Sample records for zone guided waves

  1. Slab anisotropy from subduction zone guided waves in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, K. H.; Tseng, Y. L.; Hu, J. C.

    2014-12-01

    Frozen-in anisotropic structure in the oceanic lithosphere and faulting/hydration in the upper layer of the slab are expected to play an important role in anisotropic signature of the subducted slab. Over the past several decades, despite the advances in characterizing anisotropy using shear wave splitting method and its developments, the character of slab anisotropy remains poorly understood. In this study we investigate the slab anisotropy using subduction zone guided waves characterized by long path length in the slab. In the southernmost Ryukyu subduction zone, seismic waves from events deeper than 100 km offshore northern Taiwan reveal wave guide behavior: (1) a low-frequency (< 1 Hz) first arrival recognized on vertical and radial components but not transverse component (2) large, sustained high-frequency (3-10 Hz) signal in P and S wave trains. The depth dependent high-frequency content (3-10Hz) confirms the association with a waveguide effect in the subducting slab rather than localized site amplification effects. Using the selected subduction zone guided wave events, we further analyzed the shear wave splitting for intermediate-depth earthquakes in different frequency bands, to provide the statistically meaningful shear wave splitting parameters. We determine shear wave splitting parameters from the 34 PSP guided events that are deeper than 100 km with ray path traveling along the subducted slab. From shear wave splitting analysis, the slab and crust effects reveal consistent polarization pattern of fast directions of EN-WS and delay time of 0.13 - 0.27 sec. This implies that slab anisotropy is stronger than the crust effect (<0.1 s) but weaker than the mantle wedge and sub-slab mantle effect (0.3-1.3 s) in Taiwan.

  2. Fault-zone guided waves from explosions in the San Andreas fault at Parkfield and Cienega Valley, California

    USGS Publications Warehouse

    Li, Y.-G.; Ellsworth, W.L.; Thurber, C.H.; Malin, P.E.; Aki, K.

    1997-01-01

    Fault-zone guided waves were successfully excited by near-surface explosions in the San Andreas fault zone both at Parkfield and Cienega Valley, central California. The guided waves were observed on linear, three-component seismic arrays deployed across the fault trace. These waves were not excited by explosions located outside the fault zone. The amplitude spectra of guided waves show a maximum peak at 2 Hz at Parkfield and 3 Hz at Cienega Valley. The guided wave amplitude decays sharply with observation distance from the fault trace. The explosion-excited fault-zone guided waves are similar to those generated by earthquakes at Parkfield but have lower frequencies and travel more slowly. These observations suggest that the fault-zone wave guide has lower seismic velocities as it approaches the surface at Parkfield. We have modeled the waveforms as S waves trapped in a low-velocity wave guide sandwiched between high-velocity wall rocks, resulting in Love-type fault-zone guided waves. While the results are nonunique, the Parkfield data are adequately fit by a shallow wave guide 170 m wide with an S velocity 0.85 km/sec and an apparent Q ??? 30 to 40. At Cienega Valley, the fault-zone wave guide appears to be about 120 m wide with an S velocity 0.7 km/sec and a Q ??? 30.

  3. Subduction zone guided waves in Northern Chile

    NASA Astrophysics Data System (ADS)

    Garth, Thomas; Rietbrock, Andreas

    2016-04-01

    Guided wave dispersion is observed in subduction zones as high frequency energy is retained and delayed by low velocity structure in the subducting slab, while lower frequency energy is able to travel at the faster velocities associated with the surrounding mantle material. As subduction zone guided waves spend longer interacting with the low velocity structure of the slab than any other seismic phase, they have a unique capability to resolve these low velocity structures. In Northern Chile, guided wave arrivals are clearly observed on two stations in the Chilean fore-arc on permanent stations of the IPOC network. High frequency (> 5 Hz) P-wave arrivals are delayed by approximately 2 seconds compared to the low frequency (< 2 Hz) P-wave arrivals. Full waveform finite difference modelling is used to test the low velocity slab structure that cause this P-wave dispersion. The synthetic waveforms produced by these models are compared to the recorded waveforms. Spectrograms are used to compare the relative arrival times of different frequencies, while the velocity spectra is used to constrain the relative amplitude of the arrivals. Constraining the waveform in these two ways means that the full waveform is also matched, and the low pass filtered observed and synthetic waveforms can be compared. A combined misfit between synthetic and observed waveforms is then calculated following Garth & Rietbrock (2014). Based on this misfit criterion we constrain the velocity model by using a grid search approach. Modelling the guided wave arrivals suggest that the observed dispersion cannot be solely accounted for by a single low velocity layer as suggested by previous guided wave studies. Including dipping low velocity normal fault structures in the synthetic model not only accounts for the observed strong P-wave coda, but also produces a clear first motion dispersion. We therefore propose that the lithospheric mantle of the subducting Nazca plate is highly hydrated at intermediate

  4. Modelling guided waves in the Alaskan-Aleutian subduction zone

    NASA Astrophysics Data System (ADS)

    Coulson, Sophie; Garth, Thomas; Reitbrock, Andreas

    2016-04-01

    Subduction zone guided wave arrivals from intermediate depth earthquakes (70-300 km depth) have a huge potential to tell us about the velocity structure of the subducting oceanic crust as it dehydrates at these depths. We see guided waves as the oceanic crust has a slower seismic velocity than the surrounding material, and so high frequency energy is retained and delayed in the crustal material. Lower frequency energy is not retained in this crustal waveguide and so travels at faster velocities of the surrounding material. This gives a unique observation at the surface with low frequency energy arriving before the higher frequencies. We constrain this guided wave dispersion by comparing the waveforms recorded in real subduction zones with simulated waveforms, produced using finite difference full waveform modelling techniques. This method has been used to show that hydrated minerals in the oceanic crust persist to much greater depths than accepted thermal petrological subduction zone models would suggest in Northern Japan (Garth & Rietbrock, 2014a), and South America (Garth & Rietbrock, in prep). These observations also suggest that the subducting oceanic mantle may be highly hydrated at intermediate depth by dipping normal faults (Garth & Rietbrock 2014b). We use this guided wave analysis technique to constrain the velocity structure of the down going ~45 Ma Pacific plate beneath Alaska. Dispersion analysis is primarily carried out on guided wave arrivals recorded on the Alaskan regional seismic network. Earthquake locations from global earthquake catalogues (ISC and PDE) and regional earthquake locations from the AEIC (Alaskan Earthquake Information Centre) catalogue are used to constrain the slab geometry and to identify potentially dispersive events. Dispersed arrivals are seen at stations close to the trench, with high frequency (>2 Hz) arrivals delayed by 2 - 4 seconds. This dispersion is analysed to constrain the velocity and width of the proposed waveguide

  5. A study on the prenatal zone of ultrasonic guided waves in plates

    NASA Astrophysics Data System (ADS)

    Thomas, Tibin; Balasubramaniam, Krishnan

    2017-02-01

    Low frequency guided wave based inspection is an extensively used method for asset management with the advantage of wide area coverage from a single location at the cost of spatial resolution. With the advent of high frequency guided waves, short range inspections with high spatial resolution for monitoring corrosion under pipe supports and tank annular plates has gained widespread interest and acceptance. One of the major challenges in the application of high frequency guided waves in a short range inspection is to attain the desired modal displacements with respect to the application. In this paper, an investigation on the generation and formation of fundamental S0 mode is carried out through numerical simulation and experiments to establish a prenatal zone for guided waves. The effect of frequency, thickness of the plate and frequency-thickness (f*d) is studied. The investigation reveals the existence of a rudimentary form with similar modal features to the fully developed mode. This study helps in the design and development of a high frequency guided wave generator for particular applications which demands waves with very less sensitivity to the surface and loading during the initial phase which immediately evolves to a more sensitive wave towards the surface on propagation for the detection of shallow defects.

  6. Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves

    USGS Publications Warehouse

    Ellsworth, William L.; Malin, Peter E.

    2011-01-01

    Damage to fault-zone rocks during fault slip results in the formation of a channel of low seismic-wave velocities. Within such channels guided seismic waves, denoted by Fg, can propagate. Here we show with core samples, well logs and Fg-waves that such a channel is crossed by the SAFOD (San Andreas Fault Observatory at Depth) borehole at a depth of 2.7 km near Parkfield, California, USA. This laterally extensive channel extends downwards to at least half way through the seismogenic crust, more than about 7 km. The channel supports not only the previously recognized Love-type- (FL) and Rayleigh-type- (FR) guided waves, but also a new fault-guided wave, which we name FF. As recorded 2.7 km underground, FF is normally dispersed, ends in an Airy phase, and arrives between the P- and S-waves. Modelling shows that FF travels as a leaky mode within the core of the fault zone. Combined with the drill core samples, well logs and the two other types of guided waves, FF at SAFOD reveals a zone of profound, deep, rock damage. Originating from damage accumulated over the recent history of fault movement, we suggest it is maintained either by fracturing near the slip surface of earthquakes, such as the 1857 Fort Tejon M 7.9, or is an unexplained part of the fault-creep process known to be active at this site.

  7. On possible plume-guided seismic waves

    USGS Publications Warehouse

    Julian, B.R.; Evans, J.R.

    2010-01-01

    Hypothetical thermal plumes in the Earth's mantle are expected to have low seismic-wave speeds and thus would support the propagation of guided elastic waves analogous to fault-zone guided seismic waves, fiber-optic waves, and acoustic waves in the oceanic SOund Fixing And Ranging channel. Plume-guided waves would be insensitive to geometric complexities in the wave guide, and their dispersion would make them distinctive on seismograms and would provide information about wave-guide structure that would complement seismic tomography. Detecting such waves would constitute strong evidence of a new kind for the existence of plumes. A cylindrical channel embedded in an infinite medium supports two classes of axially symmetric elastic-wave modes, torsional and longitudinal-radial. Torsional modes have rectilinear particle motion tangent to the cylinder surface. Longitudinal-radial modes have elliptical particle motion in planes that include the cylinder axis, with retrograde motion near the axis. The direction of elliptical particle motion reverses with distance from the axis: once for the fundamental mode, twice for the first overtone, and so on. Each mode exists only above its cut-off frequency, where the phase and group speeds equal the shear-wave speed in the infinite medium. At high frequencies, both speeds approach the shear-wave speed in the channel. All modes have minima in their group speeds, which produce Airy phases on seismograms. For shear wave-speed contrasts of a few percent, thought to be realistic for thermal plumes in the Earth, the largest signals are inversely dispersed and have dominant frequencies of about 0.1-1 Hz and durations of 15-30 sec. There are at least two possible sources of observable plume waves: (1) the intersection of mantle plumes with high-amplitude core-phase caustics in the deep mantle; and (2) ScS-like reflection at the core-mantle boundary of downward-propagating guided waves. The widespread recent deployment of broadband

  8. WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES

    DOEpatents

    Robertson-Shersby-Harvie, R.B.; Dain, J.

    1956-11-13

    This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength does in wave-guides loaded by means of corrugations.

  9. WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson-Shersby-Harvie, R.B.; Dain, J.

    1956-11-13

    This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength doesmore » in wave-guides loaded by means of corrugations.« less

  10. Constraining the hydration of the subducting Nazca plate beneath Northern Chile using subduction zone guided waves

    NASA Astrophysics Data System (ADS)

    Garth, Tom; Rietbrock, Andreas

    2017-09-01

    Guided wave dispersion is observed from earthquakes at 180-280 km depth recorded at stations in the fore-arc of Northern Chile, where the 44 Ma Nazca plate subducts beneath South America. Characteristic P-wave dispersion is observed at several stations in the Chilean fore-arc with high frequency energy (>5 Hz) arriving up to 3 s after low frequency (<2 Hz) arrivals. This dispersion has been attributed to low velocity structure within the subducting Nazca plate which acts as a waveguide, retaining and delaying high frequency energy. Full waveform modelling shows that the single LVL proposed by previous studies does not produce the first motion dispersion observed at multiple stations, or the extended P-wave coda observed in arrivals from intermediate depth events within the Nazca plate. These signals can however be accurately accounted for if dipping low velocity fault zones are included within the subducting lithospheric mantle. A grid search over possible LVL and faults zone parameters (width, velocity contrast and separation distance) was carried out to constrain the best fitting model parameters. Our results imply that fault zone structures of 0.5-1.0 km thickness, and 5-10 km spacing, consistent with observations at the outer rise are present within the subducted slab at intermediate depths. We propose that these low velocity fault zone structures represent the hydrated structure within the lithospheric mantle. They may be formed initially by normal faults at the outer rise, which act as a pathway for fluids to penetrate the deeper slab due to the bending and unbending stresses within the subducting plate. Our observations suggest that the lithospheric mantle is 5-15% serpentinised, and therefore may transport approximately 13-42 Tg/Myr of water per meter of arc. The guided wave observations also suggest that a thin LVL (∼1 km thick) interpreted as un-eclogitised subducted oceanic crust persists to depths of at least 220 km. Comparison of the inferred seismic

  11. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer for detecting bridge cables.

    PubMed

    Xu, Jiang; Wu, Xinjun; Cheng, Cheng; Ben, Anran

    2012-01-01

    Condition assessment of cables has gained considerable attention for the bridge safety. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer is provided to inspect bridge cables. The similarities and differences between the two methods are investigated. The hybrid transducer for bridge cables consists of an aluminum framework, climbing modules, embedded magnetizers and a ribbon coil. The static axial magnetic field provided by the magnetizers meets the needs of the magnetic flux leakage testing and the magnetostrictive guided wave testing. The magnetizers also provide the attraction for the climbing modules. In the magnetic flux leakage testing for the free length of cable, the coil induces the axial leakage magnetic field. In the magnetostrictive guided wave testing for the anchorage zone, the coil provides a pulse high power variational magnetic field for generating guided waves; the coil induces the magnetic field variation for receiving guided waves. The experimental results show that the transducer with the corresponding inspection system could be applied to detect the broken wires in the free length and in the anchorage zone of bridge cables.

  12. A Magnetic Flux Leakage and Magnetostrictive Guided Wave Hybrid Transducer for Detecting Bridge Cables

    PubMed Central

    Xu, Jiang; Wu, Xinjun; Cheng, Cheng; Ben, Anran

    2012-01-01

    Condition assessment of cables has gained considerable attention for the bridge safety. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer is provided to inspect bridge cables. The similarities and differences between the two methods are investigated. The hybrid transducer for bridge cables consists of an aluminum framework, climbing modules, embedded magnetizers and a ribbon coil. The static axial magnetic field provided by the magnetizers meets the needs of the magnetic flux leakage testing and the magnetostrictive guided wave testing. The magnetizers also provide the attraction for the climbing modules. In the magnetic flux leakage testing for the free length of cable, the coil induces the axial leakage magnetic field. In the magnetostrictive guided wave testing for the anchorage zone, the coil provides a pulse high power variational magnetic field for generating guided waves; the coil induces the magnetic field variation for receiving guided waves. The experimental results show that the transducer with the corresponding inspection system could be applied to detect the broken wires in the free length and in the anchorage zone of bridge cables. PMID:22368483

  13. Wave envelope technique for multimode wave guide problems

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Sudharsanan, S. I.

    1986-01-01

    A fast method for solving wave guide problems is proposed. In particular, the guide is considered to be inhomogeneous allowing propagation of waves of higher order modes. Such problems have been handled successfully for acoustic wave propagation problems with single mode and finite length. This paper extends this concept to electromagnetic wave guides with several modes and infinite length. The method is described and results of computations are presented.

  14. Continuity of the West Napa–Franklin fault zone inferred from guided waves generated by earthquakes following the 24 August 2014 Mw 6.0 South Napa earthquake

    USGS Publications Warehouse

    Catchings, Rufus D.; Goldman, Mark R.; Li, Yong-Gang; Chan, Joanne

    2016-01-01

    We measure peak ground velocities from fault‐zone guided waves (FZGWs), generated by on‐fault earthquakes associated with the 24 August 2014 Mw 6.0 South Napa earthquake. The data were recorded on three arrays deployed across north and south of the 2014 surface rupture. The observed FZGWs indicate that the West Napa fault zone (WNFZ) and the Franklin fault (FF) are continuous in the subsurface for at least 75 km. Previously published potential‐field data indicate that the WNFZ extends northward to the Maacama fault (MF), and previous geologic mapping indicates that the FF extends southward to the Calaveras fault (CF); this suggests a total length of at least 110 km for the WNFZ–FF. Because the WNFZ–FF appears contiguous with the MF and CF, these faults apparently form a continuous Calaveras–Franklin–WNFZ–Maacama (CFWM) fault that is second only in length (∼300  km) to the San Andreas fault in the San Francisco Bay area. The long distances over which we observe FZGWs, coupled with their high amplitudes (2–10 times the S waves) suggest that strong shaking from large earthquakes on any part of the CFWM fault may cause far‐field amplified fault‐zone shaking. We interpret guided waves and seismicity cross sections to indicate multiple upper crustal splays of the WNFZ–FF, including a northward extension of the Southhampton fault, which may cause strong shaking in the Napa Valley and the Vallejo area. Based on travel times from each earthquake to each recording array, we estimate average P‐, S‐, and guided‐wave velocities within the WNFZ–FF (4.8–5.7, 2.2–3.2, and 1.1–2.8  km/s, respectively), with FZGW velocities ranging from 58% to 93% of the average S‐wave velocities.

  15. Guided acoustic wave inspection system

    DOEpatents

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  16. Defect induced guided waves mode conversion

    NASA Astrophysics Data System (ADS)

    Wandowski, Tomasz; Kudela, Pawel; Malinowski, Pawel; Ostachowicz, Wieslaw

    2016-04-01

    This paper deals with analysis of guided waves mode conversion phenomenon in fiber reinforced composite materials. Mode conversion phenomenon may take place when propagating elastic guided waves interact with discontinuities in the composite waveguide. The examples of such discontinuities are sudden thickness change or delamination between layers in composite material. In this paper, analysis of mode conversion phenomenon is based on full wave-field signals. In the full wave-field approach signals representing propagation of elastic waves are gathered from dense mesh of points that span over investigated area of composite part. This allow to animate the guided wave propagation. The reported analysis is based on signals resulting from numerical calculations and experimental measurements. In both cases defect in the form of delamination is considered. In the case of numerical research, Spectral Element Method (SEM) is utilized, in which a mesh is composed of 3D elements. Numerical model includes also piezoelectric transducer. Full wave-field experimental measurements are conducted by using piezoelectric transducer for guided wave excitation and Scanning Laser Doppler Vibrometer (SLDV) for sensing.

  17. DIELECTRIC-LOADED WAVE-GUIDES

    DOEpatents

    Robertson-Shersby-Harvie, R.B.; Mullett, L.B.

    1957-04-23

    This patent presents a particular arrangement for delectric loading of a wave-guide carrying an electromagnetic wave in the E or TM mode of at least the second order, to reduce the power dissipated as the result of conduction loss in the wave-guide walls. To achieve this desirabie result, the effective dielectric constants in the radial direction of adjacent coaxial tubular regions bounded approximateiy by successive nodai surfaces within the electromagnetic field are of two different values alternating in the radial direction, the intermost and outermost regions being of the lower value, and the dielectric constants between nodes are uniform.

  18. WorkZoneQ user guide for two-lane freeway work zones.

    DOT National Transportation Integrated Search

    2013-06-01

    WorkZoneQ was developed in Visual Basic for Applications (VBA) to implement the results of the previous study, : Queue and Users Costs in Highway Work Zones. This report contains the WorkZoneQ user guide. WorkZoneQ : consists of eight Excel ...

  19. Short-crested waves in the surf zone

    NASA Astrophysics Data System (ADS)

    Wei, Zhangping; Dalrymple, Robert A.; Xu, Munan; Garnier, Roland; Derakhti, Morteza

    2017-05-01

    This study investigates short-crested waves in the surf zone by using the mesh-free Smoothed Particle Hydrodynamics model, GPUSPH. The short-crested waves are created by generating intersecting wave trains in a numerical wave basin with a beach. We first validate the numerical model for short-crested waves by comparison with large-scale laboratory measurements. Then short-crested wave breaking over a planar beach is studied comprehensively. We observe rip currents as discussed in Dalrymple (1975) and undertow created by synchronous intersecting waves. The wave breaking of the short-crested wavefield created by the nonlinear superposition of intersecting waves and wave-current interaction result in the formation of isolated breakers at the ends of breaking wave crests. Wave amplitude diffraction at these isolated breakers gives rise to an increase in the alongshore wave number in the inner surf zone. Moreover, 3-D vortices and multiple circulation cells with a rotation frequency much lower than the incident wave frequency are observed across the outer surf zone to the beach. Finally, we investigate vertical vorticity generation under short-crested wave breaking and find that breaking of short-crested waves generates vorticity as pointed out by Peregrine (1998). Vorticity generation is not only observed under short-crested waves with a limited number of wave components but also under directional wave spectra.

  20. Ultrasonic guided waves in eccentric annular pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pattanayak, Roson Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2014-02-18

    This paper studies the feasibility of using ultrasonic guided waves to rapidly inspect tubes and pipes for possible eccentricity. While guided waves are well established in the long range inspection of structures such as pipes and plates, studies for more complex cross sections are limited and analytical solutions are often difficult to obtain. Recent developments have made the Semi Analytical Finite Element (SAFE) method widely accessible for researchers to study guided wave properties in complex structures. Here the SAFE method is used to study the effect of eccentricity on the modal structures and velocities of lower order guided wave modesmore » in thin pipes of diameters typically of interest to the industry. Results are validated using experiments. The paper demonstrates that even a small eccentricity in the pipe can strongly affect guided wave mode structures and velocities and hence shows potential for pipe eccentricity inspection.« less

  1. Guided-Wave Optical Biosensors

    PubMed Central

    Passaro, Vittorio M. N.; Dell'Olio, Francesco; Casamassima, Biagio; De Leonardis, Francesco

    2007-01-01

    Guided-wave optical biosensors are reviewed in this paper. Advantages related to optical technologies are presented and integrated architectures are investigated in detail. Main classes of bio receptors and the most attractive optical transduction mechanisms are discussed. The possibility to use Mach-Zehnder and Young interferometers, microdisk and microring resonators, surface plasmon resonance, hollow and antiresonant waveguides, and Bragg gratings to realize very sensitive and selective, ultra-compact and fast biosensors is discussed. Finally, CMOS-compatible technologies are proved to be the most attractive for fabrication of guided-wave photonic biosensors.

  2. Electron wind in strong wave guide fields

    NASA Astrophysics Data System (ADS)

    Krienen, F.

    1985-03-01

    The X-ray activity observed near highly powered waveguide structures is usually caused by local electric discharges originating from discontinuities such as couplers, tuners or bends. In traveling waves electrons move in the direction of the power flow. Seed electrons can multipactor in a traveling wave, the moving charge pattern is different from the multipactor in a resonant structure and is self-extinguishing. The charge density in the wave guide will modify impedance and propagation constant of the wave guide. The radiation level inside the output wave guide of the SLAC, 50 MW, S-band, klystron is estimated. Possible contributions of radiation to window failure are discussed.

  3. Directional nonlinear guided wave mixing: Case study of counter-propagating shear horizontal waves

    NASA Astrophysics Data System (ADS)

    Hasanian, Mostafa; Lissenden, Cliff J.

    2018-04-01

    While much nonlinear ultrasonics research has been conducted on higher harmonic generation, wave mixing provides the potential for sensitive measurements of incipient damage unencumbered by instrumentation nonlinearity. Studies of nonlinear ultrasonic wave mixing, both collinear and noncollinear, for bulk waves have shown the robust capability of wave mixing for early damage detection. One merit of bulk wave mixing lies in their non-dispersive nature, but guided waves enable inspection of otherwise inaccessible material and a variety of mixing options. Co-directional guided wave mixing was studied previously, but arbitrary direction guided wave mixing has not been addressed until recently. Wave vector analysis is applied to study variable mixing angles to find wave mode triplets (two primary waves and a secondary wave) resulting in the phase matching condition. As a case study, counter-propagating Shear Horizontal (SH) guided wave mixing is analyzed. SH wave interactions generate a secondary Lamb wave mode that is readily receivable. Reception of the secondary Lamb wave mode is compared for an angle beam transducer, an air coupled transducer, and a laser Doppler vibrometer (LDV). Results from the angle beam and air coupled transducers are quite consistent, while the LDV measurement is plagued by variability issues.

  4. Optical fiber having wave-guiding rings

    DOEpatents

    Messerly, Michael J [Danville, CA; Dawson, Jay W [Livermore, CA; Beach, Raymond J [Livermore, CA; Barty, Christopher P. J. [Hayward, CA

    2011-03-15

    A waveguide includes a cladding region that has a refractive index that is substantially uniform and surrounds a wave-guiding region that has an average index that is close to the index of the cladding. The wave-guiding region also contains a thin ring or series of rings that have an index or indices that differ significantly from the index of the cladding. The ring or rings enable the structure to guide light.

  5. A guided wave dispersion compensation method based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Xu, Cai-bin; Yang, Zhi-bo; Chen, Xue-feng; Tian, Shao-hua; Xie, Yong

    2018-03-01

    The ultrasonic guided wave has emerged as a promising tool for structural health monitoring (SHM) and nondestructive testing (NDT) due to their capability to propagate over long distances with minimal loss and sensitivity to both surface and subsurface defects. The dispersion effect degrades the temporal and spatial resolution of guided waves. A novel ultrasonic guided wave processing method for both single mode and multi-mode guided waves dispersion compensation is proposed in this work based on compressed sensing, in which a dispersion signal dictionary is built by utilizing the dispersion curves of the guided wave modes in order to sparsely decompose the recorded dispersive guided waves. Dispersion-compensated guided waves are obtained by utilizing a non-dispersion signal dictionary and the results of sparse decomposition. Numerical simulations and experiments are implemented to verify the effectiveness of the developed method for both single mode and multi-mode guided waves.

  6. Corrosion monitoring using high-frequency guided waves

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2016-04-01

    Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  7. On the Piezoelectric Detection of Guided Ultrasonic Waves

    PubMed Central

    2017-01-01

    In order to quantify the wave motion of guided ultrasonic waves, the characteristics of piezoelectric detectors, or ultrasonic transducers and acoustic emission sensors, have been evaluated systematically. Such guided waves are widely used in structural health monitoring and nondestructive evaluation, but methods of calibrating piezoelectric detectors have been inadequate. This study relied on laser interferometry for the base displacement measurement of bar waves, from which eight different guided wave test set-ups are developed with known wave motion using piezoelectric transmitters. Both plates and bars of 12.7 and 6.4 mm thickness were used as wave propagation media. The upper frequency limit was 2 MHz. Output of guided wave detectors were obtained on the test set-ups and their receiving sensitivities were characterized and averaged. While each sensitivity spectrum was noisy for a detector, the averaged spectrum showed a good convergence to a unique receiving sensitivity. Twelve detectors were evaluated and their sensitivity spectra determined in absolute units. Generally, these showed rapidly dropping sensitivity with increasing frequency due to waveform cancellation on their sensing areas. This effect contributed to vastly different sensitivities to guided wave and to normally incident wave for each one of the 12 detectors tested. Various other effects are discussed and recommendations on methods of implementing the approach developed are provided. PMID:29156579

  8. Fault-zone waves observed at the southern Joshua Tree earthquake rupture zone

    USGS Publications Warehouse

    Hough, S.E.; Ben-Zion, Y.; Leary, P.

    1994-01-01

    Waveform and spectral characteristics of several aftershocks of the M 6.1 22 April 1992 Joshua Tree earthquake recorded at stations just north of the Indio Hills in the Coachella Valley can be interpreted in terms of waves propagating within narrow, low-velocity, high-attenuation, vertical zones. Evidence for our interpretation consists of: (1) emergent P arrivals prior to and opposite in polarity to the impulsive direct phase; these arrivals can be modeled as headwaves indicative of a transfault velocity contrast; (2) spectral peaks in the S wave train that can be interpreted as internally reflected, low-velocity fault-zone wave energy; and (3) spatial selectivity of event-station pairs at which these data are observed, suggesting a long, narrow geologic structure. The observed waveforms are modeled using the analytical solution of Ben-Zion and Aki (1990) for a plane-parallel layered fault-zone structure. Synthetic waveform fits to the observed data indicate the presence of NS-trending vertical fault-zone layers characterized by a thickness of 50 to 100 m, a velocity decrease of 10 to 15% relative to the surrounding rock, and a P-wave quality factor in the range 25 to 50.

  9. Fault zone characterization using P- and S-waves

    NASA Astrophysics Data System (ADS)

    Wawerzinek, Britta; Buness, Hermann; Polom, Ulrich; Tanner, David C.; Thomas, Rüdiger

    2014-05-01

    Although deep fault zones have high potential for geothermal energy extraction, their real usability depends on complex lithological and tectonic factors. Therefore a detailed fault zone exploration using P- and S-wave reflection seismic data is required. P- and S-wave reflection seismic surveys were carried out along and across the eastern border of the Leinetal Graben in Lower Saxony, Germany, to analyse the structural setting, different reflection characteristics and possible anisotropic effects. In both directions the P-wave reflection seismic measurements show a detailed and complex structure. This structure was developed during several tectonic phases and comprises both steeply- and shallowly-dipping faults. In a profile perpendicular to the graben, a strong P-wave reflector is interpreted as shallowly west-dipping fault that is traceable from the surface down to 500 m depth. It is also detectable along the graben. In contrast, the S-waves show different reflection characteristics: There is no indication of the strong P-wave reflector in the S-wave reflection seismic measurements - neither across nor along the graben. Only diffuse S-wave reflections are observable in this region. Due to the higher resolution of S-waves in the near-surface area it is possible to map structures which cannot be detected in P-wave reflection seismic, e.g the thinning of the uppermost Jurassic layer towards the south. In the next step a petrophysical analysis will be conducted by using seismic FD modelling to a) determine the cause (lithological, structural, or a combination of both) of the different reflection characteristics of P- and S-waves, b) characterize the fault zone, as well as c) analyse the influence of different fault zone properties on the seismic wave field. This work is part of the gebo collaborative research programme which is funded by the 'Niedersächsisches Ministerium für Wissenschaft und Kultur' and Baker Hughes.

  10. Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates.

    PubMed

    Tian, Zhenhua; Yu, Lingyu

    2017-01-05

    The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region near the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Moreover, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.

  11. Two-zone elastic-plastic single shock waves in solids.

    PubMed

    Zhakhovsky, Vasily V; Budzevich, Mikalai M; Inogamov, Nail A; Oleynik, Ivan I; White, Carter T

    2011-09-23

    By decoupling time and length scales in moving window molecular dynamics shock-wave simulations, a new regime of shock-wave propagation is uncovered characterized by a two-zone elastic-plastic shock-wave structure consisting of a leading elastic front followed by a plastic front, both moving with the same average speed and having a fixed net thickness that can extend to microns. The material in the elastic zone is in a metastable state that supports a pressure that can substantially exceed the critical pressure characteristic of the onset of the well-known split-elastic-plastic, two-wave propagation. The two-zone elastic-plastic wave is a general phenomenon observed in simulations of a broad class of crystalline materials and is within the reach of current experimental techniques.

  12. Guided ultrasonic wave beam skew in silicon wafers

    NASA Astrophysics Data System (ADS)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2018-04-01

    In the photovoltaic industry, monocrystalline silicon wafers are employed for solar cells with high conversion efficiency. Micro-cracks induced by the cutting process in the thin wafers can lead to brittle wafer fracture. Guided ultrasonic waves would offer an efficient methodology for the in-process non-destructive testing of wafers to assess micro-crack density. The material anisotropy of the monocrystalline silicon leads to variations of the guided wave characteristics, depending on the propagation direction relative to the crystal orientation. Selective guided ultrasonic wave excitation was achieved using a contact piezoelectric transducer with custom-made wedges for the A0 and S0 Lamb wave modes and a transducer holder to achieve controlled contact pressure and orientation. The out-of-plane component of the guided wave propagation was measured using a non-contact laser interferometer. The phase slowness (velocity) of the two fundamental Lamb wave modes was measured experimentally for varying propagation directions relative to the crystal orientation and found to match theoretical predictions. Significant wave beam skew was observed experimentally, especially for the S0 mode, and investigated from 3D finite element simulations. Good agreement was found with the theoretical predictions based on nominal material properties of the silicon wafer. The important contribution of guided wave beam skewing effects for the non-destructive testing of silicon wafers was demonstrated.

  13. Simulation tools for guided wave based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Mesnil, Olivier; Imperiale, Alexandre; Demaldent, Edouard; Baronian, Vahan; Chapuis, Bastien

    2018-04-01

    Structural Health Monitoring (SHM) is a thematic derived from Non Destructive Evaluation (NDE) based on the integration of sensors onto or into a structure in order to monitor its health without disturbing its regular operating cycle. Guided wave based SHM relies on the propagation of guided waves in plate-like or extruded structures. Using piezoelectric transducers to generate and receive guided waves is one of the most widely accepted paradigms due to the low cost and low weight of those sensors. A wide range of techniques for flaw detection based on the aforementioned setup is available in the literature but very few of these techniques have found industrial applications yet. A major difficulty comes from the sensitivity of guided waves to a substantial number of parameters such as the temperature or geometrical singularities, making guided wave measurement difficult to analyze. In order to apply guided wave based SHM techniques to a wider spectrum of applications and to transfer those techniques to the industry, the CEA LIST develops novel numerical methods. These methods facilitate the evaluation of the robustness of SHM techniques for multiple applicative cases and ease the analysis of the influence of various parameters, such as sensors positioning or environmental conditions. The first numerical tool is the guided wave module integrated to the commercial software CIVA, relying on a hybrid modal-finite element formulation to compute the guided wave response of perturbations (cavities, flaws…) in extruded structures of arbitrary cross section such as rails or pipes. The second numerical tool is based on the spectral element method [2] and simulates guided waves in both isotropic (metals) and orthotropic (composites) plate like-structures. This tool is designed to match the widely accepted sparse piezoelectric transducer array SHM configuration in which each embedded sensor acts as both emitter and receiver of guided waves. This tool is under development and

  14. Ultrasonic guided wave interpretation for structural health inspections

    NASA Astrophysics Data System (ADS)

    Bingham, Jill Paisley

    Structural Health Management (SHM) combines the use of onboard sensors with artificial intelligence algorithms to automatically identify and monitor structural health issues. A fully integrated approach to SHM systems demands an understanding of the sensor output relative to the structure, along with sophisticated prognostic systems that automatically draw conclusions about structural integrity issues. Ultrasonic guided wave methods allow us to examine the interaction of multimode signals within key structural components. Since they propagate relatively long distances within plate- and shell-like structures, guided waves allow inspection of greater areas with fewer sensors, making this technique attractive for a variety of applications. This dissertation describes the experimental development of automatic guided wave interpretation for three real world applications. Using the guided wave theories for idealized plates we have systematically developed techniques for identifying the mass loading of underwater limpet mines on US Navy ship hulls, characterizing type and bonding of protective coatings on large diameter pipelines, and detecting the thinning effects of corrosion on aluminum aircraft structural stringers. In each of these circumstances the signals received are too complex for interpretation without knowledge of the guided wave physics. We employ a signal processing technique called the Dynamic Wavelet Fingerprint Technique (DFWT) in order to render the guided wave mode information in two-dimensional binary images. The use of wavelets allows us to keep track of both time and scale features from the original signals. With simple image processing we have developed automatic extraction algorithms for features that correspond to the arrival times of the guided wave modes of interest for each of the applications. Due to the dispersive nature of the guided wave modes, the mode arrival times give details of the structure in the propagation path. For further

  15. Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Zhenhua; Yu, Lingyu

    The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region nearmore » the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Furthermore, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.« less

  16. Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates

    DOE PAGES

    Tian, Zhenhua; Yu, Lingyu

    2017-01-05

    The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region nearmore » the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Furthermore, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.« less

  17. Ultrasonic Guided Waves for Aging Wire Insulation Assessment

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2001-01-01

    Environmentally aged wire insulation can become brittle and crack and thus expose the underlying conductive wire to the potential for short circuits and fire. The feasibility of using ultrasonic guided waves to measure insulation condition was examined. First a simple model to study guided wave propagation in a bare and thin plastic coated wire was examined and then some aviation grade wire samples that had been heat-damaged. Initial measurements indicate that ultrasonic guided wave velocity can be used to monitor insulation stiffness.

  18. Wave guide impedance matching method and apparatus

    DOEpatents

    Kronberg, James W.

    1990-01-01

    A technique for modifying the end portion of a wave guide, whether hollow or solid, carrying electromagnetic, acoustic or optical energy, to produce a gradual impedance change over the length of the end portion, comprising the cutting of longitudinal, V-shaped grooves that increase in width and depth from beginning of the end portion of the wave guide to the end of the guide so that, at the end of the guide, no guide material remains and no surfaces of the guide as modified are perpendicular to the direction of energy flow. For hollow guides, the grooves are cut beginning on the interior surface; for solid guides, the grooves are cut beginning on the exterior surface. One or more resistive, partially conductive or nonconductive sleeves can be placed over the exterior of the guide and through which the grooves are cut to smooth the transition to free space.

  19. 49 CFR Appendix C to Part 222 - Guide to Establishing Quiet Zones

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Guide to Establishing Quiet Zones C Appendix C to.... 222, App. C Appendix C to Part 222—Guide to Establishing Quiet Zones Introduction This Guide to... without implementation of additional safety measures at any crossings in the quiet zone; or c. Additional...

  20. Corrosion monitoring using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  1. Ultrasonic guided wave for monitoring corrosion of steel bar

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Qin, Lei; Huang, Bosheng

    2018-01-01

    Steel corrosion of reinforced concrete structures has become a serious problem all over the word. In this paper, the work aims at monitoring steel corrosion using ultrasonic guided wave (UGW). Ultrasonic guided wave monitoring is a dynamic and non-destructive testing technology. The advantages of ultrasonic guided wave monitoring for reinforcement corrosion are real-time, online and continuous. In addition, it can judge the different stages of steel bar corrosion, which achieved non-destructive detection.

  2. A high-performance wave guide cryogenic thermal break

    NASA Astrophysics Data System (ADS)

    Melhuish, S. J.; McCulloch, M. A.; Piccirillo, L.; Stott, C.

    2016-10-01

    We describe a high-performance wave guide cryogenic thermal break. This has been constructed both for Ka band, using WR28 wave guide, and Q band, using WR22 wave guide. The mechanical structure consists of a hexapod (Stewart platform) made from pultruded carbon fibre tubing. We present a tentative examination of the cryogenic Young's modulus of this material. The thermal conductivity is measured at temperatures above the range explored by Runyan and Jones, resulting in predicted conductive loads through our thermal breaks of 3.7 mW to 3 K and 17 μK to 1 K.

  3. 3D Guided Wave Motion Analysis on Laminated Composites

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara; Yu, Lingyu

    2013-01-01

    Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.

  4. Subwavelength and directional control of flexural waves in zone-folding induced topological plates

    NASA Astrophysics Data System (ADS)

    Chaunsali, Rajesh; Chen, Chun-Wei; Yang, Jinkyu

    2018-02-01

    Inspired by the quantum spin Hall effect shown by topological insulators, we propose a plate structure that can be used to demonstrate the pseudospin Hall effect for flexural waves. The system consists of a thin plate with periodically arranged resonators mounted on its top surface. We extend a technique based on the plane-wave expansion method to identify a double Dirac cone emerging due to the zone-folding in frequency band structures. This particular design allows us to move the double Dirac cone to a lower frequency than the resonating frequency of local resonators. We then manipulate the pattern of local resonators to open subwavelength Bragg band gaps that are topologically distinct. Building on this method, we verify numerically that a waveguide at an interface between two topologically distinct resonating plate structures can be used for guiding low-frequency, spin-dependent one-way flexural waves along a desired path with bends.

  5. Acoustic Wave Guiding by Reconfigurable Tessellated Arrays

    NASA Astrophysics Data System (ADS)

    Zou, Chengzhe; Lynd, Danielle T.; Harne, Ryan L.

    2018-01-01

    The reconfiguration of origami tessellations is a prime vehicle to harness for adapting system properties governed by a structural form. While the knowledge of mechanical property changes associated with origami tessellation folding has been extensively built up, the opportunities to integrate other physics into a framework of tessellated, adaptive structures remain to be fully exploited. Acoustics appears to be a prime domain to marry with origami science. Specifically, deep technical analogies are revealed between wave-guiding properties achieved via digital methods that virtually reposition array elements and the actual repositioning of facets by folding origami-inspired tessellations. Here we capitalize on this analogy to investigate acoustic arrays established upon facet layouts of origami-inspired tessellations. We show that a concept of reconfigurable tessellated arrays may guide waves more effectively than traditional digitally phased arrays using fewer transducer elements. Moreover, we show that the refinement of tessellated arrays trends to the ideal case of classical wave radiators or receivers grounded in principles of geometrical acoustics. By linear wave physics shared among myriad scientific disciplines and across orders of magnitude in length scale, these discoveries may cultivate numerous opportunities for wave-guiding adaptive structures inspired by low-dimensional origami tessellations.

  6. A reprogrammable multifunctional chalcogenide guided-wave lens.

    PubMed

    Cao, Tun; Wei, Chen-Wei; Cen, Meng-Jia; Guo, Bao; Kim, Yong-June; Zhang, Shuang; Qiu, Cheng-Wei

    2018-06-05

    The transformation optics (TO) technique, which establishes an equivalence between a curved space and a spatial distribution of inhomogeneous constitutive parameters, has enabled an extraordinary paradigm for manipulating wave propagation. However, extreme constitutive parameters, as well as a static nature, inherently limit the simultaneous achievement of broadband performance, ultrafast reconfigurability and versatile reprogrammable functions. Here, we integrate the TO technique with an active phase-change chalcogenide to achieve a reconfigurable multi-mode guided-wave lens. The lens is made of a Rinehart-shaped curved waveguide with an effective refractive index gradient profile through partially crystallizing Ge2Sb2Te5. Upon changing the bias time of the external voltage imparted to the Ge2Sb2Te5 segments, the refractive index gradient profile can be tuned with a transformative platform for various functions for visible light. The electrically reprogrammable multi-mode guided-wave lens is capable of dynamically acquiring various functionalities with an ultrafast response time. Our findings may offer a significant step forward by providing a universal method to obtain ultrafast and highly versatile guided-wave manipulation, such as in Einstein rings, cloaking, Maxwell fish-eye lenses and Luneburg lenses.

  7. Finite element analysis of electromagnetic propagation in an absorbing wave guide

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1986-01-01

    Wave guides play a significant role in microwave space communication systems. The attenuation per unit length of the guide depends on its construction and design frequency range. A finite element Galerkin formulation has been developed to study TM electromagnetic propagation in complex two-dimensional absorbing wave guides. The analysis models the electromagnetic absorptive characteristics of a general wave guide which could be used to determine wall losses or simulate resistive terminations fitted into the ends of a guide. It is believed that the general conclusions drawn by using this simpler two-dimensional geometry will be fundamentally the same for other geometries.

  8. Guided wave crack detection and size estimation in stiffened structures

    NASA Astrophysics Data System (ADS)

    Bhuiyan, Md Yeasin; Faisal Haider, Mohammad; Poddar, Banibrata; Giurgiutiu, Victor

    2018-03-01

    Structural health monitoring (SHM) and nondestructive evaluation (NDE) deals with the nondestructive inspection of defects, corrosion, leaks in engineering structures by using ultrasonic guided waves. In the past, simplistic structures were often considered for analyzing the guided wave interaction with the defects. In this study, we focused on more realistic and relatively complicated structure for detecting any defect by using a non-contact sensing approach. A plate with a stiffener was considered for analyzing the guided wave interactions. Piezoelectric wafer active transducers were used to produce excitation in the structures. The excitation generated the multimodal guided waves (aka Lamb waves) that propagate in the plate with stiffener. The presence of stiffener in the plate generated scattered waves. The direct wave and the additional scattered waves from the stiffener were experimentally recorded and studied. These waves were considered as a pristine case in this research. A fine horizontal semi-circular crack was manufactured by using electric discharge machining in the same stiffener. The presence of crack in the stiffener produces additional scattered waves as well as trapped waves. These scattered waves and trapped wave modes from the cracked stiffener were experimentally measured by using a scanning laser Doppler vibrometer (SLDV). These waves were analyzed and compared with that from the pristine case. The analyses suggested that both size and shape of the horizontal crack may be predicted from the pattern of the scattered waves. Different features (reflection, transmission, and mode-conversion) of the scattered wave signals are analyzed. We found direct transmission feature for incident A0 wave mode and modeconversion feature for incident S0 mode are most suitable for detecting the crack in the stiffener. The reflection feature may give a better idea of sizing the crack.

  9. Remote Sensing Characterization of Two-dimensional Wave Forcing in the Surf Zone

    NASA Astrophysics Data System (ADS)

    Carini, R. J.; Chickadel, C. C.; Jessup, A. T.

    2016-02-01

    In the surf zone, breaking waves drive longshore currents, transport sediment, shape bathymetry, and enhance air-sea gas and particle exchange. Furthermore, wave group forcing influences the generation and duration of rip currents. Wave breaking exhibits large gradients in space and time, making it challenging to measure in situ. Remote sensing technologies, specifically thermal infrared (IR) imagery, can provide detailed spatial and temporal measurements of wave breaking at the water surface. We construct two-dimensional maps of active wave breaking from IR imagery collected during the Surf Zone Optics Experiment in September 2010 at the US Army Corps of Engineers' Field Research Facility in Duck, NC. For each breaker identified in the camera's field of view, the crest-perpendicular length of the aerated breaking region (roller length) and wave direction are estimated and used to compute the wave energy dissipation rate. The resultant dissipation rate maps are analyzed over different time scales: peak wave period, infragravity wave period, and tidal wave period. For each time scale, spatial maps of wave breaking are used to characterize wave forcing in the surf zone for a variety of wave conditions. The following phenomena are examined: (1) wave dissipation rates over the bar (location of most intense breaking) have increased variance in infragravity wave frequencies, which are different from the peak frequency of the incoming wave field and different from the wave forcing variability at the shoreline, and (2) wave forcing has a wider spatial distribution during low tide than during high tide due to depth-limited breaking over the barred bathymetry. Future work will investigate the response of the variability in wave setup, longshore currents and rip currents, to the variability in wave forcing in the surf zone.

  10. Investigation of guided waves propagation in pipe buried in sand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leinov, Eli; Cawley, Peter; Lowe, Michael J.S.

    The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand usingmore » a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.« less

  11. Elastic guided waves in a layered plate with rectangular cross section.

    PubMed

    Mukdadi, O M; Desai, Y M; Datta, S K; Shah, A H; Niklasson, A J

    2002-11-01

    Guided waves in a layered elastic plate of rectangular cross section (finite width and thickness) has been studied in this paper. A semianalytical finite element method in which the deformation of the cross section is modeled by two-dimensional finite elements and analytical representation of propagating waves along the length of the plate has been used. The method is applicable to arbitrary number of layers and general anisotropic material properties of each layer, and is similar to the stiffness method used earlier to study guided waves in a laminated composite plate of infinite width. Numerical results showing the effect of varying the width of the plate on the dispersion of guided waves are presented and are compared with those for an infinite plate. In addition, effect of thin anisotropic coating or interface layers on the guided waves is investigated.

  12. Structural damage detection using deep learning of ultrasonic guided waves

    NASA Astrophysics Data System (ADS)

    Melville, Joseph; Alguri, K. Supreet; Deemer, Chris; Harley, Joel B.

    2018-04-01

    Structural health monitoring using ultrasonic guided waves relies on accurate interpretation of guided wave propagation to distinguish damage state indicators. However, traditional physics based models do not provide an accurate representation, and classic data driven techniques, such as a support vector machine, are too simplistic to capture the complex nature of ultrasonic guide waves. To address this challenge, this paper uses a deep learning interpretation of ultrasonic guided waves to achieve fast, accurate, and automated structural damaged detection. To achieve this, full wavefield scans of thin metal plates are used, half from the undamaged state and half from the damaged state. This data is used to train our deep network to predict the damage state of a plate with 99.98% accuracy given signals from just 10 spatial locations on the plate, as compared to that of a support vector machine (SVM), which achieved a 62% accuracy.

  13. High-frequency guided ultrasonic waves to monitor corrosion thickness loss

    NASA Astrophysics Data System (ADS)

    Fromme, Paul; Bernhard, Fabian; Masserey, Bernard

    2017-02-01

    Corrosion due to adverse environmental conditions can occur for a range of industrial structures, e.g., ships and offshore oil platforms. Pitting corrosion and generalized corrosion can lead to the reduction of the strength and thus degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided ultrasonic waves propagating along the structure. Using standard ultrasonic transducers with single sided access to the structure, the two fundamental Lamb wave modes were selectively generated simultaneously, penetrating through the complete thickness of the structure. The wave propagation and interference of the guided wave modes depends on the thickness of the structure. Numerical simulations were performed using a 2D Finite Difference Method (FDM) algorithm in order to visualize the guided wave propagation and energy transfer across the plate thickness. Laboratory experiments were conducted and the wall thickness reduced initially uniformly by milling of the steel structure. Further measurements were conducted using accelerated corrosion in salt water. From the measured signal change due to the wave mode interference, the wall thickness reduction was monitored and good agreement with theoretical predictions was achieved. Corrosion can lead to non-uniform thickness reduction and the influence of this on the propagation of the high frequency guided ultrasonic waves was investigated. The wave propagation in a steel specimen with varying thickness was measured experimentally and the influence on the wave propagation characteristics quantified.

  14. Guided Seismic Waves: Possible Diagnostics for Hot Plumes in the Mantle

    NASA Astrophysics Data System (ADS)

    Evans, J. R.; Julian, B. R.; Foulger, G. R.

    2005-12-01

    Seismic waves potentially provide by far the highest resolution view of the three-dimensional structure of the mantle, and the hope of detecting wave-speed anomalies caused by hot or compositionally buoyant mantle plumes has been a major incentive to the development of tomographic seismic techniques. Seismic tomography is limited, however, by the uneven geographical distribution of earthquakes and seismometers, which can produce artificial tomographic wave-speed anomalies that are difficult to distinguish from real structures in the mantle. An alternate approach may be possible, because hot plumes and possibly some compositional upwellings would have low seismic-wave speeds and would act as efficient waveguides over great depth ranges in the mantle. Plume-guided waves would be little affected by bends or other geometric complexities in the waveguides (analogously to French horns and fiber-optic cables), and their dispersion would make them distinctive on seismograms and would provide information on the size and structure of the waveguide. The main unanswered question is whether guided waves in plumes could be excited sufficiently to be observable. Earthquakes do not occur in the deep mantle, but at least two other possible sources of excitation can be imagined: (1) shallow earthquakes at or near plume-fed hotspots; and (2) coupling of plume-guided waves to seismic body waves near the bottom of the mantle. In the first case, downward-traveling guided waves transformed to seismic body waves at the bottom of the waveguide would have to be detected at teleseismic distances. In the second case, upward-traveling guided waves generated by teleseismic body waves would be detected on seismometers at hotspots. Qualitative reasoning based on considerations of reciprocity suggests that the signals in these two situations should be similar in size and appearance. The focusing of seismic core phases at caustics would amplify plume waves excited by either mechanism (1) or (2) at

  15. Spatial characterization of innervation zones under electrically elicited M-wave.

    PubMed

    Zhang, C; Peng, Y; Li, S; Zhou, P; Munoz, A; Tang, D; Zhang, Y

    2016-08-01

    The three dimensional (3D) innervation zone (IZ) imaging approach (3DIZI) has been developed in our group to localize the IZ of a particular motor unit (MU) from its motor unit action potentials decomposed from high-density surface electromyography (EMG) recordings. In this study, the developed 3DIZI approach was combined with electrical stimulation to investigate global distributions of IZs in muscles from electrically elicited M-wave recordings. Electrical stimulations were applied to the musculocutaneous nerve to activate supramaximal muscle response of the biceps brachii in one healthy subject, and high-density (128 channels) surface EMG signals of the biceps brachii muscles were recorded. The 3DIZI approach was then employed to image the IZ distribution of IZs in the 3D space of the biceps brachii. The performance of the M-wave based 3DIZI approach was evaluated with different stimulation intensities. Results show that the reconstructed IZs under supramaximal stimulation are spatially distributed in the center region of muscle belly which is consistent with previous studies. With sub-maximal stimulation intensity, the imaged IZ centers became more proximally and deeply located. The proposed M-wave based 3DIZI approach demonstrated its capability of imaging global distribution of IZs in muscles, which provide valuable information for clinical applications such as guiding botulinum toxin injection in treating muscle spasticity.

  16. Guided wave and damage detection in composite laminates using different fiber optic sensors.

    PubMed

    Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Shirai, Takehiro

    2009-01-01

    Guided wave detection using different fiber optic sensors and their applications in damage detection for composite laminates were systematically investigated and compared in this paper. Two types of fiber optic sensors, namely fiber Bragg gratings (FBG) and Doppler effect-based fiber optic (FOD) sensors, were addressed and guided wave detection systems were constructed for both types. Guided waves generated by a piezoelectric transducer were propagated through a quasi-isotropic carbon fiber reinforced plastic (CFRP) laminate and acquired by these fiber optic sensors. Characteristics of these fiber optic sensors in ultrasonic guided wave detection were systematically compared. Results demonstrated that both the FBG and FOD sensors can be applied in guided wave and damage detection for the CFRP laminates. The signal-to-noise ratio (SNR) of guided wave signal captured by an FOD sensor is relatively high in comparison with that of the FBG sensor because of their different physical principles in ultrasonic detection. Further, the FOD sensor is sensitive to the damage-induced fundamental shear horizontal (SH(0)) guided wave that, however, cannot be detected by using the FBG sensor, because the FOD sensor is omnidirectional in ultrasound detection and, in contrast, the FBG sensor is severely direction dependent.

  17. Numerical study of electromagnetic waves generated by a prototype dielectric logging tool

    USGS Publications Warehouse

    Ellefsen, K.J.; Abraham, J.D.; Wright, D.L.; Mazzella, A.T.

    2004-01-01

    To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency-wavenumber method. When the propagation velocity in the borehole was greater than that in the formation (e.g., an air-filled borehole in the unsaturated zone), only a guided wave propagated along the borehole. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave radiated electromagnetic energy into the formation, causing its amplitude to decrease. When the propagation velocity in the borehole was less than that in the formation (e.g., a water-filled borehole in the saturated zone), both a refracted wave and a guided wave propagated along the borehole. The velocity of the refracted wave equaled the phase velocity of a plane wave in the formation, and the refracted wave preceded the guided wave. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave did not radiate electromagnetic energy into the formation. To analyze traces recorded by the prototype tool during laboratory tests, they were compared to traces calculated with the finite-difference method. The first parts of both the recorded and the calculated traces were similar, indicating that guided and refracted waves indeed propagated along the prototype tool. ?? 2004 Society of Exploration Geophysicists. All rights reserved.

  18. Transient cnoidal waves explain the formation and geometry of fault damage zones

    NASA Astrophysics Data System (ADS)

    Veveakis, Manolis; Schrank, Christoph

    2017-04-01

    The spatial footprint of a brittle fault is usually dominated by a wide area of deformation bands and fractures surrounding a narrow, highly deformed fault core. This diffuse damage zone relates to the deformation history of a fault, including its seismicity, and has a significant impact on flow and mechanical properties of faulted rock. Here, we propose a new mechanical model for damage-zone formation. It builds on a novel mathematical theory postulating fundamental material instabilities in solids with internal mass transfer associated with volumetric deformation due to elastoviscoplastic p-waves termed cnoidal waves. We show that transient cnoidal waves triggered by fault slip events can explain the characteristic distribution and extent of deformation bands and fractures within natural fault damage zones. Our model suggests that an overpressure wave propagating away from the slipping fault and the material properties of the host rock control damage-zone geometry. Hence, cnoidal-wave theory may open a new chapter for predicting seismicity, material and geometrical properties as well as the location of brittle faults.

  19. Theoretical, Experimental, and Computational Evaluation of Disk-Loaded Circular Wave Guides

    NASA Technical Reports Server (NTRS)

    Wallett, Thomas M.; Qureshi, A. Haq

    1994-01-01

    A disk-loaded circular wave guide structure and test fixture were fabricated. The dispersion characteristics were found by theoretical analysis, experimental testing, and computer simulation using the codes ARGUS and SOS. Interaction impedances were computed based on the corresponding dispersion characteristics. Finally, an equivalent circuit model for one period of the structure was chosen using equivalent circuit models for cylindrical wave guides of different radii. Optimum values for the discrete capacitors and inductors describing discontinuities between cylindrical wave guides were found using the computer code TOUCHSTONE.

  20. Impacts of wave-induced circulation in the surf zone on wave setup

    NASA Astrophysics Data System (ADS)

    Guérin, Thomas; Bertin, Xavier; Coulombier, Thibault; de Bakker, Anouk

    2018-03-01

    Wave setup corresponds to the increase in mean water level along the coast associated with the breaking of short-waves and is of key importance for coastal dynamics, as it contributes to storm surges and the generation of undertows. Although overall well explained by the divergence of the momentum flux associated with short waves in the surf zone, several studies reported substantial underestimations along the coastline. This paper investigates the impacts of the wave-induced circulation that takes place in the surf zone on wave setup, based on the analysis of 3D modelling results. A 3D phase-averaged modelling system using a vortex force formalism is applied to hindcast an unpublished field experiment, carried out at a dissipative beach under moderate to very energetic wave conditions (Hm 0 = 6m at breaking and Tp = 22s). When using an adaptive wave breaking parameterisation based on the beach slope, model predictions for water levels, short waves and undertows improved by about 30%, with errors reducing to 0.10 m, 0.10 m and 0.09 m/s, respectively. The analysis of model results suggests a very limited impact of the vertical circulation on wave setup at this dissipative beach. When extending this analysis to idealized simulations for different beach slopes ranging from 0.01 to 0.05, it shows that the contribution of the vertical circulation (horizontal and vertical advection and vertical viscosity terms) becomes more and more relevant as the beach slope increases. In contrast, for a given beach slope, the wave height at the breaking point has a limited impact on the relative contribution of the vertical circulation on the wave setup. For a slope of 0.05, the contribution of the terms associated with the vertical circulation accounts for up to 17% (i.e. a 20% increase) of the total setup at the shoreline, which provides a new explanation for the underestimations reported in previously published studies.

  1. High frequency guided wave propagation in monocrystalline silicon wafers

    NASA Astrophysics Data System (ADS)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2017-04-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full three-dimensional Finite Element simulations of the guided wave propagation were conducted to visualize and quantify these effects for a line source. The phase velocity (slowness) and skew angle of the two fundamental Lamb wave modes (first anti-symmetric mode A0 and first symmetric mode S0) for varying propagation directions relative to the crystal orientation were measured experimentally. Selective mode excitation was achieved using a contact piezoelectric transducer with a custom-made wedge and holder to achieve a controlled contact pressure. The out-of-plane component of the guided wave propagation was measured using a noncontact laser interferometer. Good agreement was found with the simulation results and theoretical predictions based on nominal material properties of the silicon wafer.

  2. Guided waves by axisymmetric and non-axisymmetric surface loading on hollow cylinders

    PubMed

    Shin; Rose

    1999-06-01

    Guided waves generated by axisymmetric and non-axisymmetric surface loading on a hollow cylinder are studied. For the theoretical analysis of the superposed guided waves, a normal mode concept is employed. The amplitude factors of individual guided wave modes are studied with respect to varying surface pressure loading profiles. Both theoretical and experimental focus is given to the guided waves generated by both axisymmetric and non-axisymmetric excitation. For the experiments, a comb transducer and high power tone burst function generator system are used on a sample Inconel tube. Surface loading conditions, such as circumferential loading angles and axial loading lengths, are used with the frequency and phase velocity to control the axisymmetric and non-axisymmetric mode excitations. The experimental study demonstrates the use of a practical non-axisymmetric partial loading technique in generating axisymmetric modes, particularly useful in the inspection of tubing and piping with limited circumferential access. From both theoretical and experimental studies, it also could be said that the amount of flexural modes reflected from a defect contains information on the reflector's circumferential angle, as well as potentially other classification and sizing feature information. The axisymmetric and non-axisymmetric guided wave modes should both be carefully considered for improvement of the overall analysis of guided waves generated in hollow cylinders.

  3. Seismic-wave attenuation associated with crustal faults in the New Madrid seismic zone

    USGS Publications Warehouse

    Hamilton, R.M.; Mooney, W.D.

    1990-01-01

    The attenuation of upper crustal seismic waves that are refracted with a velocity of about 6 kilometers per second varies greatly among profiles in the area of the New Madrid seismic zone in the central Mississippi Valley. The waves that have the strongest attenuation pass through the seismic trend along the axis of the Reelfoot rift in the area of the Blytheville arch. Defocusing of the waves in a low-velocity zone and/ or seismic scattering and absorption could cause the attenuation; these effects are most likely associated with the highly deformed rocks along the arch. Consequently, strong seismic-wave attenuation may be a useful criterion for identifying seismogenic fault zones.

  4. Delamination Defect Detection Using Ultrasonic Guided Waves in Advanced Hybrid Structural Elements

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Qi, Kevin ``Xue''; Rose, Joseph L.; Weiland, Hasso

    2010-02-01

    Nondestructive testing for multilayered structures is challenging because of increased numbers of layers and plate thicknesses. In this paper, ultrasonic guided waves are applied to detect delamination defects inside a 23-layer Alcoa Advanced Hybrid Structural plate. A semi-analytical finite element (SAFE) method generates dispersion curves and wave structures in order to select appropriate wave structures to detect certain defects. One guided wave mode and frequency is chosen to achieve large in-plane displacements at regions of interest. The interactions of the selected mode with defects are simulated using finite element models. Experiments are conducted and compared with bulk wave measurements. It is shown that guided waves can detect deeply embedded damages inside thick multilayer fiber-metal laminates with suitable mode and frequency selection.

  5. Load Measurement in Structural Members Using Guided Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Wilcox, Paul D.

    2006-03-01

    A non-destructive technique to measure load in structures such as rails and bridge cables by using guided acoustic waves is investigated both theoretically and experimentally. Robust finite element models for predicting the effect of load on guided wave propagation are developed and example results are presented for rods. Reasonably good agreement of experimental results with modelling prediction is obtained. The measurement technique has been developed to perform tests on larger specimens.

  6. Phased Array Beamforming and Imaging in Composite Laminates Using Guided Waves

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu

    2016-01-01

    This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  7. Ultrasonic nonlinear guided wave inspection of microscopic damage in a composite structure

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Borigo, Cody; Owens, Steven; Lissenden, Clifford; Rose, Joseph; Hakoda, Chris

    2017-02-01

    Sudden structural failure is a severe safety threat to many types of military and industrial composite structures. Because sudden structural failure may occur in a composite structure shortly after macroscale damage initiates, reliable early diagnosis of microdamage formation in the composite structure is critical to ensure safe operation and to reduce maintenance costs. Ultrasonic guided waves have been widely used for long-range defect detection in various structures. When guided waves are generated under certain excitation conditions, in addition to the traditional linear wave mode (known as the fundamental harmonic wave mode), a number of nonlinear higher-order harmonic wave modes are also be generated. Research shows that the nonlinear parameters of a higher-order harmonic wave mode could have excellent sensitivity to microstructural changes in a material. In this work, we successfully employed a nonlinear guided wave structural health monitoring (SHM) method to detect microscopic impact damage in a 32-layer carbon/epoxy fiber-reinforced composite plate. Our effort has demonstrated that, utilizing appropriate transducer design, equipment, excitation signals, and signal processing techniques, nonlinear guided wave parameter measurements can be reliably used to monitor microdamage initiation and growth in composite structures.

  8. Waves and mesoscale features in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chih Y.

    1993-01-01

    Ocean-ice interaction processes in the Marginal Ice Zone (MIZ) by waves and mesoscale features, such as upwelling and eddies, are studied using ERS-1 Synthetic Aperture Radar (SAR) imagery and wave-ice interaction models. Satellite observations of mesoscale features can play a crucial role in ocean-ice interaction study.

  9. Guided-Wave TeO2 Acousto-Optic Devices

    DTIC Science & Technology

    1991-01-12

    In this research program, Guided-wave TeO2 Acousto - Optic Devices, the properties of surface acoustic waves on tellurium dioxide single crystal...surfaces has been studied for its potential applications as acousto - optic signal processing devices. Personal computer based numerical method has been...interaction with laser beams. Use of the acousto - optic probe, the surface acoustic wave velocity and field distribution have been obtained and compared

  10. Wave Mode Discrimination of Coded Ultrasonic Guided Waves Using Two-Dimensional Compressed Pulse Analysis.

    PubMed

    Malo, Sergio; Fateri, Sina; Livadas, Makis; Mares, Cristinel; Gan, Tat-Hean

    2017-07-01

    Ultrasonic guided waves testing is a technique successfully used in many industrial scenarios worldwide. For many complex applications, the dispersive nature and multimode behavior of the technique still poses a challenge for correct defect detection capabilities. In order to improve the performance of the guided waves, a 2-D compressed pulse analysis is presented in this paper. This novel technique combines the use of pulse compression and dispersion compensation in order to improve the signal-to-noise ratio (SNR) and temporal-spatial resolution of the signals. The ability of the technique to discriminate different wave modes is also highlighted. In addition, an iterative algorithm is developed to identify the wave modes of interest using adaptive peak detection to enable automatic wave mode discrimination. The employed algorithm is developed in order to pave the way for further in situ applications. The performance of Barker-coded and chirp waveforms is studied in a multimodal scenario where longitudinal and flexural wave packets are superposed. The technique is tested in both synthetic and experimental conditions. The enhancements in SNR and temporal resolution are quantified as well as their ability to accurately calculate the propagation distance for different wave modes.

  11. Numerical studies of nonlinear ultrasonic guided waves in uniform waveguides with arbitrary cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Peng; Fan, Zheng, E-mail: ZFAN@ntu.edu.sg; Zhou, Yu

    2016-07-15

    Nonlinear guided waves have been investigated widely in simple geometries, such as plates, pipe and shells, where analytical solutions have been developed. This paper extends the application of nonlinear guided waves to waveguides with arbitrary cross sections. The criteria for the existence of nonlinear guided waves were summarized based on the finite deformation theory and nonlinear material properties. Numerical models were developed for the analysis of nonlinear guided waves in complex geometries, including nonlinear Semi-Analytical Finite Element (SAFE) method to identify internal resonant modes in complex waveguides, and Finite Element (FE) models to simulate the nonlinear wave propagation at resonantmore » frequencies. Two examples, an aluminum plate and a steel rectangular bar, were studied using the proposed numerical model, demonstrating the existence of nonlinear guided waves in such structures and the energy transfer from primary to secondary modes.« less

  12. Microstructural and Defect Characterization in Ceramic Composites Using an Ultrasonic Guided Wave Scan System

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Cosgriff, L. M.; Martin, R. E.; Verrilli, M. J.; Bhatt, R. T.

    2003-01-01

    In this study, an ultrasonic guided wave scan system was used to characterize various microstructural and flaw conditions in two types of ceramic matrix composites, SiC/SiC and C/SiC. Rather than attempting to isolate specific lamb wave modes to use for characterization (as is desired for many types of guided wave inspection problems), the guided wave scan system utilizes the total (multi-mode) ultrasonic response in its inspection analysis. Several time and frequency-domain parameters are calculated from the ultrasonic guided wave signal at each scan location to form images. Microstructural and defect conditions examined include delamination, density variation, cracking, and pre/ post-infiltration. Results are compared with thermographic imaging methods. Although the guided wave technique is commonly used so scanning can be eliminated, applying the technique in the scanning mode allows a more precise characterization of defect conditions.

  13. Resonance scattering in quantum wave guides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsen'ev, A A

    2003-02-28

    The interaction of a quantum wave guide with a resonator is studied within the frame of the Birman-Kato scattering theory. The existence of poles of the scattering matrix is proved and the jump of the scattering amplitude near a resonance is calculated.

  14. Large-scale bedforms induced by supercritical flows and wave-wave interference in the intertidal zone (Cap Ferret, France)

    NASA Astrophysics Data System (ADS)

    Vaucher, Romain; Pittet, Bernard; Humbert, Thomas; Ferry, Serge

    2017-11-01

    The Cap Ferret sand spit is situated along the wave-dominated, tidally modulated Atlantic coast of western France, characterized by a semidiurnal macrotidal range. It displays peculiar dome-like bedforms that can be observed at low tide across the intertidal zone. These bedforms exhibit a wavelength of ca. 1.2 m and an elevation of ca. 30 cm. They occur only when the incident wave heights reach 1.5-2 m. The internal stratifications are characterized by swaley-like, sub-planar, oblique-tangential, oblique-tabular, as well as hummocky-like stratifications. The tabular and tangential stratifications comprise prograding oblique sets (defined as foresets and backsets) that almost always show variations in their steepness. Downcutting into the bottomsets of the oblique-tangential stratifications is common. The sets of laminae observed in the bedforms share common characteristics with those formed by supercritical flows in flume experiments of earlier studies. These peculiar bedforms are observed at the surf-swash transition zone where the backwash flow reaches supercritical conditions. This type of flow can explain their internal architecture but not their general dome-like (three-dimensional) morphology. Wave-wave interference induced by the geomorphology (i.e. tidal channel) of the coastal environment is proposed as explanation for the localized formation of such bedforms. This study highlights that the combination of supercritical flows occurring in the surf-swash transition zone and wave-wave interferences can generate dome-like bedforms in intertidal zones.

  15. Large-scale bedforms induced by supercritical flows and wave-wave interference in the intertidal zone (Cap Ferret, France)

    NASA Astrophysics Data System (ADS)

    Vaucher, Romain; Pittet, Bernard; Humbert, Thomas; Ferry, Serge

    2018-06-01

    The Cap Ferret sand spit is situated along the wave-dominated, tidally modulated Atlantic coast of western France, characterized by a semidiurnal macrotidal range. It displays peculiar dome-like bedforms that can be observed at low tide across the intertidal zone. These bedforms exhibit a wavelength of ca. 1.2 m and an elevation of ca. 30 cm. They occur only when the incident wave heights reach 1.5-2 m. The internal stratifications are characterized by swaley-like, sub-planar, oblique-tangential, oblique-tabular, as well as hummocky-like stratifications. The tabular and tangential stratifications comprise prograding oblique sets (defined as foresets and backsets) that almost always show variations in their steepness. Downcutting into the bottomsets of the oblique-tangential stratifications is common. The sets of laminae observed in the bedforms share common characteristics with those formed by supercritical flows in flume experiments of earlier studies. These peculiar bedforms are observed at the surf-swash transition zone where the backwash flow reaches supercritical conditions. This type of flow can explain their internal architecture but not their general dome-like (three-dimensional) morphology. Wave-wave interference induced by the geomorphology (i.e. tidal channel) of the coastal environment is proposed as explanation for the localized formation of such bedforms. This study highlights that the combination of supercritical flows occurring in the surf-swash transition zone and wave-wave interferences can generate dome-like bedforms in intertidal zones.

  16. Quantitative analysis of seismic fault zone waves in the rupture zone of the 1992 Landers, California, earthquake: Evidence for a shallow trapping structure

    USGS Publications Warehouse

    Peng, Z.; Ben-Zion, Y.; Michael, A.J.; Zhu, L.

    2003-01-01

    We analyse quantitatively a waveform data set of 238 earthquakes recorded by a dense seismic array across and along the rupture zone of the 1992 Landers earthquake. A grid-search method with station delay corrections is used to locate events that do not have catalogue locations. The quality of fault zone trapped waves generated by each event is determined from the ratios of seismic energy in time windows corresponding to trapped waves and direct S waves at stations close to and off the fault zone. Approximately 70 per cent of the events with S-P times of less than 2 s, including many clearly off the fault, produce considerable trapped wave energy. This distribution is in marked contrast with previous claims that trapped waves are generated only by sources close to or inside the Landers rupture zone. The time difference between the S arrival and trapped waves group does not grow systematically with increasing hypocentral distance and depth. The dispersion measured from the trapped waves is weak. These results imply that the seismic trapping structure at the Landers rupture zone is shallow and does not extend continuously along-strike by more than a few kilometres. Synthetic waveform modelling indicates that the fault zone waveguide has depth of approximately 2-4 km, a width of approximately 200 m, an S-wave velocity reduction relative to the host rock of approximately 30-40 per cent and an S-wave attenuation coefficient of approximately 20-30. The fault zone waveguide north of the array appears to be shallower and weaker than that south of the array. The waveform modelling also indicates that the seismic trapping structure below the array is centred approximately 100 m east of the surface break.

