Sample records for zone southern alps

  1. Orogen-scale anticline revealed in the Southern Alps of New Zealand by structural thermochronology

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie; Brandon, Mark

    2017-04-01

    A dense set of cooling ages from the Southern Alps reveals an orogen-scale anticline of cooling-age isosurfaces (isochrones) and provides an interesting example of structural thermochronology, where isochrones are used as structural markers. The isochrone concept is an integral aspect of the age-elevation method, but the latter implicitly assumes that all isochrones are horizontal. Our experience in New Zeland and elsewhere is that isochrones are commonly tilted after formation. We use a more general approach that solves for orientation of the isochrone surfaces, and also the slope of the age-elevation trend, where "elevation" is measured normal to the isochrone surfaces. In New Zealand, collision and convergence between the Pacific and Australian plates have resulted in the formation and continuing growth of the Southern Alps, a prototypical orogenic wedge. In the western side, the Southern Alps is bounded by the Alpine fault, along with deeply exhumed rocks from depths up to 25 km. There are 150 apatite and 200 zircon fission-track (AFT, ZFT) ages that cover the vast region of the South Island of New Zealand from Lake Summer to Lake Wanaka. The AFT ages range from <0.5 to 140 Ma, and the ZFT ages, from <0.5 to 400 Ma. Our approach was initiated by McPhillips and Brandon (Earth and Planetary Science Letters, 2010, doi: 10.1016/j.epsl.2010.05.022). We use a least-squares method to solve for a best-fit sequence of dipping isochrone surfaces. The solution specifies the strike, dip and spacing of the parallel isochrones, the last of which indicates the velocity of the isochrones passing through the closure depth. We find that the calculation of the entire dataset failed to yield reasonable results, implying nonplanar structures at the regional scale. Using subsets of data, we observed three distinct zones of isochrones from E to W across the South Island. 1) The large area east of the Southern Alps in the central South Island contains ZFT isochrones that dip shallowly

  2. The late Barremian Halimedides horizon of the Dolomites (Southern Alps, Italy).

    PubMed

    Lukeneder, Alexander; Uchman, Alfred; Gaillard, Christian; Olivero, Davide

    2012-06-01

    A new trace fossil marker level, the Halimedides horizon, is proposed for the Lower Cretaceous pelagic to hemipelagic succession of the Puez area (Southern Alps, Italy). The horizon occurs in the middle part of the late Barremian Gerhardtia sartousiana Zone ( Gerhardtia sartousiana Subzone). It is approximately 20 cm thick and restricted to the uppermost part of the Puez Limestone Member (marly limestones; Hauterivian-Barremian; Puez Formation). It is fixed to the top 20 cm of bed P1/204. The grey-whitish limestone bed of the G. sartousiana Zone is penetrated by Aptian red marls-siltstones of the Redbed Member. The horizon is documented for the first time from the Southern Alps, including the Dolomites, and can be correlated with other Mediterranean localities. The trace fossil assemblage of this marker bed with the co-occurrence of Halimedides , Spongeliomorpha and Zoophycos sheds light on the Lower Cretaceous sedimentological history and current system of the Puez area within the Dolomites. It also highlights the palaeoenvironmental evolution of basins and plateaus and provides insights into the late Barremian interval.

  3. The late Barremian Halimedides horizon of the Dolomites (Southern Alps, Italy)

    PubMed Central

    Lukeneder, Alexander; Uchman, Alfred; Gaillard, Christian; Olivero, Davide

    2012-01-01

    A new trace fossil marker level, the Halimedides horizon, is proposed for the Lower Cretaceous pelagic to hemipelagic succession of the Puez area (Southern Alps, Italy). The horizon occurs in the middle part of the late Barremian Gerhardtia sartousiana Zone (Gerhardtia sartousiana Subzone). It is approximately 20 cm thick and restricted to the uppermost part of the Puez Limestone Member (marly limestones; Hauterivian–Barremian; Puez Formation). It is fixed to the top 20 cm of bed P1/204. The grey–whitish limestone bed of the G. sartousiana Zone is penetrated by Aptian red marls–siltstones of the Redbed Member. The horizon is documented for the first time from the Southern Alps, including the Dolomites, and can be correlated with other Mediterranean localities. The trace fossil assemblage of this marker bed with the co-occurrence of Halimedides, Spongeliomorpha and Zoophycos sheds light on the Lower Cretaceous sedimentological history and current system of the Puez area within the Dolomites. It also highlights the palaeoenvironmental evolution of basins and plateaus and provides insights into the late Barremian interval. PMID:27087717

  4. New Zealand Southern Alps

    NASA Image and Video Library

    2001-06-20

    This anaglyph from the MISR instrument aboard NASA Terra spacecraft shows the rugged Southern Alps extending some 650 kilometers along the western side of New Zealand South Island. 3D glasses are necessary to view this image.

  5. Geological setting of the southern termination of Western Alps

    NASA Astrophysics Data System (ADS)

    d'Atri, Anna; Piana, Fabrizio; Barale, Luca; Bertok, Carlo; Martire, Luca

    2016-09-01

    A revision of the stratigraphic and tectonic setting of the southern termination of the Western Alps, at the junction of the Maritime Alps with the westernmost Ligurian Alps, is proposed. In response to the Alpine kinematic evolution, a number of tectonic units formed on the deformed palaeo-European continental margin and were arranged in a NW-SE striking anastomosed pattern along the north-eastern boundary of the Argentera Massif. Because these tectonic units often cut across the palaeogeographic subdivision of the Alpine literature and show only partial affinity with their distinctive stratigraphic features, new attributions are proposed. The Subbriançonnais domain is here intended as a "deformation zone", and its tectonic units have been attributed to Dauphinois and Provençal domains; furthermore, the Eocene Alpine Foreland Basin succession has been interpreted, based on the affinity of its lithologic characters and age, as a single feature resting above all the successions of the different Mesozoic domains. The Cretaceous tectono-sedimentary evolution of the studied domains was characterized by intense tectonic controls on sedimentation inducing lateral variations of stratigraphic features and major hydrothermal phenomena. Since the early Oligocene, transpressional tectonics induced a NE-SW shortening, together with significant left-lateral movements followed by (late Oligocene-middle Miocene) right-lateral movements along E-W to SE-NW striking shear zones. This induced the juxtaposition and/or stacking of Briançonnais, Dauphinois and Ligurian tectonic units characterized by different metamorphic histories, from anchizonal to lower greenschist facies. This evolution resulted in the arrangement of the tectonostratigraphic units in a wide "transfer zone" accommodating the Oligocene WNW-ward movement of portions of the palaeo-European margin placed at the south-western termination of Western Alps and the Miocene dextral shearing along SE striking faults that

  6. Structure of a seismogenic fault zone in dolostones: the Foiana Line (Italian Southern Alps)

    NASA Astrophysics Data System (ADS)

    Di Toro, G.; Fondriest, M.; Smith, S. A.; Aretusini, S.

