels of the crust beneath pull-apart grabens and may be transitional downward into heterogeneous laminar flow occuring along curved segments of ductile shear zones. Some degree of fault-bend folding of strike-slip fault blocks around releasing bends may be one reason why the amount of extension measured across natural pull-apart basins is commonly observed to be less than the amount of strike-slip along their master faults.
NASA Astrophysics Data System (ADS)
Katopody, D. T.; Oldow, J. S.
2015-12-01
The northwest-striking Furnace Creek - Fish Lake Valley (FC-FLV) fault system stretches for >250 km from southeastern California to western Nevada, forms the eastern boundary of the northern segment of the Eastern California Shear Zone, and has contemporary displacement. The FC-FLV fault system initiated in the mid-Miocene (10-12 Ma) and shows a south to north decrease in displacement from a maximum of 75-100 km to less than 10 km. Coeval elongation by extension on north-northeast striking faults within the adjoining blocks to the FC-FLV fault both supply and remove cumulative displacement measured at the northern end of the transcurrent fault system. Elongation and displacement transfer in the eastern block, constituting the southern Walker Lane of western Nevada, exceeds that of the western block and results in the net south to north decrease in displacement on the FC-FLV fault system. Elongation in the eastern block is accommodated by late Miocene to Pliocene detachment faulting followed by extension on superposed, east-northeast striking, high-angle structures. Displacement transfer from the FC-FLV fault system to the northwest-trending faults of the central Walker Lane to the north is accomplished by motion on a series of west-northwest striking transcurrent faults, named the Oriental Wash, Sylvania Mountain, and Palmetto Mountain fault systems. The west-northwest striking transcurrent faults cross-cut earlier detachment structures and are kinematically linked to east-northeast high-angle extensional faults. The transcurrent faults are mapped along strike for 60 km to the east, where they merge with north-northwest faults forming the eastern boundary of the southern Walker Lane. The west-northwest trending transcurrent faults have 30-35 km of cumulative left-lateral displacement and are a major contributor to the decrease in right-lateral displacement on the FC-FLV fault system.
A new perspective on the significance of the Ranotsara shear zone in Madagascar
NASA Astrophysics Data System (ADS)
Schreurs, Guido; Giese, Jörg; Berger, Alfons; Gnos, Edwin
2010-12-01
The Ranotsara shear zone in Madagascar has been considered in previous studies to be a >350-km-long, intracrustal strike-slip shear zone of Precambrian/Cambrian age. Because of its oblique strike to the east and west coast of Madagascar, the Ranotsara shear zone has been correlated with shear zones in southern India and eastern Africa in Gondwana reconstructions. Our assessment using remote sensing data and field-based investigations, however, reveals that what previously has been interpreted as the Ranotsara shear zone is in fact a composite structure with a ductile deflection zone confined to its central segment and prominent NW-SE trending brittle faulting along most of its length. We therefore prefer the more neutral term “Ranotsara Zone”. Lithologies, tectonic foliations, and axial trace trajectories of major folds can be followed from south to north across most of the Ranotsara Zone and show only a marked deflection along its central segment. The ductile deflection zone is interpreted as a result of E-W indentation of the Antananarivo Block into the less rigid, predominantly metasedimentary rocks of the Southwestern Madagascar Block during a late phase of the Neoproterozoic/Cambrian East African Orogeny (c. 550-520 Ma). The Ranotsara Zone shows significant NW-SE striking brittle faulting that reactivates part of the NW-SE striking ductile structures in the flexure zone, but also extends along strike toward the NW and toward the SE. Brittle reactivation of ductile structures along the central segment of the Ranotsara Zone, confirmed by apatite-fission track results, may have led to the formation of a shallow Neogene basin underlying the Ranotsara plain. The present-day drainage pattern suggests on-going normal fault activity along the central segment. The Ranotsara Zone is not a megascale intracrustal strike-slip shear zone that crosscuts the entire basement of southern Madagascar. It can therefore not be used as a piercing point in Gondwana reconstructions.
Transfer zones in listric normal fault systems
NASA Astrophysics Data System (ADS)
Bose, Shamik
Listric normal faults are common in passive margin settings where sedimentary units are detached above weaker lithological units, such as evaporites or are driven by basal structural and stratigraphic discontinuities. The geometries and styles of faulting vary with the types of detachment and form landward and basinward dipping fault systems. Complex transfer zones therefore develop along the terminations of adjacent faults where deformation is accommodated by secondary faults, often below seismic resolution. The rollover geometry and secondary faults within the hanging wall of the major faults also vary with the styles of faulting and contribute to the complexity of the transfer zones. This study tries to understand the controlling factors for the formation of the different styles of listric normal faults and the different transfer zones formed within them, by using analog clay experimental models. Detailed analyses with respect to fault orientation, density and connectivity have been performed on the experiments in order to gather insights on the structural controls and the resulting geometries. A new high resolution 3D laser scanning technology has been introduced to scan the surfaces of the clay experiments for accurate measurements and 3D visualizations. Numerous examples from the Gulf of Mexico have been included to demonstrate and geometrically compare the observations in experiments and real structures. A salt cored convergent transfer zone from the South Timbalier Block 54, offshore Louisiana has been analyzed in detail to understand the evolutionary history of the region, which helps in deciphering the kinematic growth of similar structures in the Gulf of Mexico. The dissertation is divided into three chapters, written in a journal article format, that deal with three different aspects in understanding the listric normal fault systems and the transfer zones so formed. The first chapter involves clay experimental models to understand the fault patterns in divergent and convergent transfer zones. Flat base plate setups have been used to build different configurations that would lead to approaching, normal offset and overlapping faults geometries. The results have been analyzed with respect to fault orientation, density, connectivity and 3D geometry from photographs taken from the three free surfaces and laser scans of the top surface of the clay cake respectively. The second chapter looks into the 3D structural analysis of the South Timbalier Block 54, offshore Louisiana in the Gulf of Mexico with the help of a 3D seismic dataset and associated well tops and velocity data donated by ExxonMobil Corporation. This study involves seismic interpretation techniques, velocity modeling, cross section restoration of a series of seismic lines and 3D subsurface modeling using depth converted seismic horizons, well tops and balanced cross sections. The third chapter deals with the clay experiments of listric normal fault systems and tries to understand the controls on geometries of fault systems with and without a ductile substrate. Sloping flat base plate setups have been used and silicone fluid underlain below the clay cake has been considered as an analog for salt. The experimental configurations have been varied with respect to three factors viz. the direction of slope with respect to extension, the termination of silicone polymer with respect to the basal discontinuities and overlap of the base plates. The analyses for the experiments have again been performed from photographs and 3D laser scans of the clay surface.
NASA Astrophysics Data System (ADS)
Thompson, D. A.; Rost, S.; Houseman, G.; Cornwell, D. G.; Turkelli, N.; Teoman, U.; Kahraman, M.; Altuncu Poyraz, S.; Gülen, L.; Utkucu, M.; Rondenay, S.; Frederiksen, A. W.
2014-12-01
Deformation along major strike-slip faults is typically focussed into narrow damage zones at the surface, but the distribution at greater depths is more enigmatic. For instance, deformation in the lower crust beneath these faults is often attributed to much broader ductile shear zones. Deciphering how strain is distributed throughout the crust and lithospheric mantle is important because it has ramifications on the earthquake loading cycle. In order to better understand the structure of these systems at depth, we investigate the North Anatolian Fault Zone (NAFZ) as part of a multidisciplinary project entitled FaultLab. This fault system extends ~1200km across Turkey and has shown a clear west-east progression in seismicity over the last century, culminating in 2 catastrophic earthquakes located close to the population centers of Izmit and Duzce in 1999. In this contribution, we will present new data from a dense seismic array (Dense Array for North Anatolia, DANA, a 6x11 grid with a nominal station spacing of 7km) located across a part of the ruptured segment of the Izmit earthquake. Using the techniques of teleseismic scattering tomography and scattering migration, the excellent resolution afforded by DANA highlights sharp (< 5km) lateral variations in structure at mid- to lower-crustal depths (~20-25 km) across two branches of the NAFZ. This suggests that deformation zones between distinct crustal blocks remain narrow at these depths. Integrating complementary results from other parts of the FaultLab project (satellite geodesy, geodynamical modelling, structural geology), the results appear to be consistent with postseismic deformation being accommodated through afterslip on the deep extension of a narrow fault zone as opposed to a broad ductile region beneath the seismogenic extent of the fault.
NASA Astrophysics Data System (ADS)
Hemelsdaël, Romain; Ford, Mary; Meyer, Nicolas
2013-04-01
Relay zones along rift border fault systems form topographic lows that are considered to allow the transfer of sediment from the footwall into hanging wall depocentres. Present knowledge focuses on the modifications of drainage patterns and sediment pathways across relay zones, however their vertical motion during growth and interaction of faults segments is not well documented. 3D models of fault growth and linkage are also under debate. The Corinth rift (Greece) is an ideal natural laboratory for the study of fault system evolution. Fault activity and rift depocentres migrated northward during Pliocene to Recent N-S extension. We report on the evolution of a relay zone in the currently active southern rift margin fault system from Pleistocene to present-day. The relay zone lies between the E-W East Helike (EHF) and Derveni faults (DF) that lie just offshore and around the town of Akrata. During its evolution the relay zone captured the antecedent Krathis river which continued to deposit Gilbert-type deltas across the relay zone during fault interaction, breaching and post linkage phases. Moreover our work underlines the role that pre-existing structure in the location of the transfer zone. Offshore fault geometry and kinematics, and sediment distribution were defined by interpretation and depth conversion of high resolution seismic profiles (from Maurice Ewing 2001 geophysical survey). Early lateral propagation of the EHF is recorded by synsedimentary fault propagation folds while the DF records tilted block geometries since initiation. Within the relay zone beds are gradually tilted toward the basin before breaching. These different styles of deformation highlight mechanical contrasts and upper crustal partition associated with the development of the Akrata relay zone. Onshore detailed lithostratigraphy, structure and geomorphological features record sedimentation across the subsiding relay ramp and subsequent footwall uplift after breaching. The area is characterised by the successive deposition of the northward prograding Platanos Gilbert-type delta (Middle group; deposited in hangingwall of the Pirgaki-Mamoussia fault) and the NE to E prograding Akrata Gilbert-type delta (Upper group). The Akrata Gilbert-type delta records progressive rotation and lengthening of the relay ramp as the East Helike fault and Derveni fault propagated laterally (from around 0.8 Ma) and started to overlap. The relay ramp was then breached by the Krathis fault (around 0.45 Ma) and the latter reactivated a NW-SE oriented inherited structure. Onshore-offshore correlation and profile restoration of the Upper group demonstrate the presence of this pre-existing structure (detachment fault?) below the Akrata relay zone that was responsible for significant eastward thickening in early rift sediments (Lower to Middle group). Our evolution model is consistent with the 'isolated fault' model where a fault array initially develops from growth of kinematically independent fault segments and fault displacement gradually accumulates during pre- and post-linkage stages. Despite the prominent control of pre-existing fabrics on the location of the transfer zone, lateral fault propagation and interaction can be well documented.
Map of the Rinconada and Reliz Fault Zones, Salinas River Valley, California
Rosenberg, Lewis I.; Clark, Joseph C.
2009-01-01
The Rinconada Fault and its related faults constitute a major structural element of the Salinas River valley, which is known regionally, and referred to herein, as the 'Salinas Valley'. The Rinconada Fault extends 230 km from King City in the north to the Big Pine Fault in the south. At the south end of the map area near Santa Margarita, the Rinconada Fault separates granitic and metamorphic crystalline rocks of the Salinian Block to the northeast from the subduction-zone assemblage of the Franciscan Complex to the southwest. Northwestward, the Rinconada Fault lies entirely within the Salinian Block and generally divides this region into two physiographically and structurally distinct areas, the Santa Lucia Range to the west and the Salinas Valley to the east. The Reliz Fault, which continues as a right stepover from the Rinconada Fault, trends northwestward along the northeastern base of the Sierra de Salinas of the Santa Lucia Range and beyond for 60 km to the vicinity of Spreckels, where it is largely concealed. Aeromagnetic data suggest that the Reliz Fault continues northwestward another 25 km into Monterey Bay, where it aligns with a high-definition magnetic boundary. Geomorphic evidence of late Quaternary movement along the Rinconada and Reliz Fault Zones has been documented by Tinsley (1975), Dibblee (1976, 1979), Hart (1976, 1985), and Klaus (1999). Although definitive geologic evidence of Holocene surface rupture has not been found on these faults, they were regarded as an earthquake source for the California Geological Survey [formerly, California Division of Mines and Geology]/U.S. Geological Survey (CGS/USGS) Probabilistic Seismic Hazards Assessment because of their postulated slip rate of 1+-1 mm/yr and their calculated maximum magnitude of 7.3. Except for published reports by Durham (1965, 1974), Dibblee (1976), and Hart (1976), most information on these faults is unpublished or is contained in theses, field trip guides, and other types of reports. Therefore, the main purpose of this project is to compile and synthesize this body of knowledge into a comprehensive report for the geologic community. This report follows the format of Dibblee (1976) and includes discussions of the sections of the Rinconada Fault and of the Reliz Fault, as well as their Neogene history and key localities. Accompanying this report is a geologic map database of the faults, key localities, and earthquake epicenters, in ESRI shapefile format.
Block structure and geodynamics of the continental lithosphere on plate boundaries
NASA Astrophysics Data System (ADS)
Gatinsky, Yu. G.; Prokhorova, T. V.; Romanyuk, T. V.; Vladova, G. L.
2009-04-01
Division of the Earth lithosphere on large plates must be considered only as the first and most general approximation in its structure hierarchy. Some transit zones or difuuse boundaries after other authors take place in lithosphere plate boundaries. The tectonic tension of plate interaction is transferred and relaxed within these zones, which consist of blocks limited by seismoactive faults. Vectors of block horizontal displacements often don't coincide with vectors of main plates and change together with changing block rigidity. As a rule the intensity the seismic energy at plate and transit zone boundaries decreases linearly with distancing from these boundaries and correlates with decreasing of velocities of block horizontal displacements. But sometimes the maximum of the energy manifestation takes place in inner parts of transit zones. Some relatively tight interblock zones established in central and east Asia are the most seismically active. They limited such blocks as Pamir, Tien Shan, Bayanhar, Shan, Japanese-Korean, as well as the north boundary of the Indian Plate. A seismic energy intensity of these zones can be compared with the energy of Pacific subduction zones. It is worthy to note that the majority catastrophic earthquakes took place in Central Asia just within interblock zones. A level of block displacement is situated mainly in the bottom or inside the Earth crust, more rare in the lithosphere mantle. Blocks with the most thick lithosphere roots (SE China, Amurian) are the most rigid and weakly deformed.
basement reservoir geometry and properties
NASA Astrophysics Data System (ADS)
Walter, bastien; Geraud, yves; Diraison, marc
2017-04-01
Basement reservoirs are nowadays frequently investigated for deep-seated fluid resources (e.g. geothermal energy, groundwater, hydrocarbons). The term 'basement' generally refers to crystalline and metamorphic formations, where matrix porosity is negligible in fresh basement rocks. Geothermal production of such unconventional reservoirs is controlled by brittle structures and altered rock matrix, resulting of a combination of different tectonic, hydrothermal or weathering phenomena. This work aims to characterize the petro-structural and petrophysical properties of two basement surface analogue case studies in geological extensive setting (the Albert Lake rift in Uganda; the Ifni proximal margin of the South West Morocco Atlantic coast). Different datasets, using field structural study, geophysical acquisition and laboratory petrophysical measurements, were integrated to describe the multi-scale geometry of the porous network of such fractured and weathered basement formations. This study points out the multi-scale distribution of all the features constituting the reservoir, over ten orders of magnitude from the pluri-kilometric scale of the major tectonics structures to the infra-millimetric scale of the secondary micro-porosity of fractured and weathered basements units. Major fault zones, with relatively thick and impermeable fault core structures, control the 'compartmentalization' of the reservoir by dividing it into several structural blocks. The analysis of these fault zones highlights the necessity for the basement reservoirs to be characterized by a highly connected fault and fracture system, where structure intersections represent the main fluid drainage areas between and within the reservoir's structural blocks. The suitable fluid storage areas in these reservoirs correspond to the damage zone of all the fault structures developed during the tectonic evolution of the basement and the weathered units of the basement roof developed during pre-rift exhumation phases. Macroscopic fracture density is highly dependent on the petrographic nature of the basement, with values up to 80 frac./m in fault damage zones of crystalline rocks. Dense micro-cracks associated to major fault structures can develop porosity and permeability up to 10% and 0.1 D. In some weathered horizons, alteration can develop matrix porosity up to 40% and the permeability reaches up to 1D. This study highlights therefore that basement reservoir properties are the result of the long geodynamic evolution of such formations, and the different fault zone compartments or weathering horizons have to be considered separately for reservoir understanding.
NASA Astrophysics Data System (ADS)
Cao, J.; Xia, S.; Sun, J.; Wan, K.; Xu, H.
2017-12-01
Known as a significant region to study tectonic relationship between South China block and South China Sea (SCS) block and the evolution of rifted basin in continental margin, the continental shelf of northern SCS documents the evolution from continental splitting to seafloor spreading of SCS. To investigate crustal structure of central continental shelf in northern SCS, two wide-angle onshore-offshore seismic experiments and coincident multi-channel seismic (MCS) profiles were carried out across the onshore-offshore transitional zone in northern SCS, 2010 and 2012. A total of 34 stations consisted of ocean bottom seismometers, portable and permanent land stations were deployed during the survey. The two-dimensional precise crustal structure models of central continental shelf in northern SCS was constructed from onshore to offshore, and the stretching factors along the P-wave velocity models were calculated. The models reveal that South China block is a typical continental crust with a 30-32 km Moho depth, and a localized high-velocity anomaly in middle-lower crust under land area near Hong Kong was imaged, which may reflect magma underplating caused by subduction of paleo-Pacific plate in late Mesozoic. The littoral fault zone is composed of several parallel, high-angle, normal faults that mainly trend northeast to northeast-to-east and dip to the southeast with a large displacement, and the fault is divided into several segments separated by the northwest-trending faults. The shelf zone south of LFZ was consisted of a differential thinning upper and lower continental crust, which indicate stretch thinning of passive continent margin during the Cenozoic spreading of the SCS. The results appear to further confirm that the northern margin of SCS experienced a transition from active margin to passive one during late Mesozoic and Cenozoic.
A general law of fault wear and its implication to gouge zone evolution
NASA Astrophysics Data System (ADS)
Boneh, Yuval; Reches, Ze'ev
2017-04-01
Fault wear and gouge production are universal components of frictional sliding. Wear models commonly consider fault roughness, normal stress and rock strength, but ignore the effects of gouge presence and slip-velocity. In contrast, our experimental observations indicate that wear continues while gouge layer is fully developed, and that wear-rates vary by orders-of-magnitude during slip along experimental faults made of carbonites, sandstones and granites (Boneh et al., 2013, 2014). We derive here a new universal law for fault wear by incorporating the gouge layer and slip-velocity. Slip between two rock-blocks undergoes a transition from a 'two-body' mode, during which the blocks interact at surface roughness contacts, to 'three-body' mode, during which a gouge layer separates the two blocks. Our wear model considers 'effective roughness' as the mechanism for failure at resisting, interacting sites that control the global wear. The effective roughness is comprised of a time dependent, dynamic asperities which are different in population and scale from original surfaces asperities. The model assumes that the intensity of this failure is proportional to the mechanical impulse, which is the integrated force over loading time at the interacting sites. We use this concept to calculate the wear-rate as function of the impulse-density, which is the ratio [shear-stress/slip-velocity], during fault slip. The compilation of experimental wear-rates in a large range of slip-velocities (10 μm/s - 1 m/s) and normal stresses (0.2 - 200 MPa) reveal very good agreement with the model predictions. The model provides the first explanation why fault slip at seismic velocity, e.g., 1 m/s, generates significantly less wear and gouge than fault slip at creeping velocity. Thus, the model provides a tool to use the gouge thickness of fault-zones for estimation of paleo-velocity. Boneh, Y., Sagy, A., Reches, Z., 2013. Frictional strength and wear-rate of carbonate faults during high-velocity, steady-state sliding. Earth and Planetary Science Letters 381, 127-137. Boneh, Y., Chang, J.C., Lockner, D.A., Reches, Z., 2014. Evolution of Wear and Friction Along Experimental Faults. Pure and Applied Geophysics, 1-17.
Areas of Unsolved Problems in Caribbean Active Tectonics
NASA Astrophysics Data System (ADS)
Mann, P.
2015-12-01
I review some unsolved problems in Caribbean active tectonics. At the regional and plate scale: 1) confirm the existence of intraplate deformation zones of the central Caribbean plate that are within the margin of error of ongoing GPS measurements; 2) carry out field studies to evaluate block models versus models for distributed fault shear on the densely populated islands of Jamaica, Hispaniola, Puerto Rico, and the Virgin Islands; 3) carry out paleoseismological research of key plate boundary faults that may have accumulated large strains but have not been previously studied in detail; 4) determine the age of onset and far-field effects of the Cocos ridge and the Central America forearc sliver; 4) investigate the origin and earthquake-potential of obliquely-sheared rift basins along the northern coast of Venezuela; 5) determine the age of onset and regional active, tectonic effects of the Panama-South America collision including the continued activation of the Maracaibo block; and 6) validate longterm rates on active subduction zones with improving, tomographic maps of subducted slabs. At the individual fault scale: 1) determine the mode of termination of large and active strike -slip faults and application of the STEP model (Septentrional, Polochic, El Pilar, Bocono, Santa Marta-Bucaramanaga); 2) improve the understanding of the earthquake potential on the Enriquillo-Plantain Garden fault zone given "off-fault" events such as the 2010 Haiti earthquake; how widespread is this behavior?; and 3) estimate size of future tsunamis from studies of historic or prehistoric slump scars and mass transport deposits; what potential runups can be predicted from this information?; and 4) devise ways to keep rapidly growing, circum-Caribbean urban populations better informed and safer in the face of inevitable and future, large earthquakes.
NASA Astrophysics Data System (ADS)
Kattoju, K. A.; Mudholkar, A. V.; Murty, G.; Vadakkeyakath, Y.; Singh, S. C.; Kiranmai, S.; Moeremans, R.
2012-12-01
West Andaman Fault (WAF) is a major structural feature in the Andaman Offshore region that plays an important role in modulating the strain partitioning within the Andaman Sea, well known for its complex tectonics and seismic hazard potential. However, detailed configuration of the WAF and its interaction with the Sumatra fault system in the Andaman sector are not well understood. Here we present near complete coverage of about 800 km long section of the WAF with special emphasis on the zone of confluence of the WAF and the Sumatra Fault systems, and the adjacent volcanic arc in the offshore region of the Great Nicobar Island. We have examined the fault system, and the volcanic arc feature by combining the newly acquired multibeam bathymetry data with the available data northwest of Sumatra. New multibeam map revealed a pattern of faults that are formed in the region of joining of the Seulimeum (SEU) and Aceh strands (AS) of the Sumatra fault with the WAF off Great Nicobar Island. Sandwiched between these faults, at this location, is a 50 km long and 7 km wide conspicuous NS elongated block that rises to 500 m from an adjacent seafloor of about 2000 m. The surface of the block has a westward dipping topographic fabric. Serpentinites were recovered from the eastern cliff of this block, suggestive of mantle origin. A deformed zone with corrugated surface is documented southeast of this elongated block at water depth ranging from 1000 to 1500 m. The mantle block and the deformed zone are bifurcated by a fault, which might be a branch of the WAF. Further south the expression of the Sumatra platform, northern boundary of the Aceh basin pinching out to WAF, extension of the SEU, AS strands towards south, and the northern limit of Weh basin are observed. The other prominent feature that is documented for the first time is the expression of the Andaman volcanic arc. Twenty-three submarine volcanoes of varying sizes have been mapped between 6°30‧N to 8°15‧N. Magnetic anomaly highs were noticed over the volcanic arc corresponding to volcanoes at 6°50‧N and 7°25‧N. The dredge samples from some of these volcanoes comprise of rhyolites, andesites with glass rind and plagioclase phenocrysts. Pumice was recovered at two volcanoes and also at a volcano north of the Andaman spreading center at 10°34‧N. Andesites were also recovered from the faults east of WAF bordering the Sewell rise. Recovery of these rock types is indicative of ascending melts from the recycled subducting lithosphere while the presence of pumice suggests the occurrence of submarine explosive volcanism. The volcanic arc is traced from the south off Sumatra region up to 12°N, which joins the Barren Island and the Narcondam Island volcanoes in the north. Our mapping and seabed sampling results provide for the first time, configuration of a section of the WAF, the Sumatra fault system and the volcanic arc, and provide insights into the interaction of these major fault systems with the volcanic arc in the Andaman Sea.
Motion of the Bird's Head Block and co-seismic deformation from GPS data
NASA Astrophysics Data System (ADS)
Tikku, A. A.; Subarya, C.; N/A, M.; McCaffrey, R.; Genrich, J.
2006-05-01
The Bird's Head region of Eastern Indonesia, comprising the western end of New Guinea, behaves as an independent block at a juncture of subduction zones. It is bound on the north by the Manokwari and New Guinea Trenches, on the west by the Sorong fault, on the southwest by the Seram Trough, and on the east and southeast by the Lowland fault. Previous analysis of regional campaign global positioning system [GPS] data collected between 1991 and 1997 revealed rotation of the Bird's Head Block and high shear rates between the Pacific and Australian plates accommodated within the block. We have collected and analyzed additional regional campaign GPS data collected between 1998 and 2005, which includes data from newly established stations in the vicinity of the Cenderwasih Bay and Lowlands fault. During this span of time there were four large (Mw greater than 7.0) earthquakes in the region: a magnitude Mw=7.5 on a historically inactive NW-SE trending strike-slip fault bounding the western end of the Cenderwasih Bay on October 10th, 2002, two events, with magnitudes Mw=7.0 and 7.3, separated by a time span of two days (February 5th and 7th 2004) and a distance of ~100 km on the NE-SW trending Lowlands fault, and a third event (Mw=7.1) on November 26th 2004, coincident with the location of the February 5th 2004 event on the Lowlands fault. Destruction and fatalities were associated with all these large earthquakes. The Lowlands fault is a known seismically active fault. The historically inactive fault active that ruptured in 2002 is in the middle of the Bird's Head Block and disrupted the collection of a long seismically quiescent time-series of deformation within the block, but we have been able to constrain the co-seismic slip on this fault with the GPS data and modeling, and here present these results. We have also estimated the corruption of the co-seismic deformation from the 2002 and 2004 earthquakes and removed these from the campaign data to here present estimates for the seismically quiescent deformation of the Bird's Head Block.
NASA Astrophysics Data System (ADS)
Jaboyedoff, M.; Derron, M.-H.; Manby, G. M.
2005-01-01
Uplift gradients can provide the location of highly strained zones, which can be considered to be seismic. The Turan block (Central Asia) contains zones with high gradient of uplift velocities, above the threshold 0.04mm km-1year-1. Some of these zones are associated with important seismic activity and others are not correlated with any recent important recorded earthquakes, however, recent faults scarps as well as diverted rivers may indicate a recent tectonic activity. This threshold of gradient is probably a significant rheologic property of the upper crust. On the basis of these considerations the Uzboy river area is proposed as a potential high seismic hazard zone.
Kinematics of the Snake River Plain and Centennial Shear Zone, Idaho, from GPS and earthquatte data
NASA Astrophysics Data System (ADS)
Payne, Suzette J.
New horizontal Global Positioning System (GPS) velocities at 405 sites using GPS phase data collected from 1994 to 2010 along with earthquakes, faults, and volcanic features reveal how contemporary strain is accommodated in the Northern Basin and Range Province. The 1994-2010 velocity field has observable gradients arising from both rotation and strain. Kinematic interpretations are guided by using a block-model approach and inverting velocities, earthquake slip vector azimuths, and dike-opening rates to simultaneously solve for angular velocities of the blocks and uniform horizontal strain rate tensors within selected blocks. The Northern Basin and Range block model has thirteen blocks representing tectonic provinces based on knowledge of geology, seismicity, volcanism, active tectonic faults, and regions with differences in observed velocities. Ten variations of the thirteen blocks are tested to assess the statistical significance of boundaries for tectonic provinces, motions along those boundaries, and estimates of long-term deformation within the provinces. From these tests, a preferred model with seven tectonic provinces is determined by applying a maximum confidence level of ≥99% probability to F-distribution tests between two models to indicate one model with added boundaries has a better fit to the data over a second model. The preferred model is varied to test hypotheses of post-seismic viscoelastic relaxation, significance of dikes in accommodating extension, and bookshelf faulting in accommodating shear. Six variations of the preferred model indicate time-varying components due to viscoelastic relaxation from the 1959 Hebgen Lake, Montana and 1983 Borah Peak, Idaho earthquakes have either ceased as of 2002 or are too small to be evident in the observed velocities. Inversions with dike-opening models indicate that the previously hypothesized rapid extension by dike intrusion in volcanic rift zones to keep pace with normal faulting is not currently occurring in the Snake River Plain. Alternatively, the preferred model reveals a low deforming region (-0.1 +/- 0.4 x 10-9 yr -1, which is not discernable from zero) covering 125 km x 650 km within the Snake River Plain and Owyhee-Oregon Plateau that is separated from the actively extending adjacent Basin and Range regions by narrow belts of localized shear. Velocities reveal rapid extension occurs to the north of the Snake River Plain in the Centennial Tectonic Belt (5.6 +/- 0.7 x 10 -9 yr-1) and to the south in the Intermountain Seismic Belt and Great Basin (3.5 +/- 0.2 x 10-9 yr-1). The "Centennial Shear Zone" is a NE-trending zone of up to 1.5 mm yr -1 of right-lateral shear and is the result of rapid extension in the Centennial Tectonic Belt adjacent to the low deforming region of the Snake River Plain. Variations of the preferred model that test the hypothesis of bookshelf faulting demonstrate shear does not drive Basin and Range extension in the Centennial Tectonic Belt. Instead, the velocity gradient across the Centennial Shear Zone indicates that shear is distributed and deformation is due to strike-slip faulting, distributed simple shear, regional-scale rotation, or any combination of these. Near the fastest rates of right-lateral slip, focal mechanisms are observed with strike-slip components of motion consistent with right-lateral shear. Here also, the segment boundary between two E-trending Basin and Range faults, which are oriented subparallel to the NE-trending shear zone, provides supporting Holocene to mid-Pleistocene geologic evidence for accommodation of right-lateral shear in the Centennial Shear Zone. The southernmost ends of NW-trending Basin and Range faults in the Centennial Tectonic Belt at their juncture with the eastern Snake River Plain could accommodate right-lateral shear through components of left-lateral oblique slip. Right-lateral shear may be accommodated by components of strike-slip motion on multiple NE-trending faults since geologic evidence does not support slip along one continuous NE-trending fault along the boundary between the eastern Snake River Plain and Centennial Tectonic Belt. Regional velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic Belt, Snake River Plain, Owyhee-Oregon Plateau, and eastern Oregon, indicating that clockwise rotation is driven by extension to the south in the Great Basin and not by Yellowstone hotspot volcanism or from localized extension in the Centennial Tectonic Belt. The velocity field may reveal long-term motions of the Northern Basin and Range Province. GPS-derived clockwise rotation rates are consistent with paleomagnetic rotation rates in 15--12 Ma basalts in eastern Oregon and in Eocene volcanic rocks (˜48 Ma) within the Centennial Tectonic Belt.
d'Alessio, M. A.; Johanson, I.A.; Burgmann, R.; Schmidt, D.A.; Murray, M.H.
2005-01-01
Observations of surface deformation allow us to determine the kinematics of faults in the San Francisco Bay Area. We present the Bay Area velocity unification (BA??VU??, "bay view"), a compilation of over 200 horizontal surface velocities computed from campaign-style and continuous Global Positioning System (GPS) observations from 1993 to 2003. We interpret this interseismic velocity field using a three-dimensional block model to determine the relative contributions of block motion, elastic strain accumulation, and shallow aseismic creep. The total relative motion between the Pacific plate and the rigid Sierra Nevada/Great Valley (SNGV) microplate is 37.9 ?? 0.6 mm yr-1 directed toward N30.4??W ?? 0.8?? at San Francisco (??2??). Fault slip rates from our preferred model are typically within the error bounds of geologic estimates but provide a better fit to geodetic data (notable right-lateral slip rates in mm yr-1: San Gregorio fault, 2.4 ?? 1.0; West Napa fault, 4.0 ?? 3.0; zone of faulting along the eastern margin of the Coast Range, 5.4 ?? 1.0; and Mount Diablo thrust, 3.9 ?? 1.0 of reverse slip and 4.0 ?? 0.2 of right-lateral strike slip). Slip on the northern Calaveras is partitioned between both the West Napa and Concord/ Green Valley fault systems. The total convergence across the Bay Area is negligible. Poles of rotation for Bay Area blocks progress systematically from the North America-Pacific to North America-SNGV poles. The resulting present-day relative motion cannot explain the strike of most Bay Area faults, but fault strike does loosely correlate with inferred plate motions at the time each fault initiated. Copyright 2005 by the American Geophysical Union.
Precise relative locations for earthquakes in the northeast Pacific region
Cleveland, K. Michael; VanDeMark, Thomas F.; Ammon, Charles J.
2015-10-09
We report that double-difference methods applied to cross-correlation measured Rayleigh wave time shifts are an effective tool to improve epicentroid locations and relative origin time shifts in remote regions. We apply these methods to seismicity offshore of southwestern Canada and the U.S. Pacific Northwest, occurring along the boundaries of the Pacific and Juan de Fuca (including the Explorer Plate and Gorda Block) Plates. The Blanco, Mendocino, Revere-Dellwood, Nootka, and Sovanco fracture zones host the majority of this seismicity, largely consisting of strike-slip earthquakes. The Explorer, Juan de Fuca, and Gorda spreading ridges join these fracture zones and host normal faultingmore » earthquakes. Our results show that at least the moderate-magnitude activity clusters along fault strike, supporting suggestions of large variations in seismic coupling along oceanic transform faults. Our improved relative locations corroborate earlier interpretations of the internal deformation in the Explorer and Gorda Plates. North of the Explorer Plate, improved locations support models that propose northern extension of the Revere-Dellwood fault. Relocations also support interpretations that favor multiple parallel active faults along the Blanco Transform Fault Zone. Seismicity of the western half of the Blanco appears more scattered and less collinear than the eastern half, possibly related to fault maturity. We use azimuthal variations in the Rayleigh wave cross-correlation amplitude to detect and model rupture directivity for a moderate size earthquake along the eastern Blanco Fault. Lastly, the observations constrain the seismogenic zone geometry and suggest a relatively narrow seismogenic zone width of 2 to 4 km.« less
NASA Astrophysics Data System (ADS)
Redfield, T. F.; Scholl, D. W.; Fitzgerald, P. G.
2010-12-01
The ~2000 km long Denali Fault System (DFS) of Alaska is an example of an extra-regional strike-slip fault system that terminates in a zone of widely-distributed deformation. The ~1200 km long Liquiñe-Ofqui Fault Zone (LOFZ) of Patagonia (southern Chile) is another. Both systems are active, having undergone large-magnitude seismic rupture is 2002 (DFS) and 2007 (LOFZ). Both systems appear to be long-lived: the DFS juxtaposes terranes that docked in at least early Tertiary time, whilst the central LOFZ appears to also record early Tertiary or Mesozoic deformation. Both fault systems comprise a relatively well-defined central zone where individual fault traces can be identified from topographic features or zones of deformed rock. In both cases the proximal and distal traces are much more diffuse tributary and distributary systems of individual, branching fault traces. However, since their inception the DFS and LOFZ have followed very different evolutionary paths. Copious Alaskan paleomagnetic data are consistent with vertical axis small block rotation, long-distance latitudinal translation, and a recently-postulated tectonic extrusion towards a distributary of subordinate faults that branch outward towards the Aleution subduction zone (the North Pacific Rim orogenic Stream; see Redfield et al., 2007). Paleomagnetic data from the LOFZ region are consistent with small block rotation but preclude statistically-significant latitudinal transport. Limited field data from the southernmost LOFZ suggest that high-angle normal and reverse faults dominate over oblique to strike-slip structures. Rather than the high-angle oblique 'slivering regime' of the southeasternmost DFS, the initiation of the LOFZ appears to occur across a 50 to 100 km wide zone of brittly-deformed granitic and gneissic rock characterized by bulk compression and vertical pathways of exhumation. In both cases, relative plate motions are consistent with the hypothetical style, and degree, of offset, leading us to speculate towards the role of obliquity of plate tectonic convergence for the along-strike evolution of extra-regional strike-slip systems. Highly-oblique initiation of the DFS encourages detachment of fault-bounded terranes and provides a driver that encourages a westward-fanning pattern of extrusion towards the free face of the Beringian margin. Plausibly, its less-oblique central segment promotes vertical pathway exhumation observed at (for example) Denali itself. A more orthogonal regime drives the entire LOFZ, precluding slivering at its initiation and promoting upstream buttressing (Beck et al., 1993). The convergent plate boundary setting opens a window through time and space on the evolution of large-magnitude fault-systems. Escape, or not to escape ~ what best answers the question ? Citations Redfield, T. F., Scholl, D. W., Fitzgerald, P. G., and Beck, M. E., & 2007. Escape tectonics and the extrusion of Alaska: past, present, and future. Geology. 35, 11, 1039-1042 Beck, M.E., Rojas, C. and Cembrano, J. (1993). “On the nature of buttressing in margin-parallel strike-fault systems.” Geology, Vol. 21, pp. 755-758.
NASA Astrophysics Data System (ADS)
Lubberts, Ronald K.; Ben-Avraham, Zvi
2002-02-01
The Dead Sea Basin is a morphotectonic depression along the Dead Sea Transform. Its structure can be described as a deep rhomb-graben (pull-apart) flanked by two block-faulted marginal zones. We have studied the recent tectonic structure of the northwestern margin of the Dead Sea Basin in the area where the northern strike-slip master fault enters the basin and approaches the western marginal zone (Western Boundary Fault). For this purpose, we have analyzed 3.5-kHz seismic reflection profiles obtained from the northwestern corner of the Dead Sea. The seismic profiles give insight into the recent tectonic deformation of the northwestern margin of the Dead Sea Basin. A series of 11 seismic profiles are presented and described. Although several deformation features can be explained in terms of gravity tectonics, it is suggested that the occurrence of strike-slip in this part of the Dead Sea Basin is most likely. Seismic sections reveal a narrow zone of intensely deformed strata. This zone gradually merges into a zone marked by a newly discovered tectonic depression, the Qumran Basin. It is speculated that both structural zones originate from strike-slip along right-bending faults that splay-off from the Jordan Fault, the strike-slip master fault that delimits the active Dead Sea rhomb-graben on the west. Fault interaction between the strike-slip master fault and the normal faults bounding the transform valley seems the most plausible explanation for the origin of the right-bending splays. We suggest that the observed southward widening of the Dead Sea Basin possibly results from the successive formation of secondary right-bending splays to the north, as the active depocenter of the Dead Sea Basin migrates northward with time.
NASA Astrophysics Data System (ADS)
Wadas, Sonja H.; Tanner, David C.; Polom, Ulrich; Krawczyk, Charlotte M.
2017-12-01
In November 2010, a large sinkhole opened up in the urban area of Schmalkalden, Germany. To determine the key factors which benefited the development of this collapse structure and therefore the dissolution, we carried out several shear-wave reflection-seismic profiles around the sinkhole. In the seismic sections we see evidence of the Mesozoic tectonic movement in the form of a NW-SE striking, dextral strike-slip fault, known as the Heßleser Fault, which faulted and fractured the subsurface below the town. The strike-slip faulting created a zone of small blocks ( < 100 m in size), around which steep-dipping normal faults, reverse faults and a dense fracture network serve as fluid pathways for the artesian-confined groundwater. The faults also acted as barriers for horizontal groundwater flow perpendicular to the fault planes. Instead groundwater flows along the faults which serve as conduits and forms cavities in the Permian deposits below ca. 60 m depth. Mass movements and the resulting cavities lead to the formation of sinkholes and dissolution-induced depressions. Since the processes are still ongoing, the occurrence of a new sinkhole cannot be ruled out. This case study demonstrates how S-wave seismics can characterize a sinkhole and, together with geological information, can be used to study the processes that result in sinkhole formation, such as a near-surface fault zone located in soluble rocks. The more complex the fault geometry and interaction between faults, the more prone an area is to sinkhole occurrence.
Isostatic Gravity Map with Geology of the Santa Ana 30' x 60' Quadrangle, Southern California
Langenheim, V.E.; Lee, Tien-Chang; Biehler, Shawn; Jachens, R.C.; Morton, D.M.
2006-01-01
This report presents an updated isostatic gravity map, with an accompanying discussion of the geologic significance of gravity anomalies in the Santa Ana 30 by 60 minute quadrangle, southern California. Comparison and analysis of the gravity field with mapped geology indicates the configuration of structures bounding the Los Angeles Basin, geometry of basins developed within the Elsinore and San Jacinto Fault zones, and a probable Pliocene drainage network carved into the bedrock of the Perris block. Total cumulative horizontal displacement on the Elsinore Fault derived from analysis of the length of strike-slip basins within the fault zone is about 5-12 km and is consistent with previously published estimates derived from other sources of information. This report also presents a map of density variations within pre-Cenozoic metamorphic and igneous basement rocks. Analysis of basement gravity patterns across the Elsinore Fault zone suggests 6-10 km of right-lateral displacement. A high-amplitude basement gravity high is present over the San Joaquin Hills and is most likely caused by Peninsular Ranges gabbro and/or Tertiary mafic intrusion. A major basement gravity gradient coincides with the San Jacinto Fault zone and marked magnetic, seismic-velocity, and isotopic gradients that reflect a discontinuity within the Peninsular Ranges batholith in the northeast corner of the quadrangle.
Strain accumulation across the Eastern California Shear Zone at latitude 36°30'N
Gan, Weijun; Svarc, Jerry L.; Savage, J.C.; Prescott, W.H.
2000-01-01
The motion of a linear array of monuments extending across the Eastern California Shear Zone (ECSZ) has been measured from 1994 to 1999 with the Global Positioning System. The linear array is oriented N54°E, perpendicular to the tangent to the local small circle drawn about the Pacific-North America pole of rotation, and the observed motion across the ECSZ is approximated by differential rotation about that pole. The observations suggest uniform deformation within the ECSZ (strike N23°W) (26 nstrain yr−1 extension normal to the zone and 39 nstrain yr−1 simple right-lateral shear across it) with no significant deformation in the two blocks (the Sierra Nevada mountains and southern Nevada) on either side. The deformation may be imposed by right-lateral slip at depth on the individual major fault systems within the zone if the slip rates are: Death Valley-Furnace Creek fault 3.2±0.9 mm yr−1, Hunter Mountain-Panamint Valley fault 3.3±1.6 mm yr−1, and Owens Valley fault 6.9±1.6 mm yr−1. However, this estimate of the slip rate on the Owens Valley fault is 3 times greater than the geologic estimate.
Distribution of the Crustal Magnetic Field in Sichuan-Yunnan Region, Southwest China
Bai, Chunhua; Kang, Guofa; Gao, Guoming
2014-01-01
Based on the new and higher degree geomagnetic model NGDC-720-V3, we have investigated the spatial distribution, the altitude decay characteristics of the crustal magnetic anomaly, the contributions from different wavelength bands to the anomaly, and the relationship among the anomaly, the geological structure, and the geophysical field in Sichuan-Yunnan region of China. It is noted that the most outstanding feature in this area is the strong positive magnetic anomaly in Sichuan Basin, a geologically stable block. Contrasting with this feature, a strong negative anomaly can be seen nearby in Longmen Mountain block, an active block. This contradiction implies a possible relationship between the magnetic field and the geological activity. Completely different feature in magnetic field distribution is seen in the central Yunnan block, another active region, where positive and negative anomalies distribute alternatively, showing a complex magnetic anomaly map. Some fault belts, such as the Longmen Mountain fault, Lijiang-Xiaojinhe fault, and the Red River fault, are the transitional zones of strong and weak or negative and positive anomalies. The corresponding relationship between the magnetic anomaly and the geophysical fields was confirmed. PMID:25243232
Fault locking, block rotation and crustal deformation in the Pacific Northwest
McCaffrey, R.; Qamar, A.I.; King, R.W.; Wells, R.; Khazaradze, G.; Williams, C.A.; Stevens, C.W.; Vollick, J.J.; Zwick, P.C.
2007-01-01
We interpret Global Positioning System (GPS) measurements in the northwestern United States and adjacent parts of western Canada to describe relative motions of crustal blocks, locking on faults and permanent deformation associated with convergence between the Juan de Fuca and North American plates. To estimate angular velocities of the oceanic Juan de Fuca and Explorer plates and several continental crustal blocks, we invert the GPS velocities together with seafloor spreading rates, earthquake slip vector azimuths and fault slip azimuths and rates. We also determine the degree to which faults are either creeping aseismically or, alternatively, locked on the block-bounding faults. The Cascadia subduction thrust is locked mainly offshore, except in central Oregon, where locking extends inland. Most of Oregon and southwest Washington rotate clockwise relative to North America at rates of 0.4-1.0?? Myr-1. No shear or extension along the Cascades volcanic arc has occurred at the mm/yr level during the past decade, suggesting that the shear deformation extending northward from the Walker Lane and eastern California shear zone south of Oregon is largely accommodated by block rotation in Oregon. The general agreement of vertical axis rotation rates derived from GPS velocities with those estimated from palaeomagnetic declination anomalies suggests that the rotations have been relatively steady for 10-15 Ma. Additional permanent dextral shear is indicated within the Oregon Coast Range near the coast. Block rotations in the Pacific Northwest do not result in net westward flux of crustal material - the crust is simply spinning and not escaping. On Vancouver Island, where the convergence obliquity is less than in Oregon and Washington, the contractional strain at the coast is more aligned with Juan de Fuca-North America motion. GPS velocities are fit significantly better when Vancouver Island and the southern Coast Mountains move relative to North America in a block-like fashion. The relative motions of the Oregon, western Washington and Vancouver Island crustal blocks indicate that the rate of permanent shortening, the type that causes upper plate earthquakes, across the Puget Sound region is 4.4 ?? 0.3 mm yr-1. This shortening is likely distributed over several faults but GPS data alone cannot determine the partitioning of slip on them. The transition from predominantly shear deformation within the continent south of the Mendocino Triple Junction to predominantly block rotations north of it is similar to changes in tectonic style at other transitions from shear to subduction. This similarity suggests that crustal block rotations are enhanced in the vicinity of subduction zones possibly due to lower resisting stress. ?? 2007 The Authors Journal compilation ?? 2007 RAS.
Porosity variations in and around normal fault zones: implications for fault seal and geomechanics
NASA Astrophysics Data System (ADS)
Healy, David; Neilson, Joyce; Farrell, Natalie; Timms, Nick; Wilson, Moyra
2015-04-01
Porosity forms the building blocks for permeability, exerts a significant influence on the acoustic response of rocks to elastic waves, and fundamentally influences rock strength. And yet, published studies of porosity around fault zones or in faulted rock are relatively rare, and are hugely dominated by those of fault zone permeability. We present new data from detailed studies of porosity variations around normal faults in sandstone and limestone. We have developed an integrated approach to porosity characterisation in faulted rock exploiting different techniques to understand variations in the data. From systematic samples taken across exposed normal faults in limestone (Malta) and sandstone (Scotland), we combine digital image analysis on thin sections (optical and electron microscopy), core plug analysis (He porosimetry) and mercury injection capillary pressures (MICP). Our sampling includes representative material from undeformed protoliths and fault rocks from the footwall and hanging wall. Fault-related porosity can produce anisotropic permeability with a 'fast' direction parallel to the slip vector in a sandstone-hosted normal fault. Undeformed sandstones in the same unit exhibit maximum permeability in a sub-horizontal direction parallel to lamination in dune-bedded sandstones. Fault-related deformation produces anisotropic pores and pore networks with long axes aligned sub-vertically and this controls the permeability anisotropy, even under confining pressures up to 100 MPa. Fault-related porosity also has interesting consequences for the elastic properties and velocity structure of normal fault zones. Relationships between texture, pore type and acoustic velocity have been well documented in undeformed limestone. We have extended this work to include the effects of faulting on carbonate textures, pore types and P- and S-wave velocities (Vp, Vs) using a suite of normal fault zones in Malta, with displacements ranging from 0.5 to 90 m. Our results show a clear lithofacies control on the Vp-porosity and the Vs-Vp relationships for faulted limestones. Using porosity patterns quantified in naturally deformed rocks we have modelled their effect on the mechanical stability of fluid-saturated fault zones in the subsurface. Poroelasticity theory predicts that variations in fluid pressure could influence fault stability. Anisotropic patterns of porosity in and around fault zones can - depending on their orientation and intensity - lead to an increase in fault stability in response to a rise in fluid pressure, and a decrease in fault stability for a drop in fluid pressure. These predictions are the exact opposite of the accepted role of effective stress in fault stability. Our work has provided new data on the spatial and statistical variation of porosity in fault zones. Traditionally considered as an isotropic and scalar value, porosity and pore networks are better considered as anisotropic and as scale-dependent statistical distributions. The geological processes controlling the evolution of porosity are complex. Quantifying patterns of porosity variation is an essential first step in a wider quest to better understand deformation processes in and around normal fault zones. Understanding porosity patterns will help us to make more useful predictive tools for all agencies involved in the study and management of fluids in the subsurface.
Extensional Tectonics of SW Anatolia In relation to Slab Edge Processes in the Eastern Mediterranean
NASA Astrophysics Data System (ADS)
Kaymakci, N.; Özacar, A.; Langereis, C. G.; Ozkaptan, M.; Koç, A.; Uzel, B.; Gulyuz, E.; Sözbilir, H.
2017-12-01
The tectonics of SW Anatolia is expressed in terms of emplacement of Lycian Nappes during the Eocene to Middle Miocene and synconvergent extension as part of the Aegean-West Anatolian extensional tectonic regime. Recent studies identified that there is a tear in the northwards subducting African Oceanic lithosphere along the Pliny-Strabo Trenches (PST). Such tears are coined as Subduction Transform-Edge Propagator (STEP) faults developed high angle to trenches. Hypothetically, the evolution of a STEP fault is somewhat similar to strike-slip fault zones and resultant asymmetric role-back of the subducting slab leads to differential block rotations and back arc type extension on the overriding plate. Recent studies claimed that the tear along the PST propagated NE on-land and developed Fethiye-Burdur Fault/Shear Zone (FBFZ) in SW Turkey. We have conducted a rigorous paleomagnetic study containing more than 3000 samples collected from 88 locations and 11700 fault slip data sets from 198 locations distributed evenly all over SW Anatolia spanning from Middle Miocene to Late Pliocene to test if FBFZ ever existed. The results show that there is slight (20°) counter-clockwise rotation distributed uniformly almost whole SW Anatolia and there is no change in the rotation senses and amounts on either side of the FBFZ implying no differential rotation within the zone. Additionally, constructed paleostress configurations, along the so-called FBFZ and within the 300 km diameter of the proposed fault zone, indicated that almost all the faults that are parallel to subparallel to the zone are almost pure normal faults similar to earthquake focal mechanisms suggesting active extension in the region. It is important to note that we have not encountered any significant strike-slip motion parallel to so-called "FBFZ" to support presence and transcurrent nature of it. On the contrary, the region is dominated by extensional deformation and strike-slip components are observed only on the NW-SE striking transfer faults, which are almost perpendicular to zone that accommodated extension and normal motion. We claim that the sinistral Fethiye Burdur Fault/shear (Zone) is a myth and there is no tangible evidence to support the existence of such a strike-slip fault or a shear zone. This research is supported by TUBITAK - Grant Number 111Y239.
Florida: A Jurassic transform plate boundary
Klitgord, Kim D.; Popenoe, Peter; Schouten, Hans
1984-01-01
Magnetic, gravity, seismic, and deep drill hole data integrated with plate tectonic reconstructions substantiate the existence of a transform plate boundary across southern Florida during the Jurassic. On the basis of this integrated suite of data the pre-Cretaceous Florida-Bahamas region can be divided into the pre-Jurassic North American plate, Jurassic marginal rift basins, and a broad Jurassic transform zone including stranded blocks of pre-Mesozoic continental crust. Major tectonic units include the Suwannee basin in northern Florida containing Paleozoic sedimentary rocks, a central Florida basement complex of Paleozoic age crystalline rock, the west Florida platform composed of stranded blocks of continental crust, the south Georgia rift containing Triassic sedimentary rocks which overlie block-faulted Suwannee basin sedimentary rocks, the Late Triassic-Jurassic age Apalachicola rift basin, and the Jurassic age south Florida, Bahamas, and Blake Plateau marginal rift basins. The major tectonic units are bounded by basement hinge zones and fracture zones (FZ). The basement hinge zone represents the block-faulted edge of the North American plate, separating Paleozoic and older crustal rocks from Jurassic rifted crust beneath the marginal basins. Fracture zones separate Mesozoic marginal sedimentary basins and include the Blake Spur FZ, Jacksonville FZ, Bahamas FZ, and Cuba FZ, bounding the Blake Plateau, Bahamas, south Florida, and southeastern Gulf of Mexico basins. The Bahamas FZ is the most important of all these features because its northwest extension coincides with the Gulf basin marginal fault zone, forming the southern edge of the North American plate during the Jurassic. The limited space between the North American and the South American/African plates requires that the Jurassic transform zone, connecting the Central Atlantic and the Gulf of Mexico spreading systems, was located between the Bahamas and Cuba FZ's in the region of southern Florida. Our plate reconstructions combined with chronostratigraphic and lithostratigraphic information for the Gulf of Mexico, southern Florida, and the Bahamas indicate that the gulf was sealed off from the Atlantic waters until Callovian time by an elevated Florida-Bahamas region. Restricted influx of waters started in Callovian as a plate reorganization, and increased plate separation between North America and South America/Africa produced waterways into the Gulf of Mexico from the Pacific and possibly from the Atlantic.
NASA Astrophysics Data System (ADS)
Sankov, Vladimir; Parfeevets, Anna; Lukhnev, Andrey; Miroshnitchenko, Andrey; Ashurkov, Sergey; Sankov, Alexey; Usynin, Leonid; Eskin, Alexander; Bryzhak, Evgeny
2013-04-01
This work addresses to relation of transpression and extension stress-strain conditions in intracontinental rift system. In our investigation we use a new structural, shallow geophysics, GPS geodetic data and paleostress reconstructions. The surroundings of southern tip of Siberian platform is the region of three Late Cenozoic structures conjugation: sublatitudinal Obruchev fault (OF) controlling the northern boundary of the South Baikal basin, NW trending Main Sayan fault (MSF) as the strike-slip boundary between Siberian platform and East Sayan block and WNW trending eastern segment of Tunka fault (TF) as part of the Tunka basins system northern boundary. A new evidences of superposition of compression and extension fault structures were revealed near the southern extremity of Baikal lake. We've find a very close vicinity of Late Pleistocene - Holocene strike-slip, thrust and normal faulting in the MSF and OF junction zone. The on-land Holocene normal faulting can be considered as secondary fault paragenesis within the main strike-slip zone (Sankov et al., 2009). Active strike-slip, thrust and reverse faulting characterize the MSF and TF junction zone. The transpression conditions are replaced very sharply by transtension and extension ones in eastern direction from zone of structures conjugation - the active normal faulting is dominated within the South Baikal basin. The Bystraya rift basin located in the west shows the tectonic inversion since Middle Pleistocene as a result of the strike-slip movements partitioning between TF and MSF and inset of edition compression stress. The active strike-slip and intrabasin extension conditions are dominated father to the west in Tunka basin. The results of our GPS measurements show the present day convergence and east movements of Khamar-Daban block and eastern Tunka basins relative to Siberian platform along MSF and TF with NE-SW shortening domination. The clear NW-SE divergence across Baikal basin is documented. Holocene and present-day left lateral relative motions of about 3 mm/yr (Sankov et al., 2004) between of Siberian platform and its mounting frame are accommodated along south-eastern segment of MSF. We consider two main factors of sharp transition between transpression and transtension to extension conditions in Tunka-South Baikal segment of Baikal rift system. The first one is the influence of geometry of southern tip of Siberian platform as a first order ancient lithosphere heterogeneity in agreement with (Petit et al., 1996). The second factor is the interaction in this region of two tectonic forces driving the Cenozoic geodynamics. The initial opening of the Tunka and South Baikal basins since Oligocene time as well as father Baikal rift system development caused by long lived asthenosphere flow along NW-SE direction (Sankov et al., 2011). The addition NE-SW compression started during Pliocene (Parfeevets, Sankov, 2006) as the result of the Hindustan and Eurasia convergence. The former caused transpression deformations and clockwise horizontal block rotations along south-western boundary of the platform with their SE movements to the "free space" opened by the divergence of Siberian platform and Transbaikal block (Sankov et al., 2002, 2005).
Fluid flow and permeabilities in basement fault zones
NASA Astrophysics Data System (ADS)
Hollinsworth, Allan; Koehn, Daniel
2017-04-01
Fault zones are important sites for crustal fluid flow, specifically where they cross-cut low permeability host rocks such as granites and gneisses. Fluids migrating through fault zones can cause rheology changes, mineral precipitation and pore space closure, and may alter the physical and chemical properties of the host rock and deformation products. It is therefore essential to consider the evolution of permeability in fault zones at a range of pressure-temperature conditions to understand fluid migration throughout a fault's history, and how fluid-rock interaction modifies permeability and rheological characteristics. Field localities in the Rwenzori Mountains, western Uganda and the Outer Hebrides, north-west Scotland, have been selected for field work and sample collection. Here Archaean-age TTG gneisses have been faulted within the upper 15km of the crust and have experienced fluid ingress. The Rwenzori Mountains are an anomalously uplifted horst-block located in a transfer zone in the western rift of the East African Rift System. The north-western ridge is characterised by a tectonically simple western flank, where the partially mineralised Bwamba Fault has detached from the Congo craton. Mineralisation is associated with hydrothermal fluids heated by a thermal body beneath the Semliki rift, and has resulted in substantial iron oxide precipitation within porous cataclasites. Non-mineralised faults further north contain foliated gouges and show evidence of leaking fluids. These faults serve as an analogue for faults associated with the Lake Albert oil and gas prospects. The Outer Hebrides Fault Zone (OHFZ) was largely active during the Caledonian Orogeny (ca. 430-400 Ma) at a deeper crustal level than the Ugandan rift faults. Initial dry conditions were followed by fluid ingress during deformation that controlled its rheological behaviour. The transition also altered the existing permeability. The OHFZ is a natural laboratory in which to study brittle fault rocks, and younger Mesozoic age faults may provide analogues for the West Shetland basin. Samples have been collected from both of these localities, and will be examined by optical and scanning electron microscopy. X-Ray micro-tomography will also be used to analyse the permeability characteristics of the fault rocks. Our understanding of fault zone permeability is crucial for a number of research areas, including earthquake geoscience, economic mineral formation, and hydrocarbon systems. As a result, this research has relevance to a variety of industry sectors, including oil and gas (and ccs), nuclear waste disposal, geothermal and mining.
Detailed Northern Anatolian Fault Zone crustal structure from receiver functions
NASA Astrophysics Data System (ADS)
Cornwell, D. G.; Kahraman, M.; Thompson, D. A.; Houseman, G. A.; Rost, S.; Turkelli, N.; Teoman, U.; Altuncu Poyraz, S.; Gülen, L.; Utkucu, M.
2013-12-01
We present high resolution images derived from receiver functions of the continental crust in Northern Turkey that is dissected by two fault strands of the Northern Anatolian Fault Zone (NAFZ). The NAFZ is a major continental strike-slip fault system that is comparable in length and slip rate to the San Andreas Fault Zone. Recent large earthquakes occurred towards the western end of the NAFZ in 1999 at Izmit (M7.5) and Düzce (M7.2). As part of the multi-disciplinary Faultlab project, we aim to develop a model of NAFZ crustal structure and locate deformation by constraining variations in seismic properties and anisotropy in the upper and lower crust. The crustal model will be an input to test deformation scenarios in order to match geodetic observations from different phases of the earthquake loading cycle. We calculated receiver functions from teleseismic earthquakes recorded by a rectangular seismometer array spanning the NAFZ with 66 stations at a nominal inter-station spacing of 7 km and 7 additional stations further afield. This Dense Array for North Anatolia (DANA) was deployed from May 2012 until September 2013 and we selected large events (Mw>5.5) from the high quality seismological dataset to analyze further. Receiver functions were calculated for different frequency bands then collected into regional stacks before being inverted for crustal S-wave velocity structure beneath the entire DANA array footprint. In addition, we applied common conversion point (CCP) migration using a regional velocity model to construct a migrated 3D volume of P-to-S converted and multiple energy in order to identify the major crustal features and layer boundaries. We also performed the CCP migration with transverse receiver functions in order to identify regions of anisotropy within the crustal layers. Our preliminary results show a heterogeneous crust above a flat Moho that is typically at a depth of 33 km. We do not observe a prominent step in the Moho beneath the surface locations at either of the NAFZ fault branches. We observe first-order differences in crustal structure between the crustal blocks that are separated by the faults. Each crustal block also contains regions of strong anisotropy at various depths that will be analyzed further with the full seismological dataset and compared to petrofabric analyses of exhumed fault segments. We will compare our results with other seismological imaging techniques to attempt to resolve the distribution of fault zone deformation with respect to depth. This information will be useful to other complementary Faultlab techniques that will add a detailed insight into the fault structure and dynamics of the NAFZ and contribute more broadly into ongoing research into major strike-slip fault zones.
Northward expansion of Tibet beyond the Altyn Tagh Fault
NASA Astrophysics Data System (ADS)
Cunningham, D.; Zhang, J.; Yanfeng, L.; Vernon, R.
2017-12-01
For many tectonicists, the evolution of northern Tibet stops at the Altyn Tagh Fault (ATF). This study challenges that assumption. Structural field observations and remote sensing analysis indicate that the Sanweishan and Nanjieshan basement-cored ridges of the Archean Dunhuang Block, which interrupt the north Tibetan foreland directly north of the ATF, are bound and cut by an array of strike-slip, thrust and oblique-slip faults that have been active in the Quaternary and remain potentially active. The Sanweishan is essentially a SE-tilted block that is bound on its NW margin by a steep south-dipping thrust fault that has also accommodated sinistral strike-slip displacements. The Nanjieshan consists of parallel, but offset basement ridges that record NNW and SSE thrust displacements and sinistral strike-slip. Regional folds characterize the extreme eastern Nanjieshan perhaps above blind thrust faults which are emergent further west. At the surface, local fault reactivation of basement fabrics is an important control on the kinematics of deformation. Previously published magnetotelluric data for the region suggest that the major faults of the Sanweishan and Nanjieshan ultimately root to the south within conductive zones that merge into the ATF. Therefore, although the southern margin of the Dunhuang Block focuses significant deformation along the ATF, the adjacent cratonic basement to the north is also affected. Collectively, the ATF and structurally linked Sanweishan and Nanjieshan fault array represent a regional asymmetric half-flower structure that is dominated by non-strain partitioned sinistral transpression. The NW-trending Dengdengshan thrust fault array near Yumen City appears to define the northeastern limit of the Sanweishan-Nanjieshan block, which may be viewed regionally as the most northern, but early-stage expression of Tibetan Plateau growth into a reluctantly deforming, mechanically stiff Archean craton.
NASA Astrophysics Data System (ADS)
Le Gall, B.; Rolet, J.; Gernigon, L.; Ebinger, C.; Gloaguen, R.
2003-04-01
The southern tip zone of the Kenya Rift on the eastern branch of the East African System is usually thought to occur in the so-called North Tanzanian Divergence. In this region, the narrow (50 km-wide) axial graben of southern Kenya splays southwards, via a major EW-trending volcanic lineament, into a 200 km-wide broad rifted zone with three separate arms of normal faulting and tilted fault blocks (Eyasi, Manyara and Pangani arms from W to E). Remote sensing analysis from Central Tanzania demonstrates that rift morphology exists over an area lying 400 km beyond the southern termination of the Kenya Rift. The most prominent rift structures are observed in the Kilombero region and consist of a 100 km-wide range of uplifted basement blocks fringed to the west by an E-facing half-graben inferred to reach depths of 6-8 km from aeromagnetic dataset. Physiographic features (fault scarps), and river drainage anomalies suggest that the present-day rift pattern in the Kilombero extensional province principally results from Recent/Neogene deformation. That assumption is also supported by the seismogenic character of a number of faults. The Kilombero half-graben is superimposed upon an earlier rift system, Karoo in age, which is totally overprinted and is only evidenced from its sedimentary infill. On the other hand, the nature and thickness of the inferred Neogene synrift section is still unknown. The Kilombero rifted zone is assumed to connect northwards into the central rift arm (Manyara) of the South Kenya Rift via a seismically active transverse fault zone that follows ductile fabrics within the Mozambican crystalline basement. The proposed rift model implies that incipient rifting propagates hroughout the cold and strong crust/lithosphere of Central Tanzania along Proterozoic (N140=B0E) basement weakness zones and earlier Karoo (NS)rift structures. A second belt of Recent-active linked fault/basins also extends further East from the Pangani rift arm to the offshore Zanzibar-Kerimbas graben system. The structural connection of the Kilombero rifted zone with the Lake Malawi rift further south is also envisaged and should imply the link of the eastern and western branchs of the East African Rift System south of the Tanzanian craton.
Crustal Deformation of the Central Walker Lane from GPS velocities: Block Rotations and Slip Rates
NASA Astrophysics Data System (ADS)
Bormann, J. M.; Hammond, W. C.; Kreemer, C. W.; Blewitt, G.; Wesnousky, S. G.
2010-12-01
The Walker Lane is a complex zone of active intracontinental transtension between the Sierra Nevada/Great Valley (SNGV) microplate and the Basin and Range in the western United States. Collectively, this ~100 km wide zone accommodates ~20% of the Pacific-North American relative plate motion. The Central Walker Lane (CWL) extends from the southern boundary of the Mina Deflection (~38.0°N) to the latitude of Lake Tahoe (~39.5°N) and encompasses the transition from Basin and Range style faulting in the east to the stable block motion of the SNGV microplate in the West. We combine GPS data from the Mobile Array of GPS for Nevada Transtension (MAGNET, http://geodesy.unr.edu/networks) with continuous observations from the EarthScope Plate Boundary Observatory to solve for rates of crustal deformation in the CWL through a block modeling approach. The GPS coordinate time series are derived in this region as part of a 7000-station global network solution using the latest JPL reanalysis of GPS orbits, and the latest antenna models for stations and satellites. The data were processed by precise point positioning using JPL's GIPSY OASIS II software followed by our custom Ambizap3 software, to produce a globally-consistent, ambiguity-resolved network solution. GPS time series in the western United States are rotated into a North America-fixed reference frame and are spatially filtered with respect to the secular motions of reference stations that demonstrate long-term secular stability. In the study region, we use 130 GPS velocities that are corrected for viscoelastic postseismic relaxation following 19th and 20th century earthquakes in the Central Nevada Seismic Belt to constrain rates of long-term fault slip and block rotation. The spatial density and precision of our velocity field (average station spacing of ~20 km with uncertainties well below 1 mm/yr) allow us to compare geodetically estimated slip rates with geologic observations as well as address specific questions about how shear is transferred from the Southern Walker Lane through the Mina Deflection and evaluate along-strike variation of the slip rate on the Sierra Nevada range front fault. Preliminary results confirm a pattern of deformation consistent with geological observations. Deformation zones are characterized by 1) left-lateral slip on east-northeast trending faults and clockwise block rotations in the Mina Deflection, 2) right-lateral slip on northwest trending faults along the eastern margin of the CWL, 3) east-west extension along north trending faults in the western portion of the CWL with right lateral slip increasing toward the SNGV microplate boundary, 4) clockwise rotation of blocks in the Carson Domain, and 5) northwest directed extension in the Basin and Range. Estimates of fault slip rates along the eastern boundary of the SNGV block find that slip is oblique with preliminary rates ranging between 0.4-0.8(±0.1) mm/yr horizontal extension and 0.9-1.5(±0.1) mm/yr right lateral.
Tectonic analysis of folds in the Colorado plateau of Arizona
NASA Technical Reports Server (NTRS)
Davis, G. H.
1975-01-01
Structural mapping and analysis of folds in Phanerozoic rocks in northern Arizona, using LANDSAT-1 imagery, yielded information for a tectonic model useful in identifying regional fracture zones within the Colorado Plateau tectonic province. Since the monoclines within the province developed as a response to differential movements of basement blocks along high-angle faults, the monoclinal fold pattern records the position and trend of many elements of the regional fracture system. The Plateau is divided into a mosaic of complex, polyhedral crustal blocks whose steeply dipping faces correspond to major fracture zones. Zones of convergence and changes in the trend of the monoclinal traces reveal the corners of the blocks. Igneous (and salt) diapirs have been emplaced into many of the designated zones of crustal weakness. As loci of major fracturing, folding, and probably facies changes, the fractures exert control on the entrapment of oil and gas.
From coseismic offsets to fault-block mountains
Thompson, George A.; Parsons, Thomas E.
2017-01-01
In the Basin and Range extensional province of the western United States, coseismic offsets, under the influence of gravity, display predominantly subsidence of the basin side (fault hanging wall), with comparatively little or no uplift of the mountainside (fault footwall). A few decades later, geodetic measurements [GPS and interferometric synthetic aperture radar (InSAR)] show broad (∼100 km) aseismic uplift symmetrically spanning the fault zone. Finally, after millions of years and hundreds of fault offsets, the mountain blocks display large uplift and tilting over a breadth of only about 10 km. These sparse but robust observations pose a problem in that the coesismic uplifts of the footwall are small and inadequate to raise the mountain blocks. To address this paradox we develop finite-element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift, which is predicted to take place within one to two decades after each large earthquake. Thus, the best-preserved topographic signature of earthquakes is expected to occur early in the postseismic period.
From coseismic offsets to fault-block mountains
Thompson, George A.
2017-01-01
In the Basin and Range extensional province of the western United States, coseismic offsets, under the influence of gravity, display predominantly subsidence of the basin side (fault hanging wall), with comparatively little or no uplift of the mountainside (fault footwall). A few decades later, geodetic measurements [GPS and interferometric synthetic aperture radar (InSAR)] show broad (∼100 km) aseismic uplift symmetrically spanning the fault zone. Finally, after millions of years and hundreds of fault offsets, the mountain blocks display large uplift and tilting over a breadth of only about 10 km. These sparse but robust observations pose a problem in that the coesismic uplifts of the footwall are small and inadequate to raise the mountain blocks. To address this paradox we develop finite-element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift, which is predicted to take place within one to two decades after each large earthquake. Thus, the best-preserved topographic signature of earthquakes is expected to occur early in the postseismic period. PMID:28847962
From coseismic offsets to fault-block mountains.
Thompson, George A; Parsons, Tom
2017-09-12
In the Basin and Range extensional province of the western United States, coseismic offsets, under the influence of gravity, display predominantly subsidence of the basin side (fault hanging wall), with comparatively little or no uplift of the mountainside (fault footwall). A few decades later, geodetic measurements [GPS and interferometric synthetic aperture radar (InSAR)] show broad (∼100 km) aseismic uplift symmetrically spanning the fault zone. Finally, after millions of years and hundreds of fault offsets, the mountain blocks display large uplift and tilting over a breadth of only about 10 km. These sparse but robust observations pose a problem in that the coesismic uplifts of the footwall are small and inadequate to raise the mountain blocks. To address this paradox we develop finite-element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift, which is predicted to take place within one to two decades after each large earthquake. Thus, the best-preserved topographic signature of earthquakes is expected to occur early in the postseismic period.
From coseismic offsets to fault-block mountains
NASA Astrophysics Data System (ADS)
Thompson, George A.; Parsons, Tom
2017-09-01
In the Basin and Range extensional province of the western United States, coseismic offsets, under the influence of gravity, display predominantly subsidence of the basin side (fault hanging wall), with comparatively little or no uplift of the mountainside (fault footwall). A few decades later, geodetic measurements [GPS and interferometric synthetic aperture radar (InSAR)] show broad (˜100 km) aseismic uplift symmetrically spanning the fault zone. Finally, after millions of years and hundreds of fault offsets, the mountain blocks display large uplift and tilting over a breadth of only about 10 km. These sparse but robust observations pose a problem in that the coesismic uplifts of the footwall are small and inadequate to raise the mountain blocks. To address this paradox we develop finite-element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift, which is predicted to take place within one to two decades after each large earthquake. Thus, the best-preserved topographic signature of earthquakes is expected to occur early in the postseismic period.
Towards "realistic" fault zones in a 3D structure model of the Thuringian Basin, Germany
NASA Astrophysics Data System (ADS)
Kley, J.; Malz, A.; Donndorf, S.; Fischer, T.; Zehner, B.
2012-04-01
3D computer models of geological architecture are evolving into a standard tool for visualization and analysis. Such models typically comprise the bounding surfaces of stratigraphic layers and faults. Faults affect the continuity of aquifers and can themselves act as fluid conduits or barriers. This is one reason why a "realistic" representation of faults in 3D models is desirable. Still so, many existing models treat faults in a simplistic fashion, e.g. as vertical downward projections of fault traces observed at the surface. Besides being geologically and mechanically unreasonable, this also causes technical difficulties in the modelling workflow. Most natural faults are inclined and may change dips according to rock type or flatten into mechanically weak layers. Boreholes located close to a fault can therefore cross it at depth, resulting in stratigraphic control points allocated to the wrong block. Also, faults tend to split up into several branches, forming fault zones. Obtaining a more accurate representation of faults and fault zones is therefore challenging. We present work-in-progress from the Thuringian Basin in central Germany. The fault zone geometries are never fully constrained by data and must be extrapolated to depth. We use balancing of serial, parallel cross-sections to constrain subsurface extrapolations. The structure sections are checked for consistency by restoring them to an undeformed state. If this is possible without producing gaps or overlaps, the interpretation is considered valid (but not unique) for a single cross-section. Additional constraints are provided by comparison of adjacent cross-sections. Structures should change continuously from one section to another. Also, from the deformed and restored cross-sections we can measure the strain incurred during deformation. Strain should be compatible among the cross-sections: If at all, it should vary smoothly and systematically along a given fault zone. The stratigraphic contacts and faults in the resulting grid of parallel balanced sections are then interpolated into a gOcad model containing stratigraphic boundaries and faults as triangulated surfaces. The interpolation is also controlled by borehole data located off the sections and the surface traces of stratigraphic boundaries. We have written customized scripts to largely automatize this step, with particular attention to a seamless fit between stratigraphic surfaces and fault planes which share the same nodes and segments along their contacts. Additional attention was paid to the creation of a uniform triangulated grid with maximized angles. This ensures that uniform triangulated volumes can be created for further use in numerical flow modelling. An as yet unsolved problem is the implementation of the fault zones and their hydraulic properties in a large-scale model of the entire basin. Short-wavelength folds and subsidiary faults control which aquifers and seals are juxtaposed across the fault zones. It is impossible to include these structures in the regional model, but neglecting them would result in incorrect assessments of hydraulic links or barriers. We presently plan to test and calibrate the hydraulic properties of the fault zones in smaller, high-resolution models and then to implement geometrically simple "equivalent" fault zones with appropriate, variable transmissivities between specific aquifers.
NASA Astrophysics Data System (ADS)
Coogan, James C.; Decelles, Peter G.
1996-10-01
Newly released and previously published seismic reflection data from the northern Sevier Desert basin provide a complete seismic transect between the tilted western margin of the basin and the eastern breakaway zone. When tied to well and surface age data, the transect delineates a continuum of extensional fault and basin fill geometries that developed between late Oligocene and Pleistocene time across the basin. A minimum of 18 km of top-to-the-west normal displacement is estimated across the Sevier Desert from only the most conspicuous growth geometries and offsets across listric normal faults that sole downward into the Sevier Desert reflection (SDR). The SDR clearly marks a normal fault zone beneath the entire basin, where stratal truncations are imaged for 50% of the 39 km length of the reflection east of the Cricket Mountains block. Restoration of extensional displacement along this entire 39 km fault length is necessary to reconstruct the pre-Oligocene configuration and erosion level of Sevier thrust sheets across the Sevier Desert area. The SDR normal fault zone underlies the former topographic crest of the Sevier orogenic belt, where it accommodated extensional collapse after cessation of regional contractile tectonism.
Precambrian basement geologic map of Montana; an interpretation of aeromagnetic anomalies
Sims, P.K.; O'Neill, J. M.; Bankey, Viki; Anderson, E.
2004-01-01
Newly compiled aeromagnetic anomaly data of Montana, in conjunction with the known geologic framework of basement rocks, have been combined to produce a new interpretive geologic basement map of Montana. Crystalline basement rocks compose the basement, but are exposed only in the cores of mountain ranges in southwestern Montana. Principal features deduced from the map are: (1) A prominent northeast-trending, 200-km-wide zone of spaced negative anomalies, which extends more than 700 km from southwestern Montana's Beaverhead Mountains to the Canadian border and reflects suturing of the Archean Mexican Hat Block against the Archean Wyoming Province along the Paleoproterozoic Trans-Montana Orogen (new name) at about 1.9-1.8 Ga; (2) North-northwest-trending magnetic lows in northeastern Montana, which reflect the 1.9-1.8 Ga Trans-Hudson Orogen and truncate the older Trans-Montana Zone; and (3) Subtle northwest- and west-trending negative anomalies in central and western Montana, which represent the northernmost segment of brittle-ductile transcurrent faults of the newly recognized Mesoproterozoic Trans-Rocky Mountain fault system. Structures developed in the Proterozoic provided zones of crustal weakness reactivated during younger Proterozoic and Phanerozoic igneous and tectonic activity. For example, the Trans-Montana Zone guided basement involved thrust faulting in southwestern Montana during the Sevier Orogeny. The Boulder Batholith and associated ore deposits and the linear belt of alkaline intrusions to the northeast were localized along a zone of weakness between the Missouri River suture and the Dillon shear zone of the Trans-Montana Orogen. The northwest-trending faults of Trans-Rocky Mountain system outline depocenters for sedimentary rocks in the Belt Basin. This fault system provided zones of weakness that guided Laramide uplifts during basement crustal shortening. Northwest-trending zones have been locally reactivated during Neogene basin-range extension.