  17. Fatigue Crack Detection via Load-Differential Guided Wave Methods (Preprint)

    DTIC Science & Technology

    2011-11-01

    AFRL-RX-WP-TP-2011-4362 FATIGUE CRACK DETECTION VIA LOAD- DIFFERENTIAL GUIDED WAVE METHODS (PREPRINT) Jennifer E. Michaels, Sang Jun Lee...November 2011 Technical Paper 1 November 2011 – 1 November 2011 4. TITLE AND SUBTITLE FATIGUE CRACK DETECTION VIA LOAD-DIFFERENTIAL GUIDED WAVE...document contains color. 14. ABSTRACT Detection of fatigue cracks originating from fastener holes is an important application for structural health

  18. Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling

    DTIC Science & Technology

    2014-09-30

    At the same time, the PIs participate in Australian efforts of developing wave-ocean- ice coupled models for Antarctica . Specific new physics modules...Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling Alexander V. Babanin Swinburne University of Technology, PO Box...operational forecast. Altimeter climatology and the wave models will be used to study the current and future wind/wave and ice trends. APPROACH

  19. Time-localized frequency analysis of ultrasonic guided waves for nondestructive testing

    NASA Astrophysics Data System (ADS)

    Shin, Hyeon Jae; Song, Sung-Jin

    2000-05-01

    A time-localized frequency (TLF) analysis is employed for the guided wave mode identification and improved guided wave applications. For the analysis of time-localized frequency contents of digitized ultrasonic signals, TLF analysis consists of splitting the time domain signal into overlapping segments, weighting each with the hanning window, and forming the columns of discrete Fourier transforms. The result is presented by a frequency versus time domain diagram showing frequency variation along the signal arrival time. For the demonstration of the utility of TLF analysis, an experimental group velocity dispersion pattern obtained by TLF analysis is compared with the dispersion diagram obtained by theory of elasticity. Sample piping is carbon steel piping that is used for the transportation of natural gas underground. Guided wave propagation characteristic on the piping is considered with TLF analysis and wave structure concepts. TLF analysis is used for the detection of simulated corrosion defects and the assessment of weld joint using ultrasonic guided waves. TLF analysis has revealed that the difficulty of mode identification in multi-mode propagation could be overcome. Group velocity dispersion pattern obtained by TLF analysis agrees well with theoretical results.

  20. Mode perturbation method for optimal guided wave mode and frequency selection.

    PubMed

    Philtron, J H; Rose, J L

    2014-09-01

    With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. However, work continues to find optimal mode and frequency selection for a given application. This "optimal" mode could give the highest sensitivity to defects or the greatest penetration power, increasing inspection efficiency. Since material properties used for modeling work may be estimates, in many cases guided wave mode and frequency selection can be adjusted for increased inspection efficiency in the field. In this paper, a novel mode and frequency perturbation method is described and used to identify optimal mode points based on quantifiable wave characteristics. The technique uses an ultrasonic phased array comb transducer to sweep in phase velocity and frequency space. It is demonstrated using guided interface waves for bond evaluation. After searching nearby mode points, an optimal mode and frequency can be selected which has the highest sensitivity to a defect, or gives the greatest penetration power. The optimal mode choice for a given application depends on the requirements of the inspection. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Noncontact measurement of guided ultrasonic wave scattering for fatigue crack characterization

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2013-04-01

    Fatigue cracks can develop in aerospace structures at locations of stress concentration such as fasteners. For the safe operation of the aircraft fatigue cracks need to be detected before reaching a critical length. Guided ultrasonic waves offer an efficient method for the detection and characterization of fatigue cracks in large aerospace structures. Noncontact excitation of guided waves was achieved using electromagnetic acoustic transducers (EMAT). The transducers were developed for the specific excitation of the A0 Lamb mode. Based on the induced eddy currents in the plate a simple theoretical model was developed and reasonably good agreement with the measurements was achieved. However, the detection sensitivity for fatigue cracks depends on the location and orientation of the crack relative to the measurement locations. Crack-like defects have a directionality pattern of the scattered field depending on the angle of the incident wave relative to the defect orientation and on the ratio of the characteristic defect size to wavelength. The detailed angular dependency of the guided wave field scattered at crack-like defects in plate structures has been measured using a noncontact laser interferometer. Good agreement with 3D Finite Element simulation predictions was achieved for machined part-through and through-thickness notches. The amplitude of the scattered wave was quantified for a variation of angle of the incident wave relative to the defect orientation and the defect depth. These results provide the basis for the defect characterization in aerospace structures using guided wave sensors.

  2. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Chew, D.; Fromme, P.

    2014-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  3. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Chew, D.; Fromme, P.

    2015-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  4. Plant association and management guide for the western hemlock zone.

    Treesearch

    Christopher Topik; Nancy M. Halverson; Dale G. Brockway

    1986-01-01

    This guide presents the plant association classification for the western hemlock zone of the Gifford Pinchot National Forest. The bulk of the forest below about 3000 feet in elevation is included in this zone, comprising about one half of the entire landbase. Much of this area is blanketed with productive stands of Douglas-fir.

  5. Effect of pressurization on helical guided wave energy velocity in fluid-filled pipes.

    PubMed

    Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2017-03-01

    The effect of pressurization stresses on helical guided waves in a thin-walled fluid-filled pipe is studied by modeling leaky Lamb waves in a stressed plate bordered by fluid. Fluid pressurization produces hoop and longitudinal stresses in a thin-walled pipe, which corresponds to biaxial in-plane stress in a plate waveguide model. The effect of stress on guided wave propagation is accounted for through nonlinear elasticity and finite deformation theory. Emphasis is placed on the stress dependence of the energy velocity of the guided wave modes. For this purpose, an expression for the energy velocity of leaky Lamb waves in a stressed plate is derived. Theoretical results are presented for the mode, frequency, and directional dependent variations in energy velocity with respect to stress. An experimental setup is designed for measuring variations in helical wave energy velocity in a thin-walled water-filled steel pipe at different levels of pressure. Good agreement is achieved between the experimental variations in energy velocity for the helical guided waves and the theoretical leaky Lamb wave solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Wave effects on ocean-ice interaction in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Hakkinen, Sirpa; Peng, Chih Y.

    1993-01-01

    The effects of wave train on ice-ocean interaction in the marginal ice zone are studied through numerical modeling. A coupled two-dimensional ice-ocean model has been developed to include wave effects and wind stress for the predictions of ice edge dynamics. The sea ice model is coupled to the reduced-gravity ocean model through interfacial stresses. The main dynamic balance in the ice momentum is between water-ice stress, wind stress, and wave radiation stresses. By considering the exchange of momentum between waves and ice pack through radiation stress for decaying waves, a parametric study of the effects of wave stress and wind stress on ice edge dynamics has been performed. The numerical results show significant effects from wave action. The ice edge is sharper, and ice edge meanders form in the marginal ice zone owing to forcing by wave action and refraction of swell system after a couple of days. Upwelling at the ice edge and eddy formation can be enhanced by the nonlinear effects of wave action; wave action sharpens the ice edge and can produce ice meandering, which enhances local Ekman pumping and pycnocline anomalies. The resulting ice concentration, pycnocline changes, and flow velocity field are shown to be consistent with previous observations.

  7. Velocity Structure of the Subducted Yakutat Terrane, Alaska: Insights from Guided Waves

    NASA Astrophysics Data System (ADS)

    Coulson, S.; Garth, T.; Rietbrock, A.

    2017-12-01

    Subduction zone guided wave arrivals from intermediate depth earthquakes provide insight into the fine scale velocity structure of the subducting oceanic crust as it dehydrates. These observations can be used to determine the average velocity and thickness of the crustal low velocity layer (LVL) at depth, allowing inferences to be drawn about composition and degree of hydration. We constrain guided wave dispersion by comparing waveforms recorded in the subduction forearc with simulated waveforms, produced using a 2D finite difference waveform propagation model. The structure of the Aleutian arc is complex due to the accretion of the Yakutat Terrane (YT) to the east, which is partially coupled with the subducting Pacific plate. An unusually thick LVL associated with the YT has been inferred down to 140 km depth by receiver function studies and travel time tomography. Focussing on a profile running NNW-SSE close to Anchorage, we constrain slab geometry using global and local catalogues, as well as the curvature inferred from receiver functions (Kim et al., 2014). P-wave arrivals from 41 earthquakes (2012-2015) show significant guided wave dispersion on at least one station; high frequency (>1-3 Hz) energy is delayed by up to 2-3 seconds. Choosing the clearest dispersion observations, we systematically vary both LVL width and P-wave velocity, to find the lowest misfit between the observed and synthetic waveforms. Multiple modelled events show the thickness of the LVL associated with subducted YT to be 6-10 km, significantly thinner than inferred by receiver function studies. Most events are accounted for by an LVL velocity contrast of 12.5-15% with overriding mantle material, however, observations of the deepest event in the northern corner of the YT require a velocity contrast of 6%. Lower velocities in the shallower slab (70-120 km) cannot be accounted for by reacted or unreacted MORB or gabbro compositions. We postulate the presence of interbedded sediments within

  8. Guided elastic waves in a pre-stressed compressible interlayer

    PubMed

    Sotiropoulos

    2000-03-01

    The propagation of guided elastic waves in a pre-stressed elastic compressible layer embedded in a different compressible material is examined. The waves propagate parallel to the planar layer interfaces as a superposed dynamic stress state on the statically pre-stressed layer and host material. The underlying stress condition in the two materials is characterized by equibiaxial in-plane deformations with common principal axes of strain, one of the axes being perpendicular to the layering. Both materials have arbitrary strain energy functions. The dispersion equation is derived in explicit form. Analysis of the dispersion equation reveals the propagation characteristics and their dependence on frequency, material parameters and stress parameters. Combinations of these parameters are also defined for which guided waves cannot propagate.

  9. Spin wave filtering and guiding in Permalloy/iron nanowires

    NASA Astrophysics Data System (ADS)

    Silvani, R.; Kostylev, M.; Adeyeye, A. O.; Gubbiotti, G.

    2018-03-01

    We have investigated the spin wave filtering and guiding properties of periodic array of single (Permalloy and Fe) and bi-layer (Py/Fe) nanowires (NWs) by means of Brillouin light scattering measurements and micromagnetic simulations. For all the nanowire arrays, the thickness of the layers is 10 nm while all NWs have the same width of 340 nm and edge-to-edge separation of 100 nm. Spin wave dispersion has been measured in the Damon-Eshbach configuration for wave vector either parallel or perpendicular to the nanowire length. This study reveals the filtering property of the spin waves when the wave vector is perpendicular to the NW length, with frequency ranges where the spin wave propagation is permitted separated by frequency band gaps, and the guiding property of NW when the wave vector is oriented parallel to the NW, with spin wave modes propagating in parallel channels in the central and edge regions of the NW. The measured dispersions were well reproduced by micromagnetic simulations, which also deliver the spatial profiles for the modes at zero wave vector. To reproduce the dispersion of the modes localized close to the NW edges, uniaxial anisotropy has been introduced. In the case of Permalloy/iron NWs, the obtained results have been compared with those for a 20 nm thick effective NW having average magnetic properties of the two materials.

  10. Experimental investigation of change of energy of infragavity waves in dependence on spectral characteristics of an irregular wind waves in coastal zone

    NASA Astrophysics Data System (ADS)

    Saprykina, Yana; Divinskii, Boris

    2013-04-01

    An infragravity waves are long waves with periods of 20 - 300 s. Most essential influence of infragarvity waves on dynamic processes is in a coastal zone, where its energy can exceed the energy of wind waves. From practical point of view, the infragravity waves are important, firstly, due to their influence on sand transport processes in a coastal zone. For example, interacting with group structure of wind waves the infragravity waves can define position of underwater bars on sandy coast. Secondly, they are responsible on formation of long waves in harbors. Main source of infragravity waves is wave group structure defined by sub-nonlinear interactions of wind waves (Longuet-Higgins, Stewart, 1962). These infragravity waves are bound with groups of wind waves and propagate with wave group velocity. Another type of infragravity waves are formed in a surf zone as a result of migration a wave breaking point (Symonds, et al., 1982). What from described above mechanisms of formation of infragravity waves prevails, till now it is unknown. It is also unknown how energy of infragravity waves depends on energy of input wind waves and how it changes during nonlinear wave transformation in coastal zone. In our work on the basis of the analysis of data of field experiment and numerical simulation a contribution of infragravity waves in total wave energy in depending on integral characteristics of an irregular wave field in the conditions of a real bathymetry was investigated. For analysis the data of field experiment "Shkorpilovtsy-2007" (Black sea) and data of numerical modeling of Boussinesq type equation with extended dispersion characteristics (Madsen et al., 1997) were used. It was revealed that infragravity waves in a coastal zone are defined mainly by local group structure of waves, which permanently changes due to nonlinearity, shoaling and breaking processes. Free infragravity waves appearing after wave breaking exist together with bound infragravity waves. There are

  11. Prediction and near-field observation of skull-guided acoustic waves

    NASA Astrophysics Data System (ADS)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-01

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  12. Prediction and near-field observation of skull-guided acoustic waves.

    PubMed

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-21

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  13. Study of guided wave transmission through complex junction in sodium cooled reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elie, Q.; Le Bourdais, F.; Jezzine, K.

    2015-07-01

    Ultrasonic guided wave techniques are seen as suitable candidates for the inspection of welded structures within sodium cooled fast reactors (SFR), as the long range propagation of guided waves without amplitude attenuation can overcome the accessibility problem due to the liquid sodium. In the context of the development of the Advanced Sodium Test Reactor for Industrial Demonstration (ASTRID), the French Atomic Commission (CEA) investigates non-destructive testing techniques based on guided wave propagation. In this work, guided wave NDT methods are applied to control the integrity of welds located in a junction-type structure welded to the main vessel. The method presentedmore » in this paper is based on the analysis of scattering matrices peculiar to each expected defect, and takes advantage of the multi-modal and dispersive characteristics of guided wave generation. In a simulation study, an algorithm developed using the CIVA software is presented. It permits selecting appropriate incident modes to optimize detection and identification of expected flawed configurations. In the second part of this paper, experimental results corresponding to a first validation step of the simulation results are presented. The goal of the experiments is to estimate the effectiveness of the incident mode selection in plates. The results show good agreement between experience and simulation. (authors)« less

  14. Guided wave phased array sensor tuning for improved defect detection and characterization

    NASA Astrophysics Data System (ADS)

    Philtron, Jason H.; Rose, Joseph L.

    2014-03-01

    Ultrasonic guided waves are finding increased use in a variety of Nondestructive Evaluation and Structural Health Monitoring applications due to their efficiency in defect detection using a sensor at a single location to inspect a large area of a structure and an ability to inspect hidden and coated areas for example. With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. For example, in a sample problem presented here to access bond integrity, researchers may choose to use a guided wave mode which has high in-plane displacement, stress, or other feature at the interface. However, since material properties used for modeling work may not be precise for the development of dispersion curves, in many cases guided wave mode and frequency selection should be adjusted for increased inspection efficiency in the field. In this work, a phased array comb transducer is used to sweep over phase velocity - frequency space to tune mode excitation for improved defect characterization performance. A thin polycarbonate layer bonded to a thick metal plate is considered with a contaminated surface prior to bonding. Physicallybased features are used to correlate wave signals with defect detection. Features assessed include arrival time and the frequency of maximum amplitude. A pseudo C-scan plot is presented which can be used to simplify data analysis. Excellent results are obtained.

  15. 77 FR 50062 - Safety Zone; Embry-Riddle Wings and Waves, Atlantic Ocean; Daytona Beach, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... 1625-AA00 Safety Zone; Embry-Riddle Wings and Waves, Atlantic Ocean; Daytona Beach, FL AGENCY: Coast...-Riddle Wings and Waves air show. The event is scheduled to take place from Thursday, October 11, 2012...: Sec. 165.T07-0653 Safety Zone; Embry Riddle Wings and Waves, Atlantic Ocean, Daytona Beach, FL. (a...

  16. Influence of the Spatial Dimensions of Ultrasonic Transducers on the Frequency Spectrum of Guided Waves.

    PubMed

    Samaitis, Vykintas; Mažeika, Liudas

    2017-08-08

    Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain

  17. Influence of the Spatial Dimensions of Ultrasonic Transducers on the Frequency Spectrum of Guided Waves

    PubMed Central

    Samaitis, Vykintas; Mažeika, Liudas

    2017-01-01

    Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain

  18. Remote sensing of the correlation between breakpoint oscillations and infragravity waves in the surf and swash zone

    NASA Astrophysics Data System (ADS)

    Moura, T.; Baldock, T. E.

    2017-04-01

    A novel remote sensing methodology to determine the dominant infragravity mechanism in the inner surf and swash zone in the field is presented. Video observations of the breakpoint motion are correlated with the shoreline motion and inner surf zone water levels to determine the relationship between the time-varying breakpoint oscillations and the shoreline motion. The results of 13 field data sets collected from three different beaches indicate that, inside the surf zone, the dominance of bound wave or breakpoint forcing is strongly dependent on the surf zone width and the type of short wave breaking. Infragravity generation by bound wave release was stronger for conditions with relatively narrow surf zones and plunging waves; breakpoint forcing was dominant for wider surf zones and spilling breaker conditions.

  19. Ultrasonic guided wave sensing characteristics of large area thin piezo coating

    NASA Astrophysics Data System (ADS)

    Rathod, V. T.; Jeyaseelan, A. Antony; Dutta, Soma; Mahapatra, D. Roy

    2017-10-01

    This paper reports on the characterization method and performance enhancement of thin piezo coating for ultrasonic guided wave sensing applications. We deposited the coatings by an in situ slurry coating method and studied their guided wave sensing properties on a one-dimensional metallic beam as a substrate waveguide. The developed piezo coatings show good sensitivity to the longitudinal and flexural modes of guided waves. Sensing voltage due to the guided waves at various different ultrasonic frequencies shows a linear dependence on the thickness of the coating. The coatings also exhibit linear sensor output voltage with respect to the induced dynamic strain magnitude. Diameter/size of the piezo coatings strongly influences the voltage response in relation to the wavelength. The proposed method used a characterization set-up involving coated sensors, reference transducers and an analytical model to estimate the piezoelectric coefficient of the piezo coating. The method eliminates the size dependent effect on the piezo property accurately and gives further insight to design better sensors/filters with respect to frequency/wavelength of interest. The developed coatings will have interesting applications in structural health monitoring (SHM) and internet of things (IOT).

  20. Computation of Acoustic Waves Through Sliding-Zone Interfaces Using an Euler/Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    1996-01-01

    The effect of a patched sliding-zone interface on the transmission of acoustic waves is examined for two- and three-dimensional model problems. A simple but general interpolation scheme at the patched boundary passes acoustic waves without distortion, provided that a sufficiently small time step is taken. A guideline is provided for the maximum permissible time step or zone speed that gives an acceptable error introduced by the sliding-zone interface.

  1. Monitoring corrosion of rebar embedded in mortar using guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Ervin, Benjamin Lee

    This thesis investigates the use of guided mechanical waves for monitoring uniform and localized corrosion in steel reinforcing bars embedded in concrete. The main forms of structural deterioration from uniform corrosion in reinforced concrete are the destruction of the bond between steel and concrete, the loss of steel cross-sectional area, and the loss of concrete cross-sectional area from cracking and spalling. Localized corrosion, or pitting, leads to severe loss of steel cross-sectional area, creating a high risk of bar tensile failure and unintended transfer of loads to the surrounding concrete. Reinforcing bars were used to guide the waves, rather than bulk concrete, allowing for longer inspection distances due to lower material absorption, scattering, and divergence. Guided mechanical waves in low frequency ranges (50-200 kHz) and higher frequency ranges (2-8 MHz) were monitored in reinforced mortar specimens undergoing accelerated uniform corrosion. The frequency ranges chosen contain wave modes with varying amounts of interaction, i.e. displacement profile, at the material interface. Lower frequency modes were shown to be sensitive to the accumulation of corrosion product and the level of bond between the surrounding mortar and rebar. This allows for the onset of corrosion and bond deterioration to be monitored. Higher frequency modes were shown to be sensitive to changes in the bar profile surface, allowing for the loss of cross-sectional area to be monitored. Guided mechanical waves in the higher frequency range were also used to monitor reinforced mortar specimens undergoing accelerated localized corrosion. The high frequency modes were sensitive to the localized attack. Also promising was the unique frequency spectrum response for both uniform and localized corrosion, allowing the two corrosion types to be differentiated from through-transmission evaluation. The isolated effects of the reinforcing ribs, simulated debonding, simulated pitting, water

  2. Wave attenuation in the marginal ice zone during LIMEX

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Vachon, Paris W.; Peng, Chih Y.; Bhogal, A. S.

    1992-01-01

    The effect of ice cover on ocean-wave attenuation is investigated for waves under flexure in the marginal ice zone (MIZ) with SAR image spectra and the results of models. Directional wavenumber spectra are taken from the SAR image data, and the wave-attenuation rate is evaluated with SAR image spectra and by means of the model by Liu and Mollo-Christensen (1988). Eddy viscosity is described by means of dimensional analysis as a function of ice roughness and wave-induced velocity, and comparisons are made with the remotely sensed data. The model corrects the open-water model by introducing the effects of a continuous ice sheet, and turbulent eddy viscosity is shown to depend on ice thickness, floe sizes, significant wave height, and wave period. SAR and wave-buoy data support the trends described in the model results, and a characteristic rollover is noted in the model and experimental wave-attenuation rates at high wavenumbers.

  3. Focusing guided waves using surface bonded elastic metamaterials

    NASA Astrophysics Data System (ADS)

    Yan, Xiang; Zhu, Rui; Huang, Guoliang; Yuan, Fuh-Gwo

    2013-09-01

    Bonding a two-dimensional planar array of small lead discs on an aluminum plate with silicone rubber is shown numerically to focus low-frequency flexural guided waves. The "effective mass density profile" of this type of elastic metamaterials (EMMs), perpendicular to wave propagation direction, is carefully tailored and designed, which allows rays of flexural A0 mode Lamb waves to bend in succession and then focus through a 7 × 9 planar array. Numerical simulations show that Lamb waves can be focused beyond EMMs region with amplified displacement and yet largely retained narrow banded waveform, which may have potential application in structural health monitoring.

  4. Ocean Wave Energy Regimes of the Circumpolar Coastal Zones

    NASA Astrophysics Data System (ADS)

    Atkinson, D. E.

    2004-12-01

    Ocean wave activity is a major enviromental forcing agent of the ice-rich sediments that comprise large sections of the arctic coastal margins. While it is instructive to possess information about the wind regimes in these regions, direct application to geomorphological and engineering needs requires knowledge of the resultant wave-energy regimes. Wave energy information has been calculated at the regional scale using adjusted reanalysis model windfield data. Calculations at this scale are not designed to account for local-scale coastline/bathymetric irregularities and variability. Results will be presented for the circumpolar zones specified by the Arctic Coastal Dynamics Project.

  5. Design and Implementation of an Electronic Front-End Based on Square Wave Excitation for Ultrasonic Torsional Guided Wave Viscosity Sensor

    PubMed Central

    Rabani, Amir

    2016-01-01

    The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications. PMID:27754324

  6. Design and Implementation of an Electronic Front-End Based on Square Wave Excitation for Ultrasonic Torsional Guided Wave Viscosity Sensor.

    PubMed

    Rabani, Amir

    2016-10-12

    The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications.

  7. Numerical Simulation of Monitoring Corrosion in Reinforced Concrete Based on Ultrasonic Guided Waves

    PubMed Central

    Zheng, Zhupeng; Lei, Ying; Xue, Xin

    2014-01-01

    Numerical simulation based on finite element method is conducted to predict the location of pitting corrosion in reinforced concrete. Simulation results show that it is feasible to predict corrosion monitoring based on ultrasonic guided wave in reinforced concrete, and wavelet analysis can be used for the extremely weak signal of guided waves due to energy leaking into concrete. The characteristic of time-frequency localization of wavelet transform is adopted in the corrosion monitoring of reinforced concrete. Guided waves can be successfully used to identify corrosion defects in reinforced concrete with the analysis of suitable wavelet-based function and its scale. PMID:25013865

  8. Damage evaluation by a guided wave-hidden Markov model based method

    NASA Astrophysics Data System (ADS)

    Mei, Hanfei; Yuan, Shenfang; Qiu, Lei; Zhang, Jinjin

    2016-02-01

    Guided wave based structural health monitoring has shown great potential in aerospace applications. However, one of the key challenges of practical engineering applications is the accurate interpretation of the guided wave signals under time-varying environmental and operational conditions. This paper presents a guided wave-hidden Markov model based method to improve the damage evaluation reliability of real aircraft structures under time-varying conditions. In the proposed approach, an HMM based unweighted moving average trend estimation method, which can capture the trend of damage propagation from the posterior probability obtained by HMM modeling is used to achieve a probabilistic evaluation of the structural damage. To validate the developed method, experiments are performed on a hole-edge crack specimen under fatigue loading condition and a real aircraft wing spar under changing structural boundary conditions. Experimental results show the advantage of the proposed method.

  9. Guided Wave Propagation Study on Laminated Composites by Frequency-Wavenumber Technique

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Yu, Lingyu; Leckey, Cara A. C.

    2014-01-01

    Toward the goal of delamination detection and quantification in laminated composites, this paper examines guided wave propagation and wave interaction with delamination damage in laminated carbon fiber reinforced polymer (CFRP) composites using frequency-wavenumber (f-kappa) analysis. Three-dimensional elastodynamic finite integration technique (EFIT) is used to acquire simulated time-space wavefields for a CFRP composite. The time-space wavefields show trapped waves in the delamination region. To unveil the wave propagation physics, the time-space wavefields are further analyzed by using two-dimensional (2D) Fourier transforms (FT). In the analysis results, new f-k components are observed when the incident guided waves interact with the delamination damage. These new f-kappa components in the simulations are experimentally verified through data obtained from scanning laser Doppler vibrometer (SLDV) tests. By filtering the new f-kappa components, delamination damage is detected and quantified.

  10. Implementation guide for monitoring work zone safety and mobility impacts

    DOT National Transportation Integrated Search

    2009-01-01

    This implementation guide describes the conceptual framework, data requirements, and computational procedures for determining the safety and mobility impacts of work zones in Texas. Researchers designed the framework and procedures to assist district...

  11. Wave attenuation in the marginal ice zone during LIMEX

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chih Y.; Vachon, Paris W.

    1991-01-01

    During LIMEX'87 and '89, the CCRS CV-580 aircraft collected SAR (synthetic aperture radar) data over the marginal ice zone off the coast of Newfoundland. Based upon the wavenumber spectra from SAR data, the wave attenuation rate is estimated and compared with a model. The model-data comparisons are reasonably good for the ice conditions during LIMEX (Labrador Ice Margin Experiment). Both model and SAR-derived wave attenuation rates show a roll-over at high wavenumbers.

  12. Seismic Evidence of A Widely Distributed West Napa Fault Zone, Hendry Winery, Napa, California

    NASA Astrophysics Data System (ADS)

    Goldman, M.; Catchings, R.; Chan, J. H.; Criley, C.

    2015-12-01

    Following the 24 August 2014 Mw 6.0 South Napa earthquake, surface rupture was mapped along the West Napa Fault Zone (WNFZ) for a distance of ~ 14 km and locally within zones up to ~ 2 km wide. Near the northern end of the surface rupture, however, several strands coalesced to form a narrow, ~100-m-wide zone of surface rupture. To determine the location, width, and shallow (upper few hundred meters) geometry of the fault zone, we acquired an active-source seismic survey across the northern surface rupture in February 2015. We acquired both P- and S-wave data, from which we developed reflection images and tomographic images of Vp, Vs, Vp/Vs, and Poisson's ratio of the upper 100 m. We also used small explosive charges within surface ruptures located ~600 m north of our seismic array to record fault-zone guided waves. Our data indicate that at the latitude of the Hendry Winery, the WNFZ is characterized by at least five fault traces that are spaced 60 to 200 m apart. Zones of low-Vs, low-Vp/Vs, and disrupted reflectors highlight the fault traces on the tomography and reflection images. On peak-ground-velocity (PGV) plots, the most pronounced high-amplitude guided-wave seismic energy coincides precisely with the mapped surface ruptures, and the guided waves also show discrete high PGV zones associated with unmapped fault traces east of the surface ruptures. Although the surface ruptures of the WNFZ were observed only over a 100-m-wide zone at the Hendry Winery, our data indicate that the fault zone is at least 400 m wide, which is probably a minimum width given the 400-m length of our seismic profile. Slip on the WNFZ is generally considered to be low relative to most other Bay Area faults, but we suggest that the West Napa Fault is a zone of widely distributed shear, and to fully account for the total slip on the WNFZ, slip on all traces of this wide fault zone must be considered.

  13. Application of RMS for damage detection by guided elastic waves

    NASA Astrophysics Data System (ADS)

    Radzieński, M.; Doliński, Ł.; Krawczuk, M.; dot Zak, A.; Ostachowicz, W.

    2011-07-01

    This paper presents certain results of an experimental study related with a damage detection in structural elements based on deviations in guided elastic wave propagation patterns. In order to excite guided elastic waves within specimens tested piezoelectric transducers have been applied. As excitation signals 5 sine cycles modulated by Hanning window have been used. Propagation of guided elastic waves has been monitored by a scanning Doppler laser vibrometer. The time signals recorded during measurement have been utilised to calculate the values of RMS. It has turned out that the values of RMS differed significantly in damaged areas from the values calculated for the healthy ones. In this way it has become possible to pinpoint precisely the locations of damage over the entire measured surface. All experimental investigations have been carried out for thin aluminium or composite plates. Damage has been simulated by a small additional mass attached on the plate surface or by a narrow notch cut. It has been shown that proposed method allows one to localise damage of various shapes and sizes within structural elements over the whole area under investigation.

  14. Simulation of guided wave interaction with in-plane fiber waviness

    NASA Astrophysics Data System (ADS)

    Leckey, Cara A. C.; Juarez, Peter D.

    2017-02-01

    Reducing the timeline for certification of composite materials and enabling the expanded use of advanced composite materials for aerospace applications are two primary goals of NASA's Advanced Composites Project (ACP). A key a technical challenge area for accomplishing these goals is the development of rapid composite inspection methods with improved defect characterization capabilities. Ongoing work at NASA Langley is focused on expanding ultrasonic simulation capabilities for composite materials. Simulation tools can be used to guide the development of optimal inspection methods. Custom code based on elastodynamic finite integration technique is currently being developed and implemented to study ultrasonic wave interaction with manufacturing defects, such as in-plane fiber waviness (marcelling). This paper describes details of validation comparisons performed to enable simulation of guided wave propagation in composites containing fiber waviness. Simulation results for guided wave interaction with in-plane fiber waviness are also discussed. The results show that the wavefield is affected by the presence of waviness on both the surface containing fiber waviness, as well as the opposite surface to the location of waviness.

  15. Simulation of Guided Wave Interaction with In-Plane Fiber Waviness

    NASA Technical Reports Server (NTRS)

    Leckey, Cara A. C.; Juarez, Peter D.

    2016-01-01

    Reducing the timeline for certification of composite materials and enabling the expanded use of advanced composite materials for aerospace applications are two primary goals of NASA's Advanced Composites Project (ACP). A key a technical challenge area for accomplishing these goals is the development of rapid composite inspection methods with improved defect characterization capabilities. Ongoing work at NASA Langley is focused on expanding ultrasonic simulation capabilities for composite materials. Simulation tools can be used to guide the development of optimal inspection methods. Custom code based on elastodynamic finite integration technique is currently being developed and implemented to study ultrasonic wave interaction with manufacturing defects, such as in-plane fiber waviness (marcelling). This paper describes details of validation comparisons performed to enable simulation of guided wave propagation in composites containing fiber waviness. Simulation results for guided wave interaction with in-plane fiber waviness are also discussed. The results show that the wavefield is affected by the presence of waviness on both the surface containing fiber waviness, as well as the opposite surface to the location of waviness.

  16. Modeling Wave-Ice Interactions in the Marginal Ice Zone

    NASA Astrophysics Data System (ADS)

    Orzech, Mark; Shi, Fengyan; Bateman, Sam; Veeramony, Jay; Calantoni, Joe

    2015-04-01

    The small-scale (O(m)) interactions between waves and ice floes in the marginal ice zone (MIZ) are investigated with a coupled model system. Waves are simulated with the non-hydrostatic finite-volume model NHWAVE (Ma et al., 2012) and ice floes are represented as bonded collections of smaller particles with the discrete element system LIGGGHTS (Kloss et al., 2012). The physics of fluid and ice are recreated as authentically as possible, to allow the coupled system to supplement and/or substitute for more costly and demanding field experiments. The presentation will first describe the development and validation of the coupled system, then discuss the results of a series of virtual experiments in which ice floe and wave characteristics are varied to examine their effects on energy dissipation, MIZ floe size distribution, and ice pack retreat rates. Although Wadhams et al. (1986) suggest that only a small portion (roughly 10%) of wave energy entering the MIZ is reflected, dissipation mechanisms for the remaining energy have yet to be delineated or measured. The virtual experiments are designed to focus on specific properties and processes - such as floe size and shape, collision and fracturing events, and variations in wave climate - and measure their relative roles the transfer of energy and momentum from waves to ice. Questions to be examined include: How is energy dissipated by ice floe collisions, fracturing, and drag, and how significant is the wave attenuation associated with each process? Do specific wave/floe length scale ratios cause greater wave attenuation? How does ice material strength affect the rate of wave energy loss? The coupled system will ultimately be used to test and improve upon wave-ice parameterizations for large-scale climate models. References: >Kloss, C., C. Goniva, A. Hager, S. Amberger, and S. Pirker (2012). Models, algorithms and validation for opensource DEM and CFD-DEM. Progress in Computational Fluid Dynamics 12(2/3), 140-152. >Ma, G

  17. Propagation characteristics of ultrasonic guided waves in continuously welded rail

    NASA Astrophysics Data System (ADS)

    Yao, Wenqing; Sheng, Fuwei; Wei, Xiaoyuan; Zhang, Lei; Yang, Yuan

    2017-07-01

    Rail defects cause numerous railway accidents. Trains are derailed and serious consequences often occur. Compared to traditional bulk wave testing, ultrasonic guided waves (UGWs) can provide larger monitoring ranges and complete coverage of the waveguide cross-section. These advantages are of significant importance for the non-destructive testing (NDT) of the continuously welded rail, and the technique is therefore widely used in high-speed railways. UGWs in continuous welded rail (CWR) and their propagation characteristics have been discussed in this paper. Finite element methods (FEMs) were used to accomplish a vibration modal analysis, which is extended by a subsequent dispersion analysis. Wave structure features were illustrated by displacement profiles. It was concluded that guided waves have the ability to detect defects in the rail via choice of proper mode and frequency. Additionally, thermal conduction that is caused by temperature variation in the rail is added into modeling and simulation. The results indicated that unbalanced thermal distribution may lead to the attenuation of UGWs in the rail.

  18. Guided waves and defect scattering in metal matrix composite plates

    NASA Technical Reports Server (NTRS)

    Datta, Subhendu K.; Bratton, Robert L.; Shah, Arvind H.

    1989-01-01

    Guided Rayleigh-Lamb waves in a continuous graphite fiber reinforced magnesium plate has been studied. The interest in this material arises from its high thermal stability and because it provides high strength-to-weight ratio. Previous studies have shown that for wavelengths much larger than the fiber diameters and spacing, the material can be characterized as transversely isotropic with the symmetry axis aligned with the fiber direction. Because of the high longitudinal stiffness of the graphite fibers, the material shows strong anisotropy, with very high modulus in the fiber direction. For this reason, dispersion of guided waves is strongly influenced by the deviation of the direction of propagation from the symmetry axis. Results are given for propagation in different directions and for scattering of antiplane shear waves by surface-breaking cracks and delaminations.

  19. Monochromatic body waves excited by great subduction zone earthquakes

    NASA Astrophysics Data System (ADS)

    Ihmlé, Pierre F.; Madariaga, Raúl

    Large quasi-monochromatic body waves were excited by the 1995 Chile Mw=8.1 and by the 1994 Kurile Mw=8.3 events. They are observed on vertical/radial component seismograms following the direct P and Pdiff arrivals, at all azimuths. We devise a slant stack algorithm to characterize the source of the oscillations. This technique aims at locating near-source isotropic scatterers using broadband data from global networks. For both events, we find that the oscillations emanate from the trench. We show that these monochromatic waves are due to localized oscillations of the water column. Their period corresponds to the gravest ID mode of a water layer for vertically traveling compressional waves. We suggest that these monochromatic body waves may yield additional constraints on the source process of great subduction zone earthquakes.

  20. The effect of gradational velocities and anisotropy on fault-zone trapped waves

    NASA Astrophysics Data System (ADS)

    Gulley, A. K.; Eccles, J. D.; Kaipio, J. P.; Malin, P. E.

    2017-08-01

    Synthetic fault-zone trapped wave (FZTW) dispersion curves and amplitude responses for FL (Love) and FR (Rayleigh) type phases are analysed in transversely isotropic 1-D elastic models. We explore the effects of velocity gradients, anisotropy, source location and mechanism. These experiments suggest: (i) A smooth exponentially decaying velocity model produces a significantly different dispersion curve to that of a three-layer model, with the main difference being that Airy phases are not produced. (ii) The FZTW dispersion and amplitude information of a waveguide with transverse-isotropy depends mostly on the Shear wave velocities in the direction parallel with the fault, particularly if the fault zone to country-rock velocity contrast is small. In this low velocity contrast situation, fully isotropic approximations to a transversely isotropic velocity model can be made. (iii) Fault-aligned fractures and/or bedding in the fault zone that cause transverse-isotropy enhance the amplitude and wave-train length of the FR type FZTW. (iv) Moving the source and/or receiver away from the fault zone removes the higher frequencies first, similar to attenuation. (v) In most physically realistic cases, the radial component of the FR type FZTW is significantly smaller in amplitude than the transverse.

  1. The Consequences of Alfven Waves and Parallel Potential Drops in the Auroral Zone

    NASA Technical Reports Server (NTRS)

    Schriver, David

    2003-01-01

    The goal of this research is to examine the causes of field-aligned plasma acceleration in the auroral zone using satellite data and numerical simulations. A primary question to be addressed is what causes the field-aligned acceleration of electrons (leading to precipitation) and ions (leading to upwelling ions) in the auroral zone. Data from the Fast Auroral SnapshoT (FAST) and Polar satellites is used when the two satellites are in approximate magnetic conjunction and are in the auroral region. FAST is at relatively low altitudes and samples plasma in the midst of the auroral acceleration region while Polar is at much higher altitudes and can measure plasmas and waves propagating towards the Earth. Polar can determine the sources of energy streaming earthward from the magnetotail, either in the form of field-aligned currents, electromagnetic waves or kinetic particle energy, that ultimately leads to the acceleration of plasma in the auroral zone. After identifying and examining several events, numerical simulations are run that bridges the spatial region between the two satellites. The code is a one-dimensional, long system length particle in cell simulation that has been developed to model the auroral region. A main goal of this research project is to include Alfven waves in the simulation to examine how these waves can accelerate plasma in the auroral zone.

  2. P and S wave attenuation tomography of the Japan subduction zone

    NASA Astrophysics Data System (ADS)

    Wang, Zewei; Zhao, Dapeng; Liu, Xin; Chen, Chuanxu; Li, Xibing

    2017-04-01

    We determine the first high-resolution P and S wave attenuation (Q) tomography beneath the entire Japan Islands using a large number of high-quality t∗ data collected from P and S wave velocity spectra of 4222 local shallow and intermediate-depth earthquakes. The suboceanic earthquakes used in this study are relocated precisely using sP depth phases. Significant landward dipping high-Q zones are revealed clearly, which reflect the subducting Pacific slab beneath Hokkaido and Tohoku, and the subducting Philippine Sea (PHS) slab beneath SW Japan. Prominent low-Q zones are visible in the crust and mantle wedge beneath the active arc volcanoes in Hokkaido, Tohoku, and Kyushu, which reflect source zones of arc magmatism caused by fluids from the slab dehydration and corner flow in the mantle wedge. Our results also show that nonvolcanic low-frequency earthquakes (LFEs) in SW Japan mainly occur in the transition zone between a narrow low-Q belt and its adjacent high-Q zones right above the flat segment of the PHS slab. This feature suggests that the nonvolcanic LFEs are caused by not only fluid-affected slab interface but also specific conditions such as high pore pressure which is influenced by the overriding plate.

  3. Ultrasonic guided wave propagation across waveguide transitions: energy transfer and mode conversion.

    PubMed

    Puthillath, Padmakumar; Galan, Jose M; Ren, Baiyang; Lissenden, Cliff J; Rose, Joseph L

    2013-05-01

    Ultrasonic guided wave inspection of structures containing adhesively bonded joints requires an understanding of the interaction of guided waves with geometric and material discontinuities or transitions in the waveguide. Such interactions result in mode conversion with energy being partitioned among the reflected and transmitted modes. The step transition between an aluminum layer and an aluminum-adhesive-aluminum multi-layer waveguide is analyzed as a model structure. Dispersion analysis enables assessment of (i) synchronism through dispersion curve overlap and (ii) wavestructure correlation. Mode-pairs in the multi-layer waveguide are defined relative to a prescribed mode in a single layer as being synchronized and having nearly perfect wavestructure matching. Only a limited number of mode-pairs exist, and each has a unique frequency range. A hybrid model based on semi-analytical finite elements and the normal mode expansion is implemented to assess mode conversion at a step transition in a waveguide. The model results indicate that synchronism and wavestructure matching is associated with energy transfer through the step transition, and that the energy of an incident wave mode in a single layer is transmitted almost entirely to the associated mode-pair, where one exists. This analysis guides the selection of incident modes that convert into transmitted modes and improve adhesive joint inspection with ultrasonic guided waves.

  4. Automated Guided-Wave Scanning Developed to Characterize Materials and Detect Defects

    NASA Technical Reports Server (NTRS)

    Martin, Richard E.; Gyekenyeski, Andrew L.; Roth, Don J.

    2004-01-01

    The Nondestructive Evaluation (NDE) Group of the Optical Instrumentation Technology Branch at the NASA Glenn Research Center has developed a scanning system that uses guided waves to characterize materials and detect defects. The technique uses two ultrasonic transducers to interrogate the condition of a material. The sending transducer introduces an ultrasonic pulse at a point on the surface of the specimen, and the receiving transducer detects the signal after it has passed through the material. The aim of the method is to correlate certain parameters in both the time and frequency domains of the detected waveform to characteristics of the material between the two transducers. The scanning system is shown. The waveform parameters of interest include the attenuation due to internal damping, waveform shape parameters, and frequency shifts due to material changes. For the most part, guided waves are used to gauge the damage state and defect growth of materials subjected to various mechanical or environmental loads. The technique has been applied to polymer matrix composites, ceramic matrix composites, and metal matrix composites as well as metallic alloys. Historically, guided wave analysis has been a point-by-point, manual technique with waveforms collected at discrete locations and postprocessed. Data collection and analysis of this type limits the amount of detail that can be obtained. Also, the manual movement of the sensors is prone to user error and is time consuming. The development of an automated guided-wave scanning system has allowed the method to be applied to a wide variety of materials in a consistent, repeatable manner. Experimental studies have been conducted to determine the repeatability of the system as well as compare the results obtained using more traditional NDE methods. The following screen capture shows guided-wave scan results for a ceramic matrix composite plate, including images for each of nine calculated parameters. The system can

  5. Wave-Ice interaction in the Marginal Ice Zone: Toward a Wave-Ocean-Ice Coupled Modeling System

    DTIC Science & Technology

    2015-09-30

    MIZ using WW3 (3 frequency bins, ice retreat in August and ice advance in October); Blue (solid): Based on observations near Antarctica by Meylan...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave- Ice interaction in the Marginal Ice Zone: Toward a...Wave-Ocean- Ice Coupled Modeling System W. E. Rogers Naval Research Laboratory, Code 7322 Stennis Space Center, MS 39529 phone: (228) 688-4727

  6. Numerical modeling of the load effect on PZT-induced guided wave for load compensation of damage detection

    NASA Astrophysics Data System (ADS)

    Sun, Hu; Zhang, Aijia; Wang, Yishou; Qing, Xinlin P.

    2017-04-01

    Guided wave-based structural health monitoring (SHM) has been given considerable attention and widely studied for large-scale aircraft structures. Nevertheless, it is difficult to apply SHM systems on board or online, for which one of the most serious reasons is the environmental influence. Load is one fact that affects not only the host structure, in which guided wave propagates, but also the PZT, by which guided wave is transmitted and received. In this paper, numerical analysis using finite element method is used to study the load effect on guided wave acquired by PZT. The static loads with different grades are considered to analyze its effect on guided wave signals that PZT transmits and receives. Based on the variation trend of guided waves versus load, a load compensation method is developed to eliminate effects of load in the process of damage detection. The probabilistic reconstruction algorithm based on the signal variation of transmitter-receiver path is employed to identify the damage. Numerical tests is conducted to verify the feasibility and effectiveness of the given method.

  7. Ultrasonic guided wave inspection of Inconel 625 brazed lap joints

    NASA Astrophysics Data System (ADS)

    Comot, Pierre; Bocher, Philippe; Belanger, Pierre

    2016-04-01

    The aerospace industry has been investigating the use of brazing for structural joints, as a mean of reducing cost and weight. There therefore is a need for a rapid, robust, and cost-effective non-destructive testing method for evaluating the structural integrity of the joints. The mechanical strength of brazed joints depends mainly on the amount of brittle phases in their microstructure. Ultrasonic guided waves offer the possibility of detecting brittle phases in joints using spatio-temporal measurements. Moreover, they offer the opportunity to inspect complex shape joints. This study focused on the development of a technique based on ultrasonic guided waves for the inspection of Inconel 625 lap joints brazed with BNi-2 filler metal. A finite element model of a lap joint was used to optimize the inspection parameters and assess the feasibility of detecting the amount of brittle phases in the joint. A finite element parametric study simulating the input signal shape, the center frequency, and the excitation direction was performed. The simulations showed that the ultrasonic guided wave energy transmitted through, and reflected from, the joints was proportional to the amount of brittle phases in the joint.

  8. Guided waves in anisotropic and quasi-isotropic aerospace composites: three-dimensional simulation and experiment.

    PubMed

    Leckey, Cara A C; Rogge, Matthew D; Raymond Parker, F

    2014-01-01

    Three-dimensional (3D) elastic wave simulations can be used to investigate and optimize nondestructive evaluation (NDE) and structural health monitoring (SHM) ultrasonic damage detection techniques for aerospace materials. 3D anisotropic elastodynamic finite integration technique (EFIT) has been implemented for ultrasonic waves in carbon fiber reinforced polymer (CFRP) composite laminates. This paper describes 3D EFIT simulations of guided wave propagation in undamaged and damaged anisotropic and quasi-isotropic composite plates. Comparisons are made between simulations of guided waves in undamaged anisotropic composite plates and both experimental laser Doppler vibrometer (LDV) wavefield data and dispersion curves. Time domain and wavenumber domain comparisons are described. Wave interaction with complex geometry delamination damage is then simulated to investigate how simulation tools incorporating realistic damage geometries can aid in the understanding of wave interaction with CFRP damage. In order to move beyond simplistic assumptions of damage geometry, volumetric delamination data acquired via X-ray microfocus computed tomography is directly incorporated into the simulation. Simulated guided wave interaction with the complex geometry delamination is compared to experimental LDV time domain data and 3D wave interaction with the volumetric damage is discussed. Published by Elsevier B.V.

  9. Fault Zone Imaging from Correlations of Aftershock Waveforms

    NASA Astrophysics Data System (ADS)

    Hillers, Gregor; Campillo, Michel

    2018-03-01

    We image an active fault zone environment using cross correlations of 154 15 s long 1992 Landers earthquake aftershock seismograms recorded along a line array. A group velocity and phase velocity dispersion analysis of the reconstructed Rayleigh waves and Love waves yields shear wave velocity images of the top 100 m along the 800 m long array that consists of 22 three component stations. Estimates of the position, width, and seismic velocity of a low-velocity zone are in good agreement with the findings of previous fault zone trapped waves studies. Our preferred solution indicates the zone is offset from the surface break to the east, 100-200 m wide, and characterized by a 30% velocity reduction. Imaging in the 2-6 Hz range resolves further a high-velocity body of similar width to the west of the fault break. Symmetry and shape of zero-lag correlation fields or focal spots indicate a frequency and position dependent wavefield composition. At frequencies greater than 4 Hz surface wave propagation dominates, whereas at lower frequencies the correlation field also exhibits signatures of body waves that likely interact with the high-velocity zone. The polarization and late arrival times of coherent wavefronts observed above the low-velocity zone indicate reflections associated with velocity contrasts in the fault zone environment. Our study highlights the utility of the high-frequency correlation wavefield obtained from records of local and regional seismicity. The approach does not depend on knowledge of earthquake source parameters, which suggests the method can return images quickly during aftershock campaigns to guide network updates for optimal coverage of interesting geological features.

  10. Influence of Guided Waves in Tibia on Non-linear Scattering of Contrast Agents.

    PubMed

    Wang, Diya; Zhong, Hui; Zhai, Yu; Hu, Hong; Jin, Bowen; Wan, Mingxi

    2016-02-01

    The aim of this study was to elucidate the linear and non-linear responses of ultrasound contrast agent (UCA) to frequency-dispersive guided waves from the tibia cortex, particularly two individual modes, S0 (1.23 MHz) and A1 (2.06 MHz). The UCA responses to guided waves were illustrated through the Marmottant model derived from measured guided waves, and then verified by continuous infusion experiments in a vessel-tibia flow phantom. These UCA responses were further evaluated by the enhanced ratio of peak values and the resolutions of UCA backscattered echoes. Because of the individual modes S0 and A1 in the tibia, the peak values of the UCA backscattered echoes were enhanced by 83.57 ± 7.35% (p < 0.05) and 80.77 ± 6.60% (p < 0.01) in the UCA subharmonic frequency and subharmonic imaging, respectively. However, corresponding resolutions were 0.78 ± 0.07 (p < 0.05) and 0.72 ± 0.12 (p < 0.01) times those without guided wave disturbances, respectively. Even though the resolution was partly degenerated, the subharmonic detection sensitivity of UCA was improved by the guided waves. Thus, UCA responses to the double-frequency guided waves should be further explored to benefit the detection of capillary perfusion in tissue layers near the bone cortex, particularly for perfusion imaging in the free flaps and skeletal muscles. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Guided wave attenuation in coated pipes buried in sand

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Cawley, Peter; Lowe, Michael J. S.

    2016-02-01

    Long-range guided wave testing (GWT) is routinely used for the monitoring and detection of corrosion defects in above ground pipelines in various industries. The GWT test range in buried, coated pipelines is greatly reduced compared to aboveground pipelines due to energy leakage into the embedding soil. In this study, we aim to increase test ranges for buried pipelines. The effect of pipe coatings on the T(0,1) and L(0,2) guided wave attenuation is investigated using a full-scale experimental apparatus and model predictions. Tests are performed on a fusion-bonded epoxy (FBE)-coated 8" pipe, buried in loose and compacted sand over a frequency range of 10-35 kHz. The application of a low impedance coating is shown to effectively decouple the influence of the sand on the ultrasound leakage from the buried pipe. We demonstrate ultrasonic isolation of a buried pipe by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both pipe and sand and the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is substantially reduced, in the range of 0.3-1.2 dBm-1 for loose and compacted sand conditions, compared to buried FBE-coated pipe without the PE-foam, where the measured attenuation is in the range of 1.7-4.7 dBm-1. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry technique and used in model predictions of guided wave propagation in a buried coated pipe. Good agreement is found between the attenuation measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges, so such coatings would be attractive for new pipeline installations.

  12. Excitation condition analysis of guided wave on PFA tubes for ultrasonic flow meter.

    PubMed

    Li, Xuan; Xiao, Xufeng; Cao, Li

    2016-12-01

    Impurity accumulation, which decreases the accuracy of flow measurement, is a critical problem when applying Z-shaped or U-shaped ultrasonic flow meters on straight PFA tubes. It can be expected that the guided wave can be used to implement flow measurement on straight PFA tubes. In this paper, the propagation of guided wave is explained by finite element simulations for the flow meter design. Conditions of guided wave generation, including the excitation frequency and the wedge structure, are studied in the simulations. The wedge is designed as a cone which is friendly to be manufactured and installed. The cone angle, the piezoelectric wafer's resonant frequency and the vibration directions are studied in the simulations. The simulations shows that the propagation of guided wave in thin PFA tubes is influenced by the piezoelectric wafers' resonant frequency and the vibration direction when the mode is on the 'water line'. Based on the results of the simulations, an experiment is conducted to verify the principles of excitation conditions, which performs flow measurement on a straight PFA tube well. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A Guided Wave Sensor Enabling Simultaneous Wavenumber-Frequency Analysis for Both Lamb and Shear-Horizontal Waves.

    PubMed

    Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J

    2017-03-01

    Guided waves in plate-like structures have been widely investigated for structural health monitoring. Lamb waves and shear horizontal (SH) waves, two commonly used types of waves in plates, provide different benefits for the detection of various types of defects and material degradation. However, there are few sensors that can detect both Lamb and SH waves and also resolve their modal content, namely the wavenumber-frequency spectrum. A sensor that can detect both waves is desirable to take full advantage of both types of waves in order to improve sensitivity to different discontinuity geometries. We demonstrate that polyvinylidene difluoride (PVDF) film provides the basis for a multi-element array sensor that detects both Lamb and SH waves and also measures their modal content, i.e., the wavenumber-frequency spectrum.

  14. TURBULENCE, TRANSPORT, AND WAVES IN OHMIC DEAD ZONES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gole, Daniel; Simon, Jacob B.; Armitage, Philip J.

    We use local numerical simulations to study a vertically stratified accretion disk with a resistive mid-plane that damps magnetohydrodynamic (MHD) turbulence. This is an idealized model for the dead zones that may be present at some radii in protoplanetary and dwarf novae disks. We vary the relative thickness of the dead and active zones to quantify how forced fluid motions in the dead zone change. We find that the residual Reynolds stress near the mid-plane decreases with increasing dead zone thickness, becoming negligible in cases where the active to dead mass ratio is less than a few percent. This impliesmore » that purely Ohmic dead zones would be vulnerable to episodic accretion outbursts via the mechanism of Martin and Lubow. We show that even thick dead zones support a large amount of kinetic energy, but this energy is largely in fluid motions that are inefficient at angular momentum transport. Confirming results from Oishi and Mac Low, the perturbed velocity field in the dead zone is dominated by an oscillatory, vertically extended circulation pattern with a low frequency compared to the orbital frequency. This disturbance has the properties predicted for the lowest order r mode in a hydrodynamic disk. We suggest that in a global disk similar excitations would lead to propagating waves, whose properties would vary with the thickness of the dead zone and the nature of the perturbations (isothermal or adiabatic). Flows with similar amplitudes would buckle settled particle layers and could reduce the efficiency of pebble accretion.« less

  15. Investigation of guided wave propagation and attenuation in pipe buried in sand

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter

    2015-07-01

    Long-range guided wave testing is a well-established method for detection of corrosion defects in pipelines. The method is currently used routinely for above ground pipelines in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised and unpredictable due to attenuation of the guided wave resulting from energy leakage into the embedding soil. The attenuation characteristics of guided wave propagation in an 8 in. pipe buried in sand are investigated using a laboratory full-scale experimental rig and model predictions. We report measurements of attenuation of the T(0,1) and L(0,2) guided wave modes over a range of sand conditions, including loose, compacted, mechanically compacted, water saturated and drained. Attenuation values are found to be in the range of 1.65-5.5 dB/m and 0.98-3.2 dB/m for the torsional and longitudinal modes, respectively, over the frequency of 11-34 kHz. The application of overburden pressure modifies the compaction of the sand and increases the attenuation. Mechanical compaction of the sand yields similar attenuation values to those obtained with applied overburden pressure. The attenuation decreases in the fully water-saturated sand, and increases in drained sand to values comparable with those obtained for compacted sand. Attenuation measurements are compared with Disperse software model predictions and confirm that the attenuation phenomenon in buried pipes is essentially governed by the bulk shear velocity in the sand. The attenuation behaviour of the torsional guided wave mode is found not to be captured by a uniform soil model; comparison with predictions obtained with the Disperse software suggest that this is likely to be due to a layer of sand adhering to the surface of the pipe.

  16. Transforming guided waves with metamaterial waveguide cores

    NASA Astrophysics Data System (ADS)

    Viaene, S.; Ginis, V.; Danckaert, J.; Tassin, P.

    2016-04-01

    Metamaterials make use of subwavelength building blocks to enhance our control on the propagation of light. To determine the required material properties for a given functionality, i.e., a set of desired light flows inside a metamaterial device, metamaterial designs often rely on a geometrical design tool known as transformation optics. In recent years, applications in integrated photonics motivated several research groups to develop two-dimensional versions of transformation optics capable of routing surface waves along graphene-dielectric and metal-dielectric interfaces. Although guided electromagnetic waves are highly relevant to applications in integrated optics, no consistent transformation-optical framework has so far been developed for slab waveguides. Indeed, the conventional application of transformation optics to dielectric slab waveguides leads to bulky three-dimensional devices with metamaterial implementations both inside and outside of the waveguide's core. In this contribution, we develop a transformationoptical framework that still results in thin metamaterial waveguide devices consisting of a nonmagnetic metamaterial core of varying thickness [Phys. Rev. B 93.8, 085429 (2016)]. We numerically demonstrate the effectiveness and versatility of our equivalence relations with three crucial functionalities: a beam bender, a beam splitter and a conformal lens. Our devices perform well on a qualitative (comparison of fields) and quantitative (comparison of transmitted power) level compared to their bulky counterparts. As a result, the geometrical toolbox of transformation optics may lead to a plethora of integrated metamaterial devices to route guided waves along optical chips.

  17. Alongshore momentum transfer to the nearshore zone from energetic ocean waves generated by passing hurricanes

    NASA Astrophysics Data System (ADS)

    Mulligan, Ryan P.; Hanson, Jeffrey L.

    2016-06-01

    Wave and current measurements from a cross-shore array of nearshore sensors in Duck, NC, are used to elucidate the balance of alongshore momentum under energetic wave conditions with wide surf zones, generated by passing hurricanes that are close to and far from to the coast. The observations indicate that a distant storm (Hurricane Bill, 2009) with large waves has low variability in directional wave characteristics resulting in alongshore currents that are driven mainly by the changes in wave energy. A storm close to the coast (Hurricane Earl, 2010), with strong local wind stress and combined sea and swell components in wave energy spectra, has high variability in wave direction and wave period that influence wave breaking and nearshore circulation as the storm passes. During both large wave events, the horizontal current shear is strong and radiation stress gradients, bottom stress, wind stress, horizontal mixing, and cross-shore advection contribute to alongshore momentum at different spatial locations across the nearshore region. Horizontal mixing during Hurricane Earl, estimated from rotational velocities, was particularly strong suggesting that intense eddies were generated by the high horizontal shear from opposing wind-driven and wave-driven currents. The results provide insight into the cross-shore distribution of the alongshore current and the connection between flows inside and outside the surf zone during major storms, indicating that the current shear and mixing at the interface between the surf zone and shallow inner shelf is strongly dependent on the distance from the storm center to the coast.

  18. Guided waves in a monopile of an offshore wind turbine.

    PubMed

    Zernov, V; Fradkin, L; Mudge, P

    2011-01-01

    We study the guided waves in a structure which consists of two overlapping steel plates, with the overlapping section grouted. This geometry is often encountered in support structures of large industrial offshore constructions, such as wind turbine monopiles. It has been recognized for some time that the guided wave technology offers distinctive advantages for the ultrasonic inspections and health monitoring of structures of this extent. It is demonstrated that there exist advantageous operational regimes of ultrasonic transducers guaranteeing a good inspection range, even when the structures are totally submerged in water, which is a consideration when the wind turbines are deployed off shore. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Laser vibrometry for guided wave propagation phenomena visualisation and damage detection

    NASA Astrophysics Data System (ADS)

    Malinowski, Pawel; Wandowski, Tomasz; Kudela, Pawel; Ostachowicz, Wieslaw

    2010-05-01

    This paper presents research on the damage localization method. The method is based on guided wave propagation phenomena. The investigation was focused on application of this method to monitor the condition of structural elements such as aluminium or composite panels. These elements are commonly used in aerospace industry and it is crucial to provide a methodology to determine their condition, in order to prevent from unexpected and dangerous collapse of a structure. Propagating waves interact with cracks, notches, rivets, thickness changes, stiffeners and other discontinuities present in structural elements. It means that registering these waves one can obtain information about the structure condition—whether it is damaged or not. Furthermore these methods can be applied not only to aerospace structures but also to wind turbine blades and pipelines. In reported investigation piezoelectric transducer was used to excite guided waves in considered panel. Measurement of the wave field was realized using laser scanning vibrometer that registered the velocity responses at a defined points belonging to a defined mesh. Mesh spacing was investigated in order to ensure fine wave propagation visualisation. Firstly, wave propagation in pristine specimen was investigated. Secondly, artificial damage was introduced to the specimen. Finally, wave interaction with damage was visualised and conclusions regarding potentials of application of laser vibrometer for damage detection were drawn. All the processing was made with the developed MATLAB procedures.

  20. Guided wave imaging of oblique reflecting interfaces in pipes using common-source synthetic focusing

    NASA Astrophysics Data System (ADS)

    Sun, Zeqing; Sun, Anyu; Ju, Bing-Feng

    2018-04-01

    Cross-mode-family mode conversion and secondary reflection of guided waves in pipes complicate the processing of guided waves signals, and can cause false detection. In this paper, filters operating in the spectral domain of wavenumber, circumferential order and frequency are designed to suppress the signal components of unwanted mode-family and unwanted traveling direction. Common-source synthetic focusing is used to reconstruct defect images from the guided wave signals. Simulations of the reflections from linear oblique defects and a semicircle defect are separately implemented. Defect images, which are reconstructed from the simulation results under different excitation conditions, are comparatively studied in terms of axial resolution, reflection amplitude, detectable oblique angle and so on. Further, the proposed method is experimentally validated by detecting linear cracks with various oblique angles (10-40°). The proposed method relies on the guided wave signals that are captured during 2-D scanning of a cylindrical area on the pipe. The redundancy of the signals is analyzed to reduce the time-consumption of the scanning process and to enhance the practicability of the proposed method.

  1. Portable Ultrasonic Guided Wave Inspection with MACRO Fiber Composite Actuators

    NASA Astrophysics Data System (ADS)

    Haig, A.; Mudge, P.; Catton, P.; Balachandran, W.

    2010-02-01

    The development of portable ultrasonic guided wave transducer arrays that utilize Macro Fiber Composite actuators (MFCs) is described. Portable inspection equipment can make use of ultrasonic guided waves to rapidly screen large areas of many types of engineering structures for defects. The defect finding performance combined with the difficulty of application determines how much the engineering industry makes use of this non-destructive, non-disruptive technology. The developments with MFCs have the potential to make considerable improvements in both these aspects. MFCs are highly efficient because they use interdigital electrodes to facilitate the extensional, d33 displacement mode. Their fiber composite design allows them to be thin, lightweight, flexible and durable. The flexibility affords them conformance with curved surfaces, which can facilitate good mechanical coupling. The suitability of a given transducer for Long Range Ultrasonic Testing is governed by the nature and amplitude of the displacement that it excites/senses in the contact area of the target structure. This nature is explored for MFCs through directional sensitivity analysis and empirical testing. Housing methods that facilitate non-permanent coupling techniques are discussed. Finally, arrangements of arrays of MFCs for the guided wave inspection of plates and pipes are considered and some broad design criteria are given.

  2. Surface and guided waves on structured surfaces and inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Polanco, Javier

    Surface and guided waves on structured surfaces and inhomogeneous media studies the propagation of waves in systems with spatially varying parameters. In the rainbow case (chapter 1), the dielectric constant changes with coordinates. In the cylinder case: boundary and the metal (chapter 2), it is a curved surface. Finally, in the last case (chapter 3), the dielectric constant changes in z-direction.

  3. A guided wave sensor enabling simultaneous wavenumber-frequency analysis for both lamb and shear-horizontal waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J.

    Guided waves in plate-like structures have been widely investigated for structural health monitoring. Lamb waves and shear horizontal (SH) waves, two commonly used types of waves in plates, provide different benefits for the detection of various types of defects and material degradation. However, there are few sensors that can detect both Lamb and SH waves and also resolve their modal content, namely the wavenumber-frequency spectrum. A sensor that can detect both waves is desirable to take full advantage of both types of waves in order to improve sensitivity to different discontinuity geometries. As a result, we demonstrate that polyvinylidene difluoridemore » (PVDF) film provides the basis for a multi-element array sensor that detects both Lamb and SH waves and also measures their modal content, i.e., the wavenumber-frequency spectrum.« less

  4. A guided wave sensor enabling simultaneous wavenumber-frequency analysis for both lamb and shear-horizontal waves

    DOE PAGES

    Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J.

    2017-03-01

    Guided waves in plate-like structures have been widely investigated for structural health monitoring. Lamb waves and shear horizontal (SH) waves, two commonly used types of waves in plates, provide different benefits for the detection of various types of defects and material degradation. However, there are few sensors that can detect both Lamb and SH waves and also resolve their modal content, namely the wavenumber-frequency spectrum. A sensor that can detect both waves is desirable to take full advantage of both types of waves in order to improve sensitivity to different discontinuity geometries. As a result, we demonstrate that polyvinylidene difluoridemore » (PVDF) film provides the basis for a multi-element array sensor that detects both Lamb and SH waves and also measures their modal content, i.e., the wavenumber-frequency spectrum.« less

  5. Load-Differential Features for Automated Detection of Fatigue Cracks Using Guided Waves (Preprint)

    DTIC Science & Technology

    2011-11-01

    AFRL-RX-WP-TP-2011-4363 LOAD-DIFFERENTIAL FEATURES FOR AUTOMATED DETECTION OF FATIGUE CRACKS USING GUIDED WAVES (PREPRINT) Jennifer E...AUTOMATED DETECTION OF FATIGUE CRACKS USING GUIDED WAVES (PREPRINT) 5a. CONTRACT NUMBER FA8650-09-C-5206 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...tensile loads open fatigue cracks and thus enhance their detectability using ultrasonic methods. Here we introduce a class of load-differential methods

  6. Anomalous Refraction of Acoustic Guided Waves in Solids with Geometrically Tapered Metasurfaces.

    PubMed

    Zhu, Hongfei; Semperlotti, Fabio

    2016-07-15

    The concept of a metasurface opens new exciting directions to engineer the refraction properties in both optical and acoustic media. Metasurfaces are typically designed by assembling arrays of subwavelength anisotropic scatterers able to mold incoming wave fronts in rather unconventional ways. The concept of a metasurface was pioneered in photonics and later extended to acoustics while its application to the propagation of elastic waves in solids is still relatively unexplored. We investigate the design of acoustic metasurfaces to control elastic guided waves in thin-walled structural elements. These engineered discontinuities enable the anomalous refraction of guided wave modes according to the generalized Snell's law. The metasurfaces are made out of locally resonant toruslike tapers enabling an accurate phase shift of the incoming wave, which ultimately affects the refraction properties. We show that anomalous refraction can be achieved on transmitted antisymmetric modes (A_{0}) either when using a symmetric (S_{0}) or antisymmetric (A_{0}) incident wave, the former clearly involving mode conversion. The same metasurface design also allows achieving structure embedded planar focal lenses and phase masks for nonparaxial propagation.

  7. A study on laser-based ultrasonic technique by the use of guided wave tomographic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Junpil, E-mail: jpp@pusan.ac.kr; Lim, Juyoung, E-mail: jpp@pusan.ac.kr; Cho, Younho

    2015-03-31

    Guided wave tests are impractical for investigating specimens with limited accessibility and coarse surfaces or geometrically complicated features. A non-contact setup with a laser ultrasonic transmitter and receiver is the classic attractive for guided wave inspection. The present work was done to develop a non-contact guided-wave tomography technique by laser ultrasonic technique in a plate-like structure. A method for Lam wave generation and detection in an aluminum plate with a pulse laser ultrasonic transmitter and a Michelson interferometer receiver has been developed. In the images obtained by laser scanning, the defect shape and area showed good agreement with the actualmore » defect. The proposed approach can be used as a non-contact-based online inspection and monitoring technique.« less

  8. Finite-frequency wave propagation through outer rise fault zones and seismic measurements of upper mantle hydration

    USGS Publications Warehouse

    Miller, Nathaniel; Lizarralde, Daniel

    2016-01-01

    Effects of serpentine-filled fault zones on seismic wave propagation in the upper mantle at the outer rise of subduction zones are evaluated using acoustic wave propagation models. Modeled wave speeds depend on azimuth, with slowest speeds in the fault-normal direction. Propagation is fastest along faults, but, for fault widths on the order of the seismic wavelength, apparent wave speeds in this direction depend on frequency. For the 5–12 Hz Pn arrivals used in tomographic studies, joint-parallel wavefronts are slowed by joints. This delay can account for the slowing seen in tomographic images of the outer rise upper mantle. At the Middle America Trench, confining serpentine to fault zones, as opposed to a uniform distribution, reduces estimates of bulk upper mantle hydration from ~3.5 wt % to as low as 0.33 wt % H2O.

  9. Flaw depth sizing using guided waves

    NASA Astrophysics Data System (ADS)

    Cobb, Adam C.; Fisher, Jay L.

    2016-02-01

    Guided wave inspection technology is most often applied as a survey tool for pipeline inspection, where relatively low frequency ultrasonic waves, compared to those used in conventional ultrasonic nondestructive evaluation (NDE) methods, propagate along the structure; discontinuities cause a reflection of the sound back to the sensor for flaw detection. Although the technology can be used to accurately locate a flaw over long distances, the flaw sizing performance, especially for flaw depth estimation, is much poorer than other, local NDE approaches. Estimating flaw depth, as opposed to other parameters, is of particular interest for failure analysis of many structures. At present, most guided wave technologies estimate the size of the flaw based on the reflected signal amplitude from the flaw compared to a known geometry reflection, such as a circumferential weld in a pipeline. This process, however, requires many assumptions to be made, such as weld geometry and flaw shape. Furthermore, it is highly dependent on the amplitude of the flaw reflection, which can vary based on many factors, such as attenuation and sensor installation. To improve sizing performance, especially depth estimation, and do so in a way that is not strictly amplitude dependent, this paper describes an approach to estimate the depth of a flaw based on a multimodal analysis. This approach eliminates the need of using geometric reflections for calibration and can be used for both pipeline and plate inspection applications. To verify the approach, a test set was manufactured on plate specimens with flaws of different widths and depths ranging from 5% to 100% of total wall thickness; 90% of these flaws were sized to within 15% of their true value. A description of the initial multimodal sizing strategy and results will be discussed.

  10. Quantification of thickness loss in a liquid-loaded plate using ultrasonic guided wave tomography

    NASA Astrophysics Data System (ADS)

    Rao, Jing; Ratassepp, Madis; Fan, Zheng

    2017-12-01

    Ultrasonic guided wave tomography (GWT) provides an attractive solution to map thickness changes from remote locations. It is based on the velocity-to-thickness mapping employing the dispersive characteristics of selected guided modes. This study extends the application of GWT on a liquid-loaded plate. It is a more challenging case than the application on a free plate, due to energy of the guided waves leaking into the liquid. In order to ensure the accuracy of thickness reconstruction, advanced forward models are developed to consider attenuation effects using complex velocities. The reconstruction of the thickness map is based on the frequency-domain full waveform inversion (FWI) method, and its accuracy is discussed using different frequencies and defect dimensions. Validation experiments are carried out on a water-loaded plate with an irregularly shaped defect using S0 guided waves, showing excellent performance of the reconstruction algorithm.

  11. Guided wave propagation in single and double layer hollow cylinders embedded in infinite media.

    PubMed

    Jia, Hua; Jing, Mu; Joseph, L Rose

    2011-02-01

    Millions of miles of pipes are being used for the transportation, distribution, and local use of petroleum products, gas, water, and chemicals. Most of the pipes are buried in soil, leading to the significance of the study on the subject of guided wave propagation in pipes with soil influence. Previous investigations of ultrasonic guided wave propagation in an elastic hollow cylinder and in an elastic hollow cylinder coated with a viscoelastic material have led to the development of inspection techniques for bare and coated pipes. However, the lack of investigation on guided wave propagation in hollow cylinders embedded in infinite media like soil has hindered the development of pipe inspection methods. Therefore the influence of infinite media on wave propagation is explored in this paper. Dispersion curves and wave structures of both axisymmetric and nonaxisymmetric wave modes are developed. Due to the importance of the convergence of numerical calculations, the requirements of thickness and element number of the finite soil layer between hollow cylinder and infinite element layer are discussed, and an optimal combination is obtained in this paper. Wave structures are used for the mode identification in the non-monotonic region caused by the viscoelastic properties of coating and infinite media.

  12. Quantifying Wave Breaking Shape and Type in the Surf-Zone Using LiDAR

    NASA Astrophysics Data System (ADS)

    Albright, A.; Brodie, K. L.; Hartzell, P. J.; Glennie, C. L.