    2012-12-01

    Fault zones in carbonate rocks (limestones and dolostones) represent significant upper crustal seismogenic sources in several areas worldwide (e.g. L'Aquila 2009 Mw = 6.3 in central Italy). Here we describe an exhumed example of a regionally-significant fault zone cutting dolostones. The Foiana Line (FL) is a major NNE-SSW-trending sinistral transpressive fault cutting sedimentary Triassic dolostones in the Italian Southern Alps. The FL has a cumulative vertical throw of 1.5-2 km that reduces toward its southern termination. The fault zone is 50-300 m wide and is exposed for ~ 10 km along strike within several outcrops exhumed from increasing depths from the south (1 km) to the north (2.5 km). The southern portion of the FL consists of heavily fractured (shattered) dolostones, with particles of a few millimeters in size (exposed in badlands topography over an area of 6 km2), cut by a dense network of 1-20 m long mirror-like fault surfaces with dispersed attitudes. The mirror-like faults have mainly dip-slip reverse kinematics and displacements ranging between 0.04 m and 0.5 m. The northern portion of the FL consists of sub-parallel fault strands spaced 2-5 m apart, surrounded by 2-3 m thick bands of shattered dolostones. The fault strands are characterized by smooth to mirror-like sub-vertical slip surfaces with dominant strike-slip kinematics. Overall, deformation is more localized moving from South to North along the FL. Mirror-like fault surfaces similar to those found in the FL were produced in friction experiments at the deformation conditions expected during seismic slip along the FL (Fondriest et al., this meeting). Scanning Electron Microscope investigations of the natural shattered dolostones beneath the mirror-like fault surfaces show: 1) lack of significant shear strain (even at a few micrometers from the slip surface), 2) pervasive extensional fracturing down to the micrometer scale, 3) exploded clasts with radial fractures, and 4) chains of split

  7. A low-temperature ductile shear zone: The gypsum-dominated western extension of the brittle Fella-Sava Fault, Southern Alps.

    PubMed

    Bartel, Esther Maria; Neubauer, Franz; Heberer, Bianca; Genser, Johann

    2014-12-01

    Based on structural and fabric analyses at variable scales we investigate the evaporitic gypsum-dominated Comeglians-Paularo shear zone in the Southern Alps (Friuli). It represents the lateral western termination of the brittle Fella-Sava Fault. Missing dehydration products of gypsum and the lack of annealing indicate temperatures below 100 °C during development of the shear zone. Despite of such low temperatures the shear zone clearly exhibits mylonitic flow, thus evidencing laterally coeval activity of brittle and viscous deformation. The dominant structures within the gypsum rocks of the Lower Bellerophon Formation are a steeply to gently S-dipping foliation, a subhorizontal stretching lineation and pure shear-dominated porphyroclast systems. A subordinate simple shear component with dextral displacement is indicated by scattered σ-clasts. Both meso- and microscale structures are characteristic of a subsimple shear type of deformation with components of both coaxial and non-coaxial strain. Shortening in a transpressive regime was accommodated by right-lateral displacement and internal pure shear deformation within the Comeglians-Paularo shear zone. The shear zone shows evidence for a combination of two stretching faults, where stretching occurred in the rheologically weaker gypsum member and brittle behavior in enveloping lithologies.

  8. New Zealand's Southern Alps

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The rugged Southern Alps extend some 650 kilometers along the western side of New Zealand's South Island. The mountains are often obscured by clouds, which is probably why the Maoris called New Zealand 'Aotearoa', the long white cloud. The higher peaks are snow-covered all year round. Westerly winds bring clouds that drop over 500 centimeters of rain annually on luxuriant rain forest along the west coast. The drier eastern seaboard is home to the majority of the island's population.

    This pair of MISR images is from April 13, 2000 (Terra orbit 1712). The upper image is a natural color view from the instrument's vertical-viewing (nadir) camera. It is presented at a resolution of 550 meters per pixel. The lower image is a stereo anaglyph generated from the instrument's 46-degree and 26-degree forward-viewing cameras, and is presented at 275-meter per pixel resolution to show the portion of the image containing the Southern Alps in greater detail. Viewing the anaglyph in 3-D requires the use of red/blue glasses with the red filter over your left eye. To facilitate stereoscopic viewing, both images have been oriented with north at the left.

    The tallest mountain in the Southern Alps is Mt. Cook, at an elevation of 3754 meters. Its snow-covered peak is visible to the left of center in each of these MISR images. From the high peaks, glaciers have gouged long, slender mountain lakes and coastal fiords. Immediately to the southeast of Mt. Cook (to the right in these images), the glacial pale-blue water of Lake Pukaki stands out. Further to the south in adjacent valleys you can easily see Lakes Hawea and Wanaka, between which (though not visible here) is the Haast Pass Road, the most southerly of the few links between the east and west coast road systems. Further to the south is the prominent 'S' shape of Lake Wakatipu, 83 kilometers long, on the northern shore of which is Queenstown, the principal resort town of the island. The remote and spectacular Fiordland National

  9. New biostratigraphic data on an Upper Hauterivian–Upper Barremian ammonite assemblage from the Dolomites (Southern Alps, Italy)

    PubMed Central

    Lukeneder, Alexander

    2012-01-01

    A biostratigraphic subdivision, based on ammonites, is proposed for the Lower Cretaceous pelagic to hemipelagic succession of the Puez area (Southern Alps, Italy). Abundant ammonites enable recognition of recently established Mediterranean ammonite zones from the upper Hauterivian Balearites balearis Zone (Crioceratites krenkeli Subzone) to the upper Barremian Gerhardtia sartousiana Zone (Gerhardtia sartousiana Subzone). Ammonites are restricted to the lowermost part of the Puez Formation, the Puez Limestone Member (ca. 50 m; marly limestones; Hauterivian–Barremian). Numerous ammonite specimens are documented for the first time from the Southern Alps (e.g., Dolomites). Ammonite abundances are clearly linked to sea-level changes from Late Hauterivian to mid Late Barremian times. Abundance and diversity peaks occur during phases of high sea-level pulses and the corresponding maximum flooding surfaces (P. mortilleti/P. picteti and G. sartousiana zones). The ammonite composition of the Puez Formation sheds light on the Early Cretaceous palaeobiogeography of the Dolomites. It also highlights the palaeoenvironmental evolution of basins and plateaus and provides insights into the faunal composition and distribution within the investigated interval. The intermittent palaeogeographic situation of the Puez locality during the Early Cretaceous serves as a key for understanding Mediterranean ammonite distribution. PMID:27087716

  10. Morphological expression of active tectonics in the Southern Alps

    NASA Astrophysics Data System (ADS)

    Robl, Jörg; Heberer, Bianca; Neubauer, Franz; Hergarten, Stefan

    2015-04-01

    Evolving drainage pattern and corresponding metrics of the channels (e.g. normalized steepness index) are sensitive indicators for tectonic or climatic events punctuating the evolution of mountain belts and their associated foreland basins. The analysis of drainage systems and their characteristic properties represents a well-established approach to constrain the impact of tectonic and climatic drivers on mountainous landscapes in the recent past. The Southern Alps (SA) are one of the seismically most active zones in the periphery of northern Adria. Recent deformation is caused by the ongoing convergence of the Adriatic and European plate and is recorded by numerous earthquakes in the domain of the SA. Deformation in the SA is characterized by back-thrusting causing crustal thickening and should therefore result in uplift and topography formation. The vertical velocity field determined by GPS-data clearly indicates a belt of significant uplift in the south South alpine indenter between Lake Garda in the west and the Triglav in the east and strong subsidence of the foreland basin surrounding the Mediterranean Sea near Venice, although subsidence is often related to ongoing subduction of the Adriatic microplate underneath Appennines. Despite of these short term time series, timing, rates and drivers of alpine landscape evolution are not well constrained and the linkage between crustal deformation and topographic evolution of this highly active alpine segment remains unclear for the following reasons: (1) The eastern Southern Alps were heavily overprinted by the Pleistocene glaciations and tectonic signals in the alpine landscape are blurred. Only the transition zone to the southern foreland basin remained unaffected and allows an analysis of a glacially undisturbed topography. (2) The major part of this domain is covered by lithology (carbonatic rocks) which is unsuitable for low temperature geochronology and cosmogenic isotope dating so that exhumation and erosion

  11. Continent-continent collision in southern Alps studied

    NASA Astrophysics Data System (ADS)

    Henyey, T.; Stern, T.; Molnar, P.

