Sample records for zone sediment samples

  1. Fault architecture and deformation processes within poorly lithified rift sediments, Central Greece

    NASA Astrophysics Data System (ADS)

    Loveless, Sian; Bense, Victor; Turner, Jenni

    2011-11-01

    Deformation mechanisms and resultant fault architecture are primary controls on the permeability of faults in poorly lithified sediments. We characterise fault architecture using outcrop studies, hand samples, thin sections and grain-size data from a minor (1-10 m displacement) normal-fault array exposed within Gulf of Corinth rift sediments, Central Greece. These faults are dominated by mixed zones with poorly developed fault cores and damage zones. In poorly lithified sediment deformation is distributed across the mixed zone as beds are entrained and smeared. We find particulate flow aided by limited distributed cataclasis to be the primary deformation mechanism. Deformation may be localised in more competent sediments. Stratigraphic variations in sediment competency, and the subsequent alternating distributed and localised strain causes complexities within the mixed zone such as undeformed blocks or lenses of cohesive sediment, or asperities at the mixed zone/protolith boundary. Fault tip bifurcation and asperity removal are important processes in the evolution of these fault zones. Our results indicate that fault zone architecture and thus permeability is controlled by a range of factors including lithology, stratigraphy, cementation history and fault evolution, and that minor faults in poorly lithified sediment may significantly impact subsurface fluid flow.

  2. 78 FR 60218 - Safety Zone; Old Mormon Slough, Stockton, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ... decontaminate soil, groundwater, and sediment in Old Mormon Slough and the surrounding basin. This safety zone... safety zone in Old Mormon Slough to further the efforts of the EPA to rehabilitate soil, sediment, and... water collection ponds. The unlined oily waste ponds were closed in 1981. Sampling has shown that soils...

  3. Magnetic Hysteresis of Deep-Sea Sediments in Korea Deep Ocean Study(KODOS) Area, NE Pacific

    NASA Astrophysics Data System (ADS)

    Kim, K.; Park, C.; Yoo, C.

    2001-12-01

    The KODOS area within the Clarion-Clipperton fracture zone (C-C zone) is surrounded by the Hawaiian and Line Island Ridges to the west and the central American continent to the east. Topography of the seafloor consists of flat-topped abyssal hills and adjacent abyssal troughs, both of which run parallel in N-S direction. Sediments from the study area consist mainly of biogenic sediments. Latitudinal zonation of sedimentary facies was caused by the accumulation of biogenic materials associated with the equatorial current system and movement of the Pacific plate toward the north or northwest. The KODOS area belongs to the latitudinal transition zone having depositional characteristics between non-fossiliferous pelagic clay-dominated zone and calcareous sediment-dominated zone. The box core sediments of the KODOS area are analyzed in an attempt to obtain magnetic hysteresis information and to elucidate the relationship between hysteresis property and lithological facies. Variations in magnetic hysteresis parameters with unit layers reflect the magnetic grain-size and concentrations within the sediments. The ratios of remanant coercivity/coercive force (Hcr/Hc) and saturation remnance/saturation magnetization (Mrs/Ms) indicate that coarse magnetic grains are mainly distributed in dark brown sediments (lower part of the sediment core samples) reflecting high Hcr/Hc and low Mrs/Ms ratios. These results are mainly caused by dissolution differences with core depth. From the plotting of the ratios of hyteresis parameters, it is indicated that magnetic minerals in cubic samples are in pseudo-single domain (PSD) state.

  4. Microbial distributions detected by an oligonucleotide microarray across geochemical zones associated with methane in marine sediments from the Ulleung Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briggs, Brandon R; Graw, Michael; Brodie, Eoin L

    2013-11-01

    The biogeochemical processes that occur in marine sediments on continental margins are complex; however, from one perspective they can be considered with respect to three geochemical zones based on the presence and form of methane: sulfate–methane transition (SMTZ), gas hydrate stability zone (GHSZ), and free gas zone (FGZ). These geochemical zones may harbor distinct microbial communities that are important in biogeochemical carbon cycles. The objective of this study was to describe the microbial communities in sediments from the SMTZ, GHSZ, and FGZ using molecular ecology methods (i.e. PhyloChip microarray analysis and terminal restriction fragment length polymorphism (T-RFLP)) and examining themore » results in the context of non-biological parameters in the sediments. Non-metric multidimensional scaling and multi-response permutation procedures were used to determine whether microbial community compositions were significantly different in the three geochemical zones and to correlate samples with abiotic characteristics of the sediments. This analysis indicated that microbial communities from all three zones were distinct from one another and that variables such as sulfate concentration, hydrate saturation of the nearest gas hydrate layer, and depth (or unmeasured variables associated with depth e.g. temperature, pressure) were correlated to differences between the three zones. The archaeal anaerobic methanotrophs typically attributed to performing anaerobic oxidation of methane were not detected in the SMTZ; however, the marine benthic group-B, which is often found in SMTZ, was detected. Within the GHSZ, samples that were typically closer to layers that contained higher hydrate saturation had indicator sequences related to Vibrio-type taxa. These results suggest that the biogeographic patterns of microbial communities in marine sediments are distinct based on geochemical zones defined by methane.« less

  5. High Levels of Sediment Contamination Have Little Influence on Estuarine Beach Fish Communities

    PubMed Central

    McKinley, Andrew C.; Dafforn, Katherine A.; Taylor, Matthew D.; Johnston, Emma L.

    2011-01-01

    While contaminants are predicted to have measurable impacts on fish assemblages, studies have rarely assessed this potential in the context of natural variability in physico-chemical conditions within and between estuaries. We investigated links between the distribution of sediment contamination (metals and PAHs), physico-chemical variables (pH, salinity, temperature, turbidity) and beach fish assemblages in estuarine environments. Fish communities were sampled using a beach seine within the inner and outer zones of six estuaries that were either heavily modified or relatively unmodified by urbanization and industrial activity. All sampling was replicated over two years with two periods sampled each year. Shannon diversity, biomass and abundance were all significantly higher in the inner zone of estuaries while fish were larger on average in the outer zone. Strong differences in community composition were also detected between the inner and outer zones. Few differences were detected between fish assemblages in heavily modified versus relatively unmodified estuaries despite high concentrations of sediment contaminants in the inner zones of modified estuaries that exceeded recognized sediment quality guidelines. Trends in species distributions, community composition, abundance, Shannon diversity, and average fish weight were strongly correlated to physico-chemical variables and showed a weaker relationship to sediment metal contamination. Sediment PAH concentrations were not significantly related to the fish assemblage. These findings suggest that variation in some physico-chemical factors (salinity, temperature, pH) or variables that co-vary with these factors (e.g., wave activity or grain size) have a much greater influence on this fish assemblage than anthropogenic stressors such as contamination. PMID:22039470

  6. Guidelines for collecting and processing samples of stream bed sediment for analysis of trace elements and organic contaminants for the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Shelton, Larry R.; Capel, Paul D.

    1994-01-01

    A major component of the U.S. Geological Survey's National Water-Quality Assessment program is to assess the occurrence and distribution of trace elements and organic contaminants in streams. The first phase of the strategy for the assessment is to analyze samples of bed sediments from depositional zones. Fine-grained particles deposited in these zones are natural accumulators of trace elements and hydrophobic organic compounds. For the information to be comparable among studies in many different parts of the Nation, strategies for selecting stream sites and depositional zones are critical. Fine-grained surficial sediments are obtained from several depositional zones within a stream reach and composited to yield a sample representing average conditions. Sample collection and processing must be done consistently and by procedures specifically designed to separate the fine material into fractions that yield uncontaminated samples for trace-level analytes in the laboratory. Special coring samplers and other instruments made of Teflon are used for collection. Samples are processed through a 2.0-millimeter stainless-steel mesh sieve for organic contaminate analysis and a 63-micrometer nylon-cloth sieve for trace-element analysis. Quality assurance is maintained by strict collection and processing procedures, duplicate samplings, and a rigid cleaning procedure.

  7. Microbial diversity in Cenozoic sediments recovered from the Lomonosov Ridge in the Central Arctic basin.

    PubMed

    Forschner, Stephanie R; Sheffer, Roberta; Rowley, David C; Smith, David C

    2009-03-01

    The current understanding of microbes inhabiting deeply buried marine sediments is based largely on samples collected from continental shelves in tropical and temperate latitudes. The geographical range of marine subsurface coring was expanded during the Integrated Ocean Drilling Program Arctic Coring Expedition (IODP ACEX). This expedition to the ice-covered central Arctic Ocean successfully cored the entire 428 m sediment stack on the Lomonosov Ridge during August and September 2004. The recovered cores vary from siliciclastic sediment low in organic carbon (< 0.2%) to organic rich ( approximately 3%) black sediments that rapidly accumulated in the early middle Eocene. Three geochemical environments were characterized based on chemical analyses of porewater: an upper ammonium oxidation zone, a carbonate dissolution zone and a deep (> 200 m below sea floor) sulfate reduction zone. The diversity of microbes within each zone was assessed using 16S rRNA phylogenetic markers. Bacterial 16S rRNA genes were successfully amplified from each of the biogeochemical zones, while archaea was only amplified from the deep sulfate reduction zone. The microbial communities at each zone are phylogenetically different and are most closely related to those from other deep subsurface environments.

  8. Relationships between microbial communities and environmental parameters at sites impacted by mining of volcanogenic massive sulfide deposits, Prince William Sound, Alaska

    USGS Publications Warehouse

    Foster, A.L.; Munk, L.; Koski, R.A.; Shanks, Wayne C.; Stillings, L.L.

    2008-01-01

    The relations among geochemical parameters and sediment microbial communities were examined at three shoreline sites in the Prince William Sound, Alaska, which display varying degrees of impact by acid-rock drainage (ARD) associated with historic mining of volcanogenic massive sulfide deposits. Microbial communities were examined using total fatty acid methyl esters (FAMEs), a class of compounds derived from lipids produced by eukaryotes and prokaryotes (bacteria and Archaea); standard extraction techniques detect FAMEs from both living (viable) and dead (non-viable) biomass, but do not detect Archaeal FAMEs. Biomass and diversity (as estimated by FAMEs) varied strongly as a function of position in the tidal zone, not by study site; subtidal muds, Fe oxyhydroxide undergoing biogenic reductive dissolution, and peat-rich intertidal sediment had the highest values. These estimates were lowest in acid-generating, intertidal zone sediment; if valid, the estimates suggest that only one or two bacterial species predominate in these communities, and/or that Archeal species are important members of the microbial community in this sediment. All samples were dominated by bacterial FAMEs (median value >90%). Samples with the highest absolute abundance of eukaryotic FAMEs were biogenic Fe oxyhydroxides from shallow freshwater pools (fungi) and subtidal muds (diatoms). Eukaryotic FAMEs were practically absent from low-pH, sulfide-rich intertidal zone sediments. The relative abundance of general microbial functional groups such as aerobes/anaerobes and gram(+)/gram(-) was not estimated due to severe inconsistency among the results obtained using several metrics reported in the literature. Principal component analyses (PCAs) were performed to investigate the relationship among samples as separate functions of water, sediment, and FAMEs data. PCAs based on water chemistry and FAMEs data resulted in similar relations among samples, whereas the PCA based on sediment chemistry produced a very different sample arrangement. Specifically, the sediment parameter PCA grouped samples with high bulk trace metal concentration regardless of whether the metals were incorporated into secondary precipitates or primary sulfides. The water chemistry PCA and FAMEs PCA appear to be less prone to this type of artifact. Signature lipids in sulfide-rich sediments could indicate the presence of acid-tolerant and/or acidophilic members of the genus Thiobacillus or they could indicate the presence of SO4-reducing bacteria. The microbial community documented in subtidal and offshore sediments is rich in SRB and/or facultative anaerobes of the Cytophaga-Flavobacterium group; both could reasonably be expected in PWS coastal environments. The results of this study provide evidence for substantial feedback between local (meter to centimeter-scale) geochemical variations, and sediment microbial community composition, and show that microbial community signatures in the intertidal zone are significantly altered at sites where ARD drainage is present relative to sites where it is not, even if the sediment geochemistry indicates net accumulation of ARD-generated trace metals in the intertidal zone. ?? 2007 Elsevier Ltd. All rights reserved.

  9. Response of invertebrates from the hyporheic zone of chalk rivers to eutrophication and land use.

    PubMed

    Pacioglu, Octavian; Moldovan, Oana Teodora

    2016-03-01

    Whereas the response of lotic benthic macroinvertebrates to different environmental stressors is a widespread practice nowadays in assessing the water and habitat quality, the use of hyporheic zone invertebrates is still in its infancy. In this study, classification and regression trees analysis were employed in order to assess the ecological requirements and the potential as bioindicators for the hyporheic zone invertebrates inhabiting four lowland chalk rivers (south England) with contrasting eutrophication levels (based on surface nitrate concentrations) and magnitude of land use (based on percentage of fine sediments load and median interstitial space). Samples of fauna, water and sediment were sampled twice, during low (summer) and high (winter) groundwater level, at depths of 20 and 35 cm. Certain groups of invertebrates (Glossosomatidae and Psychomyiidae caddisflies, and riffle beetles) proved to be good indicators of rural catchments, moderately eutrophic and with high fine sediment load. A diverse community dominated by microcrustaceans (copepods and ostracods) were found as good indicators of highly eutrophic urban streams, with moderate-high fine sediment load. However, the use of other taxonomic groups (e.g. chironomids, oligochaetes, nematodes, water mites and the amphipod Gammarus pulex), very widespread in the hyporheic zone of all sampled rivers, is of limited use because of their high tolerance to the analysed stressors. We recommend the use of certain taxonomic groups (comprising both meiofauna and macroinvertebrates) dwelling in the chalk hyporheic zone as indicators of eutrophication and colmation and, along with routine benthic sampling protocols, for a more comprehensive water and habitat quality assessment of chalk rivers.

  10. Chromium distribution in an Amazonian river exposed to tannery effluent.

    PubMed

    de Sousa, Eduardo Araujo; Luz, Cleber Calado; de Carvalho, Dario Pires; Dorea, Caetano Chang; de Holanda, Igor Bruno Barbosa; Manzatto, Ângelo Gilberto; Bastos, Wanderley Rodrigues

    2016-11-01

    This study aims to evaluate the Cr concentrations in surface water, suspended particles, and bottom sediments exposed to tannery effluent releases in the Candeias River. Cr concentrations were compared in relation to environmental thresholds imposed by United States Environmental Protection Agency (USEPA) and the Brazilian Environmental Council (CONAMA), and the geoaccumulation index (Igeo) was calculated in bottom sediment. Samples were collected in flood and dry seasons. Cr extraction was done by an acid extraction and quantified by flame atomic absorption spectrometry. Most samples were found to be below the environmental thresholds imposed by CONAMA and USEPA, except in the one from the discharge zone sampled during the dry season, showing values 1.5 and 6.1 higher than CONAMA in water and bottom sediment, respectively. Cr concentrations were significantly higher (P < 0.001) in suspended particles during dry season than flood season. Surface water and bottom sediment did not show significant differences between the seasons. The Igeo revealed an enrichment of Cr in bottom sediments after discharge zone, indicating that the effluent may be contributing to metal accumulation in the sediment. Apparently, the Candeias River shows a wash behavior on the river bottom, leaching the accumulated metal deposited on the riverbed to other areas during the flood pulses, which decreases Cr concentration in the discharge zone during dry seasons. Thus, this behavior can promote Cr dispersion to unpolluted areas.

  11. From the Surface to the Deep-Sea: Bacterial Distributions across Polymetallic Nodule Fields in the Clarion-Clipperton Zone of the Pacific Ocean.

    PubMed

    Lindh, Markus V; Maillot, Brianne M; Shulse, Christine N; Gooday, Andrew J; Amon, Diva J; Smith, Craig R; Church, Matthew J

    2017-01-01

    Marine bacteria regulate fluxes of matter and energy essential for pelagic and benthic organisms and may also be involved in the formation and maintenance of commercially valuable abyssal polymetallic nodules. Future mining of these nodule fields is predicted to have substantial effects on biodiversity and physicochemical conditions in mined areas. Yet, the identity and distributions of bacterial populations in deep-sea sediments and associated polymetallic nodules has received relatively little attention. We examined bacterial communities using high-throughput sequencing of bacterial 16S rRNA gene fragments from samples collected in the water column, sediment, and polymetallic nodules in the Pacific Ocean (bottom depth ≥4,000 m) in the eastern Clarion-Clipperton Zone. Operational taxonomic units (OTUs; defined at 99% 16S rRNA gene identity) affiliated with JTB255 (Gammaproteobacteria) and Rhodospirillaceae (Alphaproteobacteria) had higher relative abundances in the nodule and sediment habitats compared to the water column. Rhodobiaceae family and Vibrio OTUs had higher relative abundance in nodule samples, but were less abundant in sediment and water column samples. Bacterial communities in sediments and associated with nodules were generally similar; however, 5,861 and 6,827 OTUs found in the water column were retrieved from sediment and nodule habitats, respectively. Cyanobacterial OTUs clustering among Prochlorococcus and Synechococcus were detected in both sediments and nodules, with greater representation among nodule samples. Such results suggest that vertical export of typically abundant photic-zone microbes may be an important process in delivery of water column microorganisms to abyssal habitats, potentially influencing the structure and function of communities in polymetallic nodule fields.

  12. Size matters: The effects of displacement magnitude on the fluid flow properties of faults in poorly lithified sediments

    NASA Astrophysics Data System (ADS)

    Loveless, S. E.; Bense, V.; Turner, J.

    2011-12-01

    Many aquifers worldwide occur in poorly lithified sediments, often in regions that experience active tectonic deformation. Faulting of these sediments introduces heterogeneities that may affect aquifer porosity and permeability, and consequently subsurface fluid flow and groundwater storage. The specific hydrogeological effects of faults depend upon the fault architecture and deformation mechanisms. These are controlled by factors such as rheology, stratigraphy and burial depth. Here, we analyse fault permeability in poorly lithified sediments as a function of fault displacement. We have carried out detailed outcrop studies of minor normal faults at five study sites within the rapidly extending Corinth rift, Central Greece. Gravel conglomerates of giant Gilbert delta facies form productive but localised shallow aquifers within the region. Exposures reveal dense (average 20 faults per 100 m) networks of minor (0.1 to 50 m displacement) normal faults within the uplifted sequences, proximal to many of the crustal-scale normal faults. Analysis of 42 faults shows that fault zones are primarily composed of smeared beds that can either retain their definition or mix with surrounding sediment. Lenses or blocks of sediment are common in fault zones that cut beds with contrasting rheology, and a few faults have a clay core and/or damage zone. Fault thickness increases at a rate of about 0.4 m per 10 m increase in displacement. Comparison of sediment micro-structures from the field, hand samples and thin sections show grain-scale sediment mixing, fracturing of clasts, and in some cases cementation, within fault zones. In faults with displacements >12 m we also find a number of roughly parallel, highly indurated shear planes, up to 20 mm in thickness, composed of highly fragmented clasts and a fine grained matrix. Image analysis of thin sections from hand samples collected in the field was used to quantify the porosity of fault zones and adjacent undeformed sediment. These data show a reduction in average porosity from 21% (± 4) in undisturbed sediments to 14% (± 8) within fault zones. We find that fault zone porosity decreases by approximately 5% per 1 m displacement (up to 2 m displacement), as sediments undergo greater micro-scale deformation. Porosity within the shear planes of larger displacement faults (> 12 m) is significantly less than 5%. In summary, with an increase in fault displacement there is an increase in fault thickness and decrease in fault zone porosity, in addition to the occurrence of extremely low porosity shear planes. Consequently, the impact of faults in poorly lithified sediment on fluid flow is, to a large degree, dependent upon the magnitude of fault displacement.

  13. Vergleich von hydraulischen und chemischen Sedimenteigenschaften aus Spül- und Kernbohrungen im Raum Peine (Norddeutschland)

    NASA Astrophysics Data System (ADS)

    Konrad, C.; Walther, W.; Reimann, T.; Rogge, A.; Stengel, P.; Well, R.

    2008-03-01

    Comparison of hydraulic and chemical properties of sediments from flush- and core drillings in the area of Peine (Germany). Because of financial constraints, investigations of nitrate metabolism are often based on disturbed borehole samples. It is arguable, however, whether disturbed samples are suitable for these types of investigations. Disadvantages of disturbed samples in comparison to undisturbed core samples are well known and include possible contamination of the sample by mud additives, destruction of the sediment formation and the insecurity concerning the correct depth allocation. In this study, boreholes were drilled at three locations to a maximum depth of 50 m. The extracted samples, as intact sediment cores and drill cuttings, were studied with regard to chemical and hydraulic parameters of the aquifer sediments. The results show: 1. hydraulic parameters are not affected by clay-based mud; 2. disturbed samples contain less fine grain material relative to the core samples, and the hydraulic conductivity can only be estimated from catch samples; 3. catch samples contain fewer reducing agents (sulphides, organic carbon) than core samples in hydraulically passive zones (defined as K < 10 6 m · s 1); 4. the results of analyses of disturbed and undisturbed core samples are in good agreement for hydraulically active zones (K ≥ 10 6 m · s 1).

  14. Concentration, composition and sources of PAHs in the coastal sediments of the exclusive economic zone (EEZ) of Qatar, Arabian Gulf.

    PubMed

    Soliman, Y S; Al Ansari, E M S; Wade, T L

    2014-08-30

    Surface sediments were collected from sixteen locations in order to assess levels and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments of Qatar exclusive economic zone (EEZ). Samples were analyzed for 16 parent PAHs, 18 alkyl homologs and for dibenzothiophenes. Total PAHs concentration (∑PAHs) ranged from 2.6 ng g(-1) to 1025 ng g(-1). The highest PAHs concentrations were in sediments in and adjacent to harbors. Alkylated PAHs predominated most of the sampling locations reaching up to 80% in offshore locations. Parent PAHs and parent high molecular weight PAHs dominated location adjacent to industrial activities and urban areas. The origin of PAHs sources to the sediments was elucidated using ternary plot, indices, and molecular ratios of specific compounds such as (Ant/Phe+Ant), (Flt/Flt+Pyr). PAHs inputs to most coastal sites consisted of mixture of petroleum and combustion derived sources. However, inputs to the offshore sediments were mainly of petroleum origin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Diatoms dominate the eukaryotic metatranscriptome during spring in coastal 'dead zone' sediments.

    PubMed

    Broman, Elias; Sachpazidou, Varvara; Dopson, Mark; Hylander, Samuel

    2017-10-11

    An important characteristic of marine sediments is the oxygen concentration that affects many central metabolic processes. There has been a widespread increase in hypoxia in coastal systems (referred to as 'dead zones') mainly caused by eutrophication. Hence, it is central to understand the metabolism and ecology of eukaryotic life in sediments during changing oxygen conditions. Therefore, we sampled coastal 'dead zone' Baltic Sea sediment during autumn and spring, and analysed the eukaryotic metatranscriptome from field samples and after incubation in the dark under oxic or anoxic conditions. Bacillariophyta (diatoms) dominated the eukaryotic metatranscriptome in spring and were also abundant during autumn. A large fraction of the diatom RNA reads was associated with the photosystems suggesting a constitutive expression in darkness. Microscope observation showed intact diatom cells and these would, if hatched, represent a significant part of the pelagic phytoplankton biomass. Oxygenation did not significantly change the relative proportion of diatoms nor resulted in any major shifts in metabolic 'signatures'. By contrast, diatoms rapidly responded when exposed to light suggesting that light is limiting diatom development in hypoxic sediments. Hence, it is suggested that diatoms in hypoxic sediments are on 'standby' to exploit the environment if they reach suitable habitats. © 2017 The Author(s).

  16. Offshore gas hydrate sample database with an overview and preliminary analysis

    USGS Publications Warehouse

    Booth, James S.; Rowe, Mary M.; Fisher, Kathleen M.

    1996-01-01

    Synopsis -- A database of offshore gas hydrate samples was constructed from published observations and measurements. More than 90 samples from 15 distinct regions are represented in 13 data categories. This database has permitted preliminary description of gas hydrate (chiefly methane hydrate) tendencies and associations with respect to their geological environment. Gas hydrates have been recovered from offshore sediment worldwide and from total depths (water depth plus subseabed depth) ranging from 500 m to nearly 6,000 m. Samples have come from subbottom depths ranging from 0 to 400 m. Various physiographic provinces are represented in the data set including second order landforms such as continental margins and deep-sea trenches, and third order forms such as submarine canyons, continental slopes, continental margin ridges and intraslope basins. There is a clear association between fault zones and other manifestations of local, tectonic-related processes, and hydrate-bearing sediment. Samples of gas hydrate frequently consist of individual grains or particles. These types of hydrates are often further described as inclusions or disseminated in the sediment. Moreover, hydrates occur as a cement, as nodules, or as layers (mostly laminae) or in veins. The preponderance of hydrates that could be characterized as 2- dimensional (planar) were associated with fine sediment, either as intercalated layers or in fractures. Hydrate cements were commonly associated with coarser sediment. Hydrates have been found in association with grain sizes ranging from clay through gravel. More hydrates are associated with the more abundant finer-grained sediment than with coarser sediment, and many were discovered in the presence of both fine (silt and clay) and coarse sediment. The thickness of hydrate zones (i. e., sections of hydrate-bearing sediment) varies from a few centimeters to as much as 30 m. In contrast, the thickness of layers of pure hydrate or the dimensions of individual hydrate grains were most often characterized in terms of millimeters or centimeters, although a pure hydrate layer discovered in the Middle America Trench off Guatemala was as much as 3-4-m-thick. The data suggest that grains, or thin veins or laminae of pure gas hydrate may be ubiquitous in many hydrate zones but that typically they may only comprise a minor component of the thicker zones. In more than 80 percent of the hydrate samples the methane was of biogenic origin. The methane in the remainder was either classified as (or may be at least part) thermogenic. Each site where thermogenic gas was identified is characterized by faults or other manifestions of a dynamic geological environment (e.g., diapirs, mud volcanoes, gas seeps). Every sample in the database came from within the zone of theoretical methane hydrate stability, as determined on the basis of assumed regional pressure and temperature gradients. Most show that they were situated --- expressed in terms of depth --- well above the phase boundary and about 70% of the samples were located more than 100 m above the assumed regional position of that boundary. The calculated subseabed positions of the phase boundaries and the BSRs (bottom simulating reflector) are essentially identical. This may be taken as general corroboration of the regional phase boundary calculations and the concept of the BSR. Three provocative aspects of marine gas hydrates have been disclosed by the database: gas hydrates are frequently situated at much shallower subseabed depths than the assumed contemporary position of the regional phase boundary hydrates are often found in areas typified by faults or other indicators of a dynamic geological environment zones of gas hydrate-bearing sediment tend to be tens of centimeters to tens of meters thick but the hydrate within the thicker zones tends to be only a minor constituent. Whether existing as dispersed particles, cements, or pure layers or vein

  17. Molybdenum isotope systematics in subduction zones

    NASA Astrophysics Data System (ADS)

    König, Stephan; Wille, Martin; Voegelin, Andrea; Schoenberg, Ronny

    2016-08-01

    This study presents Mo isotope data for arc lavas from different subduction zones that range between δ 98 / 95 Mo = - 0.72 and + 0.07 ‰. Heaviest isotope values are observed for the most slab fluid dominated samples. Isotopically lighter signatures are related to increasing relevance of terrigenous sediment subduction and sediment melt components. Our observation complements previous conclusions that an isotopically heavy Mo fluid flux likely mirrors selective incorporation of isotopically light Mo in secondary minerals within the subducting slab. Analogue to this interpretation, low δ 98 / 95 Mo flux that coincides with terrigenous sediment subduction and sediment melting cannot be simply related to a recycled input signature. Instead, breakdown of the controlling secondary minerals during sediment melting may release the light component and lead to decreasing δ 98 / 95 Mo influx into subarc mantle sources. The natural range between slab dehydration and hydrous sediment melting may thus cause a large spread of δ 98 / 95 Mo in global subduction zone magmas.

  18. Origin of dolomite in Miocene Monterey Shale and related formations in the Temblor Range, California

    USGS Publications Warehouse

    Friedman, I.; Murata, K.J.

    1979-01-01

    Dolomites in thick sections of Miocene Monterey Shale and related formations in the Temblor Range of California acquired their isotopic compositions as they formed at shallow depth in the original sediment rich in organic matter, and retained the composition against the vicissitudes of burial diagenesis. The oxygen isotopes of dolomites of successive beds record changes in temperature of bottom water while the carbon isotopes of the same samples indicate changes in the kind of microbial activity (sulfate reduction vs carbohydrate fermentation) that prevailed at shallow depths in the sediment. In an auxiliary study, two samples of dolomite from sediments of Cariaco Basin off Venezuela (DSDP site 147) were found to have ??5C13 of -14.1 and -9.8 per ml PDB, although they occur in a heavy-carbon zone containing bicarbonate as heavy as +8.4 per ml. These dolomites probably originated at shallow depth in the light-carbon zone of microbial sulfate reducers and were buried under later sediments down into the heavy-carbon zone of microbial fermenters of carbohydrates without losing their original light-carbon composition. ?? 1979.

  19. Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquife

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, K M; K Kukkadapu, R K; Qafoku, N P

    2012-05-23

    Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology and redox processes that occur in these zones, several cores from a region of naturally occurring reducing conditions in a U-contaminated aquifer (Rifle, CO) were examined. Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for U and Fe content, oxidation state, and mineralogy; reduced S phases; and solid-phase organic C content using a suite of analyticalmore » and spectroscopic techniques on bulk sediment and size fractions. Solid-phase U concentrations were higher in the naturally reduced zone, with a high proportion of the U present as U(IV). The sediments were also elevated in reduced S phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and SO4 reduction has occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentrations of solid-phase organic C and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic C concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic C for maintaining reducing conditions and U immobilization.« less

  20. Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Kate M.; Kukkadapu, Ravi K.; Qafoku, Nikolla

    2012-05-23

    Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology, and redox processes that occur in these zones, we examined several cores from a region of naturally occurring reducing conditions in a uranium-contaminated aquifer (Rifle, CO). Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for uranium and iron content, oxidation state, and mineralogy, reduced sulfur phases, and solid phase organic carbon content using a suite ofmore » analytical and spectroscopic techniques on bulk sediment and size fractions. Solid-phase uranium concentrations were higher in the naturally reduced zone, with a high proportion of the uranium present as reduced U(IV). The sediments were also elevated in reduced sulfur phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and sulfate reduction occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentration of solid phase organic carbon and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic carbon concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic carbon for maintaining reducing conditions and uranium immobilization.« less

  1. Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, K. M.; Kukkadapu, R. K.; Qafoku, N. P.

    2012-08-01

    Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology and redox processes that occur in these zones, several cores from a region of naturally occurring reducing conditions in a U-contaminated aquifer (Rifle, CO) were examined. Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for U and Fe content, oxidation state, and mineralogy; reduced S phases; and solid-phase organic C content using a suite of analyticalmore » and spectroscopic techniques on bulk sediment and size fractions. Solid-phase U concentrations were higher in the naturally reduced zone, with a high proportion of the U present as U(IV). The sediments were also elevated in reduced S phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and SO 4 reduction has occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentrations of solid-phase organic C and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic C concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic C for maintaining reducing conditions and U immobilization.« less

  2. Microbial abundance in the deep subsurface of the Chesapeake Bay impact crater: Relationship to lithology and impact processes

    USGS Publications Warehouse

    Cockell, Charles S.; Gronstal, Aaron L.; Voytek, Mary A.; Kirshtein, Julie D.; Finster, Kai; Sanford, Ward E.; Glamoclija, Mihaela; Gohn, Gregroy S.; Powars, David S.; Horton, J. Wright

    2009-01-01

    Asteroid and comet impact events are known to cause profound disruption to surface ecosystems. The aseptic collection of samples throughout a 1.76-km-deep set of cores recovered from the deep subsurface of the Chesapeake Bay impact structure has allowed the study of the subsurface biosphere in a region disrupted by an impactor. Microbiological enumerations suggest the presence of three major microbiological zones. The upper zone (127–867 m) is characterized by a logarithmic decline in microbial abundance from the surface through the postimpact section of Miocene to Upper Eocene marine sediments and across the transition into the upper layers of the impact tsunami resurge sediments and sediment megablocks. In the middle zone (867–1397 m) microbial abundances are below detection. This zone is predominantly quartz sand, primarily composed of boulders and blocks, and it may have been mostly sterilized by the thermal pulse delivered during impact. No samples were collected from the large granite block (1096–1371 m). The lowest zone (below 1397 m) of increasing microbial abundance coincides with a region of heavily impact-fractured, hydraulically conductive suevite and fractured schist. These zones correspond to lithologies influenced by impact processes. Our results yield insights into the influence of impacts on the deep subsurface biosphere.

  3. Biogeochemical and Molecular Signatures of Anaerobic Methane Oxidation in a Marine Sediment

    PubMed Central

    Thomsen, Trine R.; Finster, Kai; Ramsing, Niels B.

    2001-01-01

    Anaerobic methane oxidation was investigated in 6-m-long cores of marine sediment from Aarhus Bay, Denmark. Measured concentration profiles for methane and sulfate, as well as in situ rates determined with isotope tracers, indicated that there was a narrow zone of anaerobic methane oxidation about 150 cm below the sediment surface. Methane could account for 52% of the electron donor requirement for the peak sulfate reduction rate detected in the sulfate-methane transition zone. Molecular signatures of organisms present in the transition zone were detected by using selective PCR primers for sulfate-reducing bacteria and for Archaea. One primer pair amplified the dissimilatory sulfite reductase (DSR) gene of sulfate-reducing bacteria, whereas another primer (ANME) was designed to amplify archaeal sequences found in a recent study of sediments from the Eel River Basin, as these bacteria have been suggested to be anaerobic methane oxidizers (K. U. Hinrichs, J. M. Hayes, S. P. Sylva, P. G. Brewer, and E. F. DeLong, Nature 398:802–805, 1999). Amplification with the primer pairs produced more amplificate of both target genes with samples from the sulfate-methane transition zone than with samples from the surrounding sediment. Phylogenetic analysis of the DSR gene sequences retrieved from the transition zone revealed that they all belonged to a novel deeply branching lineage of diverse DSR gene sequences not related to any previously described DSR gene sequence. In contrast, DSR gene sequences found in the top sediment were related to environmental sequences from other estuarine sediments and to sequences of members of the genera Desulfonema, Desulfococcus, and Desulfosarcina. Phylogenetic analysis of 16S rRNA sequences obtained with the primers targeting the archaeal group of possible anaerobic methane oxidizers revealed two clusters of ANME sequences, both of which were affiliated with sequences from the Eel River Basin. PMID:11282617

  4. Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment.

    PubMed

    Thomsen, T R; Finster, K; Ramsing, N B

    2001-04-01

    Anaerobic methane oxidation was investigated in 6-m-long cores of marine sediment from Aarhus Bay, Denmark. Measured concentration profiles for methane and sulfate, as well as in situ rates determined with isotope tracers, indicated that there was a narrow zone of anaerobic methane oxidation about 150 cm below the sediment surface. Methane could account for 52% of the electron donor requirement for the peak sulfate reduction rate detected in the sulfate-methane transition zone. Molecular signatures of organisms present in the transition zone were detected by using selective PCR primers for sulfate-reducing bacteria and for Archaea. One primer pair amplified the dissimilatory sulfite reductase (DSR) gene of sulfate-reducing bacteria, whereas another primer (ANME) was designed to amplify archaeal sequences found in a recent study of sediments from the Eel River Basin, as these bacteria have been suggested to be anaerobic methane oxidizers (K. U. Hinrichs, J. M. Hayes, S. P. Sylva, P. G. Brewer, and E. F. DeLong, Nature 398:802-805, 1999). Amplification with the primer pairs produced more amplificate of both target genes with samples from the sulfate-methane transition zone than with samples from the surrounding sediment. Phylogenetic analysis of the DSR gene sequences retrieved from the transition zone revealed that they all belonged to a novel deeply branching lineage of diverse DSR gene sequences not related to any previously described DSR gene sequence. In contrast, DSR gene sequences found in the top sediment were related to environmental sequences from other estuarine sediments and to sequences of members of the genera Desulfonema, Desulfococcus, and Desulfosarcina. Phylogenetic analysis of 16S rRNA sequences obtained with the primers targeting the archaeal group of possible anaerobic methane oxidizers revealed two clusters of ANME sequences, both of which were affiliated with sequences from the Eel River Basin.

  5. Natural and anthropogenic controls on sediment composition of an arid coastal environment: Sharm Obhur, Red Sea, Saudi Arabia.

    PubMed

    Ghandour, I M; Basaham, A S; Basaham, S; Al-Washmi, H A; Al-Washmi, A; Masuda, H

    2014-03-01

    The present study investigated the natural and anthropogenic processes that control the composition of the bottom sediments of Sharm Obhur, Red Sea. Mineralogical analysis using XRD indicated that the sediments consist of carbonate and non-carbonate minerals. Elemental interrelationships allowed differentiating two groups of elements of different sources and origin. Elements that are in the same group are positively correlated, while they correlate negatively with elements of the other group. The first group includes silicon, Al, Fe, Mn, Mg, vanadium (V), chromium (Cr), Co, Ni, Cu, and Zn, whereas the other group includes Ca, Sr, and CaCO3. The highest concentration levels of the first group and the highest content of non-carbonate minerals were obtained from the sediments near the head of the sharm (zone A), whereas the sediments near the mouth of the sharm (zone B) yielded high concentrations of second group and carbonate minerals. Metal enrichment and contamination factors and pollution load index were calculated. The values of these indices differentiate two groups of metals: lithogenic and non-lithogenic. Except for lead (Pb) at one sampling site, metals in zone A sediments are of lithogenic source, supplied to the sharm either naturally by aeolian transportation and through Wadi Al-Kuraa'a during rare but major floods or by human activities such as dumping and shore protection. Non-lithogenic Cr, Pb, V, and Mn were documented from some sampling sites in zone B, and their occurrences are related to waste disposal and fossil fuel combustion.

  6. Uranium-bearing copper deposits in the Coyote district, Mora County, New Mexico

    USGS Publications Warehouse

    Zeller, H.D.; Baltz, Elmer Harold

    1954-01-01

    Uranium-bearing copper deposits occur in steeply dipping beds of the Sangre de Cristo formation of Pennsylvanian and Permian(?) age south of Coyote, Mora County, N. Mex. Mapping and sampling of these deposits indicate that they are found in lenticular carbonaceous zones in shales and arkosic sandstones. Samples from these zones contain as much as 0.067 percent uranium and average 3 percent copper. Metatyuyamunite is dissemihatedin some of the arkosic sandstone beds, and uraninite is present in some of the copper sulfide nodules occurring in the shale. These sulfide nodules are composed principally of chalcocite but include some bornite, covellite, pyrite, and malachite. Most of the samples were collected near the surface from the weathered zone. The copper and uranium were probably deposited with the sediments and concentrated into zones during compaction and lithification. Carbonaceous material in the Sangre de Cristo formation provided the environment that precipitated uranium and copper from mineral-charged connate waters forced from the clayey sediments.

  7. The use of Landsat for monitoring water parameters in the coastal zone

    NASA Technical Reports Server (NTRS)

    Bowker, D. E.; Witte, W. G.

    1977-01-01

    Landsats 1 and 2 have been successful in detecting and quantifying suspended sediment and several other important parameters in the coastal zone, including chlorophyll, particles, alpha (light transmission), tidal conditions, acid and sewage dumps, and in some instances oil spills. When chlorophyll a is present in detectable quantities, however, it is shown to interfere with the measurement of sediment. The Landsat banding problem impairs the instrument resolution and places a requirement on the sampling program to collect surface data from a sufficiently large area. A sampling method which satisfies this condition is demonstrated.

  8. Presence, concentrations and risk assessment of selected antibiotic residues in sediments and near-bottom waters collected from the Polish coastal zone in the southern Baltic Sea - Summary of 3years of studies.

    PubMed

    Siedlewicz, Grzegorz; Białk-Bielińska, Anna; Borecka, Marta; Winogradow, Aleksandra; Stepnowski, Piotr; Pazdro, Ksenia

    2018-04-01

    Concentrations of selected antibiotic compounds from different groups were measured in sediment samples (14 analytes) and in near-bottom water samples (12 analytes) collected in 2011-2013 from the southern Baltic Sea (Polish coastal zone). Antibiotics were determined at concentration levels of a few to hundreds of ng g -1 d.w. in sediments and ng L -1 in near-bottom waters. The most frequently detected compounds were sulfamethoxazole, trimethoprim, oxytetracycline in sediments and sulfamethoxazole and trimethoprim in near-bottom waters. The occurrence of the identified antibiotics was characterized by spatial and temporal variability. A statistically important correlation was observed between sediment organic matter content and the concentrations of sulfachloropyridazine and oxytetracycline. Risk assessment analyses revealed a potential high risk of sulfamethoxazole contamination in near-bottom waters and of contamination by sulfamethoxazole, trimethoprim and tetracyclines in sediments. Both chemical and risk assessment analyses show that the coastal area of the southern Baltic Sea is highly exposed to antibiotic residues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Characterization of sediments from the Gulf of Mexico and Atlantic shorelines, Texas to Florida

    USGS Publications Warehouse

    Lisle, John T.; Comer, Norris N.

    2011-01-01

    In response to the Deepwater Horizon oil spill, sediment samples that were projected to have a high probability of being impacted by the oil were collected from shoreline zones of Texas, Louisiana, Mississippi, Alabama, and Florida. Sixty-one sites were sampled and analyzed for hydraulic conductivity, porosity, and grain-size distribution. The objective of this effort was to provide a set of baseline data on sediment characteristics known to directly influence (1) the penetration of oil into coastal sediments and (2) the efficacy of chemical and (or) bioremediation.

  10. Trace Element Mobility in Water and Sediments in a Hyporheic Zone Adjacent to an Abandoned Uranium Mine

    NASA Astrophysics Data System (ADS)

    Roldan, C.; Blake, J.; Cerrato, J.; Ali, A.; Cabaniss, S.

    2015-12-01

    The legacy of abandoned uranium mines lead to community concerns about environmental and health effects. This study focuses on a cross section of the Rio Paguate, adjacent to the Jackpile Mine on the Laguna Reservation, west-central New Mexico. Often, the geochemical interactions that occur in the hyporheic zone adjacent to these abandoned mines play an important role in trace element mobility. In order to understand the mobility of uranium (U), arsenic (As), and vanadium (V) in the Rio Paguate; surface water, hyporheic zone water, and core sediment samples were analyzed using inductively coupled plasma mass spectroscopy (ICP-MS). All water samples were filtered through 0.45μm and 0.22μm filters and analyzed. The results show that there is no major difference in concentrations of U (378-496μg/L), As (0.872-6.78μg/L), and V (2.94-5.01μg/L) between the filter sizes or with depth (8cm and 15cm) in the hyporheic zone. The unfiltered hyporheic zone water samples were analyzed after acid digestion to assess the particulate fraction. These results show a decrease in U concentration (153-202μg/L) and an increase in As (33.2-219μg/L) and V (169-1130μg/L) concentrations compared to the filtered waters. Surface water concentrations of U(171-184μg/L) are lower than the filtered hyporheic zone waters while As(1.32-8.68μg/L) and V(1.75-2.38μg/L) are significantly lower than the hyporheic zone waters and particulates combined. Concentrations of As in the sediment core samples are higher in the first 15cm below the water-sediment interface (14.3-3.82μg/L) and decrease (0.382μg/L) with depth. Uranium concentrations are consistent (0.047-0.050μg/L) at all depths. The over all data suggest that U is mobile in the dissolved phase and both As and V are mobile in the particular phase as they travel through the system.

  11. In-situ Observations of Swash-zone Flow Velocities and Sediment Transport on a Steep Beach

    NASA Astrophysics Data System (ADS)

    Chardon-Maldonado, P.; Puleo, J. A.; Figlus, J.

    2014-12-01

    A 45 m scaffolding frame containing an array of instruments was installed at South Bethany Beach, Delaware, to obtain in-situ measurements in the swash zone. Six cross-shore stations were established to simultaneously measure near-bed velocity profiles, sediment concentration and water level fluctuations on a steep beach. Measurements of swash-zone hydrodynamics and morphological change were collected from February 12 to 25, 2014, following a large Nor'easter storm with surf zone significant wave height exceeding 5 m. Swash-zone flow velocities (u,v,w) were measured at each cross-shore location using a Nortek Vectrino profiling velocimeter that measured a 30 mm velocity profile at 1 mm vertical increments at 100 Hz. These velocity profiles were used to quantify the vertical flow structure over the foreshore and estimate hydrodynamic parameters such as bed shear stress and turbulent kinetic energy dissipation. Sediment concentrations were measured using optical backscatter sensors (OBS) to obtain spatio-temporal measurements during both uprush and backwash phases of the swash cycle. Cross-shore sediment transport rates at each station were estimated by taking the product of cross-shore velocity and sediment concentration. Foreshore elevations were sampled every low tide using a Leica GPS system with RTK capability. Cross-shore sediment transport rates and gradients derived from the velocities and bed shear stress estimates will be related to the observed morphological change.

  12. Velocity-porosity relationships for slope apron and accreted sediments in the Nankai Trough Seismogenic Zone Experiment, Integrated Ocean Drilling Program Expedition 315 Site C0001

    NASA Astrophysics Data System (ADS)

    Hashimoto, Y.; Tobin, H. J.; Knuth, M.

    2010-12-01

    In this study, we focused on the porosity and compressional wave velocity of marine sediments to examine the physical properties of the slope apron and the accreted sediments. This approach allows us to identify characteristic variations between sediments being deposited onto the active prism and those deposited on the oceanic plate and then carried into the prism during subduction. For this purpose we conducted ultrasonic compressional wave velocity measurements on the obtained core samples with pore pressure control. Site C0001 in the Nankai Trough Seismogenic Zone Experiment transect of the Integrated Ocean Drilling Program is located in the hanging wall of the midslope megasplay thrust fault in the Nankai subduction zone offshore of the Kii peninsula (SW Japan), penetrating an unconformity at ˜200 m depth between slope apron sediments and the underlying accreted sediments. We used samples from Site C0001. Compressional wave velocity from laboratory measurements ranges from ˜1.6 to ˜2.0 km/s at hydrostatic pore pressure conditions estimated from sample depth. The compressional wave velocity-porosity relationship for the slope apron sediments shows a slope almost parallel to the slope for global empirical relationships. In contrast, the velocity-porosity relationship for the accreted sediments shows a slightly steeper slope than that of the slope apron sediments at 0.55 of porosity. This higher slope in the velocity-porosity relationship is found to be characteristic of the accreted sediments. Textural analysis was also conducted to examine the relationship between microstructural texture and acoustic properties. Images from micro-X-ray CT indicated a homogeneous and well-sorted distribution of small pores both in shallow and in deeper sections. Other mechanisms such as lithology, clay fraction, and abnormal fluid pressure were found to be insufficient to explain the higher velocity for accreted sediments. The higher slope in velocity-porosity relationship for accreted sediments can be explained by weak cementation, critical porosity or differences in loading history.

  13. Analysis of the Sediment Hydrograph of the alluvial deltas in the Apalachicola River, Florida

    NASA Astrophysics Data System (ADS)

    Daranpob, A.; Hagen, S.; Passeri, D.; Smar, D. E.

    2011-12-01

    Channel and alluvial characteristics in lowlands are the products of boundary conditions and driving forces. The boundary conditions normally include materials and land cover types, such as soil type and vegetation cover. General driving forces include discharge rate, sediment loadings, tides and waves. Deltas built up of river-transported sediment occur in depositional zones of the river mouth in flat terrains and slow currents. Total sediment load depends on two major abilities of the river, the river shear stress and capacity. The shear stress determines transport of a given sediment grain size, normally expressed as tractive force. The river capacity determines the total load or quantity of total sediments transported across a section of the river, generally expressed as the sediment loading rate. The shear stress and sediment loading rate are relatively easy to measure in the headwater and transfer zones where streams form a v-shape valley and the river begins to form defined banks compared to the deposition zone where rivers broaden across lower elevation landscapes creating alluvial forms such as deltas. Determinations of deposition and re-suspension of sediment in fluvial systems are complicated due to exerting tidal, wind, and wave forces. Cyclic forces of tides and waves repeatedly change the sediment transport and deposition rate spatially and temporally in alluvial fans. However, the influence decreases with water depth. Understanding the transport, deposition, and re-suspension of sediments in the fluvial zone would provide a better understanding of the morphology of landscape in lowland estuaries such as the Apalachicola Bay and its estuary systems. The Apalachicola River system is located in the Florida Panhandle. Shelf sedimentation process is not a strong influence in this region because it is protected by barrier islands from direct ocean forces of the Gulf of Mexico. This research explores the characteristic of suspended sediment loadings in fluvial zones of the Apalachicola River and its distributaries through field investigation and laboratory analysis of a series of total suspended solid (TSS) samples. Time-series TSS samples are collected at the alluvial zone. TSS and particle-size distribution analyses are performed to determine the TSS hydrograph and particle-size distribution of suspended solids. Relationships between the TSS hydrograph, discharge hydrograph, and tidal data provide a better understanding of the deposition and re-suspension of the fluvial system in the region. Total suspended particle-size distribution data are used to determine the deposition rate or diminishing rate of alluvial landform in the estuarine system. This dataset and analysis provide excellent information for future modeling work and wetland morphologic studies in the Apalachicola River and similar systems.

  14. Non-seagrass meadow sedimentary facies of the Pontinian Islands, Tyrrhenian Sea: A modern example of mixed carbonate siliciclastic sedimentation

    NASA Astrophysics Data System (ADS)

    Brandano, Marco; Civitelli, Giacomo

    2007-10-01

    The soft bottom of the Mediterranean continental shelf is characterized by a heterozoan skeletal assemblage ( sensu [James, N.P., 1997. The cool-water carbonate depositional realm. In: James, N.P., Clarke, J. (Eds), Cool-water Carbonates. Spec. Publ. Soc. Sediment. Geol., vol. 56, pp.1-20.]). Although the contemporary presence of terrigenous and skeletal carbonate sediments has been well established [Tortora, P., 1996. Depositional and erosional coastal processes during the last postglacial sea-level rise: an example from the Central Tyrrhenian continental shelf (Italy). J. Sed. Res. 66, 391-405.; Fornós, J.J., Ahr, W.M., 1997. Temperate carbonates on a modern, low-energy, isolated ramp: the Balearic Platform, Spain. Journal of Sedimentary Research , 67, 364-373.; Fornós, J.J., Ahr, W.M., 2006. Present-day temperate carbonate sedimentation on the Balearic Platform, western Mediterranean: compositional and textural variation along a low-energy isolated ramp. In: Pedley, H.M., Carannante, G. (Eds.) 2006, Cool-water Carbonates: Depositional Systems and Palaeoenvironmental Controls. Geological Society, London, Special Publications, 255, pp. 121-135], the interactions between carbonate and terrigenous-siliciclastic sedimentation has not been documented well enough. A total of 33 surface sediment samples from the Pontinian shelf (Tyrrhenian Sea, central Mediterranean) have been analysed. Sampling stations range from 15 to 250 mwd (meter water depth) and are located along five transects (PonzaW, PonzaNW, Ponza NE, Ponza E, Zannone), plus four samples collected around Palmarola Island. Sectors colonized by seagrass meadows have not been sampled. A total of 6 sedimentary facies (F) and 10 microfacies (mf) have been recognized by using component analyses, grain size percentage, sorting, carbonate content and authigenic mineralization rate. These facies and microfacies represent the Pontian Islands shelf sedimentation, in the interval between the upper infralittoral and the epibathyal zones that represent shelf-break and upper slope sedimentation. The Maerl facies (F4a,b; mf4a,b) and the skeletal sands (F2a,b; mf2a1, mf2a2, mf2b) fall within the circalittoral zone. The circalittoral zone in the water depth interval between 82 m and 112 m display relict facies (F6, mf6). Finally facies F5 (Siliciclastic sands) includes subfacies F5b (mf5b), located in the circalittoral zone at depths of 49 to 101 mwd and restricted to the western and eastern sectors of Ponza, and subfacies F5a in the upper infralittoral zone (15 mwd/25 mwd) where erosional processes prevail. Carbonate content analyses indicate that maximum carbonate production on the Pontinian shelf took place in the 60-80 mwd interval. Facies F4 (Maerl) represents the environment characterized by the highest carbonate production rates. In the Pontian area siliciclastic-carbonate mixing took place in the infralittoral zone and in the lower circalittoral zone. In the infralittoral zone erosional processes on the rocky shoreline produced lithoclasts and vulcanoclastic deposits that were reworked by wave-induced near-shore currents. In the lower circalittoral zone the prolific production by photic biota (red algae) ends, while skeletal remains of the aphotic environment mixes with planktonic sediments characterized by low carbonate values. Sand (63 μm-2 mm) is the dominant grain size class, however gravel-dominated facies (F4 Maerl) are present in water depths (50 to 112 mwd) which are significantly below the storm wave base. Glauconite mineralization appears on the Pontinian shelf from 50 mwd and increases in abundance along the deeper bathymetries. The compositional characteristics of relict facies F6 shows the concurrence of biota assemblages of the infralittoral and circalittoral zones, likely representing the record of the last Holocene transgressive event (18 ky) and expressed by the overlapping of components of different environments.

  15. Shallow geology, sea-floor texture, and physiographic zones of Buzzards Bay, Massachusetts

    USGS Publications Warehouse

    Foster, David S.; Baldwin, Wayne E.; Barnhardt, Walter A.; Schwab, William C.; Ackerman, Seth D.; Andrews, Brian D.; Pendleton, Elizabeth A.

    2015-01-07

    Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Buzzards Bay, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative effort between the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management to characterize the surface and subsurface geologic framework offshore of Massachusetts.

  16. Interaction between shallow groundwater, saline surface water and contaminant discharge at a seasonally and tidally forced estuarine boundary

    NASA Astrophysics Data System (ADS)

    Westbrook, S. J.; Rayner, J. L.; Davis, G. B.; Clement, T. P.; Bjerg, P. L.; Fisher, S. J.

    2005-02-01

    This paper presents findings from a 2-year field investigation of a dissolved hydrocarbon groundwater plume flowing towards a tidally and seasonally forced estuarine river system in Perth, Western Australia. Samples collected from transects of multiport wells along the riverbank and into the river, enabled mapping of the fine scale (0.5 m) vertical definition of the hydrocarbon plume and its longitudinal extent. Spear probing beneath the river sediments and water table, and transient monitoring of multiport wells (electrical conductivity) was also carried out to define the zone of mixing between river water and groundwater (the hyporheic zone) and its variability. The results showed that groundwater seepage into the estuarine surface sediments occurred in a zone less than 10 m from the high tide mark, and that this distance and the hyporheic transition zone were influenced by tidal fluctuations and infiltration of river water into the sediments. The dissolved BTEXN (benzene, toluene, ethylbenzene, the xylene isomers and naphthalene) distributions indicated the behaviour of the hydrocarbon plume at the groundwater/surface water transition zone to be strongly influenced by edge-focussed discharge. Monitoring programs and risk assessment studies at similar contaminated sites should therefore focus efforts within the intertidal zone where contaminants are likely to impact the surface water and shallow sediment environments.

  17. The influence of groundwater chemistry on arsenic concentrations and speciation in a quartz sand and gravel aquifer

    USGS Publications Warehouse

    Kent, D.B.; Fox, P.M.

    2004-01-01

    We examined the chemical reactions influencing dissolved concentrations, speciation, and transport of naturally occurring arsenic (As) in a shallow, sand and gravel aquifer with distinct geochemical zones resulting from land disposal of dilute sewage effluent. The principal geochemical zones were: (1) the uncontaminated zone above the sewage plume [350 ??M dissolved oxygen (DO), pH 5.9]; (2) the suboxic zone (5 ??M DO, pH 6.2, elevated concentrations of sewage-derived phosphate and nitrate); and (3) the anoxic zone [dissolved iron(II) 100-300 ??M, pH 6.5-6.9, elevated concentrations of sewage-derived phosphate]. Sediments are comprised of greater than 90% quartz but the surfaces of quartz and other mineral grains are coated with nanometer-size iron (Fe) and aluminum (Al) oxides and/or silicates, which control the adsorption properties of the sediments. Uncontaminated groundwater with added phosphate (620 ??M) was pumped into the uncontaminated zone while samples were collected 0.3 m above the injection point. Concentrations of As(V) increased from below detection (0.005 ??M) to a maximum of 0.07 ??M during breakthrough of phosphate at the sampling port; As(III) concentrations remained below detection. These results are consistent with the hypothesis that naturally occurring As(V) adsorbed to constituents of the coatings on grain surfaces was desorbed by phosphate in the injected groundwater. Also consistent with this hypothesis, vertical profiles of groundwater chemistry measured prior to the tracer test showed that dissolved As(V) concentrations increased along with dissolved phosphate from below detection in the uncontaminated zone to approximately 0.07 and 70 ??M, respectively, in the suboxic zone. Concentrations of As(III) were below detection in both zones. The anoxic zone had approximately 0.07 ??M As(V) but also had As(III) concentrations of 0.07-0.14 ??M, suggesting that release of As bound to sediment grains occurred by desorption by phosphate, reductive dissolution of Fe oxides, and reduction of As(V) to As(III), which adsorbs only weakly to the Fe-oxide-depleted material in the coatings. Results of reductive extractions of the sediments suggest that As associated with the coatings was relatively uniformly distributed at approximately 1 nmol/g of sediment (equivalent to 0.075 ppm As) and comprised 20%-50% of the total As in the sediments, determined from oxidative extractions. Quartz sand aquifers provide high-quality drinking water but can become contaminated when naturally occurring arsenic bound to Fe and Al oxides or silicates on sediment surfaces is released by desorption and dissolution of Fe oxides in response to changing chemical conditions. ?? 2004 American Institute of Physics.

  18. Frictional behavior of carbonate-rich sediments in subduction zones

    NASA Astrophysics Data System (ADS)

    Rabinowitz, H. S.; Savage, H. M.; Carpenter, B. M.; Collettini, C.

    2016-12-01

    Deformation in rocks and sediments is controlled by multiple mechanisms, each governed by its own pressure- (P), temperature- (T), and slip velocity- (v) dependent kinetics. Frictional behavior depends on which of these mechanisms are dominant, and, thus, varies with P, T, and v. Carbonates are a useful material with which to interrogate the PTv controls on friction due to the fact that a wide range of mechanisms can be easily accessed in the lab at geologically relevant conditions. In addition, carbonate-rich layers make up a significant component of subducting sediments around the world and may impact the frictional behavior of shallow subduction zones. In order to investigate the effect of carbonate subduction and the evolution of friction at subduction zone conditions, we conducted deformation experiments on input sediments for two subduction zones, the Hikurangi trench, New Zealand (ODP Site 1124) and the Peru trench (DSDP Site 321), which have carbonate/clay contents of 40/60 wt% and 80/20 wt%, respectively. Samples were saturated with distilled water mixed with 35g/l sea salt and deformed at room temperature. Experiments were conducted at σeff = 1-100 MPa and T = 20-100 °C with sliding velocities of 1-300 μm/s and hold times of 1-1000 s. We test the changes in velocity dependence and healing over these PT conditions to elucidate the frictional behavior of carbonates in subduction zone settings. The mechanical results are complemented by microstructural analysis. In lower stress experiments, there is no obvious shear localization; however, by 25 MPa, pervasive boundary-parallel shears become dominant, particularly in the Peru samples. Optical observations of these shear zones under cross-polarized light show evidence of plastic deformation (CPO development) while SEM-EDS observations indicate phase segregation in the boundary shears. Degree of microstructural localization appears to correspond with the trends observed in velocity-dependence. Our preliminary results indicate that carbonate/clay compositions could have a significant impact on the frictional behavior of subducting sediments.

  19. Frictional behavior of carbonate-rich incoming sediment in the Hikurangi subduction zone

    NASA Astrophysics Data System (ADS)

    Rabinowitz, H. S.; Savage, H. M.; Carpenter, B.; Ikari, M.; Collettini, C.

    2017-12-01

    In recent years, the traditional view of the seismogenic zone has been challenged by observations of a range of seismic behaviors both above and below the depths previously considered capable of nucleating earthquakes. The Hikurangi trench is one of the few subduction zones where this transitional seismic behavior has been observed at the shallowest portions of the subduction zone, providing an opportunity to investigate the mechanical controls on seismic behavior through measurements of directly sampled sediment. To this end, an IODP cruise (March-May, 2018; Exp. 375) will recover sample from the faults that participate in this shallow seismic behavior. In order to obtain preliminary frictional characterization of the sedimentary inputs to the Hikurangi Trench, we conducted deformation experiments on samples from an ocean drill core through the incoming sediments (ODP Site 1124). The sedimentary package subducting at Hikurangi contains carbonate-rich lithologies, which have been shown to be more frictionally unstable (velocity-weakening, high healing rates) than the clays that comprise the majority of the sedimentary inputs to global subduction zones. Such frictional properties could promote seismic behavior in the shallower reaches of the subduction zone. We focus on a section of ODP Site 1124 which has a carbonate content of 40 wt% to investigate the effect of this lithology. Samples were saturated with distilled water mixed with 35 g/l sea salt. Velocity-stepping and slide-hold-slide tests were performed in multiple biaxial and triaxial deformation apparatus to investigate a range of pressures, temperatures and velocities relevant to the shallow subduction zone (σeff = 1-150 MPa, sliding velocities of 1.7 nm/s-300 μm/s, hold times of 1-1000 s, and T = 20-100 ºC). We observe transitions from velocity-strengthening to velocity-weakening behavior over these conditions which could contribute to shallow seismic behavior in the Hikurangi trench.

  20. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: Constraints from ODP Leg 204

    USGS Publications Warehouse

    Trehu, A.M.; Long, P.E.; Torres, M.E.; Bohrmann, G.; Rack, F.R.; Collett, T.S.; Goldberg, D.S.; Milkov, A.V.; Riedel, M.; Schultheiss, P.; Bangs, N.L.; Barr, S.R.; Borowski, W.S.; Claypool, G.E.; Delwiche, M.E.; Dickens, G.R.; Gracia, E.; Guerin, G.; Holland, M.; Johnson, J.E.; Lee, Y.-J.; Liu, C.-S.; Su, X.; Teichert, B.; Tomaru, H.; Vanneste, M.; Watanabe, M. E.; Weinberger, J.L.

    2004-01-01

    Large uncertainties about the energy resource potential and role in global climate change of gas hydrates result from uncertainty about how much hydrate is contained in marine sediments. During Leg 204 of the Ocean Drilling Program (ODP) to the accretionary complex of the Cascadia subduction zone, we sampled the gas hydrate stability zone (GHSZ) from the seafloor to its base in contrasting geological settings defined by a 3D seismic survey. By integrating results from different methods, including several new techniques developed for Leg 204, we overcome the problem of spatial under-sampling inherent in robust methods traditionally used for estimating the hydrate content of cores and obtain a high-resolution, quantitative estimate of the total amount and spatial variability of gas hydrate in this structural system. We conclude that high gas hydrate content (30-40% of pore space or 20-26% of total volume) is restricted to the upper tens of meters below the seafloor near the summit of the structure, where vigorous fluid venting occurs. Elsewhere, the average gas hydrate content of the sediments in the gas hydrate stability zone is generally <2% of the pore space, although this estimate may increase by a factor of 2 when patchy zones of locally higher gas hydrate content are included in the calculation. These patchy zones are structurally and stratigraphically controlled, contain up to 20% hydrate in the pore space when averaged over zones ???10 m thick, and may occur in up to ???20% of the region imaged by 3D seismic data. This heterogeneous gas hydrate distribution is an important constraint on models of gas hydrate formation in marine sediments and the response of the sediments to tectonic and environmental change. ?? 2004 Published by Elsevier B.V.

  1. High-resolution chronology of sediment below CCD based on Holocene paleomagnetic secular variations in the Tohoku-oki earthquake rupture zone

    NASA Astrophysics Data System (ADS)