    2017-12-01

    Waves change shape as they shoal and break across the surf-zone, ultimately dissipating and transferring their energy into turbulence by either spilling or plunging. This injection of turbulence and changes in wave shape can affect the direction of sediment transport at the seafloor, and ultimately lead to morphological evolution. Typical methods for collecting wave data in the surf-zone include in-situ pressure gauges, velocimeters, ultrasonic sensors, and video imagery. Drawbacks to these data collection methods are low spatial resolution of point measurements, reliance on linear theory to calculate sea-surface elevations, and intensive computations required to extract wave properties from stereo 2D imagery. As a result, few field measurements of the shapes of plunging and/or spilling breakers exist, and existing knowledge is confined to results of laboratory studies. We therefore examine the use of a multi-beam scanning Light Detection and Ranging (LiDAR) remote sensing instrument with the goal of classifying the breaking type of propagating waves in the surf-zone and quantitatively determining wave morphometric properties. Data were collected with a Velodyne HDL-32E LiDAR scanner (360° vertical field of view) mounted on an arm of the Coastal Research Amphibious Buggy (CRAB) at the U.S. Army Corps of Engineers Field Research Facility in Duck, North Carolina. Processed laser scan data are used to visualize the lifecycle of a wave (shoaling, breaking, broken) and identify wave types (spilling, plunging, non-breaking) as they pass beneath the scanner. For each rotation of the LiDAR scanner, the point cloud data are filtered, smoothed, and detrended in order to identify individual waves and measure their properties, such as speed, height, period, upward/downward slope, asymmetry, and skewness. The 3D nature of point cloud data is advantageous for research, because it enables viewing from any angle. In our analysis, plan views are used to separate individual waves

  13. Air- coupled ultrasonic testing of CFRP rods by means of guided waves

    NASA Astrophysics Data System (ADS)

    Kažys, Rymantas; Raišutis, Renaldas; Žukauskas, Egidijus; Mažeika, Liudas; Vladišauskas, Alfonsas

    2010-01-01

    One of the most important parts of the gliders is a lightweight longeron reinforcement made of carbon fibre reinforced plastics (CFRP) rods. These small diameter (a few millimetres) rods during manufacturing are glued together in epoxy filled matrix in order to build the arbitrary spar profile. However, the defects presenting in the rods such as brake of fibres, lack of bonding, reduction of density affect essentially the strength of the construction and are very complicated in repairing. Therefore, appropriate non-destructive testing techniques of carbon fibber rods should be applied before gluing them together. The objective of the presented work was development of NDT technique of CFRP rods used for aerospace applications, which is based on air- coupled excitation/reception of guided waves. The regularities of ultrasonic guided waves propagating in both circular and rectangular cross-section CFRP rods immersed into water were investigated and it was shown that the guided waves propagating along sample of the rod create leaky waves which are radiated into a surrounding medium. The ultrasonic receiver scanned over the rod enables to pick-up the leaky waves and to determine the non-uniformities of propagation caused by the defects. Theoretical investigations were carried out by means of numerical simulations based on a 2D and 3D finite differences method. By modelling and experimental investigations it was demonstrated that presence of any type of the defect disturbs the leaky wave and enables to detect them. So, the spatial position of defects can be determined also. It was shown that such important defects as a disbond of the plies essentially reduce or even completely suppress the leaky wave, so they can be detected quit easily.

  14. Estimation of seismic velocity in the subducting crust of the Pacific slab beneath Hokkaido, northern Japan by using guided waves

    NASA Astrophysics Data System (ADS)

    Shiina, T.; Nakajima, J.; Toyokuni, G.; Kita, S.; Matsuzawa, T.

    2014-12-01

    A subducting crust contains a large amount of water as a form of hydrous minerals (e.g., Hacker et al., 2003), and the crust plays important roles for water transportation and seismogenesis in subduction zones at intermediate depths (e.g., Kirby et al., 1996; Iwamori, 2007). Therefore, the investigation of seismic structure in the crust is important to understand ongoing physical processes with subduction of oceanic lithosphere. A guided wave which propagates in the subducting crust is recorded in seismograms at Hokkaido, northern Japan (Shiina et al., 2014). Here, we estimated P- and S-wave velocity in the crust with guided waves, and obtained P-wave velocity of 6.6-7.3 km/s and S-wave velocity of 3.6-4.2 km/s at depths of 50-90 km. Moreover, Vp/Vs ratio in the crust is calculated to be 1.80-1.85 in that depth range. The obtained P-wave velocity about 6.6km/s at depths of 50-70 km is consistent with those estimated in Tohoku, northeast Japan (Shiina et al., 2013), and this the P-wave velocity is lower than those expected from models of subducting crustal compositions, such as metamorphosed MORB model (Hacker et al., 2003). In contrast, at greater depths (>80 km), the P-wave velocity marks higher velocity than the case of NE Japan and the velocity is roughly comparable to those of the MORB model. The obtained S-wave velocity distribution also shows characteristics similar to P waves. This regional variation may be caused by a small variation in thermal regime of the Pacific slab beneath the two regions as a result of the normal subduction in Tohoku and oblique subduction in Hokkaido. In addition, the effect of seismic anisotropy in the subducting crust would not be ruled out because rays used in the analysis in Hokkaido propagate mostly in the trench-parallel direction, while those in Tohoku are sufficiently criss-crossed.

  15. Ice detection and classification on an aircraft wing with ultrasonic shear horizontal guided waves.

    PubMed

    Gao, Huidong; Rose, Joseph L

    2009-02-01

    Ice accumulation on airfoils has been identified as a primary cause of many accidents in commercial and military aircraft. To improve aviation safety as well as reduce cost and environmental threats related to aircraft icing, sensitive, reliable, and aerodynamically compatible ice detection techniques are in great demand. Ultrasonic guided-wave-based techniques have been proved reliable for "go" and "no go" types of ice detection in some systems including the HALO system, in which the second author of this paper is a primary contributor. In this paper, we propose a new model that takes the ice layer into guided-wave modeling. Using this model, the thickness and type of ice formation can be determined from guided-wave signals. Five experimental schemes are also proposed in this paper based on some unique features identified from the guided- wave dispersion curves. A sample experiment is also presented in this paper, where a 1 mm thick glaze ice on a 2 mm aluminum plate is clearly detected. Quantitative match of the experiment data to theoretical prediction serves as a strong support for future implementation of other testing schemes proposed in this paper.

  16. 1D profiling using highly dispersive guided waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volker, Arno; Zon, Tim van; Enthoven, Daniel

    2015-03-31

    Corrosion is one of the industries major issues regarding the integrity of assets. Currently inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. Cost reduction while maintaining a high level of reliability and safety of installations is a major challenge. There are many situations where the actual defect location is not accessible, e.g., a pipe support or a partially buried pipe. Guided wave tomography has been developed to reconstruct the wall thickness. In case of bottom of the line corrosion, i.e., a single corrosion pit, a simpler approach may be followed. Data is collectedmore » in a pit-catch configuration at the 12 o'clock position using highly dispersive guided waves. The phase spectrum is used to invert for a wall thickness profile in the circumferential direction, assuming a Gaussian defect profile. An EMAT sensor design has been made to measure at the 12 o'clock position of a pipe. The concept is evaluated on measured data, showing good sizing capabilities on a variety simple defect profiles.« less

  17. Excitation of parasitic waves in forward-wave amplifiers with weak guiding fields.

    PubMed

    Nusinovich, G S; Romero-Talamás, C A; Han, Y

    2012-12-01

    To produce high-power coherent electromagnetic radiation at frequencies from microwaves up to terahertz, the radiation sources should have interaction circuits of large cross sections, i.e., the sources should operate in high-order modes. In such devices, the excitation of higher-order parasitic modes near cutoff where the group velocity is small and, hence, start currents are low can be a serious problem. The problem is especially severe in the sources of coherent, phase-controlled radiation, i.e., the amplifiers or phase-locked oscillators. This problem was studied earlier [Nusinovich, Sinitsyn, and Antonsen, Phys. Rev. E 82, 046404 (2010)] for the case of electron focusing by strong guiding magnetic fields. For many applications it is desirable to minimize these focusing fields. Therefore in this paper we analyze the problem of excitation of parasitic modes near cutoff in forward-wave amplifiers with weak focusing fields. First, we study the large-signal operation of such a device with a signal wave only. Then, we analyze the self-excitation conditions of parasitic waves near cutoff in the presence of the signal wave. It is shown that the main effect is the suppression of the parasitic wave in large-signal regimes. At the same time, there is a region of device parameters where the presence of signal waves can enhance excitation of parasitic modes. The role of focusing fields in such effects is studied.

  18. Guided Acoustic and Optical Waves in Silicon-on-Insulator for Brillouin Scattering and Optomechanics

    DTIC Science & Technology

    2016-08-01

    APL PHOTONICS 1, 071301 (2016) Guided acoustic and optical waves in silicon-on- insulator for Brillouin scattering and optomechanics Christopher J...is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI) material system. Thin...mechanism on which to base on-chip nonlinear optical devices compatible with a rapidly growing silicon photonics toolbox.3–9 While silicon on insulator

  19. Nonlinear guided wave propagation in prestressed plates.

    PubMed

    Pau, Annamaria; Lanza di Scalea, Francesco

    2015-03-01

    The measurement of stress in a structure presents considerable interest in many fields of engineering. In this paper, the diagnostic potential of nonlinear elastic guided waves in a prestressed plate is investigated. To do so, an analytical model is formulated accounting for different aspects involved in the phenomenon. The fact that the initial strains can be finite is considered using the Green Lagrange strain tensor, and initial and final configurations are not merged, as it would be assumed in the infinitesimal strain theory. Moreover, an appropriate third-order expression of the strain energy of the hyperelastic body is adopted to account for the material nonlinearities. The model obtained enables to investigate both the linearized case, which gives the variation of phase and group velocity as a function of the initial stress, and the nonlinear case, involving second-harmonic generation as a function of the initial state of stress. The analysis is limited to Rayleigh-Lamb waves propagating in a plate. Three cases of initial prestress are considered, including prestress in the direction of the wave propagation, prestress orthogonal to the direction of wave propagation, and plane isotropic stress.

  20. Wireless power transmission using ultrasonic guided waves

    NASA Astrophysics Data System (ADS)

    Kural, A.; Pullin, R.; Featherston, C.; Paget, C.; Holford, K.

    2011-07-01

    The unavailability of suitable power supply at desired locations is currently an important obstacle in the development of distributed, wireless sensor networks for applications such as structural health monitoring of aircraft. Proposed solutions range from improved batteries to energy harvesting from vibration, temperature gradients and other sources. A novel approach is being investigated at Cardiff University School of Engineering in cooperation with Airbus. It aims to utilise ultrasonic guided Lamb waves to transmit energy through the aircraft skin. A vibration generator is to be placed in a location where electricity supply is readily available. Ultrasonic waves generated by this device will travel through the aircraft structure to a receiver in a remote wireless sensor node. The receiver will convert the mechanical vibration of the ultrasonic waves back to electricity, which will be used to power the sensor node. This paper describes the measurement and modelling of the interference pattern which emerges when Lamb waves are transmitted continuously as in this power transmission application. The discovered features of the pattern, such as a large signal amplitude variation and a relatively high frequency, are presented and their importance for the development of a power transmission system is discussed.

  1. Mode Conversion Behavior of Guided Wave in a Pipe Inspection System Based on a Long Waveguide.

    PubMed

    Sun, Feiran; Sun, Zhenguo; Chen, Qiang; Murayama, Riichi; Nishino, Hideo

    2016-10-19

    To make clear the mode conversion behavior of S0-mode lamb wave and SH0-plate wave converting to the longitudinal mode guided wave and torsional mode guided wave in a pipe, respectively, the experiments were performed based on a previous built pipe inspection system. The pipe was wound with an L-shaped plate or a T-shaped plate as the waveguide, and the S0-wave and SH0-wave were excited separately in the waveguide. To carry out the objective, a meander-line coil electromagnetic acoustic transducer (EMAT) for S0-wave and a periodic permanent magnet (PPM) EMAT for SH0-wave were developed and optimized. Then, several comparison experiments were conducted to compare the efficiency of mode conversion. Experimental results showed that the T(0,1) mode, L(0,1) mode, and L(0,2) mode guided waves can be successfully detected when converted from the S0-wave or SH0-wave with different shaped waveguides. It can also be inferred that the S0-wave has a better ability to convert to the T(0,1) mode, while the SH0-wave is easier to convert to the L(0,1) mode and L(0,2) mode, and the L-shaped waveguide has a better efficiency than T-shaped waveguide.

  2. Numerical investigation of nonlinear interactions between multimodal guided waves and delamination in composite structures

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng

    2017-04-01

    This paper presents a numerical investigation of the nonlinear interactions between multimodal guided waves and delamination in composite structures. The elastodynamic wave equations for anisotropic composite laminate were formulated using an explicit Local Interaction Simulation Approach (LISA). The contact dynamics was modeled using the penalty method. In order to capture the stick-slip contact motion, a Coulomb friction law was integrated into the computation procedure. A random gap function was defined for the contact pairs to model distributed initial closures or openings to approximate the nature of rough delamination interfaces. The LISA procedure was coded using the Compute Unified Device Architecture (CUDA), which enables the highly parallelized computation on powerful graphic cards. Several guided wave modes centered at various frequencies were investigated as the incident wave. Numerical case studies of different delamination locations across the thickness were carried out. The capability of different wave modes at various frequencies to trigger the Contact Acoustic Nonlinearity (CAN) was studied. The correlation between the delamination size and the signal nonlinearity was also investigated. Furthermore, the influence from the roughness of the delamination interfaces was discussed as well. The numerical investigation shows that the nonlinear features of wave delamination interactions can enhance the evaluation capability of guided wave Structural Health Monitoring (SHM) system. This paper finishes with discussion, concluding remarks, and suggestions for future work.

  3. High-frequency guided ultrasonic waves for hidden defect detection in multi-layered aircraft structures.

    PubMed

    Masserey, Bernard; Raemy, Christian; Fromme, Paul

    2014-09-01

    Aerospace structures often contain multi-layered metallic components where hidden defects such as fatigue cracks and localized disbonds can develop, necessitating non-destructive testing. Employing standard wedge transducers, high frequency guided ultrasonic waves that penetrate through the complete thickness were generated in a model structure consisting of two adhesively bonded aluminium plates. Interference occurs between the wave modes during propagation along the structure, resulting in a frequency dependent variation of the energy through the thickness with distance. The wave propagation along the specimen was measured experimentally using a laser interferometer. Good agreement with theoretical predictions and two-dimensional finite element simulations was found. Significant propagation distance with a strong, non-dispersive main wave pulse was achieved. The interaction of the high frequency guided ultrasonic waves with small notches in the aluminium layer facing the sealant and on the bottom surface of the multilayer structure was investigated. Standard pulse-echo measurements were conducted to verify the detection sensitivity and the influence of the stand-off distance predicted from the finite element simulations. The results demonstrated the potential of high frequency guided waves for hidden defect detection at critical and difficult to access locations in aerospace structures from a stand-off distance. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Non-destructive evaluation of coating thickness using guided waves

    NASA Astrophysics Data System (ADS)

    Ostiguy, Pierre-Claude; Quaegebeur, Nicolas; Masson, Patrice

    2015-04-01

    Among existing strategies for non-destructive evaluation of coating thickness, ultrasonic methods based on the measurement of the Time-of-Flight (ToF) of high frequency bulk waves propagating through the thickness of a structure are widespread. However, these methods only provide a very localized measurement of the coating thickness and the precision on the results is largely affected by the surface roughness, porosity or multi-layered nature of the host structure. Moreover, since the measurement is very local, inspection of large surfaces can be time consuming. This article presents a robust methodology for coating thickness estimation based on the generation and measurement of guided waves. Guided waves have the advantage over ultrasonic bulk waves of being less sensitive to surface roughness, and of measuring an average thickness over a wider area, thus reducing the time required to inspect large surfaces. The approach is based on an analytical multi-layer model and intercorrelation of reference and measured signals. The method is first assessed numerically for an aluminum plate, where it is demonstrated that coating thickness can be measured within a precision of 5 micrometers using the S0 mode at frequencies below 500 kHz. Then, an experimental validation is conducted and results show that coating thicknesses in the range of 10 to 200 micrometers can be estimated within a precision of 10 micrometers of the exact coating thickness on this type of structure.

  5. Tunable damper for an acoustic wave guide

    DOEpatents

    Rogers, Samuel C.

    1984-01-01

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180.degree. intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  6. Tunable damper for an acoustic wave guide

    DOEpatents

    Rogers, S.C.

    1982-10-21

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180/sup 0/ intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  7. Shock wave loading of a magnetic guide

    NASA Astrophysics Data System (ADS)

    Kindt, L.

    2011-10-01

    The atom laser has long been a holy grail within atom physics and with the creation of an atom laser we hope to bring a similar revolution in to the field of atom optics. With the creation of the Bose-Einstein Condensate (BEC) in 1995 the path to an atom laser was initiated. An atom laser is continues source of BEC. In a Bose condensate all the atoms occupy the same quantum state and can be described by the same wave function and phase. With an atom laser the De Broglie wavelength of atoms can be much smaller than the wavelength of light. Due to the ultimate control over the atoms the atom laser is very interesting for atom optics, lithography, metrology, etching and deposition of atoms on a surface. All previous atom lasers have been created from atoms coupled out from an existing Bose-Einstein Condensate. There are different approaches but common to them all is that the duration of the output of the atom laser is limited by the size of the initial BEC and they all have a low flux. This leaves the quest to build a continuous high flux atom laser. An alternative approach to a continuous BEC beam is to channel a continuous ultra cold atomic beam into a magnetic guide and then cool this beam down to degeneracy. Cooling down a continuous beam of atoms faces three large problems: The collision rate has to be large enough for effective rethermalization, since evaporative cooling in 2D is not as effective as in 3D and a large thermal conductivity due to atoms with a high angular momentum causes heating downstream in the guide. We have built a 4 meter magnetic guide that is placed on a downward slope with a magnetic barrier in the end. In the guide we load packets of ultra cold rubidium atoms with a frequency rate large enough for the packets to merge together to form a continuous atomic beam. The atomic beam is supersonic and when the beam reaches the end barrier it will return and collide with itself. The collisions lowers the velocity of the beam into subsonic

  8. Time Reversal Method for Pipe Inspection with Guided Wave

    NASA Astrophysics Data System (ADS)

    Deng, Fei; He, Cunfu; Wu, Bin

    2008-02-01

    The temporal-spatial focusing effect of the time reversal method on the guided wave inspection in pipes is investigated. A steel pipe model with outer diameter of 70 mm and wall thickness of 3.5 mm is numerically built to analyse the reflection coefficient of L(0,2) mode when the time reversal method is applied in the model. According to the calculated results, it is shown that a synthetic time reversal array method is effective to improve the signal-to-noise ratio of a guided wave inspection system. As an intercepting window is widened, more energy can be included in a re-emitted signal, which leads to a large reflection coefficient of L(0,2) mode. It is also shown that when a time reversed signal is reapplied in the pipe model, by analysing the motion of the time reversed wave propagating along the pipe model, a defect can be identified. Therefore, it is demonstrated that the time reversal method can be used to locate the circumferential position of a defect in a pipe. Finally, through an experiment corresponding with the pipe model, the experimental result shows that the above-mentioned method can be valid in the inspection of a pipe.

  9. Coupling of Waves, Turbulence and Thermodynamics Across the Marginal Ice Zone

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Coupling of Waves, Turbulence and Thermodynamics across...developing Thermodynamically Forced Marginal Ice Zone. Submitted to JGR. Heiles,A. S., NPS thesis, Sep. 2014 Schmidt, B. K., NPS thesis March 2012 Shaw

  10. In Situ Guided Wave Structural Health Monitoring System

    NASA Technical Reports Server (NTRS)

    Zhao, George; Tittmann, Bernhard R.

    2011-01-01

    Aircraft engine rotating equipment operates at high temperatures and stresses. Noninvasive inspection of microcracks in those components poses a challenge for nondestructive evaluation. A low-cost, low-profile, high-temperature ultrasonic guided wave sensor was developed that detects cracks in situ. The transducer design provides nondestructive evaluation of structures and materials. A key feature of the sensor is that it withstands high temperatures and excites strong surface wave energy to inspect surface and subsurface cracks. The sol-gel bismuth titanate-based surface acoustic wave (SAW) sensor can generate efficient SAWs for crack inspection. The sensor is very thin (submillimeter) and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. The sensor can be implemented on structures of various shapes. With a spray-coating process, the sensor can be applied to the surface of large curvatures. It has minimal effect on airflow or rotating equipment imbalance, and provides good sensitivity.

  11. Recent developments in guided wave travel time tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zon, Tim van; Volker, Arno

    The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation is an interesting addition to the current method of periodic inspections. Guided wave tomography had been developed to create a map of the wall thickness using the travel times of guided waves. It can be used for both monitoring and for inspection of pipe-segments that are difficult to access, for instance at the location of pipe-supports. An important outcome of the tomography is the minimum remaining wall thickness, as this is critical in the scheduling of a replacement of the pipe-segment. In order to improvemore » the sizing accuracy we have improved the tomography scheme. A number of major improvements have been realized allowing to extend the application envelope to pipes with a larger wall thickness and to larger distances between the transducer rings. Simulation results indicate that the sizing accuracy has improved and that is now possible to have a spacing of 8 meter between the source-ring and the receiver-ring. Additionally a reduction of the number of sensors required might be possible as well.« less

  12. Study of internal gravity waves in the meteor zone

    NASA Technical Reports Server (NTRS)

    Gavrilov, N. M.

    1987-01-01

    An important component of the dynamical regime of the atmosphere at heights near 100 km are internal gravity waves (IGW) with periods from about 5 min to about 17.5 hrs which propagate from the lower atmospheric layers and are generated in the uppermost region of the atmosphere. As IGW propagate upwards, their amplitudes increase and they have a considerable effect on upper atmospheric processes: (1) they provide heat flux divergences comparable with solar heating; (2) they influence the gaseous composition and produce wave variations of the concentrations of gaseous components and emissions of the upper atmosphere; and (3) they cause considerable acceleration of the mean stream. It was concluded that the periods, wavelengths, amplitudes and velocities of IGW propagation in the meteor zone are now measured quite reliably. However, for estimating the influence of IGW on the thermal regime and the circulation of the upper atmosphere these parameters are not as important as the values of wave fluxes of energy, heat, moment and mass.

  13. Guided Wave Delamination Detection and Quantification With Wavefield Data Analysis

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Campbell Leckey, Cara A.; Seebo, Jeffrey P.; Yu, Lingyu

    2014-01-01

    Unexpected damage can occur in aerospace composites due to impact events or material stress during off-nominal loading events. In particular, laminated composites are susceptible to delamination damage due to weak transverse tensile and inter-laminar shear strengths. Developments of reliable and quantitative techniques to detect delamination damage in laminated composites are imperative for safe and functional optimally-designed next-generation composite structures. In this paper, we investigate guided wave interactions with delamination damage and develop quantification algorithms by using wavefield data analysis. The trapped guided waves in the delamination region are observed from the wavefield data and further quantitatively interpreted by using different wavenumber analysis methods. The frequency-wavenumber representation of the wavefield shows that new wavenumbers are present and correlate to trapped waves in the damage region. These new wavenumbers are used to detect and quantify the delamination damage through the wavenumber analysis, which can show how the wavenumber changes as a function of wave propagation distance. The location and spatial duration of the new wavenumbers can be identified, providing a useful means not only for detecting the presence of delamination damage but also allowing for estimation of the delamination size. Our method has been applied to detect and quantify real delamination damage with complex geometry (grown using a quasi-static indentation technique). The detection and quantification results show the location, size, and shape of the delamination damage.

  14. Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D).

    PubMed

    Hess, Peter; Lomonosov, Alexey M; Mayer, Andreas P

    2014-01-01

    The characteristic features and applications of linear and nonlinear guided elastic waves propagating along surfaces (2D) and wedges (1D) are discussed. Laser-based excitation, detection, or contact-free analysis of these guided waves with pump-probe methods are reviewed. Determination of material parameters by broadband surface acoustic waves (SAWs) and other applications in nondestructive evaluation (NDE) are considered. The realization of nonlinear SAWs in the form of solitary waves and as shock waves, used for the determination of the fracture strength, is described. The unique properties of dispersion-free wedge waves (WWs) propagating along homogeneous wedges and of dispersive wedge waves observed in the presence of wedge modifications such as tip truncation or coatings are outlined. Theoretical and experimental results on nonlinear wedge waves in isotropic and anisotropic solids are presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Ultrasonic guided wave tomography for wall thickness mapping in pipes

    NASA Astrophysics Data System (ADS)

    Willey, Carson L.

    Corrosion and erosion damage pose fundamental challenges to operation of oil and gas infrastructure. In order to manage the life of critical assets, plant operators must implement inspection programs aimed at assessing the severity of wall thickness loss (WTL) in pipelines, vessels, and other structures. Maximum defect depth determines the residual life of these structures and therefore represents one of the key parameters for robust damage mitigation strategies. In this context, continuous monitoring with permanently installed sensors has attracted significant interest and currently is the subject of extensive research worldwide. Among the different monitoring approaches being considered, significant promise is offered by the combination of guided ultrasonic wave technology with the principles of model based inversion under the paradigm of what is now referred to as guided wave tomography (GWT). Guided waves are attractive because they propagate inside the wall of a structure over a large distance. This can yield significant advantages over conventional pulse-echo thickness gage sensors that provide insufficient area coverage -- typically limited to the sensor footprint. While significant progress has been made in the application of GWT to plate-like structures, extension of these methods to pipes poses a number of fundamental challenges that have prevented the development of sensitive GWT methods. This thesis focuses on these challenges to address the complex guided wave propagation in pipes and to account for parametric uncertainties that are known to affect model based inversion and which are unavoidable in real field applications. The main contribution of this work is the first demonstration of a sensitive GWT method for accurately mapping the depth of defects in pipes. This is achieved by introducing a novel forward model that can extract information related to damage from the complex waveforms measured by pairs of guided wave transducers mounted on the pipe

  16. Implication of changing loading conditions on structural health monitoring utilising guided waves

    NASA Astrophysics Data System (ADS)

    Mohabuth, Munawwar; Kotousov, Andrei; Ng, Ching-Tai; Rose, L. R. Francis

    2018-02-01

    Structural health monitoring systems based on guided waves typically utilise a network of embedded or permanently attached sensors, allowing for the continuous detection of damage remote from a sensor location. The presence of damage is often diagnosed by analysing the residual signals from the structure after subtracting damage-free reference data. However, variations in environmental and operational conditions such as temperature, humidity, applied or thermally-induced stresses affect the measured residuals. A previously developed acoustoelastic formulation is here extended and employed as the basis for a simplified analytical model to estimate the effect of applied or thermally-induced stresses on the propagation characteristics of the fundamental Lamb wave modes. It is noted that there are special combinations of frequency, biaxial stress ratio and direction of wave propagation for which there is no change in the phase velocity of the fundamental anti-symmetric mode. The implication of these results in devising effective strategies to mitigate the effect of stress induced variations in guided-wave damage diagnostics is briefly discussed.

  17. Numerical modelling of wind effects on breaking waves in the surf zone

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua

    2017-10-01

    Wind effects on periodic breaking waves in the surf zone have been investigated in this study using a two-phase flow model. The model solves the Reynolds-averaged Navier-Stokes equations with the k - 𝜖 turbulence model simultaneously for the flows both in the air and water. Both spilling and plunging breakers over a 1:35 sloping beach have been studied under the influence of wind, with a focus during wave breaking. Detailed information of the distribution of wave amplitudes and mean water level, wave-height-to-water-depth ratio, the water surface profiles, velocity, vorticity, and turbulence fields have been presented and discussed. The inclusion of wind alters the air flow structure above water waves, increases the generation of vorticity, and affects the wave shoaling, breaking, overturning, and splash-up processes. Wind increases the water particle velocities and causes water waves to break earlier and seaward, which agrees with the previous experiment.

  18. Investigation of the reconstruction accuracy of guided wave tomography using full waveform inversion

    NASA Astrophysics Data System (ADS)

    Rao, Jing; Ratassepp, Madis; Fan, Zheng

    2017-07-01

    Guided wave tomography is a promising tool to accurately determine the remaining wall thicknesses of corrosion damages, which are among the major concerns for many industries. Full Waveform Inversion (FWI) algorithm is an attractive guided wave tomography method, which uses a numerical forward model to predict the waveform of guided waves when propagating through corrosion defects, and an inverse model to reconstruct the thickness map from the ultrasonic signals captured by transducers around the defect. This paper discusses the reconstruction accuracy of the FWI algorithm on plate-like structures by using simulations as well as experiments. It was shown that this algorithm can obtain a resolution of around 0.7 wavelengths for defects with smooth depth variations from the acoustic modeling data, and about 1.5-2 wavelengths from the elastic modeling data. Further analysis showed that the reconstruction accuracy is also dependent on the shape of the defect. It was demonstrated that the algorithm maintains the accuracy in the case of multiple defects compared to conventional algorithms based on Born approximation.

  19. Propagation of arbitrary initial wave packets in a quantum parametric oscillator: Instability zones for higher order moments

    NASA Astrophysics Data System (ADS)

    Biswas, Subhadip; Chattopadhyay, Rohitashwa; Bhattacharjee, Jayanta K.

    2018-05-01

    We consider the dynamics of a particle in a parametric oscillator with a view to exploring any quantum feature of the initial wave packet that shows divergent (in time) behaviour for parameter values where the classical motion dynamics of the mean position is bounded. We use Ehrenfest's theorem to explore the dynamics of nth order moment which reduces exactly to a linear non autonomous differential equation of order n + 1. It is found that while the width and skewness of the packet is unbounded exactly in the zones where the classical motion is unbounded, the kurtosis of an initially non-gaussian wave packet can become infinitely large in certain additional zones. This implies that the shape of the wave packet can change drastically with time in these zones.

  20. Miniature high-resolution guided-wave spectrometer for atmospheric remote sensing

    NASA Astrophysics Data System (ADS)

    Sloan, James; Kruzelecky, Roman; Wong, Brian; Zou, Jing; Jamroz, Wes; Haddad, Emile; Poirier, Michel

    This paper describes the design and application of an innovative spectrometer in which a guided-wave integrated optical spectrometer (IOSPEC) has been coupled with a Fabry-Perot (FP) interferometer. This miniature spectrometer has a net mass under 3 kg, but is capable of broadband operation at spectral resolutions below 0.03 nm full width half maximum (FWHM). The tuneable FP filter provides very high spectral resolution combined with a large input aper-ture. The solid state guided-wave spectrometer is currently configured for a 512-channel array detector, which provides sub-nm coarse resolution. The ultimate resolution is determined by the FP filter, which is tuned across the desired spectral bands, thereby providing a signal-to-noise ratio (SNR) advantage over scanned spectrometer systems of the square root of the number of detector channels. The guided-wave optics provides robust, long-term optical alignment, while minimising the mechanical complexity. The miniaturisation of the FP-IOSPEC spectrometer allows multiple spectrometers to be accommodated on a single MicroSat. Each of these can be optimised for selected measurement tasks and views, thereby enabling more flexible data acquisition strategies with enhanced information content, while minimizing the mission cost. The application of this innovative technology in the proposed Miniature Earth Observation Satellite (MEOS) mission will also be discussed. The MEOS mission, which is designed for the investigation of the carbon and water cycles, relies on multiple IO-SPEC instruments for the simultaneous measurement of a range of atmospheric and surface properties important to climate change.

  1. On guided circumferential waves in soft electroactive tubes under radially inhomogeneous biasing fields

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Su, Yipin; Chen, Weiqiu; Zhang, Chuanzeng

    2017-02-01

    Soft electroactive (EA) tube actuators and many other cylindrical devices have been proposed recently in literature, which show great advantages over those made from conventional hard solid materials. However, their practical applications may be limited because these soft EA devices are prone to various failure modes. In this paper, we present an analysis of the guided circumferential elastic waves in soft EA tube actuators, which has potential applications in the in-situ nondestructive evaluation (NDE) or online structural health monitoring (SHM) to detect structural defects or fatigue cracks in soft EA tube actuators and in the self-sensing of soft EA tube actuators based on the concept of guided circumferential elastic waves. Both circumferential SH and Lamb-type waves in an incompressible soft EA cylindrical tube under inhomogeneous biasing fields are considered. The biasing fields, induced by the application of an electric voltage difference to the electrodes on the inner and outer cylindrical surfaces of the EA tube in addition to an axial pre-stretch, are inhomogeneous in the radial direction. Dorfmann and Ogden's theory of nonlinear electroelasticity and the associated linear theory for small incremental motion constitute the basis of our analysis. By means of the state-space formalism for the incremental wave motion along with the approximate laminate technique, dispersion relations are derived in a particularly efficient way. For a neo-Hookean ideal dielectric model, the proposed approach is first validated numerically. Numerical examples are then given to show that the guided circumferential wave propagation characteristics are significantly affected by the inhomogeneous biasing fields and the geometrical parameters. Some particular phenomena such as the frequency veering and the nonlinear dependence of the phase velocity on the radial electric voltage are discussed. Our numerical findings demonstrate that it is feasible to use guided circumferential

  2. An adaptive sparse deconvolution method for distinguishing the overlapping echoes of ultrasonic guided waves for pipeline crack inspection

    NASA Astrophysics Data System (ADS)

    Chang, Yong; Zi, Yanyang; Zhao, Jiyuan; Yang, Zhe; He, Wangpeng; Sun, Hailiang

    2017-03-01

    In guided wave pipeline inspection, echoes reflected from closely spaced reflectors generally overlap, meaning useful information is lost. To solve the overlapping problem, sparse deconvolution methods have been developed in the past decade. However, conventional sparse deconvolution methods have limitations in handling guided wave signals, because the input signal is directly used as the prototype of the convolution matrix, without considering the waveform change caused by the dispersion properties of the guided wave. In this paper, an adaptive sparse deconvolution (ASD) method is proposed to overcome these limitations. First, the Gaussian echo model is employed to adaptively estimate the column prototype of the convolution matrix instead of directly using the input signal as the prototype. Then, the convolution matrix is constructed upon the estimated results. Third, the split augmented Lagrangian shrinkage (SALSA) algorithm is introduced to solve the deconvolution problem with high computational efficiency. To verify the effectiveness of the proposed method, guided wave signals obtained from pipeline inspection are investigated numerically and experimentally. Compared to conventional sparse deconvolution methods, e.g. the {{l}1} -norm deconvolution method, the proposed method shows better performance in handling the echo overlap problem in the guided wave signal.

  3. 49 CFR Appendix C to Part 222 - Guide to Establishing Quiet Zones

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Guide to Establishing Quiet Zones C Appendix C to Part 222 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION USE OF LOCOMOTIVE HORNS AT PUBLIC HIGHWAY-RAIL GRADE CROSSINGS Pt...

  4. 49 CFR Appendix C to Part 222 - Guide to Establishing Quiet Zones

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Guide to Establishing Quiet Zones C Appendix C to Part 222 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION USE OF LOCOMOTIVE HORNS AT PUBLIC HIGHWAY-RAIL GRADE CROSSINGS Pt...

  5. 49 CFR Appendix C to Part 222 - Guide to Establishing Quiet Zones

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Guide to Establishing Quiet Zones C Appendix C to Part 222 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION USE OF LOCOMOTIVE HORNS AT PUBLIC HIGHWAY-RAIL GRADE CROSSINGS Pt...

  6. Scattering of plane evanescent waves by buried cylinders: Modeling the coupling to guided waves and resonances

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2003-04-01

    The coupling of sound to buried targets can be associated with acoustic evanescent waves when the sea bottom is smooth. To understand the excitation of guided waves on buried fluid cylinders and shells by acoustic evanescent waves and the associated target resonances, the two-dimensional partial wave series for the scattering is found for normal incidence in an unbounded medium. The shell formulation uses the simplifications of thin-shell dynamics. The expansion of the incident wave becomes a double summation with products of modified and ordinary Bessel functions [P. L. Marston, J. Acoust. Soc. Am. 111, 2378 (2002)]. Unlike the case of an ordinary incident wave, the counterpropagating partial waves of the same angular order have unequal magnitudes when the incident wave is evanescent. This is a consequence of the exponential dependence of the incident wave amplitude on depth. Some consequences of this imbalance of partial-wave amplitudes are given by modifying previous ray theory for the scattering [P. L. Marston and N. H. Sun, J. Acoust. Soc. Am. 97, 777-783 (1995)]. The exponential dependence of the scattering on the location of a scatterer was previously demonstrated in air [T. J. Matula and P. L. Marston, J. Acoust. Soc. Am. 93, 1192-1195 (1993)].

  7. Development of a Novel Guided Wave Generation System Using a Giant Magnetostrictive Actuator for Nondestructive Evaluation

    PubMed Central

    Luo, Mingzhang; Li, Weijie; Wang, Junming; Chen, Xuemin; Song, Gangbing

    2018-01-01

    As a common approach to nondestructive testing and evaluation, guided wave-based methods have attracted much attention because of their wide detection range and high detection efficiency. It is highly desirable to develop a portable guided wave testing system with high actuating energy and variable frequency. In this paper, a novel giant magnetostrictive actuator with high actuation power is designed and implemented, based on the giant magnetostrictive (GMS) effect. The novel GMS actuator design involves a conical energy-focusing head that can focus the amplified mechanical energy generated by the GMS actuator. This design enables the generation of stress waves with high energy, and the focusing of the generated stress waves on the test object. The guided wave generation system enables two kinds of output modes: the coded pulse signal and the sweep signal. The functionality and the advantages of the developed system are validated through laboratory testing in the quality assessment of rock bolt-reinforced structures. In addition, the developed GMS actuator and the supporting system are successfully implemented and applied in field tests. The device can also be used in other nondestructive testing and evaluation applications that require high-power stress wave generation. PMID:29510540

  8. Development of a Novel Guided Wave Generation System Using a Giant Magnetostrictive Actuator for Nondestructive Evaluation.

    PubMed

    Luo, Mingzhang; Li, Weijie; Wang, Junming; Wang, Ning; Chen, Xuemin; Song, Gangbing

    2018-03-04

    As a common approach to nondestructive testing and evaluation, guided wave-based methods have attracted much attention because of their wide detection range and high detection efficiency. It is highly desirable to develop a portable guided wave testing system with high actuating energy and variable frequency. In this paper, a novel giant magnetostrictive actuator with high actuation power is designed and implemented, based on the giant magnetostrictive (GMS) effect. The novel GMS actuator design involves a conical energy-focusing head that can focus the amplified mechanical energy generated by the GMS actuator. This design enables the generation of stress waves with high energy, and the focusing of the generated stress waves on the test object. The guided wave generation system enables two kinds of output modes: the coded pulse signal and the sweep signal. The functionality and the advantages of the developed system are validated through laboratory testing in the quality assessment of rock bolt-reinforced structures. In addition, the developed GMS actuator and the supporting system are successfully implemented and applied in field tests. The device can also be used in other nondestructive testing and evaluation applications that require high-power stress wave generation.

  9. Acoustic Guided Wave Testing of Pipes of Small Diameters

    NASA Astrophysics Data System (ADS)

    Muravev, V. V.; Muraveva, O. V.; Strizhak, V. A.; Myshkin, Y. V.

    2017-10-01

    Acoustic path is analyzed and main parameters of guided wave testing are substanti- ated applied to pipes of small diameters. The method is implemented using longitudinal L(0,1) and torsional T(0,1) waves based on electromagnetic-acoustic (EMA) transducers. The method of multiple reflections (MMR) combines echo-through, amplitude-shadow and time-shadow methods. Due to the effect of coherent amplification of echo-pulses from defects the sensitivity to the defects of small sizes at the signal analysis on the far reflections is increased. An oppor- tunity of detection of both local defects (dents, corrosion damages, rolling features, pitting, cracks) and defects extended along the pipe is shown.

  10. Application of guided acoustic waves to delamination detection

    NASA Technical Reports Server (NTRS)

    Sun, Keun J.

    1992-01-01

    Guided plate waves are able to interact with structural flaws such as delaminations and cracks due to their propagation properties highly sensitive to the thickness change in materials. A technique which employs an acoustic damper to probe the results of this interaction and then to locate flaws in a relatively short period of time is developed. With its technical advantages, this technique shows its potential application to large area structural integrity assessment.

  11. Ultrasonic guided wave tomography of pipes: A development of new techniques for the nondestructive evaluation of cylindrical geometries and guided wave multi-mode analysis

    NASA Astrophysics Data System (ADS)

    Leonard, Kevin Raymond

    This dissertation concentrates on the development of two new tomographic techniques that enable wide-area inspection of pipe-like structures. By envisioning a pipe as a plate wrapped around upon itself, the previous Lamb Wave Tomography (LWT) techniques are adapted to cylindrical structures. Helical Ultrasound Tomography (HUT) uses Lamb-like guided wave modes transmitted and received by two circumferential arrays in a single crosshole geometry. Meridional Ultrasound Tomography (MUT) creates the same crosshole geometry with a linear array of transducers along the axis of the cylinder. However, even though these new scanning geometries are similar to plates, additional complexities arise because they are cylindrical structures. First, because it is a single crosshole geometry, the wave vector coverage is poorer than in the full LWT system. Second, since waves can travel in both directions around the circumference of the pipe, modes can also constructively and destructively interfere with each other. These complexities necessitate improved signal processing algorithms to produce accurate and unambiguous tomographic reconstructions. Consequently, this work also describes a new algorithm for improving the extraction of multi-mode arrivals from guided wave signals. Previous work has relied solely on the first arriving mode for the time-of-flight measurements. In order to improve the LWT, HUT and MUT systems reconstructions, improved signal processing methods are needed to extract information about the arrival times of the later arriving modes. Because each mode has different through-thickness displacement values, they are sensitive to different types of flaws, and the information gained from the multi-mode analysis improves understanding of the structural integrity of the inspected material. Both tomographic frequency compounding and mode sorting algorithms are introduced. It is also shown that each of these methods improve the reconstructed images both qualitatively and

  12. Effect of skew angle on second harmonic guided wave measurement in composite plates

    NASA Astrophysics Data System (ADS)

    Cho, Hwanjeong; Choi, Sungho; Lissenden, Cliff J.

    2017-02-01

    Waves propagating in anisotropic media are subject to skewing effects due to the media having directional wave speed dependence, which is characterized by slowness curves. Likewise, the generation of second harmonics is sensitive to micro-scale damage that is generally not detectable from linear features of ultrasonic waves. Here, the effect of skew angle on second harmonic guided wave measurement in a transversely isotropic lamina and a quasi-isotropic laminate are numerically studied. The strain energy density function for a nonlinear transversely isotropic material is formulated in terms of the Green-Lagrange strain invariants. The guided wave mode pairs for cumulative second harmonic generation in the plate are selected in accordance with the internal resonance criteria - i.e., phase matching and non-zero power flux. Moreover, the skew angle dispersion curves for the mode pairs are obtained from the semi-analytical finite element method using the derivative of the slowness curve. The skew angles of the primary and secondary wave modes are calculated and wave propagation simulations are carried out using COMSOL. Numerical simulations revealed that the effect of skew angle mismatch can be significant for second harmonic generation in anisotropic media. The importance of skew angle matching on cumulative second harmonic generation is emphasized and the accompanying issue of the selection of internally resonant mode pairs for both a unidirectional transversely isotropic lamina and a quasi-isotropic laminate is demonstrated.

  13. Detection of CFRP Composite Manufacturing Defects Using a Guided Wave Approach

    NASA Technical Reports Server (NTRS)

    Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.; Yuan, Fuh-Gwo

    2015-01-01

    NASA Langley Research Center is investigating a guided-wave based defect detection technique for as-fabricated carbon fiber reinforced polymer (CFRP) composites. This technique will be extended to perform in-process cure monitoring, defect detection and size determination, and ultimately a closed-loop process control to maximize composite part quality and consistency. The overall objective of this work is to determine the capability and limitations of the proposed defect detection technique, as well as the number and types of sensors needed to identify the size, type, and location of the predominant types of manufacturing defects associated with laminate layup and cure. This includes, porosity, gaps, overlaps, through-the-thickness fiber waviness, and in-plane fiber waviness. The present study focuses on detection of the porosity formed from variations in the matrix curing process, and on local overlaps intentionally introduced during layup of the prepreg. By terminating the cycle prematurely, three 24-ply unidirectional composite panels were manufactured such that each subsequent panel had a higher final degree of cure, and lower level of porosity. It was demonstrated that the group velocity, normal to the fiber direction, of a guided wave mode increased by 5.52 percent from the first panel to the second panel and 1.26 percent from the second panel to the third panel. Therefore, group velocity was utilized as a metric for degree of cure and porosity measurements. A fully non-contact guided wave hybrid system composed of an air-coupled transducer and a laser Doppler vibrometer (LDV) was used for the detection and size determination of an overlap By transforming the plate response from the time-space domain to the frequency-wavenumber domain, the total wavefield was then separated into the incident and backscatter waves. The overlap region was accurately imaged by using a zero-lag cross-correlation (ZLCC) imaging condition, implying the incident and backscattered

  14. Guided waves and ultrasonic characterization of three-dimensional composites

    NASA Astrophysics Data System (ADS)

    Leymarie, Nicolas; Baste, Stéphane

    2000-05-01

    Ultrasonic NDE of anisotropic media appears nowadays as one of the best experimental approaches in studying mechanical properties. A complete identification of stiffness tensor can be performed with phase velocity measurements of obliquely incidence ultrasonic bulk waves from water onto a plate. The medium considered, however, has to be homogeneous with respect to wavelength used. In the case of 3D-composites, textures scales may reach one millimeter and their cut-off frequency is less than MHz. The dispersion curves observed in the considered range of frequencies are often very close and sometimes may be overlapped. Experimental studies show complex signals, which are due to a combination of both bulk and guided waves. Wave-speed measurements of the bulk wave and its detection become unreliable with classical techniques of signal processing (simple time or spectral analysis). Moreover, even if the coupled time-frequency analysis with wavelet transforms allows a better interpretation of the signal, the time delay estimation for the bulk wave and so the characterization of the material remains uncertain. To understand blended signals more accurately, different analytical and numerical models are proposed to show the advantages and disadvantages of methods used in NDE.

  15. Modelling ultrasound guided wave propagation for plate thickness measurement

    NASA Astrophysics Data System (ADS)

    Malladi, Rakesh; Dabak, Anand; Murthy, Nitish Krishna

    2014-03-01

    Structural Health monitoring refers to monitoring the health of plate-like walls of large reactors, pipelines and other structures in terms of corrosion detection and thickness estimation. The objective of this work is modeling the ultrasonic guided waves generated in a plate. The piezoelectric is excited by an input pulse to generate ultrasonic guided lamb waves in the plate that are received by another piezoelectric transducer. In contrast with existing methods, we develop a mathematical model of the direct component of the signal (DCS) recorded at the terminals of the piezoelectric transducer. The DCS model uses maximum likelihood technique to estimate the different parameters, namely the time delay of the signal due to the transducer delay and amplitude scaling of all the lamb wave modes due to attenuation, while taking into account the received signal spreading in time due to dispersion. The maximum likelihood estimate minimizes the energy difference between the experimental and the DCS model-generated signal. We demonstrate that the DCS model matches closely with experimentally recorded signals and show it can be used to estimate thickness of the plate. The main idea of the thickness estimation algorithm is to generate a bank of DCS model-generated signals, each corresponding to a different thickness of the plate and then find the closest match among these signals to the received signal, resulting in an estimate of the thickness of the plate. Therefore our approach provides a complementary suite of analytics to the existing thickness monitoring approaches.

  16. Ultrasonic probing of the fracture process zone in rock using surface waves

    NASA Technical Reports Server (NTRS)

    Swanson, P. L.; Spetzler, H.

    1984-01-01

    A microcrack process zone is frequently suggested to accompany macrofractures in rock and play an important role in the resistance to fracture propagation. Attenuation of surface waves propagating through mode I fractures in wedge-loaded double-cantilever beam specimens of Westerly granite has been recorded in an attempt to characterize the structure of the fracture process zone. The ultrasonic measurements do not support the generally accepted model of a macroscopic fracture that incrementally propagates with the accompaniment of a cloud of microcracks. Instead, fractures in Westerly granite appear to form as gradually separating surfaces within a zone having a width of a few millimeters and a length of several tens of millimeters. A fracture process zone of this size would necessitate the use of meter-sized specimens in order for linear elastic fracture mechanics to be applicable.

  17. Studies on the influence of axial bends on ultrasonic guided waves in hollow cylinders (pipes)

    NASA Astrophysics Data System (ADS)

    Verma, Bhupesh; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2013-01-01

    Ultrasonic guided waves in hollow cylinders (pipes) are today widely applied as rapid screening tools in the inspection of straight pipe segments in oil, power generation and petrochemical processing industries. However, the characteristics of guided wave propagation across features such as bends in the pipe network are complicated, hampering a wider application of the developed techniques. Although a growing number of studies in recent years have considered guided wave propagation across elbows and U-type bends, the topic is still not very well understood for a general bend angle φ, mean bend radius R and pipe thickness b. Here we use 3D Finite Element (FE) simulation to illumine the propagation of fundamental guided pipe modes across bends of several different angles φ. Two different bend radius regimes, R/λ ≈ 1 and 10 (where λ denotes the wavelength of the mode studied) are considered, exemplifying 'sharp' and gradual or 'slow' bends. Different typical pipe thicknesses b within these regimes are also studied. The results confirm the expectation that different bend radius regimes affect the waves differently. Further, while as observed in earlier studies, at moderate bend radii, fundamental modes travel almost unaffected by an elbow (bend angle φ = 90 degrees), we find that as the bend angle is reduced, there is a progressively larger extent of mode-conversion. These trends and results are validated using experiments.

  18. Guided solitary waves.

    PubMed

    Miles, J

    1980-04-01

    Transversely periodic solitary-wave solutions of the Boussinesq equations (which govern wave propagation in a weakly dispersive, weakly nonlinear physical system) are determined. The solutions for negative dispersion (e.g., gravity waves) are singular and therefore physically unacceptable. The solutions for positive dispersion (e.g., capillary waves or magnetosonic waves in a plasma) are physically acceptable except in a limited parametric interval, in which they are complex. The two end points of this interval are associated with (two different) resonant interactions among three basic solitary waves, two of which are two-dimensional complex conjugates and the third of which is one-dimensional and real.

  19. Modelling wave-induced sea ice break-up in the marginal ice zone

    NASA Astrophysics Data System (ADS)

    Montiel, F.; Squire, V. A.

    2017-10-01

    A model of ice floe break-up under ocean wave forcing in the marginal ice zone (MIZ) is proposed to investigate how floe size distribution (FSD) evolves under repeated wave break-up events. A three-dimensional linear model of ocean wave scattering by a finite array of compliant circular ice floes is coupled to a flexural failure model, which breaks a floe into two floes provided the two-dimensional stress field satisfies a break-up criterion. A closed-feedback loop algorithm is devised, which (i) solves the wave-scattering problem for a given FSD under time-harmonic plane wave forcing, (ii) computes the stress field in all the floes, (iii) fractures the floes satisfying the break-up criterion, and (iv) generates an updated FSD, initializing the geometry for the next iteration of the loop. The FSD after 50 break-up events is unimodal and near normal, or bimodal, suggesting waves alone do not govern the power law observed in some field studies. Multiple scattering is found to enhance break-up for long waves and thin ice, but to reduce break-up for short waves and thick ice. A break-up front marches forward in the latter regime, as wave-induced fracture weakens the ice cover, allowing waves to travel deeper into the MIZ.

  20. Delamination Detection Using Guided Wave Phased Arrays

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Yu, Lingyu; Leckey, Cara

    2016-01-01

    This paper presents a method for detecting multiple delaminations in composite laminates using non-contact phased arrays. The phased arrays are implemented with a non-contact scanning laser Doppler vibrometer (SLDV). The array imaging algorithm is performed in the frequency domain where both the guided wave dispersion effect and direction dependent wave properties are considered. By using the non-contact SLDV array with a frequency domain imaging algorithm, an intensity image of the composite plate can be generated for delamination detection. For the proof of concept, a laboratory test is performed using a non-contact phased array to detect two delaminations (created through quasi-static impact test) at different locations in a composite plate. Using the non-contact phased array and frequency domain imaging, the two impact-induced delaminations are successfully detected. This study shows that the non-contact phased array method is a potentially effective method for rapid delamination inspection in large composite structures.

  1. Long range guided wave defect monitoring in rail track

    NASA Astrophysics Data System (ADS)

    Loveday, Philip W.; Long, Craig S.

    2014-02-01

    A guided wave ultrasound system was previously developed for monitoring rail track used on heavy duty freight lines. This system operates by transmitting guided waves between permanently installed transmit and receive transducers spaced approximately 1km apart. The system has been proven to reliably detect rail breaks without false alarms. While cracks are sometimes detected there is a trade - off between detecting cracks and the possibility of false alarms. Adding a pulse-echo mode of operation to the system could provide increased functionality by detecting, locating and possibly monitoring cracks. This would require an array of transducers to control the direction and mode of propagation and it would be necessary to detect cracks up to a range of approximately 500 m in either direction along the rail. A four transducer array was designed and full matrix capture was used for field measurements. Post processing of the signals showed that a thermite weld could be detected at a range of 790m from the transducer array. It was concluded that the required range can be achieved in new rail while it would be extremely difficult in very old rail.

  2. Design and performance of optimal detectors for guided wave structural health monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dib, G.; Udpa, L.

    2016-01-01

    Ultrasonic guided wave measurements in a long term structural health monitoring system are affected by measurement noise, environmental conditions, transducer aging and malfunction. This results in measurement variability which affects detection performance, especially in complex structures where baseline data comparison is required. This paper derives the optimal detector structure, within the framework of detection theory, where a guided wave signal at the sensor is represented by a single feature value that can be used for comparison with a threshold. Three different types of detectors are derived depending on the underlying structure’s complexity: (i) Simple structures where defect reflections can bemore » identified without the need for baseline data; (ii) Simple structures that require baseline data due to overlap of defect scatter with scatter from structural features; (iii) Complex structure with dense structural features that require baseline data. The detectors are derived by modeling the effects of variabilities and uncertainties as random processes. Analytical solutions for the performance of detectors in terms of the probability of detection and false alarm are derived. A finite element model is used to generate guided wave signals and the performance results of a Monte-Carlo simulation are compared with the theoretical performance. initial results demonstrate that the problems of signal complexity and environmental variability can in fact be exploited to improve detection performance.« less

  3. Subsurface fault damage zone of the 2014 Mw 6.0 South Napa, California, earthquake viewed from fault‐zone trapped waves

    USGS Publications Warehouse

    Li, Yong-Gang; Catchings, Rufus D.; Goldman, Mark R.

    2016-01-01

    The aftershocks of the 24 August 2014 Mw 6.0 South Napa earthquake generated prominent fault‐zone trapped waves (FZTWs) that were recorded on two 1.9‐km‐long seismic arrays deployed across the northern projection (array 1, A1) and the southern part (A2) of the surface rupture of the West Napa fault zone (WNFZ). We also observed FZTWs on an array (A3) deployed across the intersection of the Franklin and Southampton faults, which appear to be the southward continuations of the WNFZ. A1, A2, and A3 consisted of 20, 20, and 10 L28 (4.5 Hz) three‐component seismographs. We analyzed waveforms of FZTWs from 55 aftershocks in both time and frequency to characterize the fault damage zone associated with this Mw 6.0 earthquake. Post‐S coda durations of FZTWs increase with epicentral distances and focal depths from the recording arrays, suggesting a low‐velocity waveguide along the WNFZ to depths in excess of 5–7 km. Locations of the aftershocks showing FZTWs, combined with 3D finite‐difference simulations, suggest the subsurface rupture zone having an S‐wave speed reduction of ∼40%–50% between A1 and A2, coincident with the ∼14‐km‐long mapped surface rupture zone and at least an ∼500‐m‐wide deformation zone. The low‐velocity waveguide along the WNFZ extends further southward to at least A3, but with a more moderate‐velocity reduction of 30%–35% at ray depth. This last FZTW observation suggests continuity between the WNFZ and Franklin fault. The waveguide effect may have localized and amplified ground shaking along the WNFZ and the faults farther to the south (see a companion paper by Catchings et al., 2016).

  4. Incidence and Outcomes of Optical Zone Enlargement and Recentration After Previous Myopic LASIK by Topography-Guided Custom Ablation.

    PubMed

    Reinstein, Dan Z; Archer, Timothy J; Carp, Glenn I; Stuart, Alastair J; Rowe, Elizabeth L; Nesbit, Andrew; Moore, Tara

    2018-02-01

    To report the incidence, visual and refractive outcomes, optical zone enlargement, and recentration using topography-guided CRS-Master TOSCA II software with the MEL 80 excimer laser (Carl Zeiss Meditec AG, Jena, Germany) after primary myopic laser refractive surgery. Retrospective analysis of 73 eyes (40 patients) with complaints of night vision disturbances due to either a decentration or small optical zone following a primary myopic laser refractive surgery procedure using the MEL 80 laser. Multiple ATLAS topography scans were imported into the CRS-Master software for topography-guided ablation planning. The topography-guided re-treatment procedure was performed as either a LASIK flap lift, a new LASIK flap, a side cut only, or photorefractive keratectomy. Axial curvature maps were analyzed using a fixed grid and set of concentric circles superimposed to measure the topographic optical zone diameter and centration. Follow-up was 12 months. The incidence of use in the population of myopic treatments during the study period was 0.79% (73 of 9,249). The optical zone diameter was increased by 11% from a mean of 5.65 to 6.32 mm, with a maximum change of 2 mm in one case. Topographic decentration was reduced by 64% from a mean of 0.58 to 0.21 mm. There was a 44% reduction in spherical aberration, 53% reduction in coma, and 39% reduction in total higher order aberrations. A subjective improvement in night vision symptoms was reported by 93%. Regarding efficacy, 82% of eyes reached 20/20 and 100% reached 20/32 (preoperative CDVA was 20/20 or better in 90%). Regarding safety, no eyes lost two lines of CDVA and 27% gained one line. Regarding predictability, 71% of re-treatments were within ±0.50 diopters. Topography-guided ablation was effective in enlarging the optical zone, recentering the optical zone, and reducing higher order aberrations. Topography-guided custom ablation appears to be an effective method for re-treatment procedures of symptomatic patients after

  5. Experimental Validation of a Fast Forward Model for Guided Wave Tomography of Pipe Elbows.

    PubMed

    Brath, Alex J; Simonetti, Francesco; Nagy, Peter B; Instanes, Geir

    2017-05-01

    Ultrasonic guided wave tomography (GWT) methods for the detection of corrosion and erosion damage in straight pipe sections are now well advanced. However, successful application of GWT to pipe bends has not yet been demonstrated due to the computational burden associated with the complex forward model required to simulate guided wave propagation through the bend. In a previous paper [Brath et al., IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 61, pp. 815-829, 2014], we have shown that the speed of the forward model can be increased by replacing the 3-D pipe bend with a 2-D rectangular domain in which guided wave propagation is formulated based on an artificially inhomogeneous and elliptically anisotropic (INELAN) acoustic model. This paper provides further experimental validation of the INLEAN model by studying the traveltime shifts caused by the introduction of shallow defects on the elbow of a pipe bend. Comparison between experiments and simulations confirms that a defect can be modeled as a phase velocity perturbation to the INLEAN velocity field with accuracy that is within the experimental error of the measurements. In addition, it is found that the sensitivity of traveltime measurements to the presence of damage decreases as the damage position moves from the interior side of the bend (intrados) to the exterior one (extrados). This effect is due to the nonuniform ray coverage obtainable when transmitting the guided wave signals with one ring array of sources on one side of the elbow and receiving with a second array on the other side.

  6. A shallow fault-zone structure illuminated by trapped waves in the Karadere-Duzce branch of the North Anatolian Fault, western Turkey

    USGS Publications Warehouse

    Ben-Zion, Y.; Peng, Z.; Okaya, D.; Seeber, L.; Armbruster, J.G.; Ozer, N.; Michael, A.J.; Baris, S.; Aktar, M.

    2003-01-01

    We discuss the subsurface structure of the Karadere-Duzce branch of the North Anatolian Fault based on analysis of a large seismic data set recorded by a local PASSCAL network in the 6 months following the Mw = 7.4 1999 Izmit earthquake. Seismograms observed at stations located in the immediate vicinity of the rupture zone show motion amplification and long-period oscillations in both P- and S-wave trains that do not exist in nearby off-fault stations. Examination of thousands of waveforms reveals that these characteristics are commonly generated by events that are well outside the fault zone. The anomalous features in fault-zone seismograms produced by events not necessarily in the fault may be referred to generally as fault-zone-related site effects. The oscillatory shear wave trains after the direct S arrival in these seismograms are analysed as trapped waves propagating in a low-velocity fault-zone layer. The time difference between the S arrival and trapped waves group does not grow systematically with increasing source-receiver separation along the fault. These observations imply that the trapping of seismic energy in the Karadere-Duzce rupture zone is generated by a shallow fault-zone layer. Traveltime analysis and synthetic waveform modelling indicate that the depth of the trapping structure is approximately 3-4 km. The synthetic waveform modelling indicates further that the shallow trapping structure has effective waveguide properties consisting of thickness of the order of 100 m, a velocity decrease relative to the surrounding rock of approximately 50 per cent and an S-wave quality factor of 10-15. The results are supported by large 2-D and 3-D parameter space studies and are compatible with recent analyses of trapped waves in a number of other faults and rupture zones. The inferred shallow trapping structure is likely to be a common structural element of fault zones and may correspond to the top part of a flower-type structure. The motion amplification

  7. Ultrasonic guided wave bondline evaluation of thick metallic structures with viscoelastic coatings and the demonstration of a novel mode sweep technique

    NASA Astrophysics Data System (ADS)

    Bostron, Jason

    Ultrasonic guided waves are becoming more widely used in nondestructive evaluation applications due to their efficiency in defect detection, ability to inspect hidden areas, and other reasons. This dissertation addresses two main topics: ultrasonic guided wave bond evaluation of thin and thick coatings on thick metallic structures, and the use of a novel phased array technique for optimal guided wave mode and frequency selection. (Abstract shortened by UMI.).

  8. Guided wave opto-acoustic device

    DOEpatents

    Jarecki, Jr., Robert L.; Rakich, Peter Thomas; Camacho, Ryan; Shin, Heedeuk; Cox, Jonathan Albert; Qiu, Wenjun; Wang, Zheng

    2016-02-23

    The various technologies presented herein relate to various hybrid phononic-photonic waveguide structures that can exhibit nonlinear behavior associated with traveling-wave forward stimulated Brillouin scattering (forward-SBS). The various structures can simultaneously guide photons and phonons in a suspended membrane. By utilizing a suspended membrane, a substrate pathway can be eliminated for loss of phonons that suppresses SBS in conventional silicon-on-insulator (SOI) waveguides. Consequently, forward-SBS nonlinear susceptibilities are achievable at about 3000 times greater than achievable with a conventional waveguide system. Owing to the strong phonon-photon coupling achievable with the various embodiments, potential application for the various embodiments presented herein cover a range of radiofrequency (RF) and photonic signal processing applications. Further, the various embodiments presented herein are applicable to applications operating over a wide bandwidth, e.g. 100 MHz to 50 GHz or more.

  9. Material State Awareness for Composites Part I: Precursor Damage Analysis Using Ultrasonic Guided Coda Wave Interferometry (CWI).

    PubMed

    Patra, Subir; Banerjee, Sourav

    2017-12-16

    Detection of precursor damage followed by the quantification of the degraded material properties could lead to more accurate progressive failure models for composite materials. However, such information is not readily available. In composite materials, the precursor damages-for example matrix cracking, microcracks, voids, interlaminar pre-delamination crack joining matrix cracks, fiber micro-buckling, local fiber breakage, local debonding, etc.-are insensitive to the low-frequency ultrasonic guided-wave-based online nondestructive evaluation (NDE) or Structural Health Monitoring (SHM) (~100-~500 kHz) systems. Overcoming this barrier, in this article, an online ultrasonic technique is proposed using the coda part of the guided wave signal, which is often neglected. Although the first-arrival wave packets that contain the fundamental guided Lamb wave modes are unaltered, the coda wave packets however carry significant information about the precursor events with predictable phase shifts. The Taylor-series-based modified Coda Wave Interferometry (CWI) technique is proposed to quantify the stretch parameter to compensate the phase shifts in the coda wave as a result of precursor damage in composites. The CWI analysis was performed on five woven composite-fiber-reinforced-laminate specimens, and the precursor events were identified. Next, the precursor damage states were verified using high-frequency Scanning Acoustic Microscopy (SAM) and optical microscopy imaging.

  10. Measurements of shock-induced guided and surface acoustic waves along boreholes in poroelastic materials

    NASA Astrophysics Data System (ADS)

    Chao, Gabriel; Smeulders, D. M. J.; van Dongen, M. E. H.

    2006-05-01

    Acoustic experiments on the propagation of guided waves along water-filled boreholes in water-saturated porous materials are reported. The experiments were conducted using a shock tube technique. An acoustic funnel structure was placed inside the tube just above the sample in order to enhance the excitation of the surface modes. A fast Fourier transform-Prony-spectral ratio method is implemented to transform the data from the time-space domain to the frequency-wave-number domain. Frequency-dependent phase velocities and attenuation coefficients were measured using this technique. The results for a Berea sandstone material show a clear excitation of the fundamental surface mode, the pseudo-Stoneley wave. The comparison of the experimental results with numerical predictions based on Biot's theory of poromechanics [J. Acoust. Soc. Am. 28, 168 (1956)], shows that the oscillating fluid flow at the borehole wall is the dominant loss mechanism governing the pseudo-Stoneley wave and it is properly described by the Biot's model at frequencies below 40 kHz. At higher frequencies, a systematic underestimation of the theoretical predictions is found, which can be attributed to the existence of other losses mechanisms neglected in the Biot formulation. Higher-order guided modes associated with the compressional wave in the porous formation and the cylindrical geometry of the shock tube were excited, and detailed information was obtained on the frequency-dependent phase velocity and attenuation in highly porous and permeable materials. The measured attenuation of the guided wave associated with the compressional wave reveals the presence of regular oscillatory patterns that can be attributed to radial resonances. This oscillatory behavior is also numerically predicted, although the measured attenuation values are one order of magnitude higher than the corresponding theoretical values. The phase velocities of the higher-order modes are generally well predicted by theory.

  11. Simplified method for the calculation of irregular waves in the coastal zone

    NASA Astrophysics Data System (ADS)

    Leont'ev, I. O.

    2011-04-01

    A method applicable for the estimation of the wave parameters along a set bottom profile is suggested. It takes into account the principal processes having an influence on the waves in the coastal zone: the transformation, refraction, bottom friction, and breaking. The ability to use a constant mean value of the friction coefficient under conditions of sandy shores is implied. The wave breaking is interpreted from the viewpoint of the concept of the limiting wave height at a given depth. The mean and root-mean-square wave heights are determined by the height distribution function, which transforms under the effect of the breaking. The verification of the method on the basis of the natural data shows that the calculation results reproduce the observed variations of the wave heights in a wide range of conditions, including profiles with underwater bars. The deviations from the calculated values mostly do not exceed 25%, and the mean square error is 11%. The method does not require a preliminary setting and can be implemented in the form of a relatively simple calculator accessible even for an inexperienced user.

  12. Lamb mode selection for accurate wall loss estimation via guided wave tomography

    NASA Astrophysics Data System (ADS)

    Huthwaite, P.; Ribichini, R.; Lowe, M. J. S.; Cawley, P.

    2014-02-01

    Guided wave tomography offers a method to accurately quantify wall thickness losses in pipes and vessels caused by corrosion. This is achieved using ultrasonic waves transmitted over distances of approximately 1-2m, which are measured by an array of transducers and then used to reconstruct a map of wall thickness throughout the inspected region. To achieve accurate estimations of remnant wall thickness, it is vital that a suitable Lamb mode is chosen. This paper presents a detailed evaluation of the fundamental modes, S0 and A0, which are of primary interest in guided wave tomography thickness estimates since the higher order modes do not exist at all thicknesses, to compare their performance using both numerical and experimental data while considering a range of challenging phenomena. The sensitivity of A0 to thickness variations was shown to be superior to S0, however, the attenuation from A0 when a liquid loading was present was much higher than S0. A0 was less sensitive to the presence of coatings on the surface of than S0.

  13. Local numerical modelling of ultrasonic guided waves in linear and nonlinear media

    NASA Astrophysics Data System (ADS)

    Packo, Pawel; Radecki, Rafal; Kijanka, Piotr; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.

    2017-04-01

    Nonlinear ultrasonic techniques provide improved damage sensitivity compared to linear approaches. The combination of attractive properties of guided waves, such as Lamb waves, with unique features of higher harmonic generation provides great potential for characterization of incipient damage, particularly in plate-like structures. Nonlinear ultrasonic structural health monitoring techniques use interrogation signals at frequencies other than the excitation frequency to detect changes in structural integrity. Signal processing techniques used in non-destructive evaluation are frequently supported by modeling and numerical simulations in order to facilitate problem solution. This paper discusses known and newly-developed local computational strategies for simulating elastic waves, and attempts characterization of their numerical properties in the context of linear and nonlinear media. A hybrid numerical approach combining advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE) is proposed for unique treatment of arbitrary strain-stress relations. The iteration equations of the method are derived directly from physical principles employing stress and displacement continuity, leading to an accurate description of the propagation in arbitrarily complex media. Numerical analysis of guided wave propagation, based on the newly developed hybrid approach, is presented and discussed in the paper for linear and nonlinear media. Comparisons to Finite Elements (FE) are also discussed.

  14. Preventing microbial biofilms on catheter tubes using ultrasonic guided waves.

    PubMed

    Wang, Huanlei; Teng, Fengmeng; Yang, Xin; Guo, Xiasheng; Tu, Juan; Zhang, Chunbing; Zhang, Dong

    2017-04-04

    Biofilms on indwelling tubes and medical prosthetic devices are among the leading causes of antibiotic-resistant bacterial infections. In this work, a new anti-biofilm catheter prototype was proposed. By combining an endotracheal tube (ET) with a group of ultrasonic guided wave (UGW) transducers, the general idea was to prevent bacteria aggregation with UGW vibrations. Based on quantitative analysis of UGW propagation, detailed approach was achieved through (a) selection of ultrasonic frequency, wave modes and vibration amplitude; and (b) adoption of wave coupling and 45° wave incidence technique. Performance of the proposed UGW-ET prototype was demonstrated via in vitro experiments, during which it deterred deposition of Pseudomonas aeruginosa (P. aeruginosa) biofilms successfully. With current configuration, UGW amplitudes ranged from 0.05-5 nm could be optimal to achieve biofilm prevention. This work sheds a light in the underlying mechanism of ultrasound-mediated biofilm prevention, and will inspire the development of new catheters of better antibacterial capability.

  15. Investigation of the phase velocities of guided acoustic waves in soft porous layers.

    PubMed

    Boeckx, L; Leclaire, P; Khurana, P; Glorieux, C; Lauriks, W; Allard, J F

    2005-02-01

    A new experimental method for measuring the phase velocities of guided acoustic waves in soft poroelastic or poroviscoelastic plates is proposed. The method is based on the generation of standing waves in the material and on the spatial Fourier transform of the displacement profile of the upper surface. The plate is glued on a rigid substrate so that it has a free upper surface and a nonmoving lower surface. The displacement is measured with a laser Doppler vibrometer along a line corresponding to the direction of propagation of plane surface waves. A continuous sine with varying frequencies was chosen as excitation signal to maximize the precision of the measurements. The spatial Fourier transform provides the wave numbers, and the phase velocities are obtained from the relationship between wave number and frequency. The phase velocities of several guided modes could be measured in a highly porous foam saturated by air. The modes were also studied theoretically and, from the theoretical results, the experimental results, and a fitting procedure, it was possible to determine the frequency behavior of the complex shear modulus and of the complex Poisson ratio from 200 Hz to 1.4 kHz, in a frequency range higher than the traditional methods.

  16. Parametric study of guided waves dispersion curves for composite plates

    NASA Astrophysics Data System (ADS)

    Predoi, Mihai Valentin; Petre, Cristian Cǎtǎlin; Kettani, Mounsif Ech Cherif El; Leduc, Damien

    2018-02-01

    Nondestructive testing of composite panels benefit from the relatively long range propagation of guided waves in sandwich structures. The guided waves are sensitive to delamination, air bubbles inclusions and cracks and can thus bring information about hidden defects in the composite panel. The preliminary data in all such inspections is represented by the dispersion curves, representing the dependency of the phase/group velocity on the frequency for the propagating modes. In fact, all modes are more or less attenuated, so it is even more important to compute the dispersion curves, which provide also the modal attenuation as function of frequency. Another important aspect is the sensitivity of the dispersion curves on each of the elastic constant of the composite, which are orthotropic in most cases. All these aspects are investigated in the present work, based on our specially developed finite element numerical model implemented in Comsol, which has several advantages over existing methods. The dispersion curves and modal displacements are computed for an example of composite plate. Comparison with literature data validates the accuracy of our results.

  17. Stereo Refractive Imaging of Breaking Free-Surface Waves in the Surf Zone

    NASA Astrophysics Data System (ADS)

    Mandel, Tracy; Weitzman, Joel; Koseff, Jeffrey; Environmental Fluid Mechanics Laboratory Team

    2014-11-01

    Ocean waves drive the evolution of coastlines across the globe. Wave breaking suspends sediments, while wave run-up, run-down, and the undertow transport this sediment across the shore. Complex bathymetric features and natural biotic communities can influence all of these dynamics, and provide protection against erosion and flooding. However, our knowledge of the exact mechanisms by which this occurs, and how they can be modeled and parameterized, is limited. We have conducted a series of controlled laboratory experiments with the goal of elucidating these details. These have focused on quantifying the spatially-varying characteristics of breaking waves and developing more accurate techniques for measuring and predicting wave setup, setdown, and run-up. Using dynamic refraction stereo imaging, data on free-surface slope and height can be obtained over an entire plane. Wave evolution is thus obtained with high spatial precision. These surface features are compared with measures of instantaneous turbulence and mean currents within the water column. We then use this newly-developed ability to resolve three-dimensional surface features over a canopy of seagrass mimics, in order to validate theoretical formulations of wave-vegetation interactions in the surf zone.