    Developing a scientific plan for geophysical study of the Southern Alps, New Zealand, was the focus of a workshop convened from April 5 to 10 at Victoria University in Wellington, New Zealand. The study is a cooperative effort between U.S. and New Zealand scientists. The workshop was convened by F. Davey, Institute for Geological and Nuclear Sciences, Wellington, New Zealand; T. Stern, Victoria University, Wellington; and T. Henyey and D. Okaya, University of Southern California, Los Angeles. It was sponsored by the National Science Foundation Continental Dynamics Program with assistance from the New Zealand Institute of Geological and Nuclear Sciences and Victoria University.

  12. Continuous micro-earthquake catalogue of the central Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Michailos, Konstantinos; Townend, John; Savage, Martha; Chamberlain, Calum

    2017-04-01

    The Alpine Fault is one of the most prominent tectonic features in the South Island, New Zealand, and is inferred to be late in its seismic cycle of M 8 earthquakes based on paleoseismological evidence. Despite this, the Alpine Fault displays low levels of contemporary seismic activity, with little documented on-fault seismicity. This low magnitude seismicity, often below the completeness level of the GeoNet national seismic catalogue, may inform us of changes in fault character along-strike and might be used for rupture simulations and hazard planning. Thus, compiling a micro-earthquake catalogue for the Southern Alps prior to an expected major earthquake is of great interest. Areas of low seismic activity, like the central part of the Alpine Fault, require data recorded over a long duration to reveal temporal and spatial seismicity patterns and provide a better understanding for the processes controlling seismogenesis. The continuity and density of the Southern Alps Microearthquake Borehole Array (SAMBA; deployed in late 2008) allows us to study seismicity in the Southern Alps over a more extended time period than has ever been done previously. Furthermore, by using data from other temporary networks (e.g. WIZARD, ALFA08, DFDP-10) we are able to extend the region covered. To generate a spatially and temporally continuous catalogue of seismicity in New Zealand's central Southern Alps, we used automatic detection and phase-picking methods. We used an automatic phase-picking method for both P- and S- wave arrivals (kPick; Rawles and Thurber, 2015). Using almost 8 years of seismic data we calculated about 9,000 preliminary earthquake. The seismicity is clustered and scattered and a previously observed seismic gap between the Wanganui and Whataroa rivers is also identified.

  13. Southern rim of Pacific Ocean basin: southern Andes to southern Alps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalziel, I.W.D.; Garrett, S.W.; Grunow, A.M.

    1986-07-01

    Between the southern Andes of Tierra del Fuego and the southern Alps of New Zealand lies the least accessible and geologically least explored part of the Pacific Ocean basin. A joint United Kingdom-United States project was initiated in 1983 to elucidate the geologic history and structure of the Pacific margin of Antarctica from the Antarctic Peninsula to Pine Island Bay at approximately lone. 105/sup 0/W. The first season (1983-1984) of this West Antarctic Tectonics Project was spent in the Ellsworth-Whitmore crustal block, and the second (1984-1985) in the Thurston Island crustal block. The project involves structural and general field geology,more » petrology, geochemistry, paleomagnetism, and airborne geophysics (magnetics and radar ice echo sounding). A final geologic season will be spent in the Pensacola Mountains of the Transantarctic Range in 1987-1988.« less

  14. Direct measurement of 3D elastic anisotropy on rocks from the Ivrea zone (Southern Alps, NW Italy)

    NASA Astrophysics Data System (ADS)

    Pros, Z.; Lokajíček, T.; Přikryl, R.; Klíma, K.

    2003-07-01

    Lower crustal and upper mantle rocks exposed at the earth's surface present direct possibility to measure their physical properties that must be, in other cases, interpreted using indirect methods. The results of these direct measurements can be then used for the corrections of models based on the indirect data. Elastic properties are among the most important parameters studied in geophysics and employed in many fields of earth sciences. In laboratory, dynamic elastic properties are commonly tested in three mutually perpendicular directions. The spatial distribution of P- and S-wave velocities are then computed using textural data, modal composition, density and elastic constants. During such computation, it is virtually impossible to involve all microfabric parameters like different types of microcracking, micropores, mineral alteration or quality of grain boundaries. In this study, complete 3D ultrasonic transmission of spherical samples in 132 independent directions at several levels of confining pressure up to 400 MPa has been employed for study of selected mafic and ultrabasic rocks sampled in and nearby Balmuccia ultrabasic massif (Ivrea zone, Southern Alps, NW Italy). This method revealed large directional variance of maximum P-wave velocity and different symmetries (orthorhombic vs. transversal isotropic) of elastic waves 3D distribution that has not been recorded on these rocks before. Moreover, one dunite sample exhibits P-wave velocity approaching to that of olivine single crystal being interpreted as influence of CPO.

  15. Increasing rock-avalanche frequency correlates with increasing seismic moment release in New Zealand's Southern Alps

    NASA Astrophysics Data System (ADS)

    McSaveney, Mauri; Cox, Simon; Hancox, Graham

    2015-04-01

    series of moderate earthquakes west of North Island, New Zealand, which was felt widely in North Island. The New Zealand seismological record is complete enough since 1969 for earthquake magnitudes ≥4.0 to enable determination of seismic moment release. We applied an exponential distance attenuation to the accumulating moment release with an empirical decay constant of 2093 km to obtain closely matching trends between our two data sets. Such a relatively slow decay with distance may imply that ong-wavelength surface waves are affecting the slopes. On the other hand, the increasing landslide frequency sometimes leads the increasing seismic moment, suggesting that the two may be driven by a third process such as accumulating regional crustal strain in the South Pacific. An earthquake of M>8.0 occurred over 290 years ago (ca. 1717 AD) on the Alpine fault with no major release of regional crustal strain there since that time. This earthquake is expected to have triggered widespread landsliding in the central Southern Alps. Since that regional release of elastic crustal strain, the underlying rock mass of the S. Alps has been accumulating elastic strain beneath a relatively thin skin of semi-detached, brittle and closely jointed rock. The estimated mean recurrence time of ruptures on the Alpine fault is about 330 years, and so, the expected misfits between the deforming intact rock and the overlying dilated granular masses of potential landslides can be expected to be approaching average levels not present since before 1717 AD. Perhaps this is the reason why more of the semi-detached masses are completing the detachment process and falling off. We do not discount an additional link with permafrost decay, which is a mechanism with potential to lower the cohesion in granular rock masses in the permafrost zone of the higher Southern Alps. But permafrost decay does not create granular rock masses.

  16. Ductile extension of syn-magmatic lower crusts, with application to volcanic passive margins: the Ivrea Zone (Southern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Bidault, Marie; Geoffroy, Laurent; Arbaret, Laurent; Aubourg, Charles

    2017-04-01

    Deep seismic reflection profiles of present-day volcanic passive margins often show a 2-layered lower crust, from top to bottom: an apparently ductile 12 km-thick middle-lower layer (LC1) of strong folded reflectors and a 4 km-thick supra-Moho layer (LC2) of horizontal and parallel reflectors. Those layers appear to be structurally disconnected and to develop at the early stages of margins evolution. A magmatic origin has been suggested by several studies to explain those strong reflectors, favoring mafic sills intrusion hypothesis. Overlying mafic and acidic extrusives (Seaward Dipping Reflectors sequences) are bounded by continentward-dipping detachment faults rooting in, and co-structurated with, the ductile part of the lower crust (LC1). Consequently the syn-rift to post-rift evolution of volcanic passive margins (and passive margins in general) largely depends on the nature and the properties of the lower crust, yet poorly understood. We propose to investigate the properties and rheology of a magma-injected extensional lower crust with a field analogue, the Ivrea Zone (Southern Alps, Italy). The Ivrea Zone displays a complete back-thrusted section of a Variscan continental lower crust that first underwent gravitational collapse, and then lithospheric extension. This Late Paleozoic extension was apparently associated with the continuous intrusion of a large volume of mafic to acid magma. Both the magma timing and volume, and the structure of the Ivrea lower crust suggest that this section represents an adequate analogue of a syn-magmatic in-extension mafic rift zone which aborted at the end of the Permian. Notably, we may recognize the 2 layers LC1 and LC2. From a number of tectonic observations, we reconstitute the whole tectonic history of the area, focusing on the strain field evolution with time, in connection with mafic magma injection. We compare those results with available data from extensional mafic lower crusts at rifts and margins.