Theoretical constraints on dynamic pulverization of fault zone rocks
NASA Astrophysics Data System (ADS)
Xu, Shiqing; Ben-Zion, Yehuda
2017-04-01
We discuss dynamic rupture results aiming to elucidate the generation mechanism of pulverized fault zone rocks (PFZR) observed in 100-200 m wide belts distributed asymmetrically across major strike-slip faults separating different crustal blocks. Properties of subshear and supershear ruptures are considered using analytical results of Linear Elastic Fracture Mechanics and numerical simulations of Mode-II ruptures along faults between similar or dissimilar solids. The dynamic fields of bimaterial subshear ruptures are expected to produce off-fault damage primarily on the stiff side of the fault, with tensile cracks having no preferred orientation, in agreement with field observations. Subshear ruptures in a homogeneous solid are expected to produce off-fault damage with high-angle tensile cracks on the extensional side of the fault, while supershear ruptures between similar or dissimilar solids are likely to produce off-fault damage on both sides of the fault with preferred tensile crack orientations. One or more of these features are not consistent with properties of natural samples of PFZR. At a distance of about 100 m from the fault, subshear and supershear ruptures without stress singularities produce strain rates up to 1 s-1. This is less than required for rock pulverization in laboratory experiments with centimetre-scale intact rock samples, but may be sufficient for pulverizing larger samples with pre-existing damage.
NASA Astrophysics Data System (ADS)
Sahu, Sudarsan; Saha, Dipankar
2014-08-01
The basement of the Ganga basin in the Himalayan foreland is criss-crossed by several faults, dividing the basin into several sub-blocks forming horsts, grabens, or half-grabens. Tectonic perturbations along basement faults have affected the fluvial regime and extent of sediment fill in different parts of the basin during Late Quaternary. The East Patna Fault (EPF) and the West Patna Fault (WPF), located in Sone-Ganga alluvial tract in the southern marginal parts of Middle Ganga Plain (MGP), have remained tectonically active. The EPF particularly has acted significantly and influenced in evolving the geomorphological landscape and the stratigraphic architecture of the area. The block bounded by the two faults has earlier been considered as a single entity, constituting a half-graben. The present investigation (by morpho-stratigraphic and sedimentologic means) has revealed the existence of yet another fault within the half-graben, referred to as Bishunpur-Khagaul Fault (BKF). Many of the long profile morphological characters (e.g., knick-zone, low width-depth ratio) of the Sone River at its lower reaches can be ascribed to local structural deformation along BKF. These basement faults in MGP lie parallel to each other in NE-SW direction.
Kelsey, Harvey M.; Sherrod, Brian L.; Blakely, Richard J.; Haugerud, Ralph A.
2013-01-01
The northern Cascadia forearc takes up most of the strain transmitted northward via the Oregon Coast block from the northward-migrating Sierra Nevada block. The north-south contractional strain in the forearc manifests in upper-plate faults active during the Holocene, the northern-most components of which are faults within the Bellingham Basin. The Bellingham Basin is the northern of four basins of the actively deforming northern Cascadia forearc. A set of Holocene faults, Drayton Harbor, Birch Bay, and Sandy Point faults, occur within the Bellingham Basin and can be traced from onshore to offshore using a combination of aeromagnetic lineaments, paleoseismic investigations and scarps identified using LiDAR imagery. With the recognition of such Holocene faults, the northernmost margin of the actively deforming Cascadia forearc extends 60 km north of the previously recognized limit of Holocene forearc deformation. Although to date no Holocene faults are recognized at the northern boundary of the Bellingham Basin, which is 15 km north of the international border, there is no compelling tectonic reason to expect that Holocene faults are limited to south of the international border.
Tertiary extension and mineral deposits, southwestern U.S.
Rehrig, William A.; Hardy, James.J.
1996-01-01
Starting in Las Vegas, we will traverse through many of the geometric elements and complexities of hanging wall deformation above the regional detachment systems of the Colorado River extensional terrane. We will study the interaction of normal faults as arranged in regional, crustal-scale mega-domains and the bounding structures that separate these tilt domains. As we progress through the classic Eldorado Mountains-Hoover Dam region, where many of the ideas of listric normal faulting were first popularized, we will see both the real rocks and the historic rationale for their deformation. By examining the listric versus domino models for normal faulting, we will utilize different geometric techniques for determining the depth to the detachment structures and percent extension. Continuing further south toward southernmost Nevada, we will cross the accommodation zone that separates the Lake Mead and Whipple dip domains and further descend to deeper structural levels to examine lower levels of the major normal faults and their tilting of upper-crustal blocks and associated offset along the regional detachment faults. Fluid flow within the shattered fault zones and its relationship to the 3-D geometries of the fault surfaces will be studied both along the faults and within the hydrothermally altered and mineralized wallrocks.
NASA Astrophysics Data System (ADS)
Wintsch, R. P.; Yi, D.; Yi, K.; Wang, Q. F.; Wang, G. H.
2014-12-01
The orthogneisses in the core of the Xuelong Shan block are surrounded by ductile and then brittle fault rocks. This lens-shape block is in fault contact with Triassic marbles on the eastern margin and Jurassic-Cretaceous mudstones on the western margin. The rocks in the core of the Xuelong Shan block contain multiply foliated feldspathic orthogneisses with local amphibolites, largely overprinted by protomylonitic deformation. Foliation strengthens to the east to become mylonites and ultramylonites, with a 30 m wide zone of loosely cemented fault breccia adjacent to brittlely faulted Triassic marbles. In contrast, the rocks to the west are dominated by brittle deformation, with mylonites becoming cataclasites and then breccias facing the mudstones to the east. Well-foliated phyllonites are locally present within the cataclasites. Early S1 gneissosity striking ENE are recognized only in the interior protomylonite. In the east, the dominate mylonitic S2 foliation strikes 340° with a moderate dip to the east, and an L2 mineral stretching lineation plunges gently north. However, in the west S2 cleavage is transposed into a NNW trending schistosity that dips steeply to the ENE, with down-dip mineral stretching lineations. Whole rock chemistry indicates a granitic to granodioritic protolith for all the rocks including the ultramylonites, but also suggests the progressive loss of alkalis with increasing deformation. Trace element compositions show these rocks lie in the volcanic arc/syn-collisional granite field. U-Pb SHRIMP ages show an Early Triassic age for these granite, with possible Middle Permian inheritance in some cores. These ages are consistent with the period of the closure of the northern Paleo-Tethys ocean. Metamorphic rim ages of ~ 30 Ma record a small amount of zircon dissolution/precipitation probably associated with the Oligocene ductile deformation that produced the upper greenschist facies mylonites. These results support the geologic history of the ASRRSZ based on data obtained in the southern Diancang Shan block. Permian granitoids were intruded and ductily deformed in the Early Triassic. The left lateral shearing that brought these blocks to the surface was delayed until the Neogene extrusion of the Indochina block.
NASA Astrophysics Data System (ADS)
Wakabayashi, J.
2014-12-01
The >1000 km by >100 km Franciscan complex of California records >100 Ma of subduction history that terminated with conversion to a transform margin. It affords an ideal natural laboratory to study the rock record of subduction-interface and related processes exhumed from 10-70 km. The Franciscan comprises coherent and block-in-matrix (mélange) units forming a nappe stack that youngs structurally downward in accretion age, indicating progressive subduction accretion. Gaps in accretion ages indicate periods of non-accretion or subduction erosion. The Franciscan comprises siliciclastic trench fill rocks, with lesser volcanic and pelagic rocks and serpentinite derived from the downgoing plate, as well as serpentinite and felsic-intermediate igneous blocks derived as detritus from the upper plate. The Franciscan records subduction, accretion, and metamorphism (including HP), spanning an extended period of subduction, rather than a single event superimposed on pre-formed stratigraphy. Melanges (serpentinite and siliciclastic matrix) with exotic blocks, that include high-grade metamorphic blocks, and felsic-intermediate igneous blocks from the upper plate, are mostly/entirely of sedimentary origin, whereas block-in-matrix rocks formed by tectonism lack exotic blocks and comprise disrupted ocean plate stratigraphy. Mélanges with exotic blocks are interbedded with coherent sandstones. Many blocks-in-melange record two HP burial events followed by surface exposure, and some record three. Paleomegathrust horizons, separating nappes accreted at different times, appear restricted to narrow fault zones of <100's of m thickness, and <50 m in best constrained cases; these zones lack exotic blocks. Large-scale displacements, whether paleomegathrust horizons, shortening within accreted nappes, or exhumation structures, are accommodated by discrete faults or narrow shear zones, rather than by significant penetrative strain. Exhumation of Franciscan HP units, both coherent and mélange, was accommodated by significant extension of the overlying plate, and possibly extension within the subduction complex, with cross-sectional extrusion, and like subduction burial, took place at different times.
NASA Astrophysics Data System (ADS)
Gürer, Derya; van Hinsbergen, Douwe J. J.; Özkaptan, Murat; Creton, Iverna; Koymans, Mathijs R.; Cascella, Antonio; Langereis, Cornelis G.
2018-03-01
To quantitatively reconstruct the kinematic evolution of Central and Eastern Anatolia within the framework of Neotethyan subduction accommodating Africa-Eurasia convergence, we paleomagnetically assess the timing and amount of vertical axis rotations across the Ulukışla and Sivas regions. We show paleomagnetic results from ˜ 30 localities identifying a coherent rotation of a SE Anatolian rotating block comprised of the southern Kırşehir Block, the Ulukışla Basin, the Central and Eastern Taurides, and the southern part of the Sivas Basin. Using our new and published results, we compute an apparent polar wander path (APWP) for this block since the Late Cretaceous, showing that it experienced a ˜ 30-35° counterclockwise vertical axis rotation since the Oligocene time relative to Eurasia. Sediments in the northern Sivas region show clockwise rotations. We use the rotation patterns together with known fault zones to argue that the counterclockwise-rotating domain of south-central Anatolia was bounded by the Savcılı Thrust Zone and Deliler-Tecer Fault Zone in the north and by the African-Arabian trench in the south, the western boundary of which is poorly constrained and requires future study. Our new paleomagnetic constraints provide a key ingredient for future kinematic restorations of the Anatolian tectonic collage.
A deep crustal fluid channel into the San Andreas Fault system near Parkfield, California
Becken, M.; Ritter, O.; Park, S.K.; Bedrosian, P.A.; Weckmann, U.; Weber, M.
2008-01-01
Magnetotelluric (MT) data from 66 sites along a 45-km-long profile across the San Andreas Fault (SAF) were inverted to obtain the 2-D electrical resistivity structure of the crust near the San Andreas Fault Observatory at Depth (SAFOD). The most intriguing feature of the resistivity model is a steeply dipping upper crustal high-conductivity zone flanking the seismically defined SAF to the NE, that widens into the lower crust and appears to be connected to a broad conductivity anomaly in the upper mantle. Hypothesis tests of the inversion model suggest that upper and lower crustal and upper-mantle anomalies may be interconnected. We speculate that the high conductivities are caused by fluids and may represent a deep-rooted channel for crustal and/or mantle fluid ascent. Based on the chemical analysis of well waters, it was previously suggested that fluids can enter the brittle regime of the SAF system from the lower crust and mantle. At high pressures, these fluids can contribute to fault-weakening at seismogenic depths. These geochemical studies predicted the existence of a deep fluid source and a permeable pathway through the crust. Our resistivity model images a conductive pathway, which penetrates the entire crust, in agreement with the geochemical interpretation. However, the resistivity model also shows that the upper crustal branch of the high-conductivity zone is located NE of the seismically defined SAF, suggesting that the SAF does not itself act as a major fluid pathway. This interpretation is supported by both, the location of the upper crustal high-conductivity zone and recent studies within the SAFOD main hole, which indicate that pore pressures within the core of the SAF zone are not anomalously high, that mantle-derived fluids are minor constituents to the fault-zone fluid composition and that both the volume of mantle fluids and the fluid pressure increase to the NE of the SAF. We further infer from the MT model that the resistive Salinian block basement to the SW of the SAFOD represents an isolated body, being 5-8km wide and reaching to depths >7km, in agreement with aeromagnetic data. This body is separated from a massive block of Salinian crust farther to the SW. The NE terminus of resistive Salinian crust has a spatial relationship with a near-vertical zone of increased seismic reflectivity ???15km SW of the SAF and likely represents a deep-reaching fault zone. ?? 2008 The Authors Journal compilation ?? 2008 RAS.
NASA Astrophysics Data System (ADS)
Cunningham, Dickson; Zhang, Jin; Li, Yanfeng
2016-09-01
For many tectonicists, the structural development of the northern Tibetan Plateau stops at the Altyn Tagh Fault (ATF). This study challenges that assumption. Structural field observations and remote sensing analysis indicate that the Sanweishan and Nanjieshan basement cored ridges of the Archean Dunhuang Block, which interrupt the north Tibetan foreland directly north of the ATF, are bound and cut by an array of strike-slip, thrust and oblique-slip faults that have been active in the Quaternary and remain potentially active. The Sanweishan is a SE-tilted block that is bound on its NW margin by a steep south-dipping thrust fault that has also accommodated sinistral strike-slip displacements. The Nanjieshan consists of parallel, but offset basement ridges that record NNW and SSE thrust displacements and sinistral strike-slip. Regional folds characterize the extreme eastern Nanjieshan and appear to have formed above blind thrust faults which break the surface further west. Previously published magnetotelluric data suggest that the major faults of the Sanweishan and Nanjieshan ultimately root to the south within conductive zones that are inferred to merge into the ATF. Therefore, although the southern margin of the Dunhuang Block focuses significant deformation along the ATF, the adjacent cratonic basement to the north is also affected. Collectively, the ATF and structurally linked Sanweishan and Nanjieshan fault array represent a regional asymmetric half-flower structure that is dominated by non-strain partitioned sinistral transpression. The NW-trending Dengdengshan thrust fault system near Yumen City appears to define the northeastern limit of the Sanweishan-Nanjieshan block, which may be regionally viewed as the most northern, but early-stage expression of Tibetan Plateau growth into a slowly deforming, mechanically stiff Archean craton.
CO2 Push-Pull Single Fault Injection Simulations
Borgia, Andrea; Oldenburg, Curtis (ORCID:0000000201326016); Zhang, Rui; Pan, Lehua; Daley, Thomas M.; Finsterle, Stefan; Ramakrishnan, T.S.; Doughty, Christine; Jung, Yoojin; Lee, Kyung Jae; Altundas, Bilgin; Chugunov, Nikita
2017-09-21
ASCII text files containing grid-block name, X-Y-Z location, and multiple parameters from TOUGH2 simulation output of CO2 injection into an idealized single fault representing a dipping normal fault at the Desert Peak geothermal field (readable by GMS). The fault is composed of a damage zone, a fault gouge and a slip plane. The runs are described in detail in the following: Borgia A., Oldenburg C.M., Zhang R., Jung Y., Lee K.J., Doughty C., Daley T.M., Chugunov N., Altundas B, Ramakrishnan T.S., 2017. Carbon Dioxide Injection for Enhanced Characterization of Faults and Fractures in Geothermal Systems. Proceedings of the 42st Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 13-17.
NASA Astrophysics Data System (ADS)
Howard, K. A.; John, B. E.; Nielson, J. E.; Miller, J. M.; Priest, S. S.
2010-12-01
Geologic mapping of the Topock 7.5’ quadrangle, CA-AZ, reveals a structurally complex part of the Colorado River extensional corridor, and a younger stratigraphic record of landscape evolution during the history of the Colorado River. Paleoproterozoic gneisses and Mesoproterozoic granitoids and diabase sheets are exposed through cross-sectional thicknesses of many kilometers. Mesozoic to Tertary igneous rocks intrude the older rocks and include dismembered parts of the Late Cretaceous Chemehuevi Mountains Plutonic Suite. Plutons of this suite exposed in the Arizona part of the quad reconstruct, if Miocene deformation is restored, as cupolas capping the sill-like Chemehuevi Mountains batholith exposed in California. A nonconformity between Proterozoic and Miocene rocks reflects pre-Miocene uplift and erosional stripping of regional Paleozoic and Mesozoic strata. Thick (1-3 km) Miocene sections of volcanic rocks, sedimentary breccias, and conglomerate record the Colorado River extensional corridor’s structural and erosional evolution. Four major Miocene low-angle normal faults and a steep block-bounding Miocene fault divide the deformed rocks into major structural plates and giant tilted blocks on the east side of the Chemehuevi Mountains core complex. The low-angle faults attenuate >10 km of crustal section, superposing supracrustal and upper crustal rocks against originally deeper gneisses and granitoids. The block-bounding Gold Dome fault zone juxtaposes two large hanging-wall blocks, each tilted 90°, and splays at its tip into folds that deform layered Miocene rocks. A 15-16 Ma synfaulting intrusion occupies the triangular zone or gap where the folding strata detached from an inside corner along this fault between the tilt blocks. Post-extensional landscape evolution is recorded by upper Miocene to Quaternary strata, locally deformed. This includes several Pliocene and younger aggradational episodes in the Colorado River valley, and intervening degradation episodes at times when the river re-incised. Post-Miocene aggradational sequences include (1) the Bouse Formation, (2) fluvial deposits correlated with the alluvium of Bullhead City, (3) a younger fluvial boulder conglomerate, (4) the Chemehuevi Formation and related valley-margin deposits, and (5) and Holocene deposits under the valley floor.
NASA Astrophysics Data System (ADS)
Jamali, Farshad; Hessami, Khaled; Ghorashi, Manoochehr
2011-03-01
This paper uses high-resolution images and field investigations, in conjunction with seismic reflection data, to constrain active structural deformation in the Kashan region of Central Iran. Offset stream beds and Qanats indicate right-lateral strike slip motion at a rate of about 2 mm/yr along the NW-SE trending Qom-Zefreh fault zone which has long been recognized as one of the major faults in Central Iran. However, the pattern of drainage systems across the active growing folds including deep incision of stream beds and deflected streams indicate uplift at depth on thrust faults dipping SW beneath the anticlines. Therefore, our studies in the Kashan region indicate that deformation occurs within Central Iran which is often considered to behave as a non-deforming block within the Arabia-Eurasia collision zone. The fact that the active Qom-Zefreh strike-slip fault runs parallel to the active folds, which overlie blind thrust faults, suggests that oblique motion of Arabia with respect to Eurasia is partitioned in this part of Central Iran.
Geometry and kinematics of the Triassic rift basin in Jameson Land (East Greenland)
NASA Astrophysics Data System (ADS)
Guarnieri, Pierpaolo; Brethes, Anaïs.; Rasmussen, Thorkild M.
2017-04-01
The Triassic rift basin along the east Greenland margin described in this paper is represented by NE-SW trending basins and highs segmented by NW-SE trending transfer zones. Coarse-grained sediments along the eastern side of Jameson Land are shown to be hosted in half-graben structures belonging to the Carlsberg Fjord Basin that is bounded by NW dipping normal faults mapped and described after fieldwork in the Klitdal area in Liverpool Land. New aeromagnetic and electromagnetic data together with new drill cores allow the reinterpretation of available seismic lines showing the continuation of the Triassic rift basin toward the SW where it is buried under the Upper Triassic postrift sediments and the Jurassic successions of the Jameson Land Basin. The N-S trending Liverpool Land, interpreted as the boundary block of the Triassic basin, is shown to represent a structural high inherited from the Late Carboniferous tectonics and faulted during the Triassic rifting. The Carlsberg Fjord Basin and the Klitdal Fault System described in this paper should be seen as analogues to the Helgeland Basin in the Norwegian offshore that is bounded by the Ylvingen Fault Zone and to the Papa and West of Shetlands Basins that are bounded by the Spine Fault. The Triassic rift zone and transfer faults on both conjugate margins show a straightforward correlation with the trends of the initial spreading line and fracture zones of the northeast Atlantic indicating a possible inheritance of the Triassic rifting.
NASA Astrophysics Data System (ADS)
Shu, Liangshu; Yin, Hongwei; Faure, Michel; Chen, Yan
2017-06-01
The Xu-Huai thrust-and-fold belt, located in the southeastern margin of the North China Block, consists mainly of thrust and folded pre-Mesozoic strata. Its geodynamic evolution and tectonic setting are topics of long debate. This paper provides new evidence from geological mapping, structural analysis, and making balance cross-sections, with restoration of cross-sections. Results suggest that this belt was subjected to two-phase deformation, including an early-phase regional-scale NW-ward thrust and fold, and a late-phase extension followed by the emplacement of dioritic, monzodioritic porphyrites dated at 131-135 Ma and locally strike-slip shearing. According to the mapping, field observations and drill-hole data, three structural units were distinguished, namely, (1) the pre-Neoproterozoic crystalline basement in the eastern segment, (2) the nappe unit or the thrust-and-fold zone in the central segment, which is composed of Neoproterozoic to Ordovician carbonate rocks and Carboniferous-Permian coal-bearing rocks, about 2600 m thick, and (3) the western frontal zone. A major decollement fault has also been identified in the base of the nappe unit, on which dozen-meter to km-scale thrust-and-fold bodies were commonly developed. All pre-Mesozoic depositional sequences were involved into a widespread thrust and fold event. Six uncompetent-rock layers with biostratigraphic ages (Nanjing University, 1996) have been recognized, and each uncompetent-rock layer occurred mainly in the top of the footwall, playing an important role in the development of the Xu-Huai thrust-and-fold belt. Geometry of the major decollement fault suggests that the nappe unit of this belt was rooted in its eastern side, near the Tan-Lu Fault Zone. Two geological cross-sections were chosen for structural balancing and restoration. From the balanced cross-sections, ramp-flat and imbricated faults as well as fault-related folds were identified. A shortening of 20.6-29.6 km was obtained from restoration of balanced sections, corresponding to a shortening rate of 43.6-46.4%. This shortening deformation was likely related to the SE-ward intracontinental underthrust of the North China Block beneath the South China Block during the Mesozoic.
NASA Astrophysics Data System (ADS)
Beardsley, A. G.; Avé Lallemant, H. G.
2005-12-01
The Leeward Antilles island arc is located offshore northern Venezuela and includes Aruba, Curaçao, and Bonaire (ABCs). The ABCs trend WNW-ESE parallel to the obliquely convergent Caribbean-South American plate boundary zone. Field work on the ABCs has provided new structural data supporting a minimum of 90° clockwise rotation of the islands within the diffuse plate boundary zone. Analysis of faulting, bedding, and cleavages suggest three phases of deformation (D1-D3). The oldest phase of deformation, D1, is characterized by northeast trending normal faults, northwest trending fold axes and cleavages, and northeast striking dextral strike-slip faults. East striking sinstral strike-slip faults are rare. The second phase of deformation, D2, is represented by west-northwest trending thrust faults, north-northeast striking normal faults, northwest trending dextral strike-slip faults, and northeast striking sinstral strike-slip faults. Finally, the youngest phase of deformation, D3, is characterized by northeast striking thrust faults, northwest striking normal faults, east-west dextral strike-slip faults, and north-northwest sinstral strike-slip faults. Quartz and calcite veins were also studied on the ABCs. Cross-cutting relationships in outcrop suggest three phases of veining (V1-V3). The oldest veins, V1, trend northeastward; V2 veins trend northward; and the youngest veins, V3, trend northwestward. Additionally, joints were measured on the ABCs. On Bonaire and Curaçao, joints trend approximately northeast while joints on Aruba are almost random with a slight preference for west-northwest. Fluid inclusion analysis of quartz and calcite veins provides additional information about the pressure and temperature conditions of the deformation phases. Preliminary results from the earliest veins (V1) show a single deformational event on Aruba and Bonaire. On Bonaire, they exhibit both hydrostatic and lithostatic pressure conditions. This new data supports three stages of deformation accompanied by rotation of the ABCs. The structures identified suggest a clockwise rotation of the principal stress orientation since the Late Cretaceous. D1 deformation and rotation occurred at the southeastern Caribbean plate margin beginning approximately 73 Ma on Aruba. Arc-parallel strike-slip motion rotated the islands clockwise 90° Internal deformation features of the island blocks are consistent with an obliquely convergent plate boundary. D2 deformation is characterized by clockwise block rotation facilitated by dextral strike-slip faults defining the northern and southern boundaries of the diffuse plate boundary zone. Most likely, D2 correlates to the Eocene change in plate motions due to convergence between North and South America, approximately 55 Ma. The youngest phase of deformation and rotation, D3, happens along the arcuate South Caribbean Deformed Belt. Since approximately 25 Ma, rotation and development of northwest trending pull-apart basins between the ABCs progressed. Northeastward motion of the Maracaibo block may also contribute to recent rotation of the island arc.
NASA Astrophysics Data System (ADS)
Pluhar, Christopher J.; Coe, Robert S.; Lewis, Jonathan C.; Monastero, Francis C.; Glen, Jonathan M. G.
2006-10-01
Pliocene lavas and sediments of Wild Horse Mesa in the Coso Range, CA exhibit clockwise vertical-axis rotation of fault-bounded blocks. This indicates localization of one strand of the Eastern California shear zone/Walker Lane Belt within a large-scale, transtensional, dextral, releasing stepover. We measured rotations paleomagnetically relative to two different reference frames. At two localities we averaged secular variation through sedimentary sections to reveal rotation or its absence relative to paleogeographic north. Where sediments are lacking we used areally-extensive lava flows from individual cooling units or short eruptive episodes to measure the relative rotation of localities by comparing their paleomagnetic remanence directions to one another. At the western edge of Wild Horse Mesa the fanglomerate member of the Coso Formation (c.a. 3 Ma) exhibits between 8.4° ± 7.8° and 26.2° ± 9.0° (two endmember models of a continuum) absolute clockwise rotation. Within Wild Horse Mesa, 3-3.5 Ma lavas at 5 different localities exhibit about 12.0° ± 4.6° (weighted mean) clockwise rotation relative to the margins of the area, a result statistically indistinguishable from the absolute rotation. Hence the segment of the Eastern California shear zone passing through Wild Horse Mesa has caused vertical axis rotation of fault-bounded blocks as part of the overall dextral shear strain. The magnitude of block rotation at Wild Horse Mesa suggests that rotation has accommodated: 1) 1.5 km of dextral shear along an azimuth of about north 30° west since ca. 3 Ma between the area's bounding faults and 2) 2 km of extension perpendicular to the Coso Wash normal fault during this same period. This corresponds to 13-25% extension across the mesa. In contrast to Wild Horse Mesa, the opposite (western) side of the trace of the Coso Wash normal fault hosts the Coso geothermal area and what Monastero et al. [F.C. Monastero, A.M. Katzenstein, J.S. Miller, J.R. Unruh, M.C. Adams, K. Richards-Dinger, The Coso geothermal field: a nascent metamorphic core complex, Geol. Soc. Amer. Bull. 117 (2005) 1534-1553.] characterize as a nascent metamorphic core complex. Consistent with upper plate disruption above a detachment, surface rocks (i.e. the upper plate of the detachment system) at the Coso geothermal area are tilted westward. However they appear to exhibit no detectable rotation. Thus, the style of block rotation may be partitioned: with clockwise vertical-axis rotation dominating in the Wild Horse Mesa and horizontal axis rotation (tilting) in the geothermal area.
NASA Astrophysics Data System (ADS)
Martín-Martín, Manuel; Estévez, Antonio; Martín-Rojas, Ivan; Guerrera, Francesco; Alcalá, Francisco J.; Serrano, Francisco; Tramontana, Mario
2018-03-01
The Agost Basin is characterized by a Miocene-Quaternary shallow marine and continental infilling controlled by the evolution of several curvilinear faults involving salt tectonics derived from Triassic rocks. From the Serravallian on, the area experienced a horizontal maximum compression with a rotation of the maximum stress axis from E-W to N-S. The resulting deformation gave rise to a strike-slip fault whose evolution is characterized progressively by three stages: (1) stepover/releasing bend with a dextral motion of blocks; (2) very close to pure horizontal compression; and (3) restraining bend with a sinistral movement of blocks. In particular, after an incipient fracturing stage, faults generated a pull-apart basin with terraced sidewall fault and graben subzones developed in the context of a dextral stepover during the lower part of late Miocene p.p. The occurrence of Triassic shales and evaporites played a fundamental role in the tectonic evolution of the study area. The salty material flowed along faults during this stage generating salt walls in root zones and salt push-up structures at the surface. During the purely compressive stage (middle part of late Miocene p.p.) the salt walls were squeezed to form extrusive mushroom-like structures. The large amount of clayish and salty material that surfaced was rapidly eroded and deposited into the basin, generating prograding fan clinoforms. The occurrence of shales and evaporites (both in the margins of the basin and in the proper infilling) favored folding of basin deposits, faulting, and the formation of rising blocks. Later, in the last stage (upper part of late Miocene p.p.), the area was affected by sinistral restraining conditions and faults must have bent to their current shape. The progressive folding of the basin and deformation of margins changed the supply points and finally caused the end of deposition and the beginning of the current erosive systems. On the basis of the interdisciplinary results, the Agost Basin can be considered a key case of the interference between salt tectonics and the evolution of strike-slip fault zones. The reconstructed model has been compared with several scaled sandbox analogical models and with some natural pull-apart basins.
Ponce, D.A.; Hildenbrand, T.G.; Jachens, R.C.
2003-01-01
The Hayward Fault, one of the most hazardous faults in northern California, trends north-northwest and extends for about 90 km along the eastern San Francisco Bay region. At numerous locations along its length, distinct and elongate gravity and magnetic anomalies correlate with mapped mafic and ultramafic rocks. The most prominent of these anomalies reflects the 16-km-long San Leandro gabbroic block. Inversion of magnetic and gravity data constrained with physical property measurements is used to define the subsurface extent of the San Leandro gabbro body and to speculate on its origin and relationship to the Hayward Fault Zone. Modeling indicates that the San Leandro gabbro body is about 3 km wide, dips about 75??-80?? northeast, and extends to a depth of at least 6 km. One of the most striking results of the modeling, which was performed independently of seismicity data, is that accurately relocated seismicity is concentrated along the western edge or stratigraphically lower bounding surface of the San Leandro gabbro. The western boundary of the San Leandro gabbro block is the base of an incomplete ophiolite sequence and represented at one time, a low-angle roof thrust related to the tectonic wedging of the Franciscan Complex. After repeated episodes of extension and attenuation, the roof thrust of this tectonic wedge was rotated to near vertical, and in places, the strike-slip Hayward Fault probably reactivated or preferentially followed this pre-existing feature. Because earthquakes concentrate near the edge of the San Leandro gabbro but tend to avoid its interior, we qualitatively explore mechanical models to explain how this massive igneous block may influence the distribution of stress. The microseismicity cluster along the western flank of the San Leandro gabbro leads us to suggest that this stressed volume may be the site of future moderate to large earthquakes. Improved understanding of the three-dimensional geometry and physical properties along the Hayward Fault will provide additional constraints on seismic hazard probability, earthquake modeling, and fault interactions that are applicable to other major strike-slip faults around the world.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamie N. Gardner: Alexis Lavine; Giday WoldeGabriel; Donathon Krier
1999-03-01
Los Alamos National Laboratory lies at the western boundary of the Rio Grande rift, a major tectonic feature of the North American Continent. Three major faults locally constitute the modem rift boundary, and each of these is potentially seismogenic. In this study we have gathered structural geologic data for the northwestern portion of Los Alamos National Laboratory through high-precision geologic mapping, conventional geologic mapping, stratigraphic studies, drilling, petrologic studies, and stereographic aerial photograph analyses. Our study area encompasses TA-55 and TA-3, where potential for seismic surface rupture is of interest, and is bounded on the north and south by themore » townsite of Los Alamos and Twomile Canyon, respectively. The study area includes parts of two of the potentially active rift boundary faults--the Pajarito and Rendija Canyon faults-that form a large graben that we name the Diamond Drive graben. The graben embraces the western part of the townsite of Los Alamos, and its southern end is in the TA-3 area where it is defined by east-southeast-trending cross faults. The cross faults are small, but they accommodate interactions between the two major fault zones and gentle tilting of structural blocks to the north into the graben. North of Los Alamos townsite, the Rendija Canyon fault is a large normal fault with about 120 feet of down-to-the-west displacement over the last 1.22 million years. South from Los Alamos townsite, the Rendija Canyon fault splays to the southwest into a broad zone of deformation. The zone of deformation is about 2,000 feet wide where it crosses Los Alamos Canyon and cuts through the Los Alamos County Landfill. Farther southwest, the fault zone is about 3,000 feet wide at the southeastern corner of TA-3 in upper Mortandad Canyon and about 5,000 feet wide in Twomile Canyon. Net down-to-the-west displacement across the entire fault zone over the last 1.22 million years decreases to the south as the fault zone broadens as follows: about 100 feet at Los Alamos Canyon, about 50 feet at upper Mortandad Canyon, and less than 30 feet at Twomile Canyon. These relations lead us to infer that the Rendija Canyon fault probably dies out just south of Twomile Canyon. In detail, the surface deformation expressed within the fault zones can be large, fairly simple normal faults, broad zones of smaller faults, largely unfaulted monocline, and faulted monocline. Our study indicates that the seismic surface rupture hazard, associated with the faults in the study area, is localized. South of the county landfill and Los Alamos Canyon, displacements on individual faults become very small, less than about 10 feet in the last 1.22 million years. Such small displacements imply that these little faults do not have much continuity along strike and in a worst-case scenario present a mean probabilistic fault displacement hazard of less than 0.67 inches in 10,000 years (Olig et al., 1998). We encourage, however, site-specific fault investigations for new construction in certain zones of our study area and that facility siting on potentially active faults be avoided.« less
NASA Astrophysics Data System (ADS)
Taylor, G.; Rost, S.; Houseman, G. A.; Hillers, G.
2017-12-01
By utilising short period surface waves present in the noise field, we can construct images of shallow structure in the Earth's upper crust: a depth-range that is usually poorly resolved in earthquake tomography. Here, we use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the North Anatolian Fault Zone (NAFZ) in the source region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends 1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We obtain maps of group velocity variation using surface wave tomography applied to short period (1- 6 s) Rayleigh and Love waves to construct high-resolution images of SV and SH-wave velocity in the upper 5 km of a 70 km x 35 km region centred on the eastern end of the fault segment that ruptured in the 1999 Izmit earthquake. The average Rayleigh wave group velocities in the region vary between 1.8 km/s at 1.5 s period, to 2.2 km/s at 6 s period. The NAFZ bifurcates into northern and southern strands in this region; both are active but only the northern strand ruptured in the 1999 event. The signatures of both the northern and southern branches of the NAFZ are clearly associated with strong gradients in seismic velocity that also denote the boundaries of major tectonic units. This observation implies that the fault zone exploits the pre-existing structure of the Intra-Pontide suture zone. To the north of the NAFZ, we observe low S-wave velocities ( 2.0 km/s) associated with the unconsolidated sediments of the Adapazari basin, and blocks of weathered terrigenous clastic sediments. To the south of the northern branch of the NAFZ in the Armutlu block, we detect higher velocities ( 2.9 km/s) associated with a shallow crystalline basement, in particular a block of metamorphosed schists and marbles that bound the northern branch of the NAFZ.
NASA Astrophysics Data System (ADS)
Delle Piane, Claudio; Giwelli, Ausama; Clennell, M. Ben; Esteban, Lionel; Nogueira Kiewiet, Melissa Cristina D.; Kiewiet, Leigh; Kager, Shane; Raimon, John
2016-10-01
We present a novel experimental approach devised to test the hydro-mechanical behaviour of different structural elements of carbonate fault rocks during experimental re-activation. Experimentally faulted core plugs were subject to triaxial tests under water saturated conditions simulating depletion processes in reservoirs. Different fault zone structural elements were created by shearing initially intact travertine blocks (nominal size: 240 × 110 × 150 mm) to a maximum displacement of 20 and 120 mm under different normal stresses. Meso-and microstructural features of these sample and the thickness to displacement ratio characteristics of their deformation zones allowed to classify them as experimentally created damage zones (displacement of 20 mm) and fault cores (displacement of 120 mm). Following direct shear testing, cylindrical plugs with diameter of 38 mm were drilled across the slip surface to be re-activated in a conventional triaxial configuration monitoring the permeability and frictional behaviour of the samples as a function of applied stress. All re-activation experiments on faulted plugs showed consistent frictional response consisting of an initial fast hardening followed by apparent yield up to a friction coefficient of approximately 0.6 attained at around 2 mm of displacement. Permeability in the re-activation experiments shows exponential decay with increasing mean effective stress. The rate of permeability decline with mean effective stress is higher in the fault core plugs than in the simulated damage zone ones. It can be concluded that the presence of gouge in un-cemented carbonate faults results in their sealing character and that leakage cannot be achieved by renewed movement on the fault plane alone, at least not within the range of slip measureable with our apparatus (i.e. approximately 7 mm of cumulative displacement). Additionally, it is shown that under sub seismic slip rates re-activated carbonate faults remain strong and no frictional weakening was observed during re-activation.
Complex thrusting at the toe of the Nankai accretionary prism, NanTroSEIZE Kumano transect
NASA Astrophysics Data System (ADS)
Moore, G. F.; Park, J.; Kodaira, S.; Kaneda, Y.
2009-12-01
Seismic reflection data collected over the past 10 years by the Institute for Research on Earth Evolution (IFREE) of Japan Agency for Marine Earth Science and Technology (JAMSTEC) image a zone of complex thrusting at the toe of the Nankai accretionary prism south of Kii Peninsula, Honshu, Japan. The frontal part of the Nankai prism west of Shionomisaki Canyon (SC) at ~136° E, including the Muroto and Ashizuri Transects off Shikoku, is generally formed of imbricate thrusts with spacing of ~ 1-3 km that dip ~25-35° landward and sole into a prominent décollement. Out-of-sequence thrusts (OOSTs) are usually restricted to the landward margin of this imbricate thrust zone. East of SC, in the Kumano Transect area, the imbricate thrust zone is bounded on its seaward edge by a frontal thrust block that is ~5-6 km wide and consists of several OOSTs. The frontal thrust dips ~5-10° under this ~2-4 km thick block, emplacing this thrust sheet over the trench floor. The number and character of thrusts within the frontal thrust block vary laterally along strike. The 2006 Kumano 3D seismic data set images details of one segment of this complex frontal thrust block. Out-of-sequence faulting has led to underplating of several smaller thrust slices and movement along oblique ramps has led to a complex pattern of faulting that cannot be recognized in even closely-spaced 2D seismic lines. The frontal thrust block is further modified by subduction of seamounts and ridges that have caused large slumps of material from the block.
Barnett, Elizabeth; Sherrod, Brian; Hughes, Jonathan F.; Kelsey, Harvey M.; Czajkowski, Jessica L.; Walsh, Timothy J.; Contreras, Trevor A.; Schermer, Elizabeth R.; Carson, Robert J.
2015-01-01
Trench and wetland coring studies show that northeast‐striking strands of the Saddle Mountain fault zone ruptured the ground about 1000 years ago, generating prominent scarps. Three conspicuous subparallel fault scarps can be traced for 15 km on Light Detection and Ranging (LiDAR) imagery, traversing the foothills of the southeast Olympic Mountains: the Saddle Mountain east fault, the Saddle Mountain west fault, and the newly identified Sund Creek fault. Uplift of the Saddle Mountain east fault scarp impounded stream flow, forming Price Lake and submerging an existing forest, thereby leaving drowned stumps still rooted in place. Stratigraphy mapped in two trenches, one across the Saddle Mountain east fault and the other across the Sund Creek fault, records one and two earthquakes, respectively, as faulting juxtaposed Miocene‐age bedrock against glacial and postglacial deposits. Although the stratigraphy demonstrates that reverse motion generated the scarps, slip indicators measured on fault surfaces suggest a component of left‐lateral slip. From trench exposures, we estimate the postglacial slip rate to be 0.2 mm/yr and between 0.7 and 3.2 mm/yr during the past 3000 years. Integrating radiocarbon data from this study with earlier Saddle Mountain fault studies into an OxCal Bayesian statistical chronology model constrains the most recent paleoearthquake age of rupture across all three Saddle Mountain faults to 1170–970 calibrated years (cal B.P.), which overlaps with the nearby Mw 7.5 1050–1020 cal B.P. Seattle fault earthquake. An earlier earthquake recorded in the Sund Creek trench exposure, dates to around 3500 cal B.P. The geometry of the Saddle Mountain faults and their near‐synchronous rupture to nearby faults 1000 years ago suggest that the Saddle Mountain fault zone forms a western boundary fault along which the fore‐arc blocks migrate northward in response to margin‐parallel shortening across the Puget Lowland.
Preliminary Geologic Map of the Hemet 7.5' Quadrangle, Riverside County, California
Morton, Douglas M.; Matti, Jon C.
2005-01-01
The Hemet 7.5' quadrangle is located near the eastern edge of the Perris block of the Peninsular Ranges batholith. The northeastern corner of the quadrangle extends across the San Jacinto Fault Zone onto the edge of the San Jacinto Mountains block. The Perris block is a relatively stable area located between the Elsinore Fault Zone on the west and the San Jacinto Fault Zone on the east. Both of the fault zones are active; the San Jacinto being the seismically most active in southern California. The fault zone is obscured by very young alluvial deposits. The concealed location of the San Jacinto Fault Zone shown on this quadrangle is after Sharp, 1967. The geology of the quadrangle is dominated by Cretaceous tonalite formerly included in the Coahuila Valley pluton of Sharp (1967). The northern part of Sharp's Coahuila Valley pluton is separated out as the Hemet pluton. Tonalite of the Hemet pluton is more heterogeneous than the tonalite of the Coahuila Valley pluton and has a different sturctural pattern. The Coahuila Valley pluton consists of relatively homogeneous hornblende-biotite tonalite, commonly with readily visible large euhedral honey-colored sphene crystals. Only the tip of the adjacent Tucalota Valley pluton, another large tonalite pluton, extends into the quadrangle. Tonalite of the Tucalota Valley pluton is very similar to the tonalite of the Coahuila Valley pluton except it generally lacks readily visible sphene. In the western part of the quadrangle a variety of amphibolite grade metasedimentary rocks are informally referred to as the rocks of Menifee Valley; named for exposures around Menifee Valley west of the Hemet quadrangle. In the southwestern corner of the quadrangle a mixture of schist and gneiss marks a suture that separated low metamorphic grade metasedimentary rocks to the west from high metamorphic grade rocks to the east. The age of these rocks is interpreted to be Triassic and the age of the suturing is about 100 Ma, essentially the same age as the adjacent Coahuila Valley pluton. Rocks within the suture zone consist of a mixture of lithologies from both sides of the suture. Gneiss, schist, and anatectic gneiss are the predominate lithologies within the rocks on the east side of the suture. Lesser amounts of metalithic greywacke and lenticular masses of black amphibolite are subordinate rock types. Biotite, biotite-sillimanite and lesser amounts of garnet-biotite-sillimanite schist and metaquartzite-metalithic greywacke lithologies occur west of the suture. Pleistocene continental beds, termed the Bautista beds occur east of the San Jacinto Fault Zone in the northeast corner of the quadrangle. Most of the Bautista beds were derived from the San Jacinto pluton that is located just to the east of the sedimentary rocks. Along the northern part of the quadrangle is the southern part of a large Holocene-late Pleistocene fan emanating from Baustista Canyon. Sediments in the Bautista fan are characterized by their content of detritus derived from amphibolite grade metasedimentary rocks located in the Bautista Canyon drainage. Between the Holocene-late Pleistocene Bautista fan and the Santa Rosa Hills is the remnant of a much older Bautista Canyon alluvial fan. A pronounced Holocene-late Pleistocene channel was developed along the south fringe of the very old alluvial fan and the Santa Rosa Hill. A now dissected late to middle Pleistocene alluvial complex was produced by the coalesced fans of Goodhart, St. Johns, and Avery canyons, and Cactus Valley. Pleistocene continental beds, termed the Bautista beds occur east of the San Jacinto Fault Zone in the northeast corner of the quadrangle. Most of the Bautista beds were derived from the San Jacinto pluton that is located just to the east of the sedimentary rocks. Along the northern part of the quadrangle is the southern part of a large Holocene-late Pleistocene fan emanating from Baustista Canyon. Sediments in the Bautista fan are characterized by
Geometric-kinematic characteristics of the main faults in the W-SW of the Lut Block (SE Iran)
NASA Astrophysics Data System (ADS)
Rashidi Boshrabadi, Ahmad; Khatib, Mohamad Mahdi; Raeesi, Mohamad; Mousavi, Seyed Morteza; Djamour, Yahya
2018-03-01
The area to the W-SW of the Lut Block in Iran has experienced numerous historical and recent destructive earthquakes. We examined a number of faults in this area that have high potential for generating destructive earthquakes. In this study a number of faults are introduced and named for the first time. These new faults are Takdar, Dehno, Suru, Hojat Abad, North Faryab, North Kahnoj, Heydarabad, Khatun Abad and South Faryab. For a group of previously known faults, their mechanism and geological offsets are investigated for the first time. This group of faults include East Nayband, West Nayband, Sardueiyeh, Dalfard, Khordum, South Jabal-e-Barez, and North Jabal-e-Barez. The N-S fault systems of Sabzevaran, Gowk, and Nayband induce slip on the E-W, NE-SW and NW-SE fault systems. The faulting patterns appear to preserve different stages of fault development. We investigated the distribution of active faults and the role that they play in accommodating tectonic strain in the SW-Lut. In the study area, the fault systems with en-echelon arrangement create structures such as restraining and releasing stepover, fault bend and pullapart basin. The main mechanism for fault growth in the region seems to be 'segment linkage of preexisting weaknesses' and also for a limited area through 'process zone'. Estimations are made for the likely magnitudes of separate or combined failure of the fault segments. Such magnitudes are used in hazard analysis of the region.
NASA Astrophysics Data System (ADS)
Bierlein, Frank P.; Betts, Peter G.
2004-09-01
In marked contrast to Palaeoproterozoic Laurentia, the location of sutures and boundaries of discrete crustal fragments amalgamated during Palaeoproterozoic formation of the North Australian Craton remain highly speculative. Interpretations of suture locations have relied heavily on the analysis of regional geophysical datasets because of sparse exposure of rocks of the appropriate age. The Mount Isa Fault Zone has been interpreted as one such Palaeoproterozoic terrane-bounding suture. Furthermore, the coincidence of this fault zone with major shale-hosted massive sulphide Pb-Zn-Ag orebodies has led to speculations that trans-lithospheric faults may be an important ingredient for the development of this deposit type. This study has integrated geophysical and geochemical data to test the statute of the Mount Isa Fault as a terrane-bounding suture. Forward modelling of gravity data shows that basement rocks on either side of the Mount Isa Fault have similar densities. These interpretations are consistent with geochemical observations and Sm-Nd data that suggest that basement lithologies on either side of the Mount Isa Fault are geochemically and isotopically indistinguishable from each other, and that the Mount Isa Fault is unlikely to represent a suture zone that separates different Palaeoproterozoic terranes. Our data indicate that the crustal blocks on both sides of the Mount Isa Fault Zone must have been in within close proximity of each other since the Palaeoproterozoic, and that the Western Fold Belt was part of the (ancestral) North Australian Craton well before the ˜1.89-1.87 Ga Barramundi Orogeny. It appears that deep crustal variations in density may be related to the boundary between a shallowly west-dipping high-density mafic to ultramafic plate and low-density basement rocks. This interpretation in turn impacts on crustal-scale models for the development of shale-hosted massive sulphide Pb-Zn mineralisation, which do not require trans-lithospheric faults to tap deep-seated metal reservoirs and/or mantle plumbing systems. The approach applied herein demonstrates the value of multi-disciplinary investigations to the critical assessment of long-lived Proterozoic fault systems which, in the absence of methodical analysis, are commonly assumed to represent terrane-bounding sutures.
Pratt, Thomas L.; Holmes, Mark; Schweig, Eugene S.; Gomberg, Joan S.; Cowan, Hugh A.
2003-01-01
High-resolution seismic reflection profiles from Limo??n Bay, Republic of Panama, were acquired as part of a seismic hazard investigation of the northern Panama Canal region. The seismic profiles image gently west and northwest dipping strata of upper Miocene Gatu??n Formation, unconformably overlain by a thin (<20 m) sequence of Holocene muds. Numerous faults, which have northeast trends where they can be correlated between seismic profiles, break the upper Miocene strata. Some of the faults have normal displacement, but on many faults, the amount and type of displacement cannot be determined. The age of displacement is constrained to be Late Miocene or younger, and regional geologic considerations suggest Pliocene movement. The faults may be part of a more extensive set of north- to northeast-trending faults and fractures in the canal region of central Panama. Low topography and the faults in the canal area may be the result of the modern regional stress field, bending of the Isthmus of Panama, shearing in eastern Panama, or minor deformation of the Panama Block above the Caribbean subduction zone. For seismic hazard analysis of the northern canal area, these faults led us to include a source zone of shallow faults proximal to northern canal facilities. ?? 2003 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Delcaillau, Bernard; Amrhar, Mostafa; Namous, Mustapha; Laville, Edgard; Pedoja, Kevin; Dugué, Olivier
2011-11-01
The Ouzzelarh Massif extends across the Marrakech High Atlas (MHA) and forms the highest elevated mountain belt. To better understand the evolution of collision-related topography, we present the results of a geomorphological study in which elevation changes generated by reactivated pre-Alpine (Variscan and Triassic-Jurassic) faults drive a landscape evolution model. We aim to evaluate the relationship between the geometry of the drainage network and the main fault systems in this region. New insight into geomorphological changes in drainage patterns and related landforms is based on geological fieldwork combined with DEM analysis. To quantitatively measure landscape features we used several classical geomorphic indices (spacing ratio, hypsometric curves and integral, stream frequency drainage, stream length-gradient). The Ouzzelarh Massif is bounded to the north by the Tizi N'Test Fault Zone (TTFZ) and to the south by the Sour Fault Zone (SFZ). These faults delimit a pop-up structure. By using the above geomorphic parameters, we ascertained that the Ouzzelarh Massif is affected by a high spatial variability of uplift. The actual landscape of the Ouzzelarh Massif reveals remnants of an uplifted ancient erosional surface and the heterogeneity of exposed rocks in the range explaining the possibility that the topographic asymmetry between north and south flanks is due to differences in lithology-controlled resistance to erosion. Drainage, topography and fault pattern all concur to show uplifted rhomboidal-shaped blocks. It exhibits high stream frequency drainage and uplift in separate tectonically-uplifted blocks such as Jebel Toubkal which is characterized by asymmetric drainage basins.
NASA Astrophysics Data System (ADS)
Hagstrum, J. T.; Wells, R. E.; Evarts, R. C.; Blakely, R. J.; Beeson, M. H.
2006-12-01
Paleomagnetic analysis of the Miocene Columbia River Basalt Group (CRBG) in the northern Willamette Valley of Oregon was undertaken as part of a larger mapping and hydrogeologic investigation of the CRBG's internal stratigraphy and structure. Differences in paleomagnetic directions between flows due to geomagnetic reversals and paleosecular variation, in combination with geochemical data, provide the most reliable means of flow identification. In addition, vertical-axis rotations between CRBG sites in the Portland area and sampling localities within the same flow units on the relatively stable Columbia Plateau were calculated. Clockwise rotations for sites within the northern Willamette Valley are remarkably consistent and have a weighted mean of 29°±3° (N=94). Available paleomagnetic data from CRBG sites along the Oregon coast at Cape Lookout (19°±22°, N=4) and Cape Foulweather (29°±18°, N=4) show similar results. East of the Portland Hills fault zone along the Columbia River Gorge, however, clockwise rotations are much less averaging 12°±3° (N=15). North of Portland, the CRBG rotational values drop abruptly from ~29° to 6°±17° (N=3) across an unnamed fault near Woodland, WA, identified using aeromagnetic data; to the south, the values drop from ~29° to 18°±3° (N=6) across the Mt. Angel-Gales Creek fault zone east of Salem, OR. The eastern boundary of the Oregon Coast Range block is thus defined by three offset NW-trending fault segments, with the offsets corresponding to the Portland and Willamette pull-apart basins. North of the Coast Range block's northern boundary, which is roughly coincident with the Columbia River, CRBG rotations also are about half that (15°±3°, N=15) found within the block. Northward movement and clockwise rotation of the Oregon Coast Range block have previously been modeled as decreasing continuously eastward to the Columbia Plateau. Our new paleomagnetic data indicate an abrupt step down of rotational values by half in the vicinity of the Portland metropolitan area, and that the Portland Hills-Clackamas River and other parallel structural zones could be the loci of larger and more dangerous strike-slip earthquakes than previously thought.
Identifying block structure in the Pacific Northwest, USA
Savage, James C.; Wells, Ray E.
2015-01-01
We have identified block structure in the Pacific Northwest (west of 116°W between 38°N and 49°N) by clustering GPS stations so that the same Euler vector approximates the velocity of each station in a cluster. Given the total number k of clusters desired, the clustering procedure finds the best assignment of stations to clusters. Clustering is calculated for k= 2 to 14. In geographic space, cluster boundaries that remain relatively stable as k is increased are tentatively identified as block boundaries. That identification is reinforced if the cluster boundary coincides with a geologic feature. Boundaries identified in northern California and Nevada are the Central Nevada Seismic Belt, the west side of the Northern Walker Lane Belt, and the Bartlett Springs Fault. Three blocks cover all of Oregon and Washington. The principal block boundary there extends west-northwest along the Brothers Fault Zone, then north and northwest along the eastern boundary of Siletzia, the accreted oceanic basement of the forearc. East of this boundary is the Intermountain block, its eastern boundary undefined. A cluster boundary at Cape Blanco subdivides the forearc along the faulted southern margin of Siletzia. South of Cape Blanco the Klamath Mountains-Basin and Range block extends east to the Central Nevada Seismic Belt and south to the Sierra Nevada-Great Valley block. The Siletzia block north of Cape Blanco coincides almost exactly with the accreted Siletz terrane. The cluster boundary in the eastern Olympic Peninsula may mark permanent shortening of Siletzia against the Intermountain block.
NASA Astrophysics Data System (ADS)
McEvilly, A.; Abimbola, A.; Chan, J. H.; Strayer, L. M.
2015-12-01
California State University, East Bay (CSUEB), located in Hayward, California, lies atop the San Leandro block (SLB) in the Hayward fault zone. The SLB is a J-K aged lithotectonic assemblage dominated by gabbro and intercalated with minor volcanics and sediments. It is bound by the subparallel northwest-trending western Hayward and eastern Chabot (CF) faults and pervasively cut by anastomosing secondary faults. The block itself is ~30 km along strike and 2-3 km wide. Previous studies suggest the block dips steeply to the northeast and extends to a depth of at least 7 km. In May of 2015, as part of an ongoing collaborative effort led by the USGS to create a 3D velocity model of the San Francisco Bay Area, researchers from CSUEB and the USGS conducted a seismic survey on the CSUEB campus. The primary goal of this pilot study was to locate the trace of the CF on the CSUEB campus and to determine bedrock depth. We deployed a 60-channel, 300m profile using 4.5Hz sensors spaced at 5m intervals. Active seismic sources were used at each geophone location. A 226kg accelerated weight-drop was used to generate P and Rayleigh waves for P-wave tomography and multichannel analysis of surface waves (MASW), and a 3.5kg sledgehammer and block were used to generate S and Love waves for S-wave tomography and multichannel analysis of Love waves (MALW). Preliminary P-wave tomography, MASW, and MALW results from this pilot study suggest the location of an eastward-dipping CF as well as the presence of a high-velocity unit at about 20m depth, presumably an unmapped sliver of bedrock from the San Leandro block. Further studies planned for the fall of 2015 include additional seismic lines and surface mapping along the Chabot fault on and near the CSUEB campus. These new geophysical, GPS, and field geological data will be integrated with LiDAR imagery and existing geological, gravity and magnetic maps to create a 3-dimensional model of the portion of the SLB that contains the CSUEB campus.
NASA Astrophysics Data System (ADS)
Horst, A. J.; Varga, R. J.; Gee, J. S.; Karson, J.
2011-12-01
Oceanic propagating rifts create migrating transform fault zones on the seafloor that leave a wake of deformed and rotated crustal blocks between abandoned transform fault stands. Faulting and rotation kinematics in these areas are inferred from bathymetric lineaments and earthquake focal mechanisms, but the details of crustal deformation associated with migrating oceanic transforms is inhibited by limited seafloor exposures and access. A similar propagating rift and migrating transform system occurs in thick oceanic-like crust of Northern Iceland, providing an additional perspective on kinematics of these systems. The Tjörnes Fracture Zone (TFZ) in Northern Iceland is a broad region of deformation thought to have formed ~7 Ma. Right-lateral motion is accommodated mostly on two WNW-trending seismically active fault zones, the Grímsey Seismic Zone and the Húsavík-Flatey Fault (HFF), spaced ~40 km apart. Both are primarily offshore; however, deformation south of the HFF is partly exposed on land over an area of >10 km (N/S) and >25 km (E/W) on the peninsula of Flateyjarskagi. Previous work has shown that average lava flow orientations progressively change from 160°/12° SW (~20 km south from HFF), to 183°/25° NW (~12 km S of HFF), and 212°/33° NW (~6 km S of HFF). Dike orientations also progressively change from 010°/85° SE (parallel to the Northern Rift Zone), clockwise to 110°/75° SW (nearly parallel to the HFF) near the HFF. Pervasive strike-slip faulting is evident along the HFF as well as on isolated faults to the south. Between these, NNE-striking left-lateral, oblique-slip faults occur near the HFF but appear to decrease in occurrence to the south. These relationships have been interpreted as either the result of transform shear deformation (secondary features) or construction in a stress field that varies as the transform is approached (primary features). Paleomagnetic data from across the area can test these hypotheses. Mean paleomagnetic remanence directions of normal polarity lavas from two areas ~6 and ~12 km south of the HFF both have easterly declinations and moderate positive inclinations, with nearly antipodal reverse directions. Dikes sampled in the area ~6 km south of HFF reveal remanence directions indistinguishable from those of the lavas at the 95% confidence level. After tilt correction, the mean remanence directions for the area ~6km south of the HFF are statistically distinct from the expected Geocentric Axial Dipole (GAD) direction suggesting an additional ~40° or more of vertical-axis rotation. Tilt-corrected remanence directions of lavas ~12 km south of the HFF are nearly coincident with the GAD suggesting little additional rotation. Geological field relations and fault-slip data imply a two-stage reconstruction involving tilting followed by approximately vertical-axis rotations. The deformation within the TFZ may be analogous to that of migrating oceanic transform faults, transform faults associated with propagating rifts, and microplates.
Evolution of the continental margin of southern Spain and the Alboran Sea
Dillon, William P.; Robb, James M.; Greene, H. Gary; Lucena, Juan Carlos
1980-01-01
Seismic reflection profiles and magnetic intensity measurements were collected across the southern continental margin of Spain and the Alboran basin between Spain and Africa. Correlation of the distinct seismic stratigraphy observed in the profiles to stratigraphic information obtained from cores at Deep Sea Drilling Project site 121 allows effective dating of tectonic events. The Alboran Sea basin occupies a zone of motion between the African and Iberian lithospheric plates that probably began to form by extension in late Miocene time (Tortonian). At the end of Miocene time (end of Messinian) profiles show that an angular unconformity was cut, and then the strata were block faulted before subsequent deposition. The erosion of the unconformity probably resulted from lowering of Mediterranean sea level by evaporation when the previous channel between the Mediterranean and Atlantic was closed. Continued extension probably caused the block faulting and, eventually the opening of the present channel to the Atlantic through the Strait of Gibraltar and the reflooding of the Mediterranean. Minor tectonic movements at the end of Calabrian time (early Pleistocene) apparently resulted in minor faulting, extensive transgression in southeastern Spain, and major changes in the sedimentary environment of the Alboran basin. Active faulting observed at five locations on seismic profiles seems to form a NNE zone of transcurrent movement across the Alboran Sea. This inferred fault trend is coincident with some bathymetric, magnetic and seismicity trends and colinear with active faults that have been mapped on-shore in Morocco and Spain. The faults were probably caused by stresses related to plate movements, and their direction was modified by inherited fractures in the lithosphere that floors the Alboran Sea.
NASA Technical Reports Server (NTRS)
Abdel-Gawad, M. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Two alternate models for the extension of the Texas zone through the Mojave Desert block have been developed: (1) along the Pisgah Line, and (2) along the eastern Transverse Ranges; this model suggests a counterclockwise rotation of the Mojave block. Analysis of S190B photographs of the western Mojave Desert provides strong evidence for the feasibility of identifying recent fault breaks.
Early Tertiary Anaconda metamorphic core complex, southwestern Montana
O'Neill, J. M.; Lonn, J.D.; Lageson, D.R.; Kunk, Michael J.
2004-01-01
A sinuous zone of gently southeast-dipping low-angle Tertiary normal faults is exposed for 100 km along the eastern margins of the Anaconda and Flint Creek ranges in southwest Montana. Faults in the zone variously place Mesoproterozoic through Paleozoic sedimentary rocks on younger Tertiary granitic rocks or on sedimentary rocks older than the overlying detached rocks. Lower plate rocks are lineated and mylonitic at the main fault and, below the mylonitic front, are cut by mylonitic mesoscopic to microscopic shear zones. The upper plate consists of an imbricate stack of younger-on-older sedimentary rocks that are locally mylonitic at the main, lowermost detachment fault but are characteristically strongly brecciated or broken. Kinematic indicators in the lineated mylonite indicate tectonic transport to the east-southeast. Syntectonic sedimentary breccia and coarse conglomerate derived solely from upper plate rocks were deposited locally on top of hanging-wall rocks in low-lying areas between fault blocks and breccia zones. Muscovite occurs locally as mica fish in mylonitic quartzites at or near the main detachment. The 40Ar/39Ar age spectrum obtained from muscovite in one mylonitic quartzite yielded an age of 47.2 + 0.14 Ma, interpreted to be the age of mylonitization. The fault zone is interpreted as a detachment fault that bounds a metamorphic core complex, here termed the Anaconda metamorphic core complex, similar in age and character to the Bitterroot mylonite that bounds the Bitterroot metamorphic core complex along the Idaho-Montana state line 100 km to the west. The Bitterroot and Anaconda core complexes are likely components of a continuous, tectonically integrated system. Recognition of this core complex expands the region of known early Tertiary brittle-ductile crustal extension eastward into areas of profound Late Cretaceous contractile deformation characterized by complex structural interactions between the overthrust belt and Laramide basement uplifts, overprinted by late Tertiary Basin and Range faulting. ?? 2004 NRC Canada.
Correlation between deep fluids, tremor and creep along the central San Andreas fault
Becken, M.; Ritter, O.; Bedrosian, P.A.; Weckmann, U.
2011-01-01
The seismicity pattern along the San Andreas fault near Parkfield and Cholame, California, varies distinctly over a length of only fifty kilometres. Within the brittle crust, the presence of frictionally weak minerals, fault-weakening high fluid pressures and chemical weakening are considered possible causes of an anomalously weak fault northwest of Parkfield. Non-volcanic tremor from lower-crustal and upper-mantle depths is most pronounced about thirty kilometres southeast of Parkfield and is thought to be associated with high pore-fluid pressures at depth. Here we present geophysical evidence of fluids migrating into the creeping section of the San Andreas fault that seem to originate in the region of the uppermost mantle that also stimulates tremor, and evidence that along-strike variations in tremor activity and amplitude are related to strength variations in the lower crust and upper mantle. Interconnected fluids can explain a deep zone of anomalously low electrical resistivity that has been imaged by magnetotelluric data southwest of the Parkfield-Cholame segment. Near Cholame, where fluids seem to be trapped below a high-resistivity cap, tremor concentrates adjacent to the inferred fluids within a mechanically strong zone of high resistivity. By contrast, subvertical zones of low resistivity breach the entire crust near the drill hole of the San Andreas Fault Observatory at Depth, northwest of Parkfield, and imply pathways for deep fluids into the eastern fault block, coincident with a mechanically weak crust and the lower tremor amplitudes in the lower crust. Fluid influx to the fault system is consistent with hypotheses of fault-weakening high fluid pressures in the brittle crust.
NASA Astrophysics Data System (ADS)
Fattahi, Heresh; Amelung, Falk
2016-08-01
We use 2004-2011 Envisat synthetic aperture radar imagery and InSAR time series methods to estimate the contemporary rates of strain accumulation in the Chaman Fault system in Pakistan and Afghanistan. At 29 N we find long-term slip rates of 16 ± 2.3 mm/yr for the Ghazaband Fault and of 8 ± 3.1 mm/yr for the Chaman Fault. This makes the Ghazaband Fault one of the most hazardous faults of the plate boundary zone. We further identify a 340 km long segment displaying aseismic surface creep along the Chaman Fault, with maximum surface creep rate of 8.1 ± 2 mm/yr. The observation that the Chaman Fault accommodates only 30% of the relative plate motion between India and Eurasia implies that the remainder is accommodated south and east of the Katawaz block microplate.
Ross, Donald C.
1972-01-01
This petrographic and chemical study is based on reconnaissance sampling of granitic and related gneissic rock in the California Coast and Transverse Ranges. In the Coast Ranges, granitic rocks are restricted to an elongate belt, the Salinian block, between the San Andreas and Sur-Nacimiento fault zones. These rocks have a considerable compositional range, but are dominantly quartz monzonite and granodiorite. Moist of the Salinian block seems to be a structurally coherent basement block of chemically related granitic rocks. However, on both the east and the west sides of the block, gneiss crops out in abundance; these rocks may be structurally separate from the main part of the Salinian block. In the Transverse Ranges, the granitic and related rocks are dominantly of granodiorite composition, and in many areas granitic and gneissic rocks are intimately intermixed.Chemically the rocks of the California Coast and Transverse Ranges are somewhat intermediate in character between those of the east-central part of the Sierra Nevada batholith and those of the western part of the Sierra Nevada batholith and the southern California batholith. Probably the closest similarity is to the east-central Sierra Nevada rocks, but the rocks of the Coast and Transverse Ranges are somewhat higher in Al2O3 and lower in K2O than Sierran rocks of the comparable SiO2 content.Granitic basement rocks of the Salinian block are now anomalously sandwiched between Franciscan terranes. The petrographic and chemical data are compatible with the concept that the Salinian rocks were originally part of the great batholithic belt along the west coast, which is exemplified by the Sierra Nevada hatholith. It also seems most likely that the Salinian block was transported from somewhere south of the Sierra Nevada batholith by large-scale right-lateral movement along the San Andreas fault zone.
Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada
Day, Warren C.; Dickerson, Robert P.; Potter, Christopher J.; Sweetkind, Donald S.; San Juan, Carma A.; Drake, Ronald M.; Fridrich, Christopher J.
1998-01-01
Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections of the southwestern Great Basin.Excluding Quaternary surficial deposits, the map area is underlain by Miocene volcanic rocks, principally ash-flow tuffs with lesser amounts of lava flows. These volcanic units include the Crater Flat Group, the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group, as well as minor basaltic dikes. The tuffs and lava flows are predominantly rhyolite with lesser amounts of latite and range in age from 13.4 to 11.6 Ma. The 10-Ma basaltic dikes intruded along a few fault traces in the north-central part of the study area. Fault types in the area can be classified as block bounding, relay structures, strike slip, and intrablock. The block-bounding faults separate the 1- to 4-km-wide, east-dipping structural blocks and exhibit hundreds of meters of displacement. The relay structures are northwest-striking normal fault zones that kinematically link the block-bounding faults. The strike-slip faults are steep, northwest-striking dextral faults located in the northern part of Yucca Mountain. The intrablock faults are modest faults of limited offset (tens of meters) and trace length (less than 7 km) that accommodated intrablock deformation.The concept of structural domains provides a useful tool in delineating and describing variations in structural style. Domains are defined across the study area on the basis of the relative amount of internal faulting, style of deformation, and stratal dips. In general, there is a systematic north to south increase in extensional deformation as recorded in the amount of offset along the block-bounding faults as well as an increase in the intrablock faulting.The rocks in the map area had a protracted history of Tertiary extension. Rocks of the Paintbrush Group cover much of the area and obscure evidence for older tectonism. An earlier history of Tertiary extension can be inferred, however, because the Timber Mountain-Oasis Valley caldera complex lies within and cuts an older north-trending rift (the Kawich-Greenwater rift}. Evidence for deformation during eruption of the Paintbrush Group is locally present as growth structures. Post-Paintbrush Group, pre-Timber Mountain Group extension occurred along the block-bounding faults. The basal contact of the 11.6-Ma Rainier Mesa Tuff of the Timber Mountain Group provides a key time horizon throughout the area. Other workers have shown that west of the study area in northern Crater Flat the basal angular unconformity is as much as 20° between the Rainier Mesa and underlying Paintbrush Group rocks. In the westernmost part of the study area the unconformity is smaller (less than 10°), whereas in the central and eastern parts of the map area the contact is essentially conformable. In the central part of the map the Rainier Mesa Tuff laps over fault splays within the Solitario Canyon fault zone. However, displacement did occur on the block-bounding faults after deposition of the Rainier Mesa Tuff inasmuch as it is locally caught up in the hanging-wall deformation of the block-bounding faults. Therefore, the regional Tertiary to Recent extension was protracted, occurring prior to and after the eruption of the tuffs exposed at Yucca Mountain.
Cascadia subduction tremor muted by crustal faults
Wells, Ray; Blakely, Richard J.; Wech, Aaron G.; McCrory, Patricia A.; Michael, Andrew
2017-01-01
Deep, episodic slow slip on the Cascadia subduction megathrust of western North America is accompanied by low-frequency tremor in a zone of high fluid pressure between 30 and 40 km depth. Tremor density (tremor epicenters per square kilometer) varies along strike, and lower tremor density statistically correlates with upper plate faults that accommodate northward motion and rotation of forearc blocks. Upper plate earthquakes occur to 35 km depth beneath the faults. We suggest that the faults extend to the overpressured megathrust, where they provide fracture pathways for fluid escape into the upper plate. This locally reduces megathrust fluid pressure and tremor occurrence beneath the faults. Damping of tremor and related slow slip caused by fluid escape could affect fault properties of the megathrust, possibly influencing the behavior of great earthquakes.
Seismic and Tectonic Regionalization of the State of Michoacan.
NASA Astrophysics Data System (ADS)
Vazquez Rosas, R.; Aguirre, J.; Garduño-Monroy, V. H.; Ramirez-Guzman, L.
2017-12-01
In Mexico it is a country with seismically active regions, mainly the zones that are next to the pacific where the zone of subduction is located, in this work we focus on the state of Michoacán, since this has not been completely studied in the last 30 years after the earthquake in Michoacán in 1985. The first most important step is to know the region which are the most seismic zones within the state and one way is to carry out the regionalization of Michoacán identifying the sources of earthquakes as well as where occur more frequently.If we could know each of the factors that influence seismicity and describe every point of the terrain, every rupture, every rock, etc., then we could describe in an analytical way the seismic process and predict the occurrence of earthquakes such as eclipses. Unfortunately the number of parameters is so enormous that we cannot arrive at an exact description; however, we can take advantage of statistical properties to evaluate probabilities, even in the case of small systems such as a particular seismic zone.In this paper, epicenter data were collected from 1970 to 2014, and with them a statistical study was carried out and the epicenter data plotted using data reported by the National Seismological Service and the IRIS catalog as well as some data from the Institute of engineering UNAM. Where earthquakes of equal and greater than M = 4 were used. Graphing these in function with the depth and with that it was graficaron and was made an overlapping the faults of the state and with that it was divided in 4 seismic zones in function of the faults and the localized seismicity.Zone A. is located within the Michoacán Block set of faults, as well as part of the subduction zone on the coast of the state. Seismicity in this area is high. Zone B-1. This is located between the limits of Jalisco and Michoacán in the set of faults called Tepalcatepec depression and limits with the Jorullo-Tacámbaro fracture. At this site seismicity is relatively moderate. The Zone B-2 is located in the limits of Michoacán and Guerrero, within the fault complex Michoacán Oaxaca, and the faults Zitzio and Villa de Santiago. With relatively moderate seismicity. Zone C This zone is located in the limits of Guanajuato, Querétaro and State of Mexico, within the Acambay fault complex and the Morelia fault system. With relatively low seismicity.
Overview of the Kinematics of the Salton Trough and Northern Gulf of California
NASA Astrophysics Data System (ADS)
Stock, J. M.
2016-12-01
In the Salton Trough and Northern Gulf of California, transtensional rifting is leading to full continental plate breakup, as a major continental block is being transferred to an oceanic plate. Since at least 6 Ma this region has taken up most of the plate boundary slip between the Pacific and North America plates at this latitude. We review the structural history of plate separation, as constrained by many recent studies of present and past fault configurations, seismicity, and basin development as seen from geology and geophysics. Modern activity in the USA is dominated by NW-striking strike-slip faults (San Andreas, San Jacinto, Elsinore), and subsidiary NE-striking faults. There is an equally broad zone in Mexico (faults from the Mexicali Valley to the Colorado River Delta and bounding the Laguna Salada basin), including active low-angle detachment faults. In both areas, shifts in fault activity are indicated by buried faults and exhumed or buried earlier basin strata. Seismicity defines 3 basin segments in the N Gulf: Consag-Wagner, Upper Delfin, and Lower Delfin, but localization is incomplete. These basins occupy a broad zone of modern deformation, lacking single transform faults, although major strike-slip faults formed in the surrounding continental area. The off-boundary deformation on the western side of the plate boundary has changed with time, as seen by Holocene and Quaternary faults controlling modern basins in the Gulf Extensional Province of NE Baja California, and stranded Pliocene continental and marine basin strata in subaerial fault blocks. The eastern side of the plate boundary, in the shallow northeastern Gulf, contains major NW-striking faults that may have dominated the earlier (latest Miocene-early Pliocene) kinematics. The Sonoran coastal plain likely buries additional older faults and basin sequences; further studies here are needed to refine models of the earlier structural development of this sector. Despite > 250 km of plate separation, and production of new crustal area in these segments of the plate boundary, the deformation is not considered to be fully localized because some occurs outside the region of new crustal formation. Similar scenarios may need to be considered when evaluating continent-ocean transitions in other rift systems.
NASA Astrophysics Data System (ADS)
Hirauchi, K.
2006-12-01
Serpentinite bodies, zonally occurring as a component of fault zones, without any association with ophiolitic rocks might be a mantle in origin tectonically intruded from a considerable depth. Typical occurrences of serpentinites that experienced a unique emplacement process different from surrounding rocks are found in the Sand Dollar Beach, Gorda, California. The serpentinite bodies are widely outcropped in the Franciscan Complex. All the serpentinites exhibit a block-in-matrix fabric, the blocks of which are classified into either massive or schistose types. The former retains relict minerals such as olivine, orthopyroxene and clinopyroxene and chromian spinel, and has serpentine minerals (lizardite and chrysotile) of mesh texture and bastite. The latter is characterized by ribbon textures as ductilely deformed mesh textures. The matrix is composed of aligned tabular lizardite, penetrating into the interior core of the blocks. The schistosities in the blocks and the attitude of the foliated matrix are both consistent with the elongate direction of the larger serpentinite bodies. The massive mesh textures is converted by the schistose ribbon textures with ductile deformation, further penetrated by tabular lizardite of the matrix. These series of the continuous deformation and recrystallization may occur along a regional deep fault zone, after undergoing partial serpentinization at lower crust and upper mantle.
NASA Astrophysics Data System (ADS)
Staller, A.; Benito, B.; Martínez-Díaz, J.; Hernández, D.; Hernández-Rey, R.
2013-05-01
El Salvador, Central America, is part of the Chortis block in the northwestern boundary of the Caribbean plate. This block is interacting with a diffuse triple junction point with the Cocos and North American plates. Among the structures that cut the Miocene to Pleistocene volcanic deposits stands out the El Salvador Fault Zone (ESFZ): It is oriented in N90-100E direction, and it is composed of several structural segments that deform Quaternary deposits with right-lateral and oblique slip motions. The ESFZ is seismically active and capable of producing earthquakes such as the February 13, 2001 with Mw 6.6 (Martínez-Díaz et al., 2004), that seriously affected the population, leaving many casualties. This structure plays an important role in the tectonics of the Chortis block, since its motion is directly related to the drift of the Caribbean plate to the east and not with the partitioning of the deformation of the Cocos subduction (here not coupled) (Álvarez-Gómez et al., 2008). Together with the volcanic arc of El Salvador, this zone constitutes a weakness area that allows the motion of forearc block toward the NW. The geometry and the degree of activity of the ESFZ are not studied enough. However their knowledge is essential to understand the seismic hazard associated to this important seismogenic structure. For this reason, since 2007 a GPS dense network was established along the ESFZ (ZFESNet) in order to obtain GPS velocity measurements which are later used to explain the nature of strain accumulation on major faults along the ESFZ. The current work aims at understanding active crustal deformation of the ESFZ through kinematic model. The results provide significant information to be included in a new estimation of seismic hazard taking into account the major structures in ESFZ.
NASA Astrophysics Data System (ADS)
Staller, Alejandra; Benito, Belen; Jesús Martínez-Díaz, José; Hernández, Douglas; Hernández-Rey, Román; Alonso-Henar, Jorge
2014-05-01
El Salvador, Central America, is part of the Chortis block in the northwestern boundary of the Caribbean plate. This block is interacting with a diffuse triple junction point with the Cocos and North American plates. Among the structures that cut the Miocene to Pleistocene volcanic deposits stands out the El Salvador Fault Zone (ESFZ): It is oriented in N90º-100ºE direction, and it is composed of several structural segments that deform Quaternary deposits with right-lateral and oblique slip motions. The ESFZ is seismically active and capable of producing earthquakes such as the February 13, 2001 with Mw 6.6 (Martínez-Díaz et al., 2004), that seriously affected the population, leaving many casualties. This structure plays an important role in the tectonics of the Chortis block, since its motion is directly related to the drift of the Caribbean plate to the east and not with the partitioning of the deformation of the Cocos subduction (here not coupled) (Álvarez-Gómez et al., 2008). Together with the volcanic arc of El Salvador, this zone constitutes a weakness area that allows the motion of forearc block toward the NW. The geometry and the degree of activity of the ESFZ are not studied enough. However their knowledge is essential to understand the seismic hazard associated to this important seismogenic structure. For this reason, since 2007 a GPS dense network was established along the ESFZ (ZFESNet) in order to obtain GPS velocity measurements which are later used to explain the nature of strain accumulation on major faults along the ESFZ. The current work aims at understanding active crustal deformation of the ESFZ through kinematic model. The results provide significant information to be included in a new estimation of seismic hazard taking into account the major structures in ESFZ.