    Kanamatsu, Toshiya; Usami, Kazuko; McHugh, Cecilia M. G.; Ikehara, Ken

    2017-08-01

    Using high-resolution paleomagnetic data, we examined the potential for obtaining precise ages from sediment core samples recovered from deep-sea basins close to rupture zones of the 2011 and earlier earthquakes off Tohoku, Japan. Obtaining detailed stratigraphic ages from deep-sea sediments below the calcium compensation depth (CCD) is difficult, but we found that the samples contain excellent paleomagnetic secular variation records to constrain age models. Variations in paleomagnetic directions obtained from the sediments reveal systematic changes in the cores. A stacked paleomagnetic profile closely matches the Lake Biwa data sets in southwest Japan for the past 7000 years, one can establish age models based on secular variations of the geomagnetic field on sediments recovered uniquely below the CCD. Comparison of paleomagnetic directions near a tephra and a paleomagnetic direction of contemporaneous pyroclastic flow deposits acquired by different magnetization processes shows precise depositional ages reflecting the magnetization delay of the marine sediment record.Plain Language SummaryGenerally obtaining detailed ages from deep-sea sediments is difficult, because available dating method is very limited. We found that the deep-see sediment off North Japan recorded past sequential geomagnetic directions. If those records correlate well with the reference record in past 7000 years, then we could estimate age of sediment by pattern matching. Additionally a volcanic ash emitted in 915 A.D., which was intercalated in our samples, indicates a time lag in our age model. This observation makes our age model more precise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16..404N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16..404N"><span>Anthropopression markers in lake bottom sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nadolna, Anna; Nowicka, Barbara</p> <p>2014-05-01</p> <p>Lakes are vulnerable to various types of anthropogenic disturbances. Responses of lake ecosystems to environmental stressors are varied and depend not only on the type of a factor but also on the lake natural resistance to degradation. Within the EULAKES project an evaluation of anthropogenic stress extent in a flow-through, postglacial, ribbon lake (Lake Charzykowskie) was carried out. It was assumed, that this impact manifests unevenly, depending on a type and degree of the pressure on the shore zones, water quality of tributaries, lake basin shape and dynamics of a water movement. It was stated, that anthropogenic markers are substances accumulated in bottom sediments as a result of allochthonous substances inflow from the catchment and atmosphere. Along the selected transects 105 samples from the top layer of sediments (about 20 cm) was collected representing the contemporary accumulation (about 15 years). The content of selected chemical elements and compounds was examined, including nutrients (TN and TP), heavy metals (arsenic, cadmium, lead, chromium, nickel, copper, zinc, mercury, iron, and manganese) and pesticides (DDT, DDD, DDE, DMDT , γ-HCH). The research was conducted in the deepest points of each lake basin and along the research transects - while choosing the spots, the increased intensity of anthropogenic impact (ports, roads with heavy traffic, wastewater discharge zones, built-up areas) was taken into consideration. The river outlets to the lake, where there are ecotonal zones between limnic and fluvial environment, were also taken into account. Analysis of the markers distribution was carried out against the diversity of chemical characteristics of limnic sediments. Ribbon shape of the lake basin and the dominant wind direction provide an opportunity of easy water mixing to a considerable depth. Intensive waving processes cause removal of the matter from the littoral zone towards lake hollows (separated by the underwater tresholds), where the top layer of sediments consists of organic sediment ("sapropel" type). The littoral zone is dominated by sandy material from the shores denudation. In river mouths sandy deltas are formed. The most contaminated sediments are deposited in the central pool, which is a natural trap for the substances flowing with the river that is draining wastewaters from urban areas. At its mouth the sediment samples were significantly contaminated with chromium, zinc, cadmium, copper, nickel, lead and mercury. A high content of total phosphorus was also detected. A different role is played by a large river flowing through the lake. While flushing the sediments it reduces their pollution. The lowest content of markers was detected in headwater areas and in littoral zones exposed to waving.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17454385','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17454385"><span>Organochlorine pesticides and polychlorinated biphenyls in surface soils of Novi Sad and bank sediment of the Danube River.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Skrbic, Biljana; Cvejanov, Jelena; Durisic-Mladenovic, Natasa</p> <p>2007-01-01</p> <p>The contents of 16 organochlorine pesticides (OCPs) and six so-called indicator polychlorinated biphenyls (PCBs) were determined in the surface zone (0-5 cm) of soil and sediment samples, taken from different locations in the city of Novi Sad, capitol of Vojvodina Province (North of the Serbia) covering residential and commercial area, recreational and arable zone. The total organochlorine pesticides concentration in soil varied from 2.63 to 31.78 ng g(-1) dry weight, while the level in sediment was 10.35 ng g(-1) dry weight. Maximum content of identified individual organochlorine pesticide in soil samples was 10.40 ng g(-1) dry weight for p, p-DDE in the market garden and 6.31 ng g(-1) dry weight for p, p'-DDT in sediment of the Danube River, although their application is restricted in Serbia. Some of investigated PCBs were identified only in the soil samples from a park-school backyard in the city downtown (0.32 ng g(-1) dry weight) and market garden (0.22 ng g(-1) dry weight), and also in sediment sample from left bank of the Danube River (0.41 ng g(-1) dry weight). Data of the OCPs and PCBs present in this study were compared with the ones found for soils and river sediments throughout the world, and with limit values set by soil and sediment quality guidelines. Also, correlation between the levels of certain pesticides and soil characteristics (organic matter, pH and clay content) was investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.jstor.org/stable/25737049','USGSPUBS'); return false;" href="http://www.jstor.org/stable/25737049"><span>Geologic framework, evolution, and sediment resources for restoration of the Louisiana Coastal Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kulp, Mark; Penland, Shea; Williams, S. Jeffress; Jenkins, Chris; Flocks, Jim; Kindinger, Jack</p> <p>2005-01-01</p> <p>The Louisiana Coastal Zone along the north-central Gulf of Mexico represents one of America's most important coastal ecosystems in terms of natural resources, human infrastructure, and cultural heritage. This zone also has the highest rates of coastal erosion and wetland loss in the nation because of a complex combination of natural processes and anthropogenic activities during the past century. In response to the dramatic land loss, regional-scale restoration plans are being developed through a partnership of federal and state agencies. One objective is to maintain the barrier island and tidal inlet systems, thereby reducing the impact of storm surge and interior wetland loss. Proposed shore line restoration work relies primarily upon the use of large volumes of sand-rich sediment for shoreline stabilization and the implementation of the shoreline projects. Although sand-rich sediment is required for the Louisiana restoration projects, it is of limited availability within the generally clay to silt-rich, shallow strata of the Louisiana Coastal Zone. Locating volumetrically significant quantities of sand-rich sediment presents a challenge and requires detailed field investigations using direct sampling and geophysical sensing methods. Consequently, there is a fundamental need to thoroughly understand and map the distribution and textural character {e.g., sandiness) of sediment resources within the Coastal Zone for the most cost-effective design and completion of restoration projects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.T51A4564J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.T51A4564J"><span>Elastic Properties of Subduction Zone Materials in the Large Shallow Slip Environment for the Tohoku 2011 Earthquake: Laboratory data from JFAST Core Samples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jeppson, T.; Tobin, H. J.</p> <p>2014-12-01</p> <p>The 11 March 2011 Tohoku-Oki earthquake (Mw=9.0) produced large displacements of ~50 meters near the Japan Trench. In order to understand earthquake propagation and slip stabilization in this environment, quantitative values of the real elastic properties of fault zones and their surrounding wall rock material is crucial. Because elastic and mechanical properties of faults and wallrocks are controlling factors in fault strength, earthquake generation and propagation, and slip stabilization, an understanding of these properties and their depth dependence is essential to understanding and accurately modeling earthquake rupture. In particular, quantitatively measured S-wave speeds, needed for estimation of elastic properties, are scarce in the literature. We report laboratory ultrasonic velocity measurements performed at elevated pressures, as well as the calculated dynamic elastic moduli, for samples of the rock surrounding the Tohoku earthquake principal fault zone recovered by drilling during IODP Expedition 343, Japan Trench Fast Drilling Project (JFAST). We performed measurements on five samples of gray mudstone from the hanging wall and one sample of underthrust brown mudstone from the footwall. We find P- and S-wave velocities of 2.0 to 2.4 km/s and 0.7 to 1.0 km/s, respectively, at 5 MPa effective pressure. At the same effective pressure, the hanging wall samples have shear moduli ranging from 1.4 to 2.2 GPa and the footwall sample has a shear modulus of 1.0 GPa. While these values are perhaps not surprising for shallow, clay-rich subduction zone sediments, they are substantially lower than the 30 GPa commonly assumed for rigidity in earthquake rupture and propagation models [e.g., Ide et al., 1993; Liu and Rice, 2005; Loveless and Meade, 2011]. In order to better understand the elastic properties of shallow subduction zone sediments, our measurements from the Japan Trench are compared to similar shallow drill core samples from the Nankai Trough, Costa Rica, Cascadia, and Barbados ridge subduction zones. We find that shallow subduction zone sediments in general have similarly low rigidity. These data provide important ground-truth values that can be used to parameterize fault slip models addressing the problem of shallow, tsunamigenic propagation of megathrust earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-07-17/pdf/2013-17102.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-07-17/pdf/2013-17102.pdf"><span>78 FR 42730 - Safety Zone; Old Mormon Slough, Stockton, CA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-07-17</p> <p>... Environmental Protection Agency to decontaminate soil, groundwater, and sediment in Old Mormon Slough and the... efforts of the EPA to rehabilitate soil, sediment, and ground water from contaminates of the McCormick... waste ponds were closed in 1981. Sampling has shown that soils throughout the site and groundwater in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29886974','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29886974"><span>Sediment bacterial community structures and their predicted functions implied the impacts from natural processes and anthropogenic activities in coastal area.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Su, Zhiguo; Dai, Tianjiao; Tang, Yushi; Tao, Yile; Huang, Bei; Mu, Qinglin; Wen, Donghui</p> <p>2018-06-01</p> <p>Coastal ecosystem structures and functions are changing under natural and anthropogenic influences. In this study, surface sediment samples were collected from disturbed zone (DZ), near estuary zone (NEZ), and far estuary zone (FEZ) of Hangzhou Bay, one of the most seriously polluted bays in China. The bacterial community structures and predicted functions varied significantly in different zones. Firmicutes were found most abundantly in DZ, highlighting the impacts of anthropogenic activities. Sediment total phosphorus was most influential on the bacterial community structures. Predicted by PICRUSt analysis, DZ significantly exceeded FEZ and NEZ in the subcategory of Xenobiotics Biodegradation and Metabolism; and DZ enriched all the nitrate reduction related genes, except nrfA gene. Seawater salinity and inorganic nitrogen, respectively as the representative natural and anthropogenic factor, performed exact-oppositely in nitrogen metabolism functions. The changes of bacterial community compositions and predicted functions provide a new insight into human-induced pollution impacts on coastal ecosystem. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....11114P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....11114P"><span>Molecular distribution and degradation status of combined aldoses in sinking particulate organic matter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Panagiotopoulos, C.; Sempéré, R.</p> <p>2003-04-01</p> <p>Particulate samples were collected by using floating sediment traps (50--300 m) and in situ pumps (30 and 200 m) in the Southern Indian Ocean (Polar Front Zone (PFZ) and Sub-Tropical Zone (STZ)), Mediterranean Sea (Ligurian and Ionian Seas) and Atlantic Ocean (Upwelling (UPW) of Agadir-Morocco). They were studied for monosaccharide composition after acid hydrolysis (HCl 0.09 M, 20 h, 100^oC) by using High Performance Anion Exchange Chromatography followed by Pulsed Amperometric Detection (HPAEC-PAD). Our results indicated that higher PCHO yields (calculated as PCHO-C/POC ratios) were associated to higher C:N ratios (Med. Sea sample, PCHO yields = 12.7 ± 7.7%; C:N ratios = 8.3 ± 1.6; n = 12) whether the opposite trend was found for Southern Ocean samples (PCHO yields = 3.3 ± 0.75%; C:N ratios = 5.7 ± 0.59, n = 5) indicating significant variability in the sugar content of particles which might be due to the degradation degree of the particles as well as to the initial chemical composition of plankton. Alternatively, other processes such as high production of extracellular polysaccharides (type transparent exopolymer polysaccharides (TEP)) due to phosphorus limitation of some phytoplanktonic species may increase the sugar content in Mediterranean particles and the C/N ratio. In any case, glucose appeared to be the most abundant monosaccharide in Mediterranean Sea or UPW samples (range 23--59 wt% of the total aldoses) whereas ribose (17--39 wt%) and galactose (range 10--28 wt%) were the predominant aldoses in Southern Indian Ocean. These sugars (glucose + ribose) exhibited a strong negative relationship with C:N (r = -0.53, p >0.01; n = 30) in sediment traps (data from this study) and sediment (data from literature) particulate material which further indicates that these two monosaccharides are selectively extracted from the carbohydrate pool in sediment. In vitro biodegradation experiments performed with large particles (>60 μm) sampled using in situ pumps in Polar Front and Sub-Antarctic Zones indicated that ribose seems to be a labile sugar, rapidly degraded especially in Polar Front Zone whereas it was below the detection limit in Sub-Antarctic zone where a high bacterial activity was recorded in surface waters. Our results also showed that the relative abundance of deoxysugars (fucose + rhamnose) increased overtime in Sub-Antarctic Zone (deoxyinitial = 18%, deoxyfinal = 23%) and Polar Front Zone (deoxyinitial = 6%, deoxyfinal = 21%) indicating that these sugars are preserved during organic matter decomposition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=183561','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=183561"><span>Biodegradation of organic compounds in vadose zone and aquifer sediments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Konopka, A; Turco, R</p> <p>1991-01-01</p> <p>The microbial processes that occur in the subsurface under a typical Midwest agricultural soil were studied. A 26-m bore was installed in November of 1988 at a site of the Purdue University Agronomy Research Center. Aseptic collections of soil materials were made at 17 different depths. Physical analysis indicated that the site contained up to 14 different strata. The site materials were primarily glacial tills with a high carbonate content. The N, P, and organic C contents of sediments tended to decrease with depth. Ambient water content was generally less than the water content, which corresponds to a -0.3-bar equivalent. No pesticides were detected in the samples, and degradation of added 14C-labeled pesticides (atrazine and metolachlor) was not detected in slurry incubations of up to 128 days. The sorption of atrazine and metolachlor was correlated with the clay content of the sediments. Microbial biomass (determined by direct microscopic count, viable count, and phospholipid assay) in the tills was lower than in either the surface materials or the aquifer located at 25 m. The biodegradation of glucose and phenol occurred rapidly and without a lag in samples from the aquifer capillary fringe, saturated zone, and surface soils. In contrast, lag periods and smaller biodegradation rates were found in the till samples. Subsurface sediments are rich in microbial numbers and activity. The most active strata appear to be transmissive layers in the saturated zone. This implies that the availability of water may limit activity in the profile. PMID:1768098</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70189365','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70189365"><span>Arsenic and antimony geochemistry of mine wastes, associated waters and sediments at the Giant Mine, Yellowknife, Northwest Territories, Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fawcett, Skya E.; Jamieson, Heather E.; Nordstrom, D. Kirk; McCleskey, R. Blaine</p> <p>2015-01-01</p> <p>Elevated levels of arsenic (As) and antimony (Sb) in water and sediments are legacy residues found downstream from gold-mining activities at the Giant Mine in Yellowknife, Northwest Territories (NWT), Canada. To track the transport and fate of As and Sb, samples of mine-waste from the mill, and surface water, sediment, pore-water, and vegetation downstream of the mine were collected. Mine waste, pore-water, and sediment samples were analyzed for bulk chemistry, and aqueous and solid-state speciation. Sediment and vegetation chemistry were evaluated using scanning electron microscope imaging, synchrotron-based element mapping and electron microprobe analysis. The distributions of As and Sb in sediments were similar, yet their distributions in the corresponding pore-waters were mostly dissimilar, and the mobility of As was greater than that of Sb. Competition for sorption sites is the most likely cause of elevated Sb concentrations in relatively oxidized pore-water and surface water. The aqueous and solid-state speciation of As and Sb also differed. In pore-water, As(V) dominated in oxidizing environments and As(III) in reducing environments. In contrast, the Sb(V) species dominated in all but one pore-water sample, even under reducing conditions. Antimony(III) appears to preferentially precipitate or adsorb onto sulfides as evidenced by the prevalence of an Sb(III)-S secondary solid-phase and the lack of Sb(III)(aq) in the deeper zones. The As(V)–O solid phase became depleted with depth below the sediment–water interface, and the Sb(V)–O phase persisted under relatively reducing conditions. In the surficial zone at a site populated by Equisetum fluviatile (common horsetail), As and Sb were associated with organic material and appeared mobile in the root zone. In the zone below active plant growth, As and Sb were associated primarily with inorganic phases suggesting a release and reprecipitation of these elements upon plant death. The co-existence of reduced and oxidized As and Sb species, instability of some phases under changing redox conditions, and plant uptake and release pose challenges for remediation efforts at the mine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-07-30/pdf/2013-18189.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-07-30/pdf/2013-18189.pdf"><span>78 FR 45871 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-07-30</p> <p>... components: Hydrogeologic study; Surface water sampling study; Stream biological study; Air quality survey... components: Biological survey; Biota survey; Surface water and sediment characterization; Groundwater... impacted groundwater in three water bearing zones at the Site; the unconsolidated materials zone, the upper...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GGG....13.AD27K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GGG....13.AD27K"><span>Mechanical and hydraulic properties of Nankai accretionary prism sediments: Effect of stress path</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kitajima, Hiroko; Chester, Frederick M.; Biscontin, Giovanna</p> <p>2012-10-01</p> <p>We have conducted triaxial deformation experiments along different loading paths on prism sediments from the Nankai Trough. Different load paths of isotropic loading, uniaxial strain loading, triaxial compression (at constant confining pressure, Pc), undrained Pc reduction, drained Pc reduction, and triaxial unloading at constant Pc, were used to understand the evolution of mechanical and hydraulic properties under complicated stress states and loading histories in accretionary subduction zones. Five deformation experiments were conducted on three sediment core samples for the Nankai prism, specifically from older accreted sediments at the forearc basin, underthrust slope sediments beneath the megasplay fault, and overthrust Upper Shikoku Basin sediments along the frontal thrust. Yield envelopes for each sample were constructed based on the stress paths of Pc-reduction using the modified Cam-clay model, and in situ stress states of the prism were constrained using the results from the other load paths and accounting for horizontal stress. Results suggest that the sediments in the vicinity of the megasplay fault and frontal thrust are highly overconsolidated, and thus likely to deform brittle rather than ductile. The porosity of sediments decreases as the yield envelope expands, while the reduction in permeability mainly depends on the effective mean stress before yield, and the differential stress after yield. An improved understanding of sediment yield strength and hydromechanical properties along different load paths is necessary to treat accurately the coupling of deformation and fluid flow in accretionary subduction zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSAES..73..119G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSAES..73..119G"><span>Stable isotope hydrology in fractured and detritic aquifers at both sides of the South Atlantic Ocean: Mar del Plata (Argentina) and the Rawsonville and Sandspruit river catchment areas (South Africa)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Glok Galli, Melisa; Damons, Matthew E.; Siwawa, Sitembiso; Bocanegra, Emilia M.; Nel, Jacobus M.; Mazvimavi, Dominic; Martínez, Daniel E.</p> <p>2017-01-01</p> <p>The aim of this work is to characterize the isotope composition of water (2H and 18O) in order to establish the relationship between fractured and detritic aquifers in similar hydrological environments located at both sides of the Atlantic Ocean. The Mar del Plata zone, placed in the Argentine Buenos Aires province in South America, and the Rawsonville and Sandspruit river catchment areas, situated in the Western Cape province in South Africa were compared. Rainwater and groundwater samples from fractured and detritic aquifers were analyzed through laser spectroscopy. In both Argentina and South African study sites, stable isotopes data demonstrate an aquifers recharge source from rainfall. For the Mar del Plata region, two different groups of detritic aquifer's samples with distinct recharge processes can be identified due to the close relationship existing between the present hydrogeological environments, the aquifer's grain size sediments and the isotopes contents: one representing rapid infiltration in aquifer sediments of the creeks' palaeobeds and hills zones (sandy or silt sandy sediments) and the other with slow infiltration of evaporated water in plain zones with an aquitard behavior. In the last group, the evaporation process occurs previous infiltration or in the aquifer's non-saturated zone, because of the existence of very low topographic gradients and fine-grained sediments. The evaporation phenomenon is not evident in the Sandspruit river catchment site's detritic aquifer, because its sandy composition allows a faster infiltration rate than in the loess that compounds the Pampeano aquifer in the interfluves zones of the Argentinian study area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007ECSS...73....8C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007ECSS...73....8C"><span>Environmental factors controlling macrofaunal assemblages on six microtidal beaches of the Ligurian Sea (NW Mediterranean)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Covazzi Harriague, Anabella; Albertelli, Giancarlo</p> <p>2007-06-01</p> <p>Six microtidal beaches along the Ligurian coast (NW Mediterranean, Italy) were sampled in order to study their macrofaunal assemblages. All six beaches are subject to heavy tourism in the swimming season and three were subject to nourishment activities during the study period (May 2000). The beaches of Lavagna, Varazze and Pietra Ligure were sampled three times: before the nourishment and the onset of the swimming season (March 2000), after the nourishment (June 2000) and at the end of the swimming season (October 2000). The beaches of Varigotti, Albisola and Loano were sampled twice: before and after the swimming season (March and October 2000, respectively). Sampling was performed along two transects (T1 and T2), about 500 m apart, each transect having three sampling stations: one placed in the swash zone, one in the surf zone and one in the subtidal zone (depth of 3-5 m), in order to verify how far the nourishment material reached. The beaches were characterised by coarse sediments that became finer towards the sub-littoral station. The Beach Deposit Index and Beach Index classified the beaches as reflective (Lavagna, Varazze, Albisola and Varigotti) or intermediate (Pietra Ligure and Loano). Species richness showed a clearly increasing pattern from the swash zone (average 7) to the subtidal zone (average 103). The beach communities were dominated by polychaetes, in particular Saccocirrus papillocercus, which was mainly responsible for the dissimilarity between the beach and subtidal stations. The highest abundance was observed at the surf station (average 118.6 ind. m -2) and the lowest at the subtidal station (average 82.1 ind. m -2). The sediment composition and macrofaunal assemblages were not affected by the beach nourishment. The beach communities responded to different environmental descriptors: species richness seemed to be governed by environmental harshness, while abundance seemed to be linked to the degree of homogeneity of the sediments and the quality of the food supply.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1613135D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1613135D"><span>Frictional behaviour of exhumed subduction zone sediments from the Shimanto Belt, Japan, at in-situ P-T conditions and implications for megathrust seismogenesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>den Hartog, Sabine; Niemeijer, Andre; Saffer, Demian; Marone, Chris</p> <p>2014-05-01</p> <p>Seismogenesis on subduction zone megathrusts is generally thought to be limited to a region between the ~100-150°C isotherms, at ~5-15 km depth, and the ~350°C isotherm, typically at ~40 km depth. This zone is bounded at its up-dip and down-dip limits by aseismic zones. However, in recent years it has been discovered that very low frequency earthquakes (VLFE) and non-destructive Slow Slip Events (SSEs) or slow earthquakes nucleate in these presumed aseismic regions. Slip on megathrusts is likely to localize in the weak subducted sediments along the plate interface, which implies that the fault material is derived at least in part from these sediments. Therefore, understanding the depth distribution of seismicity and SSEs on megathrusts requires knowledge of the frictional behaviour of metapelites. We investigated such behaviour by performing shear experiments on natural megathrust fault gouges, derived from exhumed subduction zone sediments and faults exposed in the Shimanto Belt on Shikoku Island, Japan. These gouges correspond to peak paleo-temperatures of 105°C to 280°C, representing different stages in the diagenetic and metamorphic evolution of the subducted sediments, covering the shallow aseismic zone as well as the seismogenic zone. The composition of all gouges was dominated by illite/muscovite, with smaller amounts of quartz, feldspar and chlorite. We sheared these gouges at low displacement rates (0.1-100 micron/s) to address the nucleation of megathrust earthquakes and SSEs, using either a double-direct (biaxial) shear machine or a rotary shear machine. The double-direct shear experiments were performed at room temperature, 5% relative humidity and 50 MPa normal stress. The rotary shear experiments, in turn, were conducted at the sample-specific, approximate peak in-situ P-T conditions, i.e. the P-T conditions corresponding to the maximum burial depth of these samples. At room temperature, samples from different peak paleo-temperatures showed similar frictional behaviour, with near-neutral velocity dependence, i.e. stable or aseismic behaviour. When deformed at their approximate in-situ peak P-T conditions, on the other hand, the samples showed a progressive transition from strong velocity-strengthening (stable) behaviour at 105°C (notably at 10-100 micron/s), to velocity-weakening (unstable) behaviour at 280°C. The results at elevated P-T conditions match previous results on simulated illite-quartz analogue fault gouges and imply a broad transition in the slip stability of subduction megathrusts from stable (velocity-strengthening), to unstable (velocity-weakening) with increasing depth, in agreement with seismological observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025441','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025441"><span>Toxicity evaluation with the microtox® test to assess the impact of in situ oiled shoreline treatment options: natural attenuation and sediment relocation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lee, Kenneth; Wohlgeschaffen, Gary; Tremblay, Gilles H.; Johnson, B. Thomas; Sergy, Gary A.; Prince, Roger C.; Guenette, Chantal C.; Owens, Edward H.</p> <p>2003-01-01</p> <p>Changes in the toxicity levels of beach sediment, nearshore water, and bottom sediment samples were monitored with the Microtox® Test to evaluate the two in situ oil spill treatment options of natural attenuation (natural recovery––no treatment) and sediment relocation (surf washing). During a series of field trials, IF-30 fuel oil was intentionally sprayed onto the surface of three mixed sediment (pebble and sand) beaches on the island of Spitsbergen, Svalbard, Norway (78°56′ N, 16°45′ E). At a low wave-energy site (Site 1 with a 3-km wind fetch), where oil was stranded within the zone of normal wave action, residual oil concentrations and beach sediment toxicity levels were significantly reduced by both options in less than five days. At Site 3, a higher wave-energy site with a 40-km wind fetch, oil was intentionally stranded on the beach face in the upper intertidal/supratidal zones, above the level of normal wave activity. At this site under these experimental conditions, sediment relocation was effective in accelerating the removal of the oil from the sediments and reducing the Microtox® Test toxicity response to background levels. In the untreated (natural attenuation) plot at this site, the fraction of residual oil remaining within the beach sediments after one year (70%) continued to generate a toxic response. Chemical and toxicological analyses of nearshore sediment and sediment-trap samples at both sites confirmed that oil and suspended mineral fines were effectively dispersed into the surrounding environment by the in situ treatments. In terms of secondary potential detrimental effects from the release of stranded oil from the beaches, the toxicity level (Microtox® Test) of adjacent nearshore sediment samples did not exceed the Canadian regulatory limit for dredged spoils destined for ocean disposal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.B51B0403R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.B51B0403R"><span>Depositionally controlled recycling of iron and sulfur in marine sediments and its isotopic consequences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Riedinger, N.; Formolo, M.; Arnold, G. L.; Vossmeyer, A.; Henkel, S.; Sawicka, J.; Kasten, S.; Lyons, T. W.</p> <p>2011-12-01</p> <p>The continental margin off Uruguay and Argentina is characterized by highly dynamic depositional conditions. This variable depositional regime significantly impacts the biogeochemical cycles of iron and sulfur. Mass deposit related redeposition of reduced minerals can lead to the reoxidation of these phases and thus to an overprint of their geochemical primary signatures. Due to rapid burial these oxidized phases are still present in deeper subsurface sediments. To study the effects of sediment relocation on the sulfur and iron inventory we collected shallow and deep subsurface sediment samples via multicorer and gravity cores, respectively, in the western Argentine Basin during the RV Meteor Expedition M78/3 in May-July 2009. The samples were retrieved from shelf, slope and deep basin sites. The concentration and sulfur isotope composition of acid volatile sulfur (AVS), chromium reducible sulfur (CRS), elemental sulfur and total organic sulfur were determined. Furthermore, sequential iron extraction techniques were applied assess the distribution of iron oxide phases within the sediment. The investigated sediments are dominated by terrigenous inputs, with high amounts of reactive ferric iron minerals and only low concentrations of calcium carbonate. Total organic carbon concentrations show strong variation in the shallow subsurface sediments ranging between approximately 0.7 and 6.4 wt% for different sites. These concentrations do not correlate with water depths. Pore water accumulations of hydrogen sulfide are restricted to an interval at the sulfate-methane transition (SMT) zone a few meters below the sediment surface. In these deeper subsurface sediments pyrite is precipitated in this zone of hydrogen sulfide excess, whereas the accumulation of authigenic AVS and elemental sulfur (up to 2000 ppm) occurs at the upper and lower boundary of the sulfidic zone due the reaction of iron oxides with limited amounts of sulfide. Furthermore, our preliminary results indicate that there is a link between modern deposition in the shallow subsurface sediments and the long-term signals being buried and preserved in the deep subsurface layers. The data show that the burial of elemental sulfur into deep subsurface sediments can fuel the deep biosphere and has consequences for isotopic overprints tied, for example, to oxidation and disproportionation processes in the deeper sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.usgs.gov/of/2016/1119/index.html','USGSPUBS'); return false;" href="http://pubs.usgs.gov/of/2016/1119/index.html"><span>Shallow geology, sea-floor texture, and physiographic zones of Vineyard and western Nantucket Sounds, Massachusetts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Baldwin, Wayne E.; Foster, David S.; Pendleton, Elizabeth A.; Barnhardt, Walter A.; Schwab, William C.; Andrews, Brian D.; Ackerman, Seth D.</p> <p>2016-09-02</p> <p>Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Vineyard and western Nantucket Sounds, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs/video, and surficial sediment samples collected within the 494-square-kilometer study area. Interpretations of seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative effort between the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management to characterize the surface and subsurface geologic framework offshore of Massachusetts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5691419','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5691419"><span>Depth Distribution and Assembly of Sulfate-Reducing Microbial Communities in Marine Sediments of Aarhus Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jochum, Lara M.; Chen, Xihan; Lever, Mark A.; Loy, Alexander; Jørgensen, Bo Barker; Schramm, Andreas</p> <p>2017-01-01</p> <p>ABSTRACT Most sulfate-reducing microorganisms (SRMs) present in subsurface marine sediments belong to uncultured groups only distantly related to known SRMs, and it remains unclear how changing geochemical zones and sediment depth influence their community structure. We mapped the community composition and abundance of SRMs by amplicon sequencing and quantifying the dsrB gene, which encodes dissimilatory sulfite reductase subunit beta, in sediment samples covering different vertical geochemical zones ranging from the surface sediment to the deep sulfate-depleted subsurface at four locations in Aarhus Bay, Denmark. SRMs were present in all geochemical zones, including sulfate-depleted methanogenic sediment. The biggest shift in SRM community composition and abundance occurred across the transition from bioturbated surface sediments to nonbioturbated sediments below, where redox fluctuations and the input of fresh organic matter due to macrofaunal activity are absent. SRM abundance correlated with sulfate reduction rates determined for the same sediments. Sulfate availability showed a weaker correlation with SRM abundances and no significant correlation with the composition of the SRM community. The overall SRM species diversity decreased with depth, yet we identified a subset of highly abundant community members that persists across all vertical geochemical zones of all stations. We conclude that subsurface SRM communities assemble by the persistence of members of the surface community and that the transition from the bioturbated surface sediment to the unmixed sediment below is a main site of assembly of the subsurface SRM community. IMPORTANCE Sulfate-reducing microorganisms (SRMs) are key players in the marine carbon and sulfur cycles, especially in coastal sediments, yet little is understood about the environmental factors controlling their depth distribution. Our results suggest that macrofaunal activity is a key driver of SRM abundance and community structure in marine sediments and that a small subset of SRM species of high relative abundance in the subsurface SRM community persists from the sulfate-rich surface sediment to sulfate-depleted methanogenic subsurface sediment. More generally, we conclude that SRM communities inhabiting the subsurface seabed assemble by the selective survival of members of the surface community. PMID:28939599</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP31B1003C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP31B1003C"><span>River Suspended Sediment and Particulate Organic Carbon Transport in Two Montane Catchments in the Luquillo Critical Zone Observatory of Puerto Rico over 25 years: 1989 to 2014</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clark, K. E.; Plante, A. F.; Willenbring, J. K.; Jerolmack, D. J.; Gonzalez, G.; Stallard, R. F.; Murphy, S. F.; Vann, D. R.; Leon, M.; McDowell, W. H.</p> <p>2015-12-01</p> <p>Physical erosion in mountain catchments mobilizes large amounts of sediment, while exporting carbon and nutrients from forest ecosystems. This study expands from previous studies quantifying river suspended sediment and particulate organic carbon loads in the Luquillo Critical Zone Observatory, in Puerto Rico. We evaluate the influences on river suspended load due to i) underlying basin geology, ii) hillslope debris and biomass supply, and iii) hurricanes and large storms. In the Mameyes and Icacos catchments of the Luquillo Mountains, we estimate suspended sediment and particulate organic carbon yields over a 25-year period using streamflow discharge determined from stage measurements at 15-intervals, with estimates of discharge replacing gaps in data, and over 3000 suspended sediment samples. We estimate variation in suspended sediment loads over time, and examine variation in particulate organic carbon loads. Mass spectrometry was used to determine organic carbon concentrations. We confirm that higher suspended sediment fluxes occurred i) in the highly weathered quartz diorite catchment rather than the predominantly volcaniclastic catchment, ii) on the rising limb of the hydrograph once a threshold discharge had been reached, and iii) during hurricanes and other storm events, and we explore these influences on particulate organic carbon transport. Transport of suspended sediment and particulate organic carbon in the rivers shows considerable hysteresis, and we evaluate the extent to which hysteresis affects particulate fluxes over time and between catchments. Because particulate organic carbon is derived from the critical zone and transported during high flow, our research highlights the role of major tropical storms in controlling carbon storage in the critical zone and the coastal ocean.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7156G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7156G"><span>Modern diatom assemblages as tools for paleoenvironmental reconstruction: a case study from estuarine intertidal zones in southern Iberia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gomes, Ana; Boski, Tomasz; Moura, Delminda; Szkornik, Katie; Witkowski, Andrzej; Connor, Simon; Laut, Lazaro; Sobrinho, Frederico; Oliveira, Sónia</p> <p>2017-04-01</p> <p>Diatoms are unicellular algae that live in saline, brackish and freshwater environments, either floating in the water column or associated with various substrates (e.g., muddy and sandy sediments). Diatoms are sensitive to changes in environmental variables such as salinity, sediment texture, nutrient availability, light and temperature. This characteristic, along with their short lifespan, allows diatoms to quickly respond to environmental changes. Since the beginning of the 20th century, diatoms have been widely used to study the Holocene evolution of estuaries worldwide, particularly to reconstruct ecological responses to sea-level and climate changes. However, diatoms have been poorly studied in estuarine intertidal zones, due to the complexity of these environments, which have both fluvial and marine influences. The aim of this study was to understand diatom diversity and spatial distribution in intertidal zones from two geomorphologically and hydrologically distinct estuaries. Sediment samples were collected from within the intertidal zones along the Arade and Guadiana River estuaries in southern Iberia. The sampling points embraced almost all the tidal and salinity gradients of both estuaries, capturing the highest possible environmental variability and hence of diatom assemblages. At each sampling point, the salinity and pH of the sediment interstitial water were measured. The sediment samples were subdivided for diatom identification, textural analysis and organic matter determination. All sampling points were georeferenced by DGPS and the duration of tidal inundation was calculated for each site. Following diatom identification, the data were analysed statistically (i.e. cluster analysis, PCA, DCA and RDA). The present study revealed that there is a great diatom diversity in both estuaries (418 species), with several species new to science. The most important diatom species (with abundances higher or equal to 5%) occur in five ecological groups, which are associated to five distinct environments: lower estuary sandflats, lower estuary mudflats, middle to upper estuary mudflats, lower estuary salt marshes and middle estuary salt marshes. This study allowed us to establish modern analogues that are essential for developing transfer functions (quantitative palaeoenvironmental estimates). These methods will enable more accurate Holocene paleoenvironmental reconstructions on the southern Iberian coast and will improve knowledge about the evolution of estuarine environments globally . The work was supported by the SFRH/BD/62405/2009 fellowship, funded by the Portuguese Foundation for Science and Technology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4693K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4693K"><span>Characterisation of organic matter source and sediment distribution in Ashtamudi Estuary, southern India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, Prem; Ankit, Yadav; Mishra, Praveen K.; Jha, Deepak Kumar; Anoop, Ambili</p> <p>2017-04-01</p> <p>In the present study we have focussed on the surface sediments of Ashtamudi Estuary (southern India) to understand (i) the fate and sources of organic matter by investigating lipid biomarker (n-alkanes) distribution in modern sediments and vegetation samples and (ii) the processes controlling the sediment distribution into the lake basin using end-member modelling approach. The sediment n-alkanes from the Ashtamudi Estuary exhibit a pronounced odd over even predominance with maxima at C29 and C31 chain length indicative of a dominant terrestrial contribution. A number of n-alkane indices have been calculated to illustrate the variability in space by considering separately the river dominated northern reaches and tidal influenced southern part of Ashtamudi Estuary. The highest terrigenous organic contents were found in sediments from the river and upper bay sites, with smaller contributions to the lower parts of the estuary. The Paq and TAR (terrigenous/aquatic ratio) indices demonstrate maximum aquatic productivity (plankton growth and submerged macrophytes) in the tidal dominated region of the Ashtamudi Estuary. The carbon preference index (CPI) and average chain length (ACL) provide evidence for high petrogenic organic inputs in the tidal zone, whereas dominant biogenic contribution have been observed in the riverine zone. In addition, the end member modeling of the grain size distribution of the surface sediment samples enabled us to decipher significant sedimentological processes affecting the sediment distribution in the estuarine settings. The end-member distribution showing highest loading with the coarser fraction is maximum where estuary debouches into the sea. However, the samples near the mouth of the river shows finer fraction of the end-member.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29721595','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29721595"><span>PAH Baselines for Amazonic Surficial Sediments: A Case of Study in Guajará Bay and Guamá River (Northern Brazil).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rodrigues, Camila Carneiro Dos Santos; Santos, Ewerton; Ramos, Brunalisa Silva; Damasceno, Flaviana Cardoso; Correa, José Augusto Martins</p> <p>2018-06-01</p> <p>The 16 priority PAH were determined in sediment samples from the insular zone of Guajará Bay and Guamá River (Southern Amazon River mouth). Low hydrocarbon levels were observed and naphthalene was the most representative PAH. The low molecular weight PAH represented 51% of the total PAH. Statistical analysis showed that the sampling sites are not significantly different. Source analysis by PAH ratios and principal component analysis revealed that PAH are primary from a few rate of fossil fuel combustion, mainly related to the local small community activity. All samples presented no biological stress or damage potencial according to the sediment quality guidelines. This study discuss baselines for PAH in surface sediments from Amazonic aquatic systems based on source determination by PAH ratios and principal component analysis, sediment quality guidelines and through comparison with previous studies data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T23A0594N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T23A0594N"><span>Heterogeneous structure of the incoming plate in the Japan Trench</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakamura, Y.; Fujie, G.; Yamaguchi, A.; Kodaira, S.; Miura, S.</p> <p>2017-12-01</p> <p>We have conducted seismic surveys in around the Japan Trench subduction zone, northeastern Japan, to investigate the structural features of the incoming Pacific plate and the frontal prism. Thickness of the hemiplegic sediments on the deposited on the incoming Pacific plate shows the variation along trench axis between 200 and 600 ms two-way travel time (TWT). This is remarkably thinner than other subduction zones with megathrust earthquakes like Sumatra subduction zone. Off Miyagi, central part of the Japan Trench which is the main ruptured region of 2011 Tohoku earthquake, has 200 - 300 ms TWT of the incoming sediments thickness. Off Iwate, northern part of the Japan Trench, has thicker incoming sediments 500 ms TWT, and Off Fukushima, southern part of the Japan Trench, has 300 - 400 ms TWT. We found at least three areas with anomalously thin sediments; Area I: 38N 145N, Area II: 39.5N 144.5E, Area III: 39N 144.5N. At the Area I, located on the outer rise off Miyagi, the receiver function analysis using Ocean Bottom Seismograph data revealed the existence of PS conversion surfaces below the interpreted basement on the seismic sections. This implies that the interface between sediments and the igneous basement is located below the interpreted basement reflections. Previous studies suggested the existence of the petit spots in this Area I. Area II shows apparently very thin sediments near the trench axis on seismic profiles, where the petit spot volcanism was observed. Shallow sediment sampling conducted in this area indicates no major surface erosion. These observations suggest that the petit spot volcanism, like sill intrusion, masked the original deeper basement reflections and caused the apparent thin sediments on seismic profiles. Area III also has thin sediments and rough basement topography, which has possibly been caused by another petit spot activity. Petit spot area with apparent very thin sediments in the trench axis (Area II) is located next to the northern edge of the large slip zone of the 2011 Tohoku earthquake. The volcanic activities like petit spots on the incoming plate introduce heterogeneous input into the subduction zone, which could be important factors to control the megathrust seismo- and tsunamigenesis in the subduction zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19943108','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19943108"><span>Harmonised framework for ecological risk assessment of sediments from ports and estuarine zones of North and South Atlantic.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Choueri, R B; Cesar, A; Abessa, D M S; Torres, R J; Riba, I; Pereira, C D S; Nascimento, M R L; Morais, R D; Mozeto, A A; DelValls, T A</p> <p>2010-04-01</p> <p>This paper presents a harmonised framework of sediment quality assessment and dredging material characterisation for estuaries and port zones of North and South Atlantic. This framework, based on the weight-of-evidence approach, provides a structure and a process for conducting sediment/dredging material assessment that leads to a decision. The main structure consists of "step 1" (examination of available data); "step 2" (chemical characterisation and toxicity assessment); "decision 1" (any chemical level higher than reference values? are sediments toxic?); "step 3" (assessment of benthic community structure); "step 4" (integration of the results); "decision 2" (are sediments toxic or benthic community impaired?); "step 5" (construction of the decision matrix) and "decision 3" (is there environmental risk?). The sequence of assessments may be interrupted when the information obtained is judged to be sufficient for a correct characterisation of the risk posed by the sediments/dredging material. This framework brought novel features compared to other sediment/dredging material risk assessment frameworks: data integration through multivariate analysis allows the identification of which samples are toxic and/or related to impaired benthic communities; it also discriminates the chemicals responsible for negative biological effects; and the framework dispenses the use of a reference area. We demonstrated the successful application of this framework in different port and estuarine zones of the North (Gulf of Cádiz) and South Atlantic (Santos and Paranaguá Estuarine Systems).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Geomo.232..182Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Geomo.232..182Y"><span>Morphology, spatial pattern and sediment of Nitraria tangutorum nebkhas in barchans interdune areas at the southeast margin of the Badain Jaran Desert, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, YanYan; Liu, LianYou; Shi, PeiJun; Zhang, GuoMing; Qu, ZhiQiang; Tang, Yan; Lei, Jie; Wen, HaiMing; Xiong, YiYing; Wang, JingPu; Shen, LingLing</p> <p>2015-03-01</p> <p>To understand the characteristics of the nebkhas in barchan interdune areas, isolated barchan dunes at the southeast margin of the Badain Jaran Desert in China and Nitraria tangutorun nebkhas in the interdune areas were selected, and the morphometric parameters, spatial patterns, and granulometric characteristics of the nebkhas in various interdune zones were compared. According to the locations relative to barchan dunes, the interdune areas were divided into three zones: the windward interdune zone (Zw), the leeward interdune zone (Zl), and the horn interdune zone (Zh). The zone that is proximal to barchan dunes and has never been disturbed by barchan dunes was also selected (Zi). The morphometric parameters were measured through a satellite image and field investigation. The population density and spatial patterns were analyzed using the satellite image, and surface sediment samples of the nebkhas and barchan dunes were collected for grain size analysis. The morphometric parameters of Nitraria tangutorun nebkhas in the interdune zones differ significantly. The nebkhas in Zh are larger than those observed in the other zones, and the nebkhas are the smallest in Zl. In all of the zones, the long-axis orientation of the nebkhas is perpendicular to the prevailing wind direction. The population density of the nebkhas in Zw is relatively higher, whereas the density in Zh and Zl becomes obviously lower. The spatial distribution of nebkhas in all of the zones can be categorized as a dispersed pattern. The sediments of the nebkhas are coarsest in Zh and finest in Zl. In addition, the sediments of the nebkhas in all of the zones are finer than those of barchan dunes. The amount of sand captured by the nebkhas in the interdune areas is approximately 20% of the volume of barchan dunes. The variations of the nebkhas' sizes, spatial pattern and sediment are subjected to migration, flow field and sand transport of barchan dunes and sand accumulation with plant growth in the interdune areas, which suggest complex mutual interactions between barchan dunes and the nebkhas in the interdune areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20390851','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20390851"><span>Evaluation of toxicity of polluted marine sediments from Bahia Salina Cruz, Mexico.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gonzalez-Lozano, Maria Cristina; Mendez-Rodriguez, Lia C; Maeda-Martinez, Alejandro M; Murugan, Gopal; Vazquez-Botello, Alfonso</p> <p>2010-01-01</p> <p>Bahia Salina Cruz, Oaxaca, Mexico is a major center of oil and refined product distribution on the Mexican Pacific coast. From the start of oil industry operations in 1979, negative effects from discharges of treated effluents in the bay have been a constant concern for local communities. We analyzed 28 surface sediment samples obtained in June, 2002 to evaluate the level of toxicity in the littoral zone, port-harbor, and La Ventosa estuary in Bahia Salina Cruz. The extractable organic matter concentration was high (1,213 to 7,505 micro g g(-1)) in 5 of 7 stations from the port and harbor, whereas it was low in 12 of 16 stations in the littoral zone (36 to 98 micro g g(-1)). The total aromatic hydrocarbon concentration was highest (57 to 142 micro g g(-1)) in the port and harbor compared to the La Ventosa estuary and the littoral zone. Among the heavy metals analyzed, cadmium exceeded the effects range-low values associated with adverse biological effects. The geo-accumulation index of sediments was moderate to strong contamination at 5 stations in the nonlittoral and 6 stations in the littoral zone. The enrichment of lead, zinc, and cadmium at 5 stations from the littoral, port, and harbor suggest that these metals are of anthropogenic origin. Bioassay tests of elutriates of sediments on nauplii of Artemia franciscana and Artemia sp. showed that the port and harbor were more toxic than the La Ventosa estuary and the coastal zone. The Microtox test (Vibrio fischeri) did not show a similar response with the solid phase of the sediments. The results of this study indicate that the high levels of organic content and metals in the sediments of port-harbor and the La Ventosa estuary are mainly caused by anthropogenic activities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21507451','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21507451"><span>Distribution of Asellus aquaticus and microinvertebrates in a non-chlorinated drinking water supply system--effects of pipe material and sedimentation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Christensen, Sarah C B; Nissen, Erling; Arvin, Erik; Albrechtsen, Hans-Jørgen</p> <p>2011-05-01</p> <p>Danish drinking water supplies based on ground water without chlorination were investigated for the presence of the water louse, Asellus aquaticus, microinvertebrates (<2 mm) and annelida. In total, 52 water samples were collected from fire hydrants at 31 locations, and two elevated tanks (6000 and 36,000 m(3)) as well as one clean water tank at a waterworks (700 m(3)) were inspected. Several types of invertebrates from the phyla: arthropoda, annelida (worms), plathyhelminthes (flatworms) and mollusca (snails) were found. Invertebrates were found at 94% of the sampling sites in the piped system with A. aquaticus present at 55% of the sampling sites. Populations of A. aquaticus were present in the two investigated elevated tanks but not in the clean water tank at a waterworks. Both adult and juvenile A. aquaticus (length of 2-10 mm) were found in tanks as well as in pipes. A. aquaticus was found only in samples collected from two of seven investigated distribution zones (zone 1 and 2), each supplied directly by one of the two investigated elevated tanks containing A. aquaticus. Microinvertebrates were distributed throughout all zones. The distribution pattern of A. aquaticus had not changed considerably over 20 years when compared to data from samples collected in 1988-89. Centrifugal pumps have separated the distribution zones during the whole period and may have functioned as physical barriers in the distribution systems, preventing large invertebrates such as A. aquaticus to pass alive. Another factor characterising zone 1 and 2 was the presence of cast iron pipes. The frequency of A. aquaticus was significantly higher in cast iron pipes than in plastic pipes. A. aquaticus caught from plastic pipes were mainly single living specimens or dead specimens, which may have been transported passively trough by the water flow, while cast iron pipes provided an environment suitable for relatively large populations of A. aquaticus. Sediment volume for each sample was measured and our study described for the first time a clear connection between sediment volume and living A. aquaticus since living A. aquaticus were nearly only found in samples with sediment contents higher than 100 ml/m(3) sample. Presence of A. aquaticus was not correlated to turbidity of the water. Measurements by ATP, heterotrophic plate counting and Colilert(®) showed that the microbial quality of the water was high at all locations with or without animals. Four other large Danish drinking water supplies were additionally sampled (nine pipe samples and one elevated tank), and invertebrates were found in all systems, three of four containing A. aquaticus, indicating a nationwide occurrence. Copyright © 2011 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMOS43A0530M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMOS43A0530M"><span>Trace Metal Distribution and Speciation in Pore Water of Hydrothermal Sediments From the Guaymas Basin, Gulf of California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morales-Villafuerte, M.; Ortega-Osorio, A.; Wheat, G.; Seewald, J.</p> <p>2004-12-01</p> <p>Thirteen sediment cores were collected through out direct sampling with the MBARI/ ROV "Tiburon" in the southern trough of the Guaymas Basin in March 2003. Pore water samples from regular 2.5 cm intervals of sediment cores were extracted onboard by centrifugation. The supernatants were collected in clean polystyrene vials and stored at 4° C until analytical work on shore. Dissolved Fe, Mn, Cu, Pb, Zn and Ni concentrations in extracted fluid samples were analyzed by direct injection of atomic absorption spectrometry. Four zones in the hydrothermal field were classified according to their physical characteristics. A core located away from the influence of active vents was recovered as a background site. The second zone is characterized by low temperatures (4.2-80° C) and sediments saturated in hydrocarbons. Sulfides formation and higher temperatures (4-166° C) were observed in the third zone. Precipitation of carbonates on top of the sediment characterizes the fourth zone. Concentration of trace metals at the water-sediment interface appears to be the highest, probably due to metal precipitation from the hydrothermal plume, followed by diffusion into the pore water. A decrease in concentration is observed between 5-12 cm depth, suggesting that biological activity is consuming essential metals (zone of bioturbation). Metal concentrations in zones where sulfide phases are rich, exhibit smaller values in pore water (Fe=2.4-3.8 μ mol/kg, Cu=0.6-0.8 μ mol/kg, Pb=1.2-1.5 μ mol/kg, Zn=0.4-0.5 μ mol/kg and Ni= 3.4-4.4 μ mol/kg) relative to samples located at hydrocarbon sites (Fe= 2.7-11.4, Cu= 0.7-1.0 μ mol/kg, Pb= 1.2-2.2 μ mol/kg, Zn= 0.4-0.7 μ mol/kg and Ni= 3.4-5.2 μ mol/kg). At sulfide zones, pH and Eh conditions help to precipitate their stable sulfides as opposed to the hydrocarbon areas, where conditions are not favorable for sulfide formation due to the absence of H2S. In general, Fe concentrations in pore water are lower than that of Mn, very likely due to the easier precipitation and greater stability of FeS relative to MnS. As an attempt to reconstruct predominant species and their abundance in the system, aqueous chemical models were applied. The codes EQBRM and SUPCRT92 were run with total concentrations to calculate, concentrations, activity coefficients and thermodynamic properties of aqueous species. Experimental data such as total chloride, total sulfur and measured pH were used in the model. According to the prevailing conditions in the Guaymas Basin, all metals studied form chloride complexes. Iron, lead, and zinc exist mainly as hydroxy complexes, manganese as free ion and copper as CuHS. Speciation results are well supported by the Pearson's hard-soft rule which states that soft metal ion Cu++ bonds with soft bisulfide ligand, likewise, borderline metal ions as Fe2+, Mn2+, Pb2+ and Zn2+ bond with chloride, hydroxyl or water ligands. The results reported here provide a greater insight into the behavior of trace metals in pore waters of hydrothermal sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5539053-national-uranium-resource-evaluation-tularosa-quadrangle-new-mexico','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5539053-national-uranium-resource-evaluation-tularosa-quadrangle-new-mexico"><span>National Uranium Resource Evaluation, Tularosa Quadrangle, New Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Berry, V.P.; Nagy, P.A.; Spreng, W.C.</p> <p>1981-12-01</p> <p>Uranium favorability of the Tularosa Quadrangle, New Mexico, was evaluated to a depth of 1500 m using National Uranium Resource Evaluation criteria. Uranium occurrences reported in the literature were located, sampled, and described in detail. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, and geochemical anomalies, interpreted from hydrogeochemical and stream-sediment reconnaissance, were also investigated. Additionally, several hundred rock samples were studied in thin section, and supplemental geochemical analyses of rock and water samples were completed. Fluorometric analyses were completed for samples from the Black Range Primitive Area to augment previously available geochemical data. Subsurface favorability was evaluatedmore » using gamma-ray logs and descriptive logs of sample cuttings. One area of uranium favorability was delineated, based on the data made available from this study. This area is the Nogal Canyon cauldron margin zone. Within the zone, characterized by concentric and radial fractures, resurgent doming, ring-dike volcanism, and intracauldron sedimentation, uranium conentration is confined to magmatic-hydrothermal and volcanogenic uranium deposits.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27812965','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27812965"><span>Spatial distribution, enrichment, and source of environmentally important elements in Batticaloa lagoon, Sri Lanka.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Adikaram, Madurya; Pitawala, Amarasooriya; Ishiga, Hiroaki; Jayawardana, Daham</p> <p>2017-01-01</p> <p>The present paper is the first documentation of distribution and contamination status of environmentally important elements of superficial sediments in the Batticaloa lagoon that is connected to the largest bay of the world. Surface sediment samples were collected from 34 sites covering all over the lagoon. Concentrations of elements such as As, Cr, Cu, Fe, Nb, Ni, Pb, Sc, Sr, Th, V, Y, Zn, and Zr were measured by X-ray florescence analysis. Geochemically, the lagoon has three different zones that were influenced mainly by fresh water sources, marine fronts, and intermediate mixing zones. The marine sediment quality standards indicate that Zr and Th values are exceeded throughout the lagoon. According to the freshwater sediment quality standards, Cr levels of all sampling sites exceed the threshold effect level (TEL) and 17 % of them are even above the probable effect level (PEL). Most sampling sites of the channel discharging areas show minor enrichment of Cu, Ni, and Zn with respect to the TEL. Contamination indices show that the lagoon mouth area is enriched with As. Statistical analysis implies that discharges from agricultural channel and marine fluxes of the lagoon effects on the spatial distribution of measured elements. Further research is required to understand the rate of contamination in the studied marine system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930038725&hterms=marine+biology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmarine%2Bbiology','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930038725&hterms=marine+biology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmarine%2Bbiology"><span>A photoautotrophic source for lycopane in marine water columns</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wakeham, Stuart G.; Freeman, Katherine H.; Pease, Tamara K.; Hayes, J. M.</p> <p>1993-01-01</p> <p>Suspended particulate matter and recent sediments from diverse oceanic sites have been investigated for their contents of lycopane. Lycopane was present in all samples, including both oxic and anoxic water column and sediments. The highest concentrations in the water column were found in surface waters of the central Pacific gyre (1.5 ng/L) and in the anoxic waters of the Cariaco Trench (1.1 ng/L) and the Black Sea (0.3 ng/L). Vertical concentration profiles suggest that lycopane is probably algal in origin. Moreover, biogeochemical conditions in anoxic zones apparently result in a secondary production of lycopane from an as yet unidentified precursor. Compound-specific carbon isotopic analyses have been carried out on lycopane from water column and sediment samples. Isotopic compositions of lycopane range between -23.6 and -32.9 percent and are consistent with a photoautotrophic origin. We postulate that some lycopane is produced in surface waters of the ocean, while additional lycopane is produced in anoxic zones by anaerobic microbial action on an algal precursor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.U53A0050G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.U53A0050G"><span>Permeability-Porosity Relationships of Subduction Zone Sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gamage, K.; Screaton, E.; Bekins, B.; Aiello, I.</p> <p>2008-12-01</p> <p>Permeability-porosity relationships for sediments from Northern Barbados, Costa Rica, Nankai, and Peru subduction zones were examined based on their sediment type and grain size distribution. Greater correlation was observed between permeability and porosity for siliciclastic sediments, diatom oozes, and nannofossil chalk than for nannofossil oozes. For siliciclastic sediments, grouping of sediments by clay content yields relationships that are generally consistent with results from other marine settings and suggest decreasing permeability for a given porosity as clay content increases. Correction of measured porosities for smectite content generally improves the quality of permeability-porosity relationships. The relationship between permeability and porosity for diatom oozes may be controlled by the amount of clay present in the ooze, causing diatom oozes to behave similarly to siliciclastic sediments. For a given porosity the nannofossil oozes have higher permeability values by 1.5 orders of magnitude than the siliciclastic sediments. However, the use of a permeability-porosity relation may not be appropriate for unconsolidated carbonates such as nannofossil oozes. This study provided insight to the effects of porosity correction for smectite, variations in lithology and grain size in permeability-porosity relationships. However, further progress in delineating controls on permeability will require more careful and better documented permeability tests on characterized samples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004GeCoA..68.2649X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004GeCoA..68.2649X"><span>Speciation of strontium in particulates and sediments from the Mississippi River mixing zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Yingfeng; Marcantonio, Franco</p> <p>2004-06-01</p> <p>Sequential extractions were performed on small amounts of particulate and sediment samples (6 to10 mg) from the Mississippi River mixing zone. The leachates were analyzed for Sr concentration and 87Sr/ 86Sr isotope ratio. Mn and Fe contents were also measured as their oxyhydroxides are potential carrier phases for Sr. The largest fraction of Sr in the solid phase (particulates and sediments) was found to be present in the residual, refractory fraction (>70% of total). By comparison with the corresponding sediment, particulates appear to have higher concentrations of nonresidual, labile Sr (30% vs. 15%). Carbonate components seem to play an important role as carriers for labile Sr in particulates and sediments. Changes in the composition and content of the solid phase may significantly modify both the 87Sr/ 86Sr isotope ratio of the total labile fractions and that of the bulk components. However, such modifications, under normal conditions, exert little measurable influence on the Sr isotope composition of the dissolved phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6316W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6316W"><span>Sediment-peridotite interactions in a thermal gradient: mineralogic and geochemical effects and the "sedimentary signature" of arc magmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Woodland, Alan; Girnis, Andrei; Bulatov, Vadim; Brey, Gerhard; Höfer, Heidi; Gerdes, Axel</p> <p>2017-04-01</p> <p>Strong thermal and chemical gradients are characteristic of the slab-mantle interface in subduction zones where relatively cold sediments become juxtaposed with hotter peridotite of the mantle wedge. The formation of arc magmas is directly related to mass transfer processes under these conditions. We have undertaken a series of experiments to simulate interactions and mass transfer at the slab-mantle interface. In addition to having juxtaposed sediment and peridotite layers, the experiments were performed under different thermal gradients. The sediment had a composition similar to GLOSS (1) and also served as the source of H2O, CO2 and a large selection of trace elements. The peridotite was a depleted garnet harzburgite formed from a mixture of natural hand-picked olivine, opx and garnet. Graphite was added to this mixture to establish a redox gradient between the two layers. Experiments were performed at 7.5-10 GPa to simulate the processes during deep subduction. The thermal gradient was achieved by displacing the sample capsule (Re-lined Pt) from the center of the pressure cell. The gradient was monitored with separate thermocouples at each end of the capsule and by subsequent opx-garnet thermometry across the sample. Maximum temperatures varied from 1400˚ -900˚ C and gradients ranged from 200˚ -800˚ C. Thus, in some experiments melting occurred in the sediment layer and in others this layer remained subsolidus, only devolatilizing. Major and trace elements were transported both in the direction of melt percolation to the hot zone, as well as down temperature. This leads to the development of zones with discrete phase assemblages. Olivine in the peridotite layer becomes converted to orthopyroxene, which is due to Si addition, but also migration of Mg and Fe towards the sediment. In the coldest part of a sample, the sediment is converted into an eclogitic cpx + garnet assemblage. A thin zone depleted in almost all trace elements is formed in peridotite directly above the sediment/peridotite boundary and defines the region of maximum metasomatic alteration. With a low Tmin, fluid-mobile Ba, Rb, Sr and Li are more strongly transported into the melt zone compared to HFSE and REE. At Tmin > 700˚ C, all incompatible elements are extracted from the solid into the melt. However, the mineral assemblage controls which elements are held back in the solid residue (i.e. MREE, HREE, Y, Sc, and to a lesser extent Ti, Zr and Hf in garnet). Peridotite-sediment interaction can produce humite-group minerals, particularly in the presence of F. Negative Nb-Ta anomalies are caused by rutile and/or humite phases. Transport of melt or fluid from the sediment to the overlying mantle wedge produces metasomatized magma sources from which basaltic melts with sedimentary geochemical signatures can be derived. Adding even 1% of melt or fluid to depleted mantle peridotite is sufficient to produce basaltic melts with incompatible element contents similar to those observed in natural subduction-related magmas. Such signatures are retained at 6.5 and even 10 GPa when Tmin < 700˚ C. Plank, T., Langmuir C., 1998. Chem. Geol. 145, 325-394.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26430855','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26430855"><span>Bacterial diversity and community composition from seasurface to subseafloor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Walsh, Emily A; Kirkpatrick, John B; Rutherford, Scott D; Smith, David C; Sogin, Mitchell; D'Hondt, Steven</p> <p>2016-04-01</p> <p>We investigated compositional relationships between bacterial communities in the water column and those in deep-sea sediment at three environmentally distinct Pacific sites (two in the Equatorial Pacific and one in the North Pacific Gyre). Through pyrosequencing of the v4-v6 hypervariable regions of the 16S ribosomal RNA gene, we characterized 450,104 pyrotags representing 29,814 operational taxonomic units (OTUs, 97% similarity). Hierarchical clustering and non-metric multidimensional scaling partition the samples into four broad groups, regardless of geographic location: a photic-zone community, a subphotic community, a shallow sedimentary community and a subseafloor sedimentary community (⩾1.5 meters below seafloor). Abundance-weighted community compositions of water-column samples exhibit a similar trend with depth at all sites, with successive epipelagic, mesopelagic, bathypelagic and abyssopelagic communities. Taxonomic richness is generally highest in the water-column O2 minimum zone and lowest in the subseafloor sediment. OTUs represented by abundant tags in the subseafloor sediment are often present but represented by few tags in the water column, and represented by moderately abundant tags in the shallow sediment. In contrast, OTUs represented by abundant tags in the water are generally absent from the subseafloor sediment. These results are consistent with (i) dispersal of marine sedimentary bacteria via the ocean, and (ii) selection of the subseafloor sedimentary community from within the community present in shallow sediment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11389916','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11389916"><span>Modern pollen and stomate deposition in lake surface sediments from across the treeline on the Kola Peninsula, Russia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gervais, B R.; MacDonald, G M.</p> <p>2001-04-01</p> <p>We sampled and analyzed surface sediments from 31 lakes along a latitudinal transect crossing the coniferous treeline on the Kola Peninsula, Russia. The major vegetation zones along the transect were tundra, birch-forest tundra, pine-forest tundra, and forest. The results indicate that the major vegetation types in our study area have distinct pollen spectra. Sum-of-squares cluster analysis and principal components analysis (PCA) groupings of pollen sites correspond to the major vegetation zones. PCA ordination of taxa indicates that the first axis separates taxa typical of the forest zone (Pinus, Picea) from taxa typical of tundra and forest-tundra zones (Polypodiaceae, Ericaceae, and Betula). The current position of the coniferous treeline, defined in our region by Pinus sylvestris, occurs roughly where Pinus pollen values reach 35% or greater. Arboreal pollen (AP)/non-arboreal pollen (NAP) ratios were calculated for each site and plotted against geographic distance along the transect. AP/NAP ratios of 7 or greater are found within pine-forest tundra and forest vegetation zones. Pinus stomates (dispersed stomatal guard cells) are absent from sites north of the coniferous treeline and all but two samples from the forested sites contain stomates. Stomate concentrations among the samples are highly variable and range from 10 to 458 per ml and positively correlate with the changing Pinus pollen values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4511941','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4511941"><span>Aquifer environment selects for microbial species cohorts in sediment and groundwater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hug, Laura A; Thomas, Brian C; Brown, Christopher T; Frischkorn, Kyle R; Williams, Kenneth H; Tringe, Susannah G; Banfield, Jillian F</p> <p>2015-01-01</p> <p>Little is known about the biogeography or stability of sediment-associated microbial community membership because these environments are biologically complex and generally difficult to sample. High-throughput-sequencing methods provide new opportunities to simultaneously genomically sample and track microbial community members across a large number of sampling sites or times, with higher taxonomic resolution than is associated with 16 S ribosomal RNA gene surveys, and without the disadvantages of primer bias and gene copy number uncertainty. We characterized a sediment community at 5 m depth in an aquifer adjacent to the Colorado River and tracked its most abundant 133 organisms across 36 different sediment and groundwater samples. We sampled sites separated by centimeters, meters and tens of meters, collected on seven occasions over 6 years. Analysis of 1.4 terabase pairs of DNA sequence showed that these 133 organisms were more consistently detected in saturated sediments than in samples from the vadose zone, from distant locations or from groundwater filtrates. Abundance profiles across aquifer locations and from different sampling times identified organism cohorts that comprised subsets of the 133 organisms that were consistently associated. The data suggest that cohorts are partly selected for by shared environmental adaptation. PMID:25647349</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24026206','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24026206"><span>Organotin compounds in surface sediments of the Southern Baltic coastal zone: a study on the main factors for their accumulation and degradation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Filipkowska, Anna; Kowalewska, Grażyna; Pavoni, Bruno</p> <p>2014-02-01</p> <p>Sediment samples were collected in the Gulf of Gdańsk, and the Vistula and Szczecin Lagoons-all located in the coastal zone of the Southern Baltic Sea-just after the total ban on using harmful organotins in antifouling paints on ships came into force, to assess their butyltin and phenyltin contamination extent. Altogether, 26 sampling stations were chosen to account for different potential exposure to organotin pollution and environmental conditions: from shallow and well-oxygenated waters, shipping routes and river mouths, to deep and anoxic sites. Additionally, the organic carbon content, pigment content, and grain size of all the sediment samples were determined, and some parameters of the near-bottom water (oxygen content, salinity, temperature) were measured as well. Total concentrations of butyltin compounds ranged between 2 and 182 ng Sn g(-1) d.w., whereas phenyltins were below the detection limit. Sediments from the Gulf of Gdańsk and Vistula Lagoon were found moderately contaminated with tributyltin, whereas those from the Szczecin Lagoon were ranked as highly contaminated. Butyltin degradation indices prove a recent tributyltin input into the sediments adjacent to sites used for dumping for dredged harbor materials and for anchorage in the Gulf of Gdańsk (where two big international ports are located), and into those collected in the Szczecin Lagoon. Essential factors affecting the degradation and distribution of organotins, based on significant correlations between butyltins and environmental variables, were found in the study area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009IJEaS..98..345L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009IJEaS..98..345L"><span>Detrital Cr-spinel in the Šambron-Kamenica Zone (Slovakia): evidence for an ocean-spreading zone in the Northern Vardar suture?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lenaz, Davide; Mazzoli, Claudio; Spišiak, Jan; Princivalle, Francesco; Maritan, Lara</p> <p>2009-03-01</p> <p>The Šambron-Kamenica Zone is situated on the northern margin of the Levočské vrchy mountains and Šarišskà vrchovina Highland, where the Central Carpathian Paleogene joins the Pieniny Klippen Belt. Sandstone outcrops in this area. From Cretaceous to Late Oligocene in age, these sediments suggest transport directions from S and SE. The heavy mineral assemblages of this sandstone include Cr-spinel grains, mainly displaying types II and III alpine-peridotite affinities, and are representative of Ocean Island Basalt volcanism. A sample from Upper Eocene sediments at Vit’az shows a clear change in Cr-spinel composition, which turns out to have types I and II peridotite affinities, and to derive from arc and Middle Ocean Ridge Basalt volcanism, with sediment transport directions from SW and WSW. These data indicate major variations in the Upper Eocene tectonic setting, giving constraints to paleogeographic reconstruction of the Slovak Central Carpathians.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T31G2599V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T31G2599V"><span>Physical properties and Consolidation behavior of sediments from the N. Japan subduction zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Valdez, R. D., II; Lauer, R. M.; Ikari, M.; Kitajima, H.; Saffer, D. M.</p> <p>2013-12-01</p> <p>Sediment hydraulic properties, consolidation state, and ambient pore pressure development are key parameters that affect fluid migration, deformation, and the slip behavior and mechanical strength of subduction zone megathrusts. In order to better understand the dynamics and mechanisms of large subduction earthquakes, Integrated Oceanic Drilling Program (IODP) Expedition 343, drilled into the toe of the Japan Trench subduction zone in a region of large shallow slip in the M 9.0 Tohoku earthquake, as part of the Japan Trench Fast Drilling Project (J-FAST). Here, we report on two constant rate of strain (CRS) uniaxial consolidation experiments and two triaxial deformation experiments on bedded claystone and clayey mudstone core samples collected from the frontal prism and subducted sediment section cored at Site C0019, 2.5 km landward of the Japan Trench, from depths of 697.18 and 831.45 mbsf. The goals of our experiments were: (1) to define the hydraulic and acoustic properties of sediments that host the subduction megathrust fault that slipped in the M 9.0 Tohoku earthquake; and (2) to constrain in-situ consolidation state and its implications for in-situ stress. The permeability-porosity trends are similar for the two samples, and both exhibit permeability that decreases systematically with increasing effective stress and decreasing porosity, and which varies log-linearly with porosity. Permeabilities of material from the frontal prism decrease from 5×10-18 m2 at 5 MPa effective stress, to 3.0×10-19 m2 at 70 MPa, and porosities decrease from 51% to 29%, while permeabilities of the subducted sediment sample decrease from 5×10-18 m2 at 5 MPa to 3.6×10-19 m2 at 90 MPa, and porosities decrease from 49% to 36%. In-situ permeabilities for the prism and underthrust sediment samples, estimated using laboratory defined permeability-porosity relationships, are 4.9×10-18 m2 and 3.7×10-18 m2, respectively. Elastic wavespeeds increase systematically with increasing effective stress. P-wave velocities (Vp) in the frontal prism sample increase from 2.1 km/s at 8 MPa to 2.7 km/s at 55 MPa effective stress, and velocities in the underthrust sediment sample increase from 2.3 km/s at 6 MPa to 3.0 km/s at 76.5 MPa. Estimated in-situ Vp for the frontal prism and underthrust sediment sample are 2.1 km/s and 2.4 km/s, respectively. This is slightly higher than both the logging while drilling (LWD) measurements and shipboard velocity measurements on discrete samples. We also estimated pre-consolidation pressures (Pc) for each sample using the work-stress method. Comparing Pc with the present day in-situ vertical stress calculated from shipboard bulk density data, we find that both samples are severely overconsolidated. We report this in terms of overconsolidation ratio (OCR), defined as the ratio of Pc to the in-situ stress expected for the case of normal consolidation. Values of OCR for the prism and underthrust samples are 3.95 and 4.28, respectively. This overconsolidation is broadly consistent with fully drained (non-overpressured) conditions, and may reflect uplift and unroofing of the sediments following peak burial greater than their current depth, a significant contribution from lateral tectonic stresses leading to an effective stress far greater than expected for the case of uniaxial burial, or cementation that leads to apparent overconsolidation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C32A..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C32A..01M"><span>Microbial processes at the beds of glaciers and ice sheets: a look at life below the Whillans Ice Stream</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mikucki, J.; Campen, R.; Vancleave, S.; Scherer, R. P.; Coenen, J. J.; Powell, R. D.; Tulaczyk, S. M.</p> <p>2017-12-01</p> <p>Groundwater, saturated sediments and hundreds of subglacial lakes exist below the ice sheets of Antarctica. The few Antarctic subglacial environments sampled to date all contain viable microorganisms. This is a significant finding because microbes are known to be key in mediating biogeochemical cycles. In sediments, microbial metabolic activity can also result in byproducts or direct interactions with sediment particles that influence the physical and geochemical characteristics of the matrix they inhabit. Subglacial Lake Whillans (SLW), a fresh water lake under the Whillans Ice Stream that drains into the Ross Sea at its grounding zone, was recently sampled as part of the NSF-funded Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project. Sediments from both SLW and its grounding zone contain microbial taxa related to iron, sulfur, nitrogen and methane oxidizers. In addition to molecular data, biogeochemical measurements and culture based experiments on Whillans sediments support the notion that the system is chemosynthetic with energy derived in part by cycling inorganic compounds. Etch pitting and mineral precipitates on fossil sponge spicules suggest that spicules may also provide microbial nutrients in these environments. Perhaps the most widespread microbial process that affects sediment structure and mineral weathering is the production of extra polymeric substances (EPS). Several phylogenetic groups detected in Whillans sediments are known to produce EPS and we have observed its production in pure cultures enriched directly from these sediments. Our data sheds light on how microbial life persists below the Antarctic Ice Sheet despite extended isolation in icy darkness, and how these microbes may be shaping their environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMEP13F..06N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMEP13F..06N"><span>Role of Sediments and Nutrients in the Condition of a Coral Reef Under Tourist Pressure: Akumal México.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Naranjo-Garcia, M. J.; Vadés Lozano, D. S.; Real-De-Leon, E.; Lopez-Aguiar, K.; Garza-Perez, J. R.</p> <p>2014-12-01</p> <p>Akumal, Mexico, was the first tourist resort in the Mexican Caribbean mainland, its highly developed coastal zone lies directly above the phreatic, and it is directly connected to the sub-littoral waters. Akumal is also known as a well-developed fringing coral reef, now in a critical condition. The main objective of this study was to explore the relationship between two of the main indicators of human pressure (nutrients and sedimentation, linked to coastal development and water run-offs) and the condition of the reef benthos, during a year. The sampling design used four transects perpendicular to shore, associated to different tourist and water run-off exposure, for a total of 12 stations distributed in three different reef zones (transition zone, shallow and deep spurs and grooves). Monthly samples were collected: water samples close to the reef lagoon drain channels and at bottom depth at each station, and sediment traps were recovered and replaced also at each station. Reef Benthos videotransects were recorded bi-monthly at each station to assess its condition. Macroalgae and filamentous algae dominate benthic cover (up to 50%), hard-coral cover ranges from 5-9%. Five coral-diseases were recorded, affecting 10.16% of the coral colonies: Caribbean Ciliate Infection, White Band, Purple Spots, White Spots and Yellow Band. The sedimentation rate -sr- ranged from 0.13 to 83.7 mg/cm2/day during the year; 86% of the samples had a sr ≤ 10 mg/cm2/day (reefs not stressed); 13% of the samples had a sr ranging from 10 to 50 mg/cm2/day (stressed reefs); and 1% of the samples were over the critical threshold (>50 mg/cm2/day). Dissolved Inorganic Nitrogen concentrations during the year were above those recorded previously in Caribbean reefs. The most abundant fraction was ammonium, surpassing both Mexican norms: For protection of aquatic life in coastal zones (0.01 mg/L), and the critical threshold for aquatic life (0.4 mg/L). These concentration limits are considered as drivers of eutrophication, one of the main established causes of reef degradation globally. High concentrations of ammonium and other nutrients have been linked to increases in algae cover and coral diseases incidence, and to decreases in rates of coral calcification, fertility, production and viability of coral larvae, and the associated diversity loss.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916110B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916110B"><span>Evaluation of ship-based sediment flux measurements by ADCPs in tidal flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Becker, Marius; Maushake, Christian; Grünler, Steffen; Winter, Christian</p> <p>2017-04-01</p> <p>In the past decades acoustic backscatter calibration developed into a frequently applied technique to measure fluxes of suspended sediments in rivers and estuaries. Data is mainly acquired using single-frequency profiling devices, such as ADCPs. In this case, variations of acoustic particle properties may have a significant impact on the calibration with respect to suspended sediment concentration, but associated effects are rarely considered. Further challenges regarding flux determination arise from incomplete vertical and lateral coverage of the cross-section, and the small ratio of the residual transport to the tidal transport, depending on the tidal prism. We analyzed four sets of 13h cross-sectional ADCP data, collected at different locations in the range of the turbidity zone of the Weser estuary, North Sea, Germany. Vertical LISST, OBS and CTD measurements were taken very hour. During the calibration sediment absorption was taken into account. First, acoustic properties were estimated using LISST particle size distributions. Due to the tidal excursion and displacement of the turbidity zone, acoustic properties of particles changed during the tidal cycle, at all locations. Applying empirical functions, the lowest backscattering cross-section and highest sediment absorption coefficient were found in the center of the turbidity zone. Outside the tidally averaged location of the turbidity zone, changes of acoustic parameters were caused mainly by advection. In the turbidity zone, these properties were also affected by settling and entrainment, inducing vertical differences and systematic errors in concentration. In general, due to the iterative correction of sediment absorption along the acoustic path, local errors in concentration propagate and amplify exponentially. Based on reference concentration obtained from water samples and OBS data, we quantified these errors and their effect on cross-sectional averaged concentration and sediment flux. We found that errors are effectively decreased by applying calibration parameters interpolated in time, and by an optimization of the sediment absorption coefficient. We further discuss practical aspects of residual flux determination in tidal environments and of measuring strategies in relation to site-specific tidal dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14..310B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14..310B"><span>Clay with Desiccation Cracks is an Advection Dominated Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baram, S.; Kurtzman, D.; Sher, Y.; Ronen, Z.; Dahan, O.</p> <p>2012-04-01</p> <p>Heavy clay sediments are regarded "safe" from the hydrological point of view due to their low hydraulic conductivities. However, the formation of desiccation cracks in dispersive clays may dramatically change their bulk hydraulic properties. The impact of desiccation cracks on water percolation, dissolved salts and contaminants transport and redox related reactions (microbial ammonium oxidation and denitrification) were investigated in 6 -12 m clay layer near a diary farm waste lagoon. The study implemented unique vadose-zone monitoring systems that enable in-situ measurements of the temporal variation of the sediment's water content along with frequent sampling of the sediment's pore water along the entire vadose zone (> 30 m). Results from four years of continuous measurements showed quick rises in sediment water content following rain events and temporal wastewater overflows. The percolation pattern indicated dominance of preferential flow through a desiccation-cracks network crossing the entire clay sediment layer. High water-propagation velocities (0.4 - 23.6 m h-1) were observed, indicating that the desiccation-crack network remains open and serves as a preferential flow pathway year-round, even at high sediment water content (~0.50 m3 m-3). The rapid percolation bypassed the most bio-geo-active parts of the soil, transporting even highly sorptive contaminants (testosterone and estrogen) in to the deep sections of the vadose zone, accelerating the underlying groundwater contamination. The ammonium and nitrate concentrations in the vadose zone and the high number of nitrifying and denitrifying bacteria (~108 gene copies gdry-sediemt-1, each) found in the sediment indicated that the entire vadose zone is aerated even at high water content conditions (~0.55 m3 m-3). The dissolved salts concentration in the pore-water and the δ2H-H2O and δ18O-H2O values of the pore-water substantially increased with depth (becoming less depleted) in the clay sediment, indicating deep soil evaporation. Daily fluctuation of the air temperature in the desiccation cracks supported thermally induced air convection within the cracks void and could explain the deep soil salinization process. Combination of all the abovementioned observations demonstrated that the formation of desiccation cracks network in dispersive clay sediments generates a bulk advection dominated environment for both air and water flow, and that the reference to clay sediments as "hydrologically safe" should to be reconsidered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036063','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036063"><span>Effect of grain-coating mineralogy on nitrate and sulfate storage in the unsaturated zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Reilly, T.J.; Fishman, N.S.; Baehr, A.L.</p> <p>2009-01-01</p> <p>Unsaturated-zone sediments and the chemistry of shallow groundwater underlying a small (???8-km2) watershed were studied to identify the mechanisms responsible for anion storage within the Miocene Bridgeton Formation and weathered Coastal Plain deposits in southern New Jersey. Lower unsaturated-zone sediments and shallow groundwater samples were collected and concentrations of selected ions (including NO3- and SO42-) from 11 locations were determined. Grain size, sorting, and color of the lower unsaturated-zone sediments were determined and the mineralogy of these grains and the composition of coatings were analyzed by petrographic examination, scanning electron microscopy and energy dispersive analysis of x-rays, and quantitative whole-rock x-ray diffraction. The sediment grains, largely quartz and chert (80-94% w/w), are coated with a very fine-grained (<20 ??m), complex mixture of kaolinite, halloysite, goethite, and possibly gibbsite and lepidocrocite. The mineral coatings are present as an open fabric, resulting in a large surface area in contact with pore water. Significant correlations between the amount of goethite in the grain coatings and the concentration of sediment-bound SO42- were observed, indicative of anion sorption. Other mineral-chemical relations indicate that negatively charged surfaces and competition with SO 42- results in exclusion of NO3- from inner sphere exchange sites. The observed NO3- storage may be a result of matrix forces within the grain coatings and outer sphere complexation. The results of this study indicate that the mineralogy of grain coatings can have demonstrable effects on the storage of NO 3- and SO42- in the unsaturated zone. ?? Soil Science Society of America. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ECSS...88..322S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ECSS...88..322S"><span>Occurrence and behavior of butyltins in intertidal and shallow subtidal surface sediments of an estuarine beach under different sampling conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Santos, Dayana Moscardi dos; Sant'Anna, Bruno Sampaio; Sandron, Daniela Corsino; Cardoso de Souza, Sara; Cristale, Joyce; Marchi, Mary Rosa Rodrigues de; Turra, Alexander</p> <p>2010-07-01</p> <p>Contamination by butyltin compounds (BTs) has been reported in estuarine environments worldwide, with serious impacts on the biota of these areas. Considering that BTs can be degraded by varying environmental conditions such as incident light and salinity, the short-term variations in such factors may lead to inaccurate estimates of BTs concentrations in nature. Therefore, the present study aimed to evaluate the possibility that measurements of BTs in estuarine sediments are influenced by different sampling conditions, including period of the day (day or night), tidal zone (intertidal or subtidal), and tides (high or low). The study area is located on the Brazilian southeastern coast, São Vicente Estuary, at Pescadores Beach, where BT contamination was previously detected. Three replicate samples of surface sediment were collected randomly in each combination of period of the day, tidal zone, and tide condition, from three subareas along the beach, totaling 72 samples. BTs were analyzed by GC-PFPD using a tin filter and a VF-5 column, by means of a validated method. The concentrations of tributyltin (TBT), dibutyltin (DBT), and monobutyltin (MBT) ranged from undetectable to 161 ng Sn g -1 (d.w.). In most samples (71%), only MBT was quantifiable, whereas TBTs were measured in only 14, suggesting either an old contamination or rapid degradation processes. DBT was found in 27 samples, but could be quantified in only one. MBT concentrations did not differ significantly with time of day, zones, or tide conditions. DBT and TBT could not be compared under all these environmental conditions, because only a few samples were above the quantification limit. Pooled samples of TBT did not reveal any difference between day and night. These results indicated that, in assessing contamination by butyltin compounds, surface-sediment samples can be collected in any environmental conditions. However, the wide variation of BTs concentrations in the study area, i.e., over a very small geographic scale, illustrates the need for representative hierarchical and composite sampling designs that are compatible with the multiscalar temporal and spatial variability common to most marine systems. The use of such sampling designs will be necessary for future attempts to quantitatively evaluate and monitor the occurrence and impact of these compounds in nature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/15010322','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/15010322"><span>Characterization of Vadose Zone Sediment: Borehole 299-E33-46 Near Tank B-110 in the B-BX-BY Waste Management Area.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Serne, R. Jeffrey; Bjornstad, Bruce N.; Gee, Glendon W.</p> <p>2002-12-15</p> <p>This report presents vadose sediment characterization data that improves understanding of the nature and extent of past releases in the B tank farm. A vertical borehole, located approximately 15 ft (5 m) from the northeast edge of single-shell tank 241-B-110 was drilled to a total depth of 264.4 ft bgs, the groundwater table was encountered at 255.8 ft bgs. During drilling, a total of 3 two-ft long, 4-inch diameter split-spoon core samples were collected between 10 and 254 ft bgs-an average of every 7.5 ft. Grab samples were collected between these core sample intervals to yield near continuous samples tomore » a depth of 78.3 m (257 ft). Geologic logging occurred after each core segment was emptied into an open plastic container, followed by photographing and sub-sampling for physical and chemical characterization. In addition, 54 out of a total of 120 composite grab samples were opened, sub-sampled, logged, and photographed. Immediately following the geologic examination, the core and selected grab samples were sub-sampled for moisture content, gamma-emission radiocounting, tritium and strontium-90 determinations, total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants) and one-to-one sediment to water extracts (which provide soil pH, electrical conductivity, cation, and anion data and water soluble contaminant data. Later, additional aliquots of selected sleeves or grab samples were removed to measure particle size distribution and mineralogy and to squeeze porewater. Major conclusions follow. Vadose zone contamination levels were lower than generally anticipated prior to the initiation of the field investigation. Strong evidence of extensive vadose zone lateral migration in WMA BBXBY exists. There are indications that such lateral migration may have extended into WMA B-BX-BY from adjacent past practice discharge sites. Ponding of runoff from natural precipitation in the WMA may have added significant amounts of spatially confined infiltration. Borehole soil characterization has identified strontium-90 and technetium-99 as the two main radionuclides underneath tank B-110. The Sr-90 data indicate limited future mobility unless abnormally high amounts of infiltration occur. Neither technetium-99 nor strontium-90 is expected to significantly impact groundwater in the current moisture and geochemical environment below the B Tank Farm. At borehole 299-E33-46 (near tank B-110), strontium 90 was found down to 26 m (85 ft) bgs with strontium 90 values up to 11,250 pCi/g of sediment. Other tank wastes contaminants (e.g., nitrate) were found down to 69 m (200 ft) bgs. The strontium-90 was immobile under the current ionic regime in the pore water. Technetium-99 releases into the vadose zone near tank B-110 from a transfer line leak appear to be inconsequential. Technetium-99 does not occur above detection limits in the upper parts of the vadose zone where other tank waste constituents (e.g., strontium-90, fluoride, carbonate, and nitrate) are present. Technetium-99 is present in a few soil samples in the PlioPleistocene unit. This unit appears to be an effective conduit for lateral migration and the presence of technetium-99 is postulated to have another source.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ECSS...91..169P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ECSS...91..169P"><span>Contrasting effects of ecosystem engineering by the cordgrass Spartina maritima and the sandprawn Callianassa kraussi in a marine-dominated lagoon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pillay, D.; Branch, G. M.; Dawson, J.; Henry, D.</p> <p>2011-01-01</p> <p>Ecosystem engineering by plants and animals significantly influences community structure and the physico-chemical characteristics of marine habitats. In this paper we document the contrasting effects of ecosystem engineering by the cordgrass Spartina maritima and the burrowing sandprawn Callianassa kraussi on physico-chemical characteristics, microflora, macrofaunal community structure and morphological attributes in the high shore intertidal sandflats of Langebaan Lagoon, a marine-dominated system on the west coast of South Africa. Comparisons were made at six sites in the lagoon within Spartina and Callianassa beds, and in a "bare zone" of sandflat between these two habitats that lacks both sandprawns and cordgrass. Sediments in Spartina habitats were consolidated by the root-shoot systems of the cordgrass, leading to low sediment penetrability, while sediments in beds of C. kraussi were more penetrable, primarily due to the destabilising effects of sandprawn bioturbation. Sediments in the "bare zone" had intermediate to low values of penetrability. Sediment organic content was lowest in bare zones and greatest in Spartina beds, while sediment chl- a levels were greatest on bare sand, but were progressively reduced in the Spartina and Callianassa beds. These differences among habitats induced by ecosystem engineering in turn affected the macrofauna. Community structure was different between all three habitats sampled, with species richness being surprisingly greater in Callianassa beds than either the bare zone or Spartina beds. In general, the binding of surface sediments by the root systems of Spartina favoured rigid-bodied, surface-dwelling and tube-building species, while the destabilising effect of bioturbation by C. kraussi favoured burrowing species. The contrasting effects of these ecosystem engineers suggest that they play important roles in increasing habitat heterogeneity. Importantly, the role of bioturbation by C. kraussi in enhancing macrofaunal richness was unexpected. By loosening sediments, reducing anoxia and enhancing organic content, C. kraussi may engineer these high shore habitats to ameliorate environmental stresses or increase food availability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.3310H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.3310H"><span>Coupled deformation and dehydration processes in smectite-rich sediments constrained by laboratory experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huepers, Andre; Kopf, Achim J.</p> <p>2013-04-01</p> <p>Subduction zones play a central role in the geological activity of the earth which is expressed as devastating events such as earthquakes, tsunamis and explosive volcanism. Many processes that lead to such catastrophic behavior are driven by fluids, which in turn affect the rock mechanical behavior. The kinetic reaction of hydrous smectite to illite is widely accepted as a fluid source in subduction zone forearcs that also affects the mechanical state of subduction zone sediments. The released fluids are characterized by low-chlorinity and high volatile content. Also, previous workers demonstrated in uniaxial deformation tests that smectite partially dehydrates with increasing effective stress. To shed light on this process we performed uniaxial deformation experiments on smectite-rich samples from the Nankai and Costa Rica subduction zones. Experiments were conducted at temperatures of up to 100°C under constant rate of strain and effective stresses of up to ~100MPa. Fluids expelled during the experiments were analyzed for major and minor element content. The fluids are characterized by fluid-freshening and increasing volatile content that starts at ~1.3MPa effective stress. During the course of the experiments the smectite interlayer water content decreases from 27 wt-% to 20 wt-%. The released interlayer water comprises up to 17% of the total fluid volume released from the consolidating sediment. The onset of fluid freshening is characterized by a change in deformation behavior of the samples. The porosity decrease with increasing effective stress is smaller at effective stresses greater 1.3MPa. We propose that dehydration of the low permeable smectite leads to excess pore pressures in the sample, which causes a load transfer from the solid phase to the pore fluid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018DSRII.148....7D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018DSRII.148....7D"><span>Habitat characterization of the Vema Fracture Zone and Puerto Rico Trench</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Devey, C. W.; Augustin, N.; Brandt, A.; Brenke, N.; Köhler, J.; Lins, L.; Schmidt, C.; Yeo, I. A.</p> <p>2018-02-01</p> <p>Although many of the regions on and close to the mid-ocean ridges have been extensively mapped and sampled, the abyssal intraplate regions remain essentially unsampled and unmapped, leaving huge gaps in our understanding of their geologic history and present activity. Prominent bathymetric features in these intraplate regions are fracture zones. Here we present bathymetric and sampling information from a transatlantic transect along the Vema Fracture Zone (ca. 11°N), covering crustal ages from 109 - 0 Ma on the African plate and 0-62 Ma on the South American plate. The Vema Fracture Zone is the intraplate trace of the active Vema Transform plate boundary, which offsets the present-day Mid-Atlantic Ridge by ca. 300 km left-laterally, juxtaposing zero-age crust with crust of 20 million years age. Our results show clear evidence of tectonic activity along most of the Fracture Zone, in most places likely associated with active fluid flow. Within the active Vema Transform at crustal ages of ca. 10 Ma we found clear indications of fluid flow both in the sediments and the overlying water column. This region is > 120 km from the nearest spreading axis and increases by almost an order of magnitude the maximum off-axis distance that active hydrothermal discharge has been found on the oceanic crust. Sampling of the igneous seafloor was possible at all crustal ages and the accretionary fabric imprinted on the plate during its production was prominent everywhere. Seafloor sediments show signs of extensive bioturbation. In one area, high concentrations of spherical Mn-nodules were also found and sampled. At the end of the transect we also mapped and sampled the Puerto Rico Trough, a > 8000 m-deep basin north of the Caribbean arc. Here the seafloor morphology is more complicated and strongly influenced by transpressive tectonics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16122777','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16122777"><span>Influence of the very polluted inputs of the Tinto-Odiel system on the adjacent littoral sediments of southwestern Spain: a statistical approach.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sainz, A; Ruiz, F</p> <p>2006-03-01</p> <p>A spatial and temporal analysis (period 1990-2003) of 15 sampling points distributed along the southwestern Spanish coast permits to delimitate the influence area of the extremely polluted discharges coming from the Tinto-Odiel system in the bottom sediments of the adjacent littoral area. As, Cu, Pb and Zn are the main heavy metals transported by the freshwater runoffs toward the shallow shelf and present very high negative (r < -0.7) and significant (p < 0.001) correlations with the distance to the estuarine mouth. The statistical analysis (index of geoaccumulation, Pearson correlation matrix, cluster analysis) of their concentrations in the littoral sediments located between the Guadiana and Guadalquivir mouths delimitates three zones: (a) Zone 1 (from the estuarine mouth to 6 km to the east), characterized by moderate to strongly polluted bottom sediments and main responsible of the mean annual variations of the former heavy metals in the area studied; (b) Zone 2 (from 21.2 km to the west to 29 km to the east), characterized by moderate pollution levels; and (c) Zone 3, located near the Guadiana and Guadalquivir mouths, with very low As-Cu-Pb contents and unpolluted to moderately levels of Zn due to urban sewages or the presence of local low mobility areas for this element.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991GeCoA..55.2067K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991GeCoA..55.2067K"><span>Novel pyropheophorbide steryl esters in Black Sea sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>King, Linda L.; Repeta, Daniel J.</p> <p>1991-07-01</p> <p>A series of non-polar chlorophyll degradation products (NPCs) with greater than 10 components has been isolated from Black Sea sediment and identified as pyropheophorbide steryl esters by visible and mass spectrometry. These compounds have been previously observed in seawater and sediment trap samples, and may be formed during grazing of phytoplankton by zooplanktonic herbivores. In Black Sea sediments, NPCs constitute 14% of the total phorbins determined spectroscopically at 660 nm, and 39% of the total chlorophyll degradation products measured by high pressure liquid chromatography. NPCs therefore constitute a significant sedimentary sink for chlorophyll. The distribution of sterols released by hydrolysis of NPCs most closely resembles sterols in suspended particulate matter collected from the euphotic zone and is quite different from the distribution of solvent-extractable sterols in sediments. Sterols extracted from sediments have high concentrations of 4-methylsterols and high stanol/stenol ratios. NPC-derived sterols have very low concentrations of 4-methylsterols and low stanol/stenol ratios. We suggest that these differences reflect an enhanced preservation of NPCs in sediments relative to free sterols and phorbins. As a result, the original production of sterols in the euphotic zone may be more closely approximated by the distribution of NPC-derived sterols than by the distribution of free sterols in sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H14F..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H14F..04M"><span>Investigating the development of less-mobile porosity in realistic hyporheic zone sediments with COMSOL Multiphysics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>MahmoodPoorDehkordy, F.; Briggs, M. A.; Day-Lewis, F. D.; Bagtzoglou, A. C.</p> <p>2017-12-01</p> <p>Although hyporheic zones are often modeled at the reach scale as homogeneous "boxes" of exchange, heterogeneity caused by variations of pore sizes and connectivity is not uncommon. This heterogeneity leads to the creation of more- and less-mobile zones of hydraulic exchange that influence reactive solute transport processes. Whereas fluid sampling is generally sensitive to more-mobile zones, geoelectrical measurement is sensitive to ionic tracer dynamics in both less- and more-mobile zones. Heterogeneity in pore connectivity leads to a lag between fluid and bulk electrical conductivity (EC) resulting in a hysteresis loop, observed during tracer breakthrough tests, that contains information about the less-mobile porosity attributes of the medium. Here, we present a macro-scale model of solute transport and electrical conduction developed using COMSOL Multiphysics. The model is used to simulate geoelectrical monitoring of ionic transport for bed sediments based on (1) a stochastic sand-and-cobble mixture and (2) a dune feature with strong permeability layering. In both of these disparate sediment types, hysteresis between fluid and bulk EC is observed, and depends in part on fluid flux rate through the model domain. Using the hysteresis loop, the ratio of less-mobile to mobile porosity and mass-transfer coefficient are estimated graphically. The results indicate the presence and significance of less-mobile porosity in the hyporheic zones and demonstrate the capability of the proposed model to detect heterogeneity in flow processes and estimate less-mobile zone parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T31G2592H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T31G2592H"><span>Anomalously high porosity in subduction inputs to the Nankai Trough (SW Japan) potentially caused by volcanic ash and pumice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huepers, A.; Ikari, M.; Underwood, M.; Kopf, A.</p> <p>2013-12-01</p> <p>At convergent margins, the sedimentary section seaward of the trench on the subducting oceanic lithosphere provides the source material for accretionary prisms and eventually becomes the host rock of the plate boundary megathrust. The mechanical properties of the sediments seaward of the subduction zone have therefore a first order control on subduction zone forearc mechanics and hydrogeology. At the Nankai Trough (SW Japan) the majority of sediment approaching the subduction zone is clay-rich. Scientific drilling expeditions in the framework of the Ocean Drilling Program (ODP) and the Integrated Ocean Drilling Program (IODP) have revealed an anomalous zone of high porosity in a major lithologic unit known as the Upper Shikoku Basin facies (USB), which is associated with elevated volcanic ash content and high amounts of silica in the interstitial water. The existence of the high porosity zone has previously been associated with advanced silica cementation, driven by the dual diagenetic transition of opal-A to opal-CT, and opal-CT to quartz. However, temperature estimates from recent drilling expeditions offshore the Kii peninsula reveal different in situ temperatures at the proposed diagenetic boundary in the Shikoku Basin. Furthermore, laboratory measurements using core samples from the USB show that cohesive strength is not elevated in the high porosity zone, suggesting that a process other than cementation may be responsible. The USB sediment is characterized by abundant volcanic ash and pumice, therefore the high porosity zone in the USB may be closely linked to the mechanical behavior of this phase. We conducted consolidation tests in the range 0.1 to 8 MPa effective vertical stress on artificial ash-smectite and pumice-smectite mixtures, as well as intact and remolded natural samples from the IODP Sites C0011 and C0012 to investigate the role of the volcanic constituent on porosity loss with progressive burial. Our results show that both remolded and intact natural samples have high porosities of up to ~71 to 75% at a vertical effective stress of 0.1 MPa, which decreases to 39 to 49% at 8 MPa vertical effective stress. The behavior of the remolded samples is in good accordance with compiled in-situ porosity vs. depth profiles from the high porosity zone. This suggests that cementation is not the cause for the anomalously high porosity. The consolidation tests on the artificial samples document that pure ash and pumice samples are highly resistant to consolidation. Between 0.1 to 8 MPa vertical effective stress, the porosity decreases from 51 to 47% for the ash sample and 60% to 46% for the pumice sample. The higher initial porosity in the pumice may be explained by a porous internal grain structure that allows storage of additional water. Mixtures with smectite are characterized by higher compressibility and higher porosity. For a mixture of 80% smectite and 20% pumice the porosity decreases from 65% to 39%, similar to that of the natural samples. Our results suggest that the high porosity zone is caused by the bulk mechanical behavior of pumice in the USB.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70148294','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70148294"><span>Bacterial dominance in subseafloor sediments characterized by methane hydrates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Briggs, Brandon R.; Inagaki, Fumio; Morono, Yuki; Futagami, Taiki; Huguet, Carme; Rosell-Mele, Antoni; Lorenson, T.D.; Colwell, Frederick S.</p> <p>2015-01-01</p> <p>The degradation of organic carbon in subseafloor sediments on continental margins contributes to the largest reservoir of methane on Earth. Sediments in the Andaman Sea are composed of ~ 1% marine-derived organic carbon and biogenic methane is present. Our objective was to determine microbial abundance and diversity in sediments that transition the gas hydrate occurrence zone (GHOZ) in the Andaman Sea. Microscopic cell enumeration revealed that most sediment layers harbored relatively low microbial abundance (103–105 cells cm−3). Archaea were never detected despite the use of both DNA- and lipid-based methods. Statistical analysis of terminal restriction fragment length polymorphisms revealed distinct microbial communities from above, within, and below the GHOZ, and GHOZ samples were correlated with a decrease in organic carbon. Primer-tagged pyrosequences of bacterial 16S rRNA genes showed that members of the phylum Firmicutes are predominant in all zones. Compared with other seafloor settings that contain biogenic methane, this deep subseafloor habitat has a unique microbial community and the low cell abundance detected can help to refine global subseafloor microbial abundance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4117D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4117D"><span>Optimization of remediation strategies using vadose zone monitoring systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dahan, Ofer</p> <p>2016-04-01</p> <p>In-situ bio-remediation of the vadose zone depends mainly on the ability to change the subsurface hydrological, physical and chemical conditions in order to enable development of specific, indigenous, pollutants degrading bacteria. As such the remediation efficiency is much dependent on the ability to implement optimal hydraulic and chemical conditions in deep sections of the vadose zone. These conditions are usually determined in laboratory experiments where parameters such as the chemical composition of the soil water solution, redox potential and water content of the sediment are fully controlled. Usually, implementation of desired optimal degradation conditions in deep vadose zone at full scale field setups is achieved through infiltration of water enriched with chemical additives on the land surface. It is assumed that deep percolation into the vadose zone would create chemical conditions that promote biodegradation of specific compounds. However, application of water with specific chemical conditions near land surface dose not necessarily results in promoting of desired chemical and hydraulic conditions in deep sections of the vadose zone. A vadose-zone monitoring system (VMS) that was recently developed allows continuous monitoring of the hydrological and chemical properties of deep sections of the unsaturated zone. The VMS includes flexible time-domain reflectometry (FTDR) probes which allow continuous monitoring of the temporal variation of the vadose zone water content, and vadose-zone sampling ports (VSPs) which are designed to allow frequent sampling of the sediment pore-water and gas at multiple depths. Implementation of the vadose zone monitoring system in sites that undergoes active remediation provides real time information on the actual chemical and hydrological conditions in the vadose zone as the remediation process progresses. Up-to-date the system has been successfully implemented in several studies on water flow and contaminant transport in the unsaturated zone including enhanced bioremediation of contaminated deep vadose zone (40 m depth). Manipulating subsurface conditions for enhanced bioremediation was demonstrated through two remediation projects. One site is characterized by 20 m deep vadose zone that is contaminated with gasoline products and the other is a 40 m deep vadose zone that is contaminated with perchlorate. In both cases temporal variation of the sediment water content as well as the variations in the vadose zone chemical and isotopic composition allowed real time detection of water flow velocities, contaminants transport rates and bio-degradation degree. Results and conclusions from each wetting cycle were used to improve the following wetting cycles in order to optimize contaminants degradation conditions while minimizing leaching of contaminants to the groundwater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/10175023','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/10175023"><span>QA/QC requirements for physical properties sampling and analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Innis, B.E.</p> <p>1993-07-21</p> <p>This report presents results of an assessment of the available information concerning US Environmental Protection Agency (EPA) quality assurance/quality control (QA/QC) requirements and guidance applicable to sampling, handling, and analyzing physical parameter samples at Comprehensive Environmental Restoration, Compensation, and Liability Act (CERCLA) investigation sites. Geotechnical testing laboratories measure the following physical properties of soil and sediment samples collected during CERCLA remedial investigations (RI) at the Hanford Site: moisture content, grain size by sieve, grain size by hydrometer, specific gravity, bulk density/porosity, saturated hydraulic conductivity, moisture retention, unsaturated hydraulic conductivity, and permeability of rocks by flowing air. Geotechnical testing laboratories alsomore » measure the following chemical parameters of soil and sediment samples collected during Hanford Site CERCLA RI: calcium carbonate and saturated column leach testing. Physical parameter data are used for (1) characterization of vadose and saturated zone geology and hydrogeology, (2) selection of monitoring well screen sizes, (3) to support modeling and analysis of the vadose and saturated zones, and (4) for engineering design. The objectives of this report are to determine the QA/QC levels accepted in the EPA Region 10 for the sampling, handling, and analysis of soil samples for physical parameters during CERCLA RI.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1861c0045M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1861c0045M"><span>Magnetic properties of Surabaya river sediments, East Java, Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mariyanto, Bijaksana, Satria</p> <p>2017-07-01</p> <p>Surabaya river is one of urban rivers in East Java Province, Indonesia that is a part of Brantas river that flows in four urban and industrial cities of Mojokerto, Gresik, Sidoarjo, and Surabaya. The urban populations and industries along the river pose serious threat to the river mainly for their anthropogenic pollutants. This study aims to characterize the magnetic properties of sediments in various locations along Surabaya river and correlate these magnetic properties to the level of pollution along the river. Samples are taken and measured through a series of magnetic measurements. The mass-specific magnetic susceptibility of sediments ranges from 259.4 to 1134.8 × 10-8 m3kg-1. The magnetic minerals are predominantly PSD to MD magnetite with the grain size range from 6 to 14 μm. The mass-specific magnetic susceptibility tends to decreases downstream as accumulation of magnetic minerals in sediments is affected not only by the amount of household and industrial wastes but also by sediment dredging, construction of embankments, and extensive erosion arround the river. Sediments located in the industrial zone on the upstream area tend to have higher mass-specific magnetic susceptibility than in the non-industrial zones on the downstream area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016043','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016043"><span>Extraction and speciation of arsenic in lacustrine sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ficklin, W.H.</p> <p>1990-01-01</p> <p>Arsenic was partially extracted with 4.OM hydrochloric acid, from samples collected at 25-cm intervals in a 350-cm column of sediment at Milltown Reservoir, Montana and from a 60-cm core of sediment collected at the Cheyenne River Embayment of Lake Oahe, South Dakota. The sediment in both reservoirs is highly contaminated with arsenic. The extracted arsenic was separated into As(III) and As(V) on acetate form Dowex 1-X8 ion-exchange resin with 0.12M HCl eluent. Residual arsenic was sequentially extracted with KClO3 and HCl. Arsenic was determined by graphite-furnace atomic-absorption spectrometry. The analytical results define oxidized and reduced zones in the sediment columns. ?? 1990.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2015/1153/ofr20151153.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2015/1153/ofr20151153.pdf"><span>Sea-floor texture and physiographic zones of the inner continental shelf from Salisbury to Nahant, Massachusetts, including the Merrimack Embayment and Western Massachusetts Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pendleton, Elizabeth E.; Barnhardt, Walter A.; Baldwin, Wayne E.; Foster, David S.; Schwab, William C.; Andrews, Brian D.; Ackerman, Seth D.</p> <p>2015-10-26</p> <p>A series of maps that describe the distribution and texture of sea-floor sediments and physiographic zones of Massachusetts State waters from Nahant to Salisbury, Massachusetts, including western Massachusetts Bay, have been produced by using high-resolution geophysical data (interferometric and multibeam swath bathymetry, lidar bathymetry, backscatter intensity, and seismic reflection profiles), sediment samples, and bottom photographs. These interpretations are intended to aid statewide efforts to inventory and manage coastal and marine resources, link with existing data interpretations, and provide information for research focused on coastal evolution and environmental change. Marine geologic mapping of the inner continental shelf of Massachusetts is a statewide cooperative effort of the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GGG....15.5001G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GGG....15.5001G"><span>Mechanical properties and processes of deformation in shallow sedimentary rocks from subduction zones: An experimental study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gadenne, Leslie; Raimbourg, Hugues; Champallier, Rémi; Yamamoto, Yuzuru</p> <p>2014-12-01</p> <p>To better constrain the mechanical behavior of sediments accreted to accretionary prism, we conducted triaxial mechanical tests on natural samples from the Miura-Boso paleo-accretionary prism (Japan) in drained conditions with confining pressures up to 200 MPa as well as postexperiments P-wave velocity (Vp) measurements. During experiments, deformation is principally noncoaxial and accommodated by two successive modes of deformation, both associated with strain-hardening and velocity-strengthening behavior: (1) compaction-assisted shearing, distributed in a several mm-wide shear zone and (2) faulting, localized within a few tens of μm-wide, dilatant fault zone. Deformation is also associated with (1) a decrease in Young's modulus all over the tests, (2) anomalously low Vp in the deformed samples compared to their porosity and (3) an increase in sensitivity of Vp to effective pressure. We interpret this evolution of the poroelastic properties of the material as reflecting the progressive breakage of intergrain cement and the formation of microcracks along with macroscopic deformation. When applied to natural conditions, these results suggest that the deformation style (localized versus distributed) of shallow (z < a few km) sediments is mainly controlled by the variations in stress/strain rate during the seismic cycle and is therefore independent of the porosity of sediments. Finally, we show that the effect of strain, through cement breakage and microcracks formation, may lower Vp for effective pressure up to 40 MPa. As a consequence, the low Vp anomalies observed in Nankai accretionary prisms by seismic imaging between 2 and 4 km depth could reflect sediment deformation rather than porosity anomalies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037723','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037723"><span>Influence of sea level rise on iron diagenesis in an east Florida subterranean estuary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Roy, M.; Martin, J.B.; Cherrier, J.; Cable, J.E.; Smith, C.G.</p> <p>2010-01-01</p> <p>Subterranean estuary occupies the transition zone between hypoxic fresh groundwater and oxic seawater, and between terrestrial and marine sediment deposits. Consequently, we hypothesize, in a subterranean estuary, biogeochemical reactions of Fe respond to submarine groundwater discharge (SGD) and sea level rise. Porewater and sediment samples were collected across a 30-m wide freshwater discharge zone of the Indian River Lagoon (Florida, USA) subterranean estuary, and at a site 250. m offshore. Porewater Fe concentrations range from 0.5 ??M at the shoreline and 250. m offshore to about 286 ??M at the freshwater-saltwater boundary. Sediment sulfur and porewater sulfide maxima occur in near-surface OC-rich black sediments of marine origin, and dissolved Fe maxima occur in underlying OC-poor orange sediments of terrestrial origin. Freshwater SGD flow rates decrease offshore from around 1 to 0.1. cm/day, while bioirrigation exchange deepens with distance from about 10. cm at the shoreline to about 40. cm at the freshwater-saltwater boundary. DOC concentrations increase from around 75 ??M at the shoreline to as much as 700 ??M at the freshwater-saltwater boundary as a result of labile marine carbon inputs from marine SGD. This labile DOC reduces Fe-oxides, which in conjunction with slow discharge of SGD at the boundary, allows dissolved Fe to accumulate. Upward advection of fresh SGD carries dissolved Fe from the Fe-oxide reduction zone to the sulfate reduction zone, where dissolved Fe precipitates as Fe-sulfides. Saturation models of Fe-sulfides indicate some fractions of these Fe-sulfides get dissolved near the sediment-water interface, where bioirrigation exchanges oxic surface water. The estimated dissolved Fe flux is approximately 0.84 ??M Fe/day per meter of shoreline to lagoon surface waters. Accelerated sea level rise predictions are thus likely to increase the Fe flux to surface waters and local primary productivity, particularly along coastlines where groundwater discharges through sediments. ?? 2010 Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...57a2039L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...57a2039L"><span>Early Stage Evolution of Nourished Beach under High-energy, Macro-tidal Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, J. H.; Cai, F.; Zhang, Z. W.; Li, B.</p> <p>2017-02-01</p> <p>Beach planform evolution, profile equilibration and sediment grain size change have been studied during the first 4 months from 4th September to 24th December 2011 after the construction of beach nourishment project at Longfengtou Beach, Haitan Bay. Monthly beach profiles, shoreline surveys, sediment sampling and nearshore wave measurements were carried out after implementation of the 1.3km long nourishment project which was completed on 20th August 2011. This study indicates that: (1) rapid beach profile equilibration occurred in the early stage after the construction of the project. A null point was observed, which is equal to the height of mean high tide, basically kept dynamic stable during the process of profile evolution. Shoreface sediment accumulated beneath the height of this point while erosion happened above it, the slope between the beach berm and the landward edge of low tidal zone became more gradual accompanied with seaward transportation of beach sediment. The velocity of beach slope adjustment in earlier period is faster than later. (2) Beach planform adjustment initiated simultaneously with the combination of the process of profile equilibration and longshore sediment transport. Shoreline retreated with an average distance of 11.1m and maximum of 31.02m from 4th September to 24th December, erosion in the south part was more serious than in the north, and 3 erosion hot spots were found along the coast. (3) Sediment redistributed with cross-shore profile equilibration, it showed a pattern across beach profile as medium sand (0.4-0.5mm) in beach berm, smaller (0.3-0.4mm) in high and middle tidal zone, coarse sand(0.6-1mm) in beach slope transitional zone, fine sand(0.1-0.25mm) in low tidal zone. The sediment grain size change of foreshore was rapidly response to the passage of storm surge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAfES.125...73A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAfES.125...73A"><span>Provenance of the Walash-Naopurdan back-arc-arc clastic sequences in the Iraqi Zagros Suture Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ali, Sarmad A.; Sleabi, Rajaa S.; Talabani, Mohammad J. A.; Jones, Brian G.