  17. Plate-boundary kinematics in the Alps: Motion in the Arosa suture zone

    NASA Astrophysics Data System (ADS)

    Ring, Uwe; Ratschbacher, Lothar; Frisch, Wolfgang

    1988-08-01

    The Arosa zone forms a melange complex along the Penninic/Austroalpine boundary and belongs to the main Alpine suture zone. Accretion and plate collision occurred during Cretaceous and lower Tertiary time. A mixture of ophiolitic rocks and pelagic sediments is imbricated with flysch and blocks of Austroalpine (continental) derivation. We present a description of deformation structures, an analysis of strain, and a kinematic interpretation based on structural work. Deformation histories of imbricates show a translation path that was west-directed between ca. 110 and 50 Ma and north-directed thereafter. The kinematics of the Arosa zone agrees with the recently deduced displacement history of the Austroalpine units in the Eastern Alps during the Cretaceous orogeny. This calls for a predominantly top-to-the-west imbrication of Austroalpine and Penninic units and is in contradiction to what is inferred in most models of the Eastern Alps. A direct relation between the deformation along the Austroalpine margin and relative plate motion existed.

  18. On the age of sinistral shearing along the southern border of the Tauern Window (Eastern Alps).

    NASA Astrophysics Data System (ADS)

    Kitzig, C.; Schneider, S.; Hammerschmidt, K.

    2009-04-01

    undeformed tonalites yield an age of 26.4±0.1 Ma and of 11.1±0.1 Ma, the strongly foliated tonalitic gneiss yields an age of 19.8±0.1 Ma, which is close to the age of the outcrop-scale shear zone of 18.0±0.1 Ma. It is difficult to interpret the 11 Ma age of one undeformed sample, because it is significantly younger than the ages obtained from zircon fission tracks from neighbouring areas. The older age of 26 Ma for the undeformed tonalite sample is interpreted as cooling age below the closure temperature of biotite, based on the following arguments: 1) This age is consistent with the inferred regional thermochronological distribution of cooling (Luth and Willingshofer, 2008); 2) The rock fabric is undeformed; 3) The age is older than the two deformed samples collected within a distance of a few hundreds of meters. The mineral assemblage of the deformed samples (green biotite and albite crystallisation) differs from the one of the undeformed rocks (red-brown biotite and K-feldspar clasts). Therefore, the albite-biotite isochrons of the deformed samples are inferred to date the deformation event. This age of deformation is consistent with the age determination of Glodny et al. (2008) from deformed marbles of the Schieferhülle, and with previous dating of sinistral shearing along the northern border of the western Tauern Window (Schneider et al., 2007), which yielded an average (n=5) age of 21.9±1.6 Ma. Therefore, sinistral deformation appears to have affected contemporaneously both the northern and the southern margins of the Zentral Gneiss in the western Tauern Window. References: Barnes, J. D., Selverstone, J. & Sharp, Z.D., 2004. Interactions between serpentinite devolatilization, metasomatism and strike-slip strain localization during deep-crustal shearing in the Eastern Alps. Journal of Metamorphic Geology, 22, 283-300. Glodny, J., Ring, U. Kühn. A., 2008. Coeval high-pressure metamorphism, thrusting, strike slip, and extensional shearing in the Tauern Window

  19. A Spatially and Temporally Continuous LFE Catalogue for the Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Chamberlain, C. J.; Townend, J.; Baratin, L. M.

    2015-12-01

    Using a brightness-based beamforming approach coupled with a matched-filter correlation method, we have developed a 6.5 year record of low-frequency earthquakes (LFEs) occuring on and near the deep extent of New Zealand's Alpine Fault. Our brightness template detection method, based on that of Frank et al. (2014), scans a pre-determined grid of possible seismic sources to automatically find LFE templates based on the stack of bandpassed squared seismic data. Previous work (Wech et al., 2012, Chamberlain et al., 2014) has shown that the depths of standard seismicity are anti-correlated with those of tremor and LFEs in the central Southern Alps: hence, by careful grid selection, shallow seismic sources can effectively be discriminated against. This beamforming approach produces many (>900) possible events. Initial beamforming detections are grouped by moveout and stacked to produce a subset of higher-quality events for use as templates in a cross-correlation detector. Events detected by cross-correlation are stacked to increase their signal-to-noise charectaristics before being located using a 3D velocity model. This method produces a spatially and temporally continuous catalogue of LFEs throughout the 6.5 year study period. The catalogue highlights quasi-continuous slow deformation occuring beneath the seismogenic zone near the Alpine Fault, punctuated by periods of increased LFE generation associated with tremor, and following large regional earthquakes. To date we have found no evidence of LFE generation north-east of Mt. Cook, the highest point in the Southern Alps, despite systematic searching throughout the region. We suggest that the along-strike cessation of tremor is due to changes in the fault's dip and the hypothesised presence of partially subducted passive margin material. This remnant passive margin would lie benath the tremor-generating region and has been linked to along-strike changes in subcrustal earthquake distributions (Boese et al., 2013).

  20. Semi-automatic mapping of fault rocks on a Digital Outcrop Model, Gole Larghe Fault Zone (Southern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Vho, Alice; Bistacchi, Andrea

    2015-04-01

    A quantitative analysis of fault-rock distribution is of paramount importance for studies of fault zone architecture, fault and earthquake mechanics, and fluid circulation along faults at depth. Here we present a semi-automatic workflow for fault-rock mapping on a Digital Outcrop Model (DOM). This workflow has been developed on a real case of study: the strike-slip Gole Larghe Fault Zone (GLFZ). It consists of a fault zone exhumed from ca. 10 km depth, hosted in granitoid rocks of Adamello batholith (Italian Southern Alps). Individual seismogenic slip surfaces generally show green cataclasites (cemented by the precipitation of epidote and K-feldspar from hydrothermal fluids) and more or less well preserved pseudotachylytes (black when well preserved, greenish to white when altered). First of all, a digital model for the outcrop is reconstructed with photogrammetric techniques, using a large number of high resolution digital photographs, processed with VisualSFM software. By using high resolution photographs the DOM can have a much higher resolution than with LIDAR surveys, up to 0.2 mm/pixel. Then, image processing is performed to map the fault-rock distribution with the ImageJ-Fiji package. Green cataclasites and epidote/K-feldspar veins can be quite easily separated from the host rock (tonalite) using spectral analysis. Particularly, band ratio and principal component analysis have been tested successfully. The mapping of black pseudotachylyte veins is more tricky because the differences between the pseudotachylyte and biotite spectral signature are not appreciable. For this reason we have tested different morphological processing tools aimed at identifying (and subtracting) the tiny biotite grains. We propose a solution based on binary images involving a combination of size and circularity thresholds. Comparing the results with manually segmented images, we noticed that major problems occur only when pseudotachylyte veins are very thin and discontinuous. After

  1. Structurally controlled 'teleconnection' of large-scale mass wasting (Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Ostermann, Marc; Sanders, Diethard