Plafter, George
1967-01-01
Two reverse faults on southwestern Montague Island in Prince William Sound were reactivated during the earthquake of March 27, 1964. New fault scarps, fissures, cracks, and flexures appeared in bedrock and unconsolidated surficial deposits along or near the fault traces. Average strike of the faults is between N. 37° E. and N. 47° E.; they dip northwest at angles ranging from 50° to 85°. The dominant motion was dip slip; the blocks northwest of the reactivated faults were relatively upthrown, and both blocks were upthrown relative to sea level. No other earthquake faults have been found on land. The Patton Bay fault on land is a complex system of en echelon strands marked by a series of spectacular landslides along the scarp and (or) by a zone of fissures and flexures on the upthrown block that locally is as much as 3,000 feet wide. The fault can be traced on land for 22 miles, and it has been mapped on the sea floor to the southwest of Montague Island an additional 17 miles. The maximum measured vertical component of slip is 20 to 23 feet and the maximum indicated dip slip is about 26 feet. A left-lateral strike-slip component of less than 2 feet occurs near the southern end of the fault on land where its strike changes from northeast to north. Indirect evidence from the seismic sea waves and aftershocks associated with the earthquake, and from the distribution of submarine scarps, suggests that the faulting on and near Montague Island occurred at the northeastern end of a reactivated submarine fault system that may extend discontinuously for more than 300 miles from Montague Island to the area offshore of the southeast coast of Kodiak Island. The Hanning Bay fault is a minor rupture only 4 miles long that is marked by an exceptionally well defined almost continuous scarp. The maximum measured vertical component of slip is 16⅓ feet near the midpoint, and the indicated dip slip is about 20 feet. There is a maximum left-lateral strike-slip component of one-half foot near the southern end of the scarp. Warping and extension cracking occurred in bedrock near the midpoint on the upthrown block within about 1,000 feet of the fault scarp. The reverse faults on Montague Island and their postulated submarine extensions lie within a tectonically important narrow zone of crustal attenuation and maximum uplift associated with the earthquake. However, there are no significant lithologic differences in the rock sequences across these faults to suggest that they form major tectonic boundaries. Their spatial distribution relative to the regional uplift associated with the earthquake, the earthquake focal region, and the epicenter of the main shock suggest that they are probably subsidiary features rather than the causative faults along which the earthquake originated. Approximately 70 percent of the new breakage along the Patton Bay and the Hanning Bay faults on Montague Island was along obvious preexisting active fault traces. The estimated ages of undisturbed trees on and near the fault trace indicate that no major disc placement had occurred on these faults for at least 150 to 300 years before the 1964 earthquake.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Severson, L.K.
1987-05-01
Eight seismic reflection profiles (285 km total length) from the Imperial Valley, California, were provided to CALCRUST for reprocessing and interpretation. Two profiles were located along the western margin of the valley, five profiles were situated along the eastern margin and one traversed the deepest portion of the basin. These data reveal that the central basin contains a wedge of highly faulted sediments that thins to the east. Most of the faulting is strike-slip but there is evidence for block rotations on the scale of 5 to 10 kilometers within the Brawley Seismic Zone. These lines provide insight into themore » nature of the east and west edges of the Imperial Valley. The basement at the northwestern margin of the valley, to the north of the Superstition Hills, has been normal-faulted and blocks of basement material have ''calved'' into the trough. A blanket of sediments has been deposited on this margin. To the south of the Superstition Hills and Superstition Mountain, the top of the basement is a detachment surface that dips gently into the basin. This margin is also covered by a thick sequence sediments. The basement of the eastern margin consists of metamorphic rocks of the upper plate of the Chocolate Mountain Thrust system underlain by the Orocopia Schist. These rocks dip to the southeast and extend westward to the Sand Hills Fault but do not appear to cross it. Thus, the Sand Hills Fault is interpreted to be the southern extension of the San Andreas Fault. North of the Sand Hills Fault the East Highline Canal seismicity lineament is associated with a strike-slip fault and is probably linked to the Sand Hills Fault. Six geothermal areas crossed by these lines, in agreement with previous studies of geothermal reservoirs, are associated with ''faded'' zones, Bouguer gravity and heat flow maxima, and with higher seismic velocities than surrounding terranes.« less
Role of Transtension in Rifting at the Pacific-North America Plate Boundary
NASA Astrophysics Data System (ADS)
Stock, J. M.
2011-12-01
Transtensional plate motion can be accommodated either in a localized zone of transtensional rifting or over a broader region. Broader zones of deformation can be classified either as diffuse deformation or strain partitioning (one or more major strike-slip shear zones geographically offset from a region of a extensional faulting). The Pacific-North America plate boundary in southwestern North America was transtensional during much of its history and has exhibited the full range of these behaviors at different spatial scales and in different locations, as recorded by fault motions and paleomagnetic rotations. Here we focus on the northern Gulf of California part of the plate boundary (Upper and Lower Delfin basin segments), which has been in a zone of transtensional Pacific-North America plate boundary motion ever since the middle Miocene demise of adjacent Farallon-derived microplates. Prior to the middle Miocene, during the time of microplate activity, this sector of North America experienced basin-and-range normal faults (core complexes) in Sonora. However there is no evidence of continued extensional faulting nor of a Gulf-related topographic depression until after ca 12 Ma when a major ignimbrite (Tuff of San Felipe/ Ignimbrite of Hermosillo) was deposited across the entire region of the future Gulf of California rift in this sector. After 12 Ma, faults disrupted this marker bed in eastern Baja California and western Sonora, and some major NNW-striking right-lateral faults are inferred to have developed near the Sonoran coast causing offset of some of the volcanic facies. However, there are major tectonic rotations of the volcanic rocks in NE Baja California between 12 and 6 Ma, suggesting that the plate boundary motion was still occurring over a broad region. By contrast, after about 6 Ma, diminished rotations in latest Miocene and Pliocene volcanic rocks, as well as fault slip histories, show that plate boundary deformation became localized to a narrower transtensional zone of long offset strike-slip faults and intervening basins (the modern Gulf of California basin and transform fault system). Within and adjacent to this zone the fault patterns continued to evolve, with new plate boundary strike-slip faults breaking into previously intact blocks of continent. These new strike-slip faults were not accompanied by any widespread zones of tectonic rotation. This suggests that if widespread rotations are occurring, plate boundary transtension has not yet localized and the strike-slip faults are not yet accommodating most of the plate boundary slip. The cessation of widespread and significant vertical axis rotations could indicate strain localization and the increasing importance of throughgoing strike-slip faults (a precursor to fully oceanic rifting) along a transtensional plate boundary.
1981-03-24
north-south trending alluvial basin. The Wah Wah Mountains to the east consist principally of Paleozoic limestones, dolomites , and quartzites with minor...zone of fracture along which there has been displacement. FAULT BLOCK MOUNTAINS - Mountains that are formed by normal faulting in which the surface...sample (ASTM D 2850-70). To conduct the test, a cylindrical specimen of soil is surrounded by a fluid in a pressure chamber and subjected to an isotropic
1981-06-30
Range both consist of Paleozoic limestone and dolomite overlain by Tertiary ash-flow tuffs and undiffer- entiated volcanic rocks. The central portion...andesite, detrital material, volcanic tuff, pumice). FAULT - A plane or zone of fracture along which there has been * I displacement. FAULT BLOCK...D2850-70). To conduct the test, a cylindrical specimen of soil is surrounded by a fluid in a pressure chamber and subjected to an isotropic pressure . An
NASA Astrophysics Data System (ADS)
Steely, A.; Hourigan, J. K.; Mere, A.; Orme, D. A.; Ooms, J.; Gallagher, C.
2016-12-01
We use two new datasets to constrain the Late Cretaceous through modern history of vertical deformation in the Santa Lucia range of the central California coast to better understand the tectonic evolution of the plate boundary between the San Andreas fault and San Gregorio-Hosgri fault (SGHF). New data presented here include 46 apatite and 31 zircon (U-Th)/He ages and 1,200 elevation measurements of the first marine terrace (presumably the MIS 5a or 5e terrace) along 190 km of coastline. The San Gregorio-Hosgri fault (SGHF) initiated in the late Miocene and appears to have asymmetrically focused exhumation on its NE side. Apatite ages are 1.5-4 Ma directly NE of the fault in both crystalline and Franciscan bedrock, but 20-60 Ma older directly SW of the fault or >5 km NE of the fault; zircon ages reflect a similar pattern and are as young as 8 Ma directly NE of the fault. These data appear to show that bedrock exhumation has been highly focused in narrow fault slivers parallel and subparallel to the SGHF and has been sufficient to exhume apatite and zircon from below their partial retention zones. We suggest that this focusing may occur along pre-existing weak faults in crustal blocks with shallow (<10 km) underplated schist—a rheologic feature of the Salinian bedrock in the Santa Lucia range not found in the surrounding crustal blocks. Surveys of the lowest marine terrace south from Monterey and northwest from Santa Cruz show a similar asymmetric pattern of increasing elevation towards the SGHF. The terrace south of Monterey rises gently from 5 m to 20 m above MSL obliquely southward toward the fault. After crossing into one of the highly exhumed crustal blocks, the terrace rises sharply to over 84 m and then drops sharply after crossing the fault zone. Inferred uplift rates from the late Quaternary (0.7-1.1 mm/yr) are higher than those during the main late Miocene-Pliocene phase of activity on the SGHF ( 0.3 mm/yr). This is puzzling in light of the low rates of modern seismicity along the SGHF and the lack of large late Quaternary horizontal offset and may suggest that the SGHF along the Santa Lucia range is more active (or active in a different way) than previously thought.
NASA Astrophysics Data System (ADS)
Ruzhich, Valery V.; Psakhie, Sergey G.; Levina, Elena A.; Shilko, Evgeny V.; Grigoriev, Alexandr S.
2017-12-01
In the paper we briefly outline the experience in forecasting catastrophic earthquakes and the general problems in ensuring seismic safety. The purpose of our long-term research is the development and improvement of the methods of man-caused impacts on large-scale fault segments to safely reduce the negative effect of seismodynamic failure. Various laboratory and large-scale field experiments were carried out in the segments of tectonic faults in Baikal rift zone and in main cracks in block-structured ice cove of Lake Baikal using the developed measuring systems and special software for identification and treatment of deformation response of faulty segments to man-caused impacts. The results of the study let us to ground the necessity of development of servo-controlled technologies, which are able to provide changing the shear resistance and deformation regime of fault zone segments by applying vibrational and pulse triggering impacts. We suppose that the use of triggering impacts in highly stressed segments of active faults will promote transferring the geodynamic state of these segments from a metastable to a more stable and safe state.
Seismic Hazard Analysis for Armenia and its Surrounding Areas
NASA Astrophysics Data System (ADS)
Klein, E.; Shen-Tu, B.; Mahdyiar, M.; Karakhanyan, A.; Pagani, M.; Weatherill, G.; Gee, R. C.
2017-12-01
The Republic of Armenia is located within the central part of a large, 800 km wide, intracontinental collision zone between the Arabian and Eurasian plates. Active deformation occurs along numerous structures in the form of faulting, folding, and volcanism distributed throughout the entire zone from the Bitlis-Zargos suture belt to the Greater Caucasus Mountains and between the relatively rigid Back Sea and Caspian Sea blocks without any single structure that can be claimed as predominant. In recent years, significant work has been done on mapping active faults, compiling and reviewing historic and paleoseismological studies in the region, especially in Armenia; these recent research contributions have greatly improved our understanding of the seismogenic sources and their characteristics. In this study we performed a seismic hazard analysis for Armenia and its surrounding areas using the latest detailed geological and paleoseismological information on active faults, strain rates estimated from kinematic modeling of GPS data and all available historic earthquake data. The seismic source model uses a combination of characteristic earthquake and gridded seismicity models to take advantage of the detailed knowledge of the known faults while acknowledging the distributed deformation and regional tectonic environment of the collision zone. In addition, the fault model considers earthquake ruptures that include single and multi-segment or fault rupture scenarios with earthquakes that can rupture any part of a multiple segment fault zone. The ground motion model uses a set of ground motion prediction equations (GMPE) selected from a pool of GMPEs based on the assessment of each GMPE against the available strong motion data in the region. The hazard is computed in the GEM's OpenQuake engine. We will present final hazard results and discuss the uncertainties associated with various input data and their impact on the hazard at various locations.
NASA Astrophysics Data System (ADS)
Li, Zefeng; Peng, Zhigang
2016-06-01
Fault zone head waves (FZHWs) are observed along major strike-slip faults and can provide high-resolution imaging of fault interface properties at seismogenic depth. In this paper, we present a new method to automatically detect FZHWs and pick direct P waves secondary arrivals (DWSAs). The algorithm identifies FZHWs by computing the amplitude ratios between the potential FZHWs and DSWAs. The polarities, polarizations and characteristic periods of FZHWs and DSWAs are then used to refine the picks or evaluate the pick quality. We apply the method to the Parkfield section of the San Andreas Fault where FZHWs have been identified before by manual picks. We compare results from automatically and manually picked arrivals and find general agreement between them. The obtained velocity contrast at Parkfield is generally 5-10 per cent near Middle Mountain while it decreases below 5 per cent near Gold Hill. We also find many FZHWs recorded by the stations within 1 km of the background seismicity (i.e. the Southwest Fracture Zone) that have not been reported before. These FZHWs could be generated within a relatively wide low velocity zone sandwiched between the fast Salinian block on the southwest side and the slow Franciscan Mélange on the northeast side. Station FROB on the southwest (fast) side also recorded a small portion of weak precursory signals before sharp P waves. However, the polarities of weak signals are consistent with the right-lateral strike-slip mechanisms, suggesting that they are unlikely genuine FZHW signals.
Slemmons, D.B.; Wormer, D.V.; Bell, E.J.; Silberman, M.L.
1979-01-01
This review of geological, seismological, geochronological and paleobotanical data is made to compare historic and geologic rates and styles of deformation of the Sierra Nevada and western Basin and Range Provinces. The main uplift of this region began about 17 m.y. ago, with slow uplift of the central Sierra Nevada summit region at rates estimated at about 0.012 mm/yr and of western Basin and Range Province at about 0.01 mm/yr. Many Mesozoic faults of the Foothills fault system were reactivated with normal slip in mid-Tertiary time and have continued to be active with slow slip rates. Sparse data indicate acceleration of rates of uplift and faulting during the Late Cenozoic. The Basin and Range faulting appears to have extended westward during this period with a reduction in width of the Sierra Nevada. The eastern boundary zone of the Sierra Nevada has an irregular en-echelon pattern of normal and right-oblique faults. The area between the Sierra Nevada and the Walker Lane is a complex zone of irregular patterns of ho??rst and graben blocks and conjugate normal-to right- and left-slip faults of NW and NE trend, respectively. The Walker Lane has at least five main strands near Walker Lake, with total right-slip separation estimated at 48 km. The NE-trending left-slip faults are much shorter than the Walker Lane fault zone and have maximum separations of no more than a few kilometers. Examples include the 1948 and 1966 fault zone northeast of Truckee, California, the Olinghouse fault (Part III) and possibly the almost 200-km-long Carson Lineament. Historic geologic evidence of faulting, seismologic evidence for focal mechanisms, geodetic measurements and strain measurements confirm continued regional uplift and tilting of the Sierra Nevada, with minor internal local faulting and deformation, smaller uplift of the western Basin and Range Province, conjugate focal mechanisms for faults of diverse orientations and types, and a NS to NE-SW compression axis (??1) and an EW to NW-SE extension axis (??3). ?? 1979.
Grauch, V.J.S.; Drenth, Benjamin J.
2009-01-01
High-resolution aeromagnetic data were acquired over the town of Poncha Springs and areas to the northwest to image faults, especially where they are concealed. Because this area has known hot springs, faults or fault intersections at depth can provide pathways for upward migration of geothermal fluids or concentrate fracturing that enhances permeability. Thus, mapping concealed faults provides a focus for follow-up geothermal studies. Fault interpretation was accomplished by synthesizing interpretative maps derived from several different analytical methods, along with preliminary depth estimates. Faults were interpreted along linear aeromagnetic anomalies and breaks in anomaly patterns. Many linear features correspond to topographic features, such as drainages. A few of these are inferred to be fault-related. The interpreted faults show an overall pattern of criss-crossing fault zones, some of which appear to step over where they cross. Faults mapped by geologists suggest similar crossing patterns in exposed rocks along the mountain front. In low-lying areas, interpreted faults show zones of west-northwest-, north-, and northwest-striking faults that cross ~3 km (~2 mi) west-northwest of the town of Poncha Springs. More easterly striking faults extend east from this juncture. The associated aeromagnetic anomalies are likely caused by magnetic contrasts associated with faulted sediments that are concealed less than 200 m (656 ft) below the valley floor. The faults may involve basement rocks at greater depth as well. A relatively shallow (<300 m or <984 ft), faulted basement block is indicated under basin-fill sediments just north of the hot springs and south of the town of Poncha Springs.
New Insights into the present-day kinematics of the central and western Papua New Guinea from GPS
NASA Astrophysics Data System (ADS)
Koulali, A.; Tregoning, P.; McClusky, S.; Stanaway, R.; Wallace, L.; Lister, G.
2015-08-01
New Guinea is a region characterized by rapid oblique convergence between the Pacific and Australian tectonic plates. The detailed tectonics of the region, including the partitioning of relative block motions and fault slip rates within this complex boundary plate boundary zone are still not well understood. In this study, we quantify the distribution of the deformation throughout the central and western parts of Papua New Guinea (PNG) using 20 yr of GPS data (1993-2014). We use an elastic block model to invert the regional GPS velocities as well as earthquake slip vectors for the location and rotation rates of microplate Euler poles as well as fault slip parameters in the region. Convergence between the Pacific and the Australian plates is accommodated in northwestern PNG largely by the New Guinea Trench with rates exceeding 90 mm yr-1, indicating that this is the major active interplate boundary. However, some convergent deformation is partitioned into a shear component with ˜12 per cent accommodated by the Bewani-Torricelli fault zone and the southern Highlands Fold-and-Thrust Belt. New GPS velocities in the eastern New Guinea Highlands region have led to the identification of the New Guinea Highlands and the Papuan Peninsula being distinctly different blocks, separated by a boundary through the Aure Fold-and-Thrust Belt complex which accommodates an estimated 4-5 mm yr-1 of left-lateral and 2-3 mm yr-1 of convergent motion. This implies that the Highlands Block is rotating in a clockwise direction relative to the rigid Australian Plate, consistent with the observed transition to left-lateral strike-slip regime observed in western New Guinea Highlands. We find a better fit of our block model to the observed velocities when assigning the current active boundary between the Papuan Peninsula and the South Bismark Block to be to the north of the city of Lae on the Gain Thrust, rather than on the more southerly Ramu-Markham fault as previously thought. This may indicate a temporary shift of activity onto out of sequence thrusts like the Gain Thrust as opposed to the main frontal thrust (the Ramu-Markham fault). In addition, we show that the southern Highlands Fold-and-Thrust Belt is the major boundary between the rigid Australian Plate and the New Guinea Highlands Block, with convergence occurring at rates between ˜6 and 13 mm yr-1.
Origin of a major cross-element zone: Moroccan Rif
NASA Astrophysics Data System (ADS)
Morley, C. K.
1987-08-01
Alpine age (Oligocene-Miocene) deformation in the western Mediterranean formed the Rif mountain belt of northern Morocco. A linear east-northeast-west-southwest trend of cross elements from Jebah (Mediterranean coast) to Arbaoua (near the Atlantic coast) extends through several thrust sheets in the western Rif. The cross elements are manifest as a lateral ramp, the northern limit of a large culmination, and they affect syntectonic turbidite sandstone distribution. Gravity anomalies indicate that the cross-element zone is coincident with a transition zone from normal thickness to thinner continental crust. It is suggested that an early Mesozoic strike-slip fault system related to rifting of North America from North Africa caused a strong east-northeast-west-southwest, basement block-fault trend to form on the normal thickness side of the thick-to-thin continental crustal transition zone. This trend later influenced the position of the Alpine age cross-element zone that traverses several different Mesozoic and Tertiary basins, inverted during the Alpine deformation.
Origin of a major cross-element zone: Moroccan Rif
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morley, C.K.
1987-08-01
Alpine age (Oligocene-Miocene) deformation in the western Mediterranean formed the Rif mountain belt of northern Morocco. A linear east-northeast-west-southwest trend of cross elements from Jebah (Mediterranean coast) to Arbaoua (near the Atlantic coast) extends through several thrust sheets in the western Rif. The cross elements are manifest as a lateral ramp, the northern limit of a large culmination, and they affect syntectonic turbidite sandstone distribution. Gravity anomalies indicate that the cross-element zone is coincident with a transition zone from normal thickness to thinner continental crust. It is suggested that an early Mesozoic strike-slip fault system related to rifting of Northmore » America from North Africa caused a strong east-northeast-west-southwest, basement block-fault trend to form on the normal thickness side of the thick-to-thin continental crustal transition zone. This trend later influenced the position of the Alpine age cross-element zone that traverses several different Mesozoic and Tertiary basins, inverted during the Alpine deformation.« less
New paleomagnetic results from Cretaceous rocks of the Gyaring Co fault region, central Tibet
NASA Astrophysics Data System (ADS)
Finn, D.; Zhao, X.; Lippert, P. C.; Yin, A.; Li, Y.; Wang, C.; Meng, J.; Zhang, S.; Li, H.
2010-12-01
Conjugate strike-slip faults are widespread features throughout the Alpine-Himalayan collision zone. They often exhibit V-shapes in map view and trend 60-75° from the maximum compressive-stress (σ1). Andersonian fault mechanics, however, predict faults to form X-shaped at ~30° from σ1. Consequently, V-shaped conjugate faults have been thought to initiate at ~30° to σ1, and subsequently rotate into their current orientation through continued shortening. Alternatively, the Paired General Shear Zone (PGSZ) model may explain development of conjugate strike-slip faults in their modern orientations, predicting no rotation. Strike-slip faulting produces rigid-body motion and internal deformation quantifiable by paleomagnetism when integrated with structural information. We wonder if paleomagnetic studies of the fault-bounded blocks in central Tibet would allow us to differentiate the two competing models for the formation of V-shaped conjugate faults. We collected over 300 paleomagnetic samples (40 sites) from stratigraphic sections in Shengza and Nima areas of central Tibet. The rocks we collected range from Jurassic to Oligocene, and are mainly grey limestones and red sediments including siltstone, mudstone, sandstone, and conglomerate, offering opportunity of applying paleomagnetic fold and conglomerate tests to check the stability of the remanent magnetization. Up to present, useful results were obtained for 150 of the early Cretaceous limestone and sandstone samples (Langshan and Duoni formations, respectively). We have characterized the stable components of natural remanent magnetization (NRM) of these samples through detailed thermal (mainly) and alternating field (AF) demagnetization. We have also conducted rock magnetic investigation to identify the magnetic carriers in these rocks. Most limestone and red sandstones exhibit two distinctive components of magnetization. The lower unblocking-temperature component is an overprint. The higher unblocking-temperature component is the characteristic component (ChRM), is well defined in vector demagnetization plots with both normal and reversed polarities and carried by magnetite and hematite. The site-mean directions pass the local fold test at more than 95% confidence level. Our new results indicate that there has been no rotation of this region relative to Eurasia, Mongolia, and the North and South China blocks since the lower Cretaceous. Thus paleomagnetic evidence appears to favor the PGSZ model and supports geological estimates for the shortening north of the Bangong suture zone, leading to an improved tectonic interpretation of the region.
NASA Astrophysics Data System (ADS)
Song, C.; Ge, Z.
2017-12-01
The boundary region between Alxa Block and Ordos Block is an area of stress concentration with strong seismicity and frequent small earthquakes. However, the knowledge of this area is limited since only a few seismic stations were deployed in this area. The 2015 Ms5.8 Alxa Left Banner Earthquake on April 15 is the largest one occurred in the surroundings since the 1976 Ms6.2 Bayinmuren Earthquake. Abundant stations built in the northern part of Chinese North-South Seismic Belt recorded this event sequence well within short distance, which provides us a great opportunity to carry out studies. We use these data to obtain a mean 1-D layered velocity structure via iterative inversion based on both travel time and waveform misfits. Then we use the travel time difference between data and synthetic seismograms to relocate the epicenter. Finally we invert the best double-couple focal mechanism and centroid depths of the source. As the result, the source is located at (39.7027° N, 106.4207° E) with a depth of 18 km and Mw 5.28. Nodal plane Ⅰ has strike 86°, dip angle 90° and slip angle -3°, while plane Ⅱ has strike 176°, dip angle 87° and slip angle 180°. Considering the dynamic structure of regional fault zone, we believe this earthquake is caused by a nearly pure left-lateral strike-slip fault with nodal plane Ⅰ being the fault plane. The seismogenic structure is likely to be an E-W striking buried fault nearby. There develops several groups of NE, NEE and E-W striking faults in Jilantai tectonic zone, parts of which have been verified by geophysical investigations. But we still know little about the dynamic nature of them. From our study, the corresponding fault of this event may indicate all groups of faults with same E-W strike has the common character of large-dip left-lateral strike-slip. Moreover, there may be some buried faults being newly born or not found yet. These results could be an important supplement to the future research of seismicity and modern fault zone structure.
Tethys and the evolution in Afghanistan: tectonics and mineral resources
NASA Astrophysics Data System (ADS)
Okaya, N.; Onishi, C. T.; Mooney, W. D.
2009-12-01
The tectonic history and mineral resources of Afghanistan are related to the closing of the Paleo-Tethys Ocean and the opening of the Neo-Tethys Ocean. As part of this process, oceanic sediments and continental fragments were accreted onto northern Afghanistan during the Mesozoic Cimmerian orogeny. Deposits in the Paleo-Tethys Ocean iare presently represented by a thick sequence of Paleozoic sedimentary rocks within the Tajik/Turan block, part of the Eurasian continent in northern Afghanistan. The accreted micro-continents of the Cimmerian orogeny include: (1) the Farah block, (2) the Helmand block and (3) the exotic Kabul block. Later, during the Cretaceous, the East Nuristan island arc and the intra-oceanic island arc of Kohistan were sutured. Major faults in Afghanistan include: (1) the Herat fault, an E-W suture zone between the Eurasia continent and the terrains of the Cimmerian orogeny; (2) the N-S Punjao suture located between the Farah and Helmand blocks; and (3) the NE-SW oriented Chaman fault, part of a transpressional plate boundary located near the border with Pakistan. Such a complex blend of geology and tectonics gives host to abundant mineral resources. We summarize the tectonic evolution of Afghanistan in a series of lithospheric cross-sections, beginning at about 400 Ma., and identify the mineral resources in the context of the regional tectonics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barber, A.J.; Tjokrosapoetro, S.; Charlton, T.R.
In Timor, eastern Indonesia, where the northern margin of the Australian continent is colliding with the Banda Arc, Australian continental margin sediments are being incorporated into an imbricate wedge, which passes northward into a foreland fold and thrust belt. Field mapping in Timor has shown that scale clays, containing irregularly shaped or phacoidal blocks (up to several meters long) and composed of a wide range of lithologies derived from local stratigraphic units, occur in three environments: along wrench faults, as crosscutting shale diapirs, and associated with mud volcanoes. A model is proposed linking these phenomena. Shales become overpressured as amore » result of overthrusting; this overpressure is released along vertical wrench faults, which cut through the overthrust units; overpressured shales containing blocks of consolidated units rise along the fault zones as shale diapirs; and escaping water, oil, and gas construct mud volcanoes at the surface. 6 figures, 1 table.« less
NASA Astrophysics Data System (ADS)
Marco, Shmuel
2008-06-01
Archaeological structures that exhibit seismogenic damage expand our knowledge of temporal and spatial distribution of earthquakes, afford independent examination of historical accounts, provide information on local earthquake intensities and enable the delineation of macroseismic zones. They also illustrate what might happen in future earthquakes. In order to recover this information, we should be able to distinguish earthquake damage from anthropogenic damage and from other natural processes of wear and tear. The present paper reviews several types of damage that can be attributed with high certainty to earthquakes and discusses associated caveats. In the rare cases, where faults intersect with archaeological sites, offset structures enable precise determination of sense and size of slip, and constrain its time. Among the characteristic off-fault damage types, I consider horizontal shifting of large building blocks, downward sliding of one or several blocks from masonry arches, collapse of heavy, stably-built walls, chipping of corners of building blocks, and aligned falling of walls and columns. Other damage features are less conclusive and require additional evidence, e.g., fractures that cut across several structures, leaning walls and columns, warps and bulges in walls. Circumstantial evidence for catastrophic earthquake-related destruction includes contemporaneous damage in many sites in the same area, absence of weapons or other anthropogenic damage, stratigraphic data on collapse of walls and ceilings onto floors and other living horizons and burial of valuable artifacts, as well as associated geological palaeoseismic phenomena such as liquefaction, land- and rock-slides, and fault ruptures. Additional support may be found in reliable historical accounts. Special care must be taken in order to avoid circular reasoning by maintaining the independence of data acquisition methods.
NASA Astrophysics Data System (ADS)
Kahraman, Metin; Cornwell, David G.; Thompson, David A.; Rost, Sebastian; Houseman, Gregory A.; Türkelli, Niyazi; Teoman, Uğur; Altuncu Poyraz, Selda; Utkucu, Murat; Gülen, Levent
2015-11-01
Continental scale deformation is often localised along strike-slip faults constituting considerable seismic hazard in many locations. Nonetheless, the depth extent and precise geometry of such faults, key factors in how strain is accumulated in the earthquake cycle and the assessment of seismic hazard, are poorly constrained in the mid to lower crust. Using a dense broadband network of 71 seismic stations with a nominal station spacing of 7 km in the vicinity of the 1999 Izmit earthquake we map previously unknown small-scale structure in the crust and upper mantle along this part of the North Anatolian Fault Zone (NAFZ). We show that lithological and structural variations exist in the upper, mid and lower crust on length scales of less than 10 km and less than 20 km in the upper mantle. The surface expression of the NAFZ in this region comprises two major branches; both are shown to continue at depth with differences in dip, depth extent and (possibly) width. We interpret a <10 km wide northern branch that passes downward into a shear zone that traverses the entire crust and penetrates the upper mantle to a depth of at least 50 km. The dip of this structure appears to decrease west-east from ∼90° to ∼65° to the north over a distance of 30 to 40 km. Deformation along the southern branch may be accommodated over a wider (>10 km) zone in the crust with a similar variation of dip but there is no clear evidence that this shear zone penetrates the Moho. Layers of anomalously low velocity in the mid crust (20-25 km depth) and high velocity in the lower crust (extending from depths of 28-30 km to the Moho) are best developed in the Armutlu-Almacik block between the two shear zones. A mafic lower crust, possibly resulting from ophiolitic obduction or magmatic intrusion, can best explain the coherent lower crustal structure of this block. Our images show that strain has developed in the lower crust beneath both northern and southern strands of the North Anatolian Fault. Our new high resolution images provide new insights into the structure and evolution of the NAFZ and show that a small and dense passive seismic network is able to image previously undetectable crust and upper mantle heterogeneity on lateral length scales of less than 10 km.
NASA Astrophysics Data System (ADS)
Mueller, Andreas G.
2017-07-01
The Golden Mile in the 2.7 Ga Eastern Goldfields Province of the Yilgarn Craton, Western Australia, has produced 385 million tonnes of ore at a head grade of 5.23 g/t gold (1893-2016). Gold-pyrite ore bodies (Fimiston Lodes) trace kilometre-scale shear zone systems centred on the D2 Golden Mile Fault, one of three northwest striking sinistral strike-slip faults segmenting upright D1 folds. The Fimiston shear zones formed as D2a Riedel systems in greenschist-facies (actinolite-albite) tholeiitic rocks, the 700-m-thick Golden Mile Dolerite (GMD) sill and the Paringa Basalt (PB), during left-lateral displacement of up to 12 km on the D2 master faults. Pre-mineralisation granodiorite dykes were emplaced into the D2 shear zones at 2674 ± 6 Ma, and syn-mineralisation diorite porphyries at 2663 ± 11 Ma. The widespread infiltration of hydrothermal fluid generated chlorite-calcite and muscovite-ankerite alteration in the Golden Mile, and paragonite-ankerite-chloritoid alteration southeast of the deposit. Fluid infiltration reactivated the D2 shear zones causing post-porphyry displacement of up to 30 m at principal Fimiston Lodes moving the southwest block down and southeast along lines pitching 20°SE. D3 reverse faulting at the southwest dipping GMD-PB contact of the D1 Kalgoorlie Anticline formed the 1.3-km-long Oroya Shoot during late gold-telluride mineralisation. Syn-mineralisation D3a reverse faulting alternated with periods of sinistral strike-slip (D2c) until ENE-WSW shortening prevailed and was accommodated by barren D3b thrusts. North-striking D4 strike-slip faults of up to 2 km dextral displacement crosscut the Fimiston Lodes and the barren thrusts, and control gold-pyrite quartz vein ore at Mt. Charlotte (2651 ± 9 Ma).
NASA Astrophysics Data System (ADS)
Bankwitz, P.; Schneider, G.; Kämpf, H.; Bankwitz, E.
2003-03-01
The earthquake distribution pattern of Central Europe differs systematically from the neighbouring areas of NW and southern Europe regarding the fault plane kinematics. Within a belt between the French Massif Central and the northern part of the Bohemian Massif (1000 km) sinistral faulting along N-S zones dominates on the contrary to the Alps and their foreland with common bookshelf shears. One of the prominent N-S structures is the Regensburg-Leipzig-Rostock Zone (A) with several epicentral areas, where the main seismic center occurs in the northern Cheb Basin (NW Bohemia). The study demonstrates new structural results for the swarm-quake region in NW-Bohemia, especially for the Nový Kostel area in the Cheb Basin. There the N-S-trending newly found Počatky-Plesná zone (PPZ) is identical with the main earthquake line. The PPZ is connected with a mofette line between Hartušov and Bublák with evidence for CO 2 degassing from the subcrustal mantle. The morphologically more prominent Mariánské Lázně fault (MLF) intersects the PPZ obliquely under an acuate angle. In the past the MLF was supposed to be the tectonic structure connected with the epicentral area of Nový Kostel. But evidence from the relocated hypocentres along the PPZ (at 7-12 kms depth) indicate that the MLF is seismically non-active. Asymmetric drainage patterns of the Cheb Basin are caused by fault related movement along Palaeozoic basement faults which initiate a deformation of the cover (Upper Pliocene to Holocene basin filling). The PPZ forms an escarpment in Pliocene and Pleistocene soft rock and is supposingly acting as an earthquake zone since late Pleistocene time. The uppermost Pleistocene of 0.12-0.01 Ma deposited only in front of the fault scarp dates the fault activity. The crossing faults envelope crustal wedges under different local stress conditions. Their intersection line forms a zone beginning at the surface near Nový Kostel, dipping south with increasing depth, probably down to about 12 km. The intersection zone represents a crustal anomaly. There fault movements can be blocked up and peculiar stress condition influence the behaviour of the adjacent crust. An ENE-WNW striking dextral wrench fault was detected which is to expect as kinematic counterpart to the ca. N-S striking sinistral shear zones. Nearly E-W striking fracture segments were formerly only known as remote sensing lineaments or as joint density zones. The ENE shear zone is characterized by a set of compressional m-scale folds and dm-scale faults scattered within a 20 m wide wrench zone. It is built up of different sets of cleavage-like clay plate pattern of microscopical scale. The associated shear planes fit into a Riedel shear system. One characteristic feature are tiny channels of micrometer scale. They have originated after shear plane bending and are the sites of CO 2 mantle degassing.
NASA Astrophysics Data System (ADS)
Takahashi, A.; Hashimoto, M.; Hu, J. C.; Fukahata, Y.
2017-12-01
Taiwan Island is composed of many geological structures. The main tectonic feature is the collision of the Luzon volcanic arc with the Eurasian continent, which propagates westward and generates complicated crustal deformation. One way to model crustal deformation is to divide Taiwan island into man rigid blocks that moves relatively each other along the boundaries (deformation zones) of the blocks. Since earthquakes tend to occur in the deformation zones, identification of such tectonic boundaries is important. So far, many tectonic boundaries have been proposed on the basis of geology, geomorphology, seismology and geodesy. However, which is the most significant boundary depends on disciplines and there is no way to objectively classify them. Here, we introduce an objective method to identify significant tectonic boundaries with a hierarchical representation proposed by Simpson et al. [2012].We apply a hierarchical agglomerative clustering algorithm to dense GNSS horizontal velocity data in Taiwan. One of the significant merits of the hierarchical representation of the clustering results is that we can consistently explore crustal structures from larger to smaller scales. This is because a higher hierarchy corresponds to a larger crustal structure, and a lower hierarchy corresponds to a smaller crustal structure. Relative motion between clusters can be obtained from this analysis.The first major boundary is identified along the eastern margin of the Longitudinal Valley, which corresponds to the separation of the Philippine Sea plate and the Eurasian continental margin. The second major boundary appears along the Chaochou fault and the Chishan fault in southwestern Taiwan. The third major boundary appears along the eastern margin of the coastal plane. The identified major clusters can be divided into several smaller blocks without losing consistency with geological boundaries. For example, the Fengshun fault, concealed beneath thick sediment layers, is identified. Furthermore, obtained relative motion between clusters demands a reverse fault or a left lateral fault in the off shore of the coastal range.Our clustering based block modeling is consistent with tectonics of Taiwan, implying that observed crustal deformation in Taiwan can be attributed to motion or deformation of shallow structures.
A geologic and morphological description of Ishtar terra (Venus)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukhanov, A.L.; Kotel'nikov, V.A.; Ostrovskii, M.V.
The main part of Ishtar Terra east of Maxwell Montes is covered by systems of area dislocations in several directions that are called ''parquet.'' From the structural pictures, 1) a stable central block, 2) smaller peripheral blocks separated from the central block by faults and grabens, 3) zones of mobilized parquet, the matter of which spread down below the slope in a direction away from the central block in the form of plastic flows, and 4) partially ''parquetized'' lava rock masses are distinguished here. The Maxwell Montes were formed as the result of the collision of the central block andmore » the Lakshmi Planum.« less
Scaly fabrics and veins of the Mugi and Makimine mélanges in the Shimanto belt, SW Japan
NASA Astrophysics Data System (ADS)
Ramirez, G. E.; Fisher, D. M.; Yamaguchi, A.; Kimura, G.
2016-12-01
Two regionally extensive ancient subduction fault zones provide a microstructural record of the plate boundary deformation associated with underthrusting. These rocks exhibit many of the characteristics associated with exposed ancient subduction fault zones worldwide, including: (1) σ1 is near orthogonal to the deformation fabric (2) there are microstructurally pervasive quartz and calcite filled veins concentrated in coarser blocks and along extensional jogs on slip surfaces, (3) evidence for local diffusion of silica sourced from web-like arrays of slip surfaces (i.e., scaly fabrics), and (4) evidence for cycles of cracking and sealing that record cyclic variations in stress. We present new backscatter SEM observations of scaly fabrics from two ancient subduction-related shear zones from the Shimanto Belt in Japan that exemplify these characteristics and represent the full temperature range of the seismogenic zone: 1) the Mugi mélange (lower ( 130-150 °C) and upper ( 170-200 °C) sections) and 2) Makimine mélange (peak temperatures of 340 °C). The Mugi mélange is an underplated duplex consisting of two horses separated by an OOST. The upper section is bounded at the top by a pseudotachylite-bearing paleodécollement. The Makimine mélange was underplated at the downdip limit of the seismogenic zone. The scaly fabrics associated with these shear zones display significantly different microstructural characteristics. A slip surface from along the upper Mugi is characterized by broader ( 20-30 μm), zones of quartz-poor, anastomosing shear zones composed of fine-grained (0.5-2 μm in length) phyllosilicates. The Makimine mélange exhibits thinner (10-20 μm), anastomosing shear zones with coarser (1-4 μm in length) phyllosilicate grains that are more strongly oriented into parallelism with slip surfaces. Quartz veins are pervasively developed in more competent blocks and are oriented at near perpendicular angles to the slip surfaces. Microstructural analyses of ancient subduction-related faults show differences with temperature that highlight the importance of establishing the geochemical processes and activation energies that contribute to slip, fracturing, and healing of rocks that underthrust the subduction interface.
NASA Astrophysics Data System (ADS)
Neely, Thomas G.; Erslev, Eric A.
2009-09-01
Horizontally-shortened, basement-involved foreland orogens commonly exhibit anastomosing networks of bifurcating basement highs (here called arches) whose structural culminations are linked by complex transition zones of diversely-oriented faults and folds. The 3D geometry and kinematics of the southern Beartooth arch transition zone of north-central Wyoming were studied to understand the fold mechanisms and control on basement-involved arches. Data from 1581 slickensided minor faults are consistent with a single regional shortening direction of 065°. Evidence for oblique-slip, vertical axis rotations and stress refraction at anomalously-oriented folds suggests formation over reactivated pre-existing weaknesses. Restorable cross-sections and 3D surfaces, constrained by surface, well, and seismic data, document blind, ENE-directed basement thrusting and associated thin-skinned backthrusting and folding along the Beartooth and Oregon Basin fault systems. Between these systems, the basement-cored Rattlesnake Mountain backthrust followed basement weaknesses and rotated a basement chip toward the basin before the ENE-directed Line Creek fault system broke through and connected the Beartooth and Oregon Basin fault systems. Slip was transferred at the terminations of the Rattlesnake Mountain fault block by pivoting to the north and tear faulting to the south. In summary, unidirectional Laramide compression and pre-existing basement weaknesses combined with fault-propagation and rotational fault-bend folding to create an irregular yet continuous basement arch transition.
Cenozoic intracontinental deformation of the Kopeh Dagh Belt, Northeastern Iran
NASA Astrophysics Data System (ADS)
Chu, Yang; Wan, Bo; Chen, Ling; Talebian, Morteza
2016-04-01
Compressional intracontinental orogens represent large tectonic zones far from plate boundaries. Since intracontinental mountain belts cannot be framed in the conventional plate tectonics theory, several hypotheses have been proposed to account for the formations of these mountain belts. The far-field effect of collision/subduction at plate margins is now well accepted for the origin and evolution of the intracontinental crust thickening, as exemplified by the Miocene tectonics of central Asia. In northern Iran, the Binalud-Alborz mountain belt witnessed the Triassic tectonothermal events (Cimmerian orogeny), which are interpreted as the result of the Paleotethys Ocean closure between the Eurasia and Central Iran blocks. The Kopeh Dagh Belt, located to the north of the Binalud-Alborz Belt, has experienced two significant tectonic phases: (1) Jurassic to Eocene rifting with more than 7 km of sediments; and (2) Late Eocene-Early Oligocene to Quaternary continuous compression. Due to the high seismicity, deformation associated with earthquakes has received more and more attention; however, the deformation pattern and architecture of this range remain poorly understood. Detailed field observations on the Cenozoic deformation indicate that the Kopeh Dagh Belt can be divided into a western zone and an eastern zone, separated by a series of dextral strike-slip faults, i.e. the Bakharden-Quchan Fault System. The eastern zone characterized by km-scale box-fold structures, associated with southwest-dipping reverse faults and top-to-the NE kinematics. In contrast, the western zone shows top-to-the SW kinematics, and the deformation intensifies from NE to SW. In the northern part of this zone, large-scale asymmetrical anticlines exhibit SW-directed vergence with subordinate thrusts and folds, whereas symmetrical anticlines are observed in the southern part. In regard to its tectonic feature, the Kopeh Dagh Belt is a typical Cenozoic intracontinental belt without ophiolites or arc magmatism. During the Jurassic to Eocene rifting, this belt acted as the southern boundary of the Amu Darya Basin with normal faulting, which is also widespread in the South Caspian Sea and the Black Sea. Moreover, such an extended area became a relatively weak zone within the Eurasian Plate, and could be easily reworked. Because of the collision in the Zagros Belt, the intracontinental compression commenced as early as Late Eocene to Early Oligocene, which is interpreted as tectonic inversion along this weak zone. The western zone of the Kopeh Dagh Belt was also affected by southerly indentation/extrusion of the South Caspian block since middle Miocene, possibly resulting in the different deformation patterns between the western and eastern zones.
Bookshelf faulting and transform motion between rift segments of the Northern Volcanic Zone, Iceland
NASA Astrophysics Data System (ADS)
Green, R. G.; White, R. S.; Greenfield, T. S.
2013-12-01
Plate spreading is segmented on length scales from 10 - 1,000 kilometres. Where spreading segments are offset, extensional motion has to transfer from one segment to another. In classical plate tectonics, mid-ocean ridge spreading centres are offset by transform faults, but smaller 'non-transform' offsets exist between slightly overlapping spreading centres which accommodate shear by a variety of geometries. In Iceland the mid-Atlantic Ridge is raised above sea level by the Iceland mantle plume, and is divided into a series of segments 20-150 km long. Using microseismicity recorded by a temporary array of 26 three-component seismometers during 2009-2012 we map bookshelf faulting between the offset Askja and Kverkfjöll rift segments in north Iceland. The micro-earthquakes delineate a series of sub-parallel strike-slip faults. Well constrained fault plane solutions show consistent left-lateral motion on fault planes aligned closely with epicentral trends. The shear couple across the transform zone causes left-lateral slip on the series of strike-slip faults sub-parallel to the rift fabric, causing clockwise rotations about a vertical axis of the intervening rigid crustal blocks. This accommodates the overall right-lateral transform motion in the relay zone between the two overlapping volcanic rift segments. The faults probably reactivated crustal weaknesses along the dyke intrusion fabric (parallel to the rift axis) and have since rotated ˜15° clockwise into their present orientation. The reactivation of pre-existing rift-parallel weaknesses is in contrast with mid-ocean ridge transform faults, and is an important illustration of a 'non-transform' offset accommodating shear between overlapping spreading segments.
Berberich, Gabriele; Schreiber, Ulrich
2013-05-17
In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO₂, Helium, Radon and H₂S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H₂S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.
Focal mechanisms and the stress regime in NE and SW Tanzania, East Africa
NASA Astrophysics Data System (ADS)
Brazier, Richard A.; Nyblade, Andrew A.; Florentin, Juliette
2005-07-01
We report 12 new focal mechanisms from earthquakes in NE and SW Tanzania where the stress regime within the East African rift system is not well constrained. Focal mechanisms for events at the intersection of the Lake Tanganyika and Rukwa rifts in SW Tanzania indicate a complicated stress pattern with possible dextral strike-slip motion on some faults but oblique motion on others (either sinistral on NW striking faults or dextral on NE striking faults). Within the Rukwa rift, focal mechanisms indicate normal dip-slip motion with NE-SW opening. In NE Tanzania where the Eastern rift impinges on the margin of the Tanzania Craton, fault motions are consistent with a zone of distributed block faults and sub E-W extension. All twelve earthquakes likely nucleated within the crust.
NASA Astrophysics Data System (ADS)
Ghedhoui, R.; Deffontaines, B.; Rabia, M. C.
2012-04-01
Contrasting to the northward African plate motion toward Eurasia and due to its geographic position in the North African margin, since early cretaceous, Tunisia seems to be submitted to an eastward migration. The aim of this work is to study the southern branch of this inferred tectonic splay that may guide the Tunisian extrusion characterised to the east by the Mediterranean sea as a free eastern boundary. The Jeffara Fault zone (southern Tunisia), represent a case example of such deformation faced by Tunisia. Helped by the results of previous researchers (Bouaziz, 1995 ; Rabiaa, 1998 ; Touati et Rodgers, 1998 ; Sokoutis D. et al., 2000 ; Bouaziz et al., 2002 ; Jallouli et al., 2005 ; Deffontaines et al., 2008…), and new evidences developed in this study, we propose a geodynamic Tunisian east extrusion model, due to such the northern African plate migration to the Eurasian one. In this subject, structural geomorphology is undertaken herein based on both geomorphometric drainage network analysis (Deffontaines et al., 1990), the Digital Terrain Model photo-interpretation (SRTM) combined with photo-interpretation of detailed optical images (Landsat ETM+), and confirmed by field work and numerous seismic profiles at depth. All these informations were then integrated within a GIS (Geodatabase) (Deffontaines 1990 ; Deffontaines et al. 1994 ; Deffontaines, 2000 ; Slama, 2008 ; Deffontaines, 2008) and are coherent with the eastern extrusion of the Sahel block. We infer that the NW-SE Gafsa-Tozeur, which continue to the Jeffara major fault zone acting as a transtensive right lateral motion since early cretaceous is the southern branch of the Sahel block extrusion. Our structural analyses prove the presence of NW-SE right lateral en-echelon tension gashes, NW-SE aligned salt diapirs, numerous folds offsets, en-echelon folds, and so on that parallel this major NW-SE transtensive extrusion fault zone.These evidences confirm the fact that the NW-SE Jeffara faults correspond to the tectonic accident, located in the south of the Tunisian extrusion, in favour of the eastern migration of the Sahel block toward the free Mediterranean sea boundary. Therefore this geodynamic movement explains the presence, in offshore area, of small elongated NW-SE, N-S &NE-SW petroleum transtensive basins and grabens. To conclude, at the regional scale, the structural geomorphologic approach combined with both field work and reflexion seismic profile analyses appear to be an excellent tool to prove & confirm the east Sahel block extrusion of the central Tunisian part caused by the northward migration of African plate. _______________________________________ Keywords : Geodynamics, Neotectonics, right lateral transtensive fault, Extrusion, Petroleum exploration, Geomorphometry, Digital Elevation Model, Geographic Information System (GIS), Geodatabase, Jeffara, South Tunisia.
Deformation Styles Along the Southern Alaska Margin Constrained by GPS
NASA Astrophysics Data System (ADS)
Elliott, J.; Freymueller, J. T.; Larsen, C. F.
2009-12-01
The present-day deformation observed in southcentral and southeast Alaska and the adjacent region of Canada is controlled by two main factors: ~ 50 mm/yr relative motion between the Pacific plate and North America and the Yakutat block’s collision with and accretion to southern Alaska. Over 45 mm/yr of NW-SE directed convergence from the collision is currently accommodated within the St. Elias orogen. The Fairweather, St. Elias, and Chugach ranges show the spectacular consequences of the relative tectonic motions, but the details of the plate interactions have not been well understood. Here we present GPS data from a network of over 170 campaign sites across the region. We use the data to constrain block models and forward models that characterize the nature and extent of the tectonic deformation along the Pacific-Yakutat-North America boundary. Tectonics in southeast Alaska can be described by block motion, with the Pacific plate bounding the region to the west. The fastest block motions occur along the coastal regions. The Yakutat block has a velocity of 51 ± 2.7 mm/yr towards N22 ± 2.5 deg W relative to North America. This velocity has a magnitude almost identical to that of the Pacific plate, but the azimuth is more westerly. The northeastern edge of the Yaktuat block is deforming, represented in our model by two small blocks outboard of the Fairweather fault. East of that fault, the Fairweather block rotates clockwise relative to North America, resulting in transpression along the Duke River and Eastern Denali faults. There is a clear transfer of strain from the coastal region hundreds of kilometers eastward into the Northern Cordillera block, confirming earlier suggestions that the effects of the Yakutat collision are far-reaching along its eastern margin. In contrast, deformation along the leading edge of the Yakutat collision is relatively narrowly focused within the southern half of the St. Elias orogen. The current deformation front of the Yakutat block with southern Alaska is in the vicinity of Icy Bay, where strain rates approach -1 microstrain/yr. The Malaspina thrust likely forms the northern boundary of the Yakutat block. Between Icy Bay and the Mt. St. Elias area, the tectonics cannot easily be described by block motion. The GPS data require the relative convergence to be partitioned onto multiple N-NW dipping thrust faults, resulting in a 50-70-km wide zone of deformation. This zone continues around the western side of Icy Bay into the Yakataga fold and thrust belt. North of the Mt. St. Elias area and the Bagley ice valley, roughly 100 km from the deformation front, GPS velocities are consistent with predictions of the motion of the southern Alaska block.
Neotectonic deformation model of the Northern Algeria from Paleomagnetic data
NASA Astrophysics Data System (ADS)
Derder, M. E. M.; Henry, B.; Maouche, S.; Amenna, M.; Bayou, B.; Djellit, H.; Ymel, H.; Gharbi, S.; Abtout, A.; Ayache, M.
2012-04-01
The seismic activity of the Western Mediterranean area is partly concentrated in northern Africa, particularly in northern Algeria, as it is shown by the strongest recent earthquakes of "Zemmouri" 21 May 2003 Mw=6.9 and the "El Asnam" 10 October 1980 Ms= 7.3. This seismicity is due to the tectonic activity related to the convergence between Africa and Eurasia plates since at least the Oligocene. The deformation is mostly compressional with associated folds, strike-slip faults and thrusts, and a direction of shortening between N-S and NNW-SSE. This convergence involves a tectonic transpression which is expressed by active deformation along the plate boundary. In northern Algeria, the seismicity is concentrated in a coastal E-W thin band zone (the Tell Atlas). Active structures define there NE-SW trending folds and NE-SW sinistral transpressive faults, which affect the intermountain and coastal Neogene to Quaternary sedimentary basins (e.g. " Cheliff "basin, " Mitidja "basin, …). These reverse faults are associated with NW-SE to E-W strike-slips deep faults. The active tectonics could be explained by a simple blocks rotation kinematics model. In order to test the validity of this kinematic model, three different paleomagnetic studies have been conducted. The first one concerned the "Cheliff" basin where sedimentary Neogene formations were extensively sampled (66 sites). The second study was carried out on Miocene andesite and dacite rocks cropping out along the northern coastal zone of the "Cheliff" basin ("Beni Haoua" area, 19 sites). The third study has been carried out on the Miocene magmatic rocks (rhyolites and basalts) cropping out north-eastern part of the "Mitidja" basin ("Cap Djinet" - "Boumerdes" area, 23 sites). The obtained results show existence of paleomagnetic clockwise rotations in all the studied areas and then validates the kinematics block rotation model. Accordingly, the deformation related to the convergence between the Africa and Eurasia plates, is partly accommodated in northern Algeria by blocks rotation movements. It seems that the Tellian Atlas (northern Algeria) domain is organized as tectonic blocks with relative clockwise blocks rotation movement as in a "bookshelf" model.
The Jocotán Ophiolite: A new ophiolite along the Jocotán fault, eastern Guatemala
NASA Astrophysics Data System (ADS)
Harlow, G. E.; Flores-Reyes, K.; Sisson, V. B.; Nelson, C.; Cacao, A.
2011-12-01
The North American - Caribbean plate boundary traverses central Guatemala and northern Honduras, dispersed along three left lateral faults systems, which from north to south are the Chixoy-Polochic, the Motagua, and the Jocotán-Camelecón faults, with the Motagua as the present active strand. The Motagua Suture Zone (MSZ), which encompasses this area, consists of multiple paleo-convergent boundaries. It includes slices of ultramafic-mafic complexes including both antigorite (Atg) serpentinite mélanges containing high-pressure / low-temperature (HP/LT) blocks, and lizardite-chrysotile (Lzd-Ctl) serpentinites with associated pillow lavas, radiolarian chert, and marine sediments, typically labeled as ophiolites. Guatemala Suture Zone would be a preferable term to MSZ because the area extends over all three faults, not just the Motagua. The MSZ includes the Sierra de Santa Cruz ophiolite north of the east end of the Polochic fault, the Baja Verapaz ultramafic complex (considered an ophiolite in most of the literature) lies just south of the western portion of the Polochic fault and a series of Atg-serpentinite-dominant mélanges (with HP/LT blocks) that decorate both sides of the Motagua fault. In addition, there is the El Tambor Formation, south of the Motagua fault (but west of the known limit of the Jocotán fault), which contains mafic & sedimentary units and has been called an ophiolite. However, no mafic-ultramafic bodies appear on maps that cover the Jocotán fault in eastern Guatemala. Geologic mapping by one of the co-authors located a small suite of ultramafic rocks sandwiched between the Jocotán and Camotán faults in eastern Guatemala, a short distance from the town of Camotán. Outcrops exposed for 3 km along a road and in a small river consist of sheared Lzd-Ctl serpentinite, metagabbro, overturned altered pillow lavas, listwaenite and rodingite dikes, cherts and pelagic metasediments. These units represent fault slivers subparallel to the steeply dipping local faults sandwiched between mostly phyllites, schists, limestones and metabasites. The latter are similar to the Las Ovejas Complex and/or the San Diego Phyllite which bound the El Tambor Formation and mélanges further west. The newly observed lithologic package, although small in areal extent, has clear affinities with an ophiolite. No HP/LT metamorphic blocks, or even true amphibolites were observed, so consistent with the presence of Lzd-Ctl in the serpentinite, the unit is not a subduction related mélange. The potential relationship with the El Tambor Formation to the west requires further analysis and comparison.
NASA Astrophysics Data System (ADS)
Legg, Mark R.; Kohler, Monica D.; Shintaku, Natsumi; Weeraratne, Dayanthie S.
2015-05-01
New mapping of two active transpressional fault zones in the California Continental Borderland, the Santa Cruz-Catalina Ridge fault and the Ferrelo fault, was carried out to characterize their geometries, using over 4500 line-km of new multibeam bathymetry data collected in 2010 combined with existing data. Faults identified from seafloor morphology were verified in the subsurface using existing seismic reflection data including single-channel and multichannel seismic profiles compiled over the past three decades. The two fault systems are parallel and are capable of large lateral offsets and reverse slip during earthquakes. The geometry of the fault systems shows evidence of multiple segments that could experience throughgoing rupture over distances exceeding 100 km. Published earthquake hypocenters from regional seismicity studies further define the lateral and depth extent of the historic fault ruptures. Historical and recent focal mechanisms obtained from first-motion and moment tensor studies confirm regional strain partitioning dominated by right slip on major throughgoing faults with reverse-oblique mechanisms on adjacent structures. Transpression on west and northwest trending structures persists as far as 270 km south of the Transverse Ranges; extension persists in the southern Borderland. A logjam model describes the tectonic evolution of crustal blocks bounded by strike-slip and reverse faults which are restrained from northwest displacement by the Transverse Ranges and the southern San Andreas fault big bend. Because of their potential for dip-slip rupture, the faults may also be capable of generating local tsunamis that would impact Southern California coastlines, including populated regions in the Channel Islands.
NASA Astrophysics Data System (ADS)
Gülyüz, Erhan; Özkaptan, Murat; Kaymakcı, Nuretdin
2016-04-01
Gondwana- (Tauride Platfrom and Kırşehir Block) and Eurasia (Pontides) - derived continental blocks bound the Haymana basin, in the south and north, respectively. Boundaries between these blocks are signed by İzmir-Ankara-Erzincan and debatable Intra-Tauride Suture zones which are straddled by the Haymana Basin in the region. In this regard, deformation recorded in the upper Cretaceous to middle Eocene deposits of the basin is mainly controlled by the relative movements of these blocks. Therefore, understanding the structural evolution of the Haymana Basin in a spatio-temporal concept is crucial to shed some light on some debatable issues such as ; (1) timing of late stage subduction histories of various branches of Neotethys and subsequent collision events, (2) effects of post-collisional tectonic activity in the Haymana region. Fault kinematic analyses (based on 623 fault-slip data from 73 stations) indicate that the basin was subjected to initially N-S to NNE-SSW extension until middle Paleocene and then N-S- to NNE-SSW- directed continuous compression and coeval E-W to ESE-WNW extension up to middle Miocene. These different deformation phases correspond to the fore-arc (closure) and foreland (collision and further convergence) stages of the basin. Additionally, fold analyses (based on 1017 bedding attitudes) and structural mapping studies show that development of folds and major faults are coeval and they can be explained by principle stress orientations of the second deformation phase. The Haymana basin is, based on the trends of E-W- and WNW-ESE- directed structures at the south-eastern and the north-western parts of the basin, respectively, divided into two structural segments. The balanced cross-sections also indicate ~4% and ~25% shortening at the north-western and south-eastern segments, respectively. The differences in amounts of shortenings are explained by reduce in effectiveness zone of basin-bounding thrust faults towards west. On the other hand, the boundary of the segments is defined as an intra-basinal strike-slip system which is thought to be developed together with late stage activities of the basin bounding thrust (or reverse) faults (Dereköy and İnler faults) in response to the north-westward movement of the northern segment of the Kırşehir block. It is proposed that the Haymana basin was initially evolved under the influences of subduction related extensional setting until middle Paleocene, and latterly foreland settings in front of a south-vergent fold and thrust belt developed during collision and post-collisional convergence until middle Miocene. Additionally, the north-westward movement and indentation of the Kırşehir Block caused structural segmentation and rotation events in the basin.
NASA Astrophysics Data System (ADS)
Harbor, D. J.; Barnhart, W. D.
2017-12-01
The 2013 M7.7 Baluchistan earthquake in southern Pakistan ruptured 200 km of the north-dipping Hoshab reverse fault with dominantly lateral motion, clearly at odds with the regional topography created by previous reverse fault offsets. The kinematics of this earthquake led to the hypotheses that the Hoshab fault may alternatively slip in a reverse and lateral sense (bi-modal slip), and that the southeast Makran rotates as a uniform block around the fault (ball-and-socket rotation). Here, we use river profiles, regional relief, fault locations, and detailed geomorphic maps derived from optical imagery and DEMs to evaluate the recent uplift history of this region. We find that late Cenozoic fault zone geomorphology supports a spatially complex transition from lateral-dominated offsets in the NE to reverse-dominated offsets in the SW. Additionally, fault zone geomorphology suggests that the location of the Hoshab fault itself may change through time, leading to active incision of footwall alluvial fans and pediments. Stream profiles likewise record incision patterns that vary along the Hoshab fault. Incision and deposition in the SW are illustrative of relative footwall subsidence, consistent with recent uplift on the Hoshab fault; whereas incision and deposition in the NE are illustrative of relative footwall uplift consistent with ongoing regional uplift due to ball-and-socket rotations and dominantly lateral offsets along the northern Hoshab fault. The largest streams also record multiple, discrete, base-level drops, including the presence of convex-up river profiles in the hanging wall of the Hoshab fault. These profiles along hanging wall streams highlight a complex spatial and temporal history of reverse offset, lateral channel offset, and base-level resetting in regional streams that are altogether inconsistent with the kinematics of the 2013 earthquake alone, but that are consistent with the bi-modal slip model. Additionally, the evidence of footwall uplift in the NE is consistent with regional uplift due to ball-and-socket rotations superimposed on the Hoshab fault. These results indicate that the styles of fault slip in the Makran change in time and space in response to ongoing convergence and block rotations despite negligible uplift during the 2013 earthquake.
NASA Astrophysics Data System (ADS)
Beardsley, Amanda Gail
2007-12-01
The Netherlands Leeward Antilles volcanic island arc is an ideal natural laboratory to study the evolution of the Caribbean-South American plate boundary. The Leeward Antilles islands (Aruba, Curacao, and Bonaire) are located offshore western Venezuela, within the obliquely convergent diffuse plate boundary zone. Outcrop analysis, microthermometry, and 2D marine seismic reflection data provide evidence of three generations of regional deformation since the Late Cretaceous. Outcrop analysis of structural features, including faults, joints, and veins, characterizes the kinematic history of the islands. Fluid inclusion analysis of quartz and calcite veins coupled with apatite fission-track dating provides the island exhumation history. Finally, marine reflection seismic data processing and interpretation of newly acquired data elucidates offshore structures to integrate with our onshore results. The oldest regional deformation, resulting in both ductile (D1) and brittle (F 1) structures, is attributed to displacement partitioning along the arcuate Caribbean plate boundary. Associated crustal thinning initiated island exhumation, at a rate of 0.18 km/my, from a maximum burial depth of 6 km in the Late Cretaceous (˜89 Ma). Coeval with D1/F1 deformation and exhumation, stretching of the island arc resulted in extensive basin rifting that separated the island blocks. At ˜55 Ma, a change in the relative motion of the Caribbean plate altered plate boundary dynamics. Displacement along the right-lateral Caribbean transform fault and Oca - San Sebastian - El Pilar strike-slip fault system created a wrench tectonic regime within the diffuse plate boundary zone. A second generation of brittle structures (F2) developed while the islands were at a maximum burial depth of 2 km during the Paleocene/Eocene. Since ˜45 Ma, continued motion along the strike-slip fault systems and oblique plate convergence resulted in the youngest generation of structural features (F3). Regional tectonics control the ongoing steady-state exhumation of the islands at a rate of 0.04 km/my. Most recently, the northeast escape of the Maracaibo block also drives deformation within the diffuse plate boundary zone. Overall, the Caribbean-South American plate boundary geometry has evolved with diachronous deformation, from west to east, accompanied by 135° of clockwise block rotation during collision and accretion of the Leeward Antilles since the Late Cretaceous.
Tectonic evolution of Honey Lake basin, northeastern California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, D.L.; Saucedo, G.J.; Grose, T.L.T.
New geologic mapping in northeastern California provides additional data on the age and tectonic evolution of the Honey Lake Basin. Rhylitic ash flow tuffs of latest Oligocene to early Miocene age (30 to 22 Ma) occur in the Fort Sage Mountains and in the Sierra Nevada but are not apparent in wells drilled in the Honey Lake basin. Though other interpretations can be made, the authors take this as evidence that the basin did not exist at that time. Volcanic rocks as old as 12 Ma do occur in the basin indicating initiation in mid-Miocene time probably as a grabenmore » due to block faulting. Syntectonic andesitic and basaltic volcanism occurred along faults bounding the Sierra Nevada block at 9 to 10 Ma. Lava issuing from these fractures flowed westward along Tertiary drainages indicating that the Sierran block had been uplifted and tilted westward. Andesites erupted during this time north and east of the basin are lithologically distinct from Sierran andesites. Strike-slip faulting began to dominate the tectonic setting of the region during late Pliocene and Quaternary time with the development of the Honey Lake Fault Zone. Holocene strike-slip displacement is indicated by offsets of the 12,000 year old Lake Lahontan shoreline and deposits containing a 7,000 year old ash.« less
NASA Astrophysics Data System (ADS)
Deng, Yangfan; Li, Jiangtao; Song, Xiaodong; Zhu, Lupei
2018-05-01
Several geodynamic models have been proposed for the deformation mechanism of Tibetan Plateau (TP), but it remains controversial. Here we applied a method of joint inversion of receiver functions and surface wave dispersions with P wave velocity constraint to a dense linear array in the NE Tibet. The results show that the geological blocks, separated by major faults at the surface, are characterized by distinct features in the crust, the Moho, and the uppermost mantle. The main features include crustal low-velocity zones (LVZs) with variable strengths, anomalous Vp/Vs ratios that are correlated with LVZs, a large Moho jump, and other abrupt changes near major faults, strong mantle lithosphere anomalies, and correlation of crustal and mantle velocities. The results suggest a lithospheric-scale deformation of continuous shortening as well as localized faulting, which is affected by the strength of the lithosphere blocks. The thickened mantle lithosphere can be removed, which facilitates the formation of middle-lower crustal LVZ and flow. However, such flow is likely a consequence of the deformation rather than a driving force for the outward growth of the TP. The proposed model of TP deformation and growth can reconcile the continuous deformation within the blocks and major faults at the surface.
NASA Astrophysics Data System (ADS)
Burgette, R. J.; Weldon, R. J.; Abdrakhmatov, K. Y.; Ormukov, C.
2004-12-01
The Pred-Terskey fault zone defines the southern margin of the Issyk-Kul basin, extending eastward over 250 km from at least the Chu River to the Kazakhstan border, and appears to be one of the most active zones in the Kyrgyz Tien Shan. Despite a diversity of structural styles and changes of vergence at the surface, the lateral continuity and overall geometry of the zone is consistent with a single north vergent thrust at depth, which uplifts the Terskey Range and generally tilts the south margin of the basin to the north. This northward tilting of the margin is probably due to a flattening of the fault as it approaches the surface. In spite of historical quiescence, it is likely capable of producing great earthquakes. We have conducted detailed field mapping coupled with terrace profiling and dating at seven representative, well-exposed areas of the fault zone. Based on these field observations and satellite image and air photo interpretation along the entire zone, we identify three major divisions in structural style expressed at the surface. The western segment is typified by the Tura-Su, Ak-Terek and Ton areas. A series of left-stepping, south-vergent, basement-involved reverse faults and folds are uplifting the southern margin of the Issyk-Kul basin in this area. The resulting uphill-facing scarps have trapped and diverted many of the rivers flowing north from the Terskey Range. Tertiary strata and Quaternary geomorphic surfaces show consistent, progressive northward tilting across the entire zone. The west-central segment is represented by the Kajy-Say area. South-vergent reverse faults and a north-vergent backthrust have uplifted an arcuate granite block. Offshore of this area, the lake floor descends to a sharp break in slope with a low relief area at a depth of about 650 m. Late Quaternary geomorphic features do not show evidence of tilting. In contrast to the areas east and west, the major north-dipping thrust is likely planar over this segment and daylights at the lake floor break in slope. The east-central segment is exemplified by the Barskaun and Jety Oguz areas. A high angle reverse fault juxtaposes Paleozoic rock against Tertiary sediments. To the north, a thrust fault with a sinuous trace places north-dipping Tertiary rock over the nearly horizontal basin floor. Quaternary terraces in the hanging wall of this fault record progressive northward tilting. North of the thrust fault a series of anticlines are growing out of the basin sediments. The eastern segment, which includes the Jergalan River valley, lacks a low angle thrust fault at the basin margin. Along this segment, the basement reverse fault uplifts Paleozoic rock against Quaternary basin sediment. To the north of this range-bounding structure, late Quaternary terraces are offset by south-vergent scarps. We are calculating geologic slip rates for each of the seven sites along the Pred-Terskey zone by dating terraces and constructing structural models consistent with both the rock and terrace records. Based on preliminary radiocarbon dates, a prominent Jety Oguz River terrace is 50 +/- 10 ka. The terrace is tilted 0.5° relative to the modern river, and with the low angle fault branching off of the basement reverse fault at dips ranging between 45° and 90° , the slip rate of this fault is 6 +/- 4 mm/yr. This is consistent with the GPS shortening rate across the Pred-Terskey zone at this longitude.
Bauer, Paul W.; Kelson, Keith I.; Grauch, V.J.S.; Drenth, Benjamin J.; Johnson, Peggy S.; Aby, Scott B.; Felix, Brigitte
2016-01-01
The southern Taos Valley encompasses the physiographic and geologic transition zone between the Picuris Mountains and the San Luis Basin of the Rio Grande rift. The Embudo fault zone is the rift transfer structure that has accommodated the kinematic disparities between the San Luis Basin and the Española Basin during Neogene rift extension. The eastern terminus of the transfer zone coincides with the intersection of four major fault zones (Embudo, Sangre de Cristo, Los Cordovas, and Picuris-Pecos), resulting in an area of extreme geologic and hydrogeologic complexities in both the basin-fill deposits and the bedrock. Although sections of the Embudo fault zone are locally exposed in the bedrock of the Picuris Mountains and in the late Cenozoic sedimentary units along the top of the Picuris piedmont, the full proportions of the fault zone have remained elusive due to a pervasive cover of Quaternary surficial deposits. We combined insights derived from the latest geologic mapping of the area with deep borehole data and high-resolution aeromagnetic and gravity models to develop a detailed stratigraphic/structural model of the rift basin in the southern Taos Valley area. The four fault systems in the study area overlap in various ways in time and space. Our geologic model states that the Picuris-Pecos fault system exists in the basement rocks (Picuris formation and older units) of the rift, where it is progressively down dropped and offset to the west by each Embudo fault strand between the Picuris Mountains and the Rio Pueblo de Taos. In this model, the Miranda graben exists in the subsurface as a series of offset basement blocks between the Ponce de Leon neighborhood and the Rio Pueblo de Taos. In the study area, the Embudo faults are pervasive structures between the Picuris Mountains and the Rio Pueblo de Taos, affecting all geologic units that are older than the Quaternary surficial deposits. The Los Cordovas faults are thought to represent the late Tertiary to Quaternary reactivation of the old and deeply buried Picuris-Pecos faults. If so, then the Los Cordovas structures may extend southward under the Picuris piedmont, where they form growth faults as they merge downward into the Picuris-Pecos bedrock faults. The exceptionally high density of cross-cutting faults in the study area has severely disrupted the stratigraphy of the Picuris formation and the Santa Fe Group. The Picuris formation exists at the surface in the Miranda and Rio Grande del Rancho grabens, and locally along the top of the Picuris piedmont. In the subsurface, it deepens rapidly from the mountain front into the rift basin. In a similar manner, the Tesuque and Chamita Formations are shallowly exposed close to the mountain front, but are down dropped into the basin along the Embudo faults. The Ojo Caliente Sandstone Member of the Tesuque Formation appears to be thickest in the northwestern study area, and thins toward the south and the east. In the study area, the Lama formation thins westward and southward. The Servilleta Basalt is generally thickest to the north and northwest, thins under the Picuris piedmont, and terminates along a major, linear, buried strand of the Embudo fault zone, demonstrating that the Servilleta flows were spatially and temporally related to Embudo fault activity.
Fault rocks as indicators of slip behavior
NASA Astrophysics Data System (ADS)
Hayman, N. W.
2017-12-01
Forty years ago, Sibson ("Fault rocks and fault mechanisms", J. Geol. Soc. Lon., 1977) explored plastic flow mechanisms in the upper and lower crust which he attributed to deformation rates faster than tectonic ones, but slower than earthquakes. We can now combine observations of natural fault rocks with insights from experiments to interpret a broad range of length and time scales of fault slip in more detail. Fault rocks are generally weak, with predominantly frictionally stable materials in some fault segments, and more unstable materials in others. Both upper and lower crustal faults contain veins and mineralogical signatures of transiently elevated fluid pressure, and some contain relicts of pseudotachylite and bear other thermal-mechanical signatures of seismic slip. Varying strain rates and episodic-tremor-and-slip (ETS) have been attributed to fault zones with varying widths filled with irregular foliations, veins, and dismembered blocks of varying sizes. Particle-size distributions and orientations in gouge appear to differ between locked and creeping faults. These and other geologic observations can be framed in terms of constitutive behaviors derived from experiments and modeling. The experimental correlation of velocity-dependence with microstructure and the behavior of natural fault-rocks under shear suggest that friction laws may be applied liberally to fault-zone interpretation. Force-chains imaged in stress-sensitive granular aggregates or in numerical simulations show that stick-slip behavior with stress drops far below that of earthquakes can occur during quasi-periodic creep, yet localize shear in larger, aperiodic events; perhaps the systematic relationship between sub-mm shear bands and surrounding gouge and/or cataclasites causes such slip partitioning in nature. Fracture, frictional sliding, and viscous creep can experimentally produce a range of slip behavior, including ETS-like events. Perhaps a similar mechanism occurs to cause ETS at the up-dip limit of faults where water-saturated, highly porous sedimentary aggregates are incorporated into fault zones. Forty years on, fault-rock studies continue to refine a model for fault slip that continuously encompasses the full range of lithospheric depths and seismic to geologic time scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, F.R.; Widmann, B.L.; Dickerson, R.P.
1994-12-31
The Tiva Canyon Tuff of the Paintbrush Group of Miocene age caps much of Yucca Mountain, Nevada and is a compositionally zoned, compound cooling, pyroclastic flow that ranges from a dominantly high-silica rhyolitic base to a quartz-latitic caprock. Petrographic and geochemical studies have focused on rigorously defining the internal stratigraphy of this unit to support the detailed mapping of the Ghost Dance fault and other structures in the central fault block of Yucca Mountain. This study shows that devitrification textures and vapor phase mineralogy, in addition to other physical attributes such as pumice variability (flattening) and crystal content, can bemore » used as distinguishing criteria to better define lithologic zones within the Tiva Canyon Tuff. In addition, the study also shows that the petrographic textures and chemistry of the groundmass vary systematically within recognizable lithologic zones and may be used to characterize and vertically divide litho-stratigraphic zones within the Tiva Canyon Tuff.« less
NASA Astrophysics Data System (ADS)
Lei, J.; Zhao, D.; Zha, X.
2014-12-01
We present a new 3-D P-wave velocity model of the upper mantle under eastern Tibet determined from 113,831 high-quality teleseismic arrival-time data. Our data are hand-picked from seismograms of 784 teleseismic events (30o-90o) with magnitudes of 5.2 or greater. These events were recorded by 21 portable seismic stations deployed in Yunnan during April 2010 to July 2011 and 259 permanent stations of Chinese provincial seismic networks during September 2008 to December 2011 in the study region. Our results provide new insights into the mantle structure and dynamics of eastern Tibet. High-velocity (high-V) anomalies are revealed down to 200 km depth under stable cratonic regions, such as Sichuan basin, Ordos and Alashan blocks. Prominent low-velocity (low-V) anomalies are revealed in the upper mantle under the Kunlun-Qinling fold zone, Songpan-Ganzi, Qiangtang, Lahsa, and Chuan-Dian diamond blocks, suggesting that the eastward moving low-V materials are obstructed by Sichuan basin, Ordos and Alashan blocks, and they could be extruded through the Qinling fold zone and the Chuan-Dian block to eastern China. In addition, the extent and thickness of these low-V anomalies are well correlated with the surface topography, suggesting that uplift of eastern Tibet is closely related to the low-V anomalies which may reflect hot materials and have strong buoyancy. In the mantle transition zone, broad high-V anomalies are visible from the Burma arc northward to the Kunlun fault and eastward to the Xiaojiang fault, which extend for a total of approximately 700 km. The high-V anomalies are connected upward to the Wadati-Benioff seismic zone beneath the Burma arc. These results suggest that the Indian slab has subducted horizontally for a long distance in the mantle transition zone after it descended into the mantle, and its deep dehydration has contributed to forming the low-V anomalies in the big mantle wedge above the slab. Our present results shed new light on the formation and evolution of the Tibetan plateau.
Low strength of deep San Andreas fault gouge from SAFOD core
Lockner, David A.; Morrow, Carolyn A.; Moore, Diane E.; Hickman, Stephen H.
2011-01-01
The San Andreas fault accommodates 28–34 mm yr−1 of right lateral motion of the Pacific crustal plate northwestward past the North American plate. In California, the fault is composed of two distinct locked segments that have produced great earthquakes in historical times, separated by a 150-km-long creeping zone. The San Andreas Fault Observatory at Depth (SAFOD) is a scientific borehole located northwest of Parkfield, California, near the southern end of the creeping zone. Core was recovered from across the actively deforming San Andreas fault at a vertical depth of 2.7 km (ref. 1). Here we report laboratory strength measurements of these fault core materials at in situ conditions, demonstrating that at this locality and this depth the San Andreas fault is profoundly weak (coefficient of friction, 0.15) owing to the presence of the smectite clay mineral saponite, which is one of the weakest phyllosilicates known. This Mg-rich clay is the low-temperature product of metasomatic reactions between the quartzofeldspathic wall rocks and serpentinite blocks in the fault2, 3. These findings provide strong evidence that deformation of the mechanically unusual creeping portions of the San Andreas fault system is controlled by the presence of weak minerals rather than by high fluid pressure or other proposed mechanisms1. The combination of these measurements of fault core strength with borehole observations1, 4, 5 yields a self-consistent picture of the stress state of the San Andreas fault at the SAFOD site, in which the fault is intrinsically weak in an otherwise strong crust.
Low strength of deep San Andreas fault gouge from SAFOD core
Lockner, D.A.; Morrow, C.; Moore, D.; Hickman, S.