</p> <p>2017-01-01</p> <p>Marine clastic rocks occurring in the Walash and Naopurdan Groups in the Hasanbag and Qalander areas, Kurdistan region, Iraqi Zagros Suture Zone, are lithic arenites with high proportions of volcanic rock fragments. Geochemical classification of the Eocene Walash and Oligocene Naopurdan clastic rocks indicates that they were mainly derived from associated sub-alkaline basalt and andesitic basalt in back-arc and island arc tectonic settings. Major and trace element geochemical data reveal that the Naopurdan samples are chemically less mature than the Walash samples and both were subjected to moderate weathering. The seaway in the southern Neotethys Ocean was shallow during both Eocene and Oligocene permitting mixing of sediment from the volcanic arcs with sediment derived from the Arabian continental margin. The Walash and Naopurdan clastic rocks enhance an earlier tectonic model of the Zagros Suture Zone with their deposition occurring during the Eocene Walash calc-alkaline back-arc magmatism and Early Oligocene Naopurdan island arc magmatism in the final stages of intra-oceanic subduction before the Miocene closure and obduction of the Neotethys basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5750861-novel-pyropheophorbide-steryl-esters-black-sea-sediments','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5750861-novel-pyropheophorbide-steryl-esters-black-sea-sediments"><span>Novel pyropheophorbide steryl esters in Black Sea sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>King, L.L.; Repeta, D.J.</p> <p>1991-07-01</p> <p>A series of non-polar chlorophyll degradation products (NPCs) with greater than 10 components has been isolated from Black Sea sediment and identified as pyropheophorbide steryl esters by visible and mass spectrometry. These compounds have been previously observed in seawater and sediment trap samples, and may be formed during grazing of phytoplankton by zooplanktonic herbivores. In Black Sea sediments, NPCs constitute 14% of the total phorbins determined spectroscopically at 660 nm, and 39% of the total chlorophyll degradation products measured by high pressure liquid chromatography. NPCs therefore constitute a significant sedimentary sink for chlorophyll. The distribution of sterols released by hydrolysismore » of NPCs most closely resembles sterols in suspended particulate matter collected from the euphotic zone and is quite different from the distribution of solvent-extractable sterols in sediments. Sterols extracted from sediemtns have high concentrations of 4-methylsterols and high stanol/stenol ratios. BNPC-derived sterols have very low concentrations of 4-methylsterols and low stanol/stenol ratios. The authors suggest that these differences reflect an enhanced preservation of HPCs in sediments relative to free sterols and phorbins. As a result, the original production of sterols in the euphotic zone may be more closely approximated by the distribution of NPC-derived sterols than by the distribution of free sterols in sediments.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17111606','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17111606"><span>[Evaluating comprehensive quality of sediment in Dianchi Lake using adjusted AHP method and 137Cs dating].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Yan; Deng, Xi-Hai; Peng, Bu-Zhuo</p> <p>2006-08-01</p> <p>It is difficult to evaluate comprehensive quality of sediment and to understand development trend of pollution because of absence of monitoring data, especially history data. Combining the method of 137Cs dating with the ways of general sampling and measurement can easily resolve the problem of absence of data and also provide the possibility for calculating weighted environmental quality comprehensive index using the adjusted analytical hierarchy process (AHP) method. In order to overcome the willfulness the judgment matrix is formed objectively based on calculating monitoring data. Based on the monitoring data of sediment pollution and the weights of various factors gained by adjusted AHP method the comprehensive quality of sediment in each zone of Dianchi Lake was evaluated and the results indicated that the pollution of sediments in each zone at the present be serious more than that in the history. The condition may be related to the industrial development and distribution of industries in Dianchi Lake basin. Therefore, in order to improve the comprehensive quality of sediment in Dianchi Lake and to prevent the secondary pollution of heavy metals in sediment from happening, it is necessary to control the pollutants discharge and to remove the pollutants with various ways.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27750167','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27750167"><span>Mercury methylation and sulfate reduction rates in mangrove sediments, Rio de Janeiro, Brazil: The role of different microorganism consortia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Correia, Raquel Rose Silva; Guimarães, Jean Remy Davée</p> <p>2017-01-01</p> <p>Recent studies have shown Hg methylation in mangrove sediments, however, little is known about the different microorganism consortia involved. We investigated the participation of prokaryotes in general, iron-reducing bacteria-IRB, sulfate-reducing bacteria-SRB, methanogens and fungi in Hg methylation and sulfate reduction rates (SRR) in mangrove sediments using iron amendments for IRB and specific inhibitors for the other microorganisms. Sediment samples were collected from two mangrove zones, tidal flat and mangrove forest (named root sediments). Samples were incubated with 203 Hg or 35 SO 4 2- and Me 203 Hg/ 35 Sulfur were measured by liquid scintillation. Methylmercury (MeHg) formation was significantly reduced when SRB (87.7%), prokaryotes (76%) and methanogens (36.5%) were inhibited in root sediments, but only SRB (51.6%) and prokaryotes (57.3%) in tidal flat. However, in the tidal flat, inhibition of methanogens doubled Hg methylation (104.5%). All inhibitors (except fungicide) significantly reduced SRR in both zones. In iron amended tidal flat samples, Hg methylation increased 56.5% at 100 μg g -1 and decreased at 500 and 1000 μg g -1 (57.8 and 82%). In the roots region, however, MeHg formation gradually decreased in response to Fe amendments from 100 μg g -1 (37.7%) to 1000 μg g -1 (93%). SRR decreased in all iron amendments. This first simultaneous evaluation of Hg methylation and sulfate-reduction and of the effect of iron and inhibitors on both processes suggest that SRB are important Hg methylators in mangrove sediments. However, it also suggests that SRB activity could not explain all MeHg formation. This implies the direct or indirect participation of other microorganisms such as IRB and methanogens and a complex relationship among these groups. Copyright © 2016. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H13P..05K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H13P..05K"><span>Exploring the dynamic links between microbial ecology and redox state of the hyporheic zone: insight from flume experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaufman, M.; Cardenas, M. B.; Stegen, J.; Graham, E.; Cook, P. L. M.; Kessler, A. J.</p> <p>2016-12-01</p> <p>The hyporheic zone (HZ) provides key ecosystem services such as heavy metal sequestration, nutrient uptake and consumption, and habitat for a diverse collection of ecologically and commercially important species. Microbes are responsible for many of the chemical transformations in the HZ. These microbe populations are intimately linked to redox conditions, and recent work has shown that redox conditions in the HZ can be highly dynamic. Here we investigate the dynamic coupling between surface flow conditions, hyporheic redox conditions, and the hyporheic microbiome. Our window into this world is a large experimental flume (5m x 0.7m x 0.3m), prepared and incubated in a way that is relatively common to hyporheic zone research, without a strong attempt to impose a specific microbial community structure. We use computer-controlled flow combined with sand bedforms within the flume to generate a pattern of oxic and anoxic sediment zones, from which we collected sediment and water samples. Dissolved oxygen was mapped with a large planar optode. The samples were analyzed for microbial community composition through 16S rRNA gene sequencing. We compare the population structure between oxic and anoxic zones, showing that the presence of oxygen in the HZ is a strong predictor of microbial composition. Additionally, we compare both the oxic and anoxic community structure from the flume to those of samples taken from natural environments, showing both interesting similarities and differences. In the future, we plan to use time-series sampling to observe the response times of microbial communities subjected to dynamic surface channel flow and redox conditions. This work will yield greater understanding of the role that dynamic rivers play in microbe-provided ecosystem services.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H13P..05K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H13P..05K"><span>Exploring the dynamic links between microbial ecology and redox state of the hyporheic zone: insight from flume experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaufman, M.; Cardenas, M. B.; Stegen, J.; Graham, E.; Cook, P. L. M.; Kessler, A. J.</p> <p>2017-12-01</p> <p>The hyporheic zone (HZ) provides key ecosystem services such as heavy metal sequestration, nutrient uptake and consumption, and habitat for a diverse collection of ecologically and commercially important species. Microbes are responsible for many of the chemical transformations in the HZ. These microbe populations are intimately linked to redox conditions, and recent work has shown that redox conditions in the HZ can be highly dynamic. Here we investigate the dynamic coupling between surface flow conditions, hyporheic redox conditions, and the hyporheic microbiome. Our window into this world is a large experimental flume (5m x 0.7m x 0.3m), prepared and incubated in a way that is relatively common to hyporheic zone research, without a strong attempt to impose a specific microbial community structure. We use computer-controlled flow combined with sand bedforms within the flume to generate a pattern of oxic and anoxic sediment zones, from which we collected sediment and water samples. Dissolved oxygen was mapped with a large planar optode. The samples were analyzed for microbial community composition through 16S rRNA gene sequencing. We compare the population structure between oxic and anoxic zones, showing that the presence of oxygen in the HZ is a strong predictor of microbial composition. Additionally, we compare both the oxic and anoxic community structure from the flume to those of samples taken from natural environments, showing both interesting similarities and differences. In the future, we plan to use time-series sampling to observe the response times of microbial communities subjected to dynamic surface channel flow and redox conditions. This work will yield greater understanding of the role that dynamic rivers play in microbe-provided ecosystem services.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050060920','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050060920"><span>Application of Remote Sensing to Assess the Impact of Short Term Climate Variability on Coastal Sedimentation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Menzel, W. Paul; Huh, Oscar K.; Walker, Nan</p> <p>2004-01-01</p> <p>The purpose of this joint University of Wisconsin (UW) and Louisiana State University (LSU) project has been to relate short term climate variation to response in the coastal zone of Louisiana in an attempt to better understand how the coastal zone is shaped by climate variation. Climate variation in this case largely refers to variation in surface wind conditions that affect wave action and water currents in the coastal zone. The primary region of focus was the Atchafalaya Bay and surrounding bays in the central coastal region of Louisiana. Suspended solids in the water column show response to wind systems both in quantity (through resuspension) and in the pattern of dispersement or transport. Wind systems associated with cold fronts are influenced by short term climate variation. Wind energy was used as the primary signature of climate variation in this study because winds are a significant influence on sediment transport in the micro-tidal Gilf of Mexico coastal zone. Using case studies, the project has been able to investigate the influence of short term climate variation on sediment transport. Wind energy data, collected daily for National Weather Service (NWS) stations at Lake Charles and New Orleans, LA, were used as an indicator of short term climate variation influence on seasonal time scales. A goal was to relate wind energy to coastal impact through sediment transport. This goal was partially accomplished by combining remote sensing and wind energy data. Daily high resolution remote sensing observations are needed to monitor the complex coastal zone environment, where winds, tides, and water level all interact to influence sediment transport. The NASA Earth Observing System (EOS) era brings hope for documenting and revealing response of the complex coastal transport mosaic through regular high spatial resolution observations from the Moderate resolution Imaging Spectrometer (MODIS) instrument. MODIS observations were sampled in this project for information content and should continue to be viewed as a resource for coastal zone monitoring. The project initialized the effort to transfer a suspended sediment concentration (SSC) algorithm to the MODIS platform for case 2 waters. MODIS enables monitoring of turbid coastal zones around the globe. The MODIS SSC algorithm requires refinements in the atmospheric aerosol contribution, sun glint influence, and designation of the sediment inherent optical properties (IOPs); the framework for continued development is in place with a plan to release the algorithm to the MODIS direct broadcast community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25214629','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25214629"><span>Boundary condition of grounding lines prior to collapse, Larsen-B Ice Shelf, Antarctica.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rebesco, M; Domack, E; Zgur, F; Lavoie, C; Leventer, A; Brachfeld, S; Willmott, V; Halverson, G; Truffer, M; Scambos, T; Smith, J; Pettit, E</p> <p>2014-09-12</p> <p>Grounding zones, where ice sheets transition between resting on bedrock to full floatation, help regulate ice flow. Exposure of the sea floor by the 2002 Larsen-B Ice Shelf collapse allowed detailed morphologic mapping and sampling of the embayment sea floor. Marine geophysical data collected in 2006 reveal a large, arcuate, complex grounding zone sediment system at the front of Crane Fjord. Radiocarbon-constrained chronologies from marine sediment cores indicate loss of ice contact with the bed at this site about 12,000 years ago. Previous studies and morphologic mapping of the fjord suggest that the Crane Glacier grounding zone was well within the fjord before 2002 and did not retreat further until after the ice shelf collapse. This implies that the 2002 Larsen-B Ice Shelf collapse likely was a response to surface warming rather than to grounding zone instability, strengthening the idea that surface processes controlled the disintegration of the Larsen Ice Shelf. Copyright © 2014, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27802871','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27802871"><span>Nutrient fluxes across sediment-water interface in Bohai Bay Coastal Zone, China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mu, Di; Yuan, Dekui; Feng, Huan; Xing, Fangwei; Teo, Fang Yenn; Li, Shuangzhao</p> <p>2017-01-30</p> <p>Sediment cores and overlying water samples were collected at four sites in Tianjin Coastal Zone, Bohai Bay, to investigate nutrient (N, P and Si) exchanges across the sediment-water interface. The exchange fluxes of each nutrient species were estimated based on the porewater profiles and laboratory incubation experiments. The results showed significant differences between the two methods, which implied that molecular diffusion alone was not the dominant process controlling nutrient exchanges at these sites. The impacts of redox conditions and bioturbation on the nutrient fluxes were confirmed by the laboratory incubation experiments. The results from this study showed that the nutrient fluxes measured directly from the incubation experiment were more reliable than that predicted from the porewater profiles. The possible impacts causing variations in the nutrient fluxes include sewage discharge and land reclamation. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16899470','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16899470"><span>Determination of gamma-emitting radionuclides in the inter-tidal sediments off Balochistan (Pakistan) Coast, Arabian Sea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Akram, M; Qureshi, Riffat M; Ahmad, Nasir; Solaija, Tariq Jamal</p> <p>2007-01-01</p> <p>Natural radionuclide contents of 226Ra, 228Ra and (40)K were studied for inter-tidal sediments collected from selected locations off the745 km long Balochistan Coast using HPGe detector based gamma-spectrometry system. The sampling zone extends from the beaches of Sonmiani (near Karachi metropolis) through Jiwani (close to the border of Iran). The natural radioactivity levels detected in various sediment samples range from 14.4 +/- 2.5 to 36.6 +/- 3.8 Bq kg(-1) for 226Ra, 9.8 +/- 1.2 to 35.2 +/- 2.0 Bq kg(-1) for (228)Ra and 144.6 +/- 9.4 to 610.5 +/- 23.9 Bq kg(-1) for (40)K. No artificial radionuclide was detected in any of the marine coastal sediment samples. 137Cs, (60)Co, 106Ru and 144Ce contents in sediment samples were below the limit of detection. The measured radioactivity levels are compared with those reported in the literature for coastal sediments in other parts of the world. The information presented in this paper will serve as the first ever local radioactivity database for the Balochistan/Makran Coastal belt of Pakistan. The presented data will also contribute to the IAEA's, Asia-Pacific Marine Radioactivity Database (ASPAMARD) and the Global Marine Radioactivity Database (GLOMARD).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5176693-reservoir-vital-signs-monitoring-physical-chemical-characteristics-water-sediments','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5176693-reservoir-vital-signs-monitoring-physical-chemical-characteristics-water-sediments"><span>Reservoir vital signs monitoring, 1990: Physical and chemical characteristics of water and sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Meinert, D.L.</p> <p>1991-05-01</p> <p>As part of Tennessee Valley Authority's (TVA's) Reservoir Vital Signs Monitoring program, physical/chemical measurements of water and sediment were made in 1990 on twelve TVA reservoirs (the nine main steam Tennessee river reservoirs - Kentucky through Fort Loudoun and three major tributary reservoirs - Cherokee, Douglas, and Norris). The objective of this monitoring program is to assess the health or integrity of these aquatic ecosystems. The physical/chemical water quality data collected in 1990 showed the water quality of these reservoirs to be very good. However, hypolimnetic anoxia during the summer months in Watts bars, Douglas, and Cherokee reservoir continues tomore » be a concern. High concentrations of nutrients were measured in the transition zones of Cherokee and Douglas reservoirs, resulting in highly productive and eutrophic conditions in the transition zones of these reservoirs. Fecal coliform organisms were frequently detected in the forebay area of Guntersville reservoir, and higher than expected ammonia nitrogen concentrations were found at the transition zone of Wheeler reservoir. Elevated concentrations of mercury were found in Pickwick and Watts bar reservoir sediment, and high lead concentrations were found in a sediment sample collected from Guntersville reservoir. A TVA Reservoir Water Quality Index (RWQI) was developed and used to summarize water quality conditions on a scale from 0 (worst) to 100 (best).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29751318','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29751318"><span>Characterizing the capacity of hyporheic sediments to attenuate groundwater nitrate loads by adsorption.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Meghdadi, Aminreza</p> <p>2018-05-02</p> <p>Nitrate has been recognized as a global threat to environmental health. In this regard, the hyporheic zone (saturated media beneath and adjacent to the stream bed) plays a crucial role in attenuating groundwater nitrate, prior to discharge into surface water. While different nitrate removal pathways have been investigated over recent decades, the adsorption capacity of hyporheic sediments under natural conditions has not yet been identified. In this study, the natural attenuation capacity of the hyporheic-sediments of the Ghezel-Ozan River, located in the north-west of Iran, was determined. The sampled sediments (from 1 m below the stream bed) were characterized via XRD, FT-IR, BET, SEM, BJH, and Zeta potential. Nitrate adsorption was evaluated using a batch experiment with hyporheic pore-water from each study site. The study was performed in the hyporheic sediments of two morphologically different zones, including Z 1 located in the parafluvial zone having the clay sediment texture (57.8% clay) with smectite/Illite mixed layer clay type and Z 2 located in the river confluence area containing silty clay sediment texture (47.6% clay) with smectite/kaolinite mixed layer clay type. Data obtained from the batch experiment were subjected to pseudo-first order, pseudo-second order, intra-particle diffusion, and Elovich mass transfer kinetic models to characterize the nitrate adsorption mechanism. Furthermore, to replicate nitrate removal efficiencies of the hyporheic sediments under natural conditions, the sampled hyporheic pore-waters were applied as initial solutions to run the batch experiment. The results of the artificial nitrate solution correlated well with pseudo-second order (R 2 >95%; in both Z 1 and Z 2 ) and maximum removal efficiencies of 85.3% and 71.2% (adsorbent dosage 90 g/L, pH = 5.5, initial adsorbate concentration of 90 mg/L) were achieved in Z 1 and Z 2 , respectively. The results of the nitrate adsorption analysis revealed that the nitrate removal efficiencies varied from 17.24 ± 1.86% in Z 1 during the wet season to 28.13 ± 0.89% in Z 2 during the dry season. The results obtained by this study yielded strong evidence of the potential of hyporheic sediments to remove nitrate from an aqueous environment with great efficiency. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70100648','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70100648"><span>Dispersal of fine sediment in nearshore coastal waters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Warrick, Jonathan A.</p> <p>2013-01-01</p> <p>Fine sediment (silt and clay) plays an important role in the physical, ecological, and environmental conditions of coastal systems, yet little is known about the dispersal and fate of fine sediment across coastal margin settings outside of river mouths. Here I provide simple physical scaling and detailed monitoring of a beach nourishment project near Imperial Beach, California, with a high portion of fines (40% silt and clay by weight). These results provide insights into the pathways and residence times of fine sediment transport across a wave-dominated coastal margin. Monitoring of the project used physical, optical, acoustic, and remote sensing techniques to track the fine portion of the nourishment sediment. The initial transport of fine sediment from the beach was influenced strongly by longshore currents of the surf zone that were established in response to the approach angles of the waves. The mean residence time of fine sediment in the surf zone—once it was suspended—was approximately 1 hour, and rapid decreases in surf zone fine sediment concentrations along the beach resulted from mixing and offshore transport in turbid rip heads. For example, during a day with oblique wave directions and surf zone longshore currents of approximately 25 cm/s, the offshore losses of fine sediment in rips resulted in a 95% reduction in alongshore surf zone fine sediment flux within 1 km of the nourishment site. However, because of the direct placement of nourishment sediment on the beach, fine suspended-sediment concentrations in the swash zone remained elevated for several days after nourishment, while fine sediment was winnowed from the beach. Once offshore of the surf zone, fine sediment settled downward in the water column and was observed to transport along and across the inner shelf. Vertically sheared currents influenced the directions and rates of fine sediment transport on the shelf. Sedimentation of fine sediment was greatest on the seafloor directly offshore of the nourishment site. However, a mass balance of sediment suggests that the majority of the fine sediment moved far away (over 2 km) from the nourishment site or to water depths greater than 10 m, where fine sediment represents a substantial portion of the bed material. Thus, the fate of fine sediment in nearshore waters was influenced strongly by wave conditions, surf zone and rip current transport, and the vertical density and flow conditions of coastal waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2008/5169/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2008/5169/"><span>Laboratory-Measured and Property-Transfer Modeled Saturated Hydraulic Conductivity of Snake River Plain Aquifer Sediments at the Idaho National Laboratory, Idaho</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Perkins, Kim S.</p> <p>2008-01-01</p> <p>Sediments are believed to comprise as much as 50 percent of the Snake River Plain aquifer thickness in some locations within the Idaho National Laboratory. However, the hydraulic properties of these deep sediments have not been well characterized and they are not represented explicitly in the current conceptual model of subregional scale ground-water flow. The purpose of this study is to evaluate the nature of the sedimentary material within the aquifer and to test the applicability of a site-specific property-transfer model developed for the sedimentary interbeds of the unsaturated zone. Saturated hydraulic conductivity (Ksat) was measured for 10 core samples from sedimentary interbeds within the Snake River Plain aquifer and also estimated using the property-transfer model. The property-transfer model for predicting Ksat was previously developed using a multiple linear-regression technique with bulk physical-property measurements (bulk density [pbulk], the median particle diameter, and the uniformity coefficient) as the explanatory variables. The model systematically underestimates Ksat,typically by about a factor of 10, which likely is due to higher bulk-density values for the aquifer samples compared to the samples from the unsaturated zone upon which the model was developed. Linear relations between the logarithm of Ksat and pbulk also were explored for comparison.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993JSG....15..819Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993JSG....15..819Z"><span>The brittle-ductile transition in porous sedimentary rocks: geological implications for accretionary wedge aseismicity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Jiaxiang; Davis, Dan M.; Wong, Teng-Fong</p> <p>1993-07-01</p> <p>Thrusting earthquakes in subduction zones generally occur along only part of the plate boundary, with motion along the shallowest part of the plate boundary occurring ascismically. The maximum size of subduction boundary thrust earthquakes depends strongly upon the down-dip width of the seismogenic zone. The single most uncertain factor in determining that width is the location of the up-dip limit of the zone (the seismic front), which depends upon the mechanical state of the sedimentary rocks in the plate boundary zone. In order to come to a better understanding of the seismic potential of sediments in a subduction zone, we carried out a series of triaxial experiments on Berea and Kayenta sandstones. Based on our experimental data, a brittle-ductile transition map was constructed showing that both porosity and effective pressure are important factors controlling the transition from brittle to macroscopically ductile behavior in porous rocks. In the brittle field, a sample fails by shear localization on one slip plane accompanied by strain softening and dilatancy, whereas in the ductile field, a sample deforms homogeneously with a constant yield stress or slight hardening. By comparing such a map with the estimated porosity profile of an accretionary wedge, the likely nature and rough location of the boundary between brittle and ductile behavior can be inferred. If the sediments along a plate boundary are too young and undercompacted to be capable of brittle shear localization, then their deformation is likely to be aseismic. In this way, it may be possible for even a very broad fore-arcs to produce no great earthquakes. However, great earthquakes are to be expected at margins that have large zones of plate contact along which many sediments are compacted and well lithified. Such rocks are expected to be capable of shear localization and brittle failure with the potential for stick-slip behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP21A1825G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP21A1825G"><span>The spatial distribution of major and trace elements in the surface sediments from the northeastern Beibu Gulf, South China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ge, Q.; Xue, Z. G.</p> <p>2017-12-01</p> <p>Major and trace elements contents and grain size were analyzed for surface sediments retrieved from the northeastern Beibu (Tonkin) Gulf. The study area was divided into four zones: Zone I locates in the northeastern coastal area of the gulf, which received large amount of the fluvial materials from local rivers; Zone II locates in the center of the study area, where surface sediments is from multiple sources; Zone III locates in the Qiongzhou Strait, which is dominated by material from the Pearl River and Hainan Island; Zone IV locates in the southwest of the study area, and the sediments mainly originated from the Red River. Statistical analyses of sediment geochemical characteristics reveal that grain size is the leading factor for elementary distribution, which is also influenced by hydrodynamics, mineral composition of terrigenous sediments, anthropogenic activity, and authigenic components.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23036232','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23036232"><span>Freeze core sampling to validate time-lapse resistivity monitoring of the hyporheic zone.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Toran, Laura; Hughes, Brian; Nyquist, Jonathan; Ryan, Robert</p> <p>2013-01-01</p> <p>A freeze core sampler was used to characterize hyporheic zone storage during a stream tracer test. The pore water from the frozen core showed tracer lingered in the hyporheic zone after the tracer had returned to background concentration in collocated well samples. These results confirmed evidence of lingering subsurface tracer seen in time-lapse electrical resistivity tomographs. The pore water exhibited brine exclusion (ion concentrations in ice lower than source water) in a sediment matrix, despite the fast freezing time. Although freeze core sampling provided qualitative evidence of lingering tracer, it proved difficult to quantify tracer concentration because the amount of brine exclusion during freezing could not be accurately determined. Nonetheless, the additional evidence for lingering tracer supports using time-lapse resistivity to detect regions of low fluid mobility within the hyporheic zone that can act as chemically reactive zones of importance in stream health. © 2012, The Author(s). GroundWater © 2012, National Ground Water Association.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JSAES..27..197E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JSAES..27..197E"><span>Quantifying the seasonal variations in fluvial and eolian sources of terrigenous material to Cariaco Basin, Venezuela</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elmore, Aurora C.; Thunell, Robert C.; Styles, Richard; Black, David; Murray, Richard W.; Martinez, Nahysa; Astor, Yrene</p> <p>2009-02-01</p> <p>The varved sediments that accumulate in the Cariaco Basin provide a detailed archive of the region's climatic history, including a record of the quantity of fluvial and wind-transported material. In this study, we examine the sedimentological characteristics (clay mineralogy and grain size) of both surface sediments and sinking lithogenic material collected from sediment trap samples over a three-year period from 1997 to 2000. Data from biweekly sediment trap samples show a tri-modal particle size distribution, with prominent peaks at 2, 22 and 80 μm, indicating sediment contributions from both eolian and fluvial sources. The clay mineralogy of the water column samples collected from 1997 to 1999 also shows distinctive characteristics of eolian and fluvial material. An examination of surface sediment samples from the Cariaco Basin indicates that the Unare River is the main source of riverine sediments to the eastern sub-basin. By combining these sedimentological proxies, we estimate that ˜10% of the terrigenous material delivered to the Cariaco Basin is eolian, while ˜90% is fluvial. This represents an annual dust accumulation rate of ˜0.59 mg/cm 2/yr. Since aerosols are closely linked to climate variability, the ability to quantify paleo-dust fluxes using sedimentological characteristics will be a useful tool for future paleoclimate studies looking at sub-Saharan aridity and latitudinal migration of the Intertropical Convergence Zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019592','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019592"><span>Methylmercury oxidative degradation potentials in contaminated and pristine sediments of the Carson River, Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Oremland, R.S.; Miller, L.G.; Dowdle, P.; Connell, T.; Barkay, T.</p> <p>1995-01-01</p> <p>Sediments from mercury-contaminated and uncontaminated reaches of the Carson River, Nevada, were assayed for sulfate reduction, methanogenesis, denitrification, and monomethylmercury (MeHg) degradation. Demethylation of [14C]MeHg was detected at all sites as indicated by the formation of 14CO2 and 14CH4. Oxidative demethylation was indicated by the formation of 14CO2 and was present at significant levels in all samples. Oxidized/reduced demethylation product ratios (i.e., 14CO2/14CH4 ratios) generally ranged from 4.0 in surface layers to as low as 0.5 at depth. Production of 14CO2 was most pronounced at sediment surfaces which were zones of active denitrification and sulfate reduction but was also significant within zones of methanogenesis. In a core taken from an uncontaminated site having a high proportion of oxidized, coarse-grain sediments, sulfate reduction and methanogenic activity levels were very low and 14CO2 accounted for 98% of the product formed from [14C]MeHg. There was no apparent relationship between the degree of mercury contamination of the sediments and the occurrence of oxidative demethylation. However, sediments from Fort Churchill, the most contaminated site, were most active in terms of demethylation potentials. Inhibition of sulfate reduction with molybdate resulted in significantly depressed oxidized/reduced demethylation product ratios, but overall demethylation rates of inhibited and uninhibited samples were comparable. Addition of sulfate to sediment slurries stimulated production of 14CO2 from [14C]MeHg, while 2-bromoethanesulfonic acid blocked production of 14CH4. These results reveal the importance of sulfate-reducing and methanogenic bacteria in oxidative demethylation of MeHg in anoxic environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2015/5127/sir20155127.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2015/5127/sir20155127.pdf"><span>Characteristics of sediment transport at selected sites along the Missouri River, 2011–12</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rus, David L.; Galloway, Joel M.; Alexander, Jason S.</p> <p>2015-10-22</p> <p>The Modified-Einstein Procedure tended to predict greater total-sediment loads when compared to measured values. These differences may be the result of sediment deficits in the Missouri River that lead to an overprediction by the Modified-Einstein Procedure, the unsampled zone above the streambed that leads to an underprediction by the suspended sampler, or general uncertainty in the sampling approach. The differences between total-sediment load obtained through measurements and that estimated from applied theoretical procedures such as the Modified-Einstein Procedure pose a challenge for reliably characterizing total-sediment transport. Though it is not clear which of the two techniques is more accurate, the general tendency of the two to be within an order of magnitude of one another may be adequate for many sediment studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190330','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190330"><span>Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wang, Xiujuan; Hutchinson, Deborah R.; Wu, Shiguo; Yang, Shengxiong; Guo, Yiqun</p> <p>2011-01-01</p> <p>Gas hydrate saturations were estimated using five different methods in silt and silty clay foraminiferous sediments from drill hole SH2 in the South China Sea. Gas hydrate saturations derived from observed pore water chloride values in core samples range from 10 to 45% of the pore space at 190–221 m below seafloor (mbsf). Gas hydrate saturations estimated from resistivity (Rt) using wireline logging results are similar and range from 10 to 40.5% in the pore space. Gas hydrate saturations were also estimated by P wave velocity obtained during wireline logging by using a simplified three-phase equation (STPE) and effective medium theory (EMT) models. Gas hydrate saturations obtained from the STPE velocity model (41.0% maximum) are slightly higher than those calculated with the EMT velocity model (38.5% maximum). Methane analysis from a 69 cm long depressurized core from the hydrate-bearing sediment zone indicates that gas hydrate saturation is about 27.08% of the pore space at 197.5 mbsf. Results from the five methods show similar values and nearly identical trends in gas hydrate saturations above the base of the gas hydrate stability zone at depths of 190 to 221 mbsf. Gas hydrate occurs within units of clayey slit and silt containing abundant calcareous nannofossils and foraminifer, which increase the porosities of the fine-grained sediments and provide space for enhanced gas hydrate formation. In addition, gas chimneys, faults, and fractures identified from three-dimensional (3-D) and high-resolution two-dimensional (2-D) seismic data provide pathways for fluids migrating into the gas hydrate stability zone which transport methane for the formation of gas hydrate. Sedimentation and local canyon migration may contribute to higher gas hydrate saturations near the base of the stability zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.9911L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.9911L"><span>Use of a mixing model to investigate groundwater-surface water mixing and nitrogen biogeochemistry in the bed of a groundwater-fed river</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lansdown, Katrina; Heppell, Kate; Ullah, Sami; Heathwaite, A. Louise; Trimmer, Mark; Binley, Andrew; Heaton, Tim; Zhang, Hao</p> <p>2010-05-01</p> <p>The dynamics of groundwater and surface water mixing and associated nitrogen transformations in the hyporheic zone have been investigated within a gaining reach of a groundwater-fed river (River Leith, Cumbria, UK). The regional aquifer consists of Permo-Triassic sandstone, which is overlain by varying depths of glaciofluvial sediments (~15 to 50 cm) to form the river bed. The reach investigated (~250m long) consists of a series of riffle and pool sequences (Käser et al. 2009), with other geomorphic features such as vegetated islands and marginal bars also present. A network of 17 piezometers, each with six depth-distributed pore water samplers based on the design of Rivett et al. (2008), was installed in the river bed in June 2009. An additional 18 piezometers with a single pore water sampler were installed in the riparian zone along the study reach. Water samples were collected from the pore water samplers on three occasions during summer 2009, a period of low flow. The zone of groundwater-surface water mixing within the river bed sediments was inferred from depth profiles (0 to 100 cm) of conservative chemical species and isotopes of water with the collected samples. Sediment cores collected during piezometer installation also enabled characterisation of grain size within the hyporheic zone. A multi-component mixing model was developed to quantify the relative contributions of different water sources (surface water, groundwater and bank exfiltration) to the hyporheic zone. Depth profiles of ‘predicted' nitrate concentration were constructed using the relative contribution of each water source to the hyporheic and the nitrate concentration of the end members. This approach assumes that the mixing of different sources of water is the only factor controlling the nitrate concentration of pore water in the river bed sediments. Comparison of predicted nitrate concentrations (which assume only mixing of waters with different nitrate concentrations) with actual nitrate concentrations (measured from samples collected in the field) then allows patches of biogeochemical activity to be identified. The depth of the groundwater-surface water mixing zone was not uniform along the study reach or over the three sampling periods, varying from <10 to 50 cm in depth. The influence of factors such as the strength of groundwater upwelling, channel geomorphology, substrate composition (permeability) and river discharge on the extent of groundwater-surface mixing have been investigated. During the three field campaigns conducted, groundwater nitrate concentrations (100 cm) were higher than surface water nitrate concentrations (3.7 ± 0.4 mg N/L versus 2.0 ± 0.03 mg N/L; p < 0.001; n = 27), indicating that throughout the reach investigated groundwater will supply nitrate to the overlying water column unless nitrate attenuation occurs along the upwelling flow path. Actual (measured) pore water nitrate concentrations often differed from concentrations predicted using the mixing model, which suggests that biogeochemical transformations also affected nitrate concentrations in the hyporheic zone. The initial field data suggested that there were regions of both nitrate production and nitrate consumption in the subsurface sediments, and that these zones may extend beyond the depths commonly associated with the hyporheic zone. This research demonstrates that a multi-component mixing model can be used to identify possible hotspots of nitrate production or consumption in the bed of a groundwater-fed river. Käser, DH, Binley, A, Heathwaite, AL and Krause, S (2009) Spatio-temporal variations of hyporheic flow in a riffle-pool sequence. Hydrological Processes 23: 2138 - 2149. Rivett, MO, Ellis, PA, Greswell, RB, Ward, RS, Roche, RS, Cleverly, MG, Walker, C, Conran, D, Fitzgerald, PJ, Willcox, T and Dowle, J (2008) Cost-effective mini drive-point piezometers and multilevel samplers for monitoring the hyporheic zone. Quarterly Journal of Engineering Geology and Hydrogeology 41: 49 - 60.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2012/1157/title_page.html','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2012/1157/title_page.html"><span>Shallow geology, seafloor texture, and physiographic zones of the Inner Continental Shelf from Nahant to northern Cape Cod Bay, Massachusetts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pendleton, Elizabeth A.; Baldwin, Wayne E.; Barnhardt, Walter A.; Ackerman, Seth D.; Foster, David S.; Andrews, Brian D.; Schwab, William C.</p> <p>2013-01-01</p> <p>The Massachusetts inner continental shelf between Nahant and northern Cape Cod Bay has been profoundly affected by the occupation and retreat of glacial ice sheets and relative sea-level change during the Quaternary. Marine geologic mapping of this area is a component of a statewide cooperative effort involving the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management. Interpretation of high-resolution geophysical data (interferometric and multibeam swath bathymetry, lidar, backscatter, and seismic reflection), sediment samples, and bottom photographs was used to produce a series of maps that describe the distribution and texture of seafloor sediments, shallow geologic framework, and physiographic zones of this inner-shelf region. These data and interpretations are intended to aid efforts to inventory and manage coastal and marine resources, and provide baseline information for research focused on coastal evolution and environmental change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024037','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024037"><span>Linking hyporheic flow and nitrogen cycling near the Willamette River - A large river in Oregon, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hinkle, S.R.; Duff, J.H.; Triska, F.J.; Laenen, A.; Gates, E.B.; Bencala, K.E.; Wentz, D.A.; Silva, S.R.</p> <p>2001-01-01</p> <p>Several approaches were used to characterize ground water/surface water interactions near the Willamette River - A large (ninth order) river in Oregon, USA. A series of potentiometric surface maps demonstrated the presence of highly dynamic hydraulic gradients between rivers and the adjacent aquifer. Hyporheic zone gradients extended on the order of hundreds of meters. River gains and losses at the river stretch scale (tens of kilometers) were consistent with fluxes implied by the potentiometric surface maps, and apparently reflect regional ground water/surface water interactions. Gains and losses of up to 5-10% of streamflow were observed at this scale. On the river reach scale (1-2 km), gains and losses on the order of 5% of streamflow were interpreted as representing primarily local hyporheic exchange. Isotopic and chemical data collected from shallow hyporheic zone wells demonstrated interaction between regional ground water and river water. The origin of sampled hyporheic zone water ranged from a mixture dominated by regional ground water to water containing 100% river water. The common assumption that ground and river water mix primarily in the river channel is not applicable in this system. Isotopic and chemical data also indicated that significant (nearly complete) vegetative nitrate uptake and/or nitrate reduction occurred in water from 4 of 12 hyporheic zone sites. In these cases, it was primarily nitrate transported to the hyporheic zone in regional ground water that was removed from solution. Isotopes of water and nitrate indicated that hyporheic zone water sampled at two sites was composed of water originating as river water and demonstrated that significant vegetative nitrate uptake and nitrate reduction occurred along these hyporheic zone flowpaths. Thus, the hyporheic zone may, in some instances, serve to remove nitrate from river water. Additional investigations with chemical tools and microbial enzyme assays were conducted at one hyporheic site. A strong vertical redox gradient was observed, with nitrate-limited denitrification potential in deeper sediment and both nitrification and denitrification potential in shallower sediment. Since nitrogen cycling is strongly affected by redox conditions, nitrogen cycling in the hyporheic zone of this large-river system likely is affected by dynamics of ground water/surface water interactions that control fluxes of nitrogen and other redox species to hyporheic zone sediment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=235359&keyword=dead&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=235359&keyword=dead&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Analysis of archaeal communities in Gulf of Mexico dead zone sediments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Sediments may contribute significantly to Louisiana continental shelf “dead zone” hypoxia but limited information hinders comparison of sediment biogeochemistry between norm-oxic and hypoxic seasons. Dead zone sediment cores collected during hypoxia (September 2006) had higher l...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeCoA.213..155W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeCoA.213..155W"><span>Lithium isotopes and implications on chemical weathering in the catchment of Lake Donggi Cona, northeastern Tibetan Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weynell, Marc; Wiechert, Uwe; Schuessler, Jan A.</p> <p>2017-09-01</p> <p>This study presents lithium (Li) isotope ratios (δ7Li) for rocks, sediments, suspended particulate material, and dissolved Li from the Lake Donggi Cona catchment, located on the northeastern Tibetan Plateau, China. The average δ7Li = +1.9‰ of the bedrocks is estimated from local loess. δ7Li values decrease progressively within the sediment cascade from loess, to river and lake floor sediments. The lake floor sediments average at -0.7‰. The difference between bedrock and lake sediments reflects the preferential fractionation of dissolved 6Li into clay minerals (mostly illite) in the weathering zone and grain-size sorting during fluvial sediment transport. The δ7Li values of stream and lake water samples range from +13.6 to +20.8‰, whereas thermal waters fall between +5.9 and +11.6‰. The δ7Li values of lake water samples are close to +17‰ and reflect mixing of waters from two perennial inflows and thermal waters. Dissolved Li in streams represents an integrated isotopic signal derived from soil solutions in the weathering zone. An apparent isotopic fractionation of -17.8 ± 1.6‰ (αsec-sol ∼ 0.982) between secondary minerals and solution was determined. An inflow that drains a sub-catchment in the north carries a high proportion of thermal waters. Despite of the high proportion of admixed thermal waters with high Li concentrations and low δ7Li, this stream has the highest δ7Li values of about +21‰. This is consistent with admixing of thermal waters to solutions in the weathering zone and subsequent fractionation by preferential uptake of isotopically light dissolved Li into secondary phases. Based on Li isotope ratios of the dissolved and solid export flux from the weathering zone we calculated that around five times more Li is exported in particles than dissolved in streams. An average δ7Li value of about +17‰ of most streams and the lake is reflecting a low weathering intensity and chemical weathering rate of about 4 t/km2/a. Low weathering rates and an erosion dominated weathering system are consistent with moderate precipitations, the cold climate, and the high relief of the study area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.C11A1062U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.C11A1062U"><span>Origin Of Methane Gas And Migration Through The Gas Hydrate Stability Zone Beneath The Permafrost Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uchida, T.; Waseda, A.; Namikawa, T.</p> <p>2005-12-01</p> <p>In 1998 and 2002 Mallik wells were drilled at Mackenzie Delta in the Canadian Arctic that clarified the characteristics of gas hydrate-dominant sandy layers at depths from 890 to 1110 m beneath the permafrost zone. Continuous downhole well log data as well as visible gas hydrates have confirmed pore-space hydrate as intergranular pore filling within sandy layers whose saturations are up to 80% in pore volume, but muddy sediments scarcely contain. Plenty of gas hydrate-bearing sand core samples have been obtained from the Mallik wells. According to grain size distributions pore-space hydrate is dominant in medium- to very fine-grained sandy strata. Methane gas accumulation and original pore space large enough to occur within host sediments may be required for forming highly saturated gas hydrate in pore system. The distribution of a porous and coarser-grained host rock should be one of the important factors to control the occurrence of gas hydrate, as well as physicochemical conditions. Subsequent analyses in sedimentology and geochemistry performed on gas hydrate-bearing sandy core samples also revealed important geologic and sedimentological controls on the formation and concentration of natural gas hydrate. This appears to be a similar mode for conventional oil and gas accumulations. It is necessary for investigating subsurface fluid flow behaviors to evaluate both porosity and permeability of gas hydrate-bearing sandy sediments, and the measurements of water permeability for them indicate that highly saturated sands may have permeability of a few millidarcies. The isotopic data of methane show that hydrocarbon gas contained in gas hydrate is generated by thermogenic decomposition of kerogen in deep mature sediments. Based on geochemical and geological data, methane is inferred to migrate upward closely associated with pore water hundreds of meters into and through the hydrate stability zone partly up to the permafrost zone and the surface along faults and permeable sandy pathways. It should be remarked that there are many similar features in appearance and characteristics between the terrestrial and deep marine areas such as Nankai Trough with observations of well-interconnected and highly saturated pore-space hydrate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27090527','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27090527"><span>Spatial distribution and risk assessment of heavy metals and As pollution in the sediments of a shallow lake.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Deng, Jiancai; Wang, Yuansheng; Liu, Xin; Hu, Weiping; Zhu, Jinge; Zhu, Lin</p> <p>2016-05-01</p> <p>The concentrations and spatial distributions of eight heavy metals in surface sediments and sediment core samples from a shallow lake in China were investigated to evaluate the extent of the contamination and potential ecological risks. The results showed that the heavy metal concentrations were higher in the northern and southwestern lake zones than those in the other lake zones, with lower levels of As, Hg, Zn, Cu, Pb, Cr, and Ni primarily observed in the central and eastern lake regions and Cd primarily confined to areas surrounding the lake. The concentrations of the eight heavy metals in the sediment profiles tended to decrease with increasing sediment depth. The contents of Ni, Cu, Zn, Pb, and Cd in the surface sediment were approximately 1.23-18.41-fold higher than their background values (BVs), whereas the contents of Cr, As, and Hg were nearly identical to their BVs. The calculated pollution load index (PLI) suggested that the surface sediments of this lake were heavily polluted by these heavy metals and indicated that Cd was a predominant contamination factor. The comprehensive potential ecological risk index (PERI) in the surface sediments ranged from 99.2 to 2882.1, with an average of 606.1. Cd contributed 78.7 % to the PERI, and Hg contributed 8.4 %. Multivariate statistical analyses revealed that the surface sediment pollution with heavy metals mainly originated from industrial wastewater discharged by rivers located in the western and northwestern portion of the lake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036049','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036049"><span>Permeability-porosity relationships of subduction zone sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gamage, Kusali; Screaton, Elizabeth; Bekins, B.; Aiello, I.</p> <p>2011-01-01</p> <p>Permeability-porosity relationships for sediments from the northern Barbados, Costa Rica, Nankai, and Peru subduction zones were examined based on sediment type, grain size distribution, and general mechanical and chemical compaction history. Greater correlation was observed between permeability and porosity in siliciclastic sediments, diatom oozes, and nannofossil chalks than in nannofossil oozes. For siliciclastic sediments, grouping of sediments by percentage of clay-sized material yields relationships that are generally consistent with results from other marine settings and suggests decreasing permeability as percentage of clay-sized material increases. Correction of measured porosities for smectite content improved the correlation of permeability-porosity relationships for siliciclastic sediments and diatom oozes. The relationship between permeability and porosity for diatom oozes is very similar to the relationship in siliciclastic sediments, and permeabilities of both sediment types are related to the amount of clay-size particles. In contrast, nannofossil oozes have higher permeability values by 1.5 orders of magnitude than siliciclastic sediments of the same porosity and show poor correlation between permeability and porosity. More indurated calcareous sediments, nannofossil chalks, overlap siliciclastic permeabilities at the lower end of their measured permeability range, suggesting similar consolidation patterns at depth. Thus, the lack of correlation between permeability and porosity for nannofossil oozes is likely related to variations in mechanical and chemical compaction at shallow depths. This study provides the foundation for a much-needed global database with fundamental properties that relate to permeability in marine settings. Further progress in delineating controls on permeability requires additional carefully documented permeability measurements on well-characterized samples. ?? 2010 Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/0999','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/0999"><span>Sedimentologic characteristics of recent washover deposits from Assateague Island, Maryland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bernier, Julie C.; Zaremba, Nicholas J.; Wheaton, Cathryn J.; Ellis, Alisha M.; Marot, Marci E.; Smith, Christopher G.</p> <p>2016-06-08</p> <p>This report describes sediment data collected using sand augers in active overwash zones on Assateague Island in Maryland. Samples were collected by the U.S. Geological Survey (USGS) during two surveys in March/April and October 2014 (USGS Field Activity Numbers [FAN] 2014-301-FA and 2014-322-FA, respectively). The physical characteristics (for example, sediment texture or bedding structure) of and spatial differences among these deposits will provide information about overwash processes and sediment transport from the sandy barrier-island reaches to the back-barrier environments. Metrics derived from these data, such as mean grain size or deposit thicknesses, can be used to ground-truth remote sensing and geophysical data and can also be incorporated into sediment transport models. Data products, including sample location tables, descriptive core logs, core photographs and x-radiographs, the results of sediment grain-size analyses, and Geographic Information System (GIS) data files with accompanying formal Federal Geographic Data Committee (FGDC) metadata can be downloaded from the Data Downloads page.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3317506','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3317506"><span>Characterization of Metabolically Active Bacterial Populations in Subseafloor Nankai Trough Sediments above, within, and below the Sulfate–Methane Transition Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mills, Heath J.; Reese, Brandi Kiel; Shepard, Alicia K.; Riedinger, Natascha; Dowd, Scot E.; Morono, Yuki; Inagaki, Fumio</p> <p>2012-01-01</p> <p>A remarkable number of microbial cells have been enumerated within subseafloor sediments, suggesting a biological impact on geochemical processes in the subseafloor habitat. However, the metabolically active fraction of these populations is largely uncharacterized. In this study, an RNA-based molecular approach was used to determine the diversity and community structure of metabolically active bacterial populations in the upper sedimentary formation of the Nankai Trough seismogenic zone. Samples used in this study were collected from the slope apron sediment overlying the accretionary prism at Site C0004 during the Integrated Ocean Drilling Program Expedition 316. The sediments represented microbial habitats above, within, and below the sulfate–methane transition zone (SMTZ), which was observed approximately 20 m below the seafloor (mbsf). Small subunit ribosomal RNA were extracted, quantified, amplified, and sequenced using high-throughput 454 pyrosequencing, indicating the occurrence of metabolically active bacterial populations to a depth of 57 mbsf. Transcript abundance and bacterial diversity decreased with increasing depth. The two communities below the SMTZ were similar at the phylum level, however only a 24% overlap was observed at the genus level. Active bacterial community composition was not confined to geochemically predicted redox stratification despite the deepest sample being more than 50 m below the oxic/anoxic interface. Genus-level classification suggested that the metabolically active subseafloor bacterial populations had similarities to previously cultured organisms. This allowed predictions of physiological potential, expanding understanding of the subseafloor microbial ecosystem. Unique community structures suggest very diverse active populations compared to previous DNA-based diversity estimates, providing more support for enhancing community characterizations using more advanced sequencing techniques. PMID:22485111</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009Geomo.113..129C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009Geomo.113..129C"><span>Diagnostic heavy minerals in Plio-Pleistocene sediments of the Yangtze Coast, China with special reference to the Yangtze River connection into the sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Jing; Wang, Zhanghua; Chen, Zhongyuan; Wei, Zixin; Wei, Taoyuan; Wei, Wei</p> <p>2009-12-01</p> <p>This present study revealed five heavy mineral zones in the Yangtze coastal borehole sediments. Ilmenite, garnet and zircon suite of Zone I of the Pliocene characterizes the derivation of basaltic bedrock and local andesitic-granitic rocks. Indicative limonite in the Zone I sediments formed as alluvial fan facies shows strong chemical weathering. The assemblage of amphibole, straurolite, kyanite and idocrase of metamorphic derivation, together with a few zircon and tourmaline of andesitic-granitic origin in Zone II, represents the extension of sediment sources to the lower and middle Yangtze basin in Early Pleistocene as the study area subsided. Also, the braided to meandering riverine facies demonstrates a longer distance sediment transport. Few heavy minerals remained in Zone III of Mid-Pleistocene, when mottled thicker stiff mud occurred as the lacustrine facies, suggesting a quasi-coastal floodplain with lower capability of sediment transport. Heavy minerals appeared significant and continuous in Zone IV of Late Pleistocene, when changing to the shallow marine facies, inferring much extended sediment sources to the upper Yangtze. Hypersthene, identified primarily in Zone IV, was closely associated with the Er-Mei Mountain tholeiite basalt of the upper Yangtze. Heavy minerals of Zone V remained almost the same as IV during Holocene, when the modern delta evolved. The heavy minerals suggested the timing of the Yangtze connection to the sea at ca 0.12 Ma BP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29866566','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29866566"><span>Dangerous compounds in the dredged material from the sea - Assessment of the current approach to the evaluation of contaminations based on the data from the Polish coastal zone (the Baltic Sea).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Staniszewska, Marta; Boniecka, Helena</p> <p>2018-05-01</p> <p>It has been shown that the current approach to the assessment of contamination in the sediments obtained during the dredging works in the Baltic countries indicates the presence of "non-contaminated" dredged material. The concentration limits of heavy metals, Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs) have been exceeded only in 1% of the samples obtained during the dredging works (2005-2015) within the Polish coastal zone. After 2008, no contaminated sediments have been found. Also, in the remaining Baltic countries, sediments are very rarely contaminated. As a result of this assessment, the sediments can be stored in the sea or have a practical application. However, it has been questioned whether the large cost of determining the numerous chemical parameters is justified. It has been proposed to carry out simple screening tests. Following the preliminary screening, the decision on more detailed (and expensive) chemical tests of individual pollutants would be made. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20493528','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20493528"><span>Microphytobenthos in ecotoxicology: a review of the use of marine benthic diatoms in bioassays.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Araújo, Cristiano V M; Blasco, Julián; Moreno-Garrido, Ignacio</p> <p>2010-08-01</p> <p>Contamination in coastal zones is an increasing problem that adversely affects biological diversity and the functioning of coastal ecosystems. Sediment is an important compartment of these zones since large quantities of diverse contaminants can accumulate there. Whole-sediment toxicity assays are of increasing importance, and several assay methods using mainly invertebrates have been developed. However, an important part of the benthic community, the microphytobenthos (represented principally by benthic diatoms and cyanobacteria), has surprisingly been neglected. Recently, comprehensive studies have been conducted using benthic marine microalgae with the object of establishing a toxicity assay method for sediment samples. The main results published to date in the literature and obtained by our own team have been compiled and are discussed in this review. The value and feasibility of using certain organisms of the microphytobenthos group in ecotoxicology studies are also discussed, and a sediment quality guideline based on multivariate procedure has been derived from data obtained in previous studies. Finally, future perspectives for research in this field are discussed. Copyright 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1772/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1772/"><span>Groundwater-quality data and regional trends in the Virginia Coastal Plain, 1906-2007</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McFarland, Randolph E.</p> <p>2010-01-01</p> <p>A newly developed regional perspective of the hydrogeology of the Virginia Coastal Plain incorporates updated information on groundwater quality in the area. Local-scale groundwater-quality information is provided by a comprehensive dataset compiled from multiple Federal and State agency databases. Groundwater-sample chemical-constituent values and related data are presented in tables, summaries, location maps, and discussions of data quality and limitations. Spatial trends in groundwater quality and related processes at the regional scale are determined from interpretive analyses of the sample data. Major ions that dominate the chemical composition of groundwater in the deep Piney Point, Aquia, and Potomac aquifers evolve eastward and with depth from (1) 'hard' water, dominated by calcium and magnesium cations and bicarbonate and carbonate anions, to (2) 'soft' water, dominated by sodium and potassium cations and bicarbonate and carbonate anions, and lastly to (3) 'salty' water, dominated by sodium and potassium cations and chloride anions. Chemical weathering of subsurface sediments is followed by ion exchange by clay and glauconite, and subsequently by mixing with seawater along the saltwater-transition zone. The chemical composition of groundwater in the shallower surficial and Yorktown-Eastover aquifers, and in basement bedrock along the Fall Zone, is more variable as a result of short flow paths between closely located recharge and discharge areas and possibly some solutes originating from human sources. The saltwater-transition zone is generally broad and landward-dipping, based on groundwater chloride concentrations that increase eastward and with depth. The configuration is convoluted across the Chesapeake Bay impact crater, however, where it is warped and mounded along zones having vertically inverted chloride concentrations that decrease with depth. Fresh groundwater has flushed seawater from subsurface sediments preferentially around the impact crater as a result of broad contrasts between sediment permeabilities. Paths of differential flushing are also focused along the inverted zones, which follow stratigraphic and structural trends southeastward into North Carolina and northeastward beneath the chloride mound across the outer impact crater. Brine within the inner impact crater has probably remained unflushed. Regional movement of the saltwater-transition zone takes place over geologic time scales. Localized movement has been induced by groundwater withdrawal, mostly along shallow parts of the saltwater-transition zone. Short-term episodic withdrawals result in repeated cycles of upconing and downconing of saltwater, which are superimposed on longer-term lateral saltwater intrusion. Effective monitoring for saltwater intrusion needs to address multiple and complexly distributed areas of potential intrusion that vary over time. A broad belt of large groundwater fluoride concentrations underlies the city of Suffolk, and thins and tapers northward. Fluoride in groundwater probably originates by desorbtion from phosphatic sedimentary material. The high fluoride belt possibly was formed by initial adsorbtion of fluoride onto sediment oxyhydroxides, followed by desorbtion along the leading edge of the advancing saltwater-transition zone. Large groundwater iron and manganese concentrations are most common to the west along the Fall Zone, across part of the saltwater-transition zone and eastward, and within shallow groundwater far to the east. Iron and manganese initially produced by mineral dissolution along the Fall Zone are adsorbed eastward and with depth by clay and glauconite, and subsequently desorbed along the leading edge of the advancing saltwater-transition zone. Iron and manganese in shallow groundwater far to the east are produced by reaction of sediment organic matter with oxyhydroxides. Large groundwater nitrate and ammonium concentrations are mostly limited to shallow depths. Most nitrate a</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2007/1180/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2007/1180/"><span>Organic Geochemistry of Sediments in Nearshore Areas of the Mississippi and Atchafalaya Rivers: I. General Organic Characterization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Orem, William H.; Rosenbauer, Robert J.; Swarzenski, Peter W.; Lerch, Harry E.; Corum, Margo D.; Bates, Anne L.</p> <p>2007-01-01</p> <p>This report presents results on the general organic characteristics of sediment cores collected from the coastal zone of the Mississippi River system, including distributions of the important nutrient elements (C, N, P, and S). This was part of a larger study conducted from 2001-2005 to examine the delivery of sediment-associated contaminants to the Gulf of Mexico by the Mississippi River system, funded by the USGS Coastal and Marine Geology Program. Companion reports emphasize organic contaminants (Rosenbauer and others, 2006), and metals (Swarzenski and others, 2006). The level of contamination within the deltaic system of the Mississippi River system was determined through the collection of sediment cores from interdistributary bays, and offshore in the Gulf of Mexico, including the zone of hypoxia. Results provide the basis for reconstructing contaminant inventories from which to develop historic perspectives on nutrient loading and hypoxia, and to better understand how sediment-hosted contaminants either directly or indirectly move through biota and ultimately affect ecosystem health. Concentrations of C, N, P, and S in sediments varied by a factor of 10 between sites, and in down core profiles. Nearshore cores collected in 2001 proved to have erratic downcore C, N, P, and S profiles and sediment deposition rates, suggesting a high energy regime controlled more by variability in river flow rather than by geochemical processes and reactions within the system. These results focused further coring activities further offshore. Atomic C/N ratios suggest that organic matter deposited at all sites is a mix of microbial (algal) and terrestrial (vascular plant) remains, but with algal material dominant. Concentrations of total sulfur in sediments from cores in the zone of hypoxia were often higher than those in nearby zones with oxic water columns. Corresponding atomic C/S ratios were typically lower in sediments from sites in the zone of hypoxia compared to nearby sites with oxic water columns, and thus atomic C/S values may be useful as a proxy for identifying sites impacted by hypoxic conditions in the water column and for examining historical trends in hypoxia. At one site examined in this study, maximum hypoxic conditions were observed in the mid 1960's. The organic elemental composition (C, N, P, and S) of sediments was also used to guide sample selection for contaminant analysis, and to normalize the contaminant data to organic C content of the sediments. Dissolved hydrocarbon gases in sediments showed a dominance of methane, but identifiable concentrations of ethane and hexane, and trace concentrations of propane, butane, and pentane were also detected. All dissolved gases except hexane were dominated by 'bound' gas, gas released only after agitation of the sediment in a blender. Hexane, in contrast was observed mostly as free gas, determined by headspace analysis.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014009','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014009"><span>High-frequency sediment-level oscillations in the swash zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sallenger, A.H.; Richmond, B.M.</p> <p>1984-01-01</p> <p>Sediment-level oscillations with heights of about 6 cm and shore-normal lengths of order 10 m have been measured in the swash zone of a high-energy, coarse-sand beach. Crests of oscillations were shore parallel and continuous alongshore. The oscillations were of such low steepness (height-to-length ratio approximately 0.006) that they were difficult to detect visually. The period of oscillation ranged between 6 and 15 min and decreased landward across the swash zone. The sediment-level oscillations were progressive landward with an average migration rate in the middle to upper swash zone of 0.8 m min-1. Migration was caused mostly by erosion on the seaward flank of the crest of an oscillation during a period of net seaward sediment transport. Thus, the observed migration was a form migration landward rather than a migration involving net landward sediment transport. The observed sediment-level oscillations were different than sand waves or other swash-zone bedforms previously described. ?? 1984.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ECSS..199...14E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ECSS..199...14E"><span>A novel method for sampling the suspended sediment load in the tidal environment using bi-directional time-integrated mass-flux sediment (TIMS) samplers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elliott, Emily A.; Monbureau, Elaine; Walters, Glenn W.; Elliott, Mark A.; McKee, Brent A.; Rodriguez, Antonio B.</p> <p>2017-12-01</p> <p>Identifying the source and abundance of sediment transported within tidal creeks is essential for studying the connectivity between coastal watersheds and estuaries. The fine-grained suspended sediment load (SSL) makes up a substantial portion of the total sediment load carried within an estuarine system and efficient sampling of the SSL is critical to our understanding of nutrient and contaminant transport, anthropogenic influence, and the effects of climate. Unfortunately, traditional methods of sampling the SSL, including instantaneous measurements and automatic samplers, can be labor intensive, expensive and often yield insufficient mass for comprehensive geochemical analysis. In estuaries this issue is even more pronounced due to bi-directional tidal flow. This study tests the efficacy of a time-integrated mass sediment sampler (TIMS) design, originally developed for uni-directional flow within the fluvial environment, modified in this work for implementation the tidal environment under bi-directional flow conditions. Our new TIMS design utilizes an 'L' shaped outflow tube to prevent backflow, and when deployed in mirrored pairs, each sampler collects sediment uniquely in one direction of tidal flow. Laboratory flume experiments using dye and particle image velocimetry (PIV) were used to characterize the flow within the sampler, specifically, to quantify the settling velocities and identify stagnation points. Further laboratory tests of sediment indicate that bidirectional TIMS capture up to 96% of incoming SSL across a range of flow velocities (0.3-0.6 m s-1). The modified TIMS design was tested in the field at two distinct sampling locations within the tidal zone. Single-time point suspended sediment samples were collected at high and low tide and compared to time-integrated suspended sediment samples collected by the bi-directional TIMS over the same four-day period. Particle-size composition from the bi-directional TIMS were representative of the array of single time point samples, but yielded greater mass, representative of flow and sediment-concentration conditions at the site throughout the deployment period. This work proves the efficacy of the modified bi-directional TIMS design, offering a novel tool for collection of suspended sediment in the tidally-dominated portion of the watershed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5676963-sedimentation-kane-fracture-zone-western-north-atlantic','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5676963-sedimentation-kane-fracture-zone-western-north-atlantic"><span>Sedimentation in the Kane fracture zone, western North Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jaroslow, G.E.</p> <p>1991-03-01</p> <p>The Kane fracture zone, a deep narrow trough in oceanic crust, has provided an ideal depocenter for reservation on the seismic stratigraphic record of the North Atlantic basin. The acoustic stratigraphy in single-channel and multichannel seismic reflection profiles crossing the Kane fracture zone in the western North Atlantic has been examined in order to scrutinize age processes within a fracture zone. Maps of total sediment thickness have provided insight into overall sediment distribution and the influence of topography on sedimentation. Eight reflectors have been traced and correlated with lithostratigraphy at Deep Sea Drilling Project (DSDP) sites. The Bermuda Rise, amore » prominent topographic feature, has had a profound effect on the distribution of sediments within the fracture zone. Since late Eocene, the rise has blocked transport by turbidity currents of terrigenous sediments to distal portions of the fracture valley. A 1,000-m-thick turbidite pond within the fracture zone east of the Bermuda Rise has been determined to have been derived from local sources. Within the ponded sequence a seismic discontinuity is estimated to be early Oligocene and postdates the emergence of the Bermuda Rise, adding an independent age constraint on the development of the rise. The pond terminates against a structural dam at 55{degree}20W, east of which the fracture zone is essentially sediment starved.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA571375','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA571375"><span>Improved Monitoring Methods for Performance Assessment During Remediation of DNAPL Source Zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-04-01</p> <p>partitioning behavior of TCE (Schwarzenbach et al. 2003). Kile et al. (1995) determined that the Koc values for two chlorinated solvents in the... Kile et al. (1995) that the sediment organic matter was less polar than the terrestrial material. This difference in polarity was assumed by Kile et al...of reasoning was tested further by Kile et al. (1999), who first related carbon functional group contents of whole soil and sediment samples with</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26803740','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26803740"><span>Flow regulation manipulates contemporary seasonal sedimentary dynamics in the reservoir fluctuation zone of the Three Gorges Reservoir, China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tang, Qiang; Bao, Yuhai; He, Xiubin; Fu, Bojie; Collins, Adrian L; Zhang, Xinbao</p> <p>2016-04-01</p> <p>Since the launch of the Three Gorges Dam on the Yangtze River, a distinctive reservoir fluctuation zone has been created and significantly modified by regular dam operations. Sediment redistribution within this artificial landscape differs substantially from that in natural fluvial riparian zones, due to a specific hydrological regime comprising steps of water impoundment with increasing magnitudes and seasonal water level fluctuation holding a range of sediment fluxes. This study reinterpreted post-dam sedimentary dynamics in the reservoir fluctuation zone by stratigraphy determination of a 345-cm long sediment core, and related it to impact of the hydrological regime. Seasonality in absolute grain-size composition of suspended sediment was applied as a methodological basis for stratigraphic differentiation. Sedimentary laminations with relatively higher proportions of sandy fractions were ascribed to sedimentation during the dry season when proximal subsurface bank erosion dominates source contributions, while stratigraphy with a lower proportion of sandy fractions is possibly contributed by sedimentation during the wet season when distal upstream surface erosion prevails. Chronology determination revealed non-linear and high annual sedimentation rates ranging from 21.7 to 152.1cm/yr. Although channel geomorphology may primarily determine the spatial extent of sedimentation, seasonal sedimentary dynamics was predominantly governed by the frequency, magnitude, and duration of flooding. Summer inundation by natural floods with enhanced sediment loads produced from upstream basins induced higher sedimentation rates than water impoundment during the dry season when distal sediment supply was limited. We thus conclude that flow regulation manipulates contemporary seasonal sedimentary dynamics in the reservoir fluctuation zone, though little impact on total sediment retention rate was detected. Ongoing reductions in flow and sediment supply under human disturbance may have profound implications in affecting sedimentary equilibrium in the reservoir fluctuation zone. The results herein provide insights of how big dams have disrupted the sediment conveyance processes of large scale fluvial systems. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22263906','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22263906"><span>Detection of methanogenic archaea in the pitchers of the Northern pitcher plant (Sarracenia purpurea ).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Krieger, Joseph R; Kourtev, Peter S</p> <p>2012-02-01</p> <p>Carnivorous plants of the genus Sarracenia rely on microorganisms in their pitchers to decompose drowned insects. The environment inside pitchers is considered to be aerobic; however, there might be zones, such as at the bottom of the pitcher, where anaerobic conditions develop. Samples of the sediment at the bottom of Sarracenia purpurea pitchers were analyzed for the presence of archaea, using PCR and sequencing of the 16S rRNA gene. Archaeal DNA was detected in 20% of sampled pitchers. All sequences were closely related to Methanobrevibacter . Therefore, pitchers may contain anoxic zones inhabited by methanogens.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS23A1372M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS23A1372M"><span>Texture, mineralogy and geochemistry of the continental slope sediments in front of Los Tuxtlas, Gulf of Mexico, Mexico: implications on weathering, origin and depositional environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marca-Castillo, M. E.; Armstrong-Altrin, J.</p> <p>2017-12-01</p> <p>The textural analysis, mineralogy and geochemistry of two sediment cores recovered from the deep water zone of the southwestern part of the Gulf of Mexico ( 1666 and 1672 m water depth) were studied to infer the provenance and depositional behavior. The textural analysis revealed that both cores are dominated by silt, which occupy more than 50% in both samples and the clay occupy 40%. The petrographic analysis revealed remains of biogenic origin sediments and lithic fragments with an angular shape and low sphericity, indicating a low energy environment and therefore a low level of weathering in the sediment, which suggests that the sediments were not affected by transport and derived from a nearby source rock. In both cores quartz fragments were identified; also volcanic lithic and pyroxenes fragments, which are rocks of intermediate composition and are generally associated with the volcanic activity of the continental margins. SEM-EDS studies showed that the analysed samples have concentrations of minerals such as barite, gibbsite, kaolinite, grossular, magnetite, plagioclase and chlorite, which are probably derived from the mainland to the deep sea zone. In the trace element analysis it was observed a low Sc content, while Co, Ni, V and Cu are slightly enriched with respect to the upper continental crust; this enrichment is related to sediments from intermediate sources. The sediments are classified as shale in the log (SiO2 / Al2O3) - log (Fe2O / K2O) diagram. The fine particles of the shale indicate that a deposit occurred as a result of the gradual sedimentation due to relatively non-turbulent currents, which is consistent with the petrographic analysis. The geochemical features of major and trace elements suggest sediments were derived largely from the natural andesite erosion of coastal regions along the Gulf of Mexico. High values of Fe2O3 and MnO are observed in the upper intervals, reflecting the influence of volcanic sediments. The major element discriminant function diagrams indicate the provenance of sediments from a passive margin, which is consistent with the geology of the Gulf of Mexico.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190211','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190211"><span>Seasonal variability in particulate matter source and composition to the depositional zone of Baltimore Canyon, U.S. Mid-Atlantic Bight</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Prouty, Nancy G.; Mienis, Furu; Campbell, P.; Roark, E. Brendan; Davies, Andrew; Robertson, Craig M.; Duineveld, Gerard; Ross, Steve W.; Rhodes, M.; Demopoulos, Amanda W.J.</p> <p>2017-01-01</p> <p>Submarine canyons are often hotspots of biomass and productivity in the deep sea. However, the majority of deep-sea canyons remain poorly sampled. Using a multi-tracer approach, results from a detailed geochemical investigation from a year-long sediment trap deployment reveals details concerning the source, transport, and fate of particulate matter to the depositional zone (1318 m) of Baltimore Canyon on the US Mid-Atlantic Bight (MAB). Both organic biomarker composition (sterol and n-alkanes) and bulk characteristics (δ13C, Δ14C, Chl-a) suggest that on an annual basis particulate matter from marine and terrestrially-derived organic matter are equally important. However, elevated Chlorophyll-a and sterol concentrations during the spring sampling period highlight the seasonal influx of relatively fresh phytodetritus. In addition, the contemporaneous increase in the particle reactive elements cadmium (Cd) and molybdenum (Mo) in the spring suggest increased scavenging, aggregation, and sinking of biomass during seasonal blooms in response to enhanced surface production within the nutricline. While internal waves within the canyon resuspend sediment between 200 and 600 m, creating a nepheloid layer rich in lithogenic material, near-bed sediment remobilization in the canyon depositional zone is minimal. Instead, vertical transport and lateral transport across the continental margin are the dominant processes driving seasonal input of particulate matter. In turn, seasonal variability in deposited particulate organic matter may be linked to benthic faunal composition and ecosystem scale carbon cycling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H33I0949K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H33I0949K"><span>The Dynamics of Sediment Oxygenation in Marsh Rhizospheres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koop-Jakobsen, K.</p> <p>2014-12-01</p> <p>Many marsh grasses are capable of internal oxygen transport from aboveground sources to belowground roots and rhizomes, where oxygen may leak across the rhizodermis and oxygenate the surrounding sediment. In the field, the extent of sediment oxygenation in marshes was assessed in the rhizosphere of the marsh grass; Spartina anglica, inserting 70 optical fiber oxygen sensors into the rhizosphere. Two locations with S. anglica growing in different sediment types were investigated. No oxygen was detected in the rhizospheres indicating that belowground sediment oxygenation in S. anglica has a limited effect on the bulk anoxic sediment and is restricted to sediment in the immediate vicinity of the roots. In the laboratory, the presence of 1.5mm wide and 16mm long oxic root zones was demonstrated around root tips of S. anglica growing in permeable sandy sediment using planar optodes recording 2D-images of the oxygen distribution. Oxic root zones in S. anglica growing in tidal flat deposits were significantly smaller. The size of oxic roots zones was highly dynamic and affected by tidal inundations as well as light availability. Atmospheric air was the primary oxygen source for belowground sediment oxygenation, whereas photosynthetic oxygen production only played a minor role for the size of the oxic root zones during air-exposure of the aboveground biomass. During tidal inundations (1.5 h) completely submerging the aboveground biomass cutting off access to atmospheric oxygen, the size of oxic root zones were reduced significantly in the light and oxic root zones were completely eliminated in darkness. Sediment oxygenation in the rhizospheres of marsh grasses is of significant importance for marshes ability to retain inorganic nitrogen before it reaches the coastal waters. The presence of oxic roots zones promotes coupled nitrification-denitrification at depth in the sediment, which can account for more than 80% of the total denitrification in marshes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.S54C..07M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.S54C..07M"><span>Effect of Sediments on Rupture Dynamics of Shallow Subduction Zone Earthquakes and Tsunami Generation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, S.</p> <p>2011-12-01</p> <p>Low-velocity fault zones have long been recognized for crustal earthquakes by using fault-zone trapped waves and geodetic observations on land. However, the most pronounced low-velocity fault zones are probably in the subduction zones where sediments on the seafloor are being continuously subducted. In this study I focus on shallow subduction zone earthquakes; these earthquakes pose a serious threat to human society in their ability in generating large tsunamis. Numerous observations indicate that these earthquakes have unusually long rupture durations, low rupture velocities, and/or small stress drops near the trench. However, the underlying physics is unclear. I will use dynamic rupture simulations with a finite-element method to investigate the dynamic stress evolution on faults induced by both sediments and free surface, and its relations with rupture velocity and slip. I will also explore the effect of off-fault yielding of sediments on the rupture characteristics and seafloor deformation. As shown in Ma and Beroza (2008), the more compliant hanging wall combined with free surface greatly increases the strength drop and slip near the trench. Sediments in the subduction zone likely have a significant role in the rupture dynamics of shallow subduction zone earthquakes and tsunami generation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17716809','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17716809"><span>Using turbidity and acoustic backscatter intensity as surrogate measures of suspended sediment concentration in a small subtropical estuary.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chanson, Hubert; Takeuchi, Maiko; Trevethan, Mark</p> <p>2008-09-01</p> <p>The suspended sediment concentration is a key element in stream monitoring, although the turbidity and acoustic Doppler backscattering may be suitable surrogate measures. Herein a series of new experiments were conducted in laboratory under controlled conditions using water and mud samples collected in a small subtropical estuary of Eastern Australia. The relationship between suspended sediment concentration and turbidity exhibited a linear relationship, while the relationships between suspended sediment concentration and acoustic backscatter intensity showed a monotonic increase. The calibration curves were affected by both sediment material characteristics and water quality properties, implying that the calibration of an acoustic Doppler system must be performed with the waters and soil materials of the natural system. The results were applied to some field studies in the estuary during which the acoustic Doppler velocimeter was sampled continuously at high frequency. The data yielded the instantaneous suspended sediment flux per unit area in the estuarine zone. They showed some significant fluctuations in instantaneous suspended mass flux, with a net upstream-suspended mass flux during flood tide and net downstream sediment flux during ebb tide. For each tidal cycle, the integration of the suspended sediment flux per unit area data with respect of time yielded some net upstream sediment flux in average.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.B22C..07B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.B22C..07B"><span>The Physical, Geochemical and Microbial Conditions and Processes in the Hyporheic Zone of a Large Tidally Influenced River: The Fraser River, British Columbia, Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bianchin, M.; Roschinski, T.; Ross, K.; Leslie, S.; William, M.; Beckie, R.</p> <p>2006-12-01</p> <p>The objective of this research is to investigate the physical, chemical and biological conditions and processes that occur in the hyporheic zone of the lower Fraser River, British Columbia. The large flows of between 2000 and 10000 cubic meters per second, the 10 15 m deep, 250 m wide channel, the 1 m tidal fluctuations, the localized scour and redeposition of sediments during freshet and the strong geochemical contrast between groundwater and surface water distinguish this investigation from studies on smaller channels and streams and required the development of novel characterization tools and strategies. The geochemistry of water samples collected with a push-in profiler, bulk electrical conductivity (EC) measurements collected with a push-in tool and hydraulic head measurements indicate that groundwater principally discharges into the river approximately 100 m offshore in a 10 m wide band. River water and groundwater mix to a maximum depth of between 0.75 and 1.5 m. While hydraulic heads show strong tidal reversals, bulk EC profiles show only moderate changes during the tidal cycle. It was hypothesized that high iron (10's mg/L of Fe(II)) in reduced groundwater would precipitate from solution as secondary iron-oxide phases in the zone where groundwater mixes with aerobic river water. Sediments were collected with a freeze-shoe corer and depth profiles through the hyporheic zone and into the underlying aquifer were analyzed by selective extractions. The 15-30 mg/g of total extractable iron in both the aquifer and hyporheic zone is relatively high. The lack of noticeable iron accumulation in the hyporheic zone may indicate that iron precipitates on shallow sediments that are subsequently scoured from the river bed during freshet. Microbial DNA from sediments was analyzed using denaturing gradient gel electrophoresis and showed a relatively diverse community structure but an overall low biomass.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T51A2839H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T51A2839H"><span>Magnetic Fabric Associated with Faulting of Poorly Consolidated Basin Sediments of the Rio Grande Rift, New Mexico, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hudson, M. R.; Minor, S. A.; Caine, J. S.</p> <p>2015-12-01</p> <p>Permanent strain in sediments associated with shallow fault zones can be difficult to characterize. Anisotropy of magnetic susceptibility (AMS) data were obtained from 120 samples at 6 sites to assess the nature of fault-related AMS fabrics for 4 faults cutting Miocene-Pliocene basin fill sediments of the Rio Grande rift of north-central New Mexico. The San Ysidro (3 sites), Sand Hill, and West Paradise faults within the northern Albuquerque basin have normal offset whereas an unnamed fault near Buckman in the western Española basin has oblique strike-slip offset. Previous studies have shown that detrital magnetite controls magnetic susceptibility in rift sandstones, and in a 50-m-long hanging wall traverse of the San Ysidro fault, non-gouge samples have typical sedimentary AMS fabrics with Kmax and Kint axes (defining magnetic foliation) scattered within bedding. For the 5 normal-fault sites, samples from fault cores or adjacent mixed zones that lie within 1 m of the principal slip surface developed common deformation fabrics with (1) magnetic foliation inclined in the same azimuth but more shallowly dipping than the fault plane, and (2) magnetic lineation plunging down foliation dip with nearly the same trend as the fault striae, although nearer for sand versus clay gouge samples. These relations suggest that the sampled fault materials deformed by particulate flow with alignment of magnetite grains in the plane of maximum shortening. For a 2-m-long traverse at the Buckman site, horizontal sedimentary AMS foliation persists to < 15 cm to the fault slip surface, wherein foliation in sand and clay gouge rotates toward the steeply dipping fault plane in a sense consistent with sinistral offset. Collectively these data suggest permanent deformation fabrics were localized within < 1 m of fault surfaces and that AMS fabrics from gouge samples can provide kinematic information for faults in unconsolidated sediments which may lack associated slickenlines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.T53B1419S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.T53B1419S"><span>Constraints on Pore Pressure in Subduction Zones From Geotechnical Tests and Physical Properties Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saffer, D. M.; McKiernan, A. W.</p> <p>2005-12-01</p> <p>At subduction zones, as incoming sediments are either offscraped or underthrust at the trench, elevated pore pressures result from the combination of rapid loading and low permeability. Pore pressure within underthrust sediment is especially important for the mechanical strength of the plate boundary fault system, because the main décollement localizes immediately above this sediment, and at many subduction zones steps downward into it. Because the underthrust sediment undergoes progressive uniaxial (vertical) strain, quantitative estimates of in situ pore pressure can be obtained by several methods, including: (1) maximum past burial stress ( Pv'}) from laboratory consolidation tests on core samples, and (2) observed compaction trends in boreholes. These methods allow a detailed view of pore pressure and its variability down-section, providing insight into dewatering processes and the evolution of shear strength relevant to early development of the décollement. Geotechnical tests also provide independent measurement of the coefficient of consolidation ( Cv), compressibility ( mv), and permeability (k) of sediment samples, which can be used to parameterize forward models of pressure generation. Here, I discuss pore pressure estimates derived from (1) consolidation tests on core samples, and (2) observed porosity profiles, along transects where ODP drilling has sampled sediment at the Nankai, N. Barbados, and Costa Rican subduction zones. At all three margins, the two independent methods yield consistent results, and indicate development of significant overpressures that increase systematically with distance from the trench. The values are in good agreement with direct measurements in 2 instrumented boreholes at Barbados, maximum and minimum bounds from the known loading rate, and results of 2-D numerical models of fluid flow. Inferred pressures document nearly undrained conditions at the base of the section (excess pressures equal to the load emplaced by subduction burial), and partially drained conditions at the top (excess pressures of ~40% of the undrained response at Costa Rica, ~50-60% at Nankai, and ~90-100% at Barbados). The spatial pattern of excess pore pressure is most consistent with upward drainage to a highly permeable décollement, to distances of at least 5-10 km landward of the trench. When directly measured values of mv and k from laboratory geotechnical experiments are incorporated into simple 1-D models of vertical dewatering, simulated pore pressures are consistent with those inferred from consolidation tests and porosity data. Model results suggest that severe underconsolidation should persist for tens of km from the trench; notably, simulated underconsolidation is diminished by 20-30 km landward of the trench at Nankai, broadly coincident with the locations of both diminished seismic reflection amplitude observed at the décollement and the updip extent of coseismic slip. The consistent results achieved at these three margins indicate that: (1) geotechnical tests can provide viable estimates of in situ pore pressure, at least at shallow depths, and (2) laboratory-derived values of permeability and sediment compressibility may be representative of in situ properties, despite collection at small spatial scale and over short times. However, significant uncertainty exists in projecting models to greater depth using geotechnical parameters from shallow samples; more detailed laboratory investigations are clearly needed to better understand the roles of temperature, rate, and diagenetic effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/10154578-reservoir-vital-signs-monitoring-physical-chemical-characteristics-water-sediments','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/10154578-reservoir-vital-signs-monitoring-physical-chemical-characteristics-water-sediments"><span>Reservoir vital signs monitoring, 1990: Physical and chemical characteristics of water and sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Meinert, D.L.</p> <p>1991-05-01</p> <p>As part of Tennessee Valley Authority`s (TVA`s) Reservoir Vital Signs Monitoring program, physical/chemical measurements of water and sediment were made in 1990 on twelve TVA reservoirs (the nine main steam Tennessee river reservoirs - Kentucky through Fort Loudoun and three major tributary reservoirs - Cherokee, Douglas, and Norris). The objective of this monitoring program is to assess the health or integrity of these aquatic ecosystems. The physical/chemical water quality data collected in 1990 showed the water quality of these reservoirs to be very good. However, hypolimnetic anoxia during the summer months in Watts bars, Douglas, and Cherokee reservoir continues tomore » be a concern. High concentrations of nutrients were measured in the transition zones of Cherokee and Douglas reservoirs, resulting in highly productive and eutrophic conditions in the transition zones of these reservoirs. Fecal coliform organisms were frequently detected in the forebay area of Guntersville reservoir, and higher than expected ammonia nitrogen concentrations were found at the transition zone of Wheeler reservoir. Elevated concentrations of mercury were found in Pickwick and Watts bar reservoir sediment, and high lead concentrations were found in a sediment sample collected from Guntersville reservoir. A TVA Reservoir Water Quality Index (RWQI) was developed and used to summarize water quality conditions on a scale from 0 (worst) to 100 (best).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS51A1139A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS51A1139A"><span>Tracking the Fate of Explosive-Trinitrotriazine (RDX) in Coastal Marine Ecosystems Using Stable Isotopic Tracer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ariyarathna, T. S.; Ballentine, M.; Vlahos, P.; Smith, R. W.; Bohlke, J. K.; Tobias, C. R.; Fallis, S.; Groshens, T.; Cooper, C.</p> <p>2017-12-01</p> <p>It has been estimated that there are hundreds of explosive-contaminated sites all over the world and managing these contaminated sites is an international challenge. As coastal zones and estuaries are commonly impacted zones, it is vital to understand the fate and transport of munition compounds in these environments. The demand for data on sorption, biodegradation and mineralization of trinitrotriazine (RDX) in coastal ecosystems is the impetus for this study using stable nitrogen isotopes to track its metabolic pathways. Mesocosm experiments representing subtidal vegetated, subtidal unvegetated and intertidal marsh ecocosms were conducted. Steady state concentrations of RDX were maintained in the systems throughout two-week time duration of experiments. Sediment, pore-water and overlying water samples were analyzed for RDX and degradation products. Isotope analysis of the bulk sediments revealed an initial rising inventory of 15N followed by a decay illustrating the role of sediments on sorption and degradation of RDX in anaerobic sediments respectively. Both pore-water and overlying water samples were analyzed for 15N inventories of different inorganic nitrogen pools including ammonium, nitrate, nitrite, nitrous oxide and nitrogen gases. RDX is mineralized to nitrogen gas through a series of intermediates leaving nitrous oxide as the prominent metabolite of RDX. Significant differences in RDX metabolism were observed in the three different ecosystems based on sediment characteristics and redox conditions in the systems. Fine grained organic carbon rich sediments show notably higher mineralization rates of RDX in terms of production of its metabolites. Quantification of degradation and transformation rates leads to mass balances of RDX in the systems. Further analysis of results provides insights for mineralization pathways of RDX into both organic and inorganic nitrogen pools entering the marine nitrogen cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70069106','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70069106"><span>Seasonal flux and assemblage composition of planktic foraminifers from a sediment-trap study in the northern Gulf of Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Poore, Richard Z.; Spear, Jessica W.; Tedesco, Kathy A.</p> <p>2013-01-01</p> <p>Sediment-trap samples from the northern Gulf of Mexico reveal that Globorotalia truncatulinoides, Neogloboquadrina dutertrei, Pulleniatina spp. (includes P. obliquiloculata and P. finalis), and the Globorotalia menardii group (includes Gt. menardii, Gt. tumida, and Gt. ungulata) generally occur in cold months. Globigerinoides ruber (white and pink varieties) and Globigennoides sacculifer occur throughout the year. The seasonal occurrence of individual taxa of planktic foraminifers in the Gulf of Mexico have important differences with the seasonal occurrence of the same taxa observed in a 6-year sediment-trap dataset from the western Sargasso Sea. Thus information on the ecologic preferences of individual taxa determined in one region cannot necessarily be applied directly to another area. In the northern Gulf of Mexico 90% of the total flux of Globorotalia truncatulinoides tests to sediments occurs in January and February. Mg/Ca and d18Ο measurements indicate that nonencrusted forms of Gt. truncatulinoides calcify in the upper-surface-mixed zone. Thus, analyses of nonencrusted Gt. truncatulinoides in sediments of the northern Gulf of Mexico have potential for monitoring past conditions in the winter-surface-mixed layer. The relatively low overall abundance of Globigerinoides ruber (white) in sediment-trap samples is anomalous because Gs. ruber (white) is one of the most abundant foraminifers in>150 µm census data from northern Gulf of Mexico Holocene sediment core samples. Globigerinoides ruber (pink) is a relatively persistent and common component of the sediment-trap samples. Thus Gs. ruber (pink) has potential as a proxy for mean annual sea-surface temperature in the Gulf of Mexico</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2007/5125/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2007/5125/"><span>Relation of Lake-Floor Characteristics to the Distribution of Variable Leaf Water-Milfoil in Moultonborough Bay, Lake Winnipesaukee, New Hampshire, 2005</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Argue, Denise M.; Kiah, Richard G.; Denny, Jane F.; Deacon, Jeffrey R.; Danforth, William W.; Johnston, Craig M.; Smagula, Amy P.</p> <p>2007-01-01</p> <p>Geophysical, water, and sediment surveys were done to characterize the effects of surficial geology, water and sediment chemistry, and surficial-sediment composition on the distribution of variable leaf water-milfoil in Moultonborough Bay, Lake Winnipesaukee, New Hampshire. Geophysical surveys were conducted in a 180-square-kilometer area, and water-quality and sediment samples were collected from 24 sites in the survey area during July 2005. Swath-bathymetric data revealed that Moultonborough Bay ranged in depth from less than 1 meter (m) to about 15 m and contained three embayments. Seismic-reflection profiles revealed erosion of the underlying bedrock and subsequent deposition of glaciolacustrine and Holocene lacustrine sediments within the survey area. Sediment thickness ranged from 5 m along the shoreward margins to more than 15 m in the embayments. Data from sidescan sonar, surficial-sediment samples, bottom photographs, and video revealed three distinct lake-floor environments: rocky nearshore, mixed nearshore, and muddy basin. Rocky nearshore environments were found in shallow water (less than 5 m deep) and contained sediments ranging from coarse silt to very coarse sand. Mixed nearshore environments also were found in shallow water and contained sediments ranging from silt to coarse sand with different densities of aquatic vegetation. Muddy basin environments contained the finest-grained sediments, ranging from fine to medium silt, and were in the deepest waters of the bay. Acoustic Ground Discrimination Systems (AGDS) survey data revealed that 86 percent of the littoral zone (the area along the margins of the bay and islands that extends from 0 to 4.3 m in water depth) contained submerged aquatic vegetation (SAV) in varying densities: approximately 36 percent contained SAV bottom cover of 25 percent or less, 43 percent contained SAV bottom cover of more than 25 and less than 75 percent, and approximately 7 percent contained SAV bottom cover of more than 75 percent. SAV included variable leaf water-milfoil, native milfoil, bassweed, pipewort, and other species, which were predominantly found near shoreward margins and at depths ranging from less than 1 to 4 m. AGDS data were used in a Geographic Information System to generate an interpolated map that distinguished variable leaf water-milfoil from other SAV. Furthermore, these data were used to isolate areas susceptible to variable leaf water-milfoil growth. Approximately 21 percent of the littoral zone contained dense beds (more than 59 percent bottom cover) of variable leaf water-milfoil, and an additional 44 percent was determined to be susceptible to variable leaf water-milfoil infestation. Depths differed significantly between sites with variable leaf water-milfoil and sites with other SAV (p = 0.04). Variable leaf water-milfoil was found at depths that ranged from 1 to 4 m, and other SAV had a depth range of 1 to 2 m. Although variable leaf water-milfoil was observed at greater depths than other SAV, it was not observed below the photic zone. Analysis of constituent concentrations from the water column, interstitial pore water, and sediment showed little correlation with the presence of variable leaf water-milfoil, with two exceptions. Iron concentrations were significantly lower at variable leaf water-milfoil sites than at other sampling sites (p = 0.04). Similarly, the percentage of total organic carbon also was significantly lower at the variable leaf water-milfoil sites than at other sampling sites (p = 0.04). Surficial-sediment-grain size had the greatest correlation to the presence of variable leaf water-milfoil. Variable leaf water-milfoil was predominantly growing in areas of coarse sand (median grain-size 0.62 millimeters). Surficial-sediment-grain size was also correlated with total ammonia plus organic nitrogen (Rho = 0.47; p = 0.02) and with total phosphorus (Rho = 0.44; p = 0.05) concentrations in interstitial pore-water samples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28265713','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28265713"><span>Fate of Metals in Relation to Water and Sediment Properties in a Subtropical Lake in Central Himalaya, India.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Inaotombi, Shaikhom; Gupta, Prem Kumar</p> <p>2017-04-01</p> <p>Lakes of Himalaya are one of the most fragile ecosystems on earth. Tourism and urban development in the upland region strongly affect its water resources. The high rate of sedimentation and organic matter deposition alters the ecological state of sediment bed, which indirectly influences on dynamics of metallic elements. We investigated spatial and temporal variations of water and sediment characteristic in Lake Sattal of Central Himalaya, India. Samples were collected seasonally from four sampling locations from January 2011 to December 2012. Pearson's correlation and Canonical correspondence analysis (CCAs) were applied to examine the dynamics and behaviors of heavy metals. Concentrations of elements were in the order of fluoride (Fl) > zinc (Zn) > copper (Cu) > iron (Fe) > manganese (Mn). Sand size fraction was higher in the littoral zone while clay particle was dominant in the profundal zone of the lake. Dissolved oxygen at sediment-water-interface (SWI) and water temperature were the major factors influencing the dynamics of metallic contents in the water column. Spatially, total organic matter (TOM) was higher in the deeper portion of the lake. Our study revealed that mobility of Fe is temperature-dependent, whereas speciation of Mn and Cu are primarily controlled by the suboxic condition of SWI in organic-rich site. Upland lakes are more vulnerable to anoxic condition and have severe implications on heavy metals speciation. Proper implementation of land use policies and management practices, including stormwater detention, can be integrated into resolving such problems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22990811','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22990811"><span>Effect of sediment composition on methane concentration and production in the transition zone of a mangrove (Sepetiba Bay, Rio de Janeiro, Brazil).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marinho, C C; Campos, E A; Guimarães, J R D; Esteves, F A</p> <p>2012-08-01</p> <p>The aim of this research was to evaluate the effect of sediment composition on methane (CH4) dynamics in sediments of different areas in the transition zone between a mangrove and the sea. This research was conducted in a mangrove at Coroa Grande, on the southern coast of Rio de Janeiro. Samples were collected at three stations: (1) region colonised by Rhizophora mangle L. on the edge of the mangrove, (2) region colonised by seagrasses and (3) infra-littoral region without vegetation. Samples were collected from the surface layer of the sediment to determine the concentrations of nutrients (C, N and P) and CH4 concentration and production. We observed that concentrations of CH4 and carbon (C) were significantly higher (p < 0.05) in station 1 than station 3. The molar ratios (C:N, C:P and N:P) suggest that the origin of the substrate is mainly autochthonous. Methanogenesis was initially low, possibly due to competition between methanogens and sulfate reducers, and increased significantly (p < 0.05) on the twenty-sixth day in the sediment of station 1, probably due to higher organic matter (OM) availability in this region. Results indicate that methanogenic activity observed herein is not regulated by the amount or quality of OM, but by other factors. The concentration of CH4 in the sea-land ecotone at Mangrove Coroa Grande is a function of available OM suggesting a possible inhibition of methanotrophy by intense oxygen consumption in the soil surface covered by detritus of Rhizophora mangle vegetation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1613800F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1613800F"><span>Subduction zone earthquake probably triggered submarine hydrocarbon seepage offshore Pakistan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fischer, David; José M., Mogollón; Michael, Strasser; Thomas, Pape; Gerhard, Bohrmann; Noemi, Fekete; Volkhard, Spiess; Sabine, Kasten</p> <p>2014-05-01</p> <p>Seepage of methane-dominated hydrocarbons is heterogeneous in space and time, and trigger mechanisms of episodic seep events are not well constrained. It is generally found that free hydrocarbon gas entering the local gas hydrate stability field in marine sediments is sequestered in gas hydrates. In this manner, gas hydrates can act as a buffer for carbon transport from the sediment into the ocean. However, the efficiency of gas hydrate-bearing sediments for retaining hydrocarbons may be corrupted: Hypothesized mechanisms include critical gas/fluid pressures beneath gas hydrate-bearing sediments, implying that these are susceptible to mechanical failure and subsequent gas release. Although gas hydrates often occur in seismically active regions, e.g., subduction zones, the role of earthquakes as potential triggers of hydrocarbon transport through gas hydrate-bearing sediments has hardly been explored. Based on a recent publication (Fischer et al., 2013), we present geochemical and transport/reaction-modelling data suggesting a substantial increase in upward gas flux and hydrocarbon emission into the water column following a major earthquake that occurred near the study sites in 1945. Calculating the formation time of authigenic barite enrichments identified in two sediment cores obtained from an anticlinal structure called "Nascent Ridge", we find they formed 38-91 years before sampling, which corresponds well to the time elapsed since the earthquake (62 years). Furthermore, applying a numerical model, we show that the local sulfate/methane transition zone shifted upward by several meters due to the increased methane flux and simulated sulfate profiles very closely match measured ones in a comparable time frame of 50-70 years. We thus propose a causal relation between the earthquake and the amplified gas flux and present reflection seismic data supporting our hypothesis that co-seismic ground shaking induced mechanical fracturing of gas hydrate-bearing sediments creating pathways for free gas to migrate from a shallow reservoir within the gas hydrate stability zone into the water column. Our results imply that free hydrocarbon gas trapped beneath a local gas hydrate seal was mobilized through earthquake-induced mechanical failure and in that way circumvented carbon sequestration within the sediment. These findings lead to conclude that hydrocarbon seepage triggered by earthquakes can play a role for carbon budgets at other seismically active continental margins. The newly identified process presented in our study is conceivable to help interpret data from similar sites. Reference: Fischer, D., Mogollon, J.M., Strasser, M., Pape, T., Bohrmann, G., Fekete, N., Spieß, V. and Kasten, S., 2013. Subduction zone earthquake as potential trigger of submarine hydrocarbon seepage. Nature Geoscience 6: 647-651.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AIPC.1139..156R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AIPC.1139..156R"><span>Environmental Radioactivity Study in Surface Sediments of Guacanayabo Gulf (Cuba)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reyes, H.; López-Pino, N.; Rizo, O. Díaz; Bernal, J. L.; D'Alessandro, K.; Padilla, F.; Corrales, Y.; Casanova, O. A.; Gelen, A.; Martínez, Y.; Aguilar, J.; Arado, J. O.; Maidana, N. L.</p> <p>2009-06-01</p> <p>Sediment samples have been collected in the Guacanayabo gulf located in the southeast Cuba, to determinate the radioactivity levels of 210Pb, 234Th, 214Pb, 137Cs, 232Th and 40K using Low-Background Gamma Spectrometry and to evaluate its impact in the habitat of important marine species for fishery industry. The obtained results show the lowest radioactivity levels determined in Cuban marine environments. The species capture declination in the last years is not originated by radioactive pollution of the zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040112115&hterms=APICAL&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DAPICAL','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040112115&hterms=APICAL&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DAPICAL"><span>Recovery of gravitropism after basipetal centrifugation in protonemata of the moss Ceratodon purpureus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walker, L. M.; Sack, F. D.</p> <p>1991-01-01</p> <p>Apical cells of 5-day-old dark-grown protonemata of the moss Ceratodon purpureus (Hedw.) Brid. are negatively gravitropic and appear to utilize amyloplasts as statoliths. These cells exhibit a characteristic plastid zonation (five zones) with one zone (No. 3) specialized for the lateral sedimentation of amyloplasts. Basipetal centrifugation displaces all amyloplasts in the apical cell to the end wall. In basipetally centrifuged protonemata observed using infrared videomicroscopy, tip extension occurred with or without amyloplasts present in the apical dome. The initial return of upward curvature was always correlated with the return and sedimentation of amyloplasts in zone 3. Subsequent vigorous upward curvature was correlated with distinct amyloplast zonation and further sedimentation in zone 3. Initial downward ("wrong way") curvature, which often preceded upward curvature, correlated with the presence of amyloplasts in the apical dome (zone 1). These data support the hypotheses that nonsedimenting amyloplasts in zone 1 are necessary for initial downward curvature and that amyloplast sedimentation in zone 3 is necessary for upward curvature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/426716-recovery-sediments-lower-intertidal-subtidal-environment-restoration-project-exxon-valdez-oil-spill-restoration-project-final-report','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/426716-recovery-sediments-lower-intertidal-subtidal-environment-restoration-project-exxon-valdez-oil-spill-restoration-project-final-report"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>O`Clair, C.E.; Short, J.W.; Rice, S.D.</p> <p></p> <p>Sediments were collected at ten locations in Prince William Sound in July 1993 to determine the geographical and bathymetric distribution of oil from the Exxon Valdez oil spill in the low intertidal zone and subtidal region. The authors sampled sediments at mean lower low water (0 m) and at five subtidal depths from 3 to 100 m. No Exxon Valdez oil was found in sediments at 0 m where the greatest mean intertidal concentration of total polynuclear aromatic hydrocarbons excluding perylene (54 ng/g) was observed at Moose Lips Bay. Subtidal sediments showed polynuclear aromatic hydrocarbon composition patterns similar to Exxonmore » Valdez oil at three sites, Herring Bay, Northwest Bay and Sleepy Bay. Contamination of sediments by Exxon Valdez oil reached a depth of 20 m at Northwest Bay and Sleepy Bay. In deep sediments (> or = 40 m) the authors found no evidence of weathered Exxon Valdez oil.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70011916','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70011916"><span>Sequential extraction techniques applied to a porphyry copper deposit in the basin and range province</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Filipek, L.H.; Theobald, P.K.</p> <p>1981-01-01</p> <p>Samples of minus-80-mesh (<180 ??m) stream sediment, rock containing exposed fracture coatings, and jarosite and chrysocolla were collected from an area surrounding the North Silver Bell porphyry Cu deposit near Tucson, Arizona. The samples were subjected to a series of extractions in a scheme originally designed for use on samples from humid or sub-humid environments, in which the following fractions can effectively be separated: (1) carbonates and exchangeable metals; (2) Mn oxides; (3) organic compounds and sulfides; (4) hydrous Fe oxides; and (5) residual crystalline minerals. Jarosite and chrysocolla, two major minerals of the North Silver Bell area, were found to dissolve over two or more steps of the extraction scheme. The results represent only a limited number of samples from one copper deposit. Nevertheless, they do suggest that in a semiarid to arid environment, where mechanical dispersion of such minerals predominates, uncritical assignment of unique phases, such as Mn oxides or organics to a given extraction would lead to false interpretations of weathering processes. However, the relative proportions of elements dissolved in each step of the jarosite and chrysocolla extractions could be used as a "fingerprint" for recognition of the presence of these two minerals in the stream-sediment and rock samples. The relative abundance of hydrous Fe oxide and jarosite and the alteration zoning could be mapped using data from jarosite and chrysocolla extractions. Manganese oxides were also found to have a greater influence on Zn than on Cu or Pb during supergene alteration. The rapid change in relative importance of the first (1M-acetic acid) extraction for Cu, Zn, and Pb near the mineralized zone suggested the occurrence of minor hydromorphic processes within the stream sediments. Thus, the acetic acid extraction proved the most effective for pinpointing mineralization in sediments. In contrast, the residual fraction had the longest dispersion train, suggesting that total metal concentrations are most effective in arid environments for reconnaissance surveys. ?? 1981.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011DSRII..58.2293H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011DSRII..58.2293H"><span>Distribution, abundance and seasonal flux of pteropods in the Sub-Antarctic Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Howard, W. R.; Roberts, D.; Moy, A. D.; Lindsay, M. C. M.; Hopcroft, R. R.; Trull, T. W.; Bray, S. G.</p> <p>2011-11-01</p> <p>Pteropods were identified from epipelagic net and trawl samples in the Sub-Antarctic Zone during the 2007 mid-summer (January 17-February 20) Sub-Antarctic Zone Sensitivity to Environmental Change (SAZ-Sense) voyage, as well as in a moored sediment trap in the same region. Overall pteropod densities during SAZ-Sense were lower than those reported for higher-latitude Southern Ocean waters. The four major contributors to the Sub-Antarctic Zone pteropod community during the SAZ-Sense voyage, Clio pyramidata forma antarctica, Clio recurva, Limacina helicina antarctica and Limacina retroversa australis, accounted for 93% of all pteropods observed. The distribution of the two dominant pteropods collected in the Sub-Antarctic Zone, L. retroversa australis and C. pyramidata forma antarctica, is strongly related to latitude and depth. L. retroversa australis is typical of cold southern (50-54°S) polar waters and C. pyramidata forma antarctica is typical of shallow (top 20 m) Sub-Antarctic Zone waters. A moored sediment trap deployed to 2100 m at 47°S, 141°E in 2003/04 showed the pteropod flux in the Sub-Antarctic Zone had late-Spring and mid-summer peaks. The diversity, abundance and distribution of pteropods collected during SAZ-Sense provide a timely benchmark against which to monitor future changes in SAZ ocean pteropod communities, particularly in light of predictions of declining aragonite saturation in the Southern Ocean by the end of the century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1610588A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1610588A"><span>Distribution of heavy metals in riverine soils and sediments of the Turia River basin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andreu, Vicente; Gimeno-García, Eugenia; Pascual, Juan Antonio</p> <p>2014-05-01</p> <p>Water is a scarce and contested good, and a primary need for the population all over. Rivers are one of the mainsources of freshwater to people but, in the same way, receive both point source and difuse pollution, usually frorm wastewaters and agriculture. However, they are not independent bodies but they influence different associated ecosystems that compound the catchment. Soils of the river banks often acts as the last phase of the diffuse contamination pathways, favouring the contaminants input to the river waters. In this sense, the fluvial sedimentary phase usually acts as a sink of pollutants. Sediments can work as resevoirs that accumulate contaminants fixing them or allowing their decomposition or metabolization. However, environmental or human induced, such as variations in water pH, increases in the turbulence or intensity of the water flow, etc.could favour their release to the environment. In this work, the incidence and distribution of seven heavy metals was monitored in riverine soils and sediments of the Turia River. Along the river course, 22 zones were selected for sampling according different lithologies, land uses, size of populations and the proximity to waste waters treatment plants (WWTPs), from the headwaters to the mouth. The selected metals (Cd, Co, Cr, Cu, Pb, Ni and Zn) were analysed to determine its total and extractable contents in the sediments. Total content of metals was extracted by microwave acid digestion and the extractable fraction by treatment with EDTA. Atomic Absorption Spectrometry, using graphite furnace when necessary, was used for the determination of all metals. Highest values for sediments were mainly observed in zones 10 and 22, close to urban areas, reaching values of 172.86 mg/kg for Pb, or 58.34 mg/kg for Cr. However, zone 2 near in the headwaters of the Alfambra River and supposedly of reference for the River authorities shows the highest values of zinc with 96.96 mg/kg. Regarding the available/extractable fraction of the metals, Cd, Co and Cr were under the detection limitswith maximum values in zone 22 too, reching in the case of Pb 59.60 mg/kg. The percentage of available metal in the sediments of the studied zones vary between 15 and 40% for Cu, Pb and Zn, being the higher than 60% for Pb and Zn in zone 8 near the city of Teruel. Regarding soils, the higest levels of total and extractable Cd, Co, Cr and Ni were determined in the zones 11 and 12, near the Benageber reservoir where an important forest fires occurred a year ago. In the same way that was observed for sediments high lvels of metals, mainly Cr and Zn, appeared in the reference zone of the Alfambra River. The organic matter content of soils and sediments is the parameter most strongly related with all the forms of metals, mainly for Cu, Ni, Pb and Zn, and is a key factor in the availability of them. It has to be noted that the textural distribution of the sediments, particularly the clay content, also influences this last factor in the case of Ni. A strong tendency towards enrichment of the sediments in heavy metals is observed in the Turia River from North to South, from the headwater to the stuary, with the exception of the possible existence of a contamination source in zone 2. Acknowledgements This work has been supported by the Spanish Ministry of Science and Innovation and the European Regional Development Funds (ERDF) through the coordinating project MEFTURIA (CGL2011-29703-C02-00), and its subprojects EFAMED and EMEFOR (CGL2011-29703-C02-02), and the project CONSOLIDER-INGENIO 2010 (CSD2009), and for the Generalitat Valenciana (ACOMP/2013/037).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26790603','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26790603"><span>Microbial colonization and degradation of polyethylene and biodegradable plastic bags in temperate fine-grained organic-rich marine sediments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nauendorf, Alice; Krause, Stefan; Bigalke, Nikolaus K; Gorb, Elena V; Gorb, Stanislav N; Haeckel, Matthias; Wahl, Martin; Treude, Tina</p> <p>2016-02-15</p> <p>To date, the longevity of plastic litter at the sea floor is poorly constrained. The present study compares colonization and biodegradation of plastic bags by aerobic and anaerobic benthic microbes in temperate fine-grained organic-rich marine sediments. Samples of polyethylene and biodegradable plastic carrier bags were incubated in natural oxic and anoxic sediments from Eckernförde Bay (Western Baltic Sea) for 98 days. Analyses included (1) microbial colonization rates on the bags, (2) examination of the surface structure, wettability, and chemistry, and (3) mass loss of the samples during incubation. On average, biodegradable plastic bags were colonized five times higher by aerobic and eight times higher by anaerobic microbes than polyethylene bags. Both types of bags showed no sign of biodegradation during this study. Therefore, marine sediment in temperate coastal zones may represent a long-term sink for plastic litter and also supposedly compostable material. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011GCarp..62..233I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011GCarp..62..233I"><span>Biostratigraphy and paleoecology of the Burdigalian-Serravallian sediments in Wadi Sudr (Gulf of Suez, Egypt): comparison with the Central Paratethys evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ied, Ibrahim M.; Holcová, Katarína; Abd-Elshafy, Ezzat</p> <p>2011-06-01</p> <p>Two main Miocene facies were recorded in the Gulf of Suez area: a deep marine and a coastal facies. The analysed sections in the Wadi Sudr area belong to the marine facies. The Lower Miocene (Burdigalian) is represented by coastal, shallow marine sediments, rich in coral, algae, gastropods and large pectinids followed by Langhian open marine sediments and Serravallian lagoonal carbonates. The open marine sediments contain well preserved planktonic and benthic foraminifers and abundant ostracods. The parts of the sections containing foraminifers have been correlated with three planktonic foraminiferal zones (<italic>Praeorbulina glomerosa Zone, Orbulina Zone</italic> and <italic>Globorotalia praemenardii-Globorotalia peripheroronda</italic> Zone). Two benthic ecozones were defined (<italic>Heterolepa dutemplei-Laevidentalina elegans Zone</italic> and <italic>Bolivina compressa-Elphidium</italic> spp. Zone). Two cycles of sea-level changes can be distinguished and correlated with global sea-level cycles Bur5/Lan1 and Ser1. The first (Langhian) cycle culminated in open marine sublittoral to upper bathyal well aerated sediments. The second (Serravallian) cycle was shallower, littoral suboxic sediments were overlaid by euryhaline carbonates. The studied foraminifera-bearing sediments can be correlated with the lower and Middle Badenian of the Central Paratethys. Though the area of the Gulf of Suez and the Central Paratethys were situated in different climatic zones, and influenced by different tectonic events, the main paleoenvironmental events (sea-level changes, oxygen decrease, salinity changes) are comparable. This correspondence shows that the decisive factors triggering these events were global climatic events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70118309','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70118309"><span>Distribution of potentially bioavailable natural organic carbon in aquifer sediments at a chloroethene-contaminated site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Thomas, L.K.; Widdowson, M.A.; Chapelle, F.H.; Novak, J.T.; Boncal, J.E.; Lebrón, C. A.</p> <p>2012-01-01</p> <p>The distribution of natural organic carbon was investigated at a chloroethene-contaminated site where complete reductive dechlorination of tetrachloroethene (PCE) to vinyl chloride and ethene was observed. In this study, operationally defined potentially bioavailable organic carbon (PBOC) was measured in surficial aquifer sediment samples collected at varying depths and locations in the vicinity of a dense nonaqueous phase liquid (DNAPL) source and aqueous phase plume. The relationship between chloroethene concentrations and PBOC levels was examined by comparing differences in extractable organic carbon in aquifer sediments with minimal chloroethene exposure relative to samples collected in the source zone. Using performance-monitoring data, direct correlations with PBOC were also developed with chloroethene concentrations in groundwater. Results show a logarithm-normal distribution for PBOC in aquifer sediments with a mean concentration of 187  mg/kg. PBOC levels in sediments obtained from the underlying confining unit were generally greater when compared to sediments collected in the sandy surficial aquifer. Results demonstrated a statistically significant inverse correlation (p=0.007) between PBOC levels in aquifer sediments and chloroethene concentrations for selected monitoring wells in which chloroethene exposure was the highest. Results from laboratory exposure assays also demonstrated that sediment samples exhibited a reduction in PBOC levels of 35% and 73%, respectively, after a 72-h exposure period to PCE (20,000  μg/L). These results support the notion that PBOC depletion in sediments may be expected in chloroethene-contaminated aquifers, which has potential implications for the long-term sustainability of monitored natural attenuation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28920758','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28920758"><span>Occurrence and source apportionment of polycyclic aromatic hydrocarbons in soils and sediment from Hanfeng Lake, Three Gorges, China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cai, Jing; Gao, Shutao; Zhu, Like; Jia, Xuwei; Zeng, Xiangying; Yu, Zhiqiang</p> <p>2017-11-10</p> <p>This study was conducted to investigate the pollutant status and the retention mechanism of polycyclic aromatic hydrocarbons (PAHs) in soils and sediment from bank-water-level-fluctuating zone (WLFZ)-water systems in Hanfeng Lake, Three Gorges, China. The concentrations of the 16 PAHs ranged from 21.8 to 1324 ng g -1 dry wt for all 20 soil and sediment samples. These concentration levels were remarkably lower than those in soils and sediment collected domestically and worldwide. PAHs with two and three rings were found to be dominant in all the samples, with phenanthrene being most abundant. The spatial distribution of PAHs in bank soil, WLFZ soil, and sediment implied that the transfer and fate of PAHs in the bank soil-WLFZ soil-sediment systems were influenced by both water dynamic factors and physicochemical properties of PAHs. Diagnostic ratio analysis and principal component analysis suggested that the PAHs in the areas of Hanfeng Lake were primarily (>75%) derived from coal combustion and vehicle emissions . Use of natural gas, improving gasoline/diesel quality and phasing out old and nonstandard vehicles and ships are proposed to control PAH contamination and protect drinking water safety in the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24825508','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24825508"><span>Freeze shoe sampler for the collection of hyporheic zone sediments and porewater.