    2015-04-01

    In the Brenner Pass area (Eastern Alps) , closely ahead of the most northward outlier ('nose') of the Southern-Alpine continental indenter, abundant deep-seated gravitational slope deformations and a cluster of five post-glacial rockslides are present. The indenter of roughly triangular shape formed during Neogene collision of the Southern-Alpine basement with the Eastern-Alpine nappe stack. Compression by the indenter activated a N-S striking, roughly W-E extensional fault northward of the nose of the indenter (Brenner-normal fault; BNF), and lengthened the Eastern-Alpine edifice along a set of major strike-slip faults. These fault zones display high seismicity, and are the preferred locus of catastrophic rapid slope failures (rockslides, rock avalanches) and deep-seated gravitational slope deformations. The seismotectonic stress field, earthquake activity, and structural data all indicate that the South-Alpine indenter still - or again - exerts compression; in consequence, the northward adjacent Eastern Alps are subject mainly to extension and strike-slip. For the rockslides in the Brenner Pass area, and for the deep-seated gravitational slope deformations, the fault zones combined with high seismic activity predispose massive slope failures. Structural data and earthquakes mainly record ~W-E extension within an Eastern Alpine basement block (Oetztal-Stubai basement complex) in the hangingwall of the BNF. In the Northern Calcareous Alps NW of the Oetztal-Stubai basement complex, dextral faults provide defacement scars for large rockfalls and rockslides. Towards the West, these dextral faults merge into a NNW-SSE striking sinistral fault zone that, in turn, displays high seismic activity and is the locus of another rockslide cluster (Fern Pass cluster; Prager et al., 2008). By its kinematics dictated by the South-Alpine indenter, the relatively rigid Oetztal-Stubai basement block relays faulting and associated mass-wasting over a N-S distance of more than 60

  2. Carbon dioxide generation and drawdown during active orogenesis of siliciclastic rocks in the Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Menzies, Catriona D.; Wright, Sarah L.; Craw, Dave; James, Rachael H.; Alt, Jeffrey C.; Cox, Simon C.; Pitcairn, Iain K.; Teagle, Damon A. H.

    2018-01-01

    Collisional mountain building influences the global carbon cycle through release of CO2 liberated by metamorphic reactions and promoting mechanical erosion that in turn increases chemical weathering and drawdown of atmospheric CO2. The Southern Alps is a carbonate-poor, siliciclastic mountain belt associated with the active Australian Pacific plate boundary. On-going, rapid tectonic uplift, metamorphism and hydrothermal activity are mobilising carbon. Here we use carbon isotope measurements of hot spring fluids and gases, metamorphic host rocks, and carbonate veins to establish a metamorphic carbon budget. We identify three major sources for CO2 within the Southern Alps: (1) the oxidation of graphite; (2) consumption of calcite by metamorphic reactions at the greenschist-amphibolite facies boundary, and (3) the dissolution of groundmass and vein-hosted calcite. There is only a minor component of mantle CO2 arising on the Alpine Fault. Hot springs have molar HCO3-/Ca2+ ∼9, which is substantially higher than produced by the dissolution of calcite indicating that deeper metamorphic processes must dominate. The total CO2 flux to the near surface environment in the high uplift region of the Southern Alps is estimated to be ∼6.4 × 108 mol/yr. Approximately 87% of this CO2 is sourced from coupled graphite oxidation (25%) and disseminated calcite decarbonation (62%) reactions during prograde metamorphism. Dissolution of calcite and mantle-derived CO2 contribute ∼10% and ∼3% respectively. In carbonate-rich orogens CO2 production is dominated by metamorphic decarbonation of limestones. The CO2 flux to the atmosphere from degassing of hot springs in the Southern Alps is 1.9 to 3.2 × 108 mol/yr, which is 30-50% of the flux to the near surface environment. By contrast, the drawdown of CO2 through surficial chemical weathering ranges between 2.7 and 20 × 109 mol/yr, at least an order of magnitude greater than the CO2 flux to the atmosphere from this orogenic belt

  3. Siderite deposits in northern Italy: Early Permian to Early Triassic hydrothermalism in the Southern Alps

    NASA Astrophysics Data System (ADS)

    Martin, Silvana; Toffolo, Luca; Moroni, Marilena; Montorfano, Carlo; Secco, Luciano; Agnini, Claudia; Nimis, Paolo; Tumiati, Simone

    2017-07-01

    We present a minero-petrographic, geochemical and geochronological study of siderite orebodies from different localities of the Southern Alps (northern Italy). Siderite occurs as veins cutting the Variscan basement and the overlying Lower Permian volcano-sedimentary cover (Collio Fm.), and as both veins and conformable stratabound orebodies in the Upper Permian (Verrucano Lombardo and Bellerophon Fms.) and Lower Triassic (Servino and Werfen Fms.) sedimentary sequences of the Lombardian and the Venetian Alps. All types of deposits show similar major- and rare-earth (REE)-element patterns, suggesting a common iron-mineralizing event. The compositions of coexisting siderite, Fe-rich dolomite and calcite suggest formation from hydrothermal fluids at relatively high temperature conditions (≥ 250 °C). Geochemical modelling, supported by REE analyses and by literature and new δ13C and δ18O isotopic data, suggests that fluids responsible for the formation of siderite in the Variscan basement and in the overlying Lower Permian cover were derived from dominant fresh water, which leached Fe and C from volcanic rocks (mainly rhyolites/rhyodacites) and organic carbon-bearing continental sediments. On the basis of U-Th-Pb microchemical dating of uraninite associated with siderite in the Val Vedello and Novazza deposits (Lombardian Alps), the onset of hydrothermalism is constrained to 275 ± 13 Ma (Early-Mid Permian), i.e., it was virtually contemporaneous to the plutonism and the volcanic-sedimentary cycle reported in the same area (Orobic Basin). The youngest iron-mineralizing event is represented by siderite veins and conformable orebodies hosted in Lower Triassic shallow-marine carbonatic successions. In this case, the siderite-forming fluids contained a seawater component, interacted with the underlying Permian successions and eventually replaced the marine carbonates at temperatures of ≥ 250 °C. The absence of siderite in younger rocks suggests an Early Triassic

  4. Postcollisional cooling history of the Eastern and Southern Alps and its linkage to Adria indentation

    NASA Astrophysics Data System (ADS)

    Heberer, Bianca; Reverman, Rebecca Lee; Fellin, Maria Giuditta; Neubauer, Franz; Dunkl, István; Zattin, Massimiliano; Seward, Diane; Genser, Johann; Brack, Peter

    2017-07-01

    Indentation of rigid blocks into rheologically weak orogens is generally associated with spatiotemporally variable vertical and lateral block extrusion. The European Eastern and Southern Alps are a prime example of microplate indentation, where most of the deformation was accommodated north of the crustal indenter within the Tauern Window. However, outside of this window only the broad late-stage exhumation pattern of the indented units as well as of the indenter itself is known. In this study we refine the exhumational pattern with new (U-Th-Sm)/He and fission-track thermochronology data on apatite from the Karawanken Mountains adjacent to the eastern Periadriatic fault and from the central-eastern Southern Alps. Apatite (U-Th-Sm)/He ages from the Karawanken Mountains range between 12 and 5 Ma and indicate an episode of fault-related exhumation leading to the formation of a positive flower structure and an associated peripheral foreland basin. In the Southern Alps, apatite (U-Th-Sm)/He and fission-track data combined with previous data also indicate a pulse of mainly Late Miocene exhumation, which was maximized along thrust systems, with highly differential amounts of displacement along individual structures. Our data contribute to mounting evidence for widespread Late Miocene tectonic activity, which followed a phase of major exhumation during strain localization in the Tauern Window. We attribute this exhumational phase and more distributed deformation during Adriatic indentation to a major change in boundary conditions operating on the orogen, likely due to a shift from a decoupled to a coupled system, possibly enhanced by a shift in convergence direction.

  5. Three-dimensional geometry and tectonostratigraphy of the Pennine zone, Central Alps, Switzerland and Northern Italy

    NASA Astrophysics Data System (ADS)

    Maxelon, Michael; Mancktelow, Neil S.