2011-01-01
The San Andreas fault accommodates 28-"34-???mm-???yr ????'1 of right lateral motion of the Pacific crustal plate northwestward past the North American plate. In California, the fault is composed of two distinct locked segments that have produced great earthquakes in historical times, separated by a 150-km-long creeping zone. The San Andreas Fault Observatory at Depth (SAFOD) is a scientific borehole located northwest of Parkfield, California, near the southern end of the creeping zone. Core was recovered from across the actively deforming San Andreas fault at a vertical depth of 2.7-???km (ref. 1). Here we report laboratory strength measurements of these fault core materials at in situ conditions, demonstrating that at this locality and this depth the San Andreas fault is profoundly weak (coefficient of friction, 0.15) owing to the presence of the smectite clay mineral saponite, which is one of the weakest phyllosilicates known. This Mg-rich clay is the low-temperature product of metasomatic reactions between the quartzofeldspathic wall rocks and serpentinite blocks in the fault. These findings provide strong evidence that deformation of the mechanically unusual creeping portions of the San Andreas fault system is controlled by the presence of weak minerals rather than by high fluid pressure or other proposed mechanisms. The combination of these measurements of fault core strength with borehole observations yields a self-consistent picture of the stress state of the San Andreas fault at the SAFOD site, in which the fault is intrinsically weak in an otherwise strong crust. ?? 2011 Macmillan Publishers Limited. All rights reserved.
NASA Astrophysics Data System (ADS)
Sherrod, B. L.; Styron, R. H.
2016-12-01
Paleoseismic studies documented prehistoric earthquakes after the last glaciation ended 15 ka on 13 upper-crustal fault zones in the Cascadia fore arc. These fault zones are a consequence of north-directed fore arc block migration manifesting as a series of bedrock uplifts and intervening structural basins in the southern Salish Sea lowland between Vancouver, B.C. to the north and Olympia, WA to the south, and bounded on the east and west by the Cascade Mountains and Olympic Mountains, respectively. Our dataset uses published information and includes 27 earthquakes tabulated from observations of postglacial deformation at 63 sites. Stratigraphic offsets along faults consist of two types of measurements: 1) vertical separation of strata along faults observed in fault scarp excavations, and 2) estimates from coastal uplift and subsidence. We used probabilistic methods to estimate past rupture magnitudes and surface rupture length (SRL), applying empirical observations from modern earthquakes and point measurements from paleoseismic sites (Biasi and Weldon, 2006). Estimates of paleoearthquake magnitude ranged between M 6.5 and M 7.5. SRL estimates varied between 20 and 90 km. Paleoearthquakes on the Seattle fault zone and Saddle Mountain West fault about 1100 years ago were outliers in our analysis. Large offsets observed for these two earthquakes implies a M 7.8 and 200 km SRL, given the average observed ratio of slip/SRL in modern earthquakes. The actual mapped traces of these faults are less than 200km, implying these earthquakes had an unusually high static stress drop or, in the case of the Seattle fault, splay faults may have accentuated uplift in the hanging wall. Refined calculations incorporating fault area may change these magnitude and SRL estimates. Biasi, G.P., and Weldon, R.J., 2006, Estimating Surface Rupture Length and Magnitude of Paleoearthquakes from Point Measurements of Rupture Displacement: B. Seismol. Soc. Am., 96, 1612-1623.
NASA Astrophysics Data System (ADS)
Blumentritt, C. H.; Marfurt, K. J.
2005-05-01
We compute curvatures for 3-D seismic volumes covering 200+ mi2 of the Central Basin Platform in West Texas and find that these attributes illumination lineations not seen on other displays of the seismic data. We analyze the preferred orientations of these lineations defined by well imaged faults and fault zones and find that the patterns vary according to the nature of the faults bounding the blocks, mostly strike-slip, high angle reverse, or oblique slip. We perform the analysis in the pre-Mississippian section which is decoupled from the overburden by a Permian age unconformity. Our technique differs from that of previous workers in that we compute curvatures on each sample of a seismic volume using a moving subvolume rather than along surfaces interpreted from the data. In this way, we minimize high frequency variations in the results that arise from picking errors in the interpretation or noise in the data. We are able to extract and display values of curvature along time or depth slices, along horizon slices, and along poorly imaged horizons.
A 3D Magnetotelluric Perspective on the Galway Granite, Western Ireland
NASA Astrophysics Data System (ADS)
Farrell, Thomas; Muller, Mark; Vozar, Jan; Feely, Martin; Hogg, Colin
2017-04-01
Magnetotelluric (MT) and audi-magnetotelluric (AMT) data were acquired at 75 locations across the exposed calc-alkaline Caledonian Galway granite batholith and surrounding country rocks into which the granite intruded. The Galway granite is located in western Ireland on the north shore of Galway bay, and has an ESE-WNW long axis. The granite is cut by trans-batholith faults, the Shannawona Fault Zone (SFZ) in the western part of the batholith, which has a NE-SW trend, and the Bearna Fault Zone (BFZ) in the eastern sector that has a NW-SE trend. Geobarometry data indicate that the central granite block between these fault zones has been uplifted, with the interpretation being that the granite in this central block is thinned. To the west of the SFZ, much of the Galway granite is below sea level, with the majority of the southern granite contact also beneath the sea in Galway bay. To the east of the batholith, the Carboniferous successions, consisting of mainly limestone with shale, overlie the basement rocks. The country rock to the north includes the metagabbro-gneiss suite, which itself intruded the deformed Dalradian successions that were deposited on the Laurentian margin of the Iapetus Ocean. The deformation of the Dalradian rocks, the intrusion of the metagabbro-gneiss suite and the intrusion of the Galway granite were major events in the protracted closure of the Iapetus Ocean. It is clear from geological mapping, from geobarometry and from the present submergence by the sea of a large part of the Galway granite, that inversion of MT data in this structurally complex geology is likely to require a 3D approach. We present a summary of 3D inversion of the Galway MT and AMT data. The study shows that the structure of the Galway granite is quite different from the pre-existing perspective. The central block, thought by its uplifting to be thinned, is shown to be the thickest part of the batholith. A geological model of granite intrusion is offered to explain this structure.
NASA Astrophysics Data System (ADS)
Campos-Enriquez, J. O.; Zambrana Arias, X.; Keppie, D.; Ramón Márquez, V.
2012-12-01
Regional scale models have been proposed for the Nicaraguan depression: 1) parallel rifting of the depression (and volcanic front) due to roll back of the underlying subducted Cocos plate; 2) right-lateral strike-slip faulting parallel to the depression and locally offset by pull-apart basins; 3) right-lateral strike-slip faulting parallel to the depression and offset by left-lateral transverse or bookshelf faults. At an intermediate scale, Funk et al. (2011) interpret the depression as half graben type structures. The E-W Airport graben lies in the southeastern part of the Managua graben (Nicaragua), across which the active Central American volcanic arc is dextrally offset, possibly the result of a subducted transform fault where the subduction angle changes. The Managua graben lies within the late Quaternary Nicaragua depression produced by backarc rifting during roll back of the Middle American Trench. The Managua graben formed as a pull-apart rift associated with dextral bookshelf faulting during dextral shear between the forearc and arc and is the locus of two historical, large earthquakes that destroyed the city of Managua. In order to asses future earthquake risk, four E-W gravity and magnetic profiles were undertaken to determine its structure across the Airport graben, which is bounded by the Cofradia and Airport fault zones, to the east and west, respectively. These data indicated the presence of a series of normal faults bounding down-thrown and up-thrown fault blocks and a listric normal fault, Sabana Grande Fault. The models imply that this area has been subjected to tectonic extension. These faults appear to be part of the bookshelf suite and will probably be the locus of future earthquakes, which could destroy the airport and surrounding part of Managua. Three regional SW-NE gravity profiles running from the Pacific Ocean up to the Caribbean See indicate a change in crustal structure: from north to south the crust thins. According to these regional crustal models the offset observed in the Volcanic Front around the Nicaragua Lake is associated with a weakness zone related with: 1) this N-S change in crustal structure, 2) to the subduction angle of the Cocos plate, and 3) to the distance to the Middle America Trench (i.e. the location of the mantle wedge). As mentioned above a subducted transform fault might have given rise to this crustal discontinuity.
NASA Astrophysics Data System (ADS)
Zinoviev, Sergei
2014-05-01
Kuznetsk-Altai region is a part of the Central Asian Orogenic Belt. The nature and formation mechanisms of the observed structure of Kuznetsk-Altai region are interpreted by the author as the consequence of convergence of Tuva-Mongolian and Junggar lithospheric block structures and energy of collision interaction between the blocks of crust in Late-Paleozoic-Mesozoic period. Tectonic zoning of Kuznetsk-Altai region is based on the principle of adequate description of geological medium (without methods of 'primary' state recovery). The initial indication of this convergence is the crust thickening in the zone of collision. On the surface the mechanisms of lateral compression form a regional elevation; with this elevation growth the 'mountain roots' start growing. With an approach of blocks an interblock elevation is divided into various fragments, and these fragments interact in the manner of collision. The physical expression of collision mechanisms are periodic pulses of seismic activity. The main tectonic consequence of the block convergence and collision of interblock units is formation of an ensemble of regional structures of the deformation type on the basis of previous 'pre-collision' geological substratum [Chikov et al., 2012]. This ensemble includes: 1) allochthonous and autochthonous blocks of weakly deformed substratum; 2) folded (folded-thrust) systems; 3) dynamic metamorphism zones of regional shears and main faults. Characteristic of the main structures includes: the position of sedimentary, magmatic and PT-metamorphic rocks, the degree of rock dynamometamorphism and variety rock body deformation, as well as the styles and concentrations of mechanic deformations. 1) block terranes have weakly elongated or isometric shape in plane, and they are the systems of block structures of pre-collision substratum separated by the younger zones of interblock deformations. They stand out among the main deformation systems, and the smallest are included into the deformation systems. 2) folded (folded-thrust) deformation systems combine deformation zones with relic lenses of Paleozoid substratum, and predominantly conform systems of the main faults. Despite a high degree of regional deformation the sedimentary-stratified and intrusive-contact relations of geological bodies are stored within the deformation systems, and this differs in the main the collision systems from zones of dynamic metamorphism. 3) regional zones of dynamic metamorphism of Kuznetsk-Altai region are the concentration belts of multiple mechanic deformations and contrast dynamometamorphism of complexes. The formational basis of dynamic metamorphism zones is tectonites of the collision stage. Zones of dynamic metamorphism attract special attention in the structural model of Kuznetsk-Altai region. They not only form the typical tectonic framework of collision sutures, but also contain the main part of ore deposits of this region. Pulse mode of structure formation of Kuznetsk-Altai region is detected. Major collision events in Kuznetsk-Altai region were in the late-Carboniferous-Triassic time (307-310, 295-285, 260-250 and 240-220 Ma). This study was supported by a grant of the Russian Foundation for Basic Research (project nos. 14-05-00117).
NASA Astrophysics Data System (ADS)
Reece, R.; Gulick, S. P.; Christeson, G. L.; Worthington, L. L.
2009-12-01
The Yakutat Block (YAK), an allochthonous terrane coupled to the Pacific Plate (PAC), collided with the North American plate ~10Ma and began subducting at the Aleutian Trench. Due to its thickness, the YAK is resistant to subduction compared to the PAC. As a result, the YAK is undergoing flat-slab subduction and now has developed its own vector relative to the PAC. High-resolution bathymetry data shows a 30km N-S trending ridge within the Surveyor Fan between the mouths of the Yakutat Sea Valley and Bering Trough. The ridge originates in the north at the base of the continental slope, which is coincident with the Transition Fault, the strike-slip boundary between the YAK and the PAC. The ridge exhibits greatest relief adjacent to the Transition Fault, and becomes less distinct farther from the shelf edge. As the highest relief feature in this part of the basin, the ridge has completely redefined sediment distribution patterns within the Surveyor Fan. Seismic reflection data reveal a sharp basement high beneath the ridge (1.1 sec of relief above “normal” basement in two-way travel time) as well as multiple strike-slip fault systems that are also N-S oriented. The ridge, basement high, and faults are aligned and co-located with an intraplate earthquake swarm on the PAC, which includes four events > 6.5 Mw that occurred from 1987-1992. This earthquake swarm is defined by mostly right-lateral strike-slip events, and is known as the Gulf of Alaska Shear Zone (GASZ). Based on the extent of seismicity, the GASZ extends 230km into the PAC. Tearing of oceanic crust on this scale is rare. A recent wide-angle seismic study shows the YAK to be a 20-25km thick mafic body while the 30 Myr old Pacific crust in the northern Gulf of Alaska is of normal thickness. Intraplate deformation occurring within the PAC could be the result of PAC-YAK coupling whereby YAK resistance to subduction is expressed as deformation in the thinner (weaker) PAC crust. Although a large tear in normal oceanic crust is unusual, preexisting zones of weakness within the PAC crust that are proximal to and under stress from the YAK may have proven to be a kinematically favorable localization for strain. These results support a recently proposed tectonic model wherein the differing YAK and PAC vectors caused the northern PAC to split into two different blocks, separated by the GASZ. In this model, the eastern block of the PAC would exhibit a counter-clockwise rotation that accounts for motion along the Transition Fault and GASZ. We will analyze this intraplate deformation zone using seismic imaging, bathymetry, and magnetic data in order to examine the cause of the strain localization and its southern termination, the influence of this shear zone on the sedimentary history, and relationship with the PAC-YAK interplate deformation along the Transition Fault.
The geologic structure of part of the southern Franklin Mountains, El Paso County, Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, W.R.; Julian, F.E.
1993-02-01
The Franklin Mountains are a west tilted fault block mountain range which extends northwards from the city of El Paso, Texas. Geologic mapping in the southern portion of the Franklin Mountains has revealed many previously unrecognized structural complexities. Three large high-angle faults define the boundaries of map. Twenty lithologic units are present in the field area, including the southernmost Precambrian meta-sedimentary rocks in the Franklin Mountains (Lanoria Quartzite and Thunderbird group conglomerates). The area is dominated by Precambrian igneous rocks and lower Paleozoic carbonates, but Cenozoic ( ) intrusions are also recognized. Thin sections and rock slabs were used tomore » describe and identify many of the lithologic units. The Franklin Mountains are often referred to as a simple fault block mountain range related to the Rio Grande Rift. Three critical regions within the study area show that these mountains contain structural complexities. In critical area one, Precambrian granites and rhyolites are structurally juxtaposed, and several faults bisecting the area affect the Precambrian/Paleozoic fault contact. Critical area two contains multiple NNW-trending faults, three sills and a possible landslide. This area also shows depositional features related to an island of Precambrian rock exposed during deposition of the lower Paleozoic rocks. Critical area three contains numerous small faults which generally trend NNE. They appear to be splays off of one of the major faults bounding the area. Cenozoic kaolinite sills and mafic intrusion have filled many of the fault zones.« less
Local response of a glacier to annual filling and drainage of an ice-marginal lake
Walder, J.S.; Trabant, D.C.; Cunico, M.; Fountain, A.G.; Anderson, S.P.; Anderson, R. Scott; Malm, A.
2006-01-01
Ice-marginal Hidden Creek Lake, Alaska, USA, outbursts annually over the course of 2-3 days. As the lake fills, survey targets on the surface of the 'ice dam' (the glacier adjacent to the lake) move obliquely to the ice margin and rise substantially. As the lake drains, ice motion speeds up, becomes nearly perpendicular to the face of the ice dam, and the ice surface drops. Vertical movement of the ice dam probably reflects growth and decay of a wedge of water beneath the ice dam, in line with established ideas about jo??kulhlaup mechanics. However, the distribution of vertical ice movement, with a narrow (50-100 m wide) zone where the uplift rate decreases by 90%, cannot be explained by invoking flexure of the ice dam in a fashion analogous to tidal flexure of a floating glacier tongue or ice shelf. Rather, the zone of large uplift-rate gradient is a fault zone: ice-dam deformation is dominated by movement along high-angle faults that cut the ice dam through its entire thickness, with the sense of fault slip reversing as the lake drains. Survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. The horizontal strain rate also undergoes a reversal across this zone, being compressional as the lake fills, but extensional as the lake drains. Frictional resistance to fault-block motion probably accounts for the fact that lake level falls measurably before the onset of accelerated horizontal motion and vertical downdrop. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.
NASA Astrophysics Data System (ADS)
Yaltırak, Cenk; Engin Aksu, Ali; Hall, Jeremy; Elitez, İrem
2015-04-01
During the last 20 or so years, the tectonic evolution of Aegean Sea and Western Anatolia has been dominantly explained by back-arc extension and escape tectonics along the North Anatolian Fault. Various datasets have been considered in the construction of general tectonic models, including the geometry of fault patterns, paleomagnetic data, extensional directions of the core complexes, characteristic changes in magmatism and volcanism, the different sense of Miocene rotation between the opposite sides of the Aegean Sea, and the stratigraphy and position of the Miocene and Pliocene-Quaternary basins. In these models, the roles of the Burdur-Fethiye Shear Zone, the Trakya-Eskişehir Fault Zone, the Anaximander Mountains and Isparta Angle have almost never been taken into consideration. The holistic evaluation of numerous land and marine researches in the Aegean Sea and western Anatolia suggest the following evolutionary stages: 1. during the early Miocene, Greece and western Anatolia were deformed under the NE-SW extensional tectonics associated with the back-arc extension, when core complexes and supra-detachment basins developed, 2. following the collision of the Anaximander Mountains and western Anatolia in early Miocene , the Isparta Angle locked this side of the western arc by generating a triangle-shaped compressional structure, 3. while the Isparta Angle penetrated into the Anatolia, the NE-striking Burdur-Fethiye Shear Zone in the west and NW-striking Trakya-Eskişehir Fault Zone in the north developed along the paleo-tectonic zones , 4. the formation of these two tectonic structures allowed the counterclockwise rotation of the western Anatolia in the middle Miocene and this rotation removed the effect of the back-arc extension on the western Anatolian Block, 5. the counterclockwise rotation developed with the early westward escape of the Western Anatolian reached up to 35-40o and Trakya-Eskişehir Fault Zone created a total dextral displacement of about 200 km. Therefore the original NE-SW extension records on the core complexes rotated to the N-S orientation and replace 45o in reference to the core complexes in Greece, 6. During this stage, the left-lateral shear along the Burdur-Fethiye Shear Zone indicates the southern part of the counterclockwise rotation. 7. The North Anatolian Fault started to form as the result of the collision of the Arabian Microplate and the Eurasian Plate in the late Miocene. This continental transform fault propagated into the Marmara Region in the late Pliocene. Its late westward escape by cutting the Trakya-Eskişehir Fault Zone on three points generates its transportation through Trakya-Eskişehir Fault Zone splays. 8. During the Miocene, while Greece was rotating 20o clockwise and continuing to be shaped by the NW-SE normal faults, which were formed as a result of back-arc tectonic, the late westward escape of the Anatolia changed the orientation of the NEE-SWW striking oblique-extensional fault-controlled Miocene basins to NE-SW direction. The rotational E-W basins, which had developed by the North Anatolian Fault tectonics, superimposed with these Miocene basins .
Antecedent rivers and early rifting: a case study from the Plio-Pleistocene Corinth rift, Greece
NASA Astrophysics Data System (ADS)
Hemelsdaël, Romain; Ford, Mary; Malartre, Fabrice
2016-04-01
Models of early rifting present syn-rift sedimentation as the direct response to the development of normal fault systems where footwall-derived drainage supplies alluvial to lacustrine sediments into hangingwall depocentres. These models often include antecedent rivers, diverted into active depocentres and with little impact on facies distributions. However, antecedent rivers can supply a high volume of sediment from the onset of rifting. What are the interactions between major antecedent rivers and a growing normal fault system? What are the implications for alluvial stratigraphy and facies distributions in early rifts? These questions are investigated by studying a Plio-Pleistocene fluvial succession on the southern margin of the Corinth rift (Greece). In the northern Peloponnese, early syn-rift deposits are preserved in a series of uplifted E-W normal fault blocks (10-15 km long, 3-7 km wide). Detailed sedimentary logging and high resolution mapping of the syn-rift succession (400 to 1300 m thick) define the architecture of the early rift alluvial system. Magnetostratigraphy and biostratigraphic markers are used to date and correlate the fluvial succession within and between fault blocks. The age of the succession is between 4.0 and 1.8 Ma. We present a new tectonostratigraphic model for early rift basins based on our reconstructions. The early rift depositional system was established across a series of narrow normal fault blocks. Palaeocurrent data show that the alluvial basin was supplied by one major sediment entry point. A low sinuosity braided river system flowed over 15 to 30 km to the NE. Facies evolved downstream from coarse conglomerates to fined-grained fluvial deposits. Other minor sediment entry points supply linked and isolated depocentres. The main river system terminated eastward where it built stacked small deltas into a shallow lake (5 to 15 m deep) that occupied the central Corinth rift. The main fluvial axis remained constant and controlled facies distribution throughout the early rift evolution. We show that the length scale of fluvial facies transitions is greater than and therefore not related to fault spacing. First order facies variations instead occur at the scale of the full antecedent fluvial system. Strike-parallel subsidence variations in individual fault blocks represent a second order controlling factor on stratigraphic architecture. As depocentres enlarged through time, sediments progressively filled palaeorelief, and formed a continuous alluvial plain above active faults. There was limited creation of footwall relief and thus no significant consequent drainage system developed. Here, instead of being diverted toward subsiding zones, the drainage system overfilled the whole rift from the onset of faulting. Moreover, the zones of maximum subsidence on individual faults are aligned across strike parallel to the persistent fluvial axis. This implies that long-term sediment loading influenced the growth of normal faults. We conclude that a major antecedent drainage system inherited from the Hellenide mountain belt supplied high volumes of coarse sediment from the onset of faulting in the western Corinth rift (around 4 Ma). These observations demonstrate that antecedent drainage systems can be important in the tectono-sedimentary evolution of rift basins.
Odum, J.K.; Stephenson, W.J.; Shedlock, K.M.; Pratt, T.L.
1998-01-01
The February 7, 1812, New Madrid, Missouri, earthquake (M [moment magnitude] 8) was the third and final large-magnitude event to rock the northern Mississippi Embayment during the winter of 1811-1812. Although ground shaking was so strong that it rang church bells, stopped clocks, buckled pavement, and rocked buildings up and down the eastern seaboard, little coseismic surface deformation exists today in the New Madrid area. The fault(s) that ruptured during this event have remained enigmatic. We have integrated geomorphic data documenting differential surficial deformation (supplemented by historical accounts of surficial deformation and earthquake-induced Mississippi River waterfalls and rapids) with the interpretation of existing and recently acquired seismic reflection data, to develop a tectonic model of the near-surface structures in the New Madrid, Missouri, area. This model consists of two primary components: a northnorthwest-trending thrust fault and a series of northeast-trending, strike-slip, tear faults. We conclude that the Reelfoot fault is a thrust fault that is at least 30 km long. We also infer that tear faults in the near surface partitioned the hanging wall into subparallel blocks that have undergone differential displacement during episodes of faulting. The northeast-trending tear faults bound an area documented to have been uplifted at least 0.5 m during the February 7, 1812, earthquake. These faults also appear to bound changes in the surface density of epicenters that are within the modern seismicity, which is occurring in the stepover zone of the left-stepping right-lateral strike-slip fault system of the modern New Madrid seismic zone.
A physical model for strain accumulation in the San Francisco Bay Region
Pollitz, F.F.; Nyst, M.
2005-01-01
Strain accumulation in tectonically active regions is generally a superposition of the effects of background tectonic loading, steady-state dislocation processes, such as creep, and transient deformation. In the San Francisco Bay region (SFBR), the most uncertain of these processes is transient deformation, which arises primarily in association with large earthquakes. As such, it depends upon the history of faulting and the rheology of the crust and mantle, which together determine the pattern of longer term (decade-scale) post-seismic response to earthquakes. We utilize a set of 102 GPS velocity vectors in the SFBR in order to characterize the strain rate field and construct a physical model of its present deformation. We first perform an inversion for the continuous velocity gradient field from the discrete GPS velocity field, from which both tensor strain rate and rotation rate may be extracted. The present strain rate pattern is well described as a nearly uniform shear strain rate oriented approximately N34??W (140 nanostrain yr-1) plus a N56??E uniaxial compression rate averaging 20 nanostrain yr-1 across the shear zone. We fit the velocity and strain rate fields to a model of time-dependent deformation within a 135-kin-wide, arcuate shear zone bounded by strong Pacific Plate and Sierra Nevada block lithosphere to the SW and NE, respectively. Driving forces are purely lateral, consisting of shear zone deformation imposed by the relative motions between the thick Pacific Plate and Sierra Nevada block lithospheres. Assuming a depth-dependent viscoelastic structure within the shear zone, we account for the effects of steady creep on faults and viscoelastic relaxation following the 1906 San Francisco and 1989 Loma Prieta earthquakes, subject to constant velocity boundary conditions on the edges of the shear zone. Fault creep is realized by evaluating dislocations on the creeping portions of faults in the fluid limit of the viscoelastic model. A priori plate-boundary(PB)-parallel motion is set to 38 mm yr -1. A grid search based on fitting the observed strain rate pattern yields a mantle viscosity of 1.2 ?? 1019 Pa s and a PB-perpendicular convergence rate of ???3 mm yr-1. Most of this convergence appears to be uniformly distributed in the Pacific-Sierra Nevada plate boundary zone. ?? 2005 RAS.
NASA Astrophysics Data System (ADS)
Belkhiria, W.; Boussiga, H.; Inoubli, M. H.
2017-05-01
The transition zone between western and central Mediterranean domains presents a key area to investigate kinematic interactions within the adjacent orogen systems such as the easternmost Atlas foreland-and-thrust belt. Gravity and seismic data revealed a highly structured basement, characterizing a series of structural highs and lows delimited by high-angle N-S, E-W, and NW-SE extensional faults. This basement architecture is inherited from successive extensional events related to the openings of the Triassic-Early Cretaceous Tethys oceans (i.e., Alpine Tethys, Ligurian Tethys, and Mesogea). Throughout this period, this mosaic of continental blocks significantly controlled the thickness and facies distributions. Early stages of diapirism took place along these basement faults and allowed maximum subsidence in minibasins revealed by the development of growth strata. In response to the Late Cretaceous-Eocene shortenings, these extensional faults have been reactivated as trasnpressional shear zones, giving rise to narrow pop-up structures. In addition, gravity modeling indicates crustal thinning and deep-rooted faults affecting the crust south of the Zaghouan Thrust and along E-W transfer zones. From the late Miocene, a drastic change in the stress regime is attributed to the effect of the adjacent Sicily channel on the study area. This promotes crustal thinning, basin subsidence, and channeling up of mantle-derived helium along lithospheric-scale weak zones. Our results give rise to new insights into the reactivation of inherited weakness zones of southern Tethys margin in response to the complex interaction between African and Eurasian plates accommodated by subduction, rollback, collision, and slab segmentation.
NASA Technical Reports Server (NTRS)
Liggett, M. A. (Principal Investigator); Childs, J. F.
1974-01-01
The author has identified the following significant results. The pattern of faulting associated with the termination of the Death Valley-Furnace Creek Fault Zone in northern Fish Lake Valley, Nevada was studied in ERTS-1 MSS color composite imagery and color IR U-2 photography. Imagery analysis was supported by field reconnaissance and low altitude aerial photography. The northwest-trending right-lateral Death Valley-Furnace Creek Fault Zone changes northward to a complex pattern of discontinuous dip slip and strike slip faults. This fault pattern terminates to the north against an east-northeast trending zone herein called the Montgomery Fault Zone. No evidence for continuation of the Death Valley-Furnace Creek Fault Zone is recognized north of the Montgomery Fault Zone. Penecontemporaneous displacement in the Death Valley-Furnace Creek Fault Zone, the complex transitional zone, and the Montgomery Fault Zone suggests that the systems are genetically related. Mercury mineralization appears to have been localized along faults recognizable in ERTS-1 imagery within the transitional zone and the Montgomery Fault Zone.
NASA Astrophysics Data System (ADS)
Leppard, Christopher W.; Gawthorpe, Rob L.
2006-09-01
In most marine rift basins, subsidence outpaces sedimentation during rift climax times. Typically this results in sediment-starved hangingwall depocentres dominated by deep-marine mudstones, with subordinate local development of coarser clastics in the immediate hangingwall derived from restricted catchments on the immediate footwall scarp. To highlight the spatial variability of rift climax facies and the controls upon them, we have investigated the detailed three-dimensional geometry and facies relationships of the extremely well exposed Miocene, rift climax Lower Rudeis Formation in the immediate hangingwall to the Thal Fault Zone, Suez Rift, Egypt. Detailed sedimentological analyses allows the Lower Rudeis Formation to be divided into two contemporaneous depositional systems, (1) a laterally continuous slope system comprising, hangingwall restricted (< 250 m wide) slope apron, slope slumps, fault scarp degradation complex and laterally extensive lower slope-to-basinal siltstones, and (2) a localized submarine fan complex up to 1 km wide and extending at least 2 km basinward of the fault zone. Interpretation of individual facies, facies relationships and their spatial variability indicate that deposition in the immediate hangingwall to the Thal Fault occurred via a range of submarine concentrated density flows, surge-like turbidity flows, mass wasting and hemipelagic processes. Major controls on the spatial variability and stratigraphic architecture of the depositional systems identified reflect the influence of the steep footwall physiography, accommodation and drainage evolution associated with the growth of the Thal Fault. The under-filled nature of the hangingwall depocentre combined with the steep footwall gradient result in a steep fault-controlled basin margin characterised by either slope bypass or erosion, with limited coastal plain or shelf area. Sediment supply to the slope apron deposits is controlled in part by the evolution and size of small footwall drainage catchments. In contrast, the localized submarine fan is interpreted to have been fed by a larger, antecedent drainage network. The structural style of the immediate footwall is also believed to exert a control on facies development and stratigraphic evolution. In particular, fault scarp degradation is enhanced by fault propagation folding which creates basinward-dipping bedding planes in the pre-rift footwall strata that large pre-rift blocks slide on.
NASA Technical Reports Server (NTRS)
2008-01-01
Places where the earth's crust has formed deep fissures and the plates have begun to move apart develop rift structures in which elongate blocks have subsided relative to the blocks on either side. The East African Rift is a world-famous example of such rifting. It is characterized by 1) topographic deep valleys in the rift zone, 2) sheer escarpments along the faulted walls of the rift zone, 3) a chain of lakes within the rift, most of the lakes highly saline due to evaporation in the hot temperatures characteristic of climates near the equator, 4) voluminous amounts of volcanic rocks that have flowed from faults along the sides of the rift, and 5) volcanic cones where magma flow was most intense. This example in Kenya displays most of these features near Lake Begoria. The image was acquired December 18, 2002, covers an area of 40.5 x 32 km, and is located at 0.1 degrees north latitude, 36.1 degrees east longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.NASA Astrophysics Data System (ADS)
Azaïez, Hajer; Bédir, Mourad; Tanfous, Dorra; Soussi, Mohamed
2007-05-01
In central Tunisia, Lower Cretaceous deposits represent carbonate and sandstone reservoir series that correspond to proven oil fields. The main problems for hydrocarbon exploration of these levels are their basin tectonic configuration and their sequence distribution in addition to the source rock availability. The Central Atlas of Tunisia is characterized by deep seated faults directed northeast-southwest, northwest-southeast and north-south. These faults limit inherited tectonic blocks and show intruded Triassic salt domes. Lower Cretaceous series outcropping in the region along the anticline flanks present platform deposits. The seismic interpretation has followed the Exxon methodologies in the 26th A.A.P.G. Memoir. The defined Lower Cretaceous seismic units were calibrated with petroleum well data and tied to stratigraphic sequences established by outcrop studies. This allows the subsurface identification of subsiding zones and thus sequence deposit distribution. Seismic mapping of these units boundary shows a structuring from a platform to basin blocks zones and helps to understand the hydrocarbon reservoir systems-tract and horizon distribution around these domains.
NASA Astrophysics Data System (ADS)
Yepes, Hugo; Audin, Laurence; Alvarado, Alexandra; Beauval, Céline; Aguilar, Jorge; Font, Yvonne; Cotton, Fabrice
2016-05-01
A new view of Ecuador's complex geodynamics has been developed in the course of modeling seismic source zones for probabilistic seismic hazard analysis. This study focuses on two aspects of the plates' interaction at a continental scale: (a) age-related differences in rheology between Farallon and Nazca plates—marked by the Grijalva rifted margin and its inland projection—as they subduct underneath central Ecuador, and (b) the rapidly changing convergence obliquity resulting from the convex shape of the South American northwestern continental margin. Both conditions satisfactorily explain several characteristics of the observed seismicity and of the interseismic coupling. Intermediate-depth seismicity reveals a severe flexure in the Farallon slab as it dips and contorts at depth, originating the El Puyo seismic cluster. The two slabs position and geometry below continental Ecuador also correlate with surface expressions observable in the local and regional geology and tectonics. The interseismic coupling is weak and shallow south of the Grijalva rifted margin and increases northward, with a heterogeneous pattern locally associated to the Carnegie ridge subduction. High convergence obliquity is responsible for the North Andean Block northeastward movement along localized fault systems. The Cosanga and Pallatanga fault segments of the North Andean Block-South American boundary concentrate most of the seismic moment release in continental Ecuador. Other inner block faults located along the western border of the inter-Andean Depression also show a high rate of moderate-size earthquake production. Finally, a total of 19 seismic source zones were modeled in accordance with the proposed geodynamic and neotectonic scheme.
NASA Astrophysics Data System (ADS)
Lacassin, Robin; Maluski, Henri; Leloup, P. Hervé; Tapponnier, Paul; Hinthong, Chaiyan; Siribhakdi, Kanchit; Chuaviroj, Saengathit; Charoenravat, Adul
1997-05-01
The Wang Chao and Three Pagodas fault zones cut the western part of the Indochina block and run parallel to the Red River Fault. Evidence of intense ductile left-lateral shear is found in the Lansang gneisses, which form a 5 km wide elongated core along the Wang Chao fault zone. Dating by 40Ar/39Ar shows that such deformation probably terminated around 30.5 Ma. The Wang Chao and Three Pagodas faults offset the north striking lower Mesozoic metamorphic and magmatic belt of northern Thailand. 40Ar/39Ar results suggest that this belt suffered rapid cooling in the Tertiary, probably around 23 Ma. These results imply that the extrusion of the southwestern part of Indochina occurred in the upper Eocene-lower Oligocene. It probably induced rifting in some basins of the Gulf of Thailand and in the Malay and Mekong basins. In the Oligo-Miocene, the continuing penetration of India into Asia culminated with the extrusion of all of Indochina along the Ailao Shan-Red River fault. This occurred concurrently with the onset of E-W extension more to the south. Plotting in a geographical reference frame the diachronic time spans of movement on left-lateral faults east and southeast of Tibet implies that the northward movement of the Indian indenter successively initiated new strike-slip faults located farther and farther north along its path.
Lee, T.-G.; Hein, J.R.; Lee, Kenneth; Moon, J.-W.; Ko, Y.-T.
2005-01-01
A detailed analysis of chirp (3-7 kHz) subbottom profiles and bathymetry was performed on data collected from seamounts near the Ogasawara Fracture Zone (OFZ) in the western Pacific. The OFZ, which is a 150 km wide rift zone showing 600 km of right-lateral movement in a NW-SE direction, is unique among the fracture zones of the Pacific in that it includes many old seamounts (e.g., Magellan Seamounts and seamounts on Dutton Ridge). Sub-seafloor acoustic echoes on the seamounts are classified into nine specific types based on the nature and continuity of the echoes, subbottom structure, and morphology of the seafloor: (1) distinct echoes (types I-1, I-2, I-3), (2) indistinct echoes (types II-1, II-2, II-3), and (3) hyperbolic echoes (types III-1, III-2, III-3). Type I-2 pelagic sediments, characterized by thin and intermittent coverage, were probably deposited in topographically sheltered areas when bottom currents were strong, whereas type I-1 pelagic sediments accumulated during continuous and widespread sedimentation. Development of seamount flank rift zones in the OFZ may have been influenced by preexisting structures in the transform fracture zone at the time of volcanism, whereas those on Ita Mai Tai seamount in the Pigafetta Basin originated solely by edifice-building processes. Flank rift zones that formed by dike intrusions and eruptions played an important role in mass wasting. Mass-wasting processes included block faulting or block slides around the summit margin, sliding/slumping, debris flows, and turbidites, which may have been triggered by faulting, volcanism, dike injection, and weathering during various stages in the evolution of the seamounts. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fridrich, C. J.; Workman, J. B.
2009-12-01
Recently active faults of the Rio Grande rift near the Colorado-New Mexico border are almost entirely limited to the San Luis basin. In contrast, the early (≈26 to ≈10 Ma) structure of the rift in this area is significantly broader. A wide zone of abandoned, peripheral extensional structures is exposed on the eastern flank of the San Luis basin—in the west half of the Sangre de Cristo Mountains, known in this area as the southern Culebra and northern Taos Ranges. New detailed mapping shows that the eastern limit of the zone of early peripheral extension is marked by an aligned series of north-trending grabens, including the Devil’s Park, Valle Vidal, and Moreno Valley basins. Master faults of these intermontaine basins are partly localized along, and evidently reactivated moderate- to high-angle Laramide (≈70 to ≈40 Ma) reverse faults of the Sangre de Cristo Mountains. Between these grabens and the San Luis basin lies a structural zone that varies in style from block faulting, in the north, to more closely spaced tilted-domino-style faulting in the Latir volcanic field, to the south. Additional early rift structures include several long northwest-striking faults, the largest of which are interpreted to have accommodated significant right-lateral strike-slip, based on abrupt southwestward increase in the magnitude of extension across them. These faults evidently transferred strain from the axial part of the rift into the zone of early peripheral extension, and accommodated lateral changes in structural style. Throughout the area of early peripheral extension, there is a correlation between the magnitude of local volcanism and the degree of extension; however, it is unclear if extension drove volcanism—via mantle upwelling, or if extension was maximized where the crust was weakest, owing to the presence of magma and hot rock at shallow depths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, R.N.
1995-11-01
Within the Global Basins Research Network, we have developed 4-D seismic analysis techniques that, when integrated with pressure and temperature mapping, production history, geochemical monitoring, and finite element modeling, allow for the imaging of active fluid migration in the subsurface. We have imaged fluid flow pathways that are actively recharging shallower hydrocarbon reservoirs in the Eugene Island 330 field, offshore Louisiana. The hydrocarbons appear to be sourcing from turbidite stacks within the salt-withdrawal mini-basin buried deep within geopressure. Fault zone conduits provide transient migration pathways out of geopressure. To accomplish this 4-D imaging, we use multiple 3-D seismic surveys donemore » several years apart over the same blocks. 3-D volume processing and attribute analysis algorithms are used to identify significant seismic amplitude interconnectivity and changes over time that result from active fluid migration. Pressures and temperatures are then mapped and modeled to pro- vide rate and timing constraints for the fluid movement. Geochemical variability observed in the shallow reservoirs is attributed to the mixing of new with old oils. The Department of Energy has funded an industry cost-sharing project to drill into one of these active conduits in Eugene Island Block 330. Active fluid flow was encountered within the fault zone in the field demonstration experiment, and hydrocarbons were recovered. The active migration events connecting shallow reservoirs to deep sourcing regions imply that large, heretofore undiscovered hydrocarbon reserves exist deep within geopressures along the deep continental shelf of the northern Gulf of Mexico.« less
Preliminary deformation model for National Seismic Hazard map of Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meilano, Irwan; Gunawan, Endra; Sarsito, Dina
Preliminary deformation model for the Indonesia’s National Seismic Hazard (NSH) map is constructed as the block rotation and strain accumulation function at the elastic half-space. Deformation due to rigid body motion is estimated by rotating six tectonic blocks in Indonesia. The interseismic deformation due to subduction is estimated by assuming coupling on subduction interface while deformation at active fault is calculated by assuming each of the fault‘s segment slips beneath a locking depth or in combination with creeping in a shallower part. This research shows that rigid body motion dominates the deformation pattern with magnitude more than 15 mm/year, except inmore » the narrow area near subduction zones and active faults where significant deformation reach to 25 mm/year.« less
The Active Structure of the Greater Dead Sea Basin
NASA Astrophysics Data System (ADS)
Shamir, G.
2002-12-01
The Greater Dead Sea Basin (GDSB) is a 220km long depression situated along the southern section of the Dead Sea Transform (DST), between two structurally and gravitationally elevated points, Wadi Malih in the north and Paran fault zone in the south. In its center is the Dead Sea basin 'sensu strictu' (DSB), which has been described since the 1970s as a pull-apart basin at a left step-over along the DST. However, several observations, or their lack thereof, contradict this scheme, e.g. (i) It is not supported by recent seismological and geomorphic data; (ii) It does not explain the fault pattern and mixed sinistral and dextral offset along the DSB western boundary; (iii) It does not simply explain the presence of intense deformation outside the presumed fault step zone; (iv) It is inconsistent with the orientation of seismically active faults within the Dead Sea and Jericho Valley; (v) The length of the DSB exceeds the total offset along the Dead Sea Transform, while its subsidence is about the age of the DST. In this study, newly acquired and analyzed data (high resolution seismic reflection and earthquake relocation and fault plane solutions) has been integrated with previously published data (structural mapping, fracture orientation distribution, Bouguer anomaly maps, sinkhole distribution, geomorphic lineaments). The results show that the GDSB is dominated by two active fault systems, one trending NNE and showing normal-dextral motion, the other trending NW. These systems are identified by earthquake activity, seismic reflection observations, alignment of recent sinkholes, and distribution of Bouguer anomaly gradients. As a result, the intra-basin structure is of a series of rectangular blocks. The dextral slip component along NNE trending faults, the mixed sense of lateral offset along the western boundary of the DSB and temporal change in fracture orientation in the Jericho Valley suggest that the intra-basin blocks have rotated counterclockwise since the Pleistocene. The overall sinistral motion between the Arabian and Israel-Sinai plates along the GDSB may thus be accommodated by the postulated, internally rotating shear zone. Then, the subsidence of the DSB may possibly be explained if the rate of the resulting internal E-W shortening is greater than the rate of plate convergence.
Interseismic Coupling and Seismic Potential along the Indo-Burmese Arc and the Sagaing fault
NASA Astrophysics Data System (ADS)
Earnest, A.
2017-12-01
The Indo-burmese arc is formed by the oblique subduction of the Indian plate under the Eurasia. This region is a transition zone between the main Himalayan collision belt and the Andaman subduction zone. This obliquity causes strain partitioning which causes separation of a sliver plate, the Burma Plate. Considering the geomorphic, tectonic and geophysical signatures, IBR comprises all the structural features of an active subduction zone, whereas the present day tectonics of this region is perplexing. Ni et al. [1989] and Rao and Kalpana [2005] suggested that the subduction might have stopped in recent times or continues relatively in an aseismic fashion. This is implied by the NNE compressional stress orientations, instead of its downdip direction. The focal mechanism stress inversions show distinct stress fields above and below the 90 km depth. It is widely believed that the partitioning of Indian-Eurasia plate motion along the Indo-buremse arc and the Sagaing fault region the reason for earthquake occurrence in this region. The relative motion of 36mm/yr, between India and Eurasia, is partitioned across the Sagaing fault through a dextral movement of ˜20mm/yr and remaining velocity is accommodated at the Churachandapur-Mao fault (CMF) through dextral motion. The CMF and its surroundings are considered as seismically a low hazard region, an observation made from the absence of significant earthquakes and lack of field evidences. This made Kundu and Gahalaut [2013] to propose that the motion across the CMF happens in an aseismic manner. Recently, based on GPS studies Steckler et al. [2016] suggested that the region is still actively subducting and the presence of a locked megathrust plate boundary depicts the region as highly vulnerable for large magnitude seismic activities. Our study, based on various geodetic solutions and earthquake slip vectors, focus on interseisimic block models for the Indo-burmese arc and Sagaing fault region so as to model the crustal deformation of this area using an elastic block modelling approach. Results from our best fit model predicts the spatial distribution of interseismic coupling coefficient (φ) and the backslip component. These coefficients characterize the fault interface, which helps in estimating the seismic potential across Indo-burmese arc and the Sagaing fault region.
Baldwin, J.A.; Whitney, D.L.; Hurlow, H.A.
1997-01-01
Results of an investigation of the petrology and structure of the Skymo complex and adjacent terranes constrain the amount, timing, and sense of motion on a segment of the > 600-km-long Late Cretaceous - early Tertiary Ross Lake fault zone (RLFZ), a major orogen-parallel shear zone in the Cordillera of western North America. In the study area in the North Cascades, Washington state, the RLFZ accommodated significant pre-middle Eocene vertical displacement, and it juxtaposes the Skymo complex with upper amphibolite facies (650??-690??C and 6-7 kbar) Skagit Gneiss of the North Cascades crystalline core to the SW and andalusite-bearing phyllite of the Little Jack terrane (Intermontane superterrane) to the NE. The two main lithologic units of the Skymo complex, a primitive mafic intrusion and a fault-bounded block of granulite facies metasedimentary rocks, are unique in the North Cascades. Granulite facies conditions were attained during high-temperature (> 800??C), low pressure (??? 4 kbar) contact metamorphism associated with intrusion of the mafic magma. P-T estimates and reaction textures in garnet-orthopyroxene gneiss suggest that contact metamorphism followed earlier, higher pressure regional metamorphism. There is no evidence that the Skagit Gneiss experienced high-T - low-P contact metamorphism. In the Little Jack terrane, however, texturally late cordierite ?? spinel and partial replacement of andalusite by sillimanite near the terrane's fault contact with Skymo gabbro suggest that the Little Jack terrane experienced high-T (??? 600??C) - low-P (??? 4 kbar) contact metamorphism following earlier low-grade regional metamorphism. Similarities in the protoliths of metasedimentary rocks in the Skymo and Little Jack indicate that they may be part of the same terrane. Differences in pressure estimates for the Little Jack versus Skymo for regional metamorphism that preceded contact metamorphism indicate vertical displacement of ??? 10 km (west side up) on the strand of the RLFZ that now separates the two structural blocks. High-angle faults in the study area are dextral-reverse mylonitic shear zones that experienced later brittle normal slip. Vertical motion on these shear zones before intrusion of Skymo gabbro can account for metamorphic discontinuities indicated by P-T results. The terranes have also been internally deformed by nonintersecting but coeval dextral and sinistral shear zones that formed after the terranes were brought together in the RLFZ and intruded by Eocene dikes. These results show that the RLFZ has accommodated significant vertical displacement but perhaps no more than tens of kilometers of early Tertiary lateral movement. Structural evidence for earlier, large-magnitude strike-slip displacement is not preserved.
A Hydrous Seismogenic Fault Rock Indicating A Coupled Lubrication Mechanism
NASA Astrophysics Data System (ADS)
Okamoto, S.; Kimura, G.; Takizawa, S.; Yamaguchi, H.
2005-12-01
In the seismogenic subduction zone, the predominant mechanisms have been considered to be fluid induced weakening mechanisms without frictional melting because the subduction zone is fundamentally quite hydrous under low temperature conditions. However, recently geological evidence of frictional melting has been increasingly reported from several ancient accretionary prisms uplifted from seismogenic depths of subduction zones (Ikesawa et al., 2003; Austrheim and Andersen, 2004; Rowe et al., 2004; Kitamura et al., 2005) but relationship between conflicting mechanisms; e.g. thermal pressurization of fluid and frictional melting is still unclear. We found a new exposure of pseudotachylyte from a fossilized out-of-sequence thrust (OOST) , Nobeoka thrust in the accretionary complex, Kyushu, southwest Japan. Hanging-wall and foot-wall are experienced heating up to maximum temperature of about 320/deg and about 250/deg, respectively. Hanging-wall rocks of the thrust are composed of shales and sandstones deformed plastically. Foot-wall rocks are composed of shale matrix melange with sandstone and basaltic blocks deformed in a brittle fashion (Kondo et al, 2005). The psudotachylyte was found from one of the subsidiary faults in the hanging wall at about 10 m above the fault core of the Nobeoka thrust. The fault is about 1mm in width, and planer rupture surface. The fault maintains only one-time slip event because several slip surfaces and overlapped slip textures are not identified. The fault shows three deformation stages: The first is plastic deformation of phyllitic host rocks; the second is asymmetric cracking formed especially in the foot-wall of the fault. The cracks are filled by implosion breccia hosted by fine carbonate minerals; the third is frictional melting producing pseudotachylyte. Implosion breccia with cracking suggests that thermal pressurization of fluid and hydro-fracturing proceeded frictional melting.
NASA Astrophysics Data System (ADS)
Yamasaki, T.; Wright, T. J.; Houseman, G. A.
2013-12-01
After large earthquakes, rapid postseismic transient motions are commonly observed. Later in the loading cycle, strain is typically focused in narrow regions around the fault. In simple two-layer models of the loading cycle for strike-slip faults, rapid post-seismic transients require low viscosities beneath the elastic layer, but localized strain later in the cycle implies high viscosities in the crust. To explain this apparent paradox, complex transient rheologies have been invoked. Here we test an alternative hypothesis in which spatial variations in material properties of the crust can explain the geodetic observations. We use a 3D viscoelastic finite element code to examine two simple models of periodic fault slip: a stratified model in which crustal viscosity decreases exponentially with depth below an upper elastic layer, and a block model in which a low viscosity domain centered beneath the fault is embedded in a higher viscosity background representing normal crust. We test these models using GPS data acquired before and after the 1999 Izmit/Duzce earthquakes on the North Anatolian Fault Zone (Turkey). The model with depth-dependent viscosity can show both high postseismic velocities, and preseismic localization of the deformation, if the viscosity contrast from top to bottom of layer exceeds a factor of about 104. However, with no lateral variations in viscosity, this model cannot explain the proximity to the fault of maximum postseismic velocities. In contrast, the model which includes a localized weak zone beneath the faulted elastic lid can explain all the observations, if the weak zone extends down to mid-crustal levels and outward to 10 or 20 km from the fault. The non-dimensional ratio of relaxation time to earthquake repeat time, τ/Δt, is the critical parameter in controlling the observed deformation. In the weak-zone model, τ/Δt should be in the range 0.005 to 0.01 in the weak domain, and larger than ~ 1.0 elsewhere. This implies a viscosity in the weak zone of ~ 1018×0.3 Pa s, and larger than ~ 1020 Pa s outside this region. Models with sharp boundaries to the weak zone fit the data better than those with a smooth increase of viscosity away from the fault. Thus abrupt changes in material properties, such as those that might result from grain-size reduction, may be required in addition to any effect from shear heating. Unlike some previous models, we do not require non-linear stress-dependent viscosities. Our models imply that geodetic strain rates decay to a quasi-steady state within about 10% of the inter-earthquake period (years or decades) and that interseismic geodetic observations can therefore be used to infer the long-term geological slip rate, provided there has not been a recent earthquake. Rheologies inferred from postseismic studies alone likely reflect the rheology of the weak zone beneath the fault, and should not be used to infer the strength profile of normal lithosphere.
Effects of the Yakutat terrane collision with North America on the neighboring Pacific plate
NASA Astrophysics Data System (ADS)
Reece, R.; Gulick, S. P.; Christeson, G. L.; Barth, G. A.; van Avendonk, H.
2011-12-01
High-resolution bathymetry data show a 30 km N-S trending ridge within the deep-sea Surveyor Fan between the mouths of the Yakutat Sea Valley and Bering Trough in the Gulf of Alaska. The ridge originates in the north, perpendicular to and at the base of the continental slope, coincident with the Transition Fault, the strike-slip boundary between the Yakutat terrane (YAK) and the Pacific plate (PAC). The ridge exhibits greatest relief adjacent to the Transition Fault, and becomes less distinct farther from the shelf edge. Seismic reflection data reveal a sharp basement high beneath the ridge (1.1 sec of relief above "normal" basement in two-way travel time) as well as multiple similarly oriented strike-slip fault segments. The ridge, basement high, and faults are aligned and co-located with an intraplate earthquake swarm on the PAC, which includes four events > 6.5 Mw that occurred from 1987-1992. The swarm is defined by right-lateral strike-slip events, and is collectively called the Gulf of Alaska Shear Zone (GASZ). Based on the extent of historic seismicity, the GASZ extends at least 230 km into the PAC, seemingly ending at the Kodiak-Bowie Seamount Chain. Farther southwest, between the Kodiak-Bowie and Patton-Murray Seamount Chains, there is a large regional bathymetric low with an axis centered along the Aja Fracture Zone, perpendicular to the GASZ and Aleutian Trench. Basement and overlying sediment in the low are irregularly, but pervasively faulted. The GASZ and faulted bathymetric low could represent PAC deformation due to PAC-YAK coupling whereby YAK resistance to subduction is expressed as deformation in the thinner (weaker) PAC crust. The YAK is an allochthonous, basaltic terrane coupled to the PAC that began subducting at a low angle beneath North America (NA) ~25-40 Ma. Due to its 15-25 km thickness, the YAK is resistant to subduction compared to the normal oceanic crust of the PAC. As a result the plates developed differential motion along the Transition Fault and have different, convergent, vectors for motion relative to NA. Although a tear on the scale of the GASZ in normal oceanic crust is unusual, preexisting zones of weakness, such as the Aja Fracture Zone and bending faults at the flexural bulge, may have proven to be a kinematically favorable localization for strain. These results expand on a previous tectonic model wherein the differing YAK and PAC vectors caused the northern PAC to behave as two tectonic blocks, separated by the GASZ. In this model, the eastern block of the PAC exhibits a counter-clockwise rotation that accounts for motion along the Transition Fault and GASZ. We will analyze seismic reflection, bathymetric, magnetic, and gravity data in order to further investigate this intraplate deformation and the cause of strain localization in both areas. New bathymetric and 2D seismic reflection data will allow us to confirm whether the GASZ previously extended beyond the Kodiak-Bowie Seamount Chain and the current zone of active seismicity, as well as to characterize the GASZ at opposite ends.
NASA Astrophysics Data System (ADS)
Pinel-Puysségur, B.; Grandin, R.; Bollinger, L.; Baudry, C.
2014-07-01
On 28-29 October 2008, within 12 h, two similar Mw = 6.4 strike-slip earthquakes struck Baluchistan (Pakistan), as part of a complex seismic sequence. Interferometric Synthetic Aperture Radar (InSAR) data reveal that the peak of surface displacement is near the Ziarat anticline, a large active fold affected by Quaternary strike-slip faulting. All coseismic interferograms integrate the deformation due to both earthquakes. As their causative faults ruptured close to each other, the individual signals cannot be separated. According to their focal mechanisms, each earthquake may have activated a NE-SW sinistral or a NW-SE dextral fault segment, which leads to four possible scenarios of fault orientations. A nonlinear inversion of the InSAR data set allows rejecting two scenarios. The best slip distributions on the two fault segments for the two remaining scenarios are determined by linear inversion. Stress-change modeling favors a scenario involving two abutting conjugate strike-slip faults. Two other fault segments accommodated left-lateral strike slip during the seismic sequence. The activated fault system includes multiple fault segments with different orientations and little surface expression. This may highlight, at a smaller scale, the distributed, possibly transient character of deformation within a broader right-lateral shear zone. It suggests that the activated faults delineate a small tectonic block extruding and subtly rotating within the shear zone. It occurs in the vicinity of the local tectonic syntaxis where orogenic structures sharply turn around a vertical axis. These mechanisms could participate in the long-term migration of active tectonic structures within this kinematically unstable tectonic syntaxis.
NASA Astrophysics Data System (ADS)
Luirei, Khayingshing; Bhakuni, S. S.; Negi, Sanjay S.
2017-02-01
The shape of the frontal part of the Himalaya around the north-eastern corner of the Kumaun Sub-Himalaya, along the Kali River valley, is defined by folded hanging wall rocks of the Himalayan Frontal Thrust (HFT). Two parallel faults (Kalaunia and Tanakpur faults) trace along the axial zone of the folded HFT. Between these faults, the hinge zone of this transverse fold is relatively straight and along these faults, the beds abruptly change their attitudes and their widths are tectonically attenuated across two hinge lines of fold. The area is constituted of various surfaces of coalescing fans and terraces. Fans comprise predominantly of sandstone clasts laid down by the steep-gradient streams originating from the Siwalik range. The alluvial fans are characterised by compound and superimposed fans with high relief, which are generated by the tectonic activities associated with the thrusting along the HFT. The truncated fan along the HFT has formed a 100 m high-escarpment running E-W for ˜5 km. Quaternary terrace deposits suggest two phases of tectonic uplift in the basal part of the hanging wall block of the HFT dipping towards the north. The first phase is represented by tilting of the terrace sediments by ˜30 ∘ towards the NW; while the second phase is evident from deformed structures in the terrace deposit comprising mainly of reverse faults, fault propagation folds, convolute laminations, flower structures and back thrust faults. The second phase produced ˜1.0 m offset of stratification of the terrace along a thrust fault. Tectonic escarpments are recognised across the splay thrust near south of the HFT trace. The south facing hill slopes exhibit numerous landslides along active channels incising the hanging wall rocks of the HFT. The study area shows weak seismicity. The major Moradabad Fault crosses near the study area. This transverse fault may have suppressed the seismicity in the Tanakpur area, and the movement along the Moradabad and Kasganj-Tanakpur faults cause the neotectonic activities as observed. The role of transverse fault tectonics in the formation of the curvature cannot be ruled out.
Analysis of Geodynamical Conditions of Region of Burning Coal Dumps Location
NASA Astrophysics Data System (ADS)
Batugin, Andrian; Musina, Valeria; Golovko, Irina
2017-12-01
Spontaneous combustion of coal dumps and their impact on the environment of mining regions remain important environmental problem, in spite of the measures that are being taken. The paper presents the hypothesis, which states that the location of coal dumps at the boundaries of geodynamically active crust blocks promotes the appearance of conditions for their combustion. At present geodynamically active crust faults that affect the operating conditions of engineering facilities are observed not only in the areas of tectonic activity, but also on platforms. According to the concept of geodynamical zoning, geodynamically dangerous zones for engineering structures can be not only large, well-developed crust faults, but also just formed fractures that appear as boundaries of geodynamically impacting and hierarchically ordered crust blocks. The purpose of the study is to estimate the linkage of burning dumps to boundaries of geodynamically active crust blocks (geodynamically dangerous zones) for subsequent development of recommendations for reducing environmental hazard. The analysis of 27 coal dumps location was made for one of the Eastern Donbass regions (Russia). Nine of sixteen burning dumps are located in geodynamically dangerous zones, which, taking into account relatively small area occupied by all geodynamically dangerous zones, results that there is a concentration (pcs/km2) of burning dumps, which is 14 times higher than the baseline value. While the probability of accidental obtaining of such a result is extremely low, this can be considered as the evidence of the linkage of burning dumps to geodynamically dangerous zones. Taking into account the stressed state of the rock massif in this region, all geodynamically dangerous zones can be divided into compression and tension zones. The statistic is limited, but nevertheless in tension zones the concentration of burning dumps is 2 times higher than in compression zones. Available results of thermal monitoring of burning dumps in this region also show that linearly extended firing sources oriented along geodynamically dangerous zones are observed. The obtained results show that geodynamical conditions of mining region, in which coal dumps are located, is important factor that impacts the creation of conditions for their spontaneous combustion and subsequent impact on the environment. Then this factor should be controlled by choosing the place for dumps location. It is proposed to carry out these works for the entire mining region of the Eastern Donbass, where there are more than 200 coal dumps.
Ductile bookshelf faulting: A new kinematic model for Cenozoic deformation in northern Tibet
NASA Astrophysics Data System (ADS)
Zuza, A. V.; Yin, A.
2013-12-01
It has been long recognized that the most dominant features on the northern Tibetan Plateau are the >1000 km left-slip strike-slip faults (e.g., the Atyn Tagh, Kunlun, and Haiyuan faults). Early workers used the presence of these faults, especially the Kunlun and Haiyuan faults, as evidence for eastward lateral extrusion of the plateau, but their low documented offsets--100s of km or less--can not account for the 2500 km of convergence between India and Asia. Instead, these faults may result from north-south right-lateral simple shear due to the northward indentation of India, which leads to the clockwise rotation of the strike-slip faults and left-lateral slip (i.e., bookshelf faulting). With this idea, deformation is still localized on discrete fault planes, and 'microplates' or blocks rotate and/or translate with little internal deformation. As significant internal deformation occurs across northern Tibet within strike-slip-bounded domains, there is need for a coherent model to describe all of the deformational features. We also note the following: (1) geologic offsets and Quaternary slip rates of both the Kunlun and Haiyuan faults vary along strike and appear to diminish to the east, (2) the faults appear to kinematically link with thrust belts (e.g., Qilian Shan, Liupan Shan, Longmen Shan, and Qimen Tagh) and extensional zones (e.g., Shanxi, Yinchuan, and Qinling grabens), and (3) temporal relationships between the major deformation zones and the strike-slip faults (e.g., simultaneous enhanced deformation and offset in the Qilian Shan and Liupan Shan, and the Haiyuan fault, at 8 Ma). We propose a new kinematic model to describe the active deformation in northern Tibet: a ductile-bookshelf-faulting model. With this model, right-lateral simple shear leads to clockwise vertical axis rotation of the Qaidam and Qilian blocks, and left-slip faulting. This motion creates regions of compression and extension, dependent on the local boundary conditions (e.g., rigid Tarim vs. eastern China moving eastward relative to Eurasia), which results in the development of thrust and extensional belts. These zones heterogeneously deform the wall-rock of the major strike-slip faults, causing the faults to stretch (an idea described by W.D. Means 1989 GEOLOGY). This effect is further enhanced by differential fault rotation, leading to more slip in the west, where the effect of India's indentation is more pronounced, than in the east. To investigate the feasibility of this model, we have examined geologic offsets, Quaternary fault slip rates, and GPS velocities, both from existing literature and our own observations. We compare offsets with the estimated shortening and extensional strain in the wall-rocks of the strike-slip faults. For example, if this model is valid, the slip on the eastern segment of the Haiyuan fault (i.e., ~25 km) should be compatible with shortening in the Liupan Shan and extension in the Yinchuan graben. We also present simple analogue model experiments to document the strain accumulated in bookshelf fault systems under different initial and boundary conditions (e.g., rigid vs. free vs. moving boundaries, heterogeneous or homogenous materials, variable strain rates). Comparing these experimentally derived strain distributions with those observed within the plateau can help elucidate which factors dominantly control regional deformation.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Karrech, A.; Schaubs, P. M.; Regenauer-Lieb, K.; Poulet, T.; Cleverley, J. S.
2012-03-01
This study simulates rock deformation around high temperature granite intrusions and explores how gold bearing shear zones near intrusions were developed in the Yilgarn, using a new continuum damage mechanics algorithm that considers the temperature and time dependent elastic-visco-plastic constitutive behaviour of crustal materials. The results demonstrate that strain rates have the most significant effects on structural patterns for both extensional and compressional cases. Smaller strain rates promote the formation of narrow high-strain shear zones and strong strain localisation along the flank or shoulder areas of the intrusion and cold granite dome. Wider diffuse shear zones are developed under higher strain rates due to strain hardening. The cooling of the intrusion to background temperatures occurred over a much shorter time interval when compared to the duration of deformation and shear zones development. Strong strain localisation near the intrusion and shear zone development in the crust occurred under both extensional and compressional conditions. There is always clear strain localisation around the shoulders of the intrusion and the flanks of the "cold" granitic dome in early deformation stages. In the models containing a pre-existing fault, strain localisation near the intrusion became asymmetric with much stronger localisation and the development of a damage zone at the shoulder adjacent to the reactivated fault. At higher deformation stages, the models produced a range of structural patterns including graben and half graben basin (extension), "pop-up" wedge structures (compression), tilted fault blocks and switch of shear movement from reverse to normal on shear zones. The model explains in part why a number of gold deposits (e.g. Wallaby and Paddington deposits) in the Yilgarn were formed near the flank of granite-cored domes and deep "tapping" faults, and shows that the new modelling approach is capable of realistically simulating high strain localisation and shear zone development.
NASA Astrophysics Data System (ADS)
Bradbury, Kelly K.; Davis, Colter R.; Shervais, John W.; Janecke, Susanne U.; Evans, James P.
2015-05-01
We examine the fine-scale variations in mineralogical composition, geochemical alteration, and texture of the fault-related rocks from the Phase 3 whole-rock core sampled between 3,187.4 and 3,301.4 m measured depth within the San Andreas Fault Observatory at Depth (SAFOD) borehole near Parkfield, California. This work provides insight into the physical and chemical properties, structural architecture, and fluid-rock interactions associated with the actively deforming traces of the San Andreas Fault zone at depth. Exhumed outcrops within the SAF system comprised of serpentinite-bearing protolith are examined for comparison at San Simeon, Goat Rock State Park, and Nelson Creek, California. In the Phase 3 SAFOD drillcore samples, the fault-related rocks consist of multiple juxtaposed lenses of sheared, foliated siltstone and shale with block-in-matrix fabric, black cataclasite to ultracataclasite, and sheared serpentinite-bearing, finely foliated fault gouge. Meters-wide zones of sheared rock and fault gouge correlate to the sites of active borehole casing deformation and are characterized by scaly clay fabric with multiple discrete slip surfaces or anastomosing shear zones that surround conglobulated or rounded clasts of compacted clay and/or serpentinite. The fine gouge matrix is composed of Mg-rich clays and serpentine minerals (saponite ± palygorskite, and lizardite ± chrysotile). Whole-rock geochemistry data show increases in Fe-, Mg-, Ni-, and Cr-oxides and hydroxides, Fe-sulfides, and C-rich material, with a total organic content of >1 % locally in the fault-related rocks. The faults sampled in the field are composed of meters-thick zones of cohesive to non-cohesive, serpentinite-bearing foliated clay gouge and black fine-grained fault rock derived from sheared Franciscan Formation or serpentinized Coast Range Ophiolite. X-ray diffraction of outcrop samples shows that the foliated clay gouge is composed primarily of saponite and serpentinite, with localized increases in Ni- and Cr-oxides and C-rich material over several meters. Mesoscopic and microscopic textures and deformation mechanisms interpreted from the outcrop sites are remarkably similar to those observed in the SAFOD core. Micro-scale to meso-scale fabrics observed in the SAFOD core exhibit textural characteristics that are common in deformed serpentinites and are often attributed to aseismic deformation with episodic seismic slip. The mineralogy and whole-rock geochemistry results indicate that the fault zone experienced transient fluid-rock interactions with fluids of varying chemical composition, including evidence for highly reducing, hydrocarbon-bearing fluids.
The variation of crustal structure along the Song Ma Shear Zone, Northern Vietnam
NASA Astrophysics Data System (ADS)
Su, Chien-Min; Wen, Strong; Tang, Chi-Chia; Yeh, Yu-Lien; Chen, Chau-Huei
2018-06-01
Northern Vietnam is divided into two regions by suture zone. The southwestern region belongs to the Indochina block, and the northeastern region is a portion of the South China block with distinct geological characteristics. From previous studies, the closing the Paleotethys led the collision between the Indochina and South China blocks, and this collision form the suture zone in the Middle Triassic. In the Tertiary, Indian and Eurasian plates started to collide, and this collision caused the extrusion of the Indochina block along the suture zone and a clockwise rotation. Metamorphic rocks associated with the subduction process have been found at the Song Ma Shear Zone (SMSZ) from geological surveys, which indicated that the SMSZ is a possible boundary between the South China and Indochina block. However, according to previous study, there is an argument of whether the SMSZ is a subduction zone of the South China and Indochina plates or not. In this study, we applied the H-κ and the common conversion point (CCP) stacking method using teleseismic converted waves recorded by a seismic broadband array to obtain the Moho depth, VP/VS ratio and the crustal structure along the SMSZ. The CCP results are further used to identify whether the fault extends through the entire crust or not. We have selected two profiles along the SMSZ and a profile across the SMSZ for imaging lateral variations of impedance from stacking. According to H-κ stacking results, crustal thickness vary from 26.0 to 29.3 km, and the average of VP/VS ratio is about 1.77. Finally, the CCP results also show the heterogeneity of crust among the SMSZ. These evidences might support that SMSZ is the suture zone between the South China and Indochina plates.
Characterizing the structural maturity of fault zones using high-resolution earthquake locations.
NASA Astrophysics Data System (ADS)
Perrin, C.; Waldhauser, F.; Scholz, C. H.
2017-12-01
We use high-resolution earthquake locations to characterize the three-dimensional structure of active faults in California and how it evolves with fault structural maturity. We investigate the distribution of aftershocks of several recent large earthquakes that occurred on immature faults (i.e., slow moving and small cumulative displacement), such as the 1992 (Mw7.3) Landers and 1999 (Mw7.1) Hector Mine events, and earthquakes that occurred on mature faults, such as the 1984 (Mw6.2) Morgan Hill and 2004 (Mw6.0) Parkfield events. Unlike previous studies which typically estimated the width of fault zones from the distribution of earthquakes perpendicular to the surface fault trace, we resolve fault zone widths with respect to the 3D fault surface estimated from principal component analysis of local seismicity. We find that the zone of brittle deformation around the fault core is narrower along mature faults compared to immature faults. We observe a rapid fall off of the number of events at a distance range of 70 - 100 m from the main fault surface of mature faults (140-200 m fault zone width), and 200-300 m from the fault surface of immature faults (400-600 m fault zone width). These observations are in good agreement with fault zone widths estimated from guided waves trapped in low velocity damage zones. The total width of the active zone of deformation surrounding the main fault plane reach 1.2 km and 2-4 km for mature and immature faults, respectively. The wider zone of deformation presumably reflects the increased heterogeneity in the stress field along complex and discontinuous faults strands that make up immature faults. In contrast, narrower deformation zones tend to align with well-defined fault planes of mature faults where most of the deformation is concentrated. Our results are in line with previous studies suggesting that surface fault traces become smoother, and thus fault zones simpler, as cumulative fault slip increases.
NASA Astrophysics Data System (ADS)
Dubinin, Evgeny; Grokholsky, Andrey; Makushkina, Anna
2016-04-01
Complex process of continental lithosphere breakup is often accompanied by full or semi isolation of small continental blocks from the parent continent such as microcontinents or submerged marginal plateaus. We present different types of continental blocks formed in various geodynamic settings. The process depends on thermo-mechanical properties of rifting. 1) The continental blocks fully isolated from the parent continent. This kind of blocks exist in submerged form (Elan Bank, the Jan-Mayen Ridge, Zenith Plateau, Gulden Draak Knoll, Batavia Knoll) and in non-submerged form in case of large block size. Most of listed submerged blocks are formed in proximity of hot-spot or plume. 2) The continental blocks semi-isolated from the parent continent. Exmouth Plateau, Vøring, Agulhas, Naturaliste are submerged continental plateaus of the indicated category; Sri Lanka, Tasmania, Socotra are islands adjacent to continent here. Nowadays illustration of this setting is the Sinai block located between the two continental rifts. 3) The submerged linear continental blocks formed by the continental rifting along margin (the Lomonosov Ridge). Suggested evolution of this paragraph is the rift propagation along existing transtensional (or another type) transform fault. Future example of this type might be the California Peninsula block, detached from the North American plate by the rifting within San-Andreas fault. 4) The submerged continental blocks formed by extensional processes as the result of asthenosphere flow and shear deformations. Examples are submerged blocks in the central and southern Scotia Sea (Terror Bank, Protector Basin, Discovery Bank, Bruce Bank etc.). 5) The continental blocks formed in the transform fault systems originated in setting of contradict rifts propagation in presence of structure barriers, rifts are shifted by several hundreds kilometers from each other. Examples of this geodynamic setting are Equatorial Atlantic at the initial development stage, and the transitional zone between Mohns and Gakkel Ridges. The research funded by RFBR, project № 15-05-03486.
Fault zone property near Xinfengjiang Reservoir using dense, across-fault seismic array
NASA Astrophysics Data System (ADS)
Lee, M. H. B.; Yang, H.; Sun, X.
2017-12-01
Properties of fault zones are important to the understanding of earthquake process. Around the fault zone is a damaged zone which is characterised by a lower seismic velocity. This is detectable as a low velocity zone and measure some physical property of the fault zone, which is otherwise difficult sample directly. A dense, across-fault array of short period seismometer is deployed on an inactive fault near Xinfengjiang Reservoir. Local events were manually picked. By computing the synthetic arrival time, we were able to constrain the parameters of the fault zone Preliminary result shows that the fault zone is around 350 m wide with a P and S velocity increase of around 10%. The fault is geologically inferred, and this result suggested that it may be a geological layer. The other possibility is that the higher velocity is caused by a combination of fault zone healing and fluid intrusion. Whilst the result was not able to tell us the nature of the fault, it demonstrated that this method is able to derive properties from a fault zone.
Hot, deep origin of petroleum: deep basin evidence and application
Price, Leigh C.
1978-01-01
Use of the model of a hot deep origin of oil places rigid constraints on the migration and entrapment of crude oil. Specifically, oil originating from depth migrates vertically up faults and is emplaced in traps at shallower depths. Review of petroleum-producing basins worldwide shows oil occurrence in these basins conforms to the restraints of and therefore supports the hypothesis. Most of the world's oil is found in the very deepest sedimentary basins, and production over or adjacent to the deep basin is cut by or directly updip from faults dipping into the basin deep. Generally the greater the fault throw the greater the reserves. Fault-block highs next to deep sedimentary troughs are the best target areas by the present concept. Traps along major basin-forming faults are quite prospective. The structural style of a basin governs the distribution, types, and amounts of hydrocarbons expected and hence the exploration strategy. Production in delta depocenters (Niger) is in structures cut by or updip from major growth faults, and structures not associated with such faults are barren. Production in block fault basins is on horsts next to deep sedimentary troughs (Sirte, North Sea). In basins whose sediment thickness, structure and geologic history are known to a moderate degree, the main oil occurrences can be specifically predicted by analysis of fault systems and possible hydrocarbon migration routes. Use of the concept permits the identification of significant targets which have either been downgraded or ignored in the past, such as production in or just updip from thrust belts, stratigraphic traps over the deep basin associated with major faulting, production over the basin deep, and regional stratigraphic trapping updip from established production along major fault zones.
NASA Astrophysics Data System (ADS)
Wang, Xingchen; Li, Yonghua; Ding, Zhifeng; Zhu, Lupei; Wang, Chunyong; Bao, Xuewei; Wu, Yan
2017-08-01
We present a new 3-D lithospheric
NASA Astrophysics Data System (ADS)
Diehl, Tobias; Singer, Julia; Hetényi, György; Grujic, Djordje; Clinton, John; Giardini, Domenico; Kissling, Edi; Gansser Working Group
2017-08-01
The instrumental record of Bhutan is characterized by a lower seismicity compared to other parts of the Himalayan arc. To understand this low activity and its impact on the seismic hazard, a seismic network was installed in Bhutan for 22 months between 2013 and 2014. Recorded seismicity, earthquake moment tensors and local earthquake tomography reveal along-strike variations in structure and crustal deformation regime. A thickened crust imaged in western Bhutan suggests lateral differences in stresses on the Main Himalayan Thrust (MHT), potentially affecting the interseismic coupling and deformation regime. Sikkim, western Bhutan and its foreland are characterized by strike-slip faulting in the Indian basement. Strain is particularly localized along a NW-SE striking mid-crustal fault zone reaching from Chungthang in northeast Sikkim to Dhubri at the northwestern edge of the Shillong Plateau in the foreland. The dextral Dhubri-Chungthang fault zone (DCF) causes segmentation of the Indian basement and the MHT between eastern Nepal and western Bhutan and connects the deformation front of the Himalaya with the Shillong Plateau by forming the western boundary of the Shillong block. The Kopili fault, the proposed eastern boundary of this block, appears to be a diffuse zone of mid-crustal seismicity in the foreland. In eastern Bhutan we image a seismogenic, flat portion of the MHT, which might be either related to a partially creeping segment or to increased background seismicity originating from the 2009 MW 6.1 earthquake. In western-central Bhutan clusters of micro-earthquakes at the front of the High-Himalayas indicate the presence of a mid-crustal ramp and stress buildup on a fully coupled MHT. The area bounded by the DCF in the west and the seismogenic MHT in the east has the potential for M7-8 earthquakes in Bhutan. Similarly, the DCF has the potential to host M7 earthquakes as documented by the 2011 Sikkim and the 1930 Dhubri earthquakes, which were potentially associated with this structure.
Crustal-scale tilting of the central Salton block, southern California
Dorsey, Rebecca; Langenheim, Victoria
2015-01-01
The southern San Andreas fault system (California, USA) provides an excellent natural laboratory for studying the controls on vertical crustal motions related to strike-slip deformation. Here we present geologic, geomorphic, and gravity data that provide evidence for active northeastward tilting of the Santa Rosa Mountains and southern Coachella Valley about a horizontal axis oriented parallel to the San Jacinto and San Andreas faults. The Santa Rosa fault, a strand of the San Jacinto fault zone, is a large southwest-dipping normal fault on the west flank of the Santa Rosa Mountains that displays well-developed triangular facets, narrow footwall canyons, and steep hanging-wall alluvial fans. Geologic and geomorphic data reveal ongoing footwall uplift in the southern Santa Rosa Mountains, and gravity data suggest total vertical separation of ∼5.0–6.5 km from the range crest to the base of the Clark Valley basin. The northeast side of the Santa Rosa Mountains has a gentler topographic gradient, large alluvial fans, no major active faults, and tilted inactive late Pleistocene fan surfaces that are deeply incised by modern upper fan channels. Sediments beneath the Coachella Valley thicken gradually northeast to a depth of ∼4–5 km at an abrupt boundary at the San Andreas fault. These features all record crustal-scale tilting to the northeast that likely started when the San Jacinto fault zone initiated ca. 1.2 Ma. Tilting appears to be driven by oblique shortening and loading across a northeast-dipping southern San Andreas fault, consistent with the results of a recent boundary-element modeling study.
Teleseismic P-wave tomography and mantle dynamics beneath Eastern Tibet
NASA Astrophysics Data System (ADS)
Lei, Jianshe; Zhao, Dapeng
2016-05-01
We determined a new 3-D P-wave velocity model of the upper mantle beneath eastern Tibet using 112,613 high-quality arrival-time data collected from teleseismic seismograms recorded by a new portable seismic array in Yunnan and permanent networks in southwestern China. Our results provide new insights into the mantle structure and dynamics of eastern Tibet. High-velocity (high-V) anomalies are revealed down to 200 km depth under the Sichuan basin and the Ordos and Alashan blocks. Low-velocity (low-V) anomalies are imaged in the upper mantle under the Kunlun-Qilian and Qinling fold zones, and the Songpan-Ganzi, Qiangtang, Lhasa and Chuan-Dian diamond blocks, suggesting that eastward moving low-V materials are extruded to eastern China after the obstruction by the Sichuan basin, and the Ordos and Alashan blocks. Furthermore, the extent and thickness of these low-V anomalies are correlated with the surface topography, suggesting that the uplift of eastern Tibet could be partially related to these low-V materials having a higher temperature and strong positive buoyancy. In the mantle transition zone (MTZ), broad high-V anomalies are visible from the Burma arc northward to the Kunlun fault and eastward to the Xiaojiang fault, and they are connected upward with the Wadati-Benioff seismic zone. These results suggest that the subducted Indian slab has traveled horizontally for a long distance after it descended into the MTZ, and return corner flow and deep slab dehydration have contributed to forming the low-V anomalies in the big mantle wedge. Our results shed new light on the dynamics of the eastern Tibetan plateau.