  18. PPM-based System for Guided Waves Communication Through Corrosion Resistant Multi-wire Cables

    NASA Astrophysics Data System (ADS)

    Trane, G.; Mijarez, R.; Guevara, R.; Pascacio, D.

    Novel wireless communication channels are a necessity in applications surrounded by harsh environments, for instance down-hole oil reservoirs. Traditional radio frequency (RF) communication schemes are not capable of transmitting signals through metal enclosures surrounded by corrosive gases and liquids. As an alternative to RF, a pulse position modulation (PPM) guided waves communication system has been developed and evaluated using a corrosion resistant 4H18 multi-wire cable, commonly used to descend electronic gauges in down-hole oil applications, as the communication medium. The system consists of a transmitter and a receiver that utilizes a PZT crystal, for electrical/mechanical coupling, attached to each extreme of the multi-wire cable. The modulator is based on a microcontroller, which transmits60 kHz guided wave pulses, and the demodulator is based on a commercial digital signal processor (DSP) module that performs real time DSP algorithms. Experimental results are presented, which were obtained using a 1m corrosion resistant 4H18multi-wire cable, commonly used with downhole electronic gauges in the oil sector. Although there was significant dispersion and multiple mode excitations of the transmitted guided wave energy pulses, the results show that data rates on the order of 500 bits per second are readily available employing PPM and simple communications techniques.

  19. Modelling wave-induced sea ice break-up in the marginal ice zone

    PubMed Central

    Squire, V. A.

    2017-01-01

    A model of ice floe break-up under ocean wave forcing in the marginal ice zone (MIZ) is proposed to investigate how floe size distribution (FSD) evolves under repeated wave break-up events. A three-dimensional linear model of ocean wave scattering by a finite array of compliant circular ice floes is coupled to a flexural failure model, which breaks a floe into two floes provided the two-dimensional stress field satisfies a break-up criterion. A closed-feedback loop algorithm is devised, which (i) solves the wave-scattering problem for a given FSD under time-harmonic plane wave forcing, (ii) computes the stress field in all the floes, (iii) fractures the floes satisfying the break-up criterion, and (iv) generates an updated FSD, initializing the geometry for the next iteration of the loop. The FSD after 50 break-up events is unimodal and near normal, or bimodal, suggesting waves alone do not govern the power law observed in some field studies. Multiple scattering is found to enhance break-up for long waves and thin ice, but to reduce break-up for short waves and thick ice. A break-up front marches forward in the latter regime, as wave-induced fracture weakens the ice cover, allowing waves to travel deeper into the MIZ. PMID:29118659

  20. Modelling wave-induced sea ice break-up in the marginal ice zone.

    PubMed

    Montiel, F; Squire, V A

    2017-10-01

    A model of ice floe break-up under ocean wave forcing in the marginal ice zone (MIZ) is proposed to investigate how floe size distribution (FSD) evolves under repeated wave break-up events. A three-dimensional linear model of ocean wave scattering by a finite array of compliant circular ice floes is coupled to a flexural failure model, which breaks a floe into two floes provided the two-dimensional stress field satisfies a break-up criterion. A closed-feedback loop algorithm is devised, which (i) solves the wave-scattering problem for a given FSD under time-harmonic plane wave forcing, (ii) computes the stress field in all the floes, (iii) fractures the floes satisfying the break-up criterion, and (iv) generates an updated FSD, initializing the geometry for the next iteration of the loop. The FSD after 50 break-up events is unimodal and near normal, or bimodal, suggesting waves alone do not govern the power law observed in some field studies. Multiple scattering is found to enhance break-up for long waves and thin ice, but to reduce break-up for short waves and thick ice. A break-up front marches forward in the latter regime, as wave-induced fracture weakens the ice cover, allowing waves to travel deeper into the MIZ.

  1. Experimental Characterization of Guided Waves by Their Surface Displacement Vector Field

    NASA Astrophysics Data System (ADS)

    Barth, M.; Köhler, B.; Schubert, L.

    2009-03-01

    The development new nondestructive evaluation (NDE) and structural health monitoring (SHM) methods utilizing guided elastic waves needs a good understanding of wave propagation properties and the interaction of the waves with structures and defects. If the geometrical and stiffness properties of the components are well known, these effects can be studied very efficiently by numerical modeling. But very often there is a lack of precise knowledge of all necessary elastic properties; accurate and non-disturbing measurements are without alternative in these cases. The mapping of wave fields can be done by scanning laser vibrometers as demonstrated in a number of cases. Originally, a laser vibrometer provides only information from one displacement component. To get all three displacement components, the simultaneous measurement with three vibrometers is offered commercially. This is a very expensive approach. The paper describes a method which uses only one vibrometer sequentially for getting all three vector components. It allows determining additional parameters for characterizing wave modes as e.g. the ellipticity. The capability of this approach is demonstrated for the characterization of Lamb waves.

  2. Holding onto the Green Zone: A Youth Program for the Study and Stewardship of Community Riparian Areas. Action Guide

    ERIC Educational Resources Information Center

    US Department of the Interior, 2008

    2008-01-01

    Scientists call the land along the edges of a river, stream, or lake a riparian zone. In this guide, riparian zone will be called the Green Zone. Riparian zones make up only a small part of land in the United States. But they are very important. They protect water quality and quantity, supply food and shelter for fish and wildlife, and provide…

  3. Modeling guided wave excitation in plates with surface mounted piezoelectric elements: coupled physics and normal mode expansion

    NASA Astrophysics Data System (ADS)

    Ren, Baiyang; Lissenden, Cliff J.

    2018-04-01

    Guided waves have been extensively studied and widely used for structural health monitoring because of their large volumetric coverage and good sensitivity to defects. Effectively and preferentially exciting a desired wave mode having good sensitivity to a certain defect is of great practical importance. Piezoelectric discs and plates are the most common types of surface-mounted transducers for guided wave excitation and reception. Their geometry strongly influences the proportioning between excited modes as well as the total power of the excited modes. It is highly desirable to predominantly excite the selected mode while the total transduction power is maximized. In this work, a fully coupled multi-physics finite element analysis, which incorporates the driving circuit, the piezoelectric element and the wave guide, is combined with the normal mode expansion method to study both the mode tuning and total wave power. The excitation of circular crested waves in an aluminum plate with circular piezoelectric discs is numerically studied for different disc and adhesive thicknesses. Additionally, the excitation of plane waves in an aluminum plate, using a stripe piezoelectric element is studied both numerically and experimentally. It is difficult to achieve predominant single mode excitation as well as maximum power transmission simultaneously, especially for higher order modes. However, guidelines for designing the geometry of piezoelectric elements for optimal mode excitation are recommended.

  4. Aging Wire Insulation Assessment by Phase Spectrum Examination of Ultrasonic Guided Waves

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2003-01-01

    Wire integrity has become an area of concern to the aerospace community including DoD, NASA, FAA, and Industry. Over time and changing environmental conditions, wire insulation can become brittle and crack. The cracks expose the wire conductor and can be a source of equipment failure, short circuits, smoke, and fire. The technique of using the ultrasonic phase spectrum to extract material properties of the insulation is being examined. Ultrasonic guided waves will propagate in both the wire conductor and insulation. Assuming the condition of the conductor remains constant then the stiffness of the insulator can be determined by measuring the ultrasonic guided wave velocity. In the phase spectrum method the guided wave velocity is obtained by transforming the time base waveform to the frequency domain and taking the phase difference between two waveforms. The result can then be correlated with a database, derived by numerical model calculations, to extract material properties of the wire insulator. Initial laboratory tests were performed on a simple model consisting of a solid cylinder and then a solid cylinder with a polymer coating. For each sample the flexural mode waveform was identified. That waveform was then transformed to the frequency domain and a phase spectrum was calculated from a pair of waveforms. Experimental results on the simple model compared well to numerical calculations. Further tests were conducted on aircraft or mil-spec wire samples, to see if changes in wire insulation stiffness can be extracted using the phase spectrum technique.

  5. Reflection and transmission coefficients for guided waves reflected by defects in viscoelastic material plates.

    PubMed

    Hosten, Bernard; Moreau, Ludovic; Castaings, Michel

    2007-06-01

    The paper presents a Fourier transform-based signal processing procedure for quantifying the reflection and transmission coefficients and mode conversion of guided waves diffracted by defects in plates made of viscoelastic materials. The case of the S(0) Lamb wave mode incident on a notch in a Perspex plate is considered. The procedure is applied to numerical data produced by a finite element code that simulates the propagation of attenuated guided modes and their diffraction by the notch, including mode conversion. Its validity and precision are checked by the way of the energy balance computation and by comparison with results obtained using an orthogonality relation-based processing method.

  6. Quantification of Surf Zone Bathymetry from Video Observations of Wave Breaking

    NASA Astrophysics Data System (ADS)

    Aarninkhof, S.; Ruessink, G.

    2002-12-01

    Cost-efficient methods to quantify surf zone bathymetry with high resolution in time and space would be of great value for coastal research and management. Automated video techniques provide the potential to do so. Time-averaged video observations of the nearshore zone show bright intensities at locations where waves preferentially break. Highly similar patterns are found from model simulations of depth-induced wave breaking, which show increasing rates of wave dissipation in shallow areas like sand bars. Thus, video observations of wave breaking - at least qualitatively - reflect sub-merged beach bathymetry. In search of the quantification of this relationship, we present a new model concept to map sub-merged beach bathymetry from time-averaged video images. This is achieved by matching model-predicted and video-observed rates of wave dissipation. First, time-averaged image intensities are sampled along a cross-shore array and interpreted in terms of a wave dissipation parameter. This involves a correction for the effect of persistent foam, which is visible at time-averaged video images but not predicted by common wave propagation models. The dissipation profiles thus obtained are used to update an initial beach bathymetry through optimisation of the match between measured and modelled rates of wave dissipation. The latter is done by raising the bottom elevation in areas where the measured dissipation rate exceeds the computed dissipation and vice versa. Since the model includes video data with high resolution in time (typically multiple images over a tidal cycle), it allows for virtually continous monitoring of surfzone bathymetry . Model tests against a synthetic data set of artificially generated wave dissipation profiles have shown the model's capability to accurately reconstruct beach bathymetry, over a wide range of morphological configurations. Maximum model deviations were found in the case of highly developed bar-trough systems (bar heights up to 4 m) and

  7. Incorporating fault zone head wave and direct wave secondary arrival times into seismic tomography: Application at Parkfield, California

    NASA Astrophysics Data System (ADS)

    Bennington, N. L.; Thurber, C. H.; Zhang, H.; Peng, Z.; Zhao, P.

    2011-12-01

    Large crustal faults such as the San Andreas fault (SAF) often juxtapose rocks of significantly different elastic properties, resulting in well-defined bimaterial interfaces. A sharp material contrast across the fault interface is expected to generate fault zone head waves (FZHW's) that spend a large portion of their propagation paths refracting along the bimaterial interface (Ben-Zion 1989, 1990; Ben-Zion & Aki 1990). Because of this FZHW's provide a high-resolution tool for imaging the velocity contrast across the fault. Recently, Zhao et al. (2010) systematically analyzed large data sets of near-fault waveforms recorded by several permanent and temporary seismic networks along the Parkfield section of the SAF. The local-scale tomography study of Zhang et al. (2009) for a roughly 10 km3 volume centered on SAFOD and the more regional-scale study of Thurber et al. (2006) for a 130 km x 120 km x 20 km volume centered on the 2004 Parkfield earthquake rupture provide what are probably the best 3D images of the seismic velocity structure of the area. The former shows a low velocity zone associated with the SAF extending to significant depth, and both image the well-known velocity contrast across the fault. Seismic tomography generally uses just first P and/or S arrivals because of the relative simplicity of phase picking and ray tracing. Adding secondary arrivals such as FZHW's, however, can enhance the resolution of structure and strengthen constraints on earthquake locations and focal mechanisms. We present a model of 3D velocity structure for the Parkfield region that utilizes a combination of arrival times for FZHW's and the associated direct-wave secondary arrivals as well as existing P-wave arrival time data. The resulting image provides a higher-resolution model of the SAF at depth than previously published models. In addition, we plan to measure polarizations of the direct P and S waves and FZHW's and incorporate the data into our updated velocity tomography

  8. Self-action of Bessel wave packets in a system of coupled light guides and formation of light bullets

    NASA Astrophysics Data System (ADS)

    Balakin, A. A.; Mironov, V. A.; Skobelev, S. A.

    2017-01-01

    The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the "kaleidoscopic" picture of a wave packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.

  9. A surface wave reflector in Southwestern Japan

    NASA Astrophysics Data System (ADS)

    Mak, S.; Koketsu, K.; Miyake, H.; Obara, K.; Sekine, S.

    2009-12-01

    observed particle motions. The secondary one is a low phase velocity (<2km/s for T=20s) at the accretionary wedge of the Nankai Trough due to the thick sediment. Such a long and narrow low velocity zone, with its southwest tip at KPR-NT, is a potential wave-guide to channel waves towards KPR-NT. The longer duration of deterministic later arrivals than the direct arrival is partially explained by multi-pathing due to the wave-guide. The surface wave coda is observable for earthquakes whose propagation path does not include the accretionary wedge, implying that the wedge is an enhancer but not indispensable of the formation of the observed coda.

  10. Estimating state of charge and health of lithium-ion batteries with guided waves using built-in piezoelectric sensors/actuators

    NASA Astrophysics Data System (ADS)

    Ladpli, Purim; Kopsaftopoulos, Fotis; Chang, Fu-Kuo

    2018-04-01

    This work presents the feasibility of monitoring state of charge (SoC) and state of health (SoH) of lithium-ion pouch batteries with acousto-ultrasonic guided waves. The guided waves are propagated and sensed using low-profile, built-in piezoelectric disc transducers that can be retrofitted onto off-the-shelf batteries. Both experimental and analytical studies are performed to understand the relationship between guided waves generated in a pitch-catch mode and battery SoC/SoH. The preliminary experiments on representative pouch cells show that the changes in time of flight (ToF) and signal amplitude (SA) resulting from shifts in the guided wave signals correlate strongly with the electrochemical charge-discharge cycling and aging. An analytical acoustic model is developed to simulate the variations in electrode moduli and densities during cycling, which correctly validates the absolute values and range of experimental ToF. It is further illustrated via a statistical study that ToF and SA can be used in a prediction model to accurately estimate SoC/SoH. Additionally, by using multiple sensors in a network configuration on the same battery, a significantly more reliable and accurate SoC/SoH prediction is achieved. The indicative results from this study can be extended to develop a unified guided-wave-based framework for SoC/SoH monitoring of many lithium-ion battery applications.

  11. An electrodynamic description of lightning return strokes and dart leaders: Guided wave propagation along conducting cylindrical channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borovsky, J.E.

    1995-02-20

    The return-stroke breakdown pulse and the dart leader are treated as electric waves guided by conducting lightning channels; such waves are launched when current is injected into a conducting channel (producing the dart leader) or when charge on a channel begins to drain to Earth (producing the return stroke). The guided waves are self-consistent solutions to the full set of Maxwell`s equations, obeying the physical boundary conditions for cylindrical channels. These waves are shown (1) to move with velocities substantially slower than c along the channel, (2) to push current inside the lightning channel, (3) to move charge and voltagemore » along the channel, and (4) to transport energy along and into the channel via Poynting flux. The velocity of a guided wave is a function of only three parameters: the channel radius r{sub ch}, the channel temperature T, and the risetime {triangle}t of the wave front. These velocities are found to fall in the range of velocities of return strokes and of dart leaders. The dart leader and the return stroke are caused by the same type of guided electromagnetic waves: the difference in velocity is owed mostly to the difference in channel temperature. In the case of the dart leader the waves deliver Poynting flux along the outside of the channel down from a thundercloud generator to the downward-propagating wave front. At the wave front of the dart leader the delivered energy goes into heating the channel and into storage in the form of E{sup 2}/8{pi} around the newly charged channel. In the case of the return stroke the Poynting flux is localized to the vicinity of the wave front where stored energy E{sup 2}/8{pi} is delivered radially inward onto the channel to heat the channel in the propagating front. The net result of a dart leader and return stroke is that charge is moved from the cloud to the ground and that energy is moved from the cloud onto the channel. 123 refs., 11 figs., 5 tabs.« less

  12. PCA Based Stress Monitoring of Cylindrical Specimens Using PZTs and Guided Waves

    PubMed Central

    Mujica, Luis; Ruiz, Magda; Camacho, Johanatan

    2017-01-01

    Since mechanical stress in structures affects issues such as strength, expected operational life and dimensional stability, a continuous stress monitoring scheme is necessary for a complete integrity assessment. Consequently, this paper proposes a stress monitoring scheme for cylindrical specimens, which are widely used in structures such as pipelines, wind turbines or bridges. The approach consists of tracking guided wave variations due to load changes, by comparing wave statistical patterns via Principal Component Analysis (PCA). Each load scenario is projected to the PCA space by means of a baseline model and represented using the Q-statistical indices. Experimental validation of the proposed methodology is conducted on two specimens: (i) a 12.7 mm (1/2″) diameter, 0.4 m length, AISI 1020 steel rod, and (ii) a 25.4 mm (1″) diameter, 6m length, schedule 40, A-106, hollow cylinder. Specimen 1 was subjected to axial loads, meanwhile specimen 2 to flexion. In both cases, simultaneous longitudinal and flexural guided waves were generated via piezoelectric devices (PZTs) in a pitch-catch configuration. Experimental results show the feasibility of the approach and its potential use as in-situ continuous stress monitoring application. PMID:29194384

  13. A unified spectral,parameterization for wave breaking: from the deep ocean to the surf zone

    NASA Astrophysics Data System (ADS)

    Filipot, J.

    2010-12-01

    A new wave-breaking dissipation parameterization designed for spectral wave models is presented. It combines wave breaking basic physical quantities, namely, the breaking probability and the dissipation rate per unit area. The energy lost by waves is fi[|#12#|]rst calculated in the physical space before being distributed over the relevant spectral components. This parameterization allows a seamless numerical model from the deep ocean into the surf zone. This transition from deep to shallow water is made possible by a dissipation rate per unit area of breaking waves that varies with the wave height, wavelength and water depth.The parameterization is further tested in the WAVEWATCH III TM code, from the global ocean to the beach scale. Model errors are smaller than with most specialized deep or shallow water parameterizations.

  14. Modeling guided wave propagation in curved thick composites with ply drops and marcelling

    NASA Astrophysics Data System (ADS)

    Hakoda, Christopher; Choi, Gloria; Lissenden, Clifford

    2018-04-01

    Setting the process parameters for fabrication of thick composites having complex geometries is a challenging endeavor, with the best result being a high-quality part and less desirable results being parts that contain voids or fiber marcelling. An equal challenge is the nondestructive testing of these parts. Consider a U-shaped portion of a more complex part. The straight segments of the U-shape are approximately 10-mm thick, but a series of ply-drops reduce the thickness by one half at the center portion. Ultrasonic guided waves that have the potential to nondestructively test this part can be actuated by coupling transducers to the straight segments if and only if wave modes that are sensitive to the defects of interest can propagate through the ply drops, the curve, and the attenuation due to internal damping. A frequency domain finite element approach proposed in recent years for guided wave analysis is applied to this inhomogeneous waveguide problem in order to select modes and frequencies that are sensitive to marcelling.

  15. Guided Wave Sensing In a Carbon Steel Pipe Using a Laser Vibrometer System

    NASA Astrophysics Data System (ADS)

    Ruíz Toledo, Abelardo; Salazar Soler, Jordi; Chávez Domínguez, Juan Antonio; García Hernández, Miguel Jesús; Turó Peroy, Antoni

    2010-05-01

    Non-Destructive Evaluation (NDE) techniques have achieved a great development during the last decades as a valuable tool for material characterization, manufacturing control and structural integrity tests. Among these tools, the guided wave technology has been rapidly extended because it reduces inspection time and costs compared to the ordinary point by point testing in large structures, as well as because of the possibility of inspecting under insulation and coating conditions. This fast development has motivated the creation of several inspection and material characterization systems including different technologies which can be combined with this technique. Different measurements systems based on laser techniques have been presented in order to inspect pipes, plates and diverse structures. Many of them are experimental systems of high cost and complexity which combine the employment of a laser for generation of waves in the structure and an interferometer for detection. Some of them employ air-coupled ultrasound generation transducers, with high losses in air and which demand high energy for exciting waves in materials of high stiffness. The combined employment of a commercial vibrometer system for Lamb wave sensing in plates has been successfully shown in the literature. In this paper we present a measurement system based on the combined employment of a piezoelectric wedge transducer and a laser vibrometer to sense guided acoustic waves in carbon steel pipes. The measurement system here presented is mainly compounded of an angular wedge transducer, employed to generate the guided wave and a commercial laser vibrometer used in the detection process. The wedge transducer is excited by means of a signal function generator whose output signal has been amplified with a power signal amplifier. A high precision positioning system is employed to place the laser beam at different points through the pipe surface. The signal detected by the laser vibrometer system is

  16. Second order harmonic guided wave mutual interactions in plate: Vector analysis, numerical simulation, and experimental results

    NASA Astrophysics Data System (ADS)

    Hasanian, Mostafa; Lissenden, Cliff J.

    2017-08-01

    The extraordinary sensitivity of nonlinear ultrasonic waves to the early stages of material degradation makes them excellent candidates for nondestructive material characterization. However, distinguishing weak material nonlinearity from instrumentation nonlinearity remains problematic for second harmonic generation approaches. A solution to this problem is to mix waves having different frequencies and to let their mutual interaction generate sum and difference harmonics at frequencies far from those of the instrumentation. Mixing of bulk waves and surface waves has been researched for some time, but mixing of guided waves has not yet been investigated in depth. A unique aspect of guided waves is their dispersive nature, which means we need to assure that a wave can propagate at the sum or difference frequency. A wave vector analysis is conducted that enables selection of primary waves traveling in any direction that generate phase matched secondary waves. We have tabulated many sets of primary waves and phase matched sum and difference harmonics. An example wave mode triplet of two counter-propagating collinear shear horizontal waves that interact to generate a symmetric Lamb wave at the sum frequency is simulated using finite element analysis and then laboratory experiments are conducted. The finite element simulation eliminates issues associated with instrumentation nonlinearities and signal-to-noise ratio. A straightforward subtraction method is used in the experiments to identify the material nonlinearity induced mutual interaction and show that the generated Lamb wave propagates on its own and is large enough to measure. Since the Lamb wave has different polarity than the shear horizontal waves the material nonlinearity is clearly identifiable. Thus, the mutual interactions of shear horizontal waves in plates could enable volumetric characterization of material in remote regions from transducers mounted on just one side of the plate.

  17. Imaging San Jacinto Fault damage zone structure using dense linear arrays: application of ambient noise tomography, Rayleigh wave ellipticity, and site amplification

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Lin, F. C.; Allam, A. A.; Ben-Zion, Y.

    2017-12-01

    The San Jacinto fault is presently the most seismically active component of the San Andreas Transform system in Southern California. To study the damage zone structure, two dense linear geophone arrays (BS and RR) were deployed across the Clark segment of the San Jacinto Fault between Anza and Hemet during winter 2015 and Fall 2016, respectively. Both arrays were 2 km long with 20 m station spacing. Month-long three-component ambient seismic noise data were recorded and used to calculate multi-channel cross-correlation functions. All three-component noise records of each array were normalized simultaneously to retain relative amplitude information between different stations and different components. We observed clear Rayleigh waves and Love waves on the cross-correlations of both arrays at 0.3 - 1 s period. The phase travel times of the Rayleigh waves on both arrays were measured by frequency-time analysis (FTAN), and inverted for Rayleigh wave phase velocity profiles of the upper 500 m depth. For both arrays, we observe prominent asymmetric low velocity zones which narrow with depth. At the BS array near the Hemet Stepover, an approximately 250m wide slow zone is observed to be offset by 75m to the northeast of the surface fault trace. At the RR array near the Anza segment of the fault, a similar low velocity zone width and offset are observed, along with a 10% across-fault velocity contrast. Analyses of Rayleigh wave ellipticity (H/V ratio), Love wave phase travel times, and site amplification are in progress. By using multiple measurements from ambient noise cross-correlations, we can obtain strong constraints on the local damage zone structure of the San Jacinto Fault. The results contribute to improved understanding of rupture directivity, maximum earthquake magnitude and more generally seismic hazard associated with the San Jacinto fault zone.

  18. Optimization and experimental validation of stiff porous phononic plates for widest complete bandgap of mixed fundamental guided wave modes

    NASA Astrophysics Data System (ADS)

    Hedayatrasa, Saeid; Kersemans, Mathias; Abhary, Kazem; Uddin, Mohammad; Van Paepegem, Wim

    2018-01-01

    Phononic crystal plates (PhPs) have promising application in manipulation of guided waves for design of low-loss acoustic devices and built-in acoustic metamaterial lenses in plate structures. The prominent feature of phononic crystals is the existence of frequency bandgaps over which the waves are stopped, or are resonated and guided within appropriate defects. Therefore, maximized bandgaps of PhPs are desirable to enhance their phononic controllability. Porous PhPs produced through perforation of a uniform background plate, in which the porous interfaces act as strong reflectors of wave energy, are relatively easy to produce. However, the research in optimization of porous PhPs and experimental validation of achieved topologies has been very limited and particularly focused on bandgaps of flexural (asymmetric) wave modes. In this paper, porous PhPs are optimized through an efficient multiobjective genetic algorithm for widest complete bandgap of mixed fundamental guided wave modes (symmetric and asymmetric) and maximized stiffness. The Pareto front of optimization is analyzed and variation of bandgap efficiency with respect to stiffness is presented for various optimized topologies. Selected optimized topologies from the stiff and compliant regimes of Pareto front are manufactured by water-jetting an aluminum plate and their promising bandgap efficiency is experimentally observed. An optimized Pareto topology is also chosen and manufactured by laser cutting a Plexiglas (PMMA) plate, and its performance in self-collimation and focusing of guided waves is verified as compared to calculated dispersion properties.

  19. Evaluation of barely visible indentation damage (BVID) in CF/EP sandwich composites using guided wave signals

    NASA Astrophysics Data System (ADS)

    Mustapha, Samir; Ye, Lin; Dong, Xingjian; Alamdari, Mehrisadat Makki

    2016-08-01

    Barely visible indentation damage after quasi-static indentation in sandwich CF/EP composites was assessed using ultrasonic guided wave signals. Finite element analyses were conducted to investigate the interaction between guided waves and damage, further to assist in the selection process of the Lamb wave sensitive modes for debonding identification. Composite sandwich beams and panels structures were investigated. Using the beam structure, a damage index was defined based on the change in the peak magnitude of the captured wave signals before and after the indentation, and the damage index was correlated with the residual deformation (defined as the depth of the dent), that was further correlated with the amount of crushing within the core. Both A0 and S0 Lamb wave modes showed high sensitivity to the presence of barely visible indentation damage with residual deformation of 0.2 mm. Furthermore, barely visible indentation damage was assessed in composite sandwich panels after indenting to 3 and 5 mm, and the damage index was defined, based on (a) the peak magnitude of the wave signals before and after indentation or (b) the mismatch between the original and reconstructed wave signals based on a time-reversal algorithm, and was subsequently applied to locate the position of indentation.

  20. Development of a Fully Automated Guided Wave System for In-Process Cure Monitoring of CFRP Composite Laminates

    NASA Technical Reports Server (NTRS)

    Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.; Yaun, Fuh-Gwo

    2016-01-01

    A guided wave-based in-process cure monitoring technique for carbon fiber reinforced polymer (CFRP) composites was investigated at NASA Langley Research Center. A key cure transition point (vitrification) was identified and the degree of cure was monitored using metrics such as amplitude and time of arrival (TOA) of guided waves. Using an automated system preliminarily developed in this work, high-temperature piezoelectric transducers were utilized to interrogate a twenty-four ply unidirectional composite panel fabricated from Hexcel (Registered Trademark) IM7/8552 prepreg during cure. It was shown that the amplitude of the guided wave increased sharply around vitrification and the TOA curve possessed an inverse relationship with degree of cure. The work is a first step in demonstrating the feasibility of transitioning the technique to perform in-process cure monitoring in an autoclave, defect detection during cure, and ultimately a closed-loop process control to maximize composite part quality and consistency.

  1. Monitoring of Soft Deposition Layers in Liquid-Filled Tubes with Guided Acoustic Waves Excited by Clamp-on Transducers.

    PubMed

    Tietze, Sabrina; Singer, Ferdinand; Lasota, Sandra; Ebert, Sandra; Landskron, Johannes; Schwuchow, Katrin; Drese, Klaus Stefan; Lindner, Gerhard

    2018-02-09

    The monitoring of liquid-filled tubes with respect to the formation of soft deposition layers such as biofilms on the inner walls calls for non-invasive and long-term stable sensors, which can be attached to existing pipe structures. For this task a method is developed, which uses an ultrasonic clamp-on device. This method is based on the impact of such deposition layers on the propagation of circumferential guided waves on the pipe wall. Such waves are partly converted into longitudinal compressional waves in the liquid, which are back-converted to guided waves in a circular cross section of the pipe. Validating this approach, laboratory experiments with gelatin deposition layers on steel tubes exhibited a distinguishable sensitivity of both wave branches with respect to the thickness of such layers. This allows the monitoring of the layer growth.

  2. A note on specific variability of long surface gravity waves and drag coefficient in coastal upwelling zone

    NASA Astrophysics Data System (ADS)

    Krzyścin, Janusz

    1990-01-01

    In this paper we solve analytically wave kinematic equations and the wave energy transport equation, for basic long surface gravity wave in the coastal upwelling zone. Using Gent and Taylor's (1978) parameterization of drag coefficient (which includes interaction between long surface waves and the air flow) we find variability of this coefficient due to wave amplification and refraction caused by specific surface water current in the region. The drag coefficient grows towards the shore. The growth is faster for stronger current. When the angle between waves and the current is less than 90° the growth is mainly connected with the waves steepness, but when the angle is larger, it is caused by relative growth of the wave phase velocity.

  3. Propagation of acoustic-gravity waves in arctic zones with elastic ice-sheets

    NASA Astrophysics Data System (ADS)

    Kadri, Usama; Abdolali, Ali; Kirby, James T.

    2017-04-01

    We present an analytical solution of the boundary value problem of propagating acoustic-gravity waves generated in the ocean by earthquakes or ice-quakes in arctic zones. At the surface, we assume elastic ice-sheets of a variable thickness, and show that the propagating acoustic-gravity modes have different mode shape than originally derived by Ref. [1] for a rigid ice-sheet settings. Computationally, we couple the ice-sheet problem with the free surface model by Ref. [2] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice-sheets cause inter modal transition at the edges and multidirectional reflections. We then derive a depth-integrated equation valid for spatially slowly varying thickness of ice-sheet and water depth. Surprisingly, and unlike the free-surface setting, here it is found that the higher acoustic-gravity modes exhibit a larger contribution. These modes travel at the speed of sound in water carrying information on their source, e.g. ice-sheet motion or submarine earthquake, providing various implications for ocean monitoring and detection of quakes. In addition, we found that the propagating acoustic-gravity modes can result in orbital displacements of fluid parcels sufficiently high that may contribute to deep ocean currents and circulation, as postulated by Refs. [1, 3]. References [1] U. Kadri, 2016. Generation of Hydroacoustic Waves by an Oscillating Ice Block in Arctic Zones. Advances in Acoustics and Vibration, 2016, Article ID 8076108, 7 pages http://dx.doi.org/10.1155/2016/8076108 [2] A. Abdolali, J. T. Kirby and G. Bellotti, 2015, Depth-integrated equation for hydro-acoustic waves with bottom damping, J. Fluid Mech., 766, R1 doi:10.1017/jfm.2015.37 [3] U. Kadri, 2014. Deep ocean water transportation by acoustic?gravity waves. J. Geophys. Res. Oceans, 119, doi:10.1002/ 2014JC010234

  4. Imaging ultrasonic dispersive guided wave energy in long bones using linear radon transform.

    PubMed

    Tran, Tho N H T; Nguyen, Kim-Cuong T; Sacchi, Mauricio D; Le, Lawrence H

    2014-11-01

    Multichannel analysis of dispersive ultrasonic energy requires a reliable mapping of the data from the time-distance (t-x) domain to the frequency-wavenumber (f-k) or frequency-phase velocity (f-c) domain. The mapping is usually performed with the classic 2-D Fourier transform (FT) with a subsequent substitution and interpolation via c = 2πf/k. The extracted dispersion trajectories of the guided modes lack the resolution in the transformed plane to discriminate wave modes. The resolving power associated with the FT is closely linked to the aperture of the recorded data. Here, we present a linear Radon transform (RT) to image the dispersive energies of the recorded ultrasound wave fields. The RT is posed as an inverse problem, which allows implementation of the regularization strategy to enhance the focusing power. We choose a Cauchy regularization for the high-resolution RT. Three forms of Radon transform: adjoint, damped least-squares, and high-resolution are described, and are compared with respect to robustness using simulated and cervine bone data. The RT also depends on the data aperture, but not as severely as does the FT. With the RT, the resolution of the dispersion panel could be improved up to around 300% over that of the FT. Among the Radon solutions, the high-resolution RT delineated the guided wave energy with much better imaging resolution (at least 110%) than the other two forms. The Radon operator can also accommodate unevenly spaced records. The results of the study suggest that the high-resolution RT is a valuable imaging tool to extract dispersive guided wave energies under limited aperture. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Helical comb magnetostrictive patch transducers for inspecting spiral welded pipes using flexural guided waves.

    PubMed

    Zhang, Xiaowei; Tang, Zhifeng; Lv, Fuzai; Pan, Xiaohong

    2017-02-01

    A wavefront analysis indicates that a flexural wave propagates at a helix angle with respect to the pipe axis. The expression for calculation of the helix angle for each flexural mode is given, and the helix angle dispersion curves for flexural modes are calculated. According to the new understanding of flexural guided waves, a helical comb magnetostrictive patch transducer (HCMPT) is proposed for selectively exciting a single predominant flexural torsional guided wave in a pipe and inspecting spiral welded pipes using flexural waves. A HCMPT contains a pre-magnetized magnetostrictive patch that is helically coupled with the outer surface of a pipe, and a novel compound comb coil that is wrapped around the helical magnetostrictive patch. The proposed wideband HCMPT possesses the direction control ability. A verification experiment indicates that flexural torsional mode T(3,1) at center frequency f=64kHz is effectively actuated by a HCMPT with 13-degree helix angle. Flexural torsional modes T(N,1) with circumferential order N equals 1-5 are selected to inspect a seamless steel pipe, artificial defects are effectively detected by the proposed HCMPT. A 20-degree HCMPT is adopted to inspect a spiral welded pipe, an artificial notch with cross section loss CSL=2.7% is effectively detected by using flexural waves. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A unified spectral parameterization for wave breaking: From the deep ocean to the surf zone

    NASA Astrophysics Data System (ADS)

    Filipot, J.-F.; Ardhuin, F.

    2012-11-01

    A new wave-breaking dissipation parameterization designed for phase-averaged spectral wave models is presented. It combines wave breaking basic physical quantities, namely, the breaking probability and the dissipation rate per unit area. The energy lost by waves is first explicitly calculated in physical space before being distributed over the relevant spectral components. The transition from deep to shallow water is made possible by using a dissipation rate per unit area of breaking waves that varies with the wave height, wavelength and water depth. This parameterization is implemented in the WAVEWATCH III modeling framework, which is applied to a wide range of conditions and scales, from the global ocean to the beach scale. Wave height, peak and mean periods, and spectral data are validated using in situ and remote sensing data. Model errors are comparable to those of other specialized deep or shallow water parameterizations. This work shows that it is possible to have a seamless parameterization from the deep ocean to the surf zone.

  7. Radar Remote Sensing of Waves and Currents in the Nearshore Zone

    DTIC Science & Technology

    2006-01-01

    and application of novel microwave, acoustic, and optical remote sensing techniques. The objectives of this effort are to determine the extent to which...Doppler radar techniques are useful for nearshore remote sensing applications. Of particular interest are estimates of surf zone location and extent...surface currents, waves, and bathymetry. To date, optical (video) techniques have been the primary remote sensing technology used for these applications. A key advantage of the radar is its all weather day-night operability.

  8. Self-action of Bessel wave packets in a system of coupled light guides and formation of light bullets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakin, A. A., E-mail: balakin.alexey@yandex.ru; Mironov, V. A.; Skobelev, S. A., E-mail: sk.sa1981@gmail.com

    The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the “kaleidoscopic” picture of a wavemore » packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.« less

  9. Shallow Vs Structure Accross Hayward Fault Zone Inferred from Multichannel Analysis of Surface Waves (MASW)

    NASA Astrophysics Data System (ADS)

    Chan, J. H.; Richardson, I. S.; Strayer, L. M.; Catchings, R.; McEvilly, A.; Goldman, M.; Criley, C.; Sickler, R. R.

    2017-12-01

    The Hayward Fault Zone (HFZ) includes the Hayward fault (HF), as well as several named and unnamed subparallel, subsidiary faults to the east, among them the Quaternary-active Chabot Fault (CF), the Miller Creek Fault (MCF), and a heretofore unnamed fault, the Redwood Thrust Fault (RTF). With an ≥M6.0 recurrence interval of 130 y for the HF and the last major earthquake in 1868, the HFZ is a major seismic hazard in the San Francisco Bay Area, exacerbated by the many unknown and potentially active secondary faults of the HFZ. In 2016, researchers from California State University, East Bay, working in concert with the United States Geological Survey conducted the East Bay Seismic Investigation (EBSI). We deployed 296 RefTek RT125 (Texan) seismographs along a 15-km-long linear seismic profile across the HF, extending from the bay in San Leandro to the hills in Castro Valley. Two-channel seismographs were deployed at 100 m intervals to record P- and S-waves, and additional single-channel seismographs were deployed at 20 m intervals where the seismic line crossed mapped faults. The active-source survey consisted of 16 buried explosive shots located at approximately 1-km intervals along the seismic line. We used the Multichannel Analysis of Surfaces Waves (MASW) method to develop 2-D shear-wave velocity models across the CF, MCF, and RTF. Preliminary MASW analysis show areas of anomalously low S-wave velocities , indicating zones of reduced shear modulus, coincident with these three mapped faults; additional velocity anomalies coincide with unmapped faults within the HFZ. Such compliant zones likely correspond to heavily fractured rock surrounding the faults, where the shear modulus is expected to be low compared to the undeformed host rock.

  10. Propogation loss with frequency of ultrasound guided waves in a composite metal-honeycomb structure

    NASA Astrophysics Data System (ADS)

    Saxena, Indu F.; Baid, Harsh K.; Guzman, Narciso; Kempen, Lothar U.; Mal, Ajit

    2009-05-01

    Non-destructive testing of critical structural components is time consuming, while necessary for maintaining safe operation. Large aerospace structures, such as the vertical stabilizers of aircraft undergo inspection at regular intervals for damage diagnostics. However, conventional techniques for damage detection and identification before repair can be scheduled are conducted off-line and therefore can take weeks. The use of guided ultrasound waves is being investigated to expedite damage detection in composites. We measure the frequency dependent loss of ultrasonic guided waves for a structure comprising a boron-nitride composite skin sandwiching an aluminum honeycomb. A wide range of ultrasound frequencies propagate as measured using PZTs, with the lowest attenuation observed about 200-250 kHz. These measurements are confirmed using optical fiber Bragg grating arrays used as ultrasound transducers.

  11. Model-Based IN SITU Parameter Estimation of Ultrasonic Guided Waves in AN Isotropic Plate

    NASA Astrophysics Data System (ADS)

    Hall, James S.; Michaels, Jennifer E.

    2010-02-01

    Most ultrasonic systems employing guided waves for flaw detection require information such as dispersion curves, transducer locations, and expected propagation loss. Degraded system performance may result if assumed parameter values do not accurately reflect the actual environment. By characterizing the propagating environment in situ at the time of test, potentially erroneous a priori estimates are avoided and performance of ultrasonic guided wave systems can be improved. A four-part model-based algorithm is described in the context of previous work that estimates model parameters whereby an assumed propagation model is used to describe the received signals. This approach builds upon previous work by demonstrating the ability to estimate parameters for the case of single mode propagation. Performance is demonstrated on signals obtained from theoretical dispersion curves, finite element modeling, and experimental data.

  12. Guided wave mode selection for inhomogeneous elastic waveguides using frequency domain finite element approach.

    PubMed

    Chillara, Vamshi Krishna; Ren, Baiyang; Lissenden, Cliff J

    2016-04-01

    This article describes the use of the frequency domain finite element (FDFE) technique for guided wave mode selection in inhomogeneous waveguides. Problems with Rayleigh-Lamb and Shear-Horizontal mode excitation in isotropic homogeneous plates are first studied to demonstrate the application of the approach. Then, two specific cases of inhomogeneous waveguides are studied using FDFE. Finally, an example of guided wave mode selection for inspecting disbonds in composites is presented. Identification of sensitive and insensitive modes for defect inspection is demonstrated. As the discretization parameters affect the accuracy of the results obtained from FDFE, effect of spatial discretization and the length of the domain used for the spatial fast Fourier transform are studied. Some recommendations with regard to the choice of the above parameters are provided. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Regional P wave velocity structure of the Northern Cascadia Subduction Zone

    USGS Publications Warehouse

    Ramachandran, K.; Hyndman, R.D.; Brocher, T.M.

    2006-01-01

    This paper presents the first regional three-dimensional, P wave velocity model for the Northern Cascadia Subduction. Zone (SW British Columbia and NW Washington State) constructed through tomographic inversion of first-arrival traveltime data from active source experiments together with earthquake traveltime data recorded at permanent stations. The velocity model images the structure of the subducting Juan de Fuca plate, megathrust, and the fore-arc crust and upper mantle. Beneath southern Vancouver Island the megathrust above the Juan de Fuca plate is characterized by a broad zone (25-35 km depth) having relatively low velocities of 6.4-6.6 km/s. This relative low velocity zone coincides with the location of most of the episodic tremors recently mapped beneath Vancouver Island, and its low velocity may also partially reflect the presence of trapped fluids and sheared lower crustal rocks. The rocks of the Olympic Subduction Complex are inferred to deform aseismically as evidenced by the lack of earthquakes withi the low-velocity rocks. The fore-arc upper mantle beneath the Strait of Georgia and Puget Sound is characterized by velocities of 7.2-7.6 km/s. Such low velocities represent regional serpentinization of the upper fore-arc mantle and provide evidence for slab dewatering and densification. Tertiary sedimentary basins in the Strait of Georgia and Puget Lowland imaged by the velocity model lie above the inferred region of slab dewatering and densification and may therefore partly result from a higher rate of slab sinking. In contrast, sedimentary basins in the Strait of Juan de Fuca lie in a synclinal depression in the Crescent Terrane. The correlation of in-slab earthquake hypocenters M>4 with P wave velocities greater than 7.8 km/s at the hypocenters suggests that they originate near the oceanic Moho of the subducting Juan de Fuca plate. Copyright 2006 by the American Geophysical Union.

  14. Transverse ion energization and low-frequency plasma waves in the mid-altitude auroral zone - A case study

    NASA Technical Reports Server (NTRS)

    Peterson, W. K.; Shelley, E. G.; Boardsen, S. A.; Gurnett, D. A.; Ledley, B. G.; Sugiura, M.; Moore, T. E.

    1988-01-01

    Evidence of transverse ion energization at altitudes of several earth radii in the auroral zone was reexamined using several hundred hours of high-sensitivity and high-resolution plasma data obtained by the Dynamics Explorer 1 satellite. The data on particle environment encountered at midaltitudes in the auroral zone disclosed rapid variations in the values of total density, thermal structure, and composition of the plasma in the interval measured; the modes of low-frequency plasma waves also varied rapidly. It was not possible to unambiguously identify in these data particle and wave signature of local transverse ion energization; however, many intervals were found where local transverse ion heating was consistent with the observations.

  15. Wave-induced bedload transport - a study of the southern Baltic coastal zone

    NASA Astrophysics Data System (ADS)

    Dudkowska, Aleksandra; Gic-Grusza, Gabriela

    2017-03-01

    The wave-induced bedload transport and spatial distribution of its magnitude in the southern Baltic coastal zone of Poland are estimated. The vicinity of Lubiatowo was selected as a representative part of the Polish coast. It was assumed that transport is a function of shear stress; alternative approaches, based on force balances and discharge relationships, were not considered in the present study. Four models were studied and compared over a wide range of bottom shear stress and wind-wave conditions. The set of models comprises classic theories that assume a simplified influence of turbulence on sediment transport (e.g., advocated by authors such as Du Boys, Meyer-Peter and Müller, Ribberink, Engelund and Hansen). It is shown that these models allow to estimate transport comparable to measured values under similar environmental conditions. A united general model for bedload transport is proposed, and a set of maps of wave bedload transport for various wind conditions in the study area is presented.

  16. On-Line Corrosion Monitoring of Plate Structures Based on Guided Wave Tomography Using Piezoelectric Sensors.

    PubMed

    Rao, Jing; Ratassepp, Madis; Lisevych, Danylo; Hamzah Caffoor, Mahadhir; Fan, Zheng

    2017-12-12

    Corrosion is a major safety and economic concern to various industries. In this paper, a novel ultrasonic guided wave tomography (GWT) system based on self-designed piezoelectric sensors is presented for on-line corrosion monitoring of large plate-like structures. Accurate thickness reconstruction of corrosion damages is achieved by using the dispersive regimes of selected guided waves and a reconstruction algorithm based on full waveform inversion (FWI). The system makes use of an array of miniaturised piezoelectric transducers that are capable of exciting and receiving highly dispersive A0 Lamb wave mode at low frequencies. The scattering from transducer array has been found to have a small effect on the thickness reconstruction. The efficiency and the accuracy of the new system have been demonstrated through continuous forced corrosion experiments. The FWI reconstructed thicknesses show good agreement with analytical predictions obtained by Faraday's law and laser measurements, and more importantly, the thickness images closely resemble the actual corrosion sites.

  17. Guided wave tomography in anisotropic media using recursive extrapolation operators

    NASA Astrophysics Data System (ADS)

    Volker, Arno

    2018-04-01

    Guided wave tomography is an advanced technology for quantitative wall thickness mapping to image wall loss due to corrosion or erosion. An inversion approach is used to match the measured phase (time) at a specific frequency to a model. The accuracy of the model determines the sizing accuracy. Particularly for seam welded pipes there is a measurable amount of anisotropy. Moreover, for small defects a ray-tracing based modelling approach is no longer accurate. Both issues are solved by applying a recursive wave field extrapolation operator assuming vertical transverse anisotropy. The inversion scheme is extended by not only estimating the wall loss profile but also the anisotropy, local material changes and transducer ring alignment errors. This makes the approach more robust. The approach will be demonstrated experimentally on different defect sizes, and a comparison will be made between this new approach and an isotropic ray-tracing approach. An example is given in Fig. 1 for a 75 mm wide, 5 mm deep defect. The wave field extrapolation based tomography clearly provides superior results.

  18. Using PVDF for wavenumber-frequency analysis and excitation of guided waves

    NASA Astrophysics Data System (ADS)

    Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J.

    2018-04-01

    The role of transducers in nondestructive evaluation using ultrasonic guided waves cannot be overstated. Energy conversion from electrical to mechanical for actuation and then back to electrical for signal processing broadly describes transduction, but there are many other aspects of transducers that determine their effectiveness. Recently we have reported on polyvinylidene difluoride (PVDF) array sensors that enable determination of the wavenumber spectrum, which enables modal content in the received signal to be characterized. Modal content is an important damage indicator because, for example, mode conversion is a frequent consequence of wave interaction with defects. Some of the positive attributes of PVDF sensors are: broad frequency bandwidth, compliance for use on curved surfaces, limited influence on the passing wave, minimal cross-talk between elements, low profile, low mass, and inexpensive. The anisotropy of PVDF films also enables them to receive either Lamb waves or shear horizontal waves by proper alignment of the material principal coordinate axes. Placing a patterned set of electrodes on the PVDF film provides data from an array of elements. A linear array of elements is used to enable a 2D fast Fourier transform to determine the wavenumber spectrum of both Lamb waves and shear horizontal waves in an aluminum plate. Moreover, since PVDF film can sustain high voltage excitation, high power pulsers can be used to improve the signal-to-noise ratio. The capability of PVDF as a transmitter has been demonstrated with high voltage excitation.

  19. [Prognostic analysis of plantar fasciitis treated by pneumatic ballistic extracorporeal shock wave versus ultrasound guided intervention].

    PubMed

    Huo, Xiu-Lin; Wang, Ke-Tao; Zhang, Xiao-Ying; Yang, Yi-Tian; Cao, Fu-Yang; Yang, Jing; Yuan, Wei-Xiu; Mi, Wei-Dong

    2018-02-20

    To compare the medium- and long-term effect of pneumatic ballistic extracorporeal shock wave versus ultrasound-guided hormone injection in the treatment of plantar fasciitis. The clinical data were collected from patients with plantar fasciitis admitted to PLA General Hospital pain department from September, 2015 to February, 2017. The patients were randomly divided into ultrasound-guided drug injection group and shock wave group. The therapeutic parameters including the numerical rating scale (NRS) scores in the first step pain in the morning, American Orthopedic Foot and Ankle Society (AOFAS) Ankle Hindfoot Scale, and thickness of the plantar fascia were monitored before and at 1 week, 1 month, 3 months, and 6 months after the treatment. The recurrence rate, effectiveness, and patient satisfaction were compared between the two groups at 6 months after the treatment. Thirty-nine patients were enrolled in shock wave group and 38 patients in ultrasound group. The NRS scores in the first step pain in the morning were lowered after treatment in both groups (P<0.05), and the scores were significantly lower in ultrasound group than in shock wave group at 1 week and 1 month (P<0.01), but significantly higher in ultrasound group than in shock wave group at 3 and 6 months after treatment (P<0.05). The AOFAS functional scores were increased in both groups (P<0.05) at 6 months after treatment, was significantly lower in ultrasound group than in shock wave group than group B (90.44∓13.27 vs 75.76∓21.40; P<0.05). The effective rates in shock wave group and ultrasound group were 92.31% and 76.32%, respectively (P<0.05). Recurrence was found in 1 patient (2.56%) in shock wave group and in 8 (21.05%) in ultrasound group (P<0.05). The patient satisfaction scores were significantly higher in shock wave group than in ultrasound group (8.13∓2.67 vs 6.63∓3.75, P=0.048). Pneumatic ballistic extracorporeal shock achieves better medium- and long-term outcomes than ultrasound-guided

  20. Monitoring of fatigue damage in composite lap-joints using guided waves and FBG sensors

    NASA Astrophysics Data System (ADS)

    Karpenko, Oleksii; Khomenko, Anton; Koricho, Ermias; Haq, Mahmoodul; Udpa, Lalita

    2016-02-01

    Adhesive bonding is being increasingly employed in many applications as it offers possibility of light-weighting and efficient multi-material joining along with reduction in time and cost of manufacturing. However, failure initiation and progression in critical components like joints, specifically in fatigue loading is not well understood, which necessitates reliable NDE and SHM techniques to ensure structural integrity. In this work, concurrent guided wave (GW) and fiber Bragg grating (FBG) sensor measurements were used to monitor fatigue damage in adhesively bonded composite lap-joints. In the present set-up, one FBG sensor was strategically embedded in the adhesive bond-line of a lap-joint, while two other FBGs were bonded on the surface of the adherends. Full spectral responses of FBG sensors were collected and compared at specific intervals of fatigue loading. In parallel, guided waves were actuated and sensed using PZT wafers mounted on the composite adherends. Experimental results demonstrated that time-of-flight (ToF) of the fundamental modes transmitted through the bond-line and spectral response of FBG sensors were sensitive to fatigue loading and damage. Combination of guided wave and FBG measurements provided the desired redundancy and synergy in the data to evaluate the degradation in bond-line properties. Measurements taken in the presence of continuously applied load replicated the in-situ/service conditions. The approach shows promise in understanding the behavior of bonded joints subjected to complex loading.

  1. Automatic identification of fault zone head waves and direct P waves and its application in the Parkfield section of the San Andreas Fault, California

    NASA Astrophysics Data System (ADS)

    Li, Zefeng; Peng, Zhigang

    2016-06-01

    Fault zone head waves (FZHWs) are observed along major strike-slip faults and can provide high-resolution imaging of fault interface properties at seismogenic depth. In this paper, we present a new method to automatically detect FZHWs and pick direct P waves secondary arrivals (DWSAs). The algorithm identifies FZHWs by computing the amplitude ratios between the potential FZHWs and DSWAs. The polarities, polarizations and characteristic periods of FZHWs and DSWAs are then used to refine the picks or evaluate the pick quality. We apply the method to the Parkfield section of the San Andreas Fault where FZHWs have been identified before by manual picks. We compare results from automatically and manually picked arrivals and find general agreement between them. The obtained velocity contrast at Parkfield is generally 5-10 per cent near Middle Mountain while it decreases below 5 per cent near Gold Hill. We also find many FZHWs recorded by the stations within 1 km of the background seismicity (i.e. the Southwest Fracture Zone) that have not been reported before. These FZHWs could be generated within a relatively wide low velocity zone sandwiched between the fast Salinian block on the southwest side and the slow Franciscan Mélange on the northeast side. Station FROB on the southwest (fast) side also recorded a small portion of weak precursory signals before sharp P waves. However, the polarities of weak signals are consistent with the right-lateral strike-slip mechanisms, suggesting that they are unlikely genuine FZHW signals.

  2. Stress wave timing nondestructive evaluation tools for inspecting historic structures : a guide for use and interpretation.

    Treesearch

    Robert Ross; Roy F. Pellerin; Norbert Volny; William W. Salsig; Robert H. Falk

    2000-01-01

    This guide was prepared to assist inspectors in the use of stress wave timing instruments and various methods of locating and defining areas of decay in timber members in historic structures. The first two sections provide (a) background information regarding conventional methods to locate and measure decay in historic structures and (b) the principles of stress wave...

  3. Mid-wave infrared narrow bandwidth guided mode resonance notch filter.

    PubMed

    Zhong, Y; Goldenfeld, Z; Li, K; Streyer, W; Yu, L; Nordin, L; Murphy, N; Wasserman, D

    2017-01-15

    We have designed, fabricated, and characterized a guided mode resonance notch filter operating in the technologically vital mid-wave infrared (MWIR) region of the electromagnetic spectrum. The filter provides a bandstop at λ≈4.1  μm, with a 12 dB extinction on resonance. In addition, we demonstrate a high transmission background (>80%), less than 6% transmission on resonance, and an ultra-narrow bandwidth transmission notch (10  cm-1). Our filter is optically characterized using angle- and polarization-dependent Fourier transform infrared spectroscopy, and simulated using rigorous coupled-wave analysis (RCWA) with excellent agreement between simulations and our experimental results. Using our RCWA simulations, we are able to identify the optical modes associated with the transmission dips of our filter. The presented structure offers a potential route toward narrow-band laser filters in the MWIR.

  4. Wave evolution in the marginal ice zone - Model predictions and comparisons with on-site and remote data

    NASA Technical Reports Server (NTRS)

    Liu, A. K.; Holt, B.; Vachon, P. W.

    1989-01-01

    The ocean-wave dispersion relation and viscous attenuation by a sea ice cover were studied for waves in the marginal ice zone (MIZ). The Labrador ice margin experiment (Limex), conducted off the east coast of Newfoundland, Canada in March 1987, provided aircraft SAR, wave buoy, and ice property data. Based on the wave number spectrum from SAR data, the concurrent wave frequency spectrum from ocean buoy data, and accelerometer data on the ice during Limex '87, the dispersion relation has been derived and compared with the model. Accelerometers were deployed at the ice edge and into the ice pack. Data from the accelerometers were used to estimate wave energy attenuation rates and compared with the model. The model-data comparisons are reasonably good for the ice conditions observed during Limex' 87.

  5. Characterization of C/Enhanced SiC Composite During Creep-Rupture Tests Using an Ultrasonic Guided Wave Scan System

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Verrilli, Michael J.; Martin, Richard E.; Cosgriff, Laura M.

    2004-01-01

    An ultrasonic guided wave scan system was used to nondestructively monitor damage over time and position in a C/enhanced SiC sample that was creep tested to failure at 1200 C in air at a stress of 69 MPa (10 ksi). The use of the guided wave scan system for mapping evolving oxidation profiles (via porosity gradients resulting from oxidation) along the sample length and predicting failure location was explored. The creep-rupture tests were interrupted for ultrasonic evaluation every two hours until failure at approx. 17.5 cumulative hours.

  6. High Temperature Shear Horizontal Electromagnetic Acoustic Transducer for Guided Wave Inspection

    PubMed Central

    Kogia, Maria; Gan, Tat-Hean; Balachandran, Wamadeva; Livadas, Makis; Kappatos, Vassilios; Szabo, Istvan; Mohimi, Abbas; Round, Andrew

    2016-01-01

    Guided Wave Testing (GWT) using novel Electromagnetic Acoustic Transducers (EMATs) is proposed for the inspection of large structures operating at high temperatures. To date, high temperature EMATs have been developed only for thickness measurements and they are not suitable for GWT. A pair of water-cooled EMATs capable of exciting and receiving Shear Horizontal (SH0) waves for GWT with optimal high temperature properties (up to 500 °C) has been developed. Thermal and Computational Fluid Dynamic (CFD) simulations of the EMAT design have been performed and experimentally validated. The optimal thermal EMAT design, material selection and operating conditions were calculated. The EMAT was successfully tested regarding its thermal and GWT performance from ambient temperature to 500 °C. PMID:27110792

  7. Lithium niobate guided-wave beam former for steering phased-array antennas.

    PubMed

    Armenise, M N; Passaro, V M; Noviello, G

    1994-09-10

    We present the theoretical investigation, design, and simulation of a novel guided-wave optical processor for L-band-transmission beam forming in a linear array of phased active antennas. The proposed configuration includes two contradirectional surface acoustic-wave transducers, and it is based on a Y-cut, X-propagating Ti:LiNbO(3) planar waveguide supporting the lowest-order modes of both polarizations (TE(0) and TM(0)) at the free-space wavelength λ = 0.85 µm. A detailed comparison between the processor we propose and other optical and electronic architectures reported in the literature is carried out, exhibiting a number of significant advantages in terms of weight, total chip size, and power consumption, when the number of antenna elements is greater than 50.

  8. 2D Analytical Model for the Directivity Prediction of Ultrasonic Contact Type Transducers in the Generation of Guided Waves.

    PubMed

    Tiwari, Kumar Anubhav; Raisutis, Renaldas; Mazeika, Liudas; Samaitis, Vykintas

    2018-03-26

    In this paper, a novel 2D analytical model based on the Huygens's principle of wave propagation is proposed in order to predict the directivity patterns of contact type ultrasonic transducers in the generation of guided waves (GWs). The developed model is able to estimate the directivity patterns at any distance, at any excitation frequency and for any configuration and shape of the transducers with prior information of phase dispersive characteristics of the guided wave modes and the behavior of transducer. This, in turn, facilitates to choose the appropriate transducer or arrays of transducers, suitable guided wave modes and excitation frequency for the nondestructive testing (NDT) and structural health monitoring (SHM) applications. The model is demonstrated for P1-type macro-fiber composite (MFC) transducer glued on a 2 mm thick aluminum (Al) alloy plate. The directivity patterns of MFC transducer in the generation of fundamental guided Lamb modes (the S0 and A0) and shear horizontal mode (the SH0) are successfully obtained at 80 kHz, 5-period excitation signal. The results are verified using 3D finite element (FE) modelling and experimental investigation. The results obtained using the proposed model shows the good agreement with those obtained using numerical simulations and experimental analysis. The calculation time using the analytical model was significantly shorter as compared to the time spent in experimental analysis and FE numerical modelling.

  9. Evidence of Enhanced Subrosion in a Fault Zone and Characterization of Hazard Zones with Elastic Parameters derived from SH-wave reflection Seismics and VSP

    NASA Astrophysics Data System (ADS)

    Wadas, S. H.; Tanner, D. C.; Tschache, S.; Polom, U.; Krawczyk, C. M.

    2017-12-01

    Subrosion, the dissolution of soluble rocks, e.g., sulfate, salt, or carbonate, requires unsaturated water and fluid pathways that enable the water to flow through the subsurface and generate cavities. Over time, different structures can occur that depend on, e.g., rock solubility, flow rate, and overburden type. The two main structures are sinkholes and depressions. To analyze the link between faults, groundwater flow, and soluble rocks, and to determine parameters that are useful to characterize hazard zones, several shear-wave (SH) reflection seismic profiles were surveyed in Thuringia in Germany, where Permian sulfate rocks and salt subcrop close to the surface. From the analysis of the seismic sections we conclude that areas affected by tectonic deformation phases are prone to enhanced subrosion. The deformation of fault blocks leads to the generation of a damage zone with a dense fracture network. This increases the rock permeability and thus serves as a fluid pathway for, e.g., artesian-confined groundwater. The more complex the fault geometry and the more interaction between faults, the more fractures are generated, e.g., in a strike slip-fault zone. The faults also act as barriers for horizontal groundwater flow perpendicular to the fault surfaces and as conduits for groundwater flow along the fault strike. In addition, seismic velocity anomalies and attenuation of seismic waves are observed. Low velocities <200 m/s and high attenuation may indicate areas affected by subrosion. Other parameters that characterize the underground stability are the shear modulus and the Vp/Vs ratio. The data revealed zones of low shear modulus <100 MPa and high Vp/Vs ratio >2.5, which probably indicate unstable areas due to subrosion. Structural analysis of S-wave seismics is a valuable tool to detect near-surface faults in order to determine whether or not an area is prone to subrosion. The recognition of even small fault blocks can help to better understand the hydrodynamic

  10. Low-grazing angle laser scans of foreshore topography, swash and inner surf-zone wave heights, and mean water level: validation and storm response

    NASA Astrophysics Data System (ADS)

    Brodie, K. L.; McNinch, J. E.; Forte, M.; Slocum, R.

    2010-12-01

    Accurately predicting beach evolution during storms requires models that correctly parameterize wave runup and inner surf-zone processes, the principle drivers of sediment exchange between the beach and surf-zone. Previous studies that aimed at measuring wave runup and swash zone water levels have been restricted to analyzing water-elevation time series of (1) the shoreward-most swash excursion using video imaging or near-bed resistance wires, or (2) the free water surface at a particular location on the foreshore using pressure sensors. These data are often compared with wave forcing parameters in deeper water as well as with beach topography observed at finite intervals throughout the time series to identify links between foreshore evolution, wave spectra, and water level variations. These approaches have lead to numerous parameterizations and empirical equations for wave runup but have difficulty providing adequate data to quantify and understand short-term spatial and temporal variations in foreshore evolution. As a result, modeling shoreline response and changes in sub-aerial beach volume during storms remains a substantial challenge. Here, we demonstrate a novel technique in which a terrestrial laser scanner is used to continuously measure beach and foreshore topography as well as water elevation (and wave height) in the swash and inner surf-zone during storms. The terrestrial laser scanner is mounted 2-m above the dune crest at the Field Research Facility in Duck, NC in line with cross-shore wave gauges located at 2-m, 3-m, 5-m, 6-m, and 8-m of water depth. The laser is automated to collect hourly, two-dimensional, 20-minute time series of data along a narrow swath in addition to an hourly three-dimensional laser scan of beach and dune topography +/- 250m alongshore from the laser. Low grazing-angle laser scans are found to reflect off of the surface of the water, providing spatially (e.g. dx <= 0.1 m) and temporally (e.g. dt = 3Hz) dense elevation data of

  11. Imaging three-dimensional innervation zone distribution in muscles from M-wave recordings

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan; Peng, Yun; Liu, Yang; Li, Sheng; Zhou, Ping; Zev Rymer, William; Zhang, Yingchun

    2017-06-01

    Objective. To localize neuromuscular junctions in skeletal muscles in vivo which is of great importance in understanding, diagnosing and managing of neuromuscular disorders. Approach. A three-dimensional global innervation zone imaging technique was developed to characterize the global distribution of innervation zones, as an indication of the location and features of neuromuscular junctions, using electrically evoked high-density surface electromyogram recordings. Main results. The performance of the technique was evaluated in the biceps brachii of six intact human subjects. The geometric centers of the distributions of the reconstructed innervation zones were determined with a mean distance of 9.4  ±  1.4 cm from the reference plane, situated at the medial epicondyle of the humerus. A mean depth was calculated as 1.5  ±  0.3 cm from the geometric centers to the closed points over the skin. The results are consistent with those reported in previous histology studies. It was also found that the volumes and distributions of the reconstructed innervation zones changed as the stimulation intensities increased until the supramaximal muscle response was achieved. Significance. Results have demonstrated the high performance of the proposed imaging technique in noninvasively imaging global distributions of the innervation zones in the three-dimensional muscle space in vivo, and the feasibility of its clinical applications, such as guiding botulinum toxin injections in spasticity management, or in early diagnosis of neurodegenerative progression of amyotrophic lateral sclerosis.

  12. Identification of the Low-velocity Zone Beneath the Northern Taiwan by the P-wave Delays Analysis

    NASA Astrophysics Data System (ADS)

    Chang, C. W.; Che-Min, L.

    2017-12-01

    Taipei City, the capital of Taiwan, located in northern Taiwan is near to the Tatun volcano group and the Shanchiao fault which is an active fault. This region is a complex tectonic environment. The Tatun volcano group is seen as a dormant volcano. Recently, the location of the magma reservoir of the Tatun volcano was discussed again. However, the volume and the location of the magma reservoir are still unclear. There are several seismic networks operated by different institutions around Taipei and Tatun volcano. In this study, we combined the data of these networks to analysis the P-wave arrival times for clarifying the magma reservoir. The events with hypocenters are deeper than 100 km and the local magnitude (ML) are larger than 4.0 were collected to analysis. Our results show that the stations could be separated into three groups by the slope of the P-wave arrival time. They are distributed at the western of the Basin edge, the Jin-Shan Plain areal and the Taipei Basin, respectively. When the epicenter distance of the different stations is the same, the P-wave arrival time of the stations on the west side of the basin edge will be 0.3 0.5 seconds later than that in the Taipei Basin, and the stations on the Jin-Shan Plain will be 0.1 0.4 seconds later than in the Taipei Basin. The slope of the P-wave arrival time in 3 groups is very different, indicating that the low-velocity zone is existed in shallow crustal beneath of these areas. However, the low-velocity zone can be connected to the magma reservoir of the Tatun volcano group or submarine volcano of Keelung Island or not? It can be discussed the correlation between the magma reservoir and the low-velocity zone by more events collected.

  13. Transverse and Oblique Long Bone Fracture Evaluation by Low Order Ultrasonic Guided Waves: A Simulation Study

    PubMed Central

    Li, Ying; Liu, Dan; Xu, Kailiang; Le, Lawrence H.; Wang, Weiqi

    2017-01-01

    Ultrasonic guided waves have recently been used in fracture evaluation and fracture healing monitoring. An axial transmission technique has been used to quantify the impact of the gap breakage width and fracture angle on the amplitudes of low order guided wave modes S0 and A0 under a 100 kHz narrowband excitation. In our two dimensional finite-difference time-domain (2D-FDTD) simulation, the long bones are modeled as three layers with a soft tissue overlay and marrow underlay. The simulations of the transversely and obliquely fractured long bones show that the amplitudes of both S0 and A0 decrease as the gap breakage widens. Fixing the crack width, the increase of the fracture angle relative to the cross section perpendicular to the long axis enhances the amplitude of A0, while the amplitude of S0 shows a nonmonotonic trend with the decrease of the fracture angle. The amplitude ratio between the S0 and A0 modes is used to quantitatively evaluate the fracture width and angles. The study suggests that the low order guided wave modes S0 and A0 have potentials for transverse and oblique bone fracture evaluation and fracture healing monitoring. PMID:28182135

  14. Transverse and Oblique Long Bone Fracture Evaluation by Low Order Ultrasonic Guided Waves: A Simulation Study.

    PubMed

    Li, Ying; Liu, Dan; Xu, Kailiang; Ta, Dean; Le, Lawrence H; Wang, Weiqi

    2017-01-01

    Ultrasonic guided waves have recently been used in fracture evaluation and fracture healing monitoring. An axial transmission technique has been used to quantify the impact of the gap breakage width and fracture angle on the amplitudes of low order guided wave modes S 0 and A 0 under a 100 kHz narrowband excitation. In our two dimensional finite-difference time-domain (2D-FDTD) simulation, the long bones are modeled as three layers with a soft tissue overlay and marrow underlay. The simulations of the transversely and obliquely fractured long bones show that the amplitudes of both S 0 and A 0 decrease as the gap breakage widens. Fixing the crack width, the increase of the fracture angle relative to the cross section perpendicular to the long axis enhances the amplitude of A 0, while the amplitude of S 0 shows a nonmonotonic trend with the decrease of the fracture angle. The amplitude ratio between the S 0 and A 0 modes is used to quantitatively evaluate the fracture width and angles. The study suggests that the low order guided wave modes S 0 and A 0 have potentials for transverse and oblique bone fracture evaluation and fracture healing monitoring.

  15. A Signal Processing Approach with a Smooth Empirical Mode Decomposition to Reveal Hidden Trace of Corrosion in Highly Contaminated Guided Wave Signals for Concrete-Covered Pipes.

    PubMed

    Rostami, Javad; Chen, Jingming; Tse, Peter W

    2017-02-07

    Ultrasonic guided waves have been extensively applied for non-destructive testing of plate-like structures particularly pipes in past two decades. In this regard, if a structure has a simple geometry, obtained guided waves' signals are easy to explain. However, any small degree of complexity in the geometry such as contacting with other materials may cause an extra amount of complication in the interpretation of guided wave signals. The problem deepens if defects have irregular shapes such as natural corrosion. Signal processing techniques that have been proposed for guided wave signals' analysis are generally good for simple signals obtained in a highly controlled experimental environment. In fact, guided wave signals in a real situation such as the existence of natural corrosion in wall-covered pipes are much more complicated. Considering pipes in residential buildings that pass through concrete walls, in this paper we introduced Smooth Empirical Mode Decomposition (SEMD) to efficiently separate overlapped guided waves. As empirical mode decomposition (EMD) which is a good candidate for analyzing non-stationary signals, suffers from some shortcomings, wavelet transform was adopted in the sifting stage of EMD to improve its outcome in SEMD. However, selection of mother wavelet that suits best for our purpose plays an important role. Since in guided wave inspection, the incident waves are well known and are usually tone-burst signals, we tailored a complex tone-burst signal to be used as our mother wavelet. In the sifting stage of EMD, wavelet de-noising was applied to eliminate unwanted frequency components from each IMF. SEMD greatly enhances the performance of EMD in guided wave analysis for highly contaminated signals. In our experiment on concrete covered pipes with natural corrosion, this method not only separates the concrete wall indication clearly in time domain signal, a natural corrosion with complex geometry that was hidden and located inside the

  16. Assessment of decay in standing timber using stress wave timing nondestructive evaluation tools : a guide for use and interpretation

    Treesearch

    Xiping Wang; Ferenc Divos; Crystal Pilon; Brian K. Brashaw; Robert J. Ross; Roy F. Pellerin

    2004-01-01

    This guide was prepared to assist field foresters in the use of stress wave timing instruments to locate and define areas of decay in standing timber. The first three sections provide background information, the principles of stress wave nondestructive testing, and measurement techniques for stress wave nondestructive testing. The last section is a detailed description...

  17. Small Effect of Hydration on Elastic Wave Velocities of Ringwoodite in Earth's Transition Zone

    NASA Astrophysics Data System (ADS)

    Schulze, K.; Marquardt, H.; Boffa Ballaran, T.; Kurnosov, A.; Kawazoe, T.; Koch-Müller, M.

    2017-12-01

    Ringwoodite can incorporate significant amounts of hydrogen as OH-defects into its crystal structure. The measurement of 1.4 wt.% H20 in a natural ringwoodite diamond inclusion (Pearson et al. 2014) showed that hydrous ringwoodite can exist in the Earth's mantle. Since ringwoodite is considered to be the major phase in the mantle between 520 and 660 km depth it likely plays an important role for Earth's deep water cycle and the mantle water budget. Previous experimental work has shown that hydration reduces seismic wave velocities in ringwoodite, motivating attempts to map the hydration state of the mantle using seismic wave speed variations as depicted by seismic tomography. However, large uncertainties on the actual effects at transition zone pressures and temperatures remain. A major difficulty is the comparability of studies with different experimental setups and pressure- and temperature conditions. Here, we present results from a comparative elasticity study designed to quantify the effects of hydration on the seismic wave velocities of ringwoodite in Earth's transition zone. Focused ion beam cut single-crystals of four samples of either Fo90 or Fo100 ringwoodite with hydration states between 0.21 - 1.71 wt.% H2O were loaded in the pressure chamber of one diamond-anvil cell to ensure identical experimental conditions. Single-crystal Brillouin Spectroscopy and X-ray diffraction measurements were performed at room temperature to a pressure of 22 GPa. Additional experiments at high pressure and temperatures up to 500 K were performed. Our data collected at low pressures show a significant reduction of elastic wave velocities with hydration, consistent with previous work. However, in contrast to previous inferences, our results indicate that pressure significantly reduces the effect of hydration. Based on the outcome of our work, the redution in aggregate velocities caused by 1 wt.% H2O becomes smaller than 1% in ringwoodite at pressures equivalent to the Earth

  18. Evidence for self-refraction in a convergence zone: NPE (Nonlinear progressive wave equation) model results

    NASA Technical Reports Server (NTRS)

    Mcdonald, B. Edward; Plante, Daniel R.