    2005-08-01

    Continental collision during Alpine orogenesis entailed a polyphase deformation history (D 1-D 5) in the Pennine zone of the Central Alps. The regional tectonostratigraphy was basically developed during D 1 and D 2, characterised by isoclinal, typically north-closing recumbent anticlines, separated by pinched-in synclines, on the scale of tens of kilometres. Later deformation phases (D 3 and D 4) warped the stack into wavy to open folds. Exhumation of this zone resulted locally in later vertical shortening and folding of already steep fabrics (D 5). Three-dimensional models of the nappe pile were constructed, based on geostatistical assessment of the regional foliation field and considering the abundant structural field data. These models indicate the existence of five principal tectonostratigraphic levels developed during D 1 and thus equivalent to nappe units s. str.: the Gotthard, the Leventina-Antigorio, the Maggia-Simano (and probably the Monte Leone as well as the Composite Lepontine Series), Lebendun-Soja and Adula-Cima Lunga levels. All these tectonic units formed part of the passive continental margin of Europe prior to the onset of the Alpine orogenesis. Individual isoclinal post-nappe folds reflect relative displacements on the order of 40 km or more. The most prominent D 2 post-nappe structure is the Wandfluhhorn Fold, structurally equivalent to the northern closure of the Leventina-Lucomagno Antiform. The Lebendun and Monte Leone folds are of similar magnitudes and also affect the whole nappe pile, whereas the smaller Mogno and Molare synforms only refold the Maggia-Simano nappe internally. Principal D 3 and D 4 structures are the tight Mergoscia Synform directly north of the Insubric Fault between Bellinzona and Locarno (Southern Steep Belt), the Maggia Steep Zone, forming the steep western limb of the Campo Tencia Synform and subdividing the Lepontine dome into the Simplon and Ticino subdomes, the Chiéra Synform steepening the dominant foliation in

  6. Semi-automatic mapping of fault rocks on a Digital Outcrop Model, Gole Larghe Fault Zone (Southern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Mittempergher, Silvia; Vho, Alice; Bistacchi, Andrea

    2016-04-01

    A quantitative analysis of fault-rock distribution in outcrops of exhumed fault zones is of fundamental importance for studies of fault zone architecture, fault and earthquake mechanics, and fluid circulation. We present a semi-automatic workflow for fault-rock mapping on a Digital Outcrop Model (DOM), developed on the Gole Larghe Fault Zone (GLFZ), a well exposed strike-slip fault in the Adamello batholith (Italian Southern Alps). The GLFZ has been exhumed from ca. 8-10 km depth, and consists of hundreds of individual seismogenic slip surfaces lined by green cataclasites (crushed wall rocks cemented by the hydrothermal epidote and K-feldspar) and black pseudotachylytes (solidified frictional melts, considered as a marker for seismic slip). A digital model of selected outcrop exposures was reconstructed with photogrammetric techniques, using a large number of high resolution digital photographs processed with VisualSFM software. The resulting DOM has a resolution up to 0.2 mm/pixel. Most of the outcrop was imaged using images each one covering a 1 x 1 m2 area, while selected structural features, such as sidewall ripouts or stepovers, were covered with higher-resolution images covering 30 x 40 cm2 areas.Image processing algorithms were preliminarily tested using the ImageJ-Fiji package, then a workflow in Matlab was developed to process a large collection of images sequentially. Particularly in detailed 30 x 40 cm images, cataclasites and hydrothermal veins were successfully identified using spectral analysis in RGB and HSV color spaces. This allows mapping the network of cataclasites and veins which provided the pathway for hydrothermal fluid circulation, and also the volume of mineralization, since we are able to measure the thickness of cataclasites and veins on the outcrop surface. The spectral signature of pseudotachylyte veins is indistinguishable from that of biotite grains in the wall rock (tonalite), so we tested morphological analysis tools to discriminate

  7. The Origin of The Piz Terri-Lunschania zone (Central Alps, Switzerland)

    NASA Astrophysics Data System (ADS)

    Galster, Federico; Stockli, Daniel

    2017-04-01

    The Piz Terri-Lunschania zone (PTLZ) represents a band of metasedimentary rocks embedded in a crucial knot at the NE border of the Lepontine dome, at the intersection of the Gotthard, Lucomagno, Simano, Adula and Grava nappes. Its origin and its position in the tectonostratigraphy of the Central Alps are still not completely understood. A better understanding of this sedimentary zone and its tectonic position could shed lights on the Helvetic-Penninic connection and facilitate the disentanglement of the Lepontine dome tectonics. In this study we combine structural and stratigraphic observations with detrital zircon (DZ) and detrital rutile (DR) U-Pb geochronology as well as mineral trace element data from Permian, Triassic and Jurassic sandstones. We compare these data with those from adjacent tectonic units and coeval strata in other portions of the Alpine chain. Maximal depositional ages, abrupt changes in provenances and stratigraphic correlations based on new DZ and DR U-Pb and trace element data allow for a better understanding of the sedimentary evolution of the Terri basin and its palaeogeographic position along the northern margin of the Alpine Tethys. In particular the DZ U-Pb signatures, with its abundant 260-280 Ma zircons and the scarcity of 290-350 Ma zircons, corroborates an Ultra-Adula origin of the PTLZ as proposed by Galster et al (2010; 2012) based on stratigraphic arguments and reinforces the notion of a Briançonnais influence on the stratigraphic record of this complex zone, a fact that has important tectonic and Palaeogeographic implications. Galster F, Cavargna-Sani M, Epard J-L, Masson H (2012) New stratigraphic data from the Lower Penninic between the Adula nappe and the Gotthard massif and consequences for the tectonics and the paleogeography of the Central Alps. Tectonophysics 579:37-55. doi: 10.1016/j.tecto.2012.05.029 Galster F, Epard J-L, Masson H (2010) The Soja and Luzzone-Terri nappes: Discovery of a Briançonnais element below the

  8. Low-Frequency Earthquakes Associated with the Late-Interseismic Central Alpine Fault, Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Baratin, L. M.; Chamberlain, C. J.; Townend, J.; Savage, M. K.

    2016-12-01

    Characterising the seismicity associated with slow deformation in the vicinity of the Alpine Fault may provide constraints on the state of stress of this major transpressive margin prior to a large (≥M8) earthquake. Here, we use recently detected tremor and low-frequency earthquakes (LFEs) to examine how slow tectonic deformation is loading the Alpine Fault toward an anticipated large rupture. We initially work with a continous seismic dataset collected between 2009 and 2012 from an array of short-period seismometers, the Southern Alps Microearthquake Borehole Array. Fourteen primary LFE templates are used in an iterative matched-filter and stacking routine. This method allows the detection of similar signals and establishes LFE families with common locations. We thus generate a 36 month catalogue of 10718 LFEs. The detections are then combined for each LFE family using phase-weighted stacking to yield a signal with the highest possible signal to noise ratio. We found phase-weighted stacking to be successful in increasing the number of LFE detections by roughly 20%. Phase-weighted stacking also provides cleaner phase arrivals of apparently impulsive nature allowing more precise phase and polarity picks. We then compute improved non-linear earthquake locations using a 3D velocity model. We find LFEs to occur below the seismogenic zone at depths of 18-34 km, locating on or near the proposed deep extent of the Alpine Fault. Our next step is to estimate seismic source parameters by implementing a moment tensor inversion technique. Our focus is currently on generating a more extensive catalogue (spanning the years 2009 to 2016) using synthetic waveforms as primary templates, with which to detect LFEs. Initial testing shows that this technique paired up with phase-weighted stacking increases the number of LFE families and overall detected events roughly sevenfold. This catalogue should provide new insight into the geometry of the Alpine Fault and the prevailing stress

  9. Cretaceous to Tertiary paleogeographic reconstructions of the Alps-Pyrenees linking zone

    NASA Astrophysics Data System (ADS)