Evolving geometrical heterogeneities of fault trace data
NASA Astrophysics Data System (ADS)
Wechsler, Neta; Ben-Zion, Yehuda; Christofferson, Shari
2010-08-01
We perform a systematic comparative analysis of geometrical fault zone heterogeneities using derived measures from digitized fault maps that are not very sensitive to mapping resolution. We employ the digital GIS map of California faults (version 2.0) and analyse the surface traces of active strike-slip fault zones with evidence of Quaternary and historic movements. Each fault zone is broken into segments that are defined as a continuous length of fault bounded by changes of angle larger than 1°. Measurements of the orientations and lengths of fault zone segments are used to calculate the mean direction and misalignment of each fault zone from the local plate motion direction, and to define several quantities that represent the fault zone disorder. These include circular standard deviation and circular standard error of segments, orientation of long and short segments with respect to the mean direction, and normal separation distances of fault segments. We examine the correlations between various calculated parameters of fault zone disorder and the following three potential controlling variables: cumulative slip, slip rate and fault zone misalignment from the plate motion direction. The analysis indicates that the circular standard deviation and circular standard error of segments decrease overall with increasing cumulative slip and increasing slip rate of the fault zones. The results imply that the circular standard deviation and error, quantifying the range or dispersion in the data, provide effective measures of the fault zone disorder, and that the cumulative slip and slip rate (or more generally slip rate normalized by healing rate) represent the fault zone maturity. The fault zone misalignment from plate motion direction does not seem to play a major role in controlling the fault trace heterogeneities. The frequency-size statistics of fault segment lengths can be fitted well by an exponential function over the entire range of observations.
NASA Astrophysics Data System (ADS)
Sulaiman, Aseem; Elawadi, Eslam; Mogren, Saad
2018-06-01
This study provides interpretation and modeling of gravity survey data to map the subsurface basement relief and controlling structures of a coastal area in the southwestern part of Saudi Arabia as an aid to groundwater potential assessment. The gravity survey data were filtered and analyzed using different edge detection and depth estimation techniques and concluded by 2-D modeling conducted along representative profiles to obtain the topography and depth variations of the basement surface in the area. The basement rocks are exposed in the eastern part of the area but dip westward beneath a sedimentary cover to depths of up to 2200 m in the west, while showing repeated topographic expressions related to a tilted fault-block structure that is dominant in the Red Sea rift zone. Two fault systems were recognized in the area. The first is a normal fault system trending in the NNW-SSE direction that is related to the Red Sea rift, and the second is a cross-cutting oblique fault system trending in the NE-SW direction. The interaction between these two fault systems resulted in the formation of a set of closed basins elongated in the NNW-SSE direction and terminated by the NE-SW fault system. The geomorphology and sedimentary sequences of these basins qualify them as potential regions of groundwater accumulation.
NASA Astrophysics Data System (ADS)
Dilek, Y.; Oner, Z.; Davis, E. A.
2007-12-01
The Menderes metamorphic massif (MM) in western Anatolia is a classic core complex with exhumed high-grade crustal rocks intruded by granodioritic plutons and overlain by syn-extensional sedimentary rocks. Timing and the mechanism(s) of the initial exhumation of the MM are controversial, and different hypotheses exist in the literature. Major structural grabens (i.e. Alasehir, Buyuk Menderes) within the MM that are bounded by high-angle and seismically active faults are late-stage brittle structures, which characterize the block-faulting phase in the extensional history of the core complex and are filled with Quaternary sediments. On the southern shoulder of the Alasehir graben high-grade metamorphic rocks of the MM are overlain by the Miocene and younger sedimentary rocks above a N-dipping detachment surface. The nearly 100-m-thick cataclastic shear zone beneath this surface contain S-C fabrics, microfaults, Riedel shears, mica-fish structures and shear bands, all consistently indicating top-to-the North shearing. Granodioritic plutons crosscutting the MM and the detachment surface are exposed within this cataclastic zone, displaying extensional ductile and brittle structures. The oldest sedimentary rocks onlapping the cataclastic shear zone of the MM here are the Middle Miocene lacustrine shale and limestone units, unconformably overlain by the Upper Miocene fluvial and alluvial fan deposits. Extensive development of these alluvial fan deposits by the Late Miocene indicates the onset of range-front faulting in the MM by this time, causing a surge of coarse clastic deposition along the northern edge of the core complex. The continued exhumation and uplift of the MM provided the necessary relief and detrital material for the Plio-Pleistocene fluvial systems in the Alasehir supradetachment basin (ASDB). A combination of rotational normal faulting and scissor faulting in the extending ASDB affected the depositional patterns and drainage systems, and produced local unconformities within the basinal stratigraphy. High-angle, oblique-slip scissor faults crosscutting the MM rocks, the detachment surface and the basinal strata offset them for more than few 100 meters and the fault blocks locally show different structural architecture and metamorphic grades, suggesting differential uplift along these scissor faults. This fault kinematics and the distribution of range-parallel and range-perpendicular faults strongly controlled the shape and depth of the accommodation space within the ASDB. At a more regional scale scissor faulting across the MM seems to have controlled the foci of Plio-Pleistocene point-source volcanism in the Aegean extensional province (e.g. Kula area). There are no major interruptions in the syn-extensional depositional history of the ASDB, ruling out the pulsed-extension models suggesting a period of contractional deformation in the late Cenozoic evolution of the MM. The onset of exhumation and extensional tectonics in the MM and western Anatolia was a result of thermal weakening of the orogenic crust, following a widespread episode of post-collisional magmatism in the broader Aegean region during the Eocene through Miocene.
The thrust belt in Southwest Montana and east-central Idaho
Ruppel, Edward T.; Lopez, David A.
1984-01-01
The leading edge of the Cordilleran fold and thrust in southwest Montana appears to be a continuation of the edge of the Wyoming thrust belt, projected northward beneath the Snake River Plain. Trces of the thrust faults that form the leading edge of the thrust belts are mostly concealed, but stratigraphic and structural evidence suggests that the belt enters Montana near the middle of the Centennial Mountains, continues west along the Red Rock River valley, and swings north into the Highland Mountains near Butte. The thrust belt in southwest Montana and east-central Idaho includes at least two major plates -- the Medicine Lodge and Grasshopper thrust plates -- each of which contains a distinctive sequence of rocks, different in facies and structural style from those of the cratonic region east of the thrust belt. The thrust plates are characterized by persuasive, open to tight and locally overturned folds, and imbricate thrust faults, structural styles unusual in Phanerozoic cratonic rocks. The basal decollement zones of the plates are composed of intensely sheared, crushed, brecciated, and mylonitized rocks, the decollement at the base of the Medicine Lodge plate is as much as 300 meters thick. The Medicine Lodge and Grasshopper thrust plates are fringed on the east by a 10- to 50-kilometer-wide zone of tightly folded rocks cut by imbricate thrust fauls, a zone that forms the eastern margin of the thrust belt in southwest Montana. The frontal fold and thrust zone includes rocks that are similar to those of the craton, even though they differ in details of thickness, composition, or stratigraphic sequence. The zone is interpreted to be one of terminal folding and thrusting in cratonic rocks overridden by the major thrust plates from farther west. The cratonic rocks were drape-folded over rising basement blocks that formed a foreland bulge in front of the thrust belt. The basement blocks are bounded by steep faults of Proterozoic ancestry, which also moved as tear faults during thrusting, and seem to have controlled the curving patterns of salients and reentrants at the leading edge of the thrust belt. Radiometric and stratiographic evidence shows that the thrust belt was in its present position by about 75 million year go.
Resistivity structures across the Humboldt River basin, north-central Nevada
Rodriguez, Brian D.; Williams, Jackie M.
2002-01-01
Magnetotelluric data collected along five profiles show deep resistivity structures beneath the Battle Mountain-Eureka and Carlin gold trends in north-central Nevada, which appear consistent with tectonic breaks in the crust that possibly served as channels for hydrothermal fluids. It seems likely that gold deposits along these linear trends were, therefore, controlled by deep regional crustal fault systems. Two-dimensional resistivity modeling of the magnetotelluric data generally show resistive (30 to 1,000 ohm-m) crustal blocks broken by sub-vertical, two-dimensional, conductive (1 to 10 ohmm) zones that are indicative of large-scale crustal fault zones. These inferred fault zones are regional in scale, trend northeast-southwest, north-south, and northwest-southeast, and extend to mid-crustal (20 km) depths. The conductors are about 2- to 15-km wide, extend from about 1 to 4 km below the surface to about 20 km depth, and show two-dimensional electrical structure. By connecting the locations of similar trending conductors together, individual regional crustal fault zones within the upper crust can be inferred that range from about 4- to 10-km wide and about 30- to 150-km long. One of these crustal fault zones coincides with the Battle Mountain-Eureka mineral trend. The interpreted electrical property sections also show regional changes in the resistive crust from south to north. Most of the subsurface in the upper 20 km beneath Reese River Valley and southern Boulder Valley are underlain by rock that is generally more conductive than the subsurface beneath Kelly Creek Basin and northern Boulder Valley. This suggests that either elevated-temperature or high-salinity fluids, alteration, or carbonaceous rocks are more pervasive in the more conductive area (Battle Mountain Heat-Flow High), which implies that the crust beneath these valleys is either more fractured or has more carbonaceous rocks than in the area surveyed along the 41st parallel.
Imaging P and S attenuation in the Sacramento-San Joaquin Delta region, northern California
Eberhart-Phillips, Donna; Thurber, Clifford; Fletcher, Jon Peter B.
2014-01-01
We obtain 3-D Qp and Qs models for the Delta region of the Sacramento and San Joaquin Rivers, a large fluvial-agricultural portion of the Great Valley located between the Sierra Nevada batholith and the San Francisco Bay - Coast Ranges region of active faulting. Path attenuation t* values have been obtained for P and S data from 124 distributed earthquakes, with a longer variable window for S based on the energy integral. We use frequency dependence of 0.5 consistent with other studies, and weakly favored by the t* S data. A regional initial model was obtained by solving for Q as a function of velocity. In the final model, the Great Valley basin has low Q with very low Q (<50) for the shallowest portion of the Delta. There is an underlying strong Q contrast to the ophiolite basement which is thickest with highest Q under the Sacramento basin, and a change in structure is apparent across the Suisun Bay as a transition to thinner ophiolite. Moderately low Q is found in the upper crust west of the Delta region along the faults in the eastern North Bay Area, while, moderately high Q is found south of the Delta, implying potentially stronger ground motion for earthquake sources to the south. Very low Q values in the shallow crust along parts of the major fault zones may relate to sediment and abundant microfractures. In the lower crust below the San Andreas and Calaveras-Hayward-Rodgers Creek fault zones, the observed low Q is consistent with grain-size reduction in ductile shear zones and is lowest under the San Andreas which has large cumulative strain. Similarly moderately low Q in the ductile lower crust of the Bay Area block between the major fault zones implies a broad distributed shear zone.
NASA Astrophysics Data System (ADS)
Trippetta, Fabio; Scuderi, Marco Maria; Collettini, Cristiano
2015-04-01
Physical properties of fault zones vary with time and space and in particular, fluid flow and permeability variations are strictly related to fault zone processes. Here we investigate the physical properties of carbonate samples collected along the Monte Maggio normal Fault (MMF), a regional structure (length ~10 km and displacement ~500 m) located within the active system of the Apennines. In particular we have studied an exceptionally exposed outcrop of the fault within the Calcare Massiccio formation (massive limestone) that has been recently exposed by new roadworks. Large cores (100 mm in diameter and up to 20 cm long) drilled perpendicular to the fault plane have been used to: 1) characterize the damage zone adjacent to the fault plane and 2) to obtain smaller cores, 38 mm in diameter both parallel and perpendicular to the fault plane, for rock deformation experiments. At the mesoscale two types of cataclastic damage zones can be identified in the footwall block (i) a Cemented Cataclasite (CC) and (ii), a Fault Breccia (FB). Since in some portions of the fault the hangingwall (HW) is still preserved we also collected HW samples. After preliminary porosity measurements at ambient pressure, we performed laboratory measurements of Vp, Vs, and permeability at effective confining pressures up to 100 MPa in order to simulate crustal conditions. The protolith has a primary porosity of about 7 %, formed predominantly by isolated pores since the connected porosity is only 1%. FB samples are characterized by 10% and 5% of bulk and connected porosity respectively, whilst CC samples show lower bulk porosity (7%) and a connected porosity of 2%. From ambient pressure to 100 MPa, P-wave velocity is about 5,9-6,0 km/s for the protolith, ranges from 4,9 km/s to 5,9 km/s for FB samples, whereas it is constant at 5,9 km/s for CC samples and ranges from 5,4 to 5,7 for HW sample. Vs shows the same behaviour resulting in a constant Vp/Vs ratio from 0 to 100 MPa that ranges from 1,5 to 1,98 where the lower values are recorded for FB samples. Permeability of FB samples is pressure dependent starting from 10-17 m2 at ambient pressure to 10-18 m2 at 100 MPa confining pressure. In contrast, for CC samples, permeability is about 10-19 m2 and is pressure independent. In conclusion, our dataset depicts a fault zone structure with heterogeneous static physical and transport properties that are controlled by the occurrence of different deformation mechanisms related to different protolites. At the moment we have been conducting experiments during loading/unloading stress cycles in order to characterize possible permeability and acoustic properties evolution induced by differential stress.
Upper Crust Structure and Earthquake Mechanism Near the Xinfengjiang Reservoir, Guangdong, China
NASA Astrophysics Data System (ADS)
Sun, X.; He, L.; Yang, H.; Shen, Y.
2016-12-01
The Xinfengjiang Water Reservoir (XWR) in Guangdong, China locates in Yanshanian granitic blocks, with three major faults crossing in NNW, NNE, and NEE directions. The XWR was built in 1958 and immediately after its impoundment, a series of earthquakes have occurred in the vicinity of the reservoir, including the 1962 M6.1 earthquake that occurred 1 km next to the dam. Numerous small earthquakes take place in this region presently, making it one of the most active seismic zones in Guangdong. Due to limited station coverage and small magnitude earthquakes, few data were available, thus previous seismic studies have limited resolution to understand earthquake activities in this region. To investigate present seismicity and associated crust/fault structure, we have collected waveform data of the 14 permanent Xinfengjiang seismic network stations from year 2012 to 2015, with a total of 1507 earthquakes of magnitude greater than zero. In addition, we also collected waveform data of 160 earthquakes recorded at 42 temporary seismic stations that were deployed near the Renzishi fault zone during 2015/01-2015/02. Finally we handpicked 20,666 P arrival times and 18,868 S times. We then performed tomographic inversion using these times for P and S velocity, respectively. The P-wave tomographic results show that the XWR area is generally divided into two regions by the NE-SW faults. At shallow depth (< 3km), the overall velocities are slower, which may indicate sediment layer or water-filled porous structure; At depths of 4-10 km, the NW part become faster while the SW part is slower; Furthermore, the fast block dips to NW direction to at least 10 km. By examining the earthquake locations, we find that they mainly locate at the border between fast and slow velocity blocks. Mechanism inversion results of earthquakes greater than magnitude 3 show that these "big" earthquakes are primarily dip-slip type, with strike-slip type dominants. The slip directions are approximately NNE, in accordance with the Renzishi fault and the local stress direction. Our results suggest that the upper crust structure in XWR area are mainly affected by NNE faults, and the seismicity are controlled by both local structure and stress field. S velocity will be compared to further discuss the properties of XWR area.
NASA Astrophysics Data System (ADS)
Comeau, M. J.; Becken, M.; Kaeufl, J.; Kuvshinov, A. V.; Kamm, J.; Grayver, A.; Demberel, S.; Usnikh, S. U.; Batmagnai, E.; Tserendug, S.
2017-12-01
The Hangai Dome in central Mongolia is characterized by intraplate volcanism on a high-elevation intra-continental plateau. Volcanism dates from the Oligocene to the Holocene and is thought to be coincident with the onset of the uplift of the Hangai Dome, indicating that the processes may be linked. However, the processes and driving mechanisms responsible for creating this region remain largely unexplained, due in part to a lack of high-resolution geophysical data over the area. An extensive magnetotelluric (MT) data set was collected over the Hangai Dome in 2016 and 2017, with broadband data (0.002 - 5,000 s) collected at a total of 294 sites. This data set consists of a large array ( 50 km site spacing) and several long ( 600 km) and dense ( 5 km site spacing) profiles that cross the uplifted Hangai Dome. Additionally, they cross the bounding faults of the Hangai block, the Bulnay fault in the north and the Bogd fault of the Gobi-Altai in the south, which have had several M>8 earthquakes in the past century. These MT data have been used to generate electrical resistivity models of the crust and upper mantle in this region. Anomalous, low resistivity ( 30 ohm-m) zones in the lower crust ( 25 - 50 km depth) are spatially associated with the surface expressions of volcanism and modern-day hydrothermal activity. These zones indicate the presence of local accumulations of fluids below the brittle-ductile transition zone. Interestingly, this feature terminates sharply at the South Hangai Fault Zone. Furthermore, lower resistivity pathways in the upper crust (0 - 25 km depth) connect the deeper features to the surface. This is prominently observed below the Hangai's youngest volcanic zones of Tariat/Khorgo and Chuluut, as well as the hot spring area of Tsenkher, near Tsetserleg. Additionally, an electrical signature can be associated with known fault zones and mineralized zones (such as the Bayankhongor mineral belt). An anomalous low-resistivity zone in the upper mantle ( 70 - 100 km) directly below the Hangai Dome can be explained by the presence of a small amount of partial melt. This zone likely represents the region of melt generation for intraplate volcanism and gives evidence for a small-scale (<100 km) asthenospheric upwelling, which contributes to intraplate deformation.
Theoretical Constraints on Properties of Dynamic Ruptures Implied by Pulverized Fault Zone Rocks
NASA Astrophysics Data System (ADS)
Xu, S.; Ben-Zion, Y.
2016-12-01
Prominent belts of Pulverized Fault Zone Rocks (PFZR) have been observed adjacent to several major strike-slip faults that separate different crustal blocks. They consist of 100-200m wide zones of highly damaged rock products, primarily of crystalline origin, that were mechanically shattered to sub-micron scale while preserving most of their original fabric with little evidence of shear. PFZR are strongly asymmetric with respect to the fault trace, existing primarily on the side with higher seismic velocity at depth, and their fabric suggests volumetric deformation with tensile cracks in all directions (e.g., Dor et al., 2006; Rockwell et al., 2009; Mitchell et al., 2011). Generating with split Hopkinson pressure bar in intact cm-scale sample microstructures similar to those observed in PFZR requires strain-rates higher than 150/s (e.g., Doan and Gary, 2009; Yuan et al., 2011). Using samples with preexisting damage reduces the strain-rate required for pulverization by 50% (Doan and d'Hour, 2012). These laboratory observations support earlier suggestions that PFZR are produced by dynamic stress fields at the tip of earthquake ruptures (e.g., Ben-Zion and Shi, 2005; Reches and Dewers, 2005). To clarify the conditions associated with generation of PFZR, we discuss theoretical results based on Linear Elastic Fracture Mechanics and simulations of Mode-II dynamic ruptures on frictional faults (Xu and Ben-Zion, 2016). We consider subshear and supershear ruptures along faults between similar and dissimilar solids. The results indicate that strain-rates higher than 150/s can be generated at distance of about 100m from the fault by either subshear ruptures on a bimaterial interface or supershear ruptures between similar and dissimilar solids. The dynamic fields of subshear bimaterial ruptures are expected to produce off-fault damage primarily on the stiff side of the fault, with tensile cracks that have no preferred orientation, in agreement with observations. In contrast, the supershear ruptures are likely to produce off-fault damage on both sides of the fault with preferred tensile crack orientations. Additional laboratory tests with multi-axial tension and larger samples with preexisting damage can clarify further the dynamic conditions implied by observed PFZR.
NASA Astrophysics Data System (ADS)
Liu, Yin; Wu, Kongyou; Wang, Xi; Liu, Bo; Guo, Jianxun; Du, Yannan
2017-12-01
It is widely accepted that the faults can act as the conduits or the barrier for oil and gas migration. Years of studies suggested that the internal architecture of a fault zone is complicated and composed of distinct components with different physical features, which can highly influence the migration of oil and gas along the fault. The field observation is the most useful methods of observing the fault zone architecture, however, in the petroleum exploration, what should be concerned is the buried faults in the sedimentary basin. Meanwhile, most of the studies put more attention on the strike-slip or normal faults, but the architecture of the reverse faults attracts less attention. In order to solve these questions, the Hong-Che Fault Zone in the northwest margin of the Junggar Basin, Xinjiang Province, is chosen for an example. Combining with the seismic data, well logs and drill core data, we put forward a comprehensive method to recognize the internal architectures of buried faults. High-precision seismic data reflect that the fault zone shows up as a disturbed seismic reflection belt. Four types of well logs, which are sensitive to the fractures, and a comprehensive discriminated parameter, named fault zone index are used in identifying the fault zone architecture. Drill core provides a direct way to identify different components of the fault zone, the fault core is composed of breccia, gouge, and serpentinized or foliated fault rocks and the damage zone develops multiphase of fractures, which are usually cemented. Based on the recognition results, we found that there is an obvious positive relationship between the width of the fault zone and the displacement, and the power-law relationship also exists between the width of the fault core and damage zone. The width of the damage zone in the hanging wall is not apparently larger than that in the footwall in the reverse fault, showing different characteristics with the normal fault. This study provides a comprehensive method in identifying the architecture of buried faults in the sedimentary basin and would be helpful in evaluating the fault sealing behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherrod, D.R.; Griscom, A.; Turner, R.L.
1988-01-01
The Sheepshead Mountains, Wildcat Canyon, and Table Mountain Wilderness Study Areas encompass most of the Sheepshead Mountains in southeast Oregon. The mountains comprise several fault blocks of middle and late Miocene basalt, basaltic andesite, andesite, and dacite lava; pyroclastic and sedimentary rocks are minor. The three wilderness study areas have low resource potential for gold, silver, and oil and gas. A few small areas have low-to-high resource potential for diatomite, as indicated by the occurrence of low-grade diatomite. Some fault zones have a moderate potential for geothermal energy.
Neotectonic Geomorphology of the Owen Stanley Oblique-slip Fault System, Eastern Papua New Guinea
NASA Astrophysics Data System (ADS)
Watson, L.; Mann, P.; Taylor, F.
2003-12-01
Previous GPS studies have shown that the Australia-Woodlark plate boundary bisects the Papuan Peninsula of Papua New Guinea and that interplate motion along the boundary varies from about 19 mm/yr of orthogonal opening in the area of the western Woodlark spreading center and D'Entrecasteaux Islands, to about 12 mm/yr of highly oblique opening in the central part of the peninsula, to about 10 mm/yr of transpressional motion on the western part of the peninsula. We have compiled a GIS database for the peninsula that includes a digital elevation model, geologic map, LANDSAT and radar imagery, and earthquake focal mechanisms. This combined data set demonstrates the regional importance of the 600-km-long Owen Stanley fault system (OSFS) in accommodating interplate motion and controlling the geomorphology and geologic exposures of the peninsula. The OSFS originated as a NE-dipping, reactivated Oligocene-Early Miocene age ophiolitic suture zone between an Australian continental margin and the Melanesian arc system. Pliocene to recent motion on the plate boundary has reactivated motion on the former NE-dipping thrust fault either as a NE-dipping normal fault in the eastern area or as a more vertical strike-slip fault in the western area. The broadly arcuate shape of the OSFS is probably an inherited feature from the original thrust fault. Faults in the eastern area (east of 148° E) exhibit characteristics expected for normal and oblique slip faults including: discontinuous fault traces bounding an upthrown highland block and a downthrown coastal plain or submarine block, transfer faults parallel to the opening direction, scarps facing to both the northeast and southwest, and spatial association with recent volcanism. Faults in the western area (west of 148° E) exibit characteristics expected for left-lateral strike-slip faults including: linear and continuous fault trace commonly confined to a deep, intermontane valley and sinistral offsets and deflections of rivers and streams by 0.5 to 1.2 km. The northern edge of the OSFS merges with the Ramu-Markham strike-slip fault near Lae. SW tilting of the footwall block (Papuan Peninsula) is responsible for the asymmetrical topographic profile of the peninsula and drowned topography along the southern coast of the peninsula.
NASA Astrophysics Data System (ADS)
Carlson, C. W.; Faulds, J. E.
2014-12-01
Positioned between the Sierra Nevada microplate and Basin and Range in western North America, the Walker Lane (WL) accommodates ~20% of the dextral motion between the North American and Pacific plates on predominately NW-striking dextral and ENE to E-W-striking sinistral fault systems. The Terrill Mountains (TM) lie at the northern terminus of a domain of dextral faults accommodating translation of crustal-blocks in the central WL and at the southeast edge of sinistral faults accommodating oroclinal flexure and CW rotation of blocks in the northern WL. As the mechanisms of strain transfer between these disparate fault systems are poorly understood, the thick Oligocene to Pliocene volcanic strata of the TM area make it an ideal site for studying the transfer of strain between regions undergoing differing styles of deformation and yet both accommodating dextral shear. Detailed geologic mapping and paleomagnetic study of ash-flow tuffs in the TM region has been conducted to elucidate Neogene strain accommodation for this transitional region of the WL. Strain at the northernmost TM appears to be transferred from a system of NW-striking dextral faults to a system of ~E-W striking sinistral faults with associated CW flexure. A distinct ~23 Ma paleosol is locally preserved below the tuff of Toiyabe and provides an important marker bed. This paleosol is offset with ~6 km of dextral separation across the fault bounding the NE flank of the TM. This fault is inferred as the northernmost strand of the NW-striking, dextral Benton Spring fault system, with offset consistent with minimums constrained to the south (6.4-9.6 km, Gabbs Valley Range). Paleomagnetic results suggest counter-intuitive CCW vertical-axis rotation of crustal blocks south of the domain boundary in the system of NW-striking dextral faults, similar to some other domains of NW-striking dextral faults in the northern WL. This may result from coeval dextral shear and WNW-directed extension within the left-stepping system of dextral fault. The left steps are analogous to Riedel shears developing above a more through-going shear zone at depth. However, a site directly adjacent to the Benton Springs fault is rotated ~30° CW, likely due to fault drag. These results show the complex and important contribution of vertical-axis rotations in accommodation of dextral shear.
NASA Astrophysics Data System (ADS)
Haproff, Peter J.; Zuza, Andrew V.; Yin, An
2018-01-01
Whether continental deformation is accommodated by microplate motion or continuum flow is a central issue regarding the nature of Cenozoic deformation surrounding the eastern Himalayan syntaxis. The microplate model predicts southeastward extrusion of rigid blocks along widely-spaced strike-slip faults, whereas the crustal-flow model requires clockwise crustal rotation along closely-spaced, semi-circular right-slip faults around the eastern Himalayan syntaxis. Although global positioning system (GPS) data support the crustal-flow model, the surface velocity field provides no information on the evolution of the India-Asia orogenic system at million-year scales. In this work, we present the results of systematic geologic mapping across the northernmost segment of the Indo-Burma Ranges, located directly southeast of the eastern Himalayan syntaxis. Early research inferred the area to have experienced either right-slip faulting accommodating northward indentation of India or thrusting due to the eastward continuation of the Himalayan orogen in the Cenozoic. Our mapping supports the presence of dip-slip thrust faults, rather than strike-slip faults. Specifically, the northern Indo-Burma Ranges exposes south- to west-directed ductile thrust shear zones in the hinterland and brittle fault zones in the foreland. The trends of ductile stretching lineations within thrust shear zones and thrust sheets rotate clockwise from the northeast direction in the northern part of the study area to the east direction in the southern part of the study area. This clockwise deflection pattern of lineations around the eastern Himalayan syntaxis mirrors the clockwise crustal-rotation pattern as suggested by the crustal-flow model and contemporary GPS velocity field. However, our finding is inconsistent with discrete strike-slip deformation in the area and the microplate model.
Evolution of the Median Tectonic Line fault zone, SW Japan, during exhumation
NASA Astrophysics Data System (ADS)
Shigematsu, Norio; Kametaka, Masao; Inada, Noriyuki; Miyawaki, Masahiro; Miyakawa, Ayumu; Kameda, Jun; Togo, Tetsuhiro; Fujimoto, Koichiro
2017-01-01
Like many crustal-scale fault zones, the Median Tectonic Line (MTL) fault zone in Japan preserves fault rocks that formed across a broad range of physical conditions. We examined the architecture of the MTL at a large new outcrop in order to understand fault behaviours under different crustal levels. The MTL here strikes almost E-W, dips to the north, and juxtaposes the Sanbagawa metamorphic rocks to the south against the Izumi Group sediments to the north. The fault core consists mainly of Sanbagawa-derived fault gouges. The fault zone can be divided into several structural units, including two slip zones (upper and lower slip zones), where the lower slip zone is more conspicuous. Crosscutting relationships among structures and kinematics indicate that the fault zone records four stages of deformation. Microstructures and powder X-ray diffraction (XRD) analyses indicate that the four stages of deformation occurred under different temperature conditions. The oldest deformation (stage 1) was widely distributed, and had a top-to-the-east (dextral) sense of slip at deep levels of the seismogenic zone. Deformation with the same sense of slip, then became localised in the lower slip zone (stage 2). Subsequently, the slip direction in the lower slip zone changed to top-to-the-west (sinistral-normal) (stage 3). The final stage of deformation (stage 4) involved top-to-the-north normal faulting along the two slip zones within the shallow crust (near the surface). The widely distributed stage 1 damage zone characterises the deeper part of the seismogenic zone, while the sets of localised principal slip zones and branching faults of stage 4 characterise shallow depths. The fault zone architecture described in this paper leads us to suggest that fault zones display different behaviours at different crustal levels.
Neotectonics of coastal Jeffara (southern Tunisia): State of the art
NASA Astrophysics Data System (ADS)
Ghedhoui, Rim; Deffontaines, Benoît; Rabia, Mohamed Chedly
2016-04-01
Helped by the studies and results of previous researchers, we herein study the neotectonic of the coastal Jeffara with the input of numerous 2D reflection seismic profiles onshore, combined with Digital Elevation Model analyses (issued from SRTM) and field works. Acquired and available data were then integrated within a GIS Geodatabase, where Jerba, Zarzis and Jorf appear to be part of a N-S pull-apart basin within a NW-SE transtensive right-lateral major fault zone. Our structural geologic and geomorphologic analyses confirm and prove the presence of NNW-SSE right-lateral en-echelon tension gashes, NW-SE aligned salt diapirs, numerous active folds offsets, en-echelon folds, and so-on… They are associated with this major right-lateral NW-SE transtensive major coastal Jeffara fault zone that affect the Holocene and the Villafranchian deposits. We therefore confirm herein a new structural geodynamic Jeffara model, due to the post Lower Cretaceous northward migration of northern African to the Eurasian plates, this NW-SE transtensive fault zone is interpreted as a part of the southern branch of the eastward Sahel block extrusion toward the free Mediterranean Sea boundary. Therefore this geodynamic movement may explain the presence, offshore, of small elongated NW-SE, N-S and NE-SW transtensive basins and grabens with petroleum interest. To conclude, at the regional scale, the structural geomorphologic approach combined with both field work and 2D reflection seismic profile analyses appear to be an excellent tool to prove and confirm the NW-SE right-lateral transtensive extrusion fault zone of the coastal Jeffara.
NASA Astrophysics Data System (ADS)
Thomson, S. N.; Lefebvre, C.; Umhoefer, P. J.; Darin, M. H.; Whitney, D.; Teyssier, C. P.
2016-12-01
The central part of the Anatolian microplate in Turkey forms a complex tectonic zone situated between ongoing convergence of the Arabian and Eurasian plates to the east, and lateral escape of the Anatolian microplate as a rigid block to the west facilitated by two major strike-slip faults (the North and East Anatolian fault zones) that transitions westward into an extensional tectonic regime in western Turkey and the Aegean Sea related to subduction retreat. However, the geodynamic processes behind the transition from collision to escape, and the timing and nature of this transition, are complex and remain poorly understood. To gain a better understanding of the timing and nature of this transition, including the debated timing of ca. 35-20 Ma onset of collision between Arabia and Eurasia, we have undertaken a comprehensive low-temperature thermochronologic study in central Turkey to provide a record of exhumation patterns. We have collected over 150 samples, focused on the Central Anatolian Crystalline Complex (CACC), the Central Anatolian fault zone (CAFZ - proposed as a major lithosphere-scale structure that may also be related to onset of tectonic escape), and Eocene to Neogene sedimentary basins. Results include 113 apatite fission track (FT) ages (62 bedrock ages and 51 detrital ages), 26 detrital zircon FT ages, 218 apatite (U-Th)/He (He) ages from 84 mostly bedrock samples, and 15 zircon He ages from 6 bedrock samples. Our most significant new finding is identification of an early Miocene (ca. 22-15 Ma) phase of rapid cooling seen in the CACC. These cooling ages are localized in the footwalls of several large high-angle NW-SE trending normal faults, and imply significant footwall uplift and exhumation at this time. This early Miocene exhumation is restricted to entirely west of the CAFZ, and supports this fault marking a major tectonic transition active at this time. East of the CAFZ, AFT ages in sedimentary rocks show Eocene and older detrital ages despite much higher elevations (up to 3000m) suggesting uplift of the fault block east of CAFZ occurred since the late Miocene. An earlier Eocene (40-35 Ma) phase of cooling and exhumation is identified in deformed Paleocene-Eocene sedimentary rocks either side of the CAFZ likely related to a regional episode of shortening during final closure of the inner Tauride suture.
Faulting along the southern margin of Reelfoot Lake, Tennessee
Van Arsdale, R.; Purser, J.; Stephenson, W.; Odum, J.
1998-01-01
The Reelfoot Lake basin, Tennessee, is structurally complex and of great interest seismologically because it is located at the junction of two seismicity trends of the New Madrid seismic zone. To better understand the structure at this location, a 7.5-km-long seismic reflection profile was acquired on roads along the southern margin of Reelfoot Lake. The seismic line reveals a westerly dipping basin bounded on the west by the Reelfoot reverse fault zone, the Ridgely right-lateral transpressive fault zone on the east, and the Cottonwood Grove right-lateral strike-slip fault in the middle of the basin. The displacement history of the Reelfoot fault zone appears to be the same as the Ridgely fault zone, thus suggesting that movement on these fault zones has been synchronous, perhaps since the Cretaceous. Since the Reelfoot and Ridgely fault systems are believed responsible for two of the mainshocks of 1811-1812, the fault history revealed in the Reelfoot Lake profile suggests that multiple mainshocks may be typical of the New Madrid seismic zone. The Ridgely fault zone consists of two northeast-striking faults that lie at the base of and within the Mississippi Valley bluff line. This fault zone has 15 m of post-Eocene, up-to-the-east displacement and appears to locally control the eastern limit of Mississippi River migration. The Cottonwood Grove fault zone passes through the center of the seismic line and has approximately 5 m up-to-the-east displacement. Correlation of the Cottonwood Grove fault with a possible fault scarp on the floor of Reelfoot Lake and the New Markham fault north of the lake suggests the Cottonwood Grove fault may change to a northerly strike at Reelfoot Lake, thereby linking the northeast-trending zones of seismicity in the New Madrid seismic zone.
Characteristics of Fault Zones in Volcanic Rocks Near Yucca Flat, Nevada Test Site, Nevada
Sweetkind, Donald S.; Drake II, Ronald M.
2007-01-01
During 2005 and 2006, the USGS conducted geological studies of fault zones at surface outcrops at the Nevada Test Site. The objectives of these studies were to characterize fault geometry, identify the presence of fault splays, and understand the width and internal architecture of fault zones. Geologic investigations were conducted at surface exposures in upland areas adjacent to Yucca Flat, a basin in the northeastern part of the Nevada Test Site; these data serve as control points for the interpretation of the subsurface data collected at Yucca Flat by other USGS scientists. Fault zones in volcanic rocks near Yucca Flat differ in character and width as a result of differences in the degree of welding and alteration of the protolith, and amount of fault offset. Fault-related damage zones tend to scale with fault offset; damage zones associated with large-offset faults (>100 m) are many tens of meters wide, whereas damage zones associated with smaller-offset faults are generally a only a meter or two wide. Zeolitically-altered tuff develops moderate-sized damage zones whereas vitric nonwelded, bedded and airfall tuff have very minor damage zones, often consisting of the fault zone itself as a deformation band, with minor fault effect to the surrounding rock mass. These differences in fault geometry and fault zone architecture in surface analog sites can serve as a guide toward interpretation of high-resolution subsurface geophysical results from Yucca Flat.
Paleoseismological surveys on the Hinagu fault zone in Kumamoto, central Kyushu, Japan
NASA Astrophysics Data System (ADS)
Azuma, T.
2017-12-01
The Hinagu fault zone is located on the south of the Futagawa fault zone, which was a main part of the source fault of the 2016 Kumamoto earthquake of Mj 7.3. Northernmost part of the Hinagu fault zone was also acted in 2016 event and surface faults with right-lateral displacement upto ca. 50 cm were appeared. Seismicity along the central part of the Hinagu fault was increased just after the 2016 Kumamoto Earthquake. It seems that the Hinagu fault zone would produce the next large earthquake in the near future, although it has not occurred yet. The Headquarters of the Earthquake Research Promotions (HERP) conducted active fault surveys on the Hinagu fault zone to recognize the probability of the occurrence of the next faulting event. The Hinagu fault zone is composed with 3 fault segments, Takano-Shirahata, Hinagu, and Yatsushiro Bay. Yatsushiro Bay segment is offshore fault. In FY2016, we conducted paleoseismological trenching surveys at 2 sites (Yamaide, Minamibeta) and offshore drilling. Those result showed evidences that the recurrence intervals of the Hinagu fault zone was rather short and the last faulting event occurred around 1500-2000 yrsBP. In FY2017, we are planning another trenching survey on the southern part of the central segment, where Yatsushiro city located close to the fault.
NASA Astrophysics Data System (ADS)
Bruno, H.; Almeida, J.; Heilbron, M. C. P. L.; Salomão, M.
2017-12-01
The matters surrounding the amalgamation of tectonic blocks during the Brasiliano / Pan-African orogeny have been the main subject of study of several works in recent years. The main objective of this work is the hierarchy and discrimination of the boundaries between the known tectonic blocks, integrating geological and geophysical data. The geology of the study area is dominated by Precambrian terranes; Luís Alves Terrane, the vulcanosedimentary sequences of the Itajaí and Campo Alegre Basins, the metasedimentary sequences of the Brusque and Paranaguá Terranes and their granitic suites besides the granitoids of the Florianópolis Terrane. The shear zones and faults that separate these crustal blocks were developed during the Brasiliano / Pan-African orogenic cycle that led to the formation of the supercontinent Gondwana. These tectonic boundaries generally separate blocks of different rheology and crustal thickness. The integration of geological and geophysical data allowed the identification of important structural lineaments and crustal boundaries. The presented geodynamic model suggests that the suture between the block composed of the Brusque, Paranaguá and Florianópolis Terranes and the block composed by the Luís Alves Terrane is the Itajaí Perimbó Shear Zone, and not the Major Gercino Shear Zone as previously suggested. Considering the Itajaí Perimbó Shear Zone as the suture zone, the metassediments of the Brusque Terrane were deposited on the basement of the Florianópolis Terrane, hereby declared as part of the Angola Craton, and are correlated to the metassediments of the Paranaguá Terrane as a passive margin that in approximately ca. 650 My became active margin, functioning as a forearc basin. The oblique collision between the blocks would have occurred with the development of a dextral transpression in the Itajaí Perimbó Shear Zone, separating the Luís Alves Terrane from the Brusque Terrane, a sinistral transcurrence represented by the Palmital Shear Zone separating the Luís Alves Terrane from the Paranaguá Terrane and a frontal thrust, represented by the Icapara and Serra Negra Shear Zones, separating the already amalgamated block from the Luís Alves and Curitiba Terranes of the Paranaguá Terrane.
Late Paleogene rifting along the Malay Peninsula thickened crust
NASA Astrophysics Data System (ADS)
Sautter, Benjamin; Pubellier, Manuel; Jousselin, Pierre; Dattilo, Paolo; Kerdraon, Yannick; Choong, Chee Meng; Menier, David
2017-07-01
Sedimentary basins often develop above internal zones of former orogenic belts. We hereafter consider the Malay Peninsula (Western Sunda) as a crustal high separating two regions of stretched continental crust; the Andaman/Malacca basins in the western side and the Thai/Malay basins in the east. Several stages of rifting have been documented thanks to extensive geophysical exploration. However, little is known on the correlation between offshore rifted basins and the onshore continental core. In this paper, we explore through mapping and seismic data, how these structures reactivate pre-existing Mesozoic basement heterogeneities. The continental core appears to be relatively undeformed after the Triassic Indosinian orogeny. The thick crustal mega-horst is bounded by complex shear zones (Ranong, Klong Marui and Main Range Batholith Fault Zones) initiated during the Late Cretaceous/Early Paleogene during a thick-skin transpressional deformation and later reactivated in the Late Paleogene. The extension is localized on the sides of this crustal backbone along a strip where earlier Late Cretaceous deformation is well expressed. To the west, the continental shelf is underlain by three major crustal steps which correspond to wide crustal-scale tilted blocks bounded by deep rooted counter regional normal faults (Mergui Basin). To the east, some pronounced rift systems are also present, with large tilted blocks (Western Thai, Songkhla and Chumphon basins) which may reflect large crustal boudins. In the central domain, the extension is limited to isolated narrow N-S half grabens developed on a thick continental crust, controlled by shallow rooted normal faults, which develop often at the contact between granitoids and the host-rocks. The outer limits of the areas affected by the crustal boudinage mark the boundary towards the large and deeper Andaman basin in the west and the Malay and Pattani basins in the east. At a regional scale, the rifted basins resemble N-S en-echelon structures along large NW-SE shear bands. The rifting is accommodated by large low angle normal faults (LANF) running along crustal morphostructures such as broad folds and Mesozoic batholiths. The deep Andaman, Malay and Pattani basins seem to sit on weaker crust inherited from Gondwana-derived continental blocks (Burma, Sibumasu, and Indochina). The set of narrow elongated basins in the core of the Region (Khien Sa, Krabi, and Malacca basins) suffered from a relatively lesser extension.
Earthquake Forecasting in Northeast India using Energy Blocked Model
NASA Astrophysics Data System (ADS)
Mohapatra, A. K.; Mohanty, D. K.
2009-12-01
In the present study, the cumulative seismic energy released by earthquakes (M ≥ 5) for a period 1897 to 2007 is analyzed for Northeast (NE) India. It is one of the most seismically active regions of the world. The occurrence of three great earthquakes like 1897 Shillong plateau earthquake (Mw= 8.7), 1934 Bihar Nepal earthquake with (Mw= 8.3) and 1950 Upper Assam earthquake (Mw= 8.7) signify the possibility of great earthquakes in future from this region. The regional seismicity map for the study region is prepared by plotting the earthquake data for the period 1897 to 2007 from the source like USGS,ISC catalogs, GCMT database, Indian Meteorological department (IMD). Based on the geology, tectonic and seismicity the study region is classified into three source zones such as Zone 1: Arakan-Yoma zone (AYZ), Zone 2: Himalayan Zone (HZ) and Zone 3: Shillong Plateau zone (SPZ). The Arakan-Yoma Range is characterized by the subduction zone, developed by the junction of the Indian Plate and the Eurasian Plate. It shows a dense clustering of earthquake events and the 1908 eastern boundary earthquake. The Himalayan tectonic zone depicts the subduction zone, and the Assam syntaxis. This zone suffered by the great earthquakes like the 1950 Assam, 1934 Bihar and the 1951 Upper Himalayan earthquakes with Mw > 8. The Shillong Plateau zone was affected by major faults like the Dauki fault and exhibits its own style of the prominent tectonic features. The seismicity and hazard potential of Shillong Plateau is distinct from the Himalayan thrust. Using energy blocked model by Tsuboi, the forecasting of major earthquakes for each source zone is estimated. As per the energy blocked model, the supply of energy for potential earthquakes in an area is remarkably uniform with respect to time and the difference between the supply energy and cumulative energy released for a span of time, is a good indicator of energy blocked and can be utilized for the forecasting of major earthquakes. The proposed process provides a more consistent model of gradual accumulation of strain and non-uniform release through large earthquakes and can be applied in the evaluation of seismic risk. The cumulative seismic energy released by major earthquakes throughout the period from 1897 to 2007 of last 110 years in the all the zones are calculated and plotted. The plot gives characteristics curve for each zone. Each curve is irregular, reflecting occasional high activity. The maximum earthquake energy available at a particular time in a given area is given by S. The difference between the theoretical upper limit given by S and the cumulative energy released up to that time is calculated to find out the maximum magnitude of an earthquake which can occur in future. Energy blocked of the three source regions are 1.35*1017 Joules, 4.25*1017 Joules and 0.12*1017 in Joules respectively for source zone 1, 2 and 3, as a supply for potential earthquakes in due course of time. The predicted maximum magnitude (mmax) obtained for each source zone AYZ, HZ, and SPZ are 8.2, 8.6, and 8.4 respectively by this model. This study is also consistent with the previous predicted results by other workers.
NASA Astrophysics Data System (ADS)
Negrete-Aranda, R.; Neumann, F.; Harris, R. N.; Contreras, J.; Gonzalez-Fernandez, A.; Sclater, J. G.
2016-12-01
The thermal regime exerts a primary control on rift dynamics and mode of extension for continental lithosphere. We present three heat-flow profiles across the southern terminus of the Cerro Prieto fault, in the northern Gulf of California. The longest profile is 42 km and has a measurement spacing of 1 km that spans the hanging-wall block (Wagner basin) and the footwall block of that fault. Measurements were taken with a 6.5 m long Fielax, violin-bow probe. Most measurements are of good quality, i.e., the probe fully penetrated sediments and measurements were stable enough to perform reliable inversion for heat flow and thermal properties. However, it was necessary to perform numerous corrections due to environmental phenomena related the copious sedimentation in the area, and seasonal changes in water temperature. Our measurements indicate the total throughput across the central rift and its east shoulder is 15 KW/m per meter of rift length. More important, heat flow values cluster in three distinct spatial groups: (i) heat flow in the well sedimented depocenter of the Wagner basin is approximately 200 mW/m2; (ii) the footwall block heat-flow is approximately 400 mW/m2; and (iii) heat flow across the fault zone is very high, up to 5,000 mW/m2. Our interpretation is that the former value represents the background conductive heat flow in the rift whereas heat flow across the fault represents advective heat transport by hydrothermal fluids. The high heat flow in the footwall block of the Cerro Prieto fault might be result of both conductive and advective heat transfer by fluid seepage from the basin. These data provide evidence that fluids from deep magma bodies transported along faults assist rifting in the northern Gulf of California. We are exploring how fluids may play a role in weakening the lithosphere and help localizing/delocalizing strain along major transforms and numerous normal faults observed in the area.
On fault evidence for a large earthquake in the late fifteenth century, Eastern Kunlun fault, China
NASA Astrophysics Data System (ADS)
Junlong, Zhang
2017-11-01
The EW-trending Kunlun Fault System (KFS) is one of the major left-lateral strike-slip faults on the Tibetan Plateau. It forms the northern boundary of the Bayan Har block. Heretofore, no evidence has been provided for the most recent event (MRE) of the 70-km-long eastern section of the KFS. The studied area is located in the north of the Zoige Basin (northwest Sichuan province) and was recognized by field mapping. Several trenches were excavated and revealed evidence of repeated events in late Holocene. The fault zone is characterized by a distinct 30-60-cm-thick clay fault gouge layer juxtaposing the hanging wall bedrock over unconsolidated late Holocene footwall colluvium and alluvium. The fault zone, hanging wall, and footwall were conformably overlain by undeformed post-MRE deposits. Samples of charred organic material were obtained from the top of the faulted sediments and the base of the unfaulted sediments. Modeling of the age of samples, earthquake yielded a calibrated 2σ radiocarbon age of A.D. 1489 ± 82. Combined with the historical earthquake record, the MRE is dated at A.D. 1488. Based on the over 50 km-long surface rupture, the magnitude of this event is nearly M w 7.0. Our data suggests that a 200-km-long seismic gap could be further divided into the Luocha and Maqu sections. For the last 1000 years, the Maqu section has been inactive, and hence, it is likely that the end of its seismic cycle is approaching, and that there is a potentially significant seismic hazard in eastern Tibet.
Seismicity and plate tectonics in south central Alaska
NASA Technical Reports Server (NTRS)
Van Wormer, J. D.; Davies, J.; Gedney, L.
1974-01-01
Hypocenter distribution shows that the Benioff zone associated with the Aleutian arc terminates in interior Alaska some 75 km north of the Denali fault. There appears to be a break in the subducting Pacific plate in the Yentna River-Prince William Sound area which separates two seismically independent blocks, similar to the segmented structure reported for the central Aleutian arc.
Hanson, Kathryn L.; Lettis, William R.; McLaren, Marcia; Savage, William U.; Hall, N. Timothy; Keller, Mararget A.
2004-01-01
The Hosgri Fault Zone is the southernmost component of a complex system of right-slip faults in south-central coastal California that includes the San Gregorio, Sur, and San Simeon Faults. We have characterized the contemporary style of faulting along the zone on the basis of an integrated analysis of a broad spectrum of data, including shallow high-resolution and deep penetration seismic reflection data; geologic and geomorphic data along the Hosgri and San Simeon Fault Zones and the intervening San Simeon/Hosgri pull-apart basin; the distribution and nature of near-coast seismicity; regional tectonic kinematics; and comparison of the Hosgri Fault Zone with worldwide strike-slip, oblique-slip, and reverse-slip fault zones. These data show that the modern Hosgri Fault Zone is a convergent right-slip (transpressional) fault having a late Quaternary slip rate of 1 to 3 mm/yr. Evidence supporting predominantly strike-slip deformation includes (1) a long, narrow, linear zone of faulting and associated deformation; (2) the presence of asymmetric flower structures; (3) kinematically consistent localized extensional and compressional deformation at releasing and restraining bends or steps, respectively, in the fault zone; (4) changes in the sense and magnitude of vertical separation both along trend of the fault zone and vertically within the fault zone; (5) strike-slip focal mechanisms along the fault trace; (6) a distribution of seismicity that delineates a high-angle fault extending through the seismogenic crust; (7) high ratios of lateral to vertical slip along the fault zone; and (8) the separation by the fault of two tectonic domains (offshore Santa Maria Basin, onshore Los Osos domain) that are undergoing contrasting styles of deformation and orientations of crustal shortening. The convergent component of slip is evidenced by the deformation of the early-late Pliocene unconformity. In characterizing the style of faulting along the Hosgri Fault Zone, we assessed alternative tectonic models by evaluating (1) the cumulative effects of multiple deformational episodes that can produce complex, difficult-to-interpret fault geometries, patterns, and senses of displacement; (2) the difficult imaging of high-angle fault planes and horizontal fault separations on seismic reflection data; and (3) the effects of strain partitioning that yield coeval strike-slip faults and associated fold and thrust belts.
NASA Astrophysics Data System (ADS)
Jordan, Tom; Ferraccioli, Fausto; Leat, Phil; Ross, Neil; Bingham, Rob; Rippin, David; LeBrocq, Anne; Corr, Hugh; Siegert, Martin
2013-04-01
The Weddell Sea Embayment (WSE) lies in a key position to study the nature of the tectonic boundary between East and West Antarctica and the development of continental rifting processes and magmatism during the early stages of Gondwana break-up. Evidence for continental rifting within the WSE derives from previous reconnaissance geophysical investigations offshore and geological studies of the associated Jurassic magmatism onshore. Seismic data reveal high stretching factors beneath the Weddell Sea Rift (WSR) between 1.5 and 3.0, and gravity data suggest a crustal thickness of ca 27 km and an effective elastic thickness of ~35 km for the rifted region. Geochemical interpretations indicate that a Middle Jurassic LIP, including extensive mafic tholeiites and some Jurassic granitic intrusions may be related to a superplume that impinged beneath the WSE. Here we present results from a recent aerogeophysical investigation that sheds new light into the previously largely unknown inland extent of the WSR beneath the West Antarctic Ice Sheet. This includes new insights into its magmatic patterns, as well as the nature of its tectonic boundaries with the adjacent Ellsworth-Whitmore block (EWM) and the margin of East Antarctica. Aeromagnetic images were interpreted to reveal pre-rift rocks, including Proterozoic basement, Middle Cambrian rift-related volcanics and metasediments and rift-related Jurassic granitoids. Magnetic depth-to-source estimates were calculated and help constrain two joint magnetic and gravity forward models for the study region. These models were used to assess crustal thickness variations, the extent of Proterozoic basement, and the thickness of Jurassic intrusions and inferred post-Jurassic sedimentary infill. The Jurassic granitoids were modelled as 5-8 km thick. These intrusions include roughly circular plutons, emplaced at the transition between the thicker crust of the EWM block and the thinner crust of the WSR, and more elongated bodies emplaced within the newly identified Pagano Shear Zone, a major tectonic boundary between East and West Antarctica. We put forward two alternative kinematic tectonic models by analysing a compilation of our new data with previous magnetic and gravity datasets. In the simple shear model, ~E-W oriented Jurassic extension within the WSR was accommodated by left-lateral strike-slip motion on the Pagano Shear Zone. This would have facilitated eastward motion of the EWM block relative to East Antarctica, effectively transferring the block to West Antarctica. In a pure shear model, the left-lateral Pagano Shear Zone we identified and the dextral and normal fault systems, previously interpreted from aeromagnetic data further east at the the margins of the Dufek Intrusion, would represent conjugate fault systems. In the latter scenario, a more complex and potentially more distributed strike-slip boundary between the WSE and a mosaic of distinct East and West Antarctic crustal blocks may be possible. This tectonic model would resemble some geodynamic models for the opposite side of Antarctica, in the Ross Sea Embayment and Transantarctic Mountains, where more recent (Cenozoic) intraplate strike-slip fault systems have been proposed.
NASA Astrophysics Data System (ADS)
Akintomide, A. O.; Dawers, N. H.
2017-12-01
The observed displacement along faults in southeastern Louisiana has raised questions about the kinematic history of faults during the Quaternary. The Terrebonne Trough, a Miocene salt withdrawal basin, is bounded by the Golden Meadow fault zone on its northern boundary; north dipping, so-called counter-regional faults, together with a subsurface salt ridge, define its southern boundary. To date, there are relatively few published studies on fault architecture and kinematics in the onshore area of southeastern Louisiana. The only publically accessible studies, based on 2d seismic reflection profiles, interpreted faults as mainly striking east-west. Our interpretation of a 3-D seismic reflection volume, located in the northwestern Terrebonne Trough, as well as industry well log correlations define a more complex and highly-segmented fault architecture. The northwest striking Lake Boudreaux fault bounds a marsh on the upthrown block from Lake Boudreaux on the downthrown block. To the east, east-west striking faults are located at the Montegut marsh break and north of Isle de Jean Charles. Portions of the Lake Boudreaux and Isle de Jean Charles faults serve as the northern boundary of the Madison Bay subsidence hot-spot. All three major faults extend to the top of the 3d seismic volume, which is inferred to image latest Pleistocene stratigraphy. Well log correlation using 11+ shallow markers across these faults and kinematic techniques such as stratigraphic expansion indices indicate that all three faults were active in the middle(?) and late Pleistocene. Based on expansion indices, both the Montegut and Isle de Jean Charles faults were active simultaneously at various times, but with different slip rates. There are also time intervals when the Lake Boudreaux fault was slipping at a faster rate compared to the east-west striking faults. Smaller faults near the margins of the 3d volume appear to relate to nearby salt stocks, Bully Camp and Lake Barre. Our work to date suggests both salt and fault activity continued at least into the latest Pleistocene.
Seismic Images of the Non-Volcanic Tremor Region around Cholame, California, USA
NASA Astrophysics Data System (ADS)
Gutjahr, S.; Buske, S.
2012-04-01
We reprocessed the industry seismic reflection profile "WSJ-6" which is so far the only seismic profile crossing the San Andreas fault at the non-volcanic tremor region around Cholame. The profile "WSJ-6" runs from Morro Bay eastward to the foothills of the Sierra Nevada and crosses several prominent fault systems, e.g.the Rinconada fault as well as the San Juan fault and the San Andreas fault respectively. By applying the so-called Fresnel Volume migration to the data we produced seismic images of the lower crust and the upper mantle down to depths of approximately 40 km. A 3D tomographic velocity model derived from local earthquake data analysis (Thurber et al., 2006, Lin et al., 2010) was used for slowness analyses and traveltime calculations. The imaging technique was implemented in 3D taking into account the true shot and receiver locations on the crooked profile line. The imaged subsurface volume itself was divided into three separate parts to correctly account for the significant kink in the profile line near the San Andreas fault. The most prominent features in the resulting images are areas of high reflectivity down to 30 km depth in particular in the central western part of the profile corresponding to the Salinian Block between the Rinconada fault and the San Andreas fault. Southwest of the San Andreas fault surface trace a broad zone of high reflectivity is located at depths between 20 km to 35 km. In this region non-volcanic tremor has been located below the seismogenic zone down to 30 km depth. Tremor locations correlate with zones of high reflectivity. This correlation may be an indicator for high pore pressures and fluid content in that region as it is assumed by several authors. The images of the eastern part of the profile show slightly west dipping sedimentary layers in the area of the San Joaquin Valley that are folded and faulted below the Kettleman Hills. Our imaging results will be compared to existing interpretations of the same data.
Low-Temperature Thermochronology for Unraveling Thermal Processes and Dating of Fault Zones
NASA Astrophysics Data System (ADS)
Tagami, T.
2016-12-01
Thermal signatures as well as timing of fault motions can be constrained by thermochronological analyses of fault-zone rocks (e.g., Tagami, 2012). Fault-zone materials suitable for such analyses are produced by tectocic and geochemical processes, such as (1) mechanical fragmentation of host rocks, grain-size reduction of fragments and recrystallization of grains to form mica and clay minerals, (2) secondary heating/melting of host rocks by frictional fault motions, and (3) mineral vein formation as a consequence of fluid advection associated with fault motions. The geothermal structure of fault zones are primarily controlled by the following three factors: (a) regional geothermal structure around the fault zone that reflect background thermo-tectonic history of studied province, (b) frictional heating of wall rocks by fault motions and resultant heat transfer into surrounding rocks, and (c) thermal influences by hot fluid advection in and around the fault zone. Thermochronological methods widely applied in fault zones are K-Ar (40Ar/39Ar), fission-track (FT), and U-Th methods. In addition, OSL, TL, ESR and (U-Th)/He methods are applied in some fault zones, in order to extract temporal imformation related to low temperature and/or very recent fault activities. Here I briefly review the thermal sensitivity of individual thermochronological systems, which basically controls the response of each method against faulting processes. Then, the thermal sensitivity of FTs is highlighted, with a particular focus on the thermal processes characteristic to fault zones, i.e., flash and hydrothermal heating. On these basis, representative examples as well as key issues, including sampling strategy, are presented to make thermochronologic analysis of fault-zone materials, such as fault gouges, pseudotachylytes and mylonites, along with geological, geomorphological and seismological implications. Finally, the thermochronologic analyses of the Nojima fault are overviewed, as an example of multidisciplinary investigations of an active seismogenic fault system. References: T. Tagami, 2012. Thermochronological investigation of fault zones. Tectonophys., 538-540, 67-85, doi:10.1016/j.tecto.2012.01.032.
NASA Astrophysics Data System (ADS)
Chesalova, Elena; Asavin, Alex
2016-04-01
This work presents an improved geomorphological methodology that uses 3D model of relief, remotely-sensed data, geological, geophysical maps and tools of Geographical Information Systems. On the basis of maps of 1: 50,000 and 1: 200,000 the Digital Elevation model (DEM) of Khibiny massif was developed. We used software ARC / INFO v10.2 ESRI. A DEM was used for analyzing landform by extracting the slope gradient, curvature, valley pro?les, slope, aspect and so on. The results were gradually re?ned from the interpretation of satellite imagery and geological map Geomorphological analysis will allow us to determine spatial regularities in inner massive construction. We try to found areas where gas emissions (CH4/H2) enrich, according to morphometry, geology, tectonic and other environments. The main regional blocks were de?ned by different morphological evidences: impression zone, similar to subsidence caldera; uplift zone, domed area (located in the highest part of massif and zone of intersection of main faults) and others. It says that there are the few stages in the development of the Khibiny massif. There is no common concept of the consequence of intrudes magmatic phases now. And we hope that our geomorphical analysis take a new evidences about this problems. Locations of the blocks' borders (tectonic zones) were recognized by lineament analysis of valleys and tectonic faults presented in relief. Erosion system is represented by valleys of 4 ranks. It inherits the zone of tectonic disturbances 3 groups of faults were recognized: 1) Global lineament system cross whole peninsula - existing before Khibiny massif intrusion; 2) Faults associated with the formation of the intrusive phases sequence and magma differentiation and with later collision history during magma cooling; 3) Crack system related to neotectonic process. We believed that if different magmatic phases intrude in similar tectonic environment, the common spatial system of faults will be formed. Really we observed a confederated system of contraction faults for different phases suggests that the differentiation within the intrusion is implemented as a single magma chamber for different intrusive phases. It remains an open question - which fault system (old or young) is more productive to gas emissions? The discrepancy of the geological structures and land forms is established. • Impression zone is represented by foyaites (high-strength rocks) • Uplift zone - rischorrites, khibinites (low-strength rocks) • Trough valley - weakened zone of tectonic faults - yuvites, urtites, rischorrites (low-strength rocks) • In the lowest part of depression zone - carbonatite stock It looks like an inversion of lithomorphic properties and the rock's morphological expression - it is a subject to uplift tectonics. Positive forms of relief (domed area and swells) could be formed due to the intrusion of secondary highly differentiated melts of low density. Also our early studies con?rm that rischorrites is one of the more rich ?uid gases rocks in Khibina massive. And we expect the strong emission of gas in the areas of distribution of these rock. Low density and increase buoyancy of magma, as a result of high gas concentration, can increase difference between density of cumulus minerals and intercumulus melts. This inversion between melt density and cumulus density, which are formed during chamber melt differentiation, and their low viscosity can cause formation of the local swells. Swells are located in the areas of crossing tectonic faults. This can lead to vertical movements, caused by elevating power of micro diapirs. Such diapirs forms are observed on the block diagrams of apatite ores in Koashve (Ivanyuk et. al., 2012). We observe such structure in middle zone of Khibiny massif, near Kuelporr deposit, about 15 km long and 5 km width and one with less size near Rasvumchorr deposit, about 10x3 km. This is the area of rischorrite's appearance. And in this area we see locations of the most intense free gas emission. The technical possibilities that are offered by Remote Sensing (RS) and Geographical Information Systems (GIS) facilitate the geomorphological investigation of inhospitable and inaccessible mountain areas Digital Elevation Models (DEMs) are valuable tools for approximation of the real world's continuous surface. They allow a visual analysis of the earth's surface morphology, quanti?cation of sediment volumes and the calculation of topographic derivatives such as the slope gradient, slope aspect and pro?le curvature that consume ?eld investigations and optimize time The project has been sponsored by programmm Presidium of RAS P44. Reference Ivanyuk G, Kalashnikov A, Mikhailova J, Konoplyova N, Goryainov P, Yakovenchuk V, Pakhomovsky Y. Self-Organization of the Khibiny Alkaline Massif (Kola Peninsula, Russia). In Earth Sciences, Dr. Imran Ahmad Dar(Ed.), ISBN: 978-953-307-861-8, InTech, Available from: http://www.intechopen.com/books/earth-sciences/self-organization-of-the-khibiny-alkaline -massif -kolapeninsula-russia INTECH Open Access Publisher; 2012, Head7, P.131-156.
Phase response curves for models of earthquake fault dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franović, Igor, E-mail: franovic@ipb.ac.rs; Kostić, Srdjan; Perc, Matjaž
We systematically study effects of external perturbations on models describing earthquake fault dynamics. The latter are based on the framework of the Burridge-Knopoff spring-block system, including the cases of a simple mono-block fault, as well as the paradigmatic complex faults made up of two identical or distinct blocks. The blocks exhibit relaxation oscillations, which are representative for the stick-slip behavior typical for earthquake dynamics. Our analysis is carried out by determining the phase response curves of first and second order. For a mono-block fault, we consider the impact of a single and two successive pulse perturbations, further demonstrating how themore » profile of phase response curves depends on the fault parameters. For a homogeneous two-block fault, our focus is on the scenario where each of the blocks is influenced by a single pulse, whereas for heterogeneous faults, we analyze how the response of the system depends on whether the stimulus is applied to the block having a shorter or a longer oscillation period.« less
The Big Mountain oil field, Ventura, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, E.A.
1967-06-02
The Big Mt. oil field is believed to be primarily a fault trap accumulation. All faults are hidden beneath the unconformity at the base of the Vaqueros Formation, or die out before reaching the surface. The Sespe Formation is divided into an upper sandy unit, a middle alternating sand and shale unit, and a lower sandy unit in the Big Mt. area. The producing zone is in the upper portion of the lower sandy unit. The sands are soft and friable, medium to coarse, and the reservoir characteristics are relatively good. The geology is similar to that observed in manymore » Sespe fields, such as the Oxnard and Montalvo oil fields, and the SE. portion of the South Mt. oil field. These fields are broken into many fault blocks and different production characteristics in each block. Good wells and poor ones are interspersed, with good wells downdip from poor ones and visa versa. The Big Mt. field is shallow, drilling and production costs are relatively inexpensive, and there is no royalty burden on the oil.« less
NASA Astrophysics Data System (ADS)
Ellison, R. A.; Klinck, B. A.; Hawkins, M. P.
A regional mapping program associated with radiometric age dating has provided evidence of seven deformation pulses in the Andean orogenic cycle in part of southern Peru. These are the Peruvian (Late Cretaceous), Incaic (Eocene), and five Quechua phases defined as D1 to D5. The D1 phase (early Oligocene) folded molasse deposits in the Western Cordillera; the D2 phase (late Oligocene to early Miocene) folded volcanics of the Western Cordillera; the D3 phase (middle Miocene) folded the molasse deposits in the Altiplano; the D4 (late Miocene) folded lacustrine sediments in the central part of the Western Cordillera; and the D5 phase was a major gravity slide in the Altiplano. Several faults and fault zones, known as the Chupa, Calapuja, Lagunillas, and Laraqueri Faults, are identified. They form the boundaries to Paleozoic basement blocks which appear to have acted as buttresses or barriers to the penetration of some deformation events. In the case of the D5 phase, the gravity slide was preceded by uplift and tilting of a Paleozoic block.
Active stress field and seismotectonic features in Intra-Carpathian region of Romania
NASA Astrophysics Data System (ADS)
Oros, Eugen; Popa, Mihaela; Diaconescu, Mihai; Radulian, Mircea
2017-04-01
The Romanian Intra-Carpathian Region is located on the eastern half of Tisa-Dacia geodynamic block from the Neogene Carpathian-Pannonian Basin. The distribution of seismicity displays clear clusters and narrower zones with seismogenic potential confirmed by the damaging earthquakes recoded in the region, e.g. July 01, 1829 (Mw=6.2), October 10, 1834 (Mw=5.6), January 26, 1916 (Mw=6.4), July 12, 1991 (Mw=5.7), December 2, 1991 (Mw=5.5). The state of recent stress and deformation appears to be controlled by the interaction of plate-boundary and intraplate forces, which include the counterclockwise rotation and N-NE-directed indentation of the Adria microplate and buoyancy forces associated with differential topography and lithospheric heterogeneities. The stress field and tectonic regime are investigated at regional and local scales by the formal inversion of focal mechamisms. There can be observed short-scale lateral changes of i) tectonic regimes from compressive (reverse and strike-slip faultings) to pure extensive (normal faultings) and ii) variation of stress directions (SHmax) from NE-SW to EW and WNW-ESE towards Southern Carpathians and NS within Easter Carpathians. The changes in stress directions occur over a distance that is comparable to or smaller than the thickness of the lithosphere. A comparative analysis of stress tensor with GPS velocity/displacememt vectors shows variations from paralellism to orthogonality, suggesting different mechanisms of crustal deformations.The major seismic activity (Mw≥5.0) appears to be generally concentrated along the faults systems bordering de Tisa-Dacia Block, intersections of faults of different ages, internal shear zones and with the border of the former structural terrains, old rifts and neostructures.
Plafker, George
1969-01-01
The March 27, 1964, earthquake was accomp anied by crustal deformation-including warping, horizontal distortion, and faulting-over probably more than 110,000 square miles of land and sea bottom in south-central Alaska. Regional uplift and subsidence occurred mainly in two nearly parallel elongate zones, together about 600 miles long and as much as 250 miles wide, that lie along the continental margin. From the earthquake epicenter in northern Prince William Sound, the deformation extends eastward 190 miles almost to long 142° and southwestward slightly more than 400 miles to about long 155°. It extends across the two zones from the chain of active volcanoes in the Aleutian Range and Wrangell Mountains probably to the Aleutian Trench axis. Uplift that averages 6 feet over broad areas occurred mainly along the coast of the Gulf of Alaska, on the adjacent Continental Shelf, and probably on the continental slope. This uplift attained a measured maximum on land of 38 feet in a northwest-trending narrow belt less than 10 miles wide that is exposed on Montague Island in southwestern Prince William Sound. Two earthquake faults exposed on Montague Island are subsidiary northwest-dipping reverse faults along which the northwest blocks were relatively displaced a maximum of 26 feet, and both blocks were upthrown relative to sea level. From Montague Island, the faults and related belt of maximum uplift may extend southwestward on the Continental Shelf to the vicinity of the Kodiak group of islands. To the north and northwest of the zone of uplift, subsidence forms a broad asymmetrical downwarp centered over the Kodiak-Kenai-Chugach Mountains that averages 2½ feet and attains a measured maximum of 7½ feet along the southwest coast of the Kenai Peninsula. Maximum indicated uplift in the Alaska and Aleutian Ranges to the north of the zone of subsidence was l½ feet. Retriangulation over roughly 25,000 square miles of the deformed region in and around Prince William Sound shows that vertical movements there were accompanied by horizontal distortion, involving systematic shifts of about 64 feet in a relative seaward direction. Comparable horizontal movements are presumed to have affected those parts of the major zones of uplift and subsidence for which retriangulation data are unavailable. Regional vertical deformation generated a train of destructive long-period seismic sea waves in the Gulf of Alaska as well as unique atmospheric and ionospheric disturbances that were recorded at points far distant from Alaska. Warping resulted in permanent tilt of larger lake basins and temporary reductions in discharge of some major rivers. Uplift and subsidence relative to sea level caused profound modifications in shoreline morphology with attendant catastrophic effects on the nearshore biota and costly damage to coasta1 installations. Systematic horizontal movements of the land relative to bodies of confined or semiconfined water may have caused unexplained short-period waves—some of which were highly destructive—observed during or immediately after the earthquake at certain coastal localities and in Kenai Lake. Porosity increases, probably related to horizontal displacements in the zone of subsidence, were reflected in lowered well-water levels and in losses of surface water. The primary fault, or zone of faults, along which the earthquake occurred is not exposed at the surface on land. Focal-mechanism studies, when considered in conjunction with the pattern of deformation and seismicity, suggest that it was a complex thrust fault (megathrust) dipping at a gentle angle beneath the continental margin from the vicinity of the Aleutian Trench. Movement on the megathrust was accompanied by subsidiary reverse faulting, and perhaps wrench faulting, within the upper plate. Aftershock distribution suggests movement on a segment of the megathrust, some 550–600 miles long and 110–180 miles wide, that underlies most of the major zone of uplift and the seaward part of the major zone of subsidence. According to the postulated model, the observed and inferred tectonic displacements that accompanied the earthquake resulted primarily from (1) relative seaward displacement and uplift of the seaward part of the block by movement along the dipping megathrust and subsidiary faults that break through the upper plate to the surface, and (2) simultaneous elastic horizontal extension and vertical attenuation (subsidence) of the crustal slab behind the upper plate. Slight uplift inland from the major zones of deformation presumably was related to elastic strain changes resulting from the overthrusting; however, the data are insufficient to permit conclusions regarding its cause. The belt of seismic activity and major zones of tectonic deformation associated with the 1964 earthquake, to a large extent, lie between and parallel to the Aleutian Volcanic Arc and the Aleutian Trench, and are probably genetically related to the arc. Geologic data indicate that the earthquake-related tectonic movements were but the most recent pulse in an episode of deformation that probably began in late Pleistocene time and has continued intermittently to the present. Evidence for progressive coastal submergence in the deformed region for several centuries preceding the earthquake, in combin1ation with transverse horizontal shortening indicated by the retriangulation data, suggests pre-earthquake strain directed at a gentle angle downward beneath the arc. The duration of strain accumulation in the epicentral region, as interpreted from the time interval during which the coastal submergence occurred, probably is 930–1,360 years.
A.P. Lamb,; L.M. Liberty,; Blakely, Richard J.; Pratt, Thomas L.; Sherrod, B.L.; Van Wijk, K.
2012-01-01
We present evidence that the Seattle fault zone of Washington State extends to the west edge of the Puget Lowland and is kinemati-cally linked to active faults that border the Olympic Massif, including the Saddle Moun-tain deformation zone. Newly acquired high-resolution seismic reflection and marine magnetic data suggest that the Seattle fault zone extends west beyond the Seattle Basin to form a >100-km-long active fault zone. We provide evidence for a strain transfer zone, expressed as a broad set of faults and folds connecting the Seattle and Saddle Mountain deformation zones near Hood Canal. This connection provides an explanation for the apparent synchroneity of M7 earthquakes on the two fault systems ~1100 yr ago. We redefi ne the boundary of the Tacoma Basin to include the previously termed Dewatto basin and show that the Tacoma fault, the southern part of which is a backthrust of the Seattle fault zone, links with a previously unidentifi ed fault along the western margin of the Seattle uplift. We model this north-south fault, termed the Dewatto fault, along the western margin of the Seattle uplift as a low-angle thrust that initiated with exhu-mation of the Olympic Massif and today accommodates north-directed motion. The Tacoma and Dewatto faults likely control both the southern and western boundaries of the Seattle uplift. The inferred strain trans-fer zone linking the Seattle fault zone and Saddle Mountain deformation zone defi nes the northern margin of the Tacoma Basin, and the Saddle Mountain deformation zone forms the northwestern boundary of the Tacoma Basin. Our observations and model suggest that the western portions of the Seattle fault zone and Tacoma fault are com-plex, require temporal variations in principal strain directions, and cannot be modeled as a simple thrust and/or backthrust system.
NASA Astrophysics Data System (ADS)
Yin, Yaotian; Jin, Sheng; Wei, Wenbo; Ye, Gaofeng; Jing, Jian'en; Zhang, Letian; Dong, Hao; Xie, Chengliang; Liang, Hongda
2017-10-01
We take the Linfen Basin, which is the most active segment of the Cenozoic intraplate Shanxi Rift, as an example, showing how to use magnetotelluric data to constrain lithospheric rheological heterogeneities of intraplate tectonic zones. Electrical resistivity models, combined with previous rheological numerical simulation, show a good correlation between resistivity and rheological strength, indicating the mechanisms of enhanced conductivity could also be reasons of reduced viscosity. The crust beneath the Linfen Basin shows overall stratified features in both electrical resistivity and rheology. The uppermost crustal conductive layer is dominated by friction sliding-type brittle fracturing. The high-resistivity mid-crust is inferred to be high-viscosity metamorphic basement being intersected by deep fault. The plastic lower crust show significantly high-conductivity feature. Seismicity appears to be controlled by crustal rheological heterogeneity. Micro-earthquakes mainly distribute at the brittle-ductile transition zones as indicated by high- to low-resistivity interfaces or the high pore pressure fault zones while the epicenters of two giant destructive historical earthquakes occur within the high-resistivity and therefore high-strength blocks near the inferred rheological interfaces. The lithosphere-scale lateral rheological heterogeneity along the profile can also be illustrated. The crust and upper mantle beneath the Ordos Block, Lüliang Mountains and Taihang Mountains are of high rheological strength as indicated by large-scale high-resistivity zones while a significant high-conductivity, lithosphere-scale weak zone exists beneath the eastern margin of the Linfen Basin. According to previous geodynamic modeling works, we suggest that this kind of lateral rheological heterogeneity may play an essential role for providing driving force for the formation and evolution of the Shanxi Rift, regional lithospheric deformation and earthquake activities under the far-field effects of the India-Eurasian Collision.
Advective and Conductive Heat Flow Budget Across the Wagner Basin, Northern Gulf of California
NASA Astrophysics Data System (ADS)
Neumann, F.; Negrete-Aranda, R.; Contreras, J.; Müller, C.; Hutnak, M.; Gonzalez-Fernandez, A.; Harris, R. N.; Sclater, J. G.
2015-12-01
In May 2015, we conducted a cruise across the northern Gulf of California, an area of continental rift basin formation and rapid deposition of sediments. The cruise was undertaken aboard the R/V Alpha Helix; our goal was to study variation in superficial conductive heat flow, lateral changes in the shallow thermal conductivity structure, and advective transport of heat across the Wagner basin. We used a Fielax heat flow probe with 22 thermistors that can penetrate up to 6 m into the sediment cover. The resulting data set includes 53 new heat flow measurements collected along three profiles. The longest profile (42 km) contains 30 measurements spaced 1-2 km apart. The western part of the Wagner basin (hanging wall block) exhibit low to normal conductive heat flow whereas the eastern part of the basin (foot wall block) heat flow is high to very high (up to 2500 mWm-2). Two other short profiles (12 km long each) focused on resolving an extremely high heat flow anomaly up to 15 Wm-2 located near the intersection between the Wagner bounding fault system and the Cerro Prieto fault. We hypothesize that the contrasting heat flow values observed across the Wagner basin are due to horizontal water circulation through sand layers and fault pathways of high permeability. Circulation appears to be from west (recharge zone) to east (discharge zone). Additionally, our results reveal strong vertical advection of heat due to dehydration reactions and compaction of fine grained sediments.
Structural Mapping Along the Central San Andreas Fault-zone Using Airborne Electromagnetics
NASA Astrophysics Data System (ADS)
Zamudio, K. D.; Bedrosian, P.; Ball, L. B.