    1989-01-01

    The nonlinear progressive wave equation (NPE) model was developed by the Naval Ocean Research and Development Activity during 1982 to 1987 to study nonlinear effects in long range oceanic propagation of finite amplitude acoustic waves, including weak shocks. The NPE model was applied to propagation of a generic shock wave (initial condition provided by Sandia Division 1533) in a few illustrative environments. The following consequences of nonlinearity are seen by comparing linear and nonlinear NPE results: (1) a decrease in shock strength versus range (a well-known result of entropy increases at the shock front); (2) an increase in the convergence zone range; and (3) a vertical meandering of the energy path about the corresponding linear ray path. Items (2) and (3) are manifestations of self-refraction.

  19. Importance of Antecedent Beach and Surf-Zone Morphology to Wave Runup Predictions

    DTIC Science & Technology

    2016-10-01

    position on the dune, the laser reflects well off of the water surface when foam is present (blue dots, Figure 1B). Maximum range of measurement...depends upon the amount of breaking and foam present in the surf-zone at any given time, but rarely exceeds 150 m for this laser scanner. Drawbacks to...determined by reverse-shoaling data from the FRF’s 11 m Acoustic Wave and Current (AWAC) profiler to deep water values. Local water levels (tide and surge

  20. [Characteristics of Waves Generated Beneath the Solar Convection Zone by Penetrative Overshoot

    NASA Technical Reports Server (NTRS)

    Julien, Keith

    2000-01-01

    The goal of this project was to theoretically and numerically characterize the waves generated beneath the solar convection zone by penetrative overshoot. Three dimensional model simulations were designed to isolate the effects of rotation and shear. In order to overcome the numerically imposed limitations of finite Reynolds numbers (Re) below solar values, series of simulations were designed to elucidate the Reynolds-number dependence (hoped to exhibit mathematically simple scaling on Re) so that one could cautiously extrapolate to solar values.

  1. Estimation of adhesive bond strength in laminated safety glass using guided mechanical waves

    NASA Astrophysics Data System (ADS)

    Huo, Shihong

    Laminated safety glass is used in the automobile industry and in architectural applications. Laminated safety glass consists of a plastic interlayer, such as a layer of poly vinyl butyral (PVB) or Butacite, surrounded by two adjacent glass plates. The glass can be float glass, plate glass, tempered glass, or sheet glass, and the plastic interlayer is made of a viscoelastic material with relatively high damping. The level of adhesive bond strength between the plastic interlayer and the two adjacent glass plates has a significant role in the penetration resistance against flying objects and is a critical parameter towards ensuring the proper performance of safety glass. Therefore, estimation and control of adhesive bond levels in laminated safety glass is a critical issue. There are several destructive testing procedures used to quantify the adhesion level in laminated safety glass. These tests include the tension test, the peel test, the impact test, and the pummel test. All these tests have drawbacks including the pummel test method, which has been the most widely used in industry for over 80 years. The primary drawbacks of the pummel test method are that it is destructive and subjective (i.e., involves individual human judgment), which precludes this method for use as an on-line test method for quality control. Consequently, a quantitative nondestructive testing method to evaluate adhesion levels would be an asset to the laminated safety glass industry. In this study, adhesion levels in laminated safety glass samples, i.e., windshields, have been assessed using the guided mechanical wave method. To study the adhesive bond strength analytically, the imperfect interfaces between the plastic interlayer and the two adjacent glass plates in laminated safety glass are modeled using a bed of longitudinal and shear springs, and their stiffness characteristics are estimated using fracture mechanics and atomic force microscopy (AFM) surface measurements. The atomic force

  2. Anisotropy in subduction zones: Insights from new source side S wave splitting measurements from India

    NASA Astrophysics Data System (ADS)

    Roy, Sunil K.; Kumar, M. Ravi; Davuluri, Srinagesh

    2017-08-01

    This study presents 106 splitting and 40 null measurements of source side anisotropy in subduction zones, utilizing direct S waves registered at two stations sited on the Indian continent, which show null shear wave splitting measurements for SKS phases. Our results suggest that trench-parallel anisotropy is dominant beneath the Philippines, Mariana, Izu-Bonin, and edge of the Java slab, while plate motion-parallel anisotropy is observed beneath the Solomon, Aegean, Japan, and Java slabs. Results from Kuril and Aleutian regions reveal trench-oblique anisotropy. We chose to interpret these observations primarily in terms of mantle flow beneath a subduction zone. While the two-dimensional (2-D) slab entrained flow model offers a simple explanation for trench-normal fast polarization azimuths (FPA), the trench-parallel FPA can be reconciled by extension due to slab rollback. The model that invokes age of the subducting lithosphere can explain anisotropy in the subslab, derived from rays recorded at the updip stations. However, when downdip stations are used, contributions from the slab and supraslab need to be considered. In Japan, anisotropy in the subslab mantle shallower than 300 km might be associated with trench-parallel mantle flow resulting in the alignment of FPA in the same direction. Anisotropy in the deeper part, above the transition zone, is probably associated with 2-D flow resulting in trench-normal FPA. Anisotropy in the Mariana Trench might be associated with trench-parallel mantle flow in the supraslab region, with similar deformation in the upper mantle and the transition zone.

  3. Numerical modeling of nonlinear modulation of coda wave interferometry in a multiple scattering medium with the presence of a localized micro-cracked zone

    NASA Astrophysics Data System (ADS)

    Chen, Guangzhi; Pageot, Damien; Legland, Jean-Baptiste; Abraham, Odile; Chekroun, Mathieu; Tournat, Vincent

    2018-04-01

    The spectral element method is used to perform a parametric sensitivity study of the nonlinear coda wave interferometry (NCWI) method in a homogeneous sample with localized damage [1]. The influence of a strong pump wave on a localized nonlinear damage zone is modeled as modifications to the elastic properties of an effective damage zone (EDZ), depending on the pump wave amplitude. The local change of the elastic modulus and the attenuation coefficient have been shown to vary linearly with respect to the excitation amplitude of the pump wave as in previous experimental studies of Zhang et al. [2]. In this study, the boundary conditions of the cracks, i.e. clapping effects is taken into account in the modeling of the damaged zone. The EDZ is then modeled with random cracks of random orientations, new parametric studies are established to model the pump wave influence with two new parameters: the change of the crack length and the crack density. The numerical results reported constitute another step towards quantification and forecasting of the nonlinear acoustic response of a cracked material, which proves to be necessary for quantitative non-destructive evaluation.

  4. Analysis of Electro-Optic Materials Properties on Guided Wave Devices

    DTIC Science & Technology

    1992-12-16

    AD-A262 787 APPLIED RESEARCH, INC, ANALYSIS OF ELECTRO - OPTIC MATERIALS PROPERTIES ON GUIDED WAVE DEVICES FINAL REPORT DTI 6700 ODYSSEY DR HUNTSVILLE...ALABAMA 35814-1220 s IMAR1893 APPROVED FOR PUKIC RE’.EASE DISTRIBUTION UNLIMlITED Applied Research Inc. ARI/92iR-048Z ANALYSIS OF ELECTRO - OPTIC MATERIALS...uNiT ATTN: Dr. 2aul Ashley-AMSMI-RD-~WS--CM ELEMENT NO 4 NO IAr SSiON No t1I TI TLE iciup SeawIfy 0Mft*G’I Analysis of Electro - optic Materials

  5. Inspection of timber bridges using stress wave timing nondestructive evaluation tools : a guide for use and interpretation

    Treesearch

    Robert J. Ross; Roy F. Pellerin; Norbert Volny; William W. Salsig; Robert H. Falk

    1999-01-01

    This guide was prepared to assist inspectors in the use of stress wave timing instruments and the various methods of locating and defining areas of decay in timber bridge members. The first two sections provide (a) background information regarding conventional methods to locate and measure decay in timber bridges and (b) the principles of stress wave nondestructive...

  6. Damage detection in hazardous waste storage tank bottoms using ultrasonic guided waves

    NASA Astrophysics Data System (ADS)

    Cobb, Adam C.; Fisher, Jay L.; Bartlett, Jonathan D.; Earnest, Douglas R.

    2018-04-01

    Detecting damage in storage tanks is performed commercially using a variety of techniques. The most commonly used inspection technologies are magnetic flux leakage (MFL), conventional ultrasonic testing (UT), and leak testing. MFL and UT typically involve manual or robotic scanning of a sensor along the metal surfaces to detect cracks or corrosion wall loss. For inspection of the tank bottom, however, the storage tank is commonly emptied to allow interior access for the inspection system. While there are costs associated with emptying a storage tank for inspection that can be justified in some scenarios, there are situations where emptying the tank is impractical. Robotic, submersible systems have been developed for inspecting these tanks, but there are some storage tanks whose contents are so hazardous that even the use of these systems is untenable. Thus, there is a need to develop an inspection strategy that does not require emptying the tank or insertion of the sensor system into the tank. This paper presents a guided wave system for inspecting the bottom of double-shelled storage tanks (DSTs), with the sensor located on the exterior side-wall of the vessel. The sensor used is an electromagnetic acoustic transducer (EMAT) that generates and receives shear-horizontal guided plate waves using magnetostriction principles. The system operates by scanning the sensor around the circumference of the storage tank and sending guided waves into the tank bottom at regular intervals. The data from multiple locations are combined using the synthetic aperture focusing technique (SAFT) to create a color-mapped image of the vessel thickness changes. The target application of the system described is inspection of DSTs located at the Hanford site, which are million-gallon vessels used to store nuclear waste. Other vessels whose exterior walls are accessible would also be candidates for inspection using the described approach. Experimental results are shown from tests on multiple

  7. A Signal Processing Approach with a Smooth Empirical Mode Decomposition to Reveal Hidden Trace of Corrosion in Highly Contaminated Guided Wave Signals for Concrete-Covered Pipes

    PubMed Central

    Rostami, Javad; Chen, Jingming; Tse, Peter W.

    2017-01-01

    Ultrasonic guided waves have been extensively applied for non-destructive testing of plate-like structures particularly pipes in past two decades. In this regard, if a structure has a simple geometry, obtained guided waves’ signals are easy to explain. However, any small degree of complexity in the geometry such as contacting with other materials may cause an extra amount of complication in the interpretation of guided wave signals. The problem deepens if defects have irregular shapes such as natural corrosion. Signal processing techniques that have been proposed for guided wave signals’ analysis are generally good for simple signals obtained in a highly controlled experimental environment. In fact, guided wave signals in a real situation such as the existence of natural corrosion in wall-covered pipes are much more complicated. Considering pipes in residential buildings that pass through concrete walls, in this paper we introduced Smooth Empirical Mode Decomposition (SEMD) to efficiently separate overlapped guided waves. As empirical mode decomposition (EMD) which is a good candidate for analyzing non-stationary signals, suffers from some shortcomings, wavelet transform was adopted in the sifting stage of EMD to improve its outcome in SEMD. However, selection of mother wavelet that suits best for our purpose plays an important role. Since in guided wave inspection, the incident waves are well known and are usually tone-burst signals, we tailored a complex tone-burst signal to be used as our mother wavelet. In the sifting stage of EMD, wavelet de-noising was applied to eliminate unwanted frequency components from each IMF. SEMD greatly enhances the performance of EMD in guided wave analysis for highly contaminated signals. In our experiment on concrete covered pipes with natural corrosion, this method not only separates the concrete wall indication clearly in time domain signal, a natural corrosion with complex geometry that was hidden and located inside the

  8. Metal wires for terahertz wave guiding.

    PubMed

    Wang, Kanglin; Mittleman, Daniel M

    2004-11-18

    Sources and systems for far-infrared or terahertz (1 THz = 10(12) Hz) radiation have received extensive attention in recent years, with applications in sensing, imaging and spectroscopy. Terahertz radiation bridges the gap between the microwave and optical regimes, and offers significant scientific and technological potential in many fields. However, waveguiding in this intermediate spectral region still remains a challenge. Neither conventional metal waveguides for microwave radiation, nor dielectric fibres for visible and near-infrared radiation can be used to guide terahertz waves over a long distance, owing to the high loss from the finite conductivity of metals or the high absorption coefficient of dielectric materials in this spectral range. Furthermore, the extensive use of broadband pulses in the terahertz regime imposes an additional constraint of low dispersion, which is necessary for compatibility with spectroscopic applications. Here we show how a simple waveguide, namely a bare metal wire, can be used to transport terahertz pulses with virtually no dispersion, low attenuation, and with remarkable structural simplicity. As an example of this new waveguiding structure, we demonstrate an endoscope for terahertz pulses.

  9. Wave propagation in the marginal ice zone - Model predictions and comparisons with buoy and synthetic aperture radar data

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Holt, Benjamin; Vachon, Paris W.

    1991-01-01

    Ocean wave dispersion relation and viscous attenuation by a sea ice cover are studied for waves propagating into the marginal ice zone (MIZ). The Labrador ice margin experiment (LIMEX), conducted on the MIZ off the east coast of Newfoundland, Canada in March 1987, provided aircraft SAR imagery, ice property and wave buoy data. Wave energy attenuation rates are estimated from SAR data and the ice motion package data that were deployed at the ice edge and into the ice pack, and compared with a model. It is shown that the model data comparisons are quite good for the ice conditions observed during LIMEX 1987.

  10. Attenuation characteristics of the leaky \\text{T}(0,1) mode guided wave propagating in piping coated with anticorrosion grease

    NASA Astrophysics Data System (ADS)

    Nishino, Hideo; Tateishi, Kohei; Ishikawa, Masashi; Furukawa, Takashi; Goka, Motoki

    2018-07-01

    Guided wave inspection is expected especially for buried piping because it can be applied easily to such piping requiring only its partial digging from the ground. However, in buried piping, the attenuation coefficient is extremely large compared with that in above-ground piping because the leaky \\text{T}(0,1) mode guided wave (LTGW) propagates in buried piping and its energy leaks into the adjacent surrounding material as a bulk shear wave. Petrolatum anticorrosion grease (PAG) is the most widely used as the coating material on the pipe surface before burying piping in sand or soil, which is a viscous material with a temperature-dependent shear wave velocity. In this paper, attenuation characteristics of the LTGW are shown theoretically and experimentally. The theoretical calculations explain very well the experimental results measured. The temperature dependence of the attenuation coefficient is discussed with the theoretical outcomes.

  11. In-line inspection of unpiggable buried live gas pipes using circumferential EMAT guided waves

    NASA Astrophysics Data System (ADS)

    Ren, Baiyang; Xin, Junjun

    2018-04-01

    Unpiggable buried gas pipes need to be inspected to ensure their structural integrity and safe operation. The CIRRIS XITM robot, developed and operated by ULC Robotics, conducts in-line nondestructive inspection of live gas pipes. With the no-blow launching system, the inspection operation has reduced disruption to the public and by eliminating the need to dig trenches, has minimized the site footprint. This provides a highly time and cost effective solution for gas pipe maintenance. However, the current sensor on the robot performs a point-by-point measurement of the pipe wall thickness which cannot cover the whole volume of the pipe in a reasonable timeframe. The study of ultrasonic guided wave technique is discussed to improve the volume coverage as well as the scanning speed. Circumferential guided wave is employed to perform axial scanning. Mode selection is discussed in terms of sensitivity to different defects and defect characterization capability. To assist with the mode selection, finite element analysis is performed to evaluate the wave-defect interaction and to identify potential defect features. Pulse-echo and through-transmission mode are evaluated and compared for their pros and cons in axial scanning. Experiments are also conducted to verify the mode selection and detect and characterize artificial defects introduced into pipe samples.

  12. Deconvolution imaging of weak reflective pipe defects using guided-wave signals captured by a scanning receiver.

    PubMed

    Sun, Zeqing; Sun, Anyu; Ju, Bing-Feng

    2017-02-01

    Guided-wave echoes from weak reflective pipe defects are usually interfered by coherent noise and difficult to interpret. In this paper, a deconvolution imaging method is proposed to reconstruct defect images from synthetically focused guided-wave signals, with enhanced axial resolution. A compact transducer, circumferentially scanning around the pipe, is used to receive guided-wave echoes from discontinuities at a distance. This method achieves a higher circumferential sampling density than arrayed transducers-up to 72 sampling spots per lap for a pipe with a diameter of 180 mm. A noise suppression technique is used to enhance the signal-to-noise ratio. The enhancement in both signal-to-noise ratio and axial resolution of the method is experimentally validated by the detection of two kinds of artificial defects: a pitting defect of 5 mm in diameter and 0.9 mm in maximum depth, and iron pieces attached to the pipe surface. A reconstructed image of the pitting defect is obtained with a 5.87 dB signal-to-noise ratio. It is revealed that a high circumferential sampling density is important for the enhancement of the inspection sensitivity, by comparing the images reconstructed with different down-sampling ratios. A modified full width at half maximum is used as the criterion to evaluate the circumferential extent of the region where iron pieces are attached, which is applicable for defects with inhomogeneous reflection intensity.

  13. Effects of temperature variations on guided waves propagating in composite structures

    NASA Astrophysics Data System (ADS)

    Shoja, Siavash; Berbyuk, Viktor; Boström, Anders

    2016-04-01

    Effects of temperature on guided waves propagating in composite materials is a well-known problem which has been investigated in many studies. The majority of the studies is focused on effects of high temperature. Understanding the effects of low temperature has major importance in composite structures and components which are operating in cold climate conditions such as e.g. wind turbines operating in cold climate regions. In this study first the effects of temperature variations on guided waves propagating in a composite plate is investigated experimentally in a cold climate chamber. The material is a common material used to manufacture rotor blades of wind turbines. The temperature range is 25°C to -25°C and effects of temperature variations on amplitude and phase shift of the received signal are investigated. In order to apply the effects of lowering the temperature on the received signal, the Baseline Signal Stretch (BSS) method is modified and used. The modification is based on decomposing the signal into symmetric and asymmetric modes and applying two different stretch factors on each of them. Finally the results obtained based on the new method is compared with the results of application of BSS with one stretch factor and experimental measurements. Comparisons show that an improvement is obtained using the BSS with the mode decomposition method at temperature variations of more than 25°C.

  14. Extraction of guided wave dispersion curve in isotropic and anisotropic materials by Matrix Pencil method.

    PubMed

    Chang, C Y; Yuan, F G

    2018-05-16

    Guided wave dispersion curves in isotropic and anisotropic materials are extracted automatically from measured data by Matrix Pencil (MP) method investigating through k-t or x-ω domain with a broadband signal. A piezoelectric wafer emits a broadband excitation, linear chirp signal to generate guided waves in the plate. The propagating waves are measured at discrete locations along the lines for one-dimensional laser Doppler vibrometer (1-D LDV). Measurements are first Fourier transformed into either wavenumber-time k-t domain or space-frequency x-ω domain. MP method is then employed to extract the dispersion curves explicitly associated with different wave modes. In addition, the phase and group velocity are deduced by the relations between wavenumbers and frequencies. In this research, the inspections for dispersion relations on an aluminum plate by MP method from k-t or x-ω domain are demonstrated and compared with two-dimensional Fourier transform (2-D FFT). Other experiments on a thicker aluminum plate for higher modes and a composite plate are analyzed by MP method. Extracted relations of composite plate are confirmed by three-dimensional (3-D) theoretical curves computed numerically. The results explain that the MP method not only shows more accuracy for distinguishing the dispersion curves on isotropic material, but also obtains good agreements with theoretical curves on anisotropic and laminated materials. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Experimental Verification of Guided-Wave Lumped Circuits Using Waveguide Metamaterials

    NASA Astrophysics Data System (ADS)

    Li, Yue; Zhang, Zhijun

    2018-04-01

    Through the construction and characterization in microwave frequencies, we experimentally demonstrate our recently developed theory of waveguide lumped circuits, i.e., waveguide metatronics [Sci. Adv. 2, e1501790 (2016), 10.1126/sciadv.1501790], as a method to design subwavelength-scaled analog circuits. In the paradigm of waveguide metatronics, numbers of lumped inductors and capacitors are easily integrated functionally inside the waveguide, which is an irreplaceable transmission line in millimeter-wave and terahertz systems with the advantages of low radiation loss and low crosstalk. An example of multiple-ordered metatronic filters with layered structures is fabricated utilizing the technique of substrate integrated waveguides, which can be easily constructed by the printed-circuit-board process. The materials used in the construction are also typical microwave materials with positive permittivity, low loss, and negligible dispersion, imitating the plasmonic materials with negative permittivity in the optical domain. The results verify the theory of waveguide metatronics, which provides an efficient platform of functional lumped circuit design for guided-wave processing.

  16. Guided-wave phase-matched second-harmonic generation in KTiOPO4 waveguide produced by swift heavy-ion irradiation

    NASA Astrophysics Data System (ADS)

    Cheng, Yazhou; Jia, Yuechen; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng

    2014-11-01

    We report on the guided-wave second-harmonic generation in a KTiOPO4 nonlinear optical waveguide fabricated by a 17 MeV O5+ ion irradiation at a fluence of 1.5×1015 ions/cm2. The waveguide guides light along both TE and TM polarizations, which is suitable for phase-matching frequency doubling. Second harmonics of green light at a wavelength of 532 nm have been generated through the KTiOPO4 waveguide platform under an optical pump of fundamental wave at 1064 nm in both continuous-wave and pulsed regimes, reaching optical conversion efficiencies of 5.36%/W and 11.5%, respectively. The propagation losses have been determined to be ˜3.1 and ˜5.7 dB/cm for the TE and TM polarizations at a wavelength of 632.8 nm, respectively.

  17. Structural Health Monitoring of Above-Ground Storage Tank Floors by Ultrasonic Guided Wave Excitation on the Tank Wall.

    PubMed

    Lowe, Premesh S; Duan, Wenbo; Kanfoud, Jamil; Gan, Tat-Hean

    2017-11-04

    There is an increasing interest in using ultrasonic guided waves to assess the structural degradation of above-ground storage tank floors. This is a non-invasive and economically viable means of assessing structural degradation. Above-ground storage tank floors are ageing assets which need to be inspected periodically to avoid structural failure. At present, normal-stress type transducers are bonded to the tank annular chime to generate a force field in the thickness direction of the floor and excite fundamental symmetric and asymmetric Lamb modes. However, the majority of above-ground storage tanks in use have no annular chime due to a simplified design and/or have a degraded chime due to corrosion. This means that transducers cannot be mounted on the chime to assess structural health according to the present technology, and the market share of structural health monitoring of above-ground storage tank floors using ultrasonic guided wave is thus limited. Therefore, the present study investigates the potential of using the tank wall to bond the transducer instead of the tank annular chime. Both normal and shear type transducers were investigated numerically, and results were validated using a 4.1 m diameter above-ground storage tank. The study results show shear mode type transducers bonded to the tank wall can be used to assess the structural health of the above-ground tank floors using an ultrasonic guided wave. It is also shown that for the cases studied there is a 7.4 dB signal-to-noise ratio improvement at 45 kHz for the guided wave excitation on the tank wall using shear mode transducers.

  18. Structural Health Monitoring of Above-Ground Storage Tank Floors by Ultrasonic Guided Wave Excitation on the Tank Wall

    PubMed Central

    Kanfoud, Jamil; Gan, Tat-Hean

    2017-01-01

    There is an increasing interest in using ultrasonic guided waves to assess the structural degradation of above-ground storage tank floors. This is a non-invasive and economically viable means of assessing structural degradation. Above-ground storage tank floors are ageing assets which need to be inspected periodically to avoid structural failure. At present, normal-stress type transducers are bonded to the tank annular chime to generate a force field in the thickness direction of the floor and excite fundamental symmetric and asymmetric Lamb modes. However, the majority of above-ground storage tanks in use have no annular chime due to a simplified design and/or have a degraded chime due to corrosion. This means that transducers cannot be mounted on the chime to assess structural health according to the present technology, and the market share of structural health monitoring of above-ground storage tank floors using ultrasonic guided wave is thus limited. Therefore, the present study investigates the potential of using the tank wall to bond the transducer instead of the tank annular chime. Both normal and shear type transducers were investigated numerically, and results were validated using a 4.1 m diameter above-ground storage tank. The study results show shear mode type transducers bonded to the tank wall can be used to assess the structural health of the above-ground tank floors using an ultrasonic guided wave. It is also shown that for the cases studied there is a 7.4 dB signal-to-noise ratio improvement at 45 kHz for the guided wave excitation on the tank wall using shear mode transducers. PMID:29113058

  19. Guided wave propagation and spectral element method for debonding damage assessment in RC structures

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Zhu, Xinqun; Hao, Hong; Ou, Jinping

    2009-07-01

    A concrete-steel interface spectral element is developed to study the guided wave propagation along the steel rebar in the concrete. Scalar damage parameters characterizing changes in the interface (debonding damage) are incorporated into the formulation of the spectral finite element that is used for damage detection of reinforced concrete structures. Experimental tests are carried out on a reinforced concrete beam with embedded piezoelectric elements to verify the performance of the proposed model and algorithm. Parametric studies are performed to evaluate the effect of different damage scenarios on wave propagation in the reinforced concrete structures. Numerical simulations and experimental results show that the method is effective to model wave propagation along the steel rebar in concrete and promising to detect damage in the concrete-steel interface.

  20. Numerical modeling of guided ultrasonic waves generated and received by piezoelectric wafer in a Delaminated composite beam

    NASA Astrophysics Data System (ADS)

    Xu, G. D.; Xu, B. Q.; Xu, C. G.; Luo, Y.

    2017-05-01

    A spectral finite element method (SFEM) is developed to analyze guided ultrasonic waves in a delaminated composite beam excited and received by a pair of surface-bonded piezoelectric wafers. The displacements of the composite beam and the piezoelectric wafer are represented by Timoshenko beam and Euler Bernoulli theory respectively. The linear piezoelectricity is used to model the electrical-mechanical coupling between the piezoelectric wafer and the beam. The coupled governing equations and the boundary conditions in time domain are obtained by using the Hamilton's principle, and then the SFEM are formulated by transforming the coupled governing equations into frequency domain via the discrete Fourier transform. The guided waves are analyzed while the interaction of waves with delamination is also discussed. The elements needed in SFEM is far fewer than those for finite element method (FEM), which result in a much faster solution speed in this study. The high accuracy of the present SFEM is verified by comparing with the finite element results.

  1. Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xingwei; Hsu, Chia Wei; Zhen, Bo

    2016-08-25

    We develop a formalism, based on the mode expansion method, to describe the guided resonances and bound states in the continuum (BICs) in photonic crystal slabs with one-dimensional periodicity. This approach provides analytic insights to the formation mechanisms of these states: the guided resonances arise from the transverse Fabry–Pérot condition, and the divergence of the resonance lifetimes at the BICs is explained by a destructive interference of radiation from different propagating components inside the slab. As a result, we show BICs at the center and on the edge of the Brillouin zone protected by symmetry, BICs at generic wave vectorsmore » not protected by symmetry, and the annihilation of BICs at low-symmetry wave vectors.« less

  2. On the influence of reflection over a rhythmic swash zone on surf zone dynamics

    NASA Astrophysics Data System (ADS)

    Almar, Rafael; Nicolae Lerma, Alexandre; Castelle, Bruno; Scott, Timothy

    2018-05-01

    The reflection of incident gravity waves over an irregular swash zone morphology and the resulting influence on surf zone dynamics remains mostly unexplored. The wave-phase resolving SWASH model is applied to investigate this feedback using realistic low-tide terraced beach morphology with well-developed beach cusps. The rhythmic reflection generates a standing wave that mimics a subharmonic edge wave, from the superimposition of incident and two-dimensional reflected waves. This mechanism is enhanced by shore-normal, narrow-banded waves in both direction and frequency. Our study suggests that wave reflection over steep beaches could be a mechanism for the development of rhythmic morphological features such as beach cusps and rip currents.

  3. ISIS Topside-Sounder Plasma-Wave Investigations as Guides to Desired Virtual Wave Observatory (VWO) Data Search Capabilities

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fung, Shing F.

    2008-01-01

    Many plasma-wave phenomena, observed by space-borne radio sounders, cannot be properly explained in terms of wave propagation in a cold plasma consisting of mobile electrons and infinitely massive positive ions. These phenomena include signals known as plasma resonances. The principal resonances at the harmonics of the electron cyclotron frequency, the plasma frequency, and the upper-hybrid frequency are well explained by the warm-plasma propagation of sounder-generated electrostatic waves, Other resonances have been attributed to sounder-stimulated plasma instability and non-linear effects, eigenmodes of cylindrical electromagnetic plasma oscillations, and plasma memory processes. Data from the topside sounders of the International Satellites for Ionospheric Studies (ISIS) program played a major role in these interpretations. A data transformation and preservation effort at the Goddard Space Flight Center has produced digital ISIS topside ionograms and a metadata search program that has enabled some recent discoveries pertaining to the physics of these plasma resonances. For example, data records were obtained that enabled the long-standing question (several decades) of the origin of the plasma resonance at the fundamental electron cyclotron frequency to be explained [Muldrew, Radio Sci., 2006]. These data-search capabilities, and the science enabled by them, will be presented as a guide to desired data search capabilities to be included in the Virtual Wave Observatory (VWO).

  4. Finite element simulation of core inspection in helicopter rotor blades using guided waves.

    PubMed

    Chakrapani, Sunil Kishore; Barnard, Daniel; Dayal, Vinay

    2015-09-01

    This paper extends the work presented earlier on inspection of helicopter rotor blades using guided Lamb modes by focusing on inspecting the spar-core bond. In particular, this research focuses on structures which employ high stiffness, high density core materials. Wave propagation in such structures deviate from the generic Lamb wave propagation in sandwich panels. To understand the various mode conversions, finite element models of a generalized helicopter rotor blade were created and subjected to transient analysis using a commercial finite element code; ANSYS. Numerical simulations showed that a Lamb wave excited in the spar section of the blade gets converted into Rayleigh wave which travels across the spar-core section and mode converts back into Lamb wave. Dispersion of Rayleigh waves in multi-layered half-space was also explored. Damage was modeled in the form of a notch in the core section to simulate a cracked core, and delamination was modeled between the spar and core material to simulate spar-core disbond. Mode conversions under these damaged conditions were examined numerically. The numerical models help in assessing the difficulty of using nondestructive evaluation for complex structures and also highlight the physics behind the mode conversions which occur at various discontinuities. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Mortality during a Large-Scale Heat Wave by Place, Demographic Group, Internal and External Causes of Death, and Building Climate Zone

    PubMed Central

    Joe, Lauren; Hoshiko, Sumi; Dobraca, Dina; Jackson, Rebecca; Smorodinsky, Svetlana; Smith, Daniel; Harnly, Martha

    2016-01-01

    Mortality increases during periods of elevated heat. Identification of vulnerable subgroups by demographics, causes of death, and geographic regions, including deaths occurring at home, is needed to inform public health prevention efforts. We calculated mortality relative risks (RRs) and excess deaths associated with a large-scale California heat wave in 2006, comparing deaths during the heat wave with reference days. For total (all-place) and at-home mortality, we examined risks by demographic factors, internal and external causes of death, and building climate zones. During the heat wave, 582 excess deaths occurred, a 5% increase over expected (RR = 1.05, 95% confidence interval (CI) 1.03–1.08). Sixty-six percent of excess deaths were at home (RR = 1.12, CI 1.07–1.16). Total mortality risk was higher among those aged 35–44 years than ≥65, and among Hispanics than whites. Deaths from external causes increased more sharply (RR = 1.18, CI 1.10–1.27) than from internal causes (RR = 1.04, CI 1.02–1.07). Geographically, risk varied by building climate zone; the highest risks of at-home death occurred in the northernmost coastal zone (RR = 1.58, CI 1.01–2.48) and the southernmost zone of California’s Central Valley (RR = 1.43, CI 1.21–1.68). Heat wave mortality risk varied across subpopulations, and some patterns of vulnerability differed from those previously identified. Public health efforts should also address at-home mortality, non-elderly adults, external causes, and at-risk geographic regions. PMID:27005646

  6. Mortality during a Large-Scale Heat Wave by Place, Demographic Group, Internal and External Causes of Death, and Building Climate Zone.

    PubMed

    Joe, Lauren; Hoshiko, Sumi; Dobraca, Dina; Jackson, Rebecca; Smorodinsky, Svetlana; Smith, Daniel; Harnly, Martha

    2016-03-09

    Mortality increases during periods of elevated heat. Identification of vulnerable subgroups by demographics, causes of death, and geographic regions, including deaths occurring at home, is needed to inform public health prevention efforts. We calculated mortality relative risks (RRs) and excess deaths associated with a large-scale California heat wave in 2006, comparing deaths during the heat wave with reference days. For total (all-place) and at-home mortality, we examined risks by demographic factors, internal and external causes of death, and building climate zones. During the heat wave, 582 excess deaths occurred, a 5% increase over expected (RR = 1.05, 95% confidence interval (CI) 1.03-1.08). Sixty-six percent of excess deaths were at home (RR = 1.12, CI 1.07-1.16). Total mortality risk was higher among those aged 35-44 years than ≥ 65, and among Hispanics than whites. Deaths from external causes increased more sharply (RR = 1.18, CI 1.10-1.27) than from internal causes (RR = 1.04, CI 1.02-1.07). Geographically, risk varied by building climate zone; the highest risks of at-home death occurred in the northernmost coastal zone (RR = 1.58, CI 1.01-2.48) and the southernmost zone of California's Central Valley (RR = 1.43, CI 1.21-1.68). Heat wave mortality risk varied across subpopulations, and some patterns of vulnerability differed from those previously identified. Public health efforts should also address at-home mortality, non-elderly adults, external causes, and at-risk geographic regions.

  7. A millimeter wave relativistic backward wave oscillator operating in TM{sub 03} mode with low guiding magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Hu; Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an Shaanxi 710024

    2015-06-15

    A V-band overmoded relativistic backward wave oscillator (RBWO) guided by low magnetic field and operating on a TM{sub 03} mode is presented to increase both the power handling capacity and the wave-beam interaction conversion efficiency. Trapezoidal slow wave structures (SWSs) with shallow corrugations and long periods are adopted to make the group velocity of TM{sub 03} mode at the intersection point close to zero. The coupling impedance and diffraction Q-factor of the RBWO increase, while the starting current decreases owing to the reduction of the group velocity of TM{sub 03} mode. In addition, the TM{sub 03} mode dominates over themore » other modes in the startup of the oscillation. Via numerical simulation, the generation of the microwave pulse with an output power of 425 MW and a conversion efficiency of 32% are achieved at 60.5 GHz with an external magnetic field of 1.25 T. This RBWO can provide greater power handling capacity when operating on the TM{sub 03} mode than on the TM{sub 01} mode.« less

  8. Making the most of CZ seismics: Improving shallow critical zone characterization using surface-wave analysis

    NASA Astrophysics Data System (ADS)

    Pasquet, S.; Wang, W.; Holbrook, W. S.; Bodet, L.; Carr, B.; Flinchum, B. A.

    2017-12-01

    Estimating porosity and saturation in the shallow subsurface over large lateral scales is vitally important for understanding the development and evolution of the Critical Zone (CZ). Because elastic properties (P- and S-wave velocities) are particularly sensitive to porosity and saturation, seismic methods (in combination with petrophysical models) are effective tools for mapping CZ architecture and processes. While many studies employ P-wave refraction methods, fewer use the surface waves that are typically also recorded in those same surveys. Here we show the value of exploiting surface waves to extract supplementary shear-wave velocity (Vs) information in the CZ. We use a new, user-friendly, open-source MATLAB-based package (SWIP) to invert surface-wave data and estimate lateral variations of Vs in the CZ. Results from synthetics show that this approach enables the resolution of physical property variations in the upper 10-15 m below the surface with lateral scales of about 5 m - a vast improvement compared to P-wave tomography alone. A field example at a Yellowstone hydrothermal system also demonstrates the benefits of including Vs in the petrophysical models to estimate not only porosity but also saturation, thus highlighting subsurface gas pathways. In light of these results, we strongly suggest that surface-wave analysis should become a standard approach in CZ seismic surveys.

  9. Metal-dielectric metamaterials for guided wave silicon photonics.

    PubMed

    Lupu, A; Dubrovina, N; Ghasemi, R; Degiron, A; de Lustrac, A

    2011-11-21

    The aim of the present paper is to investigate the potential of metallic metamaterials for building optical functions in guided wave optics at 1.5 µm. A significant part of this work is focused on the optimization of the refractive index variation associated with localized plasmon resonances. The minimization of metal related losses is specifically addressed as well as the engineering of the resonance frequency of the localized plasmons. Our numerical modeling results show that a periodic chain of gold cut wires placed on the top of a 100 nm silicon waveguide makes it possible to achieve a significant index variation in the vicinity of the metamaterial resonance and serve as building blocks for implementing optical functions. The considered solutions are compatible with current nano-fabrication technologies. © 2011 Optical Society of America

  10. Ensembles of novelty detection classifiers for structural health monitoring using guided waves

    NASA Astrophysics Data System (ADS)

    Dib, Gerges; Karpenko, Oleksii; Koricho, Ermias; Khomenko, Anton; Haq, Mahmoodul; Udpa, Lalita

    2018-01-01

    Guided wave structural health monitoring uses sparse sensor networks embedded in sophisticated structures for defect detection and characterization. The biggest challenge of those sensor networks is developing robust techniques for reliable damage detection under changing environmental and operating conditions (EOC). To address this challenge, we develop a novelty classifier for damage detection based on one class support vector machines. We identify appropriate features for damage detection and introduce a feature aggregation method which quadratically increases the number of available training observations. We adopt a two-level voting scheme by using an ensemble of classifiers and predictions. Each classifier is trained on a different segment of the guided wave signal, and each classifier makes an ensemble of predictions based on a single observation. Using this approach, the classifier can be trained using a small number of baseline signals. We study the performance using Monte-Carlo simulations of an analytical model and data from impact damage experiments on a glass fiber composite plate. We also demonstrate the classifier performance using two types of baseline signals: fixed and rolling baseline training set. The former requires prior knowledge of baseline signals from all EOC, while the latter does not and leverages the fact that EOC vary slowly over time and can be modeled as a Gaussian process.

  11. Modal content based damage indicators and phased array transducers for structural health monitoring of aircraft structures using ultrasonic guided waves

    NASA Astrophysics Data System (ADS)

    Ren, Baiyang

    Composite materials, especially carbon fiber reinforced polymers (CFRP), have been widely used in the aircraft industry because of their high specific strength and stiffness, resistance to corrosion and good fatigue life. Due to their highly anisotropic material properties and laminated structures, joining methods like bolting and riveting are no longer appropriate for joining CFRP since they initiate defects during the assembly and severely compromise the integrity of the structure; thus new techniques for joining CFRP are highly demanded. Adhesive bonding is a promising method because it relieves stress concentration, reduces weight and provides smooth surfaces. Additionally, it is a low-cost alternative to the co-cured method which is currently used to manufacture components of aircraft fuselage. Adhesive defects, disbonds at the interface between adherend and adhesive layer, are focused on in this thesis because they can be initialized by either poor surface preparation during the manufacturing or fatigue loads during service. Aircraft need structural health monitoring (SHM) systems to increase safety and reduce loss, and adhesive bonds usually represent the hotspots of the assembled structure. There are many nondestructive evaluation (NDE) methods for bond inspection. However, these methods cannot be readily integrated into an SHM system because of the bulk size and weight of the equipment and requirement of accessibility to one side of the bonded joint. The first objective of this work is to develop instruments, actuators, sensors and a data acquisition system for SHM of bond lines using ultrasonic guided waves which are well known to be able to cover large volume of the structure and inaccessible regions. Different from widely used guided wave sensors like PZT disks, the new actuators, piezoelectric fiber composite (PFC) phased array transducers0 (PAT), can control the modal content of the excited waves and the new sensors, polyvinylidene fluoride (PVDF

  12. Quantitative diagnostics of multilayered composite structures with ultrasonic guided waves

    NASA Astrophysics Data System (ADS)

    Bunget, Gheorghe; Friedersdorf, Fritz; Na, Jeong K.

    2015-03-01

    The main objective of the current work is to develop a practical nondestructive inspection methodology for a highly sound absorbing composite structural system consisting of polymeric and metallic materials. Due to constraints in geometrical shapes and thicknesses of the composite system used in this work, ultrasonic guided wave approach has been chosen. Since the polymer coatings have high damping properties, less energy is dissipated into the adjacent media in the presence of interface delaminations. Experimental measurements performed on a targeted composite system, whether it has an aluminum, carbon-fiber-composite, or steel outer casing, show promising results.

  13. Experimental and Computational Studies on the Scattering of an Edge-Guided Wave by a Hidden Crack on a Racecourse Shaped Hole.

    PubMed

    Vien, Benjamin Steven; Rose, Louis Raymond Francis; Chiu, Wing Kong

    2017-07-01

    Reliable and quantitative non-destructive evaluation for small fatigue cracks, in particular those in hard-to-inspect locations, is a challenging problem. Guided waves are advantageous for structural health monitoring due to their slow geometrical decay of amplitude with propagating distance, which is ideal for rapid wide-area inspection. This paper presents a 3D laser vibrometry experimental and finite element analysis of the interaction between an edge-guided wave and a small through-thickness hidden edge crack on a racecourse shaped hole that occurs, in practice, as a fuel vent hole. A piezoelectric transducer is bonded on the straight edge of the hole to generate the incident wave. The excitation signal consists of a 5.5 cycle Hann-windowed tone burst of centre frequency 220 kHz, which is below the cut-off frequency for the first order Lamb wave modes (SH1). Two-dimensional fast Fourier transformation (2D FFT) is applied to the incident and scattered wave field along radial lines emanating from the crack mouth, so as to identify the wave modes and determine their angular variation and amplitude. It is shown experimentally and computationally that mid-plane symmetric edge waves can travel around the hole's edge to detect a hidden crack. Furthermore, the scattered wave field due to a small crack length, a , (compared to the wavelength λ of the incident wave) is shown to be equivalent to a point source consisting of a particular combination of body-force doublets. It is found that the amplitude of the scattered field increases quadratically as a function of a/λ , whereas the scattered wave pattern is independent of crack length for small cracks a < λ . This study of the forward scattering problem from a known crack size provides a useful guide for the inverse problem of hidden crack detection and sizing.

  14. Time-of-flight dependency on transducer separation distance in a reflective-path guided-wave ultrasonic flow meter at zero flow conditions.

    PubMed

    Aanes, Magne; Kippersund, Remi Andre; Lohne, Kjetil Daae; Frøysa, Kjell-Eivind; Lunde, Per

    2017-08-01

    Transit-time flow meters based on guided ultrasonic wave propagation in the pipe spool have several advantages compared to traditional inline ultrasonic flow metering. The extended interrogation field, obtained by continuous leakage from guided waves traveling in the pipe wall, increases robustness toward entrained particles or gas in the flow. In reflective-path guided-wave ultrasonic flow meters (GW-UFMs), the flow equations are derived from signals propagating solely in the pipe wall and from signals passing twice through the fluid. In addition to the time-of-flight (TOF) through the fluid, the fluid path experiences an additional time delay upon reflection at the opposite pipe wall due to specular and non-specular reflections. The present work investigates the influence of these reflections on the TOF in a reflective-path GW-UFM as a function of transducer separation distance at zero flow conditions. Two models are used to describe the signal propagation through the system: (i) a transient full-wave finite element model, and (ii) a combined plane-wave and ray-tracing model. The study shows that a range-dependent time delay is associated with the reflection of the fluid path, introducing transmitter-receiver distance dependence. Based on these results, the applicability of the flow equations derived using model (ii) is discussed.

  15. Waves and Particles--The Orbital Atom, Parts One & Two of an Integrated Science Sequence, Student Guide, 1971 Edition.

    ERIC Educational Resources Information Center

    Portland Project Committee, OR.

    The third year of the Portland Project, a three-year secondary school curriculum in integrated science, consists of four parts, the first two of which are covered in this student guide. The reading assignments for part one, "Waves and Particles," are listed in the student guide and are to be read in the Harvard Project Physics textbook.…

  16. Structure of the Cascadia Subduction Zone Imaged Using Surface Wave Tomography

    NASA Astrophysics Data System (ADS)

    Schaeffer, A. J.; Audet, P.

    2017-12-01

    Studies of the complete structure of the Cascadia subduction zone from the ridge to the arc have historically been limited by the lack of offshore ocean bottom seismograph (OBS) infrastructure. On land, numerous dense seismic deployments have illuminated detailed structures and dynamics associated with the interaction between the subducting oceanic plate and the overriding continental plate, including cycling of fluids, serpentinization of the overlying forearc mantle wedge, and the location of the upper surface of the Juan de Fuca plate as it subducts beneath the Pacific Northwest. In the last half-decade, the Cascadia Initiative (CI), along with Neptune (ONC) and several other OBS initiatives, have instrumented both the continental shelf and abyssal plains off shore of the Cascadia subduction zone, facilitating the construction of a complete picture of the subduction zone from ridge to trench and volcanic arc. In this study, we present a preliminary azimuthally anisotropic surface-wave phase-velocity based model of the complete system, capturing both the young, unaltered Juan de Fuca plate from the ridge, to its alteration as it enters the subduction zone, in addition to the overlying continent. This model is constructed from a combination of ambient noise cross-correlations and teleseismic two station interferometry, and combines together concurrently running offshore OBS and onshore stations. We furthermore perform a number of representative 1D depth inversions for shear velocity to categorize the pristine oceanic, subducted oceanic, and continental crust and lithospheric structure. In the future the dispersion dataset will be jointly inverted with receiver functions to constrain a 3D shear-velocity model of the complete region.

  17. Mapping Deep Low Velocity Zones in Alaskan Arctic Coastal Permafrost using Seismic Surface Waves

    NASA Astrophysics Data System (ADS)

    Dou, S.; Ajo Franklin, J. B.; Dreger, D. S.

    2012-12-01

    Surface Waves (MASW) suggests the existence of pronounced low shear wave velocity zones that span the depth range of 2 - 30 meters; this zone has shear velocity values comparable to partially thawed soils. Such features coincide with previous findings of very low electrical resistivity structure (as low as ~10 Ohm*m at some locations) from measurements obtained in the first NGEE-Arctic geophysical field campaign (conducted in the week of September 24 - October 1, 2011). These low shear velocity zones are likely representative of regions with high unfrozen water content and thus have important implications on the rate of microbial activity and the vulnerability of deep permafrost carbon pools. Analysis of this dataset required development of a novel inversion approach based on waveform inversion. The existence of multiple closely spaced Rayleigh wave modes made traditional inversion based on mode picking virtually impossible; As a result, we selected a direct misfit evaluation based on comparing dispersion images in the phase velocity/frequency domain. The misfit function was optimized using a global search algorithm, in this case Huyer and Neumaier's Multi Coordinate Search algorithm (MCS). This combination of MCS and waveform misfit allowed recovery of the low velocity region despite the existence of closely spaced modes.

  18. Linear excitation of the trapped waves by an incident wave

    NASA Astrophysics Data System (ADS)

    Postacioglu, Nazmi; Sinan Özeren, M.

    2016-04-01

    The excitation of the trapped waves by coastal events such as landslides has been extensively studied. The events in the open sea have in general larger magnitude. However the incident waves produced by these events in the open sea can only excite the the trapped waves through no linearity if the isobaths are straight lines that are in parallel with the coastline. We will show that the imperfections of the coastline can couple the incident and trapped waves using only linear processes. The Coriolis force is neglected in this work . Accordingly the trapped waves are consequence of uneven bathimetry. In the bathimetry we consider, the sea is divided into zones of constant depth and the boundaries between the zones are a family of hyperbolas. The boundary conditions between the zones will lead to an integral equation for the source distribution on the boundaries. The solution will contain both radiating and trapped waves. The trapped waves pose a serious threat for the coastal communities as they can travel long distances along the coastline without losing their energy through geometrical spreading.

  19. Using InterWave Aberrometry to Measure and Improve the Quality of Vision in LASIK Surgery

    PubMed Central

    Thompson, Keith P.; Staver, P. Randall; Garcia, Jose R.; Burns, Stephen A.; Webb, Robert H.; Stulting, R. Doyle

    2005-01-01

    Objective To compare visual outcomes in eyes undergoing aberrometry-guided (InterWave) LASIK with those in eyes undergoing standard LASIK treatment based upon refractive measures. Design Single-center, comparative, interventional, consecutive case series. Participants Four hundred two consecutive eyes undergoing LASIK were analyzed retrospectively. One group, 106 eyes undergoing primary LASIK and 224 eyes undergoing LASIK enhancement, was treated with standard LASIK treatment using a 5.5-mm optical zone, 1.5-mm transition zone laser with the settings determined by manifest refraction. The second group, 44 untreated (primary) eyes and 28 previously treated (enhancement) eyes, received a multipass, multistage treatment in which the laser settings for each stage were determined by aberrometry measurements. Eyes with desired monovision (undercorrected) outcome and preoperative hyperopia were excluded from the study. Intervention An aberrometry-guided laser treatment (InterWave LASIK) was compared with the standard LASIK treatment based upon the manifest refraction. Main Outcome Measures Uncorrected visual acuity (VA), manifest refraction, best spectacle-corrected VA (BSCVA), severity of halos, and root mean square (RMS) retinal blur area measured at 3 months postoperatively. Results Three months postoperatively there was no difference in uncorrected VA, BSCVA, refraction, or RMS retinal blur areas for pupil sizes of 3.5 mm between eyes treated by InterWave and those treated by standard LASIK. However, InterWave LASIK reduced the retinal blur area by 48% (P<0.0103) and 58% (P<0.0004) in primary cases and 43% (P<0.0430) and 74% (P<0.0271) in enhancement cases, respectively, for pupil sizes of 4.5 and 6.5 mm relative to standard LASIK treatments. Patients undergoing InterWave-guided treatment reported less severity of halo (0.37 vs. 0.98 [P<0.016] for primary cases and 0.35 vs. 0.73 [P<0.04] for enhancement cases). Conclusion InterWave LASIK achieved acuity and refractive

  20. Guided-wave high-performance spectrometers for the MEOS miniature earth observation satellite

    NASA Astrophysics Data System (ADS)

    Kruzelecky, Roman V.; Wong, Brian; Zou, Jing; Jamroz, Wes; Sloan, James; Cloutis, Edward

    2017-11-01

    The MEOS Miniature Earth Observing Satellite is a low-cost mission being developed for the Canadian Space Agency with international collaborations that will innovatively combine remote correlated atmospheric/land-cover measurements with the corresponding atmospheric and ecosystem modelling in near real-time to obtain simultaneous variations in lower tropospheric GHG mixing ratios and the resulting responses of the surface ecosystems. MEOS will provide lower tropospheric CO2, CH4, CO, N2O, H2O and aerosol mixing ratios over natural sources and sinks using two kinds of synergistic observations; a forward limb measurement and a follow-on nadir measurement over the same geographical tangent point. The measurements will be accomplished using separate limb and nadir suites of innovative miniature line-imaging spectrometers and will be spatially coordinated such that the same air mass is observed in both views within a few minutes. The limb data will consist of 16-pixel vertical spectral line imaging to provide 1-km vertical resolution, while the corresponding nadir measurements will view sixteen 5 by 10 km2 ground pixels with a 160-km East-West swath width. To facilitate the mission accommodation on a low-cost microsat with a net payload mass under 22 kg, groundbreaking miniature guided-wave spectrometers with advanced optical filtering and coding technologies will be employed based on MPBC's patented IOSPEC technologies. The data synergy requirements for each view will be innovatively met using two complementary miniature line-imaging spectrometers to provide broad-band measurements from 1200 to 2450 nm at about 1.2 nm/pixel bandwidth using a multislit binary-coded MEMS-IOSPEC and simultaneous high-resolution multiple microchannels at 0.03 nm FWHM using the revolutionary FP-IOSPEC Fabry-Perot guided-wave spectrometer concept. The guided-wave spectrometer integration provides an order of magnitude reduction in the mass and volume relative to traditional bulk

  1. Predictive simulation of guide-wave structural health monitoring

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor

    2017-04-01

    This paper presents an overview of recent developments on predictive simulation of guided wave structural health monitoring (SHM) with piezoelectric wafer active sensor (PWAS) transducers. The predictive simulation methodology is based on the hybrid global local (HGL) concept which allows fast analytical simulation in the undamaged global field and finite element method (FEM) simulation in the local field around and including the damage. The paper reviews the main results obtained in this area by researchers of the Laboratory for Active Materials and Smart Structures (LAMSS) at the University of South Carolina, USA. After thematic introduction and research motivation, the paper covers four main topics: (i) presentation of the HGL analysis; (ii) analytical simulation in 1D and 2D; (iii) scatter field generation; (iv) HGL examples. The paper ends with summary, discussion, and suggestions for future work.

  2. Wave groupiness variations in the nearshore

    USGS Publications Warehouse

    List, J.H.

    1991-01-01

    This paper proposes a new definition of the groupiness factor, GF, based on the envelope of the incident-wave time series. It is shown that an envelope-based GF has several important advantages over the SIWEH-based groupiness factor, including objective criteria for determining the accuracy of the envelope function and well-defined numerical limits. Using this new GF, the variability of incident wave groupiness in the field is examined both temporally, in unbroken waves at a fixed location, and spatially, in a cross-shore array through the surf zone. Contrary to previous studies using the SIWEH-based GF, results suggest that incident wave groupiness may not be an independent parameter in unbroken waves; through a wide range of spectral shapes, from swell to storm waves, the groupiness did not vary significantly. As expected, the groupiness decreases rapidly as waves break through the surf zone, although significant wave height variability persists even through a saturated surf zone. The source of this inner surf zone groupiness is not identified; however, this observation implies that models of long wave generation must account for nonsteady radiation stress gradients landward of some narrow zone near the mean breakpoint. ?? 1991.

  3. Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber

    NASA Astrophysics Data System (ADS)

    London, Yosef; Diamandi, Hilel Hagai; Zadok, Avi

    2017-04-01

    An opto-electronic radio-frequency oscillator that is based on forward scattering by the guided acoustic modes of a standard single-mode optical fiber is proposed and demonstrated. An optical pump wave is used to stimulate narrowband, resonant guided acoustic modes, which introduce phase modulation to a co-propagating optical probe wave. The phase modulation is converted to an intensity signal at the output of a Sagnac interferometer loop. The intensity waveform is detected, amplified, and driven back to modulate the optical pump. Oscillations are achieved at a frequency of 319 MHz, which matches the resonance of the acoustic mode that provides the largest phase modulation of the probe wave. Oscillations at the frequencies of competing acoustic modes are suppressed by at least 40 dB. The linewidth of the acoustic resonance is sufficiently narrow to provide oscillations at a single longitudinal mode of the hybrid cavity. Competing longitudinal modes are suppressed by at least 38 dB as well. Unlike other opto-electronic oscillators, no radio-frequency filtering is required within the hybrid cavity. The frequency of oscillations is entirely determined by the fiber opto-mechanics.

  4. Guided wave energy trapping to detect hidden multilayer delamination damage

    NASA Astrophysics Data System (ADS)

    Leckey, Cara A. C.; Seebo, Jeffrey P.

    2015-03-01

    Nondestructive Evaluation (NDE) and Structural Health Monitoring (SHM) simulation tools capable of modeling three-dimensional (3D) realistic energy-damage interactions are needed for aerospace composites. Current practice in NDE/SHM simulation for composites commonly involves over-simplification of the material parameters and/or a simplified two-dimensional (2D) approach. The unique damage types that occur in composite materials (delamination, microcracking, etc) develop as complex 3D geometry features. This paper discusses the application of 3D custom ultrasonic simulation tools to study wave interaction with multilayer delamination damage in carbon-fiber reinforced polymer (CFRP) composites. In particular, simulation based studies of ultrasonic guided wave energy trapping due to multilayer delamination damage were performed. The simulation results show changes in energy trapping at the composite surface as additional delaminations are added through the composite thickness. The results demonstrate a potential approach for identifying the presence of hidden multilayer delamination damage in applications where only single-sided access to a component is available. The paper also describes recent advancements in optimizing the custom ultrasonic simulation code for increases in computation speed.

  5. Incorporating fault zone head wave and direct wave secondary arrival times into seismic tomography: Application at Parkfield, California

    NASA Astrophysics Data System (ADS)

    Bennington, Ninfa L.; Thurber, Clifford; Peng, Zhigang; Zhang, Haijiang; Zhao, Peng

    2013-03-01

    We present a three-dimensional (3D) P wave velocity (Vp) model of the Parkfield region that utilizes existing P wave arrival time data, including fault zone head waves (FZHWs), and data from direct wave secondary arrivals (DWSAs). The first-arrival and DWSA travel times are obtained as the global- and local-minimum travel time paths, respectively. The inclusion of FZHWs and DWSAs results in as much as a 5% and a 10% increase in the across-fault velocity contrast, respectively, for the Vp model at Parkfield relative to that of Thurber et al. [2006]. Viewed along strike, three pronounced velocity contrast regions are observed: a pair of strong positive velocity contrasts (SW fast), one NW of the 1966 Parkfield earthquake hypocenter and the other SE of the 2004 Parkfield earthquake hypocenter, and a strong negative velocity contrast (NE fast) between the two hypocenters. The negative velocity contrast partially to entirely encompasses peak coseismic slip estimated in several slip models for the 2004 earthquake, suggesting that the negative velocity contrast played a part in defining the rupture patch of the 2004 Parkfield earthquake. Following Ampuero and Ben-Zion (2008), the pattern of velocity contrasts is consistent with the observed bilateral rupture propagation for the 2004 Parkfield earthquake. Although the velocity contrasts also suggest bilateral rupture propagation for the 1966 Parkfield earthquake, the fault is creeping to the NW here, i.e., exhibiting velocity-strengthening behavior. Thus, it is not surprising that rupture propagated only SE during this event.

  6. Wave interference: mechanics of the standing wave component and the illusion of "which way" information

    NASA Astrophysics Data System (ADS)

    Hudgins, W. R.; Meulenberg, A.; Penland, R. F.

    2015-09-01

    Two adjacent coherent light beams, 180° out of phase and traveling on adjacent, parallel paths, remain visibly separated by the null (dark) zone from their mutual interference pattern as they merge. Each half of the pattern can be traced to one of the beams. Does such an experiment provide both "which way" and momentum knowledge? To answer this question, we demonstrate, by examining behavior of wave momentum and energy in a medium, that interfering waves interact. Central to the mechanism of interference is a standing wave component resulting from the combination of coherent waves. We show the mathematics for the formation of the standing wave component and for wave momentum involved in the waves' interaction. In water and in open coaxial cable, we observe that standing waves form cells bounded "reflection zones" where wave momentum from adjacent cells is reversed, confining oscillating energy to each cell. Applying principles observed in standing waves in media to the standing wave component of interfering light beams, we identify dark (null) regions to be the reflection zones. Each part of the interference pattern is affected by interactions between other parts, obscuring "which-way" information. We demonstrated physical interaction experimentally using two beams interfering slightly with one dark zone between them. Blocking one beam "downstream" from the interference region removed the null zone and allowed the remaining beam to evolve to a footprint of a single beam.

  7. Smooth bridge between guided waves and spoof surface plasmon polaritons.

    PubMed

    Liu, Liangliang; Li, Zhuo; Gu, Changqing; Xu, Bingzheng; Ning, Pingping; Chen, Chen; Yan, Jian; Niu, Zhenyi; Zhao, Yongjiu

    2015-04-15

    In this work, we build a smooth bridge between a coaxial waveguide and a plasmonic waveguide with subwavelength periodically cylindrical radial grooves, to realize high-efficiency mode conversion between conventional guided waves and spoof surface plasmon polaritons in broadband. This bridge consists of a flaring coaxial waveguide connected with a metal cylindrical wire corrugated with subwavelength gradient radial grooves. Experimental results of the transmission and reflection coefficients show excellent agreement with the numerical simulations. The proposed scheme can be extended readily to other bands and the bridge structure can find potential applications in the integration of conventional microwave or terahertz devices with plasmonic circuits.

  8. Ensembles of novelty detection classifiers for structural health monitoring using guided waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dib, Gerges; Karpenko, Oleksii; Koricho, Ermias

    Guided wave structural health monitoring uses sparse sensor networks embedded in sophisticated structures for defect detection and characterization. The biggest challenge of those sensor networks is developing robust techniques for reliable damage detection under changing environmental and operating conditions. To address this challenge, we develop a novelty classifier for damage detection based on one class support vector machines. We identify appropriate features for damage detection and introduce a feature aggregation method which quadratically increases the number of available training observations.We adopt a two-level voting scheme by using an ensemble of classifiers and predictions. Each classifier is trained on a differentmore » segment of the guided wave signal, and each classifier makes an ensemble of predictions based on a single observation. Using this approach, the classifier can be trained using a small number of baseline signals. We study the performance using monte-carlo simulations of an analytical model and data from impact damage experiments on a glass fiber composite plate.We also demonstrate the classifier performance using two types of baseline signals: fixed and rolling baseline training set. The former requires prior knowledge of baseline signals from all environmental and operating conditions, while the latter does not and leverages the fact that environmental and operating conditions vary slowly over time and can be modeled as a Gaussian process.« less

  9. Evolution of a Directional Wave Spectrum in a 3D Marginal Ice Zone with Random Floe Size Distribution

    NASA Astrophysics Data System (ADS)

    Montiel, F.; Squire, V. A.

    2013-12-01

    A new ocean wave/sea-ice interaction model is proposed that simulates how a directional wave spectrum evolves as it travels through a realistic marginal ice zone (MIZ), where wave/ice dynamics are entirely governed by coherent conservative wave scattering effects. Field experiments conducted by Wadhams et al. (1986) in the Greenland Sea generated important data on wave attenuation in the MIZ and, particularly, on whether the wave spectrum spreads directionally or collimates with distance from the ice edge. The data suggest that angular isotropy, arising from multiple scattering by ice floes, occurs close to the edge and thenceforth dominates wave propagation throughout the MIZ. Although several attempts have been made to replicate this finding theoretically, including by the use of numerical models, none have confronted this problem in a 3D MIZ with fully randomised floe distribution properties. We construct such a model by subdividing the discontinuous ice cover into adjacent infinite slabs of finite width parallel to the ice edge. Each slab contains an arbitrary (but finite) number of circular ice floes with randomly distributed properties. Ice floes are modeled as thin elastic plates with uniform thickness and finite draught. We consider a directional wave spectrum with harmonic time dependence incident on the MIZ from the open ocean, defined as a continuous superposition of plane waves traveling at different angles. The scattering problem within each slab is then solved using Graf's interaction theory for an arbitrary incident directional plane wave spectrum. Using an appropriate integral representation of the Hankel function of the first kind (see Cincotti et al., 1993), we map the outgoing circular wave field from each floe on the slab boundaries into a directional spectrum of plane waves, which characterizes the slab reflected and transmitted fields. Discretizing the angular spectrum, we can obtain a scattering matrix for each slab. Standard recursive

  10. Propagation of acoustic shock waves between parallel rigid boundaries and into shadow zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desjouy, C., E-mail: cyril.desjouy@gmail.com; Ollivier, S.; Dragna, D.

    2015-10-28

    The study of acoustic shock propagation in complex environments is of great interest for urban acoustics, but also for source localization, an underlying problematic in military applications. To give a better understanding of the phenomenon taking place during the propagation of acoustic shocks, laboratory-scale experiments and numerical simulations were performed to study the propagation of weak shock waves between parallel rigid boundaries, and into shadow zones created by corners. In particular, this work focuses on the study of the local interactions taking place between incident, reflected, and diffracted waves according to the geometry in both regular or irregular – alsomore » called Von Neumann – regimes of reflection. In this latter case, an irregular reflection can lead to the formation of a Mach stem that can modify the spatial distribution of the acoustic pressure. Short duration acoustic shock waves were produced by a 20 kilovolts electric spark source and a schlieren optical method was used to visualize the incident shockfront and the reflection/diffraction patterns. Experimental results are compared to numerical simulations based on the high-order finite difference solution of the two dimensional Navier-Stokes equations.« less

  11. Peri-Elastodynamic Simulations of Guided Ultrasonic Waves in Plate-Like Structure with Surface Mounted PZT.

    PubMed

    Patra, Subir; Ahmed, Hossain; Banerjee, Sourav

    2018-01-18

    Peridynamic based elastodynamic computation tool named Peri-elastodynamics is proposed herein to simulate the three-dimensional (3D) Lamb wave modes in materials for the first time. Peri-elastodynamics is a nonlocal meshless approach which is a scale-independent generalized technique to visualize the acoustic and ultrasonic waves in plate-like structure, micro-electro-mechanical systems (MEMS) and nanodevices for their respective characterization. In this article, the characteristics of the fundamental Lamb wave modes are simulated in a sample plate-like structure. Lamb wave modes are generated using a surface mounted piezoelectric (PZT) transducer which is actuated from the top surface. The proposed generalized Peri-elastodynamics method is not only capable of simulating two dimensional (2D) in plane wave under plane strain condition formulated previously but also capable of accurately simulating the out of plane Symmetric and Antisymmetric Lamb wave modes in plate like structures in 3D. For structural health monitoring (SHM) of plate-like structures and nondestructive evaluation (NDE) of MEMS devices, it is necessary to simulate the 3D wave-damage interaction scenarios and visualize the different wave features due to damages. Hence, in addition, to simulating the guided ultrasonic wave modes in pristine material, Lamb waves were also simulated in a damaged plate. The accuracy of the proposed technique is verified by comparing the modes generated in the plate and the mode shapes across the thickness of the plate with theoretical wave analysis.

  12. Chiral behaviour of the wave functions for three wave guides in the vicinity of an exceptional point of third order

    NASA Astrophysics Data System (ADS)

    Heiss, Walter Dieter; Wunner, Günter

    2017-12-01

    A matrix model that has been used to describe essential features of a parity-time symmetric set-up of three coupled wave guides is investigated. The emphasis of the study lies on the occurrence of an exceptional point of third order. It is demonstrated that the eigenfunctions in close vicinity of the exceptional point have a distinctive chiral behaviour. Using data describing realistic situations it is argued that such chiral behaviour can be tested experimentally.

  13. Guided wave propagation in metallic and resin plates loaded with water on single surface

    NASA Astrophysics Data System (ADS)

    Hayashi, Takahiro; Inoue, Daisuke

    2016-02-01

    Our previous papers reported dispersion curves for leaky Lamb waves in a water-loaded plate and wave structures for several typical modes including quasi-Scholte waves [1,2]. The calculations were carried out with a semi-analytical finite element (SAFE) method developed for leaky Lamb waves. This study presents SAFE calculations for transient guided waves including time-domain waveforms and animations of wave propagation in metallic and resin water-loaded plates. The results show that non-dispersive and non-attenuated waves propagating along the interface between the fluid and the plate are expected for effective non-destructive evaluation of such fluid-loaded plates as storage tanks and transportation pipes. We calculated transient waves in both steel and polyvinyl chloride (PVC) plates loaded with water on a single side and input dynamic loading from a point source on the other water-free surface as typical examples of metallic and resin plates. For a steel plate, there exists a non-dispersive and non-attenuated mode, called the quasi-Scholte wave, having an almost identical phase velocity to that of water. The quasi-Scholte wave has superior generation efficiency in the low frequency range due to its broad energy distribution across the plate, whereas it is localized near the plate-water interface at higher frequencies. This means that it has superior detectability of inner defects. For a PVC plate, plural non-attenuated modes exist. One of the non-attenuated modes similar to the A0 mode of the Lamb wave in the form of a group velocity dispersion curve is promising for the non-destructive evaluation of the PVC plate because it provides prominent characteristics of generation efficiency and low dispersion.

  14. Quantitative analysis of seismic trapped waves in the rupture zone of the Landers, 1992, California earthquake: Evidence for a shallow trapping structure

    NASA Astrophysics Data System (ADS)

    Peng, Z.; Ben-Zion, Y.; Michael, A. J.; Zhu, L.

    2002-12-01

    Waveform modeling of seismic fault zone (FZ) trapped waves has been claimed to provide a high resolution imaging of FZ structure at seismogenic depth. We analyze quantitatively a waveform data set generated by 238 Landers aftershocks recorded by a portable seismic array (Lee, 1999). The array consists of 33 three-component L-22 seismometers, 22 of which on a line crossing the surface rupture zone of the mainshock. A subset of 93 aftershocks were also recorded by the Southern California Seismic Network, while the other events were recorded only by the FZ array. We locate the latter subset of events with a "grid-search relocation method" using accurately picked P and S arrival times, a half-space velocity model, and back-azimuth adjustment to correct the effect of low velocity FZ material on phase arrivals. Next we determine the quality of FZ trapped wave generation from the ratio of trapped waves to S-wave energy for stations relatively close to and far from the FZ. Energy ratios exceeding 4, between 2 and 4, and less than 2, are assigned quality A, B, and C of trapped wave generation. We find that about 70% of nearby events with S-P time less than 2 sec, including many clearly off the fault, generate FZ trapped waves with quality A or B. This distribution is in marked contrast with previous claims that trapped waves at Landers are generated only by sources close to or inside the fault zone (Li et al., 1994, 2000). The existence of trapped waves due to sources outside the Landers rupture zone indicates that the generating structure is shallow, as demonstrated in recent 3D calculations of wave propagation in irregular FZ structures (Fohrmann et al., 2002). The time difference between the S arrivals and trapped wave group does not grow systematically with increasing source-receiver distance along the fault, in agreement with the above conclusion. The dispersion of trapped waves at Landers is rather weak, again suggesting a short propagation distance inside the low

  15. Gas exchange in the ice zone: the role of small waves and big animals

    NASA Astrophysics Data System (ADS)

    Loose, B.; Takahashi, A.; Bigdeli, A.

    2016-12-01

    The balance of air-sea gas exchange and net biological carbon fixation determine the transport and transformation of carbon dioxide and methane in the ocean. Air-sea gas exchange is mostly driven by upper ocean physics, but biology can also play a role. In the open ocean, gas exchange increases proportionate to the square of wind speed. When sea ice is present, this dependence breaks down in part because breaking waves and air bubble entrainment are damped out by interactions between sea ice and the wave field. At the same time, sea ice motions, formation, melt, and even sea ice-associated organisms can act to introduce turbulence and air bubbles into the upper ocean, thereby enhancing air-sea gas exchange. We take advantage of the knowledge advances of upper ocean physics including bubble dynamics to formulate a model for air-sea gas exchange in the sea ice zone. Here, we use the model to examine the role of small-scale waves and diving animals that trap air for insulation, including penguins, seals and polar bears. We compare these processes to existing parameterizations of wave and bubble dynamics in the open ocean, to observe how sea ice both mitigates and locally enhances air-sea gas transfer.

  16. Design of a high efficiency relativistic backward wave oscillator with low guiding magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaoze; Song, Wei; Tan, Weibing

    2016-07-15

    A high efficiency relativistic backward wave oscillator working at a low guiding magnetic field is designed and simulated. A trapezoidal resonant reflector is used to reduce the modulation field in the resonant reflector to avoid overmodulation of the electron beam which will lead to a large momentum spread and then low conversion efficiency. The envelope of the inner radius of the slow wave structure (SWS) increases stepwise to keep conformal to the trajectory of the electron beam which will alleviate the bombardment of the electron on the surface of the SWS. The length of period of the SWS is reducedmore » gradually to make a better match between phase velocity and electron beam, which decelerates continually and improves the RF current distribution. Meanwhile the modulation field is reduced by the introduction of nonuniform SWS also. The particle in cell simulation results reveal that a microwave with a power of 1.8 GW and a frequency of 14.7 GHz is generated with an efficiency of 47% when the diode voltage is 620 kV, the beam current 6.1 kA, and the guiding magnetic field 0.95 T.« less

  17. Wave Dissipation over Nearshore Beach Morphology: Insights from High-Resolution LIDAR Observations and the SWASH Wave Model

    NASA Astrophysics Data System (ADS)

    Mulligan, R. P.; Gomes, E.; McNinch, J.; Brodie, K. L.

    2016-02-01

    Numerical modelling of the nearshore zone can be computationally intensive due to the complexity of wave breaking, and the need for high temporal and spatial resolution. In this study we apply the SWASH non-hydrostatic wave-flow model that phase-resolves the free surface and fluid motions in the water column at high resolution. The model is forced using observed directional energy spectra, and results are compared to wave observations during moderate storm events. Observations are collected outside the surf zone using acoustic wave and currents sensors, and inside the surf zone over a 100 m transect using high-resolution LIDAR measurements of the sea surface from a sensor mounted on a tower on the beach dune at the Field Research Facility in Duck, NC. The model is applied to four cases with different wave conditions and bathymetry, and used to predict the spatial variability in wave breaking, and correlation between energy dissipation and morphologic features. Model results compare well with observations of spectral evolution outside the surf zone, and with the remotely sensed observations of wave transformation inside the surf zone. The results indicate the importance of nearshore bars, rip-channels, and larger features (major scour depression under the pier following large waves from Hurricane Irene) on the location of wave breaking and alongshore variability in wave energy dissipation.