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bianchin, M; Smith, L; Beckie, R</p> <p>2015-01-01</p> <p>The Starr and Ingleton (1992) drive point piston sampler (DPPS) design was modified by fitting it with a Murphy and Herkelrath (1996) type sample-freezing drive shoe (SFDS), which uses liquid carbon dioxide as a cryogen. Liquid carbon dioxide was used to freeze sediments in the lower 0.1 m of the core and the drive-point piston sealed the core at the top preserving the reductive-oxidation (redox) sensitive sediments from the atmosphere and maintaining natural stratigraphy. The use of nitrogen gas to provide positive pressure on the gas system blocked the ingress of water which froze on contact with the cryogen thus blocking the gas lines with ice. With this adaptation to the gas system cores could be collected at greater depths beneath the static water level. This tool was used to collect intact saturated sediment cores from the hyporheic zone of the tidally influenced Fraser River in Vancouver, British Columbia, Canada where steep geochemical and microbial gradients develop within the interface between discharging anaerobic groundwater and recharging aerobic river water. In total, 25 cores driven through a 1.5 m sampling interval were collected from the river bed with a mean core recovery of 75%. The ability to deploy this method from a fishing vessel makes the tool more cost effective than traditional marine-based drilling operations which often use barges, tug boats, and drilling rigs. © 2014, National Ground Water Association.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5874776','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5874776"><span>The Fate of Glyphosate and AMPA in a Freshwater Endorheic Basin: An Ecotoxicological Risk Assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bonansea, Rocío Inés; Filippi, Iohanna; Wunderlin, Daniel Alberto</p> <p>2017-01-01</p> <p>Glyphosate is the most widely used herbicide worldwide. However, there are some uncertain aspects with respect to its environmental fate. To evaluate the existence and distribution of this pesticide and its metabolite, aminomethylphosphonic acid (AMPA), their presence in fresh water, sediment, and suspended particulate matter (SPM) was measured in samples collected in a river running across a large city and through areas with intensive and extensive agriculture. The aquatic risk associated to the occurrence of these compounds was estimated using the hazard quotient (HQ) calculation for water and sediment. From the analyzed samples, overall 35% contained glyphosate, AMPA, or both compounds. Concentrations of the analytes were spread in different percentages depending on the environmental matrices considered, with levels ranging from 12 to 20 times higher for glyphosate and AMPA in sediment and SPM, as compared with the levels found in water. The most polluted area was situated within a green belt zone of the city; while in second place were sites located in areas of extensive agriculture. Aquatic organisms inhabiting areas both inside and outside agricultural areas are threatened by water glyphosate concentrations. Benthic organisms inside the greenbelt zone and inside the lower basin are threatened by the concentrations of glyphosate in sediment. Even when the concentrations measured in water were below the levels of concern for wildlife, results showed the risk of agricultural practices to aquatic biota. An update of the limits established for freshwater biota protection is needed. PMID:29267202</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....10023G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....10023G"><span>Late-Quaternary changes of biogenic fluxes in the pacific sector of the Southern Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giglio, F.; Langone, L.; Capotondi, L.; Morigi, C.; Focaccia, P.; Frignani, M.; Ravaioli, M.</p> <p>2003-04-01</p> <p>During the last decade the research project BIOSESO of the Italian National Research Program for Antarctica (PNRA) has collected 13 gravity cores and 3 box-cores along a N-S transect at about 175^oE in the Southern Ocean. In this presentation we discuss the results from 6 sediment cores sampled between 62^oS and 71^oS. This area embraces the Polar Front and the Marginal Ice Zone. The data set includes the contents of organic carbon, biogenic silica, CaCO_3 and some metals (Ba, Al, Fe, Mn) involved in the biogeochemical cycles. Chronologies were based on 230Thex profiles and the boundaries of the isotope stages were set assuming that biological productivity was enhanced during periods of less ice cover. Then , 230Thex, organic carbon, biogenic silica and biogenic Ba distributions were compared to the glacial-interglacial stage boundaries and corresponding ages of the δ18O record of Martinson et al. (1987). At the sampling sites sediment accumulation rates range between 0.2 to 3.8 cm ka-1. The higher values characterize the interglacial stages and the southern stations. Processes of sediment redistribution at sea bottom were enlightened by a comparison of measured and expected fluxes of 230Thex . The Polar Front zone is characterized by winnowing, whereas sediments along the continental slope of the Ross Sea are mainly subject to focussing processes. The environmental factors that drive changes of biogenic particle fluxes during glacial-interglacial transitions have been investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B23G..03W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B23G..03W"><span>Relationship of subseafloor microbial diversity to sediment age and organic carbon content</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walsh, E. A.; Kirkpatrick, J. B.; Sogin, M. L.; D'Hondt, S. L.</p> <p>2013-12-01</p> <p>Our tag pyrosequencing investigation of four globally distant sites reveals sediment age and total organic carbon content to be significant components in understanding subseafloor diversity. Our sampling locations include two sites from high-productivity regions (Indian Ocean and Bering Sea) and two from moderate-productivity (eastern and central equatorial Pacific Ocean). Sediment from the high-productivity sites has much higher TOC than sediment from the moderate-productivity equatorial sites. We applied a high-resolution 16S V4-V6 tag pyrosequencing approach to 24 bacterial and 17 archaeal samples, totaling 602,502 reads. We identified1,291 archaeal and 15,910 bacterial OTUs (97%) from these reads. We analyzed bacterial samples from all four sites in addition to archaeal samples from our high productivity sites. These high productivity, high TOC sites have a pronounced methane-rich sulfate-free zone at depth from which archaea have been previously considered to dominate (Biddle et al., 2006). At all four locations, microbial diversity is highest near the seafloor and drops rapidly to low but stable values with increasing sediment depth. The depth at which diversity stabilizes varies greatly from site to site, but the age at which it stabilizes is relatively constant. At all four sites, diversity reaches low stable values a few hundred thousand years after sediment deposition. The sites with high total organic carbon (high productivity sites) generally exhibit higher diversity at each sediment age than the sites with lower total organic carbon (moderate-productivity sites). Archaeal diversity is lower than bacterial diversity at every sampled depth. Biddle, J.F., Lipp, J.S., Lever, M.A., Lloyd, K.G., Sørensen, K.B., Anderson, R. et al. (2006) Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. PNAS 103: 3846-3851.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70011740','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70011740"><span>The partitioning of copper among selected phases of geologic media of two porphyry copper districts, Puerto Rico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Learned, R.E.; Chao, T.T.; Sanzolone, R.F.</p> <p>1981-01-01</p> <p>In experiments designed to determine the manner in which copper is partitioned among selected phases that constitute geologic media, we have applied the five-step sequential extraction procedure of Chao and Theobald to the analysis of drill core, soils, and stream sediments of the Rio Vivi and Rio Tanama porphyry copper districts of Puerto Rico. The extraction procedure affords a convenient means of determining the trace-metal content of the following fractions: (1) Mn oxides and "reactive" Fe oxides; (2) "amorphous" Fe oxides; (3) "crystalline" Fe oxides; (4) sulfides and magnetite; and (5) silicates. An additional extraction between steps (1) and (2) was performed to determine organic-related copper in stream sediments. The experimental results indicate that apportionment of copper among phases constituting geologic media is a function of geochemical environment. Distinctive partitioning patterns were derived from the analysis of drill core from each of three geochemical zones: (a) the supergene zone of oxidation; (b) the supergene zone of enrichment; and (c) the hypogene zone; and similarly, from the analysis of; (d) soils on a weakly leached capping; (e) soils on a strongly leached capping; and (f) active stream sediment. The experimental results also show that geochemical contrasts (anomaly-to-background ratios) vary widely among the five fractions of each sampling medium investigated, and that at least one fraction of each medium provides substantially stronger contrast than does the bulk medium. Fraction (1) provides optimal contrast for stream sediments of the district; fraction (2) provides optimal contrast for soils on a weakly leached capping; fraction (3) provides optimal contrast for soils on a strongly leached capping. Selective extraction procedures appear to have important applications to the orientation and interpretive stages of geochemical exploration. Further investigation and testing of a similar nature are recommended. ?? 1981.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ECSS..130...42S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ECSS..130...42S"><span>Vertical accumulation of potential toxic elements in a semiarid system that is influenced by an abandoned gold mine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sánchez-Martínez, Martha A.; Marmolejo-Rodríguez, Ana J.; Magallanes-Ordóñez, Víctor R.; Sánchez-González, Alberto</p> <p>2013-09-01</p> <p>The mining zone at El Triunfo, Baja California Sur, Mexico, was exploited for gold extraction for 200 years. This area includes more than 100 abandoned mining sites. These sites contain mine tailings that are highly contaminated with potential toxic elements (PTE), such as As, Cd, Pb, Sb, Zn, and other associated elements. Over time, these wastes have contaminated the sediments in the adjacent fluvial systems. Our aim was to assess the vertical PTE variations in the abandoned mining zone and in the discharge of the main arroyo into a small lagoon at the Pacific Ocean. Sediments were collected from the two following locations in the mining zone near the arroyo basin tailings: 1) an old alluvial terrace (Overbank) and a test pit (TP) and 2) two sediment cores locations at the arroyo discharge into a hypersaline small lagoon. Samples were analyzed by ICP-MS, ICP-OES, and INAA and the methods were validated. The overbank was the most contaminated and had As, Cd, Pb, Sb, and Zn concentrations of 8690, 226, 84,700, 17,400, and 42,600 mg kg-1, respectively, which decreased with depth. In addition, the TP contained elevated As, Cd, Pb, Sb, and Zn concentrations of 694, 18.8, 5001, 39.2, and 4170 mg kg-1, respectively. The sediment cores were less contaminated. However, the As, Cd, Pb, Sb, and Zn concentrations were greater than the concentrations that are generally found in the Earth's crust. The normalized enrichment factors (NEFs), which were calculated from the background concentrations of these elements in the system, showed that extremely severe As, Cd, Pb, Sb, and Zn (NEF > 50) enrichment occurred at the overbank. The TP was severe to very severely enriched with As, Cd, Pb, Sb, and Zn (NEF = 10-50). The sediment cores had a severe enrichment of As, Pb, and Zn (NEF = 10-25). Their vertical profiles showed that anthropogenic influences occurred in the historic sediment deposition at the overbank and TP and in the sediment cores. In addition, the As, Pb, and Zn concentrations in the sediment cores were related to the deposition of fine sediments and organic carbon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1983ECSS...17..547A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1983ECSS...17..547A"><span>Sediment transport by fishes in Harrington Sound, Bermuda</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alheit, Jürgen</p> <p>1983-11-01</p> <p>Harrington Sound, Bermuda, is a shallow subtropical lagoon with carbonate sediments. The most important fishes in this lagoon, in terms of biomass, are grunts (Haemulon aurolineatum, H. flavolineatum, H. sciurus) and a sea-bream (Diplodus bermudensis). These undertake diel feeding migrations from the shallow rocky zone towards the deeper sand and mud zones. When feeding on zoobenthos they cannot avoid swallowing carbonate sediment particles. These sediment particles pass through the alimentary canal of the fishes and are deposited again, after digestion of the food, as faeces in the shallow zones. Thus, the fishes transport the sediment in an unusual direction, from the deep to the shallow zones, in effect against the force of gravity. By recording the fish stock densities, digestion rates, and calcium carbonate content of fish stomach and guts, it was possible to estimate the amount of sediment transported by the fishes. In Harrington Sound, this amounts annually to 4530 kg calcium carbonate, 40% of which is deposited in the very shallow areas. The pH-values measured in fish stomachs seem to be acidic enough for the dissolution of carbonate sediment particles when transported by fishes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036219','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036219"><span>Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wang, X.; Hutchinson, D.R.; Wu, S.; Yang, S.; Guo, Y.</p> <p>2011-01-01</p> <p>Gas hydrate saturations were estimated using five different methods in silt and silty clay foraminiferous sediments from drill hole SH2 in the South China Sea. Gas hydrate saturations derived from observed pore water chloride values in core samples range from 10 to 45% of the pore space at 190-221 m below seafloor (mbsf). Gas hydrate saturations estimated from resistivity (Rt) using wireline logging results are similar and range from 10 to 40.5% in the pore space. Gas hydrate saturations were also estimated by P wave velocity obtained during wireline logging by using a simplified three-phase equation (STPE) and effective medium theory (EMT) models. Gas hydrate saturations obtained from the STPE velocity model (41.0% maximum) are slightly higher than those calculated with the EMT velocity model (38.5% maximum). Methane analysis from a 69 cm long depressurized core from the hydrate-bearing sediment zone indicates that gas hydrate saturation is about 27.08% of the pore space at 197.5 mbsf. Results from the five methods show similar values and nearly identical trends in gas hydrate saturations above the base of the gas hydrate stability zone at depths of 190 to 221 mbsf. Gas hydrate occurs within units of clayey slit and silt containing abundant calcareous nannofossils and foraminifer, which increase the porosities of the fine-grained sediments and provide space for enhanced gas hydrate formation. In addition, gas chimneys, faults, and fractures identified from three-dimensional (3-D) and high-resolution two-dimensional (2-D) seismic data provide pathways for fluids migrating into the gas hydrate stability zone which transport methane for the formation of gas hydrate. Sedimentation and local canyon migration may contribute to higher gas hydrate saturations near the base of the stability zone. Copyright 2011 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T23D0634G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T23D0634G"><span>Provenance and geochronological insights into Late Cretaceous-Paleogene foreland basin development in the Subandean Zone and Oriente Basin of Ecuador</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gutierrez, E. G.; Horton, B. K.; Vallejo, C.</p> <p>2017-12-01</p> <p>The tectonic history of the Oriente foreland basin and adjacent Subandean Zone of Ecuador during contractional mountain building in the northern Andes can be revealed through integrated stratigraphic, geochronological, structural, and provenance analyses of clastic sediments deposited during orogenesis. We present new maximum depositional ages and a comprehensive provenance analysis for key stratigraphic units deposited in the western (proximal) Oriente Basin. Detrital zircon U-Pb ages were obtained from Upper Cretaceous and Cenozoic clastic formations from exposures in the Subandean Zone. The sampled stratigraphic intervals span critical timeframes during orogenesis in the Ecuadorian Andes. Cenozoic formations have poorly defined chronostratigraphic relationships and are therefore a primary target of this study. In addition, the newly acquired U-Pb age spectra allow clear identification of the various sediment source regions that fed the system during distinct depositional phases. Maximum depositional ages (MDA) were obtained for five samples from three formations: the Tena (MDA=69.6 Ma), Chalcana (MDA=29.3 Ma), and Arajuno (MDA= 17.1, 14.2, 12.8 Ma) Formations, placing them in the Maastrichtian, early Oligocene, and early-middle Miocene, respectively. Detrital zircon U-Pb ages identify clear signatures of at least four different sources: craton (1600-1300 Ma, 1250-900 Ma), Eastern Cordillera fold-thrust belt (600-450 Ma, 250-145 Ma), Western Cordillera magmatic arc (<88 Ma), and recycling of cratonic material from the Eastern Cordillera. The U-Pb age spectra of the Upper Cretaceous-Paleogene type sections allow us to recognize variations in the contribution of each recognized source over time. We identify recycled material with two dominant peak ages (1250-900 Ma and 600-450 Ma), material derived from the adjacent uplifted orogen or recycled from foredeep sediments incorporated into the deforming wedge. Finally, an apparent unroofing event is inferred from a 250-145 Ma age peak in the Plio-Pleistocene Mesa-Mera Formation revealing the persistent shortening deformation influencing the structural configuration and sediment dispersal patterns of the Oriente Basin and Subandean Zone.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4070852','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4070852"><span>Passive sampling methods for contaminated sediments: Risk assessment and management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Greenberg, Marc S; Chapman, Peter M; Allan, Ian J; Anderson, Kim A; Apitz, Sabine E; Beegan, Chris; Bridges, Todd S; Brown, Steve S; Cargill, John G; McCulloch, Megan C; Menzie, Charles A; Shine, James P; Parkerton, Thomas F</p> <p>2014-01-01</p> <p>This paper details how activity-based passive sampling methods (PSMs), which provide information on bioavailability in terms of freely dissolved contaminant concentrations (Cfree), can be used to better inform risk management decision making at multiple points in the process of assessing and managing contaminated sediment sites. PSMs can increase certainty in site investigation and management, because Cfree is a better predictor of bioavailability than total bulk sediment concentration (Ctotal) for 4 key endpoints included in conceptual site models (benthic organism toxicity, bioaccumulation, sediment flux, and water column exposures). The use of passive sampling devices (PSDs) presents challenges with respect to representative sampling for estimating average concentrations and other metrics relevant for exposure and risk assessment. These challenges can be addressed by designing studies that account for sources of variation associated with PSMs and considering appropriate spatial scales to meet study objectives. Possible applications of PSMs include: quantifying spatial and temporal trends in bioavailable contaminants, identifying and evaluating contaminant source contributions, calibrating site-specific models, and, improving weight-of-evidence based decision frameworks. PSM data can be used to assist in delineating sediment management zones based on likelihood of exposure effects, monitor remedy effectiveness, and, evaluate risk reduction after sediment treatment, disposal, or beneficial reuse after management actions. Examples are provided illustrating why PSMs and freely dissolved contaminant concentrations (Cfree) should be incorporated into contaminated sediment investigations and study designs to better focus on and understand contaminant bioavailability, more accurately estimate exposure to sediment-associated contaminants, and better inform risk management decisions. Research and communication needs for encouraging broader use are discussed. Integr Environ Assess Manag 2014;10:224–236. © 2014 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC. PMID:24343931</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996NIMPB.109..415L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996NIMPB.109..415L"><span>A combined experimental-modelling method for the detection and analysis of pollution in coastal zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Limić, Nedzad; Valković, Vladivoj</p> <p>1996-04-01</p> <p>Pollution of coastal seas with toxic substances can be efficiently detected by examining toxic materials in sediment samples. These samples contain information on the overall pollution from surrounding sources such as yacht anchorages, nearby industries, sewage systems, etc. In an efficient analysis of pollution one must determine the contribution from each individual source. In this work it is demonstrated that a modelling method can be utilized for solving this latter problem. The modelling method is based on a unique interpretation of concentrations in sediments from all sampling stations. The proposed method is a synthesis consisting of the utilization of PIXE as an efficient method of pollution concentration determination and the code ANCOPOL (N. Limic and R. Benis, The computer code ANCOPOL, SimTel/msdos/geology, 1994 [1]) for the calculation of contributions from the main polluters. The efficiency and limits of the proposed method are demonstrated by discussing trace element concentrations in sediments of Punat Bay on the island of Krk in Croatia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/ofr/2017/1024/ofr20171024.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ofr/2017/1024/ofr20171024.pdf"><span>Nearshore sediment thickness, Fire Island, New York</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Locker, Stanley D.; Miselis, Jennifer L.; Buster, Noreen A.; Hapke, Cheryl J.; Wadman, Heidi M.; McNinch, Jesse E.; Forde, Arnell S.; Stalk, Chelsea A.</p> <p>2017-04-03</p> <p>Investigations of coastal change at Fire Island, New York (N.Y.), sought to characterize sediment budgets and determine geologic framework controls on coastal processes. Nearshore sediment thickness is critical for assessing coastal system sediment availability, but it is largely unquantified due to the difficulty of conducting geological or geophysical surveys across the nearshore. This study used an amphibious vessel to acquire chirp subbottom profiles. These profiles were used to characterize nearshore geology and provide an assessment of nearshore sediment volume. Two resulting sediment-thickness maps are provided: total Holocene sediment thickness and the thickness of the active shoreface. The Holocene sediment section represents deposition above the maximum flooding surface that is related to the most recent marine transgression. The active shoreface section is the uppermost Holocene sediment, which is interpreted to represent the portion of the shoreface thought to contribute to present and future coastal behavior. The sediment distribution patterns correspond to previously defined zones of erosion, accretion, and stability along the island, demonstrating the importance of sediment availability in the coastal response to storms and seasonal variability. The eastern zone has a thin nearshore sediment thickness, except for an ebb-tidal deposit at the wilderness breach caused by Hurricane Sandy. Thicker sediment is found along a central zone that includes shoreface-attached sand ridges, which is consistent with a stable or accretional coastline in this area. The thickest overall Holocene section is found in the western zone of the study, where a thicker lower section of Holocene sediment appears related to the westward migration of Fire Island Inlet over several hundred years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE44C1519S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE44C1519S"><span>In-situ Geotechnical Investigation of Arctic Nearshore Zone Sediments, Herschel Island, Yukon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stark, N.; Quinn, B.; Radosavljevic, B.; Lantuit, H.</p> <p>2016-02-01</p> <p>The Arctic is currently undergoing rapid changes with regard to ice coverage, permafrost retreat and coastal erosion. In addition to hydrodynamic processes, the sediments in the Arctic nearshore zone are affected by potential variations in freeze-thaw cycles, as well as an increase of abundant suspended sediment introduced by active retrogressive thaw slumps and increased river discharge. During the YUKON14 expedition to Herschel Island, Yukon, in-situ geotechnical testing of nearshore zone sediments was conducted using a portable free fall penetrometer. The research goals were mapping of sediment types, identification of surficial sediment stratification related to recent sediment remobilization or deposition processes, and the investigation of the soil mechanical characteristics of the uppermost seabed surface in the nearshore zone. Approximately 200 sites were tested using the portable free fall penetrometer, and five different geotechnical signatures identified and grouped. Most locations were characterized by a soft sediment top layer that exhibited a noticeably lower sediment strength than the underlying sediment. The results were correlated to existing sediment grain size records and a sediment type interpretation based on side scan sonar backscatter information. Strong spatial variations in sediment type and stiffness were observed, as well as in abundance and thickness of a top layer of very soft and loose sediment. It was attempted to relate the geotechnical signature to site-specific hydrodynamic energy, morphology, and vicinity to thaw slumps. The results will contribute to a detailed investigation of Arctic coastal erosion in the region, and the investigation of the role of geotechnical parameters for Arctic coastal erosion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919330S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919330S"><span>Magnetostratigraphy of the Miocene sediments at Háj u Duchcova and Sokolov (West Bohemia)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schnabl, Petr; Man, Otakar; Matys Grygar, Tomáš; Mach, Karel; Kdýr, Šimon; Čížková, Kristýna; Pruner, Petr; Martínek, Karel; Rojík, Petr</p> <p>2017-04-01</p> <p>Magnetostratigraphic investigation was conducted on the newly excavated drill core HD-50 and previously retreived drill cores DP-333-09 and JP-585-10. The new drill core HD-50 was sampled at the old coal mine 1.Máj near Háj u Duchcova in the Most Basin, while the DP-333-09 and JP-585-10 are from the benches of opencast coal mines Družba and Jiří in the Sokolov Basin. Both basins are parts of one segment of the European Cenozoic Rift System. The sediments in both basins are of Burdigalian age (lower Miocene). Their lithology mainly comprise fossil-free clays/silts above the main coal seam, with two phosphatic horizons with mineral crandalite in the Most Basin and several greigite layers in the Sokolov Basin. Anisotropy of magnetic susceptibility (AMS), alternate field demagnetization and remanent magnetization were measured in all samples. Unusually behaving samples with extremely high magnetic susceptibility (siderite), prolate anisotropy of AMS and samples with the angle of the main AMS axis exceeding 20 degrees was excluded from further evaluation. The sedimentation rate was computed by multivariate spectral analysis on data acquired by X-ray fluorescence. The spectral analysis was performed with our original software solution for identification of typical frequencies and their assignement to Milanković cycles.[1] The sedimentation rate (after compaction) was around 15 cm/ky for the drill core DP-333-09 and around 30 cm/ky for the core JP-585-10. The sediment succession above the coal seam at drill core DP-333-09 starts with 20 meters, in which the magnetic polarity could not be reconstructed (70 - 50 m), then there is a top part of reverse zone (50 - 49 m) and short normal subzone above it (49 - 48 m). Above that there is the second reverse zone (45 - 4 m). Two additional magnetozones above that could be found only in the drill core HD-50 from the Most Basin. The drill core JP-585-10 begins with 14 meters of disturbed zone (94 - 80 m), then 12 meters of normal polarity (69 - 80 m) was found. Above that, after a small gap of magnetically disturbed sediments, there are 60 meters of sediments with reverse polarity (62 - 2 m) with short normal excursion at the upper half (24 - 17 m). According to the detailed analysis of drill core HK591 (Matys Grygar et al. 2014), we suppose, that the succession begins in C5En (only JP-585-10), then C5Dr. Validity of subzone C5Dr.1n in the drills JP-585-10 and DP-333-09 is still under discussion. The zone C5Cr could be found only in the HD-50 core. In comparison of the interpreted polarities with ATNTS2012 the time span in the studied cores is approximately 17.5 to 17.9 Ma for DP-333-09, 17.8 to 18.1 for JP-585-[2]10 and 17.1 to 17.7 Ma for HD-50. Additional investigation should be done. The research was supported by Czech Science Foundation GAČR, project n. 16-00800S. Matys Grygar, T., Mach, K., Pruner, P., Schnabl, P., Laurin, J., Martinez, M., 2014. A lacustrine record of the early stage of the Miocene Climatic Optimum in Central Europe from the Most Basin, Ohře (Eger) Graben, Czech Republic, Geol. Mag. 151 (6), 1013-1033.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25518658','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25518658"><span>[Using ultraviolet-visible ( UV-Vis) absorption spectrum to estimate the dissolved organic matter (DOM) concentration in water, soils and sediments of typical water-level fluctuation zones of the Three Gorges Reservoir areas].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Lu-lu; Jiang, Tao; Lu, Song; Yan, Jin-long; Gao, Jie; Wei, Shi-qiang; Wang, Ding-yong; Guo, Nian; Zhao, Zhena</p> <p>2014-09-01</p> <p>Dissolved organic matter (DOM) is a very important component in terrestrial ecosystem. Chromophoric dissolved organic matter (CDOM) is a significant constituent of DOM, which can be measured by ultraviolet-visible (UV-Vis) absorption spectrum. Thus the relationship between CDOM and DOM was investigated and established by several types of models including single-wavelength model, double-wavelength model, absorption spectrum slope (S value) model and three-wavelength model, based on the UV-Vis absorption coefficients of soil and sediment samples (sampled in July of 2012) and water samples (sampled in November of 2012) respectively. The results suggested that the three-wavelength model was the best for fitting, and the determination coefficients of water, soil and sediment data were 0. 788, 0. 933 and 0. 856, respectively. Meanwhile, the nominal best model was validated with the UV-Vis data of 32 soil samples and 36 water samples randomly collected in 2013, showing the RRMSE and MRE were 16. 5% and 16. 9% respectively for soil DOM samples, 10. 32% and 9. 06% respectively for water DOM samples, which further suggested the prediction accuracy was higher in water DOM samples as compared with that in soil DOM samples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AdWR...33..277B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AdWR...33..277B"><span>Numerical simulation of two-phase flow for sediment transport in the inner-surf and swash zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bakhtyar, R.; Barry, D. A.; Yeganeh-Bakhtiary, A.; Li, L.; Parlange, J.-Y.; Sander, G. C.</p> <p>2010-03-01</p> <p>A two-dimensional two-phase flow framework for fluid-sediment flow simulation in the surf and swash zones was described. Propagation, breaking, uprush and backwash of waves on sloping beaches were studied numerically with an emphasis on fluid hydrodynamics and sediment transport characteristics. The model includes interactive fluid-solid forces and intergranular stresses in the moving sediment layer. In the Euler-Euler approach adopted, two phases were defined using the Navier-Stokes equations with interphase coupling for momentum conservation. The k-ɛ closure model and volume of fluid approach were used to describe the turbulence and tracking of the free surface, respectively. Numerical simulations explored incident wave conditions, specifically spilling and plunging breakers, on both dissipative and intermediate beaches. It was found that the spatial variation of sediment concentration in the swash zone is asymmetric, while the temporal behavior is characterized by maximum sediment concentrations at the start and end of the swash cycle. The numerical results also indicated that the maximum turbulent kinetic energy and sediment flux occurs near the wave-breaking point. These predictions are in general agreement with previous observations, while the model describes the fluid and sediment phase characteristics in much more detail than existing measurements. With direct quantifications of velocity, turbulent kinetic energy, sediment concentration and flux, the model provides a useful approach to improve mechanistic understanding of hydrodynamic and sediment transport in the nearshore zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR33B0469V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR33B0469V"><span>Mechanical behavior in the Nankai inner accretionary prism, IODP Site C0002</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Valdez, R. D., II; Saffer, D. M.</p> <p>2017-12-01</p> <p>Understanding the processes that control seismogenesis and stress state at subduction zones requires knowledge of fault zone and sediment physical and mechanical properties. As part of the International Ocean Discovery Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE), Expedition 348 drilled into the Kumano forearc basin and underlying inner accretionary prism at Site C0002, located 35 km landward of the trench. One primary objective was to sample and characterize the mechanical behavior of the inner accretionary prism. Here we report on the frictional and unconfined compressive strength (UCS) of mudstone samples and a clay-rich shear zone recovered from 2182-2209 meters below sea floor (mbsf), determined from triaxial deformation tests at confining pressures from 1 to 7 MPa (UCS measurements on mudstones) and 36 MPa (strength of fault zone). Our results show that at a confining pressure of 1 MPa, the wall rock sediments fail at a peak differential stress of 9.1 MPa with a residual stress of 2.8 MPa. A clear peak and evolution to residual strength remains present at 7 MPa, and both the peak and residual strengths of the mudstones increases systematically with confining pressure. At a confining pressure of 36 MPa, the shear zone sediment yields at a differential stress of 25.2 MPa followed by strain-hardening to a maximum stress of 33.1 MPa. The shear zone is frictionally weaker than the surrounding mudstones, with a friction coefficient (μ) of 0.26-0.31, versus µ = 0.45 for the wall rock. The suite of tests defines a UCS for the mudstone of 7.9 MPa. Our friction data suggest that the inner wedge may be weaker than commonly assumed in applications of critical wedge theory to estimate the properties and conditions in accretionary prisms. One key implication is that for a given basal detachment friction coefficient, higher basal pore pressures (or lower wedge pore pressures) would be required to sustain observed taper angles. Additionally, the UCS we define is significantly lower than predicted by widely-adopted empirical relations between P wave velocity and UCS for shales (UCS of 15.5 MPa), suggesting that existing analyses of stress magnitudes from borehole breakout widths may overestimate horizontal stress magnitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1611807Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1611807Z"><span>Sedimentation and provenance of the Antofagasta region of the southern Puna Plateau, central Andes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Renjie; Schoenbohm, Lindsay M.; Sobel, Edward R.; Carrapa, Barbara; Davis, Donald W.</p> <p>2014-05-01</p> <p>Stratigraphic and provenance studies of Cenozoic non-marine sedimentary basins in the Central Andean Puna Plateau provide insight into the regional development and dynamics. The southern plateau hosts several poorly exposed intramontane basins bounded by basement-involved ~N-S striking thrust faults; their origin is explained differently by contrasting geodynamic models. This study focuses on the Antofagasta region (NW Argentina). The top of the studied basin was over-thrust by basement rocks along a west-dipping thrust fault, which was likely active during exhumation of the Calalaste range to the west (25-29 Ma, Carrapa et al., 2005). We studied three sections SW of Antofagasta de la Sierra. S3 (552 m) is the lowest section and is composed of mud playa to sandflat sediments, with at least two paleosol horizons. Lower S2 (1,263 m) contains ~300 meters of proximal alluvial fan sediments. Upper S2 is composed of fluvial to shallow lacustrine sediments. The separation between the top of S2 and the bottom of S1 (1,062 m) is ~540 m. The lower ~600 m of S1 is composed of thick, distal alluvial fan and braided river sediments. In the upper S1, the depositional environment changes to fluvial-alluvial, with a paleosol developed at the top of S1. Imbricated pebbles suggest prevailing eastward paleoflow. Modal compositions of 18 sandstones plot in the mixed zone on a Qm-F-Lt plot, and the transitional continental and recycled orogenic zones on a Qt-F-L plot (Dickinson, 1985). Their compositions cluster and do not show any evolutionary trends, despite being sampled from a ~3000 m-thick sedimentary column. However, when combined with data from the Quinoas Formation (Late Eocene to Late Oligocene) and the Chacras Formation (Late Oligocene to Early Miocene), outcropped west of the study site (Carrapa et al., 2005), the Antofagasta samples mark the beginning of an evolving trend towards the dissected arc and transitional arc zones. We analyzed U-Pb ages of detrital zircons from eight samples. Four young grains from three samples near the top of S2 yield ages of 38-39.5 Ma. If these grains were derived from air-fall volcanics, they indicate a late Eocene depositional age for the studied strata, but otherwise they give a maximum age estimate. We tentatively favour the former interpretation. For all samples, detrital zircon U-Pb age spectra show significant late Cambrian to early Ordovician and Precambrian (~1000-1400 Ma, ~1700-1900 Ma) sources. The ~1000-1400 Ma cluster is well matched with ages from the Sierra de Maz, to the west. A minor Permian-Triassic source (~240-290 Ma) is also present which could reflect limited exposures of plutonic rocks west of the study site. Our work suggests that the ~3000 meter thick unit in the Antofagasta basin is time-equivalent of the Quinoas Formation and accumulated with a high sedimentation rate. The sediments were sourced primarily from the west, with little input from volcanics. The consistent western source regions and the rapid subsidence lead us to favour a foreland-type origin for the late Eocene Antofagasta Basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984HM.....38..179R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984HM.....38..179R"><span>Untersuchungen zum Vorkommen von Myxobakterien in von Meerwasser beeinflußten Substraten unter besonderer Berücksichtigung der Insel Helgoland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rückert, G.</p> <p>1984-03-01</p> <p>Representatives of the family Myxococcaceae, Myxococcus fulvus and M. virescens as well as Archangium gephyra could be isolated from marine sediments (depth range 5 58 m), collected near the island of Helgoland (North Sea); dunes and rudiments of salt marshes additionally yielded M. coralloides and the rare species Melittangium licenicola and M. boletus (Cystobacteriaceae). In soil samples from the island, M. fulvus, M. virescens, M. coralloides, A. gephyra, Cystobacter fuscus and Stigmatella erecta were found. These results were confirmed by data, obtained from the coastal zone of the island of Amrum and marine sediments from various regions. On the other hand samples from shallow fresh water (depth range 0.3 1 m) proved to be richer in species. It is assumed that the myxobacteria found in marine sediments occur as resting cells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15172811','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15172811"><span>Distribution, enrichment and accumulation of heavy metals in coastal sediments of Alang-Sosiya ship scrapping yard, India.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Reddy, M Srinivasa; Basha, Shaik; Sravan Kumar, V G; Joshi, H V; Ramachandraiah, G</p> <p>2004-06-01</p> <p>Since its inception in 1982, the Alang-Sosiya yard has become the largest ship scrapping works in the world. Several hundreds of ships arrive every year. The degree of heavy metal contamination has been studied in bulk and fine sediments from the intertidal zone of this ship scrapping yard, two stations, one on either side at 5 km distance and one reference station 60 km distance near Mahuva, towards the south. The samples have been subjected to a total digestion technique and analysed for elements: Cd, Co, Cu, Cr, Fe, Mn, Ni, Pb, Zn and Al, and %TOC. The absolute metal concentrations reflected variations in BF and FF sediment samples with organic matter content. Enrichment factors (EF) and geoaccumulation indices (Igeo) have been calculated and the relative contamination levels are assessed at these sites. At Alang-Sosiya, the enrichment of heavy metals has been observed to be relatively high.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70094738','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70094738"><span>Ambient changes in tracer concentrations from a multilevel monitoring system in Basalt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bartholomay, Roy C.; Twining, Brian V.; Rose, Peter E.</p> <p>2014-01-01</p> <p>Starting in 2008, a 4-year tracer study was conducted to evaluate ambient changes in groundwater concentrations of a 1,3,6-naphthalene trisulfonate tracer that was added to drill water. Samples were collected under open borehole conditions and after installing a multilevel groundwater monitoring system completed with 11 discrete monitoring zones within dense and fractured basalt and sediment layers in the eastern Snake River aquifer. The study was done in cooperation with the U.S. Department of Energy to test whether ambient fracture flow conditions were sufficient to remove the effects of injected drill water prior to sample collection. Results from thief samples indicated that the tracer was present in minor concentrations 28 days after coring, but was not present 6 months after coring or 7 days after reaming the borehole. Results from sampling the multilevel monitoring system indicated that small concentrations of the tracer remained in 5 of 10 zones during some period after installation. All concentrations were several orders of magnitude lower than the initial concentrations in the drill water. The ports that had remnant concentrations of the tracer were either located near sediment layers or were located in dense basalt, which suggests limited groundwater flow near these ports. The ports completed in well-fractured and vesicular basalt had no detectable concentrations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFMOS71B0279S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFMOS71B0279S"><span>Relationship of Hotspots to the Distribution of Surficial Surf-Zone Sediments along the Outer Banks of North Carolina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schupp, C. A.; McNinch, J. E.; List, J. H.; Farris, A. S.</p> <p>2002-12-01</p> <p>The formation and behavior of hotspots, or sections of the beach that exhibit markedly higher shoreline change rates than adjacent regions, are poorly understood. Several hotspots have been identified on the Outer Banks, a developed barrier island in North Carolina. To better understand hotspot dynamics and the potential relationship to the geologic framework in which they occur, the surf zone between Duck and Bodie Island was surveyed in June 2002 as part of a research effort supported by the U.S. Geological Survey and U.S. Army Corps of Engineers. Swath bathymetry, sidescan sonar, and chirp seismic were used to characterize a region 40 km long and1 km wide. Hotspot locations were pinpointed using standard deviation values for shoreline position as determined by monthly SWASH buggy surveys of the mean high water contour between October 1999 and September 2002. Observational data and sidescan images were mapped to delineate regions of surficial sediment distributions, and regions of interest were ground-truthed via grab samples or visual inspection. General kilometer-scale correlation between acoustic backscatter and high shoreline standard deviation is evident. Acoustic returns are uniform in a region of Duck where standard deviation is low, but backscatter is patchy around the Kitty Hawk hotspot, where standard deviation is higher. Based on ground-truthing of an area further north, these patches are believed to be an older ravinement surface of fine sediment. More detailed analyses of the correlation between acoustic data, standard deviation, and hotspot locations will be presented. Future work will include integration of seismic, bathymetric, and sidescan data to better understand the links between sub-bottom geology, temporal changes in surficial sediments, surf-zone sediment budgets, and short-term changes in shoreline position and morphology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21316761-environmental-radioactivity-study-surface-sediments-guacanayabo-gulf-cuba','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21316761-environmental-radioactivity-study-surface-sediments-guacanayabo-gulf-cuba"><span>Environmental Radioactivity Study in Surface Sediments of Guacanayabo Gulf (Cuba)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Reyes, H.; Rizo, O. Diaz; Bernal, J. L.</p> <p></p> <p>Sediment samples have been collected in the Guacanayabo gulf located in the southeast Cuba, to determinate the radioactivity levels of {sup 210}Pb, {sup 234}Th, {sup 214}Pb, {sup 137}Cs, {sup 232}Th and {sup 40}K using Low-Background Gamma Spectrometry and to evaluate its impact in the habitat of important marine species for fishery industry. The obtained results show the lowest radioactivity levels determined in Cuban marine environments. The species capture declination in the last years is not originated by radioactive pollution of the zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26586450','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26586450"><span>Vertical distribution of sediment phosphorus in Lake Hachirogata related to the effect of land reclamation on phosphorus accumulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jin, G; Onodera, S; Saito, M; Maruyama, Y; Hayakawa, A; Sato, T; Ota, Y; Aritomi, D</p> <p>2016-01-13</p> <p>The focus of this work is the change in sediment properties and chemical characteristics that occur after land reclamation projects. The results indicate a higher sedimentation rate in Lake Hachirogata after reclamation, with the rate increasing with proximity to the agricultural zone. In the west-side water samples, higher levels of dissolved total nitrogen and dissolved total phosphorus (DTP) were found in both surface and bottom waters. The increase in P (39-80%) was generally greater than that for N (12-16%), regarding the nutrient supply from reclaimed farmland in the western part of the lake. In the eastern part of the lake, the pore-water Cl - profile showed a decreasing vertical gradient in the sediment core. This indicates desalination of the lake water after construction of a sluice gate in 1961. In the western sediment-core sample, a uniform Cl - profile indicates the mixing of lake water and pore water after reclamation. Considering the sedimentation of P in the last 100 years, there is a trend of increasing accumulation of P and P-activities after the reclamation project. This appears to be an impact from change in the lake environment as a result of increased agricultural nutrients, desalination, and residence. A large amount of mobile phosphorus (42-72% of TP in the western core sample) trapped in sediment increases the risk of phosphorus release and intensification of algal blooms. High sediment phosphorus and phosphorus mobility should be considered a source of pollution in the coastal environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2010/1298/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2010/1298/"><span>Geochemical data for core and bottom-sediment samples collected in 2007 from Grand Lake O' the Cherokees, northeast Oklahoma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fey, David L.; Becker, Mark F.; Smith, Kathleen S.</p> <p>2010-01-01</p> <p>Grand Lake O' the Cherokees is a large reservoir in northeast Oklahoma, below the confluence of the Neosho and Spring Rivers, both of which drain the Tri-State Mining District to the north. The Tri-State district covers an area of 1,200 mi2 (3,100 km2) and comprises Mississippi Valley-type lead-zinc deposits. A result of 120 years of mining activity is an estimated 75 million tons of processed mine tailings (chat) remaining in the district. Concerns of sediment quality and the possibility of human exposure to cadmium and lead through eating fish have led to several studies of the sediments in the Tri-State district. In order to record the transport and deposition of metals from the Tri-State district by the Spring and Neosho Rivers into Grand Lake O' the Cherokees, the U.S. Geological Survey collected 11 sediment cores and 15 bottom-sediment samples in September 2007. Subsamples from five selected cores and the bottom-sediment samples were analyzed for major and trace elements and forms of carbon. The sediment samples collected from the sediment-water interface had larger average concentrations of zinc, cadmium, and lead than local background. The core collected from the Spring River had the largest concentrations of mining-related elements. A core collected just south of Twin Bridges State Park, at the confluence of the Spring and Neosho Rivers, showed a mixing zone with more mining-related elements coming from the Spring River side. The element zinc showed the most definitive patterns in graphs depicting concentration-versus-depth profiles. A core collected from the main body of the reservoir showed affected sediment down to a depth of 85 cm (33 in). This core and two others appear to have penetrated to below mining-affected sediment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4280587','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4280587"><span>Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Deutzmann, Joerg S.; Stief, Peter; Brandes, Josephin; Schink, Bernhard</p> <p>2014-01-01</p> <p>Anaerobic methane oxidation coupled to denitrification, also known as “nitrate/nitrite-dependent anaerobic methane oxidation” (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were very abundant at deep-water sites (profundal sediment). In profundal sediment, the vertical distribution of M. oxyfera-like bacteria showed a distinct peak in anoxic layers that coincided with the zone of methane oxidation and nitrate consumption, a strong indication for n-damo carried out by M. oxyfera-like bacteria. Both potential n-damo rates calculated from cell densities (660–4,890 µmol CH4⋅m−2⋅d−1) and actual rates calculated from microsensor profiles (31–437 µmol CH4⋅m−2⋅d−1) were sufficiently high to prevent methane release from profundal sediment solely by this process. Additionally, when nitrate was added to sediment cores exposed to anoxic conditions, the n-damo zone reestablished well below the sediment surface, completely preventing methane release from the sediment. We conclude that the previously overlooked n-damo process can be the major methane sink in stable freshwater environments if nitrate is available in anoxic zones. PMID:25472842</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25472842','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25472842"><span>Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Deutzmann, Joerg S; Stief, Peter; Brandes, Josephin; Schink, Bernhard</p> <p>2014-12-23</p> <p>Anaerobic methane oxidation coupled to denitrification, also known as "nitrate/nitrite-dependent anaerobic methane oxidation" (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were very abundant at deep-water sites (profundal sediment). In profundal sediment, the vertical distribution of M. oxyfera-like bacteria showed a distinct peak in anoxic layers that coincided with the zone of methane oxidation and nitrate consumption, a strong indication for n-damo carried out by M. oxyfera-like bacteria. Both potential n-damo rates calculated from cell densities (660-4,890 µmol CH4⋅m(-2)⋅d(-1)) and actual rates calculated from microsensor profiles (31-437 µmol CH4⋅m(-2)⋅d(-1)) were sufficiently high to prevent methane release from profundal sediment solely by this process. Additionally, when nitrate was added to sediment cores exposed to anoxic conditions, the n-damo zone reestablished well below the sediment surface, completely preventing methane release from the sediment. We conclude that the previously overlooked n-damo process can be the major methane sink in stable freshwater environments if nitrate is available in anoxic zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5884623-environmental-engineering-effects-sinkholes-processes-behind-problems','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5884623-environmental-engineering-effects-sinkholes-processes-behind-problems"><span>Environmental and engineering effects of sinkholes - the processes behind the problems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Beck, B.F.</p> <p>1988-10-01</p> <p>Karstic erosion of the land surface is controlled by processes occurring in the epikarstic zone-the upper portion of the limestone which is most intensely dissolved. Sinkholes developing today are generally the effects of downward movement of mantling sediment into the major karren shafts which drain the epikarstic zone deeper into the true karstic aquifer. Dissolution of the limestone itself does not cause significant changes in man's time frame. The downward erosion of mantling sediment is termed ravelling. Only in uniform sediment will an arched cavity occur. In unconsolidated sediment which is stratified, lateral tunneling may even occur. Only the majormore » karren can transmit sediment downward, the majority are ineffective. In mantled karst the location of surficial depressions and photo-linears does not necessarily correlate to areas of new collapse. The irregular and highly dissolved character of the epikarstic zone complicates foundation engineering. Downward drainage through this zone may be limited and cause flooding. An understanding of processes in the epikarstic zone is essential in developing on karst.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H51D1298L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H51D1298L"><span>Nitrogen fluxes across hydrogeomorphic zones in coastal deltaic floodplain using flow-through technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, S.; Twilley, R.; Christensen, A.</p> <p>2017-12-01</p> <p>Coastal floodplain deltas are the region of continental margins of major river basins that can remove excess nitrogen before entering the coastal ocean. We propose that the processing of nitrogen in active deltaic wetlands varies with soil organic content in response to different hydrogeomorphic zones. Continuous flow-through core system was used to incubate sediment cores from supratidal, intertidal, and subtidal hydrogeomorphic zones along a chronosequence in Wax Lake Delta during summer of 2017. Ambient water from Wax Lake Outlet was continuously pumped through sealed cores to estimate fluxes of inorganic nitrogen and phosphorus across the sediment-water interface by calculating the difference between inflow and outflow concentrations. The average respiration rate of sediment cores from intertidal zone was about 1.5 g m-2 d-1 while the rate in supratidal zone was more than doubled to 3.7 g m-2 d-1. Under the constant inflow concentration of nitrate (about 107.1 umol/L), sediment cores in supratidal zone exhibited greater NO3- uptake (1329.7 umol m-2 h-1) and N2 release (499.0 umol N m-2 h-1) than that in intertidal zone (421.5 umol m-2 h-1 of NO3- uptake and 67.6 umol N m-2 h-1 of N2 flux respectively). These results indicate greater rate of net denitrification in supratidal zone than intertidal zone in the older chronosequence of the active delta (which formed approximately in 1980). Also, lower NH4 flux (mean 70.0 umol m-2 h-1) from sediment to water column in supratidal zone together with higher NO2- flux (mean 94.2 umol m-2 h-1) illustrated strong signal of nitrification. In conclusion, sediment cores at the intertidal zone helped to remove 12% of NO3- from the water column while cores at supratidal zone removed 35% of NO3-. Based on the correlation between NO3- and N2 fluxes, about 60% of NO3- removed could be converted to N2 under sediment organic concentrations of about 12%. Comparisons of NO3 removal and conversion to N2 by denitrification will be compared along the chronosequence to test the effects of shifts from mineral to organic soils as active deltas develop at the mouths of major river basins.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040088314&hterms=APICAL&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DAPICAL','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040088314&hterms=APICAL&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DAPICAL"><span>Conservation of the plastid sedimentation zone in all moss genera with known gravitropic protonemata</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schwuchow, J. M.; Kern, V. D.; White, N. J.; Sack, F. D.</p> <p>2002-01-01</p> <p>Moss protonemata from several species are known to be gravitropic. The characterization of additional gravitropic species would be valuable to identify conserved traits that may relate to the mechanism of gravitropism. In this study, four new species were found to have gravitropic protonemata, Fissidens adianthoides, Fissidens cristatus, Physcomitrium pyriforme, and Barbula unguiculata. Comparison of upright and inverted apical cells of P. pyriforme and Fissidens species showed clear axial sedimentation. This sedimentation is highly regulated and not solely dependent on amyloplast size. Additionally, the protonemal tip cells of these species contained broad subapical zones that displayed lateral amyloplast sedimentation. The conservation of a zone of lateral sedimentation in a total of nine gravitropic moss species from five different orders supports the idea that this sedimentation serves a specialized and conserved function in gravitropism, probably in gravity sensing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS21A1341J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS21A1341J"><span>Microplastic-associated Bacterial Assemblages in the Intertidal Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, P.; Zhao, S.; Zhu, L.; Li, D.</p> <p>2017-12-01</p> <p>Plastic debris is posing a planetary-scale threat. As a zone where terrestrial and marine ecosystems interactions occur, the accumulation of plastic marine debris (PMD) in intertidal environments has been well documented. But the information of plastic-associated microbial community (the "Plastisphere") in the intertidal zone is scanty. Utilizing the high-throughput sequencing, we profiled the bacterial communities attached to microplastic samples from the intertidal locations around Yangtze estuary. The structure and composition of Plastisphere communities in current study varied significantly with geographical stations. The taxonomic composition on microplastic samples implied their sedimental and aquatic origins. Some members of hydrocarbon degrading microorganisms and potential pathogens were detected on microplastic. Overall, our findings fuel the evidence for the occurrence of diverse microbial assemblages on PMD and improving our understanding of Plastisphere ecology, which could support the management action and policy change related to PMD.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JSR...118...69P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JSR...118...69P"><span>Anthropogenic tritium in the Loire River estuary, France</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Péron, O.; Gégout, C.; Reeves, B.; Rousseau, G.; Montavon, G.; Landesman, C.</p> <p>2016-12-01</p> <p>This work is carried out in the frame of a radioecological monitoring of anthropogenic tritium from upstream and downstream of several nuclear power plants along the Loire River to its estuary. This paper studies the variation of anthropogenic tritium species in the Loire River system from upstream to the mouth of the estuary. Tritiated water (HTO and HTO in sediment pore water) and organically bound tritium (OBT) forms were analysed after dedicated pre-treatments. The collected environmental samples consist in (i) surface-sediment and core samples from the river floor, (ii) surface and water column samples. A maximum 3H activity concentration of 26 ± 3 Bq·L- 1 in the Loire River estuary is obtained whereas an environmental background level around 1 Bq·L- 1 is determined for a non influenced continental area by anthropogenic activities. The European follow-up indicator used as a screening value is 100 Bq·L- 1. The conservative tritium behaviour was used in order to characterize the tidal regime and river flow influences in the mixing zone of the Loire River estuary. Furthermore, OBT levels and total organically carbon (TOC) content are explored. Finally, ratios of OBT relative to HTO in sediment pore water in surface-sediment and core samples are also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26538260','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26538260"><span>Vertical profile, source apportionment, and toxicity of PAHs in sediment cores of a wharf near the coal-based steel refining industrial zone in Kaohsiung, Taiwan.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Chih-Feng; Chen, Chiu-Wen; Ju, Yun-Ru; Dong, Cheng-Di</p> <p>2016-03-01</p> <p>Three sediment cores were collected from a wharf near a coal-based steel refining industrial zone in Kaohsiung, Taiwan. Analyses for 16 polycyclic aromatic hydrocarbons (PAHs) of the US Environmental Protection Agency priority list in the core sediment samples were conducted using gas chromatography-mass spectrometry. The vertical profiles of PAHs in the core sediments were assessed, possible sources and apportionment were identified, and the toxicity risk of the core sediments was determined. The results from the sediment analyses showed that total concentrations of the 16 PAHs varied from 11774 ± 4244 to 16755 ± 4593 ng/g dry weight (dw). Generally, the vertical profiles of the PAHs in the sediment cores exhibited a decreasing trend from the top to the lower levels of the S1 core and an increasing trend of PAHs from the top to the lower levels of the S2 and S3 cores. Among the core sediment samples, the five- and six-ring PAHs were predominantly in the S1 core, ranging from 42 to 54 %, whereas the composition of the PAHs in the S2 and S3 cores were distributed equally across three groups: two- and three-ring, four-ring, and five- and six-ring PAHs. The results indicated that PAH contamination at the site of the S1 core had a different source. The molecular indices and principal component analyses with multivariate linear regression were used to determine the source contributions, with the results showing that the contributions of coal, oil-related, and vehicle sources were 38.6, 35.9, and 25.5 %, respectively. A PAH toxicity assessment using the mean effect range-median quotient (m-ERM-q, 0.59-0.79), benzo[a]pyrene toxicity equivalent (TEQ(carc), 1466-1954 ng TEQ/g dw), and dioxin toxicity equivalent (TEQ(fish), 3036-4174 pg TEQ/g dw) identified the wharf as the most affected area. The results can be used for regular monitoring, and future pollution prevention and management should target the coal-based industries in this region for pollution reduction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP21B2227P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP21B2227P"><span>Pleistocene to Miocene Calcareous Nannofossil Biostratigraphy from IODP Expedition 334 Hole U1381A and Expedition 352 Hole U1439A</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Power, M.; Scientists, I. E.; Avery, A. J.</p> <p>2015-12-01</p> <p>Samples for this study were collected from drill cores taken during the Integrated Ocean Drilling Program (IODP) Expeditions 334 and 352 at Sites U1381 and U1439, respectively. Both of these expeditions were focused around subduction zones and, therefore, had priorities to determine time frames for the initiation of subduction. There are two main objectives for this study, the first being to age-date Pleistocene to Miocene sediments from the western offshore continental margin of Costa Rica (IODP Expedition 334) via calcareous nannofossils. The second objective is to age-date the Miocene sediments from the fore-arc of the Izu-Bonin-Mariana system, east of Japan (IODP Expedition 352), using calcareous nannofossils. Shore-based analysis allows for high-resolution study to determine exact biostratigraphic zonations. These zonations reflect specific time frames based on the occurrence or non-occurrence of certain nannofossil species. Once these zonations are determined, scientists can use the data to identify the initiation of seismic processes that often occur in these regions. Calcareous nannofossil biostratigraphy has now provided zonations for the samples taken from IODP Expedition 334 cores. Samples from core 6R are assigned to the Pleistocene nannofossil Zone NN19 due to the presence ofPseudoemiliania lacunosa and the absence of Emiliania huxleyi. Using the zonal scheme by de Kaenel (1999), this can further be broken down into Event 18 due to the presence of Gephyrocapsa oceanica larger than 4 μm but less than 5 μm, the presence of Calcidiscus macintyrei smaller than 11 μm, and the absence ofGephyrocapsa caribbeanica larger than 4 μm. De Kaenel (1999) has assigned this event datum an age of 1.718 Ma using orbital time scales and oxygen isotope data. Below these samples, an extensive hiatus ranges from the Pleistocene to the early Miocene. Samples from cores 7R through 10R are assigned to nannofossil zone NN5; however, it is impossible to constrain the top of this zone due to the hiatus. The presence of Sphenolithus heteromorphus and other restrictive species, and the absence of Helicosphaera ampliaperta and Sphenolithus belemnos help constrain these samples to Zone NN5 (13.2Ma to 14.66Ma). Further work as above will be conducted to analyze Miocene samples from IODP Expedition 352.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18..856C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18..856C"><span>Sources and characteristics of organochlorine pesticides in the soil and sediment along the Kaidu-Peacock River, Northwest of China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Wei; Qi, Shihua; Peng, Fei; Qu, Chengkai; Zhang, Yuan; Xing, Xinli; Zhang, Jiaquan</p> <p>2016-04-01</p> <p>Organochlorine pesticides (OCPs) are a sub-group of persistent organic pollutants (POPs), which have raised the concerns from researchers all around the world for several decades. But very little research has been conducted on POPs in the arid zone of Northwest China. More than 100 soil and sediment samples were collected from Kaidu-Peacock River of Xinjiang, Northwest of China, to investigate the organochlorine pesticides (OCPs) in this region analysed by the gas chromatograph equipped with a mass selective detector (GC-MSD). Our pre-study in 2006 (Chen et al. 2011) in the same region, showed that OCPs except o,p'-DDT were detected in sediments from the Peacock River. Similar results were found in the whole river catchment in this investigation. DDTs, HCHs, chlordanes and endosulfans were the dominant OCPs residual in the soil and sediments. This study confirmed that POPs, such as OCPs in this region were contributed to by both local emissions and long-term atmospheric transport and may pose risks to human health and the ecosystem. Chen, W., Jing, M., Bu, J., Ellis Burnet, J., Qi, S., Song, Q., Ke, Y., Miao, J., Liu, M. & Yang, C. (2011) Organochlorine pesticides in the surface water and sediments from the Peacock River Drainage Basin in Xinjiang, China: a study of an arid zone in Central Asia. Environmental Monitoring and Assessment, 177, 1-21.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.cushmanfoundation.org/specpubs/index.html','USGSPUBS'); return false;" href="http://www.cushmanfoundation.org/specpubs/index.html"><span>Trends in the distribution of recent foraminifera in San Francisco Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Arnal, R.E.; Quinterno, P.J.; Conomos, T.J.; Gram, Ralph</p> <p>1980-01-01</p> <p>Thirty-one species of benthonic foraminifera were identified in surficial sediments of San Francisco Bay estuary; of these, 20 species were stained red by rose Bengal and are considered as live. Water depth, sediment textural characteristics, salinity, organic matter, sediment pH, and biological competition were considered as factors that might affect distribution of foraminifera. Four ecologic zones based on observed trends in the distribution and abundance of several species correlate well with some environmental factors. Four groups based on the Q-mode analysis of frequency counts of foraminiferal assemblages are reasonably similar to the four ecologic zones. These zones, showing restricted depth ranges, are: Inner Coastal Zone, where Elphidium incertum obscurum and Trochammina infiata are prominent; Outer Coastal Zone, dominated by Ammonia beccarii tepida and Elphidium incatum; Deep Bay Zone, where Elphidietla hannai, Elphidium incertum clavatum, Hopkinsina pacifica, and Bolivina spp. appear in abundance; and Deep Channel Zone, where Elphidiella hannai is most abundant. In the Inner Coastal Zone, salinity due to large fluctuations is a limiting factor for many species. Substrate textural characteristics are primary determinants of the distribution of agglutinated foraminifers. The percentage of organic matter in the sediment correlates well with the abundance of Elphidium incertum obscurum, a ubiquitous species in San Francisco Bay. Sediment pH is not critical. Biologic competition can be estimated by comparing the percentage of a species with the number of species present in the assemblage, as shown for Ammonia beccarii tepida and Elphidiella hannai.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B23B0203B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B23B0203B"><span>Seasonal variations and cycling of nitrous oxide using nitrogen isotopes and concentrations from an unsaturated zone of a floodplain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bill, M.; Conrad, M. E.; Kolding, S.; Williams, K. H.; Tokunaga, T. K.</p> <p>2014-12-01</p> <p>Nitrous oxide (N2O) concentrations and isotope ratios of 15N to 14N of N2O in the vadose zone mainly depend on atmospheric deposition, symbiotic or non-symbiotic N2 fixation, and nitrification/denitrification processes in underlying groundwater. In an effort to quantify N2O seasonal variations, cycling and N budgets in an alluvial aquifer in western Colorado (Rifle, CO), the concentrations and nitrogen stable isotopes of N2O within the pore space of partially saturated sediments have been monitored over the 2013-2014 years. Vertically resolved profiles spanning from 0m to 3m depth were sampled at 0.5m increments at a periodicity of one month. At each of the profile locations, N2O concentrations decreased from 3m depth to the surface. The maximum concentrations were observed at the interface between the unsaturated zone and groundwater, with minimum values observed in the near surface samples. The d15N values tend to increase from the unsaturated zone/groundwater interface to the surface. Both variation of N2O concentrations and d15N values suggest that denitrification is the main contribution to N2O production and both parameters exhibited a strong seasonal variation. The maximum concentrations (~10ppmv) were observed at the beginning of summer, during the annual maximum in water table elevation. The minimum N2O concentrations were observed in the period from January to May and coincided with low water table elevations. Additionally, nitrogen concentrations and d15N values of the shallowest sediments within the vertical profiles do not show variation, suggesting that the main source of N2O is associated with groundwater denitrification, with the shallower, partially saturated sediments acting as a sink for N2O.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSCT24A0153Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSCT24A0153Y"><span>Marine Biogeochemistry of Particulate Trace Elements in the Exclusive Economic Zone (eez) of the State of Qatar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yigiterhan, O.; Al-Ansari, I. S.; Abdel-Moati, M.; Murray, J. W.; Al-Ansi, M.</p> <p>2016-02-01</p> <p>We focus on the trace element geochemistry of particulate matter in the Exclusive Economic Zone (EEZ) of Qatar. A main goal of this research was to analyze a complete suite of trace elements on particulate matter samples from the water column from different oceanographic biogeochemical zones of the EEZ around Qatar. The sample set also includes plankton samples which are the main source of biogenic particles, dust samples which are a source of abiological particles to surface seawater and surface sediments which can be a source of resuspended particles and a sink for settling particles. The 15 metals and 2 non-metals analyzed in this study will be Al, Ti, V, Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn, Mo, Ag, Ba, U and P, N. Many factors control the composition of trace elements in marine particles. Most of these are important in the EEZ of Qatar, including:1. Natural sources: These are rivers, atmospheric dust, sediment resuspension and leaks from oil beds. However, due to very limited rainfall rivers play no major role in Qatar but resuspension of shallow carbonate rich sediments and input of atmospheric dust are important due to strong currents and surrounding deserts.2. Adsorption/desorption: These chemical processes occur everywhere in the ocean and transfer metals between particles and the solution phase.3. Biological uptake: This process is likewise a universal ocean process and results in transport of metals from the solution phase to biological particles.4. Redox conditions: These are important chemical reactions in the oxic, suboxic and anoxic zones. This can be the dominant controlling mechanism in the northeastern hypoxic deeper waters of the Qatar EEZ.5. Anthropogenic sources: The eastern part of the Qatar contains numerous industrial sites, petroleum/gas platforms and refineries. There are numerous industrial sources but the main hot spots are the port of Doha and the industrial cities of Mesaieed, Khor Al-Odaid, and Ras Laffan. We aimed to determine the influence of the different current systems, water masses, and terrestrial inputs on the distribution, fractionation, and fate of trace metal contaminants and elemental pollutants. We have also observed the level of anthropogenic enrichments for some of the elements which have not been previously documented. This research should be viewed as the first stage of a complete study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27173830','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27173830"><span>Manganese and Mercury Levels in Water, Sediments, and Children Living Near Gold-Mining Areas of the Nangaritza River Basin, Ecuadorian Amazon.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>González-Merizalde, Max V; Menezes-Filho, José A; Cruz-Erazo, Claudia Teresa; Bermeo-Flores, Santos Amable; Sánchez-Castillo, María Obdulia; Hernández-Bonilla, David; Mora, Abrahan</p> <p>2016-08-01</p> <p>Artisanal and small-scale gold-mining activities performed in mountain areas of the Southern Ecuadorian Amazon have incorporated several heavy metals into the aquatic systems, thus increasing the risk of exposure in populations living in adjacent zones. Therefore, the objective of this study was to evaluate the contamination levels of mercury (Hg) and manganese (Mn) in several rivers of the Nangaritza River basin and assess the exposure in school-aged children residing near the gold-mining zones. River water and sediment samples were collected from a highly contaminated (HEx) and a moderately contaminated (MEx) zones. Hair Mn (MnH) and urinary Hg (HgU) levels were determined in school-aged children living in both zones. High concentrations of dissolved Mn were found in river waters of the HEx zone (between 2660 and 3990 µg l(-1)); however, Hg levels, in general, were lower than the detection limit (DL; <1.0 µg l(-1)). Similarly, Mn levels in sediments were also increased (3090 to 4086 µg g(-1)). Median values of MnH in children of the HEx and MEx zones were 5.5 and 3.4 µg g(-1), respectively, whereas the median values of HgU concentrations in children living in the HEx and MEx zones were 4.4 and 0.62 µg g-creat(-1), respectively. Statistically significant differences were observed between both biomarkers in children from the HEx and MEx zones. In addition, boys presented significantly greater MnH levels in both zones. The greater MnH values were found in children living in alluvial areas, whereas children living in the high mountain areas, where some ore-processing plants are located close to or inside houses and schools, had the greater HgU concentrations. In summary, the data reported in this paper highlights that artisanal and small-scale gold-mining activities can not only produce mercurial contamination, that can also release other heavy metals (such as Mn) that may pose a risk to human health.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20812119','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20812119"><span>Linking chloride mass balance infiltration rates with chlorofluorocarbon and SF6 groundwater dating in semi-arid settings: potential and limitations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stadler, Susanne; Osenbruck, Karsten; Duijnisveld, Wilhelmus H M; Schwiede, Martin; Bottcher, Jurgen</p> <p>2010-09-01</p> <p>In the framework of the investigation of enrichment processes of nitrate in groundwater of the Kalahari of Botswana near Serowe, recharge processes were investigated. The thick unsaturated zone extending to up to 100 m of mostly unconsolidated sediments and very low recharge rates pose a serious challenge to study solute transport related to infiltration and recharge processes, as this extends past the conventional depths of soil scientific investigations and is difficult to describe using evidence from the groundwater due to the limitations imposed by available tracers. To determine the link between nitrate in the vadose zone and in the uppermost groundwater, sediment from the vadose zone was sampled up to a depth of 15-20 m (in one case also to 65 m) on several sites with natural vegetation in the research area. Among other parameters, sediment and water were analysed to determine chloride and nitrate concentration depth profiles. Using the chloride mass balance method, an estimation of groundwater infiltration rates produced values of 0.2-4 mm a(-1). The uncertainty of these values is, however, high. Because of the extreme thickness of the vadose zone, the travel time in the unsaturated zone might reach extreme values of up to 500 years and more. For investigations using groundwater, we applied the chlorofluorocarbons CFC-113, CFC-12, sulphur hexafluoride (SF(6)) and tritium to identify potential recharge, and found indications for some advective transport of the CFCs and SF(6), which we accounted for as constituting potential active localised recharge. In our contribution, we show the potential and limitations of the applied methods to determine groundwater recharge and coupled solute transport in semi-arid settings, and compare travel time ranges derived from soil science and groundwater investigations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4141734','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4141734"><span>Barrier Island Morphology and Sediment Characteristics Affect the Recovery of Dune Building Grasses following Storm-Induced Overwash</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Brantley, Steven T.; Bissett, Spencer N.; Young, Donald R.; Wolner, Catherine W. V.; Moore, Laura J.</p> <p>2014-01-01</p> <p>Barrier islands are complex and dynamic systems that provide critical ecosystem services to coastal populations. Stability of these systems is threatened by rising sea level and the potential for coastal storms to increase in frequency and intensity. Recovery of dune-building grasses following storms is an important process that promotes topographic heterogeneity and long-term stability of barrier islands, yet factors that drive dune recovery are poorly understood. We examined vegetation recovery in overwash zones on two geomorphically distinct (undisturbed vs. frequently overwashed) barrier islands on the Virginia coast, USA. We hypothesized that vegetation recovery in overwash zones would be driven primarily by environmental characteristics, especially elevation and beach width. We sampled species composition and environmental characteristics along a continuum of disturbance from active overwash zones to relict overwash zones and in adjacent undisturbed environments. We compared species assemblages along the disturbance chronosequence and between islands and we analyzed species composition data and environmental measurements with Canonical Correspondence Analysis to link community composition with environmental characteristics. Recovering and geomorphically stable dunes were dominated by Ammophila breviligulata Fernaud (Poaceae) on both islands while active overwash zones were dominated by Spartina patens (Aiton) Muhl. (Poaceae) on the frequently disturbed island and bare sand on the less disturbed island. Species composition was associated with environmental characteristics only on the frequently disturbed island (p = 0.005) where A. breviligulata was associated with higher elevation and greater beach width. Spartina patens, the second most abundant species, was associated with larger sediment grain size and greater sediment size distribution. On the less frequently disturbed island, time since disturbance was the only factor that affected community composition. Thus, factors driving the abundance of dune-building grasses and subsequent recovery of dunes varied between the two geomorphically distinct islands. PMID:25148028</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019106','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019106"><span>Faulting of gas-hydrate-bearing marine sediments - contribution to permeability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dillon, William P.; Holbrook, W.S.; Drury, Rebecca; Gettrust, Joseph; Hutchinson, Deborah; Booth, James; Taylor, Michael</p> <p>1997-01-01</p> <p>Extensive faulting is observed in sediments containing high concentrations of methane hydrate off the southeastern coast of the United States. Faults that break the sea floor show evidence of both extension and shortening; mud diapirs are also present. The zone of recent faulting apparently extends from the ocean floor down to the base of gas-hydrate stability. We infer that the faulting resulted from excess pore pressure in gas trapped beneath the gas hydrate-beating layer and/or weakening and mobilization of sediments in the region just below the gas-hydrate stability zone. In addition to the zone of surface faults, we identified two buried zones of faulting, that may have similar origins. Subsurface faulted zones appear to act as gas traps.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5030832','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5030832"><span>Differences in the Composition of Archaeal Communities in Sediments from Contrasting Zones of Lake Taihu</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fan, Xianfang; Xing, Peng</p> <p>2016-01-01</p> <p>In shallow lakes, different primary producers might impact the physiochemical characteristics of the sediment and the associated microbial communities. Until now, little was known about the features of sediment Archaea and their variation across different primary producer-dominated ecosystems. Lake Taihu provides a suitable study area with cyanobacteria- and macrophyte-dominated zones co-occurring in one ecosystem. The composition of the sediment archaeal community was assessed using 16S rRNA gene amplicon sequencing technology, based on which the potential variation with respect to the physiochemical characteristics of the sediment was analyzed. Euryarchaeota (30.19% of total archaeal sequences) and Bathyarchaeota (28.00%) were the two most abundant phyla, followed by Crenarchaeota (11.37%), Aigarchaeota (10.24%) and Thaumarchaeota (5.98%). The differences found in the composition of the archaeal communities between the two zones was significant (p = 0.005). Sediment from macrophyte-dominated zones had high TOC and TN content and an abundance of archaeal lineages potentially involved in the degradation of complex organic compounds, such as the order Thermoplasmatales. In the area dominated by Cyanobacteria, archaeal lineages related to sulfur metabolism, for example, Sulfolobales and Desulfurococcales, were significantly enriched. Among Bathyarchaeota, subgroups MCG-6 and MCG-15 were significantly accumulated in the sediment of areas dominated by macrophytes whereas MCG-4 was consistently dominant in both type of sediments. The present study contributes to the knowledge of sediment archaeal communities with different primary producers and their possible biogeochemical functions in sediment habitats. PMID:27708641</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.7840M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.7840M"><span>Evidence for iron-sulfate coupling in salt marsh sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mills, Jennifer; Antler, Gilad; Turchyn, Alexandra</p> <p>2014-05-01</p> <p>Organic carbon burial in shallow marine sediments represents an important net sink in the global carbon cycle. Microbially mediated oxidation of organic matter in oxic, suboxic, and anoxic sediments however, prevents the ultimate burial of organic carbon and its removal from the surface of the planet. Although the subsurface transformations of organic carbon have been studied extensively, an enigmatic question remains: when organic matter is deposited, what determines whether it will be buried, reoxidized, or undergo methanogenesis? One hypothesis is that the sulfur cycle, due to the abundance of sulfate in many surface environments, dominates the subsurface oxidation or other fate of organic carbon. However, it has also been suggested that iron may in turn play a key role in determining the behavior of the sulfur cycle. To better understand the controls on these processes, we are using stable isotope and geochemical techniques to explore the microbially mediated oxidation of organic carbon in salt marsh sediments in North Norfolk, UK. In these sediments there is a high supply of organic carbon, iron, and sulfate (from diurnal tidal cycles). Thus these environments may provide insight into the nature of interactions between the carbon, iron, and sulfur cycles. A series of sampling missions was undertaken in the autumn and winter of 2013-2014. In subsurface fluid samples we observe very high ferrous iron concentrations (>1mM), indicative of extended regions of iron reduction (to over 30cm depth). Within these zones of iron reduction we would predict no sulfate reduction, and as expected δ34Ssulfate remains unchanged with depth. However, δ18Osulfate exhibits significant enrichments of up to 5 permil. This decoupling in the sulfur and oxygen isotopes of sulfate is suggestive of a sulfate recycling process in which sulfate is reduced to an intermediate sulfur species and subsequently reoxidized to sulfate. Taken together, these data suggest that microbial assemblages in these salt marsh sediments facilitate a cryptic cycling of sulfur, potentially mediated by iron species in the zone of iron reduction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70184610','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70184610"><span>Biogeochemical transformation of Fe minerals in a petroleum-contaminated aquifer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zachara, John M.; Kukkadapu, Ravi K.; Glassman, Paul L.; Dohnalkova, Alice; Fredrickson, Jim K.; Anderson, Todd</p> <p>2004-01-01</p> <p>The Bemidji aquifer in Minnesota, USA is a well-studied site of subsurface petroleum contamination. The site contains an anoxic groundwater plume where soluble petroleum constituents serve as an energy source for a region of methanogenesis near the source and bacterial Fe(III) reduction further down gradient. Methanogenesis apparently begins when bioavailable Fe(III) is exhausted within the sediment. Past studies indicate that Geobacter species and Geothrix fermentens-like organisms are the primary dissimilatory Fe-reducing bacteria at this site. The Fe mineralogy of the pristine aquifer sediments and samples from the methanogenic (source) and Fe(III) reducing zones were characterized in this study to identify microbiologic changes to Fe valence and mineral distribution, and to identify whether new biogenic mineral phases had formed. Methods applied included X-ray diffraction; X-ray fluorescence (XRF); and chemical extraction; optical, transmission, and scanning electron microscopy; and Mössbauer spectroscopy.All of the sediments were low in total Fe content (≈ 1%) and exhibited complex Fe-mineralogy. The bulk pristine sediment and its sand, silt, and clay-sized fractions were studied in detail. The pristine sediments contained Fe(II) and Fe(III) mineral phases. Ferrous iron represented approximately 50% of FeTOT. The relative Fe(II) concentration increased in the sand fraction, and its primary mineralogic residence was clinochlore with minor concentrations found as a ferroan calcite grain cement in carbonate lithic fragments. Fe(III) existed in silicates (epidote, clinochlore, muscovite) and Fe(III) oxides of detrital and authigenic origin. The detrital Fe(III) oxides included hematite and goethite in the form of mm-sized nodular concretions and smaller-sized dispersed crystallites, and euhedral magnetite grains. Authigenic Fe(III) oxides increased in concentration with decreasing particle size through the silt and clay fraction. Chemical extraction and Mössbauer analysis indicated that this was a ferrihydrite like-phase. Quantitative mineralogic and Fe(II/III) ratio comparisons between the pristine and contaminated sediments were not possible because of textural differences. However, comparisons between the texturally-similar source (where bioavailable Fe(III) had been exhausted) and Fe(III) reducing zone sediments (where bioavailable Fe(III) remained) indicated that dispersed detrital, crystalline Fe(III) oxides and a portion of the authigenic, poorly crystalline Fe(III) oxide fraction had been depleted from the source zone sediment by microbiologic activity. Little or no effect of microbiologic activity was observed on silicate Fe(III). The presence of residual “ferrihydrite” in the most bioreduced, anoxic plume sediment (source) implied that a portion of the authigenic Fe(III) oxides were biologically inaccessible in weathered, lithic fragment interiors. Little evidence was found for the modern biogenesis of authigenic ferrous-containing mineral phases, perhaps with the exception of thin siderite or ferroan calcite surface precipitates on carbonate lithic fragments within source zone sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29335165','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29335165"><span>Dioxins, furans and dioxin-like PCBs in sediment samples and suspended particulate matter from the Scheldt estuary and the North Sea Coast: Comparison of CALUX concentration levels in historical and recent samples.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vandermarken, T; Gao, Y; Baeyens, W; Denison, M S; Croes, K</p> <p>2018-06-01</p> <p>The Scheldt estuary is historically a highly polluted river system. While several studies have focused on contamination with metals, pesticides, Polycyclic Aromatic Hydrocarbons (PAHs) and marker PolyChlorinated Biphenyls (PCBs), no data are available concerning past contamination by dioxin-like compounds. The objective of this study is to determine spatial and time trends of PolyChlorinated Dibenzo-p-Dioxins and DibenzoFurans (PCDD/Fs) and dioxin-like PCBs (dl-PCBs) in sediment samples and Suspended Particulate Matter (SPM) from the Scheldt River basin and the North Sea Coast. Dioxin-like compounds (PCDD/F and dl-PCB fractions) were measured with the CALUX-bioassay. Bioanalytical EQuivalent concentrations (BEQs) and Total Organic Carbon (TOC) content of historical (1982-1984) and recent (2011-2015) sediment and SPM samples from different locations in the coastal area and the estuary, were evaluated. A decrease in dioxin-like compound concentrations was found at all stations over time, especially for the PCDD/Fs. Dl-PCBs were relatively low in all samples. The Scheldt mouth and the Antwerp harbor yielded the highest BEQs and levels were higher in SPM than in sediment due to the higher organic carbon content in this fraction. Current PCDD/F and dl-PCB levels in the Belgian Coastal Zone and Scheldt estuary are much lower than their levels 30 years ago and pose a relatively low risk to the aquatic system. This is the result of a strong decrease in emissions, however, large local variabilities in sediment concentration levels can still exist because of local variability in sedimentation, erosion rates and in organic carbon content. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMEP41C0633N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMEP41C0633N"><span>Radionuclides deposition and fine sediment transport in a forested watershed, central Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nam, S.; Gomi, T.; Kato, H.; Tesfaye, T.; Onda, Y.</p> <p>2011-12-01</p> <p>We investigated radionuclides deposition and fine sediment transport in a 13 ha headwater watershed, Tochigi prefecture, located in 98.94 km north of Tokyo. The study site was within Karasawa experimental forest, Tokyo University of Agriculture and Technology. We conducted fingerprinting approach, based on the activities of fallout radionuclides, including caesium-134 (Cs-134) caesium-137 (Cs-137) and excess lead-210 (Pb-210ex). For indentifying specific sources of fine sediment, we sampled tree, soil on forested floor, soil on logging road surface, stream bed and stream banks. We investigated the radionuclides (i.e., as Cs-134, Cs-137 and Pb-210ex) deposition on tree after accident of nuclear power plants on March 11, 2011. We sampled fruits, leaves, branches, stems, barks on Japanese cedar (Sugi) and Japanese cypress (Hinoki). To analyze the samples, gammaray spectrometry was performed at a laboratory at the University of Tsukuba (Tsukuba City, Japan) using n-type coaxial low-energy HPGe gamma detectors (EGC-200-R and EGC25-195-R of EURYSIS Co., Lingolsheim, France) coupled with a multichannel analyzer. We also collected soil samples under the forest canopy in various soil depths from 2, 5, 10, 20, 30 cm along transect of hillslopes. Samples at forest road were collected road segments crossing on the middle section of monitoring watersheds. Fine sediment transport in the streams were collected at the outlet of 13 ha watersheds using integrated suspended sediment samplers. This study indicates the some portion of radio nuclide potentially remained on the tree surface. Part of the deposited radionuclides attached to soil particles and transported to the streams. Most of the fine sediment can be transported on road surface and/or near stream side (riparian zones).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991llmm.conf..451B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991llmm.conf..451B"><span>Retardation and Sedimentation of Chernobyl-derived Radiocesium in the Photic Zone Sedimenttrap Deployment Studies in the Norwegian Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baumann, Marion</p> <p></p> <p>One long-term and three short-term sedimenttrap-deployments have been installed in the Norwegian Sea shortly after the reactor-accident at Chernobyl in April 1986. Radiocesium investigations of the sedimenttrap material were combined with detailed biological investigations on sedimentation processes in the photic Zone. Lacking efficient export processes in the photic Zone, radiocesium first was retained in the photic Zone for several weeks. Then the break down and successive sedimentation of the heterotrophic community exported about 10 % of surface deposition of radiocesium to larger water depths and to the seafloor at 1450 m.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19837403','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19837403"><span>Arsenic contamination in New Orleans soil: temporal changes associated with flooding.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rotkin-Ellman, Miriam; Solomon, Gina; Gonzales, Christopher R; Agwaramgbo, Lovell; Mielke, Howard W</p> <p>2010-01-01</p> <p>The flooding of New Orleans in late August and September 2005 caused widespread sediment deposition in the flooded areas of the city. Post-flood sampling by US EPA revealed that 37% of sediment samples exceeded Louisiana corrective screening guidelines for arsenic of 12mg/kg, but there was debate over whether this contamination was pre-existing, as almost no pre-flood soil sampling for arsenic had been done in New Orleans. In this study, archived soil samples collected in 1998-1999 were location-matched with 70 residential sites in New Orleans where post-flood arsenic concentrations were elevated. Those same locations were sampled again during the recovery period 18 months later. During the recovery period, sampling for arsenic was also done for the first time at school sites and playgrounds within the flooded zone. Every sample of sediment taken 1-10 months after the flood exceeded the arsenic concentration found in the matched pre-flood soils. The average difference between the two sampling periods was 19.67mg/kg (95% CI 16.63-22.71) with a range of 3.60-74.61mg/kg. At virtually all of these sites (97%), arsenic concentrations decreased substantially by 18 months into the recovery period when the average concentration of matched samples was 3.26mg/kg (95% CI 1.86-4.66). However, 21 (30%) of the samples taken during the recovery period still had higher concentrations of arsenic than the matched sample taken prior to the flooding. In addition, 33% of samples from schoolyards and 13% of samples from playgrounds had elevated arsenic concentrations above the screening guidelines during the recovery period. These findings suggest that the flooding resulted in the deposition of arsenic-contaminated sediments. Diminution of the quantity of sediment at many locations has significantly reduced overall soil arsenic concentrations, but some locations remain of concern for potential long-term soil contamination.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040090115&hterms=Nutrient+agar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DNutrient%2Bagar','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040090115&hterms=Nutrient+agar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DNutrient%2Bagar"><span>Amyloplasts as possible statoliths in gravitropic protonemata of the moss Ceratodon purpureus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walker, L. M.; Sack, F. D.</p> <p>1990-01-01</p> <p>The kinetics of gravitropism and of amyloplast sedimentation were studied in dark-grown protonemata of the moss Ceratodon purpureus (Hedw.) Brid. The protonemata grew straight up at a rate of 20-25 micromoles h-1 in nutrient-supplemented agar. After they were oriented to the horizontal, upward curvature was first detected after 1-1.5 h and reached 84 degrees by 24 h. The tip cells exhibited an amyloplast zonation, with a tip cluster of non-sedimenting amyloplasts, an amyloplast-free zone, and a zone with pronounced amyloplast sedimentation. This latter zone appears specialized more for lateral than for axial sedimentation since amyloplasts sediment to the lower wall in horizontal protonemata but do not fall to the basal wall in vertical protonemata. Amyloplast sedimentation started within 15 min of gravistimulation; this is within the 12-17-min presentation time. The data support the hypothesis that some amyloplasts function as statoliths in these cells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24135865','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24135865"><span>Distribution and pollution, toxicity and risk assessment of heavy metals in sediments from urban and rural rivers of the Pearl River delta in southern China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xiao, Rong; Bai, Junhong; Huang, Laibin; Zhang, Honggang; Cui, Baoshan; Liu, Xinhui</p> <p>2013-12-01</p> <p>Sediments were collected from the upper, middle and lower reaches of both urban and rural rivers in a typical urbanization zone of the Pearl River delta. Six heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) were analyzed in all sediment samples, and their spatial distribution, pollution levels, toxicity and ecological risk levels were evaluated to compare the characteristics of heavy metal pollution between the two rivers. Our results indicated that the total contents of the six metals in all samples exceeded the soil background value in Guangdong province. Based on the soil quality thresholds of the China SEPA, Cd levels at all sites exceeded class III criteria, and other metals exhibited pollution levels exceeding class II or III criteria at both river sites. According to the sediment quality guidelines of the US EPA, all samples were moderately to heavily polluted by Cr, Cu, Ni, Pb and Zn. Compared to rural river sites, urban river sites exhibited heavier pollution. Almost all sediment samples from both rivers exhibited moderate to serious toxicity to the environment, with higher contributions from Cr and Ni. A "hot area" of heavy metal pollution being observed in the upper and middle reaches of the urban river area, whereas a "hot spot" was identified at a specific site in the middle reach of the rural river. Contrary metal distribution patterns were also observed along typical sediment profiles from urban and rural rivers. However, the potential ecological risk indices of rural river sediments in this study were equal to those of urban river sediments, implying that the ecological health issues of the rivers in the undeveloped rural area should also be addressed. Sediment organic matter and grain size might be important factors influencing the distribution profiles of these heavy metals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NatSR...517284A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NatSR...517284A"><span>Impact of a wastewater treatment plant on microbial community composition and function in a hyporheic zone of a eutrophic river</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Atashgahi, Siavash; Aydin, Rozelin; Dimitrov, Mauricio R.; Sipkema, Detmer; Hamonts, Kelly; Lahti, Leo; Maphosa, Farai; Kruse, Thomas; Saccenti, Edoardo; Springael, Dirk; Dejonghe, Winnie; Smidt, Hauke</p> <p>2015-11-01</p> <p>The impact of the installation of a technologically advanced wastewater treatment plant (WWTP) on the benthic microbial community of a vinyl chloride (VC) impacted eutrophic river was examined two years before, and three and four years after installation of the WWTP. Reduced dissolved organic carbon and increased dissolved oxygen concentrations in surface water and reduced total organic carbon and total nitrogen content in the sediment were recorded in the post-WWTP samples. Pyrosequencing of bacterial 16S rRNA gene fragments in sediment cores showed reduced relative abundance of heterotrophs and fermenters such as Chloroflexi and Firmicutes in more oxic and nutrient poor post-WWTP sediments. Similarly, quantitative PCR analysis showed 1-3 orders of magnitude reduction in phylogenetic and functional genes of sulphate reducers, denitrifiers, ammonium oxidizers, methanogens and VC-respiring Dehalococcoides mccartyi. In contrast, members of Proteobacteria adapted to nutrient-poor conditions were enriched in post-WWTP samples. This transition in the trophic state of the hyporheic sediments reduced but did not abolish the VC respiration potential in the post-WWTP sediments as an important hyporheic sediment function. Our results highlight effective nutrient load reduction and parallel microbial ecological state restoration of a human-stressed urban river as a result of installation of a WWTP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC14C1001C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC14C1001C"><span>Field Observations of Swash-Zone Dynamics on a Sea-Breeze Dominated Beach at the Yucatán Peninsula, México</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chardon-Maldonado, P.; Puleo, J. A.; Torres-Freyermuth, A.</p> <p>2016-02-01</p> <p>Sea breezes can modify the nearshore processes and alter beach morphology depending on the geographical location. Prior studies have shown that surf zone wave energy intensifies during strong sea-breeze conditions (wind speeds > 10 ms-1) and the impact on the coast can be similar to a small storm. However, few research efforts have investigated the coastal dynamics on sea-breeze dominated beaches (e.g., Masselink and Pattiaratchi, 1998, Mar. Geol.; Pattiaratchi et al., 1997, Cont. Shelf Res.) and, to the authors' knowledge, only one study has focused on swash-zone processes (Sonu et al., 1973, EOS). A field study was performed on a microtidal, low wave energy, sea-breeze dominated sandy beach in order to investigate the effects of local (sea breeze) and synoptic (storm) scale meteorological events on swash-zone dynamics. In-situ measurements of swash-zone hydrodynamics and sediment transport processes were collected from March 31st to April 12th, 2014 in Sisal, Yucatán located on the northern coast of the Yucatán Peninsula. Flow velocities and suspended sediment concentrations were measured concurrently, at multiple cross-shore and alongshore locations, using Vectrino-II profiling velocimeters and optical backscatter sensors, respectively. The high resolution data allowed the quantification of bed shear stress, turbulent dissipation rate, sediment loads and sediment flux during a mesoscale frontal system (cold-front passage referred to as an El Norte) and local sea-breeze cycles. Field observations showed that strong swash-zone bed shear stresses, turbulence intensity and sediment suspension occur during energetic conditions (i.e., El Norte event). On the other hand, despite milder energy conditions during the sea-breeze events, the alongshore component of bed-shear stresses and velocities can be significant owing to the high incidence wave angle associated with the sea-breeze system in the study area. The increased forcing in the swash zone induced sediment suspension, eroding the foreshore and causing accretion in the surf zone. The preliminary analysis demonstrates that strong sea-breeze events induce a significant alongshore swash-zone sediment transport that may be more important than that observed during an El Norte event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Sci...356..841H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Sci...356..841H"><span>Release of mineral-bound water prior to subduction tied to shallow seismogenic slip off Sumatra</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hüpers, Andre; Torres, Marta E.; Owari, Satoko; McNeill, Lisa C.; Dugan, Brandon; Henstock, Timothy J.; Milliken, Kitty L.; Petronotis, Katerina E.; Backman, Jan; Bourlange, Sylvain; Chemale, Farid; Chen, Wenhuang; Colson, Tobias A.; Frederik, Marina C. G.; Guèrin, Gilles; Hamahashi, Mari; House, Brian M.; Jeppson, Tamara N.; Kachovich, Sarah; Kenigsberg, Abby R.; Kuranaga, Mebae; Kutterolf, Steffen; Mitchison, Freya L.; Mukoyoshi, Hideki; Nair, Nisha; Pickering, Kevin T.; Pouderoux, Hugo F. A.; Shan, Yehua; Song, Insun; Vannucchi, Paola; Vrolijk, Peter J.; Yang, Tao; Zhao, Xixi</p> <p>2017-05-01</p> <p>Plate-boundary fault rupture during the 2004 Sumatra-Andaman subduction earthquake extended closer to the trench than expected, increasing earthquake and tsunami size. International Ocean Discovery Program Expedition 362 sampled incoming sediments offshore northern Sumatra, revealing recent release of fresh water within the deep sediments. Thermal modeling links this freshening to amorphous silica dehydration driven by rapid burial-induced temperature increases in the past 9 million years. Complete dehydration of silicates is expected before plate subduction, contrasting with prevailing models for subduction seismogenesis calling for fluid production during subduction. Shallow slip offshore Sumatra appears driven by diagenetic strengthening of deeply buried fault-forming sediments, contrasting with weakening proposed for the shallow Tohoku-Oki 2011 rupture, but our results are applicable to other thickly sedimented subduction zones including those with limited earthquake records.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/600/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/600/"><span>Occurrence of pesticides in surface water and sediments from three central California coastal watersheds, 2008-2009</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Smalling, Kelly L.; Orlando, James L.</p> <p>2011-01-01</p> <p>Water and sediment (bed and suspended) were collected from January 2008 through October 2009 from 12 sites in 3 of the largest watersheds along California's Central Coast (Pajaro, Salinas, and Santa Maria Rivers) and analyzed for a suite of pesticides by the U.S. Geological Survey. Water samples were collected in each watershed from the estuaries and major tributaries during 4 storm events and 11 dry season sampling events in 2008 and 2009. Bed sediments were collected from depositional zones at the tributary sampling sites three times over the course of the study. Suspended sediment samples were collected from the major tributaries during the four storm events and in the tributaries and estuaries during three dry season sampling events in 2009. Water samples were analyzed for 68 pesticides using gas chromatography/mass spectrometry. A total of 38 pesticides were detected in 144 water samples, and 13 pesticides were detected in more than half the samples collected over the course of the study. Dissolved pesticide concentrations ranged from below their method detection limits to 36,000 nanograms per liter (boscalid). The most frequently detected pesticides in water from all the watersheds were azoxystrobin, boscalid, chlorpyrifos, DCPA, diazinon, oxyfluorfen, prometryn, and propyzamide, which were found in more than 80 percent of the samples. On average, detection frequencies and concentrations were higher in samples collected during winter storm events compared to the summer dry season. With the exception of the fungicide, myclobutanil, the Santa Maria estuary watershed exhibited higher pesticide detection frequencies than the Pajaro and Salinas watersheds. Bed and suspended sediment samples were analyzed for 55 pesticides using accelerated solvent extraction, gel permeation chromatography for sulfur removal, and carbon/alumina stacked solid-phase extraction cartridges to remove interfering sediment matrices. In bed sediment samples, 17 pesticides were detected including pyrethroid and organophosphate (OP) insecticides, p,p'-DDT and its degradates, as well as several herbicides. The only pesticides detected more than half the time were p,p'-DDD, p,p'-DDE, and p,p'-DDT. Maximum pesticide concentrations ranged from less than their respective method detection limits to 234 micrograms per kilogram (p,p'-DDE). Four pyrethroids (bifenthrin, &# 955;-cyhalothrin, permethrin, and &# 964;-fluvalinate) were detected in bed sediment samples, though concentrations were relatively low (less than 10 microgram per kilogram). The greatest number of pesticides were detected in samples collected from Lower Orcutt Creek, the major tributary to the Santa Maria estuary. In suspended sediment samples, 19 pesticides were detected, and maximum concentrations ranged from less than the method detection limits to 549 micrograms per kilogram (chlorpyrifos). The most frequently detected pesticides were p,p'-DDE (49 percent), p,p'-DDT (38 percent), and chlorpyrifos (32 percent). During storm events, 19 pesticides were detected in suspended sediment samples compared to 10 detected during the dry season. Pesticide concentrations commonly were higher in suspended sediments during storm events than during the dry season, as well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/29445','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/29445"><span>Determining soil erosion from roads in coastal plain of Alabama</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>McFero Grace; W.J. Elliot</p> <p>2008-01-01</p> <p>This paper reports soil losses and observed sediment deposition for 16 randomly selected forest road sections in the National Forests of Alabama. Visible sediment deposition zones were tracked along the stormwater flow path to the most remote location as a means of quantifying soil loss from road sections. Volumes of sediment in deposition zones were determined by...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/37771','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/37771"><span>Sediment trapping by streamside management zones of various widths after forest harvest and site preparation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>William Lakel; Wallace Aust; M. Aust; Chad Bolding; C. Dolloff; Patrick Keyser; Robert Feldt</p> <p>2010-01-01</p> <p>Recommended widths for streamside management zones (SMZs) for sediment protection vary. The objectives of this study were to compare the effects of SMZ widths and thinning levels on sediment moving through SMZs. Four SMZ treatments were installed within 16 harvested watersheds where intermittent streams graded into small perennial streams. Sites were clearcut,...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1425414-seasonal-hyporheic-dynamics-control-coupled-microbiology-geochemistry-colorado-river-sediments','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1425414-seasonal-hyporheic-dynamics-control-coupled-microbiology-geochemistry-colorado-river-sediments"><span>Seasonal hyporheic dynamics control coupled microbiology and geochemistry in Colorado River sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Danczak, Robert E.; Sawyer, Audrey H.; Williams, Kenneth H.; ...</p> <p>2016-12-03</p> <p>Riverbed microbial communities play an oversized role in many watershed ecosystem functions, including the processing of organic carbon, cycling of nitrogen, and alterations to metal mobility. The structure and activity of microbial assemblages depend in part on geochemical conditions set by river-groundwater exchange or hyporheic exchange. In order to assess how seasonal changes in river-groundwater mixing affect these populations in a snowmelt-dominated fluvial system, vertical sediment and pore water profiles were sampled at three time points at one location in the hyporheic zone of the Colorado River and analyzed by using geochemical measurements, 16S rRNA gene sequencing, and ecological modeling.more » Oxic river water penetrated deepest into the subsurface during peak river discharge, while under base flow conditions, anoxic groundwater dominated shallower depths. Over a 70 cm thick interval, riverbed sediments were therefore exposed to seasonally fluctuating redox conditions and hosted microbial populations statistically different from those at both shallower and deeper locations. Additionally, microbial populations within this zone were shown to be the most dynamic across sampling time points, underlining the critical role that hyporheic mixing plays in constraining microbial abundances. Given such mixing effects, we anticipate that future changes in river discharge in mountainous, semiarid western U.S. watersheds may affect microbial community structure and function in riverbed environments, with potential implications for biogeochemical processes in riparian regions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1425414','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1425414"><span>Seasonal hyporheic dynamics control coupled microbiology and geochemistry in Colorado River sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Danczak, Robert E.; Sawyer, Audrey H.; Williams, Kenneth H.</p> <p></p> <p>Riverbed microbial communities play an oversized role in many watershed ecosystem functions, including the processing of organic carbon, cycling of nitrogen, and alterations to metal mobility. The structure and activity of microbial assemblages depend in part on geochemical conditions set by river-groundwater exchange or hyporheic exchange. In order to assess how seasonal changes in river-groundwater mixing affect these populations in a snowmelt-dominated fluvial system, vertical sediment and pore water profiles were sampled at three time points at one location in the hyporheic zone of the Colorado River and analyzed by using geochemical measurements, 16S rRNA gene sequencing, and ecological modeling.more » Oxic river water penetrated deepest into the subsurface during peak river discharge, while under base flow conditions, anoxic groundwater dominated shallower depths. Over a 70 cm thick interval, riverbed sediments were therefore exposed to seasonally fluctuating redox conditions and hosted microbial populations statistically different from those at both shallower and deeper locations. Additionally, microbial populations within this zone were shown to be the most dynamic across sampling time points, underlining the critical role that hyporheic mixing plays in constraining microbial abundances. Given such mixing effects, we anticipate that future changes in river discharge in mountainous, semiarid western U.S. watersheds may affect microbial community structure and function in riverbed environments, with potential implications for biogeochemical processes in riparian regions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRG..121.2976D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRG..121.2976D"><span>Seasonal hyporheic dynamics control coupled microbiology and geochemistry in Colorado River sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Danczak, Robert E.; Sawyer, Audrey H.; Williams, Kenneth H.; Stegen, James C.; Hobson, Chad; Wilkins, Michael J.</p> <p>2016-12-01</p> <p>Riverbed microbial communities play an oversized role in many watershed ecosystem functions, including the processing of organic carbon, cycling of nitrogen, and alterations to metal mobility. The structure and activity of microbial assemblages depend in part on geochemical conditions set by river-groundwater exchange or hyporheic exchange. To assess how seasonal changes in river-groundwater mixing affect these populations in a snowmelt-dominated fluvial system, vertical sediment and pore water profiles were sampled at three time points at one location in the hyporheic zone of the Colorado River and analyzed by using geochemical measurements, 16S rRNA gene sequencing, and ecological modeling. Oxic river water penetrated deepest into the subsurface during peak river discharge, while under base flow conditions, anoxic groundwater dominated shallower depths. Over a 70 cm thick interval, riverbed sediments were therefore exposed to seasonally fluctuating redox conditions and hosted microbial populations statistically different from those at both shallower and deeper locations. Additionally, microbial populations within this zone were shown to be the most dynamic across sampling time points, underlining the critical role that hyporheic mixing plays in constraining microbial abundances. Given such mixing effects, we anticipate that future changes in river discharge in mountainous, semiarid western U.S. watersheds may affect microbial community structure and function in riverbed environments, with potential implications for biogeochemical processes in riparian regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Ocgy...58..240P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Ocgy...58..240P"><span>Sediment Flux of Particulate Organic Phosphorus in the Open Black Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parkhomenko, A. V.; Kukushkin, A. S.</p> <p>2018-03-01</p> <p>The interannual variation of the monthly average (weighted average) concentrations of particulate organic phosphorus (PPOM) in the photosynthetic layer, oxycline, redox zone, and H2S zone in the open Black Sea is estimated based on long-term observation data. The suspension sedimentation rates from the studied layers are assessed using model calculations and published data. The annual variation of PPOM sediment fluxes from the photosynthetic layer, oxycline, redox zone, and upper H2S zone to the anaerobic zone of the sea and the correspondingly annual average values are estimated for the first time. A regular decrease in the PPOM annual average flux with depth in the upper active layer is demonstrated. A correlation between the annual average values of PPOM sediment flux from the photosynthetic layer and ascending phosphate flux to this layer is shown, which suggests their balance in the open sea. The results are discussed in terms of the phosphorus biogeochemical cycle and the concept of new and regenerative primary production in the open Black Sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC21A0519R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC21A0519R"><span>Quality of Tourist Beaches in Huatulco, SW of Mexico: Multiproxy Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Retama, I.; Jonathan, M. P.; Rodriguez-Espinosa, P. F.</p> <p>2014-12-01</p> <p>40 beach water and sediment samples were collected from the inter-tidal zones of tourist beaches of Huatulco in the State of Oaxaca, South Western part of Mexico. The samples were collected in an aim to know the concentration pattern of metals (Cu, Cd, Cr, Ni, Pb, Zn, Co, Mn, Fe, As, Hg) in sediments and microplastics. Physico-chemical parameters like temperature, pH, dissolved oxygen, conductivity and total dissolved solids, salinity and redox potential. Collection of samples was done during the peak season in April 2013. Our results from water samples indicate that the physico-chemical conditions of the beach water have been altered due to human activities in large numbers. The bioavailable metal concentrations indicate that enrichment of Pb, Cd, Cr and As and it is also supported by the higher values observed from the calculation of enrichment factor and geoaccumulation index. The higher values in the sediments is either due to natural sources like chemical weathering of rocks and external sources, which points to high tourism, agricultural activities in the region. Identification of micro-plastics was done through SEM photographs, indicating the type of plastic wastes deposited into the beach regions which can indicate the density, durability and the persistence level in the sediments. Eventhough the enrichment of metals and modification of beach water quality is observed, care need to be taken to avoid further damage to the coastal ecosystem. Keywords: Tourism, Beach sediments, Beach water, Micro plastics, Trace metals, Contamination indices, Huatulco, Mexico.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70009866','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70009866"><span>Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sims, John D.</p> <p>1975-01-01</p> <p>Examination of the silty sediments in the lower Van Normal reservoir after the 1971 San Fernando, California earthquake revealed three zones of deformational structures in the 1-m-thick sequence of sediments exposed over about 2 km2 of the reservoir bottom. These zones are correlated with moderate earthquakes that shook the San Fernando area in 1930, 1952, and 1971. The success of this study, coupled with the experimental formation of deformational structures similar to those of the Van Norman reservoir, led to a search for similar structures in Pleistocene and Holocene lakes and lake sediments in other seismically active areas. Thus, studies have been started in Pleistocene and Holocene silty and sandy lake sediments in the Imperial Valley, southeastern California; Clear Lake, in northern California; and the Puget Sound area of Washington. The Imperial Valley study has yielded spectacular results: five zones of structures in the upper 10 m of Late Holocene sediments near Brawley have been correlated over an area of approximately 100 km2, using natural outcrops. These structures are similar to those of the Van Norman reservoir and are interpreted to represent at least five moderate to large earthquakes that affected the southern Imperial Valley area during Late Holocene time. The Clear Lake study has provided ambiguous results with respect to determination of earthquake recurrence intervals because the cores studied are in clayey rich in organic material sediments that have low liquefaction potential. A study of Late Pleistocene varved glacio-lacustrine sediments has been started in the Puget Sound area of Washington, and thirteen sites have been examined. One has yielded 18.75 m of sediments that contains 1,804 varves and fourteen deformed zones interpreted as being caused by earthquake, because they are identical to structures formed experimentally by simulated seismic shaking. Correlation of deformational structures with seismic events is based on:(1) proximity to presently active seismic zones;(2) presence of potentially liquefiable sediments;(3) similarity to structures formed experimentally;(4) small-scale internal structures within deformed zones that suggest liquefaction;(5) structures restricted to single stratigraphic intervals;(6) zones of structures correlatable over large areas; and(7) absence of detectable influence by slopes, slope failures, or other sedimentological, biological, or deformational processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JAfES.124..383Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JAfES.124..383Y"><span>Meiofauna, microflora and geochemical properties of the late quaternary (Holocene) core sediments in the Gulf of Izmir (Eastern Aegean Sea, Turkey)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yümün, Zeki Ü.; Meriç, Engin; Avşar, Niyazi; Nazik, Atike; Barut, İpek F.; Yokeş, Baki; Sagular, Enis K.; Yildiz, Ayşegül; Eryilmaz, Mustafa; Kam, Erol; Başsari, Asiye; Sonuvar, Bora; Dinçer, Feyza; Baykal, Kubilay; Kaya, Seyhan</p> <p>2016-12-01</p> <p>The Gulf of Izmir has seen the construction of marinas at four locations; Karşıyaka, Bayraklı, İnciraltı and Urla (Çeşmealtı). Six drilling holes have been structured for each location. Morphological abnormities observed in foraminifer tests, obtained from these core drillings, and coloring encountered in both foraminifer tests and ostracod carapeces, provide evidence of natural and unnatural environmental pollution. The objectives of this study are to identify micro and macro fauna, foraminifers in particular, contained within sediments in the above-mentioned locations; to investigate the background of pollution in the Gulf Region; and to determine pollution's impact upon benthic foraminifer and ostracods. Çeşmealtı foraminifera tests did not lead to color and morphological changes. But foraminifera tests samples collected from Karşıyaka, Bayraklı and İnciraltı led them to turn black (Plate 4-6). However, concentrations of heavy metals (Ni, Cr and Mn) obtained from the sediments of Karşıyaka, Bayraklı and İnciraltı locations are higher than those obtained from the Çeşmealtı samples and high concentrations of these elements may be the cause of the color change in the samples during the foraminifera tests. In Karşıyaka and Bayraklı ostracod samples, Bosquetina carinella, Pterygocythereis jonesi, Semicytherura species; in the Çeşmealtı/Urla zone, Cyprideis torosa; in İnciraltı, Pseudopsammocythere reniformis; and in four zones, Loxoconcha and Xestoleberis species were observed in the range of relative frequency. The same analyses were done on nannoplankton but they did not lead to color and morphological changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70178158','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70178158"><span>Chemical characterization of sediments and pore water from the upper Clark Fork River and Milltown Reservoir, Montana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brumbaugh, W. G.; Ingersoll, C.G.; Kemble, N.E.; May, T.W.; Zajicek, J.L.</p> <p>1994-01-01</p> <p>The upper Clark Fork River basin in western Montana is widely contaminated by metals from past mining, milling, and smelting activities As part of a comprehensive ecological risk assessment for the upper Clark Fork River, we measured physical and chemical characteristics of surficial sediment samples that were collected from depositional zones for subsequent toxicity evaluations Sampling stations included five locations along the upper 200 km of the river, six locations in or near Milltown Reservoir (about 205 km from the river origin), and two tributary reference sites Concentrations of As, Cd, Cu, Mn, Pb, and Zn decreased from the upper stations to the downstream stations in the Clark Fork River but then increased in all Milltown Reservoir stations to levels similar to uppermost river stations Large percentages (50 to 90%) of the total Cd, Cu, Pb, and Zn were extractable by dilute (3 n) HCl for all samples Copper and zinc accounted for greater than 95% of extractable metals on a molar basis Acid-volatile sulfide (AVS) concentrations were typically moderate (0 6 to 23 μmol/g) in grab sediment samples and appeared to regulate dissolved (filterable) concentrations of Cd, Cu, and Zn in sediment pore waters Acid volatile sulfide is important in controlling metal solubility in the depositional areas of the Clark Fork River and should be monitored in any future studies Spatial variability within a sampling station was high for Cu, Zn, and AVS, therefore, the potential for toxicity to sediment dwelling organisms may be highly localized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/8683','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/8683"><span>Effect of logging on streamflow, sedimentation, and fish habitat</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Robert R. Ziemer</p> <p>1968-01-01</p> <p>Cooperative Watershed Management research in the Lower Conifer Zone of California started in 1961. Research in the Lower Conifer Zone was designed to obtain information and develop principles about the effect of land management in the Zone upon water quality, floods and sedimentation, water timing, and water yield. The research was conducted by the Pacific Southwest...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2446554','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2446554"><span>Microbial Communities in Contaminated Sediments, Associated with Bioremediation of Uranium to Submicromolar Levels▿</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cardenas, Erick; Wu, Wei-Min; Leigh, Mary Beth; Carley, Jack; Carroll, Sue; Gentry, Terry; Luo, Jian; Watson, David; Gu, Baohua; Ginder-Vogel, Matthew; Kitanidis, Peter K.; Jardine, Philip M.; Zhou, Jizhong; Criddle, Craig S.; Marsh, Terence L.; Tiedje, James M.</p> <p>2008-01-01</p> <p>Microbial enumeration, 16S rRNA gene clone libraries, and chemical analysis were used to evaluate the in situ biological reduction and immobilization of uranium(VI) in a long-term experiment (more than 2 years) conducted at a highly uranium-contaminated site (up to 60 mg/liter and 800 mg/kg solids) of the U.S. Department of Energy in Oak Ridge, TN. Bioreduction was achieved by conditioning groundwater above ground and then stimulating growth of denitrifying, Fe(III)-reducing, and sulfate-reducing bacteria in situ through weekly injection of ethanol into the subsurface. After nearly 2 years of intermittent injection of ethanol, aqueous U levels fell below the U.S. Environmental Protection Agency maximum contaminant level for drinking water and groundwater (<30 μg/liter or 0.126 μM). Sediment microbial communities from the treatment zone were compared with those from a control well without biostimulation. Most-probable-number estimations indicated that microorganisms implicated in bioremediation accumulated in the sediments of the treatment zone but were either absent or in very low numbers in an untreated control area. Organisms belonging to genera known to include U(VI) reducers were detected, including Desulfovibrio, Geobacter, Anaeromyxobacter, Desulfosporosinus, and Acidovorax spp. The predominant sulfate-reducing bacterial species were Desulfovibrio spp., while the iron reducers were represented by Ferribacterium spp. and Geothrix spp. Diversity-based clustering revealed differences between treated and untreated zones and also within samples of the treated area. Spatial differences in community structure within the treatment zone were likely related to the hydraulic pathway and to electron donor metabolism during biostimulation. PMID:18456853</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21138292','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21138292"><span>Onset of industrial pollution recorded in Mumbai mudflat sediments, using integrated magnetic, chemical, 210Pb dating, and microscopic methods.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Blaha, U; Basavaiah, N; Deenadayalan, K; Borole, D V; Mohite, R D</p> <p>2011-01-15</p> <p>The onset and rise of urban and industrial pollution in the Mumbai region was reconstructed from an anthropogenically contaminated mudflat sediment profile from the adjacent Thane creek using magnetic parameters, polycyclic aromatic hydrocarbon (PAH) data, metal contents, and the (210)Pb dating technique. The 1.8 m vertical section at Airoli (Navi Mumbai) reveals an increase of magnetic susceptibility (χ) from background values of (20-50) to (75-100) × 10(-8) [m(3) kg(-1)] in the anthropogenically affected zone above ∼93 cm. A sharp rise of χ from (75-100) to (130-215) × 10(-8) [m(3) kg(-1)] subdivides the anthropogenically affected zone at a depth of ∼63 cm. Characterization with rock magnetic parameters (SIRM, Soft IRM, and S-ratio) reveals a significant contribution of ferri(o)magnetic phases in the upper zone. Based on the magnetic classification sampling intervals for cost-intensive PAH and metal analyses were determined. Steadily increasing contents of PAH and metals of anthropogenic origin are observed above the boundary depth at ∼93 cm. A sediment accumulation rate of 1.2 ± 0.3 cm/yr provided by (210)Pb dating dates the ∼63 cm boundary to 1951. Increasing industrial activity, including the establishment of a coal-fired power plant in 1956, and refineries between 1955 and 1960, correlates well with the substantial increase of χ, PAH, and metal contents. Scanning electron microscopy (SEM) investigation on magnetic extracts from the contaminated zone reveals the presence of magnetic spherules derived from industrial high-temperature processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.V43C2856C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.V43C2856C"><span>Carbon Retention and Isotopic Evolution in Deeply Subducted Sediments: Evidence from the Italian Alps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cook-Kollars, J.; Bebout, G. E.; Agard, P.; Angiboust, S.</p> <p>2012-12-01</p> <p>Subduction-zone metamorphism of oceanic crust and carbonate-rich seafloor sediments plays an important regulatory role in the global C cycle by controlling the fraction of subducting C entering long-term storage in the mantle and the fraction of subducting C emitted into the atmosphere in arc volcanic gases. Modeling studies suggest that the extent of decarbonation of subducting sediments could be strongly affected by extents of infiltration by external H2O-rich fluids and that, in cool subduction zones, the dehydration of subducting oceanic slabs may not release sufficient H2O to cause significant decarbonation of overlying sediments [Gorman et al. (2006), G-cubed; Hacker (2008), G-cubed]. Metasedimentary suites in the Western Alps (sampled from the Schistes Lustres, Zermatt-Saas ophiolite, and at Lago di Cignana) were subducted to depths corresponding to 1.5-3.2 GPa, over a range of peak temperatures of 350-600°C, and are associated with HP/UHP-metamorphosed Jurassic ophiolitic rocks [Agard et al. (2001), Bull. soc. geol. France; Frezzotti et al. (2011), Nature Geoscience]. These metasedimentary suites are composed of interlayered metapelites and metacarbonates and represent a range of peak P-T conditions experienced in modern, relatively cool subduction zones. Integrated petrologic and isotopic study of these rocks allows an analysis of decarbonation and isotopic exchange among oxidized and reduced C reservoirs along prograde subduction-zone P-T paths. Petrographic work on Schistes Lustres metacarbonates indicates only minor occurrences of calc-silicate phases, consistent with the rocks having experienced only very minor decarbonation during prograde metamorphism. Carbonate δ13CVPDB values (-1.5 to 1‰) are similar to values typical of marine carbonates. Higher grade, UHP-metamorphosed carbonates at Cignana show mineralogic evidence of decarbonation; however, the δ13C of the calcite in these samples remains similar to that of marine carbonate. With increasing grade, metapelitic carbonaceous matter shows an increase in δ13CVPDB, ranging from about -25‰ in low-grade Schistes Lustres samples to -16‰ in the highest-grade Cignana samples. Carbonate in the entire suite shows decrease in δ18OSMOW, from marine carbonate values > 25‰ to values of 17-22‰ independent of the carbonate content of the rocks. This shift could possibly be explained by isotopic exchange with silicate phases in the same rocks [Henry et al. (1996), Chem. Geol.]