2017-12-01
Investigations of active fault zones typically focus on either surface expressions or the associated seismogenic zones. However, the largely aseismic upper kilometer can hold significant insight into fault-zone architecture, strain partitioning, and fault-zone permeability. Geophysical imaging of the first kilometer provides a link between surface fault mapping and seismically-defined fault zones and is particularly important in geologically complex regions with limited surface exposure. Additionally, near surface imaging can provide insight into the impact of faulting on the hydrogeology of the critical zone. Airborne electromagnetic (AEM) methods offer a unique opportunity to collect a spatially-large, detailed dataset in a matter of days, and are used to constrain subsurface resistivity to depths of 500 meters or more. We present initial results from an AEM survey flown over a 60 kilometer long segment of the central San Andreas Fault (SAF). The survey is centered near Parkfield, California, the site of the SAFOD drillhole, which marks the transition between a creeping fault segment to the north and a locked zone to the south. Cross sections with a depth of investigation up to approximately 500 meters highlight the complex Tertiary and Mesozoic geology that is dismembered by the SAF system. Numerous fault-parallel structures are imaged across a more than 10 kilometer wide zone centered on the surface trace. Many of these features can be related to faults and folds within Plio-Miocene sedimentary rocks found on both sides of the fault. Northeast of the fault, rocks of the Mesozoic Franciscan and Great Valley complexes are extremely heterogeneous, with highly resistive volcanic rocks within a more conductive background. The upper 300 meters of a prominent fault-zone conductor, previously imaged to 1-3 kilometers depth by magnetotellurics, is restricted to a 20 kilometer long segment of the fault, but is up to 4 kilometers wide in places. Elevated fault-zone conductivity may be related to damage within the fault zone, Miocene marine shales, or some combination of the two.
How can fluid overpressures be developed and maintained in crustal fault zones ?
NASA Astrophysics Data System (ADS)
LECLÈRE, H.; Cappa, F.; Faulkner, D. R.; Armitage, P. J.; Blake, O. O.; Fabbri, O.
2013-12-01
The presence of fluid overpressure in crustal fault zones is known to play a key role on the stability of faults and it has often been invoked to explain the triggering of earthquakes and the apparent weakness of misoriented faults. However, the mechanisms allowing the development and maintenance of fluid overpressures in fault remain unresolved. We investigate how fluid overpressures can be developed and maintained in complex fault zones with hydraulic and elastic heterogeneities. Here we address this question combining geological observations, laboratory experiments and hydromechanical models of an active crustal fault zone in the Ubaye-Argentera area (southeastern France). The fault zone studied is located in the Argentera external crystalline massif and is connected to regional NW-SE steeply-dipping dextral strike-slip faults with an offset of several kilometers. The fault zone cuts through migmatitic gneisses composed of quartz, K-feldspar, plagioclase, biotite and muscovite. It exposes several anastomosing core zones surrounded by damage zones with a pluri-decametric total width. The core zones are made up of centimetric to pluridecimetric phyllosilicate-rich gouge layers while the damage zones are composed of pluri-metric phyllonitic rock derived from mylonite. The determination of fault structure in the field and its hydraulic and mechanical properties in the lab are key aspects to improve our understanding of the role of fluids in fault mechanics and earthquake triggering. Here, the permeability and elastic moduli of the host rock, damage zone and fault core were measured from natural plugs with a diameter of 20 mm and lengths between 26 to 51 mm, using a high-pressure hydrostatic fluid-flow apparatus. Measurements were made with confining pressures ranging from 30 to 210 MPa and using argon pore fluid pressure of 20 MPa. Data show a reduction of the permeability values of one order of magnitude between host rock and fault damage zone and a decrease of 50% of the elastic properties between host rock and core zone. Data also show a higher dependence of the permeability on the effective pressure for the host rock compared with the damage zone and core zone. This heterogeneity of properties is related to the development of different microstructures such as microcracks, S-C structures and microbreccia across the fault zone achieved during the tectonic history of the fault. From these physical property values and the fault zone architecture, we then analyzed the effects of sudden mechanical loading approximating to static normal-stress transfer following an earthquake on a neighbouring fault, on the development of fluid overpressures. A series of 1-D hydromechanical numerical models was used to show that sudden normal stress increase is a viable mechanism for fluid overpressuring in the studied fault-zone. The models also showed that fluid overpressures can be temporarily maintained in the studied fault zone and that the maintenance of fluid overpressures is controlled by the structure and fluid-flow properties of the fault zone.
NASA Astrophysics Data System (ADS)
Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.
2013-12-01
Deformation along faults in the shallow crust (< 1 km) introduces permeability heterogeneity and anisotropy, which has an important impact on processes such as regional groundwater flow, hydrocarbon migration, and hydrothermal fluid circulation. Fault zones have the capacity to be hydraulic conduits connecting shallow and deep geological environments, but simultaneously the fault cores of many faults often form effective barriers to flow. The direct evaluation of the impact of faults to fluid flow patterns remains a challenge and requires a multidisciplinary research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and address remaining challenges by co-locating study areas, sharing approaches and fusing data, developing conceptual models from hydrogeologic data, numerical modeling, and training interdisciplinary scientists.
A geological interpretation of Seasat-SAR imagery of Jamaica
NASA Technical Reports Server (NTRS)
Wadge, G.; Dixon, T. H.
1984-01-01
Spaceborne radar imagery obtained from Seasat allows an unobscured large-scale view of Jamaica that can be used for geological interpretation. Lineaments and textures visible in these images were mapped and compared with the known geology of the Tertiary karst limestones covering the central and western parts of the island. Some of these radar textures correlate with lithological units, while others follow tectonically-controlled zones or structural blocks. Mapping of radar lineaments has led to the recognition of three new aspects of Jamaican faults: (1) a major through-going NE-SW fault system, termed here the Vere-Annotto lineament; (2) a series of curving scissor faults in the central part of the island; and (3) the related observation that the dominant NNW-SSE tectonic fabric of the central part of the island takes the form of an elongate sigmoid in plan view. During most of the Neogene Jamaica has been part of an active zone of left-lateral transform motion between the Caribbean and North American plates and is a region of anomalous uplift. The radar imagery is a sensitive recorder of the deformation undergone by the karst limestones in this tectonic regime. Some of the observations are explained with models for a complex, evolving shear zone.
Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Gandhok, G.
2009-01-01
The Mission Creek and Banning faults are two of the principal strands of the San Andreas fault zone in the northern Coachella Valley of southern California. Structural characteristics of the faults affect both regional earthquake hazards and local groundwater resources. We use seismic, gravity, and geological data to characterize the San Andreas fault zone in the vicinity of Desert Hot Springs. Seismic images of the upper 500 m of the Mission Creek fault at Desert Hot Springs show multiple fault strands distributed over a 500 m wide zone, with concentrated faulting within a central 200 m wide area of the fault zone. High-velocity (up to 5000 m=sec) rocks on the northeast side of the fault are juxtaposed against a low-velocity (6.0) earthquakes in the area (in 1948 and 1986) occurred at or near the depths (~10 to 12 km) of the merged (San Andreas) fault. Large-magnitude earthquakes that nucleate at or below the merged fault will likely generate strong shaking from guided waves along both fault zones and from amplified seismic waves in the low-velocity basin between the two fault zones. The Mission Creek fault zone is a groundwater barrier with the top of the water table varying by 60 m in depth and the aquifer varying by about 50 m in thickness across a 200 m wide zone of concentrated faulting.
Experimental Measurements of Permeability Evolution along Faults during Progressive Slip
NASA Astrophysics Data System (ADS)
Strutz, M.; Mitchell, T. M.; Renner, J.
2010-12-01
Little is currently known about the dynamic changes in fault-parallel permeability along rough faults during progressive slip. With increasing slip, asperities are worn to produce gouge which can dramatically reduce along fault permeability within the slip zone. However, faults can have a range of roughness which can affect both the porosity and both the amount and distribution of fault wear material produced in the slipping zone during the early stages of fault evolution. In this novel study we investigate experimentally the evolution of permeability along a fault plane in granite sawcut sliding blocks with a variety of intial roughnesses in a triaxial apparatus. Drillholes in the samples allow the permeability to be measured along the fault plane during loading and subsequent fault displacement. Use of the pore pressure oscillation technique (PPO) allows the continuous measurement of permeability without having to stop loading. To achieve a range of intial starting roughnesses, faults sawcut surfaces were prepared using a variety of corundum powders ranging from 10 µm to 220 µm, and for coarser roughness were air-blasted with glass beads up to 800µm in size. Fault roughness has been quantified with a laser profileometer. During sliding, we measure the acoustic emissions in order to detect grain cracking and asperity shearing which may relate to both the mechanical and permeability data. Permeability shows relative reductions of up to over 4 orders of magnitude during stable sliding as asperities are sheared to produce a fine fault gouge. This variation in permeability is greatest for the roughest faults, reducing as fault roughness decreases. The onset of permeability reduction is contemporaneous with a dramatic reduction in the amount of detected acoustic emissions, where a continuous layer of fault gouge has developed. The amount of fault gouge produced is related to the initial roughness, with the rough faults showing larger fault gouge layers at the end of slip. Following large stress drops and stick slip events, permeability can both increase and decrease due to dynamic changes in pore pressure during fast sliding events. We present a summary of preliminary data to date, and discuss some of the problems and unknowns when using the PPO method to measure permeability.
NASA Astrophysics Data System (ADS)
Martel, Stephen J.; Pollard, David D.
1989-07-01
We exploit quasi-static fracture mechanics models for slip along pre-existing faults to account for the fracture structure observed along small exhumed faults and small segmented fault zones in the Mount Abbot quadrangle of California and to estimate stress drop and shear fracture energy from geological field measurements. Along small strike-slip faults, cracks that splay from the faults are common only near fault ends. In contrast, many cracks splay from the boundary faults at the edges of a simple fault zone. Except near segment ends, the cracks preferentially splay into a zone. We infer that shear displacement discontinuities (slip patches) along a small fault propagated to near the fault ends and caused fracturing there. Based on elastic stress analyses, we suggest that slip on one boundary fault triggered slip on the adjacent boundary fault, and that the subsequent interaction of the slip patches preferentially led to the generation of fractures that splayed into the zones away from segment ends and out of the zones near segment ends. We estimate the average stress drops for slip events along the fault zones as ˜1 MPa and the shear fracture energy release rate during slip as 5 × 102 - 2 × 104 J/m2. This estimate is similar to those obtained from shear fracture of laboratory samples, but orders of magnitude less than those for large fault zones. These results suggest that the shear fracture energy release rate increases as the structural complexity of fault zones increases.
NASA Astrophysics Data System (ADS)
Lei, J., Sr.; Zhao, D.
2016-12-01
We determined a new 3-D P-wave velocity model of the upper mantle beneath eastern Tibet using 112,613 high-quality arrival-time data collected from teleseismic seismograms recorded by a new portable seismic array in Yunnan and permanent networks in southwestern China. Our results provide new insights into the mantle structure and dynamics of eastern Tibet. High-velocity (high-V) anomalies are revealed down to 200 km depth under the Sichuan basin and the Ordos and Alashan blocks. Low-velocity (low-V) anomalies are imaged in the upper mantle under the Kunlun-Qilian and Qinling fold zones, and the Songpan-Ganzi, Qiangtang, Lhasa and Chuan-Dian diamond blocks, suggesting that eastward moving low-V materials are extruded to eastern China after the obstruction by the Sichuan basin, and the Ordos and Alashan blocks. Furthermore, the extent and thickness of these low-V anomalies are correlated with the surface topography, suggesting that the uplift of eastern Tibet could be partially related to these low-V materials having a higher temperature and strong positive buoyancy. In the mantle transition zone (MTZ), broad high-V anomalies are visible from the Burma arc northward to the Kunlun fault and eastward to the Xiaojiang fault, and they are connected upward with the Wadati-Benioff seismic zone. These results suggest that the subducted Indian slab has traveled horizontally for a long distance after it descended into the MTZ, and return corner flow and deep slab dehydration have contributed to forming the low-V anomalies in the big mantle wedge. Our results shed new light on the deep origin of Tengchong volcano and large crustal earthquakes as well as the mantle dynamics of the eastern Tibetan plateau.
NASA Astrophysics Data System (ADS)
Diehl, Tobias; Singer, Julia; Hetényi, György; Grujic, Djordje; Clinton, John; Giardini, Domenico; Kissling, Edi
2017-04-01
The instrumental seismicity of Bhutan is characterized by a lower activity compared to most other parts of the Himalayan arc. To understand this low activity and its impact on the seismic hazard, a seismic network was installed in Bhutan for 22 months between 2013 and 2014. From the recorded seismicity, earthquake moment tensors, and local earthquake tomography, we reveal along-strike variations in structure and crustal deformation regime. Imaged structural variations, primarily a thickened crust in western Bhutan, suggest lateral differences in stresses on the Main Himalayan Thrust (MHT), potentially affecting interseismic coupling and style of deformation. Sikkim, western Bhutan, and its foreland are characterized by strike-slip faulting in the Indian basement. Strain is particularly localized along a NW-SE striking dextral fault zone reaching from Chungthang in northeast Sikkim to Dhubri at the northwestern edge of the Shillong Plateau in the foreland. The dextral Dhubri-Chungthang fault zone (DCF) might segment the MHT between eastern Nepal and western Bhutan and connect the deformation front of the Himalaya with the Shillong Plateau in the foreland by forming the western boundary of a West-Assam block. In contrast, the eastern boundary of this block, hitherto associated with the Kopili foreland fault, appears to be diffuse. In eastern Bhutan, we image a seismogenic, flat portion of the MHT, which might be related to a partially creeping fault segment or increased background seismicity originating from the 2009 MW6.1 earthquake. In western-central Bhutan, clusters of micro-earthquakes at the front of the High-Himalayas indicate the presence of a mid-crustal ramp and stress buildup on a fully coupled MHT. The area bounded by the DCF in the west and the seismogenic MHT in the east has the potential for M7-8 earthquakes in Bhutan. Similarly, the DCF has the potential to host M7 earthquakes beneath the densely populated foreland basin as documented by the Dhubri earthquake of 1930, which is likely associated to this structure.
Numerical Modeling on Co-seismic Influence of Wenchuan 8.0 Earthquake in Sichuan-Yunnan Area, China
NASA Astrophysics Data System (ADS)
Chen, L.; Li, H.; Lu, Y.; Li, Y.; Ye, J.
2009-12-01
In this paper, a three dimensional finite element model for active faults which are handled by contact friction elements in Sichuan-Yunnan area is built. Applying the boundary conditions determined through GPS data, a numerical simulations on spatial patterns of stress-strain changes induced by Wenchuan Ms8.0 earthquake are performed. Some primary results are: a) the co-seismic displacements in Longmen shan fault zone by the initial cracking event benefit not only the NE-direction expanding of subsequent fracture process but also the focal mechanism conversions from thrust to right lateral strike for the most of following sub-cracking events. b) tectonic movements induced by the Wenchuan earthquake are stronger in the upper wall of Longmen shan fault belt than in the lower wall and are influenced remarkably by the northeast boundary faults of the rhombic block. c) the extrema of stress changes induced by the main shock are 106Pa and its spatial size is about 400km long and 100km wide. The total stress level is reduced in the most regions in Longmen shan fault zone, whereas stress change is rather weak in its southwest segment and possibly result in fewer aftershocks in there. d) effects induced by the Wenchuan earthquake to the major active faults are obviously different from each other. e) triggering effect of the Wenchuan earthquake to the following Huili 6.1 earthquake is very weak.
NASA Astrophysics Data System (ADS)
Smith, D.; Smith, B. D.; Blome, C. D.; Osborn, N.
2008-12-01
Airborne and ground electrical surveys have been conducted to map the subsurface hydrogeologic character of the Arbuckle-Simpson aquifer in south central Oklahoma. An understanding of the geologic framework and hydrogeologic characteristics is necessary to evaluate groundwater flow through the highly faulted, structurally complex, carbonate aquifer. Results from this research will further understanding of the aquifer and will assist in managing the water resources of the region. The major issues include water quality, the allocation of water rights, and the potential impacts of pumping on springs and stream. Four areas in the Hunton anticline area, with distinctly different geology, were flown with a frequency domain helicopter electromagnetic system (HEM) in March, 2007. Ground electrical studies include dc resistivity imaging and natural field audiomagnetotelluric (AMT), and magnetotelluric (MT) surveys. The HEM resistivity and total field magnetic survey was flown in four blocks, A through D, mostly with a line spacing of 400 m. Block A extends from the Chickasaw National Recreational Area (CHIC) to Mill Creek on the west side of the anticline. The surface geology of this block is mostly dolomitic limestone of the Arbuckle Group that is in fault contact with younger Paleozoic clastic rocks. The flight line spacing was 800 meters in the western half of the block and 400 meters in the eastern part. Airborne magnetic data indicate that the Sulphur fault bends south to merge with the Mill Creek fault which substantiates an earlier hypothesis first made from interpretation of gravity data. Block B, located on the north side of the anticline consists of mostly of Arbuckle and Simpson Group rocks. Block C, covering most of the Clarita horst on the east side of the anticline, consists of the Upper Ordovician to the Lower Pennsylvanian shales. Block D, which was flown to include a deep test well site at Spears ranch, consisted of eight lines spaced at 400 meters. The HEM data are being used to more precisely locate faults, refine the lithostratigraphic units, and to map the depth and extent of shallow epikarst. The MT and AMT data revealed deep structural contacts and a transition between fresh and highly mineralized ground water between springs in the CHIC. The dc resistivity survey has greatly helped in mapping major faults both within dolomitic limestone and clastic units. Ground resistivity surveys also suggest that, in places, the faults within limestone are zones of lower resistivity and map low resistivity surficial epikarst a several meters thick. Ground penetrometer data also has been used to define the depth extent of epikarst in selected areas and the data correlate well with the dc resistivity and HEM resistivity depth sections.
Mineral exploration, Mahd adh Dhahab District, Kingdom of Saudi Arabia
Worl, Ronald G.
1978-01-01
Mahd adh Dhahab is the largest of numerous ancient gold mines scattered through the Precambrian shield of Saudi Arabia and the only one with recent production. During the period 1939-54, 765,768 fine ounces of gold and 1,002,029 ounces of silver were produced from the mines by the Saudi Arabian Mining Syndicate. Ore minerals at Mahd adh Dhahab include free gold and silver, tellurides, sphalerite, and chalcopyrite in and associated with a system of north-trending quartz veins and quartz veinlet stockworks. Pyrite is a common sulfide gangue mineral. Country rocks are a north dipping sequence of pyroclastic and transported pyroclastic rocks of the Hulayfah Group that are locally highly silicified and potassium-feldspathized. The prime target for this exploration program was a north-trending zone of quartz veins and breccias, faults, alteration, and metalization approximately 400 m wide and 1000 m long. The ancient and recent mine workings are located in the northern part of this zone. Although the quartz veins and alteration cut all lithologies, the major metalization is confined to the intersection of veins and agglomerate. Ten holes were diamond drilled to explore geochemical, geological, and geophysical targets in the area. A significant new zone of metalization was discovered 700 m south of the ancient and recent mine workings and within the same major zone of quartz veins, alteration, and faults. Metalization in this southern mineralized zone is at the intersection of the quartz veins and a distinctive and highly altered agglomerate. The total zone of vein and agglomerate intercept is potentially metalized and comprises a block of ground 40 m thick and 400 m wide along the strike of the agglomerate and projected downdip 250 m. Tonnage of this block is 17.2 million tons. The explored zone, approximately 25 percent of the potentially metalized rock, has a potential resource of 1.1 million tons containing 27 g/t gold and 73 g/t silver.
Geologic map of south-central Yucca Mountain, Nye County, Nevada
Dickerson, Robert P.; Drake II, Ronald M.
2004-01-01
New 1:6,000-scale geologic mapping in a 20-square-kilometer area near the south end of Yucca Mountain, Nevada, which is the proposed site of an underground repository for the storage of high-level radioactive wastes, substantially supplements the stratigraphic and structural data obtained from earlier, 1:24,000-scale mapping. Principal observations and interpretations resulting from the larger scale, more detailed nature of the recent investigation include: (1) the thickness of the Miocene Tiva Canyon Tuff decreases from north to south within the map area, and the lithophysal zones within the formation have a greater lateral variability than in areas farther north; and (2) fault relations are far more complex than shown on previous maps, with both major (block-bounding) and minor (intrablock) faults showing much lateral variation in (a) the number of splays and (b) the amount, distribution, and width of anastomosing breccia and fracture zones.
NASA Astrophysics Data System (ADS)
Alekseev, D. A.; Gokhberg, M. B.
2018-05-01
A 2-D boundary problem formulation in terms of pore pressure in Biot poroelasticity model is discussed, with application to a vertical contact model mechanically excited by a lunar-solar tidal deformation wave, representing a fault zone structure. A problem parametrization in terms of permeability and Biot's modulus contrasts is proposed and its numerical solution is obtained for a series of models differing in the values of the above parameters. The behavior of pore pressure and its gradient is analyzed. From those, the electric field of the electrokinetic nature is calculated. The possibilities of estimation of the elastic properties and permeability of geological formations from the observations of the horizontal and vertical electric field measured inside the medium and at the earth's surface near the block boundary are discussed.
Beyer, Larry A.; McCulloh, Thane H.; Denison, Rodger E.; Morin, Ronald W.; Enrico, Roy J.; Barron, John A.; Fleck, Robert J.
2009-01-01
The right lateral San Gabriel Fault Zone in southern California extends from the northwestern corner of the Ridge Basin southeastward to the eastern end of the San Gabriel Mountains. It bifurcates to the southeast in the northwestern San Gabriel Mountains. The northern and older branch curves eastward in the range interior. The southern younger branch, the Vasquez Creek Fault, curves southeastward to merge with the Sierra Madre Fault Zone, which separates the San Gabriel Mountains from the northern Los Angeles Basin margin. An isolated exposure of partly macrofossiliferous nearshore shallow-marine sandstone, designated the Gold Canyon beds, is part of the southwest wall of the fault zone 5.5 km northwest of the bifurcation. These beds contain multiple subordinate breccia-conglomerate lenses and are overlain unconformably by folded Pliocene-Pleistocene Saugus Formation fanglomerate. The San Gabriel Fault Zone cuts both units. Marine macrofossils from the Gold Canyon beds give an age of 5.2+-0.3 Ma by 87Sr/86Sr analyses. Magnetic polarity stratigraphy dates deposition of the overlying Saugus Formation to between 2.6 Ma and 0.78 Ma. Distinctive metaplutonic rocks of the Mount Lowe intrusive suite in the San Gabriel Range are the source of certain clasts in both the Gold Canyon beds and Saugus Formation. Angular clasts of nondurable Paleocene sandstone also occur in the Gold Canyon beds. The large size and angularity of some of the largest of both clast types in breccia-conglomerate lenses of the beds suggest landslides or debris flows from steep terrain. Sources of Mount Lowe clasts, originally to the north or northeast, are now displaced southeastward by faulting and are located between the San Gabriel and Vasquez Creek faults, indicating as much as 12+-2 km of post-Miocene Vasquez Creek Fault right separation, in accord with some prior estimates. Post-Miocene right slip thus transferred onto the Vasquez Creek Fault southeast of the bifurcation. The right separation on the Vasquez Creek Fault adds to the generally accepted 22-23 km of middle-late Miocene right separation established for the San Gabriel Fault east of the bifurcation, resulting in total right separation of 34-35 km northwest of the bifurcation. Clast sizes and lithologies in Saugus Formation deformed alluvial fan deposits in the Gold and Little Tujunga Canyons area indicate that alluvial stream flow was from the north or north-northeast. The alluvial fan complex is beheaded at the San Gabriel Fault Zone, and no correlative deposits have been found north of the fault zone. Likely sources of several distinctive clast types are east of the bifurcation and north of the Vasquez Creek Fault. Combining these data with right slip caused by the 34 deg +-6 deg of clockwise local block rotation suggests that post-Saugus Formation (<2.6 to 0.78 Ma) right separation along the fault zone is 4+-2 km. The fossils, lithology, and age of the Gold Canyon beds correlate with the basal Pico Formation. The beds presumably connected southward or southwestward to a more open marine setting. A search for correlative strata to the south and southwest found that some strata previously mapped as Towsley Formation correlate with the Modelo Formation. Oyster spat in some Modelo Formation beds are the first recorded fossil occurrences and are especially remarkable because of associations with Miocene bathyal benthic foraminifers, planktonic calcareous nannofossils, and diatoms. Topanga Group basalt resting on basement rocks between Little and Big Tujunga Canyons gives an age of 16.14+-0.05 Ma from 40Ar/39Ar analysis. Improved understanding of the upper Miocene stratigraphy indicates large early movement on the eastern Santa Susana Fault at about 7-6 Ma.
Map and Database of Probable and Possible Quaternary Faults in Afghanistan
Ruleman, C.A.; Crone, A.J.; Machette, M.N.; Haller, K.M.; Rukstales, K.S.
2007-01-01
The U.S. Geological Survey (USGS) with support from the U.S. Agency for International Development (USAID) mission in Afghanistan, has prepared a digital map showing the distribution of probable and suspected Quaternary faults in Afghanistan. This map is a key component of a broader effort to assess and map the country's seismic hazards. Our analyses of remote-sensing imagery reveal a complex array of tectonic features that we interpret to be probable and possible active faults within the country and in the surrounding border region. In our compilation, we have mapped previously recognized active faults in greater detail, and have categorized individual features based on their geomorphic expression. We assigned mapped features to eight newly defined domains, each of which contains features that appear to have similar styles of deformation. The styles of deformation associated with each domain provide insight into the kinematics of the modern tectonism, and define a tectonic framework that helps constrain deformational models of the Alpine-Himalayan orogenic belt. The modern fault movements, deformation, and earthquakes in Afghanistan are driven by the collision between the northward-moving Indian subcontinent and Eurasia. The patterns of probable and possible Quaternary faults generally show that much of the modern tectonic activity is related to transfer of plate-boundary deformation across the country. The left-lateral, strike-slip Chaman fault in southeastern Afghanistan probably has the highest slip rate of any fault in the country; to the north, this slip is distributed onto several fault systems. At the southern margin of the Kabul block, the style of faulting changes from mainly strike-slip motion associated with the boundary between the Indian and Eurasian plates, to transpressional and transtensional faulting. North and northeast of the Kabul block, we recognized a complex pattern of potentially active strike-slip, thrust, and normal faults that form a conjugate shear system in a transpressional region of the Trans-Himalayan orogenic belt. The general patterns and orientations of faults and the styles of deformation that we interpret from the imagery are consistent with the styles of faulting determined from focal mechanisms of historical earthquakes. Northwest-trending strike-slip fault zones are cut and displaced by younger, southeast-verging thrust faults; these relations define the interaction between northwest-southeast-oriented contraction and northwest-directed extrusion in the western Himalaya, Pamir, and Hindu Kush regions. Transpression extends into north-central Afghanistan where north-verging contraction along the east-west-trending Alburz-Marmul fault system interacts with northwest-trending strike-slip faults. Pressure ridges related to thrust faulting and extensional basins bounded by normal faults are located at major stepovers in these northwest-trending strike-slip systems. In contrast, young faulting in central and western Afghanistan indicates that the deformation is dominated by extension where strike-slip fault zones transition into regions of normal faults. In addition to these initial observations, our digital map and database provide a foundation that can be expanded, complemented, and modified as future investigations provide more detailed information about the location, characteristics, and history of movement on Quaternary faults in Afghanistan.
NASA Astrophysics Data System (ADS)
Philipp, Sonja L.; Reyer, Dorothea; Afsar, Filiz; Bauer, Johanna F.; Meier, Silke; Reinecker, John
2015-04-01
In geothermal reservoirs, similar to other tight reservoirs, fluid flow may be intensely affected by fracture systems, in particular those associated with fault zones. When active (slipping) the fault core, that is, the inner part of a fault zone, which commonly consists of breccia or gouge, can suddenly develop high permeability. Fault cores of inactive fault zones, however, may have low permeabilities and even act as flow barriers. In the outer part of a fault zone, the damage zone, permeability depends mainly on the fracture properties, that is, the geometry (orientation, aperture, density, connectivity, etc.) of the fault-associated fracture system. Mineral vein networks in damage zones of deeply eroded fault zones in palaeogeothermal fields demonstrate their permeability. In geothermal exploration, particularly for hydrothermal reservoirs, the orientation of fault zones in relation to the current stress field as well as their internal structure, in particular the properties of the associated fracture system, must be known as accurately as possible for wellpath planning and reservoir engineering. Here we present results of detailed field studies and numerical models of fault zones and associated fracture systems in palaeogeo¬thermal fields and host rocks for geothermal reservoirs from various stratigraphies, lithologies and tectonic settings: (1) 74 fault zones in three coastal sections of Upper Triassic and Lower Jurassic age (mudstones and limestone-marl alternations) in the Bristol Channel Basin, UK. (2) 58 fault zones in 22 outcrops from Upper Carboniferous to Upper Cretaceous in the Northwest German Basin (siliciclastic, carbonate and volcanic rocks); and (3) 16 fault zones in 9 outcrops in Lower Permian to Middle Triassic (mainly sandstone and limestone) in the Upper Rhine Graben shoulders. Whereas (1) represent palaeogeothermal fields with mineral veins, (2) and (3) are outcrop analogues of reservoir horizons from geothermal exploration. In the study areas of palaeo¬geothermal fields in the Bristol Channel (1), all mineral veins, most of which are extension fractures, are of calcite. They are clearly associated with the faults and indicate that geothermal water was transported along the then-active faults into the host rocks with evidence of injection as hydrofractures. Layers with contrasting mechanical properties (in particular, stiffnesses), however, acted as stress barriers and lead to fracture arrest. Along some faults, veins propagated through the barriers along faults to shallower levels. In the Northwest German Basin (2) there are pronounced differences between normal-fault zones in carbonate and clastic rocks. Only in carbonate rocks clear damage zones occur, characterized by increased fracture frequencies and high amounts of fractures with large apertures. On the Upper Rhine Graben shoulders (3) damage zones in Triassic Muschelkalk limestones are well developed; fault cores are narrow and comprise breccia, clay smear, host rock lenses and mineralization. A large fault zone in Triassic Bunter sandstone shows a clearly developed fault core with fault gouge, slip zones, deformation bands and host rock lenses, a transition zone with mostly disturbed layering and highest fracture frequency, and a damage zone. The latter damage zone is compared to the damage zone of a large Bunter sandstone fault zone currently explored for geothermal energy production. The numerical models focus on stress field development, fracture propagation and associated permeability changes. These studies contribute to the understanding of the hydromechanical behaviour of fault zones and related fluid transport in fractured reservoirs complementing predictions based on geophysical measurements. Eventually we aim at classifying and quantifying fracture system properties in fault zones to improve exploration and exploitation of geothermal reservoirs. Acknowledgements The authors appreciate the support of 'Niedersächsisches Ministerium für Wissen¬schaft und Kultur' and 'Baker Hughes' within the gebo research project (http://www.gebo-nds.de), the Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMU; FKZ: 0325302, AuGE) and the Deutsche Forschungsgemeinschaft. GeoEnergy GmbH, Karlsruhe, is thanked for explorational data.
Machette, Michael N.; Crone, Anthony J.; Personius, Stephen F.; Mahan, Shannon; Dart, Richard L.; Lidke, David J.; Olig, Susan S.
2007-01-01
In 2004, we identified a small parcel of U.S. Forest Service land at the mouth of Willow Creek (about 5 km west of Mona, Utah) that was suitable for trenching. At the Willow Creek site, which is near the middle of the southern strand of the Nephi segment, the WFZ has vertically displaced alluvial-fan deposits >6-7 m, forming large, steep, multiple-event scarps. In May 2005, we dug two 4- to 5-m-deep backhoe trenches at the Willow Creek site, identified three colluvial wedges in each trench, and collected samples of charcoal and A-horizon organic material for AMS (acceleration mass spectrometry) radiocarbon dating, and sampled fine-grained eolian and colluvial sediment for luminescence dating. The trenches yielded a stratigraphic assemblage composed of moderately coarse-grained fluvial and debris-flow deposits and discrete colluvial wedges associated with three faulting events (P1, P2, and P3). About one-half of the net vertical displacement is accommodated by monoclinal tilting of fan deposits on the hanging-wall block, possibly related to massive ductile landslide deposits that are present beneath the Willow Creek fan. The timing of the three surface-faulting events is bracketed by radiocarbon dates and results in a much different fault chronology and higher slip rates than previously considered for this segment of the Wasatch fault zone.
Seismicity of the Earth 1900–2010 Middle East and vicinity
Jenkins, Jennifer; Turner, Bethan; Turner, Rebecca; Hayes, Gavin P.; Davies, Sian; Dart, Richard L.; Tarr, Arthur C.; Villaseñor, Antonio; Benz, Harley M.
2013-01-01
No fewer than four major tectonic plates (Arabia, Eurasia, India, and Africa) and one smaller tectonic block (Anatolia) are responsible for seismicity and tectonics in the Middle East and surrounding region. Geologic development of the region is a consequence of a number of first-order plate tectonic processes that include subduction, large-scale transform faulting, compressional mountain building, and crustal extension. In the east, tectonics are dominated by the collision of the India plate with Eurasia, driving the uplift of the Himalaya, Karakorum, Pamir and Hindu Kush mountain ranges. Beneath the Pamir‒Hindu Kush Mountains of northern Afghanistan, earthquakes occur to depths as great as 200 km as a result of remnant lithospheric subduction. Along the western margin of the India plate, relative motions between India and Eurasia are accommodated by strike-slip, reverse, and oblique-slip faulting, resulting in the complex Sulaiman Range fold and thrust belt, and the major translational Chaman Fault in Afghanistan. Off the south coasts of Pakistan and Iran, the Makran trench is the surface expression of active subduction of the Arabia plate beneath Eurasia. Northwest of this subduction zone, collision between the two plates forms the approximately 1,500-km-long fold and thrust belts of the Zagros Mountains, which cross the whole of western Iran and extend into northeastern Iraq. Tectonics in the eastern Mediterranean region are dominated by complex interactions between the Africa, Arabia, and Eurasia plates, and the Anatolia block. Dominant structures in this region include: the Red Sea Rift, the spreading center between the Africa and Arabia plates; the Dead Sea Transform, a major strike-slip fault, also accommodating Africa-Arabia relative motions; the North Anatolia Fault, a right-lateral strike-slip structure in northern Turkey accommodating much of the translational motion of the Anatolia block westwards with respect to Eurasia and Africa; and the Cyprian Arc, a convergent boundary between the Africa plate to the south, and Anatolia Block to the north.
Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickerson, R.P.; Drake, R.M. II
This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits ofmore » pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited.« less
NASA Astrophysics Data System (ADS)
Weber, J.; Umhoefer, P. J.; Pérez Venzor, J. A.; Bachtadse, V.
2009-12-01
Compared to oceanic plate boundaries which are generally narrow zones of deformation, continental plate boundaries appear as widespread areas with complex and poorly understood kinematics. Motion of crustal blocks within these “diffuse plate boundaries” causes rather small-scale lithospheric deformation within the boundary zone, while the main plates behave more rigid. Complex deformation patterns of interacting terranes separated by a variety of active faults are the consequence. To study the dynamic implications of boundary zone deformation, the southern part of the Baja California peninsula, Mexico (Baja) has been chosen as target for a detailed paleomagnetic study. In combination with geodetic measurements it is tried to characterize rigid block rotations and temporal changes in rotation rates. Up to now, little paleomagnetic work directed toward vertical axis rotations has been done in Baja California, despite its location in a major active transtensional zone. To address this problem, a total of 501 cores from 63 sites in the southern part of Baja - including sites on San José Island, San Francisco Island and Cerralvo Island - has been taken from volcanic and sedimentary rocks covering the last 25 million years in time. The analysis of paleomagnetic declinations and comparison to coeval data from North America and stable areas of Baja California allow evaluating the long-term kinematics of the region and the effects of oblique-rifting in the Gulf of California to the east. Nearly all sampled sites indicate vertical axis rotation up to 30-40 degrees with an average of about 20-25 degrees. Depending on the location these rotations have been either clockwise or counter-clockwise and are correlated with the opening of the Gulf of California and the translation of the Baja California peninsula to the North. Results of the paleomagnetic investigation are compared to geodetic data of the last few years in order to address the problem how strain is partitioned within a complex network of faults and how rates of rotation change with time.
Johnson, S.Y.; Dadisman, S.V.; Childs, J. R.; Stanley, W.D.
1999-01-01
We use an extensive network of marine high-resolution and conventional industry seismic-reflection data to constrain the location, shallow structure, and displacement rates of the Seattle fault zone and crosscutting high-angle faults in the Puget Lowland of western Washington. Analysis of seismic profiles extending 50 km across the Puget Lowland from Lake Washington to Hood Canal indicates that the west-trending Seattle fault comprises a broad (4-6 km) zone of three or more south-dipping reverse faults. Quaternary sediment has been folded and faulted along all faults in the zone but is clearly most pronounced along fault A, the northernmost fault, which forms the boundary between the Seattle uplift and Seattle basin. Analysis of growth strata deposited across fault A indicate minimum Quaternary slip rates of about 0.6 mm/yr. Slip rates across the entire zone are estimated to be 0.7-1.1 mm/yr. The Seattle fault is cut into two main segments by an active, north-trending, high-angle, strike-slip fault zone with cumulative dextral displacement of about 2.4 km. Faults in this zone truncate and warp reflections in Tertiary and Quaternary strata and locally coincide with bathymetric lineaments. Cumulative slip rates on these faults may exceed 0.2 mm/yr. Assuming no other crosscutting faults, this north-trending fault zone divides the Seattle fault into 30-40-km-long western and eastern segments. Although this geometry could limit the area ruptured in some Seattle fault earthquakes, a large event ca. A.D. 900 appears to have involved both segments. Regional seismic-hazard assessments must (1) incorporate new information on fault length, geometry, and displacement rates on the Seattle fault, and (2) consider the hazard presented by the previously unrecognized, north-trending fault zone.
Dusel-Bacon, Cynthia; Bacon, Charles R.; O'Sullivan, Paul B.; Day, Warren C.
2016-01-01
The origin and antiquity of the subdued topography of the Yukon–Tanana Upland (YTU), the physiographic province between the Denali and Tintina faults, are unresolved questions in the geologic history of interior Alaska and adjacent Yukon. We present apatite fission-track (AFT) results for 33 samples from the 2300 km2 western Fortymile district in the YTU in Alaska and propose an exhumation model that is consistent with preservation of volcanic rocks in valleys that requires base level stability of several drainages since latest Cretaceous–Paleocene time. AFT thermochronology indicates widespread cooling below ∼110 °C at ∼56–47 Ma (early Eocene) and ∼44–36 Ma (middle Eocene). Samples with ∼33–27, ∼19, and ∼10 Ma AFT ages, obtained near a major northeast-trending fault zone, apparently reflect hydrothermal fluid flow. Uplift and erosion following ∼107 Ma magmatism exposed plutonic rocks to different extents in various crustal blocks by latest Cretaceous time. We interpret the Eocene AFT ages to suggest that higher elevations were eroded during the Paleogene subtropical climate of the subarctic, while base level remained essentially stable. Tertiary basins outboard of the YTU contain sediment that may account for the required >2 km of removed overburden that was not carried to the sea by the ancestral Yukon River system. We consider a climate driven explanation for the Eocene AFT ages to be most consistent with geologic constraints in concert with block faulting related to translation on the Denali and Tintina faults resulting from oblique subduction along the southern margin of Alaska.
Berger, B.R.; Tingley, J.V.; Drew, L.J.
2003-01-01
Bonanza-grade orebodies in epithermal-style mineral deposits characteristically occur as discrete zones within spatially more extensive fault and/or fracture systems. Empirically, the segregation of such systems into compartments of higher and lower permeability appears to be a key process necessary for high-grade ore formation and, most commonly, it is such concentrations of metals that make an epithermal vein district world class. In the world-class silver- and gold-producing Comstock mining district, Nevada, several lines of evidence lead to the conclusion that the Comstock lode is localized in an extensional stepover between right-lateral fault zones. This evidence includes fault geometries, kinematic indicators of slip, the hydraulic connectivity of faults as demonstrated by veins and dikes along faults, and the opening of a normal-fault-bounded, asymmetric basin between two parallel and overlapping northwest-striking, lateral- to lateral-oblique-slip fault zones. During basin opening, thick, generally subeconomic, banded quartz-adularia veins were deposited in the normal fault zone, the Comstock fault, and along one of the bounding lateral fault zones, the Silver City fault. As deformation continued, the intrusion of dikes and small plugs into the hanging wall of the Comstock fault zone may have impeded the ability of the stepover to accommodate displacement on the bounding strike-slip faults through extension within the stepover. A transient period of transpressional deformation of the Comstock fault zone ensued, and the early-stage veins were deformed through boudinaging and hydraulic fragmentation, fault-motion inversion, and high- and low-angle axial rotations of segments of the fault planes and some fault-bounded wedges. This deformation led to the formation of spatially restricted compartments of high vertical permeability and hydraulic connectivity and low lateral hydraulic connectivity. Bonanza orebodies were formed in the compartmentalized zones of high permeability and hydraulic connectivity. As heat flow and related hydrothermal activitv waned along the Comstock fault zone, extension was reactivated in the stepover along the Occidental zone of normal faults east of the Comstock fault zone. Volcanic and related intrusive activity in this part of the stepover led to a new episode of hydrothermal activity and formation of the Occidental lodes.
Hydromechanical heterogeneities of a mature fault zone: impacts on fluid flow.
Jeanne, Pierre; Guglielmi, Yves; Cappa, Frédéric
2013-01-01
In this paper, fluid flow is examined for a mature strike-slip fault zone with anisotropic permeability and internal heterogeneity. The hydraulic properties of the fault zone were first characterized in situ by microgeophysical (VP and σc ) and rock-quality measurements (Q-value) performed along a 50-m long profile perpendicular to the fault zone. Then, the local hydrogeological context of the fault was modified to conduct a water-injection test. The resulting fluid pressures and flow rates through the different fault-zone compartments were then analyzed with a two-phase fluid-flow numerical simulation. Fault hydraulic properties estimated from the injection test signals were compared to the properties estimated from the multiscale geological approach. We found that (1) the microgeophysical measurements that we made yield valuable information on the porosity and the specific storage coefficient within the fault zone and (2) the Q-value method highlights significant contrasts in permeability. Fault hydrodynamic behavior can be modeled by a permeability tensor rotation across the fault zone and by a storativity increase. The permeability tensor rotation is linked to the modification of the preexisting fracture properties and to the development of new fractures during the faulting process, whereas the storativity increase results from the development of micro- and macrofractures that lower the fault-zone stiffness and allows an increased extension of the pore space within the fault damage zone. Finally, heterogeneities internal to the fault zones create complex patterns of fluid flow that reflect the connections of paths with contrasting properties. © 2013, The Author(s). Ground Water © 2013, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Ridgway, K.; Trop, J. M.; Finzel, E.; Brennan, P. R.; Gilbert, H. J.; Flesch, L. M.
2015-12-01
Studies the past decade have fundamentally changed our perspective on the Mesozoic and Cenozoic tectonic configuration of Alaska. New concepts include: 1) A link exists between Mesozoic collisional zones, Cenozoic strike-slip fault systems, and active deformation that is related to lithospheric heterogeneities that remain over geologic timescales. The location of the active Denali fault and high topography, for example, is within a Mesozoic collisional zone. Rheological differences between juxtaposed crustal blocks and crustal thickening in this zone have had a significant influence on deformation and exhumation in south-central Alaska. In general, the original configuration of the collisional zone appears to set the boundary conditions for long-term and active deformation. 2) Subduction of a spreading ridge has significantly modified the convergent margin of southern Alaska. Paleocene-Eocene ridge subduction resulted in surface uplift, unconformity development and changes in deposystems in the forearc region, and magmatism that extended from the paleotrench to the retroarc region. 3) Oligocene to Recent shallow subduction of an oceanic plateau has markedly reconfigured the upper plate of the southern Alaska convergent margin. This ongoing process has prompted growth of some of the largest mountain ranges on Earth, exhumation of the forearc and backarc regions above the subducted slab, development of a regional gap in arc magmatism above the subducted slab as well as slab-edge magmatism, and displacement on the Denali fault system. In the light of these new tectonic concepts for Alaska, we will discuss targets of opportunity for future integrated geologic and geophysical studies. These targets include regional strike-slip fault systems, the newly recognized Bering plate, and the role of spreading ridge and oceanic plateau subduction on the location and pace of exhumation, sedimentary basin development, and magmatism in the upper plate.
NASA Astrophysics Data System (ADS)
Wilson, Paul; Gawthorpe, Rob L.; Hodgetts, David; Rarity, Franklin; Sharp, Ian R.
2009-08-01
The geometry and architecture of a well exposed syn-rift normal fault array in the Suez rift is examined. At pre-rift level, the Nukhul fault consists of a single zone of intense deformation up to 10 m wide, with a significant monocline in the hanging wall and much more limited folding in the footwall. At syn-rift level, the fault zone is characterised by a single discrete fault zone less than 2 m wide, with damage zone faults up to approximately 200 m into the hanging wall, and with no significant monocline developed. The evolution of the fault from a buried structure with associated fault-propagation folding, to a surface-breaking structure with associated surface faulting, has led to enhanced bedding-parallel slip at lower levels that is absent at higher levels. Strain is enhanced at breached relay ramps and bends inherited from pre-existing structures that were reactivated during rifting. Damage zone faults observed within the pre-rift show ramp-flat geometries associated with contrast in competency of the layers cut and commonly contain zones of scaly shale or clay smear. Damage zone faults within the syn-rift are commonly very straight, and may be discrete fault planes with no visible fault rock at the scale of observation, or contain relatively thin and simple zones of scaly shale or gouge. The geometric and architectural evolution of the fault array is interpreted to be the result of (i) the evolution from distributed trishear deformation during upward propagation of buried fault tips to surface faulting after faults breach the surface; (ii) differences in deformation response between lithified pre-rift units that display high competence contrasts during deformation, and unlithified syn-rift units that display low competence contrasts during deformation, and; (iii) the history of segmentation, growth and linkage of the faults that make up the fault array. This has important implications for fluid flow in fault zones.
Geology of Joshua Tree National Park geodatabase
Powell, Robert E.; Matti, Jonathan C.; Cossette, Pamela M.
2015-09-16
The database in this Open-File Report describes the geology of Joshua Tree National Park and was completed in support of the National Cooperative Geologic Mapping Program of the U.S. Geological Survey (USGS) and in cooperation with the National Park Service (NPS). The geologic observations and interpretations represented in the database are relevant to both the ongoing scientific interests of the USGS in southern California and the management requirements of NPS, specifically of Joshua Tree National Park (JOTR).Joshua Tree National Park is situated within the eastern part of California’s Transverse Ranges province and straddles the transition between the Mojave and Sonoran deserts. The geologically diverse terrain that underlies JOTR reveals a rich and varied geologic evolution, one that spans nearly two billion years of Earth history. The Park’s landscape is the current expression of this evolution, its varied landforms reflecting the differing origins of underlying rock types and their differing responses to subsequent geologic events. Crystalline basement in the Park consists of Proterozoic plutonic and metamorphic rocks intruded by a composite Mesozoic batholith of Triassic through Late Cretaceous plutons arrayed in northwest-trending lithodemic belts. The basement was exhumed during the Cenozoic and underwent differential deep weathering beneath a low-relief erosion surface, with the deepest weathering profiles forming on quartz-rich, biotite-bearing granitoid rocks. Disruption of the basement terrain by faults of the San Andreas system began ca. 20 Ma and the JOTR sinistral domain, preceded by basalt eruptions, began perhaps as early as ca. 7 Ma, but no later than 5 Ma. Uplift of the mountain blocks during this interval led to erosional stripping of the thick zones of weathered quartz-rich granitoid rocks to form etchplains dotted by bouldery tors—the iconic landscape of the Park. The stripped debris filled basins along the fault zones.Mountain ranges and basins in the Park exhibit an east-west physiographic grain controlled by left-lateral fault zones that form a sinistral domain within the broad zone of dextral shear along the transform boundary between the North American and Pacific plates. Geologic and geophysical evidence reveal that movement on the sinistral faults zones has resulted in left steps along the zones, resulting in the development of sub-basins beneath Pinto Basin and Shavers and Chuckwalla Valleys. The sinistral fault zones connect the Mojave Desert dextral faults of the Eastern California Shear Zone to the north and east with the Coachella Valley strands of the southern San Andreas Fault Zone to the west.Quaternary surficial deposits accumulated in alluvial washes and playas and lakes along the valley floors; in alluvial fans, washes, and sheet wash aprons along piedmonts flanking the mountain ranges; and in eolian dunes and sand sheets that span the transition from valley floor to piedmont slope. Sequences of Quaternary pediments are planed into piedmonts flanking valley-floor and upland basins, each pediment in turn overlain by successively younger residual and alluvial surficial deposits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, D.W.; Schmitt, L.; Woussen, G.
Airborne SAR images provided essential clues to the tectonic setting of (1) the MbLg 6.5 Saguenay earthquake of 25 November 1988, (2) the Charlevoix-Kamouraska seismic source zone, and (3) some of the low *eve* seismic activity in the Eastern seismic background zone of Canada. The event occurred in the southeastern part of the Canadian Shield in an area where the boundary between the Saguenay graben and the Jacques Cartier horst is not well defined. These two tectonic blocks are both associated with the Iapetan St-Lawrence rift. These blocks exhibit several important structural breaks and distinct domains defined by the lineamentmore » orientations, densities, and habits. Outcrop observations confirm that several lineament sets correspond to Precambrian ductile shear zones reactivated as brittle faults during the Phanerozoic. In addition, the northeast and southwest limits of recent seismic activity in the Charlevoix-Kamouraska zone correspond to major elements of the fracture pattern identified on the SAR images. These fractures appear to be related to the interaction of the Charlevoix astrobleme with the tectonic features of the area. 20 refs.« less
Emergence and petrology of the Mendocino Ridge
NASA Astrophysics Data System (ADS)
Fisk, Martin R.; Duncan, Robert A.; Fox, Christopher G.; Witter, Jeffrey B.
1993-11-01
The Mendocino Fracture Zone, a 3,000-km-long transform fault, extends from the San Andreas Fault at Cape Mendocino, California due west into the central Pacific basin. The shallow crest of this fracture zone, known as the Mendocino Ridge, rises to within 1,100 m of the sea surface at 270 km west of the California Coast. Rounded basalt pebbles and cobbles, indicative of a beach environment, are the dominant lithology at two locations on the crest of Mendocino Ridge and a40Ar/39 Ar incremental heating age of 11.0 ± 1.0 million years was determined for one of the these cobbles. This basalt must have been erupted on the Gorda Ridge because the crust immediately to the south of the fracture zone is older than 27 Ma. This age also implies that the crest of Mendocino Ridge was at sea level and would have blocked Pacific Ocean eastern boundary currents and affected the climate of the North American continent at some time since the late Miocene. Basalts from the Mendocino Fracture Zone (MFZ) are FeTi basalts similar to those commonly found at intersections of mid-ocean ridges and fracture zones. These basalts are chemically distinct from the nearby Gorda Ridge but they could have been derived from the same mantle source as the Gorda Ridge basalts. The location of the 11 Ma basalt suggests that Mendocino Ridge was transferred from the Gorda Plate to the Pacific Plate and the southern end of Gorda Ridge was truncated by a northward jump in the transform fault of MFZ.
The Sorong Fault Zone, Indonesia: Mapping a Fault Zone Offshore
NASA Astrophysics Data System (ADS)
Melia, S.; Hall, R.
2017-12-01
The Sorong Fault Zone is a left-lateral strike-slip fault zone in eastern Indonesia, extending westwards from the Bird's Head peninsula of West Papua towards Sulawesi. It is the result of interactions between the Pacific, Caroline, Philippine Sea, and Australian Plates and much of it is offshore. Previous research on the fault zone has been limited by the low resolution of available data offshore, leading to debates over the extent, location, and timing of movements, and the tectonic evolution of eastern Indonesia. Different studies have shown it north of the Sula Islands, truncated south of Halmahera, continuing to Sulawesi, or splaying into a horsetail fan of smaller faults. Recently acquired high resolution multibeam bathymetry of the seafloor (with a resolution of 15-25 meters), and 2D seismic lines, provide the opportunity to trace the fault offshore. The position of different strands can be identified. On land, SRTM topography shows that in the northern Bird's Head the fault zone is characterised by closely spaced E-W trending faults. NW of the Bird's Head offshore there is a fold and thrust belt which terminates some strands. To the west of the Bird's Head offshore the fault zone diverges into multiple strands trending ENE-WSW. Regions of Riedel shearing are evident west of the Bird's Head, indicating sinistral strike-slip motion. Further west, the ENE-WSW trending faults turn to an E-W trend and there are at least three fault zones situated immediately south of Halmahera, north of the Sula Islands, and between the islands of Sanana and Mangole where the fault system terminates in horsetail strands. South of the Sula islands some former normal faults at the continent-ocean boundary with the North Banda Sea are being reactivated as strike-slip faults. The fault zone does not currently reach Sulawesi. The new fault map differs from previous interpretations concerning the location, age and significance of different parts of the Sorong Fault Zone. Kinematic analysis is underway to give a fresh understanding of the tectonic evolution of this complex zone of faulting and plate interaction.
Transverse tectonic zonation of Cuba and its significance for oil exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levchenko, V.A.
The Laramide structures of Cuba and its continental shelf, which are oriented sublatitudinally, are divided into variously elevated blocks by transverse faults of submeridional strike, movements along which have occurred since the end of the Paleozoic. This division, inherited from the region's pre-Mesozoic stage of development, has determined the heterogeneous composition of the Cuban geosyncline's folded basement, which may be characterized by an alternation of areas of Paleozoic uplifts and intervening grabens filled with metamorphosed deposits of Early and Middle Jurassic and Triassic age, and also areas of oceanic crust. In the concluding phase of the Laramide orogeny, there weremore » northward strike-slip movements of individual blocks in the central part of Cuba. The oil potential of Cuba is associated mainly with the depressed blocks, above which the section through the Mesozoic deposits may be presumed to be more complete. The best potential for finding oil exists in the zones of the transverse regional faults along which there may have been both lateral and vertical migration of oil hydrocarbons in the stages of crustal upwarp and extension.« less
The lithosphere-asthenosphere boundary beneath the South Island of New Zealand
NASA Astrophysics Data System (ADS)
Hua, Junlin; Fischer, Karen M.; Savage, Martha K.
2018-02-01
Lithosphere-asthenosphere boundary (LAB) properties beneath the South Island of New Zealand have been imaged by Sp receiver function common-conversion point stacking. In this transpressional boundary between the Australian and Pacific plates, dextral offset on the Alpine fault and convergence have occurred for the past 20 My, with the Alpine fault now bounded by Australian plate subduction to the south and Pacific plate subduction to the north. Using data from onland seismometers, especially the 29 broadband stations of the New Zealand permanent seismic network (GeoNet), we obtained 24,971 individual receiver functions by extended-time multi-taper deconvolution, and mapped them to three-dimensional space using a Fresnel zone approximation. Pervasive strong positive Sp phases are observed in the LAB depth range indicated by surface wave tomography. These phases are interpreted as conversions from a velocity decrease across the LAB. In the central South Island, the LAB is observed to be deeper and broader to the northwest of the Alpine fault. The deeper LAB to the northwest of the Alpine fault is consistent with models in which oceanic lithosphere attached to the Australian plate was partially subducted, or models in which the Pacific lithosphere has been underthrust northwest past the Alpine fault. Further north, a zone of thin lithosphere with a strong and vertically localized LAB velocity gradient occurs to the northwest of the fault, juxtaposed against a region of anomalously weak LAB conversions to the southeast of the fault. This structure could be explained by lithospheric blocks with contrasting LAB properties that meet beneath the Alpine fault, or by the effects of Pacific plate subduction. The observed variations in LAB properties indicate strong modification of the LAB by the interplay of convergence and strike-slip deformation along and across this transpressional plate boundary.
NASA Astrophysics Data System (ADS)
Hirono, Tetsuro; Yeh, En-Chao; Lin, Weiren; Sone, Hiroki; Mishima, Toshiaki; Soh, Wonn; Hashimoto, Yoshitaka; Matsubayashi, Osamu; Aoike, Kan; Ito, Hisao; Kinoshita, Masataka; Murayama, Masafumi; Song, Sheng-Rong; Ma, Kuo-Fong; Hung, Jih-Hao; Wang, Chien-Ying; Tsai, Yi-Ben; Kondo, Tomomi; Nishimura, Masahiro; Moriya, Soichi; Tanaka, Tomoyuki; Fujiki, Toru; Maeda, Lena; Muraki, Hiroaki; Kuramoto, Toshikatsu; Sugiyama, Kazuhiro; Sugawara, Toshikatsu
2007-07-01
The Taiwan Chelungpu-Fault Drilling Project was undertaken in 2002 to investigate the faulting mechanism of the 1999 Mw 7.6 Taiwan Chi-Chi earthquake. Hole B penetrated the Chelungpu fault, and core samples were recovered from between 948.42- and 1352.60-m depth. Three major zones, designated FZB1136 (fault zone at 1136-m depth in hole B), FZB1194, and FZB1243, were recognized in the core samples as active fault zones within the Chelungpu fault. Nondestructive continuous physical property measurements, conducted on all core samples, revealed that the three major fault zones were characterized by low gamma ray attenuation (GRA) densities and high magnetic susceptibilities. Extensive fracturing and cracks within the fault zones and/or loss of atoms with high atomic number, but not a measurement artifact, might have caused the low GRA densities, whereas the high magnetic susceptibility values might have resulted from the formation of magnetic minerals from paramagnetic minerals by frictional heating. Minor fault zones were characterized by low GRA densities and no change in magnetic susceptibility, and the latter may indicate that these minor zones experienced relatively low frictional heating. Magnetic susceptibility in a fault zone may be key to the determination that frictional heating occurred during an earthquake on the fault.
Tectonics and Current Plate Motions of Northern Vancouver Island and the Adjacent Mainland
NASA Astrophysics Data System (ADS)
Jiang, Y.; Leonard, L. J.; Henton, J.; Hyndman, R. D.
2016-12-01
Northern Vancouver Island comprises a complex transition zone along the western margin of the North America plate, between the subducting Juan de Fuca plate to the south and the transcurrent Queen Charlotte Fault to the north off Haida Gwaii. The tectonic history and seismic potential for this region are unclear. Here we present current plate motions for northern Vancouver Island and the adjacent mainland, determined from continuous and campaign GPS measurements processed in a consistent manner. Immediately to the north of the mid-Vancouver Island Nootka Fault Zone, the northern limit of Juan de Fuca plate subduction, GPS velocity vectors show slower Explorer plate subduction than the Juan de Fuca Plate. Off northernmost Vancouver Island, the Winona Block is possibly converging at a slow rate that decreases northward to zero. We find a constant northward margin-parallel translation of up to 5 mm/year from northern Vancouver Island extending to Alaska. The southern limit of this translation coincides with areas of high heat flow that may reflect extension and the northern limit of episodic tremor and slip (ETS) on the Cascadia megathrust. The origin of the northward translation is poorly understood. We find a mainland coastal shear zone extends as far south as northern Vancouver Island where the offshore plate boundary is likely subduction. The pattern of the observed coastal shear cannot reflect interseismic locking on a major offshore transcurrent fault. The geodetically determined mainland coastal zone velocities decrease landward from 5 to 0 mm/yr across a region where no active faults have been identified and there is very little current seismicity. In Haida Gwaii, oblique convergence is apparent in the GPS data, consistent with partitioning between margin-parallel and margin-perpendicular strain. After removing the margin parallel translation from the data, we determine an average maximum locking depth of 15 km for the Queen Charlotte transcurrent fault, consistent with seismicity and seismic structure data.
Numerical modeling of regional stress distributions for geothermal exploration
NASA Astrophysics Data System (ADS)
Guillon, Theophile; Peter-Borie, Mariane; Gentier, Sylvie; Blaisonneau, Arnold
2017-04-01
Any high-enthalpy unconventional geothermal projectcan be jeopardized by the uncertainty on the presence of the geothermal resource at depth. Indeed, for the majority of such projects the geothermal resource is deeply seated and, with the drilling costs increasing accordingly, must be located as precisely as possible to increase the chance of their economic viability. In order to reduce the "geological risk", i.e., the chance to poorly locate the geothermal resource, a maximum amount of information must be gathered prior to any drilling of exploration and/or operational well. Cross-interpretation from multiple disciplines (e.g., geophysics, hydrology, geomechanics …) should improve locating the geothermal resource and so the position of exploration wells ; this is the objective of the European project IMAGE (grant agreement No. 608553), under which the work presented here was carried out. As far as geomechanics is concerned, in situ stresses can have a great impact on the presence of a geothermal resource since they condition both the regime within the rock mass, and the state of the major fault zones (and hence, the possible flow paths). In this work, we propose a geomechanical model to assess the stress distribution at the regional scale (characteristic length of 100 kilometers). Since they have a substantial impact on the stress distributions and on the possible creation of regional flow paths, the major fault zones are explicitly taken into account. The Distinct Element Method is used, where the medium is modeled as fully deformable blocks representing the rock mass interacting through mechanically active joints depicting the fault zones. The first step of the study is to build the model geometry based on geological and geophysical evidences. Geophysical and structural geology results help positioning the major fault zones in the first place. Then, outcrop observations, structural models and site-specific geological knowledge give information on the fault zones family sets and their priority rule. In the second step, the physical model must be established, including constitutive equations for the rock mass and the fault zones, initial state and boundary conditions. At such large scales, physical laws and parameters are difficult to assess and must be constrained by sensitivity analysis. In the last step of the study, the results can be interpreted to highlight areas where the mechanical conditions favor the presence of a geothermal resource. The DEM enables accounting for the strong stress redistributions inherent to highly-segmented geometries, and to the dilational opening of fault zones under shearing. A 130x150 square-kilometers region within the Upper Rhine Graben is used as a case-study to illustrate the building and interpretation of a regional stress model.
NASA Astrophysics Data System (ADS)
Kendrick, K. J.; Matti, J. C.
2017-12-01
The San Gorgonio Pass (SGP) region of southern California represents an extraordinarily complex section of the San Andreas Fault (SAF) zone, often referred to as a structural knot. Complexity is expressed both structurally and geomorphically, and arises because multiple strands of the SAF have evolved here in Quaternary time. Our integration of geologic and geomorphic analyses led to recognition of multiple fault-bounded blocks characterized by crystalline rocks that have similar physical properties. Hence, any morphometric differences in hypsometric analysis, slope, slope distribution, texture, and stream-power measurements and discontinuities reflect landscape response to tectonic processes rather than differences in lithology. We propose that the differing morphometry of the two blocks on either side of the San Bernardino strand (SBS) of the SAF, the high-standing Kitching Peak block to the east and the lower, more subdued Pisgah Peak block to the west, strongly suggests that the blocks experienced different uplift histories. This difference in uplift histories, in turn suggests that dextral slip occurred over a long time interval on the SBS—despite long-lived controversy raised by the fact that, at the surface, a throughgoing trace of the SBS is not present at this location. A different tectonic history between the two blocks is consistent with the gravity data which indicate that low-density rocks underthrusting the Kitching Peak block are absent below the Pisgah Peak block (Langenheim et al., 2015). Throughgoing slip on the SBS implied by geomorphic differences between the two blocks is also consistent with displaced geologic and geomorphic features. We find compelling evidence for discrete offsets of between 0.6 and 6 km of dextral slip on the SBS, including offset of fluvial and landslide deposits, and beheaded drainages. Although we lack numerical age control for the offset features, the degree of soil development associated with displaced landforms suggests that the SBS has had a longer geologic history than previously proposed, and that this fault strand may have experienced episodic activity. Landscape evolution and geologic evidence together require that dextral slip on the SAF must have continued through the SGP structural knot during an extended interval in the past.
Frictional Behavior of Altered Basement Approaching the Nankai Trough
NASA Astrophysics Data System (ADS)
Saffer, D. M.; Ikari, M.; Rooney, T. O.; Marone, C.
2017-12-01
The frictional behavior of basement rocks plays an important role in subduction zone faulting and seismicity. This includes earthquakes seaward of the trench, large megathrust earthquakes where seamounts are subducting, or where the plate interface steps down to basement. In exhumed subduction zone rocks such as the Shimanto complex in Japan, slivers of basalt are entrained in mélange which is evidence of basement involvement in the fault system. Scientific drilling during the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) recovered basement rock from two reference sites (C0011 and C0012) located seaward of the trench offshore the Kii Peninsula during Integrated Ocean Discovery Program (IODP) Expeditions 322 and 333. The basement rocks are pillow basalts that appear to be heterogeneously altered, resulting in contrasting dense blue material and more vesicular gray material. Major element geochemistry shows differences in silica, calcium oxides and loss-on-ignition between the two types of samples. Minor element geochemistry reveals significant differences in vanadium, chromium, and barium. X-ray diffraction on a bulk sample powder representing an average composition shows a phyllosilicate content of 20%, most of which is expandable clays. We performed laboratory friction experiments in a biaxial testing apparatus as either intact sample blocks, or as gouge powders. We combine these experiments with measurements of Pennsylvania slate for comparison, including a mixed-lithology intact block experiment. Intact Nankai basement blocks exhibit a coefficient of sliding friction of 0.73; for Nankai basement powder, slate powder, slate blocks and slate-on-basement blocks the coefficient of sliding friction ranges from 0.44 to 0.57. At slip rates ranging from 3x10-8 to 3x10-4 m/s we observe predominantly velocity-strengthening frictional behavior, indicating a tendency for stable slip. At rates of < 1x10-6 m/s some velocity-weakening was observed, specifically in intact rock-on-rock experiments. Our results show that basement alteration tends to reduce the tendency for unstable slip, but that the altered Nankai basement may still exhibit seismogenic behavior in the case of localized slip in competent rock.
NASA Astrophysics Data System (ADS)
Bennett, R. A.; Shirzaei, M.; Broermann, J.; Spinler, J. C.; Holland, A. A.; Pearthree, P.
2014-12-01
GPS in Arizona reveals a change in the pattern of crustal strain accumulation in 2010 and based on viscoelastic modeling appears to be associated with the distant M7.2 El Mayor-Cucapah (EMC) earthquake in Baja California, Mexico. GPS data collected between 1999 and 2009 near the Santa Rita normal fault in SE Arizona reveal a narrow zone of crustal deformation coincident with the fault trace, delineated by W-NW facing Pleistocene fault scarps of heights 1 to 7 m. The apparent deformation zone is also seen in a preliminary InSAR interferogram. Total motion across the zone inferred using an elastic block model constrained by the pre-2010 GPS measurements is ~1 mm/yr in a sense consistent with normal fault motion. However, continuous GPS measurements throughout Arizona reveal pronounced changes in crustal velocity following the EMC earthquake, such that the relative motion across the Santa Rita fault post-2010 is negligible. Paleoseismic evidence indicates that mapped Santa Rita fault scarps were formed by two or more large magnitude (M6.7 to M7.6) surface rupturing normal-faulting earthquakes 60 to 100 kyrs ago. Seismic refraction and reflection data constrained by deep (~800 m) well log data provide evidence of progressive, possibly intermittent, displacement on the fault through time. The rate of strain accumulation observed geodetically prior to 2010, if constant over the past 60 to 100 kyrs, would imply an untenable minimum slip rate deficit of 60 to 100 m since the most recent earthquake. One explanation for the available geodetic, seismic, and paleoseismic evidence is that strain accumulation is modulated by viscoelastic relaxation associated with frequent large magnitude earthquakes in the Salton Trough region, episodically inhibiting the accumulation of elastic strain required to generate large earthquakes on the Santa Rita and possibly other faults in the Southern Basin and Range. An important question is thus for how long the postseismic velocity changes will persist relative to the recurrence interval of large Salton Trough earthquakes. Understanding the influence of far-field postseismic deformation on the southern Arizona strain rate field could have implications for other regions of diffuse intracontinental deformation in proximity to frequently rupturing large magnitude plate boundary faults.
NASA Astrophysics Data System (ADS)
Barcos, Leticia; Balanyá, Juan Carlos; Díaz-Azpiroz, Manuel; Expósito, Inmaculada; Jiménez-Bonilla, Alejandro
2014-05-01
Structural trend line patterns of orogenic arcs depict diverse geometries resulting from multiple factors such as indenter geometry, thickness of pre-deformational sequences and rheology of major decollement surfaces. Within them, salient-recess transitions often result in transpressive deformation bands. The Gibraltar Arc results from the Neogene collision of a composite metamorphic terrane (Alboran Domain, acting as a relative backstop) against two foreland margins (Southiberian and Maghrebian Domains). Within it, the Western Gibraltar Arc (WGA) is a protruded salient, 200 km in length cord, closely coinciding with the apex zone of the major arc. The WGA terminates at two transpressional zones. The main structure in the northern (Betic) end zone is a 70 km long and 4-5 km wide brittle deformation band, the so-called Torcal Shear Zone (TSZ). The TSZ forms a W-E topographic alignment along which the kinematic data show an overall dextral transpression. Within the TSZ strain is highly partitioned into mainly shortening, extensional and strike-slip structures. The strain partitioning is heterogeneous along the band and, accordingly, four distinct sectors can be identified. i) The Peñarrubia-Almargen Transverse Zone (PATZ), located at the W-end of the TSZ presents WNW-ESE folds and dextral faults, together with normal faults that accommodate extension parallel to the dominant structural trend. WNW ESE dextral faults might be related with synthetic splays at the lateral end of the TSZ. ii) The Sierra del Valle de Abdalajís (SVA) is characterized by WSW-ENE trending folds and dextral-reverse faults dipping to SSE, and NW-SE normal faults. The southern boundary of the SVA is a dextral fault zone. iii) The Torcal de Antequera Massif (TAM) presents two types of structural domains. Two outer domains located at both margins characterized by E-W trending, dextral strike-slip structures, and an inner domain, characterized by en echelon SE-vergent open folds and reverse shear zones as well as normal faults accommodating fold axis parallel extension. iiii) The Sierra de las Cabras-Camorolos sector, located at the E-end of the TSZ, is divided into two structural domains: a western domain, dominated by N120ºE dextral strike-slip faults, and an eastern domain structured by a WSW-ENE thrust system and normal faults with extension subparallel to the direction of the shortening structures. TSZ displacement at the lateral tip of this sector seems to be mainly accommodated by NNE trending thrusts in the northern TSZ block. The TSZ induces the near vertical extrusion of paleomargin rock units within the deformation band and the dextral deflection of the structural trend shaping the lateral end of the WGA salient. Our results suggest the TSZ started in the Upper Miocene and is still active. Moreover, the TSZ trends oblique to regional transport direction assessed both by field data and modelling. The estimated WNW-ESE far-field velocity vector in the TAM and the SVA points to the importance of the westward drift of the Internal Zones relative to the external wedge and fits well with the overall WGA kinematic frame. Nor the WGA salient neither the TSZ can be fully explained by the single Europe-Africa plate convergence.
NASA Astrophysics Data System (ADS)
Ali, G. A.; Reiners, P. W.; Ducea, M.
2008-12-01
The Alabama and Poverty Hills are enigmatic, topographic highs of crystalline basement surrounded by Neogene sediments in Owens Valley, California. The 150-km long Owens Valley, the westernmost graben of the Basin and Range Province, initiated at about 3 Ma, creating ~2-4 km of vertical relief from the Sierra Nevada and White/Inyos crests to the valley floor. Along the valley, the active right-lateral Owens Valley Fault Zone (OVFZ) accommodates a significant portion of Pacific-North American plate motion, creating an oblique dextral fault zone, with localized transpression along minor left-stepovers. The dominantly granitic Mesozoic rocks of the Alabama Hills are bounded by the OVFZ to the east, and the granitic and metavolcanic Mesozoic rocks of the Poverty Hills are located along an apparent 3-km left stepover of the OVFZ. The tectonic origin and geodynamic significance of both these structures are not known, but previously published hypotheses include: 1) transpressional uplifts as OVFZ-related flower structures; 2) down-dropped normal fault blocks; and 3) giant landslides from adjacent ranges. We measured apatite (U-Th)/He ages on 15 samples from the Alabama and Poverty Hills to understand the history of shallow crustal exhumation of these structures, and to potentially correlate them to rocks from adjacent ranges. Apatite He dating typically yields cooling ages corresponding to closure temperatures of ~55-65 °C, corresponding roughly to depths of ~2-3 km in the crust. The majority of apatite He ages from the Alabama Hills ranged from 58-70 Ma, but the far eastern, and lowest elevation sample showed ages of 51-55 Ma. The Poverty Hills shows younger ages of 40-65 Ma and no recognizable spatial pattern. Although the data do not conclusively rule out a transpressional uplift origin of the Poverty Hills, the rocks within them could not have been exhumed from depths greater than ~2-3 km in Owens Valley. Data from both structures are most consistent with down-dropping from adjacent ranges. Apatite He ages in the Alabama Hills correlate with He ages of rocks about 2.5-3 km higher, near Mt. Whitney in the adjacent Sierra Nevada. This, coupled with the spatial pattern of ages, strongly suggests that the Alabama Hills are a down-dropped normal fault block along the Sierra Nevada frontal fault zone or a related fault. A structural reconstruction using tilt-corrected Sierran apatite He age-elevation correlations requires 2.6 km of vertical, and 1.5 km of eastward motion for the Alabama Hills. The proximity of this extensive down- dropped basement block, directly east of the highest topography in the Sierra Nevada, suggests the possibility of localized isostatic response as a cause for locally high elevation in the Mt. Whitney area.
Strain transfer between disconnected, propagating rifts in Afar
NASA Astrophysics Data System (ADS)
Manighetti, I.; Tapponnier, P.; Courtillot, V.; Gallet, Y.; Jacques, E.; Gillot, P.-Y.
2001-01-01
We showed before that both the Aden and Red Sea plate boundaries are currently rifting and propagating along two distinct paths into Afar through the opening of a series of disconnected, propagating rifts. Here we use new geochronological, tectonic, and paleomagnetic data that we acquired mostly in the southeastern part of Afar to examine the geometry, kinematics, and time-space evolution of faulting related to strain transfer processes. It appears that transfer of strain is accommodated by a bookshelf faulting mechanism wherever rifts or plate boundaries happen to overlap without being connected. This mechanism implies the rotation about a vertical axis of small rigid blocks along rift-parallel faults that are shown to slip with a left-lateral component, which is as important as their normal component of slip (rates of ˜2-3 mm/yr). By contrast, where rifts do not overlap, either a classic transform fault (Maskali) or an oblique transfer zone (Mak'arrasou) kinematically connects them. The length of the Aden-Red Sea overlap has increased in the last ˜0.9 Myr, as the Aden plate boundary propagated northward into Afar. As a consequence, the first-order blocks that we identify within the overlap did not all rotate during the same time-span nor by the same amounts. Similarly, the major faults that bound them did not necessarily initiate and grow as their neighboring faults did. Despite these variations in strain distribution and kinematics, the overlap kept accommodating a constant amount of strain (7 to 15% of the extension amount imposed by plate driving forces), which remained distributed on a limited number (seven or eight) of major faults, each one having slipped at constant rates (˜3 and 2 mm/yr for vertical and lateral rates, respectively). The fault propagation rates and the block rotation rates that we either measure or deduce are so fast (30-130 mm/yr and 15-38°/Myr, respectively) that they imply that strain transfer processes are transient, as has been shown to be the case for the processes of tearing, rift propagation, and strain jumps in Afar.
Ponti, Daniel J.; Wells, Ray E.
1991-01-01
The Ms 7.1 Loma Prieta earthquake of 18 October 1989 produced abundant ground ruptures in an 8 by 4 km area along Summit Road and Skyland Ridge in the Santa Cruz Mountains. Predominantly extensional fissures formed a left-stepping, crudely en echelon pattern along ridges of the hanging-wall block southwest of the San Andreas fault, about 12 km northwest of the epicenter. The fissures are subparallel to the San Andreas fault and appear to be controlled by bedding planes, faults, joints, and other weak zones in the underlying Tertiary sedimentary strata of the hanging-wall block. The pattern of extensional fissures is generally consistent with tectonic extension across the crest of the uplifted hanging-wall block. Also, many displacements in Laurel Creek canyon and along the San Andreas and Sargent faults are consistent with right-lateral reverse faulting inferred for the mainshock. Additional small tensile failures along the axis of the Laurel anticline may reflect growth of the fold during deep-seated compression. However, the larger ridge-top fissures commonly have displacements that are parallel to the north-northeast regional slope directions and appear inconsistent with east-northeast extension expected from this earthquake. Measured cumulative displacements across the ridge crests are at least 35 times larger than that predicted by the geodetically determined surface deformation. These fissures also occur in association with ubiquitous landslide complexes that were reactivated by the earthquake to produce the largest concentration of co-seismic slope failures in the epicentral region. The anomalously large displacements and the apparent slope control of the geometry and displacement of many co-seismic surface ruptures lead us to conclude that gravity is an important driving force in the formation of the ridge-top fissures. Shaking-induced gravitational spreading of ridges and downslope movement may account for 90¿ or more of the observed displacements on the linear fissures. Similar fissures occurred in the same area and elsewhere near the San Andreas fault during the predominantly right-lateral 1906 San Francisco earthquake and suggest that the Loma Prieta ground ruptures may, in large part, be independent of fault kinematics.
Coseismic stresses indicated by pseudotachylytes in the Outer Hebrides Fault Zone, UK.
NASA Astrophysics Data System (ADS)
Campbell, Lucy; Lloyd, Geoffrey; Phillips, Richard; Holdsworth, Robert; Walcott, Rachel
2015-04-01
During the few seconds of earthquake slip, dynamic behaviour is predicted for stress, slip velocity, friction and temperature, amongst other properties. Fault-derived pseudotachylyte is a coseismic frictional melt and provides a unique snapshot of the rupture environment. Exhumation of ancient fault zones to seismogenic depths can reveal the structure and distribution of seismic slip as pseudotachylyte bearing fault planes. An example lies in NW Scotland along the Outer Hebrides Fault Zone (OHFZ) - this long-lived fault zone displays a suite of fault rocks developed under evolving kinematic regimes, including widespread pseudotachylyte veining which is distributed both on and away from the major faults. This study adds data derived from the OHFZ pseudotachylytes to published datasets from well-constrained fault zones, in order to explore the use of existing methodologies on more complex faults and to compare the calculated results. Temperature, stress and pressure are calculated from individual fault veins and added to existing datasets. The results pose questions on the physical meaning of the derived trends, the distribution of seismic energy release across scattered cm-scale faults and the range of earthquake magnitudes calculated from faults across any given fault zone.