  18. Acoustic Gravity Waves Generated by an Oscillating Ice Sheet in Arctic Zone

    NASA Astrophysics Data System (ADS)

    Abdolali, A.; Kadri, U.; Kirby, J. T., Jr.

    2016-12-01

    ., 2015, Depth-integrated equation for hydro-acoustic waves with bottom damping, Journal of Fluid Mechanics, 766, R1 doi:10.1017/jfm.2015.37 Kadri, U., 2016, Generation of Hydroacoustic Waves by an Oscillating Ice Block in Arctic Zones, Advances in Acoustics and Vibration. 2016. doi:10.1155/2016/8076108

  19. Structural health monitoring of plates with surface features using guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2009-03-01

    Distributed array systems for guided ultrasonic waves offer an efficient way for the long-term monitoring of the structural integrity of large plate-like structures. The measurement concept involving baseline subtraction has been demonstrated under laboratory conditions. For the application to real technical structures it needs to be shown that the methodology works equally well in the presence of structural and surface features. Problems employing this structural health monitoring concept can occur due to the presence of additional changes in the signal reflected at undamaged parts of the structure. The influence of the signal processing parameters and transducer placement on the damage detection and localization accuracy is discussed. The use of permanently attached, distributed sensors for the A0 Lamb wave mode has been investigated. Results are presented using experimental data obtained from laboratory measurements and Finite Element simulated signals for a large steel plate with a welded stiffener.

  20. Scenario based tsunami wave height estimation towards hazard evaluation for the Hellenic coastline and examples of extreme inundation zones in South Aegean

    NASA Astrophysics Data System (ADS)

    Melis, Nikolaos S.; Barberopoulou, Aggeliki; Frentzos, Elias; Krassanakis, Vassilios

    2016-04-01

    A scenario based methodology for tsunami hazard assessment is used, by incorporating earthquake sources with the potential to produce extreme tsunamis (measured through their capacity to cause maximum wave height and inundation extent). In the present study we follow a two phase approach. In the first phase, existing earthquake hazard zoning in the greater Aegean region is used to derive representative maximum expected earthquake magnitude events, with realistic seismotectonic source characteristics, and of greatest tsunamigenic potential within each zone. By stacking the scenario produced maximum wave heights a global maximum map is constructed for the entire Hellenic coastline, corresponding to all expected extreme offshore earthquake sources. Further evaluation of the produced coastline categories based on the maximum expected wave heights emphasizes the tsunami hazard in selected coastal zones with important functions (i.e. touristic crowded zones, industrial zones, airports, power plants etc). Owing to its proximity to the Hellenic Arc, many urban centres and being a popular tourist destination, Crete Island and the South Aegean region are given a top priority to define extreme inundation zoning. In the second phase, a set of four large coastal cities (Kalamata, Chania, Heraklion and Rethymno), important for tsunami hazard, due i.e. to the crowded beaches during the summer season or industrial facilities, are explored towards preparedness and resilience for tsunami hazard in Greece. To simulate tsunamis in the Aegean region (generation, propagation and runup) the MOST - ComMIT NOAA code was used. High resolution DEMs for bathymetry and topography were joined via an interface, specifically developed for the inundation maps in this study and with similar products in mind. For the examples explored in the present study, we used 5m resolution for the topography and 30m resolution for the bathymetry, respectively. Although this study can be considered as

  1. Investigation of the interwire energy transfer of elastic guided waves inside prestressed cables.

    PubMed

    Treyssède, Fabien

    2016-07-01

    Elastic guided waves are of interest for the non-destructive evaluation of cables. Cables are most often multi-wire structures, and understanding wave propagation requires numerical models accounting for the helical geometry of individual wires, the interwire contact mechanisms and the effects of prestress. In this paper, a modal approach based on a so-called semi-analytical finite element method and taking advantage of a biorthogonality relation is proposed in order to calculate the forced response under excitation of a cable, multi-wired, twisted, and prestressed. The main goal of this paper is to investigate how the energy transfers from a given wire, directly excited, to the other wires in order to identify some localization of energy inside the active wire as the waves propagate along the waveguide. The power flow of the excited field is theoretically derived and an energy transfer parameter is proposed to evaluate the level of energy localization inside a given wire. Numerical results obtained for different polarizations of excitation, central and peripheral, highlight how the energy may localize, spread, or strongly change in the cross-section as waves travel along the axis. In particular, a compressional mode localized inside the central wire is found, with little dispersion and significant excitability.

  2. Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method

    PubMed Central

    Madni, Hamza Ahmad; Zheng, Bin; Yang, Yihao; Wang, Huaping; Zhang, Xianmin; Yin, Wenyan; Li, Erping; Chen, Hongsheng

    2016-01-01

    Compared with conventional radio frequency (RF) shielding methods in which the conductive coating material encloses the circuits design and the leakage problem occurs due to the gap in such conductive material, non-contact RF shielding at a distance is very promising but still impossible to achieve so far. In this paper, a multi-folded transformation optics method is proposed to design a non-contact device for RF shielding. This “open-shielded” device can shield any object at a distance from the electromagnetic waves at the operating frequency, while the object is still physically open to the outer space. Based on this, an open-carpet cloak is proposed and the functionality of the open-carpet cloak is demonstrated. Furthermore, we investigate a scheme of non-contact wave guiding to remotely control the propagation of surface waves over any obstacles. The flexibilities of such multi-folded transformation optics method demonstrate the powerfulness of the method in the design of novel remote devices with impressive new functionalities. PMID:27841358

  3. High accuracy binary black hole simulations with an extended wave zone

    NASA Astrophysics Data System (ADS)

    Pollney, Denis; Reisswig, Christian; Schnetter, Erik; Dorband, Nils; Diener, Peter

    2011-02-01

    We present results from a new code for binary black hole evolutions using the moving-puncture approach, implementing finite differences in generalized coordinates, and allowing the spacetime to be covered with multiple communicating nonsingular coordinate patches. Here we consider a regular Cartesian near-zone, with adapted spherical grids covering the wave zone. The efficiencies resulting from the use of adapted coordinates allow us to maintain sufficient grid resolution to an artificial outer boundary location which is causally disconnected from the measurement. For the well-studied test case of the inspiral of an equal-mass nonspinning binary (evolved for more than 8 orbits before merger), we determine the phase and amplitude to numerical accuracies better than 0.010% and 0.090% during inspiral, respectively, and 0.003% and 0.153% during merger. The waveforms, including the resolved higher harmonics, are convergent and can be consistently extrapolated to r→∞ throughout the simulation, including the merger and ringdown. Ringdown frequencies for these modes (to (ℓ,m)=(6,6)) match perturbative calculations to within 0.01%, providing a strong confirmation that the remnant settles to a Kerr black hole with irreducible mass Mirr=0.884355±20×10-6 and spin Sf/Mf2=0.686923±10×10-6.

  4. Dependence of shear wave seismoelectrics on soil textures: a numerical study in the vadose zone

    NASA Astrophysics Data System (ADS)

    Zyserman, F. I.; Monachesi, L. B.; Jouniaux, L.

    2017-02-01

    In this work, we study seismoelectric conversions generated in the vadose zone, when this region is traversed by a pure SH wave. We assume that the soil is a 1-D partially saturated lossy porous medium and we use the van Genuchten's constitutive model to describe the water saturation profile. Correspondingly, we extend Pride's formulation to deal with partially saturated media. In order to evaluate the influence of different soil textures we perform a numerical analysis considering, among other relevant properties, the electrokinetic coupling, coseismic responses and interface responses (IRs). We propose new analytical transfer functions for the electric and magnetic field as a function of the water saturation, modifying those of Bordes et al. and Garambois & Dietrich, respectively. Further, we introduce two substantially different saturation-dependent functions into the electrokinetic (EK) coupling linking the poroelastic and the electromagnetic wave equations. The numerical results show that the electric field IRs markedly depend on the soil texture and the chosen EK coupling model, and are several orders of magnitude stronger than the electric field coseismic ones. We also found that the IRs of the water table for the silty and clayey soils are stronger than those for the sandy soils, assuming a non-monotonous saturation dependence of the EK coupling, which takes into account the charged air-water interface. These IRs have been interpreted as the result of the jump in the viscous electric current density at the water table. The amplitude of the IR is obtained using a plane SH wave, neglecting both the spherical spreading and the restriction of its origin to the first Fresnel zone, effects that could lower the predicted values. However, we made an estimation of the expected electric field IR amplitudes detectable in the field by means of the analytical transfer functions, accounting for spherical spreading of the SH seismic waves. This prediction yields a value

  5. Seismic fault zone trapped noise

    NASA Astrophysics Data System (ADS)

    Hillers, G.; Campillo, M.; Ben-Zion, Y.; Roux, P.

    2014-07-01

    Systematic velocity contrasts across and within fault zones can lead to head and trapped waves that provide direct information on structural units that are important for many aspects of earthquake and fault mechanics. Here we construct trapped waves from the scattered seismic wavefield recorded by a fault zone array. The frequency-dependent interaction between the ambient wavefield and the fault zone environment is studied using properties of the noise correlation field. A critical frequency fc ≈ 0.5 Hz defines a threshold above which the in-fault scattered wavefield has increased isotropy and coherency compared to the ambient noise. The increased randomization of in-fault propagation directions produces a wavefield that is trapped in a waveguide/cavity-like structure associated with the low-velocity damage zone. Dense spatial sampling allows the resolution of a near-field focal spot, which emerges from the superposition of a collapsing, time reversed wavefront. The shape of the focal spot depends on local medium properties, and a focal spot-based fault normal distribution of wave speeds indicates a ˜50% velocity reduction consistent with estimates from a far-field travel time inversion. The arrival time pattern of a synthetic correlation field can be tuned to match properties of an observed pattern, providing a noise-based imaging tool that can complement analyses of trapped ballistic waves. The results can have wide applicability for investigating the internal properties of fault damage zones, because mechanisms controlling the emergence of trapped noise have less limitations compared to trapped ballistic waves.

  6. Observation of skull-guided acoustic waves in a water-immersed murine skull using optoacoustic excitation

    NASA Astrophysics Data System (ADS)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-02-01

    The skull bone, a curved solid multilayered plate protecting the brain, constitutes a big challenge for the use of ultrasound-mediated techniques in neuroscience. Ultrasound waves incident from water or soft biological tissue are mostly reflected when impinging on the skull. To this end, skull properties have been characterized for both high-intensity focused ultrasound (HIFU) operating in the narrowband far-field regime and optoacoustic imaging applications. Yet, no study has been conducted to characterize the near-field of water immersed skulls. We used the thermoelastic effect with a 532 nm pulsed laser to trigger a wide range of broad-band ultrasound modes in a mouse skull. In order to capture the waves propagating in the near-field, a thin hydrophone was scanned in close proximity to the skull's surface. While Leaky pseudo-Lamb waves and grazing-angle bulk water waves are clearly visible in the spatio-temporal data, we were only able to identify skull-guided acoustic waves after dispersion analysis in the wavenumber-frequency space. The experimental data was found to be in a reasonable agreement with a flat multilayered plate model.

  7. System and Method for Measuring the Transfer Function of a Guided Wave Device

    NASA Technical Reports Server (NTRS)

    Froggatt, Mark E. (Inventor); Erdogan, Turan (Inventor)

    2002-01-01

    A method/system are provided for measuring the NxN scalar transfer function elements for an N-port guided wave device. Optical energy of a selected wavelength is generated at a source and directed along N reference optical paths having N reference path lengths. Each reference optical path terminates in one of N detectors such that N reference signals are produced at the N detectors. The reference signals are indicative of amplitude, phase and frequency of the optical energy carried along the N reference optical paths. The optical energy from the source is also directed to the N-ports of the guided wave device and then on to each of the N detectors such that N measurement optical paths are defined between the source and each of the N detectors. A portion of the optical energy is modified in terms of at least one of the amplitude and phase to produce N modified signals at each of the N detectors. At each of the N detectors, each of the N modified signals is combined with a corresponding one of the N reference signals to produce corresponding N combined signals at each of the N detectors. A total of N(sup 2) measurement signals are generated by the N detectors. Each of the N(sup 2) measurement signals is sampled at a wave number increment (Delta)k so that N(sup 2) sampled signals are produced. The NxN transfer function elements are generated using the N(sup 2) sampled signals. Reference and measurement path length constraints are defined such that the N combined signals at each of the N detectors are spatially separated from one another in the time domain.

  8. Guided wave technique for non-destructive testing of StifPipe

    NASA Astrophysics Data System (ADS)

    Amjad, Umar; Yadav, Susheel K.; Nguyen, Chi H.; Ehsani, Mohammad; Kundu, Tribikram

    2015-03-01

    The newly-developed StifPipe® is an effective technology for repair and strengthening of existing pipes and culverts. The wall of this pipe consists of a lightweight honeycomb core with carbon or glass fiber reinforced polymer (FRP) applied to the skin. The presence of the hollow honeycomb introduces challenges in the nondestructive testing (NDT) of this pipe. In this study, it is investigated if guided waves, excited by PZT (Lead ZirconateTitanate) transducer can detect damages in the honeycomb layer of the StifPipe®. Multiple signal processing techniques are used for in-depth study and understanding of the recorded signals. The experimental technique for damage detection in StifPipe® material is described and the obtained results are presented in this paper.

  9. Constant Group Velocity Ultrasonic Guided Wave Inspection for Corrosion and Erosion Monitoring in Pipes

    NASA Astrophysics Data System (ADS)

    Instanes, Geir; Pedersen, Audun; Toppe, Mads; Nagy, Peter B.

    2009-03-01

    This paper describes a novel ultrasonic guided wave inspection technique for the monitoring of internal corrosion and erosion in pipes, which exploits the fundamental flexural mode to measure the average wall thickness over the inspection path. The inspection frequency is chosen so that the group velocity of the fundamental flexural mode is essentially constant throughout the wall thickness range of interest, while the phase velocity is highly dispersive and changes in a systematic way with varying wall thickness in the pipe. Although this approach is somewhat less accurate than the often used transverse resonance methods, it smoothly integrates the wall thickness over the whole propagation length, therefore it is very robust and can tolerate large and uneven thickness variations from point to point. The constant group velocity (CGV) method is capable of monitoring the true average of the wall thickness over the inspection length with an accuracy of 1% even in the presence of one order of magnitude larger local variations. This method also eliminates spurious variations caused by changing temperature, which can cause fairly large velocity variations, but do not significantly influence the dispersion as measured by the true phase angle in the vicinity of the CGV point. The CGV guided wave CEM method was validated in both laboratory and field tests.

  10. Features of HF Radio Wave Attenuation in the Midlatitude Ionosphere Near the Skip Zone Boundary

    NASA Astrophysics Data System (ADS)

    Denisenko, P. F.; Skazik, A. I.

    2017-06-01

    We briefly describe the history of studying the decameter radio wave attenuation by different methods in the midlatitude ionosphere. A new method of estimating the attenuation of HF radio waves in the ionospheric F region near the skip zone boundary is presented. This method is based on an analysis of the time structure of the interference field generated by highly stable monochromatic X-mode radio waves at the observation point. The main parameter is the effective electron collision frequency νeff, which allows for all energy losses in the form of equivalent heat loss. The frequency νeff is estimated by matching the assumed (model) and the experimentally observed structures. Model calculations are performed using the geometrical-optics approximation. The spatial attenuation caused by the influence of the medium-scale traveling ionospheric disturbances is taken into account. Spherical shape of the ionosphere and the Earth's magnetic field are roughly allowed for. The results of recording of the level of signals from the RWM (Moscow) station at a frequency of 9.996 MHz at point Rostov are used.

  11. 2D shear-wave ultrasound elastography (SWE) evaluation of ablation zone following radiofrequency ablation of liver lesions: is it more accurate?

    PubMed Central

    Bo, Xiao W; Li, Xiao L; Guo, Le H; Li, Dan D; Liu, Bo J; Wang, Dan; He, Ya P; Xu, Xiao H

    2016-01-01

    Objective: To evaluate the usefulness of two-dimensional quantitative ultrasound shear-wave elastography (2D-SWE) [i.e. virtual touch imaging quantification (VTIQ)] in assessing the ablation zone after radiofrequency ablation (RFA) for ex vivo swine livers. Methods: RFA was performed in 10 pieces of fresh ex vivo swine livers with a T20 electrode needle and 20-W output power. Conventional ultrasound, conventional strain elastography (SE) and VTIQ were performed to depict the ablation zone 0 min, 10 min, 30 min and 60 min after ablation. On VTIQ, the ablation zones were evaluated qualitatively by evaluating the shear-wave velocity (SWV) map and quantitatively by measuring the SWV. The ultrasound, SE and VTIQ results were compared against gross pathological and histopathological specimens. Results: VTIQ SWV maps gave more details about the ablation zone, the central necrotic zone appeared as red, lateral necrotic zone as green and transitional zone as light green, from inner to exterior, while the peripheral unablated liver appeared as blue. Conventional ultrasound and SE, however, only marginally depicted the whole ablation zone. The volumes of the whole ablation zone (central necrotic zone + lateral necrotic zone + transitional zone) and necrotic zone (central necrotic zone + lateral necrotic zone) measured by VTIQ showed excellent correlation (r = 0.915, p < 0.001, and 0.856, p = 0.002, respectively) with those by gross pathological specimen, whereas both conventional ultrasound and SE underestimated the volume of the whole ablation zone. The SWV values of the central necrotic zone, lateral necrotic zone, transitional zone and unablated liver parenchyma were 7.54–8.03 m s−1, 5.13–5.28 m s−1, 3.31–3.53 m s−1 and 2.11–2.21 m s−1, respectively (p < 0.001 for all the comparisons). The SWV value for each ablation zone did not change significantly at different observation times within an hour after RFA

  12. Precision targeting in guided munition using infrared sensor and millimeter wave radar

    NASA Astrophysics Data System (ADS)

    Sulochana, Sreeja; Hablani, Hari B.; Arya, Hemendra

    2016-07-01

    Conventional munitions are not guided with sensors and therefore miss the target, particularly if the target is mobile. The miss distance of these munitions can be decreased by incorporating sensors to detect the target and guide the munition during flight. This paper is concerned with a precision guided munition equipped with an infrared (IR) sensor and a millimeter wave radar (MmW). Three-dimensional flight of the munition and its pitch and yaw motion models are developed and simulated. The forward and lateral motion of a target tank on the ground is modeled as two independent second-order Gauss-Markov processes. To estimate the target location on the ground and the line-of-sight (LOS) rate to intercept it, an extended Kalman filter is composed whose state vector consists of cascaded state vectors of missile dynamics and target dynamics. The LOS angle measurement from the IR seeker is by centroiding the target image in 40 Hz. The centroid estimation of the images in the focal plane is at a frequency of 10 Hz. Every 10 Hz, centroids of four consecutive images are averaged, yielding a time-averaged centroid, implying some measurement delay. The miss distance achieved by including image processing delays is 1.45 m.

  13. Ground Signatures of EMIC Waves obtained From a 3D Global Wave Model

    NASA Astrophysics Data System (ADS)

    Rankin, R.; Sydorenko, D.; Zong, Q.; Zhang, L.

    2016-12-01

    EMIC waves generated in the inner magnetosphere are important drivers of radiation belt particle loss. Van Allen Probes and ground observations of EMIC waves suggest that localized magnetospheric sources inject waves that are guided along geomagnetic field lines and then reflected and refracted in the low altitude magnetosphere [Kim, E.-H., and J. R. Johnson (2016), Geophys. Res. Lett., 43, 13-21, doi:10.1002/2015GL066978] before entering the ionosphere. The waves then spread horizontally within the F-region waveguide and propagate to the ground. To understand the observed properties of EMIC waves, a global 3D model of ULF waves in Earth's magnetosphere, ionosphere, and neutral atmosphere has been developed. The simulation domain extends from Earth's surface to a spherical boundary a few tens of thousands of km in radius. The model uses spherical coordinates and incorporates an overset Yin-Yang grid that eliminates the singularity at the polar axis and improves uniformity of the grid in the polar areas [Kageyama, A., and T. Sato (2004), Geochem. Geophys. Geosyst., 5, Q09005, doi:10.1029/2004GC000734]. The geomagnetic field in the model is general, but is dipole in this study. The plasma is described as a set of electron and multiple species ion conducting fluids. Realistic 3D density profiles of various ion species as well as thermospheric parameters are provided by the Canadian Ionosphere Atmosphere Model (C-IAM) [Martynenko O.V. et al. (2014), J. Atmos. Solar-Terr. Phys., 120, 51-61, doi:10.1016/j.jastp.2014.08.014]. The global ULF wave model is applied to study propagation of EMIC waves excited in the equatorial plane near L=7. Wave propagation along field lines, reflection and refraction in the zone of critical frequencies, and further propagation through the ionosphere to the ground are discussed.

  14. Ultrasonic guided wave monitoring of composite wing skin-to-spar bonded joints in aerospace structures

    NASA Astrophysics Data System (ADS)

    Matt, Howard; Bartoli, Ivan; Lanza di Scalea, Francesco

    2005-10-01

    The monitoring of adhesively bonded joints by ultrasonic guided waves is the general topic of this paper. Specifically, composite-to-composite joints representative of the wing skin-to-spar bonds of unmanned aerial vehicles (UAVs) are examined. This research is the first step towards the development of an on-board structural health monitoring system for UAV wings based on integrated ultrasonic sensors. The study investigates two different lay-ups for the wing skin and two different types of bond defects, namely poorly cured adhesive and disbonded interfaces. The assessment of bond state is based on monitoring the strength of transmission through the joints of selected guided modes. The wave propagation problem is studied numerically by a semi-analytical finite element method that accounts for viscoelastic damping, and experimentally by ultrasonic testing that uses small PZT disks preferably exciting and detecting the single-plate s0 mode. Both the models and the experiments confirm that the ultrasonic energy transmission through the joint is highly dependent on the bond conditions, with defected bonds resulting in increased transmission strength. Large sensitivity to the bond conditions is found at mode coupling points, as a result of the large interlayer energy transfer.

  15. The Effects Of Tides And Waves On Water-Table Elevations In Coastal Zones

    NASA Astrophysics Data System (ADS)

    Turner, Ian L.; Coates, Bruce P.; Acworth, R. Ian

    1996-02-01

    A resurgence of interest in the literature about coastal zones has highlighted the fact that ocean processes can have a significant influence on unconfined coastal aquifers, resulting in a net super-elevation of the water table at the land-ocean boundary to groundwater discharge. This theoretical and experimental notion appears to be less well recognized in the field of groundwater investigation, where it is more usual to assume that the coastal boundary is equivalent to mean sea level. Coastal over-height is due to the ability of a sloping beach face to `fill' (vertical infiltration) at a greater rate than it can `drain' (horizontal seepage). The results of a three-month monitoring of the groundwater profile within a narrow coastal aquifer at New South Wales, Australia, confirms the significance of tide and wave processes to groundwater elevation. The mean height of the water table on the upper beach face was about 1.2 m above mean sea level, rising to 2.0 m during a period of coincident spring tides, storm waves, and rainfall. This elevation was sufficient to temporarily reverse the direction of groundwater flow. Fourier analysis and cross-correlation are used to help distinguish the role of tides in maintaining groundwater super-elevation from the role of storm waves in further raising the coastal water table for periods of two to three days. The results of a simple numerical simulation demonstrate that estimated rates of groundwater discharge at the study site were halved when the effect of tides and waves was incorporated in the definition of the ocean boundary.

  16. Guided waves propagating in sandwich structures made of anisotropic, viscoelastic, composite materials

    NASA Astrophysics Data System (ADS)

    Castaings, Michel; Hosten, Bernard

    2003-05-01

    The propagation of Lamb-like waves in sandwich plates made of anisotropic and viscoelastic material layers is studied. A semi-analytical model is described and used for predicting the dispersion curves (phase velocity, energy velocity, and complex wave-number) and the through-thickness distribution fields (displacement, stress, and energy flow). Guided modes propagating along a test-sandwich plate are shown to be quite different than classical Lamb modes, because this structure does not have the mirror symmetry, contrary to most of composite material plates. Moreover, the viscoelastic material properties imply complex roots of the dispersion equation to be found that lead to connections between some of the dispersion curves, meaning that some of the modes get coupled together. Gradual variation from zero to nominal values of the imaginary parts of the viscoelastic moduli shows that the mode coupling depends on the level of material viscoelasticity, except for one particular case where this phenomenon exists whether the medium is viscoelastic or not. The model is used to quantify the sensitivity of both the dispersion curves and the through-thickness mode shapes to the level of material viscoelasticity, and to physically explain the mode-coupling phenomenon. Finite element software is also used to confirm results obtained for the purely elastic structure. Finally, experiments are made using ultrasonic, air-coupled transducers for generating and detecting guided modes in the test-sandwich structure. The mode-coupling phenomenon is then confirmed, and the potential of the air-coupled system for developing single-sided, contactless, NDT applications of such structures is discussed.

  17. Refracted arrival waves in a zone of silence from a finite thickness mixing layer.

    PubMed

    Suzuki, Takao; Lele, Sanjiva K

    2002-02-01

    Refracted arrival waves which propagate in the zone of silence of a finite thickness mixing layer are analyzed using geometrical acoustics in two dimensions. Here, two simplifying assumptions are made: (i) the mean flow field is transversely sheared, and (ii) the mean velocity and temperature profiles approach the free-stream conditions exponentially. Under these assumptions, ray trajectories are analytically solved, and a formula for acoustic pressure amplitude in the far field is derived in the high-frequency limit. This formula is compared with the existing theory based on a vortex sheet corresponding to the low-frequency limit. The analysis covers the dependence on the Mach number as well as on the temperature ratio. The results show that both limits have some qualitative similarities, but the amplitude in the zone of silence at high frequencies is proportional to omega(-1/2), while that at low frequencies is proportional to omega(-3/2), omega being the angular frequency of the source.

  18. Simultaneous excitation system for efficient guided wave structural health monitoring

    NASA Astrophysics Data System (ADS)

    Hua, Jiadong; Michaels, Jennifer E.; Chen, Xin; Lin, Jing

    2017-10-01

    Many structural health monitoring systems utilize guided wave transducer arrays for defect detection and localization. Signals are usually acquired using the ;pitch-catch; method whereby each transducer is excited in turn and the response is received by the remaining transducers. When extensive signal averaging is performed, the data acquisition process can be quite time-consuming, especially for metallic components that require a low repetition rate to allow signals to die out. Such a long data acquisition time is particularly problematic if environmental and operational conditions are changing while data are being acquired. To reduce the total data acquisition time, proposed here is a methodology whereby multiple transmitters are simultaneously triggered, and each transmitter is driven with a unique excitation. The simultaneously transmitted waves are captured by one or more receivers, and their responses are processed by dispersion-compensated filtering to extract the response from each individual transmitter. The excitation sequences are constructed by concatenating a series of chirps whose start and stop frequencies are randomly selected from a specified range. The process is optimized using a Monte-Carlo approach to select sequences with impulse-like autocorrelations and relatively flat cross-correlations. The efficacy of the proposed methodology is evaluated by several metrics and is experimentally demonstrated with sparse array imaging of simulated damage.

  19. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 2: 2x4 Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochkin, V.; Wiehagen, J.

    2017-06-01

    Part 2 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides straightforward and cost-effective strategies to construct durable, energy-efficient walls. It addresses walls constructed with 2x4 wood frame studs, wood structural panel (WSP) sheathing as wall bracing and added backing for foam sheathing, a layer of rigid foam sheathing insulation up to 1.5 inches thick over the WSP, and a cladding system installed over the foam sheathing in low-rise residential buildings up to three stories high. Walls with 2x6 framing are addressed in Part 1 of the Guide.

  20. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 2: 2x4 Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochkin, V.; Wiehagen, J.

    Part 2 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides straightforward and cost-effective strategies to construct durable, energy-efficient walls. It addresses walls constructed with 2x4 wood frame studs, wood structural panel (WSP) sheathing as wall bracing and added backing for foam sheathing, a layer of rigid foam sheathing insulation up to 1.5 inches thick over the WSP, and a cladding system installed over the foam sheathing in low-rise residential buildings up to three stories high. Walls with 2x6 framing are addressed in Part 1 of the Guide.

  1. Modeling Water Waves with Smoothed Particle Hydrodynamics

    DTIC Science & Technology

    2013-09-30

    SPH Model for Water Waves and Other Free Surface Flows ...Lagrangian nature of SPH allows the modeling of wave breaking, surf zones, ship waves, and wave-structure interaction, where the free surface becomes...proving to be a competent modeling scheme for free surface flows in three dimensions including the complex flows of the surf zone. As the GPU

  2. Crack depth profiling using guided wave angle dependent reflectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volker, Arno, E-mail: arno.volker@tno.nl; Pahlavan, Lotfollah, E-mail: arno.volker@tno.nl; Blacquiere, Gerrit, E-mail: arno.volker@tno.nl

    2015-03-31

    Tomographic corrosion monitoring techniques have been developed, using two rings of sensors around the circumference of a pipe. This technique is capable of providing a detailed wall thickness map, however this might not be the only type of structural damage. Therefore this concept is expanded to detect and size cracks and small corrosion defects like root corrosion. The expanded concept uses two arrays of guided-wave transducers, collecting both reflection and transmission data. The data is processed such that the angle-dependent reflectivity is obtained without using a baseline signal of a defect-free situation. The angle-dependent reflectivity is the input of anmore » inversion scheme that calculates a crack depth profile. From this profile, the depth and length of the crack can be determined. Preliminary experiments show encouraging results. The depth sizing accuracy is in the order of 0.5 mm.« less

  3. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications

    NASA Astrophysics Data System (ADS)

    Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane

    The coupled ocean-atmosphere-wave-sediment transport modeling system (COAWST) enables simulations that integrate oceanic, atmospheric, wave and morphological processes in the coastal ocean. Within the modeling system, the three-dimensional ocean circulation module (ROMS) is coupled with the wave generation and propagation model (SWAN) to allow full integration of the effect of waves on circulation and vice versa. The existing wave-current coupling component utilizes a depth dependent radiation stress approach. In here we present a new approach that uses the vortex force formalism. The formulation adopted and the various parameterizations used in the model as well as their numerical implementation are presented in detail. The performance of the new system is examined through the presentation of four test cases. These include obliquely incident waves on a synthetic planar beach and a natural barred beach (DUCK' 94); normal incident waves on a nearshore barred morphology with rip channels; and wave-induced mean flows outside the surf zone at the Martha's Vineyard Coastal Observatory (MVCO). Model results from the planar beach case show good agreement with depth-averaged analytical solutions and with theoretical flow structures. Simulation results for the DUCK' 94 experiment agree closely with measured profiles of cross-shore and longshore velocity data from Garcez Faria et al. (1998, 2000). Diagnostic simulations showed that the nonlinear processes of wave roller generation and wave-induced mixing are important for the accurate simulation of surf zone flows. It is further recommended that a more realistic approach for determining the contribution of wave rollers and breaking induced turbulent mixing can be formulated using non-dimensional parameters which are functions of local wave parameters and the beach slope. Dominant terms in the cross-shore momentum balance are found to be the quasi-static pressure gradient and breaking acceleration. In the alongshore direction

  4. Characterizing Hypervelocity Impact (HVI)-Induced Pitting Damage Using Active Guided Ultrasonic Waves: From Linear to Nonlinear

    PubMed Central

    Liu, Menglong; Wang, Kai; Lissenden, Cliff J.; Wang, Qiang; Zhang, Qingming; Long, Renrong; Su, Zhongqing; Cui, Fangsen

    2017-01-01

    Hypervelocity impact (HVI), ubiquitous in low Earth orbit with an impacting velocity in excess of 1 km/s, poses an immense threat to the safety of orbiting spacecraft. Upon penetration of the outer shielding layer of a typical two-layer shielding system, the shattered projectile, together with the jetted materials of the outer shielding material, subsequently impinge the inner shielding layer, to which pitting damage is introduced. The pitting damage includes numerous craters and cracks disorderedly scattered over a wide region. Targeting the quantitative evaluation of this sort of damage (multitudinous damage within a singular inspection region), a characterization strategy, associating linear with nonlinear features of guided ultrasonic waves, is developed. Linear-wise, changes in the signal features in the time domain (e.g., time-of-flight and energy dissipation) are extracted, for detecting gross damage whose characteristic dimensions are comparable to the wavelength of the probing wave; nonlinear-wise, changes in the signal features in the frequency domain (e.g., second harmonic generation), which are proven to be more sensitive than their linear counterparts to small-scale damage, are explored to characterize HVI-induced pitting damage scattered in the inner layer. A numerical simulation, supplemented with experimental validation, quantitatively reveals the accumulation of nonlinearity of the guided waves when the waves traverse the pitting damage, based on which linear and nonlinear damage indices are proposed. A path-based rapid imaging algorithm, in conjunction with the use of the developed linear and nonlinear indices, is developed, whereby the HVI-induced pitting damage is characterized in images in terms of the probability of occurrence. PMID:28772908

  5. Acoustic guided waves in cylindrical solid-fluid structures: Modeling with a sweeping frequency finite element method and experimental validation

    NASA Astrophysics Data System (ADS)

    Liu, Yang; D'Angelo, Ralph M.; Sinha, Bikash K.; Zeroug, Smaine

    2017-02-01

    Modeling and understanding the complex elastic-wave physics prevalent in solid-fluid cylindrically-layered structures is of importance in many NDE fields, and most pertinently in the domain of well integrity evaluation of cased holes in the oil and gas industry. Current sonic measurements provide viable techniques for well integrity evaluation yet their practical effectiveness is hampered by the current lack of knowledge of acoustic wave fields particularly in complicated cased-hole geometry where for instance two or more nested steel strings are present in the borehole. In this article, we propose and implement a Sweeping Frequency Finite Element Method (SFFEM) for acoustic guided waves simulation in complex geometries that include double steel strings cemented to each other and to the formation and where the strings may be non-concentric. Transient dynamic finite element models are constructed with sweeping frequency signals being applied as the excitation sources. The sources and receivers disposition simulate current sonic measurement tools deployed in the oilfield. Synthetic wavetrains are recorded and processed with modified matrix pencil method to isolate both the dispersive and non-dispersive propagating guided wave modes. Scaled experiments of fluid-filled double strings with dimensions mimicking the real ones encountered in the field have also been carried out to generate reference data. A comparison of the experimental and numerical results indicates that the SFFEM is capable of accurately reproducing the rich and intricate higher-order multiple wave fields observed experimentally in the fluid-filled double string geometries.

  6. ETD in a traveling wave ion guide at tuned Z-spray ion source conditions allows for site-specific hydrogen/deuterium exchange measurements.

    PubMed

    Rand, Kasper D; Pringle, Steven D; Morris, Michael; Engen, John R; Brown, Jeffery M

    2011-10-01

    The recent application of electron transfer dissociation (ETD) to measure the hydrogen exchange of proteins in solution at single-residue resolution (HX-ETD) paves the way for mass spectrometry-based analyses of biomolecular structure at an unprecedented level of detail. The approach requires that activation of polypeptide ions prior to ETD is minimal so as to prevent undesirable gas-phase randomization of the deuterium label from solution (i.e., hydrogen scrambling). Here we explore the use of ETD in a traveling wave ion guide of a quadrupole-time-of-flight (Q-TOF) mass spectrometer with a "Z-spray" type ion source, to measure the deuterium content of individual residues in peptides. We systematically identify key parameters of the Z-spray ion source that contribute to collisional activation and define conditions that allow ETD experiments to be performed in the traveling wave ion guide without gas-phase hydrogen scrambling. We show that ETD and supplemental collisional activation in a subsequent traveling wave ion guide allows for improved extraction of residue-specific deuterium contents in peptides with low charge. Our results demonstrate the feasibility, and illustrate the advantages of performing HX-ETD experiments on a high-resolution Q-TOF instrument equipped with traveling wave ion guides. Determination of parameters of the Z-spray ion source that contribute to ion heating are similarly pertinent to a growing number of MS applications that also rely on an energetically gentle transfer of ions into the gas-phase, such as the analysis of biomolecular structure by native mass spectrometry in combination with gas-phase ion-ion/ion-neutral reactions or ion mobility spectrometry. © American Society for Mass Spectrometry, 2011

  7. Wave Propagation in Aluminum Honeycomb Plate and Debonding Detection Using Scanning Laser Vibrometer.

    PubMed

    Zhao, Jingjing; Li, Fucai; Cao, Xiao; Li, Hongguang

    2018-05-23

    Both the aerospace and marine industry have widely relied on a honeycomb sandwich structure (HSS) because of its high strength-to-weight ratio. However, the intrinsic nature of an adhesively bonded multi-layer structure increases the risk of debonding when the structure is under strain or exposed to varying temperatures. Such defects are normally concealed under the surface but can significantly compromise the strength and stiffness of a structure. In this paper, the guided wave method is used to detect debondings which are located between the skin and the honeycomb in sandwich plates. The propagation of guided waves in honeycomb plates is investigated via numerical techniques, with emphasis placed on demonstrating the behavior of structure-based wave interactions (SWIs). The SWI technique is effective to distinguish heterogeneous structures from homogeneous structures. The excitation frequency is necessary to generate obvious SWIs in HSSs; accordingly, a novel strategy is proposed to select the optimal excitation frequencies. A series of experiments are conducted, the results of which show that the presented procedure can be used to effectively detect the locations and the sizes of single- and multi-damage zones in HSSs.

  8. Observationally constrained modeling of sound in curved ocean internal waves: examination of deep ducting and surface ducting at short range.

    PubMed

    Duda, Timothy F; Lin, Ying-Tsong; Reeder, D Benjamin

    2011-09-01

    A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional parabolic equation computational code, and the results are compared to measured propagation along fixed 3 and 6 km source/receiver paths. The measurements were made on the shelf of the South China Sea northeast of Tung-Sha Island. Construction of the time-varying three-dimensional sound-speed fields used in the modeling simulations was guided by environmental data collected concurrently with the acoustic data. Computed three-dimensional propagation results compare well with field observations. The simulations allow identification of time-dependent sound forward scattering and ducting processes within the curved internal gravity waves. Strong acoustic intensity enhancement was observed during passage of high-amplitude nonlinear waves over the source/receiver paths, and is replicated in the model. The waves were typical of the region (35 m vertical displacement). Two types of ducting are found in the model, which occur asynchronously. One type is three-dimensional modal trapping in deep ducts within the wave crests (shallow thermocline zones). The second type is surface ducting within the wave troughs (deep thermocline zones). © 2011 Acoustical Society of America

  9. Flap design for guided tissue regeneration surgery in the esthetic zone: the "whale's tail" technique.

    PubMed

    Bianchi, Andrea E; Bassetti, Achille

    2009-04-01

    The aim of this paper was to describe a new surgical technique designed to preserve interdental tissue in guided tissue regeneration. This procedure was created to specifically regenerate wide intrabony defects in the esthetic zone. Fourteen subjects with an intraosseous defect in the maxillary incisor region took part in this clinical study. The defects were treated with bioresorbable membranes in combination with a bovine bone mineral graft. At baseline and at 12 months after surgery, the following clinical parameters were measured: full-mouth plaque scores, full-mouth bleeding scores, probing pocket depths, clinical attachment levels, and gingival recession. A significant gain in clinical attachment level (4.57 +/- 0.65 mm) and a reduction in probing depths (5.14 +/- 0.95 mm) were reported 12 months after surgery. The surgical technique allowed complete flap closure in every treated site, resulting in significant improvement of the clinical parameters; thus, it appeared especially appropriate for the treatment of wide defects in the esthetic zone.

  10. Predicting bone strength with ultrasonic guided waves

    PubMed Central

    Bochud, Nicolas; Vallet, Quentin; Minonzio, Jean-Gabriel; Laugier, Pascal

    2017-01-01

    Recent bone quantitative ultrasound approaches exploit the multimode waveguide response of long bones for assessing properties such as cortical thickness and stiffness. Clinical applications remain, however, challenging, as the impact of soft tissue on guided waves characteristics is not fully understood yet. In particular, it must be clarified whether soft tissue must be incorporated in waveguide models needed to infer reliable cortical bone properties. We hypothesize that an inverse procedure using a free plate model can be applied to retrieve the thickness and stiffness of cortical bone from experimental data. This approach is first validated on a series of laboratory-controlled measurements performed on assemblies of bone- and soft tissue mimicking phantoms and then on in vivo measurements. The accuracy of the estimates is evaluated by comparison with reference values. To further support our hypothesis, these estimates are subsequently inserted into a bilayer model to test its accuracy. Our results show that the free plate model allows retrieving reliable waveguide properties, despite the presence of soft tissue. They also suggest that the more sophisticated bilayer model, although it is more precise to predict experimental data in the forward problem, could turn out to be hardly manageable for solving the inverse problem. PMID:28256568

  11. High-resolution imaging of the low velocity layer in Alaskan subduction zone with scattered waves and interferometry

    NASA Astrophysics Data System (ADS)

    Kim, D.; Keranen, K. M.; Abers, G. A.; Kim, Y.; Li, J.; Shillington, D. J.; Brown, L. D.

    2017-12-01

    The physical factors that control the rupture process of great earthquakes at convergent plate boundaries remain incompletely understood. While recent developments in imaging using the teleseismic wavefield have led to marked advances at wavelengths of a couple kilometers to tens of kilometers, higher resolution imaging of the rupture zone would improve the resolution of imaging and thus provide improved parameter estimation, as the teleseismic wavefield is fundamentally limited by its low frequency content. This study compares and evaluates two seismic imaging techniques using the high-frequency signals from teleseismic coda versus earthquake scattered waves to image the subducting Yakutat oceanic plateau in the Alaska subduction zone. We use earthquakes recorded by the MOOS PASSCAL broadband deployment in southern Alaska. In our first method, we select local earthquakes that lie directly beneath and laterally near the recording array for imaging, and extract body wave information via a simple autocorrelation and stacking. Profiles analogous to seismic reflection profile are constructed using the near-vertically travelling waves. In our second method, we compute teleseismic receiver functions within the 0.02-1.0 Hz frequency band. Both results image interfaces that we associate with the subducting oceanic plate in Alaska-Aleutian system, with greater resolution than commonly used methods with teleseismic sources. Structural details from our results can further our understanding of the conditions and materials that characterize the subduction megathrusts, and the techniques can be employed in other regions along the Alaska-Aleutian system and at other convergent margins with suitable seismic arrays.

  12. An investigation of student understanding of wave phenomena at a boundary as a guide to the development and assessment of instructional materials on mechanical waves

    NASA Astrophysics Data System (ADS)

    Kryjevskaia, Lioudmila N.

    This dissertation reports on an in-depth investigation of student understanding of wave phenomena at a boundary. The research and curriculum development were conducted in the contexts of the introductory calculus-based physics course and special courses for preservice and inservice teachers. Research methods included pretests, post-tests, and informal observations and discussions with students. Several student difficulties with wave behavior at a boundary and the cause and effect relationship between wavelength, frequency, and propagation speed were identified. The results from this investigation have guided the development of two sets of instructional materials designed to address the conceptual and reasoning difficulties that were identified. The first is a sequence of tutorials intended to supplement standard lecture and laboratory instruction on mechanical waves in a traditional introductory course. The second consists of a module on mechanical waves designed for use in inquiry-oriented courses for preservice and inservice teachers. Ongoing assessment of both sets of materials indicates that they are effective in addressing many of the student difficulties that were found to be persistent. Such difficulties, when not addressed, may hinder student understanding of more advanced topics such as interference and diffraction of waves.

  13. Enhanced Photocatalytic Activity of Bismuth Precursor by Rapid Phase and Surface Transformation Using Structure-Guided Combustion Waves.

    PubMed

    Lee, Kang Yeol; Hwang, Hayoung; Kim, Tae Ho; Choi, Wonjoon

    2016-02-10

    The development of an efficient method for manipulating phase and surface transformations would facilitate the improvement of catalytic materials for use in a diverse range of applications. Herein, we present the first instance of a submicrosecond time frame direct phase and surface transformation of Bi(NO3)3 rods to nanoporous β-Bi2O3 rods via structure-guided combustion waves. Hybrid composites of the prepared Bi(NO3)3·H2O rods and organic fuel were fabricated by a facile preparation method. The anisotropic propagation of combustion waves along the interfacial boundaries of Bi(NO3)3·H2O rods induced direct phase transformation to β-Bi2O3 rods in the original structure due to the rapid pyrolysis, while the release of gas molecules enabled the formation of nanoporous structures on the surfaces of rods. The developed β-Bi2O3 rods showed improved photocatalytic activity for the photodegradation of rhodamine B in comparison with Bi(NO3)3·H2O rods and α-Bi2O3 rods due to the more suitable interdistance and the large contact areas of the porous surfaces. This new method of using structure-guided combustion waves for phase and surface transformation may contribute to the development of new catalysts as well as the precise manipulation of diverse micronanostructured materials.

  14. Monitoring ice thickness and elastic properties from the measurement of leaky guided waves: A laboratory experiment.

    PubMed

    Moreau, Ludovic; Lachaud, Cédric; Théry, Romain; Predoi, Mihai V; Marsan, David; Larose, Eric; Weiss, Jérôme; Montagnat, Maurine

    2017-11-01

    The decline of Arctic sea ice extent is one of the most spectacular signatures of global warming, and studies converge to show that this decline has been accelerating over the last four decades, with a rate that is not reproduced by climate models. To improve these models, relying on comprehensive and accurate field data is essential. While sea ice extent and concentration are accurately monitored from microwave imagery, an accurate measure of its thickness is still lacking. Moreover, measuring observables related to the mechanical behavior of the ice (such as Young's modulus, Poisson's ratio, etc.) could provide better insights in the understanding of sea ice decline, by completing current knowledge so far acquired mostly from radar and sonar data. This paper aims at demonstrating on the laboratory scale that these can all be estimated simultaneously by measuring seismic waves guided in the ice layer. The experiment consisted of leaving a water tank in a cold room in order to grow an ice layer at its surface. While its thickness was increasing, ultrasonic guided waves were generated with a piezoelectric source, and measurements were subsequently inverted to infer the thickness and mechanical properties of the ice with very good accuracy.

  15. Phased laser diode array permits selective excitation of ultrasonic guided waves in coated bone-mimicking tubes

    NASA Astrophysics Data System (ADS)

    Moilanen, Petro; Salmi, Ari; Kilappa, Vantte; Zhao, Zuomin; Timonen, Jussi; Hæggström, Edward

    2017-10-01

    This paper validates simulation predictions, which state that specific modes could be enhanced in quantitative ultrasonic bone testing. Tunable selection of ultrasonic guided wave excitation is useful in non-destructive testing since it permits the mediation of energy into diagnostically useful modes while reducing the energy mediated into disturbing contributions. For instance, it is often challenging to distinguish and extract the useful modes from ultrasound signals measured in bone covered by a soft tissue. We show that a laser diode array can selectively excite ultrasound in bone mimicking phantoms. A fiber-coupled diode array (4 elements) illuminated two solid tubes (2-3 mm wall thickness) embraced by an opaque soft-tissue mimicking elastomer coating (5 mm thick). A predetermined time delay matching the selected mode and frequency was employed between the outputs of the elements. The generated ultrasound was detected by a 215 kHz piezo receiver. Our results suggest that this array reduces the disturbances caused by the elastomer cover and so pave way to permit non-contacting in vivo guided wave ultrasound assessment of human bones. The implementation is small, inexpensive, and robust in comparison with the conventional pulsed lasers.

  16. LOADED WAVE GUIDES FOR LINEAR ACCELERATORS

    DOEpatents

    Walkinshaw, W.; Mullett, L.B.

    1959-12-01

    A periodically loaded waveguide having substantially coaxially arranged elements which provide an axial field for the acceleration of electrons is described. Radiofrequency energy will flow in the space between the inner wall of an outer guide and the peripheries of equally spaced irises or washes arranged coaxially with each other and with the outer guide, where the loading due to the geometry of the irises is such as to reduce the phase velocity of the r-f energy flowing in the guide from a value greater than that of light to the velocity of light or less.

  17. Diffusion in coastal and harbour zones, effects of Waves,Wind and Currents

    NASA Astrophysics Data System (ADS)

    Diez, M.; Redondo, J. M.

    2009-04-01

    As there are multiple processes at different scales that produce turbulent mixing in the ocean, thus giving a large variation of horizontal eddy diffusivities, we use a direct method to evaluate the influence of different ambient parameters such as wave height and wind on coastal dispersion. Measurements of the diffusivity are made by digital processing of images taken from from video recordings of the sea surface near the coast. The use of image analysis allows to estimate both spatial and temporal characteristics of wave fields, surface circulation and mixing in the surf zone, near Wave breakers and inside Harbours. The study of near-shore dispersion [1], with the added complexity of the interaction between wave fields, longshore currents, turbulence and beach morphology, needs detailed measurements of simple mixing processes to compare the respective influences of forcings at different scales. The measurements include simultaneous time series of waves, currents, wind velocities from the studied area. Cuantitative information from the video images is accomplished using the DigImage video processing system [3], and a frame grabber. The video may be controlled by the computer, allowing, remote control of the processing. Spectral analysis on the images has also used n order to estimate dominant wave periods as well as the dispersion relations of dominant instabilities. The measurements presented here consist mostly on the comarison of difussion coeficients measured by evaluating the spread of blobs of dye (milk) as well as by measuring the separation between different buoys released at the same time. We have used a techniques, developed by Bahia(1997), Diez(1998) and Bezerra(2000)[1-3] to study turbulent diffusion by means of digital processing of images taken from remote sensing and video recordings of the sea surface. The use of image analysis allows to measure variations of several decades in horizontal diffusivity values, the comparison of the diffusivities

  18. On approximating guided waves in plates with thin anisotropic coatings by means of effective boundary conditions

    PubMed

    Niklasson; Datta; Dunn

    2000-09-01

    In this paper, effective boundary conditions for elastic wave propagation in plates with thin coatings are derived. These effective boundary conditions are used to obtain an approximate dispersion relation for guided waves in an isotropic plate with thin anisotropic coating layers. The accuracy of the effective boundary conditions is investigated numerically by comparison with exact solutions for two different material systems. The systems considered consist of a metallic core with thin superconducting coatings. It is shown that for wavelengths long compared to the coating thickness there is excellent agreement between the approximate and exact solutions for both systems. Furthermore, numerical results presented might be used to characterize coating properties by ultrasonic techniques.

  19. Effects of electromagnetic wiggler and ion channel guiding on equilibrium orbits and waves propagation in a free electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amri, Hassan Ehsani; Mohsenpour, Taghi, E-mail: mohsenpour@umz.ac.ir

    2016-02-15

    In this paper, an analysis of equilibrium orbits for electrons by a simultaneous solution of the equation of motion and the dispersion relation for electromagnetic wave wiggler in a free-electron laser (FEL) with ion-channel guiding has been presented. A fluid model has been used to investigate interactions among all possible waves. The dispersion relation has been derived for electrostatic and electromagnetic waves with all relativistic effects included. This dispersion relation has been solved numerically. For group I and II orbits, when the transverse velocity is small, only the FEL instability is found. In group I and II orbits with relativelymore » large transverse velocity, new couplings between other modes are found.« less

  20. Integrated coherent matter wave circuits

    DOE PAGES

    Ryu, C.; Boshier, M. G.

    2015-09-21

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less

  1. Investigating the Use of Ultrasonic Guided Waves for Aging Wire Insulation Assessment

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2002-01-01

    Aging wiring has become a critical issue to DoD, NASA, FAA, and Industry. The problem is that insulation on environmentally aged wire becomes brittle and cracks. This exposes the underlying conductive wire to the potential for short circuits and fire. The difficulty is that techniques to monitor aging wire problems focus on applying electrical sensing techniques that are not very sensitive to the wire insulation. Thus, the development of methods to quantify and monitor aging wire insulation is highly warranted. Measurement of wire insulation stiffness by ultrasonic guided waves is being examined. Initial laboratory tests were performed on a simple model consisting of a solid cylinder and then a solid cylinder with a polymer coating. Experimental measurements showed that the lowest order axisymmetric mode may be sensitive to stiffness changes in the wire insulation. To test this theory, mil-spec wire samples MIL-W-81381, MIL-W-22759/34, and MIL-W-22759/87 (typically found in aircraft) were heat-damaged in an oven, in a range of heating conditions. The samples were 12, 16, and 20 gauge and the heat-damage introduced material changes in the wire-insulation that made the originally flexible insulation brittle and darker in color. Axisymmetric mode phase velocity increased for the samples that were exposed to heat for longer duration. For example, the phase velocity in the 20-gauge MIL-W-22759/34 wire changed from a baseline value of 2790m/s to 3280m/s and 3530m/s for one-hour exposures to 3490C and 3990C, respectively. Although the heat-damage conditions are not the same as environmental aging, we believe that with further development and refinements, the ultrasonic guided waves can be used to inspect wire-insulation for detrimental environmental aging conditions.

  2. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications

    USGS Publications Warehouse

    Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane

    2012-01-01

    Model results from the planar beach case show good agreement with depth-averaged analytical solutions and with theoretical flow structures. Simulation results for the DUCK' 94 experiment agree closely with measured profiles of cross-shore and longshore velocity data from and . Diagnostic simulations showed that the nonlinear processes of wave roller generation and wave-induced mixing are important for the accurate simulation of surf zone flows. It is further recommended that a more realistic approach for determining the contribution of wave rollers and breaking induced turbulent mixing can be formulated using non-dimensional parameters which are functions of local wave parameters and the beach slope. Dominant terms in the cross-shore momentum balance are found to be the quasi-static pressure gradient and breaking acceleration. In the alongshore direction, bottom stress, breaking acceleration, horizontal advection and horizontal vortex forces dominate the momentum balance. The simulation results for the bar/rip channel morphology case clearly show the ability of the modeling system to reproduce horizontal and vertical circulation patterns similar to those found in laboratory studies and to numerical simulations using the radiation stress representation. The vortex force term is found to be more important at locations where strong flow vorticity interacts with the wave-induced Stokes flow field. Outside the surf zone, the three-dimensional model simulations of wave-induced flows for non-breaking waves closely agree with flow observations from MVCO, with the vertical structure of the simulated flow varying as a function of the vertical viscosity as demonstrated by Lentz et al. (2008).

  3. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 1: 2x6 Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochkin, V.; Wiehagen, J.

    2017-08-31

    Part 1 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides time-proven, practical, and cost-effective strategies for constructing durable, energy-efficient walls. It addresses walls constructed with 2x6 wood frame studs, wood structural panel (WSP) exterior sheathing, and a cladding system installed over WSP sheathing in low-rise residential buildings up to three stories high.

  4. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 1: 2x6 Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochkin, V.; Wiehagen, J.

    Part 1 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides time-proven, practical, and cost-effective strategies for constructing durable, energy-efficient walls. It addresses walls constructed with 2x6 wood frame studs, wood structural panel (WSP) exterior sheathing, and a cladding system installed over WSP sheathing in low-rise residential buildings up to three stories high.

  5. Fault zone reverberations from cross-correlations of earthquake waveforms and seismic noise

    NASA Astrophysics Data System (ADS)

    Hillers, Gregor; Campillo, Michel

    2016-03-01

    Seismic wavefields interact with low-velocity fault damage zones. Waveforms of ballistic fault zone head waves, trapped waves, reflected waves and signatures of trapped noise can provide important information on structural and mechanical fault zone properties. Here we extend the class of observable fault zone waves and reconstruct in-fault reverberations or multiples in a strike-slip faulting environment. Manifestations of the reverberations are significant, consistent wave fronts in the coda of cross-correlation functions that are obtained from scattered earthquake waveforms and seismic noise recorded by a linear fault zone array. The physical reconstruction of Green's functions is evident from the high similarity between the signals obtained from the two different scattered wavefields. Modal partitioning of the reverberation wavefield can be tuned using different data normalization techniques. The results imply that fault zones create their own ambiance, and that the here reconstructed reverberations are a key seismic signature of wear zones. Using synthetic waveform modelling we show that reverberations can be used for the imaging of structural units by estimating the location, extend and magnitude of lateral velocity contrasts. The robust reconstruction of the reverberations from noise records suggests the possibility to resolve the response of the damage zone material to various external and internal loading mechanisms.

  6. Shear-wave splitting in Quaternary sediments: Neotectonic implications in the central New Madrid seismic zone

    USGS Publications Warehouse

    Harris, J.B.

    1996-01-01

    Determining the extent and location of surface/near-surface structural deformation in the New Madrid seismic zone (NMSZ) is very important for evaluating earthquake hazards. A shallow shear-wave splitting experiment, located near the crest of the Lake County uplift (LCU) in the central NMSZ, shows the presence of near-surface azimuthal anisotropy believed to be associated with neotectonic deformation. A shallow fourcomponent data set, recorded using a hammer and mass source, displayed abundant shallow reflection energy on records made with orthogonal source-receiver orientations, an indicator of shear-wave splitting. Following rotation of the data matrix by 40??, the S1 and S2 sections (principal components of the data matrix) were aligned with the natural coordinate system at orientations of N35??W and N55??E, respectively. A dynamic mis-tie of 8 ms at a two-way traveltime of 375 ms produced an average azimuthal anisotropy of ???2% between the target reflector (top of Quaternary gravel at a depth of 35 m) and the surface. Based on the shear-wave polarization data, two explanations for the azimuthal anisotropy in the study area are (1) fractures/cracks aligned in response to near-surface tensional stress produced by uplift of the LCU, and (2) faults/fractures oriented parallel to the Kentucky Bend scarp, a recently identified surface deformation feature believed to be associated with contemporary seismicity in the central NMSZ. In addition to increased seismic resolution by the use of shear-wave methods in unconsolidated, water-saturated sediments, measurement of near-surface directional polarizations, produced by shear-wave splitting, may provide valuable information for identifying neotectonic deformation and evaluating associated earthquake hazards.

  7. Strip dielectric wave guide antenna-for the measurement of dielectric constant of low-loss materials

    NASA Astrophysics Data System (ADS)

    Rastogi, Alok Kumar; Tiwari, A. K.; Shrivastava, R. P.

    1993-07-01

    The value of dielectric constant are the most important parameters in material science technology. In micro-wave and millimeter wave circuits using dielectric materials the values of this parameters should be known accurately. It is observed that the number of methods are reported in litrature, however these methods impose difficulties in experimentation and are not very accurate. In this paper a novel approach to the measurement of the dielectric constant of low loss materials at micro-wave and millimeter wave frequencies has been discussed. In this method by using antenna theory, a metallic strip dielectric guide is taken in to constideration and band reject phenomenon of dielectric antenna is used. Frequency response of an antenna in band reject mode is a function of the dimensional parameters, such as the metallic strip period, the profile of the metallic strip and the dielectric constant of the material used. Hence if one measure the frequency responce of the antenna in band reject mode, the dielectric constant of the material is determined provided all other parameters are known. This method gives a direct measure of dielectric constant and is quite accurate as computer techniques are used for evaluating the dielectric constant. This method verified experimentally also.

  8. a Continuous Health Monitoring Guided Wave Fmd System for Retrofit to Existing Offshore Oilrigs

    NASA Astrophysics Data System (ADS)

    Mijarez, R.; Solis, L.; Martinez, F.

    2010-02-01

    An automatic health monitoring guided wave flood member detection (FMD) system, for retrofit to existing offshore oilrigs is presented. The system employs a microcontroller piezoelectric (PZT) based transmitter and a receiver instrumentation package composed of a PZT 40 kHz ultrasound transducer and a digital signal processor (DSP) module connected to a PC via USB for monitoring purposes. The transmitter and receiver were attached, non-intrusively, to the external wall of a steel tube; 1 m×27 cm×2 mm. Experiments performed in the laboratory have successfully identified automatically flooded tubes.

  9. Magnetospheric Multiscale Observations of an Ion Diffusion Region With Large Guide Field at the Magnetopause: Current System, Electron Heating, and Plasma Waves

    NASA Astrophysics Data System (ADS)

    Zhou, M.; Berchem, J.; Walker, R. J.; El-Alaoui, M.; Goldstein, M. L.; Lapenta, G.; Deng, X.; Li, J.; Le Contel, O.; Graham, D. B.; Lavraud, B.; Paterson, W. R.; Giles, B. L.; Burch, J. L.; Torbert, R. B.; Russell, C. T.; Strangeway, R. J.; Zhao, C.; Ergun, R. E.; Lindqvist, P.-A.; Marklund, G.

    2018-03-01

    We report Magnetospheric Multiscale (MMS) observations of a reconnecting current sheet in the presence of a weak density asymmetry with large guide field at the dayside magnetopause. An ion diffusion region (IDR) was detected associated with this current sheet. Parallel current dominated over the perpendicular current in the IDR, as found in previous studies of component reconnection. Electrons were preferentially heated parallel to the magnetic field within the IDR. The heating was manifested as a flattop distribution below 400 eV. Two types of electromagnetic electron whistler waves were observed within the regions where electrons were heated. One type of whistler wave was associated with nonlinear structures in E|| with amplitudes up to 20 mV/m. The other type was not associated with any structures in E||. Poynting fluxes of these two types of whistler waves were directed away from the X-line. We suggest that the nonlinear evolution of the oblique whistler waves gave rise to the solitary structures in E||. There was a perpendicular super-Alfvénic outflow jet that was carried by magnetized electrons. Intense electrostatic lower hybrid drift waves were localized in the current sheet center and were probably driven by the super-Alfvénic electron jet, the velocity of which was approximately equal to the diamagnetic drift of demagnetized ions. Our observations suggest that the guide field significantly modified the structures (Hall electromagnetic fields and current system) and wave properties in the IDR.

  10. Planktonic Subsidies to Surf-Zone and Intertidal Communities

    NASA Astrophysics Data System (ADS)

    Morgan, Steven G.; Shanks, Alan L.; MacMahan, Jamie H.; Reniers, Ad J. H. M.; Feddersen, Falk

    2018-01-01

    Plankton are transported onshore, providing subsidies of food and new recruits to surf-zone and intertidal communities. The transport of plankton to the surf zone is influenced by wind, wave, and tidal forcing, and whether they enter the surf zone depends on alongshore variation in surf-zone hydrodynamics caused by the interaction of breaking waves with coastal morphology. Areas with gently sloping shores and wide surf zones typically have orders-of-magnitude-higher concentrations of plankton in the surf zone and dense larval settlement in intertidal communities because of the presence of bathymetric rip currents, which are absent in areas with steep shores and narrow surf zones. These striking differences in subsidies have profound consequences; areas with greater subsidies support more productive surf-zone communities and possibly more productive rocky intertidal communities. Recognition of the importance of spatial subsidies for rocky community dynamics has recently advanced ecological theory, and incorporating surf-zone hydrodynamics would be an especially fruitful line of investigation.

  11. Laser Transformation Hardening of Firing Zone Cutout Cams.

    DTIC Science & Technology

    1981-06-01

    bath nitriding to case harden firing zone cutout cams for the Mk 10 Guided Missile Launcher System (GMLS). These cams, machined of 4340 steel ...salt bath nitriding to case harden firing zone cutout cams for the Mk 10 Guided Missile Launcher System (GMLS). These cams, machined of 4340 steel ...Patterns ........ ................ 8 9 Laser Beam Step Pattern ...... .................. .. 10 10 Hardness Profile, 4340 Steel

  12. Mapping of Crustal Anisotropy in the New Madrid Seismic Zone with Shear Wave Splitting

    NASA Astrophysics Data System (ADS)

    Martin, P.; Arroucau, P.; Vlahovic, G.

    2013-12-01

    Crustal anisotropy in the New Madrid seismic zone (NMSZ) is investigated by analyzing shear wave splitting measurements from local earthquake data. For the initial data set, the Center for Earthquake Research and Information (CERI) provided over 3000 events, along with 900 seismograms recorded by the Portable Array for Numerical Data Acquisition (PANDA) network. Data reduction led to a final data set of 168 and 43 useable events from the CERI and PANDA data, respectively. From this, 186 pairs of measurements were produced from the CERI data set as well as 49 from the PANDA data set, by means of the automated shear wave splitting measurement program MFAST. Results from this study identified two dominant fast polarization directions, striking NE-SW and WNW-ESE. These are interpreted to be due to stress aligned microcracks in the upper crust. The NE-SW polarization direction is consistent with the maximum horizontal stress orientation of the region and has previously been observed in the NMSZ, while the WNW-ESE polarization direction has not. Path normalized time delays from this study range from 1-33 ms/km for the CERI network data, and 2-31 ms/km for the PANDA data, giving a range of estimated differential shear wave anisotropy between 1% and 8%, with the majority of large path normalized time delays (>20 ms/km) located along the Reelfoot fault segment. The estimated differential shear wave anisotropy values from this study are higher than those previously determined in the region, and are attributed to high crack densities and high pore fluid pressures, which agree with previous results from local earthquake tomography and microseismic swarm analysis in the NMSZ.

  13. Modeling of phase velocity and frequency spectrum of guided Lamb waves in piezoelectric-semiconductor multilayered structures made of AlAs and GaAs

    NASA Astrophysics Data System (ADS)

    Othmani, Cherif; Takali, Farid; Njeh, Anouar

    2017-11-01

    Modeling of guided Lamb waves propagation in piezoelectric-semiconductor multilayered structures made of AlAs and GaAs is evaluated in this paper. Here, the Legendre polynomial method is used to calculate dispersion curves, frequency spectrum and field distributions of guided Lamb waves propagation modes in AlAs, GaAs, AlAs/GaAs and AlAs/GaAs/AlAs-1/2/1 structures. In fact, formulations are given for open-circuit surface. Consequently, the polynomial method is numerically stable according to the total number of layers and the frequency range. This analysis is meaningful for the applications of the piezoelectric-semiconductor multilayered structures made of AlAs and GaAs such as in novel acoustic devices.

  14. A permanently installed guided wave system for pipe monitoring

    NASA Astrophysics Data System (ADS)

    Galvagni, Andrea; Cawley, Peter

    2012-04-01

    Ultrasonic guided waves are routinely used to inspect pipes. The advantage of this technique is that it enables a fullyvolumetric screening of several metres of pipe from a single transducer location, resulting in substantial time and cost savings. However, it suffers from limitations such as relatively low damage sensitivity and difficulties in dealing with intricate pipe networks; furthermore, for a pipe that is buried, submerged or high up in a plant, access to even a single point can be prohibitively expensive. The use of permanently attached sensors can overcome these limitations since access needs to be obtained only once during installation and they enable the use of baseline subtraction, so that any reading from a sensor can be compared to previous readings. This paper discusses the advantages of baseline subtraction and the challenge of compensating for signal changes due to effects other than the growth of damage. It is shown that the use of baseline subtraction allows significant damage sensitivity improvements, particularly in the vicinity of large reflectors. Data from four years of field experience is backed up by accelerated laboratory testing.

  15. Near surface structure of the North Anatolian Fault Zone near 30°E from Rayleigh and Love wave tomography using ambient seismic noise.

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Rost, S.; Houseman, G. A.; Hillers, G.

    2017-12-01

    By utilising short period surface waves present in the noise field, we can construct images of shallow structure in the Earth's upper crust: a depth-range that is usually poorly resolved in earthquake tomography. Here, we use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the North Anatolian Fault Zone (NAFZ) in the source region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends 1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We obtain maps of group velocity variation using surface wave tomography applied to short period (1- 6 s) Rayleigh and Love waves to construct high-resolution images of SV and SH-wave velocity in the upper 5 km of a 70 km x 35 km region centred on the eastern end of the fault segment that ruptured in the 1999 Izmit earthquake. The average Rayleigh wave group velocities in the region vary between 1.8 km/s at 1.5 s period, to 2.2 km/s at 6 s period. The NAFZ bifurcates into northern and southern strands in this region; both are active but only the northern strand ruptured in the 1999 event. The signatures of both the northern and southern branches of the NAFZ are clearly associated with strong gradients in seismic velocity that also denote the boundaries of major tectonic units. This observation implies that the fault zone exploits the pre-existing structure of the Intra-Pontide suture zone. To the north of the NAFZ, we observe low S-wave velocities ( 2.0 km/s) associated with the unconsolidated sediments of the Adapazari basin, and blocks of weathered terrigenous clastic sediments. To the south of the northern branch of the NAFZ in the Armutlu block, we detect higher velocities ( 2.9 km/s) associated with a shallow crystalline basement, in particular a block of metamorphosed schists and marbles that bound the northern branch of the NAFZ.

  16. Yield of Routine Image-Guided Biopsy of Renal Mass Thermal Ablation Zones: 11-Year Experience.

    PubMed

    Wasnik, Ashish P; Higgins, Ellen J; Fox, Giovanna A; Caoili, Elaine M; Davenport, Matthew S

    2018-06-19

    To determine the yield of routine image-guided core biopsy of renal cell carcinoma (RCC) thermal ablation zones. Institutional review board approval was obtained for this Health Insurance Portability and Accountability Act-compliant quality improvement effort. Routine core biopsy of RCC ablation zones was performed 2 months postablation from July 2003 to December 2014. Routine nicotinamide adenine dinucleotide staining was performed by specialized genitourinary pathologists to assess cell viability. The original purpose of performing routine postablation biopsy was to verify, in addition to imaging, whether the mass was completely treated. Imaging was stratified as negative, indeterminate, or positive for viable malignancy. Histology was stratified as negative, indeterminate, positive, or nondiagnostic for viable malignancy. Histology results were compared to prebiopsy imaging findings. Routine ablation zone biopsy was performed after 50% (146/292) of index ablations (24 cryoablations, 122 radiofrequency ablations), and postablation imaging was performed more often with multiphasic computed tomography than magnetic resonance imaging (100 vs 46, p < 0.0001). When imaging was negative (n = 117), biopsy added no additional information (92% [n = 108] negative, 0.9% [n = 1] indeterminate, 7% [n = 8] nondiagnostic). When imaging was indeterminate (n = 19), 11% (n = 2) of biopsies had viable RCC and 89% (n = 17) were negative. When imaging was positive, biopsy detected viable neoplasm in only 10% (1/10) of cases; 80% (8/10) were negative and 10% (1/10) were nondiagnostic. Routine biopsy of renal ablation zones to validate postablation imaging results was not value-added and therefore was discontinued at the study institution. Copyright © 2018. Published by Elsevier Inc.

  17. Application of interface waves for near surface damage detection in hybrid structures

    NASA Astrophysics Data System (ADS)

    Jahanbin, M.; Santhanam, S.; Ihn, J.-B.; Cox, A.

    2017-04-01

    Guided waves are acoustic waves that are guided by boundaries. Depending on the structural geometry, guided waves can either propagate between boundaries, known as plate waves, or propagate on the surface of the objects. Many different types of surface waves exist based on the material property of the boundary. For example Rayleigh wave in solid - air, Scholte wave in solid - liquid, Stoneley in solid - solid interface and many other different forms like Love wave on inhomogeneous surfaces, creeping waves, etc. This research work is demonstrating the application of surface and interface waves for detection of interfacial damages in hybrid bonded structures.

  18. Waves and Particles, The Orbital Atom, Parts One and Two of an Integrated Science Sequence, Teacher's Guide, 1973 Edition.

    ERIC Educational Resources Information Center

    Portland Project Committee, OR.

    This teacher's guide includes parts one and two of the four-part third year Portland Project, a three-year integrated secondary science curriculum sequence. The Harvard Project Physics textbook is used for reading assignments for part one. Assignments relate to waves, light, electricity, magnetic fields, Faraday and the electrical age,…

  19. Modeling ocean wave propagation under sea ice covers

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Shen, Hayley H.; Cheng, Sukun

    2015-02-01

    Operational ocean wave models need to work globally, yet current ocean wave models can only treat ice-covered regions crudely. The purpose of this paper is to provide a brief overview of ice effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or sea, sea ice can be classified as: landfast ice zone, shear zone, and the marginal ice zone. All ice covers attenuate wave energy. Only long swells can penetrate deep into an ice cover. Being closest to open water, wave propagation in the marginal ice zone is the most complex to model. The physical appearance of sea ice in the marginal ice zone varies. Grease ice, pancake ice, brash ice, floe aggregates, and continuous ice sheet may be found in this zone at different times and locations. These types of ice are formed under different thermal-mechanical forcing. There are three classic models that describe wave propagation through an idealized ice cover: mass loading, thin elastic plate, and viscous layer models. From physical arguments we may conjecture that mass loading model is suitable for disjoint aggregates of ice floes much smaller than the wavelength, thin elastic plate model is suitable for a continuous ice sheet, and the viscous layer model is suitable for grease ice. For different sea ice types we may need different wave ice interaction models. A recently proposed viscoelastic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various ice covers need to be implemented in the operational ocean wave models. In this review, we introduce the sea ice types, previous wave ice interaction models, wave attenuation mechanisms, the methods to calculate wave reflection and transmission between different ice covers, and the effect of ice floe breaking on shaping the sea ice morphology

  20. Seismic‐wave attenuation determined from tectonic tremor in multiple subduction zones

    USGS Publications Warehouse

    Yabe, Suguru; Baltay, Annemarie S.; Ide, Satoshi; Beroza, Gregory C.