. Metapelitic rocks in this suite experienced moderate amounts of dehydration (20-50%) largely related to breakdown of chlorite and carpholite [Bebout et al. (in press), Chem. Geol. (abstract in this session); Angiboust and Agard (2010), Lithos], conceivably providing a source for infiltrating H2O-rich fluids producing negative shifts in calcite δ18O in interlayered metacarbonates. These results indicate that relatively little decarbonation occurred in carbonate-bearing sediments subducted to depths greater than 100 km, arguing against any model of extensive decarbonation driven by infiltration of the sediments by H2O-rich fluids released from mafic and ultramafic parts of the underlying subducting slab. This study provides field evidence for the efficient retention of C in subducting shale-carbonate sequences through forearc depths, potentially affecting the C budget and isotopic evolution of the deeper mantle.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1811923Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1811923Z"><span>Deep aquifer as driver for mineral authigenesis in Gulf of Alaska sediments (IODP Expedition 341, Site U1417)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zindorf, Mark; März, Christian; Wagner, Thomas; Strauss, Harald; Gulick, Sean P. S.; Jaeger, John M.; LeVay, Leah J.</p> <p>2016-04-01</p> <p>Bacterial sulphate reduction plays a key role in authigenic mineral formation in marine sediments. Usually, decomposition of organic matter follows a sequence of microbial metabolic pathways, where microbial sulphate reduction leads to sulphate depletion deeper in the sediment. When sulphate is consumed completely from the pore waters, methanogenesis commences. The contact of sulphate- and methane-containing pore waters is a well-defined biogeochemical boundary (the sulphate-methane transition zone, SMTZ). Here authigenic pyrite, barite and carbonates form. Pyrite formation is directly driven by bacterial sulphate reduction since pyrite precipitates from produced hydrogen sulphide. Barite and carbonate formation are secondary effects resulting from changes of the chemical milieu due to microbial activity. However, this mineral authigenesis is ultimately linked to abiotic processes that determine the living conditions for microorganisms. At IODP Site U1417 in the Gulf of Alaska, a remarkable diagenetic pattern has been observed: Between sulphate depletion and methane enrichment, a ~250 m wide gap exists. Consequently, no SMTZ can be found under present conditions, but enrichments of pyrite indicate that such zones have existed in the past. Solid layers consisting of authigenic carbonate-cemented sand were partly recovered right above the methane production zone, likely preventing continued upward methane diffusion. At the bottom of the sediment succession, the lower boundary of the methanogenic zone is constrained by sulphate-rich pore waters that appear to originate from a deeper source. Here, a well-established SMTZ exists, but in reversed order (sulphate diffusing up, methane diffusing down). Sulphur isotopes of pyrite reveal that sulphate reduction here does not occur under closed system conditions. This indicates that a deep aquifer is actively recharging the deep sulphate pool. Similar deep SMTZs have been found at other sites, yet mostly in geologically active environments such as ridge flanks or above subduction zones. Therefore Site U1417, in a relatively inactive intraplate environment, represents a so far under-sampled geochemical setting. Calculated accumulation times for authigenic minerals in the deep SMTZ are on the same order of magnitude as the onset of subduction-related bending of the Pacific Plate, suggesting that both processes are linked. Plate bending could create fractures in the overlying sediments allowing seawater to penetrate and recharge a deep aquifer. Our study provides insights into a newly discovered geological process suitable for delivering sulphate-rich water deep into the sediments and installing diagenetically active environments where microbial activity would otherwise be very limited.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.T23G..07T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.T23G..07T"><span>Frictional properties of silicic to calcareous ooze on the Cocos Plate entering the Costa Rica Subduction Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsutsumi, A.; Kameda, J.; Ujiie, K.</p> <p>2012-12-01</p> <p>Here we report experimental results on the frictional properties of the cover sediments on the Cocos plate incoming into the erosive Costa Rica subduction zone. Mechanical properties of the incoming sediments to subduction plate boundaries are essential to constrain subduction-related faulting processes. However, knowledge of the frictional properties of sediments composed of abundant biogenic component, such as spicules, diatoms, and radiolarians are limited. Experimental samples were silicic to calcareous ooze collected at a reference site (Site U1381) off shore Osa Peninsula during IODP Expedition 334 (Vannucchi et al., 2012). To be used in the experiments, the discrete samples was disaggregated, oven dried at 60 degrees centigrade for 24 hours. The experimental fault is composed of a 24.9 mm diameter cylinder of gabbro cut perpendicularly to the cylinder axis in two halves that are ground to obtain rough wall surfaces, and re-assembled with an intervening thin layer (~1.0 mm) disaggregated sample. Frictional experiments have been performed using a rotary-shear friction testing machine, at normal stresses up to 5 MPa, over a range of slip velocities from 0.0026 mm/s to 1.3 m/s, with more than ~150 mm of displacements for water saturated condition. Experimental results reveal that friction values at slow slip velocities (v < ~30 mm/s) are about ~0.7, of which level is comparable to the typically reported friction values for rocks. The experimental faults exhibited velocity-weakening at v < 0.3 mm/s and neutral to velocity-strengthening at 0.3 < v < ~3 mm/s. At higher velocities (v > ~30 mm/s), steady state friction decreases dramatically. For example, at a velocity of 260 mm/s, the friction coefficient for samples U1381A-9R and -10R show a gradual decrease with a large weakening displacement toward the establishment of a nearly constant level of friction at ~0.1. The velocity weakening behavior at slow velocities could provide a condition to initiate unstable fault motion at shallow depths along the subduction channel if the input sediments are incorporated into faulting. On the contrary, neutral to velocity strengthening behavior observed for intermediate velocities could stabilize the propagation process of earthquake nuclei that emerges in the velocity weakening portion along the fault. It is important to note also that a dramatic slip weakening at velocities of v > ~30 mm/s characterizes the frictional behavior of the examined input sediments to the Costa Rica subduction zone. The relatively slower velocity condition for the onset of high-velocity weakening and the extremely low friction values (~0.1) observed at high velocities are comparable to the frictional properties reported for silicic fault (e.g., Goldsby and Tullis, 2002, GRL; Hayashi and Tsutsumi, 2010,GRL). Presented frictional properties of the incoming sediments may offer an important constraint for improving models of subduction-related faulting processes within the Costa Rica subduction channel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23641239','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23641239"><span>Spatial variation of sediment mineralization supports differential CO2 emissions from a tropical hydroelectric reservoir.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cardoso, Simone J; Vidal, Luciana O; Mendonça, Raquel F; Tranvik, Lars J; Sobek, Sebastian; Fábio, Roland</p> <p>2013-01-01</p> <p>Substantial amounts of organic matter (OM) from terrestrial ecosystems are buried as sediments in inland waters. It is still unclear to what extent this OM constitutes a sink of carbon, and how much of it is returned to the atmosphere upon mineralization to carbon dioxide (CO2). The construction of reservoirs affects the carbon cycle by increasing OM sedimentation at the regional scale. In this study we determine the OM mineralization in the sediment of three zones (river, transition, and dam) of a tropical hydroelectric reservoir in Brazil as well as identify the composition of the carbon pool available for mineralization. We measured sediment organic carbon mineralization rates and related them to the composition of the OM, bacterial abundance and pCO2 of the surface water of the reservoir. Terrestrial OM was an important substrate for the mineralization. In the river and transition zones most of the OM was allochthonous (56 and 48%, respectively) while the dam zone had the lowest allochthonous contribution (7%). The highest mineralization rates were found in the transition zone (154.80 ± 33.50 mg C m(-) (2) d(-) (1)) and the lowest in the dam (51.60 ± 26.80 mg C m(-) (2) d(-) (1)). Moreover, mineralization rates were significantly related to bacterial abundance (r (2) = 0.50, p < 0.001) and pCO2 in the surface water of the reservoir (r (2) = 0.73, p < 0.001). The results indicate that allochthonous OM has different contributions to sediment mineralization in the three zones of the reservoir. Further, the sediment mineralization, mediated by heterotrophic bacteria metabolism, significantly contributes to CO2 supersaturation in the water column, resulting in higher pCO2 in the river and transition zones in comparison with the dam zone, affecting greenhouse gas emission estimations from hydroelectric reservoirs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021493','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021493"><span>Localized sulfate-reducing zones in a coastal plain aquifer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brown, C.J.; Coates, J.D.; Schoonen, M.A.A.</p> <p>1999-01-01</p> <p>High concentrations of dissolved iron in ground water of coastal plain or alluvial aquifers contribute to the biofouling of public supply wells for which treatment and remediation is costly. Many of these aquifers, however, contain zones in which microbial sulfate reduction and the associated precipitation of iron-sulfide minerals decreases iron mobility. The principal water-bearing aquifer (Magothy Aquifer of Cretaceous age) in Suffolk County, New York, contains localized sulfate-reducing zones in and near lignite deposits, which generally are associated with clay lenses. Microbial analyses of core samples amended with [14C]-acetate indicate that microbial sulfate reduction is the predominant terminal-electron-accepting process (TEAP) in poorly permeable, lignite-rich sediments at shallow depths and near the ground water divide. The sulfate-reducing zones are characterized by abundant lignite and iron-sulfide minerals, low concentrations of Fe(III) oxyhydroxides, and by proximity to clay lenses that contain pore water with relatively high concentrations of sulfate and dissolved organic carbon. The low permeability of these zones and, hence, the long residence time of ground water within them, permit the preservation and (or) allow the formation of iron-sulfide minerals, including pyrite and marcasite. Both sulfate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) are present beneath and beyond the shallow sulfate-reducing zones. A unique Fe(III)-reducing organism, MD-612, was found in core sediments from a depth of 187 m near the southern shore of Long Island. The distribution of poorly permeable, lignite-rich, sulfate-reducing zones with decreased iron concentration is varied within the principal aquifer and accounts for the observed distribution of dissolved sulfate, iron, and iron sulfides in the aquifer. Locating such zones for the placement of production wells would be difficult, however, because these zones are of limited aerial extent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..327b2031F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..327b2031F"><span>Generalized mathematical model of red muds’ thickener of alumina production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fedorova, E. R.; Vinogradova, A. A.</p> <p>2018-03-01</p> <p>The article describes the principle of a generalized mathematical model of the red mud’s thickener construction. The model of the red muds’ thickener of alumina production consists of sub-models of flocculation zones containing solid fraction feed slurry, free-fall and cramped sedimentation zones or effective sedimentation zones, bleaching zones. The generalized mathematical model of thickener allows predicting the content of solid fraction in the condensed product and in the upper discharge. The sub-model of solid phase aggregation allows one to count up average size of floccules, which is created during the flocculation process in feedwell. The sub-model of the free-fall and cramped sedimentation zone allows one to count up the concentration profile taking into account the variable cross-sectional area of the thickener. The sub-model of the bleaching zone is constructed on the basis of the theory of the precipitation of Kinc, supplemented by correction factors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012824','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012824"><span>A procedure for estimating Bacillus cereus spores in soil and stream-sediment samples - A potential exploration technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Watterson, J.R.</p> <p>1985-01-01</p> <p>The presence of bacterial spores of the Bacillus cereus group in soils and stream sediments appears to be a sensitive indicator of several types of concealed mineral deposits, including vein-type gold deposits. The B. cereus assay is rapid, inexpensive, and inherently reproducible. The test, currently under investigation for its potential in mineral exploration, is recommended for use on a research basis. Among the aerobic spore-forming bacilli, only B. cereus and closely related strains produce an opaque zone in egg-yolk emulsion agar. This characteristic, also known as the Nagler of lecitho-vitellin reaction, has long been used to rapidly indentify and estimate presumptive B. cereus. The test is here adapted to permit rapid estimation of B. cereus spores in soil and stream-sediment samples. Relative standard deviation was 10.3% on counts obtained from two 40-replicate pour-plate determinations. As many as 40 samples per day can be processed. Enough procedural detail is included to permit investigation of the test in conventional geochemical laboratories using standard microbiological safety precautions. ?? 1985.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=308010&Lab=NHEERL&keyword=quantitative+AND+survey+AND+research&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=308010&Lab=NHEERL&keyword=quantitative+AND+survey+AND+research&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Can a rapid underwater video approach enhance the benthic assessment capability of the National Coastal Condition Assessmentin the Great Lakes?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>In the U.S. National Coastal Condition Assessment (NCCA) field survey in summer 2010, over 400 sites in the nearshore zone of the U.S. Great Lakes were sampled. As a supplement to core NCCA benthic taxonomy and sediment chemistry, underwater video images of the bottom condition ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMOS41A..08H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMOS41A..08H"><span>Hydrate Formation in Gas-Rich Marine Sediments: A Grain-Scale Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holtzman, R.; Juanes, R.</p> <p>2009-12-01</p> <p>We present a grain-scale model of marine sediment, which couples solid- and multiphase fluid-mechanics together with hydrate kinetics. The model is applied to investigate the spatial distribution of the different methane phases - gas and hydrate - within the hydrate stability zone. Sediment samples are generated from three-dimensional packs of spherical grains, mapping the void space into a pore network by tessellation. Gas invasion into the water-saturated sample is simulated by invasion-percolation, coupled with a discrete element method that resolves the grain mechanics. The coupled model accounts for forces exerted by the fluids, including cohesion associated with gas-brine surface tension. Hydrate growth is represented by a hydrate film along the gas-brine interface, which increases sediment cohesion by cementing the grain contacts. Our model of hydrate growth includes the possible rupture of the hydrate layer, which leads to the creation of new gas-water interface. In previous work, we have shown that fine-grained sediments (FGS) exhibit greater tendency to fracture, whereas capillary invasion is the preferred mode of methane gas transport in coarse-grained sediments (CGS). The gas invasion pattern has profound consequences on the hydrate distribution: a larger area-to-volume ratio of the gas cluster leads to a larger drop in gas pressure inside the growing hydrate shell, causing it to rupture. Repeated cycles of imbibition and hydrate growth accompanied by trapping of gas allow us to determine the distribution of hydrate and gas within the sediment as a function of time. Our pore-scale model suggests that, even when film rupture takes place, the conversion of gas to hydrate is slow. This explains two common field observations: the coexistence of gas and hydrate within the hydrate stability zone in CGS, and the high methane fluxes through fracture conduits in FGS. These results demonstrate the importance of accounting for the strong coupling among multiphase flow, sediment mechanics, and hydrate formation. Our model explains the remarkable differences in hydrate distribution and saturation between fine- and coarse-grained sediments, and promotes the quantitative understanding of the role of methane hydrate in seafloor stability and the global carbon cycle, including the size of the hydrate energy resource, and estimates of methane fluxes into the ocean and the atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019072','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019072"><span>A sample-freezing drive shoe for a wire line piston core sampler</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Murphy, F.; Herkelrath, W.N.</p> <p>1996-01-01</p> <p>Loss of fluids and samples during retrieval of cores of saturated, noncohesive sediments results in incorrect measures of fluid distributions and an inaccurate measure of the stratigraphic position of the sample. To reduce these errors, we developed a hollow drive shoe that freezes in place the lowest 3 inches (75 mm) of a 1.88-inch-diameter (48 mm), 5-foot-long (1.5 m) sediment sample taken using a commercial wire line piston core sampler. The end of the core is frozen by piping liquid carbon dioxide at ambient temperature through a steel tube from a bottle at the land surface to the drive shoe where it evaporates and expands, cooling the interior surface of the shoe to about -109??F (-78??C). Freezing a core end takes about 10 minutes. The device was used to collect samples for a study of oil-water-air distributions, and for studies of water chemistry and microbial activity in unconsolidated sediments at the site of an oil spill near Bemidji, Minnesota. Before freezing was employed, samples of sandy sediments from near the water table sometimes flowed out of the core barrel as the sampler was withdrawn. Freezing the bottom of the core allowed for the retention of all material that entered the core barrel and lessened the redistribution of fluids within the core. The device is useful in the unsaturated and shallow saturated zones, but does not freeze cores well at depths greater than about 20 feet (6 m) below water, possibly because the feed tube plugs with dry ice with increased exhaust back-pressure, or because sediment enters the annulus between the core barrel and the core barrel liner and blocks the exhaust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMOS11A0196S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMOS11A0196S"><span>Strontium Isotope Dating of Metalliferous Sediment in the SW Pacific Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stancin, A. M.; Gleason, J. D.; Owen, B. M.; Rea, D. K.; Moore, T. C.; Hendy, I. L.; Lyle, M. W.; Blum, J. D.</p> <p>2007-12-01</p> <p>A 2 million km2 region virtually devoid of sediment was identified in the remote SW Pacific Basin during the TUIM- 3 2005 drill site survey cruise. This region, termed the "South Pacific Bare Zone", comprises ocean floor dating back to the Late Cretaceous. Within the Bare Zone, a small (1km2) abyssal valley containing sediment to a depth of 24 m was sampled using a large diameter piston core (MV0502-15JC, 31 ° 42.194'S, 143 ° 30.331'W), leading to recovery of 8.35 m of metalliferous sediment at 5082 m water depth. Fish-teeth Sr-isotope stratigraphy reveals a continuous record of sedimentation from 31 Ma to present at this site. The fish teeth age-depth profile and INAA geochemistry reveal an exponentially decreasing hydrothermal flux, with sedimentation rates approaching 0.05 mm/kyr after 20 Ma. The source of hydrothermal activity at this site was likely the Pacific- Farallon Ridge, which went extinct at 20 Ma. A second piston core (MV0502-16JC; 28 ° 05.151'S, 140 ° 14.140'W) was collected near MacDonald Seamounts located on the southeastern end of the Cook-Austral island chain outside the Bare Zone and recovered 10.5 m of hydrothermal sediment and biogenic ooze. The lower 65 cm of the core consists of a coccolith ooze. From 10 mbsf depth to 1.5 mbsf depth, the core contians reddish black zeolitic clay, while the upper 1.5 mbsf contains biogenic ooze associated with abundant Late Pleistocene foraminifera remains. Concordant nannofossil and fish teeth ages at the base of the core (27-28 Ma), and Pleistocene ages near the top of the core reinforce the validity of the Sr fish teeth method for dating hydrothermal cores. These independent records suggest that regional hydrothermal activity during the Oligocene may have been related to a series of late Eocene/early Oligocene ridge jumps, propagating rifts and seafloor spreading centers that accompanied large-scale plate tectonic reorganization of South Pacific seafloor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ExG....48...95S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ExG....48...95S"><span>Electromagnetic exploration in high-salinity groundwater zones: case studies from volcanic and soft sedimentary sites in coastal Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suzuki, Koichi; Kusano, Yukiko; Ochi, Ryota; Nishiyama, Nariaki; Tokunaga, Tomochika; Tanaka, Kazuhiro</p> <p>2017-01-01</p> <p>Estimating the spatial distribution of groundwater salinity in coastal plain regions is becoming increasingly important for site characterisation and the prediction of hydrogeological environmental conditions resulting from radioactive waste disposal and underground CO2 storage. In previous studies of the freshwater-saltwater interface, electromagnetic methods were used for sites characterised by unconsolidated deposits or Neocene soft sedimentary rocks. However, investigating the freshwater-saltwater interface in hard rock sites (e.g. igneous areas) is more complex, with the permeability of the rocks greatly influenced by fractures. In this study, we investigated the distribution of high-salinity groundwater at two volcanic rock sites and one sedimentary rock site, each characterised by different hydrogeological features. Our investigations included (1) applying the controlled source audio-frequency magnetotelluric (CSAMT) method and (2) conducting laboratory tests to measure the electrical properties of rock core samples. We interpreted the 2D resistivity sections by referring to previous data on geology and geochemistry of groundwater. At the Tokusa site, an area of inland volcanic rocks, low resistivity zones were detected along a fault running through volcanic rocks and shallow sediments. The results suggest that fluids rise through the Tokusa-Jifuku Fault to penetrate shallow sediments in a direction parallel to the river, and some fluids are diluted by rainwater. At the Oki site, a volcanic island on a continental shelf, four resistivity zones (in upward succession: low, high, low and high) were detected. The results suggest that these four zones were formed during a transgression-regression cycle caused by the last glacial period. At the Saijo site, located on a coastal plain composed of thick sediments, we observed a deep low resistivity zone, indicative of fossil seawater remnant from a transgression after the last glacial period. The current coastal plain formed in historical times, following which fresh water penetrated the upper parts of the fossil seawater zone to form a freshwater aquifer ~200 m in thickness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14526546','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14526546"><span>[Microbial sulfate reduction in sediments of the coastal zone and littoral of the Kandalaksha bay of the White sea].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Savvichev, A S; Rusanov, I I; Iusupov, S K; Baĭramov, I T; Pimenov, N V; Lein, A Iu; Ivanov, M V</p> <p>2003-01-01</p> <p>Microbiological and biogeochemical investigations of the coastal zone and the littoral of the Kandalaksha Bay of the White Sea were carried out. The material for investigations was obtained in the series of expeditions of the Institute of Microbiology, Russian Academy of Sciences, in August 1999, 2000, 2001, and in March 2003. The studies were conducted on the littoral and in the water area of the Kandalaksha Preserve, the Moscow University Belomorsk Biological Station, and the Zoological Institute Biological Station, Russian Academy of Sciences, Sediment sampling on the littoral was carried out in the typical microlandscapes differing in the sediment properties and macrobenthos distribution. The maximal sulfate reduction rate (SRR) was shown for the shallow part of the Chemorechenskaya Bay (up to 2550 micrograms S/(dm3 day)) and in the Bab'ye More Bay (up to 3191 micrograms S/(dm3 day)). During the winter season, at a temperature of -0.5-0.5 degrees C, the SRR in the sediments of the Kartesh Bay was 7.9-13 micrograms S/(dm3 day). In the widest limits, the SRR values varied in the sediment cores sampled on the littoral. The minimal values (11 mu]g S/(dm3 day)) were obtained in the core samples on the silt-sandy littoral. The littoral finely dispersed sediments rich in organic matter were characterized by high SRR values (524-1413 micrograms S/(dm3 day)). The maximal SRR values were shown for the sediments present within the stretch of decomposing macrophytes, in local pits at the lower littoral waterline, and in the mouth of a freshwater stream (51-159 mg S/(dm3 day)). A sharp difference in the level of H2S production in the type microlandscapes was shown. The average hydrogen sulfide production in finely dispersed sediments constituted 125 mg S/(m2 day); in stormy discharge deposits, 1950 mg S/(m2 day); in depressions under stones and in silted pits, 4300 mg S/(m2 day). A calculation made with regard to the area of microlandscapes with increased productivity shows that the daily H2S production per 1 km2 of the littoral (August) is 60.8 to 202 kg S/(km2 day), while the organic carbon consumption for sulfate reduction per 1 km2 of the littoral is 46 to 152 kg C(org)/(km2 day).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019445','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019445"><span>Lithofacies and seismic-reflection interpretation of temperate glacimarine sedimentation in Tarr Inlet, Glacier Bay, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cai, J.; Powell, R.D.; Cowan, E.A.; Carlson, P.R.</p> <p>1997-01-01</p> <p>High-resolution seismic-reflection profiles of sediment fill within Tart Inlet of Glacier Bay, Alaska, show seismic facies changes with increasing distance from the glacial termini. Five types of seismic facies are recognized from analysis of Huntec and minisparker records, and seven lithofacies are determined from detailed sedimentologic study of gravity-, vibro- and box-cores, and bottom grab samples. Lithofacies and seismic facies associations, and fjord-floor morphology allow us to divide the fjord into three sedimentary environments: ice-proximal, iceberg-zone and ice-distal. The ice-proximal environment, characterized by a morainal-bank depositional system, can be subdivided into bank-back, bank-core and bank-front subenvironments, each of which is characterized by a different depositional subsystem. A bank-back subsystem shows chaotic seismic facies with a mounded surface, which we infer consists mainly of unsorted diamicton and poorly sorted coarse-grained sediments. A bank-core depositional subsystem is a mixture of diamicton, rubble, gravel, sand and mud. Seismic-reflection records of this subsystem are characterized by chaotic seismic facies with abundant hyperbolic diffractions and a hummocky surface. A bank-front depositional subsystem consists of mainly stratified and massive sand, and is characterized by internal hummocky facies on seismic-reflection records with significant surface relief and sediment gravity flow channels. The depositional system formed in the iceberg-zone environment consists of rhythmically laminated mud interbedded with thin beds of weakly stratified diamicton and stratified or massive sand and silt. On seismic-reflection profiles, this depositional system is characterized by discontinuously stratified facies with multiple channels on the surface in the proximal zone and a single channel on the largely flat sediment surface in the distal zone. The depositional system formed in the ice-distal environment consists of interbedded homogeneous or laminated mud and massive or stratified sand and coarse silt. This depositional system shows continuously stratified seismic facies with smooth and flat surfaces on minisparker records, and continuously stratified seismic facies which are interlayered with thin weakly stratified facies on Huntec records.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26994795','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26994795"><span>Occurrence, spatiotemporal distribution, and ecological risks of steroids in a large shallow Chinese lake, Lake Taihu.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Li-Jun; Zhang, Bei-Bei; Zhao, Yong-Gang; Wu, Qinglong L</p> <p>2016-07-01</p> <p>Steroids have been frequently detected in surface waters, and might pose adverse effects on aquatic organisms. However, little information is available regarding the occurrence and spatiotemporal distribution of steroids in lake environments. In addition to pollution sources, the occurrence and spatiotemporal distribution of steroids in lake environments might be related to lake types (shallow or deep), lake hydrodynamics, and sorption-desorption processes in the water-sediment systems. In this study, the occurrence, spatiotemporal distribution, and ecological risks of 36 steroids in a large shallow lake were evaluated by investigating surface water and sediment samples at 32 sites in Lake Taihu over two seasons. Twelve and 15 analytes were detected in aqueous and sedimentary phases, respectively, with total concentrations ranging from 0.86 to 116ng/L (water) and from 0.82 to 16.2ng/g (sediment, dry weight). Temporal variations of steroid concentrations in the water and sediments were statistically significant, with higher concentrations in winter. High concentrations of steroids were found in the seriously polluted bays rather than in the pelagic zone of the lake. Strong lake currents might mix pelagic waters, resulting in similar concentrations of steroids in the pelagic zone. Mass balance analysis showed that sediments in shallow lakes are in general an important sink for steroids. Steroids in the surface water and sediments of Lake Taihu might pose potential risks to aquatic organisms. Overall, our study indicated that the concentrations and spatiotemporal distribution of steroids in the large shallow lake are influenced simultaneously by pollution sources and lake hydrodynamics. Steroids in the large shallow Lake Taihu showed clear temporal and spatial variations and lake sediments may be a potential sink of steroids. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25989857','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25989857"><span>Trace element fluxes in sediments of an environmentally impacted river from a coastal zone of Brazil.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>da Silva, Yuri Jacques Agra Bezerra; Cantalice, José Ramon Barros; Singh, Vijay P; do Nascimento, Clístenes Williams Araújo; Piscoya, Victor Casimiro; Guerra, Sérgio M S</p> <p>2015-10-01</p> <p>Data regarding trace element concentrations and fluxes in suspended sediments and bedload are scarce. To fill this gap and meet the international need to include polluted rivers in future world estimation of trace element fluxes, this study aimed to determine the trace element fluxes in suspended sediment and bedload of an environmentally impacted river in Brazil. Water, suspended sediment, and bedload from both the upstream and the downstream cross sections were collected. To collect both the suspended sediment and water samples, we used the US DH-48. Bedload measurements were carried out using the US BLH 84 sampler. Concentrations of Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were determined by inductively coupled plasma (ICP-OES). As and Hg were determined by an atomic absorption spectrophotometer (AA-FIAS). The suspended sediments contributed more than 99 % of the trace element flux. By far Pb and to a less extent Zn at the downstream site represents major concerns. The yields of Pb and Zn in suspended sediments were 4.20 and 2.93 kg km(2) year(-1), respectively. These yields were higher than the values reported for Pb and Zn for Tuul River (highly impacted by mining activities), 1.60 and 1.30 kg km(2) year(-1), respectively, as well as the Pb yield (suspended + dissolved) to the sea of some Mediterranean rivers equal to 3.4 kg km(2) year(-1). Therefore, the highest flux and yield of Pb and Zn in Ipojuca River highlighted the importance to include medium and small rivers-often overlooked in global and regional studies-in the future estimation of world trace element fluxes in order to protect estuaries and coastal zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18441804','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18441804"><span>Advective removal of intraparticle uranium from contaminated vadose zone sediments, Hanford, U.S.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ilton, Eugene S; Qafoku, Nikolla P; Liu, Chongxuan; Moore, Dean A; Zachara, John M</p> <p>2008-03-01</p> <p>A column study on U(VI)-contaminated vadose zone sediments from the Hanford Site, WA, was performed to investigate U(VI) release kinetics with water advection and variable geochemical conditions. The sediments were collected from an area adjacent to and below tank BX-102 that was contaminated as a result of a radioactive tank waste overfill event. The primary reservoir for U(VI) in the sediments are micrometer-size precipitates composed of nanocrystallite aggregates of a Na-U-Silicate phase, most likely Na-boltwoodite, that nucleated and grew within microfractures of the plagioclase component of sand-sized granitic clasts. Two sediment samples, with different U(VI) concentrations and intraparticle mass transfer properties, were leached with advective flows of three different solutions. The influent solutions were all calcite-saturated and in equilibrium with atmospheric CO2. One solution was prepared from DI water, the second was a synthetic groundwater (SGW) with elevated Na that mimicked groundwater at the Hanford site, and the third was the same SGW but with both elevated Na and Si. The latter two solutions were employed, in part, to test the effect of saturation state on U(VI) release. For both sediments, and all three electrolytes, there was an initial rapid release of U(VI) to the advecting solution followed by slower near steady-state release. U(VI)aq concentrations increased during subsequent stop-flow events. The electrolytes with elevated Na and Si depressed U(VL)aq concentrations in effluent solutions. Effluent U(VI)aq concentrations for both sediments and all three electrolytes were simulated reasonably well by a three domain model (the advecting fluid, fractures, and matrix) that coupled U(VI) dissolution, intraparticle U(VI)aq diffusion, and interparticle advection, where diffusion and dissolution properties were parameterized in a previous batch study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BGeo...14.1165Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BGeo...14.1165Z"><span>Diatoms as a paleoproductivity proxy in the NW Iberian coastal upwelling system (NE Atlantic)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zúñiga, Diana; Santos, Celia; Froján, María; Salgueiro, Emilia; Rufino, Marta M.; De la Granda, Francisco; Figueiras, Francisco G.; Castro, Carmen G.; Abrantes, Fátima</p> <p>2017-03-01</p> <p>The objective of the current work is to improve our understanding of how water column diatom's abundance and assemblage composition is seasonally transferred from the photic zone to seafloor sediments. To address this, we used a dataset derived from water column, sediment trap and surface sediment samples recovered in the NW Iberian coastal upwelling system. Diatom fluxes (2.2 (±5.6) 106 valves m-2 d-1) represented the majority of the siliceous microorganisms sinking out from the photic zone during all studied years and showed seasonal variability. Contrasting results between water column and sediment trap diatom abundances were found during downwelling periods, as shown by the unexpectedly high diatom export signals when diatom-derived primary production achieved their minimum levels. They were principally related to surface sediment remobilization and intense Minho and Douro river discharge that constitute an additional source of particulate matter to the inner continental shelf. In fact, contributions of allochthonous particles to the sinking material were confirmed by the significant increase of both benthic and freshwater diatoms in the sediment trap assemblage. In contrast, we found that most of the living diatom species blooming during highly productive upwelling periods were dissolved during sinking, and only those resistant to dissolution and the Chaetoceros and Leptocylindrus spp. resting spores were susceptible to being exported and buried. Furthermore, Chaetoceros spp. dominate during spring-early summer, when persistent northerly winds lead to the upwelling of nutrient-rich waters on the shelf, while Leptocylindrus spp. appear associated with late-summer upwelling relaxation, characterized by water column stratification and nutrient depletion. These findings evidence that the contributions of these diatom genera to the sediment's total marine diatom assemblage should allow for the reconstruction of different past upwelling regimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23811358','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23811358"><span>Distribution of polychlorinated biphenyls in an urban riparian zone affected by wastewater treatment plant effluent and the transfer to terrestrial compartment by invertebrates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yu, Junchao; Wang, Thanh; Han, Shanlong; Wang, Pu; Zhang, Qinghua; Jiang, Guibin</p> <p>2013-10-01</p> <p>In this study, we investigated the distribution of polychlorinated biphenyls (PCBs) in a riparian zone affected by the effluent from a wastewater treatment plant (WWTP). River water, sediment, aquatic invertebrates and samples from the surrounding terrestrial compartment such as soil, reed plants and several land based invertebrates were collected. A relatively narrow range of δ(13)C values was found among most invertebrates (except butterflies, grasshoppers), indicating a similar energy source. The highest concentration of total PCBs was observed in zooplankton (151.1 ng/g lipid weight), and soil dwelling invertebrates showed higher concentrations than phytophagous insects at the riparian zone. The endobenthic oligochaete Tubifex tubifex (54.28 ng/g lw) might be a useful bioindicator of WWTP derived PCBs contamination. High bioaccumulation factors (BAFs) were observed in collected aquatic invertebrates, although the biota-sediment/soil accumulation factors (BSAF) remained relatively low. Emerging aquatic insects such as chironomids could carry waterborne PCBs to the terrestrial compartment via their lifecycles. The estimated annual flux of PCBs for chironomids ranged from 0.66 to 265 ng⋅m(-2)⋅y(-1). Although a high prevalence of PCB-11 and PCB-28 was found for most aquatic based samples in this riparian zone, the mid-chlorinated congeners (e.g. PCB-153 and PCB-138) became predominant among chironomids and dragonflies as well as soil dwelling invertebrates, which might suggest a selective biodriven transfer of different PCB congeners. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.T21F..04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.T21F..04S"><span>Initial results from the Nankai Trough shallow splay and frontal thrust (IODP Expedition 316): Implications for fluid flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Screaton, E.; Kimura, G.; Curewitz, D.; Scientists, E.</p> <p>2008-12-01</p> <p>Integrated Ocean Drilling Program (IODP) Expedition 316 examined the frontal thrust and the shallow portion of the megasplay fault offshore of the Kii peninsula, and was the third drilling expedition of the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE). NanTroSEIZE will integrate seafloor observations, drilling, and observatories to investigate the processes controlling slip along subduction zone plate boundary fault systems. Site C0004 examined a shallow portion of the splay fault system where it overrides slope basin sediments. Site C0008, located in the slope basin 1 km seaward of Site C0004, provided a reference site for the footwall sediments. Results of drilling indicate that the footwall sediments have dewatered significantly, suggesting permeable routes for fluid escape. These high-permeability pathways might be provided by coarse-grained layers within the slope sediments. In situ dewatering and multiple fluid escape paths will tend to obscure any geochemical signature of flow from depth. Sites C0006 and C0007 examined the frontal thrust system. Although poorly recovered, coarse-grained trench sediments were sampled within the footwall. These permeable sediments would be expected to allow rapid escape of any fluid pressures due to loading. At both sites, low porosities are observed at shallow depths, suggesting removal of overlying material. This observation is consistent with interpretations that the prism is unstable and currently in a period of collapse. Anomalously low temperatures were measured within boreholes at these sites. One possible explanation for the low temperatures is circulation of seawater along normal faults in the unstable prism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910436A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910436A"><span>Application of stable isotope (δ13C and δ18O) composition of mollusc shells in palaeolimnological studies - possibilities and limitations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Apolinarska, Karina; Pełechaty, Mariusz; Kossler, Annette; Pronin, Eugeniusz; Noskowiak, Daria</p> <p>2017-04-01</p> <p>Carbon (δ13C) and oxygen (δ18O) stable isotope analyses are among the standard methods applied in the studies of past environment, including climate. In lacustrine sediments, δ13C and δ18O values can be measured in fine carbonate fraction (carbonate mud), in charophyte encrustations, ostracod carapaces and mollusc shells. Application of the stable isotope record of each of the above-mentioned components of the lake sediment requires knowledge about possibilities and limitations of the method. The present research discusses the most important results of the studies carried out between 2011 and 2013, concentrated on the stable isotope composition of snail shells, primarily, the species commonly preserved in central European Quaternary lacustrine sediments. The stable isotope studies involved also, the zebra mussel (Dreissena polymorpha), one of the most invasive freshwater species in the world. The research involved shell isotope studies of both recent (Apolinarska, 2013; Apolinarska et al., 2016; Apolinarska and Pełechaty, in press) and fossil molluscs derived from the Holocene sediments (Apolinarska et al., 2015a, b). Shell δ13C values were species-specific and among the gastropods studied the same order of species from the most to the least 13C-depleted was observed at all sites sampled. Shell δ18O values were more uniform. The wide range of δ13C and δ18O values were observed in population and subpopulation, i.e. when live snails were sampled live from restricted area within the lake littoral zone. Carbon and oxygen stable isotope values of the mono-specific shells sampled from 1 cm thick sediment samples were highly variable. Those intra-specific differences (n=20) were as large as several permill. Such significant variability in δ13C and δ18O values indicates that stable isotope composition of single shells is unlikely to be representative of the sediment sample. In conclusion, samples of freshwater molluscs for stable isotope analyses should be monospecific and composed of at least several shells. The number of shells being dependent on the difference between the minimum and maximum values within the sediment layer. The research was funded by the Polish Ministry of Science and Higher Education, Iuventus Plus Program, grant No. IP2010 000670. Apolinarska, K., 2013. Stable isotope compositions of recent Dreissena polymorpha (Pallas) shells: paleoenvironmental implications. Journal of Paleolimnology 50, 353-364. Apolinarska, K., Pełechaty, M. & Kossler, A., 2015a. Within-sample variability of δ13C and δ18O values of freshwater gastropod shells and the optimum number of shells to measure per sediment layer in the Paddenluch palaeolacustrine sequence, Germany. Journal of Paleolimnology 54, 305-323. Apolinarska, K., Pełechaty, M. & Noskowiak, D., 2015b. Differences in stable isotope compositions of freshwater snails from surface sediments of two Polish shallow lakes. Limnologica 53, 95-105. Apolinarska, K., Pełechaty, M. & Pronin, E., 2016. Discrepancies between the stable isotope compositions of water, macrophyte carbonates and organics, and mollusc shells in the littoral zone of a charophyte-dominated lake (Lake Lednica, Poland). Hydrobiologia 768, 1-17. Apolinarska, K. & Pełechaty, M., Inter- and intra-specific variability in δ13C and δ18O values of freshwater gastropod shells from Lake Lednica, western Poland. DOI: 10.1515/agp-2016-0028</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15633038','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15633038"><span>Using sediment budgets to investigate the pathogen flux through catchments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Whiteway, Tanya G; Laffan, Shawn W; Wasson, Robert J</p> <p>2004-10-01</p> <p>We demonstrate a materials budget approach to identify the main source areas and fluxes of pathogens through a landscape by using the flux of fine sediments as a proxyfor pathogens. Sediment budgets were created for three subcatchment tributaries of the Googong Reservoir in south-eastern New South Wales, Australia. Major inputs, sources, stores, and transport zones were estimated using sediment sampling, dam trap efficiency measures, and radionuclide tracing. Particle size analyses were used to quantify the fine-sediment component of the total sediment flux, from which the pathogen flux was inferred by considering the differences between the mobility and transportation of fine sediments and pathogens. Gullies were identified as important sources of fine sediment, and therefore of pathogens, with the pathogen risk compounded when cattle shelter in them during wet periods. The results also indicate that the degree of landscape modification influences both sediment and pathogen mobilization. Farm dams, swampy meadows and glades along drainage paths lower the flux of fine sediment, and therefore pathogens, in this landscape during low-flow periods. However, high-rainfall and high-flow events are likely to transport most of the fine sediment, and therefore pathogen, flux from the Googong landscape to the reservoir. Materials budgets are a repeatable and comparatively low-cost method for investigating the pathogen flux through a landscape.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.3462R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.3462R"><span>Anaerobic oxidation of methane in sediments of two boreal lakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rissanen, Antti J.; Karvinen, Anu; Nykänen, Hannu; Mpamah, Promise; Peura, Sari; Tiirola, Marja; Kankaala, Paula</p> <p>2014-05-01</p> <p>Anaerobic oxidation of methane (AOM) is a considerable sink for methane (CH4) in marine systems, but very little is known about the occurrence and importance of the process in freshwater systems. In addition, much about the microbial communities involved in AOM is unclear. AOM coupled with sulfate reduction is the dominant AOM process in marine systems but the scarce existing data suggest that, in freshwater systems, AOM coupled with reduction of alternative electron acceptors (nitrate/nitrite, manganese, iron) is more important. In this study, potential for AOM coupled with metal reduction was studied in boreal lake sediments. Slurries of sediment samples collected from two sites in southeastern Finland, i.e. from Lake Orivesi, Heposelkä, an vegetated littoral site, dominated by Phragmites australis (Sample Sa, sediment layer 0 - 25 cm) and from the profundal zone of a mesotrophic Lake Ätäskö (Aa, 0 - 10 cm; Ab, 10 - 30 cm; Ac, 90 - 130 cm), were incubated in laboratory in anaerobic conditions at in situ temperatures for up to 5 months. The samples were amended either 1) with 13CH4, 2) 13CH4 + manganese(II) oxide (MnO) or 3) 13CH4 + iron(III) hydroxide (Fe(OH)3), and the processes were measured by following the 13C transfer to the carbon dioxide (CO2) pool and by concentration measurements of CH4 and CO2. Changes in microbial communities were studied from DNA extracted from sediment samples before and after incubation period by next-generation sequencing (Ion Torrent) of polymerase chain reaction (PCR) - amplified bacterial and archaeal 16S rRNA and methyl coenzyme-M reductase gene (mcrA) amplicons. Increase in 13C of CO2 gas confirmed that AOM took place in sediments of both study lakes. In general, 13CO2 - production was significant both at the beginning (0 - 21 days) and at the end (84 - 151 days) of incubation period. Potential AOM rates (calculated based on 13CO2 - production) varied considerably and were much lower in deep sediment (Sample Ac), 0.1 - 0.2 nmol CH4 d-1gwetsediment-1, than in surface sediment samples (Samples Aa, Ab and Sa), 0.2 - 12.3 nmol CH4 d-1gwetsediment-1. AOM took place without metal additions in every sample type. Addition of MnO increased potential AOM rates in surface sediment samples but not in deep sediment samples. Addition of Fe(OH)3increased AOM significantly only in Aa samples. Molecular microbiological analyses are currently in progress and the results will be shown in the poster presentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T41G..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T41G..03M"><span>IODP Expedition 362: Initial results from drilling the Sumatra subduction zone - the role of input materials in shallow seismogenic slip and forearc plateau development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McNeill, L. C.; Dugan, B.; Petronotis, K. E.; Expedition 362 Scientists, I.</p> <p>2016-12-01</p> <p>IODP Expedition 362, August-October, 2016, plans to drill two boreholes within the input section of the Indian oceanic plate entering the North Sumatran subduction zone. In 2004, a Mw 9.2 earthquake ruptured the Sunda subduction zone from North Sumatra to the Andaman Islands, a length of 1500 km. The earthquake and tsunami devastated coastal communities around the Indian Ocean. This earthquake and the 2011 Tohoku-Oki Mw 9.0 earthquake showed unexpectedly shallow megathrust slip. In the case of North Sumatra, this shallow slip was focused beneath a distinctive plateau of the accretionary prism. This intriguing seismogenic behavior and forearc structure are not explained by existing models or by observations at other margins where seismogenic slip typically occurs farther landward. Expedition 362 will use core and log data in conjunction with in situ temperature and pressure measurements to document the lithology, structures, and physical and chemical properties of the input sediments. The input materials of the North Sumatran subduction zone are a distinctive, thick (up to 4-5 km) sequence of primarily Bengal-Nicobar Fan-related sediments. This sequence geophysically shows strong evidence for induration and dewatering and has probably reached the temperatures required for sediment-strengthening diagenetic reactions, and input materials may be key to driving the distinctive slip behavior and long-term forearc structure. The plate boundary fault (décollement) originates within the lower pelagic and submarine fan sediments so sampling this interval will help determine what controls décollement development and how its properties evolve. Initial results from the Expedition and plans for post-expedition experiments and modeling will be presented. These methods will be used to predict physical, thermal, fluid, and mechanical properties and diagenetic evolution of the sediments as stresses and temperatures increase due to burial and subduction. Results will be used to test the role of sediment properties in shallow earthquake slip and in the unusual forearc structure. In addition, the results will contribute to our understanding of a) Bengal-Nicobar fan history and records of Himalayan uplift, erosion and monsoon development, and b) stress conditions in a complexly deforming region of the Indian plate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4547046','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4547046"><span>Formate, acetate, and propionate as substrates for sulfate reduction in sub-arctic sediments of Southwest Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Glombitza, Clemens; Jaussi, Marion; Røy, Hans; Seidenkrantz, Marit-Solveig; Lomstein, Bente A.; Jørgensen, Bo B.</p> <p>2015-01-01</p> <p>Volatile fatty acids (VFAs) are key intermediates in the anaerobic mineralization of organic matter in marine sediments. We studied the role of VFAs in the carbon and energy turnover in the sulfate reduction zone of sediments from the sub-arctic Godthåbsfjord (SW Greenland) and the adjacent continental shelf in the NE Labrador Sea. VFA porewater concentrations were measured by a new two-dimensional ion chromatography-mass spectrometry method that enabled the direct analysis of VFAs without sample pretreatment. VFA concentrations were low and surprisingly constant (4–6 μmol L−1 for formate and acetate, and 0.5 μmol L−1 for propionate) throughout the sulfate reduction zone. Hence, VFAs are turned over while maintaining a stable concentration that is suggested to be under a strong microbial control. Estimated mean diffusion times of acetate between neighboring cells were <1 s, whereas VFA turnover times increased from several hours at the sediment surface to several years at the bottom of the sulfate reduction zone. Thus, diffusion was not limiting the VFA turnover. Despite constant VFA concentrations, the Gibbs energies (ΔGr) of VFA-dependent sulfate reduction decreased downcore, from −28 to −16 kJ (mol formate)−1, −68 to −31 kJ (mol acetate)−1, and −124 to −65 kJ (mol propionate)−1. Thus, ΔGr is apparently not determining the in-situ VFA concentrations directly. However, at the bottom of the sulfate zone of the shelf station, acetoclastic sulfate reduction might operate at its energetic limit at ~ −30 kJ (mol acetate)−1. It is not clear what controls VFA concentrations in the porewater but cell physiological constraints such as energetic costs of VFA activation or uptake could be important. We suggest that such constraints control the substrate turnover and result in a minimum ΔGr that depends on cell physiology and is different for individual substrates. PMID:26379631</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B21A0007J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B21A0007J"><span>Elastic Wave Imaging of in-Situ Bio-Alterations in a Contaminated Aquifer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jaiswal, P.; Raj, R.; Atekwana, E. A.; Briand, B.; Alam, I.</p> <p>2014-12-01</p> <p>We present a pioneering report on the utility of seismic methods in imaging bio-induced elastic property changes within a contaminated aquifer. To understand physical properties of contaminated soil, we acquired 48 meters long multichannel seismic profile over the Norman landfill leachate plume in Norman Oklahoma, USA. We estimated both the P- and S- wave velocities respectively using full-waveform inversion of the transmission and the ground-roll coda. The resulting S-wave model showed distinct velocity anomaly (~10% over background) within the water table fluctuation zone bounded by the historical minimum and maximum groundwater table. In comparison, the P-wave velocity anomaly within the same zone was negligible. The Environmental Scanning Electron Microscope (ESEM) images of samples from a core located along the seismic profile clearly shows presence of biofilms in the water table fluctuation zone and their absence both above and below the fluctuation zone. Elemental chemistry further indicates that the sediment composition throughout the core is fairly constant. We conclude that the velocity anomaly in S-wave is due to biofilms. As a next step, we develop mechanistic modeling to gain insights into the petro-physical behavior of biofilm-bearing sediments. Preliminary results suggest that a plausible model could be biofilms acting as contact cement between sediment grains. The biofilm cement can be placed in two ways - (i) superficial non-contact deposition on sediment grains, and (ii) deposition at grain contacts. Both models explain P- and S- wave velocity structure at reasonable (~5-10%) biofilm saturation and are equivocally supported by the ESEM images. Ongoing attenuation modeling from full-waveform inversion and its mechanistic realization, may be able to further discriminate between the two cement models. Our study strongly suggests that as opposed to the traditional P-wave seismic, S-wave acquisition and imaging can be a more powerful tool for in-situ imaging of biofilm formation in field settings with significant implication for bioremediation and microbial enhanced oil recovery monitoring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JVGR..341...84K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JVGR..341...84K"><span>Fluidization of host sediments and its impacts on peperites-forming processes, the Cretaceous Buan Volcanics, Korea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kwon, Chang Woo; Gihm, Yong Sik</p> <p>2017-07-01</p> <p>In the Cretaceous Buan Volcanics (SW Korea), blocky and fluidal peperites are developed in a bed of poorly sorted, massive pumiceous lapilli tuff (hot sediments) as a result of the vertical to subvertical intrusion of the trachyandesitic dikes into the bed. Blocky peperites are composed of polyhedral or platy juvenile clasts with a jigsaw-crack texture. Fluidal peperites are characterized by fluidal or globular juvenile clasts with irregular or ragged margins. The blocky peperites are ubiquitous in the host sediments, whereas the fluidal peperites only occur in fine-grained zone (well sorted fine to very fine ash) that are aligned parallel to the dike margin. The development of the fine-grained zone within the poorly sorted host sediments is interpreted to form by grain size segregation caused by upward moving pore water (fluidization) that has resulted from heat transfer from intruding magma toward the waterlogged host sediments during intrusion. With the release of pore water and the selective entrainment of fine-grained ash, the fine-grained zone formed within the host sediments. Subsequent interactions between the fine-grained zone and the intruding magma resulted in ductile deformation of the magma, which generated fluidal peperites. Outside the fine-grained zone, because of the relative deficiency of both pore water and fine-grained ash, intruding magma fragmented in a brittle manner, resulting in the formation of blocky peperites. The results of this study suggest that redistribution of constituent particles (ash) and interstitial fluids during fluidization resulted in heterogeneous physical conditions of the host sediments, which influenced peperite-forming processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1713109W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1713109W"><span>Contemporary suspended sediment yield of a partly glaciated catchment, Riffler Bach (Tyrol, Austria)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weber, Martin; Baewert, Henning; Morche, David</p> <p>2015-04-01</p> <p>Due to glacier retreat since the LIA (Little Ice Age) proglacial areas in high mountain landscapes are growing. These systems are characterized by a high geomorphological activity, especially in the fluvial subsystem. Despite the long tradition of geomorphological research in the European Alps there is a still a lack of understanding in the interactions between hydrology, sediment sources, sediments sinks and suspended sediment transport. As emphasized by ORWIN ET AL. (2010) those problems can be solved by gathering data in a higher frequency and/or in a higher spatial resolution or density - both leading to a big amount of data. In 2012 a gauging station was installed at the outlet of the partly glaciated catchment of the Riffler Bach (Kaunertal valley, Tyrol). During the ablation seasons in 2012 and 2013 water stage was logged automatically every 15 minutes. In both seasons discharge was measured at different water levels to calculate a stage-discharge relation. Additionally, water samples were taken by an automatic water sampler. Within 16 sampling cycles with sampling frequencies ranging from 1 to 24 hours 389 water samples have been collected. The samples were filtered to calculate the suspended sediment concentration (SSC) of each sample. Furthermore, the climate station Weißsee provided meteorological data at a 15 minute interval. Due to the high variability in suspended sediment transport in proglacial rivers it is impossible to compute a robust annual Q-SSC-relation. Hence, two other approaches were used to calculate the suspended sediment load (SSL) and the suspended sediment yield (SSY): A) Q-SSC-relations for every single sampling cycle (e.g. GEILHAUSEN ET AL. 2013) B) Q-SSC-relations based on classification of dominant runoff-generating processes (e.g. ORWIN AND SMART 2004). The first approach uses commonly operated analysis methods that are well understood. While the hydro-climatic approach is more feasible to explain discharge generation and to locate sediment sources both approaches underline the fact that SSC does not always depends on discharge but also on sediment availability. The comparison of both approaches shows that in well investigated areas the results are strongly determined by the choice of the analysis method. References Geilhausen, M., Morche, D., Otto, J.-C. and Schrott, L. (2013): Sediment discharge from the proglacial zone of a retreating Alpine glacier. Z Geomorphol Supplementary Issue 57 (2), 29-53. DOI: 10.1127/0372-8854/2012/S-00122 Orwin, J., Lamoureux, S.F., Warburton, J. and Beylich, A., (2010): A framework for characterizing fluvial sediment fluxes from source to sink in cold environments. Geogr. Ann. 92 A (2): 155-176. Orwin, J.F. and Smart, C.C. (2004): Short-term spatial and temporal patterns of suspended sediment transfer in proglacial channels, Small River Glacier, Canada. Hydrol. Process. 18, 1521-1542.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035509','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035509"><span>Late Quaternary sediment-accumulation rates within the inner basins of the California Continental Borderland in support of geologic hazard evaluation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Normark, W.R.; McGann, M.; Sliter, R.W.</p> <p>2009-01-01</p> <p>An evaluation of the geologic hazards of the inner California Borderland requires determination of the timing for faulting and mass-movement episodes during the Holocene. Our effort focused on basin slopes and turbidite systems on the basin floors for the area between Santa Barbara and San Diego, California. Dating condensed sections on slopes adjacent to fault zones provides better control on fault history where high-resolution, seismic-reflection data can be used to correlate sediment between the core site and the fault zones. This study reports and interprets 147 radiocarbon dates from 43 U.S. Geological Survey piston cores as well as 11 dates from Ocean Drilling Program Site 1015 on the floor of Santa Monica Basin. One hundred nineteen dates from 39 of the piston cores have not previously been published. Core locations were selected for hazard evaluation, but despite the nonuniform distribution of sample locations, the dates obtained for the late Quaternary deposits are useful for documenting changes in sediment-accumulation rates during the past 30 ka. Cores from basins receiving substantial sediment from rivers, i.e., Santa Monica Basin and the Gulf of Santa Catalina, show a decrease in sediment supply during the middle Holocene, but during the late Holocene after sea level had reached the current highstand condition, rates then increased partly in response to an increase in El Ni??o-Southern Oscillation events during the past 3.5 ka. ?? 2009 The Geological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024053','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024053"><span>Considerations for sampling inorganic constituents in ground water using diffusion samplers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Vroblesky, D.A.; Petkewich, M.D.; Campbell, T.R.; ,</p> <p>2002-01-01</p> <p>Data indicate that nylon-screen and dialysis diffusion samplers are capable of obtaining concentrations of inorganic solutes in ground water from wells that closely correspond to concentrations obtained by low-flow sampling. Conservative solutes, such as chloride, can be sampled by filling the diffusion samplers with oxygenated water. The samplers should be filled with anaerobic water for sampling redoxsensitive solutes. Oxidation of iron within the samplers, either by using aerobic fill water or by in-well oxygenation events, can lead to erroneous iron concentrations. Lithologic and chemical heterogeneity and sampler placement depth can lead to differences between concentrations from diffusion samples and low-flow samples because of mixing during pumping. A disadvantage of regenerated cellulose dialysis samplers is that they can begin to biodegrade within the two weeks of deployment. Nylon-screen samplers buried beneath streambed sediment along the unnamed tributary in a discharge zone of arseniccontaminated ground water were useful in locating the specific discharge zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.restorethegulf.gov/release/2015/07/01/operational-science-advisory-team-report-iii','USGSPUBS'); return false;" href="https://www.restorethegulf.gov/release/2015/07/01/operational-science-advisory-team-report-iii"><span>Appendix D: Use of wave scenarios to assess potential submerged oil mat (SOM) formation along the coast of Florida and Alabama</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dalyander, P. Soupy; Long, Joseph W.; Plant, Nathaniel G.; Thompson, David M.</p> <p>2013-01-01</p> <p>During the Deepwater Horizon oil spill, oil in the surf zone mixed with sediment in the surf zone to form heavier-than-water sediment oil agglomerates of various size, ranging from small (cm-scale) pieces (surface residual balls, SRBs) to large mats (100-m scale, surface residue mats, SR mats). Once SR mats formed in the nearshore or in the intertidal zone, they may have become buried by sand moving onshore or alongshore. To assist in locating possible sites of buried oil, wave scenarios previously developed by the U.S. Geological Survey (USGS) were used to determine the depths at which surface oil had the potential to mix with suspended sediment. For sediment to mix with floating oil and form an agglomerate of sufficient density to sink to the seafloor, either the water must be very shallow (e.g., within the swash zone) or sediment must be suspended to the water surface in sufficient concentrations to create a denser-than-sea water agglomerate. The focus of this study is to analyze suspended sediment mixing with surface oil in depths beyond the swash zone, in order to define the seaward limit of mat formation. A theoretical investigation of sediment dynamics in the nearshore zone revealed that non-breaking waves do not suspend enough sediment to the surface to form sinking sand/oil agglomerates. For this study, it was assumed that the cross-shore distribution of potential agglomerate formation is associated with the primary breaker line, and the presence of plunging breakers, over the time frame of oiling. The potential locations of submerged oil mats (SOMs) are sites where (1) possible agglomerate formation occurred, where (2) sediment accreted post-oiling and buried the SOM, and where (3) the bathymetry has not subsequently eroded to re-expose any mat that may have formed at that site. To facilitate identification of these locations, the range of water level variation over the time frame of oiling was also prescribed, which combined with the wave-breaking depth analysis and pre-oiling bathymetry would identify the potential geographic locations of SOMs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913159W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913159W"><span>Sedimentological downstream effects of dam failure and the role of sediment connectivity: a case study from the Bohemian Massif, Austria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wurster, Maria-Theresia; Weigelhofer, Gabriele; Pichler-Scheder, Christian; Hein, Thomas; Pöppl, Ronald</p> <p>2017-04-01</p> <p>Sediment connectivity describes the potential for sediment transport through catchment systems, further defining locality and characteristics of sedimentation in river channels. Dams generally decrease sediment connectivity and act as temporary sediment sinks. When dams are removed these sediments are being reworked and released downstream. During dam restoration works along a small-sized stream in the Bohemian Massif of Austria in December 2015 a dam failure occurred which led to the entrainment of several tons of fine-grained reservoir sediments further entering and depositing in the downstream channel reaches, located in the Thayatal National Park. Aiming to remove these fine sediment deposits the National Park Authority decided to initiate a flushing event in April 2016. The main aim of the present study was to investigate the effects of dam failure-induced fine sediment release and reservoir flushing on downstream bed sediment characteristics by applying geomorphological mapping (incl. volumetric surveys) and sedimentological analyses (freeze-core sampling and granulometry), further discussing the role of in-channel sediment connectivity. The obtained results have shown that immediately after the dam failure event a total of ca. 18 m3 of fine-grained sediments have accumulated as in-channel sediment bars which were primarily formed in zones of low longitudinal connectivity (e.g. in the backwater areas of woody debris jams, or at slip-off bank locations). The flushing event has been shown to have caused remobilization and downstream translocation of these deposits, further reducing their total volume by approx. 60%. The results of the granulometric analyses of the freeze-core samples have revealed fine sediment accumulation and storage in the upper parts of the channel bed, having further increased after the flushing event. Additionally, effects on chemical conditions and invertebrate community have been observed. These observations clearly indicate a significant influence of vertical connectivity conditions on in-channel fine sediment storage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6336675-hydrocarbons-sediments-bermuda-region-lagoonal-abyssal-depths','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6336675-hydrocarbons-sediments-bermuda-region-lagoonal-abyssal-depths"><span>Hydrocarbons in the sediments of the Bermuda region lagoonal to abyssal depths</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sletter, T.D.; Butler, J.N.; Barbash, J.E.</p> <p>1980-01-01</p> <p>Gas chromatographic analyses of the pentane fraction derived from surface sediments collected from 20 stations (50 cores) around Bermuda from the subtidal zone to 40 m depth and one deep-water sediment sample from 1400 m depth showed that outside the protective boiler reef, the total aliphatic (pentane-extractable) hydrocarbon content was less than inside the reef (3-10 jg/g dry weight outside vs. 10-65 jg/g inside). Samples from the 1400 m depth showed < 1.0 jg/g aliphatic hydrocarbon content. The chromatograms from the shipping channels showed fresh petroleum source concentrations of 8-31 jg/g; harbors yielded chromatograms typical of chronic petroleum contamination, withmore » 30-110 jg/g concentrations. Several biogenic compounds (including C15 and C17 n-alkanes and most probably derived from marine algae) were observed, in addition to the petroleum-derived hydrocarbons. The criteria adopted for distinguishing biogenic and petroleum hydrocarbons are given.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1997/0641/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1997/0641/report.pdf"><span>Results of soil, ground-water, surface-water, and streambed-sediment sampling at Air Force Plane 85, Columbus, Ohio, 1996</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Parnell, J.M.</p> <p>1997-01-01</p> <p>The U.S. Geological Survey (USGS), in cooperation with Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, prepared the Surface- and Ground- Water Monitoring Work Plan for Air Force Plant 85 (AFP 85 or Plant), Columbus, Ohio, under the Air Force Installation Restoration Program to characterize any ground-water, surface-water, and soil contamination that may exist at AFP 85. The USGS began the study in November 1996. The Plant was divided into nine sampling areas, which included some previously investi gated study sites. The investigation activities included the collection and presentation of data taken during drilling and water-quality sampling. Data collection focused on the saturated and unsatur ated zones and surface water. Twenty-three soil borings were completed. Ten monitoring wells (six existing wells and four newly constructed monitoring wells) were selected for water-quality sam pling. Surface-water and streambed-sediment sampling locations were chosen to monitor flow onto and off of the Plant. Seven sites were sampled for both surface-water and streambed-sediment quality. This report presents data on the selected inorganic and organic constituents in soil, ground water, surface water, and streambed sediments at AFP 85. The methods of data collection and anal ysis also are included. Knowledge of the geologic and hydrologic setting could aid Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, and its governing regulatory agencies in future remediation studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70013899','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70013899"><span>SEDIMENT-HOSTED PRECIOUS METAL DEPOSITS.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bagby, W.C.; Pickthorn, W.J.; Goldfarb, R.; Hill, R.A.</p> <p>1984-01-01</p> <p>The Dee mine is a sediment-hosted, disseminated gold deposit in the Roberts Mountains allochthon of north central Nevada. Soil samples were collected from the C-horizon in undisturbed areas over the deposit in order to investigate the usefulness of soil geochemistry in identifying this type of deposit. Each sample was sieved to minus 80 mesh and analyzed quantitatively for Au, Ag, As, Sb, Hg, Tl and semi-quantitative data for an additional 31 elements. Rank sum analysis is successful for the Au, Ag, As, Sb, Hg, Tl suite, even though bedrock geology is disregarded. This method involves data transformation into a total element signature by ranking the data in ascending order and summing the element ranks for each sample. The rank sums are then divided into percentile groups and plotted. The rank sum plot for the Dee soils unequivocally identifies three of four known ore zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H23D1691S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H23D1691S"><span>Mixing-dependent Reactions in the Hyporheic Zone: Laboratory and Numerical Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Santizo, K. Y.; Eastes, L. A.; Hester, E. T.; Widdowson, M.</p> <p>2017-12-01</p> <p>The hyporheic zone is the surface water-groundwater interface surrounding the river's perimeter. Prior research demonstrates the ability of the hyporheic zone to attenuate pollutants when surface water cycles through reactive sediments (non-mixing-dependent reactions). However, the colocation of both surface and ground water within hyporheic sediments also allows mixing-dependent reactions that require mixing of reactants from these two water sources. Recent modeling studies show these mixing zones can be small under steady state homogeneous conditions, but do not validate those results in the laboratory or explore the range of hydrological characteristics that control the extent of mixing. Our objective was to simulate the mixing zone, quantify its thickness, and probe its hydrological controls using a "mix" of laboratory and numerical experiments. For the lab experiments, a hyporheic zone was simulated in a sand mesocosm, and a mixing-dependent abiotic reaction of sodium sulfite and dissolved oxygen was induced. Oxygen concentration response and oxygen consumption were visualized via planar optodes. Sulfate production by the mixing-dependent reaction was measured by fluid samples and a spectrophometer. Key hydrologic controls varied in the mesocosm included head gradient driving hyporheic exchange and hydraulic conductivity/heterogeneity. Results show a clear mixing area, sulfate production, and oxygen gradient. Mixing zone length (hyporheic flow cell size) and thickness both increase with the driving head gradient. For the numerical experiments, transient surface water boundary conditions were implemented together with heterogeneity of hydraulic conductivity. Results indicate that both fluctuating boundary conditions and heterogeneity increase mixing-dependent reaction. The hyporheic zone is deemed an attenuation hotspot by multiple studies, but here we demonstrate its potential for mixing-dependent reactions and the influence of important hydrological parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4999275','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4999275"><span>Rapid Sediment Accumulation Results in High Methane Effluxes from Coastal Sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lenstra, Wytze; Jong, Dirk; Meysman, Filip J. R.; Sapart, Célia J.; van der Veen, Carina; Röckmann, Thomas; Gonzalez, Santiago; Slomp, Caroline P.</p> <p>2016-01-01</p> <p>Globally, the methane (CH4) efflux from the ocean to the atmosphere is small, despite high rates of CH4 production in continental shelf and slope environments. This low efflux results from the biological removal of CH4 through anaerobic oxidation with sulfate in marine sediments. In some settings, however, pore water CH4 is found throughout the sulfate-bearing zone, indicating an apparently inefficient oxidation barrier for CH4. Here we demonstrate that rapid sediment accumulation can explain this limited capacity for CH4 removal in coastal sediments. In a saline coastal reservoir (Lake Grevelingen, The Netherlands), we observed high diffusive CH4 effluxes from the sediment into the overlying water column (0.2–0.8 mol m-2 yr-1) during multiple years. Linear pore water CH4 profiles and the absence of an isotopic enrichment commonly associated with CH4 oxidation in a zone with high rates of sulfate reduction (50–170 nmol cm-3 d-1) both suggest that CH4 is bypassing the zone of sulfate reduction. We propose that the rapid sediment accumulation at this site (~ 13 cm yr-1) reduces the residence time of the CH4 oxidizing microorganisms in the sulfate/methane transition zone (< 5 years), thus making it difficult for these slow growing methanotrophic communities to build-up sufficient biomass to efficiently remove pore water CH4. In addition, our results indicate that the high input of organic matter (~ 91 mol C m-2 yr-1) allows for the co-occurrence of different dissimilatory respiration processes, such as (acetotrophic) methanogenesis and sulfate reduction in the surface sediments by providing abundant substrate. We conclude that anthropogenic eutrophication and rapid sediment accumulation likely increase the release of CH4 from coastal sediments. PMID:27560511</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/963202','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/963202"><span>Transuranic Contamination in Sediment and Groundwater at the U.S. DOE Hanford Site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cantrell, Kirk J.</p> <p>2009-08-20</p> <p>A review of transuranic radionuclide contamination in sediments and groundwater at the DOE’s Hanford Site was conducted. The review focused primarily on plutonium-239/240 and americium-241; however, other transuranic nuclides were discussed as well, including neptunium-237, plutonium-238, and plutonium-241. The scope of the review included liquid process wastes intentionally disposed to constructed waste disposal facilities such as trenches and cribs, burial grounds, and unplanned releases to the ground surface. The review did not include liquid wastes disposed to tanks or solid wastes disposed to burial grounds. It is estimated that over 11,800 Ci of plutonium-239, 28,700 Ci of americium-241, and 55more » Ci of neptunium-237 have been disposed as liquid waste to the near surface environment at the Hanford Site. Despite the very large quantities of transuranic contaminants disposed to the vadose zone at Hanford, only minuscule amounts have entered the groundwater. Currently, no wells onsite exceed the DOE derived concentration guide for plutonium-239/240 (30 pCi/L) or any other transuranic contaminant in filtered samples. The DOE derived concentration guide was exceeded by a small fraction in unfiltered samples from one well (299-E28-23) in recent years (35.4 and 40.4 pCi/L in FY 2006). The primary reason that disposal of these large quantities of transuranic radionuclides directly to the vadose zone at the Hanford Site has not resulted in widespread groundwater contamination is that under the typical oxidizing and neutral to slightly alkaline pH conditions of the Hanford vadose zone, transuranic radionuclides (plutonium and americium in particular) have a very low solubility and high affinity for surface adsorption to mineral surfaces common within the Hanford vadose zone. Other important factors are the fact that the vadose zone is typically very thick (hundreds of feet) and the net infiltration rate is very low due to the desert climate. In some cases where transuranic radionuclides have been co-disposed with acidic liquid waste, transport through the vadose zone for considerable distances has occurred. For example, at the 216-Z-9 Crib, plutonium-239 and americium-241 have moved to depths in excess of 36 m (118 ft) bgs. Acidic conditions increase the solubility of these contaminants and reduce adsorption to mineral surfaces. Subsequent neutralization of the acidity by naturally occurring calcite in the vadose zone (particularly in the Cold Creek unit) appears to have effectively stopped further migration. The vast majority of transuranic contaminants disposed to the vadose zone on the Hanford Site (10,200 Ci [86%] of plutonium-239; 27,900 Ci [97%] of americium-241; and 41.8 Ci [78%] of neptunium-237) were disposed in sites within the PFP Closure Zone. This closure zone is located within the 200 West Area (see Figures 1.1 and 3.1). Other closure zones with notably high quantities of transuranic contaminant disposal include the T Farm Zone with 408 Ci (3.5%) plutonium-239, the PUREX Zone with 330 Ci (2.8%) plutonium-239, 200-W Ponds Zone with 324 Ci (2.8%) plutonium-239, B Farm Zone with 183 Ci (1.6%) plutonium-239, and the REDOX Zone with 164 Ci (1.4%) plutonium 239. Characterization studies for most of the sites reviewed in the document are generally limited. The most prevalent characterization methods used were geophysical logging methods. Characterization of a number of sites included laboratory analysis of borehole sediment samples specifically for radionuclides and other contaminants, and geologic and hydrologic properties. In some instances, more detailed research level studies were conducted. Results of these studies were summarized in the document.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..107a2022S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..107a2022S"><span>Preliminary estimating the contemporary sedimentation trend in dry valley bottoms of first-order catchments of different landscape zones of the Russian Plain using the 137Cs as a chronomarker</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharifullin, A.; Gusarov, A.; Gafurov, A.; Essuman-Quainoo, B.</p> <p>2018-01-01</p> <p>A general trend of erosion processes over the last 50-60 years can be estimated by dating sediments washed off from arable lands and accumulated in the first-order dry valleys bottoms. Three small (first-order) catchments were chosen as objects of the study. They are located, respectively, in the southern part of the taiga zone, the zone of temperate broad-leaf forests and the forest-steppe zone of the Russian Plain. To date the sediments accumulated in the bottoms the radioactive caesium-137 (137Cs) of global (since 1954) and Chernobyl origin (1986) had been used as a chronomarker. The average (for all the catchments) sedimentation rates during the global 137Cs fallout period (1963(1954)-1986) are at least 0.88-2.71 cm per year.For the period that has passed since the Chernobyl accident (1986-2015(2016)) the average rates were 0.15-1.07 cm per year. The greatest reduction in the sedimentation rates is observed in the subzone of the southern taiga, the lowest one is in the forest-steppe zone of the Russian Plain. The main reason for such significant reduction in the rates of sedimentation of the soil erosion products in the dry valley bottoms was a reduction of surface runoff within the catchments during a snowmelt period, as well as crop-rotation changes there.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23323401','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23323401"><span>[Spatial variations of biogenic elements in coastal wetland sediments of the Jiulong River Estuary].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yu, Xiao-Qing; Yang, Jun; Liu, Le-Mian; Tian, Yuan; Yu, Zheng; Wang, Chang-Fu</p> <p>2012-11-01</p> <p>To reveal the spatial distribution of biogenic elements and their influencing factors in the typical subtropical coastal wetland, both surface and core sediment samples were collected from the Jiulong River Estuary, southeast China in summer 2009. The biogenic elements including carbon, nitrogen, phosphorus, sulfur (C, N, P, S) were determined by Element Analyzer and Flow Injection Analyzer. The concentrations of TC, TN, TP, and TS were (12.64 +/- 2.66) g x kg(-1), (1.57 +/- 0.29) g x kg(-1), (0.48 +/- 0.06) g x kg(-1), and (2.61 +/- 1.37) g x kg(-1), respectively. Further, these biogenic elements showed a distinct spatial pattern which closely related with the vegetation type and tide level. Values of TC, TN, TP in the surface sediment of mangrove vegetation zones were higher than those in the cord-grass and mudflat zones, while TC, TN, TP concentrations in the high tide level regions were higher than those in the middle and low tide level regions. The TS concentration was the highest in cord-grass vegetation and middle tidal level zones. The TC and TN values in sedimentary core decreased gradually with depth, and they were the highest in the mangrove sites, followed by cord-grass and mudflat sites at the same depth. In mudflat sedimentary core, the average content of TP was the lowest, whereas TS was the highest. Redundancy analysis revealed that vegetation type, pH and tide level were the main factors influencing the distribution of biogenic elements in surface sediments of the Jiulong River Estuary, by explaining 24.0%, 19.0% and 11.6% of total variation in the four biogenic elements (C, N, P and S), respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11057578','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11057578"><span>Assessment of metal pollution based on multivariate statistical modeling of 'hot spot' sediments from the Black Sea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Simeonov, V; Massart, D L; Andreev, G; Tsakovski, S</p> <p>2000-11-01</p> <p>The paper deals with application of different statistical methods like cluster and principal components analysis (PCA), partial least squares (PLSs) modeling. These approaches are an efficient tool in achieving better understanding about the contamination of two gulf regions in Black Sea. As objects of the study, a collection of marine sediment samples from Varna and Bourgas "hot spots" gulf areas are used. In the present case the use of cluster and PCA make it possible to separate three zones of the marine environment with different levels of pollution by interpretation of the sediment analysis (Bourgas gulf, Varna gulf and lake buffer zone). Further, the extraction of four latent factors offers a specific interpretation of the possible pollution sources and separates natural from anthropogenic factors, the latter originating from contamination by chemical, oil refinery and steel-work enterprises. Finally, the PLSs modeling gives a better opportunity in predicting contaminant concentration on tracer (or tracers) element as compared to the one-dimensional approach of the baseline models. The results of the study are important not only in local aspect as they allow quick response in finding solutions and decision making but also in broader sense as a useful environmetrical methodology.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024946','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024946"><span>Simulation of the mobility of metal - EDTA complexes in groundwater: The influence of contaminant metals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Friedly, J.C.; Kent, D.B.; Davis, J.A.</p> <p>2002-01-01</p> <p>Reactive transport simulations were conducted to model chemical reactions between metal - EDTA (ethylenediaminetetraacetic acid) complexes during transport in a mildly acidic quartz - sand aquifer. Simulations were compared with the results of small-scale tracer tests wherein nickel-, zinc-, and calcium - EDTA complexes and free EDTA were injected into three distinct chemical zones of a plume of sewage-contaminated groundwater. One zone had a large mass of adsorbed, sewage-derived zinc; one zone had a large mass of adsorbed manganese resulting from mildly reducing conditions created bythe sewage plume; and one zone had significantly less adsorbed manganese and negligible zinc background. The chemical model assumed that the dissolution of iron(III) from metal - hydroxypolymer coatings on the aquifer sediments by the metal - EDTA complexes was kinetically restricted. All other reactions, including metal - EDTA complexation, zinc and manganese adsorption, and aluminum hydroxide dissolution were assumed to reach equilibrium on the time scale of transport; equilibrium constants were either taken from the literature or determined independently in the laboratory. A single iron(III) dissolution rate constant was used to fit the breakthrough curves observed in the zone with negligible zinc background. Simulation results agreed well with the experimental data in all three zones, which included temporal moments derived from breakthrough curves at different distances downgradient from the injections and spatial moments calculated from synoptic samplings conducted at different times. Results show that the tracer cloud was near equilibrium with respect to Fe in the sediment after 11 m of transport in the Zn-contaminated region but remained far from equilibrium in the other two zones. Sensitivity studies showed that the relative rate of iron(III) dissolution by the different metal - EDTA complexes was less important than the fact that these reactions are rate controlled. Results suggest that the published solubility for ferrihydrite reasonably approximates the Fe solubility of the hydroxypolymer coatings on the sediments. Aluminum may be somewhat more soluble than represented by the equilibrium constant for gibbsite, and its dissolution may be rate controlled when reacting with Ca - EDTA complexes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20337706','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20337706"><span>Prokaryotic functional diversity in different biogeochemical depth zones in tidal sediments of the Severn Estuary, UK, revealed by stable-isotope probing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Webster, Gordon; Rinna, Joachim; Roussel, Erwan G; Fry, John C; Weightman, Andrew J; Parkes, R John</p> <p>2010-05-01</p> <p>Stable isotope probing of prokaryotic DNA was used to determine active prokaryotes using (13)C-labelled substrates (glucose, acetate, CO(2)) in sediment slurries from different biogeochemical zones of the Severn Estuary, UK. Multiple, low concentrations (5 x 100 microM) of (13)C-substrate additions and short-term incubations (7 days) were used to minimize changes in the prokaryotic community, while achieving significant (13)C-incorporation. Analysis demonstrated clear metabolic activity within all slurries, although neither the net sulphate removal nor CH(4) production occurred in the anaerobic sulphate reduction and methanogenesis zone slurries. Some similarities occurred in the prokaryotic populations that developed in different sediment slurries, particularly in the aerobic and dysaerobic zone slurries with (13)C-glucose, which were dominated by Gammaproteobacteria and Marine Group 1 Archaea, whereas both anaerobic sediment slurries incubated with (13)C-acetate showed incorporation into Epsilonproteobacteria and other bacteria, with the sulphate reduction zone slurry also showing (13)C-acetate utilization by Miscellaneous Crenarchaeotic Group Archaea. The lower potential energy methanogenesis zone slurries were the only conditions where no (13)C-incorporation into Archaea occurred, despite Bacteria being labelled; this was surprising because Archaea have been suggested to be adapted to low-energy conditions. Overall, our results highlight that uncultured prokaryotes play important ecological roles in tidal sediments of the Severn Estuary, providing new metabolic information for novel groups of Archaea and suggesting broader metabolisms for largely uncultivated Bacteria.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28987916','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28987916"><span>Sequential Sedimentation-Biofiltration System for the purification of a small urban river (the Sokolowka, Lodz) supplied by stormwater.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Szklarek, S; Wagner, I; Jurczak, T; Zalewski, M</p> <p>2018-01-01</p> <p>The study analyses the efficiency of a Sequentional Sedimentation-Biofiltration System (SSBS) built on the Sokolowka river in Lodz (Poland). It was constructed to purify a small urban river whose hydrological regime is dominated by stormwater and meltwater. The SSBS was constructed on a limited area as multi-zone constructed wetlands. The SSBS consists of three zones: sedimentation zone with structures added to improve sedimentation, a geochemical barrier made of limestone deposit and biofiltration zone. The purification processes of total suspended solids (TSS), total phosphorus (TP), total nitrogen (TP) and other nutrients: phosphates (PO 4 3- ), ammonium (NH 4 + ) and nitrates (NO 3 - ) of the SSBS were analyzed. Chloride (Cl - ) reduction was investigated. Monitoring conducted in the first two hydrological years after construction indicated that the SSBS removed 61.4% of TSS, 37.3% of TP, 30.4% of PO 4 3- , 46.1% of TN, 2.8% of NH4+, 44.8% of NO 3 - and 64.0% of Cl - . The sedimentation zone played a key role in removing TSS and nutrients. The geochemical barrier and biofiltration zone each significantly improved overall efficiency by 4-10% for TSS, PO 4 3- , TN, NO 3 - and Cl - . Although the system reduced the concentration of chloride, further studies are needed to determine the circulation of Cl - in constructed wetlands (CWs), and to assess its impact on purification processes. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1089107','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1089107"><span>Use of Polyphosphate to Decrease Uranium Leaching in Hanford 300 Area Smear Zone Sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Szecsody, James E.; Zhong, Lirong; Oostrom, Martinus</p> <p>2012-09-30</p> <p>The primary objective of this study is to summarize the laboratory investigations performed to evaluate short- and long-term effects of phosphate treatment on uranium leaching from 300 area smear zone sediments. Column studies were used to compare uranium leaching in phosphate-treated to untreated sediments over a year with multiple stop flow events to evaluate longevity of the uranium leaching rate and mass. A secondary objective was to compare polyphosphate injection, polyphosphate/xanthan injection, and polyphosphate infiltration technologies that deliver phosphate to sediment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17400350','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17400350"><span>Influence of hydropower dams on the composition of the suspended and riverbank sediments in the Danube.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Klaver, Gerard; van Os, Bertil; Negrel, Philippe; Petelet-Giraud, Emmanuelle</p> <p>2007-08-01</p> <p>Large hydropower dams have major impacts on flow regime, sediment transport and the characteristics of water and sediment in downstream rivers. The Gabcikovo and Iron Gate dams divide the studied Danube transect (rkm 1895-795) into three parts. In the Gabcikovo Reservoir (length of 40km) only a part of the incoming suspended sediments were deposited. Contrary to this, in the much larger Iron Gate backwater zone and reservoir (length of 310km) all riverine suspended sediments were deposited within the reservoir. Subsequently, suspended sediments were transported by tributaries into the Iron Gate backwater zone. Here they were modified by fractional sedimentation before they transgressed downstream via the dams. Compared with undammed Danube sections, Iron Gate reservoir sediment and suspended matter showed higher clay contents and different K/Ga and Metal/Ga ratios. These findings emphasize the importance of reservoir-river sediment-fractionation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP31B1277S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP31B1277S"><span>Preliminary Nearshore Sedimentation Rate Analysis of the Tuungane Project Northern Mahale Conservation Area, Lake Tanganyika (Tanzania)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smiley, R. A.; McGlue, M. M.; Yeager, K. M.; Soreghan, M. J.; Lucas, J.; Kimirei, I.; Mbonde, A.; Limbu, P.; Apse, C.</p> <p>2017-12-01</p> <p>The combined effects of climate change, overfishing, and sediment pollution are altering Lake Tanganyika's littoral fisheries in profoundly negative ways. One method for conserving critical fish resources and safeguarding biodiversity in Lake Tanganyika is by establishing small-scale nearshore protected zones, which can be administrated by lakeshore villagers organized into beach management units (BMUs). Each BMU endeavors to manage offshore "no-catch" protected zones, prohibit the use of illegal fishing gear, and promote sustainable agriculture that abates erosion in the lake watershed, in order to mitigate sediment pollution in the lake. We adopted a limnogeological approach to assist in characterizing the littoral zone associated with BMUs in the northern Mahale region of Lake Tanganyika (Tanzania), a critical conservation area for the Nature Conservancy's Tuungane Project (https://www.nature.org/ourinitiatives/regions/africa/wherewework/tuungane-project.xml). We hypothesized that BMUs with heavy onshore agricultural activity would experience relatively high offshore sedimentation rates, due to enhanced sediment-laden runoff in the wet season. Such changes are predicted to alter benthic substrates and degrade habitat available for fish spawning. We mapped bathymetry and sediment types along a 29 km2 area of the littoral zone using high-resolution geophysical tools, and assessed short-term sedimentation rates using sediment cores and radionuclide geochronology (210Pb). Initial results from 210Pb analyses show that sedimentation rates at the mud-line ( 85-100 m water depth) are relatively slow but spatially variable in the northern Mahale area. Offshore of the Kalilani village BMU, linear sedimentation rates are 0.50 mm/yr. By contrast, sedimentation rates offshore from the Igualula village BMU are 0.90-1.30 mm/yr. Higher sedimentation rates near Igualula are consistent with greater sediment inputs from the nearby Lagosa River and its watershed, which has been extensively cultivated for oil palm and cassava. Additional sediment cores from the northern Mahale region are presently being analyzed, and 210Pb data from sediment cores associated with the different BMU areas will shed further light on the impacts of land use change on the littoral fisheries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS51B2056K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS51B2056K"><span>Variations in the depths of sulfate-methane transition zone (SMTZ) in UBGH2-6 drilling site in Ulleung Basin, East sea of Korea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Y.; Chun, J. H.; Bahk, J. J.; Ryu, B. J.; Um, I. K.</p> <p>2016-12-01</p> <p>The second Ulleung Basin Gas hydrate Drilling Expedition (UBGH2) was conducted in the Ulleung Basin, East Sea of Korea in 2010. Gas hydrates were observed in depth interval from 140 mbsf (meter below seafloor) to 160 mbsf in core sediment taken from UBGH2-6 drilling site, located in the north-western part of the basin (2,164 m water depth). To characterize the geochemical process for UBGH2-6 core sediments, pore fluid samples and headspace gas samples were extracted from core sediments and analyzed SO42- and CH4 concentrations. Based on SO42- and CH4 concentrations, sulfate-methane transition zone (SMTZ), where SO42- is depleted to zero and CH4 starts to increase was defined at a depth of approximately 6.50 mbsf in 2010. And in order to identify the variations in the depths of SMTZ at UBGH2-6 drilling site since 2010 (UBGH2), whole-round piston cores were collected from UBGH2-6 drilling site from 2013 to 2015. We analyzed SO42- and CH4 concentrations and identified the SMTZ for the last 3 years. The depths of SMTZ for the cores obtained from 2013, 2014 and 2015 are approximately 3.50 mbsf, 5.00 mbsf, and 5.00 mbsf respectively. The analysis results indicate that the SMTZ in 2013, 2014, and 2015 are shallower than the SMTZ of 2010.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H43J1368F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H43J1368F"><span>Effects of Backpackers and Stock Use on Wilderness Water Quality in Sequoia & Kings Canyon National Parks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forrester, H.; Roop, H. A.; Clow, D. W.</p> <p>2011-12-01</p> <p>Backpackers and pack animals, primarily horses and mules, may impair water quality in high-use zones of federally designated wilderness areas within Sequoia and Kings Canyon National Parks (SEKI). Impacts include erosion from trails, campsites and grazing sites, which increases suspended sediment concentrations and turbidity in downstream water bodies; and fecal matter that may be washed into surface waters during rainstorms or snowmelt periods. The fecal matter also may contain pathogenic bacteria such as Escherichia coli (E. coli) that can pose a health threat to humans. This study aims to establish a working methodology to document and assess effects from backpackers and stock use on physical, chemical and biological water quality parameters. In July 2010, monitoring stations were established within the high-use Crabtree Ranger Station zone. Sites were selected to represent high backpacker use, high pack-animal use, and background conditions. Monitoring stations are instrumented to continuously record water level, temperature, and turbidity and to automatically collect storm samples. Water samples are analyzed for dissolved and particulate nutrients, suspended sediment, and E. coli concentrations. Preliminary data show E. coli counts averaged 4.5 Colony Forming Units/100ml (CFUs) at the high backpacker use, 29.0 CFUs at the high-pack animal use, and 3.4 CFUs at the background sites. Results from the nutrients and suspended sediment analyses are pending. Data collection continued throughout the 2011 field season, with the objective of better quantifying differences in water quality among the study sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T43G..05R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T43G..05R"><span>Frictional behavior of carbonate-rich sediments in subduction zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rabinowitz, H. S.; Savage, H. M.; Carpenter, B. M.; Collettini, C.</p> <p>2015-12-01</p> <p>Carbonate-rich layers make up a significant component of subducting sediments around the world and may impact the frictional behavior of subduction zones. In order to investigate the effect of carbonate subduction, we conducted biaxial deformation experiments within a pressure vessel using the Brittle Rock deformAtion Versatile Apparatus (BRAVA) at INGV. We obtained input sediments for two subduction zones, the Hikurangi trench, New Zealand (ODP Site 1124) and the Peru trench (DSDP Site 321), which have carbonate/clay contents of ~40/60 wt% and ~80/20 wt%, respectively. Samples were saturated with distilled water mixed with 35g/l sea salt and deformed at room temperature. Experiments were conducted at σN = 1-50 MPa with sliding velocities of 1-300 μm/s and hold times of 1-1000 s. Frictional strength of Hikurangi gouge is 0.35-0.55 and Peru gouge is 0.55-0.65. Velocity-stepping tests show that the Hikurangi gouge is consistently velocity strengthening (friction rate parameter (a-b) > 0). The Peru gouge is mostly velocity strengthening but exhibits a minimum in a-b at the 3-10 μm/s velocity step (with velocity weakening behavior at 25 MPa, indicating the potential for earthquake nucleation). Slide-hold-slide tests show that the healing rate (β) of the Hikurangi gouge is 1x10-4-1x10-3 /decade which is comparable to that of clays (β~0.002 /decade) while the healing rate of Peru gouge (β~6x10-3-7x10-3 /decade) is closer to that of carbonate gouge (β~0.01 /decade). The mechanical results are complemented by microstructural analysis. In lower stress experiments, there is no obvious shear localization. At 25 and 50 MPa, pervasive boundary-parallel shears become dominant, particularly in the Peru samples. Degree of microstructural localization appears to correspond with the trends observed in velocity-dependence. Our preliminary results indicate that carbonate/clay compositions could have a significant impact on the frictional behavior of subducting sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/1015823','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/1015823"><span>Holocene paleoecology of an estuary on Santa Rosa Island, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cole, K.L.; Liu, Gaisheng</p> <p>1994-01-01</p> <p>The middle to late Holocene history and early Anglo-European settlement impacts on Santa Rosa Island, California, were studied through the analysis of sediments in a small estuarine marsh. A 5.4-m-long sediment core produced a stratigraphic and pollen record spanning the last 5200 yr. Three major zones are distinguishable in the core. The lowermost zone (5200 to 3250 yr B.P.) represents a time of arid climate with predominantly marine sediment input and high Chenopodiaceae and Ambrosia pollen values. The intermediate zone (3250 yr B.P. to 1800 A.D.) is characterized by greater fresh water input and high values for Asteraceae and Cyperaceae pollen and charcoal particles. The uppermost zone (1800 A.D. to present) documents the unprecedented erosion, sedimentation, and vegetation change that resulted from the introduction of large exotic herbivores and exotic plants to the island during Anglo-European settlement. The identification of pollen grains of Torrey Pine (Pinus torreyana) documents the persistence of this endemic species on the island throughout the middle to late Holocene.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMOS53A0980C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMOS53A0980C"><span>The Study of Geotechnical Properties of Sediment in C-C Zone in the Northeastern Pacific for Deep-sea Mining</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chi, S.; Kim, K.; Lee, H.; Ju, S.; Yoo, C.</p> <p>2007-12-01</p> <p>Recently the market price of valuable metals are rapidly increased due to the high demand and limited resources. Therefore, manganese (Mn)-nodules (Polymetallic nodules) in the Clarion-Clipperton fracture zone have stimulated economic interest. Nickel, copper, cobalt and manganese are the economically most interesting metals of Mn-nodules. In order to mine Mn-nodules from sea floor, understanding the geotechnical properties of surface sediment are very important for two major reasons. First, geotechnical data are required to design and build the stable and environmentally acceptable mining vehicles. Second, deep-sea mining activity could significantly effect on the surface layer of deep sea floor. For example, surface sediments will be redistributed through the resuspension and redeposition. Reliable sedimentological and soil mechanical baseline data of the undisturbed benthic environment are essential to assess and evaluate these environmental impacts by mining activity using physical and numerical modeling. The 225 times deployments of the multiple corer guaranteed undisturbed sediment samples in which geotechnical parameters were measured including sediment grain size, density, water content, shear strength. The sea floor sediments in this study area are generally characterized into three different types as follow. The seabed of the middle part (8-12° N) of this study area is mainly covered with biogenic siliceous sediment compared with pelagic red clays in the northern part (16-17° N). However, the southern part (5-6° N) is dominant with calcareous sediments because its water depth is shallower than the carbonate compensation depth (CCD). This result suggests that middle area, covered with siliceous sediment, is more feasible for commercial mining than northern area, covered with pelagic red clay, with the consideration of the nodule miner maneuverability and the environmental impact. Especially, middle part with the highest nodule abundance and valuable metal contents is mainly (more than 90% of area) covered with consolidated sediments, which are expected to be appropriate for effective miner movement. Furthermore, middle part with coarse siliceous sediments could be less environmentally disturbed by the mining activity. It makes middle part more plausible site than other sites in this study area for the commercial mining.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMPP51F1370T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMPP51F1370T"><span>Metal Deposition Along the Peru Margin Since the Last Glacial Maximum: Evidence For Regime Change at \\sim 6ka</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tierney, J.; Cleaveland, L.; Herbert, T.; Altabet, M.</p> <p>2004-12-01</p> <p>The Peru Margin upwelling zone plays a key role in regulating marine biogeochemical cycles, particularly the fate of nitrate. High biological productivity and low oxygen waters fed into the oxygen minimum zone result in intense denitrification in the modern system, the consequences of which are global in nature. It has been very difficult, however, to study the paleoclimatic history of this region because of the poor preservation of carbonate in Peru Margin sediments. Here we present records of trace metal accumulation from two cores located in the heart of the suboxic zone off the central Peru coast. Chronology comes from multiple AMS 14C dates on the alkenone fraction of the sediment, as well as correlation using major features of the \\delta 15N record in each core. ODP Site 1228 provides a high resolution, continuous sediment record from the Recent to about 14ka, while gravity core W7706-41k extends the record to the Last Glacial Maximum. Both cores were sampled at a 100 yr resolution, then analyzed for % N, \\delta 15N, alkenones, and trace metal concentration. Analysis of redox-sensitive metals (Mo and V) alongside metals associated with changes in productivity (Ni and Zn) provides perspective on the evolution of the upwelling system and distinguishes the two major factors controlling the intensity of the oxygen minimum zone. The trace metal record exhibits a notable increase in the intensity and variability of low oxygen waters and productivity beginning around 6ka and extending to the present. Within this most recent 6ka interval, the data suggest fluctuations in oxygenation and productivity occur on 1000 yr timescales. Our core records, therefore, suggest that the Peru Margin upwelling system strengthened significantly during the mid to late Holocene.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22138990','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22138990"><span>Distribution of microbial biomass and potential for anaerobic respiration in Hanford Site 300 Area subsurface sediment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lin, Xueju; Kennedy, David; Peacock, Aaron; McKinley, James; Resch, Charles T; Fredrickson, James; Konopka, Allan</p> <p>2012-02-01</p> <p>Subsurface sediments were recovered from a 52-m-deep borehole cored in the 300 Area of the Hanford Site in southeastern Washington State to assess the potential for biogeochemical transformation of radionuclide contaminants. Microbial analyses were made on 17 sediment samples traversing multiple geological units: the oxic coarse-grained Hanford formation (9 to 17.4 m), the oxic fine-grained upper Ringold formation (17.7 to 18.1 m), and the reduced Ringold formation (18.3 to 52 m). Microbial biomass (measured as phospholipid fatty acids) ranged from 7 to 974 pmols per g in discrete samples, with the highest numbers found in the Hanford formation. On average, strata below 17.4 m had 13-fold less biomass than those from shallower strata. The nosZ gene that encodes nitrous oxide reductase (measured by quantitative real-time PCR) had an abundance of 5 to 17 relative to that of total 16S rRNA genes below 18.3 m and <5 above 18.1 m. Most nosZ sequences were affiliated with Ochrobactrum anthropi (97 sequence similarity) or had a nearest neighbor of Achromobacter xylosoxidans (90 similarity). Passive multilevel sampling of groundwater geochemistry demonstrated a redox gradient in the 1.5-m region between the Hanford-Ringold formation contact and the Ringold oxic-anoxic interface. Within this zone, copies of the dsrA gene and Geobacteraceae had the highest relative abundance. The majority of dsrA genes detected near the interface were related to Desulfotomaculum spp. These analyses indicate that the region just below the contact between the Hanford and Ringold formations is a zone of active biogeochemical redox cycling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3264105','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3264105"><span>Distribution of Microbial Biomass and Potential for Anaerobic Respiration in Hanford Site 300 Area Subsurface Sediment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lin, Xueju; Kennedy, David; Peacock, Aaron; McKinley, James; Resch, Charles T.; Fredrickson, James</p> <p>2012-01-01</p> <p>Subsurface sediments were recovered from a 52-m-deep borehole cored in the 300 Area of the Hanford Site in southeastern Washington State to assess the potential for biogeochemical transformation of radionuclide contaminants. Microbial analyses were made on 17 sediment samples traversing multiple geological units: the oxic coarse-grained Hanford formation (9 to 17.4 m), the oxic fine-grained upper Ringold formation (17.7 to 18.1 m), and the reduced Ringold formation (18.3 to 52 m). Microbial biomass (measured as phospholipid fatty acids) ranged from 7 to 974 pmols per g in discrete samples, with the highest numbers found in the Hanford formation. On average, strata below 17.4 m had 13-fold less biomass than those from shallower strata. The nosZ gene that encodes nitrous oxide reductase (measured by quantitative real-time PCR) had an abundance of 5 to 17 relative to that of total 16S rRNA genes below 18.3 m and <5 above 18.1 m. Most nosZ sequences were affiliated with Ochrobactrum anthropi (97 sequence similarity) or had a nearest neighbor of Achromobacter xylosoxidans (90 similarity). Passive multilevel sampling of groundwater geochemistry demonstrated a redox gradient in the 1.5-m region between the Hanford-Ringold formation contact and the Ringold oxic-anoxic interface. Within this zone, copies of the dsrA gene and Geobacteraceae had the highest relative abundance. The majority of dsrA genes detected near the interface were related to Desulfotomaculum spp. These analyses indicate that the region just below the contact between the Hanford and Ringold formations is a zone of active biogeochemical redox cycling. PMID:22138990</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24988362','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24988362"><span>Occurrence of halogenated flame retardants in sediment off an urbanized coastal zone: association with urbanization and industrialization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Hui-Hui; Hu, Yuan-Jie; Luo, Pei; Bao, Lian-Jun; Qiu, Jian-Wen; Leung, Kenneth M Y; Zeng, Eddy Y</p> <p>2014-01-01</p> <p>To examine the impacts of urbanization and industrialization on the coastal environment, sediment samples were collected from an urbanized coastal zone (i.e., Daya Bay and Hong Kong waters of South China) and analyzed for 20 polybrominated diphenyl ethers (PBDEs) and 10 alternative halogenated flame retardants (AHFRs). The sum concentration of PBDEs was in the range of 1.7-55 (mean: 17) ng g(-1), suggesting a moderate pollution level compared to the global range. The higher fractions of AHFRs (i.e., TBB+TBPH, BTBPE and DBDPE) than those of legacy PBDEs (i.e., penta-BDE, octa-BDE and deca-BDE) corresponded with the phasing out of PBDEs and increasing demand for AHFRs. Heavy contamination occurred at the estuary of Dan'ao River flowing through the Daya Bay Economic Zone, home to a variety of petrochemicals and electronics manufacturing facilities. The concentrations of HFRs in surface sediments of Hong Kong were the highest in Victoria Harbor, which receives around 1.4 million tons of primarily treated sewage daily, and a good relationship (r(2) = 0.80; p < 0.0001) between the HFR concentration and population density in each council district was observed, highlighting the effect of urbanization. Moreover, the AHFR concentrations were significantly correlated (r(2) > 0.73; p < 0.05) with the production volume of electronic devices, production value of electronic industries and population size, demonstrating the importance of industrializing and urbanizing processes in dictating the historical input patterns of AHFRs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.V23D2152S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.V23D2152S"><span>Nanoscale Zirconium-(oxyhydr)oxide in Contaminated Sediments From Hanford, WA - A New Host for Uranium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stubbs, J. E.; Elbert, D. C.; Veblen, L. A.; Zachara, J. M.; Davis, J. A.; Veblen, D. R.</p> <p>2008-12-01</p> <p>Zirconium-, uranium-, and copper-bearing wastes have leached from former disposal ponds into vadose zone sediments in the 300 Area at the Department of Energy's Hanford Site. Zirconium is enriched in the shallow portion of the vadose zone, and we have discovered an amorphous Zr-(oxyhydr)oxide that contains 16% of the total uranium budget (84.24 ppm) in one of the shallow samples. We have characterized the oxide using electron microprobe analysis (EMPA), a focused ion beam (FIB) instrument, and transmission electron microscopy (TEM). It occurs in fine-grained coatings found on lithic and mineral fragments in these sediments. The oxide is intimately intergrown with the phyllosilicates and other minerals of the coatings, and in places can be seen coating individual, nano-sized phyllosilicate mineral grains. Electron energy-loss spectroscopy (EELS) shows that the Zr-(oxyhydr)oxide has a P:Zr atomic ratio around 0.2, suggesting it is either intergrown with minor amounts of a Zr-phosphate or has adsorbed a significant amount of phosphate. This material has adsorbed or incorporated a substantial amount of uranium. Thus, understanding its nature is critical to predicting the long-term fate of U in the Hanford vadose zone. While the low-temperature uptake of U by Zr-(oxhydr)oxides and phosphates has been studied for several decades in laboratory settings, to our knowledge ours is the first report of such uptake in the field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2014/1221/ofr2014-1221-title_page.html','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2014/1221/ofr2014-1221-title_page.html"><span>Geological sampling data and benthic biota classification: Buzzards Bay and Vineyard Sound, Massachusetts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ackerman, Seth D.; Pappal, Adrienne L.; Huntley, Emily C.; Blackwood, Dann S.; Schwab, William C.</p> <p>2015-01-01</p> <p>Sea-floor sample collection is an important component of a statewide cooperative mapping effort between the U.S. Geological Survey (USGS) and the Massachusetts Office of Coastal Zone Management (CZM). Sediment grab samples, bottom photographs, and video transects were collected within Vineyard Sound and Buzzards Bay in 2010 aboard the research vesselConnecticut. This report contains sample data and related information, including analyses of surficial-sediment grab samples, locations and images of sea-floor photography, survey lines along which sea-floor video was collected, and a classification of benthic biota observed in sea-floor photographs and based on the Coastal and Marine Ecological Classification Standard (CMECS). These sample data and analyses information are used to verify interpretations of geophysical data and are an essential part of geologic maps of the sea floor. These data also provide a valuable inventory of benthic habitat and resources. Geographic information system (GIS) data, maps, and interpretations, produced through the USGS and CZM mapping cooperative, are intended to aid efforts to manage coastal and marine resources and to provide baseline information for research focused on coastal evolution and environmental change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/boston-harbor/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/boston-harbor/"><span>The legacy of contaminated sediments in Boston Harbor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Manheim, Frank T.</p> <p></p> <p>Scientists at the U.S. Geological Survey (USGS) have assembled a significant body of data that is now in a usable form. The USGS adopted an interdisciplinary approach to begin the pioneering effort at data rescue. This work involved collaboration with the Environmental Protection Agency (EPA), the U.S. Army Corps of Engineers (USACE), the Massachusetts Water Resources Authority (MWRA), Massachusetts Coastal Zone Management, and the National Oceanic and Atmospheric Administration (NOAA). More than 100,000 sediment chemistry analyses from over 1,500 samples were gleaned from 500 references, compiled, and scientifically edited by the USGS and other workers for use in studies of the distribution and fate of contaminants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/wri004150/pdf/00-4150.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/wri004150/pdf/00-4150.pdf"><span>Use of borehole geophysical logs for improved site characterization at Naval Weapons Industrial Reserve Plant, Dallas, Texas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Anaya, Roberto; Braun, Christopher L.; Kuniansky, Eve L.</p> <p>2000-01-01</p> <p>A shallow alluvial aquifer at the Naval Weapons Industrial Reserve Plant near Dallas, Texas, has been contaminated by organic solvents used in the fabrication and assembly of aircraft and aircraft parts. Natural gamma-ray and electromagnetic-induction log data collected during 1997 from 162 wells were integrated with existing lithologic and cone-penetrometer test log data to improve characterization of the subsurface alluvium at the site. The alluvium, consisting of mostly fine-grained, low-permeability sediments, was classified into low, intermediate, and high clay-content sediments on the basis of the gamma-ray logs. Low clay-content sediments were interpreted as being relatively permeable, whereas high clay-content sediments were interpreted as being relatively impermeable. Gamma-ray logs, cone-penetrometer test logs, and electromagnetic-induction logs were used to develop a series of intersecting sections to delineate the spatial distribution of low, intermediate, and high clay-content sediments and to delineate zones of potentially contaminated sediments. The sections indicate three major sedimentary units in the shallow alluvial aquifer at NWIRP. The lower unit consists of relatively permeable, low clay-content sediments and is absent over the southeastern and northwestern part of the site. Permeable zones in the complex, discontinuous middle unit are present mostly in the western part of the site. In the eastern and southeastern part of the site, the upper unit has been eroded away and replaced by fill material. Zones of potentially contaminated sediments are generally within the uppermost clay layer or fill material. In addition, the zones tend to be local occurrences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAfES.131..179Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAfES.131..179Y"><span>Effects of radionuclides on the recent foraminifera from the clastic sediments of the Çanakkale Strait-Turkey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yümün, Zeki Ünal; Kam, Erol</p> <p>2017-07-01</p> <p>The radionuclides that cause radioactivity accumulate in the sediments as they descend to the seabed, similar to heavy metals. As radionuclides are present on the surface of the sediment or within the sediment, marine benthic foraminifera can be affected by the radioactive pollution. In this study, the habitat of benthic foraminifera was evaluated for radioactive pollution in the Çanakkale Strait, which constitutes the passage of the Marmara Sea and the Aegean Sea. In 2015, seven core samples and one drilling sample were taken from the shallow marine environment, which is the habitat of benthic foraminifera, in the Çanakkale Strait. Locations of the core samples were specifically selected to be pollution indicators in port areas. Gamma spectrometric analysis was used to determine the radioactivity properties of sediments. The radionuclide concentration activity values in the sediment samples obtained from the locations were Cs-137: <2-20 (Bq/kg), Th-232: 17.5-58.3 (Bq/kg), Ra-226: 16.9-48.6 (Bq/kg) and K-40: 443.7-725.6 (Bq/kg). These values were compared with the Turkish Atomic Energy Agency (TAEK) and the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) data and environmental analysis was carried out. The Ra-226 series, the Th-232 series and the K-40 radionuclides accumulate naturally and increase continuously due to anthropogenic pollution. Although the Ra-226 values obtained in the study areas remained within normal limits according to UNSCEAR values, the K-40 and Th-232 series values were observed to be high in almost all locations. The values of Cs-137 were found to be maximum 20 in Çanakkale Dere Port and they were parallel to the values in the other places. In the study, 13 genera and 20 species were identified from core and drilling samples. The number of foraminifera species and individuals obtained at locations with high pollution was very low compared to those in non-polluted zones.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeCoA.188..352M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeCoA.188..352M"><span>Evolution of chemical and isotopic composition of inorganic carbon in a complex semi-arid zone environment: Consequences for groundwater dating using radiocarbon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meredith, K. T.; Han, L. F.; Hollins, S. E.; Cendón, D. I.; Jacobsen, G. E.; Baker, A.</p> <p>2016-09-01</p> <p>Estimating groundwater age is important for any groundwater resource assessment and radiocarbon (14C) dating of dissolved inorganic carbon (DIC) can provide this information. In semi-arid zone (i.e. water-limited environments), there are a multitude of reasons why 14C dating of groundwater and traditional correction models may not be directly transferable. Some include; (1) the complex hydrological responses of these systems that lead to a mixture of different ages in the aquifer(s), (2) the varied sources, origins and ages of organic matter in the unsaturated zone and (3) high evaporation rates. These all influence the evolution of DIC and are not easily accounted for in traditional correction models. In this study, we determined carbon isotope data for; DIC in water, carbonate minerals in the sediments, sediment organic matter, soil gas CO2 from the unsaturated zone, and vegetation samples. The samples were collected after an extended drought, and again after a flood event, to capture the evolution of DIC after varying hydrological regimes. A graphical method (Han et al., 2012) was applied for interpretation of the carbon geochemical and isotopic data. Simple forward mass-balance modelling was carried out on key geochemical processes involving carbon and agreed well with observed data. High values of DIC and δ13CDIC, and low 14CDIC could not be explained by a simple carbonate mineral-CO2 gas dissolution process. Instead it is suggested that during extended drought, water-sediment interaction leads to ion exchange processes within the top ∼10-20 m of the aquifer which promotes greater calcite dissolution in saline groundwater. This process was found to contribute more than half of the DIC, which is from a mostly 'dead' carbon source. DIC is also influenced by carbon exchange between DIC in water and carbonate minerals found in the top 2 m of the unsaturated zone. This process occurs because of repeated dissolution/precipitation of carbonate that is dependent on the water salinity driven by drought and periodic flooding conditions. This study shows that although 14C cannot be directly applied as a dating tool in some circumstances, carbon geochemical/isotopic data can be useful in hydrological investigations related to identifying groundwater sources, mixing relations, recharge processes, geochemical evolution, and interaction with surface water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSAES..79..297P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSAES..79..297P"><span>Foraminiferal assemblages along the intertidal zone of Itapanhaú River, Bertioga (Brazil)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Passos, Camila Cunha; Kukimodo, Isabela; Semensatto, Décio</p> <p>2017-11-01</p> <p>Foraminifera found in intertidal zones have been successfully used in studies examining relative sea level monitoring around the world. For this purpose, it is necessary to establish the typical foraminiferal assemblages of different salinity regimes and sediment sub aerial exposition. In the present work we collected 27 sediment samples from 5 transversal transects in the mangroves of the Itapanhaú River (Bertioga, SP, Brazil). Transects were distributed along salinity and altitudinal gradients in order to study the community structure of recent foraminifera in terms of diversity and species composition. We identified 35 species and described 5 groups of species in different environmental settings, from downstream to upstream and from margin to landward in the mangrove forest, associated with salinity regime and sediment proportional exposure time. These variables seem to primarily control species distribution and community structure in the intertidal zone, although dissolution of calcareous taxa cannot be ruled out. The first group is dominated by Ammonia spp. and Elphidium spp., colonizes the mouth of the river on an unvegetated tidal flat in the lowest portion of the intertidal zone, under a polyhaline regime. This group exhibits the smallest sub aerial exposition (19,3%) as well as comparatively high species diversity. The second group is formed by a sample dominated by Trochammina inflata and Arenoparrella mexicana, obtained in a polyhaline area on the margin of the mangrove. The third group is dominated by Miliammina fusca and Ammotium spp., and colonizes mesohaline mangrove forests, with proportional exposure time of between 50 and 75%, and high species diversity. The fourth group comprises communities dominated by M. fusca and T. inflata, and colonizes the intermediate level in the interior of the mangrove forest, exhibiting high species diversity. The fifth group comprises communities broadly dominated by M. fusca, colonizing oligohaline margins and the highest level of polyhaline mangrove forests. This group exhibits the greatest sub aerial exposition and lowest species diversity of all five groups. Hence, these foraminifera groups may serve as a reference with which to interpret drilling core layers and reconstruct relative sea levels in other similar estuarine systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.T52C0276G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.T52C0276G"><span>Development of Overpressures at Nankai Accretionary Prism, Ocean Drilling Program Sites 1173 and 1174</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gamage, K.; Screaton, E.</p> <p>2003-12-01</p> <p>In this study, we used a one-dimensional model of sedimentation, initial prism loading, and fluid flow to examine the development of overpressures at the toe of the Nankai accretionary complex. A permeability-porosity relationship was established for hemipelagic sediments from laboratory measured permeabilities as an input to the model. Vertical permeabilities were measured for 10 core samples from the Ocean Drilling Program (ODP) Leg 190, Sites 1173 and 1174, from the upper and lower Shikoku Basin facies. Both sites were drilled along the Muroto Transect through the dècollement zone or its equivalent. Site 1173 is located 11 km seaward of the deformation front and it represents the undeformed incoming sediments, where as Site 1174 represents sediments within the proto-thrust zone. Although turbidite-rich sediments dominate the Nankai accretionary prism, the dècollement and underthrust sediments are primarily composed of hemipelagic muds. Using the permeability-porosity relationship, our modeling results indicate excess pore pressures that are greater than 30% of lithostatic pressure at the toe of the prism at a convergence rate of 4cm/yr. These values are slightly lower than previously inferred excess pore pressures estimated from porosity data. Additional runs were conducted to simulate a 10-m thick low permeability barrier at the dècollement where vertical fluid flow is restricted. The low permeability barrier required a permeability less than 1 x 10-19 m2 to generate excess pore pressures greater than 50% of lithostatic pressure. Modeling was further extended to test the significance of variable prism loading rates due to uncertainties in the convergence rate and affects of lateral stress above the dècollement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040089458&hterms=stein&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D60%26Ntt%3Dstein','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040089458&hterms=stein&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D60%26Ntt%3Dstein"><span>Organelle sedimentation in gravitropic roots of Limnobium is restricted to the elongation zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sack, F. D.; Kim, D.; Stein, B.</p> <p>1994-01-01</p> <p>Roots of the aquatic angiosperm Limnobium spongia (Bosc) Steud. were evaluated by light and electron microscopy to determine the distribution of organelle sedimentation towards gravity. Roots of Limnobium are strongly gravitropic. The rootcap consists of only two layers of cells. Although small amyloplasts are present in the central cap cells, no sedimentation of any organelle, including amyloplasts, was found. In contrast, both amyloplasts and nuclei sediment consistently and completely in cells of the elongation zone. Sedimentation occurs in one cell layer of the cortex just outside the endodermis. Sedimentation of both amyloplasts and nuclei begins in cells that are in their initial stages of elongation and persists at least to the level of the root where root hairs emerge. This is the first modern report of the presence of sedimentation away from, but not in, the rootcap. It shows that sedimentation in the rootcap is not necessary for gravitropic sensing in at least one angiosperm. If amyloplast sedimentation is responsible for gravitropic sensing, then the site of sensing in Limnobium roots is the elongation zone and not the rootcap. These data do not necessarily conflict with the hypothesis that sensing occurs in the cap in other roots, since Limnobium roots are exceptional in rootcap origin and structure, as well as in the distribution of organelle sedimentation. Similarly, if nuclear sedimentation is involved in gravitropic sensing, then nuclear mass would function in addition to, not instead of, that of amyloplasts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFMOS12C0439S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFMOS12C0439S"><span>Imaging the internal structure of fluid upflow zones with detailed digital Parasound echosounder surveys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spiess, V.; Zuehlsdorff, L.; von Lom-Keil, H.; Schwenk, T.