    Frasca, Gianluca; Dielforder, Armin; Ford, Mary; Vergés, Jaume

    2017-04-01

    The northwestern Mediterranean subduction systems underwent an important phase of reorganization between Late Cretaceous and Eocene. The mode and timing of this reorganization are still under debate. Great uncertainties mainly derive from the poorly preserved record of the early phases of orogenic evolution in both the Alps and Pyrenees and the distruction of the orogenic system between the Pyrenees and Alps by the Oligo-Miocene opening of the Gulf of Lion due to backarc rifting. Vestiges are nevertheless preserved in the Pyreneo-Provençal fold-and-thrust belt and associated basins in southern France and Corsica-Sardinia. In this work we first review published plate kinematic models for Iberia, Apulia and Europe from 83 Ma, focusing in particular on the restoration of the Corso-Sardinia block using the free software GPlates. Second, we characterize the Upper Cretaceous to Eocene depositional systems at the junction between the Alps, Pyrenees and Apennines, reviewing previous paleogeographic restorations for the Western Alpine and Eastern Pyrenean foreland basins. Last, we compare the kinematic models with reconstructed basin dynamics. We critically assess the implications of newly proposed paleogeographic reconstructions (at 83, 65, 50, 37 and 30 Ma) for the validity of various plate kinematic models. The information derived from the sedimentary basins help to define the mode and timing of the subduction reorganization that occurred between 83 and 30 Ma in the northwestern Mediterranean. This study is part of the Orogen research program funded by Total, the BRGM (Bureau de Recherches Géologiques et Minières), the CNRS (Centre National de la Recherche Scientifique).

  10. Electrical properties of schist and mylonite from the South Island, New Zealand: Exploring the source of the Southern Alps Anomalous Conductor

    NASA Astrophysics Data System (ADS)

    Kluge, Katherine; Toy, Virginia; Ohneiser, Chrisitan; Lockner, David

    2017-04-01

    The Southern Alps Electrical Conductor (SAC), identified from magnetotelluric surveys of the South Island Geophysical Transect (SIGHT) in the South Island, New Zealand, has high electrical conductivity relative to surrounding lithology (0.1 to 1 S/m between 5 and 25 km depth). This phenomenon is spatially coincident with shear zones of the Alpine Fault transform boundary and a region of anomalously low seismic velocity. It has been suggested these geophysical anomalies indicate dynamically linked fluids or graphite networks at depth, but this is unconfirmed. The convergent component of deformation within the Southern Alps orogen exhumes the lower crust. Because of this, we have been able to examine the relationship between electric properties, porosities, and mineral arrangement of hanging wall rock samples across metamorphic and strain gradients approaching the Alpine Fault. These allow us to constrain the roc properties which yield the source of the Southern Alps Electrical Conductor. We measured the electrical properties of 7 hand samples at the USGS Rock Physics Lab in Menlo Park, California. Complex resistivity of samples under confining pressure was measured up to 200 MPa, with a saturating brine of 0.1 M KCl. Laboratory measurements were then converted to complex conductivity. Mylonite conductivities were also averaged at each confining pressure and extrapolated to Alpine Fault conditions at depth (using fluid conductivity, geothermal gradient and effective confining pressure) to find projected in situ values between 0 and 9.4 km depth. Porosity ranges from 1.2 to 5.4% for hanging wall metamorphic schists and 1.0 to 1.9% for Alpine Fault Zone mylonites. Schist porosity substantially decreases with increasing proximity to the Alpine Fault, but mylonite porosity exhibits no systematic trend. Conductivity at 5 MPa effective confining pressure and 20 Hz ranges from 9.70x10-5 to 2.23x10-3 S/m for schists and 1.48x10-3 to 4.33x10-3 S/m for mylonites. Schist

  11. Palaeomagnetic time and space constraints of the Early Cretaceous Rhenodanubian Flysch zone (Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Dallanave, Edoardo; Kirscher, Uwe; Hauck, Jürgen; Hesse, Reinhard; Bachtadse, Valerian; Wortmann, Ulrich Georg

    2018-06-01

    The Rhenodanubian Flysch zone (RDF) is a Lower Cretaceous-lower Palaeocene turbidite succession extending for ˜500 km from the Danube at Vienna to the Rhine Valley (Eastern Alps). It consists of calcareous and siliciclastic turbidite systems deposited in a trench abyssal plain. The age of deposition has been estimated through micropalaeontologic dating. However, palaeomagnetic studies constraining the age and the palaeolatitude of deposition of the RDF are still missing. Here, we present palaeomagnetic data from the Early Cretaceous Tristel and Rehbreingraben Formations of the RDF from two localities in the Bavarian Alps (Rehbrein Creek and Lainbach Valley, southern Germany), and from the stratigraphic equivalent of the Falknis Nappe (Liechtenstein). The quality of the palaeomagnetic signal has been assessed by either fold test (FT) or reversal test (RT). Sediments from the Falknis Nappe are characterized by a pervasive syntectonic magnetic overprint as tested by negative FT, and are thus excluded from the study. The sediments of the Rehbreingraben Formation at Rehbrein Creek, with positive RT, straddle magnetic polarity Chron M0r and the younger M΄-1r΄ reverse event, with an age of ˜127-123 Ma (late Barremian-early Aptian). At Lainbach Valley, no polarity reversals have been observed, but a positive FT gives confidence on the reliability of the data. The primary palaeomagnetic directions, after correction for inclination shallowing, allow to precisely constrain the depositional palaeolatitude of the Tristel and Rehbreingraben Formations around ˜28°N. In a palaeogeographic reconstruction of the Alpine Tethys at the Barremian/Aptian boundary, the RDF is located on the western margin of the Briançonnais terrain, which was separated from the European continent by the narrow Valais Ocean.

  12. Developing a visual moraine classification scheme to support investigations into the Holocene glacier chronology of the Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Kaufung, Eva; Winkler, Stefan

    2014-05-01

    The Southern Alps of New Zealand have provided one of only a few suitable study sites for investigating Holocene glacier chronologies in the mid-latitudinal Southern Hemisphere. Although a considerable number of studies have been conducted during the past few decades, these generally focus on a very limited number of glacier forelands. Additionally, those glaciers studied have often been selected because of their accessibility rather than their representativeness for the whole region. A common drawback of many regional studies is the lack of attention to glacial geomorphology and the mode of moraine formation with the dating of such landforms in chronological context. With the Southern Alps characterized by very dynamic geomorphological process-systems and a high seismic activity, this seems unfortunate as it causes a relatively high potential "geomorphological uncertainty" with any published glacier chronology and its subsequent palaeoclimatological interpretation. Future investigations into the Holocene glacier chronology in the Southern Alps need to address those existing shortcomings and, consequently, should achieve a representative spatial distribution of study sites in order to overcome the current strong data bias towards few, albeit relatively well-studied glacier forelands. The specific regional geomorphological environment of the Southern Alps requires, furthermore, a thorough assessment of any moraine selected for the subsequent dating in consideration of its "reliability" if it is considered as evidence of specific former glacier variations. With more than 3000 potential glacier forelands in the entire mountain range, careful selection of future targets for successful chronological field work is essential. We present the preliminary results of an ongoing, time-efficient study to apply different remote sensing sources (aerial photography, Google Earth, satellite images) to evaluate the potential of certain glacier forelands for detailed ground

  13. 46 CFR 42.30-10 - Southern Winter Seasonal Zone.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Island; thence the rhumb line to Black Rock Point on Stewart Island; thence the rhumb line to the point... BY SEA Zones, Areas, and Seasonal Periods § 42.30-10 Southern Winter Seasonal Zone. (a) The northern boundary of the Southern Winter Seasonal Zone is the rhumb line from the east coast of the American...

  14. Thin visous sheet modelling of orogen scale deformation. The Eastern Alps in plan view

    NASA Astrophysics Data System (ADS)

    Robl, J.; Stuewe, K.