    2014-01-01

    Tectonic tremor provides a new source of observations that can be used to constrain the seismic attenuation parameter for ground‐motion prediction and hazard mapping. Traditionally, recorded earthquakes of magnitude ∼3–8 are used to develop ground‐motion prediction equations; however, typical earthquake records may be sparse in areas of high hazard. In this study, we constrain the distance decay of seismic waves using measurements of the amplitude decay of tectonic tremor, which is plentiful in some regions. Tectonic tremor occurs in the frequency band of interest for ground‐motion prediction (i.e., ∼2–8  Hz) and is located on the subducting plate interface, at the lower boundary of where future large earthquakes are expected. We empirically fit the distance decay of peak ground velocity from tremor to determine the attenuation parameter in four subduction zones: Nankai, Japan; Cascadia, United States–Canada; Jalisco, Mexico; and southern Chile. With the large amount of data available from tremor, we show that in the upper plate, the lower crust is less attenuating than the upper crust. We apply the same analysis to intraslab events in Nankai and show the possibility that waves traveling from deeper intraslab events experience more attenuation than those from the shallower tremor due to ray paths that pass through the subducting and highly attenuating oceanic crust. This suggests that high pore‐fluid pressure is present in the tremor source region. These differences imply that the attenuation parameter determined from intraslab earthquakes may underestimate ground motion for future large earthquakes on the plate interface.

  1. Surface Wave Dynamics in the Coastal Zone

    DTIC Science & Technology

    2014-09-30

    also collected from the Duck measurement site, operated by the USACE Field Research Facility at Duck , North Carolina. The collection and validation...similar analysis for 10 storm periods using wave data collected at Duck , North Carolina. The preparations consist of creating a dedicated unstructured...validated in the Southern North Sea and Duck validation studies. The shallow water source terms for wave breaking and triad interactions are being

  2. Guided wave radiation from a point source in the proximity of a pipe bend

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brath, A. J.; Nagy, P. B.; Simonetti, F.

    Throughout the oil and gas industry corrosion and erosion damage monitoring play a central role in managing asset integrity. Recently, the use of guided wave technology in conjunction with tomography techniques has provided the possibility of obtaining point-by-point maps of wall thickness loss over the entire volume of a pipeline section between two ring arrays of ultrasonic transducers. However, current research has focused on straight pipes while little work has been done on pipe bends which are also the most susceptible to developing damage. Tomography of the bend is challenging due to the complexity and computational cost of the 3-Dmore » elastic model required to accurately describe guided wave propagation. To overcome this limitation, we introduce a 2-D anisotropic inhomogeneous acoustic model which represents a generalization of the conventional unwrapping used for straight pipes. The shortest-path ray-tracing method is then applied to the 2-D model to compute ray paths and predict the arrival times of the fundamental flexural mode, A0, excited by a point source on the straight section of pipe entering the bend and detected on the opposite side. Good agreement is found between predictions and experiments performed on an 8” diameter (D) pipe with 1.5 D bend radius. The 2-D model also reveals the existence of an acoustic lensing effect which leads to a focusing phenomenon also confirmed by the experiments. The computational efficiency of the 2-D model makes it ideally suited for tomography algorithms.« less

  3. Near-to-eye electroholography via guided-wave acousto-optics for augmented reality

    NASA Astrophysics Data System (ADS)

    Jolly, Sundeep; Savidis, Nickolaos; Datta, Bianca; Smalley, Daniel; Bove, V. Michael

    2017-03-01

    Near-to-eye holographic displays act to directly project wavefronts into a viewer's eye in order to recreate 3-D scenes for augmented or virtual reality applications. Recently, several solutions for near-to-eye electroholography have been proposed based on digital spatial light modulators in conjunction with supporting optics, such as holographic waveguides for light delivery; however, such schemes are limited by the inherent low space-bandwidth product available with current digital SLMs. In this paper, we depict a fully monolithic, integrated optical platform for transparent near-to-eye holographic display requiring no supporting optics. Our solution employs a guided-wave acousto-optic spatial light modulator implemented in lithium niobate in conjunction with an integrated Bragg-regime reflection volume hologram.

  4. Guided-waves technique for inspecting the health of wall-covered building risers

    NASA Astrophysics Data System (ADS)

    Tse, Peter W.; Chen, J. M.; Wan, X.

    2015-03-01

    The inspection technique uses guided ultrasonic waves (GW) has been proven effective in detecting pipes' defects. However, as of today, the technique has not attracted much market attention because of insufficient field tests and lack of traceable records with proven results in commercial applications. In this paper, it presents the results obtained by using GW to inspect the defects occurred in real gas risers that are commonly installed in tall buildings. The purpose of having risers is to deliver gas from any building external piping system to each household unit of the building. The risers extend from the external wall of the building, penetrate thorough the concrete wall, into the kitchen or bathroom of each household unit. Similar to in-service pipes, risers are prone to corrosion due to water leaks into the concrete wall. However, the corrosion occurs in the section of riser, which is covered by the concrete wall, is difficult to be inspected by conventional techniques. Hence, GW technique was employed. The effectiveness of GW technique was tested by laboratory and on-site experiments using real risers gathered from tall buildings. The experimental results show that GW can partially penetrate thorough the riser's section that is covered by wall. The integrity of the wall-covered section of a riser can be determined by the reflected wave signals generated by the corroded area that may exit inside the wall-covered section. Based on the reflected wave signal, one can determine the health of the wall-covered riser.

  5. Ultra short laser pulse modification of wave guides

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Arkadi; Ashkenasi, David

    2003-11-01

    The high peak powers of ultra short (ps and sub-ps) pulsed lasers available at relatively low single pulse energies potentially allow for a precise localization of photon energy, either on the surface or inside (transparent) materials. Three dimensional micro structuring of bulk transparent media without any sign of mechanical cracking has shown the potential of ultra short laser processing. In this study, the micro structuring of bulk transparent media was used to modify fused silica and especially the cladding-core interface in normal fused silica wave guides. The idea behind this technique is to enforce a local mismatch for total reflection at the interface at minimal mechanic stress to overcome the barrier for enhanced optical out-coupling. The laser-induced modifications were studied in dependence of pulse width, focal alignment, single pulse energy and pulse overlap. Micro traces with a thickness between 3 and 8 μm were generated with a spacing of 10 μm in the subsurface region using sub-ps and ps laser pulses at a wavelength of 800 nm. The optical leakage enforced by a micro spiral pattern is significant and can be utilized for medical applications or potentially also for telecommunications and fiber laser technology.

  6. Observations of storm morphodynamics using Coastal Lidar and Radar Imaging System (CLARIS): Importance of wave refraction and dissipation over complex surf-zone morphology at a shoreline erosional hotspot

    NASA Astrophysics Data System (ADS)

    Brodie, Katherine L.

    Elevated water levels and large waves during storms cause beach erosion, overwash, and coastal flooding, particularly along barrier island coastlines. While predictions of storm tracks have greatly improved over the last decade, predictions of maximum water levels and variations in the extent of damage along a coastline need improvement. In particular, physics based models still cannot explain why some regions along a relatively straight coastline may experience significant erosion and overwash during a storm, while nearby locations remain seemingly unchanged. Correct predictions of both the timing of erosion and variations in the magnitude of erosion along the coast will be useful to both emergency managers and homeowners preparing for an approaching storm. Unfortunately, research on the impact of a storm to the beach has mainly been derived from "pre" and "post" storm surveys of beach topography and nearshore bathymetry during calm conditions. This has created a lack of data during storms from which to ground-truth model predictions and test hypotheses that explain variations in erosion along a coastline. We have developed Coastal Lidar and Radar Imaging System (CLARIS), a mobile system that combines a terrestrial scanning laser and an X-band marine radar system using precise motion and location information. CLARIS can operate during storms, measuring beach topography, nearshore bathymetry (from radar-derived wave speed measurements), surf-zone wave parameters, and maximum water levels remotely. In this dissertation, we present details on the development, design, and testing of CLARIS and then use CLARIS to observe a 10 km section of coastline in Kitty Hawk and Kill Devil Hills on the Outer Banks of North Carolina every 12 hours during a Nor'Easter (peak wave height in 8 m of water depth = 3.4 m). High decadal rates of shoreline change as well as heightened erosion during storms have previously been documented to occur within the field site. In addition, complex

  7. WAVE2-Abi2 complex controls growth cone activity and regulates the multipolar-bipolar transition as well as the initiation of glia-guided migration.

    PubMed

    Xie, Min-Jue; Yagi, Hideshi; Kuroda, Kazuki; Wang, Chen-Chi; Komada, Munekazu; Zhao, Hong; Sakakibara, Akira; Miyata, Takaki; Nagata, Koh-Ichi; Oka, Yuichiro; Iguchi, Tokuichi; Sato, Makoto

    2013-06-01

    Glia-guided migration (glia-guided locomotion) during radial migration is a characteristic yet unique mode of migration. In this process, the directionality of migration is predetermined by glial processes and not by growth cones. Prior to the initiation of glia-guided migration, migrating neurons transform from multipolar to bipolar, but the molecular mechanisms underlying this multipolar-bipolar transition and the commencement of glia-guided migration are not fully understood. Here, we demonstrate that the multipolar-bipolar transition is not solely a cell autonomous event; instead, the interaction of growth cones with glial processes plays an essential role. Time-lapse imaging with lattice assays reveals the importance of vigorously active growth cones in searching for appropriate glial scaffolds, completing the transition, and initiating glia-guided migration. These growth cone activities are regulated by Abl kinase and Cdk5 via WAVE2-Abi2 through the phosphorylation of tyrosine 150 and serine 137 of WAVE2. Neurons that do not display such growth cone activities are mispositioned in a more superficial location in the neocortex, suggesting the significance of growth cones for the final location of the neurons. This process occurs in spite of the "inside-out" principle in which later-born neurons are situated more superficially.

  8. Lamb wave propagation in monocrystalline silicon wafers.

    PubMed

    Fromme, Paul; Pizzolato, Marco; Robyr, Jean-Luc; Masserey, Bernard

    2018-01-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. Guided ultrasonic waves offer the potential to efficiently detect micro-cracks in the thin wafers. Previous studies of ultrasonic wave propagation in silicon focused on effects of material anisotropy on bulk ultrasonic waves, but the dependence of the wave propagation characteristics on the material anisotropy is not well understood for Lamb waves. The phase slowness and beam skewing of the two fundamental Lamb wave modes A 0 and S 0 were investigated. Experimental measurements using contact wedge transducer excitation and laser measurement were conducted. Good agreement was found between the theoretically calculated angular dependency of the phase slowness and measurements for different propagation directions relative to the crystal orientation. Significant wave skew and beam widening was observed experimentally due to the anisotropy, especially for the S 0 mode. Explicit finite element simulations were conducted to visualize and quantify the guided wave beam skew. Good agreement was found for the A 0 mode, but a systematic discrepancy was observed for the S 0 mode. These effects need to be considered for the non-destructive testing of wafers using guided waves.

  9. Guided wave phenomena in millimeter wave integrated circuits and components

    NASA Astrophysics Data System (ADS)

    Itoh, Tatsuo

    1993-01-01

    Representative projects from Army Research Office are summarized. Following the narrative descriptions with appropriate illustrations, a complete list of articles published in scientific journals and those presented at national and international conferences is provided. Lists of personnel and advanced degrees are also included. The projects were carried out at The University of Texas at Austin and later at UCLA. Topics covered include: quasi-optical technique; active antenna; active filter; traveling wave transistor; slow wave, planar transmission line; and discontinuities.

  10. Fractional flow reserve-guided revascularization: practical implications of a diagnostic gray zone and measurement variability on clinical decisions.

    PubMed

    Petraco, Ricardo; Sen, Sayan; Nijjer, Sukhjinder; Echavarria-Pinto, Mauro; Escaned, Javier; Francis, Darrel P; Davies, Justin E

    2013-03-01

    This study sought to evaluate the effects of fractional flow reserve (FFR) measurement variability on FFR-guided treatment strategy. Current appropriateness guidelines recommend the utilization of FFR to guide coronary revascularization based on a fixed cut-off of 0.8. This rigid approach does not take into account the intrinsic biological variability of a single FFR result and the clinical judgment of experienced interventional cardiologists. [corrected]. FFR reproducibility data from the landmark Deferral Versus Performance of PTCA in Patients Without Documented Ischemia (DEFER) trial was analyzed (two repeated FFR measurements in the same lesion, 10 min apart) and the standard deviation of the difference (SDD) between repeated measurements was calculated. The measurement certainty (probability that the FFR-guided revascularization strategy will not change if the test is repeated 10 min later) was subsequently established across the whole range of FFR values, from 0.2 to 1. Outside the [0.75 to 0.85] FFR range, measurement certainty of a single FFR result is >95%. However, closer to its cut-off, certainty falls to less than 80% within 0.77 to 0.83, reaching a nadir of 50% around 0.8. In clinical practice, that means that each time a single FFR value falls between 0.75 and 0.85, there is a chance that the FFR-derived revascularization recommendation will change if the measurement is repeated 10 min later, with this chance increasing the closer the FFR result is to 0.8. A measurement FFR gray-zone is found between 0.75 and 0.85]. Therefore, clinicians should make revascularization decisions based on broadened clinical judgment when a single FFR result falls within this uncertainty zone, particularly between 0.77 and 0.83, when measurement certainty falls to less than 80%. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  11. Characterization of Aircraft Structural Damage Using Guided Wave Based Finite Element Analysis for In-Flight Structural Health Management

    NASA Technical Reports Server (NTRS)

    Seshadri, Banavara R.; Krishnamurthy, Thiagarajan; Ross, Richard W.

    2016-01-01

    The development of multidisciplinary Integrated Vehicle Health Management (IVHM) tools will enable accurate detection, diagnosis and prognosis of damage under normal and adverse conditions during flight. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and structural damage conditions. A major concern is the growth of undetected damage/cracks due to fatigue and low velocity foreign object impact that can reach a critical size during flight, resulting in loss of control of the aircraft. To avoid unstable catastrophic propagation of damage during a flight, load levels must be maintained that are below the load-carrying capacity for damaged aircraft structures. Hence, a capability is needed for accurate real-time predictions of safe load carrying capacity for aircraft structures with complex damage configurations. In the present work, a procedure is developed that uses guided wave responses to interrogate damage. As the guided wave interacts with damage, the signal attenuates in some directions and reflects in others. This results in a difference in signal magnitude as well as phase shifts between signal responses for damaged and undamaged structures. Accurate estimation of damage size and location is made by evaluating the cumulative signal responses at various pre-selected sensor locations using a genetic algorithm (GA) based optimization procedure. The damage size and location is obtained by minimizing the difference between the reference responses and the responses obtained by wave propagation finite element analysis of different representative cracks, geometries and sizes.

  12. An empirical method to estimate shear wave velocity of soils in the New Madrid seismic zone

    USGS Publications Warehouse

    Wei, B.-Z.; Pezeshk, S.; Chang, T.-S.; Hall, K.H.; Liu, Huaibao P.

    1996-01-01

    In this study, a set of charts are developed to estimate shear wave velocity of soils in the New Madrid seismic zone (NMSZ), using the standard penetration test (SPT) N values and soil depths. Laboratory dynamic test results of soil samples collected from the NMSZ showed that the shear wave velocity of soils is related to the void ratio and the effective confining pressure applied to the soils. The void ratio of soils can be estimated from the SPT N values and the effective confining pressure depends on the depth of soils. Therefore, the shear wave velocity of soils can be estimated from the SPT N value and the soil depth. To make the methodology practical, two corrections should be made. One is that field SPT N values of soils must be adjusted to an unified SPT N??? value to account the effects of overburden pressure and equipment. The second is that the effect of water table to effective overburden pressure of soils must be considered. To verify the methodology, shear wave velocities of five sites in the NMSZ are estimated and compared with those obtained from field measurements. The comparison shows that our approach and the field tests are consistent with an error of less than of 15%. Thus, the method developed in this study is useful for dynamic study and practical designs in the NMSZ region. Copyright ?? 1996 Elsevier Science Limited.

  13. Remote sensing of the marginal ice zone during Marginal Ice Zone Experiment (MIZEX) 83

    NASA Technical Reports Server (NTRS)

    Shuchman, R. A.; Campbell, W. J.; Burns, B. A.; Ellingsen, E.; Farrelly, B. A.; Gloersen, P.; Grenfell, T. C.; Hollinger, J.; Horn, D.; Johannessen, J. A.

    1984-01-01

    The remote sensing techniques utilized in the Marginal Ice Zone Experiment (MIZEX) to study the physical characteristics and geophysical processes of the Fram Strait Region of the Greenland Sea are described. The studies, which utilized satellites, aircraft, helicopters, and ship and ground-based remote sensors, focused on the use of microwave remote sensors. Results indicate that remote sensors can provide marginal ice zone characteristics which include ice edge and ice boundary locations, ice types and concentration, ice deformation, ice kinematics, gravity waves and swell (in the water and the ice), location of internal wave fields, location of eddies and current boundaries, surface currents and sea surface winds.

  14. Research notes : helping businesses in work zones.

    DOT National Transportation Integrated Search

    2001-03-01

    Many business owners fear that highway construction projects will significantly reduce traffic to their businesses. Customers complain about the difficulty in finding business driveways in work zones. Drivers are guided through most work zone using o...

  15. Teleseismic P and S wave attenuation constraints on temperature and melt of the upper mantle in the Alaska Subduction Zone.

    NASA Astrophysics Data System (ADS)

    Soto Castaneda, R. A.; Abers, G. A.; Eilon, Z.; Christensen, D. H.

    2017-12-01

    Recent broadband deployments in Alaska provide an excellent opportunity to advance our understanding of the Alaska-Aleutians subduction system, with implications for subduction processes worldwide. Seismic attenuation, measured from teleseismic body waves, provides a strong constraint on thermal structure as well as an indirect indication of ground shaking expected from large intermediate-depth earthquakes. We measure P and S wave attenuation from pairwise amplitude and phase spectral ratios for teleseisms recorded at 204 Transportable Array, Alaska Regional, and Alaska Volcano Observatory, SALMON (Southern Alaska Lithosphere & Mantle Observation Network) and WVLF (Wrangell Volcanics & subducting Lithosphere Fate) stations in central Alaska. The spectral ratios are inverted in a least squares sense for differential t* (path-averaged attenuation operator) and travel time anomalies at every station. Our preliminary results indicate a zone of low attenuation across the forearc and strong attenuation beneath arc and backarc in the Cook Inlet-Kenai region where the Aleutian-Yakutat slab subducts, similar to other subduction zones. This attenuation differential is observed in both the volcanic Cook Inlet segment and amagmatic Denali segments of the Aleutian subduction zone. By comparison, preliminary results for the Wrangell-St. Elias region past the eastern edge of the Aleutian slab show strong attenuation beneath the Wrangell Volcanic Field, as well as much further south than in the Cook Inlet-Kenai region. This pattern of attenuation seems to indicate a short slab fragment in the east of the subduction zone, though the picture is complex. Results also suggest the slab may focus or transmit energy with minimal attenuation, adding to the complexity. To image the critical transition between the Alaska-Aleutian slab and the region to its east, we plan to incorporate new broadband data from the WVLF array, an ongoing deployment of 37 PASSCAL instruments installed in 2016

  16. Pipe wall damage detection by electromagnetic acoustic transducer generated guided waves in absence of defect signals.

    PubMed

    Vasiljevic, Milos; Kundu, Tribikram; Grill, Wolfgang; Twerdowski, Evgeny

    2008-05-01

    Most investigators emphasize the importance of detecting the reflected signal from the defect to determine if the pipe wall has any damage and to predict the damage location. However, often the small signal from the defect is hidden behind the other arriving wave modes and signal noise. To overcome the difficulties associated with the identification of the small defect signal in the time history plots, in this paper the time history is analyzed well after the arrival of the first defect signal, and after different wave modes have propagated multiple times through the pipe. It is shown that the defective pipe can be clearly identified by analyzing these late arriving diffuse ultrasonic signals. Multiple reflections and scattering of the propagating wave modes by the defect and pipe ends do not hamper the defect detection capability; on the contrary, it apparently stabilizes the signal and makes it easier to distinguish the defective pipe from the defect-free pipe. This paper also highlights difficulties associated with the interpretation of the recorded time histories due to mode conversion by the defect. The design of electro-magnetic acoustic transducers used to generate and receive the guided waves in the pipe is briefly described in the paper.

  17. Lamb wave detection of limpet mines on ship hulls.

    PubMed

    Bingham, Jill; Hinders, Mark; Friedman, Adam

    2009-12-01

    This paper describes the use of ultrasonic guided waves for identifying the mass loading due to underwater limpet mines on ship hulls. The Dynamic Wavelet Fingerprint Technique (DFWT) is used to render the guided wave mode information in two-dimensional binary images because the waveform features of interest are too subtle to identify in time domain. The use of wavelets allows both time and scale features from the original signals to be retained, and image processing can be used to automatically extract features that correspond to the arrival times of the guided wave modes. For further understanding of how the guided wave modes propagate through the real structures, a parallel processing, 3D elastic wave simulation is developed using the finite integration technique (EFIT). This full field, technique models situations that are too complex for analytical solutions, such as built up 3D structures. The simulations have produced informative visualizations of the guided wave modes in the structures as well as mimicking directly the output from sensors placed in the simulation space for direct comparison to experiments. Results from both drydock and in-water experiments with dummy mines are also shown.

  18. Optimal design of a piezoelectric transducer for exciting guided wave ultrasound in rails

    NASA Astrophysics Data System (ADS)

    Ramatlo, Dineo A.; Wilke, Daniel N.; Loveday, Philip W.

    2017-02-01

    An existing Ultrasonic Broken Rail Detection System installed in South Africa on a heavy duty railway line is currently being upgraded to include defect detection and location. To accomplish this, an ultrasonic piezoelectric transducer to strongly excite a guided wave mode with energy concentrated in the web (web mode) of a rail is required. A previous study demonstrated that the recently developed SAFE-3D (Semi-Analytical Finite Element - 3 Dimensional) method can effectively predict the guided waves excited by a resonant piezoelectric transducer. In this study, the SAFE-3D model is used in the design optimization of a rail web transducer. A bound-constrained optimization problem was formulated to maximize the energy transmitted by the transducer in the web mode when driven by a pre-defined excitation signal. Dimensions of the transducer components were selected as the three design variables. A Latin hypercube sampled design of experiments that required a total of 500 SAFE-3D analyses in the design space was employed in a response surface-based optimization approach. The Nelder-Mead optimization algorithm was then used to find an optimal transducer design on the constructed response surface. The radial basis function response surface was first verified by comparing a number of predicted responses against the computed SAFE-3D responses. The performance of the optimal transducer predicted by the optimization algorithm on the response surface was also verified to be sufficiently accurate using SAFE-3D. The computational advantages of SAFE-3D in optimal transducer design are noteworthy as more than 500 analyses were performed. The optimal design was then manufactured and experimental measurements were used to validate the predicted performance. The adopted design method has demonstrated the capability to automate the design of transducers for a particular rail cross-section and frequency range.

  19. Detecting delaminations and disbondings on full-scale wing composite panel by guided waves based SHM system

    NASA Astrophysics Data System (ADS)

    Monaco, E.; Boffa, N. D.; Memmolo, V.; Ricci, F.; Maio, L.

    2016-04-01

    A full-scale lower wing panel made of composite material has been designed, manufactured and sensorised within the European Funded research project named SARISTU. The authors contributed to the whole development of the system, from design to implementation as well as to the impacts campaign phase where Barely Visible and Visible Damages (BVID and VID) are to be artificially induced on the panel by a pneumatic impact machine. This work summarise part of the experimental results related to damages production, their assessment by C-SCAN as reference NDT method as well as damage detection of delimitations by a guided waves based SHM. The SHM system is made by customized piezoelectric patches secondary bonded on the wing plate acting both as guided waves sources and receivers. The paper will deal mostly with the experimental impact campaign and the signal analyses carried out to extract the metrics more sensitive to damages induced. Image reconstruction of the damages dimensions and shapes will be also described based mostly on the combination of metrics maps over the plate partial surfaces. Finally a comparison of damages maps obtained by the SHM approach and those obtained by "classic" C-SCAN will be presented analyzing briefly pros and cons of the two different approached as a combination to the most effective structural maintenance scenario of a commercial aircraft.

  20. On Multiple Hall-Like Electron Currents and Tripolar Guide Magnetic Field Perturbations During Kelvin-Helmholtz Waves

    NASA Astrophysics Data System (ADS)

    Sturner, Andrew P.; Eriksson, Stefan; Nakamura, Takuma; Gershman, Daniel J.; Plaschke, Ferdinand; Ergun, Robert E.; Wilder, Frederick D.; Giles, Barbara; Pollock, Craig; Paterson, William R.; Strangeway, Robert J.; Baumjohann, Wolfgang; Burch, James L.

    2018-02-01

    Two magnetopause current sheet crossings with tripolar guide magnetic field signatures were observed by multiple Magnetosphere Multiscale (MMS) spacecraft during Kelvin-Helmholtz wave activity. The two out-of-plane magnetic field depressions of the tripolar guide magnetic field are largely supported by the observed in-plane electron currents, which are reminiscent of two clockwise Hall current loop systems. A comparison with a three-dimensional kinetic simulation of Kelvin-Helmholtz waves and vortex-induced reconnection suggests that MMS likely encountered the two Hall magnetic field depressions on either side of a magnetic reconnection X-line. Moreover, MMS observed an out-of-plane current reversal and a corresponding in-plane magnetic field rotation at the center of one of the current sheets, suggesting the presence of two adjacent flux ropes. The region inside one of the ion-scale flux ropes was characterized by an observed decrease of the total magnetic field, a strong axial current, and significant enhancements of electron density and parallel electron temperature. The flux rope boundary was characterized by currents opposite this axial current, strong in-plane and converging electric fields, parallel electric fields, and weak electron-frame Joule dissipation. These return current region observations may reflect a need to support the axial current rather than representing local reconnection signatures in the absence of any exhausts.

  1. Development of groundwater vulnerability zones in a data-scarce eogenetic karst area using Head-Guided Zonation and particle-tracking simulation methods.

    PubMed

    Klaas, Dua K S Y; Imteaz, Monzur Alam; Arulrajah, Arul

    2017-10-01

    Delineation of groundwater vulnerability zones based on a valid groundwater model is crucial towards an accurate design of management strategies. However, limited data often restrain the development of a robust groundwater model. This study presents a methodology to develop groundwater vulnerability zones in a data-scarce area. The Head-Guided Zonation (HGZ) method was applied on the recharge area of Oemau Spring in Rote Island, Indonesia, which is under potential risk of contamination from rapid land use changes. In this method the model domain is divided into zones of piecewise constant into which the values of subsurface properties are assigned in the parameterisation step. Using reverse particle-tracking simulation on the calibrated and validated groundwater model, the simulation results (travel time and pathline trajectory) were combined with the potential groundwater contamination risk from human activities (land use type and current practice) to develop three vulnerability zones. The corresponding preventive management strategies were proposed to protect the spring from contamination and to ensure provision of safe and good quality water from the spring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Defect detection performance of the UCSD non-contact air-coupled ultrasonic guided wave inspection of rails prototype

    NASA Astrophysics Data System (ADS)

    Mariani, Stefano; Nguyen, Thompson V.; Sternini, Simone; Lanza di Scalea, Francesco; Fateh, Mahmood; Wilson, Robert

    2016-04-01

    The University of California at San Diego (UCSD), under a Federal Railroad Administration (FRA) Office of Research and Development (R&D) grant, is developing a system for high-speed and non-contact rail defect detection. A prototype using an ultrasonic air-coupled guided wave signal generation and air-coupled signal detection, paired with a real-time statistical analysis algorithm, has been realized. This system requires a specialized filtering approach based on electrical impedance matching due to the inherently poor signal-to-noise ratio of air-coupled ultrasonic measurements in rail steel. Various aspects of the prototype have been designed with the aid of numerical analyses. In particular, simulations of ultrasonic guided wave propagation in rails have been performed using a Local Interaction Simulation Approach (LISA) algorithm. The system's operating parameters were selected based on Receiver Operating Characteristic (ROC) curves, which provide a quantitative manner to evaluate different detection performances based on the trade-off between detection rate and false positive rate. The prototype based on this technology was tested in October 2014 at the Transportation Technology Center (TTC) in Pueblo, Colorado, and again in November 2015 after incorporating changes based on lessons learned. Results from the 2015 field test are discussed in this paper.

  3. Real-time Cure Monitoring of Composites Using a Guided wave-based System with High Temperature Piezoelectric Transducers, Fiber Bragg Gratings, and Phase-shifted Fiber Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Hudson, Tyler Blake

    An in-process, in-situ cure monitoring technique utilizing a guided wave-based concept for carbon fiber reinforced polymer (CFRP) composites was investigated. Two automated cure monitoring systems using guided-wave ultrasonics were developed for characterizing the state of the cure. In the first system, surface mounted high-temperature piezoelectric transducer arrays were employed for actuation and sensing. The second system motivated by the success of the first system includes a single piezoelectric disc, bonded onto the surface of the composite for excitation; fiber Bragg gratings (FBGs) and/or phase-shifted fiber Bragg gratings (PSFBGs) were embedded in the composite for distributed cure sensing. Composite material properties (viscosity and degree of cure) evolved during cure of the panels fabricated from HexcelRTM IM7/8552 prepreg correlated well to the amplitude, time of arrival, and group velocity of the guided wave-based measurements during the cure cycle. In addition, key phase transitions (gelation and vitrification) were clearly identified from the experimental data during the same cure cycle. The material properties and phase transitions were validated using cure process modeling software (e.g., RAVENRTM). The high-temperature piezoelectric transducer array system demonstrated the feasibility of a guided wave-based, in-process, cure monitoring and provided the framework for defect detection during cure. Ultimately, this system could provide a traceable data stream for non-compliance investigations during serial production and perform closed-loop process control to maximize composite panel quality and consistency. In addition, this system could be deployed as a "smart" caul/tool plate to existing production lines without changing the design of the aircraft/structure. With the second system, strain in low frequency (quasi-static) and the guided wavebased signals in several hundred kilohertz range were measured almost simultaneously using the same FBG or PS

  4. Study of guided modes in three-dimensional composites

    NASA Astrophysics Data System (ADS)

    Baste, S.; Gerard, A.

    The propagation of elastic waves in a three-dimensional carbon-carbon composite is modeled with a mixed variational method, using the Bloch or Floquet theories and the Hellinger-Reissner function for two independent fields. The model of the equivalent homogeneous material only exists below a cut-off frequency of about 600 kHz. The existence below the cut-off frequency of two guided waves can account for the presence of a slow guided wave on either side of the cut-off frequency. Optical modes are generated at low frequencies, and can attain high velocites (rapid guided modes of 15,000 m/sec).

  5. ON HYDRODYNAMIC MOTIONS IN DEAD ZONES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oishi, Jeffrey S.; Mac Low, Mordecai-Mark, E-mail: jsoishi@astro.berkeley.ed, E-mail: mordecai@amnh.or

    We investigate fluid motions near the midplane of vertically stratified accretion disks with highly resistive midplanes. In such disks, the magnetorotational instability drives turbulence in thin layers surrounding a resistive, stable dead zone. The turbulent layers in turn drive motions in the dead zone. We examine the properties of these motions using three-dimensional, stratified, local, shearing-box, non-ideal, magnetohydrodynamical simulations. Although the turbulence in the active zones provides a source of vorticity to the midplane, no evidence for coherent vortices is found in our simulations. It appears that this is because of strong vertical oscillations in the dead zone. By analyzingmore » time series of azimuthally averaged flow quantities, we identify an axisymmetric wave mode particular to models with dead zones. This mode is reduced in amplitude, but not suppressed entirely, by changing the equation of state from isothermal to ideal. These waves are too low frequency to affect sedimentation of dust to the midplane, but may have significance for the gravitational stability of the resulting midplane dust layers.« less

  6. Lidar Observations of Wave Shape

    NASA Astrophysics Data System (ADS)

    Brodie, K. L.; Raubenheimer, B.; Spore, N.; Gorrell, L.; Slocum, R. K.; Elgar, S.

    2016-02-01

    As waves propagate across the inner-surf zone, through a shorebreak, to the swash, their shapes can evolve rapidly, particularly if there are large changes in water depth over a wavelength. As wave shapes evolve, the time history of near-bed wave-orbital velocities also changes. Asymmetrical near-bed velocities result in preferential directions for sediment transport, and spatial variations in asymmetries can lead to morphological evolution. Thus, understanding and predicting wave shapes in the inner-surf and swash zones is important to improving sediment transport predictions. Here, rapid changes in wave shape, quantified by 3rd moments (skewness and asymmetry) of the sea-surface elevation time series, were observed on a sandy Atlantic Ocean beach near Duck, NC using terrestrial lidar scanners that measure the elevation of the water surface along a narrow cross-shore transect with high spatial [O(1 cm)] and temporal [O(0.5 s)] resolution. The terrestrial lidar scanners were mounted on a tower on the beach dune (about 8 m above the water surface) and on an 8-m tall amphibious tripod [the Coastal Research Amphibious Buggy (CRAB)]. Observations with the dune lidar are used to investigate how bulk wave shape parameters such as wave skewness and asymmetry, and the ratio of wave height to water depth (gamma) vary with beach slope, tide level, and offshore wave conditions. Observations with the lidar mounted on the CRAB are used to investigate the evolution of individual waves propagating across the surf zone and shorebreak to the swash. For example, preliminary observations from the CRAB include a wave that appeared to shoal and then "pitch" backwards immediately prior to breaking and running up the beach. Funded by the USACE Coastal Field Data Collection Program, ASD(R&E), and ONR.

  7. Fine-scale delineation of the location of and relative ground shaking within the San Andreas Fault zone at San Andreas Lake, San Mateo County, California

    USGS Publications Warehouse

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Prentice, C.S.; Sickler, R.R.

    2013-01-01

    extensional stresses on built structures within the fault zone. Such differential movement and resulting distortion of built structures appear to have occurred between fault traces at the gatewell near the southern end of San Andreas Lake during the 1906 San Francisco earthquake (Schussler, 1906). In addition to the three fault traces within the main 1906 surface rupture zone, our data indicate at least one additional fault trace (or zone) about 80 meters northeast of the main 1906 surface rupture zone. Because ground shaking also can damage structures, we used fault-zone guided waves to investigate ground shaking within the fault zones relative to ground shaking outside the fault zones. Peak ground velocity (PGV) measurements from our guided-wave study indicate that ground shaking is greater at each of the surface fault traces, varying with the frequency of the seismic data and the wave type (P versus S). S-wave PGV increases by as much as 5–6 times at the fault traces relative to areas outside the fault zone, and P-wave PGV increases by as much as 3–10 times. Assuming shaking increases linearly with increasing earthquake magnitude, these data suggest strong shaking may pose a significant hazard to built structures that extend across the fault traces. Similarly complex fault structures likely underlie other strike-slip faults (such as the Hayward, Calaveras, and Silver Creek Faults) that intersect structures of the water delivery system, and these fault structures similarly should be investigated.

  8. Monitoring the reflection from an artificial defect in rail track using guided wave ultrasound

    NASA Astrophysics Data System (ADS)

    Loveday, Philip W.; Taylor, Rebecca M. C.; Long, Craig S.; Ramatlo, Dineo A.

    2018-04-01

    Guided wave ultrasound has the potential to detect relatively large defects in continuously welded rail track at long range. As monitoring can be performed in near real time it would be acceptable to only detect fairly large cracks provided this is achieved prior to complete rail breakage. Heavy haul rail lines are inspected periodically by conventional ultrasound and sections with even relatively small cracks are removed; therefore, no sizable defects are available to demonstrate monitoring in the presence of realistic environmental operating conditions. Instead, we glued a small mass to the rail to simulate reflection from a crack and monitored the guided wave signals as the glue joint deteriorated over time. Data was collected over a two week period on an operational heavy haul line. A piezoelectric transducer mounted under the head of the rail was used in pulse-echo mode to transmit and receive a mode of propagation with energy confined mainly in the head of the rail. The small mass was attached under the head of the rail, at a distance of 375m from the transducer, using a cyanoacrylate glue, which was not expected to remain intact for long. Pre-processing of the collected signals involved rejection of signals containing train noise, averaging, filtering and dispersion compensation. Reflections from aluminothermic welds were used to stretch and scale the signals to reduce the influence of temperature variations. Singular value decomposition and independent component analysis were then applied to the signals with the aim of separating the reflection caused by the artificial defect from the background signal. The performance of these techniques was compared for different time spans. The reflection from the artificial defect showed unanticipated fluctuations.

  9. Shear horizontal feature guided ultrasonic waves in plate structures with 90° transverse bends.

    PubMed

    Yu, Xudong; Manogharan, Prabhakaran; Fan, Zheng; Rajagopal, Prabhu

    2016-02-01

    Antisymmetric and symmetric Lamb-type feature guided waves (FGW) have recently been shown to exist in small angle plate bends. This paper reports Semi-Analytical Finite Element (SAFE) method simulations revealing the existence of a new family of Shear Horizontal (SHB) type of FGW mode in 90° bends in plate structures. Mode shapes and velocity dispersion curves are extracted, demonstrating the SH-like nature of a bend-confined mode identified in studies of power flow across the bend. The SHB mode is shown to have reduced attenuation in the higher frequency range, making it an ideal choice for high-resolution inspection of such bends. Further modal studies examine the physical basis for mode confinement, and argue that this is strongly related to FGW phenomena reported earlier, and also linked to the curvature at the bend region. Wedge acoustic waves discussed widely in literature are shown as arising from surface-limiting of the SHB mode at higher frequencies. The results are validated by experiments and supported by 3D Finite Element (FE) simulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Probing the critical zone using passive- and active-source estimates of subsurface shear-wave velocities

    NASA Astrophysics Data System (ADS)

    Callahan, R. P.; Taylor, N. J.; Pasquet, S.; Dueker, K. G.; Riebe, C. S.; Holbrook, W. S.

    2016-12-01

    Geophysical imaging is rapidly becoming popular for quantifying subsurface critical zone (CZ) architecture. However, a diverse array of measurements and measurement techniques are available, raising the question of which are appropriate for specific study goals. Here we compare two techniques for measuring S-wave velocities (Vs) in the near surface. The first approach quantifies Vs in three dimensions using a passive source and an iterative residual least-squares tomographic inversion. The second approach uses a more traditional active-source seismic survey to quantify Vs in two dimensions via a Monte Carlo surface-wave dispersion inversion. Our analysis focuses on three 0.01 km2 study plots on weathered granitic bedrock in the Southern Sierra Critical Zone Observatory. Preliminary results indicate that depth-averaged velocities from the two methods agree over the scales of resolution of the techniques. While the passive- and active-source techniques both quantify Vs, each method has distinct advantages and disadvantages during data acquisition and analysis. The passive-source method has the advantage of generating a three dimensional distribution of subsurface Vs structure across a broad area. Because this method relies on the ambient seismic field as a source, which varies unpredictably across space and time, data quality and depth of investigation are outside the control of the user. Meanwhile, traditional active-source surveys can be designed around a desired depth of investigation. However, they only generate a two dimensional image of Vs structure. Whereas traditional active-source surveys can be inverted quickly on a personal computer in the field, passive source surveys require significantly more computations, and are best conducted in a high-performance computing environment. We use data from our study sites to compare these methods across different scales and to explore how these methods can be used to better understand subsurface CZ architecture.

  11. Velocity Memory Effect for polarized gravitational waves

    NASA Astrophysics Data System (ADS)

    Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2018-05-01

    Circularly polarized gravitational sandwich waves exhibit, as do their linearly polarized counterparts, the Velocity Memory Effect: freely falling test particles in the flat after-zone fly apart along straight lines with constant velocity. In the inside zone their trajectories combine oscillatory and rotational motions in a complicated way. For circularly polarized periodic gravitational waves some trajectories remain bounded, while others spiral outward. These waves admit an additional "screw" isometry beyond the usual five. The consequences of this extra symmetry are explored.

  12. ROSSBY WAVE INSTABILITY AT DEAD ZONE BOUNDARIES IN THREE-DIMENSIONAL RESISTIVE MAGNETOHYDRODYNAMICAL GLOBAL MODELS OF PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyra, Wladimir; Mac Low, Mordecai-Mark, E-mail: wlyra@jpl.nasa.gov, E-mail: mordecai@amnh.org

    It has been suggested that the transition between magnetorotationally active and dead zones in protoplanetary disks should be prone to the excitation of vortices via Rossby wave instability (RWI). However, the only numerical evidence for this has come from alpha disk models, where the magnetic field evolution is not followed, and the effect of turbulence is parameterized by Laplacian viscosity. We aim to establish the phenomenology of the flow in the transition in three-dimensional resistive-magnetohydrodynamical models. We model the transition by a sharp jump in resistivity, as expected in the inner dead zone boundary, using the PENCIL CODE to simulatemore » the flow. We find that vortices are readily excited in the dead side of the transition. We measure the mass accretion rate finding similar levels of Reynolds stress at the dead and active zones, at the {alpha} Almost-Equal-To 10{sup -2} level. The vortex sits in a pressure maximum and does not migrate, surviving until the end of the simulation. A pressure maximum in the active zone also triggers the RWI. The magnetized vortex that results should be disrupted by parasitical magneto-elliptic instabilities, yet it subsists in high resolution. This suggests that either the parasitic modes are still numerically damped or that the RWI supplies vorticity faster than they can destroy it. We conclude that the resistive transition between the active and dead zones in the inner regions of protoplanetary disks, if sharp enough, can indeed excite vortices via RWI. Our results lend credence to previous works that relied on the alpha-disk approximation, and caution against the use of overly reduced azimuthal coverage on modeling this transition.« less

  13. Warped frequency transform analysis of ultrasonic guided waves in long bones

    NASA Astrophysics Data System (ADS)

    De Marchi, L.; Baravelli, E.; Xu, K.; Ta, D.; Speciale, N.; Marzani, A.; Viola, E.

    2010-03-01

    Long bones can be seen as irregular hollow tubes, in which, for a given excitation frequency, many ultrasonic Guided Waves (GWs) can propagate. The analysis of GWs is potential to reflect more information on both geometry and material properties of the bone than any other method (such as dual-energy X-ray absorptiometry, or quantitative computed tomography), and can be used in the assessment of osteoporosis and in the evaluation of fracture healing. In this study, time frequency representations (TFRs) were used to gain insights into the expected behavior of GWs in bones. To this aim, we implemented a dedicated Warped Frequency Transform (WFT) which decomposes the spectrotemporal components of the different propagating modes by selecting an appropriate warping map to reshape the frequency axis. The map can be designed once the GWs group velocity dispersion curves can be predicted. To this purpose, the bone is considered as a hollow cylinder with inner and outer diameter of 16.6 and 24.7 mm, respectively, and linear poroelastic material properties in agreement with the low level of stresses induced by the waves. Timetransient events obtained experimentally, via a piezoelectric ultrasonic set-up applied to bovine tibiae, are analyzed. The results show that WFT limits interference patterns which appear with others TFRs (such as scalograms or warpograms) and produces a sparse representation suitable for characterization purposes. In particular, the mode-frequency combinations propagating with minimal losses are identified.

  14. Evolution of Spiral and Scroll Waves of Excitation in a Mathematical Model of Ischaemic Border Zone

    PubMed Central

    Biktashev, Vadim N.; Biktasheva, Irina V.; Sarvazyan, Narine A.

    2011-01-01

    Abnormal electrical activity from the boundaries of ischemic cardiac tissue is recognized as one of the major causes in generation of ischemia-reperfusion arrhythmias. Here we present theoretical analysis of the waves of electrical activity that can rise on the boundary of cardiac cell network upon its recovery from ischaemia-like conditions. The main factors included in our analysis are macroscopic gradients of the cell-to-cell coupling and cell excitability and microscopic heterogeneity of individual cells. The interplay between these factors allows one to explain how spirals form, drift together with the moving boundary, get transiently pinned to local inhomogeneities, and finally penetrate into the bulk of the well-coupled tissue where they reach macroscopic scale. The asymptotic theory of the drift of spiral and scroll waves based on response functions provides explanation of the drifts involved in this mechanism, with the exception of effects due to the discreteness of cardiac tissue. In particular, this asymptotic theory allows an extrapolation of 2D events into 3D, which has shown that cells within the border zone can give rise to 3D analogues of spirals, the scroll waves. When and if such scroll waves escape into a better coupled tissue, they are likely to collapse due to the positive filament tension. However, our simulations have shown that such collapse of newly generated scrolls is not inevitable and that under certain conditions filament tension becomes negative, leading to scroll filaments to expand and multiply leading to a fibrillation-like state within small areas of cardiac tissue. PMID:21935402

  15. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1994-01-01

    This paper presents work performed on the generation and physics of acoustic waves in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic wave generation in order to calculate the acoustic wave energy fluxes generated in the solar convective zone. The investigators have also revised and improved the treatment of the generation of magnetic flux tube waves, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube wave energy fluxes for the sun. They also examine the transfer of the wave energy originated in the solar convective zone to the outer atmospheric layers through computation of wave propagation and dissipation in highly nonhomogeneous solar atmosphere. These waves may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven waves in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of wave propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD waves propagating in stratified stellar atmospheres.

  16. Large scale implementation of guided wave based broken rail monitoring

    NASA Astrophysics Data System (ADS)

    Burger, Francois A.; Loveday, Philip W.; Long, Craig S.

    2015-03-01

    A guided wave ultrasound system has been developed over the past 17 years to detect breaks in continuously welded rail track. Installation of the version 4 system on an 840 km long heavy duty freight line was conducted between January 2013 and June 2014. The system operates in pitch - catch mode with alternate transmit and receive transducers spaced approximately 1km apart. If the acoustic signal is not received at the receive station an alarm is triggered to indicate a break in the rail between the transmit station and the receive station. The system is permanently installed, powered by solar panels and issues broken rail alarms using the GSM network where available, and digital radio technology in other areas. A total of 931 stations were installed and the entire length of rail is interrogated every fifteen minutes. The system operates reliably although some problems involving unreliable GSM communication and theft of solar panels have been experienced. In the first two months of operation four broken rails were detected and train operation was halted temporarily for repairs.

  17. Application of Ultrasonic Guided Waves for Evaluating Aging Wire Insulation

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2005-01-01

    Aging wiring has become a critical issue to the aerospace and aircraft industries due to Shuttle and aircraft incidents. The problem is that over time the insulation on wire becomes brittle and cracks. This exposes the underlying conductive wire to the potential for short circuits and fire. Popular methods of monitoring aging wire problems focuses on applying electrical sensing techniques that are sensitive to the conductor's condition, but not very sensitive to the wire insulation's condition. Measurement of wire insulation stiffness and ultrasonic properties by ultrasonic guided waves is being examined. Experimental measurements showed that the lowest order extensional mode could be sensitive to stiffness changes in the wire insulation. To test this theory conventional wire samples were heat damaged in an oven, in a range of heating conditions. The samples were 12, 16, and 20 gauge and the heat damage introduced material changes in the wire insulation that made the originally flexible insulation brittle and darker in color. Results showed that extensional mode phase velocity increased for the samples that were exposed to heat for longer duration.

  18. The incorporation of fault zone head wave and direct wave secondary arrival times and arrival polarizations into seismic tomography: Application to the Parkfield, California area

    NASA Astrophysics Data System (ADS)

    Bennington, N. L.; Thurber, C. H.; Peng, Z.; Zhao, P.

    2012-12-01

    We present a 3D P-wave velocity (Vp) model of the Parkfield region that utilizes existing P-wave arrival time data, including fault zone head waves (FZHW), plus new data from direct wave secondary arrivals (DWSA). The first-arrival and DWSA travel times are obtained as the global and local minimum travel time paths, respectively. The inclusion of DWSA results in as much as a 10% increase in the across-fault velocity contrast for the Vp model at Parkfield relative to Thurber et al. (2006). Viewed along strike, three pronounced velocity contrast regions are observed: a pair of strong positive velocity contrasts (SW fast), one NW of the 1966 Parkfield hypocenter and the other SE of the 2004 Parkfield hypocenter, and a strong negative velocity contrast (NE fast) between the two hypocenters. The negative velocity contrast partially to entirely encompasses peak coseismic slip estimated in several slip models for the 2004 earthquake, suggesting that the negative velocity contrast played a part in defining the rupture patch of the 2004 Parkfield earthquake. We expand on this work by modifying our seismic tomography algorithm to incorporate arrival polarizations (azimuths). Synthetic tests will be presented to demonstrate the improvements in velocity structure when arrival polarizations are incorporated. These tests will compare the synthetic model recovered when FZHW/DWSA arrivals as well as existing P-wave arrival time data are inverted to that recovered with the same dataset with the inclusion of arrival polarizations. We plan to extend this work to carry out a full scale seismic tomography/relocation inversion at Parkfield, CA utilizing arrival polarizations from all first-P arrivals, and FZHW/DWSA arrivals as well as existing P-wave arrival time data. This effort requires the determination of polarization data for all P-waves and FZHW's at Parkfield. To this end, we use changes in the arrival azimuth from fault normal to source-receiver direction to identify FZHW and

  19. Imaging the mantle tranzition zone beneath the South American platform using P- and S-wave receiver functions

    NASA Astrophysics Data System (ADS)

    Bianchi, M.; Heit, B.; Yuan, X.; Assumpcao, M.; Kind, R.

    2009-04-01

    results observed are: 1) A clear cratonic signature, consisting of higher wave velocities for the mantle under the cratons and normal (410km and 660km) depths for the discontinuities 2) Strong presence of the Nazca subducted plate near 410 and 660 km discontinuities under the Southern part of the Parana basin 3) Lack of variation in the Transition Zone thickness and in the mantle velocities due to the presence of the possible plume proposed in 1995 by Vandecar at the Northern Parana basin region and 4) A possible transition zone thinning near the Matiqueira complex, at the Ribeira fold beld, near the Atlantic passive margin.

  20. Between tide and wave marks: a unifying model of physical zonation on littoral shores

    PubMed Central

    Bird, Christopher E.; Franklin, Erik C.; Smith, Celia M.

    2013-01-01

    The effects of tides on littoral marine habitats are so ubiquitous that shorelines are commonly described as ‘intertidal’, whereas waves are considered a secondary factor that simply modifies the intertidal habitat. However mean significant wave height exceeds tidal range at many locations worldwide. Here we construct a simple sinusoidal model of coastal water level based on both tidal range and wave height. From the patterns of emergence and submergence predicted by the model, we derive four vertical shoreline benchmarks which bracket up to three novel, spatially distinct, and physically defined zones. The (1) emergent tidal zone is characterized by tidally driven emergence in air; the (2) wave zone is characterized by constant (not periodic) wave wash; and the (3) submergent tidal zone is characterized by tidally driven submergence. The decoupling of tidally driven emergence and submergence made possible by wave action is a critical prediction of the model. On wave-dominated shores (wave height ≫ tidal range), all three zones are predicted to exist separately, but on tide-dominated shores (tidal range ≫ wave height) the wave zone is absent and the emergent and submergent tidal zones overlap substantially, forming the traditional “intertidal zone”. We conclude by incorporating time and space in the model to illustrate variability in the physical conditions and zonation on littoral shores. The wave:tide physical zonation model is a unifying framework that can facilitate our understanding of physical conditions on littoral shores whether tropical or temperate, marine or lentic. PMID:24109544

  1. Simulation of guided-wave ultrasound propagation in composite laminates: Benchmark comparisons of numerical codes and experiment.

    PubMed

    Leckey, Cara A C; Wheeler, Kevin R; Hafiychuk, Vasyl N; Hafiychuk, Halyna; Timuçin, Doğan A

    2018-03-01

    Ultrasonic wave methods constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials, such as carbon fiber reinforced polymer (CFRP) laminates. Computational models of ultrasonic wave excitation, propagation, and scattering in CFRP composites can be extremely valuable in designing practicable NDE and SHM hardware, software, and methodologies that accomplish the desired accuracy, reliability, efficiency, and coverage. The development and application of ultrasonic simulation approaches for composite materials is an active area of research in the field of NDE. This paper presents comparisons of guided wave simulations for CFRP composites implemented using four different simulation codes: the commercial finite element modeling (FEM) packages ABAQUS, ANSYS, and COMSOL, and a custom code executing the Elastodynamic Finite Integration Technique (EFIT). Benchmark comparisons are made between the simulation tools and both experimental laser Doppler vibrometry data and theoretical dispersion curves. A pristine and a delamination type case (Teflon insert in the experimental specimen) is studied. A summary is given of the accuracy of simulation results and the respective computational performance of the four different simulation tools. Published by Elsevier B.V.

  2. Observations of wave-induced pore pressure gradients and bed level response on a surf zone sandbar

    NASA Astrophysics Data System (ADS)