</p> <p>2001-12-01</p> <p>Sites of venting fluids both with continuous and episodic supply often reveal complex surface and internal structures, which are difficult to image and cause problems to transfer results from local sampling towards a structural reconstruction and a quantification of (average) flux rates. Detailed acoustic and seismic surveys would be required to retrieve this information, but also an appropriate environment, where fluid migration can be properly imaged from contrasts to unaffected areas. Hemipelagic sediments are most suitable, since typically reflectors are coherent and of low lateral amplitude variation and structures are continuous over distances much longer than the scale of fluid migration features. During RV Meteor Cruise M473 and RV Sonne Cruise SO 149 detailed studies were carried out in the vicinity of potential fluid upflow zones in the Lower Congo Basin at 5oS in 3000 m water depth and at the Northern Cascadia Margin in 1000 m water depth. Unexpected sampling of massive gas hydrates from the sea floor as well as of carbonate concretions, shell fragments and different liveforms indicated active fluid venting in a typically hemipelagic realm. The acoustic signature of such zones includes columnar blanking, pockmark depressions at the sea floor, association with small offset faults (< 1m). A dedicated survey with closely spaced grid lines was carried out with the Parasound sediment echosounder (4 kHz), which data were digitally acquired with the ParaDigMA System for further processing and display, to image the spatial structure of the upflow zones. Due to the high data density amplitudes and other acoustic properties could be investigated in a 3D volume and time slices as well as reflector surfaces were analyzed. Pronounced lateral variations of reflection amplitudes within a complex pattern indicate potential pathways for fluid/gas migration and occurrences of near-surface gas hydrate deposits, which may be used to trace detailed surface evidence from side scan sonar imaging down to depth and support dedicated sampling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1210035L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1210035L"><span>Simultaneous measurement at multiple depths of in situ rates of denitrification in the bed of a groundwater-fed river</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lansdown, Katrina; Trimmer, Mark; Heppell, Kate</p> <p>2010-05-01</p> <p>Typically characterised by steep chemical gradients and variable redox conditions, the hyporheic zone is considered a 'hotpot' or site of enhanced biogeochemical activity in the aquatic environment. As such the importance of the hyporheic zone for the attenuation of nutrients such as nitrate in a fluvial network has long been recognised. Controls on nitrogen transformations, however, especially at depths greater than 10cm below the sediment-water interface, remain comparatively less understood. Most work aimed at quantifying denitrification in the hyporheic zone has involved laboratory incubation of recovered sediments which is likely to affect the estimate of the true in situ rate. Results of such studies are usually cited as 'potential' rates of denitrification and have undoubtedly improved the understanding of nitrogen cycling in the aquatic environment. There is, however, a need for in situ measurement to improve our knowledge of nitrogen cycling in the river bed. Here, rates of denitrification in the hyporheic zone have been measured at multiple depths, simultaneously using 'push-pull' methodology (e.g. Snodgrass and Kitanidis 1998). The 'push-pull' technique involves injection of a solution containing reactant(s) (e.g. nitrate) and a conservative tracer (e.g. chloride) into the sediment and extraction of pore water samples over time. Recovered samples are screened for the removal of reactant(s) and/or the accumulation of products(s). Temporal changes in the conservative tracer are used to correct the concentration of the reactant(s) and product(s) for dispersion and advection. The disadvantage of the 'traditional' 'push-pull' methodology is that rates of nitrate removal are measured rather than rates of denitrification. In this research, comparison of measured and 'corrected' nitrate concentrations allowed the rate of nitrate removal (or production) to be quantified. In order to determine in situ rates of denitrification we used 15N-enriched nitrate as the reactant in the 'push-pull' experiments and measured the accumulation of 29N2 and 30N2 over time. Rates of denitrification were then calculated using the isotope pairing technique (as per Nielsen 1992; Sanders and Trimmer 2006). Measurements have been made at up to 40cm depth in the river bed using a miniprobe system developed from the design of Sanders and Trimmer (2006) in order to validate the experimental approach. Previous work conducted at the study site (R. Leith, Cumbria, UK) suggested than ambient conditions would not be ideal for in situ measurement of denitrification rates using 'push-pull' methodology. Slow rates of denitrification were measured during laboratory incubations of the sandy sediment (M. Trimmer, unpublished data), and the velocity of flow in the hyporheic zone would limit the duration of the in situ measurement (Käser et al. 2009). Despite difficulties posed by the site, we have measured in situ rates of denitrification at multiple depths in the hyporheic zone simultaneously. We also report measurement of in situ rates of denitrification below the zone of surface water - ground water mixing. In future we will use the experimental technique described in this paper to quantify (i) variation in N transformation rates with depth; and (ii) spatial variation in rates of nitrate consumption/production within the river bed. Käser, DH, Binley, A, Heathwaite, AL and Krause, S (2009) Spatio-temporal variations of hyporheic flow in a riffle-pool sequence. Hydrological Processes 23: 2138 - 2149. Nielsen, LP (1992) Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microbiology Ecology 86: 357 - 362. Sanders, IA and Trimmer, M (2006) In situ application of the 15NO3- isotope pairing technique to measure denitrification in sediments at the surface water-groundwater interface. Limnology and oceanography: Methods 4: 142 - 152. Snodgrass, MF and Kitanidis, PK (1998) A method to infer in situ reaction rates from push-pull experiments. Ground Water 36(4): 645 - 650.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22306311','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22306311"><span>Contamination of port zone sediments by metals from Large Marine Ecosystems of Brazil.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Buruaem, Lucas M; Hortellani, Marcos A; Sarkis, Jorge E; Costa-Lotufo, Leticia V; Abessa, Denis M S</p> <p>2012-03-01</p> <p>Sediment contamination by metals poses risks to coastal ecosystems and is considered to be problematic to dredging operations. In Brazil, there are differences in sedimentology along the Large Marine Ecosystems in relation to the metal distributions. We aimed to assess the extent of Al, Fe, Hg, Cd, Cr, Cu, Ni, Pb and Zn contamination in sediments from port zones in northeast (Mucuripe and Pecém) and southeast (Santos) Brazil through geochemical analyses and sediment quality ratings. The metal concentrations found in these port zones were higher than those observed in the continental shelf or the background values in both regions. In the northeast, metals were associated with carbonate, while in Santos, they were associated with mud. Geochemical analyses showed enrichments in Hg, Cd, Cu, Ni and Zn, and a simple application of international sediment quality guidelines failed to predict their impacts, whereas the use of site-specific values that were derived by geochemical and ecotoxicological approaches seemed to be more appropriate in the management of the dredged sediments. Copyright © 2012 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70023920','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70023920"><span>Groundwater hydrochemistry in the active layer of the proglacial zone, Finsterwalderbreen, Svalbard</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cooper, R.J.; Wadham, J.L.; Tranter, M.; Hodgkins, R.; Peters, N.E.</p> <p>2002-01-01</p> <p>Glacial bulk meltwaters and active-layer groundwaters were sampled from the proglacial zone of Finsterwalderbreen during a single melt season in 1999, in order to determine the geochemical processes that maintain high chemical weathering rates in the proglacial zone of this glacier. Results demonstrate that the principle means of solute acquisition is the weathering of highly reactive moraine and fluvial active-layer sediments by supra-permafrost groundwaters. Active-layer groundwater derives from the thaw of the proglacial snowpack, buried ice and glacial bulk meltwaters. Groundwater evolves by sulphide oxidation and carbonate dissolution. Evaporation- and freeze-concentration of groundwater in summer and winter, respectively produce Mg-Ca-sulphate salts on the proglacial surface. Re-dissolution of these salts in early summer produces groundwaters that are supersaturated with respect to calcite. There is a pronounced spatial pattern to the geochemical evolution of groundwater. Close to the main proglacial channel, active layer sediments are flushed diurnally by bulk meltwaters. Here, Mg-Ca-sulphate deposits become exhausted in the early season and geochemical evolution proceeds by a combination of sulphide oxidation and carbonate dissolution. At greater distances from the channel, the dissolution of Mg-Ca-sulphate salts is a major influence and dilution by the bulk meltwaters is relatively minor. The influence of sulphate salt dissolution decreases during the sampling season, as these salts are exhausted and waters become increasingly routed by subsurface flowpaths. ?? 2002 Elsevier Science B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018DSRII.148..223S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018DSRII.148..223S"><span>Meiofauna abundance and community patterns along a transatlantic transect in the Vema Fracture Zone and in the hadal zone of the Puerto Rico trench</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmidt, Christina; Escobar Wolf, Kaibil; Lins, Lidia; Martínez Arbizu, Pedro; Brandt, Angelika</p> <p>2018-02-01</p> <p>Despite the increasing sampling effort that occurred in the deep-sea environment during the last decades, knowledge about meiofauna ecology in trenches and Fracture Zones is still scarce. Based on the lack of this information, a longitudinal transect across the Vema Fracture Zone in the North Atlantic was sampled to test whether meiofauna abundances differ between Northeast and Northwest Atlantic basins, separated by the Mid-Atlantic Ridge. Also, for examination of meiofauna depth pattern, the Puerto Rico trench floor, its upper trench slope and the Western North Atlantic abyssal were investigated. In this study, meiofauna communities were dominated by Nematoda (93%) and Copepoda (4%). The highest total abundance of meiofauna was found in the Puerto Rico trench and the lowest in the Western basin. We found significant differences between the Eastern and Western Atlantic basins, which were potentially caused by differences in current regimes. Stronger currents observed in the Western basin possibly led to the coarser sediment grain size observed in this region, and consequently to the lower abundances of the major groups found there. Besides grain size, the total abundance of meiofauna was significantly correlated with total nitrogen, total organic carbon, and water depth. Moreover, our study reveals a trend of increasing abundance of total meiofauna with increasing water depth in the Puerto Rico trench. Also, significant differences between the Western abyssal and the Puerto Rico trench were discovered. Generally, the meiofauna abundance in the investigated area decreased from East to West but increased with increasing water depth in the Puerto Rico trench. Due to funnelling of organic sediments increased food availability towards deeper regions in trenches could occur and promote higher abundance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS23A1179W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS23A1179W"><span>Testing the Role of Microbial Ecology, Redox-Mediated Deep Water Production and Hypersalinity on TEX86: Lipids and 16s Sequences from Archaea and Bacteria in the Water Column and Sediments of Orca Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Warren, C.; Romero, I.; Ellis, G.; Goddard, E.; Krishnan, S.; Nigro, L. M.; Super, J. R.; Zhang, Y.; Zhuang, G.; Hollander, D. J.; Pagani, M.</p> <p>2014-12-01</p> <p>Mesophilic marine archaea and bacteria are known to substantially contribute to the oceanic microbial biomass and play critical roles in global carbon, nitrogen and nutrient cycles. The Orca Basin, a 2400 meter deep bathymetric depression on the continental slope of the north-central Gulf of Mexico, is an ideal environment to examine how redox-dependent biochemical processes control the input and cycling of bacterial and archaea-derived lipid compounds from formation in near-surface water, through secondary recycling processes operating at the redox-transition in the water column, to sedimentary diagenetic processes operating in oxic to anoxic zones within the basin. The lowermost 180 meters of the Orca Basin is characterized by an anoxic, hypersaline brine that is separated from the overlying oxic seawater by a well-defined redox sequence associated with a systematic increasing in salinity from 35 - 250‰. While surface water conditions are viewed as normal marine with a seasonally productive water column, the sub-oxic to anoxic transition zones within the deep-water column and the sediment spans over 200 m allowing the unique opportunity for discrete sampling of resident organisms and lipids. Here we present 16s rRNA sequence data of Bacteria and Archaea collected parallel to GDGT lipid profiles and in situ environmental measurements from the sediment and overlying water column in the intermediate zone of the basin, where movements of chemical transition zones are preserved. We evaluated GDGTs and corresponding taxa across the surface water, chlorophyll maximum, thermocline, and the deep redox boundary, including oxygenation, denitrification, manganese, iron and sulfate reduction zones, to determine if GDGTs are being produced under these conditions and how surface-derived GDGT lipids and the TEX86 signal may be altered. The results have implications for the application of the TEX86 paleotemperature proxy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B13G0724H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B13G0724H"><span>Microbial Communities in the Northeastern Pacific and Responses to Organic Matter Inputs Above the Sediment-Water Interface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harbeitner, R.; Sudek, S.; Choi, C. J.; Bird, L.; Worden, A. Z.</p> <p>2016-12-01</p> <p>We are investigating variability in marine microbial communities in the sunlit photic zone, the mesopelagic "twilight" zone, and the deep sea. To establish an understanding that allows assessment of future change, consistent methods are being used across three North Pacific Ocean cruises. We will characterize vertical distributions and temporal variability by flow cytometry and 16S rRNA gene sequencing (V1-V2 Illumina amplicons). Stations were sampled in the Monterey Bay Canyon, including a shallow depth station (600 m) with relatively high terrestrial input, deeper stations (1000 and 1800 m), and above an offshore seamount (1400 m). At all stations, the cyanobacterium Synechococcus was more abundant than Prochlorococcus in the photic zone and at the shallowest station, photosynthetic eukaryotes dominated. Heterotrophic bacteria abundances were similar (1,132,886 ± 316,914 ml-1) at the chlorophyll maximum in photic zone samples. Within the mesopelagic, at 600 m depth, bacterial abundances were similar (98,632-104,075 ml-1). Below 600 m, the seamount station had lower abundances (49,050 ± 8,473 ml-1) than canyon stations (71,799 ± 10,425 ml-1). We also performed experiments in newly designed gas permeable in situ incubators using water from just above the sediment-seawater interface at canyon sites of 1000 and 1800 m depth. Organic matter (OM)-amended treatments and controls were sampled at 0, 1, 5, and 24 days. Bacteria abundance increased with OM addition after 1 day (e.g. control 68,856 ± 6,826 ml-1, amended 98,088 ± 199 ml-1) and by 24 days increased 6-fold, with no statistical difference between controls and OM treatments. The results that will be presented from these experiments and ongoing diversity analyses are providing new insights into microbial distributions and activities over vertical gradients in the ocean. We are investigating variability in marine microbial communities in the sunlit photic zone, the mesopelagic "twilight" zone, and the deep sea. To establish an understanding that allows assessment of future change, consistent methods are being used across three North Pacific Ocean cruises. We will characterize vertical distributions and temporal variability by flow cytometry and 16S rRNA gene sequencing (V1-V2 Illumina amplicons). Stations were sampled in the Monterey Bay Canyon, including a shallow depth station (600 m) with relatively high terrestrial input, deeper stations (1000 and 1800 m), and above an offshore seamount (1400 m). At all stations, the cyanobacterium Synechococcus was more abundant than Prochlorococcus in the photic zone and at the shallowest station, photosynthetic eukaryotes dominated. Heterotrophic bacteria abundances were similar (1,132,886 ± 316,914 ml-1) at the chlorophyll maximum in photic zone samples. Within the mesopelagic, at 600 m depth, bacterial abundances were similar (98,632-104,075 ml-1). Below 600 m, the seamount station had lower abundances (49,050 ± 8,473 ml-1) than canyon stations (71,799 ± 10,425 ml-1). We also performed experiments in newly designed gas permeable in situ incubators using water from just above the sediment-seawater interface at canyon sites of 1000 and 1800 m depth. Organic matter (OM)-amended treatments and controls were sampled at 0, 1, 5, and 24 days. Bacteria abundance increased with OM addition after 1 day (e.g. control 68,856 ± 6,826 ml-1, amended 98,088 ± 199 ml-1 ) and by 24 days increased 6-fold, with no statistical difference between controls and OM treatments. The results that will be presented from these experiments and ongoing diversity analyses are providing new insights into microbial distributions and activities over vertical gradients in the ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20390837','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20390837"><span>Effect of lixiviated sediments affected with treated water on Selenastrum capricornutum, Printz and Origanum vulgare L.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ramos, Guadalupe E; Lopez, Martin H; Flores, Antonio M; Figueroa, Guadalupe T; De Leon, Fernando G</p> <p>2010-01-01</p> <p>Xochimilco is an area of Mexico City fulfilling important ecological functions. However, the water of the canal network in the lacustrine zone of Xochimilco is supplied by the water treatment plants of the city, implying a risk of accumulated contaminants in the sediments. This study reports the effect of lixiviates obtained from sediments collected in the canals of Xochimilco on the growth of the alga Selenastrum capricornutum and the angiosperm Origanum vulgare. Three factors were tested: (a) water source in terms of the effluent from the two water treatment plants (urban waste-water, located at Cerro de la Estrella (CE) and urban-rural waters at San Luis Tlaxialtemalco (SLT); (b) sampling season (January, dry season; May and September, rainy season; and (c) distances from the water discharge point in the Xochimilco's main canal (5200 and 1000 m for CE, and 0, 200 m for SLT). The chemical water properties analyzed were: pH, electrical conductivity, N-NO(3), N-NH(3), N(Total), P-PO(4) and P(Total). The alga was more sensitive to the contaminants than O. vulgare, showing growth inhibition of 93-100%. The effect of sampling season on the inhibition of algal growth was ordered as follows: September > May > January. Lixiviates obtained from sediment samples 200 and 1000 m from the main point of water discharge caused a higher algal growth inhibition than the samples obtained at the source point. Lixiviate promoted the growth of seedlings of O. vulgare.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP53A0925W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP53A0925W"><span>Characteristics of Holocene sediments in the Gunsan Basin, central Yellow Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Woo, H. J.; Huh, S.; Jeong, K. S.; Lee, J. H.; Ham, A.; Kang, J.</p> <p>2016-12-01</p> <p>The Gunsan Basin, in the eastern part of the South Yellow Sea Basin, is filled by terrestrial sedimentary rocks, maximally up to 8 km deep on the basement of metamorphic rocks that constitutes the Yangtze Platform. The uppermost sedimentary layer (generally less than 1 km) appears to have formed experiencing the repeated marine environments since the middle Miocene. This study is to investigate the characteristics of Holocene sediments in the Gunsan Basin, based on interpretation of core sediments and high-resolution shallow (Sparker and Chirp) seismic profiles. The surface sediments in the basin consist of sand (56.6% on the average), silt (18.4%), and clay (25.0%) with a mean grain size of 1.5 to 7.8 Ø. Sand is prevalent (63.8 to 98.3%) in and around the Yellow Sea Trough lying in the eastern part of the basin. The sandy sediments are regarded as relict sediments deposited in the last glacial maximum (LGM). The sedimentary environments are classified, based on the acoustic and morphological characters of high-resolution shallow (Sparker and Chirp) seismic profiles, into mud zone, deformed zone, and sand ridges with sand waves zone from the west to the east in the Gunsan Basin. The deformed zone in the central Yellow Sea is a mixing area of sediments derived from China and Korea, where there are a number of paleochannels and erosional surfaces in the direction of northwest-southeast. The deformed zone represents non-deposition or erosion in the central Yellow Sea during the Holocene. Tidal sand ridges and sand waves are well developed along the coast of Korea. Modern sand ridges are generally moving in the northeast-southwest direction, which coincide with dominant tidal current direction. Fifteen piston cores were collected in the basin to investigate the general geological characters of the marine sedimentary sequence. In comparison with three cores in the southern basin, the sand contents tend to increase in the direction of east. 14C dates from three cores near border of Exclusive Economic Zone (EEZ) of Korea reveal that Holocene sediments have accumulated at the rate 6-18 cm/ka. The mud sediments sequentially change sandy mud to mud after the sea-level rise. In the Gunsan Basin, paleochannels played an important role in sedimentary processes during low sea-level periods of Quaternary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022240','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022240"><span>Geochemical modeling of iron, sulfur, oxygen and carbon in a coastal plain aquifer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brown, C.J.; Schoonen, M.A.A.; Candela, J.L.</p> <p>2000-01-01</p> <p>Fe(III) reduction in the Magothy aquifer of Long Island, NY, results in high dissolved-iron concentrations that degrade water quality. Geochemical modeling was used to constrain iron-related geochemical processes and redox zonation along a flow path. The observed increase in dissolved inorganic carbon is consistent with the oxidation of sedimentary organic matter coupled to the reduction of O2 and SO4/2- in the aerobic zone, and to the reduction of SO4/2- in the anaerobic zone; estimated rates of CO2 production through reduction of Fe(III) were relatively minor by comparison. The rates of CO2 production calculated from dissolved inorganic carbon mass transfer (2.55 x 10-4 to 48.6 x 10-4 mmol 1-1 yr-1) generally were comparable to the calculated rates of CO2 production by the combined reduction of O2, Fe(III) and SO4/2- (1.31 x 10-4 to 15 x 10-4 mmol 1-1 yr-1). The overall increase in SO4/2- concentrations along the flow path, together with the results of mass-balance calculations, and variations in ??34S values along the flow path indicate that SO4/2- loss through microbial reduction is exceeded by SO4/2- gain through diffusion from sediments and through the oxidation of FeS2. Geochemichal and microbial data on cores indicate that Fe(III) oxyhydroxide coatings on sediment grains in local, organic carbon- and SO4/2- -rich zones have localized SO4/2- -reducing zones in which the formation of iron disulfides been depleted by microbial reduction and resulted in decreases dissolved iron concentrations. These localized zones of SO4/2- reduction, which are important for assessing zones of low dissolved iron for water-supply development, could be overlooked by aquifer studies that rely only on groundwater data from well-water samples for geochemical modeling. (C) 2000 Elsevier Science B.V.Fe(III) reduction in the Magothy aquifer of Long Island, NY, results in high dissolved-iron concentrations that degrade water quality. Geochemical modeling was used to constrain iron-related geochemical processes and redox zonation along a flow path. The observed increase in dissolved inorganic carbon is consistent with the oxidation of sedimentary organic matter coupled to the reduction of O2 and SO42- in the aerobic zone, and to the reduction of SO42- in the anaerobic zone; estimated rates of CO2 production through reduction of Fe(III) were relatively minor by comparison. The rates of CO2 production calculated from dissolved inorganic carbon mass transfer (2.55??10-4 to 48.6??10-4mmol l-1yr-1) generally were comparable to the calculated rates of CO2 production by the combined reduction of O2, Fe(III) and SO42- (1.31??10-4 to 15??10-4mmol l-1yr-1). The overall increase in SO42- concentrations along the flow path, together with the results of mass-balance calculations, and variations in ??34S values along the flow path indicate that SO42- loss through microbial reduction is exceeded by SO42- gain through diffusion from sediments and through the oxidation of FeS2. Geochemical and microbial data on cores indicate that Fe(III) oxyhydroxide coatings on sediment grains in local, organic carbon- and SO42--rich zones have been depleted by microbial reduction and resulted in localized SO42--reducing zones in which the formation of iron disulfides decreases dissolved iron concentrations. These localized zones of SO42- reduction, which are important for assessing zones of low dissolved iron for water-supply development, could be overlooked by aquifer studies that rely only on groundwater data from well-water samples for geochemical modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/343770-vertical-lateral-fluid-flow-related-large-growth-fault-south-eugene-island-block-field-offshore-louisiana','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/343770-vertical-lateral-fluid-flow-related-large-growth-fault-south-eugene-island-block-field-offshore-louisiana"><span>Vertical and lateral fluid flow related to a large growth fault, South Eugene Island Block 330 field, offshore Louisiana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Losh, S.; Eglinton, L.; Schoell, M.</p> <p>1999-02-01</p> <p>Data from sediments in and near a large growth fault adjacent to the giant South Eugene Island Block 330 field, offshore Louisiana, indicate that the fault has acted as a conduit for fluids whose flux has varied in space and time. Core and cuttings samples from two wells that penetrated the same fault about 300 m apart show markedly different thermal histories and evidence for mass flux. Sediments within and adjacent to the fault zone in the US Department of Energy-Pennzoil Pathfinder well at about 2200 m SSTVD (subsea true vertical depth) showed little paleothermal or geochemical evidence for through-goingmore » fluid flow. The sediments were characterized by low vitrinite reflectances (R{sub {omicron}}), averaging 0.3% R{sub {omicron}}, moderate to high {delta}{sup 18}O and {delta}{sup 13}C values, and little difference in major or trace element composition between deformed and undeformed sediments. In contrast, faulted sediments from the A6ST well, which intersects the A fault at 1993 m SSTVD, show evidence for a paleothermal anomaly (0.55% R{sub {omicron}}) and depleted {delta}{sup 18}O and {delta}{sup 13}C values. Overall, indicators of mass and heat flux indicate the main growth fault zone in South Eugene Island Block 330 has acted as a conduit for ascending fluids, although the cumulative fluxes vary along strike. This conclusion is corroborated by oil and gas distribution in downthrown sands in Blocks 330 and 331, which identify the fault system in northwestern Block 330 as a major feeder.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFMOS52D..08L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFMOS52D..08L"><span>A Possible Origin of the Gas Hydrate in Southwest Taiwan Offshore Area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, C.; Lee, J.; Oung, J.</p> <p>2003-12-01</p> <p>The southwest Taiwan locate at the eastward subduction zone of the Eurasian plate, which is currently converging with the Philippine Sea plate at a rate of several few centimeters per year. The geological setting of this region is characterized by the appearance of thick accreted sediments up to several kilometers, numerous submarine canyons, active faults, and mud diapirs/volcanoes. The origin of mud diapir/volcano is probably related to the plate convergence. During the tectonic processes, the organic matters were "cooked" thermogenically and biogenically to produce the natural gases, and possibly the oil in the sediment. Beneath the seafloor, if the natural gases were at the appropriate temperature and pressure condition, they would become the gas hydrate, and preserved in the top sediment layers. The formation of gas hydrate is situated under the water depth at about 300 to 3000 meters in this region. In the seismic profiles, the Bottom Simulation Reflector (BSR) probably represents the boundary between the solid-state and gas-state natural gas. The BSR is also regarded as an important marker as an existence of gas hydrate. It is extensively distributed in the continental margin off southwest Taiwan, but unstable, especially along the active fault zones. The natural gas as well as the mud and hydraulic fluid in the deep sediment are pushed into the surface layer. In order to investigate the relationship between mud diapir and gas hydrate, we conduct the geophysical and geological methods: using a 38/150 kHz high-frequency echo sounder system to guide and select the sites for mud diapirs, and take 1-3 m gravity core samples. We, then, adopt an up-side-down "headspace" tin-can technique to preserve the gases, and use a gas chromatography to analyze its contents. Oil companies commonly use the method. The first result shows that the existence of methane, ethane, propane and possible other higher hydrocarbon contents in the core samples. The methane is the most abundant gas, up to 1859 parts per million in volume (ppm); the others are not significant, probably due to a leaking in the sampling and transportation. We have reduced the "headspace" in order to preserve more concentrated gases in the second attempt, and the result shows similar. Nonetheless, our results suggest that the gases are probably a mixture of thermogenic and biogenic origin. Due to the existence of higher hydrocarbon contents, we believe that the thermogenic gases are produced in the deep source sediments, while the shallow biogenic methane is mixing with them in the top sediment. In the mud diapir/volcano area, the contents of natural gases are usually higher than that in a flat seafloor. As several high gas values have been founded in the near shore area (e.g., 1604 ppm of C1 plus C2 and C3 found at a water depth of 23 m), we suggest that the 300-3000 m gas hydrate zone is probably in a dynamic balance of which the deep gases are continuously migrating to the BSR and the free gases are being evaporating from this zone. Our data illustrate the potential existence of natural gases in this region; however, we cannot quantify the reserve at this time. Further investigations with a long core and better-improved techniques are needed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70185234','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70185234"><span>Naphthalene and benzene degradation under Fe(III)-reducing conditions in petroleum-contaminated aquifers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Anderson, Robert T.; Lovely, Derek R.</p> <p>1999-01-01</p> <p>Naphthalene was oxidized anaerobically to CO2 in sediments collected from a petroleum-contaminated aquifer in Bemidji, Minnesota in which Fe(III) reduction was the terminal electron-accepting process. Naphthalene was not oxidized in sediments from the methanogenic zone at Bemidji or in sediments from the Fe(III)-reducing zone of other petroleum-contaminated aquifers studied. In a profile across the Fe(III)-reducing zone of the Bemidji aquifer, rates of naphthalene oxidation were fastest in sediments with the highest proportion of Fe(III), which was also the zone of the most rapid degradation of benzene, toluene, and acetate. The comparative studies attempted to elucidate factors that might account for the fact that unsubstituted aromatic hydrocarbons such as benzene and naphthalene were degraded under Fe(III)-reducing conditions at Bemidji, but not at the other aquifers examined. These studies indicated that the ability of Fe(III)-reducing microorganisms to degrade benzene and naphthalene at the Bemidji site cannot be attributed to groundwater components that make Fe(III) more available for reduction or other potential factors that were evaluated. However, unlike the other aquifers evaluated, uncontaminated sediments at the Bemidji site could be adapted for anaerobic benzene degradation merely with the addition of benzene. These findings indicate that Bemidji sediments naturally contain Fe(III) reducers capable of degradation of unsubstituted aromatic hydrocarbons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025723','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025723"><span>Inorganic nitrogen transformations in the bed of the Shingobee River, Minnesota: Integrating hydrologic and biological processes using sediment perfusion cores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sheibley, R.W.; Duff, J.H.; Jackman, A.P.; Triska, F.J.</p> <p>2003-01-01</p> <p>Inorganic N transformations were examined in streambed sediments from the Shingobee River using sediment perfusion cores. The experimental design simulated groundwater-stream water mixing within sediment cores, which provided a well-defined one-dimensional representation of in situ hydrologic conditions. Two distinct hydrologic and chemical settings were preserved in the sediment cores: the lowermost sediments, perfused with groundwater, remained anaerobic during the incubations, whereas the uppermost sediments, perfused with oxic water pumped from the overlying water column, simulated stream water penetration into the bed. The maintenance of oxic and anoxic zones formed a biologically active aerobic-anaerobic interface. Ammonium (NH4+) dissolved in groundwater was transported conservatively through the lower core zone but was removed as it mixed with aerated recycle water. Concurrently, a small quantity of nitrate (NO3-) equaling ???25% of the NH4+ loss was produced in the upper sediments. The NH4+ and NO3- profiles in the uppermost sediments resulted from coupled nitrification-denitrification, because assimilation and sorption were negligible. We hypothesize that anaerobic microsites within the aerated upper sediments supported denitrification. Rates of nitrification and denitrification in the perfusion cores ranged 42-209 and 53-160 mg N m-2 day-1, respectively. The use of modified perfusion cores permitted the identification and quantification of N transformations and verified process control by surface water exchange into the shallow hyporheic zone of the Shingobee River.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeCoA.207...57S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeCoA.207...57S"><span>Unraveling signatures of biogeochemical processes and the depositional setting in the molecular composition of pore water DOM across different marine environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmidt, Frauke; Koch, Boris P.; Goldhammer, Tobias; Elvert, Marcus; Witt, Matthias; Lin, Yu-Shih; Wendt, Jenny; Zabel, Matthias; Heuer, Verena B.; Hinrichs, Kai-Uwe</p> <p>2017-06-01</p> <p>Dissolved organic matter (DOM) in marine sediment pore waters derives largely from decomposition of particulate organic matter and its composition is influenced by various biogeochemical and oceanographic processes in yet undetermined ways. Here, we determine the molecular inventory of pore water DOM in marine sediments of contrasting depositional regimes with ultrahigh-resolution mass spectrometry and complementary bulk chemical analyses in order to elucidate the factors that shape DOM composition. Our sample sets from the Mediterranean, Marmara and Black Seas covered different sediment depths, ages and a range of marine environments with different (i) organic matter sources, (ii) balances of organic matter production and preservation, and (iii) geochemical conditions in sediment and water column including anoxic, sulfidic and hypersaline conditions. Pore water DOM had a higher molecular formula richness than overlying water with up to 11,295 vs. 2114 different molecular formulas in the mass range of 299-600 Da and covered a broader range of element ratios (H/C = 0.35-2.19, O/C = 0.03-1.19 vs. H/C = 0.56-2.13, O/C = 0.15-1.14). Formula richness was independent of concentrations of DOC and TOC. Near-surface pore water DOM was more similar to water column DOM than to deep pore water DOM from the same core with respect to formula richness and the molecular composition, suggesting exchange at the sediment-water interface. The DOM composition in the deeper sediments was controlled by organic matter source, selective decomposition of specific DOM fractions and early diagenetic molecule transformations. Compounds in pelagic sediment pore waters were predominantly highly unsaturated and N-bearing formulas, whereas oxygen-rich CHO-formulas and aromatic compounds were more abundant in pore water DOM from terrigenous sediments. The increase of S-bearing molecular formulas in the water column and pore waters of the Black Sea and the Mediterranean Discovery Basin was consistent with elevated HS- concentrations reflecting the incorporation of sulfur into biomolecules during early diagenesis. Sulfurization resulted in an increased average molecular mass of DOM and higher formula richness (up to 5899 formulas per sample). In sediments from the methanogenic zone in the Black Sea, the DOM pool was distinctly more reduced than overlying sediments from the sulfate-reducing zone. Bottom and pore water DOM from the Discovery Basin contained the highest abundances of aliphatic compounds in the entire dataset; a large fraction of abundant N-bearing formulas possibly represented peptide and nucleotide formulas suggesting preservation of these molecules in the life inhibiting environment of the Discovery Basin. Our unique data set provides the basis for a comprehensive understanding of the molecular signatures in pore water DOM and the turnover of sedimentary organic matter in marine sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Ocgy...55..400D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Ocgy...55..400D"><span>Nannofossils in upper quaternary bottom sediments of back-arc basins in the southwestern Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dmitrenko, O. B.</p> <p>2015-05-01</p> <p>The analysis of calcareous nannoplankton assemblages in bottom sediments sampled during Cruise 21 of the R/V Akademik Mstislav Keldysh in three areas located in back-arc basins of the southwestern Pacific (western Woodlark in the Solomon Sea, Manus in the Bismarck Sea, Central Lau) reveal that they belong to the Emiliania huxleyi Acme Zone, the most detailed one in the Gartner's scale of 1977. The content of coccoliths and their taxonomic composition indicate warm subtropical-tropical conditions. Long cores demonstrate a decrease in species diversity reflecting the transition from the cold late Pleistocene to the Holocene. The changes in species diversity and presence/absence of thermophilic representatives indicate transformation of depositional environments with unstable conditions in the water column and bottom layer, seismic activity, and widely developed processes of sediment redistribution and reworking.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016034','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016034"><span>Modern configuration of the southwest Florida carbonate slope: Development by shelf margin progradation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brooks, G.R.; Holmes, C.W.</p> <p>1990-01-01</p> <p>Depositional patterns and sedimentary processes influencing modern southwest Florida carbonate slope development have been identified based upon slope morphology, seismic facies and surface sediment characteristics. Three slope-parallel zones have been identified: (1) an upper slope progradational zone (100-500 m) characterized by seaward-trending progradational clinoforms and sediments rich in shelf-derived carbonate material, (2) a lower gullied slope zone (500-800 m) characterized by numerous gullies formed by the downslope transport of gravity flows, and (3) a base-of-slope zone (> 800 m) characterized by thin, lens-shaped gravity flow deposits and irregular topography interpreted to be the result of bottom currents and slope failure along the basal extensions of gullies. Modern slope development is interpreted to have been controlled by the offshelf transport of shallow-water material from the adjacent west Florida shelf, deposition of this material along a seaward advancing sediment front, and intermittent bypassing of the lower slope by sediments transported in the form of gravity flows via gullies. Sediments are transported offshelf by a combination of tides and the Loop Current, augmented by the passage of storm frontal systems. Winter storm fronts produce cold, dense, sediment-laden water that cascades offshelf beneath the strong, eastward flowing Florida Current. Sediments are eventually deposited in a relatively low energy transition zone between the Florida Current on the surface and a deep westward flowing counter current. The influence of the Florida Current is evident in the easternmost part of the study area as eastward prograding sediments form a sediment drift that is progressively burying the Pourtales Terrace. The modern southwest Florida slope has seismic reflection and sedimentological characteristics in common with slopes bordering both the non-rimmed west Florida margin and the rimmed platform of the northern Bahamas, and shows many similarities to the progradational Miocene section along the west Florida slope. As with rimmed platform slopes, development of non-rimmed platform slopes can be complex and controlled by a combination of processes that result in a variety of configurations. Consequently, the distinction between the two slope types based solely upon seismic and sedimentological characteristics may not be readily discernible. ?? 1990.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996DSRII..43.1181H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996DSRII..43.1181H"><span>Neutral carbohydrate geochemistry of particulate material in the central equatorial Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hernes, Peter J.; Hedges, John I.; Peterson, Michael L.; Wakeham, Stuart G.; Lee, Cindy</p> <p></p> <p>Neutral carbohydrate compositions were determined for particulate samples from plankton net tows, shallow floating sediment traps, mid-depth and deep moored sediment traps, and sediment cores collected along a north-south transect in the central equatorial Pacific Ocean during the U.S. JGOFS EqPac program. Total neutral carbohydrate depth profiles and patterns along the transect follow essentially the same trends as bulk and organic carbon (OC) fluxes—attenuating with depth, high near the equator and decreasing poleward. OC-normalized total aldose (TCH 2,O) yields along the transect and with depth do not show any consitent patterns. Relative to a planktonic source, neutral carbohydrate compositions in sediment trap and sediment core samples reflect preferential loss of ribose and storage carbohydrates rich in glucose, and preferential preservation of structural carbohydrates rich in rhamnose, xylose, fucose, and mannose. There is also evidence for an intermediately labile component rich in galactose. It appears that compositional signatures of neutral carbohydrates in sediments are more dependent upon their planktonic source than on any particular diagenetic pathway. Relative to other types of organic matter, neutral carbohydrates are better preserved in calcareous oozes from 12°S to 5°N than in red clays at 9°N based on OC-normalized TCH 2O yields, due to either differing sources or sorption characteristics. Weight per cent glucose generally decreases with increased degradation of organic material in the central equatorial Pacific region. Based on weight per cent glucose, comparisons of samples between Survey I (El Niõn) and Survey II (non-El Niño) indicate that during Survey I, organic material in the epipelagic zone in the northern hemisphere may have undergone more degradation than organic material in the southern hemisphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29934827','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29934827"><span>Modeling of sediment transport in a saltwater lake with supplemental sandy freshwater.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liang, Li; Deng, Yun; Li, Ran; Li, Jia</p> <p>2018-06-22</p> <p>Considering the highly complex flow structure of saltwater lakes during freshwater supplementation, a three-dimensional numerical model was developed to simulate suspended sediment transport in saltwater lakes. The model was validated using measurements of the salinity and sediment concentration during a pumping test at Yamdrok Lake. The simulation results were in quantitative agreement with the measured data. The observed and simulated results also indicated that the wind stress and vertical salinity gradient have a significant influence on salinity and sediment transport in a saltwater lake. The validated model was then used to predict and analyze the contributions of wind, the supplement flow rate and salinity stratification to the sediment transport process in Yamdrok Lake during continuous river water supplementation. The simulation results showed that after the sandy river water was continuously discharged into the saltwater lake, the lateral diffusion trends of the sediment exhibited three stages: linear growth in the inflow direction, logarithmic growth in the wind direction, and stabilization. Furthermore, wind was the dominant factor in driving the lake flow pattern and sediment transport. Specifically, wind can effectively reduce the area of the sediment diffusion zone by increasing the lateral sediment carrying and dilution capacities. The effect of inflow on the lake current is negligible, but the extent of the sediment turbidity zone mainly depends on the inflow. Reducing the inflow discharge can decrease the area of the sediment turbidity zone to proportions that far exceed the proportions of inflow discharge reductions. In addition, the high-salinity lake water can support the supplemented freshwater via buoyancy forces, which weaken vertical mixing and sediment settlement and increase lake currents and sediment diffusion near the surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BGeo...15..137M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BGeo...15..137M"><span>Microbial methanogenesis in the sulfate-reducing zone of sediments in the Eckernförde Bay, SW Baltic Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maltby, Johanna; Steinle, Lea; Löscher, Carolin R.; Bange, Hermann W.; Fischer, Martin A.; Schmidt, Mark; Treude, Tina</p> <p>2018-01-01</p> <p>Benthic microbial methanogenesis is a known source of methane in marine systems. In most sediments, the majority of methanogenesis is located below the sulfate-reducing zone, as sulfate reducers outcompete methanogens for the major substrates hydrogen and acetate. The coexistence of methanogenesis and sulfate reduction has been shown before and is possible through the usage of noncompetitive substrates by methanogens such as methanol or methylated amines. However, knowledge about the magnitude, seasonality, and environmental controls of this noncompetitive methane production is sparse. In the present study, the presence of methanogenesis within the sulfate reduction zone (SRZ methanogenesis) was investigated in sediments (0-30 cm below seafloor, cm b.s.f.) of the seasonally hypoxic Eckernförde Bay in the southwestern Baltic Sea. Water column parameters such as oxygen, temperature, and salinity together with porewater geochemistry and benthic methanogenesis rates were determined in the sampling area <q>Boknis Eck</q> quarterly from March 2013 to September 2014 to investigate the effect of seasonal environmental changes on the rate and distribution of SRZ methanogenesis, to estimate its potential contribution to benthic methane emissions, and to identify the potential methanogenic groups responsible for SRZ methanogenesis. The metabolic pathway of methanogenesis in the presence or absence of sulfate reducers, which after the addition of a noncompetitive substrate was studied in four experimental setups: (1) unaltered sediment batch incubations (net methanogenesis), (2) 14C-bicarbonate labeling experiments (hydrogenotrophic methanogenesis), (3) manipulated experiments with the addition of either molybdate (sulfate reducer inhibitor), 2-bromoethanesulfonate (methanogen inhibitor), or methanol (noncompetitive substrate, potential methanogenesis), and (4) the addition of 13C-labeled methanol (potential methylotrophic methanogenesis). After incubation with methanol, molecular analyses were conducted to identify key functional methanogenic groups during methylotrophic methanogenesis. To also compare the magnitudes of SRZ methanogenesis with methanogenesis below the sulfate reduction zone (> 30 cm b.s.f.), hydrogenotrophic methanogenesis was determined by 14C-bicarbonate radiotracer incubation in samples collected in September 2013.SRZ methanogenesis changed seasonally in the upper 30 cm b.s.f. with rates increasing from March (0.2 nmol cm-3 d-1) to November (1.3 nmol cm-3 d-1) 2013 and March (0.2 nmol cm-3 d-1) to September (0.4 nmol cm-3 d-1) 2014. Its magnitude and distribution appeared to be controlled by organic matter availability, C / N, temperature, and oxygen in the water column, revealing higher rates in the warm, stratified, hypoxic seasons (September-November) compared to the colder, oxygenated seasons (March-June) of each year. The majority of SRZ methanogenesis was likely driven by the usage of noncompetitive substrates (e.g., methanol and methylated compounds) to avoid competition with sulfate reducers, as was indicated by the 1000-3000-fold increase in potential methanogenesis activity observed after methanol addition. Accordingly, competitive hydrogenotrophic methanogenesis increased in the sediment only below the depth of sulfate penetration (> 30 cm b.s.f.). Members of the family Methanosarcinaceae, which are known for methylotrophic methanogenesis, were detected by PCR using Methanosarcinaceae-specific primers and are likely to be responsible for the observed SRZ methanogenesis.The present study indicates that SRZ methanogenesis is an important component of the benthic methane budget and carbon cycling in Eckernförde Bay. Although its contributions to methane emissions from the sediment into the water column are probably minor, SRZ methanogenesis could directly feed into methane oxidation above the sulfate-methane transition zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27321802','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27321802"><span>Artificial soft sediment resuspension and high density opportunistic macroalgal mat fragmentation as method for increasing sediment zoobenthic assemblage diversity in a eutrophic lagoon.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martelloni, Tatiana; Tomassetti, Paolo; Gennaro, Paola; Vani, Danilo; Persia, Emma; Persiano, Marco; Falchi, Riccardo; Porrello, Salvatore; Lenzi, Mauro</p> <p>2016-09-15</p> <p>Superficial soft sediment resuspension and partial fragmentation of high density opportunistic macroalgal mats were investigated by boat to determine the impact on zoobenthic assemblages in a eutrophic Mediterranean lagoon. Sediment resuspension was used to oxidise superficial organic sediments as a method to counteract the effects of eutrophication. Likewise, artificial decay of macroalgal mat was calculated to reduce a permanent source of sediment organic matter. An area of 9ha was disturbed (zone D) and two other areas of the same size were left undisturbed (zones U). We measured chemical-physical variables, estimated algal biomass and sedimentary organic matter, and conducted qualitative and quantitative determinations of the zoobenthic species detected in sediment and among algal mats. The results showed a constant major reduction in labile organic matter (LOM) and algal biomass in D, whereas values in U remained stable or increased. In the three zones, however, bare patches of lagoon bed increased in size, either by direct effect of the boats in D or by anaerobic decay of the algal mass in U. Zoobenthic assemblages in algal mats reduced the number of species in D, probably due to the sharp reduction in biomass, but remained stable in U, whereas in all three areas abundance increased. Sediment zoobenthic assemblages increased the number of species in D, as expected, due to drastic reduction in LOM, whereas values in U remained stable and again abundance increased in all three zones. In conclusion, we confirmed that reduction of sediment organic load enabled an increase in the number of species, while the algal mats proved to be an important substrate in the lagoon environment for zoobenthic assemblages, especially when mat alternated with bare intermat areas of lagoon bed. Sediment resuspension is confirmed as a management criterion for counteracting the effects of eutrophication and improving the biodiversity of zoobenthic assemblages in eutrophic lagoon environments. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2006/5189/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2006/5189/"><span>Areal distribution and concentration of contaminants of concern in surficial streambed and lakebed sediments, Lake St. Clair and tributaries, Michigan, 1990-2003</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rachol, Cynthia M.; Button, Daniel T.</p> <p>2006-01-01</p> <p>As part of the Lake St. Clair Regional Monitoring Project, the U.S. Geological Survey evaluated data collected from surficial streambed and lakebed sediments in the Lake Erie-Lake St. Clair drainages. This study incorporates data collected from 1990 through 2003 and focuses primarily on the U.S. part of the Lake St. Clair Basin, including Lake St. Clair, the St. Clair River, and tributaries to Lake St. Clair. Comparable data from the Canadian part of the study area are included where available. The data are compiled into 4 chemical classes and consist of 21 compounds. The data are compared to effects-based sediment-quality guidelines, where the Threshold Effect Level and Lowest Effect Level represent concentrations below which adverse effects on biota are not expected and the Probable Effect Level and Severe Effect Level represent concentrations above which adverse effects on biota are expected to be frequent.Maps in the report show the spatial distribution of the sampling locations and illustrate the concentrations relative to the selected sediment-quality guidelines. These maps indicate that sediment samples from certain areas routinely had contaminant concentrations greater than the Threshold Effect Concentration or Lowest Effect Level. These locations are the upper reach of the St. Clair River, the main stem and mouth of the Clinton River, Big Beaver Creek, Red Run, and Paint Creek. Maps also indicated areas that routinely contained sediment contaminant concentrations that were greater than the Probable Effect Concentration or Severe Effect Level. These locations include the upper reach of the St. Clair River, the main stem and mouth of the Clinton River, Red Run, within direct tributaries along Lake St. Clair and in marinas within the lake, and within the Clinton River headwaters in Oakland County.Although most samples collected within Lake St. Clair were from sites adjacent to the mouths of its tributaries, samples analyzed for trace-element concentrations were collected throughout the lake. The distribution of trace-element concentrations corresponded well with the results of a two-dimensional hydrodynamic model of flow patterns from the Clinton River into Lake St. Clair. The model was developed independent from the bed sediment analysis described in this report; yet it showed a zone of deposition for outflow from the Clinton River into Lake St. Clair that corresponded well with the spatial distribution of trace-element concentrations. This zone runs along the western shoreline of Lake St. Clair from L'Anse Creuse Bay to St. Clair Shores, Michigan and is reflected in the samples analyzed for mercury and cadmium.Statistical summaries of the concentration data are presented for most contaminants, and selected statistics are compared to effects-based sediment-quality guidelines. Summaries were not computed for dieldrin, chlordane, hexachlorocyclohexane, lindane, and mirex because insufficient data are available for these contaminants. A statistical comparison showed that the median concentration for hexachlorobenzene, anthracene, benz[a]anthracene, chrysene, and pyrene are greater than the Threshold Effect Concentration or Lowest Effect Level.Probable Effect Concentration Quotients provide a mechanism for comparing the concentrations of contaminant mixtures against effects-based biota data. Probable Effect Concentration Quotients were calculated for individual samples and compared to effects-based toxicity ranges. The toxicity-range categories used in this study were nontoxic (quotients < 0.5) and toxic (quotients > 0.5). Of the 546 individual samples for which Probable Effect Concentration Quotients were calculated, 469 (86 percent) were categorized as being nontoxic and 77 (14 percent) were categorized as being toxic. Bed-sediment samples with toxic Probable Effect Concentration Quotients were collected from Paint Creek, Galloway Creek, the main stem of the Clinton River, Big Beaver Creek, Red Run, Clinton River towards the mouth, Lake St. Clair along the western shore, and the St. Clair River near Sarnia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70104175','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70104175"><span>Aragonite saturation states and nutrient fluxes in coral reef sediments in Biscayne National Park, FL, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lisle, John T.; Reich, Christopher D.; Halley, Robert B.</p> <p>2014-01-01</p> <p>Some coral reefs, such as patch reefs along the Florida Keys reef tract, are not showing significant reductions in calcification rates in response to ocean acidification. It has been hypothesized that this recalcitrance is due to local buffering effects from biogeochemical processes driven by seagrasses. We investigated the influence that pore water nutrients, dissolved inorganic carbon (DIC) and total alkalinity (TA) have on aragonite saturation states (Ωaragonite) in the sediments and waters overlying the sediment surfaces of sand halos and seagrass beds that encircle Alinas and Anniversary reefs in Biscayne National Park. Throughout the sampling period, sediment pore waters from both bottom types had lower oxidation/reduction potentials (ORP), with lower pH relative to the sediment surface waters. The majority (86.5%) of flux rates (n = 96) for ΣNOx–, PO43–, NH4+, SiO2, DIC and TA were positive, sometimes contributing significant concentrations of the respective constituents to the sediment surface waters. The Ωaragonite values in the pore waters (range: 0.18 to 4.78) were always lower than those in the overlying waters (2.40 to 4.46), and 52% (n = 48) of the values were aragonite in 75% (n = 16) of the samples, but increased it in the remainder. The elevated fluxes of nutrients, DIC and TA into the sediment–water interface layer negatively alters the suitability of this zone for the settlement and development of calcifying larvae, while enhancing the establishment of algal communities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Litho.258...15H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Litho.258...15H"><span>Fluid-mediated mass transfer from a paleosubduction channel to its mantle wedge: Evidence from jadeitite and related rocks from the Guatemala Suture Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harlow, George E.; Flores, Kennet E.; Marschall, Horst R.</p> <p>2016-08-01</p> <p>Jadeitites in serpentinite mélanges are the product of crystallization from and/or metasomatism by aqueous fluids that transfer components from and within a subduction channel-the slab-mantle interaction volume-into discrete rock units, most commonly found within the serpentinized or serpentinizing portion of the channel or the overlying mantle rocks at high pressure (1 to > 2 GPa). Two serpentinite mélanges on either side of the Motagua fault system (MFS) of the Guatemala Suture Zone contain evidence of this process. Whole rock compositional analyses are reported here from 86 samples including jadeitites and the related rocks: omphacitites, albitites and mica rocks. The predominance of a single phase in most of these rocks is reflected in the major element compositions and aspects of the trace elements, such as REE abundances tracking Ca in clinopyroxene. Relative to N-MORB all samples show relative enrichments in the high field strength elements (HFSE) Hf, Zr, U, Th, and the LILE Ba and Cs, contrasted by depletions in K and in some cases Pb or Sr. Most jadeitites are also depleted in the highly compatible elements Cr, Sc and Ni despite their occurrence in serpentinite mélange; however, some omphacitite samples show the opposite. Trace elements in these jadeitite samples show a strong similarity with GLOSS (globally subducted oceanic sediment) and other terrigenous sediments in terms of their trace-element patterns, but are offset to lower abundances. Jadeitites thus incorporate a strong trace-element signature derived from sediments mixed with that from fluid derived from altered oceanic crust. Enrichment in the HFSE argues for mobility of these elements in aqueous fluids at high P/T conditions in the subduction channel and a remarkable lack of fractionation that might otherwise be expected from dissolution and fluid transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC24B1098A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC24B1098A"><span>Surf Zone Sediment Size Variation, Morphodynamics, and Hydrodynamics During Sea/Land Breeze and El-Norte Storm in Sisal, Yucatan, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alrushaid, T.; Figlus, J.; Torres-Freyermuth, A.; Puleo, J. A.; Dellapenna, T. M.</p> <p>2016-02-01</p> <p>Coastlines around the world are under ever-increasing pressure due to population trends, commerce, and geophysical processes like tropical storms and erosion. This multi-institutional field campaign was conducted to improve our understanding of complex nearshore processes under varying forcing conditions on a microtidal, sandy beach located in Sisal, Yucatan from 3/27 to 4/12/2014. Hydrodynamics, morphodynamics, and textural variability were investigated during: (1) a cold front event (referred to as El-Norte); (2) land breeze (LB); and (3) sea breeze (SB). The instrumentation layout included three surf/swash zone cross-shore transects where water elevation, suspended sediment concentration, bed load, and current velocities were measured, as well as several offshore ADCP for hydrodynamic measurements. TKE, τb, ɛ and were estimated using the data obtained from surf zone ADV. In addition, Hs and Tsin the surf zone were computed using measurements from ADV pressure sensors, while a separate pressure transducer was used to obtain water free-surface elevation within the swash zone. During SB cycles the study area experienced wind velocities reaching up to 12ms-1, and 15ms-1 during El-Norte. Elevated wind stress during El-Norte resulted in Hs of 1.5m and 0.6m in water depths of 10m and 0.4m, respectively. Surface sediment grab samples during SB/LB cycles showed that the swash zone had a moderately well sorted distribution with a mean grain size of 0.5mm, while poor sorting and a mean grain size of 0.7mm were found during El-Norte. Additionally, measured bathymetry data showed evidence for offshore sandbar migration during strong offshore currents (0.4ms-1) during El-Norte, while onshore sandbar migration was evident during SB/LB periods (0.3ms-1 and 0.1ms-1, respectively). This study highlights how different weather forcing conditions affect hydrodynamics, morphodynamics, and textural variability on a sandy beach. Aside from furthering our knowledge on these complex processes, the findings may lead to improved coastal management strategies for sandy coastlines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21261915','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21261915"><span>Bioremediation of marine oil spills: when and when not--the Exxon Valdez experience.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Atlas, Ronald; Bragg, James</p> <p>2009-03-01</p> <p>In this article we consider what we have learned from the Exxon Valdez oil spill (EVOS) in terms of when bioremediation should be considered and what it can accomplish. We present data on the state of oiling of Prince William Sound shorelines 18 years after the spill, including the concentration and composition of subsurface oil residues (SSOR) sampled by systematic shoreline surveys conducted between 2002 and 2007. Over this period, 346 sediment samples were analysed by GC-MS and extents of hydrocarbon depletion were quantified. In 2007 alone, 744 sediment samples were collected and extracted, and 222 were analysed. Most sediment samples from sites that were heavily oiled by the spill and physically cleaned and bioremediated between 1989 and 1991 show no remaining SSOR. Where SSOR does remain, it is for the most part highly weathered, with 82% of 2007 samples indicating depletion of total polycyclic aromatic hydrocarbon (Total PAH) of >70% relative to EVOS oil. This SSOR is sequestered in patchy deposits under boulder/cobble armour, generally in the mid-to-upper intertidal zone. The relatively high nutrient concentrations measured at these sites, the patchy distribution and the weathering state of the SSOR suggest that it is in a form and location where bioremediation likely would be ineffective at increasing the rate of hydrocarbon removal. © 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27787748','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27787748"><span>An assessment of butyltins and metals in sediment cores from the St. Thomas East End Reserves, USVI.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hartwell, S Ian; Apeti, Dennis A; Mason, Andrew L; Pait, Anthony S</p> <p>2016-11-01</p> <p>Tributyltin (TBT) concentrations near a marina complex in Benner Bay on St. Thomas, US Virgin Islands, were elevated relative to other areas in a larger study of the southeastern shore of the island. At the request of the USVI Coastal Zone Management Program, sediment cores and surface sediment samples were collected to better define the extent and history of TBT deposition in the vicinity of Benner Bay. The sediment cores were sectioned into 2-cm intervals and dated with 210 Pb and 137 Cs. The core sections and the surface samples were analyzed for butyltins and 16 elements. Deposition rates varied from 0.07-5.0 mm/year, and were highest in the marina complex. Core ages ranged from 54 to 200 years. The bottoms of the cores contained shell hash, but the top layers all consisted of much finer material. Surface concentrations of TBT exceeded 2000 ng Sn/g (dry weight) at two locations. At a depth of 8 cm TBT exceeded 8800 ng Sn/g in the marina complex sediment. Based on the ratio of tributyltin to total butyltins, it appears that the marina sediments are the source of contamination of the surrounding area. There is evidence that vessels from neighboring islands may also be a source of fresh TBT. Copper concentrations increase over time up to the present. Gradients of virtually all metals and metalloids extended away from the marina complex. NOAA sediment quality guidelines were exceeded for As, Pb, Cu, Zn, and Hg.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=83744&keyword=phone&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=83744&keyword=phone&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>SEDIMENT TOXICITY AND COMMUNITY COMPOSITION OF BENTHOS AND COLONIZED PERIPHYTON IN THE EVERGLADES - FLORIDA BAY TRANSITIONAL ZONE.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Lewis, Michael A., Larry R. Goodman, John M. Macauley and James C. Moore. 2004. Sediment Toxicity and Community Composition of Benthos and Colonized Periphyton in the Everglades-Florida Bay Transitional Zone. Ecotoxicology. 13(3):231-244. (ERL,GB 1164). <br><br>This survey provid...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=275176&Lab=NHEERL&keyword=recycling&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=275176&Lab=NHEERL&keyword=recycling&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Microbial respiration and extracellular enzyme activity in sediments from the Gulf of Mexico hypoxic zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>This study explores the relationship between sediment chemistry (TC, TN, TP) and microbial respiration (DHA) and extracellular enzyme activity (EEA) across the Gulf of Mexico (GOM) hypoxic zone. TC, TN, and TP were all positively correlated with each other (r=0.19-0.68). DHA was ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017639','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017639"><span>Mobilization of beryllium in the sedimentary column at convergent margins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>You, C.-F.; Morris, J.D.; Gieskes, J.M.; Rosenbauer, R.; Zheng, S.H.; Xu, X.; Ku, T.-L.; Bischoff, J.L.</p> <p>1994-01-01</p> <p>Studies of Be distributions in subduction zone sediments will help to understand questions regarding the enrichments of cosmogenic Be-10 in arc volcanic rocks. Analyses of Be-10 and Be-9 in sediments of Ocean Drilling Program Site 808, Nankai Trough and Be-9 in porewaters of Site 808 and Sites 671 and 672, Barbados ridge complex, show significant decreases in solid phase Be-10 and large increases of porewater Be-9 at the location of the de??collement zone and below or at potential flow conduits. These data imply the potential mobilization of Be during pore fluid expulsion upon sediment burial. Experiments involving reaction between a de??collement sediment and a synthetic NaCl-CaCl2 solution at elevated pressure and temperatures were conducted in an attempt to mimic early subduction zone processes. The results demonstrate that Be is mobilized under elevated pressure and temperature with a strong pH dependence. The Be mobilization provides an explanation of Be-10 enrichment in arc volcanic rocks and supports the argument of the importance of the fluid processes in subduction zones at convergent margins. ?? 1994.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28619628','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28619628"><span>Environmental background values of trace elements in sediments from the Jiaozhou Bay catchment, Qingdao, China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Fangjian; Liu, Zhaoqing; Yuan, Shengqiang; Zhang, Xilin; Sun, Zhilei; Xu, Feng; Jiang, Zuzhou; Li, Anchun; Yin, Xuebo</p> <p>2017-08-15</p> <p>Selected trace elements (As, Cr, Zn, Cu, Cd, Co, Pb and Ni) in 76 surface sediment samples collected from the rivers and the intertidal zone of Jiaozhou Bay (JZB) were evaluated to assess their environmental background values in the JZB catchment. Overall, the sediment quality in the area meets the China Marine Sediment Quality criteria. The background values (ranges) of the elements As, Cr, Zn, Cu, Cd, Co, Pb and Ni were, respectively, 8.28 (4.10-12.46), 67.96 (38.40-97.52), 56.80 (16.42-196.51), 19.13 (5.71-64.06), 0.10 (0.02-0.42), 6.51 (2.08-20.40), 17.97 (12.26-55.84) and 20.69 (10.43-30.95)mg/kg. The background values of most of the trace elements were lower than those in Chinese soil, the upper continental crust, global shales and global preindustrial sediments. The results may assist in defining future coastal and river management measures specifically targeted at monitoring trace element contamination in the JZB catchment. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28892022','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28892022"><span>Preparation of Authigenic Pyrite from Methane-bearing Sediments for In Situ Sulfur Isotope Analysis Using SIMS.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lin, Zhiyong; Sun, Xiaoming; Peckmann, Jörn; Lu, Yang; Strauss, Harald; Xu, Li; Lu, Hongfeng; Teichert, Barbara M A</p> <p>2017-08-31</p> <p>Different sulfur isotope compositions of authigenic pyrite typically result from the sulfate-driven anaerobic oxidation of methane (SO4-AOM) and organiclastic sulfate reduction (OSR) in marine sediments. However, unravelling the complex pyritization sequence is a challenge because of the coexistence of different sequentially formed pyrite phases. This manuscript describes a sample preparation procedure that enables the use of secondary ion mass spectroscopy (SIMS) to obtain in situ δ 34 S values of various pyrite generations. This allows researchers to constrain how SO4-AOM affects pyritization in methane-bearing sediments. SIMS analysis revealed an extreme range in δ 34 S values, spanning from -41.6 to +114.8‰, which is much wider than the range of δ 34 S values obtained by the traditional bulk sulfur isotope analysis of the same samples. Pyrite in the shallow sediment mainly consists of 34 S-depleted framboids, suggesting early diagenetic formation by OSR. Deeper in the sediment, more pyrite occurs as overgrowths and euhedral crystals, which display much higher SIMS δ 34 S values than the framboids. Such 34 S-enriched pyrite is related to enhanced SO4-AOM at the sulfate-methane transition zone, postdating OSR. High-resolution in situ SIMS sulfur isotope analyses allow for the reconstruction of the pyritization processes, which cannot be resolved by bulk sulfur isotope analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70186913','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70186913"><span>Hydrates of nat­ural gas in continental margins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kvenvolden, K.A.; Barnard, L.A.</p> <p>1982-01-01</p> <p>Natural gas hydrates in continental margin sediment can be inferred from the widespread occurrence of an anomalous seismic reflector which coincides with the predicted transition boundary at the base of the gas hydrate zone. Direct evidence of gas hydrates is provided by visual observations of sediments from the landward wall of the Mid-America Trench off Mexico and Guatemala, from the Blake Outer Ridge off the southeastern United States, and from the Black Sea in the U.S.S.R. Where solid gas hydrates have been sampled, the gas is composed mainly of methane accompanied by CO2 and low concentrations of ethane and hydrocarbons of higher molecular weight. The molecular and isotopic composition of hydrocarbons indicates that most of the methane is of biolog cal origin. The gas was probably produced by the bacterial alteration of organic matter buried in the sediment. Organic carbon contents of the sediment containing sampled gas hydrates are higher than the average organic carbon content of marine sediments. The main economic importance of gas hydrates may reside in their ability to serve as a cap under which free gas can collect. To be producible, however, such trapped gas must occur in porous and permeable reservoirs. Although gas hydrates are common along continental margins, the degree to which they are associated with significant reservoirs remains to be investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911762G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911762G"><span>Effects of fluidization of the host sediment on peperite textures: A field example from the Cretaceous Buan Volcanics, SW Korea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gihm, Yong Sik; Kwon, Chang Woo</p> <p>2017-04-01</p> <p>In the Cretaceous Buan Volcanics (SW Korea), blocky and fluidal peperites are hosted in a massive pumiceous lapilli tuff intruded by intermediate dikes. Blocky peperites, the most abundant species, are characterized by polyhedral or platy juvenile clasts and a jigsaw-crack texture. Fluidal peperites occur only along dike margins, where the host sediments are composed of well sorted, fine to very fine ash (fine-grained zone), and are characterized by fluidal or globular juvenile clasts with irregular or ragged margins. The fine-grained zone is interpreted to form by grain size segregation caused by upward moving pore water (fluidization) that has resulted from heat transfer from intruding magma toward waterlogged host sediments during intrusion. With the release of pore water and the selective entrainment of fine-grained ash, fine-grained zones formed within the host sediments. Subsequent interactions between the fine-grained zone and the intruding magma resulted in ductile deformation of the magma before fragmentation, which generated fluidal peperites. Outside the fine-grained zone, intruding magma fragmented in a brittle manner because of the relative deficiency of both pore water and fine-grained ash, resulting in the formation of blocky peperites. The results of this study suggest that redistribution of constituent particles (ash) and interstitial fluids during fluidization resulted in heterogeneous physical conditions of the host sediments, which influenced peperite-forming processes, as reflected by the different peperite textures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18409623','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18409623"><span>Effect of saline waste solution infiltration rates on uranium retention and spatial distribution in Hanford sediments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wan, Jiamin; Tokunaga, Tetsu K; Kim, Yongman; Wang, Zheming; Lanzirotti, Antonio; Saiz, Eduardo; Serne, R Jeffrey</p> <p>2008-03-15</p> <p>The accidental overfilling of waste liquid from tank BX-102 at the Hanford Site in 1951 put about 10 t of U(VI) into the vadose zone. In order to understand the dominant geochemical reactions and transport processes that occurred during the initial infiltration and to help understand current spatial distribution, we simulated the waste liquid spilling event in laboratory sediment columns using synthesized metal waste solution. We found that, as the plume propagated through sediments, pH decreased greatly (as much as 4 units) at the moving plume front. Infiltration flow rates strongly affect U behavior. Slower flow rates resulted in higher sediment-associated U concentrations, and higher flow rates (> or =5 cm/day) permitted practically unretarded U transport. Therefore, given the very high Ksat of most of Hanford formation, the low permeability zones within the sediment could have been most important in retaining high concentrations of U during initial release into the vadose zone. Massive amount of colloids, including U-colloids, formed at the plume fronts. Total U concentrations (aqueous and colloid) within plume fronts exceeded the source concentration by up to 5-fold. Uranium colloid formation and accumulation at the neutralized plume front could be one mechanism responsible for highly heterogeneous U distribution observed in the contaminated Hanford vadose zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B11G1733T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B11G1733T"><span>Distribution of microbial methanogenesis, methane oxidation, and sulfate reduction in a high-temperature subduction system of the Nankai Trough off Cape Muroto (IODP Expedition 370 T-Limit, Site C0023)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Treude, T.; Kallmeyer, J.; Beulig, F.; Glombitza, C.; Schubert, F.; Krause, S.; Heuer, V.; Inagaki, F.; Morono, Y.</p> <p>2017-12-01</p> <p>The aim of the IODP Expedition 370 is to explore the temperature limit of the deep biosphere in a sub-seafloor environment located in the Nankai Trough, where in-situ sediment temperature increases from 2°C at the seafloor to about 120°C at the 1.2 km deep sediment/basement interface. Our study focuses on the exploration of potential microbial methanogenesis, anaerobic oxidation of methane (AOM), and sulfate reduction in sediments from different depths (from ca. 200 to 1170 mbsf) exposed to several temperature settings in the laboratory (40, 60, 75/80 and 95°C). The drill site, which features a décollement between ca. 758-796 mbsf, includes a sulfate-poor methanogenic zone from approx. 400 to 600 mbsf, followed by a deep methane-sulfate transition zone between approx. 600 to 800 m, which transitions into a deep sulfate-rich zone. Potential microbial activity of hydrogenotrophic methanogenesis, AOM, and sulfate reduction was determined in incubations of sediment slurries produced from whole-round cores with H2-added artificial seawater medium using radioisotope techniques (14C-bicarbonate, 14C-methane, and 35S-sulfate, respectively). Preliminary results revealed two peaks of methanogenesis activity with rates in the order of 0.2 to 0.5 pmol g-1dw d-1. One peak was located within the methane-rich zone passing into the methane-sulfate transition zone (60 to 80°C incubations), while the second peak occurred close to the basement (below 1000 mbsf, 95°C incubation). Sulfate reduction activity was generally highest above 400 mbsf ( 1000 pmol cm-3 d-1, 40°C incubation). Below 400 mbsf, rates declined to levels between 0.1 and 10 pmol cm-3 d-1 (60-95 °C incubations) without a clear trend and continued until close to the bottom of the core. The results point to potentially thermophilic and hypothermophilic microorganisms that exist under very low energy conditions. Samples from AOM incubations are currently being processed and preliminary results will be presented at the meeting as well as the results for sulfate reduction incubations with methane and acetate amendments.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SedG..367..135B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SedG..367..135B"><span>Visualisation and analysis of shear-deformation bands in unconsolidated Pleistocene sand using ground-penetrating radar: Implications for paleoseismological studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brandes, Christian; Igel, Jan; Loewer, Markus; Tanner, David C.; Lang, Jörg; Müller, Katharina; Winsemann, Jutta</p> <p>2018-05-01</p> <p>Deformation bands in unconsolidated sediments are of great value for paleoseismological studies in sedimentary archives. Using ground-penetrating radar (GPR), we investigated an array of shear-deformation bands that developed in unconsolidated Pleistocene glacifluvial Gilbert-type delta sediments. A dense grid (spacing 0.6 m) of GPR profiles was measured on top of a 20 m-long outcrop that exposes shear-deformation bands. Features in the radargrams could be directly tied to the exposure. The shear-deformation bands are partly represented by inclined reflectors and partly by the offset of reflections at delta clinoforms. 3-D interpretation of the 2-D radar sections shows that the bands have near-planar geometries that can be traced throughout the entire sediment volume. Thin sections of sediment samples show that the analysed shear-deformation bands have a denser grain packing than the host sediment. Thus they have a lower porosity and smaller pore sizes and therefore, in the vadose zone, the deformation bands have a higher water content due to enhanced capillary forces. This, together with the partially-developed weak calcite cementation and the distinct offset along the bands, are likely the main reasons for the clear and unambiguous expression of the shear-deformation bands in the radar survey. The study shows that deformation-band arrays can clearly be detected using GPR and quickly mapped over larger sediment volumes. With the 3-D analysis, it is further possible to derive the orientation and geometry of the bands. This allows correlation of the bands with the regional fault trend. Studying deformation bands in unconsolidated sediments with GPR is therefore a powerful approach in paleoseismological studies. Based on our data, we postulate that the outcrop is part of a dextral strike-slip zone that was reactivated by glacial isostatic adjustment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3692436','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3692436"><span>Bacteria Contribute to Sediment Nutrient Release and Reflect Progressed Eutrophication-Driven Hypoxia in an Organic-Rich Continental Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sinkko, Hanna; Lukkari, Kaarina; Sihvonen, Leila M.; Sivonen, Kaarina; Leivuori, Mirja; Rantanen, Matias; Paulin, Lars; Lyra, Christina</p> <p>2013-01-01</p> <p>In the sedimental organic matter of eutrophic continental seas, such as the largest dead zone in the world, the Baltic Sea, bacteria may directly participate in nutrient release by mineralizing organic matter or indirectly by altering the sediment’s ability to retain nutrients. Here, we present a case study of a hypoxic sea, which receives riverine nutrient loading and in which microbe-mediated vicious cycles of nutrients prevail. We showed that bacterial communities changed along the horizontal loading and vertical mineralization gradients in the Gulf of Finland of the Baltic Sea, using multivariate statistics of terminal restriction fragments and sediment chemical, spatial and other properties of the sampling sites. The change was mainly explained by concentrations of organic carbon, nitrogen and phosphorus, which showed strong positive correlation with Flavobacteria, Sphingobacteria, Alphaproteobacteria and Gammaproteobacteria. These bacteria predominated in the most organic-rich coastal surface sediments overlain by oxic bottom water, whereas sulphate-reducing bacteria, particularly the genus Desulfobacula, prevailed in the reduced organic-rich surface sediments in the open sea. They correlated positively with organic nitrogen and phosphorus, as well as manganese oxides. These relationships suggest that the bacterial groups participated in the aerobic and anaerobic degradation of organic matter and contributed to nutrient cycling. The high abundance of sulphate reducers in the surficial sediment layers reflects the persistence of eutrophication-induced hypoxia causing ecosystem-level changes in the Baltic Sea. The sulphate reducers began to decrease below depths of 20 cm, where members of the family Anaerolineaceae (phylum Chloroflexi) increased, possibly taking part in terminal mineralization processes. Our study provides valuable information on how organic loading affects sediment bacterial community compositions, which consequently may maintain active nutrient recycling. This information is needed to improve our understanding on nutrient cycling in shallow seas where the dead zones are continuously spreading worldwide. PMID:23825619</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70189705','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70189705"><span>Eruptive and environmental processes recorded by diatoms in volcanically-dispersed lake sediments from the Taupo Volcanic Zone, New Zealand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Harper, Margaret A.; Pledger, Shirley A.; Smith, Euan G. C.; Van Eaton, Alexa; Wilson, Colin J. N.</p> <p>2015-01-01</p> <p>Late Pleistocene diatomaceous sediment was widely dispersed along with volcanic ash (tephra) across and beyond New Zealand by the 25.4 ka Oruanui supereruption from Taupo volcano. We present a detailed analysis of the diatom populations in the Oruanui tephra and the newly discovered floras in two other eruptions from the same volcano: the 28.6 ka Okaia and 1.8 ka Taupo eruptions. For comparison, the diatoms were also examined in Late Pleistocene and Holocene lake sediments from the Taupo Volcanic Zone (TVZ). Our study demonstrates how these microfossils provide insights into the lake history of the TVZ since the Last Glacial Maximum. Morphometric analysis of Aulacoseira valve dimensions provides a useful quantitative tool to distinguish environmental and eruptive processes within and between individual tephras. The Oruanui and Okaia diatom species and valve dimensions are highly consistent with a shared volcanic source, paleolake and eruption style (involving large-scale magma-water interaction). They are distinct from lacustrine sediments sourced elsewhere in the TVZ. Correspondence analysis shows that small, intact samples of erupted lake sediment (i.e., lithic clasts in ignimbrite) contain heterogeneous diatom populations, reflecting local variability in species composition of the paleolake and its shallowly-buried sediments. Our analysis also shows a dramatic post-Oruanui supereruption decline in Cyclostephanos novaezelandiae, which likely reflects a combination of (1) reorganisation of the watershed in the aftermath of the eruption, and (2) overall climate warming following the Last Glacial Maximum. This decline is reflected in substantially lower proportions of C. novaezelandiae in the 1.8 ka Taupo eruption deposits, and even fewer in post-1.8 ka sediments from modern (Holocene) Lake Taupo. Our analysis highlights how the excellent preservation of siliceous microfossils in volcanic tephra may fingerprint the volcanic source region and retain a valuable record of volcanically-influenced environmental change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ECSS..165...86V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ECSS..165...86V"><span>Seasonal patterns of bacterial communities in the coastal brackish sediments of the Gulf of Finland, Baltic Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vetterli, Adrien; Hyytiäinen, Kirsi; Ahjos, Minttu; Auvinen, Petri; Paulin, Lars; Hietanen, Susanna; Leskinen, Elina</p> <p>2015-11-01</p> <p>Coastal areas are critical in mitigating the impact of nutrient runoffs and downstream eutrophication of aquatic ecosystems. In the Gulf of Finland, the easternmost sub-basin of the Baltic Sea, seasonal and long-term oxygen depletion at the surface of the sediment feeds back the eutrophication loop by promoting the release of nutrients locked in the sediment matrix. In order to understand how the bacterial community responds to the seasonal variations, we sequenced ribosomal gene fragments from the top sediment layer at two coastal sites in southern Finland in spring, summer and late autumn during two consecutive years. Analysis of the samples collected at a shallow (11 m) and deep site (33 m) revealed that the overall community composition was rather constant over time with an extensive collection of shared operational taxonomic units (OTU) between sites. The dominant taxa were related to organoheterotrophs and sulfate reducers and the variation in community structure was linked to the availability of organic matter in the surface sediment. Proteobacteria formed the most abundant and diverse group. The taxa characteristic of spring samples belonged primarily to Actinobacteria, possibly of fresh water origin and linked to humic carbon. Summer communities were characterized by an increase in the number of reads associated with heterotrophic bacteria such as Bacteroidetes which feed on labile organic matter from spring bloom. Taxa typical of autumn samples were linked to Cyanobacteria and other bloom-forming bacteria from the overlying water and to bacteria feeding on organic matter drifting from the phytal zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037061','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037061"><span>Thermal conductivity of hydrate-bearing sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn D.</p> <p>2009-01-01</p> <p>A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70148338','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70148338"><span>Slipstream: an early Holocene slump and turbidite record from the frontal ridge of the Cascadia accretionary wedge off western Canada and paleoseismic implications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hamilton, T.S.; Enkin, Randolph J.; Riedel, Michael; Rogers, Gary C.; Pohlman, John W.; Benway, Heather M.</p> <p>2015-01-01</p> <p>Slipstream Slump, a well-preserved 3 km wide sedimentary failure from the frontal ridge of the Cascadia accretionary wedge 85 km off Vancouver Island, Canada, was sampled during Canadian Coast Guard Ship (CCGS) John P. Tully cruise 2008007PGC along a transect of five piston cores. Shipboard sediment analysis and physical property logging revealed 12 turbidites interbedded with thick hemipelagic sediments overlying the slumped glacial diamict. Despite the different sedimentary setting, atop the abyssal plain fan, this record is similar in number and age to the sequence of turbidites sampled farther to the south from channel systems along the Cascadia Subduction Zone, with no extra turbidites present in this local record. Given the regional physiographic and tectonic setting, megathrust earthquake shaking is the most likely trigger for both the initial slumping and subsequent turbidity currents, with sediments sourced exclusively from the exposed slump face of the frontal ridge. Planktonic foraminifera picked from the resedimented diamict of the underlying main slump have a disordered cluster of 14C ages between 12.8 and 14.5 ka BP. For the post-slump stratigraphy, an event-free depth scale is defined by removing the turbidite sediment intervals and using the hemipelagic sediments. Nine14C dates from the most foraminifera-rich intervals define a nearly constant hemipelagic sedimentation rate of 0.021 cm/year. The combined age model is defined using only planktonic foraminiferal dates and Bayesian analysis with a Poisson-process sedimentation model. The age model of ongoing hemipelagic sedimentation is strengthened by physical property correlations from Slipstream events to the turbidites for the Barkley Canyon site 40 km south. Additional modelling addressed the possibilities of seabed erosion or loss and basal erosion beneath turbidites. Neither of these approaches achieves a modern seabed age when applying the commonly used regional marine 14C reservoir age of 800 years (marine reservoir correction ΔR= 400 years). Rather, the top of the core appears to be 400 years in the future. A younger marine reservoir age of 400 years (ΔR = 0 years) brings the top to the present and produces better correlations with the nearby Effingham Inlet paleo-earthquake chronology based only on terrestrial carbon requiring no reservoir correction. The high-resolution dating and facies analysis of Slipstream Slump in this isolated slope basin setting demonstrates that this is also a useful type of sedimentary target for sampling the paleoseismic record in addition to the more studied turbidites from submarine canyon and channel systems. The first 10 turbidites at Slipstream Slump were deposited between 10.8 and 6.6 ka BP, after which the system became sediment starved and only two more turbidites were deposited. The recurrence interval for the inferred frequent early Holocene megathrust earthquakes is 460 ± 140 years, compatible with other estimates of paleoseismic megathrust earthquake occurrence rates along the subduction zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24561931','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24561931"><span>Sedimentation and associated trace metal enrichment in the riparian zone of the Three Gorges Reservoir, China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tang, Qiang; Bao, Yuhai; He, Xiubin; Zhou, Huaidong; Cao, Zhijing; Gao, Peng; Zhong, Ronghua; Hu, Yunhua; Zhang, Xinbao</p> <p>2014-05-01</p> <p>Impoundment of the Three Gorges Reservoir has created an artificial riparian zone with a vertical height of 30 m and a total area of 349 km(2), which has been subjected to seasonal inundation and exposure due to regular reservoir impoundment and the occurrence of natural floods. The significant alteration of hydrologic regime has caused numerous environmental changes. The present study investigated the magnitude and spatial pattern of sedimentation and metal enrichment in a typical section of the riparian zone, composed of bench terraces with previous agricultural land uses, and explored their links to the changed hydrologic regime. In particular, we measured the total sediment depths and collected surface riparian sediments and down-profile sectioned riparian soils (at 5 cm intervals) for trace metal determination. Our analysis showed that the annual average sedimentation rates varied from 0.5 to 10 cm·yr(-1) and they decreased significantly with increasing elevation. This lateral distribution was principally attributed to seasonal variations in water levels and suspended sediment concentrations. Enriched concentrations of trace metals were found both in the riparian sediments and soils, but they were generally higher in the riparian sediments than in riparian soils and followed a similar lateral decreasing trend. Metal contamination assessment showed that the riparian sediments were slightly contaminated by Ni, Zn, and Pb, moderately contaminated by Cu, and moderately to strongly contaminated by Cd; while riparian soils were slightly contaminated by As, and moderately contaminated by Cd. Trace metal enrichment in the riparian sediments may be attributed to external input of contaminated sediments produced from upstream anthropogenic sources and chemical adsorption from dissolved fractions during pure sediment mobilization and after sink for a prolonged flooding period due to reservoir impoundment. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015441','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015441"><span>Morphology of sea-floor landslides on Horizon Guyot: application of steady-state geotechnical analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kayen, R.E.; Schwab, W.C.; Lee, H.J.; Torresan, M.E.; Hein, J.R.; Quinterno, P.J.; Levin, L.A.</p> <p>1989-01-01</p> <p>Mass movement and erosion have been identified on the pelagic sediment cap of Horizon Guyot, a seamount in the Mid-Pacific Mountains. Trends in the size, shape and preservation of bedforms and sediment textural trends on the pelagic cap indicate that bottom-current-generated sediment transport direction is upslope. Slumping of the sediment cap occurred on and that the net bedload transport direction is upslope. Slumping of the sediment cap occurred on the northwest side of the guyot on a 1.6?? to 2.0?? slope in the zone of enhanced bottom-current activity. Submersible investigations of these slump blocks show them to be discrete and to have a relief of 6-15 m, with nodular chert beds cropping out along the headwall of individual rotated blocks. An evaluation of the stability of the sediment cap suggests that the combination of the current-induced beveling of the sea floor and infrequent earthquake loading accompanied by cyclic strength reduction is responsible for the initiation of slumps. The sediment in the area of slumping moved short distances in relatively coherent masses, whereas sediment that has moved beyond the summit cap perimeter has fully mobilized into sediment gravity flows and traveled large distances. A steady-state geotechnical analysis of Horizon Guyot sediment indicates the predisposition of deeply buried sediment towards disintegrative flow failure on appropriately steep slopes. Thus, slope failure in this deeper zone would include large amounts of internal deformation. However, gravitational stress in the near-surface sediment of the summit cap (sub-bottom depth < 14 m) is insufficient to maintain downslope movement after initial failure occurs. The predicted morphology of coherent slump blocks displaced and rafted upon a weakened zone at depth corresponds well with seismic-reflection data and submersible observations. ?? 1990.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26485717','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26485717"><span>Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Yong; Li, Jiang Tao; He, Li Sheng; Yang, Bo; Gao, Zhao Ming; Cao, Hui Luo; Batang, Zenon; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan</p> <p>2015-01-01</p> <p>In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4613831','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4613831"><span>Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Yong; Li, Jiang Tao; He, Li Sheng; Yang, Bo; Gao, Zhao Ming; Cao, Hui Luo; Batang, Zenon; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan</p> <p>2015-01-01</p> <p>In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin. PMID:26485717</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017295','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017295"><span>Reconnaissance exploration geochemistry in the central Brooks Range, northern Alaska: Implications for exploration of sediment-hosted zinc-lead-silver deposits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kelley, K.D.; Kelley, D.L.</p> <p>1992-01-01</p> <p>A reconnaissance geochemical survey was conducted in the southern Killik River quadrangle, central Brooks Range, northern Alaska. The Brooks Range lies within the zone of continuous permafrost which may partially inhibit chemical weathering and oxidation. The minus 30-mesh and nonmagnetic heavy-mineral concentrate fractions of sediment samples were chosen as the sample media for the survey so that mechanical rather than chemical dispersion patterns would be enhanced. A total of 263 sites were sampled within the southern half of the Killik River quadrangle at an average sample density of approximately one sample per 12 km2. All samples were submitted for multi-element analyses. In the western and central Brooks Range, several known sediment-hosted Zn-Pb-Ag(-Ba) deposits occur within a belt of Paleozoic rocks of the Endicott Mountains allochthon. Exploration for this type of deposit in the Brook Range is difficult, due to the inherently high background values for Ba, Zn and Pb in shale and the common occurrence of metamorphic quartz-calcite veins, many of which contain traces of sulfide minerals. Stream sediments derived from these sources produce numerous geochemical anomalies which are not necessarily associated with significant mineralization. R-mode factor analysis provides a means of distinguishing between element associations related to lithology and those related to possible mineralization. Factor analysis applied to the multi-element data from the southern Killik River quadrangle resulted in the discovery of two additional Zn-Pb-Ag mineral occurrences of considerable areal extent which are 80-100 km east of any previously known deposit. These have been informally named the Kady and Vidlee. Several lithogeochemical element associations, or factors, and three factors which represent sulfide mineralization were identified: Ag-Pb-Zn (galena and sphalerite) and Fe-Ni-Co-Cu (pyrite ?? chalcopyrite) in the concentrate samples and Cd-Zn-Pb-As-Mn in the sediment samples. The distribution of high scores for each individual mineralization factor outlined several relatively large (200-250 km2) geochemically favorable areas. When the distribution of high scores for all three factors were superimposed, samples characterized by high scores for one or both of the concentrate mineralization factors and the mineralization factor in sediments define basin areas of approximately 48 and 64 km2 surrounding Kady and Vidlee, respectively. ?? 1992.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1986JGR....9114317M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1986JGR....9114317M"><span>Behavior of 226Ra in the Mississippi River mixing zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, Daniel G.; Scott, Martha R.</p> <p>1986-12-01</p> <p>The behavior of 226Ra in the Mississippi River mixing zone is strongly nonconservative and includes desorption similar to that reported for the Hudson, Pee Dee, and Amazon rivers. However, dissolved and desorbed 226Ra concentrations in the Mississippi are 2 to 5 times greater than in the other rivers at the same salinity. Radium concentrations vary inversely with the water discharge rate. The 226Ra desorption maximum occurs at a salinity of 5.0, much lower than the 18 to 28 salinity values for the maxima of the other three rivers. High concentrations of dissolved 226Ra (up to 82 dpm per 100 L) and the low salinity values for the desorption maximum in the Mississippi River result from three major factors. Suspended sediments include a large fraction of montmorillonite, which gives the sediment a high cation exchange capacity, 0.54 meq/g. The average suspended sediment load is large, about 510 mg/L, and contains 1.9 dpm/g desorbable 226Ra. The dissolved 226Ra river water end-member (9.6 dpm per 100 L) is higher than in surface seawater. The annual contribution of 226Ra to the ocean from the Mississippi River is 3.7 × 1014 dpm/yr, based on data from three cruises. Evidence of flux of 226Ra from estuarine and shelf sediments is common in vertical profile sampling of the deltaic waters but is not reflected in calculations made with an "apparent" river water Ra value extrapolated to zero salinity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSME24E0754M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSME24E0754M"><span>Decadal to centennial oscillations in the upper and lower boundaries of the San Diego, California margin Oxygen Minimum Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Myhre, S. E.; Hill, T. M.; Frieder, C.; Grupe, B.</p> <p>2016-02-01</p> <p>Here we present two new marine sediment archives from the continental margin of San Diego, California, USA, which record decadal to centennial oscillations in the hydrographic structure of the Eastern Pacific Oxygen Minimum Zone (OMZ). The two cores, located at 528 and 1,180 m water depth, record oceanographic history across overlapping timescales. Biotic communities, including Foraminifera, Echinodermata, Brachiopoda, Mollusca and Ostrocoda, were examined in subsurface (>10 cm sediment core depth) samples. Chronologies for both cores were developed with reservoir-corrected 14C dates of mixed planktonic Foraminifera and linearly interpolated sedimentation rates. Sediment ages for the cores range from 400-1,800 years before present. Indices of foraminiferal community density, diversity and evenness are applied as biotic proxies to track the intensification of the continental margin OMZ. Biotic communities at the shallower site reveal multi-decadal to centennial timescales of OMZ intensification, whereas the deeper site exhibits decadal to multi-decadal scales of hydrographic variability. Hypoxia-associated foraminiferal genera Uvigerina and Bolivina were compositionally dominant during intervals of peak foraminiferal density. Invertebrate assemblages often co-occurred across taxa groups, and thereby provide a broad trophic context for interpreting changes in the margin seafloor. Variability in the advection of Pacific Equatorial Water may mechanistically contribute to this described hydrographic variability. This investigation reconstructs historical timescales of OMZ intensification, seafloor ecological variability, and synchrony between open-ocean processes and regional climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70119135','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70119135"><span>Autonomous bed-sediment imaging-systems for revealing temporal variability of grain size</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Buscombe, Daniel; Rubin, David M.; Lacy, Jessica R.; Storlazzi, Curt D.; Hatcher, Gerald; Chezar, Henry; Wyland, Robert; Sherwood, Christopher R.</p> <p>2014-01-01</p> <p>We describe a remotely operated video microscope system, designed to provide high-resolution images of seabed sediments. Two versions were developed, which differ in how they raise the camera from the seabed. The first used hydraulics and the second used the energy associated with wave orbital motion. Images were analyzed using automated frequency-domain methods, which following a rigorous partially supervised quality control procedure, yielded estimates to within 20% of the true size as determined by on-screen manual measurements of grains. Long-term grain-size variability at a sandy inner shelf site offshore of Santa Cruz, California, USA, was investigated using the hydraulic system. Eighteen months of high frequency (min to h), high-resolution (μm) images were collected, and grain size distributions compiled. The data constitutes the longest known high-frequency record of seabed-grain size at this sample frequency, at any location. Short-term grain-size variability of sand in an energetic surf zone at Praa Sands, Cornwall, UK was investigated using the ‘wave-powered’ system. The data are the first high-frequency record of grain size at a single location of a highly mobile and evolving bed in a natural surf zone. Using this technology, it is now possible to measure bed-sediment-grain size at a time-scale comparable with flow conditions. Results suggest models of sediment transport at sandy, wave-dominated, nearshore locations should allow for substantial changes in grain-size distribution over time-scales as short as a few hours.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC53D0927L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC53D0927L"><span>Thermokarst lake dynamics and its influence on biogeochemical sediment characteristics: A case study from the discontinuous permafrost zone in Interior Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lenz, J.; Walter Anthony, K. M.; Maio, C. V.; Matuszewski, F.; Grosse, G.</p> <p>2017-12-01</p> <p>Under currently projected scenarios of climate warming, discontinuous warm permafrost in Interior Alaska is expected to experience widespread disappearance. Thermokarst ponds and lakes are evidence for rapid permafrost thaw and amplify deep thaw by talik development. During the thawing process, previously preserved organic matter is made available for decomposition and former permafrost carbon is potentially released as greenhouse gases carbon dioxide and methane. In the course of lake development and shoreline expansion, both, younger near-surface and older organic matter from slumping shores are potentially deposited in the lake basin. Lake internal bioproductivity is complementing carbon accumulation in lacustrine deposits and provides an additional source of young carbon. This study presents results of two intersecting, limnolithological transects of 5 sediment cores from Goldstream Lake, a typical small, boreal thermokarst lake in Interior Alaska. We here distinguish external terrestrial and internal aquatic carbon contributions to sediments based on sediment samples that were analyzed for the total organic carbon/total nitrogen ratio (C/N) as well as stable carbon isotopes. The littoral zone with actively eroding shorelines is characterized by methane seeps produced from anaerobic microbial decomposition; however, near-shore sediments have surprisingly low total organic carbon contents with a mean of 1.5 wt%; the low C/N ratio of 8.7 indicate a dominance of lacustrine plant material. Very similar results were found for sediments in the central basin, but here a clear shift to a terrestrial carbon signal (C/N of 22) with total organic carbon content of almost 30 wt% is presumably indicating the presence of a trash layer featuring largely terrestrial plants submerged during the initial lake phase. The talik sediments have carbon storage similar to the lake sediments but in contrast are not layered. Subarctic aquatic environments such as Goldstream Lake demonstrate a high aquatic productivity as well as a high biogeochemical turn-over over short periods of time. In addition, the ongoing decomposition of organic matter in talik sediments proves to be crucial to assess the contribution of thermokarst lakes to future climate change by mobilizing soil carbon previously frozen in permafrost.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B23B0202Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B23B0202Z"><span>Nitrous Oxide Production and Fluxes from Coastal Sediments under Varying Environmental Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ziebis, W.; Wankel, S. D.; de Beer, D.; Dentinger, J.; Buchwald, C.; Charoenpong, C.</p> <p>2014-12-01</p> <p>Although coastal zones represent important contributors to the increasing levels of atmospheric nitrous oxide (N2O), it is still unclear which role benthic processes play and whether marine sediments represent sinks or sources for N2O, since interactions among closely associated microbial groups lead to a high degree of variability. In addition, coastal areas are extremely dynamic regions, often exposed to increased nutrient loading and conditions of depleted oxygen. We investigated benthic N2O fluxes and how environmental conditions affect N2O production in different sediments at 2 different geographical locations (German Wadden Sea, a California coastal lagoon). At each location, a total of 32 sediment cores were taken in areas that differed in sediment type, organic content and pore-water nutrient concentrations, as well as in bioturbation activity. Parallel cores were incubated under in-situ conditions, low oxygen and increased nitrate levels for 10 days. Zones of N2O production and consumption were identified in intact cores by N2O microprofiles at the beginning and end of the experiments. In a collaborative effort to determine the dominant sources of N2O, samples were taken throughout the course of the experiments for the determination of the isotopic composition of N2O (as well as nitrate, nitrite and ammonium). Our results indicate that both, nitrate addition and low oxygen conditions in the overlying water, caused an increase of subsurface N2O production in most sediments, with a high variability between different sediment types. N2O production in the sediments was accompanied by N2O consumption, reducing the fluxes to the water column. In general, organic rich sediments showed the strongest response to environmental changes with increased production and efflux of N2O into the overlying water. Bioturbation activity added to the complexity of N2O dynamics by an increase in nitrification-denitrification processes, as well as enhanced pore-water transport. The results will be used in a metabolic modeling approach that will allow numerical simulation and prediction of sedimentary N2O dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910040011&hterms=coastal+zone&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dcoastal%2Bzone','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910040011&hterms=coastal+zone&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dcoastal%2Bzone"><span>Multipolarization P-, L-, and C-band radar for coastal zone mapping - The Louisiana example</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wu, Shih-Tseng</p> <p>1989-01-01</p> <p>Multipolarization P-, L-, and C-band airborne SAR data sets were acquired over a coastal zone and a forested wetland of southern Louisiana. The data sets were used with field-collected surface-parameter data in order to determine the value of SAR systems in assessing and mapping coastal-zone surface features. The coastal-zone surface features in this study are sediments, sediment distribution, and the formation of new isles and banks. Results of the data analysis indicate that the P-band radar with 68-cm wavelength is capable of detecting the submerged sediment if the area is very shallow (i.e., a water depth of less than one meter). The penetration capability of P-band radar is also demonstrated in the forested wetland area. The composition and condition of the ground surface can be detected, as well as the standing water beneath dense tree leaves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1052525','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1052525"><span>Effects of remediation amendments on vadose zone microorganisms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Miller, Hannah M.; Tilton, Fred A.</p> <p>2012-08-10</p> <p>Surfactant-based foam delivery technology has been studied to remediate Hanford 200 area deep vadose zone sediment. However, the surfactants and remediation amendments have an unknown effect on indigenous subsurface microorganisms. Microbial populations are important factors to consider in remediation efforts due to their potential to alter soil geochemistry. This project focuses on measuring microbial metabolic responses to remediation amendments in batch and column studies using Deep Vadose Zone Sediments. Initial studies of the microbes from Hanford 200 area deep vadose zone sediment showed surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CAPB) and remediation amendment calcium polysulfide (CPS) had nomore » affect on microbial growth using BiologTM Ecoplates. To move towards a more realistic field analog, soil columns were packed with Hanford 200 Area sediment. Once microbial growth in the column was verified by observing growth of the effluent solution on tryptic soy agar plates, remedial surfactants were injected into the columns, and the resulting metabolic diversity was measured. Results suggest surfactant sodium dodecyl sulfate (SDS) stimulates microbial growth. The soil columns were also visualized using X-ray microtomography to inspect soil packing and possibly probe for evidence of biofilms. Overall, BiologTM Ecoplates provide a rapid assay to predict effects of remediation amendments on Hanford 200 area deep vadose zone microorganisms.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040112156&hterms=herbicide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dherbicide','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040112156&hterms=herbicide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dherbicide"><span>Microtubule distribution in gravitropic protonemata of the moss Ceratodon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schwuchow, J.; Sack, F. D.; Hartmann, E.</p> <p>1990-01-01</p> <p>Tip cells of dark-grown protonemata of the moss Ceratodon purpureus are negatively gravitropic (grow upward). They possess a unique longitudinal zonation: (1) a tip group of amylochloroplasts in the apical dome, (2) a plastid-free zone, (3) a zone of significant plastid sedimentation, and (4) a zone of mostly non-sedimenting plastids. Immunofluorescence of vertical cells showed microtubules distributed throughout the cytoplasm in a mostly axial orientation extending through all zones. Optical sectioning revealed a close spatial association between microtubules and plastids. A majority (two thirds) of protonemata gravistimulated for > 20 min had a higher density of microtubules near the lower flank compared to the upper flank in the plastid-free zone. This apparent enrichment of microtubules occurred just proximal to sedimented plastids and near the part of the tip that presumably elongates more to produce curvature. Fewer than 5% of gravistimulated protonemata had an enrichment in microtubules near the upper flank, whereas 14% of vertical protonemata were enriched near one of the side walls. Oryzalin and amiprophos-methyl (APM) disrupted microtubules, gravitropism, and normal tip growth and zonation, but did not prevent plastid sedimentation. We hypothesize that a microtubule redistribution plays a role in gravitropism in this protonema. This appears to be the first report of an effect of gravity on microtubule distribution in plants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/2765534','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/2765534"><span>Macro and micro rate zonal analytical centrifugation of polydisperse and slowly diffusing sedimenting systems in isovolumetric density gradients. Application to cartilage proteoglycans.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Müller, F J; Pezon, C F; Pita, J C</p> <p>1989-06-13</p> <p>A method to study the polydispersity of zonally sedimenting and slowly diffusing macromolecules or particles in isokinetic or isovolumetric density gradients is presented. First, a brief theory is given for predicting the zonal profile after a "triangular" (or "inverse") zone is centrifuged. This type of zone is essential to preserve hydrodynamic stability of the very slowly diffusing polydisperse solutes. It is proven, both by semitheoretical considerations and by computer calculations, that the resulting concentration profile of macrosolute is almost identical with that obtainable with a rectangular zone coextensive with the triangular one and carrying the same total mass. Next, practical procedures are described for the convectionless layering of very small triangular zones (50 microL or less). The linearity and stability of the zones are experimentally tested and verified. Finally, the method is applied to cartilage proteoglycan preparations that included either the monomeric molecules only or both the monomeric and the aggregated ones. The zonal results are compared with those obtained by using conventional boundary sedimentation. The two sets of results are seen to coincide fairly well, thus proving that the present technique can add to preparative zonal centrifugation the analytical precision of boundary sedimentation. A multimodal polydisperse system is suggested to describe the aggregated proteoglycan macromolecules.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050060957','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050060957"><span>Recent Monitoring of Suspended Sediment Patterns along Louisiana's Coastal Zone using ER-2 based MAS Data and Terra Based MODIS Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moeller, Christopher C.; Gunshor, M. M.; Menzel, W. P.; Huh, O. K.; Walker, N. D.; Rouse, L. J.</p> <p>2001-01-01</p> <p>The University nf Wisconsin and Louisiana State University have teamed to study the forcing of winter season cold frontal wind systems on sediment distribution patterns and geomorphology in the Louisiana coastal zone. Wind systems associated with cold fronts have been shown to model coastal circulation and resuspend sediments along the micro tidal Louisiana coast (Roberts et at. 1987, Moeller et al. 1993). Remote sensing data is being used to map and track sediment distribution patterns for various wind conditions. Suspended sediment is a building material for coastal progradation and wetlands renewal, but also restricts access to marine nursery environments and impacts oyster bed health. Transferring a suspended sediment concentration (SSC) algorithm to EOS MODerate resolution Imaging Spectroradiometer (MODIS; Barnes et al. 1998) observations may enable estimates of SSC globally.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035563','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035563"><span>Geomorphic evolution of the Le Sueur River, Minnesota, USA, and implications for current sediment loading</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gran, K.B.; Belmont, P.; Day, S.S.; Jennings, C.; Johnson, Aaron H.; Perg, L.; Wilcock, P.R.</p> <p>2009-01-01</p> <p>There is clear evidence that the Minnesota River is the major sediment source for Lake Pepin and that the Le Sueur River is a major source to the Minnesota River. Turbidity levels are high enough to require management actions. We take advantage of the well-constrained Holocene history of the Le Sueur basin and use a combination of remote sensing, fi eld, and stream gauge observations to constrain the contributions of different sediment sources to the Le Sueur River. Understanding the type, location, and magnitude of sediment sources is essential for unraveling the Holocene development of the basin as well as for guiding management decisions about investments to reduce sediment loads. Rapid base-level fall at the outlet of the Le Sueur River 11,500 yr B.P. triggered up to 70 m of channel incision at the mouth. Slope-area analyses of river longitudinal profi les show that knickpoints have migrated 30-35 km upstream on all three major branches of the river, eroding 1.2-2.6 ?? 109 Mg of sediment from the lower valleys in the process. The knick zones separate the basin into an upper watershed, receiving sediment primarily from uplands and streambanks, and a lower, incised zone, which receives additional sediment from high bluffs and ravines. Stream gauges installed above and below knick zones show dramatic increases in sediment loading above that expected from increases in drainage area, indicating substantial inputs from bluffs and ravines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031244','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031244"><span>Changes in ice-margin processes and sediment routing during ice-sheet advance across a marginal moraine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Knight, P.G.; Jennings, C.E.; Waller, R.I.; Robinson, Z.P.</p> <p>2007-01-01</p> <p>Advance of part of the margin of the Greenland ice sheet across a proglacial moraine ridge between 1968 and 2002 caused progressive changes in moraine morphology, basal ice formation, debris release, ice-marginal sediment storage, and sediment transfer to the distal proglacial zone. When the ice margin is behind the moraine, most of the sediment released from the glacier is stored close to the ice margin. As the margin advances across the moraine the potential for ice-proximal sediment storage decreases and distal sediment flux is augmented by reactivation of moraine sediment. For six stages of advance associated with distinctive glacial and sedimentary processes we describe the ice margin, the debris-rich basal ice, debris release from the glacier, sediment routing into the proglacial zone, and geomorphic processes on the moraine. The overtopping of a moraine ridge is a significant glaciological, geomorphological and sedimentological threshold in glacier advance, likely to cause a distinctive pulse in distal sediment accumulation rates that should be taken into account when glacial sediments are interpreted to reconstruct glacier fluctuations. ?? 2007 Swedish Society for Anthropology and Geography.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70178398','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70178398"><span>Downstream aggradation owing to lava dome extrusion and rainfall runoff at Volcán Santiaguito, Guatemala</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Harris, Andrew J. L.; Vallance, James W.; Kimberly, Paul; Rose, William I.; Matías, Otoniel; Bunzendahl, Elly; Flynn, Luke P.; Garbeil, Harold</p> <p>2006-01-01</p> <p>Persistent lava extrusion at the Santiaguito dome complex (Guatemala) results in continuous lahar activity and river bed aggradation downstream of the volcano. We present a simple method that uses vegetation indices extracted from Landsat Thematic Mapper (TM) data to map impacted zones. Application of this technique to a time series of 21 TM images acquired between 1987 and 2000 allow us to map, measure, and track temporal and spatial variations in the area of lahar impact and river aggradation.In the proximal zone of the fluvial system, these data show a positive correlation between extrusion rate at Santiaguito (E), aggradation area 12 months later (Aprox), and rainfall during the intervening 12 months (Rain12): Aprox=3.92+0.50 E+0.31 ln(Rain12) (r2=0.79). This describes a situation in which an increase in sediment supply (extrusion rate) and/or a means to mobilize this sediment (rainfall) results in an increase in lahar activity (aggraded area). Across the medial zone, we find a positive correlation between extrusion rate and/or area of proximal aggradation and medial aggradation area (Amed): Amed=18.84-0.05 Aprox - 6.15 Rain12 (r2=0.85). Here the correlation between rainfall and aggradation area is negative. This describes a situation in which increased sediment supply results in an increase in lahar activity but, because it is the zone of transport, an increase in rainfall serves to increase the transport efficiency of rivers flowing through this zone. Thus, increased rainfall flushes the medial zone of sediment.These quantitative data allow us to empirically define the links between sediment supply and mobilization in this fluvial system and to derive predictive relationships that use rainfall and extrusion rates to estimate aggradation area 12 months hence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1368134','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1368134"><span>Contaminant Attenuation and Transport Characterization of 200-DV-1 Operable Unit Sediment Samples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Truex, Michael J.; Szecsody, James E.; Qafoku, Nikolla</p> <p>2017-05-15</p> <p>A laboratory study was conducted to quantify contaminant attenuation processes and associated contaminant transport parameters that are needed to evaluate transport of contaminants through the vadose zone to the groundwater. The laboratory study information, in conjunction with transport analyses, can be used as input to evaluate the feasibility of Monitored Natural Attenuation and other remedies for the 200-DV-1 Operable Unit at the Hanford Site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5074S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5074S"><span>Palaeozoic and Mesozoic tectonic implications of Central Afghanistan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sliaupa, Saulius; Motuza, Gediminas</p> <p>2017-04-01</p> <p>The field and laboratory studies were carried out in Ghor Province situated in the central part of Afghanistan. It straddles juxtaposition of the Tajik (alternatively, North Afghanistan) and Farah Rod blocks separated by Band-e-Bayan zone. The recent studies indicate that Band-e-Bayan zone represents highly tectonised margin of the Tajik block (Motuza, Sliaupa, 2016). The Band-e-Bayan zone is the most representative in terms of sedimentary record. The subsidence trends and sediment lithologies suggest the passive margin setting during (Cambrian?) Ordovician to earliest Carboniferous times. A change to the foredeep setting is implied in middle Carboniferous through Early Permian; the large-thickness flysh-type sediments were derived from continental island arc provenance, as suggested by chemical composition of mudtstones. This stage can be correlated to the amalgamation of the Gondwana supercontinent. The new passive-margin stage can be inferred in the Band-e-Bayan zone and Tajik blocks in the Late Permian throughout the early Late Triassic that is likely related to breaking apart of Gondwana continent. A collisional event is suggested in latest Triassic, as seen in high-rate subsidence associating with dramatic change in litholgies, occurrence of volcanic rocks and granidoid intrusions. The continental volcanic island arc derived (based on geochemical indices) terrigens prevail at the base of Jurassic that were gradually replaced by carbonate platform in the Middle Jurassic pointing to cessation of the tectonic activity. A new tectonic episode (no deposition; and folding?) took place in the Tajik and Band-e-Bayan zone in Late Jurassic. The geological section of the Farah Rod block, situated to the south, is represented by Jurassic and Cretaceous sediments overlain by sporadic Cenozoic volcanic-sedimentary succession. The lower part of the Mesozoic succession is composed of terrigenic sediments giving way to upper Lower Cretaceous shallow water carbonates implying low tectonic regime. There was a break in sedimentation during the upper Cretaceous that is likely related to the Alpine orogenic event. It associated with some Upper Cretaceous magmatic activity (Debon et al., 1987). This event is reflected in the sedimentation pattern in the adjacent Band-e-Bayan zone and Tadjick block. The lower part of the Upper Cretaceous succession is composed of reddish terrigenic sediments. They are overlain by uppermost Cretaceous (and Danian) shallow marine sediments implying establishment of quiet tectonic conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/382764-shoreline-ecology-program-prince-william-sound-alaska-following-exxon-valdez-oil-spill-part-biology','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/382764-shoreline-ecology-program-prince-william-sound-alaska-following-exxon-valdez-oil-spill-part-biology"><span>Shoreline ecology program for Prince William Sound, Alaska, following the Exxon Valdez oil spill. Part 3: Biology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gilfillan, E.S.; Page, D.S.; Harner, E.J.</p> <p>1995-12-31</p> <p>This study describes the biological results of a comprehensive shoreline ecology program designed to assess ecological recovery in Prince William Sound following the Exxon Valdez oil spill on march 24, 1989. The program is an application of the ``Sediment Quality Triad`` approach, combining chemical, toxicological, and biological measurements. The study was designed so that results could be extrapolated to the entire spill zone in Prince William Sound. The spill affected four major shoreline habitat types in Prince William Sound: pebble/gravel, boulder/cobble, sheltered bedrock, and exposed bedrock. The study design had two components: (1) one-time stratified random sampling at 64 sitesmore » representing four habitats and four oiling levels (including unoiled reference sites) and (2) periodic sampling at 12 nonrandomly chosen sites that included some of the most heavily oiled locations in the sound. Biological communities on rock surfaces and in intertidal and shallow subtidal sediments were analyzed for differences resulting from to oiling in each of 16 habitat/tide zone combinations. Statistical methods included univariate analyses of individual species abundances and community parameter variables (total abundance, species richness, and Shannon diversity), and multivariate correspondence analysis of community structure. 58 refs., 13 figs., 9 tabs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/5223369','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/5223369"><span>Toxicity of sediments and pore water from Brunswick Estuary, Georgia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Winger, Parley V.; Lasier, Peter J.; Geitner, Harvey</p> <p>1993-01-01</p> <p>A chlor-alkali plant in Brunswick, Georgia, USA, discharged >2 kg mercury/d into a tributary of the Turtle River-Brunswick Estuary from 1966 to 1971. Mercury concentrations in sediments collected in 1989 along the tributary near the chlor-alkali plant ranged from 1 to 27 μg/g (dry weight), with the highest concentrations found in surface (0–8 cm) sediments of subtidal zones in the vicinity of the discharge site. Toxicity screening in 1990 using Microtox® bioassays on pore water extracted on site from sediments collected at six stations distributed along the tributary indicated that pore water was highly toxic near the plant discharge. Ten-day toxicity tests on pore water from subsequent sediment samples collected near the plant discharge confirmed high toxicity to Hyalella azteca, and feeding activity was significantly reduced in whole-sediment tests. In addition to mercury in the sediments, other metals (chromium, lead, and zinc) exceeded 50 μg/g, and polychlorobiphenyl (PCB) concentrations ranged from 67 to 95 μg/g. On a molar basis, acid-volatile sulfide concentrations (20–45 μmol/g) in the sediments exceeded the metal concentrations. Because acid-volatile sulfides bind with cationic metals and form metal sulfides, which are generally not bioavailable, toxicities shown by these sediments were attributed to the high concentrations of PCBs and possibly methylmercury.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B51I1934G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B51I1934G"><span>Multi `omics reveals role of phenotypic plasticity in governing biogeochemical hotspots within the groundwater-surface water (hyporheic) mixing zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graham, E.; Tfaily, M. M.; Crump, A.; Arntzen, E.; Romero, E. B.; Goldman, A. E.; Resch, T.; Kennedy, D.; Nelson, W. C.; Stegen, J.</p> <p>2017-12-01</p> <p>Subsurface groundwater-surface water mixing zones (hyporheic zones) contain spatially heterogeneous hotspots of enhanced biogeochemical activity that contribute disproportionately to river corridor function. We have a poor understanding of the processes governing hotspots, but recent advances have enabled greater mechanistic understanding. We employ a suite of ultra-high resolution measurements to investigate the mechanisms underlying biogeochemical cycles in hyporheic zone hotspots. We use Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), metagenomic shotgun sequencing, and mass spectrometry of metaproteomes to characterize metabolite structure and metabolic transformations, microbiome structure and functional potential, and expressed microbiome functions in hyporheic sediments from the Columbia River in central Washington State. Surprisingly, microbiome structure and function in biogeochemical hotspots were indistinguishable from low-activity sediments. Metabolites were uncorrelated to protein expression but strongly related to aerobic respiration. Hotspot metabolites were distinguished by high molecular weight compounds and protein-, lignin-, and lipid-like molecules. Although the most common metabolic transformations were similar between hotspots and low-activity samples, hotspots contained a greater proportion of rare pathways, which in turn were correlated to metabolism. Our results contradicted our expectations that hotspots would be characterized by a unique microbiome with distinct physiology. Instead, our results indicate that microbial phenotypic plasticity underlies elevated hyporheic zone function, whereby the activity of rare pathways is stimulated by substrate availability. We therefore hypothesize that microbiome plasticity couples meso- (e.g., local root distribution) and macro-scale (e.g., landscape vegetation) resource heterogeneity to ecosystem-scale function. This indicates a need to mechanistically understand and represent microbiome physiological plasticity in predictive hydrobiogeochemical models that include the hyporheic zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18701118','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18701118"><span>Diving down the reefs? Intensive diving tourism threatens the reefs of the northern Red Sea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hasler, Harald; Ott, Jörg A</p> <p>2008-10-01</p> <p>Intensive recreational SCUBA diving threatens coral reef ecosystems. The reefs at Dahab, South Sinai, Egypt, are among the world's most dived (>30,000 dives y(-1)). We compared frequently dived sites to sites with no or little diving. Benthic communities and condition of corals were examined by the point intercept sampling method in the reef crest zone (3m) and reef slope zone (12 m). Additionally, the abundance of corallivorous and herbivorous fish was estimated based on the visual census method. Sediments traps recorded the sedimentation rates caused by SCUBA divers. Zones subject to intensive SCUBA diving showed a significantly higher number of broken and damaged corals and significantly lower coral cover. Reef crest coral communities were significantly more affected than those of the reef slope: 95% of the broken colonies were branching ones. No effect of diving on the abundance of corallivorous and herbivorous fish was evident. At heavily used dive sites, diver-related sedimentation rates significantly decreased with increasing distance from the entrance, indicating poor buoyancy regulation at the initial phase of the dive. The results show a high negative impact of current SCUBA diving intensities on coral communities and coral condition. Corallivorous and herbivorous fishes are apparently not yet affected, but are endangered if coral cover decline continues. Reducing the number of dives per year, ecologically sustainable dive plans for individual sites, and reinforcing the environmental education of both dive guides and recreational divers are essential to conserve the ecological and the aesthetic qualities of these dive sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016WRR....52.1729M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016WRR....52.1729M"><span>Relating salt marsh pore water geochemistry patterns to vegetation zones and hydrologic influences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moffett, Kevan B.; Gorelick, Steven M.