Can compliant fault zones be used to measure absolute stresses in the upper crust?
NASA Astrophysics Data System (ADS)
Hearn, E. H.; Fialko, Y.
2009-04-01
Geodetic and seismic observations reveal long-lived zones with reduced elastic moduli along active crustal faults. These fault zones localize strain from nearby earthquakes, consistent with the response of a compliant, elastic layer. Fault zone trapped wave studies documented a small reduction in P and S wave velocities along the Johnson Valley Fault caused by the 1999 Hector Mine earthquake. This reduction presumably perturbed a permanent compliant structure associated with the fault. The inferred changes in the fault zone compliance may produce a measurable deformation in response to background (tectonic) stresses. This deformation should have the same sense as the background stress, rather than the coseismic stress change. Here we investigate how the observed deformation of compliant zones in the Mojave Desert can be used to constrain the fault zone structure and stresses in the upper crust. We find that gravitational contraction of the coseismically softened zones should cause centimeters of coseismic subsidence of both the compliant zones and the surrounding region, unless the compliant fault zones are shallow and narrow, or essentially incompressible. We prefer the latter interpretation because profiles of line of sight displacements across compliant zones cannot be fit by a narrow, shallow compliant zone. Strain of the Camp Rock and Pinto Mountain fault zones during the Hector Mine and Landers earthquakes suggests that background deviatoric stresses are broadly consistent with Mohr-Coulomb theory in the Mojave upper crust (with μ ≥ 0.7). Large uncertainties in Mojave compliant zone properties and geometry preclude more precise estimates of crustal stresses in this region. With improved imaging of the geometry and elastic properties of compliant zones, and with precise measurements of their strain in response to future earthquakes, the modeling approach we describe here may eventually provide robust estimates of absolute crustal stress.
NASA Astrophysics Data System (ADS)
Bradley, Kyle E.; Vassilakis, Emmanuel; Hosa, Aleksandra; Weiss, Benjamin P.
2013-01-01
New paleomagnetic data from Early Miocene to Pliocene terrestrial sedimentary and volcanic rocks in Central Greece constrain the history of vertical-axis rotation along the central part of the western limb of the Aegean arc. The present-day pattern of rapid block rotation within a broad zone of distributed deformation linking the right-lateral North Anatolian and Kephalonia continental transform faults initiated after Early Pliocene time, resulting in a uniform clockwise rotation of 24.3±6.5° over a region >250 km long and >150 km wide encompassing Central Greece and the western Cycladic archipelago. Because the published paleomagnetic dataset requires clockwise rotations of >50° in Western Greece after ˜17 Ma, while our measurements resolve no vertical-axis rotation of Central Greece between ˜15 Ma and post-Early Pliocene time, a large part of the clockwise rotation of Western Greece must have occurred during the main period of contraction within the external thrust belt of the Ionian Zone between ˜17 and ˜15 Ma. Pliocene initiation of rapid clockwise rotation in Central and Western Greece reflects the development of the North Anatolia-Kephalonia Fault system within the previously extended Aegean Sea region, possibly in response to entry of dense oceanic lithosphere of the Ionian Sea into the Hellenic subduction zone and consequent accelerated slab rollback. The development of the Aegean geometric arc therefore occurred in two short-duration pulses characterized by rapid rotation and strong regional deformation.
Dependence of residual displacements on the width and depth of compliant fault zones: a 3D study
NASA Astrophysics Data System (ADS)
Kang, J.; Duan, B.
2011-12-01
Compliant fault zones have been detected along active faults by seismic investigations (trapped waves and travel time analysis) and InSAR observations. However, the width and depth extent of compliant fault zones are still under debate in the community. Numerical models of dynamic rupture build a bridge between theories and the geological and geophysical observations. Theoretical 2D plane-strain studies of elastic and inelastic response of compliant fault zones to nearby earthquake have been conducted by Duan [2010] and Duan et al [2010]. In this study, we further extend the experiments to 3D with a focus on elastic response. We are specifically interested in how residual displacements depend on the structure and properties of complaint fault zones, in particular on the width and depth extent. We conduct numerical experiments on various types of fault-zone models, including fault zones with a constant width along depth, with decreasing widths along depth, and with Hanning taper profiles of velocity reduction. . Our preliminary results suggest 1) the width of anomalous horizontal residual displacement is only indicative of the width of a fault zone near the surface, and 2) the vertical residual displacement contains information of the depth extent of compliant fault zones.
A broader classification of damage zones
NASA Astrophysics Data System (ADS)
Peacock, D. C. P.; Dimmen, V.; Rotevatn, A.; Sanderson, D. J.
2017-09-01
Damage zones have previously been classified in terms of their positions at fault tips, walls or areas of linkage, with the latter being described in terms of sub-parallel and synchronously active faults. We broaden the idea of linkage to include structures around the intersections of non-parallel and/or non-synchronous faults. These interaction damage zones can be divided into approaching damage zones, where the faults kinematically interact but are not physically connected, and intersection damage zones, where the faults either abut or cross-cut. The damage zone concept is applied to other settings in which strain or displacement variations are taken up by a range of structures, such as at fault bends. It is recommended that a prefix can be added to a wide range of damage zones, to describe the locations in which they formed, e.g., approaching, intersection and fault bend damage zone. Such interpretations are commonly based on limited knowledge of the 3D geometries of the structures, such as from exposure surfaces, and there may be spatial variations. For example, approaching faults and related damage seen in outcrop may be intersecting elsewhere on the fault planes. Dilation in intersection damage zones can represent narrow and localised channels for fluid flow, and such dilation can be influenced by post-faulting stress patterns.
NASA Astrophysics Data System (ADS)
Rawling, Geoffrey C.; Goodwin, Laurel B.; Wilson, John L.
2001-01-01
The Sand Hill fault is a steeply dipping, large-displacement normal fault that cuts poorly lithified Tertiary sediments of the Albuquerque basin, New Mexico, United States. The fault zone does not contain macroscopic fractures; the basic structural element is the deformation band. The fault core is composed of foliated clay flanked by structurally and lithologically heterogeneous mixed zones, in turn flanked by damage zones. Structures present within these fault-zone architectural elements are different from those in brittle faults formed in lithified sedimentary and crystalline rocks that do contain fractures. These differences are reflected in the permeability structure of the Sand Hill fault. Equivalent permeability calculations indicate that large-displacement faults in poorly lithified sediments have little potential to act as vertical-flow conduits and have a much greater effect on horizontal flow than faults with fractures.
NASA Astrophysics Data System (ADS)
Boncio, P.; Caldarella, M.
2016-12-01
We analyze the zones of coseismic surface faulting along thrust faults, whit the aim of defining the most appropriate criteria for zoning the Surface Fault Rupture Hazard (SFRH) along thrust faults. Normal and strike-slip faults were deeply studied in the past, while thrust faults were not studied with comparable attention. We analyze the 1999 Chi-Chi, Taiwan (Mw 7.6) and 2008 Wenchuan, China (Mw 7.9) earthquakes. Several different types of coseismic fault scarps characterize the two earthquakes, depending on the topography, fault geometry and near-surface materials. For both the earthquakes, we collected from the literature, or measured in GIS-georeferenced published maps, data about the Width of the coseismic Rupture Zone (WRZ). The frequency distribution of WRZ compared to the trace of the main fault shows that the surface ruptures occur mainly on and near the main fault. Ruptures located away from the main fault occur mainly in the hanging wall. Where structural complexities are present (e.g., sharp bends, step-overs), WRZ is wider then for simple fault traces. We also fitted the distribution of the WRZ dataset with probability density functions, in order to define a criterion to remove outliers (e.g., by selecting 90% or 95% probability) and define the zone where the probability of SFRH is the highest. This might help in sizing the zones of SFRH during seismic microzonation (SM) mapping. In order to shape zones of SFRH, a very detailed earthquake geologic study of the fault is necessary. In the absence of such a very detailed study, during basic (First level) SM mapping, a width of 350-400 m seems to be recommended (95% of probability). If the fault is carefully mapped (higher level SM), one must consider that the highest SFRH is concentrated in a narrow zone, 50 m-wide, that should be considered as a "fault-avoidance (or setback) zone". These fault zones should be asymmetric. The ratio of footwall to hanging wall (FW:HW) calculated here ranges from 1:5 to 1:3.
Development of fluid overpressures in crustal faults and implications for earthquakes mechanics
NASA Astrophysics Data System (ADS)
Leclère, Henri; Cappa, Frédéric; Faulkner, Daniel; Armitage, Peter; Blake, Oshaine; Fabbri, Olivier
2013-04-01
The development and maintenance of fluid overpressures strongly influence the mechanical behavior of the crust and especially crustal fault zones. The mechanisms allowing fluid pressure build-up are still open questions, and their influence on tectonic and fault weakening processes remain unclear. The determination of the hydraulic and mechanical properties of crustal fault zone elements is a key aspect to improve our understanding of the fluid-tectonic interactions and more particularly the role of fluids in fault mechanics and earthquake triggering. Here we address this question combining geological observations, laboratory experiments and hydromechanical models of an active crustal fault-zone in the Ubaye-Argentera area (southeastern France). Previous studies showed that the fluids located in the fault zone developed overpressures between 7 and 26 MPa, that triggered intense seismic swarms (i.e. 16,000 events in 2003-2004) (Jenatton et al., 2007; Daniel et al., 2011; Leclère et al., 2012). The fault-zone studied here is located in the Argentera external crystalline massif and is connected to regional NW-SE steeply-dipping dextral strike-slip faults with an offset of several kilometers. The fault zone cuts through migmatitic gneisses composed of quartz, K-feldspar, plagioclase, biotite and minor muscovite. It exposes several anastomosed core zones surrounded by damage zones with a pluri-decametric total width. The core zones are made up of centimetric to pluridecimetric phyllosilicate-rich gouge layers while the damage zones are composed of pluri-metric phyllonitic rock derived from mylonite. The permeability and elastic moduli of the host rock, damage zone and fault core were measured from plugs with a diameter of 20 mm and lengths between 26 to 51 mm, using a high-pressure hydrostatic fluid-flow apparatus. Measurements were made with confining pressures ranging from 30 to 210 MPa and using argon pore fluid pressure of 20 MPa. Data show a variation of the permeability values of one order of magnitude between host rock and fault zone and a decrease of 50% of the elastic properties between host rock and core zone. The heterogeneity of properties is related to the development of different microstructures across the fault-zone during the tectonic history. From these physical property values and the fault zone architecture, we analyze the effects of sudden mechanical loading on the development of fluid overpressures in fault-zone. To do this, we use a series of 1-D hydromechanical numerical models to show that sudden mechanical stress increase is a viable mechanism for fluid overpressuring in fault-zone with spatially-varying elastic and hydraulic properties. Based on these results, we discuss the implications for earthquake triggering.on crustal-scale faults.
NASA Astrophysics Data System (ADS)
Cilona, A.; Aydin, A.; Hazelton, G.
2013-12-01
Characterization of the structural architecture of a 5 km-long, N40°E-striking fault zone provides new insights for the interpretation of hydraulic heads measured across and along the fault. Of interest is the contaminant transport across a portion of the Upper Cretaceous Chatsworth Formation, a 1400 m-thick turbidite sequence of sandstones and shales exposed in the Simi Hills, south California. Local bedding consistently dips about 20° to 30° to NW. Participating hydrogeologists monitor the local groundwater system by means of numerous boreholes used to define the 3D distribution of the groundwater table around the fault. Sixty hydraulic head measurements consistently show differences of 10s of meters, except for a small area. In this presentation, we propose a link between this distribution and the fault zone architecture. Despite an apparent linear morphological trend, the fault is made up of at least three distinct segments named here as northern, central and southern segments. Key aspects of the fault zone architecture have been delineated at two sites. The first is an outcrop of the central segment and the second is a borehole intersecting the northern segment at depth. The first site shows the fault zone juxtaposing sandstones against shales. Here the fault zone consists of a 13 meter-wide fault rock including a highly deformed sliver of sandstone on the northwestern side. In the sandstone, shear offset was resolved along N42°E striking and SE dipping fracture surfaces localized within a 40 cm thick strand. Here the central core of the fault zone is 8 m-wide and contains mostly shale characterized by highly diffuse deformation. It shows a complex texture overprinted by N30°E-striking carbonate veins. At the southeastern edge of the fault zone exposure, a shale unit dipping 50° NW towards the fault zone provides the key information that the shale unit was incorporated into the fault zone in a manner consistent with shale smearing. At the second site, a borehole more than 194 meter-long intersects the fault zone at its bottom. Based on an optical televiewer image supplemented by limited recovered rock cores, a juxtaposition plane (dipping 75° SE) between a fractured sandstone and a highly-deformed shale fault rock has been interpreted as the southeastern boundary of the fault zone. The shale fault rock estimated to be thicker than 4 meters is highly folded and brecciated with locally complex cataclastic texture. The observations and interpretations of the fault architecture presented above suggest that the drop of hydraulic head detected across the fault segments is due primarily to the low-permeability shaly fault rock incorporated into the fault zone by a shale smearing mechanism. Interestingly, at around the step between the northern and the central fault segments, where the fault offset is expected to diminish (no hard link and no significant shaly fault rock), the groundwater levels measured on either sides of the fault zone are more-or-less equal.
Gravity anomaly and density structure of the San Andreas fault zone
NASA Astrophysics Data System (ADS)
Wang, Chi-Yuen; Rui, Feng; Zhengsheng, Yao; Xingjue, Shi
1986-01-01
A densely spaced gravity survey across the San andreas fault zone was conducted near Bear Valley, about 180 km south of San Francisco, along a cross-section where a detailed seismic reflection profile was previously made by McEvilly (1981). With Feng and McEvilly's velocity structure (1983) of the fault zone at this cross-section as a constraint, the density structure of the fault zone is obtained through inversion of the gravity data by a method used by Parker (1973) and Oldenburg (1974). Although the resulting density picture cannot be unique, it is better constrained and contains more detailed information about the structure of the fault than was previously possible. The most striking feature of the resulting density structure is a deeply seated tongue of low-density material within the fault zone, probably representing a wedge of fault gouge between the two moving plates, which projects from the surface to the base of the seismogenic zone. From reasonable assumptions concerning the density of the solid grains and the state of saturation of the fault zone the average porosity of this low-density fault gouge is estimated as about 12%. Stress-induced cracks are not expected to create so much porosity under the pressures in the deep fault zone. Large-scaled removal of fault-zone material by hydrothermal alteration, dissolution, and subsequent fluid transport may have occurred to produce this pronounced density deficiency. In addition, a broad, funnel-shaped belt of low density appears about the upper part of the fault zone, which probably represents a belt of extensively shattered wall rocks.
NASA Astrophysics Data System (ADS)
Sagi, D. A.; De Paola, N.; McCaffrey, K. J. W.; Holdsworth, R. E.
2016-10-01
To better understand fault zone architecture and fluid flow in mesoscale fault zones, we studied normal faults in chalks with displacements up to 20 m, at two representative localities in Flamborough Head (UK). At the first locality, chalk contains cm-thick, interlayered marl horizons, whereas at the second locality marl horizons were largely absent. Cm-scale displacement faults at both localities display ramp-flat geometries. Mesoscale fault patterns in the marl-free chalk, including a larger displacement fault (20 m) containing multiple fault strands, show widespread evidence of hydraulically-brecciated rocks, whereas clays smears along fault planes, and injected into open fractures, and a simpler fault zone architecture is observed where marl horizons are present. Hydraulic brecciation and veins observed in the marl-free chalk units suggest that mesoscale fault patterns acted as localized fault conduit allowing for widespread fluid flow. On the other hand, mesoscale fault patterns developed in highly fractured chalk, which contains interlayered marl horizons can act as localized barriers to fluid flow, due to the sealing effect of clays smears along fault planes and introduced into open fractures in the damage zone. To support our field observations, quantitative analyses carried out on the large faults suggest a simple fault zone in the chalk with marl units with fracture density/connectivity decreasing towards the protolith. Where marls are absent, density is high throughout the fault zone, while connectivity is high only in domains nearest the fault core. We suggest that fluid flow in fractured chalk is especially influenced by the presence of marls. When present, it can smear onto fault planes, forming localised barriers. Fluid flow along relatively large displacement faults is additionally controlled by the complexity of the fault zone, especially the size/geometry of weakly and intensely connected damage zone domains.
Stress transfer to the Denali and other regional faults from the M 9.2 Alaska earthquake of 1964
Bufe, C.G.
2004-01-01
Stress transfer from the great 1964 Prince William Sound earthquake is modeled on the Denali fault, including the Denali-Totschunda fault segments that ruptured in 2002, and on other regional fault systems where M 7.5 and larger earthquakes have occurred since 1900. The results indicate that analysis of Coulomb stress transfer from the dominant earthquake in a region is a potentially powerful tool in assessing time-varying earthquake hazard. Modeled Coulomb stress increases on the northern Denali and Totschunda faults from the great 1964 earthquake coincide with zones that ruptured in the 2002 Denali fault earthquake, although stress on the Susitna Glacier thrust plane, where the 2002 event initiated, was decreased. A southeasterlytrending Coulomb stress transect along the right-lateral Totschunda-Fairweather-Queen Charlotte trend shows stress transfer from the 1964 event advancing slip on the Totschunda, Fairweather, and Queen Charlotte segments, including the southern Fairweather segment that ruptured in 1972. Stress transfer retarding right-lateral strike slip was observed from the southern part of the Totschunda fault to the northern end of the Fairweather fault (1958 rupture). This region encompasses a gap with shallow thrust faulting but with little evidence of strike-slip faulting connecting the segments to the northwest and southeast. Stress transfer toward failure was computed on the north-south trending right-lateral strike-slip faults in the Gulf of Alaska that ruptured in 1987 and 1988, with inhibitory stress changes at the northern end of the northernmost (1987) rupture. The northern Denali and Totschunda faults, including the zones that ruptured in the 2002 earthquakes, follow very closely (within 3%), for about 90??, an arc of a circle of radius 375 km. The center of this circle is within a few kilometers of the intersection at depth of the Patton Bay fault with the Alaskan megathrust. This inferred asperity edge may be the pole of counterclockwise rotation of the block south of the Denali fault. These observations suggest that the asperity and its recurrent rupture in great earthquakes as in 1964 may have influenced the tectonics of the region during the later stages of evolution of the Denali strike-slip fault system.
Three decades of geochronologic studies in the New England Appalachians
Zartman, R.E.
1988-01-01
Over the past 30 years, both isotope geochronology and plate tectonics grew from infancy into authoritative disciplines in the geological sciences. The existing geochronlogy is summarized into a map and table emphasizing the temporal construction of the New England Appalachians. By using lithotectonic zones as the building blocks of the orogen, seven such zones are defined in terms of pre-, syn-, and post-assembly geologic history. The boundaries between these zones are faults in most cases, some of which may have had recurring movement to further complicate any plate-tectonic scenario. A delineation of underlying Grenvillian, Chain Lakes, and Avalonian basement is also attempted, which now can make use of isotopes in igneous rocks as petrogenic indicators to supplement the rare occurrences of basement outcrop within mobile zones of the orogen. -from Author
NASA Astrophysics Data System (ADS)
Koulali, A.; McClusky, S.; Susilo, S.; Leonard, Y.; Cummins, P.; Tregoning, P.; Meilano, I.; Efendi, J.; Wijanarto, A. B.
2017-01-01
Our understanding of seismic risk in Java has been focused primarily on the subduction zone, where the seismic records during the last century have shown the occurrence of a number of tsunami earthquakes. However, the potential of the existence of active crustal structures within the island of Java itself is less well known. Historical archives show the occurrence of several devastating earthquake ruptures north of the volcanic arc in west Java during the 18th and the 19th centuries, suggesting the existence of active faults that need to be identified in order to guide seismic hazard assessment. Here we use geodetic constraints from the Global Positioning System (GPS) to quantify the present day crustal deformation in Java. The GPS velocities reveal a homogeneous counterclockwise rotation of the Java Block independent of Sunda Block, consistent with a NE-SW convergence between the Australian Plate and southeast Asia. Continuous GPS observations show a time-dependent change in the linear rate of surface motion in west Java, which we interpret as an ongoing long-term post-seismic deformation following the 2006 Mw 7.7 Java earthquake. We use an elastic block model in combination with a viscoelastic model to correct for this post-seismic transient and derive the long-term inter-seismic velocity, which we interpret as a combination of tectonic block motions and crustal faults strain related deformation. There is a north-south gradient in the resulting velocity field with a decrease in the magnitude towards the North across the Kendeng Thrust in the east and the Baribis Thrust in the west. We suggest that the Baribis Thrust is active and accommodating a slow relative motion between Java and the Sunda Block at about 5 ± 0.2 mm /yr. We propose a kinematic model of convergence of the Australian Plate and the Sunda Block, involving a slip partitioning between the Java Trench and a left-lateral structure extending E-W along Java with most of the convergence being accommodated by the Java megathrust, and a much smaller parallel motion accommodated along the Baribis (∼ 5 ± 0.2 mm /yr) and Kendeng (∼ 2.3 ± 0.7 mm /yr) Thrusts. Our study highlights a correlation between the geodetically inferred active faults and historical seismic catalogs, emphasizing the importance of considering crustal fault activity within Java in future seismic assessments.
Seismic Sources for the Territory of Georgia
NASA Astrophysics Data System (ADS)
Tsereteli, N. S.; Varazanashvili, O.
2011-12-01
The southern Caucasus is an earthquake prone region where devastating earthquakes have repeatedly caused significant loss of lives, infrastructure and buildings. High geodynamic activity of the region expressed in both seismic and aseismic deformations, is conditioned by the still-ongoing convergence of lithospheric plates and northward propagation of the Afro-Arabian continental block at a rate of several cm/year. The geometry of tectonic deformations in the region is largely determined by the wedge-shaped rigid Arabian block intensively intended into the relatively mobile Middle East-Caucasian region. Georgia is partner of ongoing regional project EMME. The main objective of EMME is calculation of Earthquake hazard uniformly with heights standards. One approach used in the project is the probabilistic seismic hazard assessment. In this approach the first parameter requirement is the definition of seismic source zones. Seismic sources can be either faults or area sources. Seismoactive structures of Georgia are identified mainly on the basis of the correlation between neotectonic structures of the region and earthquakes. Requirements of modern PSH software to geometry of faults is very high. As our knowledge of active faults geometry is not sufficient, area sources were used. Seismic sources are defined as zones that are characterized with more or less uniform seismicity. Poor knowledge of the processes occurring in deep of the Earth is connected with complexity of direct measurement. From this point of view the reliable data obtained from earthquake fault plane solution is unique for understanding the character of a current tectonic life of investigated area. There are two methods of identification if seismic sources. The first is the seimsotectonic approach, based on identification of extensive homogeneous seismic sources (SS) with the definition of probability of occurrence of maximum earthquake Mmax. In the second method the identification of seismic sources will be obtained on the bases of structural geology, parameters of seismicity and seismotectonics. This last approach was used by us. For achievement of this purpose it was necessary to solve following problems: to calculate the parameters of seismotectonic deformation; to reveal regularities in character of earthquake fault plane solution; use obtained regularities to develop principles of an establishment of borders between various hierarchical and scale levels of seismic deformations fields and to give their geological interpretation; Three dimensional matching of active faults with real geometrical dimension and earthquake sources have been investigated. Finally each zone have been defined with the parameters: the geometry, the magnitude-frequency parameters, maximum magnitude, and depth distribution as well as modern dynamical characteristics widely used for complex processes
Faulting of gas-hydrate-bearing marine sediments - contribution to permeability
Dillon, William P.; Holbrook, W.S.; Drury, Rebecca; Gettrust, Joseph; Hutchinson, Deborah; Booth, James; Taylor, Michael
1997-01-01
Extensive faulting is observed in sediments containing high concentrations of methane hydrate off the southeastern coast of the United States. Faults that break the sea floor show evidence of both extension and shortening; mud diapirs are also present. The zone of recent faulting apparently extends from the ocean floor down to the base of gas-hydrate stability. We infer that the faulting resulted from excess pore pressure in gas trapped beneath the gas hydrate-beating layer and/or weakening and mobilization of sediments in the region just below the gas-hydrate stability zone. In addition to the zone of surface faults, we identified two buried zones of faulting, that may have similar origins. Subsurface faulted zones appear to act as gas traps.
NASA Astrophysics Data System (ADS)
Bennett, Scott E. K.; Oskin, Michael E.; Iriondo, Alexander
2017-11-01
Details about the timing and kinematics of rifting are crucial to understand the conditions that led to strain localization, continental rupture, and formation of the Gulf of California ocean basin. We integrate detailed geologic and structural mapping, basin analysis, and geochronology to characterize transtensional rifting on northeastern Isla Tiburón, a proximal onshore exposure of the rifted North America margin, adjacent to the axis of the Gulf of California. Slip on the Kunkaak normal fault tilted its hanging wall down-to-the-east 70° and formed the non-marine Tecomate basin, deposited across a 20° angular unconformity. From 7.1-6.4 Ma, the hanging wall tilted at 35 ± 5°/Myr, while non-marine sandstone and conglomerate accumulated at 1.4 ± 0.2 mm/yr. At least 1.8 ± 0.1 km of sediments and pyroclastic deposits accumulated in the Tecomate basin concurrent with clockwise vertical-axis block rotation and 2.8 km of total dip-slip motion on the Kunkaak fault. Linear extrapolation of tilting and sedimentation rates suggests that faulting and basin deposition initiated 7.6-7.4 Ma, but an older history involving initially slower rates is permissible. The Kunkaak fault and Tecomate basin are truncated by NW-striking, dextral-oblique structures, including the Yawassag fault, which accrued > 8 km of post-6.4 Ma dextral displacement. The Coastal Sonora fault zone on mainland Sonora, which accrued several tens of kilometers of late Miocene dextral offset, continues to the northwest, across northeastern Isla Tiburón and offshore into the Gulf of California. The establishment of rapid, latest Miocene transtension in the Coastal Sonora fault zone was synchronous with the 8-7 Ma onset of transform faulting and basin formation along the nascent Pacific-North America plate boundary throughout northwestern Mexico and southern California. Plate boundary strain localized into this Gulf of California shear zone, a narrow transtensional belt that subsequently hosted the marine incursion and continental rupture in the Gulf of California.
NASA Astrophysics Data System (ADS)
Frost, E. K.; Dolan, J. F.; Sammis, C.; Hacker, B.; Ratschbacher, L.
2006-12-01
One of the most exciting and important frontiers in earthquake science is the linkage between the internal structure and the mechanical behavior of fault zones. In particular, little is known about how fault-zone structure varies as a function of depth, from near-surface conditions down through the seismogenic crust and into the ductile lower crust. Such understanding is vital if we are to understand the mechanical instabilities that control the nucleation and propagation of seismic ruptures. This imperative has led us to the Oligo-Miocene Salzach-Ennstal-Mariazell-Puchberg [SEMP] fault zone in Austria, a major left-lateral strike-slip fault that has been exhumed differentially such that it exposes a continuum of structural levels along strike. This exhumed fault system provides a unique opportunity to systematically examine depth-dependent changes in fault-zone geometry and structure along a single fault. In order to establish the structure of the fault zone in the seismogenic crust, we are studying exposures of this fault at a variety of exhumation levels, from <1 km near the eastern end of the fault, downward through the seismogenic crust, across the brittle-ductile transition, and into the uppermost part of the lower crust in western Austria. Here we present our results from one of these study sites, a spectacular exposure of the fault zone near the town of Gstatterboden in central Austria. The fault, which at this location has been exhumed from a depth of ~ 2-3 km, juxtaposes limestone of the Wettersteinkalk on the south with dolomite of the Ramsaudolomit on the north. We conducted two detailed structural traverses over a fault-perpendicular width of over 200 m. Analysis of the density and orientation of outcrop scale features, such as faults and fractures, reveals a highly asymmetric pattern of fault zone damage. Dolomite to the north of the fault is extensively shattered, while the limestone unit to the south shows only minor evidence of fault damage. Additionally, measurements of damage intensity throughout the dolomite indicate little change in strain away from the fault. While some of our observations may be explained by the brittle nature of dolomite, they are also compatible with models of dynamic rupture on elastically asymmetric faults. Analysis of grain size distributions in pilot samples of the dolomite breccia are fractal with a dimension of 2, indicating significant shear strain. Further microscale work will delimit the extent of this high-strain zone and complement macroscale observations of damage intensity. Ongoing lab studies will analyze structural transects across the SEMP fault zone at outcrops exhumed from the brittle-ductile transition. Combining these results with a companion study by Cole et al. in the Tauern Window, we will be able to create a synoptic view of the SEMP fault zone from top to bottom - a view that describes how the fault zone varies in its characteristics at different depths.
Audio-frequency magnetotelluric imaging of the Hijima fault, Yamasaki fault system, southwest Japan
NASA Astrophysics Data System (ADS)
Yamaguchi, S.; Ogawa, Y.; Fuji-Ta, K.; Ujihara, N.; Inokuchi, H.; Oshiman, N.
2010-04-01
An audio-frequency magnetotelluric (AMT) survey was undertaken at ten sites along a transect across the Hijima fault, a major segment of the Yamasaki fault system, Japan. The data were subjected to dimensionality analysis, following which two-dimensional inversions for the TE and TM modes were carried out. This model is characterized by (1) a clear resistivity boundary that coincides with the downward projection of the surface trace of the Hijima fault, (2) a resistive zone (>500 Ω m) that corresponds to Mesozoic sediment, and (3) shallow and deep two highly conductive zones (30-40 Ω m) along the fault. The shallow conductive zone is a common feature of the Yamasaki fault system, whereas the deep conductor is a newly discovered feature at depths of 800-1,800 m to the southwest of the fault. The conductor is truncated by the Hijima fault to the northeast, and its upper boundary is the resistive zone. Both conductors are interpreted to represent a combination of clay minerals and a fluid network within a fault-related fracture zone. In terms of the development of the fluid networks, the fault core of the Hijima fault and the highly resistive zone may play important roles as barriers to fluid flow on the northeast and upper sides of the conductive zones, respectively.
NASA Astrophysics Data System (ADS)
Giaconia, Flavio; Booth-Rea, Guillermo; Martínez-Martínez, José Miguel; Azañón, José Miguel; Pérez-Romero, Joaquín; Villegas, Irene
2013-01-01
The Polopos E-W- to ESE-WNW-oriented dextral-reverse fault zone is formed by the North Alhamilla reverse fault and the North and South Gafarillos dextral faults. It is a conjugate fault system of the sinistral NNE-SSW Palomares fault zone, active from the late most Tortonian (≈7 Ma) up to the late Pleistocene (≥70 ky) in the southeastern Betics. The helicoidal geometry of the fault zone permits to shift SE-directed movement along the South Cabrera reverse fault to NW-directed shortening along the North Alhamilla reverse fault via vertical Gafarillos fault segments, in between. Since the Messinian, fault activity migrated southwards forming the South Gafarillos fault and displacing the active fault-related mountain-front from the north to the south of Sierra de Polopos; whilst recent activity of the North Alhamilla reverse fault migrated westwards. The Polopos fault zone determined the differential uplift between the Sierra Alhamilla and the Tabernas-Sorbas basin promoting the middle Pleistocene capture that occurred in the southern margin of the Sorbas basin. Continued tectonic uplift of the Sierra Alhamilla-Polopos and Cabrera anticlinoria and local subsidence associated to the Palomares fault zone in the Vera basin promoted the headward erosion of the Aguas river drainage that captured the Sorbas basin during the late Pleistocene.
NASA Astrophysics Data System (ADS)
Szeliga, W. M.; Mohammad Kakar, D.; Bilham, R.; Molnar, P.
2009-12-01
In October 2008 two Mw 6.4 earthquakes preceded a two-month-long aftershock sequence in the Chiltan region of N. Baluchistan 50 km northeast of Quetta. InSAR data combined with teleseimic body wave modeling and campaign GPS data indicate that the two mainshocks occurred at 10-13 km depth in a fold-and-thrust belt on segments of a northwest trending dextral fault whose NW extension would intersect the Chaman fault close to a 20 degree restraining bend on the fault. Although no surface rupture occurred and the trend of the subsurface fault is oblique to the surface fold axes, a line of diffuse deeper seismicity (20-40 km) can be discerned in the underlying Indian plate that approximately follows the outline of the Sulaiman Lobe. We surmise that a 300 km x 200 km fragment of the NW Indian plate, corresponding roughly to the area and location of the Katawaz basin has fragmented, and according to GPS velocities may be moving at 15-20 mm/yr to the SE towards the Indian plate. The SE edge of this zone appears to terminate some 100 km north of the SE foothills of the Sulaiman Lobe. We assume its NW edge is bounded by the Chaman fault. We infer that the motion of the Katawaz block is caused by slip partitioning of the southward 31 mm/yr motion of Asia towards India into pure sinistral slip of between 25--29 mm/year on the Chaman fault north of Chaman and 10--20 mm/yr of SE convergence of the Katawaz block
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Jie; Hou, Zhangshuan; Fang, Yilin
2015-06-01
A series of numerical test cases reflecting broad and realistic ranges of geological formation and preexisting fault properties was developed to systematically evaluate the impacts of preexisting faults on pressure buildup and ground surface uplift during CO₂ injection. Numerical test cases were conducted using a coupled hydro-geomechanical simulator, eSTOMP (extreme-scale Subsurface Transport over Multiple Phases). For efficient sensitivity analysis and reliable construction of a reduced-order model, a quasi-Monte Carlo sampling method was applied to effectively sample a high-dimensional input parameter space to explore uncertainties associated with hydrologic, geologic, and geomechanical properties. The uncertainty quantification results show that the impacts onmore » geomechanical response from the pre-existing faults mainly depend on reservoir and fault permeability. When the fault permeability is two to three orders of magnitude smaller than the reservoir permeability, the fault can be considered as an impermeable block that resists fluid transport in the reservoir, which causes pressure increase near the fault. When the fault permeability is close to the reservoir permeability, or higher than 10⁻¹⁵ m² in this study, the fault can be considered as a conduit that penetrates the caprock, connecting the fluid flow between the reservoir and the upper rock.« less
NASA Astrophysics Data System (ADS)
Fazzito, Sabrina Y.; Rapalini, Augusto E.; Cortés, José M.; Terrizzano, Carla M.
2017-03-01
Palaeomagnetic data from poorly consolidated to non-consolidated late Cenozoic sediments along the central segment of the active El Tigre Fault (Central-Western Precordillera of the San Juan Province, Argentina) demonstrate broad cumulative deformation up to 450 m from the fault trace and reveal clockwise and anticlockwise vertical-axis rotations of variable magnitude. This deformation has affected in different amounts Miocene to late Pleistocene samples and indicates a complex kinematic pattern. Several inherited linear structures in the shear zone that are oblique to the El Tigre Fault may have acted as block boundary faults. Displacement along these faults may have resulted in a complex pattern of rotations. The maximum magnitude of rotation is a function of the age of the sediments sampled, with largest values corresponding to middle Miocene-lower Pliocene deposits and minimum values obtained from late Pleistocene deposits. The kinematic study is complemented by low-field anisotropy of magnetic susceptibility data to show that the local strain regime suggests a N-S stretching direction, subparallel to the strike of the main fault.
Present-day kinematics of the Danakil block (southern Red Sea-Afar) constrained by GPS
NASA Astrophysics Data System (ADS)
Ladron de Guevara, R.; Jonsson, S.; Ruch, J.; Doubre, C.; Reilinger, R. E.; Ogubazghi, G.; Floyd, M.; Vasyura-Bathke, H.
2017-12-01
The rifting of the Arabian plate from the Nubian and Somalian plates is primarily accommodated by seismic and magmatic activity along two rift arms of the Afar triple junction (the Red Sea and Gulf of Aden rifts). The spatial distribution of active deformation in the Afar region have been constrained with geodetic observations. However, the plate boundary configuration in which this deformation occurs is still not fully understood. South of 17°N, the Red Sea rift is composed of two parallel and overlapping rift branches separated by the Danakil block. The distribution of the extension across these two overlapping rifts, their potential connection through a transform fault zone and the counterclockwise rotation of the Danakil block have not yet been fully resolved. Here we analyze new GPS observations from the Danakil block, the Gulf of Zula area (Eritrea) and Afar (Ethiopia) together with previous geodetic survey data to better constrain the plate kinematics and active deformation of the region. The new data has been collected in 2016 and add up to 5 years to the existing geodetic observations (going back to 2000). Our improved GPS velocity field shows differences with previously modeled GPS velocities, suggesting that the rate and rotation of the Danakil block need to be updated. The new velocity field also shows that the plate-boundary strain is accommodated by broad deformation zones rather than across sharp boundaries between tectonic blocks. To better determine the spatial distribution of the strain, we first implement a rigid block model to constrain the overall regional plate kinematics and to isolate the plate-boundary deformation at the western boundary of the Danakil block. We then study whether the recent southern Red Sea rifting events have caused detectable changes in observed GPS velocities and if the observations can be used to constrain the scale of this offshore rift activity. Finally, we investigate different geometries of transform faults that might connect the two overlapping branches of the southern Red Sea rift in the Gulf of Zula region.
Willingham, C. Richard; Rietman, Jan D.; Heck, Ronald G.; Lettis, William R.
2013-01-01
The Hosgri Fault Zone trends subparallel to the south-central California coast for 110 km from north of Point Estero to south of Purisima Point and forms the eastern margin of the present offshore Santa Maria Basin. Knowledge of the attributes of the Hosgri Fault Zone is important for petroleum development, seismic engineering, and environmental planning in the region. Because it lies offshore along its entire reach, our characterizations of the Hosgri Fault Zone and adjacent structures are primarily based on the analysis of over 10,000 km of common-depth-point marine seismic reflection data collected from a 5,000-km2 area of the central and eastern parts of the offshore Santa Maria Basin. We describe and illustrate the along-strike and downdip geometry of the Hosgri Fault Zone over its entire length and provide examples of interpreted seismic reflection records and a map of the structural trends of the fault zone and adjacent structures in the eastern offshore Santa Maria Basin. The seismic data are integrated with offshore well and seafloor geologic data to describe the age and seismic appearance of offshore geologic units and marker horizons. We develop a basin-wide seismic velocity model for depth conversions and map three major unconformities along the eastern offshore Santa Maria Basin. Accompanying plates include maps that are also presented as figures in the report. Appendix A provides microfossil data from selected wells and appendix B includes uninterpreted copies of the annotated seismic record sections illustrated in the chapter. Features of the Hosgri Fault Zone documented in this investigation are suggestive of both lateral and reverse slip. Characteristics indicative of lateral slip include (1) the linear to curvilinear character of the mapped trace of the fault zone, (2) changes in structural trend along and across the fault zone that diminish in magnitude toward the ends of the fault zone, (3) localized compressional and extensional structures characteristic of constraining and releasing bends and stepovers, (4) changes in the sense and magnitude of vertical separation along strike within the fault zone, and (5) changes in downdip geometry between the major traces and segments of the fault zone. Characteristics indicative of reverse slip include (1) reverse fault geometries that occur across major strands of the fault zone and (2) fault-bend folds and localized thrust faults that occur along the northern and southern reaches of the fault. Analyses of high-resolution, subbottom profiler and side-scan sonar records indicate localized Holocene activity along most of the extent of the fault zone. Collectively, these features are the basis of our characterization of the Hosgri Fault Zone as an active, 110-km-long, convergent right-oblique slip (transpressional) fault with identified northern and southern terminations. This interpretation is consistent with recently published analyses of onshore geologic data, regional tectonic kinematic models, and instrumental seismicity.
The Evolution of Eastern Himalayan Syntaxis of Tibetan Plateau
NASA Astrophysics Data System (ADS)
Zhang, S.; Wu, T.; Li, M.; Zhang, Y.; Hua, Y.; Zhang, B.
2017-12-01
Indian plate has been colliding with Eurasian plate since 50Ma years ago, resulting in the Tethys extinction, crust shortening and Tibetan plateau uplift. But it is still a debate how the Tibetan Plateau material escaped. This study tries to invert the distributions of dispersion phase velocity and anisotropy in Eastern Himalayan Syntaxis (EHS) based on the seismic data. We focused on the seven sub-blocks around EHS region. Sub-block "EHS" represents EHS corner with high velocity anomalies, significantly compressed in the axle and strike directions. Sub-blocks "LSD", "QTB" and "SP-GZB" are located at its northern areas with compressions also, and connected with low-velocity anomalies in both crustal and upper mantle rocks. Sub-block "ICB" is located at its southern area with low velocity anomaly, and connected with Tengchong volcano. Sub-blocks "SYDB" and "YZB" are located at its eastern areas with high velocity anomalies in both crustal and upper mantle rocks. Our results demonstrated that significant azimuthal anisotropy of crust (t£30s) and upper mantle (30s£t£60s). Crustal anisotropy indicates the orogenic belt matched well with the direction of fast propagation, and upper mantle anisotropy represents the lattic-preferred orientation (LPO) of mantle minerals (e.g. olivine and basalt), indicating the features of subducting Indian plate. Besides, Red River fault is a dextral strike fault, controlling the crustal and mantle migration. There is a narrow zone to be the channel flow of Tibetan crustal materials escaping toward Yunnan area. The evolution of EHS seems constrained by gravity isostatic mechanism. Keywords: Tibetan Plateau; Eastern Himalayan Syntaxis; Red River fault; crustal flow; surface wave; anisotropy
Audemard, F.; Pantosti, D.; Machette, M.; Costa, C.; Okumura, K.; Cowan, H.; Diederix, H.; Ferrer, C.
1999-01-01
The Bocono fault is a major NE-SW-trending, dextral fault that extends for about 500 km along the backbone of the Venezuelan Andes. Several large historical earthquakes in this region have been attributed to the Bocono fault, and some of these have been recently associated with specific parts through paleoseismologic investigations. A new trench study has been performed, 60 km to the northeast of Merida in the central Venezuelan Andes, where the fault forms a releasing bend, comprising two conspicuous late Holocene fault strands that are about 1 km apart. The southern and northern strands carry about 70% and 30% (respectively) of the 7-10 mm/yr net slip rate measured in this sector, which is based on a 40 vs. 85-100 m right-lateral offset of the Late Pleistocene Los Zerpa moraines. A trench excavated on the northern strand of the fault (near Morros de los Hoyos, slightly northeast of Apartaderos) across a twin shutter ridge and related sag pond exposed two main fault zones cutting Late Pleistocene alluvial and Holocene peat deposits. Each zone forms a shutter ridge with peat deposits ponded against the uplifted block. The paleoearthquake reconstruction derived from this trench allow us to propose the occurrence of at least 6-8 earthquakes in the past 9000 yr, yielding a maximum average recurrence interval of about 1100-1500 yr. Based on the northern strands average slip rate (2.6 mm/yr), such as earthquake sequence should have accommodated about 23 m of slip since 9 ka, suggesting that the maximum slip per event ranges between 3 and 4 m. No direct evidence for the large 1812 earthquake has been found in the trench, although this earthquake may have ruptured this section of the fault. Further paleoseismic studies will investigate the possibility that this event occurred in the Bocono fault, but ruptured mainly its southern strand in this region.
NASA Astrophysics Data System (ADS)
Holdsworth, R. E.; van Diggelen, E.; Spiers, C.; de Bresser, J. H.; Smith, S. A.
2009-12-01
In the region of the SAFOD borehole, the San Andreas Fault (SAF) separates two very different geological terranes referred to here as the Salinian and Great Valley blocks (SB, GVB). The three sections of core preserve a diverse range of fault rocks and pass through the two currently active, highly localised slipping sections, the so-called ‘10480’ and ‘10830’ fault zones . These coincide with a broader region - perhaps as much as 100m wide - of high strain fault rocks formed at some time in the geological past, but now currently inactive. Both the slipping segments and older high strain zone(s) are developed in the GVB located NE of the terrane boundary. This is likely influenced by the phyllosilicate-rich protolith of the GVB and the large volume of trapped fluid known to exist NE and below the SAF in this region. Microstructurally, lower strain domains (most of Core 1 cutting the SB, significant parts of Core 3 cutting the GVB) preserve clear evidence for classic upper crustal cataclastic brittle faulting processes and associated fluid flow. The GVB in particular shows clear geological evidence for both fluid pressure and differential stress cycling (variable modes of hydrofacture associated with faults) during seismicity. There is also some evidence in all minor faults for the operation of limited amounts of solution-precipitation creep. High strain domains (much of Core 2 cutting the GVB, parts of Core 3 adjacent to the 10830 fault) are characterised by the development of foliated cataclasites and gouge largely due to the new growth of fine-grained phyllosilicate networks (predominantly smectite-bearing mixed layer clays, locally serpentinite, but not talc). The most deformed sections are characterised by the development of shear band fabrics and asymmetric folds. Reworking and reactivation is widespread manifested by: i) the preservation of one or more earlier generations of gouge preserved as clasts; and ii) by the development of later interconnected, polished and striated slip surfaces at low angles or sub-parallel to the foliation. These are coated with thin phyllosilicate films and are closely associated with the development of lozenge, arrow-head and triangular mineral veins (mostly calcite) inferred to be precipitated in dilation sites during slip. The largest displacement gouges also preserve numerous rounded ‘exotic’ clasts. These include serpentinite, crystalline carbonate, anhydrite and quartzofeldspathic units that texturally look very similar to clasts found in the SB. The SAFOD core fault rocks highlight the fundamental role played by fluid-rock interactions in upper crustal fault zones. There is clear evidence for the development of high pore fluid pressures (hydrofracture development), reaction weakening (phyllosilicate growth following cataclasis) and geometric weakening due to the development of weak interconnected layers (foliations, polished striated slip surfaces). There are also very significant similarities between the fault rocks seen here and those preserved along other deeply exhumed weak fault elsewhere in the world.
Reports on block rotations, fault domains and crustal deformation
NASA Technical Reports Server (NTRS)
Nur, Amos
1990-01-01
Studies of block rotations, fault domains and crustal deformation in the western United States, Israel, and China are discussed. Topics include a three-dimensional model of crustal fracture by distributed fault sets, distributed deformation and block rotation in 3D, stress field rotation, and multiple strike slip fault sets.
McBride, J.H.; Pugin, Andre J.M.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.; Devera, J.A.; Denny, F.B.; Woolery, E.W.
2003-01-01
High-resolution shallow seismic reflection profiles across the northwesternmost part of the New Madrid seismic zone (NMSZ) and northwestern margin of the Reelfoot rift, near the confluence of the Ohio and Mississippi Rivers in the northern Mississippi embayment, reveal intense structural deformation that apparently took place during the late Paleozoic and/or Mesozoic up to near the end of the Cretaceous Period. The seismic profiles were sited on both sides of the northeast-trending Olmsted fault, defined by varying elevations of the top of Mississippian (locally base of Cretaceous) bedrock. The trend of this fault is close to and parallel with an unusually straight segment of the Ohio River and is approximately on trend with the westernmost of two groups of northeast-aligned epicenters ("prongs") in the NMSZ. Initially suspected on the basis of pre-existing borehole data, the deformation along the fault has been confirmed by four seismic reflection profiles, combined with some new information from drilling. The new data reveal (1) many high-angle normal and reverse faults expressed as narrow grabens and anticlines (suggesting both extensional and compressional regimes) that involved the largest displacements during the late Cretaceous (McNairy); (2) a different style of deformation involving probably more horizontal displacements (i.e., thrusting) that occurred at the end of this phase near the end of McNairy deposition, with some fault offsets of Paleocene and younger units; (3) zones of steeply dipping faults that bound chaotic blocks similar to that observed previously from the nearby Commerce geophysical lineament (CGL); and (4) complex internal deformation stratigraphically restricted to the McNairy, suggestive of major sediment liquefaction or landsliding. Our results thus confirm the prevalence of complex Cretaceous deformations continuing up into Tertiary strata near the northern terminus of the NMSZ. ?? 2003 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fekkak, A.; Ouanaimi, H.; Michard, A.; Soulaimani, A.; Ettachfini, E. M.; Berrada, I.; El Arabi, H.; Lagnaoui, A.; Saddiqi, O.
2018-04-01
Most of the structural studies of the intracontinental High Atlas belt of Morocco have dealt with the central part of the belt, whose basement does not crop out. Here we study the Alpine deformation of the North Subatlas Zone, which is the part of the Western High Atlas (WHA) Paleozoic Massif that involves both Paleozoic basement units and remnants of their Mesozoic-Cenozoic cover formations. Our aim is to better constrain the geometry and kinematics of the basement faults during the Alpine shortening. Based on detail mapping, satellite imagery and field observations, we describe an array of sub-equatorial, transverse and oblique faults between the WHA Axial Zone and the Haouz Neogene basin. They define a mosaic of basement blocks pushed upon one another and upon the Haouz basement along the North Atlas Fault (NAF). The Axial Zone makes up the hanging-wall of the Adassil-Medinet Fault (AMF) south of this mosaic. The faults generally presents flat-ramp-flat geometry linked to the activation of multiple décollement levels, either within the basement where its foliation is subhorizontal or within favourable cover formations (Jurassic evaporites, Lower Cretaceous silty red beds, Upper Cretaceous evaporitic marls, Neogene basal argillites). The occurrence of the North Atlas detachment (NAD) allowed folded pop-up units to develop in front of the propagating NAF. Shortening began as early as the Campanian-Maastrichtian along the AMF. The direction of the maximum horizontal stress rotated from NNE-SSW to NNW-SSE from the Maastrichtian-Paleocene to the Neogene. The amount of shortening reaches 20% in the Azegour transect. This compares with the shortening amount published for the central-eastern High Atlas, suggesting that similar structures characterize the Paleozoic basement all along the belt. The WHA thick-skinned tectonics evokes that of the frontal Sevier belt and of the external Western Alps, although with a much minor pre-inversion burial.
NASA Astrophysics Data System (ADS)
Li, Yanchuan; Shan, Xinjian; Qu, Chunyan; Zhang, Yingfeng; Song, Xiaogang; Jiang, Yu; Zhang, Guohong; Nocquet, Jean-Mathieu; Gong, Wenyu; Gan, Weijun; Wang, Chisheng
2017-12-01
Based on the dense GPS velocity field in the northeastern margin of the Tibetan Plateau from 1999 to 2016, we have produced the deformation and strain characteristics of the Haiyuan fault and the Liupanshan fault. Estimated long-term slip rate along the Haiyuan-Liupanshan fault zones show a gradual decrease from 6.4 ± 1.6 mm/yr at the Tuolaishan fault to 2.9 ± 1.2 mm/yr at the Southern Liupanshan fault. Left-lateral thrusting movement was inverted for the Xiangshan-Tianjingshan fault (XS-TJS), which has an average slip rate of 2.1 ± 3.4 mm/yr during the study period. We also calculated the heterogeneous distribution of interseismic coupling along the fault zones. Our result also shows the locking depth of the Tianzhu seismic gap is ∼22 km. The slip rate deficit, the seismic moment accumulation rate, and the Coulomb stress accumulation rate are high on the fault planes, whereas the second invariant of the strain rate is low at the surface. The Liupanshan fault is locked to a depth of ∼23 km, and the corresponding seismic moment accumulation rate on the fault plane is high, while the strain rate at the surface is low. The accumulated strain along the Tianzhu seismic gap and the Liupanshan fault could be balanced by earthquakes with magnitudes of Mw7.9 and Mw7.4, considering the absence of large earthquakes over the last 1000 years and 1400 years respectively. The Haiyuan segments had ruptured during 1920 Haiyuan earthquake, and the estimated locking depth for period 1999-2016 is 5-10 km. Its seismic moment accumulation rate at depth is low and the strain rate at the surface is high. Our result indicates that 70% of the strike-slip along the Haiyuan segments transforms into thrusting along the Liupanshan fault, while the remaining 30% is related to the orogeny of the Liupanshan. For slip between the Haiyuan fault and the XS-TJS, about 27-34% of the slip is partitioned on the XS-TJS.
NASA Astrophysics Data System (ADS)
Barrie, J. Vaughn; Greene, H. Gary
2018-02-01
The Devils Mountain Fault Zone (DMFZ) extends east to west from Washington State to just south of Victoria, British Columbia, in the northern Strait of Juan de Fuca of Canada and the USA. Recently collected geophysical data were used to map this fault zone in detail, which show the main fault trace, and associated primary and secondary (conjugate) strands, and extensive northeast-southwest oriented folding that occurs within a 6 km wide deformation zone. The fault zone has been active in the Holocene as seen in the offset and disrupted upper Quaternary strata, seafloor displacement, and deformation within sediment cores taken close to the seafloor expression of the faults. Data suggest that the present DMFZ and the re-activated Leech River Fault may be part of the same fault system. Based on the length and previously estimated slip rates of the fault zone in Washington State, the DMFZ appears to have the potential of producing a strong earthquake, perhaps as large as magnitude 7.5 or greater, within 2 km of the city of Victoria.
Heterogeneity in the Fault Damage Zone: a Field Study on the Borrego Fault, B.C., Mexico
NASA Astrophysics Data System (ADS)
Ostermeijer, G.; Mitchell, T. M.; Dorsey, M. T.; Browning, J.; Rockwell, T. K.; Aben, F. M.; Fletcher, J. M.; Brantut, N.
2017-12-01
The nature and distribution of damage around faults, and its impacts on fault zone properties has been a hot topic of research over the past decade. Understanding the mechanisms that control the formation of off fault damage can shed light on the processes during the seismic cycle, and the nature of fault zone development. Recent published work has identified three broad zones of damage around most faults based on the type, intensity, and extent of fracturing; Tip, Wall, and Linking damage. Although these zones are able to adequately characterise the general distribution of damage, little has been done to identify the nature of damage heterogeneity within those zones, often simplifying the distribution to fit log-normal linear decay trends. Here, we attempt to characterise the distribution of fractures that make up the wall damage around seismogenic faults. To do so, we investigate an extensive two dimensional fracture network exposed on a river cut platform along the Borrego Fault, BC, Mexico, 5m wide, and extending 20m from the fault core into the damage zone. High resolution fracture mapping of the outcrop, covering scales ranging three orders of magnitude (cm to m), has allowed for detailed observations of the 2D damage distribution within the fault damage zone. Damage profiles were obtained along several 1D transects perpendicular to the fault and micro-damage was examined from thin-sections at various locations around the outcrop for comparison. Analysis of the resulting fracture network indicates heterogeneities in damage intensity at decimetre scales resulting from a patchy distribution of high and low intensity corridors and clusters. Such patchiness may contribute to inconsistencies in damage zone widths defined along 1D transects and the observed variability of fracture densities around decay trends. How this distribution develops with fault maturity and the scaling of heterogeneities above and below the observed range will likely play a key role in understanding the evolution of fault damage, it's feedback into the seismic cycle, and impact on fluid migration in fault zones. The dataset from the Borrego Fault offers a unique opportunity to study the distribution of fault damage in-situ, and provide field observations towards improving fault zone models.
The Honey Lake fault zone, northeastern California: Its nature, age, and displacement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, D.L.; Saucedo, G.J.; Grose, T.L.T.
The Honey Lake fault zone of northeastern California is composed of en echelon, northwest trending faults that form the boundary between the Sierra Nevada and the Basin Ranges provinces. As such the Honey Lake fault zone can be considered part of the Sierra Nevada frontal fault system. It is also part of the Walker Lane of Nevada. Faults of the Honey Lake zone are vertical with right-lateral oblique displacements. The cumulative vertical component of displacement along the fault zone is on the order of 800 m and right-lateral displacement is at least 10 km (6 miles) but could be considerablymore » more. Oligocene to Miocene (30 to 22 Ma) age rhyolite tuffs can be correlated across the zone, but mid-Miocene andesites do not appear to be correlative indicating the faulting began in early to mid-Miocene time. Volcanic rocks intruded along faults of the zone, dated at 16 to 8 Ma, further suggest that faulting in the Honey Lake zone was initiated during mid-Miocene time. Late Quaternary to Holocene activity is indicated by offset of the 12,000 year old Lake Lahontan high stand shoreline and the surface rupture associated with the 1950 Fort Sage earthquake.« less
Subsurface geometry and evolution of the Seattle fault zone and the Seattle Basin, Washington
ten Brink, Uri S.; Molzer, P.C.; Fisher, M.A.; Blakely, R.J.; Bucknam, R.C.; Parsons, T.; Crosson, R.S.; Creager, K.C.
2002-01-01
The Seattle fault, a large, seismically active, east-west-striking fault zone under Seattle, is the best-studied fault within the tectonically active Puget Lowland in western Washington, yet its subsurface geometry and evolution are not well constrained. We combine several analysis and modeling approaches to study the fault geometry and evolution, including depth-converted, deep-seismic-reflection images, P-wave-velocity field, gravity data, elastic modeling of shoreline uplift from a late Holocene earthquake, and kinematic fault restoration. We propose that the Seattle thrust or reverse fault is accompanied by a shallow, antithetic reverse fault that emerges south of the main fault. The wedge enclosed by the two faults is subject to an enhanced uplift, as indicated by the boxcar shape of the shoreline uplift from the last major earthquake on the fault zone. The Seattle Basin is interpreted as a flexural basin at the footwall of the Seattle fault zone. Basin stratigraphy and the regional tectonic history lead us to suggest that the Seattle fault zone initiated as a reverse fault during the middle Miocene, concurrently with changes in the regional stress field, to absorb some of the north-south shortening of the Cascadia forearc. Kingston Arch, 30 km north of the Seattle fault zone, is interpreted as a more recent disruption arising within the basin, probably due to the development of a blind reverse fault.
Seismic Velocity and Elastic Properties of Plate Boundary Faults
NASA Astrophysics Data System (ADS)
Jeppson, Tamara N.
The elastic properties of fault zone rock at depth play a key role in rupture nucleation, propagation, and the magnitude of fault slip. Materials that lie within major plate boundary fault zones often have very different material properties than standard crustal rock values. In order to understand the mechanics of faulting at plate boundaries, we need to both measure these properties and understand how they govern the behavior of different types of faults. Mature fault zones tend to be identified in large-scale geophysical field studies as zones with low seismic velocity and/or electrical resistivity. These anomalous properties are related to two important mechanisms: (1) mechanical or diagenetic alteration of the rock materials and/or (2) pore fluid pressure and stress effects. However, in remotely-sensed and large-length-scale data it is difficult to determine which of these mechanisms are affecting the measured properties. The objective of this dissertation research is to characterize the seismic velocity and elastic properties of fault zone rocks at a range of scales, with a focus on understanding why the fault zone properties are different from those of the surrounding rock and the potential effects on earthquake rupture and fault slip. To do this I performed ultrasonic velocity experiments under elevated pressure conditions on drill core and outcrops samples from three plate boundary fault zones: the San Andreas Fault, California, USA; the Alpine Fault, South Island, New Zealand; and the Japan Trench megathrust, Japan. Additionally, I compared laboratory measurements to sonic log and large-scale seismic data to examine the scale-dependence of the measured properties. The results of this study provide the most comprehensive characterization of the seismic velocities and elastic properties of fault zone rocks currently available. My work shows that fault zone rocks at mature plate boundary faults tend to be significantly more compliant than surrounding crustal rocks and quantifies that relationship. The results of this study are particularly relevant to the interpretation of field-scale seismic datasets at major fault zones. Additionally, the results of this study provide constraints on elastic properties used in dynamic rupture models.
Fault zone reverberations from cross-correlations of earthquake waveforms and seismic noise
NASA Astrophysics Data System (ADS)
Hillers, Gregor; Campillo, Michel
2016-03-01
Seismic wavefields interact with low-velocity fault damage zones. Waveforms of ballistic fault zone head waves, trapped waves, reflected waves and signatures of trapped noise can provide important information on structural and mechanical fault zone properties. Here we extend the class of observable fault zone waves and reconstruct in-fault reverberations or multiples in a strike-slip faulting environment. Manifestations of the reverberations are significant, consistent wave fronts in the coda of cross-correlation functions that are obtained from scattered earthquake waveforms and seismic noise recorded by a linear fault zone array. The physical reconstruction of Green's functions is evident from the high similarity between the signals obtained from the two different scattered wavefields. Modal partitioning of the reverberation wavefield can be tuned using different data normalization techniques. The results imply that fault zones create their own ambiance, and that the here reconstructed reverberations are a key seismic signature of wear zones. Using synthetic waveform modelling we show that reverberations can be used for the imaging of structural units by estimating the location, extend and magnitude of lateral velocity contrasts. The robust reconstruction of the reverberations from noise records suggests the possibility to resolve the response of the damage zone material to various external and internal loading mechanisms.
Block rotations, fault domains and crustal deformation in the western US
NASA Technical Reports Server (NTRS)
Nur, Amos
1990-01-01
The aim of the project was to develop a 3D model of crustal deformation by distributed fault sets and to test the model results in the field. In the first part of the project, Nur's 2D model (1986) was generalized to 3D. In Nur's model the frictional strength of rocks and faults of a domain provides a tight constraint on the amount of rotation that a fault set can undergo during block rotation. Domains of fault sets are commonly found in regions where the deformation is distributed across a region. The interaction of each fault set causes the fault bounded blocks to rotate. The work that has been done towards quantifying the rotation of fault sets in a 3D stress field is briefly summarized. In the second part of the project, field studies were carried out in Israel, Nevada and China. These studies combined both paleomagnetic and structural information necessary to test the block rotation model results. In accordance with the model, field studies demonstrate that faults and attending fault bounded blocks slip and rotate away from the direction of maximum compression when deformation is distributed across fault sets. Slip and rotation of fault sets may continue as long as the earth's crustal strength is not exceeded. More optimally oriented faults must form, for subsequent deformation to occur. Eventually the block rotation mechanism may create a complex pattern of intersecting generations of faults.
NASA Astrophysics Data System (ADS)
Puziewicz, Jacek; Czechowski, Leszek; Majorowicz, Jacek; Pietranik, Anna; Grad, Marek
2017-04-01
The NE margin of Variscan Orogen in Europe comprises Sudety Mts., Fore-Sudetic Block, Odra Fault Zone and Fore-Sudetic Homocline. The Sudety Mts. together with the located to the NE Fore-Sudetic Block form NE part of the Bohemian Massif. The Variscan crystalline basement is exposed at the surface here. The Odra Fault Zone is situated further to the NE. It is a ca. 20 km wide horst of crystalline basement, hidden beneath relatively thin (< 1000 m) Permian-Mesozoic and Cenozoic sedimentary sequences and is called the Odra Horst in the following. This horst marks the margin of stretching to NE Fore-Sudetic Homocline, in which the crystalline basement is dipping to NE under thickening Permo-Mesozoic strata, covered by few hundred meter thick Cenozoic sedimentary layer (Żelaźniewicz et al. 2016 and references therein). The Odra Horst is possibly a continuation of the Mid German Crystalline High at the NE side of the Bohemian Massif (Dörr et al. 2006). The copper mines located at the central part of the Odra Horst at depth 600 - 1000 m enable the numerous high-quality temperature measurements. However, complicated geometry of geological units requires 3D simulations. We use 3D numerical thermal model for the considered region. The heat flow in the region is 80 mW/m2 (corrected for paleclimate). This value is higher than in the neighbouring parts of Sudetes and Fore-Sudetic Block ( 70 mW/m2) and compares rather to positive heat flow anomaly stretching NW-SE in Wielkopolska region north of the Dolsk Fault and continuing to NE Germany. This anomaly corresponds crudely to the extent of the Permian volcanic province of Polish and North-East German Basin. Unfortunately, preliminary results of the model are not conclusive, because they depend on many parameters, (compare e.g. Puziewicz et al 2012). It remains an open question if this anomaly could be related to the lithospheric mantle thermal anomalies (Tesauro et al. 2009) or is rather due to crustal rock contributions. Funding. This study was possible thanks to the project NCN UMO-2014/15/B/ST10/00095 of Polish National Centre for Science to JP. Dörr W., Żelaźniewicz A., Bylina P., Schastok J., Franke W., Haack U., Kulicki C., 2006. Tournaisian age of granitoids from the Odra Fault Zone (southwestern Poland): equivalent of the Mid-German Crystalline High? International Journal of Earth Sciences 95, 341-349. Puziewicz J., Czechowski L., Krysiński L., Majorowicz J., Matusiak-Małek M., Wróblewska M. , 2012. Lithosphere thermal structure at the eastern margin of the Bohemian Massif: a case petrological and geophysical study of the Niedźwiedź amphibolite massif (SW Poland). International Journal of Earth Sciences 101 (5), 1211-1228. Tesauro M., Kaban M. K., Cloetingh S.A.P.L., 2009. A new thermal and rheological model of the European lithosphere. Tectonophysics 476, 478-495. Żelaźniewicz A., Oberc-Dziedzic T., Fanning C. M., Protas A., Muszyński A., 2017. Late Carboniferous -early Permian events in the Trans-European Suture Zone: Tectonic and acid magmatic evidence from Poland. Tectonophysics 675, 227-243.
Li, Y.-G.; Ellsworth, W.L.; Thurber, C.H.; Malin, P.E.; Aki, K.
1997-01-01
Fault-zone guided waves were successfully excited by near-surface explosions in the San Andreas fault zone both at Parkfield and Cienega Valley, central California. The guided waves were observed on linear, three-component seismic arrays deployed across the fault trace. These waves were not excited by explosions located outside the fault zone. The amplitude spectra of guided waves show a maximum peak at 2 Hz at Parkfield and 3 Hz at Cienega Valley. The guided wave amplitude decays sharply with observation distance from the fault trace. The explosion-excited fault-zone guided waves are similar to those generated by earthquakes at Parkfield but have lower frequencies and travel more slowly. These observations suggest that the fault-zone wave guide has lower seismic velocities as it approaches the surface at Parkfield. We have modeled the waveforms as S waves trapped in a low-velocity wave guide sandwiched between high-velocity wall rocks, resulting in Love-type fault-zone guided waves. While the results are nonunique, the Parkfield data are adequately fit by a shallow wave guide 170 m wide with an S velocity 0.85 km/sec and an apparent Q ??? 30 to 40. At Cienega Valley, the fault-zone wave guide appears to be about 120 m wide with an S velocity 0.7 km/sec and a Q ??? 30.
Wang, Chun-Yong; Mooney, W.D.; Ding, Z.; Yang, J.; Yao, Z.; Lou, H.
2009-01-01
The shallow seismic velocity structure of the Kunlun fault zone (KLFZ) was jointly deduced from seismic refraction profiling and the records of trapped waves that were excited by five explosions. The data were collected after the 2001 Kunlun M s8.1 earthquake in the northern Tibetan Plateau. Seismic phases for the in-line record sections (26 records up to a distance of 15 km) along the fault zone were analysed, and 1-D P- and S-wave velocity models of shallow crust within the fault zone were determined by using the seismic refraction method. Sixteen seismic stations were deployed along the off-line profile perpendicular to the fault zone. Fault-zone trapped waves appear clearly on the record sections, which were simulated with a 3-D finite difference algorithm. Quantitative analysis of the correlation coefficients of the synthetic and observed trapped waveforms indicates that the Kunlun fault-zone width is 300 m, and S-wave quality factor Q within the fault zone is 15. Significantly, S-wave velocities within the fault zone are reduced by 30-45 per cent from surrounding rocks to a depth of at least 1-2 km, while P-wave velocities are reduced by 7-20 per cent. A fault-zone with such P- and S-low velocities is an indication of high fluid pressure because Vs is affected more than Vp. The low-velocity and low-Q zone in the KLFZ model is the effect of multiple ruptures along the fault trace of the 2001 M s8.1 Kunlun earthquake. ?? 2009 The Authors Journal compilation ?? 2009 RAS.
NASA Astrophysics Data System (ADS)
Heesakkers, V.; Murphy, S.; Reches, Z.
2011-12-01
We analyze the structure of the Archaean Pretorius fault in TauTona mine, South Africa, as well as the rupture-zone that recently reactivated it. The analysis is part of the Natural Earthquake Laboratory in South African Mines (NELSAM) project that utilizes the access to 3.6 km depth provided by the mining operations. The Pretorius fault is a ~10 km long, oblique-strike-slip fault with displacement of up to 200 m that crosscuts fine to very coarse grain quartzitic rocks in TauTona mine. We identify here three structural zones within the fault-zone: (1) an outer damage zone, ~100 m wide, of brittle deformation manifested by multiple, widely spaced fractures and faults with slip up to 3 m; (2) an inner damage zone, 25-30 m wide, with high density of anastomosing conjugate sets of fault segments and fractures, many of which carry cataclasite zones; and (3) a dominant segment, with a cataclasite zone up to 50 cm thick that accommodated most of the Archaean slip of the Pretorius fault, and is regarded as the `principal slip zone' (PSZ). This fault-zone structure indicates that during its Archaean activity, the Pretorius fault entered the mature fault stage in which many slip events were localized along a single, PSZ. The mining operations continuously induce earthquakes, including the 2004, M2.2 event that rejuvenated the Pretorius fault in the NELSAM project area. Our analysis of the M2.2 rupture-zone shows that (1) slip occurred exclusively along four, pre-existing large, quasi-planer segments of the ancient fault-zone; (2) the slipping segments contain brittle cataclasite zones up to 0.5 m thick; (3) these segments are not parallel to each other; (4) gouge zones, 1-5 mm thick, composed of white `rock-flour' formed almost exclusively along the cataclasite-host rock contacts of the slipping segments; (5) locally, new, fresh fractures branched from the slipping segments and propagated in mixed shear-tensile mode; (6) the maximum observed shear displacement is 25 mm in oblique-normal slip. The mechanical analysis of this rupture-zone is presented in Part II (H eesakkers et al., Earthquake Rupture at Focal Depth, Part II: Mechanics of the 2004 M2.2 Earthquake Along the Pretorius Fault, TauTona mine, South Africa 2011, this volume).
Zeng, Yuehua; Shen, Zheng-Kang
2017-01-01
We develop a crustal deformation model to determine fault‐slip rates for the western United States (WUS) using the Zeng and Shen (2014) method that is based on a combined inversion of Global Positioning System (GPS) velocities and geological slip‐rate constraints. The model consists of six blocks with boundaries aligned along major faults in California and the Cascadia subduction zone, which are represented as buried dislocations in the Earth. Faults distributed within blocks have their geometrical structure and locking depths specified by the Uniform California Earthquake Rupture Forecast, version 3 (UCERF3) and the 2008 U.S. Geological Survey National Seismic Hazard Map Project model. Faults slip beneath a predefined locking depth, except for a few segments where shallow creep is allowed. The slip rates are estimated using a least‐squares inversion. The model resolution analysis shows that the resulting model is influenced heavily by geologic input, which fits the UCERF3 geologic bounds on California B faults and ±one‐half of the geologic slip rates for most other WUS faults. The modeled slip rates for the WUS faults are consistent with the observed GPS velocity field. Our fit to these velocities is measured in terms of a normalized chi‐square, which is 6.5. This updated model fits the data better than most other geodetic‐based inversion models. Major discrepancies between well‐resolved GPS inversion rates and geologic‐consensus rates occur along some of the northern California A faults, the Mojave to San Bernardino segments of the San Andreas fault, the western Garlock fault, the southern segment of the Wasatch fault, and other faults. Off‐fault strain‐rate distributions are consistent with regional tectonics, with a total off‐fault moment rate of 7.2×1018">7.2×1018 and 8.5×1018 N·m/year">8.5×1018 N⋅m/year for California and the WUS outside California, respectively.
Sharp, R.V.
1989-01-01
The M6.2 Elmore Desert Ranch earthquake of 24 November 1987 was associated spatially and probably temporally with left-lateral surface rupture on many northeast-trending faults in and near the Superstition Hills in western Imperial Valley. Three curving discontinuous principal zones of rupture among these breaks extended northeastward from near the Superstition Hills fault zone as far as 9km; the maximum observed surface slip, 12.5cm, was on the northern of the three, the Elmore Ranch fault, at a point near the epicenter. Twelve hours after the Elmore Ranch earthquake, the M6.6 Superstition Hills earthquake occurred near the northwest end of the right-lateral Superstition Hills fault zone. We measured displacements over 339 days at as many as 296 sites along the Superstition Hills fault zone, and repeated measurements at 49 sites provided sufficient data to fit with a simple power law. The overall distributions of right-lateral displacement at 1 day and the estimated final slip are nearly symmetrical about the midpoint of the surface rupture. The average estimated final right-lateral slip for the Superstition Hills fault zone is ~54cm. The average left-lateral slip for the conjugate faults trending northeastward is ~23cm. The southernmost ruptured member of the Superstition Hills fault zone, newly named the Wienert fault, extends the known length of the zone by about 4km. -from Authors
Sherrod, Brian; Blakely, Richard J.; Lasher, John P.; Lamb, Andrew P.; Mahan, Shannon; Foit, Franklin F.; Barnett, Elizabeth
2016-01-01
The Wallula fault zone is an integral feature of the Olympic-Wallowa lineament, an ∼500-km-long topographic lineament oblique to the Cascadia plate boundary, extending from Vancouver Island, British Columbia, to Walla Walla, Washington. The structure and past earthquake activity of the Wallula fault zone are important because of nearby infrastructure, and also because the fault zone defines part of the Olympic-Wallowa lineament in south-central Washington and suggests that the Olympic-Wallowa lineament may have a structural origin. We used aeromagnetic and ground magnetic data to locate the trace of the Wallula fault zone in the subsurface and map a quarry exposure of the Wallula fault zone near Finley, Washington, to investigate past earthquakes along the fault. We mapped three main packages of rocks and unconsolidated sediments in an ∼10-m-high quarry exposure. Our mapping suggests at least three late Pleistocene earthquakes with surface rupture, and an episode of liquefaction in the Holocene along the Wallula fault zone. Faint striae on the master fault surface are subhorizontal and suggest reverse dextral oblique motion for these earthquakes, consistent with dextral offset on the Wallula fault zone inferred from offset aeromagnetic anomalies associated with ca. 8.5 Ma basalt dikes. Magnetic surveys show that the Wallula fault actually lies 350 m to the southwest of the trace shown on published maps, passes directly through deformed late Pleistocene or younger deposits exposed at Finley quarry, and extends uninterrupted over 120 km.
NASA Technical Reports Server (NTRS)
Liggett, M. A.; Childs, J. F.
1973-01-01
The author has identified the following significant results. Geologic reconnaissance guided by analysis of ERTS-1 and Apollo-9 satellite imagery and intermediate scale photography from X-15 and U-2 aircraft has confirmed the presence of a major fault zone along the California-Nevada state line, between 35 deg 30 min and 36 deg 30 min north latitude. The name Pahrump Fault Zone has been suggested for this feature after the valley in which it is best exposed. Field reconnaissance has indicated the existence of previously unreported faults cutting bedrock along range fronts, and displacing Tertiary and Quaternary basin sediments. Gravity data support the interpretation of regional structural discontinuity along this zone. Individual fault traces within the Pahrump Fault Zone form generally left-stepping en echelon patterns. These fault patterns, the apparent offset of a Laramide age thrust fault, and possible drag folding along a major fault break suggest a component of right lateral displacement. The trend and postulated movement of the Pahrump Fault Zone are similar to the adjacent Las Vegas Shear Zone and Death Valley-Furnace Creek Faults, which are parts of a regional strike slip system in the southern Basin-Range Province.
Horton, J. Wright; Shah, Anjana K.; McNamara, Daniel E.; Snyder, Stephen L.; Carter, Aina M
2015-01-01
Deployment of temporary seismic stations after the 2011 Mineral, Virginia (USA), earthquake produced a well-recorded aftershock sequence. The majority of aftershocks are in a tabular cluster that delineates the previously unknown Quail fault zone. Quail fault zone aftershocks range from ~3 to 8 km in depth and are in a 1-km-thick zone striking ~036° and dipping ~50°SE, consistent with a 028°, 50°SE main-shock nodal plane having mostly reverse slip. This cluster extends ~10 km along strike. The Quail fault zone projects to the surface in gneiss of the Ordovician Chopawamsic Formation just southeast of the Ordovician–Silurian Ellisville Granodiorite pluton tail. The following three clusters of shallow (<3 km) aftershocks illuminate other faults. (1) An elongate cluster of early aftershocks, ~10 km east of the Quail fault zone, extends 8 km from Fredericks Hall, strikes ~035°–039°, and appears to be roughly vertical. The Fredericks Hall fault may be a strand or splay of the older Lakeside fault zone, which to the south spans a width of several kilometers. (2) A cluster of later aftershocks ~3 km northeast of Cuckoo delineates a fault near the eastern contact of the Ordovician Quantico Formation. (3) An elongate cluster of late aftershocks ~1 km northwest of the Quail fault zone aftershock cluster delineates the northwest fault (described herein), which is temporally distinct, dips more steeply, and has a more northeastward strike. Some aftershock-illuminated faults coincide with preexisting units or structures evident from radiometric anomalies, suggesting tectonic inheritance or reactivation.
What electrical measurements can say about changes in fault systems.
Madden, T R; Mackie, R L
1996-01-01
Earthquake zones in the upper crust are usually more conductive than the surrounding rocks, and electrical geophysical measurements can be used to map these zones. Magnetotelluric (MT) measurements across fault zones that are parallel to the coast and not too far away can also give some important information about the lower crustal zone. This is because the long-period electric currents coming from the ocean gradually leak into the mantle, but the lower crust is usually very resistive and very little leakage takes place. If a lower crustal zone is less resistive it will be a leakage zone, and this can be seen because the MT phase will change as the ocean currents leave the upper crust. The San Andreas Fault is parallel to the ocean boundary and close enough to have a lot of extra ocean currents crossing the zone. The Loma Prieta zone, after the earthquake, showed a lot of ocean electric current leakage, suggesting that the lower crust under the fault zone was much more conductive than normal. It is hard to believe that water, which is responsible for the conductivity, had time to get into the lower crustal zone, so it was probably always there, but not well connected. If this is true, then the poorly connected water would be at a pressure close to the rock pressure, and it may play a role in modifying the fluid pressure in the upper crust fault zone. We also have telluric measurements across the San Andreas Fault near Palmdale from 1979 to 1990, and beginning in 1985 we saw changes in the telluric signals on the fault zone and east of the fault zone compared with the signals west of the fault zone. These measurements were probably seeing a better connection of the lower crust fluids taking place, and this may result in a fluid flow from the lower crust to the upper crust. This could be a factor in changing the strength of the upper crust fault zone. PMID:11607664
Fault compaction and overpressured faults: results from a 3-D model of a ductile fault zone
NASA Astrophysics Data System (ADS)
Fitzenz, D. D.; Miller, S. A.