    Anderson, Dylan; Cox, Dan; Mieras, Ryan; Puleo, Jack A.; Hsu, Tian-Jian

    2017-06-01

    Horizontal and vertical pressure gradients may be important physical mechanisms contributing to onshore sediment transport beneath steep, near-breaking waves in the surf zone. A barred beach was constructed in a large-scale laboratory wave flume with a fixed profile containing a mobile sediment layer on the crest of the sandbar. Horizontal and vertical pore pressure gradients were obtained by finite differences of measurements from an array of pressure transducers buried within the upper several centimeters of the bed. Colocated observations of erosion depth were made during asymmetric wave trials with wave heights between 0.10 and 0.98 m, consistently resulting in onshore sheet flow sediment transport. The pore pressure gradient vector within the bed exhibited temporal rotations during each wave cycle, directed predominantly upward under the trough and then rapidly rotating onshore and downward as the wavefront passed. The magnitude of the pore pressure gradient during each phase of rotation was correlated with local wave steepness and relative depth. Momentary bed failures as deep as 20 grain diameters were coincident with sharp increases in the onshore-directed pore pressure gradients, but occurred at horizontal pressure gradients less than theoretical critical values for initiation of the motion for compact beds. An expression combining the effects of both horizontal and vertical pore pressure gradients with bed shear stress and soil stability is used to determine that failure of the bed is initiated at nonnegligible values of both forces.Plain Language SummaryThe pressure gradient present within the seabed beneath breaking <span class="hlt">waves</span> may be an important physical mechanism transporting sediment. A large-scale laboratory was used to replicate realistic surfzone conditions in controlled tests, allowing for horizontal and vertical pressure gradient magnitudes and the resulting sediment bed response to be observed with</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.G31A1046S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.G31A1046S"><span>Seafloor Geodesy usi­ng <span class="hlt">Wave</span> Gliders to study Earthquake and Tsunami Hazards at Subduction <span class="hlt">Zones</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sathiakumar, S.; Barbot, S.; Hill, E.; Peng, D.; Zerucha, J.; Suhaimee, S.; Chia, G.; Salamena, G. G.; Syahailatua, A.</p> <p>2016-12-01</p> <p>Land-based GNSS networks are now in place to monitor most subduction <span class="hlt">zones</span> of the world. These provide valuable information about the amount of­ geodetic strain accumulated in the region, which in turn gives insight into the seismic potential. However, it is usually impossible to resolve activity on the megathrust near the trench using land-based GNSS data alone, given typical signal-to-noise ratios. Ship-based seafloor geodesy is being used today to fill this observation gap. However, surveys using ships are very expensive, tedious and impractical due to the large areas to be covered. Instead of discrete missions using ships, continuous monitoring of the seafloor using autonomous marine robots would aid in understanding the tectonic setting of the seafloor better at a potentially lower cost, as well as help in designing better warning systems. Thus, we are developing seafloor geodesy capabilities using <span class="hlt">Wave</span> Gliders, a new class of <span class="hlt">wave</span>-propelled, persistent marine autonomous vehicle using a combination of acoustic and GNSS technologies. We use GNSS/INS to position the platform, and acoustic ranging to locate the seafloor. The GNSS/INS system to be integrated with the <span class="hlt">Wave</span> Gliders has stringent requirements of low power, light weight, and high accuracy. All these factors are equally important due to limited power and space in the <span class="hlt">Wave</span> Gliders and the need for highly accurate and precise measurements. With this hardware setup, a limiting factor is the accuracy of measurement of the sound velocity in the water column. We plan to obtain precise positioning of seafloor by exploring a measurement setup that minimizes uncertainties in sound velocity. This will be achieved by making fine-resolution measurements of the two-way travel time of the acoustic <span class="hlt">waves</span> underwater using the <span class="hlt">Wave</span> Gliders, and performing statistical signal processing on this data to obtain more reliable sound velocity measurement. This enhanced seafloor geodetic technique using <span class="hlt">Wave</span> Gliders should</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940031888','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940031888"><span>On the physics of <span class="hlt">waves</span> in the solar atmosphere: <span class="hlt">Wave</span> heating and wind acceleration</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Musielak, Z. E.</p> <p>1993-01-01</p> <p>This paper presents work performed on the generation and physics of acoustic <span class="hlt">waves</span> in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic <span class="hlt">wave</span> generation in order to calculate the acoustic <span class="hlt">wave</span> energy fluxes generated in the solar convective <span class="hlt">zone</span>. The investigators have also revised and improved the treatment of the generation of magnetic flux tube <span class="hlt">waves</span>, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube energy fluxes for the sun. They also examine the transfer of the <span class="hlt">wave</span> energy originated in the solar convective <span class="hlt">zone</span> to the outer atmospheric layers through computation of <span class="hlt">wave</span> propagation and dissipation in highly nonhomogeneous solar atmosphere. These <span class="hlt">waves</span> may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven <span class="hlt">waves</span> in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of <span class="hlt">wave</span> propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD <span class="hlt">waves</span> propagating in stratified stellar atmospheres.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..328a2020I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..328a2020I"><span>Parametric study of <span class="hlt">guided</span> ultrasonic <span class="hlt">wave</span> propagation in carbon-fiber composite plates</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ibrahim, N. A.; Kamarudin, M. A.; Jurimi, M. H. F. M.; Murat, B. I. S.</p> <p>2018-03-01</p> <p>The aim of this work is to study the <span class="hlt">guided</span> ultrasonic <span class="hlt">wave</span> (GUW) behaviour in composite plates using 3D Finite Element Analysis (FEA). Two types of composite models are chosen: plates with and without damage. The damage is modelled as a circular-shaped delamination inside the plate, representing one kind of low-velocity impact damage. Parameters such as excitation frequency, monitoring directivity, plate thickness, delamination size and shape were used to investigate the influence of these parameters on the GUW propagation and scattering behaviour. The models were constructed and coded in Matlab platform, while the simulations were performed in ABAQUS Explicit. From the results, the received signals have shown a strong dependency on the parameters. Significant scattering from the models with delamination were also observed, which indicates the possibility of using GUW for rapid non-destructive monitoring of composite panels and structures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SPIE.8409E..0NL','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SPIE.8409E..0NL"><span>Monitoring of surface-fatigue crack propagation in a welded steel angle structure using <span class="hlt">guided</span> <span class="hlt">waves</span> and principal component analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, Mingyu; Qu, Yongwei; Lu, Ye; Ye, Lin; Zhou, Limin; Su, Zhongqing</p> <p>2012-04-01</p> <p>An experimental study is reported in this paper demonstrating monitoring of surface-fatigue crack propagation in a welded steel angle structure using Lamb <span class="hlt">waves</span> generated by an active piezoceramic transducer (PZT) network which was freely surface-mounted for each PZT transducer to serve as either actuator or sensor. The fatigue crack was initiated and propagated in welding <span class="hlt">zone</span> of a steel angle structure by three-point bending fatigue tests. Instead of directly comparing changes between a series of specific signal segments such as S0 and A0 <span class="hlt">wave</span> modes scattered from fatigue crack tips, a variety of signal statistical parameters representing five different structural status obtained from marginal spectrum in Hilbert-huang transform (HHT), indicating energy progressive distribution along time period in the frequency domain including all <span class="hlt">wave</span> modes of one <span class="hlt">wave</span> signal were employed to classify and distinguish different structural conditions due to fatigue crack initiation and propagation with the combination of using principal component analysis (PCA). Results show that PCA based on marginal spectrum is effective and sensitive for monitoring the growth of fatigue crack although the received signals are extremely complicated due to <span class="hlt">wave</span> scattered from weld, multi-boundaries, notch and fatigue crack. More importantly, this method indicates good potential for identification of integrity status of complicated structures which cause uncertain <span class="hlt">wave</span> patterns and ambiguous sensor network arrangement.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3737H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3737H"><span>Observations and Simulations of the Impact of <span class="hlt">Wave</span>-Current Interaction on <span class="hlt">Wave</span> Direction in the Surf <span class="hlt">Zone</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hopkins, Julia; Elgar, Steve; Raubenheimer, Britt</p> <p>2017-04-01</p> <p>Accurately characterizing the interaction of <span class="hlt">waves</span> and currents can improve predictions of <span class="hlt">wave</span> propagation and subsequent sediment transport in the nearshore. Along the southern shoreline of Martha's Vineyard, MA, <span class="hlt">waves</span> propagate across strong tidal currents as they shoal, providing an ideal environment for investigating <span class="hlt">wave</span>-current interaction. <span class="hlt">Wave</span> directions and mean currents observed for two 1-month-long periods in 7- and 2-m water depths along 11 km of the Martha's Vineyard shoreline have strong tidal modulations. <span class="hlt">Wave</span> directions shift by as much as 70 degrees over a tidal cycle in 7 m depth, and by as much as 25 degrees in 2 m depth. The magnitude of the tidal modulations in the <span class="hlt">wave</span> field decreases alongshore to the west, consistent with the observed decrease in tidal currents from 2.1 to 0.2 m/s. The observations are reproduced accurately by a numerical model (SWAN and Deflt3D-FLOW) that simulates <span class="hlt">waves</span> and currents over the observed bathymetry. Model simulations with and without <span class="hlt">wave</span>-current interaction and tidal depth changes demonstrate that the observed tidal modulations of the <span class="hlt">wave</span> field primarily are caused by <span class="hlt">wave</span>-current interaction and not by tidal changes to water depths over the nearby complex shoals. Sediment transport estimates from simulated <span class="hlt">wave</span> conditions using a range of tidal currents and offshore <span class="hlt">wave</span> fields indicate that the modulation of the <span class="hlt">wave</span> field at Martha's Vineyard can impact the direction of <span class="hlt">wave</span>-induced alongshore sediment transport, sometimes driving transport opposing the direction of the offshore incident <span class="hlt">wave</span> field. As such, the observations and model simulations suggest the importance of <span class="hlt">wave</span>-current interaction to tidally averaged transport in mixed-energy <span class="hlt">wave</span>-and-current nearshore environments. Supported by ASD(R&E), NSF, NOAA (Sea Grant), and ONR.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.epa.gov/soil-fumigants/calculating-buffer-zones-guide-applicators','PESTICIDES'); return false;" href="https://www.epa.gov/soil-fumigants/calculating-buffer-zones-guide-applicators"><span>Calculating Buffer <span class="hlt">Zones</span>: A <span class="hlt">Guide</span> for Applicators</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Buffer <span class="hlt">zones</span> provide distance between the application block (i.e., edge of the treated field) and bystanders, in order to control pesticide exposure risk from soil fumigants. Distance requirements may be reduced by credits such as tarps.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911079J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911079J"><span>Shoreline-crossing shear-velocity structure of the Juan de Fuca plate and Cascadia subduction <span class="hlt">zone</span> from surface <span class="hlt">waves</span> and receiver functions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Janiszewski, Helen; Gaherty, James; Abers, Geoffrey; Gao, Haiying</p> <p>2017-04-01</p> <p>The Cascadia subduction <span class="hlt">zone</span> (CSZ) is the site of the onshore-offshore Cascadia Initiative, which deployed seismometers extending from the Juan de Fuca ridge to the subduction <span class="hlt">zone</span> and onshore beyond the volcanic arc. This array allows the unique opportunity to seismically image the evolution and along-strike variation of the crust and mantle of the entire CSZ. We compare teleseismic receiver functions, ambient-noise Rayleigh-<span class="hlt">wave</span> phase velocities in the 10-20 s period band, and earthquake-source Rayleigh-<span class="hlt">wave</span> phase velocities from 20-100 s, to determine shear-velocity structure in the upper 200 km. Receiver functions from both onshore and shallow-water offshore sites provide constraints on crustal and plate interface structure. Spectral-domain fitting of ambient-noise empirical Green's functions constrains shear velocity of the crust and shallow mantle. An automated multi-channel cross-correlation analysis of teleseismic Rayleigh <span class="hlt">waves</span> provides deeper lithosphere and asthenosphere constraints. The amphibious nature of the array means it is essential to examine the effect of noise variability on data quality. Ocean bottom seismometers (OBS) are affected by tilt and compliance noise. Removal of this noise from the vertical components of the OBS is essential for the teleseismic Rayleigh <span class="hlt">waves</span>; this stabilizes the output phase velocity maps particularly along the coastline where observations are predominately from shallow water OBS. Our noise-corrected phase velocity maps reflect major structures and tectonic transitions including the transition from high-velocity oceanic lithosphere to low-velocity continental lithosphere, high velocities associated with the subducting slab, and low velocities beneath the ridge and arc. We interpret the resulting shear-velocity model in the context of temperature and compositional variation in the incoming plate and along the strike of the CSZ.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T31D2944J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T31D2944J"><span>Shoreline-Crossing Shear-Velocity Structure of the Juan de Fuca Plate and Cascadia Subduction <span class="hlt">Zone</span> from Surface <span class="hlt">Waves</span> and Receiver Functions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Janiszewski, H. A.; Gaherty, J. B.; Abers, G. A.; Gao, H.</p> <p>2016-12-01</p> <p>The Cascadia subduction <span class="hlt">zone</span> (CSZ) is the site of the onshore-offshore Cascadia Initiative, which deployed seismometers extending from the Juan de Fuca ridge to the subduction <span class="hlt">zone</span> and onshore beyond the volcanic arc. This array allows the unique opportunity to seismically image the evolution and along-strike variation of the crust and mantle of the entire CSZ. We compare teleseismic receiver functions, ambient-noise Rayleigh-<span class="hlt">wave</span> phase velocities in the 10-20 s period band, and earthquake-source Rayleigh-<span class="hlt">wave</span> phase velocities from 20-100 s, to determine shear-velocity structure in the upper 200 km. Receiver functions from both onshore and shallow-water offshore sites provide constraints on crustal and plate interface structure. Spectral-domain fitting of ambient-noise empirical Green's functions constrains shear velocity of the crust and shallow mantle. An automated multi-channel cross-correlation analysis of teleseismic Rayleigh <span class="hlt">waves</span> provides deeper lithosphere and asthenosphere constraints. The amphibious nature of the array means it is essential to examine the effect of noise variability on data quality. Ocean bottom seismometers (OBS) are affected by tilt and compliance noise. Removal of this noise from the vertical components of the OBS is essential for the teleseismic Rayleigh <span class="hlt">waves</span>; this stabilizes the output phase velocity maps particularly along the coastline where observations are predominately from shallow water OBS. Our noise-corrected phase velocity maps reflect major structures and tectonic transitions including the transition from high-velocity oceanic lithosphere to low-velocity continental lithosphere, high velocities associated with the subducting slab, and low velocities beneath the ridge and arc. We interpret the resulting shear-velocity model in the context of temperature and compositional variation in the incoming plate and along the strike of the CSZ.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004ASAJ..115.2575D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004ASAJ..115.2575D"><span>Visualization of the energy flow for <span class="hlt">guided</span> forward and backward <span class="hlt">waves</span> in and around a fluid-loaded elastic cylindrical shell via the Poynting vector field</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dean, Cleon E.; Braselton, James P.</p> <p>2004-05-01</p> <p>Color-coded and vector-arrow grid representations of the Poynting vector field are used to show the energy flow in and around a fluid-loaded elastic cylindrical shell for both forward- and backward-propagating <span class="hlt">waves</span>. The present work uses a method adapted from a simpler technique due to Kaduchak and Marston [G. Kaduchak and P. L. Marston, ``Traveling-<span class="hlt">wave</span> decomposition of surface displacements associated with scattering by a cylindrical shell: Numerical evaluation displaying <span class="hlt">guided</span> forward and backward <span class="hlt">wave</span> properties,'' J. Acoust. Soc. Am. 98, 3501-3507 (1995)] to isolate unidirectional energy flows.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17718331','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17718331"><span>Elastic <span class="hlt">guided</span> <span class="hlt">wave</span> propagation in electrical cables.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mateo, Carlos; Talavera, Juan A; Muñoz, Antonio</p> <p>2007-07-01</p> <p>This article analyzes the propagation modes of ultrasound <span class="hlt">waves</span> inside an electrical cable in order to assess its behavior as an acoustic transmission channel. A theoretical model for propagation of elastic <span class="hlt">waves</span> in electric power cables is presented. The power cables are represented as viscoelastic-layered cylindrical structures with a copper core and a dielectric cover. The model equations then have been applied and numerically resolved for this and other known structures such as solid and hollow cylinders. The results are compared with available data from other models. Several experimental measures were carried out and were compared with results from the numerical simulations. Experimental and simulated results showed a significant difference between elastic <span class="hlt">wave</span> attenuation inside standard versus bare, low-voltage power cables.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.S31A2009A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.S31A2009A"><span>Seismic Velocity Structure of the San Jacinto Fault <span class="hlt">Zone</span> from Double-Difference Tomography and Expected Distribution of Head <span class="hlt">Waves</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allam, A. A.; Ben-Zion, Y.</p> <p>2010-12-01</p> <p>We present initial results of double-difference tomographic images for the velocity structure of the San Jacinto Fault <span class="hlt">Zone</span> (SJFZ), and related 3D forward calculations of <span class="hlt">waves</span> in the immediate vicinity of the SJFZ. We begin by discretizing the SJFZ region with a uniform grid spacing of 500 m, extending 140 km by 80 km and down to 25 km depth. We adopt the layered 1D model of Dreger & Helmberger (1993) as a starting model for this region, and invert for 3D distributions of VP and VS with the double-difference tomography of Zhang & Thurber (2003), which makes use of absolute event-station travel times as well as relative travel times for phases from nearby event pairs. Absolute arrival times of over 78,000 P- and S-<span class="hlt">wave</span> phase picks generated by 1127 earthquakes and recorded at 70 stations near the SJFZ are used. Only data from events with Mw greater than 2.2 are used. Though ray coverage is limited at shallow depths, we obtain relatively high-resolution images from 4 to 13 km which show a clear contrast in velocity across the NW section of the SJFZ. To the SE, in the so-called trifurcation area, the structure is more complicated, though station coverage is poorest in this region. Using the obtained image, the current event locations, and the 3D finite-difference code of Olsen (1994), we estimate the likely distributions of fault <span class="hlt">zone</span> head <span class="hlt">waves</span> as a tool for future deployment of instrument. We plan to conduct further studies by including more travel time picks, including those from newly-deployed stations in the SJFZ area, in order to gain a more accurate image of the velocity structure.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AIPC.1430..647L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AIPC.1430..647L"><span><span class="hlt">Guided</span> <span class="hlt">wave</span> localization of damage via sparse reconstruction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Levine, Ross M.; Michaels, Jennifer E.; Lee, Sang Jun</p> <p>2012-05-01</p> <p>Ultrasonic <span class="hlt">guided</span> <span class="hlt">waves</span> are frequently applied for structural health monitoring and nondestructive evaluation of plate-like metallic and composite structures. Spatially distributed arrays of fixed piezoelectric transducers can be used to detect damage by recording and analyzing all pairwise signal combinations. By subtracting pre-recorded baseline signals, the effects due to scatterer interactions can be isolated. Given these residual signals, techniques such as delay-and-sum imaging are capable of detecting flaws, but do not exploit the expected sparse nature of damage. It is desired to determine the location of a possible flaw by leveraging the anticipated sparsity of damage; i.e., most of the structure is assumed to be damage-free. Unlike least-squares methods, L1-norm minimization techniques favor sparse solutions to inverse problems such as the one considered here of locating damage. Using this type of method, it is possible to exploit sparsity of damage by formulating the imaging process as an optimization problem. A model-based damage localization method is presented that simultaneously decomposes all scattered signals into location-based signal components. The method is first applied to simulated data to investigate sensitivity to both model mismatch and additive noise, and then to experimental data recorded from an aluminum plate with artificial damage. Compared to delay-and-sum imaging, results exhibit a significant reduction in both spot size and imaging artifacts when the model is reasonably well-matched to the data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OptCo.363..201C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OptCo.363..201C"><span>Compound surface-plasmon-polariton <span class="hlt">waves</span> <span class="hlt">guided</span> by a thin metal layer sandwiched between a homogeneous isotropic dielectric material and a structurally chiral material</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chiadini, Francesco; Fiumara, Vincenzo; Scaglione, Antonio; Lakhtakia, Akhlesh</p> <p>2016-03-01</p> <p>Multiple compound surface plasmon-polariton (SPP) <span class="hlt">waves</span> can be <span class="hlt">guided</span> by a structure consisting of a sufficiently thick layer of metal sandwiched between a homogeneous isotropic dielectric (HID) material and a dielectric structurally chiral material (SCM). The compound SPP <span class="hlt">waves</span> are strongly bound to both metal/dielectric interfaces when the thickness of the metal layer is comparable to the skin depth but just to one of the two interfaces when the thickness is much larger. The compound SPP <span class="hlt">waves</span> differ in phase speed, attenuation rate, and field profile, even though all are excitable at the same frequency. Some compound SPP <span class="hlt">waves</span> are not greatly affected by the choice of the direction of propagation in the transverse plane but others are, depending on metal thickness. For fixed metal thickness, the number of compound SPP <span class="hlt">waves</span> depends on the relative permittivity of the HID material, which can be useful for sensing applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6883T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6883T"><span>Upper crustal structure of the North Anatolian Fault <span class="hlt">Zone</span> from ambient seismic noise Rayleigh and Love <span class="hlt">wave</span> tomography</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taylor, George; Rost, Sebastian; Houseman, Gregory; Hillers, Gregor</p> <p>2017-04-01</p> <p>By utilising short period surface <span class="hlt">waves</span> present in the noise field, we can construct images of shallow structure in the Earth's upper crust: a region that is usually poorly resolved in earthquake tomography. Here, we use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the North Anatolian Fault <span class="hlt">Zone</span> (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ˜1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We obtain maps of group velocity variation using surface <span class="hlt">wave</span> tomography applied to short period (1- 6 s) Rayleigh and Love <span class="hlt">waves</span> to construct high-resolution images of the upper 5 km of a 70 km x 35 km region centred on the eastern end of the fault segment that ruptured in the 1999 Izmit earthquake. The average Rayleigh <span class="hlt">wave</span> group velocities in the region vary between 1.8 km/s at 1.5 s period, to 2.2 km/s at 6 s period. The NAFZ bifurcates into northern and southern strands in this region; both are active but only the northern strand moved in the 1999 event. The signatures of both the northern and southern branches of the NAFZ are clearly associated with strong gradients in surface <span class="hlt">wave</span> group velocity. To the north of the NAFZ, we observe low Rayleigh <span class="hlt">wave</span> group velocities ( 1.2 km/s) associated with the unconsolidated sediments of the Adapazari basin, and blocks of weathered terrigenous clastic sediments. To the south of the northern branch of the NAFZ, we detect high velocities ( 2.5 km/s) associated with a shallow crystalline basement, in particular a block of metamorphosed schists and marbles that bound the northern branch of the NAFZ.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2410L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2410L"><span><span class="hlt">Wave</span>-induced current considering <span class="hlt">wave</span>-tide interaction in Haeundae</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lim, Hak Soo</p> <p>2017-04-01</p> <p>The Haeundae, located at the south eastern end of the Korean Peninsula, is a famous beach, which has an approximately 1.6 km long and 70 m wide coastline. The beach has been repeatedly eroded by the swell <span class="hlt">waves</span> caused by typhoons in summer and high <span class="hlt">waves</span> originating in the East Sea in winter. The Korean government conducted beach restoration projects including beach nourishment (620,000 m3) and construction of two submerged breakwaters near both ends of the beach. To prevent the beach erosion and to support the beach restoration project, the Korean government initiated a R&D project, the development of coastal erosion control technology since 2013. As a part of the project, we have been measuring <span class="hlt">waves</span> and currents at a water depth of 22 m, 1.8 km away from the beach using an acoustic <span class="hlt">wave</span> and current meter (AWAC) continuously for more than three years; we have also measured <span class="hlt">waves</span> and currents intensively near the surf-<span class="hlt">zone</span> in summer and winter. In this study, a numerical simulation using a <span class="hlt">wave</span> and current coupled model (ROMS-SWAN) was conducted for determining the <span class="hlt">wave</span>-induced current considering seasonal swell <span class="hlt">waves</span> (Hs : 2.5 m, Tp: 12 s) and for better understanding of the coastal process near the surf-<span class="hlt">zone</span> in Haeundae. By comparing the measured and simulated results, we found that cross-shore current during summer is mainly caused by the eddy produced by the <span class="hlt">wave</span>-induced current near the beach, which in turn, is generated by the strong <span class="hlt">waves</span> coming from the SSW and S directions. During other seasons, longshore <span class="hlt">wave</span>-induced current is produced by the swell <span class="hlt">waves</span> coming from the E and ESE directions. The longshore current heading west toward Dong-Back Island, west end of the beach, during all the seasons and eddy current toward Mipo-Port, east end of the beach, in summer which is well matched with the observed residual current. The <span class="hlt">wave</span>-induced current with long-term measurement data is incorporated in simulation of sediment transport modeling for developing</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25096095','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25096095"><span>Reconstructing surface <span class="hlt">wave</span> profiles from reflected acoustic pulses using multiple receivers.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Walstead, Sean P; Deane, Grant B</p> <p>2014-08-01</p> <p>Surface <span class="hlt">wave</span> shapes are determined by analyzing underwater reflected acoustic signals collected at multiple receivers. The transmitted signals are of nominal frequency 300 kHz and are reflected off surface gravity <span class="hlt">waves</span> that are paddle-generated in a <span class="hlt">wave</span> tank. An inverse processing algorithm reconstructs 50 surface <span class="hlt">wave</span> shapes over a length span of 2.10 m. The inverse scheme uses a broadband forward scattering model based on Kirchhoff's diffraction formula to determine <span class="hlt">wave</span> shapes. The surface reconstruction algorithm is self-starting in that source and receiver geometry and initial estimates of <span class="hlt">wave</span> shape are determined from the same acoustic signals used in the inverse processing. A high speed camera provides ground-truth measurements of the surface <span class="hlt">wave</span> field for comparison with the acoustically derived surface <span class="hlt">waves</span>. Within Fresnel <span class="hlt">zone</span> regions the statistical confidence of the inversely optimized surface profile exceeds that of the camera profile. Reconstructed surfaces are accurate to a resolution of about a quarter-wavelength of the acoustic pulse only within Fresnel <span class="hlt">zones</span> associated with each source and receiver pair. Multiple isolated Fresnel <span class="hlt">zones</span> from multiple receivers extend the spatial extent of accurate surface reconstruction while overlapping Fresnel <span class="hlt">zones</span> increase confidence in the optimized profiles there.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GMS...216..121M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GMS...216..121M"><span>Relationship between Alfvén <span class="hlt">Wave</span> and Quasi-Static Acceleration in Earth's Auroral <span class="hlt">Zone</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mottez, Fabrice</p> <p>2016-02-01</p> <p>There are two main categories of acceleration processes in the Earth's auroral <span class="hlt">zone</span>: those based on quasi-static structures, and those based on Alfvén <span class="hlt">wave</span> (AW). AWs play a nonnegligible role in the global energy budget of the plasma surrounding the Earth because they participate in auroral acceleration, and because auroral acceleration conveys a large portion of the energy flux across the magnetosphere. Acceleration events by double layers (DLs) and by AW have mostly been investigated separately, but many studies cited in this chapter show that they are not independent: these processes can occur simultaneously, and one process can be the cause of the other. The quasi-simultaneous occurrences of acceleration by AW and by quasi-static structures have been observed predominantly at the polar cap boundary of auroral arc systems, where often new bright arcs develop or intensify.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AIPC.1650..686K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AIPC.1650..686K"><span>Quasi-Rayleigh <span class="hlt">waves</span> in butt-welded thick steel plate</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kamas, Tuncay; Giurgiutiu, Victor; Lin, Bin</p> <p>2015-03-01</p> <p>This paper discusses theoretical and experimental analyses of weld <span class="hlt">guided</span> surface acoustic <span class="hlt">waves</span> (SAW) through the <span class="hlt">guided</span> <span class="hlt">wave</span> propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as well as a transducer. Quasi-Rayleigh <span class="hlt">waves</span> a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh <span class="hlt">waves</span> whereas Rayleigh <span class="hlt">waves</span> are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb <span class="hlt">wave</span> modes. As the frequency becomes very high the S0 and the A0 <span class="hlt">wave</span> speeds coalesce, and both have the same value. This value is exactly the Rayleigh <span class="hlt">wave</span> speed and becomes constant along the frequency i.e. Rayleigh <span class="hlt">waves</span> are non-dispersive <span class="hlt">guided</span> surface acoustic <span class="hlt">waves</span>. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh <span class="hlt">wave</span> are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh <span class="hlt">wave</span> mode. The significant usage of the weld tuned and <span class="hlt">guided</span> quasi-Rayleigh <span class="hlt">wave</span> mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22391263-quasi-rayleigh-waves-butt-welded-thick-steel-plate','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22391263-quasi-rayleigh-waves-butt-welded-thick-steel-plate"><span>Quasi-Rayleigh <span class="hlt">waves</span> in butt-welded thick steel plate</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kamas, Tuncay, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu; Giurgiutiu, Victor, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu; Lin, Bin, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu</p> <p>2015-03-31</p> <p>This paper discusses theoretical and experimental analyses of weld <span class="hlt">guided</span> surface acoustic <span class="hlt">waves</span> (SAW) through the <span class="hlt">guided</span> <span class="hlt">wave</span> propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as wellmore » as a transducer. Quasi-Rayleigh <span class="hlt">waves</span> a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh <span class="hlt">waves</span> whereas Rayleigh <span class="hlt">waves</span> are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb <span class="hlt">wave</span> modes. As the frequency becomes very high the S0 and the A0 <span class="hlt">wave</span> speeds coalesce, and both have the same value. This value is exactly the Rayleigh <span class="hlt">wave</span> speed and becomes constant along the frequency i.e. Rayleigh <span class="hlt">waves</span> are non-dispersive <span class="hlt">guided</span> surface acoustic <span class="hlt">waves</span>. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh <span class="hlt">wave</span> are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh <span class="hlt">wave</span> mode. The significant usage of the weld tuned and <span class="hlt">guided</span> quasi-Rayleigh <span class="hlt">wave</span> mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3319085','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3319085"><span>Shock <span class="hlt">Wave</span> Technology and Application: An Update☆</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rassweiler, Jens J.; Knoll, Thomas; Köhrmann, Kai-Uwe; McAteer, James A.; Lingeman, James E.; Cleveland, Robin O.; Bailey, Michael R.; Chaussy, Christian</p> <p>2012-01-01</p> <p>Context The introduction of new lithotripters has increased problems associated with shock <span class="hlt">wave</span> application. Recent studies concerning mechanisms of stone disintegration, shock <span class="hlt">wave</span> focusing, coupling, and application have appeared that may address some of these problems. Objective To present a consensus with respect to the physics and techniques used by urologists, physicists, and representatives of European lithotripter companies. Evidence acquisition We reviewed recent literature (PubMed, Embase, Medline) that focused on the physics of shock <span class="hlt">waves</span>, theories of stone disintegration, and studies on optimising shock <span class="hlt">wave</span> application. In addition, we used relevant information from a consensus meeting of the German Society of Shock <span class="hlt">Wave</span> Lithotripsy. Evidence synthesis Besides established mechanisms describing initial fragmentation (tear and shear forces, spallation, cavitation, quasi-static squeezing), the model of dynamic squeezing offers new insight in stone comminution. Manufacturers have modified sources to either enlarge the focal <span class="hlt">zone</span> or offer different focal sizes. The efficacy of extracorporeal shock <span class="hlt">wave</span> lithotripsy (ESWL) can be increased by lowering the pulse rate to 60–80 shock <span class="hlt">waves</span>/min and by ramping the shock <span class="hlt">wave</span> energy. With the water cushion, the quality of coupling has become a critical factor that depends on the amount, viscosity, and temperature of the gel. Fluoroscopy time can be reduced by automated localisation or the use of optical and acoustic tracking systems. There is a trend towards larger focal <span class="hlt">zones</span> and lower shock <span class="hlt">wave</span> pressures. Conclusions New theories for stone disintegration favour the use of shock <span class="hlt">wave</span> sources with larger focal <span class="hlt">zones</span>. Use of slower pulse rates, ramping strategies, and adequate coupling of the shock <span class="hlt">wave</span> head can significantly increase the efficacy and safety of ESWL. PMID:21354696</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028283','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028283"><span>The Olmsted fault <span class="hlt">zone</span>, southernmost Illinois: A key to understanding seismic hazard in the northern new Madrid seismic <span class="hlt">zone</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bexfield, C.E.; McBride, J.H.; Pugin, Andre J.M.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.</p> <p>2005-01-01</p> <p>Geological deformation in the northern New Madrid seismic <span class="hlt">zone</span>, near Olmsted, Illinois (USA), is analyzed using integrated compressional-<span class="hlt">wave</span> (P) and horizontally polarized-<span class="hlt">wave</span> (SH) seismic reflection and regional and dedicated borehole information. Seismic hazards are of special concern because of strategic facilities (e.g., lock and dam sites and chemical plants on the Ohio River near its confluence with the Mississippi River) and because of alluvial soils subject to high amplification of earthquake shock. We use an integrated approach starting with lower resolution, but deeper penetration, P-<span class="hlt">wave</span> reflection profiles to identify displacement of Paleozoic bedrock. Higher resolution, but shallower penetration, SH-<span class="hlt">wave</span> images show deformation that has propagated upward from bedrock faults into Pleistocene loess. We have mapped an intricate <span class="hlt">zone</span> more than 8 km wide of high-angle faults in Mississippi embayment sediments localized over Paleozoic bedrock faults that trend north to northeast, parallel to the Ohio River. These faults align with the pattern of epicenters in the New Madrid seismic <span class="hlt">zone</span>. Normal and reverse offsets along with positive flower structures imply a component of strike-slip; the current stress regime favors right-lateral slip on northeast-trending faults. The largest fault, the Olmsted fault, underwent principal displacement near the end of the Cretaceous Period 65 to 70 million years ago. Strata of this age (dated via fossil pollen) thicken greatly on the downthrown side of the Olmsted fault into a locally subsiding basin. Small offsets of Tertiary and Quaternary strata are evident on high-resolution SH-<span class="hlt">wave</span> seismic profiles. Our results imply recent reactivation and possible future seismic activity in a critical area of the New Madrid seismic <span class="hlt">zone</span>. This integrated approach provides a strategy for evaluating shallow seismic hazard-related targets for engineering concerns. ?? 2005 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PMB....61.4746N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PMB....61.4746N"><span>A method for the measurement of dispersion curves of circumferential <span class="hlt">guided</span> <span class="hlt">waves</span> radiating from curved shells: experimental validation and application to a femoral neck mimicking phantom</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nauleau, Pierre; Minonzio, Jean-Gabriel; Chekroun, Mathieu; Cassereau, Didier; Laugier, Pascal; Prada, Claire; Grimal, Quentin</p> <p>2016-07-01</p> <p>Our long-term goal is to develop an ultrasonic method to characterize the thickness, stiffness and porosity of the cortical shell of the femoral neck, which could enhance hip fracture risk prediction. To this purpose, we proposed to adapt a technique based on the measurement of <span class="hlt">guided</span> <span class="hlt">waves</span>. We previously evidenced the feasibility of measuring circumferential <span class="hlt">guided</span> <span class="hlt">waves</span> in a bone-mimicking phantom of a circular cross-section of even thickness. The goal of this study is to investigate the impact of the complex geometry of the femoral neck on the measurement of <span class="hlt">guided</span> <span class="hlt">waves</span>. Two phantoms of an elliptical cross-section and one phantom of a realistic cross-section were investigated. A 128-element array was used to record the inter-element response matrix of these waveguides. This experiment was simulated using a custom-made hybrid code. The response matrices were analyzed using a technique based on the physics of <span class="hlt">wave</span> propagation. This method yields portions of dispersion curves of the waveguides which were compared to reference dispersion curves. For the elliptical phantoms, three portions of dispersion curves were determined with a good agreement between experiment, simulation and theory. The method was thus validated. The characteristic dimensions of the shell were found to influence the identification of the circumferential <span class="hlt">wave</span> signals. The method was then applied to the signals backscattered by the superior half of constant thickness of the realistic phantom. A cut-off frequency and some portions of modes were measured, with a good agreement with the theoretical curves of a plate waveguide. We also observed that the method cannot be applied directly to the signals backscattered by the lower half of varying thicknesses of the phantom. The proposed approach could then be considered to evaluate the properties of the superior part of the femoral neck, which is known to be a clinically relevant site.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PlPhR..44..149B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PlPhR..44..149B"><span>Formation of ECR Plasma in a Dielectric Plasma <span class="hlt">Guide</span> under Self-Excitation of a Standing Ion-Acoustic <span class="hlt">Wave</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Balmashnov, A. A.; Kalashnikov, A. V.; Kalashnikov, V. V.; Stepina, S. P.; Umnov, A. M.</p> <p>2018-01-01</p> <p>The formation of a spatially localized plasma with a high brightness has been experimentally observed in a dielectric plasma <span class="hlt">guide</span> under the electron cyclotron resonance discharge at the excitation of a standing ion-acoustic <span class="hlt">wave</span>. The results obtained show the possibility of designing compact high-intensity radiation sources with a spectrum determined by the working gas or gas mixture type, high-intensity chemically active particle flow sources, and plasma thrusters for correcting orbits of light spacecraft.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.S42B..03E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.S42B..03E"><span>Remote Love <span class="hlt">Wave</span> Triggering of Tremor in the Nankai Subduction <span class="hlt">Zone</span>: New Observations and Dynamic Stress Modeling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Enescu, B.; Chao, K.; Obara, K.; Peng, Z.; Matsuzawa, T.; Yagi, Y.</p> <p>2013-12-01</p> <p>The triggering of deep non-volcanic tremor (NVT) in the Nankai region, southwest Japan, by the surface <span class="hlt">waves</span> of several large teleseismic earthquakes has been well documented (e.g., Miyazawa & Mori, 2005). These previous studies report that the Nankai NVT is primarily triggered by the passage of Rayleigh <span class="hlt">waves</span> from the teleseismic events (e.g., Miyazawa & Brodsky, 2008). The relative lack of Love <span class="hlt">wave</span> triggering in Nankai would be, however, an exception to the general observation that triggered tremor shows a positive correlation with the triggering potential, defined using the Coulomb failure criteria (Hill, 2012). To clarify the Nankai NVT triggering mechanism, we have systematically searched for triggered tremor due to large teleseismic events (Mw ≥ 7.5) occurred from 2001 to 2012. Our present analysis focuses on western Shikoku, where triggered NVT has been previously reported (e.g., Miyazawa & Mori, 2006). From a total of 55 teleseismic events, 18 show associated triggered NVT. Our analysis presents clear evidence of triggered NVT that correlates well with the passage of Love <span class="hlt">waves</span>. The most outstanding example is that of the 2012 M8.6 Sumatra earthquake, a strike-slip event characterized by relatively large amplitude Love <span class="hlt">waves</span>. The incoming surface <span class="hlt">waves</span> from this earthquake are almost strike-parallel to the Nankai subduction <span class="hlt">zone</span>, which corresponds to a higher Love <span class="hlt">wave</span> triggering potential (Hill, 2012). The 2001 M7.8 Kunlun, the 2003 M8.3 Tokachi-oki, the 2004 M9.2 & 2007 M8.5 Sumatra, the 2006 M8.3 Kuril-Islands and the 2008 M7.9 Wenchuan earthquakes show as well Love-<span class="hlt">wave</span> associated NVT triggering. In most of these cases the tremor is initiated by the incoming, faster-traveling Love <span class="hlt">waves</span> and continues during the latter, larger-amplitude Rayleigh <span class="hlt">waves</span>. We are also conducting dynamic stress modeling to better understand the triggering mechanism of tremor. Our approach builds up on the methods of Gonzalez-Huizar & Velasco (2011) and Obara (2012). In the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000GeoRL..27..827O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000GeoRL..27..827O"><span>Mantle transition <span class="hlt">zone</span> structure beneath Tanzania, east Africa</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Owens, Thomas J.; Nyblade, Andrew A.; Gurrola, Harold; Langston, Charles A.</p> <p>2000-03-01</p> <p>We apply a three-dimensional stacking method to receiver functions from the Tanzania Broadband Seismic Experiment to determine relative variations in the thickness of the mantle transition <span class="hlt">zone</span> beneath Tanzania. The transition <span class="hlt">zone</span> under the Eastern rift is 30-40 km thinner than under areas of the Tanzania Craton in the interior of the East African Plateau unaffected by rift faulting. The region of transition <span class="hlt">zone</span> thinning under the Eastern rift is several hundred kilometers wide and coincides with a 2-3% reduction in S <span class="hlt">wave</span> velocities. The thinning of the transition <span class="hlt">zone</span>, as well as the reduction in S <span class="hlt">wave</span> velocities, can be attributed to a 200-300°K increase in temperature. This thermal anomaly at >400 km depth beneath the Eastern rift cannot be easily explained by passive rifting and but is consistent with a plume origin for the Cenozoic rifting, volcanism and plateau uplift in East Africa.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T51J..07P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T51J..07P"><span>Characterizing the structural maturity of fault <span class="hlt">zones</span> using high-resolution earthquake locations.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perrin, C.; Waldhauser, F.; Scholz, C. H.</p> <p>2017-12-01</p> <p>We use high-resolution earthquake locations to characterize the three-dimensional structure of active faults in California and how it evolves with fault structural maturity. We investigate the distribution of aftershocks of several recent large earthquakes that occurred on immature faults (i.e., slow moving and small cumulative displacement), such as the 1992 (Mw7.3) Landers and 1999 (Mw7.1) Hector Mine events, and earthquakes that occurred on mature faults, such as the 1984 (Mw6.2) Morgan Hill and 2004 (Mw6.0) Parkfield events. Unlike previous studies which typically estimated the width of fault <span class="hlt">zones</span> from the distribution of earthquakes perpendicular to the surface fault trace, we resolve fault <span class="hlt">zone</span> widths with respect to the 3D fault surface estimated from principal component analysis of local seismicity. We find that the <span class="hlt">zone</span> of brittle deformation around the fault core is narrower along mature faults compared to immature faults. We observe a rapid fall off of the number of events at a distance range of 70 - 100 m from the main fault surface of mature faults (140-200 m fault <span class="hlt">zone</span> width), and 200-300 m from the fault surface of immature faults (400-600 m fault <span class="hlt">zone</span> width). These observations are in good agreement with fault <span class="hlt">zone</span> widths estimated from <span class="hlt">guided</span> <span class="hlt">waves</span> trapped in low velocity damage <span class="hlt">zones</span>. The total width of the active <span class="hlt">zone</span> of deformation surrounding the main fault plane reach 1.2 km and 2-4 km for mature and immature faults, respectively. The wider <span class="hlt">zone</span> of deformation presumably reflects the increased heterogeneity in the stress field along complex and discontinuous faults strands that make up immature faults. In contrast, narrower deformation <span class="hlt">zones</span> tend to align with well-defined fault planes of mature faults where most of the deformation is concentrated. Our results are in line with previous studies suggesting that surface fault traces become smoother, and thus fault <span class="hlt">zones</span> simpler, as cumulative fault slip increases.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T51C2936G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T51C2936G"><span>Inferences of Complex Anisotropic Layering and Mantle Flow Beneath the Malawi Rift <span class="hlt">Zone</span> from Shear-<span class="hlt">Wave</span> Splitting</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, S. S.; Reed, C. A.; Yu, Y.; Liu, K. H.; Chindandali, P. R. N.; Mdala, H. S.; Massinque, B.; Mutamina, D. M.</p> <p>2016-12-01</p> <p>Measuring the magnitude and orientation of seismic anisotropy beneath actively extending rift <span class="hlt">zones</span> provides invaluable estimates of the influence of numerous geodynamic parameters upon their evolution. In order to infer the character and origin of extensional forces acting upon the Malawi Rift <span class="hlt">Zone</span> (MRZ) and Luangwa Rift <span class="hlt">Zone</span> (LRZ) of southern Africa, we installed 33 Seismic Arrays For African Rift Initiation (SAFARI) three-component broadband seismic stations in Malawi, Mozambique, and Zambia between 2012-2014. Shear-<span class="hlt">wave</span> splitting parameters, including the fast-component polarization orientation and the splitting time, are extracted from 142 events recorded during that time period for a total of 642 well-defined PKS, SKKS, and SKS phase measurements. Polarizations trend NE-SW along the western flank of the LRZ, whereupon they demonstrate an abrupt shift to N-S within the rift valley and the eastern flank. SWS orientations shift increasingly counterclockwise toward the east until, at 33°E, they shift from WNW-ESE to ENE-WSW, suggesting a systematic change in dominant mantle fabric orientation. The resulting fast orientations demonstrate remarkable variability within the MRZ, with E-W measurements in the north rotating counterclockwise toward the south to N-S within the southernmost MRZ. Measurements revert to E-W and NE-SW orientations toward the east in Mozambique, suggesting the presence of complex two-layer anisotropy. Azimuthal variations of SWS parameters recorded by stations within the central MRZ exhibit excellent 90° periodicity, further suggesting complex anisotropic layering. Lateral variation of measurements between the northern and southern MRZ imply the modulation of the mantle flow system beneath the active rift <span class="hlt">zone</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999JGR...104.7329I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999JGR...104.7329I"><span>Excitation of high-frequency surface <span class="hlt">waves</span> with long duration in the Valley of Mexico</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iida, Masahiro</p> <p>1999-04-01</p> <p>During the 1985 Michoacan earthquake (Ms = 8.1), large-amplitude seismograms with extremely long duration were recorded in the lake bed <span class="hlt">zone</span> of Mexico City. We interpret high-frequency seismic <span class="hlt">wave</span> fields in the three geotechnical <span class="hlt">zones</span> (the hill, the transition, and the lake bed <span class="hlt">zones</span>) in the Valley of Mexico on the basis of a systematic analysis for borehole strong motion recordings. We make identification of <span class="hlt">wave</span> types for real seismograms. First, amplitude ratios between surface and underground seismograms indicate that predominant periods of the surface seismograms are largely controlled by the <span class="hlt">wave</span> field incident into surficial layers in the Valley of Mexico. We interpret recorded surface <span class="hlt">waves</span> as fundamental-mode Love <span class="hlt">waves</span> excited in the Mexican Volcanic Belt by calculating theoretical amplification for different-scale structures. Second, according to a cross-correlation analysis, the hill and transition seismograms are mostly surface <span class="hlt">waves</span>. In the lake bed <span class="hlt">zone</span>, while early portions are noisy body <span class="hlt">waves</span>, late portions are mostly surface <span class="hlt">waves</span>. Third, using two kinds of surface arrays with different station intervals, we investigate high-frequency surface-<span class="hlt">wave</span> propagation in the lake bed <span class="hlt">zone</span>. The <span class="hlt">wave</span> propagation is very complicated, depending upon the time section and the frequency band. Finally, on the basis of a statistical time series model with an information criterion, we separate S- and surface-<span class="hlt">wave</span> portions from lake bed seismograms. Surface <span class="hlt">waves</span> are dominant and are recognized even in the early time section. Thus high-frequency surface <span class="hlt">waves</span> with long duration in the Valley of Mexico are excited by the Mexican Volcanic Belt.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OGeo....9...37S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OGeo....9...37S"><span>Coda <span class="hlt">Wave</span> Attenuation Characteristics for North Anatolian Fault <span class="hlt">Zone</span>, Turkey</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sertcelik, Fadime; Guleroglu, Mehmet</p> <p>2017-10-01</p> <p>North Anatolian Fault <span class="hlt">Zone</span>, on which large earthquakes have occurred in the past, migrates regularly from east to west, and it is one of the most active faults in the world. The purpose of this study is to estimate the coda <span class="hlt">wave</span> quality factor (Qc) for each of the five sub regionsthat were determined according to the fault rupture of these large earthquakes and along the fault. 978 records have been analyzed for 1.5, 3, 6, 9, 12 and 18 Hz frequencies by Single Backscattering Method. Along the fault, the variations in the Qc with lapse time are determined via, Qc = (136±25)f(0.96±0.027), Qc = (208±22)f(0.85±0.02) Qc = (307±28)f(0.72±0.025) at 20, 30, 40 sec lapse times, respectively. The estimated average frequency-dependence quality factor for all lapse time are; Qc(f) = (189±26)f(0.86±0.02) for Karliova-Tokat region; Qc(f) = (216±19)f(0.76±0.018) for Tokat-Çorum region; Qc(f) = (232±18)f(0.76±0.019) for Çorum-Adapazari region; Qc(f) = (280±28)f(0.79±0.021) for Adapazari-Yalova region; Qc(f) = (252±26)f(0.81±0.022) for Yalova-Gulf of Saros region. The coda <span class="hlt">wave</span> quality factor at all the lapse times and frequencies is Qc(f) = (206±15)f(0.85±0.012) in the study area. The most change of Qc with lapse time is determined at Yalova-Saros region. The result may be related to heterogeneity degree of rapidly decreases towards the deep crust like compared to the other sub region. Moreover, the highest Qc is calculated between Adapazari - Yalova. It was interpreted as a result of seismic energy released by 1999 Kocaeli Earthquake. Besides, it couldn't be established a causal relationship between the regional variation of Qc with frequency and lapse time associated to migration of the big earthquakes. These results have been interpreted as the attenuation mechanism is affected by both regional heterogeneity and consist of a single or multi strands of the fault structure.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22271317-zoned-near-zero-refractive-index-fishnet-lens-antenna-steering-millimeter-waves','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22271317-zoned-near-zero-refractive-index-fishnet-lens-antenna-steering-millimeter-waves"><span><span class="hlt">Zoned</span> near-zero refractive index fishnet lens antenna: Steering millimeter <span class="hlt">waves</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pacheco-Peña, V., E-mail: victor.pacheco@unavarra.es; Orazbayev, B., E-mail: b.orazbayev@unavarra.es; Beaskoetxea, U., E-mail: unai.beaskoetxea@unavarra.es</p> <p>2014-03-28</p> <p>A <span class="hlt">zoned</span> fishnet metamaterial lens is designed, fabricated, and experimentally demonstrated at millimeter wavelengths to work as a negative near-zero refractive index lens suitable for compact lens antenna configurations. At the design frequency f = 56.7 GHz (λ{sub 0} = 5.29 mm), the <span class="hlt">zoned</span> fishnet metamaterial lens, designed to have a focal length FL = 9λ{sub 0}, exhibits a refractive index n = −0.25. The focusing performance of the diffractive optical element is briefly compared with that of a non-<span class="hlt">zoned</span> fishnet metamaterial lens and an isotropic homogeneous <span class="hlt">zoned</span> lens made of a material with the same refractive index. Experimental and numerically-computed radiation diagrams of the fabricated <span class="hlt">zoned</span> lens are presentedmore » and compared in detail with that of a simulated non-<span class="hlt">zoned</span> lens. Simulation and experimental results are in good agreement, demonstrating an enhancement generated by the <span class="hlt">zoned</span> lens of 10.7 dB, corresponding to a gain of 12.26 dB. Moreover, beam steering capability of the structure by shifting the feeder on the xz-plane is demonstrated.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870040136&hterms=midi&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dmidi','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870040136&hterms=midi&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dmidi"><span>Nonlinear density <span class="hlt">waves</span> in planetary rings</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Borderies, Nicole; Goldreich, Peter; Tremaine, Scott</p> <p>1986-01-01</p> <p>The steady-state structure of planetary rings in the presence of density <span class="hlt">waves</span> at the Lindblad resonances of a satellite is indicated. The study is based on the dispersion relation and damping rate for nonlinear density <span class="hlt">waves</span>, derived by Shu et al. (1985) and by Borderies, Goldreich, and Tremaine (1985). It is shown that strong density <span class="hlt">waves</span> lead to an enhancement of the background surface density in the <span class="hlt">wave</span> <span class="hlt">zone</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5126218-morphology-auroral-zone-radio-wave-scintillation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5126218-morphology-auroral-zone-radio-wave-scintillation"><span>Morphology of auroral <span class="hlt">zone</span> radio <span class="hlt">wave</span> scintillation</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rino, C.L.; Matthews, S.J.</p> <p>1980-08-01</p> <p>This paper describes the morphology of midnight sector and morning sector auroral <span class="hlt">zone</span> scintillation observations made over a two-year period using the Wideband satelite, which is in a sun-synchronous, low-altitude orbit. No definitive seasonal variation was found. The nighttime data showed the highest scintillation ocurrence levels, but significant amounts of morning scintillation were observed. For the most part the scintillation activity followed the general pattern of local magnetic activity. The most prominent feature in the nightime data is a localized amplitude and phase scintillation enhancement at the point where the propagation vector lies within an L shell. A geometrical effectmore » due to a dynamic slab of sheetlike structures in the F region is hypothesized as the source of his enhancement. The data have been sorted by magnetic activity, proximity to local midnight, and season. The general features of the data are in agreement with the accepted morphology of auroral <span class="hlt">zone</span> scintillation.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/47587','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/47587"><span>Generalized provisional seed <span class="hlt">zones</span> for native plants</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Andrew D. Bower; J. Bradley St.Clair; Vicky Erickson</p> <p>2014-01-01</p> <p>Deploying well-adapted and ecologically appropriate plant materials is a core component of successful restoration projects. We have developed generalized provisional seed <span class="hlt">zones</span> that can be applied to any plant species in the United States to help <span class="hlt">guide</span> seed movement. These seed <span class="hlt">zones</span> are based on the intersection of high-resolution climatic data for winter minimum...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI51C0333H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI51C0333H"><span>Teleseismic P-<span class="hlt">wave</span> tomography of the Sunda-Banda Arc subduction <span class="hlt">zone</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harris, C. W.; Miller, M. S.; Widiyantoro, S.; Supendi, P.; O'Driscoll, L.; Roosmawati, N.; Porritt, R.</p> <p>2017-12-01</p> <p>The Sunda-Banda Arc is the site of multiple ongoing tectonic deformation processes and is perhaps the best example of the transition from subduction of oceanic lithosphere to an active arc-continent collision. Investigating the mantle structure that has resulted from the collision of continental Australia, as well as the concurrent phenomena of continental subduction, slab-rollback, lithospheric tearing, and subduction polarity reversal is possible through seismic tomography. While both regional scale and global tomographic models have previously been constructed to study the tectonics this region, here we use 250 seismic stations that span the length of this convergent margin to invert for P-<span class="hlt">wave</span> velocity perturbations in the upper mantle. We combine data from a temporary deployment of 30 broadband instruments as part of the NSF-funded Banda Arc Project, along with data from permanent broadband stations maintained by the Meteorological, Climatological, and Geophysical Agency of Indonesia (BMKG) to image mantle structure, in particular the subducted Indo-Australian plate. The BMKG dataset spans 2009-2017 and includes >200 broadband seismometers. The Banda Arc array (network YS) adds coverage and resolution to southeastern Indonesia and Timor-Leste, where few permanent seismometers are located but the Australian continent-Banda Arc collision is most advanced. The preliminary model was computed using 50,000 teleseismic P-<span class="hlt">wave</span> travel-time residuals and 3D finite frequency sensitivity kernels. Results from the inversion of the combined dataset are presented as well as resolution tests to assess the quality of the model. The velocity model shows an arcuate Sunda-Banda slab with morphological changes along strike that correlate with the tectonic collision. The model also features the double-sided Molucca Sea slab and regions of high velocity below the bottom of the transition <span class="hlt">zone</span>. The resolution added by the targeted USC deployment is clear when comparing models that</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE24A1441S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE24A1441S"><span>Ice Floe Breaking in Contemporary Third Generation Operational <span class="hlt">Wave</span> Models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sévigny, C.; Baudry, J.; Gauthier, J. C.; Dumont, D.</p> <p>2016-02-01</p> <p>The dynamical <span class="hlt">zone</span> observed at the edge of the consolidated ice area where are found the <span class="hlt">wave</span>-fractured floes (i.e. marginal ice <span class="hlt">zone</span> or MIZ) has become an important topic in ocean modeling. As both operational and climate ocean models now seek to reproduce the complex atmosphere-ice-ocean system with realistic coupling processes, many theoretical and numerical studies have focused on understanding and modeling this <span class="hlt">zone</span>. Few attempts have been made to embed <span class="hlt">wave</span>-ice interactions specific to the MIZ within a two-dimensional model, giving the possibility to calculate both the attenuation of surface <span class="hlt">waves</span> by sea ice and the concomitant breaking of the sea ice-cover into smaller floes. One of the first challenges consists in improving the parameterization of <span class="hlt">wave</span>-ice dynamics in contemporary third generation operational <span class="hlt">wave</span> models. A simple <span class="hlt">waves</span>-in-ice model (WIM) similar to the one proposed by Williams et al. (2013a,b) was implemented in WAVEWATCH III. This WIM considers ice floes as floating elastic plates and predicts the dimensionless attenuation coefficient by the use of a lookup-table-based, <span class="hlt">wave</span> scattering scheme. As in Dumont et al. (2011), the different frequencies are treated individually and floe breaking occurs for a particular frequency when the expected <span class="hlt">wave</span> amplitude exceeds the allowed strain amplitude, which considers ice floes properties and wavelength in ice field. The model is here further refined and tested in idealized two-dimensional cases, giving preliminary results of the performance and sensitivity of the parameterization to initial <span class="hlt">wave</span> and ice conditions. The effects of the <span class="hlt">wave</span>-ice coupling over the incident <span class="hlt">wave</span> spectrum are analyzed as well as the resulting floe size distribution. The model gives prognostic values of the lateral extent of the marginal ice <span class="hlt">zone</span> with maximum ice floe diameter that progressively increases with distance from the ice edge.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920024703','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920024703"><span>On the physics of <span class="hlt">waves</span> in the solar atmosphere: <span class="hlt">Wave</span> heating and wind acceleration</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Musielak, Z. E.</p> <p>1992-01-01</p> <p>In the area of solar physics, new calculations of the acoustic <span class="hlt">wave</span> energy fluxes generated in the solar convective <span class="hlt">zone</span> was performed. The original theory developed was corrected by including a new frequency factor describing temporal variations of the turbulent energy spectrum. We have modified the original Stein code by including this new frequency factor, and tested the code extensively. Another possible source of the mechanical energy generated in the solar convective <span class="hlt">zone</span> is the excitation of magnetic flux tube <span class="hlt">waves</span> which can carry energy along the tubes far away from the region. The problem as to how efficiently those <span class="hlt">waves</span> are generated in the Sun was recently solved. The propagation of nonlinear magnetic tube <span class="hlt">waves</span> in the solar atmosphere was calculated, and mode coupling, shock formation, and heating of the local medium was studied. The <span class="hlt">wave</span> trapping problems and evaluation of critical frequencies for <span class="hlt">wave</span> reflection in the solar atmosphere was studied. It was shown that the role played by Alfven <span class="hlt">waves</span> in the wind accelerations and the coronal hole heating is dominant. Presently, we are performing calculations of <span class="hlt">wave</span> energy fluxes generated in late-type dwarf stars and studying physical processes responsible for the heating of stellar chromospheres and coronae. In the area of physics of <span class="hlt">waves</span>, a new analytical approach for studying linear Alfven <span class="hlt">waves</span> in smoothly nonuniform media was recently developed. This approach is presently being extended to study the propagation of linear and nonlinear magnetohydrodynamic (MHD) <span class="hlt">waves</span> in stratified, nonisothermal and solar atmosphere. The Lighthill theory of sound generation to nonisothermal media (with a special temperature distribution) was extended. Energy cascade by nonlinear MHD <span class="hlt">waves</span> and possible chaos driven by these <span class="hlt">waves</span> are presently considered.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMOS13D1224Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMOS13D1224Y"><span>Observation of <span class="hlt">wave</span> celerity evolution in the nearshore using digital video imagery</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoo, J.; Fritz, H. M.; Haas, K. A.; Work, P. A.; Barnes, C. F.; Cho, Y.</p> <p>2008-12-01</p> <p>Celerity of incident <span class="hlt">waves</span> in the nearshore is observed from oblique video imagery collected at Myrtle Beach, S.C.. The video camera covers the field view of length scales O(100) m. Celerity of <span class="hlt">waves</span> propagating in shallow water including the surf <span class="hlt">zone</span> is estimated by applying advanced image processing and analysis methods to the individual video images sampled at 3 Hz. Original image sequences are processed through video image frame differencing, directional low-pass image filtering to reduce the noise arising from foam in the surf <span class="hlt">zone</span>. The breaking <span class="hlt">wave</span> celerity is computed along a cross-shore transect from the <span class="hlt">wave</span> crest tracks extracted by a Radon transform-based line detection method. The observed celerity from the nearshore video imagery is larger than the linear <span class="hlt">wave</span> celerity computed from the measured water depths over the entire surf <span class="hlt">zone</span>. Compared to the nonlinear shallow water <span class="hlt">wave</span> equation (NSWE)-based celerity computed using the measured depths and <span class="hlt">wave</span> heights, in general, the video-based celerity shows good agreements over the surf <span class="hlt">zone</span> except the regions across the incipient <span class="hlt">wave</span> breaking locations. In the regions across the breaker points, the observed <span class="hlt">wave</span> celerity is even larger than the NSWE-based celerity due to the transition of <span class="hlt">wave</span> crest shapes. The observed celerity using the video imagery can be used to monitor the nearshore geometry through depth inversion based on the nonlinear <span class="hlt">wave</span> celerity theories. For this purpose, the exceeding celerity across the breaker points needs to be corrected accordingly compared to a nonlinear <span class="hlt">wave</span> celerity theory applied.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011SMaS...20e5001T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011SMaS...20e5001T"><span>An innovative design for using flexible printed coils for magnetostrictive-based longitudinal <span class="hlt">guided</span> <span class="hlt">wave</span> sensors in steel strand inspection</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tse, P. W.; Liu, X. C.; Liu, Z. H.; Wu, B.; He, C. F.; Wang, X. J.</p> <p>2011-05-01</p> <p>Magnetostrictive sensors (MsSs) that can excite and receive <span class="hlt">guided</span> <span class="hlt">waves</span> are commonly used in detecting defects that may occur in cables and strands for supporting heavy structures. A conventional MsS has a hard sensing coil that is wound onto a bobbin with electric wires to generate the necessary dynamic magnetic field to excite the desired <span class="hlt">guided</span> <span class="hlt">waves</span>. This tailor-made hard coil is usually bulky and is not flexible enough to fit steel strands of various sizes. The conventional MsS also cannot be mounted to any steel strand that does not have a free end to allow the bobbin to pass through the structure of the tested strand. Such inflexibilities limit the use of conventional MsSs in practical situations. To solve these limitations, an innovative type of coil, called a flexible printed coil (FPC), which is made out of flexible printed film, has been designed to replace the inflexible hard coil. The flexible structure of the FPC ensures that the new MsS can be easily installed on and removed from steel strands with different diameters and without free ends. Moreover, the FPC-based MsS can be wrapped into multiple layers due to its thin and flexible design. Although multi-layer FPC creates a minor asymmetry in the dynamic magnetic field, the results of finite element analysis and experiments confirm that the longitudinal <span class="hlt">guided</span> <span class="hlt">waves</span> excited by a FPC-based MsS are comparable to those excited by a conventional hard coil MsS. No significant reduction in defect inspection performance was found; in fact, further advantages were identified when using the FPC-based MsS. When acting as the transmitter, the innovative FPC-based MsS can cover a longer inspection length of strand. When acting as the receiver, the FPC-based MsS is more sensitive to smaller defects that are impossible to detect using a hard coil MsS. Hence, the multi-layer FPC-based MsS has great potential for replacing the conventional hard coil MsS because of its convenient installation, and ease of fitting to</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNS23A0013L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNS23A0013L"><span>Sonic logging for detecting the excavation disturbed and fracture <span class="hlt">zones</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, Y. C.; Chang, Y. F.; Liu, J. W.; Tseng, C. W.</p> <p>2017-12-01</p> <p>This study presents a new sonic logging method to detect the excavation disturbed <span class="hlt">zone</span> (EDZ) and fracture <span class="hlt">zones</span> in a tunnel. The EDZ is a weak rock <span class="hlt">zone</span> where its properties and conditions have been changed by excavation, which results such as fracturing, stress redistribution and desaturation in this <span class="hlt">zone</span>. Thus, the EDZ is considered as a physically less stable and could form a continuous and high-permeable pathway for groundwater flow. Since EDZ and fracture <span class="hlt">zone</span> have the potential of affecting the safety of the underground openings and repository performance, many studies were conducted to characterize the EDZ and fracture <span class="hlt">zone</span> by different methods, such as the rock mass displacements and strain measurements, seismic refraction survey, seismic tomography and hydraulic test, etc. In this study, we designed a new sonic logging method to explore the EDZ and fracture <span class="hlt">zone</span> in a tunnel at eastern Taiwan. A high power and high frequency sonic system was set up which includes a two hydrophones pitch-catch technique with a common-offset immersed in water-filled uncased wells and producing a 20 KHz sound to scan the well rock. Four dominant sonic events were observed in the measurements, they are refracted P- and S-<span class="hlt">wave</span> along the well rock, direct water <span class="hlt">wave</span> and the reverberation in the well water. Thus the measured P- and S-<span class="hlt">wave</span> velocities, the signal-to-noise ratio of the refraction and the amplitudes of reverberation along the well rock were used as indexes to determine the EDZ and fracture <span class="hlt">zone</span>. Comparing these indexes with core samples shows that significant changes in the indexes are consistent with the EDZ and fracture <span class="hlt">zone</span>. Thus, the EDZ and fracture <span class="hlt">zone</span> can be detected by this new sonic method conclusively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022359','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022359"><span>Fracture process <span class="hlt">zone</span> in granite</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zang, A.; Wagner, F.C.; Stanchits, S.; Janssen, C.; Dresen, G.</p> <p>2000-01-01</p> <p>In uniaxial compression tests performed on Aue granite cores (diameter 50 mm, length 100 mm), a steel loading plate was used to induce the formation of a discrete shear fracture. A <span class="hlt">zone</span> of distributed microcracks surrounds the tip of the propagating fracture. This process <span class="hlt">zone</span> is imaged by locating acoustic emission events using 12 piezoceramic sensors attached to the samples. Propagation velocity of the process <span class="hlt">zone</span> is varied by using the rate of acoustic emissions to control the applied axial force. The resulting velocities range from 2 mm/s in displacement-controlled tests to 2 ??m/s in tests controlled by acoustic emission rate. <span class="hlt">Wave</span> velocities and amplitudes are monitored during fault formation. P <span class="hlt">waves</span> transmitted through the approaching process <span class="hlt">zone</span> show a drop in amplitude of 26 dB, and ultrasonic velocities are reduced by 10%. The width of the process <span class="hlt">zone</span> is ???9 times the grain diameter inferred from acoustic data but is only 2 times the grain size from optical crack inspection. The process <span class="hlt">zone</span> of fast propagating fractures is wider than for slow ones. The density of microcracks and acoustic emissions increases approaching the main fracture. Shear displacement scales linearly with fracture length. Fault plane solutions from acoustic events show similar orientation of nodal planes on both sides of the shear fracture. The ratio of the process <span class="hlt">zone</span> width to the fault length in Aue granite ranges from 0.01 to 0.1 inferred from crack data and acoustic emissions, respectively. The fracture surface energy is estimated from microstructure analysis to be ???2 J. A lower bound estimate for the energy dissipated by acoustic events is 0.1 J. Copyright 2000 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910048402&hterms=fast+memory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfast%2Bmemory','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910048402&hterms=fast+memory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfast%2Bmemory"><span><span class="hlt">Wave</span>-particle interactions on the FAST satellite</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Temerin, M. A.; Carlson, C. W.; Cattell, C. A.; Ergun, R. E.; Mcfadden, J. P.</p> <p>1990-01-01</p> <p>NASA's Fast Auroral Snapshot, or 'FAST' satellite, scheduled for launch in 1993, will investigate the plasma physics of the low altitude auroral <span class="hlt">zone</span> from a 3500-km apogee polar orbit. FAST will give attention to <span class="hlt">wave</span>, double-layer, and soliton production processes due to electrons and ions, as well as to <span class="hlt">wave-wave</span> interactions, and the acceleration of electrons and ions by <span class="hlt">waves</span> and electric fields. FAST will employ an intelligent data-handling system capacle of data acquisition at rates of up to 1 Mb/sec, in addition to a 1-Gbit solid-state memory. The data need be gathered for only a few minutes during passes through the auroral <span class="hlt">zone</span>, since the most interesting auroral phenomena occur in such narrow regions as auroral arcs, electrostatic shocks, and superthermal electron bursts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1810943H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1810943H"><span>Impacts of <span class="hlt">wave</span> energy conversion devices on local <span class="hlt">wave</span> climate: observations and modelling from the Perth <span class="hlt">Wave</span> Energy Project</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy</p> <p>2016-04-01</p> <p>As demonstrated by the Australian <span class="hlt">Wave</span> Energy Atlas (AWavEA), the southern and western margins of the country possess considerable <span class="hlt">wave</span> energy resources. The Australia Government has made notable investments in pre-commercial <span class="hlt">wave</span> energy developments in these areas, however little is known about how this technology may impact local <span class="hlt">wave</span> climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ <span class="hlt">wave</span> measurement devices have been deployed surrounding the 3 <span class="hlt">wave</span> energy converters of the Carnegie <span class="hlt">Wave</span> Energy Limited's Perth <span class="hlt">Wave</span> Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of <span class="hlt">wave</span> energy converters will be discussed. The intended project outcomes are to establish <span class="hlt">zones</span> of impact defined in terms of changes in local <span class="hlt">wave</span> energy spectra and to initiate best practice guidelines for the establishment of <span class="hlt">wave</span> energy conversion sites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.2424C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.2424C"><span>Abyssal Upwelling in Mid-Ocean Ridge Fracture <span class="hlt">Zones</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clément, Louis; Thurnherr, Andreas M.</p> <p>2018-03-01</p> <p>Turbulence in the abyssal ocean plays a fundamental role in the climate system by sustaining the deepest branch of the overturning circulation. Over the western flank of the Mid-Atlantic Ridge in the South Atlantic, previously observed bottom-intensified and tidally modulated mixing of abyssal waters appears to imply a counterintuitive densification of deep and bottom waters. Here we show that inside fracture <span class="hlt">zones</span>, however, turbulence is elevated away from the seafloor because of intensified downward propagating near-inertial <span class="hlt">wave</span> energy, which decays below a subinertial shear maximum. Ray-tracing simulations predict a decay of <span class="hlt">wave</span> energy subsequent to <span class="hlt">wave</span>-mean flow interactions. The hypothesized <span class="hlt">wave</span>-mean flow interactions drive a deep flow toward lighter densities of up to 0.6 Sv over the mid-ocean ridge flank in the Brazil Basin, and the same process may also cause upwelling of abyssal waters in other ocean basins with mid-ocean ridges with fracture <span class="hlt">zones</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMNH23A1870J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMNH23A1870J"><span>Sensitivity of Tsunami <span class="hlt">Waves</span> and Coastal Inundation/Runup to Seabed Displacement Models: Application to the Cascadia Subduction <span class="hlt">zone</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jalali Farahani, R.; Fitzenz, D. D.; Nyst, M.</p> <p>2015-12-01</p> <p>Major components of tsunami hazard modeling include earthquake source characterization, seabed displacement, <span class="hlt">wave</span> propagation, and coastal inundation/run-up. Accurate modeling of these components is essential to identify the disaster risk exposures effectively, which would be crucial for insurance industry as well as policy makers to have tsunami resistant design of structures and evacuation planning (FEMA, 2008). In this study, the sensitivity and variability of tsunami coastal inundation due to Cascadia megathrust subduction earthquake are studied by considering the different approaches for seabed displacement model. The first approach is the analytical expressions that were proposed by Okada (1985, 1992) for the surface displacements and strains of rectangular sources. The second approach was introduced by Meade (2006) who introduced analytical solutions for calculating displacements, strains, and stresses on triangular sources. In this study, the seabed displacement using triangular representation of geometrically complex fault surfaces is compared with the Okada rectangular representations for the Cascadia subduction <span class="hlt">zone</span>. In the triangular dislocation algorithm, the displacement is calculated using superposition of two angular dislocations for each of the three triangle legs. The triangular elements could give a better and gap-free representation of the fault surfaces. In addition, the rectangular representation gives large unphysical vertical displacement along the shallow-depth fault edge that generates unrealistic short-wavelength <span class="hlt">waves</span>. To study the impact of these two different algorithms on the final tsunami inundation, the initial tsunami <span class="hlt">wave</span> as well as <span class="hlt">wave</span> propagation and the coastal inundation are simulated. To model the propagation of tsunami <span class="hlt">waves</span> and coastal inundation, 2D shallow water equations are modeled using the seabed displacement as the initial condition for the numerical model. Tsunami numerical simulation has been performed on high</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003SPIE.4978..180A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003SPIE.4978..180A"><span>Ultrashort laser pulse processing of <span class="hlt">wave</span> <span class="hlt">guides</span> for medical applications</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ashkenasi, David; Rosenfeld, Arkadi; Spaniol, Stefan B.; Terenji, Albert</p> <p>2003-06-01</p> <p>The availability of ultra short (ps and sub-ps) pulsed lasers has stimulated a growing interest in exploiting the enhanced flexibility of femtosecond and/or picosecond laser technology for micro-machining. The high peak powers available at relatively low single pulse energies potentially allow for a precise localization of photon energy, either on the surface or inside (transparent) materials. Three dimensional micro structuring of bulk transparent media without any sign of mechanical cracking has been demonstrated. In this study, the potential of ultra short laser processing was used to modify the cladding-core interface in normal fused silica <span class="hlt">wave</span> <span class="hlt">guides</span>. The idea behind this technique is to enforce a local mismatch for total reflection at the interface at minimal mechanic stress. The laser-induced modifications were studied in dependence of pulse width, focal alignment, single pulse energy and pulse overlap. Micro traces with a thickness between 3 and 8 μm were generated with a spacing of 10 μm in the sub-surface region using sub-ps and ps laser pulses at a wavelength of 800 nm. The optical leakage enforced by a micro spiral pattern is significant and can be utilized for medical applications or potentially also for telecommunications and fiber laser technology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S41E..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S41E..01M"><span>Imaging the Alaskan subduction <span class="hlt">zone</span> with joint inversion of ambient noise and teleseismic surface <span class="hlt">waves</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin-Short, R.; Allen, R. M.; Porritt, R.</p> <p>2017-12-01</p> <p>Alaska consists of a complex arrangement of terranes of various geological affinities, mostof which have been accreted to the margin of North America over the last 200Myr. Today,the southern margin of Alaska is a site of active subduction, displaying a myriad ofenigmatic tectonic features. These include transition from compressional to strike-slipdominated deformation, accretion of the over-thickened Yakutat terrane, termination ofAleutian arc magnetism and the Wrangell Volcanic Field, whose magma source remainsdebated. The ongoing deployment of Transportable Array (TA) seismometers across Alaskaprovides an unprecedented opportunity to image these features in detail and learn moreabout the tectonic history of the region. Here we present a three dimensional model ofshear <span class="hlt">wave</span> (Vsv) velocity beneath Alaska constructed using joint inversion of phasevelocity maps derived from ambient noise and teleseismic surface <span class="hlt">wave</span> tomography. Thismodel possesses good resolution from the upper crust to about 150km depth, thuscomplementing recent body <span class="hlt">wave</span> models of the region, which lack resolution above 100km.In the upper crust, we are able to distinguish major sedimentary basins and the cores ofmountain belts. At mid-crustal depths, we see a sharp velocity contrast across the Denalifault, suggesting that it marks a significant step in crustal thickness. In the mantle wedgeabove the subducting Yakutat terrane we observe a high velocity anomaly that may berelated to paucity of volcanism in this region. At greater depths, we image the subductingPacific-Yakutat slab as an elongate, high velocity anomaly that terminates abruptly at 145ºW, slightly further east than suggested by the Wadati-Benioff <span class="hlt">zone</span> alone. There is alarge, low velocity anomaly beneath the Wrangell Volcanic Field, hinting that magmatismhere may be related to mantle upwelling around the slab edge.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S33G2933B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S33G2933B"><span>Imaging the 2017 MW 8.2 Tehuantepec intermediate-depth earthquake using Teleseismic P <span class="hlt">Waves</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brudzinski, M.; Zhang, H.; Koper, K. D.; Pankow, K. L.</p> <p>2017-12-01</p> <p>The September 8, 2017 MW 8.1 Tehuantepec, Mexico earthquakes in the middle American subduction <span class="hlt">zone</span> is one of the largest intermediate-depth earthquake ever recorded and could provide an unprecedented opportunity for understanding the mechanism of intermediate-depth earthquakes. While the hypocenter and centroid depths for this earthquake are shallower than typically considered for intermediate depth earthquakes, the normal faulting mechanism consistent with down-dip extension and location within the subducting plate align with properties of intermediate depth earthquakes. Back-projection of high-frequency teleseismic P-<span class="hlt">waves</span> from two regional arrays for this earthquake shows unilateral rupture on a southeast-northwest striking fault that extends north of the Tehuantepec fracture <span class="hlt">zone</span> (TFZ), with an average horizontal rupture speed of 3.0 km/s and total duration of 60 s. <span class="hlt">Guided</span> by these back-projection results, 47 globally distributed low-frequency P-<span class="hlt">waves</span> were inverted for a finite-fault model (FFM) of slip for both nodal planes. The FFM shows a slip deficit in proximity to the extension of the TFZ, as well as the minor rupture beyond the TFZ (confirmed by the synthetic tests), which indicates that the TFZ acted as a barrier for this earthquake. Analysis of waveform misfit leads to the preference of a subvertical plane as the causative fault. The FFM shows that the majority of the rupture is above the focal depth and consists of two large slip patches: the first one is near the hypocenter ( 55 km depth) and the second larger one near 30 km depth. The distribution of the two patches spatially agrees with seismicity that defines the upper and lower <span class="hlt">zones</span> of a double Benioff <span class="hlt">zone</span> (DBZ). It appears there was single fault rupture across the two depth <span class="hlt">zones</span> of the DBZ. This is uncommon because a stark aseismic <span class="hlt">zone</span> is typically observed between the upper and lower <span class="hlt">zones</span> of the DBZ. This finding indicates that the mechanism for intraslab earthquakes must allow for</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/182705-hydrodynamic-force-characteristics-slender-cylinders-splash-zone','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/182705-hydrodynamic-force-characteristics-slender-cylinders-splash-zone"><span>Hydrodynamic force characteristics of slender cylinders in the splash <span class="hlt">zone</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Haritos, N.; Daliri, M.R.</p> <p>1995-12-31</p> <p>This paper presents results from a pilot experimental program of research being performed on segmented vertical surface-piercing cylinders in the Department of Civil and Environmental Engineering at The University of Melbourne. The primary aim of this investigation is to determine the influence of the splash <span class="hlt">zone</span> on the hydrodynamic force characteristics of such cylinders to <span class="hlt">wave</span> loading in the Morison regime. This influence is assessed from a comparison of the observed force characteristics of instrumented segments located in the splash <span class="hlt">zone</span> with the corresponding results obtained from similarly instrumented segments located in the fully submerged <span class="hlt">zone</span> and from those obtainedmore » for the cylinder as a whole via measurements of the cylinder tip restraint force. Results to hand for uni-directional regular <span class="hlt">waves</span> suggest that there appears to be a mild frequency dependence in the inertia force coefficient in the splash <span class="hlt">zone</span> which only marginally exceeds the corresponding values observed for a submerged segment immediately below this <span class="hlt">zone</span>.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25920833','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25920833"><span><span class="hlt">Wave</span> energy transfer in elastic half-spaces with soft interlayers.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Glushkov, Evgeny; Glushkova, Natalia; Fomenko, Sergey</p> <p>2015-04-01</p> <p>The paper deals with <span class="hlt">guided</span> <span class="hlt">waves</span> generated by a surface load in a coated elastic half-space. The analysis is based on the explicit integral and asymptotic expressions derived in terms of Green's matrix and given loads for both laminate and functionally graded substrates. To perform the energy analysis, explicit expressions for the time-averaged amount of energy transferred in the time-harmonic <span class="hlt">wave</span> field by every excited <span class="hlt">guided</span> or body <span class="hlt">wave</span> through horizontal planes and lateral cylindrical surfaces have been also derived. The study is focused on the peculiarities of <span class="hlt">wave</span> energy transmission in substrates with soft interlayers that serve as internal channels for the excited <span class="hlt">guided</span> <span class="hlt">waves</span>. The notable features of the source energy partitioning in such media are the domination of a single emerging mode in each consecutive frequency subrange and the appearance of reverse energy fluxes at certain frequencies. These effects as well as modal and spatial distribution of the <span class="hlt">wave</span> energy coming from the source into the substructure are numerically analyzed and discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SGeo...39..271M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SGeo...39..271M"><span>Dispersion Energy Analysis of Rayleigh and Love <span class="hlt">Waves</span> in the Presence of Low-Velocity Layers in Near-Surface Seismic Surveys</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mi, Binbin; Xia, Jianghai; Shen, Chao; Wang, Limin</p> <p>2018-03-01</p> <p>High-frequency surface-<span class="hlt">wave</span> analysis methods have been effectively and widely used to determine near-surface shear (S) <span class="hlt">wave</span> velocity. To image the dispersion energy and identify different dispersive modes of surface <span class="hlt">waves</span> accurately is one of key steps of using surface-<span class="hlt">wave</span> methods. We analyzed the dispersion energy characteristics of Rayleigh and Love <span class="hlt">waves</span> in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love <span class="hlt">waves</span> is discontinuous and ``jumping'' appears from the fundamental mode to higher modes on dispersive images. We introduce the <span class="hlt">guided</span> <span class="hlt">waves</span> generated in an LVL (LVL-<span class="hlt">guided</span> <span class="hlt">waves</span>, a trapped <span class="hlt">wave</span> mode) to clarify the complexity of the dispersion energy. We confirm the LVL-<span class="hlt">guided</span> <span class="hlt">waves</span> by analyzing the snapshots of SH and P-SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-<span class="hlt">guided</span> <span class="hlt">waves</span> possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love <span class="hlt">waves</span>. Each mode of LVL-<span class="hlt">guided</span> <span class="hlt">waves</span> having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-<span class="hlt">guided</span> <span class="hlt">waves</span> cannot penetrate to the free surface. If the S <span class="hlt">wave</span> velocity of the LVL is higher than that of the surface layer, the energy of LVL-<span class="hlt">guided</span> <span class="hlt">waves</span> only contaminates higher mode energy of surface <span class="hlt">waves</span> and there is no interlacement with the fundamental mode of surface <span class="hlt">waves</span>, while if the S <span class="hlt">wave</span> velocity of the LVL is lower than that of the surface layer, the energy of LVL-<span class="hlt">guided</span> <span class="hlt">waves</span> may interlace with the fundamental mode of surface <span class="hlt">waves</span>. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/449664-hydrodynamic-force-characteristics-splash-zone','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/449664-hydrodynamic-force-characteristics-splash-zone"><span>Hydrodynamic force characteristics in the splash <span class="hlt">zone</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Daliri, M.R.; Haritos, N.</p> <p>1996-12-31</p> <p>A comprehensive experimental study concerned with the hydrodynamic force characteristics of both rigid and compliant surface piercing cylinders, with a major focus on the local nature of these characteristics as realized in the splash <span class="hlt">zone</span> and in the fully submerged <span class="hlt">zone</span> immediately below this region, has been in progress at the University of Melbourne for the last three years. This paper concentrates on a portion of this study associated with uni-directional regular <span class="hlt">wave</span> inputs with <span class="hlt">wave</span> steepness (H/{lambda}) in the range 0.0005--0.1580 and Keulegan-Carpenter (KC) numbers in the range 2--15 which encompasses inertia force dominant (KC<5) to drag force significantmore » conditions (5« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1013695','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1013695"><span><span class="hlt">Wave</span> Climate and <span class="hlt">Wave</span> Mixing in the Marginal Ice <span class="hlt">Zones</span> of Arctic Seas, Observations and Modelling</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>ababanin.com/ LONG-TERM GOALS The long-term goals of the present project are two: wind/<span class="hlt">wave</span> climatology for the Arctic Seas, and their current...OBJECTIVES The wind/<span class="hlt">wave</span> climatology for the Arctic Seas will be developed based on altimeter observations. It will have a major scientific and...applied significance as presently there is no reference climatology for this region of the ocean available. The new versions of <span class="hlt">wave</span> models for the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170000975&hterms=climate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dclimate','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170000975&hterms=climate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dclimate"><span>Tropical <span class="hlt">Waves</span> and the Quasi-Biennial Oscillation in a 7-km Global Climate Simulation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Holt, Laura A.; Alexander, M. Joan; Coy, Lawrence; Molod, Andrea; Putman, William; Pawson, Steven</p> <p>2016-01-01</p> <p>This study investigates tropical <span class="hlt">waves</span> and their role in driving a quasi-biennial oscillation (QBO)-like signal in stratospheric winds in a global 7-km-horizontal-resolution atmospheric general circulation model. The Nature Run (NR) is a 2-year global mesoscale simulation of the Goddard Earth Observing System Model, version 5 (GEOS-5). In the tropics, there is evidence that the NR supports a broad range of convectively generated <span class="hlt">waves</span>. The NR precipitation spectrum resembles the observed spectrum in many aspects, including the preference for westward-propagating <span class="hlt">waves</span>. However, even with very high horizontal resolution and a healthy population of resolved <span class="hlt">waves</span>, the zonal force provided by the resolved <span class="hlt">waves</span> is still too low in the QBO region and parameterized gravity <span class="hlt">wave</span> drag is the main driver of the NR QBO-like oscillation (NRQBO). The authors suggest that causes include coarse vertical resolution and excessive dissipation. Nevertheless, the very-high-resolution NR provides an opportunity to analyze the resolved <span class="hlt">wave</span> forcing of the NR-QBO. In agreement with previous studies, large-scale Kelvin and small-scale <span class="hlt">waves</span> contribute to the NRQBO driving in eastward shear <span class="hlt">zones</span> and small-scale <span class="hlt">waves</span> dominate the NR-QBO driving in westward shear <span class="hlt">zones</span>. <span class="hlt">Waves</span> with zonal wavelength,1000 km account for up to half of the small-scale (,3300 km) resolved <span class="hlt">wave</span> forcing in eastward shear <span class="hlt">zones</span> and up to 70% of the small-scale resolved <span class="hlt">wave</span> forcing in westward shear <span class="hlt">zones</span> of the NR-QBO.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1615997L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1615997L"><span>Analysis of X-band radar images for the detection of the reflected and diffracted <span class="hlt">waves</span> in coastal <span class="hlt">zones</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ludeno, Giovanni; Natale, Antonio; Soldovieri, Francesco; Vicinanza, Diego; Serafino, Francesco</p> <p>2014-05-01</p> <p>The observation of nearshore <span class="hlt">waves</span> and the knowledge of the sea state parameters can play a crucial role for the safety of harbors and ocean engineering. In the last two decades, different algorithms for the estimation of sea state parameters, surface currents and bathymetry from X-band radar data have been developed and validated [1, 2]. The retrieval of ocean <span class="hlt">wave</span> parameters such as significant height, period, direction and wavelength of the dominant <span class="hlt">wave</span> is based on the spectral analysis of data sequences collected by nautical X-band radars [3]. In particular, the reconstruction of the <span class="hlt">wave</span> motion is carried out through the inversion procedure explained in [1-3], which exploits the dispersion relationship to define a band pass filter used to separate the energy associated with the ocean <span class="hlt">waves</span> from the background noise. It is worth to note that the shape of such a band pass filter depends upon the value of both the surface currents and bathymetry; in our reconstruction algorithm these parameters are estimated through the (Normalized Scalar Product) procedure [1], which outperforms other existing methods (e.g., the Least Squares) [4]. From the reconstructed <span class="hlt">wave</span> elevation sequences we can get the directional spectrum that provides useful information (i.e., wavelength, period, direction and amplitude) relevant to the main <span class="hlt">waves</span> contributing to the <span class="hlt">wave</span> motion. Of course, in coastal <span class="hlt">zones</span> a number of diffraction and reflection phenomena can be observed, due to sea-<span class="hlt">waves</span> impinging obstacles as jetties, breakwaters and boats. In the present paper we want to show the capability to detect reflected and diffracted sea-<span class="hlt">waves</span> offered by the processing of X-band radar data. Further details relevant to the obtained results will be provided in the full paper and at the conference time. References [1] F. Serafino, C. Lugni, F. Soldovieri, "A novel strategy for the surface current determination from marine X-Band radar data", IEEE Geosci. and Remote Sensing Letters, vol. 7, no</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25108178','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25108178"><span>Numerical study of <span class="hlt">wave</span> effects on groundwater flow and solute transport in a laboratory beach.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Geng, Xiaolong; Boufadel, Michel C; Xia, Yuqiang; Li, Hailong; Zhao, Lin; Jackson, Nancy L; Miller, Richard S</p> <p>2014-09-01</p> <p>A numerical study was undertaken to investigate the effects of <span class="hlt">waves</span> on groundwater flow and associated inland-released solute transport based on tracer experiments in a laboratory beach. The MARUN model was used to simulate the density-dependent groundwater flow and subsurface solute transport in the saturated and unsaturated regions of the beach subjected to <span class="hlt">waves</span>. The Computational Fluid Dynamics (CFD) software, Fluent, was used to simulate <span class="hlt">waves</span>, which were the seaward boundary condition for MARUN. A no-<span class="hlt">wave</span> case was also simulated for comparison. Simulation results matched the observed water table and concentration at numerous locations. The results revealed that <span class="hlt">waves</span> generated seawater-groundwater circulations in the swash and surf <span class="hlt">zones</span> of the beach, which induced a large seawater-groundwater exchange across the beach face. In comparison to the no-<span class="hlt">wave</span> case, <span class="hlt">waves</span> significantly increased the residence time and spreading of inland-applied solutes in the beach. <span class="hlt">Waves</span> also altered solute pathways and shifted the solute discharge <span class="hlt">zone</span> further seaward. Residence Time Maps (RTM) revealed that the <span class="hlt">wave</span>-induced residence time of the inland-applied solutes was largest near the solute exit <span class="hlt">zone</span> to the sea. Sensitivity analyses suggested that the change in the permeability in the beach altered solute transport properties in a nonlinear way. Due to the slow movement of solutes in the unsaturated <span class="hlt">zone</span>, the mass of the solute in the unsaturated <span class="hlt">zone</span>, which reached up to 10% of the total mass in some cases, constituted a continuous slow release of solutes to the saturated <span class="hlt">zone</span> of the beach. This means of control was not addressed in prior studies. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9909E..5FF','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9909E..5FF"><span>Polarization switching of sodium <span class="hlt">guide</span> star laser for brightness enhancement</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fan, Tingwei; Zhou, Tianhua; Feng, Yan</p> <p>2016-07-01</p> <p>The efficiency of optical pumping that enhances the brightness of sodium laser <span class="hlt">guide</span> star with circularly polarized light is reduced substantially due to the precession of sodium atoms in geomagnetic field. Switching the laser between left and right circular polarization at the Larmor frequency is proposed to improve the photon return. With ESO's cw laser <span class="hlt">guide</span> star system at Paranal as example, numerical simulation for both square-<span class="hlt">wave</span> and sine-<span class="hlt">wave</span> polarization modulation is conducted. For the square-<span class="hlt">wave</span> switching case, the return flux is increased when the angle between geomagnetic field and laser beam is larger than 60°, as much as 40% at 90°. The method can also be applied for remote measurement of magnetic field with available cw <span class="hlt">guide</span> star laser.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16013878','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16013878"><span>Analysis of liquid-phase chemical detection using <span class="hlt">guided</span> shear horizontal-surface acoustic <span class="hlt">wave</span> sensors.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Zhonghui; Jones, Yolanda; Hossenlopp, Jeanne; Cernosek, Richard; Josse, Fabien</p> <p>2005-07-15</p> <p>Direct chemical sensing in liquid environments using polymer-<span class="hlt">guided</span> shear horizontal surface acoustic <span class="hlt">wave</span> sensor platforms on 36 degrees rotated Y-cut LiTaO3 is investigated. Design considerations for optimizing these devices for liquid-phase detection are systematically explored. Two different sensor geometries are experimentally and theoretically analyzed. Dual delay line devices are used with a reference line coated with poly (methyl methacrylate) (PMMA) and a sensing line coated with a chemically sensitive polymer, which acts as both a <span class="hlt">guiding</span> layer and a sensing layer or with a PMMA waveguide and a chemically sensitive polymer. Results show the three-layer model provides higher sensitivity than the four-layer model. Contributions from mass loading and coating viscoelasticity changes to the sensor response are evaluated, taking into account the added mass, swelling, and plasticization. Chemically sensitive polymers are investigated in the detection of low concentrations (1-60 ppm) of toluene, ethylbenzene, and xylenes in water. A low-ppb level detection limit is estimated from the present experimental measurements. Sensor properties are investigated by varying the sensor geometries, coating thickness combinations, coating properties, and curing temperature for operation in liquid environments. Partition coefficients for polymer-aqueous analyte pairs are used to explain the observed trend in sensitivity for the polymers PMMA, poly(isobutylene), poly(epichlorohydrin), and poly(ethyl acrylate) used in this work.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026667','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026667"><span>Shear <span class="hlt">wave</span> velocity variation across the Taupo Volcanic <span class="hlt">Zone</span>, New Zealand, from receiver function inversion</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bannister, S.; Bryan, C.J.; Bibby, H.M.</p> <p>2004-01-01</p> <p>The Taupo Volcanic <span class="hlt">Zone</span> (TVZ), New Zealand is a region characterized by very high magma eruption rates and extremely high heat flow, which is manifest in high-temperature geothermal waters. The shear <span class="hlt">wave</span> velocity structure across the region is inferred using non-linear inversion of receiver functions, which were derived from teleseismic earthquake data. Results from the non-linear inversion, and from forward synthetic modelling, indicate low S velocities at ???6- 16 km depth near the Rotorua and Reporoa calderas. We infer these low-velocity layers to represent the presence of high-level bodies of partial melt associated with the volcanism. Receiver functions at other stations are complicated by reverberations associated with near-surface sedimentary layers. The receiver function data also indicate that the Moho lies between 25 and 30 km, deeper than the 15 ?? 2 km depth previously inferred for the crust-mantle boundary beneath the TVZ. ?? 2004 RAS.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>