</p> <p>2016-03-01</p> <p>Physical, chemical, and biological factors influence vegetation zonation in salt marshes and other wetlands, but connections among these factors could be better understood. If salt marsh vegetation and marsh pore water geochemistry coorganize, e.g., via continuous plant water uptake and persistently unsaturated sediments controlling vegetation zone-specific pore water geochemistry, this could complement known physical mechanisms of marsh self-organization. A high-resolution survey of pore water geochemistry was conducted among five salt marsh vegetation zones at the same intertidal elevation. Sampling transects were arrayed both parallel and perpendicular to tidal channels. Pore water geochemistry patterns were both horizontally differentiated, corresponding to vegetation zonation, and vertically differentiated, relating to root influences. The geochemical patterns across the site were less broadly related to marsh hydrology than to vegetation zonation. Mechanisms contributing to geochemical differentiation included: root-induced oxidation and nutrient (P) depletion, surface and creek-bank sediment flushing by rainfall or tides, evapotranspiration creating aerated pore space for partial sediment flushing in some areas while persistently saturated conditions hindered pore water renewal in others, and evapoconcentration of pore water solutes overall. The concentrated pore waters draining to the tidal creeks accounted for 41% of ebb tide solutes (median of 14 elements), including being a potentially toxic source of Ni but a slight sink for Zn, at least during the short, winter study period in southern San Francisco Bay. Heterogeneous vegetation effects on pore water geochemistry are not only significant locally within the marsh but may broadly influence marsh-estuary solute exchange and ecology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP33B1321B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP33B1321B"><span>Paleoclimate of Quaternary Costa Rica: Analysis of Sediment from ODP Site 1242 in the Eastern Tropical Pacific to Explore the Behavior of the Intertropical Convergence Zone (ITCZ) and Oceanic Circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buczek, C. R.; Joseph, L. H.</p> <p>2017-12-01</p> <p>Studies of grain size, magnetic fabric, and terrigenous mass accumulation rates (MAR) on oceanic sediment can provide insights into climatic conditions present at or near the time of deposition by helping to delineate changes in rainfall and oceanic circulation intensities. The fairly homogenous hemipelagic nannofossil clays and clayey nannofossil oozes collected in the upper portion of Ocean Drilling Program (ODP) Site 1242 provide a 1.4 million year sediment record from the Cocos Ridge, in relatively shallow waters of the eastern tropical Pacific Ocean, off the coast of present day Central and South America. Information about shifts in rainfall and oceanic circulation provided by this study may be helpful in understanding changes in the location and behavior of the Intertropical Convergence Zone (ITCZ), and/or other climatic factors, in this area during the Pleistocene and Holocene Epochs. Approximately 130 paired side-by-side samples were selected at approximately evenly spaced intervals throughout the uppermost 190 mcd of the core. To obtain terrigenous grain size and MARs, one set of sediment samples was subject to a five-step chemical extraction process to dissolve any oxy-hydroxy coatings, remove the biogenic carbonate and silicate components, and sieve out grains larger than 63 µm. The pre- and post-extraction weights were compared to calculate a terrigenous weight percent (%) from which the terrigenous MAR values were then calculated, with the use of linear sediment rates and dry bulk density measurements determined from shipboard ODP 1242 analyses. Magnetic fabric, or anisotropy of magnetic susceptibility (AMS), was analyzed on a KLY4S-Kappabridge using the second set of samples taken in pmag cubes. Terrigenous MAR values range between 3.1 and 10.9 g/cm2/kyr, while P' (AMS) values range between 1.004 and 1.04 SI. A distinctive trend is noted in both factors, with both exhibiting relatively high initial values that then decrease from the beginning of the record until 1.0-0.8 Ma, and then remain fairly constant (and relatively low) up-core. The initial decline potentially represents a drying of continental climates and a slowing of oceanic currents during the early Pleistocene, possibly due to shifts in the ITCZ or other factors affecting circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25975438','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25975438"><span>Sediment Dynamics Within Buffer Zone and Sinkhole Splay Areas Under Extreme Soil Disturbance Conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schoonover, Jon E; Crim, Jackie F; Williard, Karl W J; Groninger, John W; Zaczek, James J; Pattumma, Klairoong</p> <p>2015-09-01</p> <p>Sedimentation dynamics were assessed in sinkholes within training areas at Ft. Knox Military Installation, a karst landscape subjected to decades of tracked vehicle use and extreme soil disturbance. Sinkholes sampled were sediment-laden and behaved as intermittent ponds. Dendrogeomorphic analyses were conducted using willow trees (Salix spp.) located around the edge of 18 sinkholes to estimate historical sedimentation rates, and buried bottles were installed in 20 sinkholes at the center, outer edge, and at the midpoint between the center and edge to estimate annual sedimentation rates. Sedimentation data were coupled with vegetation characteristics of sinkhole buffers to determine relationships among these variables. The dendrogeomorphic method estimated an average accumulation rate of 1.27 cm year(-1) translating to a sediment loss rate of 46.1 metric ton year(-1) from the training areas. However, sediment export to sinkholes was estimated to be much greater (118.6 metric ton year(-1)) via the bottle method. These data suggest that the latter method provided a more accurate estimate since accumulation was greater in the center of sinkholes compared to the periphery where dendrogeomorphic data were collected. Vegetation data were not tightly correlated with sedimentation rates, suggesting that further research is needed to identify a viable proxy for direct measures of sediment accumulation in this extreme deposition environment. Mitigation activities for the sinkholes at Ft. Knox's tank training area, and other heavily disturbed karst environments where extreme sedimentation exists, should consider focusing on flow path and splay area management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15899267','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15899267"><span>Use of slow filtration columns to assess oxygen respiration, consumption of dissolved organic carbon, nitrogen transformations, and microbial parameters in hyporheic sediments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mermillod-Blondin, F; Mauclaire, L; Montuelle, B</p> <p>2005-05-01</p> <p>Biogeochemical processes mediated by microorganisms in river sediments (hyporheic sediments) play a key role in river metabolism. Because biogeochemical reactions in the hyporheic zone are often limited to the top few decimetres of sediments below the water-sediment interface, slow filtration columns were used in the present study to quantify biogeochemical processes (uptakes of O2, DOC, and nitrate) and the associated microbial compartment (biomass, respiratory activity, and hydrolytic activity) at a centimetre scale in heterogeneous (gravel and sand) sediments. The results indicated that slow filtration columns recreated properly the aerobic-anaerobic gradient classically observed in the hyporheic zone. O2 and NO3- consumptions (256 +/- 13 microg of O2 per hour and 14.6 +/- 6.1 microg of N-NO3- per hour) measured in columns were in the range of values measured in different river sediments. Slow filtration columns also reproduced the high heterogeneity of the hyporheic zone with the presence of anaerobic pockets in sediments where denitrification and fermentation processes occurred. The respiratory and hydrolytic activities of bacteria were strongly linked with the O2 consumption in the experimental system, highlighting the dominance of aerobic processes in our river sediments. In comparison with these activities, the bacterial biomass (protein content) integrated both aerobic and anaerobic processes and could be used as a global microbial indicator in our system. Finally, slow filtration columns are an appropriate tool to quantify in situ rates of biogeochemical processes and to determine the relationship between the microbial compartment and the physico-chemical environment in coarse river sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015253','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015253"><span>The chemistry and mineralogy of haloed burrows in pelagic sediment at DOMES Site A: The equatorial North Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Piper, D.Z.; Rude, P.D.; Monteith, S.</p> <p>1987-01-01</p> <p>The chemical and mineralogical composition of burrowed sediment, recovered in 66 box cores at latitude 9??25???N and longitude 151??15???W in the equatorial Pacific, demonstrates the important role of infauna in determining the geochemistry of pelagic sediment. Haloed burrows, approximately 3 cm across, were present in many of the cores. Within early Tertiary sediment that was covered by less than 5 cm of surface Quaternary sediment in several cores, the burrows in cross-section consist of three units: (1) a dark yellowish-brown central zone of Quaternary sediment surrounded, by (2) a pale yellowish-orange zone (the halo) of Tertiary sediment, which is surrounded by (3) a metal-oxide precipitate; the enclosing Tertiary sediment is dusky brown. Several elements - Mn, Ni, Cu, Co, Zn, Sb and Ce - have been leached from the light-colored halo, whereas Cr, Cs, Hf, Rb, Sc, Ta, Th, U, the rare earth elements exclusive of Ce, and the major oxides have not been leached. The metal-oxide zone, 1-5 mm thick, contains as much as 16% MnO2, as the mineral todorokite. The composition of the todorokite, exclusive of the admixed Tertiary sediment, resembles the composition of the metal deficit of the halo and also the composition of surface ferromanganese nodules that have been interpreted as having a predominantly diagenetic origin. Thus bioturbation contributes not only to the redistribution of metals within pelagic sediment, but also to the accretion of ferromanganese nodules on the sea floor. ?? 1987.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014207','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014207"><span>Sedimentation across the central California oxygen minimum zone: an alternative coastal upwelling sequence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Vercoutere, T.L.; Mullins, H.T.; McDougall, K.; Thompson, J.B.</p> <p>1987-01-01</p> <p>Distribution, abundance, and diversity of terrigenous, authigenous, and biogenous material provide evidence of the effect of bottom currents and oxygen minimum zone (OMZ) on continental slope sedimentation offshore central California. Three major OMZ facies are identified, along the upper and lower edges of OMZ and one at its core.-from Authors</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CSR...147...27M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CSR...147...27M"><span>Implications of tidally-varying bed stress and intermittent estuarine stratification on fine-sediment dynamics through the Mekong's tidal river to estuarine reach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McLachlan, R. L.; Ogston, A. S.; Allison, M. A.</p> <p>2017-09-01</p> <p>River gauging stations are often located upriver of tidal propagation where sediment transport processes and storage are impacted by widely varying ratios of marine to freshwater influence. These impacts are not yet thoroughly understood. Therefore, sediment fluxes measured at these stations may not be suitable for predicting changes to coastal morphology. To characterize sediment transport dynamics in this understudied zone, flow velocity, salinity, and suspended-sediment properties (concentration, size, and settling velocity) were measured within the tidal Sông Hậu distributary of the lower Mekong River, Vietnam. Fine-sediment aggregation, settling, and trapping rates were promoted by seasonal and tidal fluctuations in near-bed shear stress as well as the intermittent presence of a salt wedge and estuary turbidity maximum. Beginning in the tidal river, fine-grained particles were aggregated in freshwater. Then, in the interface zone between the tidal river and estuary, impeded near-bed shear stress and particle flux convergence promoted settling and trapping. Finally, in the estuary, sediment retention was further encouraged by stratification and estuarine circulation which protected the bed against particle resuspension and enhanced particle aggregation. These patterns promote mud export ( 1.7 t s-1) from the entire study area in the high-discharge season when fluvial processes dominate and mud import ( 0.25 t s-1) into the estuary and interface zone in the low-discharge season when estuarine processes dominate. Within the lower region of the distributaries, morphological change in the form of channel abandonment was found to be promoted within minor distributaries by feedbacks between channel depth, vertical mixing, and aggregate trapping. In effect, this field study sheds light on the sediment trapping capabilities of the tidal river - estuary interface zone, a relatively understudied region upstream of where traditional concepts place sites of deposition, and predicts how fine-sediment dynamics and morphology of large tropical deltas such as the Mekong will respond to changing fluvial and marine influences in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T31G2600J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T31G2600J"><span>Sharp Permeability Transitions due to Shallow Diagenesis of Subduction Zone Sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>James, S.; Screaton, E.</p> <p>2013-12-01</p> <p>The permeability of hemipelagic sediments is an important factor in fluid flow in subduction zones and can be affected by porosity changes and cementation-dissolution processes acting during diagenesis. Anomalously high porosities have been observed in cores from the Shikoku Basin sediments approaching the Nankai Trough subduction zone. These high porosities have been attributed to the presence of minor amounts of amorphous silica cement that strengthen the sediment and inhibit consolidation. The porosity rapidly drops from 66-68% to 54-56% at a diagenetic boundary where the amorphous silica cement dissolves. Although the anomalous porosity profiles at Nankai have received attention, the magnitude of the corresponding permeability change has not been addressed. In this study, permeability profiles were constructed using permeability-porosity relationships from previous studies, to estimate the magnitude and rate of permeability changes with depth. The predicted permeability profiles for the Nankai Trough sediment cores indicate that permeability drops by almost one order of magnitude across the diagenetic boundary. This abrupt drop in permeability has the potential to facilitate significant changes in pore fluid pressures and thus to influence the deformation of the sediment onto the accretionary prism. At the Costa Rica subduction zone, results vary with location. Site U1414 offshore the Osa Peninsula shows porosities stable at 69% above 145 mbsf and then decrease to 54% over a 40 m interval. A porosity drop of that magnitude is predicted to correlate to an order of magnitude permeability decrease. In contrast, porosity profiles from Site 1039 offshore the Nicoya Peninsula and Site U1381 offshore the Osa Peninsula show anomalously high porosities but no sharp drop. It is likely that sediments do not cross the diagenetic boundary due to the extremely low (<10°C/km) thermal gradient at Site 1039 and the thin (<100 m) sediment cover at Site U1381. At these locations, the porosity loss and permeability reduction may occur after the sediment is subducted and contribute to high pore pressures at the plate boundary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeCoA.136..247L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeCoA.136..247L"><span>Fe(II)- and sulfide-facilitated reduction of 99Tc(VII)O4- in microbially reduced hyporheic zone sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Ji-Hoon; Zachara, John M.; Fredrickson, James K.; Heald, Steve M.; McKinley, James P.; Plymale, Andrew E.; Resch, Charles T.; Moore, Dean A.</p> <p>2014-07-01</p> <p>Redox-reactive, biogeochemical phases generated by reductive microbial activity in hyporheic zone sediments from a dynamic groundwater-river interaction zone were evaluated for their ability to reduce soluble pertechnetate [99Tc(VII)O4-] to less soluble Tc(IV). The sediments were bioreduced by indigenous microorganisms that were stimulated by organic substrate addition in synthetic groundwater with or without sulfate. In most treatments, 20 μmol L-1 initial aqueous Tc(VII) was reduced to near or below detection (3.82 × 10-9 mol L-1) over periods of days to months in suspensions of variable solids concentrations. Native sediments containing significant lithogenic Fe(II) in various phases were, in contrast, unreactive with Tc(VII). The reduction rates in the bioreduced sediments increased with increases in sediment mass, in proportion to weak acid-extractable Fe(II) and sediment-associated sulfide (AVS). The rate of Tc(VII) reduction was first order with respect to both aqueous Tc(VII) concentration and sediment mass, but correlations between specific reductant concentrations and reaction rate were not found. X-ray microprobe measurements revealed a strong correlation between Tc hot spots and Fe-containing mineral particles in the sediment. However, only a portion of Fe-containing particles were Tc-hosts. The Tc-hot spots displayed a chemical signature (by EDXRF) similar to pyroxene. The application of autoradiography and electron microprobe allowed further isolation of Tc-containing particles that were invariably found to be ca 100 μm aggregates of primary mineral material embedded within a fine-grained phyllosilicate matrix. EXAFS spectroscopy revealed that the Tc(IV) within these were a combination of a Tc(IV)O2-like phase and Tc(IV)-Fe surface clusters, with a significant fraction of a TcSx-like phase in sediments incubated with SO42-. AVS was implicated as a more selective reductant at low solids concentration even though its concentration was below that required for stoichiometric reduction of Tc(VII). These results demonstrate that composite mineral aggregates may be redox reaction centers in coarse-textured hyporheic zone sediments regardless of the dominant anoxic biogeochemical processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1172449-fe-ii-sulfide-facilitated-reduction-vii-o4-microbially-reduced-hyporheic-zone-sediments','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1172449-fe-ii-sulfide-facilitated-reduction-vii-o4-microbially-reduced-hyporheic-zone-sediments"><span>Fe(II)- and Sulfide-Facilitated Reduction of 99Tc(VII)O4- in Microbially Reduced Hyporheic Zone Sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lee, Ji-Hoon; Zachara, John M.; Fredrickson, Jim K.</p> <p></p> <p>Redox-reactive, biogeochemical phases generated by reductive microbial activity in hyporheic zone sediments from a dynamic groundwater-river interaction zone were evaluated for their ability to reduce soluble pertechnetate [99Tc(VII)O4-] to less soluble Tc(IV). The sediments were bioreduced by indigenous microorganisms that were stimulated by organic substrate addition in synthetic groundwater with or without sulfate. In most treatments, 20 µmol L-1 initial aqueous Tc(VII) was reduced to near or below detection (3.82×10-9 mol L-1) over periods of days to months in suspensions of variable solids concentrations. Native sediments containing significant lithogenic Fe(II) in various phases were, in contrast, unreactive with Tc(VII). Themore » reduction rates in the bioreduced sediments increased with increases in sediment mass, in proportion to weak acid-extractable Fe(II) and sediment-associated sulfide (AVS). The rate of Tc(VII) reduction was first order with respect to both aqueous Tc(VII) concentration and sediment mass, but correlations between specific reductant concentrations and reaction rate were not found. X-ray microprobe measurements revealed a strong correlation between Tc hot spots and Fe-containing mineral particles in the sediment. However, only a portion of Fe-containing particles were Tc-hosts. The Tc-hot spots displayed a chemical signature (by EDXRF) similar to pyroxene. The application of autoradiography and electron microprobe allowed further isolation of Tc-containing particles that were invariably found to be ca 100 µm aggregates of primary mineral material embedded within a fine-grained phyllosilicate matrix. EXAFS spectroscopy revealed that the Tc(IV) within these were a combination of a Tc(IV)O2-like phase and Tc(IV)-Fe surface clusters, with a significant fraction of a TcSx-like phase in sediments incubated with SO42-. AVS was implicated as a more selective reductant at low solids concentration even though its concentration was below that required for stoichiometric reduction of Tc(VII). These results demonstrate that composite mineral aggregates may be redox reaction centers in coarse-textured hyporheic zone sediments regardless of the dominant anoxic biogeochemical processes.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2009/1072/title_page.html','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2009/1072/title_page.html"><span>Geophysical and sampling data from the inner continental shelf: Duxbury to Hull, Massachusetts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barnhardt, Walter A.; Ackerman, Seth D.; Andrews, Brian D.; Baldwin, Wayne E.</p> <p>2010-01-01</p> <p>The U.S. Geological Survey (USGS) and the Massachusetts Office of Coastal Zone Management (CZM) have cooperated to map approximately 200 km² of the Massachusetts inner continental shelf between Duxbury and Hull. This report contains geophysical and geological data collected by the USGS on three cruises between 2006 and 2007. These USGS data are supplemented with a National Oceanic and Atmospheric Administration (NOAA) hydrographic survey conducted in 2003 to update navigation charts. The geophysical data include (1) swath bathymetry from interferometric sonar and multibeam echosounders, (2) acoustic backscatter from sidescan sonar and multibeam echosounders, and (3) subsurface stratigraphy and structure from seismic-reflection profilers. The geological data include sediment samples, seafloor photographs, and bottom videos. These spatial data support research on the influence sea-level change and sediment supply have on coastal evolution, and on efforts to understand the type, distribution, and quality of subtidal marine habitats in the Massachusetts coastal ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25480154','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25480154"><span>Radioactivity levels in the marine environment along the Exclusive Economic Zone (EEZ) of Qatar.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Al-Qaradawi, Ilham; Abdel-Moati, Mohamed; Al-Yafei, Mohsin Al-Ansi; Al-Ansari, Ebrahim; Al-Maslamani, Ibrahim; Holm, Elis; Al-Shaikh, Ismail; Mauring, Alexander; Pinto, Primal V; Abdulmalik, Dana; Amir, Amina; Miller, Mark; Yigiterhan, Oguz; Persson, Bertil</p> <p>2015-01-15</p> <p>A study on (137)Cs, (40)K, (226)Ra, (228)Ra, and (238)U was carried out along the EEZ of Qatar. Results serve as the first ever baseline data. The level of (137)Cs (mean value 1.6 ± 0.4 Bq m(-3)) in water filters was found to be in the same order of magnitude as reported by others in worldwide marine radioactivity studies. Results are also in agreement with values reported from other Gulf regions. The computed values of sediment-water distribution coefficients Kd, are lower than the values given by IAEA. Measurements were carried out for bottom sediments, biota samples like fish, oyster, sponge, seashell, mangrove, crab, shrimp, starfish, dugong and algae. The 'concentration factors' reported for biota samples are below the levels published by IAEA and cause no significant impact on human health for seafood consumers in Qatar. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29605158','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29605158"><span>Three-dimensional modeling of nitrate-N transport in vadose zone: Roles of soil heterogeneity and groundwater flux.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Akbariyeh, Simin; Bartelt-Hunt, Shannon; Snow, Daniel; Li, Xu; Tang, Zhenghong; Li, Yusong</p> <p>2018-04-01</p> <p>Contamination of groundwater from nitrogen fertilizers in agricultural lands is an important environmental and water quality management issue. It is well recognized that in agriculturally intensive areas, fertilizers and pesticides may leach through the vadose zone and eventually reach groundwater. While numerical models are commonly used to simulate fate and transport of agricultural contaminants, few models have considered a controlled field work to investigate the influence of soil heterogeneity and groundwater flow on nitrate-N distribution in both root zone and deep vadose zone. In this work, a numerical model was developed to simulate nitrate-N transport and transformation beneath a center pivot-irrigated corn field on Nebraska Management System Evaluation area over a three-year period. The model was based on a realistic three-dimensional sediment lithology, as well as carefully controlled irrigation and fertilizer application plans. In parallel, a homogeneous soil domain, containing the major sediment type of the site (i.e. sandy loam), was developed to conduct the same water flow and nitrate-N leaching simulations. Simulated nitrate-N concentrations were compared with the monitored nitrate-N concentrations in 10 multi-level sampling wells over a three-year period. Although soil heterogeneity was mainly observed from top soil to 3 m below the surface, heterogeneity controlled the spatial distribution of nitrate-N concentration. Soil heterogeneity, however, has minimal impact on the total mass of nitrate-N in the domain. In the deeper saturated zone, short-term variations of nitrate-N concentration correlated with the groundwater level fluctuations. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JCHyd.211...15A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JCHyd.211...15A"><span>Three-dimensional modeling of nitrate-N transport in vadose zone: Roles of soil heterogeneity and groundwater flux</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Akbariyeh, Simin; Bartelt-Hunt, Shannon; Snow, Daniel; Li, Xu; Tang, Zhenghong; Li, Yusong</p> <p>2018-04-01</p> <p>Contamination of groundwater from nitrogen fertilizers in agricultural lands is an important environmental and water quality management issue. It is well recognized that in agriculturally intensive areas, fertilizers and pesticides may leach through the vadose zone and eventually reach groundwater. While numerical models are commonly used to simulate fate and transport of agricultural contaminants, few models have considered a controlled field work to investigate the influence of soil heterogeneity and groundwater flow on nitrate-N distribution in both root zone and deep vadose zone. In this work, a numerical model was developed to simulate nitrate-N transport and transformation beneath a center pivot-irrigated corn field on Nebraska Management System Evaluation area over a three-year period. The model was based on a realistic three-dimensional sediment lithology, as well as carefully controlled irrigation and fertilizer application plans. In parallel, a homogeneous soil domain, containing the major sediment type of the site (i.e. sandy loam), was developed to conduct the same water flow and nitrate-N leaching simulations. Simulated nitrate-N concentrations were compared with the monitored nitrate-N concentrations in 10 multi-level sampling wells over a three-year period. Although soil heterogeneity was mainly observed from top soil to 3 m below the surface, heterogeneity controlled the spatial distribution of nitrate-N concentration. Soil heterogeneity, however, has minimal impact on the total mass of nitrate-N in the domain. In the deeper saturated zone, short-term variations of nitrate-N concentration correlated with the groundwater level fluctuations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029294','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029294"><span>Sediments in marsh ponds of the Gulf Coast Chenier Plain: Effects of structural marsh management and salinity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bolduc, F.; Afton, A.D.</p> <p>2005-01-01</p> <p>Physical characteristics of sediments in coastal marsh ponds (flooded zones of marsh associated with little vegetation) have important ecological consequences because they determine compositions of benthic invertebrate communities, which in turn influence compositions of waterbird communities. Sediments in marsh ponds of the Gulf Coast Chenier Plain potentially are affected by (1) structural marsh management (levees, water control structures and impoundments; SMM), and (2) variation in salinity. Based on available literature concerning effects of SMM on sediments in emergent plant zones (zones of marsh occasionally flooded and associated with dense vegetation) of coastal marshes, we predicted that SMM would increase sediment carbon content and sediment hardness, and decrease oxygen penetration (O2 depth) and the silt-clay fraction in marsh pond sediments. Assuming that freshwater marshes are more productive than are saline marshes, we also predicted that sediments of impounded freshwater marsh ponds would contain more carbon than those of impounded oligohaline and mesohaline marsh ponds, whereas C:N ratio, sediment hardness, silt-clay fraction, and O2 depth would be similar among pond types. Accordingly, we measured sediment variables within ponds of impounded and unimpounded marshes on Rockefeller State Wildlife Refuge, near Grand Chenier, Louisiana. To test the above predictions, we compared sediment variables (1) between ponds of impounded (IM) and unimpounded mesohaline marshes (UM), and (2) among ponds of impounded freshwater (IF), oligohaline (IO), and mesohaline (IM) marshes. An a priori multivariate analysis of variance (MANOVA) contrast indicated that sediments differed between IM and UM marsh ponds. As predicted, the silt-clay fraction and O2 depth were lower and carbon content, C:N ratio, and sediment hardness were higher in IM than in UM marsh ponds. An a priori MANOVA contrast also indicated that sediments differed among IF, IO, and IM marsh ponds. As predicted, carbon content was higher in IF marsh ponds than in ponds of other impounded marsh types. In contrast to our predictions, C:N ratio and sediment hardness were lowest and silt-clay fraction and O2 depth were highest in IO and IM marsh ponds. Our results indicated that SMM has affected physical properties of sediments in coastal marsh ponds. Moreover, sediments in IF marsh ponds were affected more so than were those in IO and IM marsh ponds. Our results, in conjunction with those of previous studies, indicated that sediments of marsh ponds and emergent plant zones differed greatly. We predict that changes in pond sediments due to SMM will promote greater epifaunal macroinvertebrate biomass, which in turn should attract larger populations of wintering waterbirds. However, waterbirds that filter or probe soft sediments may be negatively affected by SMM because of the expected decrease in infaunal invertebrate biomass. ?? Springer 2005.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032965','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032965"><span>DIN retention-transport through four hydrologically connected zones in a headwater catchment of the Upper Mississippi River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Triska, F.J.; Duff, J.H.; Sheibley, R.W.; Jackman, A.P.; Avanzino, R.J.</p> <p>2007-01-01</p> <p>Dissolved inorganic nitrogen (DIN) retention-transport through a headwater catchment was synthesized from studies encompassing four distinct hydrologic zones of the Shingobee River Headwaters near the origin of the Mississippi River. The hydrologic zones included: (1) hillslope ground water (ridge to bankside riparian); (2) alluvial riparian ground water; (3) ground water discharged through subchannel sediments (hyporheic zone); and (4) channel surface water. During subsurface hillslope transport through Zone 1, DIN, primarily nitrate, decreased from ???3 mg-N/l to <0.1 mg-N/l. Ambient seasonal nitrate:chloride ratios in hillslope flow paths indicated both dilution and biotic processing caused nitrate loss. Biologically available organic carbon controlled biotic nitrate retention during hillslope transport. In the alluvial riparian zone (Zone 2) biologically available organic carbon controlled nitrate depletion although processing of both ambient and amended nitrate was faster during the summer than winter. In the hyporheic zone (Zone 3) and stream surface water (Zone 4) DIN retention was primarily controlled by temperature. Perfusion core studies using hyporheic sediment indicated sufficient organic carbon in bed sediments to retain ground water DIN via coupled nitrification-denitrification. Numerical simulations of seasonal hyporheic sediment nitrification-denitrification rates from perfusion cores adequately predicted surface water ammonium but not nitrate when compared to 5 years of monthly field data (1989-93). Mass balance studies in stream surface water indicated proportionally higher summer than winter N retention. Watershed DIN retention was effective during summer under the current land use of intermittently grazed pasture. However, more intensive land use such as row crop agriculture would decrease nitrate retention efficiency and increase loads to surface water. Understanding DIN retention capacity throughout the system, including special channel features such as sloughs, wetlands and floodplains that provide surface water-ground water connectivity, will be required to develop effective nitrate management strategies. ?? 2007 American Water Resources Association.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMNS31C3933S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMNS31C3933S"><span>Use of fiber-optic DTS to investigate physical processes in thermohaline environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suarez, F. I.; Sarabia, A.; Silva, C.</p> <p>2014-12-01</p> <p>Salt-gradient solar ponds are artificial thermohaline environments that collect and store thermal energy for long time-periods. A solar pond consists of three distinctive zones: the upper convective zone, which is a thin layer of cooler, less salty water; the non-convective zone that has gradients in temperature and salinity; and the lower convective zone, a layer of high salinity brine where temperatures are the highest. The solar radiation that penetrates the upper layers of the pond reaches the lower convective zone and heats the high salinity brine, which does not rise beyond the lower convective zone because the effect of salinity on density is greater than the effect of temperature. The sediments beneath the pond are also heated due to the temperature increase in the lower convective zone, providing an additional volume for energy storage. To study the different physical processes occurring within a solar pond and its surroundings, we deployed a helicoidally wrapped distributed-temperature-sensing (DTS) system in a small-scale solar pond (1-m deep, 2.5-m long and 1.5-m width). In this installation, the pond is surrounded by a sandy soil that serves as an additional energy storage volume. The thermal profile is observed at a spatial sampling resolution of 1.1 cm (spatial resolution of 2.2. cm), a temporal resolution ranging from 15 s to 5 min, and a thermal resolution ranging from 0.05 to 0.5°C. These resolutions allow closing the energy balance and inferring physical processes such as double-diffusive convection, solar radiation absorption, and heat conduction through the sediments or through the non-convective zone. Independent thermal measurements are also being made to evaluate strengths and limitations of DTS systems in thermohaline environments, and to assess different calibration algorithms that have been proposed in the past.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA629218','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA629218"><span>Flow and Suspended Sediment Events in the Near-Coastal Zone off Corpus Christi, Texas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2003-09-30</p> <p>redistribution of preexisting shelf sediments during storms and (2) transportation of suspended sediment from the adjacent bay- lagoon system. Snedden et al...and K.E. Schmedes. (1983). Submerged lands of Texas, Corpus Christi area: sediments, geochemistry, benthic macroinvertebrates and associated</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T21E2879M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T21E2879M"><span>Quaternary Sediment Accumulation in the Aleutian Trench: Implications for Dehydration Reaction Progress and Pore Pressure Development Offshore Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meridth, L. N.; Screaton, E.; Jaeger, J. M.; James, S. R.; Villaseñor, T. G.</p> <p>2015-12-01</p> <p>Sediment inputs to subduction zones impart a significant control on diagenetic reaction progress, fluid production and pore pressure development and thus affect hydrologic and tectonic behavior during subduction. Intensified glaciation following the mid-Pleistocene transition increased sediment flux to the Gulf of Alaska. Rapid sediment accumulation (>1 km/my) in the Aleutian Trench increases overburden and should accelerate dehydration of hydrous sedimentary components by elevating temperatures in the incoming sediment column. These processes have the potential to generate fluid overpressures in the mud-dominated, low permeability sediments deposited on the incoming plate, offshore SE Alaska. Mineralogical analyses on incoming sediments from Deep Sea Drilling Project Leg 18 and Integrated Ocean Drilling Program Expedition 341 show that both smectite and Opal-A are present as hydrous mineral phases. A 1-D numerical model was developed to track dehydration reaction progress and pore pressures in the incoming sediment column from the abyssal plain to the Aleutian Trench. Simulated temperatures in the incoming column increase due to the insulating effect of trench sediments. As a result, trench sedimentation causes smectite dehydration to begin and Opal-A dehydration to nearly reach completion at the deformation front. Simulated excess pore pressures in the proto-decollement zone increase from nearly hydrostatic to almost half of lithostatic due to the rapid deposition of trench sediments. The 1-D modeling results were incorporated into a 2-D model that follows the underthrust column at the deformation front into the subduction zone. Simulated results of the 2-D flow model illustrate the effects of lateral flow on pore pressure distribution following subduction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JSR....76...39S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JSR....76...39S"><span>Macrobenthos in anthropogenically influenced zones of a coralline marine protected area in the Gulf of Kachchh, India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sukumaran, Soniya; Vijapure, Tejal; Mulik, Jyoti; Rokade, M. A.; Gajbhiye, S. N.</p> <p>2013-02-01</p> <p>The Gulf of Kachchh Marine National Park and Sanctuary (MNPS) has one of the four coral reef systems of India. However, owing to its unique geographical position, this area has been transformed into an industrial hub dominated by oil and gas production, refining and transportation facilities. This study investigates the status of macrobenthos along with associated hydro-sedimentological data at 30 stations, sampled within three industrially active zones of the MNPS. The bottom water and sediment characteristics recorded in the study area fulfil the prescribed criteria for ecosensitive zones of India, despite the various stressors operational in the region. The univariate parameters suggest a healthy macrobenthic community except for a few pockets of stressed environment. However, CCA and correlation analyses indicate that even at low levels, petroleum hydrocarbons, along with sediment texture, were influencing polychaete community structure. As this protected area is denoted a "high oil spill risk area", polychaete/amphipod ratio was employed to verify the environmental status which revealed that a major part of the study area had a good representation of oil-sensitive amphipods. The current study is the first of its kind to provide valuable baseline data of macrobenthos along with prevailing environmental conditions in this ecosensitive area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SGC....26..109K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SGC....26..109K"><span>Benthic and Plankton Foraminifers in Hydrothermally Active Zones of the Mid-Atlantic Ridge (MAR)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khusid, T. A.; Os'kina, N. S.; Lukashina, N. P.; Gablina, I. F.; Libina, N. V.; Matul, A. G.</p> <p>2018-01-01</p> <p>Comparison of benthic foraminiferal assemblages from the core obtained within the Peterburgskoe ore field (Mid-Atlantic Ridge) and from the core taken five kilometers away from the ore field revealed evident differences in their composition, in the appearance of their shells, and also in the benthic-plankton species ratio. It was noted that the foraminiferal assemblage from the ore-bearing sediments of the Petersburg field was characterized by a higher relative content of benthic species and a large number of chemically altered and broken shells. The first occurrence of the species Osangularia umbonifera, which is able to exist in lowoxygen and CaCO3-undersaturated bottom waters at the boundary of biogenic sediments surrounding the ore field and in the ore-bearing sediments, was established. In the core section sampled beyond the ore field, the composition of foraminiferal assemblages differs insignificantly from typical oceanic ones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22526984','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22526984"><span>Oyster Saccostrea cucullata as a biomonitor for Hg contamination and the risk to humans on the coast of Qeshm Island, Persian Gulf, Iran.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shirneshan, Golshan; Bakhtiari, Alireza Riyahi; Kazemi, Ali; Mohamadi, Mohsen; Kheirabadi, Nabiallah</p> <p>2012-06-01</p> <p>A total of 174 individuals of rocky oysters (Saccostrea cucullata) and 35 surface sediment samples were collected from seven stations off the intertidal zones of Qeshm Island, Persian Gulf, in order to study the concentration of mercury in oysters' tissues, and to investigate whether mercury concentrations in the edible soft tissues are within the permissible limits for public health. The average mercury concentrations were found as 3.44, 50.66 and 2.29 μg kg(-1) dw in the sediments, soft tissues and shells of the oysters, respectively. Results indicated that the levels of mercury in sediment differed significantly between the stations. In addition, results confirmed that the soft tissues of oysters could be a good indicator of mercury in the aquatic system. In comparison with food safety standards, mercury levels in oysters were well within the permissible limits for human consumption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15266814','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15266814"><span>[Benthic fauna associated to a Thalassia testudinum (Hydrocharitaceae) bed in Parque Nacional Morrocoy, Venezuela].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rodríguez, C; Villamizar, E</p> <p>2000-12-01</p> <p>The benthic fauna and diel variation in a shallow seagrass bed (Thalassia testudinum) were studied in Playa Mero, Venezuela. Samples of organisms and sediments were taken using PVC cylinders, 5cm in diameter, along a transect perpendicular to the coast. Seagrass cover, shoot density and biomass were estimated. The seagrass cover was homogeneous along the transect. The intermediate zone had the highest number of shoots and of above-ground and rhizome biomass. Composition and abundance of benthic organisms were related with seagrass and sediment characteristics. Sediment organic matter content and organism abundance were highest near the shore Molluscs, polychaetes, oligochaetes and nematodes were the most abundant groups. Species richness was higher in daytime (40 versus 28 at night). Gastropods were the most abundant organisms both at day and night while polychaetes and crustaceans increased during the day, and holoturids were more numerous at night.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....12774B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....12774B"><span>Biogeochemistry of the coupled manganese-iron-sulfur cycles of intertidal surface sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bosselmann, K.; Boettcher, M. E.; Billerbeck, M.; Walpersdorf, E.; Debeer, D.; Brumsack, H.-J.; Huettel, M.; Joergensen, B. B.</p> <p>2003-04-01</p> <p>The biogeochemistry of the coupled iron-manganese-sulfur-carbon cycles was studied in temperate intertidal surface sediments of the German Wadden Sea (North Sea). Coastal sampling sites include sand, mixed and mud flats with different organic matter and metal contents and permeability reflecting different hydrodynamic regimes. The field study focusses on the influence of temperature, organic matter load, and sediment types on the dynamics of biogeochemical reactions on different time scales (season, day-night, tidal cycles). One of the main interests was related to the cycling of metals (Mn, Fe) in relation to the activity of sulfate-reducing bacteria. Pore water profiles were investigated by sediment sectioning and high resolution gel sampling techniques. Microbial sulfate reduction rates were measured using radiolabeled sulfate with the whole core incubation technique and the spatial distribution of bacterial activity was visualised by using "2D-photoemulsion-monitoring technique". The biogeochemical sulfur cycle was additionally characterised by the stable isotope ratios (S,O) of different sulfur species (e.g., SO_4, AVS, pyrite). Element transfers (metals, nutrients) across the sediment-water interface were additionally quantified by the application of benthic flux chambers. Microbial sulfate reduction was generally highest in the suboxic zone of the surface sediments indicating its potential importance for the mobilization of iron and manganese. In organic matter poor permeable sediments tidal effects additionally influence the spatial and temporal distribution of dissolved redox-sensitive metals. In organic matter-rich silty and muddy sediments, temperature controlled the microbial sulfate reduction rates. Depth-integrated sulfate reduction rates in sandy sediments were much lower and controlled by both temperature and organic matter. Formation of anoxic sediment surfaces due to local enhanced organic matter load (so-called "black spots") may create windows of an increase flux of metals, nutrients and hydrogen sulfide. Acknowledgements: The study was supported by German Science Foundation within the DFG-research group "BioGeoChemistry of the Waddensea" and Max Planck Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=106118','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=106118"><span>Anaerobic Benzene Degradation in Petroleum-Contaminated Aquifer Sediments after Inoculation with a Benzene-Oxidizing Enrichment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Weiner, Jonathan M.; Lovley, Derek R.</p> <p>1998-01-01</p> <p>Sediments from the sulfate-reduction zone of a petroleum-contaminated aquifer, in which benzene persisted, were inoculated with a benzene-oxidizing, sulfate-reducing enrichment from aquatic sediments. Benzene was degraded, with apparent growth of the benzene-degrading population over time. These results suggest that the lack of benzene degradation in the sulfate-reduction zones of some aquifers may result from the failure of the appropriate benzene-degrading sulfate reducers to colonize the aquifers rather than from environmental conditions that are adverse for anaerobic benzene degradation. PMID:9464422</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/7860','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/7860"><span>The volume of fine sediment in pools: An index of sediment supply in gravel-bed streams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Thomas E. Lisle; Sue Hilton</p> <p>1992-01-01</p> <p>Abstract - During waning flood flows in gravel-bed streams, fine-grained bedload sediment (sand and fine gravel) is commonly winnowed from zones of high shear stress, such as riffles, and deposited in pools, where it mantles an underlying coarse layer. As sediment load increases, more fine sediment becomes availabe to fill pools. The volume of fine sediment in pools...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1512566M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1512566M"><span>Minor soil erosion contribution to denudation in Central Nepal Himalaya.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morin, Guillaume; France-Lanord, Christian; Gallo, Florian; Lupker, Maarten; Lavé, Jérôme; Gajurel, Ananta</p> <p>2013-04-01</p> <p>In order to decipher river sediments provenance in terms of erosion processes, we characterized geochemical compositions of hillslope material coming from soils, glaciers and landslide, and compared them to rivers sediments. We focused our study on two South flank Himalayan catchments: (1) Khudi khola, as an example of small High Himalayan catchment (150 km2), undergoing severe precipitation, and rapid erosion ≈ 3.5 mm/yr [A] and (2) the Narayani-Gandak Transhimalayan basin (52000 km2) that drains the whole central Nepal. To assess the question, systematic samplings were conducted on hillslope material from different erosion processes in the basins. River sediment include daily sampling during the 2010 monsoon at two stations, and banks samples in different parts of the basins. Source rocks, soil and landslide samples, are compared to river sediment mobile to immobile element ratios, completed by hydration degree H2O+ analysis[2]. Data show that soils are clearly depleted in mobile elements Na, K, Ca, and highly hydrated compared to source rocks and other erosion products. In the Khudi basin, the contrast between soil and river sediment signatures allow to estimate that soil erosion represents less than 5% of the total sediment exported by the river. Most of the river sediment therefore derives from landslides inputs and to a lesser extent by barren high elevation sub-basins. This is further consistent with direct observation that, during monsoon, significant tributaries of the Khudi river do not export sediments. Considering that active landslide zones represent less than 0.5% of the total watershed area, it implies that erosion distribution is highly heterogeneous. Landslide erosion rate could reach more than 50 cm/yr in the landslide area. Sediments of the Narayani river are not significantly different from those of the Khudi in spite of more diverse geomorphology and larger area of the basin. Only H2O+ and Total Organic Carbon concentrations normalised to Al/Si ratios show distinctly higher values. This suggests that contribution of soil erosion is higher than in the Khudi basin. Nevertheless, soil erosion remains a minor source of sediments implying that more physical processes such as landslide and glaciers dominate the erosional flux. In spite of high deforestation and agricultural land-use [B], soil erosion does not represent an important source of sediments in Nepal Himalaya. [A] Gabet et al. (2008) Earth and Planetary Science Letters 267, 482-494. [B] Gardner et al. (2003) Applied Geography 23, 23-45.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27258848','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27258848"><span>Geochemistry and Mineralogy of Western Australian Salt Lake Sediments: Implications for Meridiani Planum on Mars.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ruecker, A; Schröder, C; Byrne, J; Weigold, P; Behrens, S; Kappler, A</p> <p>2016-07-01</p> <p>Hypersaline lakes are characteristic for Western Australia and display a rare combination of geochemical and mineralogical properties that make these lakes potential analogues for past conditions on Mars. In our study, we focused on the geochemistry and mineralogy of Lake Orr and Lake Whurr. While both lakes are poor in organic carbon (<1%), the sediments' pH values differ and range from 3.8 to 4.8 in Lake Orr and from 5.4 to 6.3 in Lake Whurr sediments. Lake Whurr sediments were dominated by orange and red sediment zones in which the main Fe minerals were identified as hematite, goethite, and tentatively jarosite and pyrite. Lake Orr was dominated by brownish and blackish sediments where the main Fe minerals were goethite and another paramagnetic Fe(III)-phase that could not be identified. Furthermore, a likely secondary Fe(II)-phase was observed in Lake Orr sediments. The mineralogy of these two salt lakes in the sampling area is strongly influenced by events such as flooding, evaporation, and desiccation, processes that explain at least to some extent the observed differences between Lake Orr and Lake Whurr. The iron mineralogy of Lake Whurr sediments and the high salinity make this lake a suitable analogue for Meridiani Planum on Mars, and in particular the tentative identification of pyrite in Lake Whurr sediments has implications for the interpretation of the Fe mineralogy of Meridiani Planum sediments. Western Australia-Salt lakes-Jarosite-Hematite-Pyrite-Mars analogue. Astrobiology 16, 525-538.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1406700','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1406700"><span>Geochemical and Microbial Community Attributes in Relation to Hyporheic Zone Geological Facies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hou, Zhangshuan; Nelson, William C.; Stegen, James C.</p> <p></p> <p>The hyporheic zone (HZ) is the active ecotone between the surface stream and groundwater, where exchanges of water, nutrients, and organic matter occur in response to variations in discharge and riverbed properties. Within this region, a confluence of surface-derived organic carbon and subsurface nitrogen (in the form of nitrate) has been shown to stimulate microbial activity and transformations of carbon and nitrogen species. For example, production of gases such as CO 2, N 2 and N 2O indicate hyporheic zones might have a significant effect on energy and nutrient flows between the atmosphere and the subsurface. Managed and seasonal rivermore » stage changes and geomorphology-controlled sediment texture drive water flow within the HZ of the Columbia River. To examine the relationship between sediment texture, biogeochemistry, and biological activity in the HZ, the grain size distributions for sediment samples taken across 320 m of shoreline were characterized to define geological facies, and the relationships among physical properties of the facies, physicochemical attributes of the local environment, and the structure and activity of associated microbial communities were examined. Mud and sand content and the presence of carbon and nitrogen oxidizers were found to explain the variability in many biogeochemical attributes. Microbial community analysis revealed a high relative abundance of putative ammonia-oxidizing Thaumarchaeota and nitrite-oxidizing Nitrospirae, together comprising ~20% of the total community across all samples, but scant ammonia-oxidizing Bacteria. Network analysis of operational taxonomic units and the measured geophysical, chemical, and functional parameters showed negative relationships between abundance-based modules of organisms and sand and mud contents, and positive relationships with total organic carbon. The relationships identified in this work indicate grain size distribution is a good predictor of biogeochemical properties, and that subsets of the overall microbial community respond to different sediment texture. Some member populations of these sub-communities appear to respond directly to environmental conditions, while others may be dependent on the function of the first group. For example, nitrification is a strong primary response to the observed conditions, and this activity appears to support a larger heterotrophic community. Relationships between facies and hydrobiogeochemical properties enables facies-based conditional simulation/mapping of these properties to inform multiscale modeling of hyporheic exchange and biogeochemical processes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BGeo...14.4229G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BGeo...14.4229G"><span>Biogeochemical cycling at the aquatic-terrestrial interface is linked to parafluvial hyporheic zone inundation history</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goldman, Amy E.; Graham, Emily B.; Crump, Alex R.; Kennedy, David W.; Romero, Elvira B.; Anderson, Carolyn G.; Dana, Karl L.; Resch, Charles T.; Fredrickson, Jim K.; Stegen, James C.</p> <p>2017-09-01</p> <p>The parafluvial hyporheic zone combines the heightened biogeochemical and microbial interactions indicative of a hyporheic region with direct atmospheric/terrestrial inputs and the effects of wet-dry cycles. Therefore, understanding biogeochemical cycling and microbial interactions in this ecotone is fundamental to understanding biogeochemical cycling at the aquatic-terrestrial interface and to creating robust hydrobiogeochemical models of dynamic river corridors. We aimed to (i) characterize biogeochemical and microbial differences in the parafluvial hyporheic zone across a small spatial domain (6 lateral meters) that spans a breadth of inundation histories and (ii) examine how parafluvial hyporheic sediments respond to laboratory-simulated re-inundation. Surface sediment was collected at four elevations along transects perpendicular to flow of the Columbia River, eastern WA, USA. The sediments were inundated by the river 0, 13, 127, and 398 days prior to sampling. Spatial variation in environmental variables (organic matter, moisture, nitrate, glucose, % C, % N) and microbial communities (16S and internal transcribed spacer (ITS) rRNA gene sequencing, qPCR) were driven by differences in inundation history. Microbial respiration did not differ significantly across inundation histories prior to forced inundation in laboratory incubations. Forced inundation suppressed microbial respiration across all histories, but the degree of suppression was dramatically different between the sediments saturated and unsaturated at the time of sample collection, indicating a binary threshold response to re-inundation. We present a conceptual model in which irregular hydrologic fluctuations facilitate microbial communities adapted to local conditions and a relatively high flux of CO2. Upon rewetting, microbial communities are initially suppressed metabolically, which results in lower CO2 flux rates primarily due to suppression of fungal respiration. Following prolonged inundation, the microbial community adapts to saturation by shifting composition, and the CO2 flux rebounds to prior levels due to the subsequent change in respiration. Our results indicate that the time between inundation events can push the system into alternate states: we suggest (i) that, above some threshold of inundation interval, re-inundation suppresses respiration to a consistent, low rate and (ii) that, below some inundation interval, re-inundation has a minor effect on respiration. Extending reactive transport models to capture processes that govern such dynamics will provide more robust predictions of river corridor biogeochemical function under altered surface water flow regimes in both managed and natural watersheds.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JAfES.117..263C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JAfES.117..263C"><span>Chemostratigraphy of glaciomarine sediments in the Sarah Formation, northwest Saudi Arabia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Craigie, Neil W.; Rees, Andrew J.</p> <p>2016-05-01</p> <p>The Sarah Formation of northern Saudi Arabia mainly consists of glacial 'outwash' sediments deposited by turbidite channels and fans. Prior to undertaking chemostratigraphy, the results of seismic interpretation revealed the Sarah Formation to be mainly deposited in a NW-SE trending turbidite system in the study area, comprising channels with associated fans. These are succeeded by fluvio marine sediments at the top of the Sarah Formation. In the absence of good biostratigraphic control, chemostratigraphy was found to be one of the few techniques that could be employed to produce a high resolution correlation scheme for four study wells. Geochemical data were acquired for 50 elements in 550 core samples by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) and ICP-MS (Inductively Coupled Plasma - Mass Spectrometry) but only the 'key' ratios Zr/Nb, Nb/Ti, Nb/Cr, Rb/K and Th/Cr were employed for chemostratigraphic purposes as they show significant trends that enable correlative boundaries to be identified and a hierarchical scheme to be proposed. Variations in these parameters are largely related to changes in source/provenance. In order to avoid geochemical variations relating to changes in grain size/lithology, separate schemes were proposed for the sandstone and mudrock samples. The sandstone scheme consists of a hierarchical order of three zones, seven subzones and five divisions, while the mudrock scheme is less detailed, comprising three zones and seven subzones. A 'finalised' scheme, based on a combination of the two aforementioned ones, was found to be more useful than employing the correlation proposed for individual lithologies. One of the main conclusions of the study was that the basal chemozones (general term used to describe any chemostratigraphic zone, subzone or division) were identified in wells B and C but were missing from A and D. It is thought that the areas around the two latter wells represented topographically 'high' areas during the deposition of the lowermost part of the Sarah Formation, hence the reason that these chemozones may be missing as a result of erosion/non-deposition. Conversely, chemozone C3-2a, occurring towards the top of the Sarah Formation turbidites, is correlative between all four wells. The turbidites are succeeded by the marginal marine sediments of chemozones M3-1 and C3-2bb at the top of the Sarah Formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1406700-geochemical-microbial-community-attributes-relation-hyporheic-zone-geological-facies','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1406700-geochemical-microbial-community-attributes-relation-hyporheic-zone-geological-facies"><span>Geochemical and Microbial Community Attributes in Relation to Hyporheic Zone Geological Facies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Hou, Zhangshuan; Nelson, William C.; Stegen, James C.; ...</p> <p>2017-09-20</p> <p>The hyporheic zone (HZ) is the active ecotone between the surface stream and groundwater, where exchanges of water, nutrients, and organic matter occur in response to variations in discharge and riverbed properties. Within this region, a confluence of surface-derived organic carbon and subsurface nitrogen (in the form of nitrate) has been shown to stimulate microbial activity and transformations of carbon and nitrogen species. For example, production of gases such as CO 2, N 2 and N 2O indicate hyporheic zones might have a significant effect on energy and nutrient flows between the atmosphere and the subsurface. Managed and seasonal rivermore » stage changes and geomorphology-controlled sediment texture drive water flow within the HZ of the Columbia River. To examine the relationship between sediment texture, biogeochemistry, and biological activity in the HZ, the grain size distributions for sediment samples taken across 320 m of shoreline were characterized to define geological facies, and the relationships among physical properties of the facies, physicochemical attributes of the local environment, and the structure and activity of associated microbial communities were examined. Mud and sand content and the presence of carbon and nitrogen oxidizers were found to explain the variability in many biogeochemical attributes. Microbial community analysis revealed a high relative abundance of putative ammonia-oxidizing Thaumarchaeota and nitrite-oxidizing Nitrospirae, together comprising ~20% of the total community across all samples, but scant ammonia-oxidizing Bacteria. Network analysis of operational taxonomic units and the measured geophysical, chemical, and functional parameters showed negative relationships between abundance-based modules of organisms and sand and mud contents, and positive relationships with total organic carbon. The relationships identified in this work indicate grain size distribution is a good predictor of biogeochemical properties, and that subsets of the overall microbial community respond to different sediment texture. Some member populations of these sub-communities appear to respond directly to environmental conditions, while others may be dependent on the function of the first group. For example, nitrification is a strong primary response to the observed conditions, and this activity appears to support a larger heterotrophic community. Relationships between facies and hydrobiogeochemical properties enables facies-based conditional simulation/mapping of these properties to inform multiscale modeling of hyporheic exchange and biogeochemical processes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017391','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017391"><span>Laboratory simulation of hydrothermal petroleum formation from sediment in Escanaba Trough, offshore from northern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kvenvolden, K.A.; Rapp, J.B.; Hostettler, F.D.; Rosenbauer, R.J.</p> <p>1994-01-01</p> <p>Petroleum associated with sulfide-rich sediment is present in Escanaba Trough at the southern end of the Gorda Ridge spreading axis offshore from northern California within the Exclusive Economic Zone (EEZ) of the U.S. This location and occurrence are important for evaluation of the mineral and energy resource potential of the seafloor under U.S. jurisdiction. In Escanaba Trough, petroleum is believed to be formed by hydrothermal processes acting on mainly terrigenous organic material in Quaternary, river-derived sediment. To attempt to simulate these processes in the laboratory, portions of a Pleistocene gray-green mud, obtained from ??? 1.5 m below the seafloor at a water depth of ??? 3250 m in Escanaba Trough, were heated in the presence of water in four hydrous-pyrolysis experiments conducted at temperatures ranging from 250 to 350??C and at a pressure of 350 bar for 1.0-4.5 days. Distributions of n-alkanes, isoprenoid hydrocarbons, triterpanes, and steranes in the heated samples were compared with those in a sample of hydrothermal petroleum from the same area. Mud samples heated for less than 4.5 days at less than 350??C show changes in some, but not all, molecular marker ratios of organic compounds that are consistent with those expected during hydrothermal petroleum formation. Our results suggest that the organic matter in this type of sediment serves as one possible source for some of the compounds found in the hydrothermal petroleum. ?? 1994.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5558460-aerial-gamma-ray-magnetic-survey-nebraska-texas-survey-waco-quadrangle-texas','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5558460-aerial-gamma-ray-magnetic-survey-nebraska-texas-survey-waco-quadrangle-texas"><span>Aerial gamma ray and magnetic survey: Nebraska/Texas survey, Waco quadrangle of Texas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Not Available</p> <p>1980-02-01</p> <p>The Waco quadrangle of eastern Texas lies within the northern Gulf Coastal Province. The area contains portions of the Ouachita Tectonic Belt, and the East Texas-Athens Embayment. The Mexia-Talco Fault Zone strikes NNW through the center of the area. West of the fault zone, Eocene neritic sediments are dominant, whereas Cretaceous platform deposits cover most of the area west of the zone. Examination of available literature shows no known uranium deposits (or occurrences) within the quadrangle. One hundred forty-four groups of uranium samples were defined as anomalous and discussed briefly in this report. None are considered significant. Most appear tomore » be of cultural origin. Magnetic data in the quadrangle are dominantly low frequency/low amplitude wavelengths, which suggest that sources may be extremely deep.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.T11E..05T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.T11E..05T"><span>ODP Leg 210 Drills the Newfoundland Margin in the Newfoundland-Iberia Non-Volcanic Rift</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tucholke, B. E.; Sibuet, J.</p> <p>2003-12-01</p> <p>The final leg of the Ocean Drilling Project (Leg 210, July-September 2003) was devoted to studying the history of rifting and post-rift sedimentation in the Newfoundland-Iberia rift. For the first time, drilling was conducted in the Newfoundland Basin along a transect conjugate to previous drill sites on the Iberia margin (Legs 149 and 173) to obtain data on a complete `non-volcanic' rift system. The prime site during this leg (Site 1276) was drilled in the transition zone between known continental crust and known oceanic crust at chrons M3 and younger. Extensive geophysical work and deep-sea drilling have shown that this transition-zone crust on the conjugate Iberia margin is exhumed continental mantle that is strongly serpentinized in its upper part. Transition-zone crust on the Newfoundland side, however, is typically a kilometer or more shallower and has much smoother topography, and seismic refraction data suggest that the crust may be thin (about 4 km) oceanic crust. A major goal of Site 1276 was to investigate these differences by sampling basement and a strong, basinwide reflection (U) overlying basement. Site 1276 was cored from 800 to 1737 m below seafloor with excellent recovery (avg. 85%), bottoming in two alkaline diabase sills >10 m thick that are estimated to be 100-200 meters above basement. The sills have sedimentary contacts that show extensive hydrothermal metamorphism. Associated sediment structural features indicate that the sills were intruded at shallow levels within highly porous sediments. The upper sill likely is at the level of the U reflection, which correlates with lower Albian - uppermost Aptian(?) fine- to coarse-grained gravity-flow deposits. Overlying lower Albian to lower Oligocene sediments record paleoceanographic conditions similar to those on the Iberia margin and in the main North Atlantic basin, including deposition of `black shales'; however, they show an extensive component of gravity-flow deposits throughout.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.T53A4643L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.T53A4643L"><span>Interstitial Water Geochemistry and Low Temperature Alteration in Volcaniclastic Sediments from the Amami Sankaku Basin at IODP Site U1438 (Expedition 351)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loudin, L. C.; Yogodzinski, G. M.; Sena, C.; van der Land, C.; Zhang, Z.; Marsaglia, K. M.; Meffre, S.</p> <p>2014-12-01</p> <p>Interstitial water (IW) geochemistry provides insight into the diagenetic transformation of sediment to rock by component dissolution/alteration and precipitation of new mineral phases as pore-filling cements, as well as providing insight into ion exchange reactions with secondary minerals. At Site U1438, 67 IW samples were collected within a ~950 m section of volcaniclastic sediments. These were analyzed for pH as well as major and trace elements. The corresponding host sediments were mineralogically characterized by XRD and petrographic observations. Three alteration zones are inferred: 1) the upper alteration zone (~0-300 mbsf) characterized by maximum IW concentrations of Si (790.1 μM), Sr (138.5 μM) and Mn (279.5 μM), consistent with volcanic glass and siliceous microfossil dissolution, enhanced reduction of Mn oxides, and carbonate recrystallization. Maximum concentrations in Li and B coupled with the lowest pH (6.7) imply that Li and B are released into the IW due to silicate dissolution and clay desorption. 2) At intermediate depths (~300 to ~550 mbsf) Mg, K, Sr, Si, Mn, Li, and B are at concentration minima, possibly due to growth of authigenic minerals. B and Li minimum concentrations occur at high pH (~9) suggesting that these elements are preferentially removed from high pH waters during the precipitation of clay mineral and zeolite cements in primary and secondary (dissolution) pores. The mineralogy of these phases is confirmed by XRD data, and their pore-filling nature is seen in thin sections of the coarser lithologies. 3) The deep alteration zone (>~550m) is characterized by an increase in B, Li, Sr and Ca. At ~650 mbsf, Ca becomes the dominant cation in solution consistent with either mineral interaction with the IW, or diffusive input from underlying igneous basement (~1400 mbsf).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.9221W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.9221W"><span>Methodological issues and preliminary results from a combined sediment fingerprinting and radioisotope dating approach to explore changes in sediment sources with land-use change in the Brantian Catchment, Borneo.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walsh, Rory; Higton, Sam; Marshall, Jake; Bidin, Kawi; Blake, William; Nainar, Anand</p> <p>2015-04-01</p> <p>This paper reports some methodological issues and early results of a project investigating the erosional impacts of land use changes (multiple selective logging and progressive, partial conversion to oil palm) over the last 25-40 years in the 600km2 Brantian river catchment in Sabah, Borneo. A combined sediment fingerprinting and radioisotope dating approach is being applied to sediment cores taken in stream hierarchical fashion across the intermediate catchment scale. Changes in sediment sources and sedimentation rates over time can be captured by changes in the relative importance of geochemical elements with depth in downstream sediment cores, which in turn can be linked to parallel changes in upstream cores by the application of unmixing models and statistical techniques. Radioisotope analysis of the sediment cores allows these changes to be dated and sedimentation rates to be estimated. Work in the neighbouring Segama catchment had successfully demonstrated the potential of such an approach in a rainforest environment (Walsh et al. 2011). The paper first describes steps taken to address methodological issues. The approach relies on taking continuous sediment cores which have aggraded progressively over time and remain relatively undisturbed and uncontaminated. This issue has been tackled (1) through careful core sampling site selection with a focus on lateral bench sites and (2) deployment of techniques such as repeat-measurement erosion bridge transects to assess the contemporary nature of sedimentation to validate (or reject) candidate sites. The issue of sediment storage and uncertainties over lag times has been minimised by focussing on sets of above- and below-confluence sites in the intermediate zone of the catchment, thus minimising sediment transit times between upstream contributing and downstream destination core sites. This focus on the intermediate zone was also driven by difficulties in finding suitable core sites in the mountainous headwaters area due to the prevalence of steep, incised channels without even narrow floodplains. Preliminary results are reported from (1) a field visit to investigate potential sampling sites in July 2014 and (2) initial analysis of a sediment core at a promising lateral bench site. Marked down-profile geochemistry changes of the core indicate a history of phases of high deposition and lateral growth of the channel caused by mobilisation of sediment linked to logging and clearance upstream. Recent channel bed degradation suggests the system has been adjusting a decline in sediment supply with forest recovery since logging in 2005, but a renewed sedimentation phase heralded by > 10 cm deposition at the site in a flood in July 2014 appears to have started linked to partial forest clearance for oil palm. These preliminary results support the ability of a combined fingerprinting and dating approach to reflect the spatial history of land-use change in a catchment undergoing disturbance. Walsh R. P. D. , Bidin K., Blake W.H., Chappell N.A., Clarke M.A., Douglas I., Ghazali R., Sayer A.M., Suhaimi J., Tych W. & Annammala K.V. (2011) Long-term responses of rainforest erosional systems at different spatial scales to selective logging and climatic change. Philosophical Transactions of the Royal Society B, 366, 3340-3353.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993JAESc...8..369S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993JAESc...8..369S"><span>Clay-mineral assemblages from some levels of K-118 drill core of Maha Sarakham evaporites, northeastern Thailand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suwanich, Parkorn</p> <p></p> <p>Clay-mineral assemblages in Middle Clastic, Middle Salt, Lower Clastic, Potash Zone, and Lower Salt, totalling 13 samples from K-118 drill core, in the Maha Sarakham Formation, Khorat Basin, northeastern Thailand were studied. The clay-size particles were separated from the water-soluble salt by water leaching. Then the samples were leached again in the EDTA solution and separated into clay-size particles by using the timing sedimentation. The EDTA-clay residues were divided and analyzed by using the XRD and XRF method. The XRD peaks show that the major-clay minerals are chlorite, illite, and mixed-layer corrensite including traces of rectorite? and paragonite? The other clay-size particles are quartz and potassium feldspar. The XRF results indicate Mg-rich values and moderate MgAl atom ratio values in those clay minerals. The variable Fe, Na, and K contents in the clay-mineral assemblages can explain the environment of deposition compared to the positions of the samples from the core. Hypothetically, mineralogy and the chemistry of the residual assemblages strongly indicate that severe alteration and Mg-enrichment of normal clay detritus occurred in the evaporite environment through brine-sediment interaction. The various Mg-enrichment varies along the various members reflecting whether sedimentation is near or far from the hypersaline brine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA374586','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA374586"><span>Oceanography and Mine Warfare</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2000-03-13</p> <p>of breaking waves , the position and strength of surface currents, and the propagation of the tide into very shallow waters. In the surf zone...6) sediment properties determine shock wave propagation , a method for mine neutralization in the surf zone. 48 OCEANOGRAPHY AND MINE WARFARE...mines will be buried in the sediments, sedimentary explosive shock wave propagation is critical for determining operational performance. Presently, we</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/15731','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/15731"><span>Watershed scale assessment of the impact of forested riparian zones on stream water quality</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>J. A. Webber; K. W. J. Williard; M. R. Whiles; M. L. Stone; J. J. Zaczek; D. K. Davie</p> <p>2003-01-01</p> <p>Federal and state land management agencies have been promoting forest and grass riparian zones to combat non-point source nutrient and sediment pollution of our nations' waters. The majority of research examining the effectiveness of riparian buffers at reducing nutrient and sediment inputs to streams has been conducted at the field scale. This study took a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004SedG..163..165L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004SedG..163..165L"><span>Eogenetic siderite as an indicator for fluctuations in sedimentation rate in the Oligocene Boom Clay Formation (Belgium)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Laenen, B.; De Craen, M.</p> <p>2004-01-01</p> <p>Horizons with septarian concretions are a salient feature of the marine Boom Clay Formation. At most horizons, the concretions consist of ferroan calcite with variable amounts of pyrite, but at stratigraphic level S60 they also contain siderite. S60 is situated at the centre of an intensely bioturbated zone that is underlain by a pyrite-rich layer. Furthermore, the enclosing clay is strongly enriched in iron, manganese and phosphorous. The sedimentological and chemical zoning is indicative for low sedimentation rates, which allowed the concentration of iron in the aerobic zone of the sediment. Concentration of iron was the prerequisite for the formation of the siderite-containing concretions. The co-precipitation with pyrite is an argument for a formation in the sulphate reduction zone, and is indicative for a high rate of iron-reduction. The latter was due to the rapid burial of the iron-enriched layer below the redox boundary. The abrupt fluctuations in sedimentation rate were a response to the maximum flooding event of the second Rupelian third-order relative sea-level cycle, which caused a brief pushback of the detrital sediment wedge to its source areas. As this response is logically explained by the general sequence stratigraphic model [Spec. Publ.-Soc. Econ. Paleontol. Mineral. 42 (1988) 109], early diagenetic siderite may be widespread at maximum flooding surfaces in rapidly prograding marine mudstones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B11I0557C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B11I0557C"><span>Heterotrophic potential of Atribacteria from deep marine Antarctic sediment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carr, S. A.; Orcutt, B.; Mandernack, K. W.; Spear, J. R.</p> <p>2015-12-01</p> <p>Bacteria belonging to the newly classified candidate phylum "Atribacteria" (formerly referred to as "OP9" and "JS1") are common in anoxic methane-rich sediments. However, the metabolic functions and biogeochemical role of these microorganisms in the subsurface remains unrealized due to the lack of pure culture representatives. This study observed a steady increase of Atribacteria-related sequences with increasing sediment depth throughout the methane-rich zone of the Adélie Basin, Antarctica (according to a 16S rRNA gene survey). To explore the functional potential of Atribacteria in this basin, samples from various depths (14, 25 and 97 meters below seafloor), were subjected to metagenomic sequencing. Additionally, individual cells were separated from frozen, unpreserved sediment for whole genome amplification. The successful isolation and sequencing of a single-amplified Atribacteria genome from these unpreserved sediments demonstrates a future use of single cell techniques with previously collected and frozen sediments. Our resulting single-cell amplified genome, combined with metagenomic interpretations, provides our first insights to the functional potential of Atribacteria in deep subsurface settings. As observed for non-marine Atribacteria, genomic analyses suggest a heterotrophic metabolism, with Atribacteria potentially producing fermentation products such as acetate, ethanol and CO2. These products may in turn support methanogens within the sediment microbial community and explain the frequent occurrence of Atribacteria in anoxic methane-rich sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012M%26PS...47.1274L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012M%26PS...47.1274L"><span>A Russian record of a Middle Ordovician meteorite shower: Extraterrestrial chromite at Lynna River, St. Petersburg region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lindskog, Anders; Schmitz, Birger; Cronholm, Anders; Dronov, Andrei</p> <p>2012-08-01</p> <p>Numerous fossil meteorites and high concentrations of sediment-dispersed extraterrestrial chromite (EC) grains with ordinary chondritic composition have previously been documented from 467 ± 1.6 Ma Middle Ordovician (Darriwilian) strata. These finds probably reflect a temporarily enhanced influx of L-chondritic matter, following the disruption of the L-chondrite parent body in the asteroid belt 470 ± 6 Ma. In this study, a Volkhovian-Kundan limestone/marl succession at Lynna River, northwestern Russia, has been searched for EC grains (>63 μm). Eight samples, forming two separate sample sets, were collected. Five samples from strata around the Asaphus expansus-A. raniceps trilobite Zone boundary, in the lower-middle Kundan, yielded a total of 496 EC grains in 65.5 kg of rock (average 7.6 EC grains kg-1, but up to 10.2 grains kg-1). These are extremely high concentrations, three orders of magnitude higher than "background" levels in similar condensed sediment from other periods. EC grains are typically about 50 times more abundant than terrestrial chrome spinel in the samples and about as common as terrestrial ilmenite. Three stratigraphically lower lying samples, close to the A. lepidurus-A. expansus trilobite Zone boundary, at the Volkhov-Kunda boundary, yielded only two EC grains in 38.2 kg of rock (0.05 grains kg-1). The lack of commonly occurring EC grains in the lower interval probably reflects that these strata formed before the disruption of the L-chondrite parent body. The great similarity in EC chemical composition between this and other comparable studies indicates that all or most EC grains in these Russian mid-Ordovician strata share a common source--the L-chondrite parent body.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS21A1113T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS21A1113T"><span>A Non-Steady-State Condition in Sediments at the Gashydrate Stability Boundary off West Spitsbergen: Evidence for Gashydrate Dissociation or Just Dynamic Methane Transport?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Treude, T.; Krause, S.; Bertics, V. J.; Steinle, L.; Niemann, H.; Liebetrau, V.; Feseker, T.; Burwicz, E.; Krastel, S.; Berndt, C.</p> <p>2014-12-01</p> <p>In 2008, a large area with several hundred methane plumes was discovered along the West Spitsbergen continental margin at water depths between 150 and 400 m (Westbrook et al. 2009, GRL 36, doi:10.1029/2009GL039191). Many of the observed plumes were located at the boundary of gas hydrate stability (~400 m water depth). It was speculated that the methane escape at this depth was correlated with gas hydrate destabilization caused by recent increases in water temperatures recorded in this region. In a later study, geochemical analyses of authigenic carbonates and modeling of heat flow data combined with seasonal changes in water temperature demonstrated that the methane seeps were active already prior to industrial warming but that the gas hydrate system nevertheless reacts very sensitive to even seasonal temperature changes (Berndt et al. 2014, Science 343: 284-287). Here, we report about a methane seep site at the gas hydrate stability boundary (394 m water depth) that features unusual geochemical profiles indicative for non-steady state conditions. Sediment was recovered with a gravity corer (core length 210 cm) and samples were analyzed to study porewater geochemistry, methane concentration, authigenic carbonates, and microbial activity. Porewater profiles revealed two zones of sulfate-methane transition at 50 and 200 cm sediment depth. The twin zones were confirmed by a double peaking in sulfide, total alkalinity, anaerobic oxidation of methane, and sulfate reduction. δ18O values sharply increased from around -2.8 ‰ between 0 and 126 cm to -1.2 ‰ below 126 cm sediment depth. While U/Th isotope measurements of authigenic seep carbonates that were collected from different depths of the core illustrated that methane seepage must be occurring at this site since at least 3000 years, the biogeochemical profiles suggest that methane flux must have been altered recently. By applying a multi-phase reaction-transport model using known initial parameters from the study site (e.g. water depth, temperature profile, salinity, and sediment surface concentrations of CH4, SO4, DIC, and POC) were able to show that the observed twin sulfate-methane transition zones are an ephemeral phenomenon occurring during increase of methane production in the sediment, which can be introduced by, e.g., gas hydrate dissociation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28073565','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28073565"><span>Heterogeneous distribution in sediments and dispersal in waters of Alexandrium minutum in a semi-enclosed coastal ecosystem.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Klouch, Z K; Caradec, F; Plus, M; Hernández-Fariñas, T; Pineau-Guillou, L; Chapelle, A; Schmitt, S; Quéré, J; Guillou, L; Siano, R</p> <p>2016-12-01</p> <p>Within the framework of research aimed at using genetic methods to evaluate harmful species distribution and their impact on coastal ecosystems, a portion of the ITS1rDNA of Alexandrium minutum was amplified by real-time PCR from DNA extracts of superficial (1-3cm) sediments of 30 subtidal and intertidal stations of the Bay of Brest (Brittany, France), during the winters of 2013 and 2015. Cell germinations and rDNA amplifications of A. minutum were obtained for sediments of all sampled stations, demonstrating that the whole bay is currently contaminated by this toxic species. Coherent estimations of ITS1rDNA copy numbers were obtained for the two sampling cruises, supporting the hypothesis of regular accumulation of A. minutum resting stages in the south-eastern, more confined embayments of the study area, where fine-muddy sediments are also more abundant. Higher ITS1rDNA copy numbers were detected in sediments of areas where blooms have been seasonally detected since 2012. This result suggests that specific genetic material estimations in superficial sediments of the bay may be a proxy of the cyst banks of A. minutum. The simulation of particle trajectory analyses by a Lagrangian physical model showed that blooms occurring in the south-eastern part of the bay are disconnected from those of the north-eastern zone. The heterogeneous distribution of A. minutum inferred from both water and sediment suggests the existence of potential barriers for the dispersal of this species in the Bay of Brest and encourages finer analyses at the population level for this species within semi-enclosed coastal ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=184862','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=184862"><span>Distribution and Rate of Methane Oxidation in Sediments of the Florida Everglades †</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>King, Gary M.; Roslev, Peter; Skovgaard, Henrik</p> <p>1990-01-01</p> <p>Rates of methane emission from intact cores were measured during anoxic dark and oxic light and dark incubations. Rates of methane oxidation were calculated on the basis of oxic incubations by using the anoxic emissions as an estimate of the maximum potential flux. This technique indicated that methane oxidation consumed up to 91% of the maximum potential flux in peat sediments but that oxidation was negligible in marl sediments. Oxygen microprofiles determined for intact cores were comparable to profiles measured in situ. Thus, the laboratory incubations appeared to provide a reasonable approximation of in situ activities. This was further supported by the agreement between measured methane fluxes and fluxes predicted on the basis of methane profiles determined by in situ sampling of pore water. Methane emissions from peat sediments, oxygen concentrations and penetration depths, and methane concentration profiles were all sensitive to light-dark shifts as determined by a combination of field and laboratory analyses. Methane emissions were lower and oxygen concentrations and penetration depths were higher under illuminated than under dark conditions; the profiles of methane concentration changed in correspondence to the changes in oxygen profiles, but the estimated flux of methane into the oxic zone changed negligibly. Sediment-free, root-associated methane oxidation showed a pattern similar to that for methane oxidation in the core analyses: no oxidation was detected for roots growing in marl sediment, even for roots of Cladium jamaicense, which had the highest activity for samples from peat sediments. The magnitude of the root-associated oxidation rates indicated that belowground plant surfaces may not markedly increase the total capacity for methane consumption. However, the data collectively support the notion that the distribution and activity of methane oxidation have a major impact on the magnitude of atmospheric fluxes from the Everglades. PMID:16348299</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP33A1913S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP33A1913S"><span>Sea Level Rise Drove Enhanced Coastal Erosion following the Last Glacial Maximum, Southern California, U.S.A.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharman, G.; Covault, J. A.; Stockli, D. F.; Sickmann, Z.; Malkowski, M. A.; Johnstone, S.</p> <p>2017-12-01</p> <p>Seacliff erosion poses a major threat to southern California coastal communities, including the propensity for episodic cliff failure and damage to residential and commercial property. Rising sea level is predicted to accelerate seacliff retreat, yet few constraints exist on how rapid sea level rise influenced coastal erosion rates in pre-modern timescales. Here we look to the geologic record in submarine fans to investigate changes in relative sediment supply from rivers and coastal erosion, the latter including seacliff retreat and bluffland erosion. To understand how sea level rise driven by past global warming impacted coastal erosion rates, we sampled modern rivers of the Peninsular Ranges and latest Pleistocene-Holocene submarine canyon-fan systems in southern California for detrital zircon U-Pb geochronology (1369 analyses from 10 samples). Modern river samples show a systematic north-south change in grain age populations broadly distributed across Cretaceous time (ca. 70-135 Ma) to a predominance of middle Cretaceous grain ages (ca. 95-115 Ma), reflecting variations in the geologic age of units within each river catchment. The Carlsbad and La Jolla submarine canyon-fan systems, deposited during sea level lowstand and highstand, respectively, exhibit detrital zircon age distributions consistent with derivation from upstream rivers, with mixing in the littoral zone. However, a sample from the Oceanside fan, deposited during rapid sea level rise at ca. 13 ka, is dominated by detrital ages that lack a local source in the northern Peninsular Ranges, including latest Cretaceous, late Jurassic, and Proterozoic ages. However, such grain ages are widespread in Paleogene sedimentary rocks that comprise the shelf and coastal area, suggesting increased sediment supply from coastal and shelf erosion. Assuming that the Oceanside sample is representative of sediment production during sea level rise, sediment mixing calculations suggest a one to two orders of magnitude increase in sediment from coastal erosion relative to river-supplied sediment. Our results thus suggest a significant increase in coastal erosion rates following the Last Glacial Maximum, highlighting the risk that future sea level rise poses to coastal communities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918342H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918342H"><span>Glacimarine sedimentation in Petermann Fjord and Nares Strait, NW Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hogan, Kelly; Jakobsson, Martin; Mayer, Larry; Mix, Alan; Nielsen, Tove; Kamla, Elina; Reilly, Brendan; Heirman, Katrina An; Stranne, Christian; Mohammed, Rezwan; Eriksson, Bjorn; Jerram, Kevin</p> <p>2017-04-01</p> <p>Here we build on preliminary results from 6500 line-km of high-resolution chirp sub-bottom profiles (2-7 kHz) acquired in Petermann Fjord and Nares Strait during the Petermann 2015 Expedition of the Swedish icebreaker Oden. We map the unlithified sediment cover in Peterman Fjord, which consists of up to 3 conformable "drape" units and calculate volumes of this assumed "post-glacial" fill. In Nares Strait we have mapped sediment volumes in local basins just beyond the sill at the Petermann Fjord-mouth: do these sediments represent material flushed out from the grounding zone of Petermann Glacier when it was grounded at the sill? In this vein, and interestingly, some of the thickest sediments that we observe are found close to a grounding-zone wedge (GZW) in Nares Strait that represents a former grounding zone of ice retreating southwards through the strait. We also map conformable units across Nares Strait and consider the similarities between these and the sediment units in the fjord. Do the strong reflections between the units represent the same climatic, oceanographic or process-shift both inside and outside the fjord? We also aim to tie our new acoustic stratigraphy to sediment-core data (lithofacies, dates) and, therefore, to comment on the age of the mapped sediment units and present ideas on the glacimarine flux of material to the Petermann-Nares system. Primary sediment delivery to the seafloor in this environment is thought to be predominantly through sedimentation from meltwater plumes but also of iceberg-rafted debris (IRD). However, sediment redeposition by slope failures on a variety of scales also occurs and has focussed sediments into discrete basins where the seafloor is rugged. This work - which aims to relate past sediment, meltwater and iceberg fluxes to changes in climate - will help us to identify how the system has responded to a past global warming event, namely the last deglaciation. This is particularly relevant in light of the recent thinning and acceleration of NW Greenland's marine-terminating outlet glaciers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26592026','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26592026"><span>[Formation Mechanism of Aerobic Granular Sludge and Removal Efficiencies in Integrated ABR-CSTR Reactor].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Kai-cheng; Wu, Peng; Xu, Yue-zhong; Li, Yue-han; Shen, Yao-liang</p> <p>2015-08-01</p> <p>Anaerobic Baffled Reactor (ABR) was altered to make an integrated anaerobic-aerobic reactor. The research investigated the mechanism of aerobic sludge granulation, under the condition of continuous-flow. The last two compartments of the ABR were altered into aeration tank and sedimentation tank respectively with seeded sludge of anaerobic granular sludge in anaerobic zone and conventional activated sludge in aerobic zone. The HRT was gradually decreased in sedimentation tank from 2.0 h to 0.75 h and organic loading rate was increased from 1.5 kg x (M3 x d)(-1) to 2.0 kg x (M3 x d)(-1) while the C/N of 2 was controlled in aerobic zone. When the system operated for 110 days, the mature granular sludge in aerobic zone were characterized by compact structure, excellent sedimentation performance (average sedimentation rate was 20.8 m x h(-1)) and slight yellow color. The system performed well in nitrogen and phosphorus removal under the conditions of setting time of 0.75 h and organic loading rate of 2.0 kg (m3 x d)(-1) in aerobic zone, the removal efficiencies of COD, NH4+ -N, TP and TN were 90%, 80%, 65% and 45%, respectively. The results showed that the increasing selection pressure and the high organic loading rate were the main propulsions of the aerobic sludge granulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B21C0463K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B21C0463K"><span>Identifying and Quantifying Chemical Forms of Sediment-Bound Ferrous Iron.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kohler, M.; Kent, D. B.; Bekins, B. A.; Cozzarelli, I.; Ng, G. H. C.</p> <p>2015-12-01</p> <p>Aqueous Fe(II) produced by dissimilatory iron reduction comprises only a small fraction of total biogenic Fe(II) within an aquifer. Most biogenic Fe(II) is bound to sediments on ion exchange sites; as surface complexes and, possibly, surface precipitates; or incorporated into solid phases (e.g., siderite, magnetite). Different chemical forms of sediment-bound Fe(II) have different reactivities (e.g., with dissolved oxygen) and their formation or destruction by sorption/desorption and precipitation/dissolution is coupled to different solutes (e.g., major cations, H+, carbonate). We are quantifying chemical forms of sediment-bound Fe(II) using previously published extractions, novel extractions, and experimental studies (e.g., Fe isotopic exchange). Sediments are from Bemidji, Minnesota, where biodegradation of hydrocarbons from a burst oil pipeline has driven extensive dissimilatory Fe(III) reduction, and sites potentially impacted by unconventional oil and gas development. Generally, minimal Fe(II) was mobilized from ion exchange sites (batch desorption with MgCl2 and repeated desorption with NH4Cl). A < 2mm sediment fraction from the iron-reducing zone at Bemidji had 1.8umol/g Fe(II) as surface complexes or carbonate phases (sodium acetate at pH 5) of which ca. 13% was present as surface complexes (FerroZine extractions). Total bioavailable Fe(III) and biogenic Fe(II) (HCl extractions) was 40-50 umole/g on both background and iron-reducing zone sediments . Approximately half of the HCl-extractable Fe from Fe-reducing zone sediments was Fe(II) whereas 12 - 15% of Fe extracted from background sediments was present as Fe(II). One-third to one-half of the total biogenic Fe(II) extracted from sediments collected from a Montana prairie pothole located downgradient from a produced-water disposal pit was present as surface-complexed Fe(II).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015856','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015856"><span>Quaternary geology and geologic hazards of the West Desert Hazardous Industry Area, Tooele County, Utah</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Solomon, Barry J.; Black, Bill D.; ,</p> <p>1990-01-01</p> <p>The study of Quaternary geology provides information to evaluate geologic conditions and identify geologic constraints on construction in the West Desert Hazardous Industry Area (WDHIA). The WDHIA includes portions of the Great Salt Lake Desert to the west, underlain by several thousand feet of sediments capped by saline mudflats, and Ripple Valley to the east, separated from the Desert by the Grayback Hills and underlain by several hundred feet of sediments in the Cedar Mountains piedmont zone. Quaternary surficial units include marginal, shore-zone, and deep-water lacustrine sediments deposited in Pleistocene Lake Bonneville; eolian deposits; and alluvial sediments. The level of Lake Bonneville underwent major oscillations resulting in the creation of four basin-wide shorelines, three of which are recognized in the WDHIA. Geologic hazards in the WDHIA include the possible contamination of ground water in basin-fill aquifers, debris flows and flash floods in the piedmont zone, and earthquakes and related hazards. Numerous factors contribute to unsafe foundation conditions. Silty and sandy sediments may be subject to liquefaction or hydrocompaction, clayey sediments and mud flats of the Great Salt Lake Desert may be subject to shrinking or swelling, and gypsiferous dunes and salt flats are subject to subsidence due to dissolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012CSR....35...75P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012CSR....35...75P"><span>Rare earth elements in coastal sediments of the northern Galician shelf: Influence of geological features</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prego, Ricardo; Caetano, Miguel; Bernárdez, Patricia; Brito, Pedro; Ospina-Alvarez, Natalia; Vale, Carlos</p> <p>2012-03-01</p> <p>The Northern coast of Galicia, NW Iberian Peninsula, exhibits a variety of geological features: Ortegal allochthonous complex, Ollo-de-Sapo autochthonous domain and massifs of Bares, Barqueiro and San-Ciprian. In order to examine the influence of terrestrial lithologies on coastal sediments, 103 samples were collected in the Rias of Ortigueira, Barqueiro and Viveiro, their neighbouring shelf and the estuaries of Mera, Sor and Landro rivers. Aluminium, Fe, Sc, particulate inorganic and organic carbon and rare earth elements (REE) were determined in the <2 mm fraction. In addition, calcite, muscovite, quartz and riebeckite minerals were identified and quantified in 33 selected samples. The distributions of riebeckite and Fe reflect the influence of Ortegal complex on the coastal areas around the Cape Ortegal. The highest concentrations of ΣREE were found in fine sediments from confined inner parts of the Rias (up to 233 mg kg-1), while most of the sands contained 11-70 mg kg-1. ΣREE normalised to European Shale (ES) highlights the relative abundance of lanthanides (ΣREEN>6) near Cape Ortegal and the innermost ria zones. The ratio between light and heavy REE (L/H) showed lower values (4-11) around Cape Ortegal and the shelf while higher ratios (15-23) were detected in west of the Cape Estaca-de-Bares and in the inner Viveiro Ria due to elevated contributions of La and Ce. The L/H values normalised to ES reflects the importance of HREE in the adjacent area to Ortegal Complex (LN/HN<0.8) and the LREE (LN/HN>1.4) in the inner estuaries and west Cape Estaca-de-Bares. The highest REE individual ES normalised were measured in fine-grained sediments of the Mera and Sor estuaries. Sediments from the eastern shelf of Cape Ortegal presented enhanced ratios only for HREE. These results indicate that distribution of REE in the northern Galician region is highly depending on the neighbouring lithological pattern, contrasting with the situation found in the western Galician shelf and the Bay of Biscay. Lanthanides can, thus, provide a useful tool to follow the sediment pathway in the land-sea boundary zones, denoting continental geochemical imprint or fluvial outputs accordingly to the existing hydrological and geological conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.H51H..02D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.H51H..02D"><span>Optimization of Remediation Conditions using Vadose Zone Monitoring Technology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dahan, O.; Mandelbaum, R.; Ronen, Z.</p> <p>2010-12-01</p> <p>Success of in-situ bio-remediation of the vadose zone depends mainly on the ability to change and control hydrological, physical and chemical conditions of subsurface. These manipulations enables the development of specific, indigenous, pollutants degrading bacteria or set the environmental conditions for seeded bacteria. As such, the remediation efficiency is dependent on the ability to implement optimal hydraulic and chemical conditions in deep sections of the vadose zone. Enhanced bioremediation of the vadose zone is achieved under field conditions through infiltration of water enriched with chemical additives. Yet, water percolation and solute transport in unsaturated conditions is a complex process and application of water with specific chemical conditions near land surface dose not necessarily result in promoting of desired chemical and hydraulic conditions in deeper sections of the vadose zone. A newly developed vadose-zone monitoring system (VMS) allows continuous monitoring of the hydrological and chemical properties of the percolating water along deep sections of the vadose zone. Implementation of the VMS at sites that undergoes active remediation provides real time information on the chemical and hydrological conditions in the vadose zone as the remediation process progresses. Manipulating subsurface conditions for optimal biodegradation of hydrocarbons is demonstrated through enhanced bio-remediation of the vadose zone at a site that has been contaminated with gasoline products in Tel Aviv. The vadose zone at the site is composed of 6 m clay layer overlying a sandy formation extending to the water table at depth of 20 m bls. The upper 5 m of contaminated soil were removed for ex-situ treatment, and the remaining 15 m vadose zone is treated in-situ through enhanced bioremedaition. Underground drip irrigation system was installed below the surface on the bottom of the excavation. Oxygen and nutrients releasing powder (EHCO, Adventus) was spread below the irrigation system to enrich the percolating water. The vadose zone monitoring system that was installed at the site allowed accurate monitoring of the wetting cycles, including: (1) wetting front propagation velocities, (2) temporal variation of the sediment water content, (2) chemical composition of the percolating water, (3) isotopic composition of BTEX compounds, (4) variations in nutrient concentration, and (5) variations in the vadose zone redox potential. Preliminary results showed that the wetting front crossed the entire vadose zone in four days reaching maximum water content values of 12 to 18 %. Temporal variation in the sediment BTEX concentrations indicated significant reduction in highly soluble and mobile compounds such as MTBE. Yet the chemical composition of the water samples through the first sampling campaign indicated that the limiting factor for biodegradation at the first wetting cycle was insufficient nitrogen. Results from each wetting cycles were used to improve the following wetting cycles in order to optimize the vadose zone conditions for microbial activity while minimizing leaching of contaminants to the groundwater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26841598','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26841598"><span>[Exchange Fluxes and Coupling Relationship of Dissolved Inorganic Carbon and Dissolved Organic Carbon Across the Water-Sediment Interface in Lakes].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Wei-ying; Lü, Chang-wei; He, Jiang; Zuo, Le; Yan, Dao-hao</p> <p>2015-10-01</p> <p>In this work, the exchange fluxes and coupling relationship of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) were investigated across the water-sediment interface in Lake Wuliangsuhai and Daihai by employing columnar simulation method. The results showed that the sediments in non-Phragmitescommunis area from Lake Wuliangsuhai functioned as the sources of DIC and DOC for overlying water, whereas the sediments from Lake Daihai as the sinks during the period of summer (90 days). In the experimental period, the average exchange rates of DIC and DOC were 71.07 mmol x (m2 x d)(-1) and 185.09 mmol x (m2 x d)(-1) in non-Phragmitescommunis area from Lake Wuliangsuhai, respectively; while in Lake Daihai, they were 155.75 mmol x (m2 x d)(-1) and -1478.08 mmol x (m2 x d)(-1) in shoal water zone, and -486.53 mmol x (m2 x d)(-1) and -1274.02 mmol x (m2 x d)(-1) in deep water zone, respectively. The coupling effects between DIC and DOC were governed by hydrobios, microbial uptake, abiotic and microbiological degradation in Lake Wuliangsuhai and in shoal water zone of Lake Daihai; while they were closely related to the coprecipitation process of CaCO3 and the fraction distribution of inorganic carbon in sediments in deep water zone of Lake Daihai. In summary, the sink or source functions of sediments could be considered as the results of synthetic action of lake types, offshore distance, geohydrochemistry and the fraction distribution of inorganic carbon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/958108','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/958108"><span>Field Validation of Toxicity Tests to Evaluate the Potential for Beneficial Use of Produced Water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Joseph Bidwell; Jonathan Fisher; Naomi Cooper</p> <p>2008-03-31</p> <p>This study investigated potential biological effects of produced water contamination derived from occasional surface overflow and possible subsurface intrusion at an oil production site along the shore of Skiatook Lake, Oklahoma. We monitored basic chemistry and acute toxicity to a suite of standard aquatic test species (fathead minnow-Pimephales promelas, Daphnia pulex, Daphnia magna, and Ceriodaphnia dubia) in produced water and in samples taken from shallow groundwater wells on the site. Toxicity identification evaluations and ion toxicity modeling were used to identify toxic constituents in the samples. Lake sediment at the oil production site and at a reference site were alsomore » analyzed for brine intrusion chemically and by testing sediment toxicity using the benthic invertebrates, Chironomus dilutus, and Hyallela azteca. Sediment quality was also assessed with in situ survival and growth studies with H. azteca and the Asian clam, Corbicula fluminea, and by benthic macroinvertebrate community sampling. The produced water was acutely toxic to the aquatic test organisms at concentrations ranging from 1% to 10% of the whole produced water sample. Toxicity identification evaluation and ion toxicity modeling indicated major ion salts and hydrocarbons were the primary mixture toxicants. The standardized test species used in the laboratory bioassays exhibited differences in sensitivity to these two general classes of contaminants, which underscores the importance of using multiple species when evaluating produced water toxicity. Toxicity of groundwater was greater in samples from wells near a produced water injection well and an evaporation pond. Principle component analyses (PCA) of chemical data derived from the groundwater wells indicated dilution by lake water and possible biogeochemical reactions as factors that ameliorated groundwater toxicity. Elevated concentrations of major ions were found in pore water from lake sediments, but toxicity from these ions was limited to sediment depths of 10 cm or greater, which is outside of the primary zone of biological activity. Further, exposure to site sediments did not have any effects on test organisms, and macroinvertebrate communities did not indicate impairment at the oil production site as compared to a reference site. In situ experiments with H. azteca and C. fluminea, indicated a sublethal site effect (on growth of both species), but these could not be definitively linked with produced water infiltration. Severe weather conditions (drought followed by flooding) negatively influenced the intensity of lake sampling aimed at delineating produced water infiltration. Due to the lack of clear evidence of produced water infiltration into the sub-littoral zone of the lake, it was not possible to assess whether the laboratory bioassays of produced water effectively indicate risk in the receiving system. However, the acutely toxic nature of the produced water and general lack of biological effects in the lake at the oil production site suggest minimal to no produced water infiltration into surficial lake sediments and the near-shore water column. This study was able to demonstrate the utility of ion toxicity modeling to support data from toxicity identification evaluations aimed at identifying key toxic constituents in produced water. This information could be used to prioritize options for treating produced water in order to reduce toxic constituents and enhance options for reuse. The study also demonstrated how geographic information systems, toxicity modeling, and toxicity assessment could be used to facilitate future site assessments.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29571398','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29571398"><span>Microplastics in a wind farm area: A case study at the Rudong Offshore Wind Farm, Yellow Sea, China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Teng; Zou, Xinqing; Li, Baojie; Yao, Yulong; Li, Jiasheng; Hui, Hejiu; Yu, Wenwen; Wang, Chenglong</p> <p>2018-03-01</p> <p>Despite the rapid construction of offshore wind farms, the available information regarding the risks of this type of development in terms of emerging pollutants, particularly microplastics, is scarce. In this study, we quantified the level of microplastic pollution at an offshore wind farm in the Yellow Sea, China, in 2016. The abundance of microplastics was 0.330 ± 0.278 items/m 3 in the surface water and 2.58 ± 1.14 items/g (dry) in the sediment. To the best of our knowledge, the level of microplastic pollution in our study area was slightly higher than that in coastal areas around the world. The microplastics detected in the surface waters and sediments were mainly fibrous (75.3% and 68.7%, respectively) and consisted of some granules and films. The microplastics in the samples might originate from garments or ropes via wastewater discharge. The abundance of plastic in the water and sediment samples collected from the wind farm area was lower than that in the samples collected from outside the wind farm area. The anthropogenic hydrodynamic effect was the main factor affecting the local distribution of microplastics. The presence of a wind farm could increase the bed shear stress during ebb tide, disturbing the bed sediment, facilitating its initiation and transport, and ultimately increasing the ease of washing away the microplastics adhered to the sediment. This study will serve as a reference for further studies of the distribution and migration of microplastics in coastal zones subjected to similar marine utilization. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2007/5289/SIR2007-5289-I.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2007/5289/SIR2007-5289-I.pdf"><span>Environmental geochemical study of Red Mountain--an undisturbed volcanogenic massive sulfide deposit in the Bonnifield District, Alaska range, east-central Alaska: Chapter I in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Eppinger, Robert G.; Briggs, Paul H.; Dusel-Bacon, Cynthia; Giles, Stuart A.; Gough, Larry P.; Hammarstrom, Jane M.; Hubbard, Bernard E.</p> <p>2007-01-01</p> <p>Water samples with the lowest pH values, highest specific conductances, and highest major- and trace-element concentrations are from springs and streams within the quartz-sericite-pyrite alteration zone. Aluminum, As, Cd, Co, Cu, Fe, Mn, Ni, Pb, Y, and particularly Zn and the REEs are all found in high concentrations, ranging across four orders of magnitude. Waters collected upstream from the alteration zone have near-neutral pH values, lower specific conductances, lower metal concentrations, and measurable alkalinities. Water samples collected downstream of the alteration zone have pH values and metal concentrations intermediate between these two extremes. Stream sediments are anomalous in Zn, Pb, S, Fe, Cu, As, Co, Sb, and Cd relative to local and regional background abundances. Red Mountain Creek and its tributaries do not support, and probably never have supported, significant megascopic faunal aquatic life.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5056715','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5056715"><span>Characterization of Macroinvertebrate Communities in the Hyporheic Zone of River Ecosystems Reflects the Pump-Sampling Technique Used</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dole-Olivier, Marie-José; Galassi, Diana M. P.; Hogan, John-Paul; Wood, Paul J.</p> <p>2016-01-01</p> <p>The hyporheic zone of river ecosystems provides a habitat for a diverse macroinvertebrate community that makes a vital contribution to ecosystem functioning and biodiversity. However, effective methods for sampling this community have proved difficult to establish, due to the inaccessibility of subsurface sediments. The aim of this study was to compare the two most common semi-quantitative macroinvertebrate pump-sampling techniques: Bou-Rouch and vacuum-pump sampling. We used both techniques to collect replicate samples in three contrasting temperate-zone streams, in each of two biogeographical regions (Atlantic region, central England, UK; Continental region, southeast France). Results were typically consistent across streams in both regions: Bou-Rouch samples provided significantly higher estimates of taxa richness, macroinvertebrate abundance, and the abundance of all UK and eight of 10 French common taxa. Seven and nine taxa which were rare in Bou-Rouch samples were absent from vacuum-pump samples in the UK and France, respectively; no taxon was repeatedly sampled exclusively by the vacuum pump. Rarefaction curves (rescaled to the number of incidences) and non-parametric richness estimators indicated no significant difference in richness between techniques, highlighting the capture of more individuals as crucial to Bou-Rouch sampling performance. Compared to assemblages in replicate vacuum-pump samples, multivariate analyses indicated greater distinction among Bou-Rouch assemblages from different streams, as well as significantly greater consistency in assemblage composition among replicate Bou-Rouch samples collected in one stream. We recommend Bou-Rouch sampling for most study types, including rapid biomonitoring surveys and studies requiring acquisition of comprehensive taxon lists that include rare taxa. Despite collecting fewer macroinvertebrates, vacuum-pump sampling remains an important option for inexpensive and rapid sample collection. PMID:27723819</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910135P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910135P"><span>Structural architecture and petrophysical properties of the Rocca di Neto extensional fault zone developed in the shallow marine sediments of the Crotone Basin (Southern Apennines, Italy).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pizzati, Mattia; Balsamo, Fabrizio; Iacumin, Paola; Swennen, Rudy; Storti, Fabrizio</p> <p>2017-04-01</p> <p>In this contribution we describe the architecture and petrophysical properties of the Rocca di Neto extensional fault zone in loose and poorly lithified sediments, located in the Crotone forearc basin (south Italy). To this end, we combined fieldwork with microstructural observations, grain size analysis, and in situ permeability measurements. The studied fault zone has an estimated maximum displacement of 80-90 m and separates early Pleistocene age (Gelasian) sands in the footwall from middle Pleistocene (Calabrian) silty clay in the hangingwall. The analysed outcrop consists of about 70 m section through the fault zone mostly developed in the footwall block. Fault zone consists of four different structural domains characterized by distinctive features: (1) <1 m-thick fault core (where the majority of the displacement is accommodated) in which bedding is transposed into foliation imparted by grain preferential orientation and some black gouges decorate the main slip surfaces; (2) zone of tectonic mixing characterized by a set of closely spaced and anastomosed deformation bands parallel to the main slip surface; (3) about 8 m-thick footwall damage zone characterized by synthetic and antithetic sets of deformation bands; (4) zone of background deformation with a few, widely-spaced conjugate minor faults and deformation bands. The boundary between the relatively undeformed sediments and the damage zone is not sharp and it is characterized by a progressive decrease in deformation intensity. The silty clay in the hangingwall damage zone is characterized by minor faults. Grain size and microstructural data indicate that particulate flow with little amount of cataclasis is the dominant deformation mechanism in both fault core rocks and deformation bands. Permeability of undeformed sediments is about 70000 mD, whereas the permeability in deformation bands ranges from 1000 to 18000 mD; within the fault core rocks permeability is reduced up to 3-4 orders of magnitude respect to the undeformed domains. Structural and petrophysical data suggest that the Rocca di Neto fault zone may compartmentalize the footwall block due to both juxtaposition of clay-rich lithology in the hangingwall and the development of low permeability fault core rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS44A..08H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS44A..08H"><span>Sediment-pore water interactions controlling cementation in the NanTroSEIZE drilling transects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hong, W.; Spinelli, G. A.; Torres, M. E.</p> <p>2012-12-01</p> <p>One goal of the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is to understand how changes in subducting sediment control the transition from aseismic to seismogenic behavior in subduction zones. In the sediment entering the Nankai subduction zone, dramatic changes in physical and chemical properties occur across a diagenetic boundary; they are thought to affect sediment strength and deformation. The dissolution of disseminated volcanic ash and precipitation of silica cement may be responsible for these changes in physical properties, but the mechanism controlling cementation was unclear (Spinelli et al., 2007). In this study, we used CrunchFlow (Steefel, 2009) to simulate chemical reactions and fluid flow through 1-D sediment columns at Integrated Ocean Drilling Program (IODP) sites on the incoming plate in Nankai Trough. The simulations include the thermodynamics and kinetics of sediment-water interactions, advection of pore water and sediment due to compaction, and multi-component diffusion in an accumulating sediment column. Key reactions in the simulations are: ash dissolution, amorphous silica precipitation and dissolution, and zeolite precipitation. The rate of ash decomposition was constrained using Sr isotope data of Joseph et al. (2012). Our model reproduces the distinct diagenetic boundary observed in sediment and pore water chemistry, which defines two zones. Above this boundary (zone 1), dissolved and amorphous silicate contents are high and the potassium concentration remains near seawater values or gradually decreases toward the boundary. Below the boundary, both dissolved and amorphous silicate content drop rapidly, concomitant with a decrease in dissolved potassium. Our model shows that these changes in the system are driven by formation of clinoptilolite in response to changes in pore fluid pH. The low pH values (<7.6) above the diagenetic boundary accelerate ash decomposition and maintain clinoptilolite slightly undersaturated. The dissolved silicate released from ash alteration precipitates as cement, inhibiting consolidation. At or below the boundary, the increase in pH (>8.0), leads to oversaturation (and precipitation) of clinoptilolite. Strong demand of dissolved silicate due to clinoptilolite formation soon depletes the dissolved potassium and silicate; ash and silicate cement are forced to dissolve. The exact set of reactions resulting on the observed pH increase is still unclear, but it likely involves the carbon system. It is noteworthy that the diagenetic boundary at all sites in the incoming plate occurs at the same thermal maturity of the sediments (TTI=0.025), similar to observations on onshore sequences in Japan (Sasaki, 1986).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4861714','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4861714"><span>The Ability of Microbial Community of Lake Baikal Bottom Sediments Associated with Gas Discharge to Carry Out the Transformation of Organic Matter under Thermobaric Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bukin, Sergei V.; Pavlova, Olga N.; Manakov, Andrei Y.; Kostyreva, Elena A.; Chernitsyna, Svetlana M.; Mamaeva, Elena V.; Pogodaeva, Tatyana V.; Zemskaya, Tamara I.</p> <p>2016-01-01</p> <p>The ability to compare the composition and metabolic potential of microbial communities inhabiting the subsurface sediment in geographically distinct locations is one of the keys to understanding the evolution and function of the subsurface biosphere. Prospective areas for study of the subsurface biosphere are the sites of hydrocarbon discharges on the bottom of the Lake Baikal rift, where ascending fluxes of gas-saturated fluids and oil from deep layers of bottom sediments seep into near-surface sediment. The samples of surface sediments collected in the area of the Posolskaya Bank methane seep were cultured for 17 months under thermobaric conditions (80°C, 5 MPa) with the addition of complementary organic substrate, and a different composition for the gas phase. After incubation, the presence of intact cells of microorganisms, organic matter transformation and the formation of oil biomarkers was confirmed in the samples, with the addition of Baikal diatom alga Synedra acus detritus, and gas mixture CH4:H2:CO2. Taxonomic assignment of the 16S rRNA sequence data indicates that the predominant sequences in the enrichment were Sphingomonas (55.3%), Solirubrobacter (27.5%) and Arthrobacter (16.6%). At the same time, in heat-killed sediment and in sediment without any additional substrates, which were cultivated in a CH4 atmosphere, no geochemical changes were detected, nor the presence of intact cells and 16S rRNA sequences of Bacteria and Archaea. This data may suggest that the decomposition of organic matter under culturing conditions could be performed by microorganisms from low-temperature sediment layers. One possible explanation of this phenomenon is migration of the representatives of the deep thermophilic community through fault zones in the near surface sediment layers, together with gas-bearing fluids. PMID:27242716</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27242716','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27242716"><span>The Ability of Microbial Community of Lake Baikal Bottom Sediments Associated with Gas Discharge to Carry Out the Transformation of Organic Matter under Thermobaric Conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bukin, Sergei V; Pavlova, Olga N; Manakov, Andrei Y; Kostyreva, Elena A; Chernitsyna, Svetlana M; Mamaeva, Elena V; Pogodaeva, Tatyana V; Zemskaya, Tamara I</p> <p>2016-01-01</p> <p>The ability to compare the composition and metabolic potential of microbial communities inhabiting the subsurface sediment in geographically distinct locations is one of the keys to understanding the evolution and function of the subsurface biosphere. Prospective areas for study of the subsurface biosphere are the sites of hydrocarbon discharges on the bottom of the Lake Baikal rift, where ascending fluxes of gas-saturated fluids and oil from deep layers of bottom sediments seep into near-surface sediment. The samples of surface sediments collected in the area of the Posolskaya Bank methane seep were cultured for 17 months under thermobaric conditions (80°C, 5 MPa) with the addition of complementary organic substrate, and a different composition for the gas phase. After incubation, the presence of intact cells of microorganisms, organic matter transformation and the formation of oil biomarkers was confirmed in the samples, with the addition of Baikal diatom alga Synedra acus detritus, and gas mixture CH4:H2:CO2. Taxonomic assignment of the 16S rRNA sequence data indicates that the predominant sequences in the enrichment were Sphingomonas (55.3%), Solirubrobacter (27.5%) and Arthrobacter (16.6%). At the same time, in heat-killed sediment and in sediment without any additional substrates, which were cultivated in a CH4 atmosphere, no geochemical changes were detected, nor the presence of intact cells and 16S rRNA sequences of Bacteria and Archaea. This data may suggest that the decomposition of organic matter under culturing conditions could be performed by microorganisms from low-temperature sediment layers. One possible explanation of this phenomenon is migration of the representatives of the deep thermophilic community through fault zones in the near surface sediment layers, together with gas-bearing fluids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ECSS..198..471Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ECSS..198..471Z"><span>The distribution of heavy metals and 137Cs in the central part of the Polish maritime zone (Baltic Sea) - the area selected for wind farm acquisition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zaborska, Agata; Kosakowska, Alicja; Bełdowski, Jacek; Bełdowska, Magdalena; Szubska, Marta; Walkusz-Miotk, Jolanta; Żak, Adam; Ciechanowicz, Agnieszka; Wdowiak, Maciej</p> <p>2017-11-01</p> <p>Disturbances of the marine sediments that may be induced by offshore wind energy (OWE) construction and functioning may cause reintroduction of contaminants accumulated in the sea bottom over last century. It is thus very important to check in which offshore region of the Polish coast the littlest consequences of the OWE construction may be expected. The area of 9000 km2 in the central part of the Polish economic zone was selected for sediments sampling. In total, sediments from 46 stations were collected by gravity twin corer or geo-vibro corer. Heavy metal (Hg, Pb, Cd, As, Zn, Cu, Cr, Ni, Fe, Mn) concentrations were measured by AAS and ICP-MS while 137 Cs activity concentrations were measured by gamma spectrometer. Sediment accumulation rates were quantified by 210Pb geochronology at 7 stations to follow the history of contaminants accumulation. Study areas located between isobaths of 20 m and 40 m were characterized by the lowest concentration of heavy metals, often below natural environmental background (e.g. Pb = 6.7 - 11.4 μg·g-1, As = 0.3 - 8.4 μg·g-1). The largest contamination by heavy metals (e.g. Pb reached 86.1 μg·g-1 while As = 21.0 μg·g-1) was visible at the outer part of Bornholm Basin and in Słupsk Furrow, the deepest studied regions. Highest accumulation of heavy metals in this area is connected to large fraction of pelite sediments and large proportion of organic matter at those stations. It may be concluded that shallow sandy sediments of the Southern Baltic are unpolluted and appropriate for OWE construction. Deeper sea regions e.g Słupsk Furrow and Bornholm Basin may be regarded as moderately polluted and therefore not recommended for OWE acquisition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....3994D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....3994D"><span>Multi-stage mixing in subduction zone: Application to Merapi volcano, Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Debaille, V.; Doucelance, R.; Weis, D.; Schiano, P.</p> <p>2003-04-01</p> <p>Basalts sampling subduction zone volcanism (IAB) often show binary mixing relationship in classical Sr-Nd, Pb-Pb, Sr-Pb isotopic diagrams, generally interpreted as reflecting the involvement of two components in their source. However, several authors have highlighted the presence of minimum three components in such a geodynamical context: mantle wedge, subducted and altered oceanic crust and subducted sediments. The overlying continental crust can also contribute by contamination and assimilation in magma chambers and/or during magma ascent. Here we present a multi-stage model to obtain a two end-member mixing from three components (mantle wedge, altered oceanic crust and sediments). The first stage of the model considers the metasomatism of the mantle wedge by fluids and/or melts released by subducted materials (altered oceanic crust and associated sediments), considering mobility and partition coefficient of trace elements in hydrated fluids and silicate melts. This results in the generation of two distinct end-members, reducing the number of components (mantle wedge, oceanic crust, sediments) from three to two. The second stage of the model concerns the binary mixing of the two end-members thus defined: mantle wedge metasomatized by slab-derived fluids and mantle wedge metasomatized by sediment-derived fluids. This model has been applied on a new isotopic data set (Sr, Nd and Pb, analyzed by TIMS and MC-ICP-MS) of Merapi volcano (Java island, Indonesia). Previous studies have suggested three distinct components in the source of indonesian lavas: mantle wedge, subducted sediments and altered oceanic crust. Moreover, it has been shown that crustal contamination does not significantly affect isotopic ratios of lavas. The multi-stage model proposed here is able to reproduce the binary mixing observed in lavas of Merapi, and a set of numerical values of bulk partition coefficient is given that accounts for the genesis of lavas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020521','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020521"><span>Organic carbon accumulation and preservation in surface sediments on the Peru margin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Arthur, M.A.; Dean, W.E.; Laarkamp, K.</p> <p>1998-01-01</p> <p>Concentrations and characteristics of organic matter in surface sediments deposited under an intense oxygen-minimum zone on the Peru margin were studied in samples from deck-deployed box cores and push cores acquired by submersible on two transects spanning depths of 75 to 1000 m at 12??and 13.5??S. The source of organic matter to the seafloor in these areas is almost entirely marine material as confirmed by the narrow range of ??13C of organic carbon obtained in the present study (-20.3 to -21.6???; PDB) and the lack of any relationship between pyrolysis hydrogen index and carbon isotope composition. Organic carbon contents are highest (up to 16%) on the slope at depths between 75 and 350 m in sediments deposited under intermediate water masses with low dissolved oxygen concentrations (< 5 ??mol/kg). Even at these low concentrations of dissolved oxygen, however, the surface sediments that were recovered from these depths are dominantly unlaminated. Strong currents (up to 30 cm/s) associated with the poleward-flowing Peru Undercurrent were measured at depths between 160 and 300 m on both transects. The seafloor in this range of water depths is characterized by bedforms stabilized by bacterial mats, extensive authigenic mineral crusts, and (or) thick organic flocs. Constant advection of dissolved oxygen, although in low concentrations, active resuspension of surficial organic matter, activity of organisms, and transport of fine-grained sediment to and from more oxygenated zones all contribute to greater degradation and poorer initial preservation of organic matter than might be expected under oxygen-deficient conditions. Dissolved-oxygen concentrations ultimately may be the dominant affect on organic matter characteristics, but reworking of fine-grained sediment and organic matter by strong bottom currents and redeposition on the seafloor in areas of lower energy also exert important controls on organic carbon concentration and degree of oxidation in this region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://dx.doi.org/10.1016/j.margeo.2014.09.040','USGSPUBS'); return false;" href="http://dx.doi.org/10.1016/j.margeo.2014.09.040"><span>Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Xiujuan Wang,; ,; Collett, Timothy S.; Lee, Myung W.; Yang, Shengxiong; Guo, Yiqun; Wu, Shiguo</p> <p>2014-01-01</p> <p>Multi-channel seismic reflection data, well logs, and recovered sediment cores have been used in this study to characterize the geologic controls on the occurrence of gas hydrate in the Shenhu area of the South China Sea. The concept of the "gas hydrate petroleum system" has allowed for the systematic analysis of the impact of gas source, geologic controls on gas migration, and the role of the host sediment in the formation and stability of gas hydrates as encountered during the 2007 Guangzhou Marine Geological Survey Gas Hydrate Expedition (GMGS-1) in the Shenhu area. Analysis of seismic and bathymetric data identified seventeen sub-linear, near-parallel submarine canyons in this area. These canyons, formed in the Miocene, migrated in a northeasterly direction, and resulted in the burial and abandonment of canyons partially filled by coarse-grained sediments. Downhole wireline log (DWL) data were acquired from eight drill sites and sediment coring was conducted at five of these sites, which revealed the presence of suitable reservoirs for the occurrence of concentrated gas hydrate accumulations. Gas hydrate-bearing sediment layers were identified from well log and core data at three sites mainly within silt and silt clay sediments. Gas hydrate was also discovered in a sand reservoir at one site as inferred from the analysis of the DWL data. Seismic anomalies attributed to the presence of gas below the base of gas hydrate stability zone, provided direct evidence for the migration of gas into the overlying gas hydrate-bearing sedimentary sections. Geochemical analyses of gas samples collected from cores confirmed that the occurrence of gas hydrate in the Shenhu area is controlled by the presence thermogenic methane gas that has migrated into the gas hydrate stability zone from a more deeply buried source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFMOS21D..