2003-10-01
A model of a ductile fault zone is incorporated into a forward 3-D earthquake model to better constrain fault-zone hydraulics. The conceptual framework of the model fault zone was chosen such that two distinct parts are recognized. The fault core, characterized by a relatively low permeability, is composed of a coseismic fault surface embedded in a visco-elastic volume that can creep and compact. The fault core is surrounded by, and mostly sealed from, a high permeability damaged zone. The model fault properties correspond explicitly to those of the coseismic fault core. Porosity and pore pressure evolve to account for the viscous compaction of the fault core, while stresses evolve in response to the applied tectonic loading and to shear creep of the fault itself. A small diffusive leakage is allowed in and out of the fault zone. Coseismically, porosity is created to account for frictional dilatancy. We show in the case of a 3-D fault model with no in-plane flow and constant fluid compressibility, pore pressures do not drop to hydrostatic levels after a seismic rupture, leading to an overpressured weak fault. Since pore pressure plays a key role in the fault behaviour, we investigate coseismic hydraulic property changes. In the full 3-D model, pore pressures vary instantaneously by the poroelastic effect during the propagation of the rupture. Once the stress state stabilizes, pore pressures are incrementally redistributed in the failed patch. We show that the significant effect of pressure-dependent fluid compressibility in the no in-plane flow case becomes a secondary effect when the other spatial dimensions are considered because in-plane flow with a near-lithostatically pressured neighbourhood equilibrates at a pressure much higher than hydrostatic levels, forming persistent high-pressure fluid compartments. If the observed faults are not all overpressured and weak, other mechanisms, not included in this model, must be at work in nature, which need to be investigated. Significant leakage perpendicular to the fault strike (in the case of a young fault), or cracks hydraulically linking the fault core to the damaged zone (for a mature fault) are probable mechanisms for keeping the faults strong and might play a significant role in modulating fault pore pressures. Therefore, fault-normal hydraulic properties of fault zones should be a future focus of field and numerical experiments.
Ohlmacher, G.C.; Berendsen, P.
2005-01-01
Many stable continental regions have subregions with poorly defined earthquake hazards. Analysis of minor structures (folds and faults) in these subregions can improve our understanding of the tectonics and earthquake hazards. Detailed structural mapping in Pottawatomie County has revealed a suite consisting of two uplifted blocks aligned along a northeast trend and surrounded by faults. The first uplift is located southwest of the second. The northwest and southeast sides of these uplifts are bounded by northeast-trending right-lateral faults. To the east, both uplifts are bounded by north-trending reverse faults, and the first uplift is bounded by a north-trending high-angle fault to the west. The structural suite occurs above a basement fault that is part of a series of north-northeast-trending faults that delineate the Humboldt Fault Zone of eastern Kansas, an integral part of the Midcontinent Rift System. The favored kinematic model is a contractional stepover (push-up) between echelon strike-slip faults. Mechanical modeling using the boundary element method supports the interpretation of the uplifts as contractional stepovers and indicates that an approximately east-northeast maximum compressive stress trajectory is responsible for the formation of the structural suite. This stress trajectory suggests potential activity during the Laramide Orogeny, which agrees with the age of kimberlite emplacement in adjacent Riley County. The current stress field in Kansas has a N85??W maximum compressive stress trajectory that could potentially produce earthquakes along the basement faults. Several epicenters of seismic events (
Geology and structure of the North Boqueron Bay-Punta Montalva Fault System
NASA Astrophysics Data System (ADS)
Roig Silva, Coral Marie
The North Boqueron Bay-Punta Montalva Fault Zone is an active fault system that cuts across the Lajas Valley in southwestern Puerto Rico. The fault zone has been recognized and mapped based upon detailed analysis of geophysical data, satellite images and field mapping. The fault zone consists of a series of Cretaceous bedrock faults that reactivated and deformed Miocene limestone and Quaternary alluvial fan sediments. The fault zone is seismically active (ML < 5.0) with numerous locally felt earthquakes. Focal mechanism solutions and structural field data suggest strain partitioning with predominantly east-west left-lateral displacements with small normal faults oriented mostly toward the northeast. Evidence for recent displacement consists of fractures and small normal faults oriented mostly northeast found in intermittent streams that cut through the Quaternary alluvial fan deposits along the southern margin of the Lajas Valley, Areas of preferred erosion, within the alluvial fan, trend toward the west-northwest parallel to the on-land projection of the North Boqueron Bay Fault. Beyond the faulted alluvial fan and southeast of the Lajas Valley, the Northern Boqueron Bay Fault joins with the Punta Montalva Fault. The Punta Montalva Fault is defined by a strong topographic WNW lineament along which stream channels are displaced left laterally 200 meters and Miocene strata are steeply tilted to the south. Along the western end of the fault zone in northern Boqueron Bay, the older strata are only tilted 3° south and are covered by flat lying Holocene sediments. Focal mechanisms solutions along the western end suggest NW-SE shortening, which is inconsistent with left lateral strain partitioning along the fault zone. The limited deformation of older strata and inconsistent strain partitioning may be explained by a westerly propagation of the fault system from the southwest end. The limited geomorphic structural expression along the North Boqueron Bay Fault segment could also be because most of the displacement along the fault zone is older than the Holocene and that the rate of displacement is low, such that the development of fault escarpments and deformation all along the fault zone has yet to occur.
Crustal Strike-Slip Faulting along Small Circle Paths in the Northwestern United States
NASA Astrophysics Data System (ADS)
Brocher, T. M.; Wells, R. E.; Lamb, A. P.; Weaver, C. S.
2015-12-01
Late Cenozoic and Quaternary faults, seismicity lineaments, and focal mechanisms provide evidence that clockwise rotation of Washington and Oregon is accommodated by north-directed thrusting and strike-slip deformation in the Washington segment of the Cascadia forearc. Curvilinear NW- to NNW-trending high-angle strike-slip faults and seismicity lineaments define small circles around an Euler pole (117.7°W, 47.9°N) of rotation relative to North America that approximates GPS-derived poles for the rotation of eastern Washington and the Snake River Plain. Although the lengths of strike-slip faults that follow small circle paths suggest maximum earthquake magnitudes of M6.6 to M7.2, their slip rates calculated from the Euler pole are low (0.3 to 0.5 mm/yr). Many normal faults in the Lewis and Clark Zone in Montana, the Centennial fault system north of the Snake River Plain, west of the Wasatch Front, in the northern Basin and Range, and locally east of the Oregon Cascade arc are radial to this pole of rotation, suggesting that these normal faults help accommodate this crustal rotation. Regions undergoing contraction in western Washington and northwestern Oregon are separated from those to the east undergoing extension by lines radial to the Euler pole. In our regional kinematic model, dextral faults along small circles connect SW-directed crustal extension in the Intermountain Seismic Belt and E-directed extension in the Cascade arc south of Mount Hood to N-directed contraction in the Olympic Peninsula, Puget Lowland, and the Yakima Fold and Thrust Belt. The lack of Quaternary faulting and seismicity in the Oregon segment of the forearc is consistent with its clockwise rotation as a rigid block. Potential drivers of the crustal rotation include westward slab rollback and the Yellowstone geoid high, and the overall velocity field may integrate the response of rotating blocks and distributed deformation between them.
The Fluid Flow Evolution During the Seismic Cycle Within Overpressured Fault Zones
NASA Astrophysics Data System (ADS)
de Paola, Nicola; Vanhunen, Jeroen; Collettini, Cristiano; Faulkner, Dan
2010-05-01
The integration of seismic reflection profiles with well-located earthquakes shows that the mainshocks of the 1997 Umbria-Marche seismic sequence (Mw < 6) nucleated at about 6 km depth, within the Triassic Evaporites, a 2 km thick sequence made of interbedded anhydrites and dolostones. Two boreholes, drilled northwest of the epicentral area, encountered CO2 fluid overpressures at about 0.8 of the lithostatic load, at about 4 km depth. It has been proposed that the time-space evolution of the 1997 aftershock sequence, was driven by the coseismic release of trapped high-pressure fluids (lv = 0.8), within the Triassic Evaporites. In order to understand whether CO2 fluid overpressure can be maintained up to the coseismic period, and trigger earthquake nucleation, we modelled fluid flow through a mature fault zone within the Triassic Evaporites. We assume that fluid flow within the fault zone occurs in accord with the Darcy's Law. Under this condition, a near lithostatic pore pressure gradient can develop, within the fault zone, when the upward transport of fluid along the fault zone exceeds the fluid loss in a horizontal direction. Our model's parameters are: a) Fault zone structure: model inputs have been obtained from large fault zone analogues derived from field observation. The architecture of large fault zones within the TE is given by a distinct fault core, up to few meters thick, of very fine-grained fault rocks (cataclasites and fault gouge), where most of the shear strain has been accommodated, surrounded by a geometrically complex and heterogeneous damage zone (up to few tens of meters wide). The damage zone is characterized by adjacent zones of heavily fractured rocks (dolostones) and foliated rocks displaying little fracturing (anhydrites). b) Fault zone permeability: field data suggests that the permeability of the fault core is relatively low due to the presence of fine grained fault rocks (k < 10E-18 m2). The permeability of the dolostones, within the damage zone, is likely to be high and controlled by mesoscale fracture patterns (k > 10E-17 m2). For the anhydrites, the permeability and porosity development was continuously measured prior and throughout triaxial loading tests, performed on borehole samples. The permeability of the anhydrites within the damage zone, due to the absence of mesoscale fracture patterns within Ca-sulphates layers, has been assumed to be as low as the values measured during our lab experiments (k = 10E-17 - 10E-20 m2). Our model results show that, during the seismic cycle, the lateral fluid flux, across the fault zone, is always lower than the vertical parallel fluid flux. Under these conditions fluid overpressure within the fault zone can be sustained up to the coseismic period when earthquake nucleation occurs. Our modelling shows that during extensional loading, overpressured fault zones within the Triassic Evaporites may develop and act as asperities, i.e. they are mechanically weaker than faults within the overlain carbonates at hydrostatic (lv = 0.4) pore fluid pressure conditions.
Previously unrecognized now-inactive strand of the North Anatolian fault in the Thrace basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perincek, D.
1988-08-01
The North Anatolian fault is a major 1,200 km-long transform fault bounding the Anatolian plate to the north. It formed in late middle Miocene time as a broad shear zone with a number of strands splaying westward in a horsetail fashion. Later, movement became localized along the stem, and the southerly and northerly splays became inactive. One such right-lateral, now-inactive splay is the west-northwest-striking Thrace strike-slip fault system, consisting of three subparallel strike-slip faults. From north to south these are the Kirklareli, Lueleburgaz, and Babaeski fault zones, extending {plus minus} 130 km along the strike. The Thrace fault zone probablymore » connected with the presently active northern strand of the North Anatolian fault in the Sea of Marmara in the southeast and may have joined the Plovdiv graben zone in Bulgaria in the northwest. The Thrace basin in which the Thrace fault system is located, is Cenozoic with a sedimentary basin fill from middle Eocene to Pliocene. The Thrace fault system formed in pre-Pliocene time and had become inactive by the Pliocene. Strike-slip fault zones with normal and reverse separation are detected by seismic reflection profiles and subsurface data. Releasing bend extensional structures (e.g., near the town of Lueleburgaz) and restraining bend compressional structures (near Vakiflar-1 well) are abundant on the fault zones. Umurca and Hamitabad fields are en echelon structures on the Lueleburgaz fault zone. The Thrace strike-slip fault system has itself a horsetail shape, the various strands of which become younger southward. The entire system died before the Pliocene, and motion on the North Anatolian fault zone began to be accommodated in the Sea of Marmara region. Thus the Thrace fault system represents the oldest strand of the North Anatolian fault in the west.« less
NASA Astrophysics Data System (ADS)
Ichiba, T.; Kaneki, S.; Hirono, T.; Oohashi, K.; Schuck, B.; Janssen, C.; Schleicher, A.; Toy, V.; Dresen, G.
2017-12-01
The Alpine Fault on New Zealand's South Island is an oblique, dextral strike-slip fault that accommodated the majority of displacement between the Pacific and the Australian Plates and presents the biggest seismic hazard in the region. Along its central segment, the hanging wall comprises greenschist and amphibolite facies Alpine Schists. Exhumation from 35 km depth, along a SE-dipping detachment, lead to mylonitization which was subsequently overprinted by brittle deformation and finally resulted in the fault's 1 km wide damage zone. The geomechanical behavior of a fault is affected by the internal structure of its fault zone. Consequently, studying processes controlling fault zone architecture allows assessing the seismic hazard of a fault. Here we present the results of a combined microstructural (SEM and TEM), mineralogical (XRD) and geochemical (XRF) investigation of outcrop samples originating from several locations along the Alpine Fault, the aim of which is to evaluate the influence of mineralogical composition, alteration and pre-existing fabric on strain localization and to identify the controls on the fault zone architecture, particularly the locus of brittle deformation in P, T and t space. Field observations reveal that the fault's principal slip zone (PSZ) is either a thin (< 1 cm to < 7 cm) layered structure or a relatively thick (10s cm) package lacking a detectable macroscopic fabric. Lithological and related rheological contrasts are widely assumed to govern strain localization. However, our preliminary results suggest that qualitative mineralogical composition has only minor impact on fault zone architecture. Quantities of individual mineral phases differ markedly between fault damage zone and fault core at specific sites, but the quantitative composition of identical structural units such as the fault core, is similar in all samples. This indicates that the degree of strain localization at the Alpine Fault might be controlled by small initial heterogeneities in texture and fabric or a combination of these, rather than in mineralogy. Further microstructural investigations are needed to test this hypothesis.
NASA Astrophysics Data System (ADS)
Gourley, J. R.; Byrne, T.
2005-12-01
An integrated data set of earthquake locations (Taiwan's Central Weather Bureau), focal mechanisms from the Broadband Array of Taiwan Seismicity (BATS), GPS velocities and geologic data are combined to constrain the geometry and kinematics of a crustal block within the metamorphic basement of Taiwan's northeastern Central Range. The active block is bounded by two parallel seismic zones that accommodate uplift and northeastward oblique lateral extrusion. The western shear zone is a region that dips vertically to steeply west and projects generally to the western boundary between the Slate Belt and pre-Tertiary metamorphic basement. BATS focal mechanisms consistently show east-side-up, left-lateral normal displacements. Late-stage geologic structures published previously show left-lateral faulting followed by east-west extension. The eastern shear zone dips vertically to steeply west and projects to the eastern boundary of the metamorphic basement, which correlates with the eastern mountain front in this area. BATS focal mechanisms show west-side-up reverse displacements. The kinematics of these two zones define a crustal scale block that is interpreted to be moving up and northeast towards the Okinawa Trough. The extrusion of this crustal block may be driven in part by the topographic difference between the Central Range and the Okinawa Trough, as well as by the active collision between the Philippine Sea Plate and the Eurasian basement high. This proposed northeastern lateral extrusion mirrors the active lateral extrusion in southwestern Taiwan which is observed on the southern side of the Eurasian basement high collision. The involvement of the basement high in the collision and adjacent regions appears to be an important factor in understanding local structural variations in the arc-continent collision and should be considered in both forward and reverse modeling of Taiwan deformation.
McLaughlin, Robert J.; Sarna-Wojcicki, Andrei M.; Wagner, David L.; Fleck, Robert J.; Langenheim, V.E.; Jachens, Robert C.; Clahan, Kevin; Allen, James R.
2012-01-01
The Rodgers Creek–Maacama fault system in the northern California Coast Ranges (United States) takes up substantial right-lateral motion within the wide transform boundary between the Pacific and North American plates, over a slab window that has opened northward beneath the Coast Ranges. The fault system evolved in several right steps and splays preceded and accompanied by extension, volcanism, and strike-slip basin development. Fault and basin geometries have changed with time, in places with younger basins and faults overprinting older structures. Along-strike and successional changes in fault and basin geometry at the southern end of the fault system probably are adjustments to frequent fault zone reorganizations in response to Mendocino Triple Junction migration and northward transit of a major releasing bend in the northern San Andreas fault. The earliest Rodgers Creek fault zone displacement is interpreted to have occurred ca. 7 Ma along extensional basin-forming faults that splayed northwest from a west-northwest proto-Hayward fault zone, opening a transtensional basin west of Santa Rosa. After ca. 5 Ma, the early transtensional basin was compressed and extensional faults were reactivated as thrusts that uplifted the northeast side of the basin. After ca. 2.78 Ma, the Rodgers Creek fault zone again splayed from the earlier extensional and thrust faults to steeper dipping faults with more north-northwest orientations. In conjunction with the changes in orientation and slip mode, the Rodgers Creek fault zone dextral slip rate increased from ∼2–4 mm/yr 7–3 Ma, to 5–8 mm/yr after 3 Ma. The Maacama fault zone is shown from several data sets to have initiated ca. 3.2 Ma and has slipped right-laterally at ∼5–8 mm/yr since its initiation. The initial Maacama fault zone splayed northeastward from the south end of the Rodgers Creek fault zone, accompanied by the opening of several strike-slip basins, some of which were later uplifted and compressed during late-stage fault zone reorganization. The Santa Rosa pull-apart basin formed ca. 1 Ma, during the reorganization of the right stepover geometry of the Rodgers Creek–Maacama fault system, when the maturely evolved overlapping geometry of the northern Rodgers Creek and Maacama fault zones was overprinted by a less evolved, non-overlapping stepover geometry. The Rodgers Creek–Maacama fault system has contributed at least 44–53 km of right-lateral displacement to the East Bay fault system south of San Pablo Bay since 7 Ma, at a minimum rate of 6.1–7.8 mm/yr.
Ben-Zion, Y.; Peng, Z.; Okaya, D.; Seeber, L.; Armbruster, J.G.; Ozer, N.; Michael, A.J.; Baris, S.; Aktar, M.
2003-01-01
We discuss the subsurface structure of the Karadere-Duzce branch of the North Anatolian Fault based on analysis of a large seismic data set recorded by a local PASSCAL network in the 6 months following the Mw = 7.4 1999 Izmit earthquake. Seismograms observed at stations located in the immediate vicinity of the rupture zone show motion amplification and long-period oscillations in both P- and S-wave trains that do not exist in nearby off-fault stations. Examination of thousands of waveforms reveals that these characteristics are commonly generated by events that are well outside the fault zone. The anomalous features in fault-zone seismograms produced by events not necessarily in the fault may be referred to generally as fault-zone-related site effects. The oscillatory shear wave trains after the direct S arrival in these seismograms are analysed as trapped waves propagating in a low-velocity fault-zone layer. The time difference between the S arrival and trapped waves group does not grow systematically with increasing source-receiver separation along the fault. These observations imply that the trapping of seismic energy in the Karadere-Duzce rupture zone is generated by a shallow fault-zone layer. Traveltime analysis and synthetic waveform modelling indicate that the depth of the trapping structure is approximately 3-4 km. The synthetic waveform modelling indicates further that the shallow trapping structure has effective waveguide properties consisting of thickness of the order of 100 m, a velocity decrease relative to the surrounding rock of approximately 50 per cent and an S-wave quality factor of 10-15. The results are supported by large 2-D and 3-D parameter space studies and are compatible with recent analyses of trapped waves in a number of other faults and rupture zones. The inferred shallow trapping structure is likely to be a common structural element of fault zones and may correspond to the top part of a flower-type structure. The motion amplification associated with fault-zone-related site effects increases the seismic shaking hazard near fault-zone structures. The effect may be significant since the volume of sources capable of generating motion amplification in shallow trapping structures is large.
Development of Hydrologic Characterization Technology of Fault Zones (in Japanese; English)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karasaki, Kenzi; Onishi, Tiemi; Wu, Yu-Shu
2008-03-31
Through an extensive literature survey we find that there is very limited amount of work on fault zone hydrology, particularly in the field using borehole testing. The common elements of a fault include a core, and damage zones. The core usually acts as a barrier to the flow across it, whereas the damage zone controls the flow either parallel to the strike or dip of a fault. In most of cases the damage zone isthe one that is controlling the flow in the fault zone and the surroundings. The permeability of damage zone is in the range of two tomore » three orders of magnitude higher than the protolith. The fault core can have permeability up to seven orders of magnitude lower than the damage zone. The fault types (normal, reverse, and strike-slip) by themselves do not appear to be a clear classifier of the hydrology of fault zones. However, there still remains a possibility that other additional geologic attributes and scaling relationships can be used to predict or bracket the range of hydrologic behavior of fault zones. AMT (Audio frequency Magneto Telluric) and seismic reflection techniques are often used to locate faults. Geochemical signatures and temperature distributions are often used to identify flow domains and/or directions. ALSM (Airborne Laser Swath Mapping) or LIDAR (Light Detection and Ranging) method may prove to be a powerful tool for identifying lineaments in place of the traditional photogrammetry. Nonetheless not much work has been done to characterize the hydrologic properties of faults by directly testing them using pump tests. There are some uncertainties involved in analyzing pressure transients of pump tests: both low permeability and high permeability faults exhibit similar pressure responses. A physically based conceptual and numerical model is presented for simulating fluid and heat flow and solute transport through fractured fault zones using a multiple-continuum medium approach. Data from the Horonobe URL site are analyzed to demonstrate the proposed approach and to examine the flow direction and magnitude on both sides of a suspected fault. We describe a strategy for effective characterization of fault zone hydrology. We recommend conducting a long term pump test followed by a long term buildup test. We do not recommend isolating the borehole into too many intervals. We do recommend ensuring durability and redundancy for long term monitoring.« less
Kellogg, K.S.; Minor, S.A.
2005-01-01
The "Big Bend" of the San Andreas fault in the western Transverse Ranges of southern California is a left stepping flexure in the dextral fault system and has long been recognized as a zone of relatively high transpression compared to adjacent regions. The Lockwood Valley region, just south of the Big Bend, underwent a profound change in early Pliocene time (???5 Ma) from basin deposition to contraction, accompanied by widespread folding and thrusting. This change followed the recently determined initiation of opening of the northern Gulf of California and movement along the southern San Andreas fault at about 6.1 Ma, with the concomitant formation of the Big Bend. Lockwood Valley occupies a 6-km-wide, fault-bounded structural basin in which converging blocks of Paleoproterozoic and Cretaceous crystalline basement and upper Oligocene and lower Miocene sedimentary rocks (Plush Ranch Formation) were thrust over Miocene and Pliocene basin-fill sedimentary rocks (in ascending order, Caliente Formation, Lockwood Clay, and Quatal Formation). All the pre-Quatal sedimentary rocks and most of the Pliocene Quatal Formation were deposited during a mid-Tertiary period of regional transtension in a crustal block that underwent little clockwise vertical-axis rotation as compared to crustal blocks to the south. Ensuing Pliocene and Quaternary transpression in the Big Bend region began during deposition of the poorly dated Quatal Formation and was marked by four converging thrust systems, which decreased the areal extent of the sedimentary basin and formed the present Lockwood Valley structural basin. None of the thrusts appears presently active. Estimated shortening across the center of the basin was about 30 percent. The fortnerly defined eastern Big Pine fault, now interpreted to be two separate, oppositely directed, contractional reverse or thrust faults, marks the northwestern structural boundary of Lockwood Valley. The complex geometry of the Lockwood Valley basin is similar to other Tertiary structural basins in southern California, such those that underlie Cuyama Valley, the Ridge basin, and the east Ventura basin.
The continuation of the Kazerun fault system across the Sanandaj-Sirjan zone (Iran)
NASA Astrophysics Data System (ADS)
Safaei, Homayon
2009-08-01
The Kazerun (or Kazerun-Qatar) fault system is a north-trending dextral strike-slip fault zone in the Zagros mountain belt of Iran. It probably originated as a structure in the Panafrican basement. This fault system played an important role in the sedimentation and deformation of the Phanerozoic cover sequence and is still seismically active. No previous studies have reported the continuation of this important and ancient fault system northward across the Sanandaj-Sirjan zone. The Isfahan fault system is a north-trending dextral strike-slip fault across the Sanandaj-Sirjan zone that passes west of Isfahan city and is here recognized for the first time. This important fault system is about 220 km long and is seismically active in the basement as well as the sedimentary cover sequence. This fault system terminates to the south near the Main Zagros Thrust and to the north at the southern boundary of the Urumieh-Dokhtar zone. The Isfahan fault system is the boundary between the northern and southern parts of Sanandaj-Sirjan zone, which have fundamentally different stratigraphy, petrology, geomorphology, and geodynamic histories. Similarities in the orientations, kinematics, and geologic histories of the Isfahan and Kazerun faults and the way they affect the magnetic basement suggest that they are related. In fact, the Isfahan fault is a continuation of the Kazerun fault across the Sanandaj-Sirjan zone that has been offset by about 50 km of dextral strike-slip displacement along the Main Zagros Thrust.
NASA Astrophysics Data System (ADS)
Hsieh, S. Y.; Neubauer, F.; Genser, J.
2012-04-01
The aim of this project is to study the surface expression of strike-slip faults with main aim to find rules how these structures can be extrapolated to depth. In the first step, several basic properties of the fault architecture are in focus: (1) Is it possible to define the fault architecture by studying surface structures of the damage zone vs. the fault core, particularly the width of the damage zone? (2) Which second order structures define the damage zone of strike-slip faults, and how relate these to such reported in basement fault strike-slip analog experiments? (3) Beside classical fault bend structures, is there a systematic along-strike variation of the damage zone width and to which properties relates the variation of the damage zone width. We study the above mentioned properties on the dextral Altyn fault, which is one of the largest strike-slip on Earth with the advantage to have developed in a fully arid climate. The Altyn fault includes a ca. 250 to 600 m wide fault valley, usually with the trace of actual fault in its center. The fault valley is confined by basement highs, from which alluvial fans develop towards the center of the fault valley. The active fault trace is marked by small scale pressure ridges and offset of alluvial fans. The fault valley confining basement highs are several kilometer long and ca. 0.5 to 1 km wide and confined by rotated dextral anti-Riedel faults and internally structured by a regular fracture pattern. Dextral anti-Riedel faults are often cut by Riedel faults. Consequently, the Altyn fault comprises a several km wide damage zone. The fault core zone is a barrier to fluid flow, and the few springs of the region are located on the margin of the fault valley implying the fractured basement highs as the reservoir. Consequently, the southern Silk Road was using the Altyn fault valley. The preliminary data show that two or more orders of structures exist. Small-scale develop during a single earthquake. These finally accumulate to a several 100 m wide fault core, which is in part exposed at surface to arid climate and a km wide damage zone. The basic structures of analog experiments can be well transferred to nature, although along strike changes are common due to fault bending and fracture failure of country rocks.
Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Prentice, C.S.; Sickler, R.R.
2013-01-01
The San Francisco Public Utilities Commission is seismically retrofitting the water delivery system at San Andreas Lake, San Mateo County, California, where the reservoir intake system crosses the San Andreas Fault (SAF). The near-surface fault location and geometry are important considerations in the retrofit effort. Because the SAF trends through highly distorted Franciscan mélange and beneath much of the reservoir, the exact trace of the 1906 surface rupture is difficult to determine from surface mapping at San Andreas Lake. Based on surface mapping, it also is unclear if there are additional fault splays that extend northeast or southwest of the main surface rupture. To better understand the fault structure at San Andreas Lake, the U.S. Geological Survey acquired a series of seismic imaging profiles across the SAF at San Andreas Lake in 2008, 2009, and 2011, when the lake level was near historical lows and the surface traces of the SAF were exposed for the first time in decades. We used multiple seismic methods to locate the main 1906 rupture zone and fault splays within about 100 meters northeast of the main rupture zone. Our seismic observations are internally consistent, and our seismic indicators of faulting generally correlate with fault locations inferred from surface mapping. We also tested the accuracy of our seismic methods by comparing our seismically located faults with surface ruptures mapped by Schussler (1906) immediately after the April 18, 1906 San Francisco earthquake of approximate magnitude 7.9; our seismically determined fault locations were highly accurate. Near the reservoir intake facility at San Andreas Lake, our seismic data indicate the main 1906 surface rupture zone consists of at least three near-surface fault traces. Movement on multiple fault traces can have appreciable engineering significance because, unlike movement on a single strike-slip fault trace, differential movement on multiple fault traces may exert compressive and extensional stresses on built structures within the fault zone. Such differential movement and resulting distortion of built structures appear to have occurred between fault traces at the gatewell near the southern end of San Andreas Lake during the 1906 San Francisco earthquake (Schussler, 1906). In addition to the three fault traces within the main 1906 surface rupture zone, our data indicate at least one additional fault trace (or zone) about 80 meters northeast of the main 1906 surface rupture zone. Because ground shaking also can damage structures, we used fault-zone guided waves to investigate ground shaking within the fault zones relative to ground shaking outside the fault zones. Peak ground velocity (PGV) measurements from our guided-wave study indicate that ground shaking is greater at each of the surface fault traces, varying with the frequency of the seismic data and the wave type (P versus S). S-wave PGV increases by as much as 5–6 times at the fault traces relative to areas outside the fault zone, and P-wave PGV increases by as much as 3–10 times. Assuming shaking increases linearly with increasing earthquake magnitude, these data suggest strong shaking may pose a significant hazard to built structures that extend across the fault traces. Similarly complex fault structures likely underlie other strike-slip faults (such as the Hayward, Calaveras, and Silver Creek Faults) that intersect structures of the water delivery system, and these fault structures similarly should be investigated.
Mechanics of distributed fault and block rotation
NASA Technical Reports Server (NTRS)
Nur, A.; Scotti, O.; Ron, H.
1989-01-01
Paleomagnetic data, structural geology, and rock mechanics are used to explore the validity and significance of the block rotation concept. The analysis is based on data from Northern Israel, where fault slip and spacing are used to predict block rotation; the Mojave Desert, with well documented strike-slip sets; the Lake Mead, Nevada fault system with well-defined sets of strike-slip faults; and the San Gabriel Mountains domain with a multiple set of strike-slip faults. The results of the analysis indicate that block rotations can have a profound influence on the interpretation of geodetic measurments and the inversion of geodetic data. Furthermore, the block rotations and domain boundaries may be involved in creating the heterogeneities along active fault systems which may be responsible for the initiation and termination of earthquake rupture.
Subduction and Plate Edge Tectonics in the Southern Caribbean
NASA Astrophysics Data System (ADS)
Levander, A.; Schmitz, M.; Niu, F.; Bezada, M. J.; Miller, M. S.; Masy, J.; Ave Lallemant, H. G.; Pindell, J. L.; Bolivar Working Group
2013-05-01
The southern Caribbean plate boundary consists of a subduction zone at at either end of a complex strike-slip fault system: In the east at the Lesser Antilles subduction zone, the Atlantic part of the South American plate subducts beneath the Caribbean. In the north and west in the Colombia basin, the Caribbean subducts under South America. In a manner of speaking, the two plates subduct beneath each other. Finite-frequency teleseismic P-wave tomography confirms this, imaging the Atlantic and the Caribbean plates subducting steeply in opposite directions to transition zone depths under northern South America (Bezada et al, 2010). The two subduction zones are connected by the El Pilar-San Sebastian strike-slip fault system, a San Andreas scale system that has been cut off at the Bocono fault, the southeastern boundary fault of the Maracaibo block. A variety of seismic probes identify subduction features at either end of the system (Niu et al, 2007; Clark et al., 2008; Miller et al. 2009; Growdon et al., 2009; Huang et al., 2010; Masy et al, 2011). The El Pilar system forms at the southeastern corner of the Antilles subduction zone with the Atlantic plate tearing from South America. The deforming plate edges control mountain building and basin formation at the eastern end of the strike-slip system. Tearing the Atlantic plate from the rest of South America appears to cause further lithospheric instability continentward. In northwestern South America the Caribbean plate very likely also tears, as its southernmost element subducts at shallow angles under northernmost Colombia but then rapidly descends to the transition zone under Lake Maracaibo (Bezada et al., 2010). We believe that the flat slab controls the tectonics of the Neogene Merida Andes, Perija, and Santa Marta ranges. The nonsubducting part of the Caribbean plate also underthrusts northern Venezuela to about the width of the coastal mountains (Miller et al., 2009). We infer that the edge of the underthrust Caribbean plate supports the elevations of the coastal mountains and controls continuing deformation.
Subsurface structures of the active reverse fault zones in Japan inferred from gravity anomalies.
NASA Astrophysics Data System (ADS)
Matsumoto, N.; Sawada, A.; Hiramatsu, Y.; Okada, S.; Tanaka, T.; Honda, R.
2016-12-01
The object of our study is to examine subsurface features such as continuity, segmentation and faulting type, of the active reverse fault zones. We use the gravity data published by the Gravity Research Group in Southwest Japan (2001), the Geographical Survey Institute (2006), Yamamoto et al. (2011), Honda et al. (2012), and the Geological Survey of Japan, AIST (2013) in this study. We obtained the Bouguer anomalies through terrain corrections with 10 m DEM (Sawada et al. 2015) under the assumed density of 2670 kg/m3, a band-pass filtering, and removal of linear trend. Several derivatives and structural parameters calculated from a gravity gradient tensor are applied to highlight the features, such as a first horizontal derivatives (HD), a first vertical derivatives (VD), a normalized total horizontal derivative (TDX), a dip angle (β), and a dimensionality index (Di). We analyzed 43 reverse fault zones in northeast Japan and the northern part of southwest Japan among major active fault zones selected by Headquarters for Earthquake Research Promotion. As the results, the subsurface structural boundaries clearly appear along the faults at 21 faults zones. The weak correlations appear at 13 fault zones, and no correlations are recognized at 9 fault zones. For example, in the Itoigawa-Shizuoka tectonic line, the subsurface structure boundary seems to extend further north than the surface trace. Also, a left stepping structure of the fault around Hakuba is more clearly observed with HD. The subsurface structures, which detected as the higher values of HD, are distributed on the east side of the surface rupture in the north segments and on the west side in the south segments, indicating a change of the dip direction, the east dipping to the west dipping, from north to south. In the Yokote basin fault zone, the subsurface structural boundary are clearly detected with HD, VD and TDX along the fault zone in the north segment, but less clearly in the south segment. Also, Di implies the existence of 3D-like structure with E-W trend around the segment boundary. The distribution of dip angle β along the fault zone implies a reverse faulting, corresponding to the faulting type of this fault zone reported by previous studies.
NASA Astrophysics Data System (ADS)
Barnes, H.; Spinelli, G. A.; Mozley, P.
2015-12-01
Fault-zones are an important control on fluid flow, affecting groundwater supply, hydrocarbon/contaminant migration, and waste/carbon storage. However, current models of fault seal are inadequate, primarily focusing on juxtaposition and entrainment effects, despite the recognition that fault-zone cementation is common and can dramatically reduce permeability. We map the 3D cementation patterns of the variably cemented Loma Blanca fault from the land surface to ~40 m depth, using electrical resistivity and induced polarization (IP). The carbonate-cemented fault zone is a region of anomalously low normalized chargeability, relative to the surrounding host material. Zones of low-normalized chargeability immediately under the exposed cement provide the first ground-truth that a cemented fault yields an observable IP anomaly. Low-normalized chargeability extends down from the surface exposure, surrounded by zones of high-normalized chargeability, at an orientation consistent with normal faults in the region; this likely indicates cementation of the fault zone at depth, which could be confirmed by drilling and coring. Our observations are consistent with: 1) the expectation that carbonate cement in a sandstone should lower normalized chargeability by reducing pore-surface area and bridging gaps in the pore space, and 2) laboratory experiments confirming that calcite precipitation within a column of glass beads decreases polarization magnitude. The ability to characterize spatial variations in the degree of fault-zone cementation with resistivity and IP has exciting implications for improving predictive models of the hydrogeologic impacts of cementation within faults.
Premo, Wayne R.; Morton, Douglas M.; Kistler, Ronald W.
2014-01-01
Nine U-Pb zircon ages were determined on plutonic rocks sampled from surface outcrops and rock chips of drill core from boreholes within the greater Los Angeles Basin region. In addition, lead-strontium-neodymium (Pb-Sr-Nd) whole-rock isotopic data were obtained for eight of these samples. These results help to characterize the crystalline basement rocks hidden in the subsurface and provide information that bears on the tectonic history of the myriad of fault systems that have dissected the Los Angeles region over the past 15 m.y. Seven of the nine samples have U-Pb ages ranging from 115 to 103 Ma and whole-rock Pb-Sr-Nd isotopic characteristics that indicate the crystalline basement underneath the greater Los Angeles Basin region is mostly part of the Peninsular Ranges batholith. Furthermore, these data are interpreted as evidence for (1) the juxtaposition of mid-Cretaceous, northern Peninsular Ranges batholith plutonic rocks against Late Cretaceous plutonic rocks of the Transverse Ranges in the San Fernando Valley, probably along the Verdugo fault; (2) the juxtaposition of older northwestern Peninsular Ranges batholith rocks against younger northeastern Peninsular Ranges batholith rocks in the northern Puente Hills, implying transposition of northeastern Peninsular Ranges batholith rocks to the west along unrecognized faults beneath the Chino Basin; and (3) juxtaposition of northern Peninsular Ranges batholith plutonic rocks against Late Cretaceous plutonic rocks of the Transverse Ranges along the San Jose fault in the northern San Jose Hills at Ganesha Park. These mainly left-lateral strike-slip faults of the eastern part of the greater Los Angeles Basin region could be the result of block rotation within the adjacent orthogonal, right-lateral, Elsinore-Whittier fault zone to the west and the subparallel San Jacinto fault zone to the east. The San Andreas fault system is the larger, subparallel, driving force further to the east.
Tectonics and Relative Plate Motions Around the Andaman Sea and Sumatra
NASA Astrophysics Data System (ADS)
Eguchi, T.; Murakoshi, T.
2005-12-01
There are several R-F-R models of the active back-arc opening system in the Andaman Sea proposed by authors, e.g., Curray et al. (1978), Eguchi et al. (1979), Eguchi (1991), Mantovani et al. (2001) and Nielsen et al. (2004). Most of the previous authors, except Eguchi et al. (1978) and Eguchi (1991), documented NW-SE or NNW-SSE striking relative plate motion at the Central Andaman Rift. Recent multi-beam bathymetry study by GEODYSSEA Project group confirmed the detailed configuration of the ENE-WSW striking Central Andaman Rift and adjacent transcurrent faults. All of data from the marine survey and recent shallow earthquakes as well as their strike-slip type focal mechanisms along the N-S striking fault segment at 95.2E from 11N to 12.5N support the approximate N-S opening at the adjacent Central Andaman Rift. The magnetic anomaly survey data of Curray et al. (1978) suggest that, in the case of N-S opening, the rate becomes 4.0 cm/y, although Curray et al. (1978) proposed the total rate of 3.7 cm/y in the case of NNW-SSE opening. We then studied the realistic geometry of plate boundaries from Sumatra through the Andaman sea including the Central Andaman Rift to Myanmar, using recent seismological data and GPS studies. As is important, the Sundaland is not part of the Eurasia plate as revealed by recent GPS surveys. Furthermore, based on data of GPS velocity vectors w.r.t. Eurasia plate (e.g., Pradirodirdjo et al., 1997; Michel et. al., 2001), we can recognize some differential motion within the NW-SE striking fore-arc block, which is bounded by the Sumatra transcurrent fault and Java trench. The GPS data indicate 'differential motion' in both the trench-parallel and trench-normal directions within the NW-SE striking fore-arc block. We must resolve whether such kind differential movement within the fore-arc block is steady or not, to investigate the detailed spatio-temporal nature of dynamic coupling at the subduction zones with intermittent activity of larger interplate seismic events. We have constrained 'plate motion polygons' at selected points by modifying the result of Eguchi (1991). For example, by assuming the NUVEL 1 model and introducing the shear faulting with the averaged rate of 2.6 cm/y along the Sumatra fault system, we obtained the ENE-WSW plate convergence with the rate of 1.2 cm/y at 12N and the convergence of 3.0 +- 0.3 cm/y at 5N, between the Indo-Australia plate and the fore-arc block at the western Java trench subduction zone. We, however, cannot constrain the instantaneous rotation vectors of the relative plate motions, mainly because of limited observation data.
Holbrook, W.S.; Brocher, T.M.; ten Brink, Uri S.; Hole, J.A.
1996-01-01
Wide-angle seismic data collected during the Bay Area Seismic Imaging Experiment provide new glimpses of the deep structure of the San Francisco Bay Area Block and across the offshore continental margin. San Francisco Bay is underlain by a veneer (<300 m) of sediments, beneath which P wave velocities increase rapidly from 5.2 km/s to 6.0 km/s at 7 km depth, consistent with rocks of the Franciscan subduction assemblage. The base of the Franciscan at-15-18 km depth is marked by a strong wide-angle reflector, beneath which lies an 8- to 10-km-thick lower crust with an average velocity of 6.75??0.15 km/s. The lower crust of the Bay Area Block may be oceanic in origin, but its structure and reflectivity indicate that it has been modified by shearing and/or magmatic intrusion. Wide-angle reflections define two layers within the lower crust, with velocities of 6.4-6.6 km/s and 6.9-7.3 km/s. Prominent subhorizontal reflectivity observed at near-vertical incidence resides principally in the lowermost layer, the top of which corresponds to the "6-s reflector" of Brocher et al. [1994]. Rheological modeling suggests that the lower crust beneath the 6-s reflector is the weakest part of the lithosphere; the horizontal shear zone suggested by Furlong et al. [1989] to link the San Andreas and Hayward/Calaveras fault systems may actually be a broad zone of shear deformation occupying the lowermost crust. A transect across the continental margin from the paleotrench to the Hayward fault shows a deep crustal structure that is more complex than previously realized. Strong lateral variability in seismic velocity and wide-angle reflectivity suggests that crustal composition changes across major transcurrent fault systems. Pacific oceanic crust extends 40-50 km landward of the paleotrench but, contrary to prior models, probably does not continue beneath the Salinian Block, a Cretaceous arc complex that lies west of the San Andreas fault in the Bay Area. The thickness (10 km) and high lower-crustal velocity of Pacific oceanic crust suggest that it was underplated by magmatism associated with the nearby Pioneer seamount. The Salinian Block consists of a 15-km-thick layer of velocity 6.0-6.2 km/s overlying a 5-km-thick, high-velocity (7.0 km/s) lower crust that may be oceanic crust, Cretaceous arc-derived lower crust, or a magmatically underplated layer. The strong structural variability across the margin attests to the activity of strike-slip faulting prior to and during development of the transcurrent Pacific/North American plate boundary around 29 Ma. Copyright 1996 by the American Geophysical Union.
Robinson, L.N.; Barnum, B.E.
1986-01-01
The Lake Basin fault zone consists mainly of en echelon NE-striking normal faults that have been interpreted to be surface expressions of left-lateral movement along a basement wrench fault. Information gathered from recent field mapping of coal beds and from shallow, closely-spaced drill holes resulted in detailed coal bed correlations, which revealed another linear zone of en echelon faulting directly on the extended trend of the Lake Basin fault zone. This faulted area, referred to as the Sarpy Creek area, is located 48 km E of Hardin, Montana. It is about 16 km long, 13 km wide, and contains 21 en echelon normal faults that have an average strike of N 63oE. We therefore extend the Lake Basin fault zone 32 km farther SE than previously mapped to include the Sarpy Creek area. The Ash Creek oil field, Wyoming, 97 km due S of the Sarpy Creek area, produces from faulted anticlinal structues that have been interpreted to be genetically related to the primary wrench-fault system known as the Nye-Bowler fault zone. The structural similarities between the Sarpy Creek area and the Ash Creek area indicate that the Sarpy Creek area is a possible site for hydrocarbon accumulation.-from Authors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dillon, J.T.; Haxel, G.B.; Tosdal, R.M.
1990-11-10
The Late Cretaceous Chocolate Mountains thrust of southeastern California and southwestern Arizona places a block of Proterozoic and Mesozoic continental crust over the late Mesozoic continental margin oceanic sedimentary and volcanic rocks of the regionally distinctive Orocopia Schist. The Chocolate Mountains thrust is interpreted as a thrust (burial, subduction) fault rather than a low-angle normal (exhumation, unroofing, uplift) fault. The Chocolate Mountains thrust zone contains sparse to locally abundant mesoscopic asymmetric folds. Fabric relations indicate that these folds are an integral part of and coeval with the thrust zone. On a lower hemisphere equal-area plot representing the orientation and sensemore » of asymmetry of 80 thrust zone folds from 36 localities, spread over an area 60 by 10 km, Z folds plot northwest of and S folds plot southeast of a northeast-southwest striking vertical plane of overall monoclinic symmetry. The only sense of movement consistent with the collective asymmetry of the thrust zone folds is top to the northeast. Paleomagnetic data suggest that the original sense of thrusting, prior to Neogene vertical axis tectonic rotation related to the San Andreas fault system, was northward. The essential point is that movement of the upper plate of the Chocolate Mountains thrust evidently was continentward. Continentward thrusting suggests a tectonic scenario in which an insular or peninsular microcontinental fragment collided with mainland southern California. Alternative tectonic models involving subduction of the Orocopia Schist eastward beneath continental southern California circumvent the suture problem but are presently not supported by any direct structural evidence.« less
The offshore Palos Verdes fault zone near San Pedro, Southern California
Fisher, M.A.; Normark, W.R.; Langenheim, V.E.; Calvert, A.J.; Sliter, R.
2004-01-01
High-resolution seismic-reflection data are combined with a variety of other geophysical and geological data to interpret the offshore structure and earthquake hazards of the San Pedro shelf, near Los Angeles, California. Prominent structures investigated include the Wilmington graben, the Palos Verdes fault zone, various faults below the west part of the San Pedro shelf and slope, and the deep-water San Pedro basin. The structure of the Palos Verdes fault zone changes markedly along strike southeastward across the San Pedro shelf and slope. Under the north part of the shelf, this fault zone includes several strands, with the main strand dipping west. Under the slope, the main fault strands exhibit normal separation and mostly dip east. To the southeast near Lasuen Knoll, the Palos Verdes fault zone locally is low angle, but elsewhere near this knoll, the fault dips steeply. Fresh seafloor scarps near Lasuen Knoll indicate recent fault movement. We explain the observed structural variation along the Palos Verdes fault zone as the result of changes in strike and fault geometry along a master right-lateral strike-slip fault at depth. Complicated movement along this deep fault zone is suggested by the possible wave-cut terraces on Lasuen Knoll, which indicate subaerial exposure during the last sea level lowstand and subsequent subsidence of the knoll. Modeling of aeromagnetic data indicates a large magnetic body under the west part of the San Pedro shelf and upper slope. We interpret this body to be thick basalt of probable Miocene age. This basalt mass appears to have affected the pattern of rock deformation, perhaps because the basalt was more competent during deformation than the sedimentary rocks that encased the basalt. West of the Palos Verdes fault zone, other northwest-striking faults deform the outer shelf and slope. Evidence for recent movement along these faults is equivocal, because we lack age dates on deformed or offset sediment.
Wells, Ray E.; Hillhouse, John W.
1989-01-01
We have determined remanent magnetization directions of the lower Miocene Peach Springs Tuff at 41 localities in western Arizona and southeastern California. An unusual northeast and shallow magnetization direction confirms the proposed geologic correlation of isolated outcrops of the tuff from the Colorado Plateau to Barstow, California, a distance of 350 km. The Peach Springs Tuff was apparently emplaced as a single cooling unit about 18 or 19 Ma and is now exposed in 4 tectonic provinces west of the Plateau, including the Transition Zone, Basin and Range, Colorado River extensional corridor, and central Mojave Desert strike-slip zone. As such, the tuff is an ideal stratigraphic and structural marker for paleomagnetic assessment of regional variations in tectonic rotations about vertical axes. From 4 sites on the stable Colorado Plateau, we have determined a reference direction of remanent magnetization (I = 36.4°, D = 33.0°, α95 = 3.4°) that we interpret as a representation of the ambient magnetic field at the time of eruption. A steeper direction of magnetization (I = 54.8°, D = 22.5°, α95 = 2.3°) was observed at Kingman where the tuff is more than 100 m thick, and similar directions were determined at 7 other thick exposures of the Peach Springs Tuff. The steeper component is presumably a later-stage magnetization acquired after prolonged cooling of the ignimbrite. When compared to the Plateau reference direction, tilt-corrected directions from 3 of 6 sites in the central Mojave strike-slip zone show localized rotations up to 13° in the vicinity of strike-slip faults. The other three sites show no significant rotations with respect to the Colorado Plateau. Both clockwise and counterclockwise rotations were measured, and no systematic regional pattern is evident. Our results do not support kinematic models which require consistent rotation of large regions to accommodate the cumulative displacement of major post-middle Miocene strike-slip faults in the central Mojave Desert. Most of our sites in the Transition Zone and Basin and Range province have had no significant rotation, although small counterclockwise rotation in the McCullough and New York Mountains may be related to sinistral shear along en echelon faults southwest of the Lake Mead shear zone. The larger rotations occur in the Colorado River extensional corridor, where 8 of 14 sites show rotations ranging from 37° clockwise to 51° counterclockwise. These rotations occur in allochthonous tilt blocks which have been transported northeastward above the Chemehuevi-Whipple Mountains detachment fault. Upper-plate blocks within 1 km of the exposed detachment unexpectedly show no significant rotation. From this relation, we infer that rotations are accommodated along numerous low-angle faults at higher structural levels above the detachment surface.
Mantle convection pattern and subcrustal stress field under Asia
NASA Technical Reports Server (NTRS)
Liu, H.-S.
1978-01-01
Satellite tracking and surface gravity data are used to model the subcrustal stress fields in the terrestrial mantle beneath Asia; the results permit interpretation of the tectonic and seismic systems in China. The east and west China blocks, together with five seismic zones, are identified and related to metallogenic domains on the Chinese mainland. In addition, it is shown that the subcrustal stresses beneath China are arranged perpendicularly to the major fault systems and seismic belts. Stress calculations indicate a notable zone of compression in north China, associated with the Shansi Graben, the Linfen Basin Systems and, possibly, the high seismicity of the region.
NASA Astrophysics Data System (ADS)
Seghedi, Ioan; Helvacı, Cahit; Pécskay, Zoltan
2015-01-01
During the Early-Middle Miocene (Western Anatolia) several volcanic fields occur along a NE-SW-trending shear zone, known as İzmir-Balıkesir Transfer Zone. This is a deformed crustal-scale sinistral strike-slip fault zone crossing the Bornova flysch and extending along the NW-boundary of the Menderes Massif by accommodating the differential deformation between the Cycladic and Menderes core complexes within the Aegean extensional system. Here we discuss the volcanic activity in Yamanlar and Yuntdağı fields that is closely related to the extensional tectonics of the İzmir-Balıkesir Transfer Zone and in the same time with the episodic core complex denudation of the Menderes Massif. This study documents two composite volcanoes (Yamanlar and Yuntdağı), whose present vent area is strongly eroded and cut by a variety of strike-slip and normal fault systems, the transcurrent NW-SE being the dominant one. The erosional remnants of the vent areas, resembling a shallow crater intrusive complex, illustrate the presence of numerous dykes or variably sized neck-like intrusions and lava flows, typically associated with hydrothermal alteration processes (propylitic and argillic). Such vent areas were observed in both the examined volcanic fields, having ~ 6 km in diameter and being much more eroded toward the south, along the NW-SE fault system. Lava flows and lava domes are sometimes associated with proximal block and ash flow deposits. In the cone-building association part, besides lava flows and remnants of lava domes, rare block and ash and pumice-rich pyroclastic flow deposits, as well as a series of debris-flow deposits, have been observed. The rocks display a porphyritic texture and contain various proportions of plagioclase, clinopyroxene, orthopyroxene, amphibole, rare biotite and corroded quartz. The examined rocks fall at the limit between calc-alkaline to alkaline field, and plot predominantly in high-K andesite and dacite fields and one is rhyolite. The trace element distribution suggests fractional crystallization processes and mixing in upper crustal magma chambers and suggests a metasomatized lithospheric mantle/lower crust source. This preliminary volcanological-petrological and geochronological base study allowed documenting the Yamanlar and Yuntdağı as composite volcanoes generated during post-collisional Early-Middle Miocene transtensional tectonic movements.
NASA Astrophysics Data System (ADS)
Adib, Ahmad; Afzal, Peyman; Mirzaei Ilani, Shapour; Aliyari, Farhang
2017-10-01
The aim of this study is to determine a relationship between zinc mineralization and a major fault in the Behabad area, central Iran, using the Concentration-Distance to Major Fault (C-DMF), Area of Mineralized Zone-Distance to Major Fault (AMZ-DMF), and Concentration-Area (C-A) fractal models for Zn deposit/mine classification according to their distance from the Behabad fault. Application of the C-DMF and the AMZ-DMF models for Zn mineralization classification in the Behabad fault zone reveals that the main Zn deposits have a good correlation with the major fault in the area. The distance from the known zinc deposits/mines with Zn values higher than 29% and the area of the mineralized zone of more than 900 m2 to the major fault is lower than 1 km, which shows a positive correlation between Zn mineralization and the structural zone. As a result, the AMZ-DMF and C-DMF fractal models can be utilized for the delineation and the recognition of different mineralized zones in different types of magmatic and hydrothermal deposits.
Paleoseismic study of the Cathedral Rapids fault in the northern Alaska Range near Tok, Alaska
NASA Astrophysics Data System (ADS)
Koehler, R. D.; Farrell, R.; Carver, G. A.
2010-12-01
The Cathedral Rapids fault extends ~40 km between the Tok and Robertson River valleys and is the easternmost fault in a series of active south-dipping imbricate thrust faults which bound the northern flank of the Alaska Range. Collectively, these faults accommodate a component of convergence transferred north of the Denali fault and related to the westward (counterclockwise) rotation of the Wrangell Block driven by relative Pacific/North American plate motion along the eastern Aleutian subduction zone and Fairweather fault system. To the west, the system has been defined as the Northern Foothills Fold and Thrust Belt (NFFTB), a 50-km-wide zone of east-west trending thrust faults that displace Quaternary deposits and have accommodated ~3 mm/yr of shortening since latest Pliocene time (Bemis, 2004). Over the last several years, the eastward extension of the NFFTB between Delta Junction and the Canadian border has been studied by the Alaska Division of Geological & Geophysical Surveys to better characterize faults that may affect engineering design of the proposed Alaska-Canada natural gas pipeline and other infrastructure. We summarize herein reconnaissance field observations along the western part of the Cathedral Rapids fault. The western part of the Cathedral Rapids fault extends 21 km from Sheep Creek to Moon Lake and is characterized by three roughly parallel sinuous traces that offset glacial deposits of the Illinoian to early Wisconsinan Delta glaciations and the late Wisconsinan Donnelly glaciation, as well as, Holocene alluvial deposits. The northern trace of the fault is characterized by an oversteepened, beveled, ~2.5-m-high scarp that obliquely cuts a Holocene alluvial fan and projects into the rangefront. Previous paleoseismic studies along the eastern part of the Cathedral Rapids fault and Dot “T” Johnson fault indicate multiple latest Pleistocene and Holocene earthquakes associated with anticlinal folding and thrust faulting (Carver et al., 2010). Combined with this previous work, our paleoseismic assessment of the western Cathedral Rapids fault, including trenching in fall 2010, may contribute to increasing the understanding of the style and timing of deformation for faults bounding the northern flank of the Alaska Range. These data may also provide insight into the eastern extent of the NFFTB and its role in accommodating regional shortening.
Significant Shear Preceded Rupture in the Oblique Gulf of California Rift
NASA Astrophysics Data System (ADS)
Bennett, S. E.; Oskin, M. E.
2011-12-01
Significant shear deformation during the early history of a rift may profoundly affect the efficiency and success of lithospheric rupture and formation of a new ocean basin. The active Gulf of California (GOC) rift is well suited to study the role of rift obliquity in continental rupture. Transtensional strain in the GOC is accommodated along en-echelon pull-apart basins bounded by dip-slip and oblique-slip faults and linked by strike-slip faults and accommodation zones. Lithospheric rupture is well documented at ca. 6 Ma when >90% of Pacific-North American relative plate motion localized into the GOC. In the northern GOC, the eastern rift margin of the Upper Delfín-Upper Tiburón rift segment preserves an onshore record of the earliest phase of this localization process. Two NW-striking shear zones bound this rift segment, spaced ~37 km apart. Our geologic mapping, paleomagnetic measurements, and geochronology of pre-rift and syn-rift volcanic and sedimentary rocks provide timing and displacement constraints for these shear zones. The Coastal Sonora Fault Zone, exposed on northeast Isla Tiburón and in adjacent coastal Sonora, helped form and then truncate transtensional non-marine basins beginning ca. 7 Ma. On northeast Isla Tiburón, Tertiary units do not match across the ~10 km long Yawassag fault, providing a minimum estimate for total dextral displacement. In coastal Sonora, we document ~12 km of discrete dextral displacement, clockwise block rotations up to 53°, and up to 75% extension that together accommodated 15.7 km of transtensional strain towards azimuth 294° over a 1 Myr period. These estimates do not include tens of kilometers of dextral displacement on the Sacrificio fault that bounds the NE side of this shear zone. The southern of the two shear zones is the La Cruz fault, which transects southern Isla Tiburón. Associated dextral transpression and transtension formed the elongate Southwest Isla Tiburón-Sauzal basin. This basin transitions from non-marine in the SE to marine in the NW where fossil-rich marine sandstone and conglomerate is underlain by a 6.7 ± 0.8 Ma tuff. The base of the marine basin displays ~1 km of dextral displacement, while Early Miocene volcanic and sedimentary rocks are offset tens of kilometers. This displacement history supports significant proto-Gulf shear along the La Cruz fault. Overall, our results suggest that significant shearing along strike-slip faults initiated by ca. 7 Ma, at least 1 Myr prior and proximal to the locus of continental rupture in the GOC. Thus far, this documents the easternmost and earliest phase of rift-related shear at this latitude. We hypothesize that progressive localization of dextral shear into a broader region of extension may act as a catalyst for lithospheric rupture. Such a configuration would resemble how the dextral Walker Lane has become embedded within the extensional Basin and Range Province. We envision that normal faults kinematically linked to strike-slip faults are able to localize crustal thinning and overcome negative feedback processes that otherwise lead to formation of wide rifts. Thus, shearing on strike-slip faults may have been a critical mechanism for strain localization and efficient lithospheric thinning that preceded and eventually led to continental rupture in the Gulf of California.
Proterozoic deformation of the East Saharan Craton in Southeast Libya, South Egypt and North Sudan
NASA Astrophysics Data System (ADS)
Schandelmeier, H.; Richter, A.; Harms, U.
1987-09-01
The basement areas in Southeast Libya, South Egypt and North Sudan, west of the Nile, between Gebel Uweinat and the Bayuda Desert, are part of an approximately 1000-km-wide, complexly folded, polymetamorphic zone with a regional N-NNE-NE-ENE trend of foliation and fold axis. Since this belt extends southwestward into the area of Zalingei in the southern Darfur block (West Sudan), it is named the Northern Zalingei fold zone. Sr and Nd isotopic studies suggest that this zone is older than Pan-African and further indicate that, apart from Archean rocks in the Gebel Uweinat area, this belt is of Early-Middle Proterozoic age. An Early-Middle Proterozoic three-stage deformational and anatectic event established the present-day fold and fault geometry in the western parts of this zone in the Gebel Uweinat—Gebel Kamil area. The Pan-African tectono-thermal episode was most effective in the eastern part of the belt, near the boundary with the Nubian Shield volcano-sedimentary-ophiolite-granitoid assemblages. It caused migmatization, granite emplacement, mylonitization and large-scale wrench faulting which was related to Late Proterozoic accretionary and collisional events of the Arabian-Nubian Shield with the margin of the East Saharan Craton.
Deformation and Quaternary Faulting in Southeast Missouri across the Commerce Geophysical Lineament
Stephenson, W.J.; Odum, J.K.; Williams, R.A.; Pratt, T.L.; Harrison, R.W.; Hoffman, D.
1999-01-01
High-resolution seismic-reflection data acquired at three sites along the surface projection of the Commerce geophysical lineament in southeast Missouri reveal a complex history of post-Cretaceous faulting that has continued into the Quaternary. Near Qulin, Missouri, approximately 20 m of apparent vertical fault displacement has occurred in the Quaternary. Reflection data collected at Idalia Hill, about 45 km to the northeast, reveal a series of reverse and possibly right-lateral strike-slip faults with Quaternary displacement. In the Benton Hills, 45 km northeast of Idalia Hill, seismic data image a complicated series of anticlinal and synclinal fault-bounded blocks immediately north of the Commerce fault. We infer that most of the deformation imaged in the upper 400 m of these three data sets occurred since post-Cretaceous time, and a significant portion of it occurred during Quaternary time. Collectively, these seismic data along with geomorphic and surface-geologic evidence suggest (1) the existence of at least one potential seismogenic structure in southeastern Missouri outside the main zones of New Madrid seismicity, and (2) these structures have been active during the Quaternary. The geographic location of the imaged deformation suggests it is related to structures along with the Commerce geophysical lineament.
Talc friction in the temperature range 25°–400 °C: relevance for fault-zone weakening
Moore, Diane E.; Lockner, David A.
2008-01-01
Talc has a temperature–pressure range of stability that extends from surficial to eclogite-facies conditions, making it of potential significance in a variety of faulting environments. Talc has been identified in exhumed subduction zone thrusts, in fault gouge collected from oceanic transform and detachment faults associated with rift systems, and recently in serpentinite from the central creeping section of the San Andreas fault. Typically, talc crystallized in the active fault zones as a result of the reaction of ultramafic rocks with silica-saturated hydrothermal fluids. This mode of formation of talc is a prime example of a fault-zone weakening process. Because of its velocity-strengthening behavior, talc may play a role in stabilizing slip at depth in subduction zones and in the creeping faults of central and northern California that are associated with ophiolitic rocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pigott, J.D.; Geiger, C.
1994-07-01
Recent field reconnaissance, petrography, nanno and foraminifera age determinations, and seismic stratigraphy of the Sepik and Piore subbasins of northern New Guinea reveal the existence of an extensive, tectonically unstable, Miocene-Pliocene carbonate shelf system. These findings represent the first recorded evidence of northern Papuan limestones coeval in age to those of the hydrocarbon productive Salawati Basin of Irian Jaya. Moreover, these observations also demonstrate the significance of episodic activities of the northern New Guinea fault zone upon the changes in carbonate sedimentation and diagenesis. During the Neogene, algal biosparites to foraminiferal biomicrites defined the clean portion of a mixed clastic-carbonatemore » shelf system of the northern New Guinea basin, which began at the central New Guinea cordillera and deepened northward. This shelf was interrupted by coral-coralline algal boundstone fringing- to patch-reef buildups with associated skeletal grainstones. Clean carbonates were spatially and temporally restricted to basement blocks, which episodically underwent uplift while terrigenous dilutes carbonates were more common in adjacently subsiding basement block bathymetric lows. These tectonic expressions were caused by the spatially transient nature of constraining bends of the evolving north New Guinea faults. As shown by seismic stratigraphy, by the late Miocene to the early Pliocene the uplift of the Bewani-Torricelli Mountains sagittally divided the shelf of the northern New Guinea basin into the Ramu-Sepik and the Piore basins. Continued regional sinistral transpression between the Pacific and the New Guinea leading edge of the Indo-Australian plates led to the reverse tilting of the Piore basin, the shallowing of the former distal shelf with concomitant extensive biolithite development (e.g., on subsiding volcanic islands) eventual uplifting of the Oenake Range, and en echelon faulting of the Bewani-Torricelli Mountains.« less
Seismic Velocity Structure across the Hayward Fault Zone Near San Leandro, California
NASA Astrophysics Data System (ADS)
Strayer, L. M.; Catchings, R.; Chan, J. H.; Richardson, I. S.; McEvilly, A.; Goldman, M.; Criley, C.; Sickler, R. R.
2017-12-01
In Fall 2016 we conducted the East Bay Seismic Investigation, a NEHRP-funded collaboration between California State University, East Bay and the United State Geological Survey. The study produced a large volume of seismic data, allowing us to examine the subsurface across the East Bay plain and hills using a variety of geophysical methods. We know of no other survey performed in the past that has imaged this area, at this scale, and with this degree of resolution. Initial models show that seismic velocities of the Hayward Fault Zone (HFZ), the East Bay plain, and the East Bay hills are illuminated to depths of 5-6 km. We used explosive sources at 1-km intervals along a 15-km-long, NE-striking ( 055°), seismic line centered on the HFZ. Vertical- and horizontal-component sensors were spaced at 100 m intervals along the entire profile, with vertical-component sensors at 20 m intervals across mapped or suspected faults. Preliminary seismic refraction tomography across the HFZ, sensu lato, (includes sub-parallel, connected, and related faults), shows that the San Leandro Block (SLB) is a low-velocity feature in the upper 1-3 km, with nearly the same Vp as the adjacent Great Valley sediments to the east, and low Vs values. In our initial analysis we can trace the SLB and its bounding faults (Hayward, Chabot) nearly vertically, to at least 2-4 km depth. Similarly, preliminary migrated reflection images suggest that many if not all of the peripheral reverse, strike-slip and oblique-slip faults of the wider HFZ dip toward the SLB, into a curtain of relocated epicenters that define the HFZ at depth, indicative of a `flower-structure'. Preliminary Vs tomography identifies another apparently weak zone at depth, located about 1.5 km east of the San Leandro shoreline, that may represent the northward continuation of the Silver Creek Fault. Centered 4 km from the Bay, there is a distinctive, 2 km-wide, uplifted, horst-like, high-velocity structure (both Vp & Vs) that bounds the SLB to the west, outboard of the HF. We acquired a 2-D shear-wave velocity results using the multichannel analysis of surface waves (MASW) method on Rayleigh waves generated along the seismic profile. Our MASW result shows 600m depth of investigation, and Vs100 results range from 228m/s to 335m/s at fault zones, which correspond to NEHRP site classification D.
NASA Astrophysics Data System (ADS)
Fu, Yuanyuan V.; Jia, Ruizhi; Han, Fengqin; Chen, Anguo
2018-06-01
The deep structure of southeastern Tibet is important for determining lateral plateau expansion mechanisms, such as movement of rigid crustal blocks along large strike-slip faults, continuous deformation or the eastward crustal channel flow. We invert for 3-D isotropic SH wave velocity model of the crust and upper mantle to the depth of 110 km from Love wave phase velocity data using a best fitting average model as the starting model. The 3-D SH velocity model presented here is the first SH wave velocity structure in the study area. In the model, the Tibetan Plateau is characterized by prominent slow SH wave velocity with channel-like geometry along strike-slip faults in the upper crust and as broad zones in the lower crust, indicating block-like and distributed deformation at different depth. Positive radial anisotropy (VSH > VSV) is suggested by a high SH wave and low SV wave anomaly at the depths of 70-110 km beneath the northern Indochina block. This positive radial anisotropy could result from the horizontal alignment of anisotropic minerals caused by lithospheric extensional deformation due to the slab rollback of the Australian plate beneath the Sumatra trench.
NASA Astrophysics Data System (ADS)
Koyi, Hemin; Nilfouroushan, Faramarz; Hessami, Khaled
2015-04-01
A series of scaled analogue models are run to study the degree of coupling between basement block kinematics and cover deformation. In these models, rigid basal blocks were rotated about vertical axis in a "bookshelf" fashion, which caused strike-slip faulting along the blocks and, to some degrees, in the overlying cover units of loose sand. Three different combinations of cover basement deformations are modeled; cover shortening prior to basement fault movement; basement fault movement prior to shortening of cover units; and simultaneous cover shortening with basement fault movement. Model results show that the effect of basement strike-slip faults depends on the timing of their reactivation during the orogenic process. Pre- and syn-orogen basement strike-slip faults have a significant impact on the structural pattern of the cover units, whereas post-orogenic basement strike-slip faults have less influence on the thickened hinterland of the overlying fold-and-thrust belt. The interaction of basement faulting and cover shortening results in formation of rhomb features. In models with pre- and syn-orogen basement strike-slip faults, rhomb-shaped cover blocks develop as a result of shortening of the overlying cover during basement strike-slip faulting. These rhombic blocks, which have resemblance to flower structures, differ in kinematics, genesis and structural extent. They are bounded by strike-slip faults on two opposite sides and thrusts on the other two sides. In the models, rhomb-shaped cover blocks develop as a result of shortening of the overlying cover during basement strke-slip faulting. Such rhomb features are recognized in the Alborz and Zagros fold-and-thrust belts where cover units are shortened simultaneously with strike-slip faulting in the basement. Model results are also compared with geodetic results obtained from combination of all available GPS velocities in the Zagros and Alborz FTBs. Geodetic results indicate domains of clockwise and anticlockwise rotation in these two FTBs. The typical pattern of structures and their spatial distributions are used to suggest clockwise block rotation of basement blocks about vertical axes and their associated strike-slip faulting in both west-central Alborz and the southeastern part of the Zagros fold-and-thrust belt.
NASA Astrophysics Data System (ADS)
Worthington, Lindsay L.; Gulick, Sean P. S.; Pavlis, Terry L.
Within the northern Gulf of Alaska, the Yakutat (YAK) microplate obliquely collides with and subducts beneath the North American (NA) continent at near-Pacific plate velocities. We investigate the extent that thin-skinned deformation on offshore structures located within the western portion of the unsubducted YAK block accommodates YAK-NA convergence. We compare faulting and folding observed on high-resolution and basin-scale multichannel seismic (MCS) reflection data with earthquake locations and surface ruptures observed on high-resolution bathymetric data. Holocene sediments overlying the Kayak Island fault zone (KIZ), previously interpreted as a region of active contraction, are relatively flat-lying, suggesting that active convergence within the KIZ is waning. Seismic reflection profiles east of KIZ show up to ˜200 m of undisturbed sediments overlying older folds in the Bering Trough, indicating that this area has been tectonically inactive since at least the last ˜1.3 Ma. Farther east, MCS profiles image active deformation in surface sediments along the eastern edge of the Pamplona zone (PZ) fold-and-thrust belt, that are collocated with a concentration of earthquake events that continues southwest to Khitrov Ridge and onshore through Icy Bay. These observations suggest that during the late Quaternary offshore shallow deformation style changed from distributed across the western Yakutat block to localized at the eastern edge of the PZ with extrusion of sediments southwest through the Khitrov Ridge area to the Aleutian Trench. This shallow deformation is interpreted as deformation of an accretionary complex above a shallow decollement.
Laboratory Evidence of Strength Recovery of Healed Faults
NASA Astrophysics Data System (ADS)
Masuda, K.
2015-12-01
Fault zones consist of a fault core and a surrounding damage zone. Fault zones are typically characterized by the presence of many healed surfaces, the strength of which is unknown. If a healed fault recovers its strength such that its cohesion is equal to or greater than that of the host rock, repeated cycles of fracture and healing may be one mechanism producing wide fault zones. I present laboratory evidence supporting the strength recovery of healed fault surface, obtained by AE monitoring, strain measurements and X-ray CT techniques. The loading experiment was performed with a specimen collected from an exhumed fault zone. Healed surfaces of the rock sample were interpreted to be parallel to slip surfaces. The specimen was a cylinder with 50 mm diameter and 100 mm long. The long axis of the specimen was inclined with respect to the orientation of the healed surfaces. The compression test used a constant loading rate under 50 MPa of confining pressure. Macroscopic failure occurred when the applied differential stress reached 439 MPa. The macro-fracture surface created during the experiment was very close to the preexisting plane. The AE hypocenters closely match the locations of the preexisting healed surface and the new fault plane. The experiment also revealed details of the initial stage of fault development. The new fault zone developed near, but not precisely on the preexisting healed fault plane. An area of heterogeneous structure where stress appears to have concentrated, was where the AEs began, and it was also where the fracture started. This means that the healed surface was not a weak surface and that healing strengthened the fault such that its cohesion was equal to or greater than that of the intact host rock. These results suggest that repeated cycles of fracture and healing may be the main mechanism creating wide fault zones with multiple fault cores and damage zones.
Late Quaternary faulting along the Death Valley-Furnace Creek fault system, California and Nevada
Brogan, George E.; Kellogg, Karl; Slemmons, D. Burton; Terhune, Christina L.
1991-01-01
The Death Valley-Furnace Creek fault system, in California and Nevada, has a variety of impressive late Quaternary neotectonic features that record a long history of recurrent earthquake-induced faulting. Although no neotectonic features of unequivocal historical age are known, paleoseismic features from multiple late Quaternary events of surface faulting are well developed throughout the length of the system. Comparison of scarp heights to amount of horizontal offset of stream channels and the relationships of both scarps and channels to the ages of different geomorphic surfaces demonstrate that Quaternary faulting along the northwest-trending Furnace Creek fault zone is predominantly right lateral, whereas that along the north-trending Death Valley fault zone is predominantly normal. These observations are compatible with tectonic models of Death Valley as a northwest-trending pull-apart basin. The largest late Quaternary scarps along the Furnace Creek fault zone, with vertical separation of late Pleistocene surfaces of as much as 64 m (meters), are in Fish Lake Valley. Despite the predominance of normal faulting along the Death Valley fault zone, vertical offset of late Pleistocene surfaces along the Death Valley fault zone apparently does not exceed about 15 m. Evidence for four to six separate late Holocene faulting events along the Furnace Creek fault zone and three or more late Holocene events along the Death Valley fault zone are indicated by rupturing of Q1B (about 200-2,000 years old) geomorphic surfaces. Probably the youngest neotectonic feature observed along the Death Valley-Furnace Creek fault system, possibly historic in age, is vegetation lineaments in southernmost Fish Lake Valley. Near-historic faulting in Death Valley, within several kilometers south of Furnace Creek Ranch, is represented by (1) a 2,000-year-old lake shoreline that is cut by sinuous scarps, and (2) a system of young scarps with free-faceted faces (representing several faulting events) that cuts Q1B surfaces.
NASA Astrophysics Data System (ADS)
Yu, Jing-xing; Zheng, Wen-jun; Zhang, Pei-zhen; Lei, Qi-yun; Wang, Xu-long; Wang, Wei-tao; Li, Xin-nan; Zhang, Ning
2017-11-01
The Hexi Corridor and the southern Gobi Alashan are composed of discontinuous a set of active faults with various strikes and slip motions that are located to the north of the northern Tibetan Plateau. Despite growing understanding of the geometry and kinematics of these active faults, the late Quaternary deformation pattern in the Hexi Corridor and the southern Gobi Alashan remains controversial. The active E-W trending Taohuala Shan-Ayouqi fault zone is located in the southern Gobi Alashan. Study of the geometry and nature of slip along this fault zone holds crucial value for better understanding the regional deformation pattern. Field investigations combined with high-resolution imagery show that the Taohuala Shan fault and the E-W trending faults within the Ayouqi fault zone (F2 and F5) are left-lateral strike-slip faults, whereas the NW or WNW-trending faults within the Ayouqi fault zone (F1 and F3) are reverse faults. We collected Optically Stimulated Luminescence (OSL) and cosmogenic exposure age dating samples from offset alluvial fan surfaces, and estimated a vertical slip rate of 0.1-0.3 mm/yr, and a strike-slip rate of 0.14-0.93 mm/yr for the Taohuala Shan fault. Strata revealed in a trench excavated across the major fault (F5) in the Ayouqi fault zone and OSL dating results indicate that the most recent earthquake occurred between ca. 11.05 ± 0.52 ka and ca. 4.06 ± 0.29 ka. The geometry and kinematics of the Taohuala Shan-Ayouqi fault zone enable us to build a deformation pattern for the entire Hexi Corridor and the southern Gobi Alashan, which suggest that this region experiences northeastward oblique extrusion of the northern Tibetan Plateau. These left-lateral strike-slip faults in the region are driven by oblique compression but not associated with the northeastward extension of the Altyn Tagh fault.
NASA Astrophysics Data System (ADS)
Omura, K.; Yamashita, F.; Yamada, R.; Matsuda, T.; Fukuyama, E.; Kubo, A.; Takai, K.; Ikeda, R.; Mizuochi, Y.
2004-12-01
Drilling is an effective method to investigate the structure and physical state in and around the active fault zone, such as, stress and strength distribution, geological structure and materials properties. In particular, the structure in the fault zone is important to understand where and how the stress accumulates during the earthquake cycle. In previous studies, we did integrate investigation on active faults in central Japan by drilling and geophysical prospecting. Those faults are estimated to be at different stage in the earthquake cycle, i.e., Nojima fault which appeared on the surface by the 1995 Great Kobe earthquake (M=7.2), the Neodani fault which appeared by the 1891 Nobi earth-quake (M=8.0), the Atera fault, of which some parts have seemed to be dislocated by the 1586 Tensyo earthquake (M=7.9), and Gofukuji Fault that is considered to have activated about 1200 years ago. Each faults showed characteristic features of fracture zone structure according to their geological and geophysical situations. In a present study, we did core recovery and down hole measurements at the Atotsugawa fault, central Japan, that is considered to have activated at 1858 Hida earthquake (M=7.0). The Atotsugawa fault is characterized by active seismicity along the fault. But, at the same time, the shallow region in the central segment of the fault seems to have low seismicity. The high seismicity segment and low seismicity segments may have different mechanical, physical and material properties. A 350m depth borehole was drilled vertically beside the surface trace of the fault in the low seismicity segment. Recovered cores were overall heavily fractured and altered rocks. In the cores, we observed many shear planes holding fault gouge. Logging data showed that the apparent resistance was about 100 - 600 ohm-m, density was about 2.0 - 2.5g/cm3, P wave velocity was approximately 3.0 - 4.0 km/sec, neutron porosity was 20 - 40 %. Results of physical logging show features of fault fracture zone that were the same as the fault fracture zones of other active faults that we have drilled previously. By the BHTV logging, we detected many fractures of which the strikes are not only parallel to the fault trace bur also oblique to the fault trace. The observations of cores and logging data indicate that the borehole passed in the fracture zone down to the bottom, and that the fracture zone has complicate internal structure including foliation not parallel to the fault trace. The core samples are significant for further investigation on material properties in the fracture zone. And we need data of geophysical prospecting to infer the deeper structure of the fracture zone.
Folding associated with extensional faulting: Sheep Range detachment, southern Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guth, P.L.
1985-01-01
The Sheep Range detachment is a major Miocene extensional fault system of the Great Basin. Its major faults have a scoop shape, with straight, N-S traces extending 15-30 km and then abruptly turning to strike E-W. Tertiary deformation involved simultaneous normal faulting, sedimentation, landsliding, and strike-slip faulting. Folds occur in two settings: landslide blocks and drag along major faults. Folds occur in landslide blocks and beneath them. Most folds within landslide blocks are tight anticlines, with limbs dipping 40-60 degrees. Brecciation of the folds and landslide blocks suggests brittle deformation. Near Quijinump Canyon in the Sheep Range, at least threemore » landslide blocks (up to 500 by 1500 m) slid into a small Tertiary basin. Tertiary limestone beneath the Paleozoic blocks was isoclinally folded. Westward dips reveal drag folds along major normal faults, as regional dips are consistently to the east. The Chowderhead anticline is the largest drag fold, along an extensional fault that offsets Ordovician units 8 km. East-dipping Ordovician and Silurian rocks in the Desert Range form the hanging wall. East-dipping Cambrian and Ordovician units in the East Desert Range form the foot wall and east limb of the anticline. Caught along the fault plane, the anticline's west-dipping west limb contains mostly Cambrian units.« less