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFMOS21D..03M"><span>Infilling of the Hudson River Estuary During the Late Holocene (3000ka to Present): Implications for Estuarine Stratigraphic Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McHugh, C. M.; Pekar, S. F.; Ryan, W. B.; Carbotte, S.; Bell, R.; Burckle, L.</p> <p>2002-12-01</p> <p>Estuaries are widely preserved in the geologic record and the estuarine fill, contained between non-marine sediment, provides an excellent temporal marker for continental margin studies. Estuarine stratigraphic models have provided a framework within which to interpret the estuarine fill. However, estuarine systems differ greatly in the shape of their valleys, the tectonic boundaries they cross, and in sediment supply so that their position in the geologic record may be out of sequence with that predicted by the models. New insights into estuarine systems and models are provided by the Hudson River Estuary (HRE; New York State) based on >150 cores and grab sediment samples and acoustic images documenting in great detail how the HRE filled its earlier excavated valley during the latest Holocene (3ka to present). Radiocarbon and 137-Cs radioisotope ages, borehole, and core data document the sedimentation patterns of the estuary. Diatom assemblages provide estimates of the shallowing-upwards of the estuary as its basin filled with sediments. The three areas of the stratigraphic model present in the HRE, include zones formed within inner fluvial and outer marine areas, (containing coarse-grained, sands and gravels), and a central area (containing fine-grained, silts and clays), that are nearly filled with little room for sediments to accumulate at or near sea-level. This has resulted in sedimentary bypass for almost the entire length the estuary. South of Kingston, fine-grained sediments have ceased accumulating when the bottom approaches wave base. Upstream from Kingston, final filling occurs as sediments fill in the remaining accommodation, forming islands. This should result in the export of sediment to the coastal zone. Instead, localized areas of sediment trapping still exist, which are related to the Hudson Valley Highlands and to the location of the estuarine turbidity maximum that hold large volumes of sediment. As a result minor volumes of Recent sediment are accumulating in coastal bays (Sandy Hook, New Jersey) and on the inner shelf, and sediment export to the Hudson Shelf Valley on the mid-shelf is nearly non-existent, with sediments dated at 14ka from 14-C on the outer shelf. Additionally, anthropogenic activities (construction of bridges and dredging) alter sedimentation patterns in the estuary leading to continued localized erosion and deposition. For example, sediment export onto the shelf is taking place, not by natural processes but by dredging. The variability documented for the HRE indicates that although estuarine and stratigraphic models provide a framework for continental margin studies, the models need to be interpreted, taking into consideration these factors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19244994','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19244994"><span>Uranium speciation as a function of depth in contaminated hanford sediments--a micro-XRF, micro-XRD, and micro- and bulk-XAFS study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Singer, David M; Zachara, John M; Brown, Gordon E</p> <p>2009-02-01</p> <p>The distribution and speciation of U and Cu in contaminated vadose zone and aquifer sediments from the U.S. DOE Hanford site (300 Area) were determined using a combination of synchrotron-based micro-X-ray fluorescence (microXRF) imaging, micro-X-ray absorption near edge structure (microXANES) spectroscopy, and micro-X-ray diffraction (microXRD) techniques combined with bulk U LIII-edge X-ray absorption fine structure (XAFS) spectroscopy. Samples were collected from within the inactive North Process Pond (NPP2) at 8 ft (2.4 m, NPP2-8) depth and 12 ft (3.7 m, NPP2-12) depth in the vadose zone, and fines were isolated from turbid groundwater just below the water Table (12-14 ft, approximately 4 m, NPP2-GW). microXRF imaging, microXRD, and microXANES spectroscopy revealed two major U occurrences within the vadose and groundwater zones: (1) low to moderate concentrations of U(VI) associated with fine-textured grain coatings that were consistently found to contain clinochlore (referred to here as chlorite) observed in all three samples, and (2) U(VI)-Cu(II) hotspots consisting of micrometer-sized particles associated with surface coatings on grains of muscovite and chlorite observed in samples NPP2-8' and NPP2-GW. In the aquifer fines (NPP2-GW), these particles were identified as cuprosklodowskite (cps: Cu[(UO2)(SiO2OH)]2 x 6H2O) and metatorbernite (mtb: Cu(UO2)2(PO4)2 x 8H2O). In contrast, the U-Cu-containing particles in the vadose zone were X-ray amorphous. Analyses of U LIII-edge XAFS spectra by linear-combination fitting indicated that U speciation consisted of (1) approximately 75% uranyl sorbed to chlorite and approximately 25% mtb-like X-ray amorphous U-Cu-phosphates (8 ft depth), (2) nearly 100% sorbed uranyl (12 ft depth), and (3) approximately 70% uranyl sorbed to chlorite and approximately 30% cps/mtb (groundwater zone). These findings suggest that dissolution of U(VI)-Cu(II)-bearing solids as well as desorption of U(VI), mainly from phyllosilicates, are important persistent sources of U(VI) to the associated uranium groundwater plume in Hanford Area 300.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/wri024031/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/wri024031/"><span>Field tests of diffusion samplers for inorganic constituents in wells and at a ground-water discharge zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Vroblesky, Don A.; Petkewich, Matthew D.; Campbell, Ted R.</p> <p>2002-01-01</p> <p>Field tests were performed on two types of diffusion samplers to collect representative samples of inorganic constituents from ground water in wells and at an arsenic-contaminated ground-water-discharge zone beneath a stream. Nylon-screen samplers and dialysis samplers were tested for the collection of arsenic, calcium, chloride, iron, manganese, sulfate, and dissolved oxygen. The investigations were conducted at the Naval Industrial Reserve Ordnance Plant (NIROP), Fridley, Minnesota, and at the Naval Air Station Fort Worth Joint Reserve Base (NAS Fort Worth JRB), Texas. Data indicate that, in general, nylon-screen and dialysis diffusion samplers are capable of obtaining concentrations of inorganic solutes in ground water that correspond to concentrations obtained by low-flow sampling. Diffusion samplers offer a potentially time-saving approach to well sampling. Particular care must be taken, however, when sampling for iron and other metals, because of the potential for iron precipitation by oxygenation and when dealing with chemically stratified sampling intervals. Simple nylon-screen jar samplers buried beneath creekbed sediment appear to be effective tools for locating discharge zones of arsenic contaminated ground water. Although the LDPE samplers have proven to be inexpensive and simple to use in wells, they are limited by their inability to provide a representative sample of ionic solutes. The success of nylon-screen samplers in sediment studies suggests that these simple samplers may be useful for collecting water samples for inorganic constituents in wells. Results using dialysis bags deployed in wells suggest that these types of samplers have the potential to provide a representative sample of both VOCs and ionic solutes from ground water (Kaplan and others, 1991; Theodore A. Ehlke, U.S. Geological Survey, written commun., 2001). The purpose of this report is to provide results of field tests investigating the potential to use diffusion samplers to collect representative samples of inorganic constituents from ground water in wells and at an arsenic-contaminated ground-water-discharge zone beneath a stream. The investigations were performed at NIROP, Fridley, Minn. (fig. 1) and at NAS Fort Worth JRB, Texas (fig. 2). Two types of samplers were tested. One type was a nylon-screen sampler, which consisted of a 30-mL jar filled with deionized water, with its opening covered by a nylon screen. The second type was a dialysis sampler that consisted of a tube of dialysis membrane filled with deionized water. The nylon-screen samplers were deployed in wells at NIROP Fridley and NAS Fort Worth JRB and beneath the ground-water/surface water interface of a stream at NAS Fort Worth JRB. The dialysis samplers were deployed only in wells at NAS Fort Worth JRB.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018QSRv..191..118G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018QSRv..191..118G"><span>Meteoric 10Be as a tracer of subglacial processes and interglacial surface exposure in Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graly, Joseph A.; Corbett, Lee B.; Bierman, Paul R.; Lini, Andrea; Neumann, Thomas A.</p> <p>2018-07-01</p> <p>In order to test whether sediment emerging from presently glaciated areas of Greenland was exposed near or at Earth's surface during previous interglacial periods, we measured the rare isotope 10Be contained in grain coatings of sediment collected at five ice marginal sites. Such grain coatings contain meteoric 10Be (10Bemet), which forms in the atmosphere and is deposited onto Earth's surface. Samples include sediment entrained in ice, glaciofluvial sediment collected at the ice margin, and subglacial sediment extracted during hot water drilling in the ablation zone. Due to burial by ice, contemporary subglacial sediment could only have acquired substantial 10Bemet concentrations during periods in the past when the Greenland Ice Sheet was less extensive than present. The highest measured 10Bemet concentrations are comparable to those found in well-developed, long-exposed soils, suggesting subglacial preservation and glacial transport of sediment exposed during preglacial or interglacial periods. Ice-bound sediment has significantly higher 10Bemet concentrations than glaciofluvial sediment, suggesting that glaciofluvial processes are sufficiently erosive to remove tracers of previous interglacial exposures. Northern Greenland sites where ice and sediment are supplied from the ice sheet's central main dome have significantly higher 10Bemet concentrations than sites in southern Greenland, indicating greater preglacial or interglacial landscape preservation in central Greenland than in the south. Because southern Greenland has more frequent and spatially extensive periods of glacial retreat but nevertheless has less evidence of past subaerial exposure, we suggest that 10Bemet measurements in glacial sediment are primarily controlled by erosional efficiency rather than interglacial exposure length.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AtmEn..60..202D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AtmEn..60..202D"><span>Tracing geogenic and anthropogenic sources in urban dusts: Insights from lead isotopes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Del Rio-Salas, R.; Ruiz, J.; De la O-Villanueva, M.; Valencia-Moreno, M.; Moreno-Rodríguez, V.; Gómez-Alvarez, A.; Grijalva, T.; Mendivil, H.; Paz-Moreno, F.; Meza-Figueroa, D.</p> <p>2012-12-01</p> <p>Tracing the source of metals in the environment is critical to understanding their pollution level and fate. Geologic materials are an important source of airborne particulate matter, but the contribution of contaminated soil to concentrations of Pb in airborne dust is not yet widely documented. To examine the potential significance of this mechanism, surface soil samples were collected, as well as wind-transported dust trapped at 1 and 2 m height at seven different locations including residential, industrial, high-traffic and rural sites. Samples of dust deposited on roofs from 24 schools were also obtained and analyzed for Pb isotope ratios. Spatial distribution of Pb of airborne and sedimented dust suggests a process dominated by re-suspension/sedimentation, which was controlled by erosion, traffic and topography of the urban area. Anthropogenic lead input in the city grades outward the urban zone toward geogenic values. Our results shows that Pb-isotopic signatures of leaded gasoline are imprinted in dust sedimented on roofs. Considering that leaded-gasoline has not been in use in Mexico since two decades ago, this signature shows not only a Pb-legacy in soil, but also a re-suspension process affecting air column below 3 m in height. The combination of the 207Pb/206Pb data of the surrounding rocks and urban dust, reveal three well-defined zones with remarkable anthropogenic influence, which correspond to the oldest urban sectors. This work highlights the importance of spatial characterization of metals in particles suspended below a height of 3 m of the airborne column, a fact that should be considered to identify exposure paths to humans and the potential risks. Lead isotope signatures allowed the identification of geogenic and anthropogenic emission sources for dust, a matter that deserves consideration in the efforts to control airborne metal emissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T21E..01U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T21E..01U"><span>Composition of Sediment Inputs to the Hikurangi Subduction Margin: A Prelude to IODP Expedition 375</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Underwood, M.</p> <p>2017-12-01</p> <p>Expedition 375 of the International Ocean Discovery Program is scheduled to begin drilling offshore New Zealand in March 2018. Two sites will be cored seaward of the Hikurangi subduction front (subduction inputs), plus one site at the toe of the accretionary prism, and one site in the forearc above a zone of well-documented slow-slip events. One of the challenges during planning for Expedition 375 has been the total absence of pre-existing compositional data from the region; that lack of basic information impacts such tasks as mixing and analysis of appropriate standards for X-ray diffraction, error analysis, computation of accurate normalization factors, and QA/QC. To help overcome those deficiencies, I analyzed a total of 152 samples from ODP Sites 1123 (Quaternary to Eocene), 1124 (Quaternary to Cretaceous), and 1125 (Quaternary to Miocene), plus piston/gravity-core samples from the repositories at Lamont-Doherty, Oregon State, and NIWA. The results reveal an unusually large range of compositions for the bulk sediments. The relative abundance of total clay minerals ranges from 3 to 64 wt%. Quartz ranges from 0 to 39 wt%. Feldspar ranges from 0 to 40 wt%, and calcite ranges from 0 to 93 wt%. Samples from the Hikurangi Plateau and Chatham Rise are carbonate-rich, with many bordering on almost-pure nannofossil chalk. Hemipelagic muds from the floor of Hikurangi Trough, Ruatoria slide, and the landward slope of the trench are fairly uniform, with averages of 36 wt% total clay minerals, 27 wt% quartz, 24 wt% feldspar, and 13 wt% calcite. Unlike many other subduction zones, this diversity of lithologies will save shipboard scientists from repetitive, mind-numbing descriptions and analyses, and shorebased experiments for frictional properties, permeability, and consolidation will need to pay close attention to the compositional attributes of the specimens. In addition, results from the four IODP boreholes can be interpreted within a broader, regional-scale framework of sediment provenance and dispersal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.T13A2577N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.T13A2577N"><span>Seismic inversion for incoming sedimentary sequence in the Nankai Trough margin off Kumano Basin, southwest Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Naito, K.; Park, J.</p> <p>2012-12-01</p> <p>The Nankai Trough off southwest Japan is one of the best subduction-zone to study megathrust earthquake mechanism. Huge earthquakes have been repeated in the cycle of 100-150 years in the area, and in these days the next emergence of the earthquake becomes one of the most serious issue in Japan. Therefore, detailed descriptions of geological structure are urgently needed there. IODP (Integrated Ocean Drilling Program) have investigated this area in the NanTroSEIZE science plan. Seismic reflection, core sampling and borehole logging surveys have been executed during the NanTroSEIZE expeditions. Core-log-seismic data integration (CLSI) is useful for understanding the Nankai seismogenic zone. We use the seismic inversion method to do the CLSI. The seismic inversion (acoustic impedance inversion, A.I. inversion) is a method to estimate rock physical properties using seismic reflection and logging data. Acoustic impedance volume is inverted for seismic data with density and P-wave velocity of several boreholes with the technique. We use high-resolution 3D multi-channel seismic (MCS) reflection data obtained during KR06-02 cruise in 2006, and measured core sample properties by IODP Expeditions 322 and 333. P-wave velocities missing for some core sample are interpolated by the relationship between acoustic impedance and P-wave velocity. We used Hampson-Russell software for the seismic inversion. 3D porosity model is derived from the 3D acoustic impedance model to figure out rock physical properties of the incoming sedimentary sequence in the Nankai Trough off Kumano Basin. The result of our inversion analysis clearly shows heterogeneity of sediments; relatively high porosity sediments on the shallow layer of Kashinosaki Knoll, and distribution of many physical anomaly bands on volcanic and turbidite sediment layers around the 3D MCS survey area. In this talk, we will show 3D MCS, acoustic impedance, and porosity data for the incoming sedimentary sequence and discuss its possible implications for the Nankai seismogenic behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.C54B..03P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.C54B..03P"><span>Testing of SIR (a transformable robotic submarine) in Lake Tahoe for future deployment at West Antarctic Ice Sheet grounding lines of Siple Coast</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Powell, R. D.; Scherer, R. P.; Griffiths, I.; Taylor, L.; Winans, J.; Mankoff, K. D.</p> <p>2011-12-01</p> <p>A remotely operated vehicle (ROV) has been custom-designed and built by DOER Marine to meet scientific requirements for exploring subglacial water cavities. This sub-ice rover (SIR) will explore and quantitatively document the grounding zone areas of the Ross Ice Shelf cavity using a 3km-long umbilical tether by deployment through an 800m-long ice borehole in a torpedo shape, which is also its default mode if operational failure occurs. Once in the ocean cavity it transforms via a diamond-shaped geometry into a rectangular form when all of its instruments come alive in its flight mode. Instrumentation includes 4 cameras (one forward-looking HD), a vertical scanning sonar (long-range imaging for spatial orientation and navigation), Doppler current meter (determine water current velocities), multi-beam sonar (image and swath map bottom topography), sub-bottom profiler (profile sub-sea-floor sediment for geological history), CTD (determine salinity, temperature and depth), DO meter (determine dissolved oxygen content in water), transmissometer (determine suspended particulate concentrations in water), laser particle-size analyzer (determine sizes of particles in water), triple laser-beams (determine size and volume of objects), thermistor probe (measure in situ temperatures of ice and sediment), shear vane probe (determine in situ strength of sediment), manipulator arm (deploy instrumentation packages, collect samples), shallow ice corer (collect ice samples and glacial debris), water sampler (determine sea water/freshwater composition, calibrate real-time sensors, sample microbes), shallow sediment corer (sample sea floor, in-ice and subglacial sediment for stratigraphy, facies, particle size, composition, structure, fabric, microbes). A sophisticated array of data handling, storing and displaying will allow real-time observations and environmental assessments to be made. This robotic submarine and other instruments will be tested in Lake Tahoe in September, 2011 and results will be presented on its trials and geological and biological findings down to the deepest depths of the lake. Other instruments include a 5m-ling percussion corer for sampling deeper sediments, an ice-tethered profiler with CTD and ACDP, and in situ oceanographic mooring designed to fit down a narrow (30cm-diameter) ice borehole that include interchangeable packages of ACDPs, CTDs, transmissometers, laser particle-size analyzer, DO meter, automated multi-port water sampler, water column nutrient analyzer, sediment porewater chemistry analyzer, down-looking color camera (see figure), and altimeter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20828442','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20828442"><span>Fast elemental screening of soil and sediment profiles using small-spot energy-dispersive X-ray fluorescence: application to mining sediments geochemistry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gonzalez-Fernandez, Oscar; Queralt, Ignacio</p> <p>2010-09-01</p> <p>Elemental analysis of different sediment cores originating from the Cartagena-La Union mining district in Spain was carried out by means of a programmable small-spot energy-dispersive X-ray fluorescence (EDXRF) spectrometer to study the distribution of heavy metals along soil profiles. Cores were obtained from upstream sediments of a mining creek, from the lowland sedimentation plain, and from a mining landfill dump (tailings pile). A programmable two-dimensional (2D) stage and a focal spot resolution of 600 μm allow us to obtain complete core mapping. Geochemical results were verified using a more powerful wavelength-dispersion X-ray fluorescence (WDXRF) technique. The data obtained was processed in order to study the statistical correlations within the elemental compositions. The results obtained allow us to observe the differential in-depth distribution of heavy metals among the sampled zones. Dump site cores exhibit a homogeneous distribution of heavy metals, whereas the alluvial plain core shows accumulation of heavy metals in the upper part. This approach can be useful for the fast screening of heavy metals in depositional environments around mining sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29523543','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29523543"><span>Isoprenoid quinones resolve the stratification of microbial redox processes in a biogeochemical continuum from the photic zone to deep anoxic sediments of the Black Sea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Becker, Kevin W; Elling, Felix J; Schröder, Jan M; Lipp, Julius S; Goldhammer, Tobias; Zabel, Matthias; Elvert, Marcus; Overmann, Jörg; Hinrichs, Kai-Uwe</p> <p>2018-03-09</p> <p>The stratified water column of the Black Sea serves as a model ecosystem for studying the interactions of microorganisms with major biogeochemical cycles. Here we provide detailed analysis of isoprenoid quinones to study microbial redox processes in the ocean. In a continuum from the photic zone through the chemocline into deep anoxic sediments of the southern Black Sea, diagnostic quinones and inorganic geochemical parameters indicate niche segregation between redox processes and corresponding shifts in microbial community composition. Quinones specific for oxygenic photosynthesis and aerobic respiration dominate oxic waters, while quinones associated with thaumarchaeal ammonia-oxidation and bacterial methanotrophy, respectively, dominate a narrow interval in suboxic waters. Quinone distributions indicate highest metabolic diversity within the anoxic zone, with anoxygenic photosynthesis being a major process in its photic layer. In the dark anoxic layer, quinone profiles indicate occurrence of bacterial sulfur and nitrogen cycling, archaeal methanogenesis, and archaeal methanotrophy. Multiple novel ubiquinone isomers, possibly originating from unidentified intra-aerobic anaerobes, occur in this zone. The respiration modes found in the anoxic zone continue into shallow subsurface sediments, but quinone abundances rapidly decrease within the upper 50 cm below sea floor, reflecting the transition to lower energy availability. In the deep subseafloor sediments, quinone distributions and geochemical profiles indicate archaeal methanogenesis/methanotrophy and potentially bacterial fermentative metabolisms. We observed that sedimentary quinone distributions track lithology, which supports prior hypotheses that deep biosphere community composition and metabolisms are determined by environmental conditions during sediment deposition. Importance Microorganisms play crucial roles in global biogeochemical cycles. Yet, we have only a fragmentary understanding of the diversity of microorganisms and their metabolisms, as the majority remains uncultured. Thus, culture-independent approaches are critical for determining microbial diversity and active metabolic processes. In order to resolve the stratification of microbial communities in the Black Sea, we comprehensively analyzed redox process-specific isoprenoid quinone biomarkers in a unique continuous record from the photic zone through the chemocline into anoxic subsurface sediments. We describe an unprecedented quinone diversity that allowed us to detect distinct biogeochemical processes including oxygenic photosynthesis, archaeal ammonia oxidation, aerobic methanotrophy and anoxygenic photosynthesis in defined geochemical zones. Copyright © 2018 American Society for Microbiology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990JAfES..11..207M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990JAfES..11..207M"><span>The Middle Jurassic microflora from El Maghara N° 4 borehole, Northern Sinai, Egypt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mohsen, Sayed Abdel</p> <p></p> <p>The coal bearing formation in El Maghara area, northern Sinai, yielded abundant, diverse and generally well preserved spores, pollen and marine microflora. The palynological analysis of the fine clastic sediments in this formation yielded (71) species related to (44) genera. Three different palynological assemblage zones can be distinguished. The sediments which contain lower and the upper assemblage zones bearing the coal seems, were deposited in non-marine (swamp) environment. In the middle assemblage zone few marine microflora can be identified, indicating a coastal near shore marine environment. Compared with other palynologic data obtained from Egypt and other countries, the three described assemblage zones belong to Middle Jurassic (Bathonian) age.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915394K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915394K"><span>Textures of water-rich mud sediments from the continental margin offshore Costa Rica (IODP expeditions 334 and 344)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuehn, Rebecca; Stipp, Michael; Leiss, Bernd</p> <p>2017-04-01</p> <p>During sedimentation and burial at continental margins, clay-rich sediments develop crystallographic preferred orientations (textures) depending on the ongoing compaction as well as size distribution and shape fabrics of the grains. Such textures can control the deformational properties of these sediments and hence the strain distribution in active continental margins and also the frictional behavior along and around the plate boundary. Strain-hardening and discontinuous deformation may lead to earthquake nucleation at or below the updip limit of the seismogenic zone. We want to investigate the active continental margin offshore Costa Rica where the oceanic Cocos plate is subducted below the Caribbean plate at a rate of approximately 9 cm per year. The Costa Rica trench is well-known for shallow seismogenesis and tsunami generation. As it is an erosive continental margin, both the incoming sediments from the Nazca plate as well as the slope sediments of the continental margin can be important for earthquake nucleation and faulting causing sea-floor breakage. To investigate texture and composition of the sediments and hence their deformational properties we collected samples from varying depth of 7 different drilling locations across the trench retrieved during IODP expeditions 334 and 344 as part of the Costa Rica Seismogenesis Project (CRISP). Texture analysis was carried out by means of synchrotron diffraction, as only this method is suitable for water-bearing samples. As knowledge on the sediment composition is required as input parameter for the texture data analysis, additional X-ray powder diffraction analysis on the sample material has been carried out. Samples for texture measurements were prepared from the original drill cores using an internally developed cutter which allows to produce cylindrical samples with a diameter of about 1.5 cm. The samples are oriented with respect to the drill core axis. Synchrotron texture measurements were conducted at the ESRF (European Synchrotron Radiation Facility) in Grenoble and the DESY (German Electron Synchrotron) in Hamburg. Samples were measured in transmission mode perpendicular to their cylinder axis with a beam diameter of 500 µm. Measurements were taken from 0 to 175° in 5° steps resulting in 36 images from a 2D image plate detector. Measurement time was in a range from 1 to 3 seconds. Due to the different, low symmetric mineral phases a large number of mostly overlapping reflections results. Such data can only be analyzed by the Rietveld method, in our case implemented in the software package MAUD (Materials Analysis Using Diffraction). Preliminary results show distinct textures depending on the composition and the origin of the samples, i.e. on drilling location and depth, which may be critical for strain localization and faulting of these samples. The results are also important for the analysis of experimentally deformed samples from the same drill cores which showed structurally weak and structurally strong deformation behavior during triaxial compression.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.B14B..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.B14B..03M"><span>Mercury Cycling in Agricultural and Non-agricultural Wetlands of the Yolo Bypass Wildlife Area, California: Sediment Biogeochemistry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marvin-Dipasquale, M. C.; Windham-Myers, L.; Alpers, C. N.; Agee, J. L.; Cox, M. H.; Kakouros, E.; Wren, S. L.</p> <p>2007-12-01</p> <p>The Yolo Bypass Wildlife Area (YBWA) is part of the larger Yolo Bypass floodwater protection zone associated with the Sacramento River and the Sacramento-San Joaquin Delta, California. Land use in the YBWA consists of white and wild rice fields, seasonally flooded fallow agricultural fields, and permanently and seasonally flooded non-agricultural wetlands used for resident and migratory waterfowl. A recent assessment of mercury (Hg) and methylmercury (MeHg) loads indicates that the Yolo Bypass is responsible for a high proportion of the aqueous MeHg entering the Delta, and that biota from the Yolo Bypass are considerably elevated in MeHg. The current study examines benthic MeHg production and biogeochemical controls on this process, as a function of YBWA land use, wetland management, and agricultural practices during the 2007 rice growing season (June to October). Preliminary results indicate that in the week following initial flooding of agricultural fields, prior to the establishment of rice plants, the microbial community in the 0-2 cm surface sediment zone exhibited very little potential Hg(II)-methylation activity compared to the permanent wetland habitat (as assessed via the 203Hg(II)- methylation assay). Approximately 1 month after flooding, rice plants were established and the activity of the resident Hg(II)-methylating microbial community had increased substantially in all agricultural fields, although the observed rates of MeHg production were still much lower than those observed in the permanent wetland setting. Ongoing field sampling includes analysis of reactive Hg(II) in sediments and of iron and sulfur redox species in sediments and pore waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP43A2253Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP43A2253Z"><span>Microbial Nitrogen Cycling Associated with the Early Diagenesis of Organic Matter in Subseafloor Sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, R.</p> <p>2015-12-01</p> <p>The early diagenesis of organic matter is the major energy source of marine sedimentary biosphere and thus controls its population size; however, the vertical distribution of any functional groups along with the diagenesis of organic matter is remained unclear, especially for those microbes involved in nitrogen transformation which serve as a major control on the nitrogen flux between reservoirs. Here we investigated the vertical distributions of various functional groups in five sediment cores retrieved from Arctic Mid-Ocean Ridge (AMOR), with emphasis on the nitrifiers, denitrifiers and anaerobic ammonium oxidizing bacteria (anammox). We observed the clear geochemical zonation associated with organic matter diagenesis in the sediments based on the pore water profiles of oxygen, nitrate, ammonium, manganese and sulfate, with distinct geochemical transition zones at the boundaries of geochemical zones, including oxic-anoxic transition zone (OATZ) and nitrate-manganese reduction zone (NMTZ). Nitrate was produced in surface oxygenated sediments and nitrate consumption mainly took place at the NMTZ, splitted between re-oxidation of ammonium and manganese (II). Abundances of ammonia oxidizers, nitrite oxidizers, and denitrifiers, estimated through quantitative PCR targeting their respective functional genes, generally decrease with depth, but constantly elevated around the OATZ, NMTZ, and manganese-reduction zone as well. Anammox bacteria were only detected around the NMTZ where both nitrate/nitrite and ammonium are available. These depth profiles of functional groups were also confirmed by the community structure profiling by prokaryotic 16S rRNA gene tag pyrosequencing. Cell-specific rates of nitrification and denitrification, calculated from the bulk net reaction rates divided by functional group abundances, were similar to those values from oligotrophic sediments like North Pond and thus suggested that nitrifiers and denitirifiers populations were in maintenance state. This study illustrated the microbial nitrogen transformation accompanying the early diagenesis of organic matter in marine sediments, which scenario might be occurring in a wide range of stratified environments on Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMOS33B1708W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMOS33B1708W"><span>The Lithological Constraint To Gas Hydrate Formation: Evidence OF Grain Size Of Sediments From IODP 311 On CASCADIA Margin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, J.</p> <p>2006-12-01</p> <p>A total of 614 sediment samples at intervals of about 1.5 m from all 5 sites of the Integrated Ocean Drilling Program (IODP) Expedition 311 on Cascadia Margin were analyzed using a Beckman Coulter LS-230 Particle Analyzer. The grain-size data were then plotted in depth and compared with other proxies of gas hydrate- occurrence such as soupy/mousse-like structures in sediments, gas hydrate concentration (Sh) derived from LWD data using Archie's relation, IR core images (infrared image) and the recovered samples of gas hydrate¨Cbearing sediments. A good relationship between the distribution of coarse grains in size of 31-63¦Ìm and 63-125¦Ìm sediments and the potential occurrence of gas hydrate was found across the entire gas hydrate stability zone. The depth distribution of grain size from the Site U1326 shows clear excursions at depths of 5-8, 21-26, 50- 123, 132-140, 167-180, 195-206 and 220-240 mbsf, which coincide with the potential occurrence of gas hydrate suggested by soupy/mousse-like structures, logging-derived gas hydrate concentrations (Sh) and the recovered samples of the gas hydrate¨Cbearing sand layers. The lithology of sediments significantly affects the formation of gas hydrate. Gas hydrate forms preferentially within relatively coarse grain-size sediments above 31 ¦Ìm. Key words: grain size of sediments, constraint, occurrence of gas hydrate, IODP 311 IODP Expedition 311 Scientists: Michael Riedel (Co-chief Scientist), Timothy S. Collett (Co-chief Scientist), Mitchell Malone (Expedition Project Manager/Staff Scientist), Gilles Gu¨¨rin, Fumio Akiba, Marie-Madeleine Blanc-Valleron, Michelle Ellis, Yoshitaka Hashimoto, Verena Heuer, Yosuke Higashi, Melanie Holland, Peter D. Jackson, Masanori Kaneko, Miriam Kastner, Ji-Hoon Kim, Hiroko Kitajima, Philip E. Long, Alberto Malinverno, Greg Myers, Leena D. Palekar, John Pohlman, Peter Schultheiss, Barbara Teichert, Marta E. Torres, Anne M. Tr¨¦hu, Jiasheng Wang, Ulrich G. Wortmann, Hideyoshi Yoshioka. Acknowledgement: This study was supported by the IODP/JOI Alliance, IODP-China 863 Project (grant 2004AA615030) and NSFC Project (grant 40472063).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014CSR....82...72O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014CSR....82...72O"><span>Flocculation and sediment deposition in a hypertidal creek</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Laughlin, C.; van Proosdij, D.; Milligan, T. G.</p> <p>2014-07-01</p> <p>In the hypertidal Bay of Fundy, environmental impacts in response to commercial-scale tidal power development remain to be fully understood. The extraction of tidal energy may impact sediment dynamics in far-field environments, such as the intertidal zone, through potential alterations to tidal amplitude in the Minas Basin. Tidal conditions (e.g. current velocity, turbulence, suspended sediment concentration) were monitored in a sheltered salt marsh creek over 18 tidal cycles in various stages of the spring-neap cycle. Samples of deposited and suspended sediments were collected and analyzed for grain size using a Beckman Coulter Multisizer III. Results suggest that the flocculated component of both deposited and suspended sediment is consistently high over a wide range of tidal conditions. A routinely high incoming concentration of highly-flocculated material results in large amounts of sediment deposition in tidal creeks in response to individual tidal cycles. Resuspension and removal of newly deposited material is shown to vary with over-marsh, bankfull and channel-restricted tides. Disruption of the tidal regime due to a reduction in Minas Basin tidal amplitude may lessen the cumulative export capacity of tidal channels over time, potentially leading to gradual infilling of tidal creeks. The long-term effects of tidal power development on intertidal areas are generally unknown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3228632','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3228632"><span>Relationships Between Sand and Water Quality at Recreational Beaches</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Phillips, Matthew C.; Solo-Gabriele, Helena M.; Piggot, Alan M.; Klaus, James S.; Zhang, Yifan</p> <p>2011-01-01</p> <p>Enterococci are used to assess the risk of negative human health impacts from recreational waters. Studies have shown sustained populations of enterococci within sediments of beaches but comprehensive surveys of multiple tidal zones on beaches in a regional area and their relationship to beach management decisions are limited. We sampled three tidal zones on eight South Florida beaches in Miami-Dade and Broward counties and found that enterococci were ubiquitous within South Florida beach sands although their levels varied greatly both among the beaches and between the supratidal, intertidal and subtidal zones. The supratidal sands consistently had significantly higher (p<0.003) levels of enterococci (average 40 CFU/g dry sand) than the other two zones. Levels of enterococci within the subtidal sand correlated with the average level of enterococci in the water (CFU/100mL) for the season during which samples were collected (rs= 0.73). The average sand enterococci content over all the zones on each beach correlated with the average water enterococci levels of the year prior to sand samplings (rs=0.64) as well as the average water enterococci levels for the month after sand samplings (rs=0.54). Results indicate a connection between levels of enterococci in beach water and sands throughout South Florida’s beaches and suggest that the sands are one of the predominant reservoirs of enterococci impacting beach water quality. As a result, beaches with lower levels of enterococci in the sand had fewer exceedences relative to beaches with higher levels of sand enterococci. More research should focus on evaluating beach sand quality as a means to predict and regulate marine recreational water quality. PMID:22071324</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22071324','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22071324"><span>Relationships between sand and water quality at recreational beaches.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Phillips, Matthew C; Solo-Gabriele, Helena M; Piggot, Alan M; Klaus, James S; Zhang, Yifan</p> <p>2011-12-15</p> <p>Enterococci are used to assess the risk of negative human health impacts from recreational waters. Studies have shown sustained populations of enterococci within sediments of beaches but comprehensive surveys of multiple tidal zones on beaches in a regional area and their relationship to beach management decisions are limited. We sampled three tidal zones on eight South Florida beaches in Miami-Dade and Broward counties and found that enterococci were ubiquitous within South Florida beach sands although their levels varied greatly both among the beaches and between the supratidal, intertidal and subtidal zones. The supratidal sands consistently had significantly higher (p < 0.003) levels of enterococci (average 40 CFU/g dry sand) than the other two zones. Levels of enterococci within the subtidal sand correlated with the average level of enterococci in the water (CFU/100mL) for the season during which samples were collected (r(s) = 0.73). The average sand enterococci content over all the zones on each beach correlated with the average water enterococci levels of the year prior to sand samplings (r(s) = 0.64) as well as the average water enterococci levels for the month after sand samplings (r(s) = 0.54). Results indicate a connection between levels of enterococci in beach water and sands throughout South Florida's beaches and suggest that the sands are one of the predominant reservoirs of enterococci impacting beach water quality. As a result, beaches with lower levels of enterococci in the sand had fewer exceedences relative to beaches with higher levels of sand enterococci. More research should focus on evaluating beach sand quality as a means to predict and regulate marine recreational water quality. Copyright © 2011 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.1629K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.1629K"><span>Multi-element study of sediments from the river Khai River - Nha Trang Bay estuarine system, South China Sea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koukina, Sofia; Lobus, Nikolai; Peresypkin, Valery; Baturin, Gleb; Smurov, Andrey</p> <p>2013-04-01</p> <p>Major (Al, Fe, Ti, Mg, Ca, Na, K), minor (Mn) and trace (Cr, Ni, Cd, V, Zn, Cu, Pb, Sb, Bi, Sn, Ag, Li, Co, As, Zr, Mo, Hg) elements along with nutrients (TOC, TS, TP) and TIC were first determined in ten surface sediment samples from the Khai River - Nha Trang Bay estuarine system, South China Sea. According to the sediment quality guidelines and reference background values, most of the element contents that were studied were below the threshold levels, while the content of Ag exceeded significantly the hazardous levels in the most of the samples along the river - sea transect. The local anthropogenic and/or environmental sources of Ag within the region need special study. Aluminum and lithium normalization indicated some specific features in the abundance and distribution of the elements along the salinity gradient. The mean grain size of the sediments decreased from the river part to the bay part of the transect. Sedimentary TOC was relatively low (1-2 %) and showed independent distribution along the river - sea transect in relation to the other elements that were studied. Ca, Ba and Sr distribution showed some sporadic enrichment and were largely controlled by the TIC content in sediments. Sedimentary TP, Al, Fe, Mn, Ti, Na, K, Li, Co, Cs, Zn and V varied within the narrow range and tended to increase seaward. These elements are most likely controlled by the accumulation of their fine grained aluminosilicate host minerals and materials at sites determined by hydrodynamic conditions, i. e., in the sea floor depression. TS, As, Sn, Bi, U, Cd and Mo were relatively low in the sediments studied and tended to decrease seaward with the slight elevation in the intermediate part of the transect. These elements can be scavenged by and/or co-precipitated with the dissolved and particulate materials of the river discharge and further deposited on the river - sea geochemical barrier in the course of estuarine sedimentation. The distribution of Ni, Cr, Zr Cu, Pb, Sb, Hg and, especially, Ag was characterized by anomalous high concentrations in the intermediate part of the river - sea transect at sites located in the harbor zone. This might be due to the point anthropogenic pollution from local human activities, i.e., fishing, shipping, fueling, waste and sewage sludge outflow, and, especially, from the construction of new touristic facilities in the Nha Trang Bay. Overall, the abundance and distribution of the environmental/anthropogenic elements are controlled by various estuarine biogeochemical processes characteristic for the marginal filter of the estuarine water mixing zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030064','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030064"><span>Spectroscopic evidence for uranium bearing precipitates in vadose zone sediments at the Hanford 300-area site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Arai, Y.; Marcus, M.A.; Tamura, N.; Davis, J.A.; Zachara, J.M.</p> <p>2007-01-01</p> <p>Uranium (U) solid-state speciation in vadose zone sediments collected beneath the former North Process Pond (NPP) in the 300 Area of the Hanford site (Washington) was investigated using multi-scale techniques. In 30 day batch experiments, only a small fraction of total U (???7.4%) was released to artificial groundwater solutions equilibrated with 1% pCO2. Synchrotron-based micro-X-ray fluorescence spectroscopy analyses showed that U was distributed among at least two types of species: (i) U discrete grains associated with Cu and (ii) areas with intermediate U concentrations on grains and grain coatings. Metatorbernite (Cu[UO2]2[PO 4]2??8H2O) and uranophane (Ca[UO 2]2[SiO3(OH)]2?? 5H 2O) at some U discrete grains, and muscovite at U intermediate concentration areas, were identified in synchrotron-based micro-X-ray diffraction. Scanning electron microscopy/energy dispersive X-ray analyses revealed 8-10 ??m size metatorbernite particles that were embedded in C-, Al-, and Si-rich coatings on quartz and albite grains. In ??- and bulk-X-ray absorption structure (??-XAS and XAS) spectroscopy analyses, the structure of metatorbernite with additional U-C and U-U coordination environments was consistently observed at U discrete grains with high U concentrations. The consistency of the ??- and bulk-XAS analyses suggests that metatorbernite may comprise a significant fraction of the total U in the sample. The entrapped, micrometer-sized metatorbernite particles in C-, Al-, and Si-rich coatings, along with the more soluble precipitated uranyl carbonates and uranophane, likely control the long-term release of U to water associated with the vadose zone sediments. ?? 2007 American Chemical Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6170970-sup-postlabeling-analysis-dna-adducts-liver-wild-english-sole-parophrys-vetulus-winter-flounder-pseudopleuronectes-americanus','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6170970-sup-postlabeling-analysis-dna-adducts-liver-wild-english-sole-parophrys-vetulus-winter-flounder-pseudopleuronectes-americanus"><span>/sup 32/P-postlabeling analysis of DNA adducts in liver of wild English sole (Parophrys vetulus) and winter flounder (Pseudopleuronectes americanus)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Varanasi, U.; Reichert, W.L.; Stein, J.E.</p> <p></p> <p>The 1-butanol adduct enhancement version of the 32P-postlabeling assay was used to measure the levels of hepatic DNA adducts in the marine flatfish, English sole (Parophrys vetulus), sampled from the Duwamish Waterway and Eagle Harbor, Puget Sound, WA, where they are exposed to high concentrations of sediment-associated chemical contaminants and exhibit an elevated prevalence of hepatic neoplasms. Hepatic DNA was also analyzed from English sole from a reference area (Useless Bay, WA) and from reference English sole treated with organic-solvent extracts of sediments from the two contaminated sites. Autoradiograms of thin-layer chromatograms of 32P-labeled hepatic DNA digests from English solemore » from the contaminated sites exhibited up to three diagonal radioactive zones, which were not present in autoradiograms of thin-layer chromatogram maps of 32P-labeled DNA digests from English sole from the reference site. These diagonal radioactive zones contained several distinct spots as well as what appeared to be multiple overlapping adduct spots. The levels (nmol of adducts/mol of nucleotides) of total DNA adducts for English sole from Duwamish Waterway and Eagle Harbor were 26 +/- 28 (DS) and 17 +/- 9.6, respectively. All autoradiograms of DNA from fish from the contaminated sites exhibited a diagonal radioactive zone where DNA adducts of chrysene, benzo(a)pyrene, and dibenz(a,h)anthracene, formed in vitro using English sole hepatic microsomes, were shown to chromatograph. English sole treated with extracts of the contaminated sediments had adduct profiles generally similar to those for English sole from the respective contaminated sites.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009DSRII..56..261C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009DSRII..56..261C"><span>Benthic biological and biogeochemical patterns and processes across an oxygen minimum zone (Pakistan margin, NE Arabian Sea)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cowie, Gregory L.; Levin, Lisa A.</p> <p>2009-03-01</p> <p>Oxygen minimum zones (OMZs) impinging on continental margins present sharp gradients ideal for testing environmental factors thought to influence C cycling and other benthic processes, and for identifying the roles that biota play in these processes. Here we introduce the objectives and initial results of a multinational research program designed to address the influences of water depth, the OMZ (˜150-1300 m), and organic matter (OM) availability on benthic communities and processes across the Pakistan Margin of the Arabian Sea. Hydrologic, sediment, and faunal characterizations were combined with in-situ and shipboard experiments to quantify and compare biogeochemical processes and fluxes, OM burial efficiency, and the contributions of benthic communities, across the OMZ. In this introductory paper, we briefly review previous related work in the Arabian Sea, building the rationale for integrative biogeochemical and ecological process studies. This is followed by a summary of individual volume contributions and a brief synthesis of results. Five primary stations were studied, at 140, 300, 940, 1200 and 1850 m water depth, with sampling in March-May (intermonsoon) and August-October (late-to-postmonsoon) 2003. Taken together, the contributed papers demonstrate distinct cross-margin gradients, not only in oxygenation and sediment OM content, but in benthic community structure and function, including microbial processes, the extent of bioturbation, and faunal roles in C cycling. Hydrographic studies demonstrated changes in the intensity and extent of the OMZ during the SW monsoon, with a shoaling of the upper OMZ boundary that engulfed the previously oxygenated 140-m site. Oxygen profiling and microbial process rate determinations demonstrated dramatic differences in oxygen penetration and consumption across the margin, and in the relative importance of anaerobic processes, but surprisingly little seasonal change. A broad maximum in sediment OM content occurred on the upper slope, roughly coincident with the OMZ; but the otherwise poor correlation with bottom-water oxygen concentrations indicated that other factors are important in determining sediment OM distributions. Downcore profiles generally showed little clear evidence of in-situ OM alteration, and there was little sign of OM enrichment resulting from the southwest monsoon in sediments collected in the late-to-postmonsoon sampling. This is interpreted to be due to rapid cycling of labile OM. Organic geochemical studies confirmed that sediment OM is overwhelmingly of marine origin across the margin, but also that it is heavily altered, with only small changes in degradation state across the OMZ. More negative stable C isotopic compositions in surficial sediments at hypoxic sites within the OMZ core are attributed to a chemosynthetic bacterial imprint. Dramatic changes in benthic community structure occurred across the lower OMZ transition, apparently related to OM availability and quality as well as to DO concentrations. High-resolution sampling, biomarkers and isotope tracer studies revealed that oxygen availability appears to exert threshold-type controls on benthic community structure and early faunal C processing. Biomarker studies also provided evidence of faunal influence on sediment OM composition. Together, the results offer strong evidence that benthic fauna at sites across the margin play important roles in the early cycling of sediment OM through differential feeding and bioturbation activities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS41A1386C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS41A1386C"><span>Glacially-derived overpressure in the northeastern Alaskan subduction zone: combined tomographic and morphometric analysis of shallow sediments on the Yakutat shelf and slope, Gulf of Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clary, W. A.; Worthington, L. L.; Scuderi, L. A.; Daigle, H.; Swartz, J. M.</p> <p>2017-12-01</p> <p>The Pamplona zone fold and thrust belt is the offshore expression of convergence and shallow subduction of the Yakutat microplate beneath North America in the northeastern Alaska subduction zone. The combination of convergent tectonics and glaciomarine sedimentary processes create patterns of deformation and deposition resulting in a shallow sedimentary sequence with varying compaction, fluid pressure, and fault activity. We propose that velocity variations observed in our tomographic analysis represent long-lived fluid overpressure due to loading by ice sheets and sediments. Regions with bathymetric and stratigraphic evidence of recent ice sheets and associated sedimentation should be collocated with evidence of overpressure (seismic low velocity zones) in the shallow sediments. Here, we compare a velocity model with shelf seismic stratigraphic facies and modern seafloor morphology. To document glacially derived morphology we use high resolution bathymetry to identify channel and gully networks on the western Yakutat shelf-slope then analyze cross-channel shape indices across the study area. We use channel shape index measurements as a proxy of recent ice-proximal sedimentation based on previously published results that proposed a close correlation. Profiles taken at many locations were fitted with a power function and assigned a shape - U-shape channels likely formed proximal to recent ice advances. Detailed velocity models were created by a combination of streamer tomography and pre-stack depth migration velocities with seismic data including: a 2008 R/V Langseth dataset from the St. Elias Erosion and Tectonics Project (STEEP); and a 2004 high-resolution R/V Ewing dataset. Velocity-porosity-permeability relationships developed using IODP Expedition 341 drilling data inform interpretation and physical properties analyses of the shallow sediments. Initial results from a 35 km profile extending SE seaward of the Bering glacier and subparallel to the Bering trough suggest a spatial relationship between the extent of U-shaped profiles and low-velocity shallow sediments. Towards the SE end of the model we observe a large overlap of U-shaped indices, and a shallow low-velocity zone in the mapped extent of the last glacial maximum suggestive of overpressure due to loading by ice sheet activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/17256','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/17256"><span>Hydrology of the solid waste burial ground as related to potential migration of radionuclides, Idaho National Engineering Laboratory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barraclough, Jack T.; Robertson, J.B.; Janzer, V.J.; Saindon, L.G.</p> <p>1976-01-01</p> <p>A study was made (1970-1974) to evaluate the geohydrologic and geochemical controls on subsurface migration of radionuclides from pits and trenches in the Idaho National Engineering Laboratory (INEL) solid waste burial ground and to determine the existence and extent of radionuclide migration from the burial ground. A total of about 1,700 sediment, rock, and water samples were collected from 10 observation wells drilled in and near the burial ground of Idaho National Engineering Laboratory, formerly the National Reactor Testing Station (NRTS). Within the burial ground area, the subsurface rocks are composed principally of basalt. Wind- and water-deposited sediments occur at the surface and in beds between the thicker basalt zones. Two principal sediment beds occur at about 110 feet and 240 feet below the land surface. The average thickness of the surficial sedimentary layer is about 15 feet while that of the two principal subsurface layers is 13 and 14 feet, respectively. The water table in the aquifer beneath the burial ground is at a depth of about 580 feet. Fission, activation, and transuranic elements were detected in some of the samples from the 110- and 240-foot sedimentary layers. (Woodard-USGS)</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21755290','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21755290"><span>Microbial diversity of an anoxic zone of a hydroelectric power station reservoir in Brazilian Amazonia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Graças, Diego A; Miranda, Paulo R; Baraúna, Rafael A; McCulloch, John A; Ghilardi, Rubens; Schneider, Maria Paula C; Silva, Artur</p> <p>2011-11-01</p> <p>Microbial diversity was evaluated in an anoxic zone of Tucuruí Hydroelectric Power Station reservoir in Brazilian Amazonia using a culture-independent approach by amplifying and sequencing fragments of the 16S rRNA gene using metagenomic DNA as a template. Samples obtained from the photic, aphotic (40 m) and sediment (60 m) layers were used to construct six 16S rDNA libraries containing a total of 1,152 clones. The sediment, aphotic and photic layers presented 64, 33 and 35 unique archaeal operational taxonomic units (OTUs). The estimated richness of these layers was evaluated to be 153, 106 and 79 archaeal OTUs, respectively, using the abundance-based coverage estimator (ACE) and 114, 83 and 77 OTUs using the Chao1 estimator. For bacterial sequences, 114, 69 and 57 OTUs were found in the sediment, aphotic and photic layers, which presented estimated richnesses of 1,414, 522 and 197 OTUs (ACE) and 1,059, 1,014 and 148 OTUs (Chao1), respectively. Phylogenetic analyses of the sequences obtained revealed a high richness of microorganisms which participate in the carbon cycle, namely, methanogenic archaea and methanotrophic proteobacteria. Most sequences obtained belong to non-culturable prokaryotes. The present study offers the first glimpse of the huge microbial diversity of an anoxic area of a man-made lacustrine environment in the tropics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MinDe..52.1205N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MinDe..52.1205N"><span>Formation of Si-Al-Mg-Ca-rich zoned magnetite in an end-Permian phreatomagmatic pipe in the Tunguska Basin, East Siberia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neumann, Else-Ragnhild; Svensen, Henrik H.; Polozov, Alexander G.; Hammer, Øyvind</p> <p>2017-12-01</p> <p>Magma-sediment interactions in the evaporite-rich Tunguska Basin resulted in the formation of numerous phreatomagmatic pipes during emplacement of the Siberian Traps. The pipes contain magnetite-apatite deposits with copper and celestine mineralization. We have performed a detailed petrographic and geochemical study of magnetite from long cores drilled through three pipe breccia structures near Bratsk, East Siberia. The magnetite samples are zoned and rich in Si (≤5.3 wt% SiO2), Ca, Al, and Mg. They exhibit four textural types: (1) massive ore in veins, (2) coating on breccia clasts, (3) replacement ore, and (4) reworked ore at the crater base. The textural types have different chemical characteristics. "Breccia coating" magnetite has relatively low Mg content relative to Si, as compared to the other groups, and appears to have formed at lower oxygen fugacity. Time series analyses of MgO variations in microprobe transects across Si-bearing magnetite in massive ore indicate that oscillatory zoning in the massive ore was controlled by an internal self-organized process. We suggest that hydrothermal Fe-rich brines were supplied from basalt-sediment interaction zones in the evaporite-rich sedimentary basin, leading to magnetite ore deposition in the pipes. Hydrothermal fluid composition appears to be controlled by proximity to dolerite fragments, temperature, and oxygen fugacity. Magnetite from the pipes has attributes of iron oxide-apatite deposits (e.g., textures, oscillatory zoning, association with apatite, and high Si content) but has higher Mg and Ca content and different mineral assemblages. These features are similar to magnetite found in skarn deposits. We conclude that the Siberian Traps-related pipe magnetite deposit gives insight into the metamorphic and hydrothermal effects following magma emplacement in a sedimentary basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24723919','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24723919"><span>Spatial variations of community structures and methane cycling across a transect of Lei-Gong-Hou mud volcanoes in eastern Taiwan.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Pei-Ling; Chiu, Yi-Ping; Cheng, Ting-Wen; Chang, Yung-Hsin; Tu, Wei-Xain; Lin, Li-Hung</p> <p>2014-01-01</p> <p>This study analyzed cored sediments retrieved from sites distributed across a transect of the Lei-Gong-Hou mud volcanoes in eastern Taiwan to uncover the spatial distributions of biogeochemical processes and community assemblages involved in methane cycling. The profiles of methane concentration and carbon isotopic composition revealed various orders of the predominance of specific methane-related metabolisms along depth. At a site proximal to the bubbling pool, the methanogenic zone was sandwiched by the anaerobic methanotrophic zones. For two sites distributed toward the topographic depression, the methanogenic zone overlaid the anaerobic methanotrophic zone. The predominance of anaerobic methanotrophy at specific depth intervals is supported by the enhanced copy numbers of the ANME-2a 16S rRNA gene and coincides with high dissolved Fe/Mn concentrations and copy numbers of the Desulfuromonas/Pelobacter 16S rRNA gene. Assemblages of 16S rRNA and mcrA genes revealed that methanogenesis was mediated by Methanococcoides and Methanosarcina. pmoA genes and a few 16S rRNA genes related to aerobic methanotrophs were detected in limited numbers of subsurface samples. While dissolved Fe/Mn signifies the presence of anaerobic metabolisms near the surface, the correlations between geochemical characteristics and gene abundances, and the absence of aerobic methanotrophs in top sediments suggest that anaerobic methanotrophy is potentially dependent on iron/manganese reduction and dominates over aerobic methanotrophy for the removal of methane produced in situ or from a deep source. Near-surface methanogenesis contributes to the methane emissions from mud platform. The alternating arrangements of methanogenic and methanotrophic zones at different sites suggest that the interactions between mud deposition, evaporation, oxidation and fluid transport modulate the assemblages of microbial communities and methane cycling in different compartments of terrestrial mud volcanoes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS11A1266T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS11A1266T"><span>Nearshore Coastal Dynamics on a Sea-Breeze Dominated Micro-Tidal Beach (NCSAL)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Torres-Freyermuth, A.; Puleo, J. A.; Ruiz de Alegría-Arzaburu, A.; Figlus, J.; Mendoza, T.; Pintado-Patino, J. C.; Pieterse, A.; Chardon-Maldonado, P.; DiCosmo, N. R.; Wellman, N.; Garcia-Nava, H.; Palemón-Arcos, L.; Roberts, T.; López-González, J.; Bravo, M.; Ojeda, E.; Medellín, G.; Appendini, C. M.; Figueroa, B.; González-Leija, M.; Enriquez, C.; Pedrozo-Acuña, A.; Salles, P.</p> <p>2014-12-01</p> <p>A comprehensive field experiment devoted to the study of coastal processes on a micro-tidal beach was conducted from March 30th to April 12th 2014 in Sisal, Yucatán México. Wave conditions in the study area are controlled by local (i.e., sea-breezes) and meso-scale (i.e., Nortes) meteorological events. Simultaneous measurements of waves, tides, winds, currents, sediment transport, runup, and beach morphology were obtained in this experiment. Very dense nearshore instrumentation arrays allow us the study of the cross-/along- shore variability of surf/swash zone dynamics during different forcing conditions. Strong sea-breeze wind events produced a diurnal cycle with a maximum wind speed of 14 m/s. The persistent sea-breeze system forces small-amplitude (Hs<1 m) short-period (Tp<4 s) NE waves approaching with a high incidence wave angle. These wave conditions drive westward alongshore currents of up to 0.6 m/s in the inner surf zone and hence produce an active sediment transport in the swash zone. On the other hand, the more energetic (Hs>1 m) Norte event, lasting 48 hours, reached the coast on April 8th generating a long-period swell (Tp>10 s) arriving from the NNW. This event induced an eastward net sediment transport across a wide surf zone. However, long-term observations of sand impoundment at a groin located near the study area suggests that the net sediment transport in the northern Yucatan peninsula is controlled by sea-breeze events and hence swash zone dynamics play an important role in the net sediment budget of this region. A comparative study of surf and swash zone dynamics during both sea-breeze and Norte events will be presented. The Institute of Engineering of UNAM, throughout an International Collaborative Project with the University of Delaware, and CONACYT (CB-167692) provided financial support. The first author acknowledges ONR Global for providing financial support throughout the Visiting Scientist Program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H32C..07K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H32C..07K"><span>Quantifying hyporheic exchange in a karst stream using 222Rn</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khadka, M. B.; Martin, J. B.; Kurz, M. J.</p> <p>2013-12-01</p> <p>The hyporheic zone is a critical interface between groundwater and river water environments and is characterized by steep biogeochemical gradients. Understanding how this interface affects solute transport, nutrient cycling and contaminant attenuation is essential for better water resource management of streams. However, this understanding is constrained due to difficulty associated with quantification of exchange of water through the hyporheic zone. We tested a radon (222Rn) method to estimate the hyporheic water residence time and exchange rate in the bottom sediment of the spring-fed Ichetucknee River, north-central Florida. The river, which flows over the top of the unconfined karstic Floridan Aquifer, is characterized by a broad bedrock channel partially in-filled with unconsolidated sediments. Radon (222Rn) activity in the pore waters of the channel sediments differs from the amount expected from sediment production and decay. Although most radon in streams originates from sources in bottom sediments, the Ichetucknee River water has 222Rn activities (251×5 PCi/L) that are nearly twice that of the pore water (128×15 PCi/L). The river water 222Rn activity is consistent with that of the source springs, suggesting the source of Rn in the river is from deep within the aquifer rather than bottom sediments and that the excess 222Rn in the pore water results from hyporheic exchange. Profiles of radon concentrations with depth through the sediments show that the mixing of stream water and pore water extends 35-45 cm below the sediment and water interface. Based on a model that integrates the excess radon with depth, we estimate the water exchange rate to be between 1.1 and 1.6 cm/day with an average value of 1.3×0.2 cm/day. Water that exchanges across the sediment-water interface pumps oxygen into the sediments, thereby enhancing organic carbon remineralization, as well as the production of NH4+ and PO43- and their fluxes from sediments to the stream. As opposed to conventional in-stream tracer injection method which estimates exchange between the stream and both the hyporheic zone and the surface transient storage zone, the 222Rn approach measures the water exchange between stream and hyporheic sediments only. Although the present method is tested on a spring-fed karst stream, it has potential for any freshwater system (e.g. wetland, lake) where distinct radon activity and production between surface water and underlying sediments occur.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70157102','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70157102"><span>The role of suspension events in cross-shore and longshore suspended sediment transport in the surf zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jaffe, Bruce E.</p> <p>2015-01-01</p> <p>Suspension of sand in the surf zone is intermittent. Especially striking in a time series of concentration are periods of intense suspension, suspension events, when the water column suspended sediment concentration is an order of magnitude greater than the mean concentration. The prevalence, timing, and contribution of suspension events to cross-shore and longshore suspended sediment transport are explored using field data collected in the inner half of the surf zone during a large storm at Duck, NC. Suspension events are defined as periods when the concentration is above a threshold. Events tended to occur during onshore flow under the wave crest, resulting in an onshore contribution to the suspended sediment transport. Even though large events occurred less than 10 percent of the total time, at some locations onshore transport associated with suspension events was greater than mean-current driven offshore-directed transport during non-event periods, causing the net suspended sediment transport to be onshore. Events and fluctuations in longshore velocity were not correlated. However, events did increase the longshore suspended sediment transport by approximately the amount they increase the mean concentration, which can be up to 35%. Because of the lack of correlation, the longshore suspended sediment transport can be modeled without considering the details of the intensity and time of events as the vertical integration of the product of the time-averaged longshore velocity and an event-augmented time-averaged concentration. However, to accurately model cross-shore suspended sediment transport, the timing and intensity of suspension events must be reproduced.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/circ/1978/0773/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/circ/1978/0773/report.pdf"><span>Stratigraphic test well, Nantucket Island, Massachusetts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Folger, David W.; Hathaway, J.C.; Christopher, R.A.; Valentine, P.C.; Poag, C.W.</p> <p>1978-01-01</p> <p>The U.S. Geological Survey, in cooperation with the Massachusetts Water Resources Commission and the Nantucket Conservation Foundation, continuously cored 514 m of sediment and volcanic rock in a stratigraphic and water-quality test near the geographic center of Nantucket Island. Stratified sediments were divided texturally into three zones: the upper zone (0-128 m) contains mostly coarse sand and gravel; the middle zone (128-349 m) contains mostly silty clay and a few beds of sand and silt; and the lower zone (349-457 m) contains soft, unconsolidated, clayey sand. Below the lower zone, a saprolite, composed mostly of clay, grades abruptly downward at 470 m into partially altered basalt that extends to the bottom of the hole at 514 m. Calculations based on the Ghyben-Herzberg principle predicted a zone of freshwater 120-150 m thick. This principle is the theory of hydrostatic equilibrium between freshwater and more dense seawater in a coastal aquifer; it states that for each meter of ground-water elevation above sea level, the freshwater lens will depress the saltwater interface about 40 m below sea level. Freshwater or low-salinity brackish water was found in sediments far below the depth predicted by the Ghyben-Herzberg principle. These interstitial waters are probably relict ground water emplaced during times of low sea level during the Pleistocene. (Woodard-USGS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19..411C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19..411C"><span>Shear localization in the shallow part of megathrusts: understanding active megathrusts trough the study of fossil analogues.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cerchiari, Anna; MIttempergher, Silvia; Remitti, Francesca; Festa, Andrea</p> <p>2017-04-01</p> <p>The shallowest part of active megathrusts has an intriguing behaviour, characterized by the coexistence of coseismic slips and aseismic creep, slow slip events, low and very low frequency earthquakes. Origins and interplays of these phenomena are actually little known. In this respect, the study of exhumed shallow parts of fossil megathrusts is an advantageous approach in terms of accessibility, costs and resolution. The Sestola-Vidiciatico tectonic Unit in the Northern Apennines has been interpreted as a possible analogue of a shallow, hectometer scale megathrust shear zone, which accommodated subduction of the Adria plate under the Ligurian prism during early-middle Miocene by involving sediments from the seafloor to burial depth corresponding to 150° C maximum temperature. Performing detailed microstructural analysis on samples through optical, cathodoluminescence and scanning electron microscopy, we studied a 5 m thick fault zone marking the base of the SVU. Here, more or less competent marls make up a heterogeneous fault zone assemblage, with a strongly deformed tectonic fabric characterized by mesoscopic cleavage, boudinage, faults and low-angle thrusts coated by calcite veins. At the top of the shear zone, a sharp and continuous shear vein, 20 cm thick cuts all other structures. At the microscale, we identified a primary sedimentary layering, consisting of alternating fine and coarse marly or shaly laminae that are crosscut by "soft-sediment"-type deformation bands derived from the reorientation of mineral grains without fracturing. Parallel to the sedimentary laminae, oriented phyllosilicates define a pervasive foliation in clay-rich domains. More competent calcareous portions are strongly boudinaged and cut by calcite shear veins displaying crack-and-seal texture and locally implosion breccias. Multiple mutually crosscutting generations of extensional veins are recognizable, with dispersed orientations and complex relations with shear veins. Calcite veins appear also to be partially dissolved by pressure-solution processes. Our microstructural findings suggest that deformation started acting on not completely lithified sediments, with a progressive and differential embrittlement of the shear zone, depending on lithology (i. e. competence contrast) and fluid pressure cycles. Features described point out also for thrusting under low differential stress, with decoupling from the footwall and progressive migration and thinning of the shear zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.U23B..06M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.U23B..06M"><span>Hyporheic less-mobile porosity and solute transport in porous media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>MahmoodPoorDehkordy, F.; Briggs, M. A.; Day-Lewis, F. D.; Scruggs, C.; Singha, K.; Zarnetske, J. P.; Lane, J. W., Jr.; Bagtzoglou, A. C.</p> <p>2017-12-01</p> <p>Solute transport and reactive processes are strongly influenced by hydrodynamic exchange with the hyporheic zone. Contaminant transport and redox zonation in the hyporheic zone and near-stream aquifer can be impacted by the exchange between mobile and less-mobile porosity zones in heterogeneous porous media. Less-mobile porosity zones can be created by fine materials with tight pore throats (e.g. clay, organics) and in larger, well-connected pores down gradient of flow obstructions (e.g. sand behind cobbles). Whereas fluid sampling is primarily responsive to the more-mobile domain, tracking solute tracer dynamics by geoelectrical methods provides direct information about both more- and less-mobile zones. During tracer injection through porous media of varied pore connectivity, a lag between fluid and bulk electrical conductivity is observed, creating a hysteresis loop when plotted in conductivity space. Thus, the combination of simultaneous fluid and bulk electrical conductivity measurements enables a much improved quantification of less-mobile solute dynamics compared to traditional fluid-only sampling approaches. We have demonstrated the less-mobile porosity exchange in laboratory-scale column experiments verified by simulation models. The experimental approach has also been applied to streambed sediments in column and reach-scale field experiments and verified using numerical simulation. Properties of the resultant hysteresis loops can be used to estimate exchange parameters of less-mobile porosity. Our integrated approach combining field experiments, laboratory experiments, and numerical modeling provides new insights into the effect of less-mobile porosity on solute transport in the hyporheic zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23510060','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23510060"><span>Alteration of sediments by hyperalkaline K-rich cement leachate: implications for strontium adsorption and incorporation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wallace, Sarah H; Shaw, Samuel; Morris, Katherine; Small, Joe S; Burke, Ian T</p> <p>2013-04-16</p> <p>Results are presented from 1 year batch experiments where K-rich hyperalkaline pH 13.5 young cement water (YCW) was reacted with sediments to investigate the effect of high pH, mineral alteration, and secondary mineral precipitation on (90)Sr sorption. After reaction with YCW, Sr sorption was found to be greater than 75% in all samples up to 365 days and 98% in a sample reacted for 365 days at 70 °C. Scanning electron microscopy analysis of sediment samples reacted at room temperature showed surface alteration and precipitation of a secondary phase, likely a K-rich aluminosilicate gel. The presence of Sr-Si(Al) bond distances in Sr K-edge extended X-ray absorption fine structure (EXAFS) analysis suggested that the Sr was present as an inner-sphere adsorption complex. However, sequential extractions found the majority of this Sr was still exchangeable with Mg(2+) at pH 7. For the sample reacted for 1 year at 70 °C, EXAFS analysis revealed clear evidence for ∼6 Sr-Si(Al) backscatters at 3.45 Å, consistent with Sr incorporation into the neoformed K-chabazite phase that was detected by X-ray diffraction and electron microscopy. Once incorporated into chabazite, (90)Sr was not exchangeable with Mg(2+), and chemical leaching with pH 1.5 HNO3 was required to remobilize 60% of the (90)Sr. These results indicate that, in high pH cementitious leachate, there is significantly enhanced Sr retention in sediments due to changes in the adsorption mechanism and incorporation into secondary silicate minerals. This suggests that Sr retention may be enhanced in this high pH zone and that the incorporation process may lead to irreversible exchange of the contaminant over extended time periods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18..758T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18..758T"><span>The Primary Results of Analyses on The Archaeal and Bacterial Diversity of Active Cave Environments Settled in Limestones at Southern Turkey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tok, Ezgi; Kurt, Halil; Tunga Akarsubasi, A.</p> <p>2016-04-01</p> <p>The microbial diversity of cave sediments which are obtained from three different caves named Insuyu, Balatini and Altınbeşik located at Southern Turkey has been investigated using molecular methods for biomineralization . The total number of 22 samples were taken in duplicates from the critical zones of the caves at where the water activity is observed all year round. Microbial communities were monitored by 16S rRNA gene based PCR-DGGE (Polymerase Chain Reaction - Denaturating Gradient Gel Electrophoresis) methodology. DNA were extracted from the samples by The PowerSoil® DNA Isolation Kit (MO BIO Laboratories inc., CA) with the modifications on the producer's protocol. The synthetic DNA molecule poly-dIdC was used to increase the yield of PCR amplification via blocking the reaction between CaCO3 and DNA molecules. Thereafter samples were amplified by using both Archaeal and Bacterial universal primers (ref). Subsequently, archaeal and bacterial diversities in cave sediments, were investigated to be able to compare with respect to their similarities by using DGGE. DGGE patterns were analysed with BioNumerics software 5.1. Similarity matrix and dendograms of the DGGE profiles were generated based on the Dice correlation coefficient (band-based) and unweighted pair-group method with arithmetic mean (UPGMA). The structural diversity of the microbial community was examined by the Shannon index of general diversity (H). Similtaneously, geochemical analyses of the sediment samples were performed within the scope of this study. Total organic carbon (TOC), x-ray diffraction spectroscopy (XRD) and x-ray fluorescence spectroscopy (XRF) analysis of sediments were also implemented. The extensive results will be obtained at the next stages of the study currently carried on.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRB..123.1116Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRB..123.1116Y"><span>Thermal Alteration of Pyrite to Pyrrhotite During Earthquakes: New Evidence of Seismic Slip in the Rock Record</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Tao; Dekkers, Mark J.; Chen, Jianye</p> <p>2018-02-01</p> <p>Seismic slip zones convey important information on earthquake energy dissipation and rupture processes. However, geological records of earthquakes along exhumed faults remain scarce. They can be traced with a variety of methods that establish the frictional heating of seismic slip, although each has certain assets and disadvantages. Here we describe a mineral magnetic method to identify seismic slip along with its peak temperature through examination of magnetic mineral assemblages within a fault zone in deep-sea sediments cored from the Japan Trench—one of the seismically most active regions around Japan—during the Integrated Ocean Drilling Program Expedition 343, the Japan Trench Fast Drilling Project. Fault zone sediments and adjacent host sediments were analyzed mineral magnetically, supplemented by scanning electron microscope observations with associated energy dispersive X-ray spectroscopy analyses. The presence of the magnetic mineral pyrrhotite appears to be restricted to three fault zones occurring at 697, 720, and 801 m below sea floor in the frontal prism sediments, while it is absent in the adjacent host sediments. Elevated temperatures and coseismic hot fluids as a consequence of frictional heating during earthquake rupture induced partial reaction of preexisting pyrite to pyrrhotite. The presence of pyrrhotite in combination with pyrite-to-pyrrhotite reaction kinetics constrains the peak temperature to between 640 and 800°C. The integrated mineral-magnetic, microscopic, and kinetic approach adopted here is a useful tool to identify seismic slip along faults without frictional melt and establish the associated maximum temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017WRR....53..799K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017WRR....53..799K"><span>Tidal controls on riverbed denitrification along a tidal freshwater zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knights, Deon; Sawyer, Audrey H.; Barnes, Rebecca T.; Musial, Cole T.; Bray, Samuel</p> <p>2017-01-01</p> <p>In coastal rivers, tidal pumping enhances the exchange of oxygen-rich river water across the sediment-water interface, controlling nitrogen cycling in riverbed sediment. We developed a one-dimensional, fluid flow and solute transport model that quantifies the influence of tidal pumping on nitrate removal and applied it to the tidal freshwater zone (TFZ) of White Clay Creek (Delaware, USA). In field observations and models, both oxygenated river water and anoxic groundwater deliver nitrate to carbon-rich riverbed sediment. A zone of nitrate removal forms beneath the aerobic interval, which expands and contracts over daily timescales due to tidal pumping. At high tide when oxygen-rich river water infiltrates into the bed, denitrification rates decrease by 25% relative to low tide. In the absence of tidal pumping, our model predicts that the aerobic zone would be thinner, and denitrification rates would increase by 10%. As tidal amplitude increases toward the coast, nitrate removal rates should decrease due to enhanced oxygen exchange across the sediment-water interface, based on sensitivity analysis. Denitrification hot spots in TFZs are more likely to occur in less permeable sediment under lower tidal ranges and higher rates of ambient groundwater discharge. Our models suggest that tidal pumping is not efficient at removing surface water nitrate but can remove up to 81% of nitrate from discharging groundwater in the TFZ of White Clay Creek. Given the high population densities of coastal watersheds, the reactive riverbeds of TFZs play a critical role in mitigating new nitrogen loads to coasts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://dx.doi.org/10.1007/BF02696013','USGSPUBS'); return false;" href="http://dx.doi.org/10.1007/BF02696013"><span>Groundwater control of mangrove surface elevation: shrink and swell varies with soil depth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Whelan, K.R.T.; Smith, T. J.; Cahoon, D.R.; Lynch, J.C.; Anderson, G.H.</p> <p>2005-01-01</p> <p>We measured monthly soil surface elevation change and determined its relationship to groundwater changes at a mangrove forest site along Shark River, Everglades National Park, Florida. We combined the use of an original design, surface elevation table with new rod-surface elevation tables to separately track changes in the mid zone (0?4 m), the shallow root zone (0?0.35 m), and the full sediment profile (0?6 m) in response to site hydrology (daily river stage and groundwater piezometric pressure). We calculated expansion and contraction for each of the four constituent soil zones (surface [accretion and erosion; above 0 m], shallow zone [0?0.35 m], middle zone [0.35?4 m], and bottom zone [4?6 m]) that comprise the entire soil column. Changes in groundwater pressure correlated strongly with changes in soil elevation for the entire profile (Adjusted R2 5 0.90); this relationship was not proportional to the depth of the soil profile sampled. The change in thickness of the bottom soil zone accounted for the majority (R2 5 0.63) of the entire soil profile expansion and contraction. The influence of hydrology on specific soil zones and absolute elevation change must be considered when evaluating the effect of disturbances, sea level rise, and water management decisions on coastal wetland systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JAESc..29..508V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JAESc..29..508V"><span>Water and sediment dynamics in the Red River mouth and adjacent coastal zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Maren, D. S.</p> <p>2007-02-01</p> <p>The coastline of the Red River Delta is characterized by alternating patterns of rapid accretion and severe erosion. The main branch of the Red River, the Ba Lat, is presently expanding seaward with a main depositional area several km downstream and offshore the Ba Lat River mouth. Sediment deposition rates are approximately 6 m in the past 50 years. Field measurements were done to determine the processes that regulate marine dispersal and deposition of sediment supplied by the Ba Lat. These measurements reveal that the waters surrounding the Ba Lat delta are strongly stratified with a pronounced southward-flowing surface layer. This southward-flowing surface layer is a coastal current which is generated by river plumes that flow into the coastal zone north of the Ba Lat. However, outflow of turbid river water is not continuous and most sediment enters the coastal zone when the alongshore surface velocities are low. As a consequence, most sediment settles from suspension close to the river mouth. In addition to the southward surface flow, the southward near-bottom currents are also stronger than northward currents. Contrasting with the residual flow near-surface, this southward flow component near-bottom is caused by tidal asymmetry. Because most sediment is supplied by the Ba Lat when wave heights are low, sediment is able to consolidate and therefore the long-term deposition is southward of, but still close to, the Ba Lat mouth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V13E..06Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V13E..06Y"><span>Barium isotope geochemistry of subduction-zone magmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, H.; Nan, X.; Huang, J.; Wörner, G.; Huang, F.</p> <p>2017-12-01</p> <p>Subduction zones are crucial tectonic setting to study material exchange between crust and mantle, mantle partial melting with fluid addition, and formation of ore-deposits1-3. The geochemical characteristics of arc lavas from subduction zones are different from magmas erupted at mid-ocean ridges4, because there are addition of fluids/melts from subducted AOC and its overlying sediments into their source regions in the sub-arc mantle4. Ba is highly incompatible during mantle melting5, and it is enriched in crust (456 ppm)6 relative to the mantle (7.0 ppm)7. The subducted sediments are also enriched in Ba (776 ppm of GLOSS)8. Moreover, because Ba is fluid soluble during subduction, it has been used to track contributions of subduction-related fluids to arc magmas9 or recycled sediments to the mantle10-11. To study the Ba isotope fractionation behavior during subduction process, we analyzed well-characterized, chemically-diverse arc lavas from Central American, Kamchatka, Central-Eastern Aleutian, and Southern Lesser Antilles. The δ137/134Ba of Central American arc lavas range from -0.13 to 0.24‰, and have larger variation than the arc samples from other locations. Except one sample from Central-Eastern Aleutian arc with obviously heavy δ137/134Ba values (0.27‰), all other samples from Kamchatka, Central-Eastern Aleutian, Southern Lesser Antilles arcs are within the range of OIB. The δ137/134Ba is not correlated with the distance to trench, partial melting degrees (Mg#), or subducting slab-derived components. The samples enriched with heavy Ba isotopes have low Ba contents, indicating that Ba isotopes can be fractionated at the beginning of dehydration process with small amount of Ba releasing to the mantle wedge. With the dehydration degree increasing, more Ba of the subducted slab can be added to the source of arc lavas, likely homogenizing the Ba isotope signatures. 1. Rudnick, R., 1995 Nature; 2. Tatsumi, Y. & Kogiso, T., 2003; 3. Sun, W., et al., 2015 Ore Geol. Rev.; 4. Pearce, J., & Peate, D., 1995 Annu. Rev. Earth Planet. Sci.; 5. Pilet, S., et al., 2011 J. Petrol.; 6. Sun S. & McDonough, W., 1989; 7. Rudnick, R. & Gao, S., 2003 Treatise on geochem.; 8. Plank, T. & Langmuir, C., 1998, CG; 9. Hawkesworth, C. & Norry, M., 1983 Shiva Pub.; 10. Murphy, D., et al., 2002 J. Petrol.; 11. Kuritani, T., et al., 2011 Nat. Geosci.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeCoA.123..218J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeCoA.123..218J"><span>Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5-38.0°S): Constraints on mantle wedge and slab input compositions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jacques, G.; Hoernle, K.; Gill, J.; Hauff, F.; Wehrmann, H.; Garbe-Schönberg, D.; van den Bogaard, P.; Bindeman, I.; Lara, L. E.</p> <p>2013-12-01</p> <p>Crustal assimilation (e.g. Hildreth and Moorbath, 1988) and/or subduction erosion (e.g. Stern, 1991; Kay et al., 2005) are believed to control the geochemical variations along the northern portion of the Chilean Southern Volcanic Zone. In order to evaluate these hypotheses, we present a comprehensive geochemical data set (major and trace elements and O-Sr-Nd-Hf-Pb isotopes) from Holocene primarily olivine-bearing volcanic rocks across the arc between 34.5°S and 38.0°S, including volcanic front centers from Tinguiririca to Callaqui, the rear arc centers of Infernillo Volcanic Field, Laguna del Maule and Copahue, and extending 300 km into the backarc. We also present an equivalent data set for Chile trench sediments outboard of this profile. The volcanic arc (including volcanic front and rear arc) samples primarily range from basalt to andesite/trachyandesite, whereas the backarc rocks are low-silica alkali basalts and trachybasalts. All samples show some characteristic subduction zone trace element enrichments and depletions, but the backarc samples show the least. Backarc basalts have higher Ce/Pb, Nb/U, Nb/Zr, and Ta/Hf, and lower Ba/Nb and Ba/La, consistent with less of a slab-derived component in the backarc and, consequently, lower degrees of mantle melting. The mantle-like δ18O in olivine and plagioclase phenocrysts (volcanic arc = 4.9-5.6‰ and backarc = 5.0-5.4‰) and lack of correlation between δ18O and indices of differentiation and other isotope ratios, argue against significant crustal assimilation. Volcanic arc and backarc samples almost completely overlap in Sr and Nd isotopic composition. High precision (double-spike) Pb isotope ratios are tightly correlated, precluding significant assimilation of older sialic crust but indicating mixing between a South Atlantic Mid Ocean-Ridge Basalt (MORB) source and a slab component derived from subducted sediments and altered oceanic crust. Hf-Nd isotope ratios define separate linear arrays for the volcanic arc and backarc, neither of which trend toward subducting sediment, possibly reflecting a primarily asthenospheric mantle array for the volcanic arc and involvement of enriched Proterozoic lithospheric mantle in the backarc. We propose a quantitative mixing model between a mixed-source, slab-derived melt and a heterogeneous mantle beneath the volcanic arc. The model is consistent with local geodynamic parameters, assuming water-saturated conditions within the slab.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5511305-aerial-gamma-ray-magnetic-survey-nebraska-texas-survey-texarkana-quadrangle-texas-oklahoma-arkansas-louisiana-final-report','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5511305-aerial-gamma-ray-magnetic-survey-nebraska-texas-survey-texarkana-quadrangle-texas-oklahoma-arkansas-louisiana-final-report"><span>Aerial gamma ray and magnetic survey: Nebraska/Texas survey, Texarkana Quadrangle of Texas, Oklahoma, Arkansas, and Louisiana. Final report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Not Available</p> <p></p> <p>The Texarkana quadrangle of eastern Texas and portions of three adjacent states lies within the northern Gulf Coastal Province. The area contains portions of the Ouachita Tectonic Belt and the East Texas-Athens Embayment. The Mexia-Talco Fault Zone strikes roughly east-west through the center of the quadrangle. North of the fault zone Cretaceous platform deposits dominate, whereas Eocene neritic sediments cover most of the area south of the zone. Examination of available literature shows no known uranium deposits (or occurrences) within the quadrangle. One hundred fifty-nine groups of uranium samples were defined as anomalies and discussed briefly in this report. Nonemore » were considered significant, and most appeared to be of cultural origin. Magnetic data in the quadrangle are dominantly low frequency/low amplitude wavelengths, which suggests that sources may be extremely deep.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V51A3051Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V51A3051Z"><span>Calcium Isotopic Compositions of Forearc Sediments from DSDP Site 144</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Z.; Zhu, H.; Nan, X.; Li, X.; Huang, F.</p> <p>2016-12-01</p> <p>It is important to investigate calcium isotopic compositions of reservoirs of the Earth for better application of Ca isotopes into studies of a variety of geochemical problems. Because Ca isotopic compositions for igneous rocks and carbonates are increasingly reported, this maybe bring new requirements on carefully understanding the isotopic compositions of subducted marine sediments. Marine sediments mainly contains carbonates and clays, controlling the compositions of slab-derived materials which are added to the mantle wedge. Obviously, it could have different elemental and calcium isotopic compositions with marine carbonate. Thus, it could also put biases on calcium isotopic signatures of basalts resulted from recycling oceanic carbonate into the mantle. Here, we report calcium isotopic compositions of 17 sediment samples from Deep Sea Drilling Project (DSDP) site 144 (09°27.23' N, 54°20.52' W) which is located about 400 km north of Surinam on the northern flank of the Demerara Rise with a water depth of 2957 meters. These samples have CaO contents ranging from 14.56 wt.% to 41.46 wt.% with an average of 29.61 ± 18.21 (2SD), δ44/40Ca ranges from 0.19 to 0.58 (relative to SRM915a) with an average of 0.40 ± 0.22 (2SD). These carbonate-rich sediments can be used to represent an endmember with high CaO content and low δ44/40Ca, which could modify chemical composition of the upper mantle and subduction zone lavas if they are recycled to the convective mantle during subduction. The positive linear correlation between CaO and δ44/40Ca in the sediments cannot be explained by a simple mixing between marine carbonate and clay. Instead, δ44/40Ca of these samples roughly increase from the Upper Cretaceous to the Early Oligocene, which might reflect the evolution of calcium isotopic compositions of seawater through time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1428S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1428S"><span>Sedimentation and contamination patterns of dike systems along the Rhône River (France)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seignemartin, Gabrielle; Tena, Alvaro; Piégay, Hervé; Roux, Gwenaelle; Winiarski, Thierry</p> <p>2017-04-01</p> <p>Humans have historically modified the Rhône River, especially in the last centuries. In the 19th century, the river was systematically embanked for flood protection purposes, and works continued along the 20th century with dike system engineering work for navigation. The Rhône was canalised and its historical course by-passed by a series of hydroelectric dams. Besides, industrial activity polluted the river. For example, high levels of PCB's were attributed to the inputs of the heavily industrialized zone downstream from Lyon. During floods, these contaminants, associated with the suspended sediment, were trapped by the engineering works and the floodplain. Currently, a master plan to reactivate the river dynamics in the alluvial margins by removing the groyne-fields and dikes in the by-passed sections is being implemented. Within this context, this work aims to assess historical dynamics of sediment and associated contaminants in the floodplain (e.g. trace metal elements), notably in the dike system, in order to evaluate the contamination risk related to bank protection removal. With this objective, a transversal methodology has been applied coupling GIS diachronic analysis (old maps, bathymetric data, Orthophotos, LIDAR, etc.) to understand the historical floodplain evolution, sediment survey to obtain sediment thickness (metal rod and Ground Penetrating Radar), and sediment sampling (manual auger and core sampling) to obtain the metal element concentrations (X-Ray Fluorescence and Inductively Coupled Plasma Mass Spectrometry). By this way, metal element patterns were defined and used as contamination tracing indicators to apprehend the contamination history but also as geochemical background indicators to define the sediment source influence. We found that sediment temporal patterns are directly related with the by-pass construction year. Spatially, fine sediment deposition predominates in the dike systems, being lower in the floodplain already disconnected in the 20th century. Sediment thickness tends to increase in the dike systems following downstream direction. Coupling trace elements (Cu, Zn, Pb) and sediment patterns, metal pollution is mainly observed in the 1970's deposits, similarly to previous studies focused on PCB. These results constitute basic information to inform managers and improve restoration actions that are currently implemented in the Rhône River.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMOS14A..03D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMOS14A..03D"><span>The Peru Margin as an Authigenic Mineral Factory, Evidence From Surface Sediments and Oceanography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dean, W. E.; Arthur, M. A.</p> <p>2004-12-01</p> <p>Characteristics of sediments deposited within an intense oxygen-minimum zone (OMZ) on the Peru continental margin were mapped by submersible, and studied in samples collected in deck-deployed box cores and submersible push cores on two east-west transects over water depths of 75 to 1000 m at 12 degrees and 13.5 degrees S. On the basis of sampling of the top 1-2 cm of available cores, three main belts of sediments were identified in each transect with increasing depth: 1) organic-carbon (OC)-rich muds; 2) authigenic phosphatic mineral crusts; and 3) glaucony facies. These facies patterns are primarily controlled by redox conditions and strength of bottom currents. OC-rich sediments on the 12-degree transect were mainly located on the outer shelf and upper slope (150-350 m), but they occurred in much shallower water (ca. 100 m) on the 13.5-degree transect. The organic matter is almost entirely marine, resulting from very high primary productivity. The OC concentrations are highest (up to 18%) in sediments where intermediate water masses with low dissolved oxygen concentrations (less than 5 micromoles/kg) impinge on the slope at water depths between 75 and 450 m. The region between 175 and 350 m depth is characterized by bedforms stabilized by bacterial mats, extensive authigenic mineral crusts, and (or) thick organic flocs. Currents as high as 30 cm/sec were measured over that depth interval. Current-resuspension of surficial organic matter, activity of organisms, and transport to and from more oxygenated zones contribute to greater oxidation and poorer preservation of organic matter than occur under oxygen-deficient conditions. Phosphate-rich sediments occurred at depths of about 300 to 550 m on both transects. Nodular crusts cemented by carbonate-fluorapatite (CFA; phosphorite) or dolomite form within the OMZ. The crusts start by cementation of sediment near the sediment-water interface forming stiff but friable phosphatizes claystone "protocrusts". The protocrusts evolve into dense, dark phosphorite crusts, cemented breccias, and pavements. The degree of phosphatization and thickness of the phosphorite crusts depends on rates of sediment supply and strength and frequency of currents that re-expose crusts on the seafloor. Glaucony-rich surficial sediments, relatively undiluted by other components, mainly were found in deeper water on the 13.5 degree transect (750 m to at least 1067 m). These sediments consist almost entirely of sand-size glaucony pellets (aggregates of clay minerals with pelletoid shapes). These widespread glaucony sands possibly formed in situ and were then concentrated and reworked by strong currents that winnowed away the fine-grained matrix. Overall, sedimentation rate must be slow in order for the glaucony minerals to remain in contact with seawater, which is the source of cations during growth. The close association of glaucony and phosphorite indicates that there is a delicate balance between slightly oxidizing and slightly reducing conditions at the base of the OMZ- slightly reducing to mobilize iron and phosphate, and slightly oxidizing to form glaucony.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ECSS..205....1A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ECSS..205....1A"><span>Microplastics in sediments from the littoral zone of the north Tunisian coast (Mediterranean Sea)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abidli, Sami; Antunes, Joana C.; Ferreira, Joana L.; Lahbib, Youssef; Sobral, Paula; Trigui El Menif, Najoua</p> <p>2018-05-01</p> <p>The distribution of microplastics (MPs) was investigated in the sediments of five sampling sites from the northern Tunisian coast during June 2017. MPs were categorized according to type, colour and size. Representative MPs from the five sites were isolated for polymer identification using Fourier Transformed Infrared Spectroscopy in attenuated total reflectance mode (FTIR-ATR). Results showed that MPs were recovered, from all sediment samples, indicating for the first time, their extensive distribution in Tunisian coast. Concentrations varied from 141.20 ± 25.98 to 461.25 ± 29.74 items kg-1 dry weight. Fibres, fragments, Styrofoam®, pellets and films were the types registered in this study. With the exception of Menzel Bourguiba (MB), fibres significantly outnumbered plastic particles followed by fragments, Styrofoam®, films and pellets. The predominant colours are as follows: black > clear > white > red > blue > green for fibres, blue > white > clear > red > green > yellow > black for fragments, blue > white > black > clear for films while only white pellets and Styrofoam® were found. MPs particles ranged from 0.1 to 5 mm in length. A total of three polymer types were identified, polyethylene (PE), polypropylene (PP) and polystyrene (PS). Except for industrial pellets, the presence of MPs is likely due to the degradation of marine plastic debris accumulating in each site. This work provides original data of the presence of MPs in coastal sediments from Northern Tunisian coast.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2012/3096/pdf/fs20123096.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2012/3096/pdf/fs20123096.pdf"><span>Groundwater quality in the Coastal Los Angeles Basin, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fram, Miranda S.; Belitz, Kenneth</p> <p>2012-01-01</p> <p>The Coastal Los Angeles Basin study unit is approximately 860 square miles and consists of the Santa Monica, Hollywood, West Coast, Central, and Orange County Coastal Plain groundwater basins (California Department of Water Resources, 2003). The basins are bounded in part by faults, including the Newport-Inglewood fault zone, and are filled with Holocene-, Pleistocene-, and Pliocene-age marine and alluvial sediments. The Central Basin and Orange County Coastal Plain are divided into a forebay zone on the northeast and a pressure zone in the center and southwest. The forebays consist of unconsolidated coarser sediment, and the pressure zones are characterized by lenses of coarser sediment divided into confined to semi-confined aquifers by lenses of finer sediments. The primary aquifer system in the study unit is defined as those parts of the aquifer system corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database of public-supply wells. The majority of public-supply wells are drilled to depths of 510 to 1,145 feet, consist of solid casing from the land surface to a depth of about 300 to 510 feet, and are perforated below the solid casing. Water quality in the primary aquifer system may differ from that in the shallower and deeper parts of the aquifer systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=308597&keyword=chao&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=308597&keyword=chao&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Changes in northern Gulf of Mexico sediment bacterial and archaeal communities exposed to hypoxia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Biogeochemical changes in marine sediments during coastal water hypoxia are well described, but less is known about underlying changes in microbial communities. Bacterial and archaeal communities in Louisiana continental shelf (LCS) hypoxic zone sediments were characterized by py...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940025438','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940025438"><span>Cellular polarity and interactions in plant graviperception</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sack, Fred D.</p> <p>1993-01-01</p> <p>Presented are results of studies on the mechanisms of gravitropic sensing in higher and lower plants. Gravitropic roots of the aquatic angiosperm, Limnobium, were found to have sedimented amyloplasts in their elongation zone but not in their rootcap; nuclei were found to sediment in the elongation zone as well. Another study attempted to understand how plastid sedimentation occurs in vertical Ceratodon cells and how this sedimentation is regulated. To determine whether the cytoskeleton restricts plastid sedimentation, the effects of amiprophos-methyl (APM) and cytochalasin (CD) on plastid position were qualified. Results suggest that microtubules restrict the sedimentation of plastids along the length of the cell and that microtubules are load-bearing for all the plastids in the apical cell, demonstrating the importance of the cytoskeleton in maintaining organelle position and cell organization against the force of gravity. Physcomitrella and Funaria were also studied. Results suggest that gravitropism may be relatively common in moss protonemata and reinforce the idea that amyloplast mass functions in gravitropic sensing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70047085','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70047085"><span>Linking channel hydrology with riparian wetland accretion in tidal rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ensign, Scott H.; Noe, Gregory B.; Hupp, Cliff R.</p> <p>2014-01-01</p> <p>The hydrologic processes by which tide affects river channel and riparian morphology within the tidal freshwater zone are poorly understood, yet are fundamental to predicting the fate of coastal rivers and wetlands as sea level rises. We investigated patterns of sediment accretion in riparian wetlands along the non-tidal through oligohaline portion of two coastal plain rivers in Maryland, U.S.A., and how flow velocity, water level, and suspended sediment concentration (SSC) in the channel may have contributed to those patterns. Sediment accretion was measured over a one year period using artificial marker horizons, channel hydrology was measured over a one month period using acoustic Doppler current profilers, and SSC was predicted from acoustic backscatter. Riparian sediment accretion was lowest at the non-tidal sites (mean and standard deviation = 8 ± 8 mm yr-1), highest at the upstream tidal freshwater forested wetlands (TFFW) (33 ± 28 mm yr-1), low at the midstream TFFW (12 ± 9 mm yr-1), and high at the oligohaline (fresh-to-brackish) marshes (19 ± 8 mm yr-1). Channel maximum flood and ebb velocity was 2-fold faster at the oligohaline than tidal freshwater zone on both tidal rivers, corresponding with the differences in in-channel SSC: the oligohaline zone's SSC was more than double the tidal freshwater zone's, and was greater than historical SSC at the non-tidal gages. The tidal wave characteristics differed between rivers, leading to significantly greater in-channel SSC during floodplain inundation in the weakly convergent than the strongly convergent tidal river. Overall sediment accretion was higher in the embayed river likely due to a single storm discharge and associated sedimentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP14C..02L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP14C..02L"><span>Is the Role of Insular South East Asia as a Global Producer of Sediments Overestimated? Clues from Borneo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Latrubesse, E. M.; Park, E.; Aquino, S.</p> <p>2017-12-01</p> <p>Global studies have ascertained that relatively small drainage basins of Sumatra, Java, Borneo, Celebes, and Timor, which represent only 2% of the land draining to the ocean, may discharge about 4200 million tons/y of sediment. It means approximately 25% of the global sediment export to the ocean (Milliman and Farnsworth, 2013). With an area of 750,000 km2, Borneo, the 3rdlargest island in the world (after Greenland and New Guinea) could export from to the ocean approximately 910 Mt/y. About half (459 Mt) of the island discharge is from rivers draining Sarawak (Malaysia) to the South China Sea; while the other half (450 Mt) drain Kalimantan to the Java, Makassar Strait, and Celebes Seas (Milliman and Farnsworth, 2013). However, direct measurements of suspended sediments in Borneo are not available and the calculations of sediment yields and transferences to the ocean have been based on probabilistic curves. We hypothesize that the available data on the volume of sediment discharge are overestimated. We provide evidences that support our hypothesis through geological/geomorphological mappings, fluvial surveys, suspended sediment samplings, analyses on the channel stability of major rivers, and surface suspended sediments concentration modelling (SSSC) of river plumes in the coastal zone. Our initial assessments on sediment budget indicates that Borneo could produce and supply to the Ocean significantly less sediment than previously estimated by other authors. ReferencesMilliman and Farnsworth (2013), Appendix F (Asia) and G (Oceania), In River discharge to the coastal ocean, 289-329.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23987916','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23987916"><span>Benthic exchange and biogeochemical cycling in permeable sediments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huettel, Markus; Berg, Peter; Kostka, Joel E</p> <p>2014-01-01</p> <p>The sandy sediments that blanket the inner shelf are situated in a zone where nutrient input from land and strong mixing produce maximum primary production and tight coupling between water column and sedimentary processes. The high permeability of the shelf sands renders them susceptible to pressure gradients generated by hydrodynamic and biological forces that modulate spatial and temporal patterns of water circulation through these sediments. The resulting dynamic three-dimensional patterns of particle and solute distribution generate a broad spectrum of biogeochemical reaction zones that facilitate effective decomposition of the pelagic and benthic primary production products. The intricate coupling between the water column and sediment makes it challenging to quantify the production and decomposition processes and the resultant fluxes in permeable shelf sands. Recent technical developments have led to insights into the high biogeochemical and biological activity of these permeable sediments and their role in the global cycles of matter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2006/1036/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2006/1036/"><span>Quantitative x-ray diffraction mineralogy of Los Angeles basin core samples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hein, James R.; McIntyre, Brandie R.; Edwards, Brian D.; Lakota, Orion I.</p> <p>2006-01-01</p> <p>This report contains X-ray diffraction (XRD) analysis of mineralogy for 81 sediment samples from cores taken from three drill holes in the Los Angeles Basin in 2000-2001. We analyzed 26 samples from Pier F core, 29 from Pier C core, and 26 from the Webster core. These three sites provide an offshore-onshore record across the Southern California coastal zone. This report is designed to be a data repository; these data will be used in further studies, including geochemical modeling as part of the CABRILLO project. Summary tables quantify the major mineral groups, whereas detailed mineralogy is presented in three appendices. The rationale, methodology, and techniques are described in the following paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.2779L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.2779L"><span>Pollen record of the penultimate glacial period in Yuchi Basin, Central Taiwan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lai, Hsiao-Yin; Liew, Ping-Mei</p> <p>2010-05-01</p> <p>Pollen records of the penultimate glacial period are scare not only in Taiwan, but also in East Asia area. Hence, this study intends to provide a new pollen record from a site, Yuchi Basin, in central Taiwan, which may improve our knowledge of the penultimate glacial period. The sediment core, CTN6, was drilled in the northern part of Yuchi Basin. The core is 29.4 m in length and the sampling interval is 10 cm. In total, 86 samples are processed for pollen analysis. Three pollen zones (I,II and III) are determined according to the ratio of arboreal pollens (AP) and non-arboreal pollens (NAP). Because of the scarcity of dating data, pollen assemblages compared with previous pollen records at peripheral areas is utilized to estimate the ages of each pollen zone. AP dominate (60%) Zone I and III, which consist mainly of Cyclobalanopsis-Castanopsis. Thus, Zone I may mark the MIS 5 because of a Cyclobalanopsis-Castanopsis dominant condition. In Zone II, the increase in NAP and pollen of Taxodiaceae and decrease in pollens of Cyclobalanopsis-Castanopsis indicates the penultimate glacial period, i.e. MIS 6. In contrast to the evergreen broadleaved forest found there today, the herbs occupied the basin in Zone II, indicating a relatively dry climate condition than present. Furthermore, during the penultimate glacial period, the climate condition of early part is wetter, evidenced by a higher AP/NAP in Zone IIb. Finally, comparing with the last glacial period in Toushe, we suggest that the penultimate glacial period is drier due to the lower AP/NAP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.2510L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.2510L"><span>An alternative method for the estimation of sedimentation rates using radiometric measurements in an intertidal region (sw of spain)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ligero, Rufino; Casas-Ruiz, Melquiades; Barrera, Manuel; Barbero, Luis</p> <p>2010-05-01</p> <p>The techniques for the direct measurement of the sedimentation rate are reliable but slow and imprecise, given that the time intervals of measurement cannot be very long. Consequently it is an extremely laborious task to obtain a representative map of the sedimentation rates and such maps are available for very few zones. However, for most environmental studies, it is very important to know the sedimentation rates. The high degree of accuracy of the gamma spectrometric techniques together with the application of the model describes in this work, has allowed the determination of the sedimentation rates in a wide spatial area such of the Bay of Cadiz to be obtained with precision and consuming considerably less time in comparison to the traditional techniques. Even so, the experimental conditions required for the sample cores are fairly restrictive, and although the radiological method provides a quantitative advance in measurement, the experimental difficulty in the execution of the study is not greatly diminished. For this reason, a second model has been derived based on the measurement of the inventory, which offers economies in time and financial cost, and which allows the sedimentation rate in a region to be determined with satisfactory accuracy. Furthermore, it has been shown that the application of this model requires a precise determination of 137Cs inventories. The sedimentation rates estimated by the 137Cs inventory method ranged from 0.26 cm/year to 1.72 cm/year. The average value of the sedimentation rate obtained is 0.59 cm/year, and this rate has been compared with those resulting from the application of the 210Pb dating technique. A good agreement between the two procedures has been found. From the study carried out, it has been possible for the first time, to draw a map of sedimentation rates for this zone where numerous physical-chemical, oceanographic and ecological studies converge, since it is situated in a region of great environmental interest. This area, which is representative of common environmental coastal scenarios, is particularly sensitive to perturbations related to climate change, and the results of the study will allow to carry out short and medium term evaluations of this change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP53A1677E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP53A1677E"><span>Maintaining the Link to The Floodplain: Scour Dynamics in Crevasses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Esposito, C. R.; Liang, M.; Yuill, B. T.; Meselhe, E. A.</p> <p>2017-12-01</p> <p>In river deltas, crevasses are the primary geomorphic feature that traverse the levee, connecting the river to its floodplain and facilitating the transfer of water, sediment, and chemical constituents from the trunk channel. Despite their fundamental position linking river and floodplain, the factors that are important to crevasse evolution are not well understood, and their enumeration is the subject of active research across multiple earth surface process subfields. Crevasses are often associated with a zone of intense scour proximal to the trunk channel. Surprisingly little is known about the morphological dynamics in this zone, but there is evidence from studies of river avulsion that scour zone evolution plays an important role in determining crevasse sustainability. Here we use Delft3D to simulate the development of managed crevasse splays - river diversions - for the purpose of landscape management in the Mississippi River Delta. Our model runs vary the erodibility of the substrate in the receiving basin and the extent and location of erosion protection along the conveyance channel. We find that substrate erodibility in the basin plays a critical role in determining the long-term performance of sediment diversions. Crevasses that create large scours tend to maintain their performance over several decades, but those that only create small scours are subject to rapidly declining performance as the scour pit fills in with coarse sediments. Finally, we compare the evolution of our modeled scour zone to the West Bay Sediment Diversion, where regular bathymetric surveys have documented the evolution of the scour zone since 2004.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70118021','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70118021"><span>The morphology, processes, and evolution of Monterey Fan: a revisit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gardner, James V.; Bohannon, Robert G.; Field, Michael E.; Masson, Douglas G.</p> <p>2010-01-01</p> <p>Long-range (GLORIA) and mid-range (TOBI) sidescan imagery and seismic-reflection profiles have revealed the surface morphology and architecture of the complete Monterey Fan. The fan has not developed a classic wedge shape because it has been blocked for much of its history by Morro Fracture Zone. The barrier has caused the fan to develop an upper-fan and lower-fan sequence that are distinctly different from one another. The upper-fan sequence is characterized by Monterey and Ascension Channels and associated Monterey Channel-levee system. The lower-fan sequence is characterized by depositional lobes of the Ascension, Monterey, and Sur-Parkington-Lucia systems, with the Monterey depositional lobe being the youngest. Presently, the Monterey depositional lobe is being downcut because the system has reached a new, lower base level in the Murray Fracture Zone. A five-step evolution of Monterey Fan is presented, starting with initial fan deposition in the Late Miocene, about 5.5 Ma. This first stage was one of filling bathymetric lows in the oceanic basement in what was to become the upper-fan segment. The second stage involved filling the bathymetric low on the north side of Morro Fracture Zone, and probably not much sediment was transported beyond the fracture zone. The third stage witnessed sediment being transported around both ends of Morro Fracture Zone and initial sedimentation on the lower-fan segment. During the fourth stage Ascension Channel was diverted into Monterey Channel, thereby cutting off sedimentation to the Ascension depositional lobe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4765959','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4765959"><span>The effect of sediment mixing on mercury dynamics in two intertidal mudflats at Great Bay Estuary, New Hampshire, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Brown, Lauren E.; Chen, Celia Y.; Voytek, Mary A.; Amirbahman, Aria</p> <p>2016-01-01</p> <p>Estuarine sediments store particulate contaminants including mercury (Hg). We studied Hg sediment dynamics in two intertidal mudflats at Great Bay estuary, NH, over multiple years. Sediments at both mudflats were physically mixed down to ~10 cm, as determined by 7Be measurements, albeit via different mechanisms. Portsmouth mudflat (PT) sediments were subject to bioturbation by infaunal organisms and Squamscott mudflat (SQ) sediments were subject to erosion and redeposition. The presence of higher concentrations of fresh Fe(III) hydroxide at PT suggested bioirrigation by the polychaetes (Nereis virens). At depths where infaunal bioirrigation was observed, pore-water inorganic Hg (Hgi) and methylmercury (MeHg) were lower potentially due to their interaction with Fe(III) hydroxide. Methylmercury concentrations increased immediately below this zone in some samples, suggesting that the observed increase in material flux in bioirrigated sediments may initiate from lower depths. Pore water in sediment at PT also had higher fractions of more protein-like and labile DOC than those at SQ that can lead to increased MeHg production in PT, especially at depths where Hgi is not removed from solution by Fe(III) hydroxide. Where sediment erosion and redeposition were observed at SQ, Hg species distribution was extended deeper into the sediment column. Moreover, methyl coenzyme M reductase (MCR) and mercury reductase (mer-A) genes were higher at SQ than PT suggesting differences in conditions for Hg cycling. Results showed that the near-surface region of high MeHg concentrations commonly observed in unmixed sediments does not exist in physically mixed sediments that are common in many estuarine environments. PMID:26924879</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26924879','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26924879"><span>The effect of sediment mixing on mercury dynamics in two intertidal mudflats at Great Bay Estuary, New Hampshire, USA.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brown, Lauren E; Chen, Celia Y; Voytek, Mary A; Amirbahman, Aria</p> <p>2015-12-01</p> <p>Estuarine sediments store particulate contaminants including mercury (Hg). We studied Hg sediment dynamics in two intertidal mudflats at Great Bay estuary, NH, over multiple years. Sediments at both mudflats were physically mixed down to ~10 cm, as determined by 7 Be measurements, albeit via different mechanisms. Portsmouth mudflat (PT) sediments were subject to bioturbation by infaunal organisms and Squamscott mudflat (SQ) sediments were subject to erosion and redeposition. The presence of higher concentrations of fresh Fe(III) hydroxide at PT suggested bioirrigation by the polychaetes ( Nereis virens ). At depths where infaunal bioirrigation was observed, pore-water inorganic Hg (Hg i ) and methylmercury (MeHg) were lower potentially due to their interaction with Fe(III) hydroxide. Methylmercury concentrations increased immediately below this zone in some samples, suggesting that the observed increase in material flux in bioirrigated sediments may initiate from lower depths. Pore water in sediment at PT also had higher fractions of more protein-like and labile DOC than those at SQ that can lead to increased MeHg production in PT, especially at depths where Hg i is not removed from solution by Fe(III) hydroxide. Where sediment erosion and redeposition were observed at SQ, Hg species distribution was extended deeper into the sediment column. Moreover, methyl coenzyme M reductase (MCR) and mercury reductase ( mer -A) genes were higher at SQ than PT suggesting differences in conditions for Hg cycling. Results showed that the near-surface region of high MeHg concentrations commonly observed in unmixed sediments does not exist in physically mixed sediments that are common in many estuarine environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAfES.134..320K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAfES.134..320K"><span>Dynamics of sediments along with their core properties in the Monastir-Bekalta coastline (Tunisia, Central Mediterranean)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khiari, Nouha; Atoui, Abdelfattah; Khalil, Nadia; Charef, Abdelkrim; Aleya, Lotfi</p> <p>2017-10-01</p> <p>The authors report on two campaigns of high-resolution samplings along the shores of Monastir Bay in Tunisia: the first being a study of sediment dynamics, grain size and mineral composition in surface sediment, and the second, eight months later, using four sediment cores to study grain-size distribution in bottom sediments. Particle size analysis of superficial sediment shows that the sand in shallow depths is characterized by S-shaped curves, indicating a certain degree of agitation, possible transport by rip currents near the bottom and hyperbolic curves illustrating heterogeneity of sand stock. The sediments settle in a relatively calm environment. Along the bay shore (from 0 to 2 m depth), the bottom is covered by medium sand. Sediment transport is noted along the coast; from north to south and from south to north, caused by longshore drift and a rip current in the middle of the bay. These two currents are generated by wind and swell, especially by north to northeast waves which transport the finest sediment. Particle size analysis of bottom sediment indicates a mean grain size ranging from coarse to very fine sands while vertical distribution of grain size tends to decrease from surface to depth. The increase in particle size of sediment cores may be due to the coexistence of terrigenous inputs along with the sedimentary transit parallel to the coast due to the effect of longshore drift. Mineralogical analysis shows that Monastir's coastal sands and bottom sediment are composed of quartz, calcite, magnesium calcite, aragonite and hematite. The existence of a low energy zone with potential to accumulate pollutants indicates that managerial action is necessary to help preserve Monastir Bay.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29185716','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29185716"><span>Pollutants in Plastics within the North Pacific Subtropical Gyre.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Qiqing; Reisser, Julia; Cunsolo, Serena; Kwadijk, Christiaan; Kotterman, Michiel; Proietti, Maira; Slat, Boyan; Ferrari, Francesco F; Schwarz, Anna; Levivier, Aurore; Yin, Daqiang; Hollert, Henner; Koelmans, Albert A</p> <p>2018-01-16</p> <p>Here we report concentrations of pollutants in floating plastics from the North Pacific accumulation zone (NPAC). We compared chemical concentrations in plastics of different types and sizes, assessed ocean plastic potential risks using sediment quality criteria, and discussed the implications of our findings for bioaccumulation. Our results suggest that at least a fraction of the NPAC plastics is not in equilibrium with the surrounding seawater. For instance, "hard plastic" samples had significantly higher PBDE concentrations than "nets and ropes" samples, and 29% of them had PBDE composition similar to a widely used flame-retardant mixture. Our findings indicate that NPAC plastics may pose a chemical risk to organisms as 84% of the samples had at least one chemical exceeding sediment threshold effect levels. Furthermore, our surface trawls collected more plastic than biomass (180 times on average), indicating that some NPAC organisms feeding upon floating particles may have plastic as a major component of their diets. If gradients for pollutant transfer from NPAC plastic to predators exist (as indicated by our fugacity ratio calculations), plastics may play a role in transferring chemicals to certain marine organisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70011910','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70011910"><span>Comparison of hot hydroxylamine hydrochloride and oxalic acid leaching of stream sediment and coated rock samples as anomaly enhancement techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Filipek, L.H.; Chao, T.T.; Theobald, P.K.</p> <p>1982-01-01</p> <p>A hot hydroxylamine hydrochloride (H-Hxl) extraction in 25% acetic acid is compared with the commonly used oxalic acid extraction as a method of anomaly enhancement for Cu and Zn in samples from two very different metal deposits and climatic environments. Results obtained on minus-80-mesh stream sediments from an area near the Magruder massive sulfide deposit in Lincoln County, Georgia, where the climate is humid subtropical, indicate that H-Hxl enhances the anomaly for Cu by a factor of 2 and for Zn by a factor of 1.5, compared to the oxalic method. Analyses of Fe oxide-coated rock samples from outcrops overlying the North Silver Bell porphyry copper deposit near Tucson, Arizona, where the climate is semi-arid to arid, indicate that both techniques effectively outline the zones of hydrothermal alteration. The H-Hxl extraction can also perform well in high-carbonate or high-clay environments, where other workers have suggested that oxalic acid is not very effective. Therefore, the H-Hxl method is recommended for general exploration use. ?? 1982.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70174991','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70174991"><span>Methane and sulfate dynamics in sediments from mangrove-dominated tropical coastal lagoons, Yucatan, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chuang, P. C.; Young, Megan B.; Dale, Andrew W.; Miller, Laurence G.; Herrera-Silveira, Jorge A.; Paytan, Adina</p> <p>2016-01-01</p> <p>Porewater profiles in sediment cores from mangrove-dominated coastal lagoons (Celestún and Chelem) on the Yucatán Peninsula, Mexico, reveal the widespread coexistence of dissolved methane and sulfate. This observation is interesting since dissolved methane in porewaters is typically oxidized anaerobically by sulfate. To explain the observations we used a numerical transport-reaction model that was constrained by the field observations. The model suggests that methane in the upper sediments is produced in the sulfate reduction zone at rates ranging between 0.012 and 31 mmol m−2 d−1, concurrent with sulfate reduction rates between 1.1 and 24 mmol SO42− m−2 d−1. These processes are supported by high organic matter content in the sediment and the use of non-competitive substrates by methanogenic microorganisms. Indeed sediment slurry incubation experiments show that non-competitive substrates such as trimethylamine (TMA) and methanol can be utilized for microbial methanogenesis at the study sites. The model also indicates that a significant fraction of methane is transported to the sulfate reduction zone from deeper zones within the sedimentary column by rising bubbles and gas dissolution. The shallow depths of methane production and the fast rising methane gas bubbles reduce the likelihood for oxidation, thereby allowing a large fraction of the methane formed in the sediments to escape to the overlying water column.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29414333','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29414333"><span>Occurrence of intracellular and extracellular antibiotic resistance genes in coastal areas of Bohai Bay (China) and the factors affecting them.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Yongpeng; Niu, Zhiguang; Zhang, Ying; Zhang, Kai</p> <p>2018-05-01</p> <p>Coastal areas are the transition zones between ocean and land where intracellular antibiotic resistance genes (iARGs) and extracellular antibiotic resistance genes (eARGs) could spread among marine organisms, and between humans and marine organisms. However, little attention has been paid to the combined research on iARGs and eARGs in marine environment. In this context, we collected water and sediment samples from the coastal areas of the Bohai Bay in China and performed molecular and chemical analyses. The results of quantitative real-time PCR (qPCR) showed that the relative abundance of eARGs was up to 4.3 ± 1.3 × 10 -1 gene copies/16S rRNA copies in the water samples and 2.6 ± 0.3 × 10 -3 gene copies/16S rRNA copies in the sediment samples. Also, the abundance of eARGs was significantly higher than that of iARGs. Furthermore, the average abundances of antibiotic resistance genes (ARGs, include iARGs and eARGs) were the highest in both the water and sediment samples from the estuaries. The results of liquid chromatography-mass spectrometry showed that the concentrations of antibiotics in estuaries and areas near the mariculture site were higher than that in the other sites. The class 1 integron gene (int1) and sul1 in the intracellular DNA were significantly correlated in the water samples. Moreover, significant correlation between int1 and sul2 in the extracellular DNA was also found in the sediment samples. The combination of sulfamerazine and tetracycline as well as the combination of sulfamethazine and dissolved oxygen can both explain the abundance of ARGs, implying the combined effects of multiple stresses on ARGs. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>