    2003-04-01

    We present first results of a new numerical model to describe the dynamic evolution of the eastern Alps in plan view on the orogen scale. We investigate the influence of boundary conditions, gravitational potential energy, rheology contrast of major tectonic units and internal structures on the deformation field. We aim at estimating the Argan number of the Eastern Alps and to calculate slip rates along big lineaments that represent the northern and southern border of the Austro-Alpine extrusion corridor. A further aim is to predict the position and the activity of major faults where they disappear below quartenary sediments. All calculation are perfomed with the mechanical finite element code BASIL that allows computation on a thin visous sheet. The starting conditons are controlled by the varying crustal thickness of the region and by the rheolgy of the Adriatic indenter in the south, the Bohemian massif in the north and the Eastern Alps inbetween. We assume that the Eastern Alps are fixed to the north and the west while the southern boundary moves northward at a rate of 6-8 mm /y. The geodynamic setting in the east changed over the last 5 my. While a roll back subduction zone beneath the Carparthian belt accompanied by extension, crustal thinning and basin formation controlled the deformation of the Eastern Alps until the Miocene. Later on subduction stopped and the overall stress field changed from extension to compression resulting in uplift of many basins and the lack sediments younger than Pliocene. This well known variation of plate tectonic scenarios over the last 5 my allows us to place tight constraints for the boundary conditions of our model. Although our work is only now in progress, we can report some promising results: some of the kinematics and mechaniscs predicted by our modelling are consistent with field observations of the structural geologists and geodeticists.

  15. A new species of Isoperla (Insecta, Plecoptera) from the Karawanken, with considerations on the Southern Limestone Alps as centers of endemism.

    PubMed

    Graf, Wolfram; Konar, Martin; Murányi, Dávid; Orci, Kirill Márk; Vitecek, Simon

    2014-01-01

    A new species of the genus Isoperla (Plecoptera, Perlodidae), belonging to the oxylepis species-group is described, and the male mating call is characterized. Its range falls within a small region of the Southern Limestone Alps which is well known to be one endemism-centre of aquatic insects.

  16. Topographic evolution of a continental indenter: The eastern Southern Alps

    NASA Astrophysics Data System (ADS)

    Robl, Jörg; Heberer, Bianca; Prasicek, Günther; Neubauer, Franz; Hergarten, Stefan

    2017-04-01

    The topographic evolution of the eastern Southern Alps (ESA) is controlled by the Late Oligocene - Early Miocene indentation of the Adriatic microplate into an overthickened orogenic wedge emplaced on top of the European plate. Rivers follow topographic gradients that evolve during continental collision and in turn incise into bedrock counteracting the formation of topography. In principle, erosional surface processes tend to establish a topographic steady state so that an interpretation of topographic metrics in terms of the latest tectonic history should be straightforward. However, a series of complications impede deciphering the topographic record of the ESA. The Pleistocene glaciations locally excavated alpine valleys and perturbed fluvial drainages. The Late Miocene desiccation of the Mediterranean Sea and the uplift of the northern Molasse Basin led to significant base level changes in the far field of the ESA and the Eastern Alps (EA), respectively. Among this multitude of mechanisms, the processes that dominate the current topographic evolution of the ESA and the ESA-EA drainage divide have not been identified and a number of questions regarding the interaction of crustal deformation, erosion and climate in shaping the present-day topography remain. We demonstrate the expected topographic effects of each mechanism in a 1-dimensional model and compare them with observed channel metrics. Modern uplift rates are largely consistent with long-term exhumation in the ESA and with variations in the normalized steepness index (ksn) indicating a stable uplift and erosion pattern since Miocene times. We find that ksn increases with uplift rate and declines from the indenter tip in the northwest to the foreland basin in the southeast. The number and magnitude of knickpoints and the distortion in longitudinal channel profiles similarly decrease towards the east. Most knickpoints probably evolved during Pleistocene glaciation cycles, but may represent the incrementally

  17. A new species of Isoperla (Insecta, Plecoptera) from the Karawanken, with considerations on the Southern Limestone Alps as centers of endemism

    PubMed Central

    Graf, Wolfram; Konar, Martin; Murányi, Dávid; Orci, Kirill Márk; Vitecek, Simon

    2014-01-01

    Abstract A new species of the genus Isoperla (Plecoptera, Perlodidae), belonging to the oxylepis species-group is described, and the male mating call is characterized. Its range falls within a small region of the Southern Limestone Alps which is well known to be one endemism-centre of aquatic insects. PMID:25408608

  18. Holocene glacier chronology of the Southern Alps/New Zealand - a critical re-assessment based on geomorphological and glaciological principles

    NASA Astrophysics Data System (ADS)

    Winkler, Stefan

    2017-04-01

    The Southern Alps of New Zealand is one of few suitable study sites for the investigation of Holocene glacier chronologies in the mid-latitudinal Southern Hemisphere. As a result, several studies have been carried out during the past decades applying diverse approaches and using different numerical dating methods (Radiocarbon dating, terrestrial cosmogenic nuclide dating - TCND) or combined methods like Schmidt-hammer exposure-age dating (SHD) or weathering-rind thickness. The availability of a regional 10Be production curve has improved the calibration of TCND-ages and modern calibration programmes allow re-calculation of old, non-calibrated radiocarbon ages. Despite this progress and an increasing number of studies, there still remains considerable discrepancy if these studies are analysed in detail. And although the Southern Alps of New Zealand are included in more recent global reviews, the corresponding paragraphs are somehow biased towards few selected chronologies and an ostensible 'supremacy' of age information obtained by TCND. Reason for this practise is most likely a comparably high number of individual boulders precisely dated, but moraine ridges on those glacier forelands investigated have been primarily clustered on basis of boulder ages rather than on their geomorphological, sedimentological, and lithological properties. Detailed geomorphological investigation has, however, revealed that disregarding the latter mentioned creates artefacts in form of wrongly introduced advances within existing glacier chronologies alongside uncertainties caused by not paying attention to the concept of 'Little Ice Age'-type events (neoglacial events) and diverse glacier response times. In an attempt to resolve or at least reduce existing uncertainties and contribute towards a future representative regional Holocene glacier chronology for the Southern Alps, the most prominent existing chronologies have be re-assessed. Although the raw data of some studies needed at

  19. Younger Dryas Age advance of Franz Josef Glacier in the Southern Alps of New Zealand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denton, G.H.; Hendy, C.H.

    1994-06-03

    A corrected radiocarbon age of 11,050 [+-] 14 years before present for an advance of the Franz Josef Glacier to the Waiho Loop terminal moraine on the western flank of New Zealand's Southern Alps shows that glacier advance on a South Pacific island was synchronous with initiation of the Younger Dryas in the North Atlantic region. Hence, cooling at the beginning of the Younger Dryas probably reflects global rather than regional forcing. The source for Younger Dryas climatic cooling may thus lie in the atmosphere rather than in a North Atlantic thermohaline switch. 36 refs., 2 figs., 1 tab.

  20. No erosional control on the lateral growth of the Alps

    NASA Astrophysics Data System (ADS)

    Rosenberg, C. L.; Berger, A.

    2009-04-01

    of the deformation front of the Jura Mountains (Nivière and Winter, 2000; Giamboni et al., 2004; Madritsch et al., 2008), the westward shift of the Chaines Subalpines (Lickorisch and Ford, 1998) on the western side of the orogen, and the southward migration of the active front in the eastern sector of the Southern Alps (Benedetti et al., 2000). The reduced erosional efficiency of the orogen, which started at 17 Ma and continued until the Messinian (Kuhlemann, 2000) also did not coincide to a phase of lateral growth of the orogen. Out-of sequence thrusting in the Southern Alps (Schönborn, 1992) reduced the width of the chain well before the Messinian crisis, i.e. during the phase of fading erosion efficiency. Therefore, erosion does not seem to have been the prime control on the changes of width of the orogen. Alternatively, the effect of erosion on the lateral growth of the orogen can be tested by comparing the timing and the type of shifts of the active deformation front from different parts of the orogen. If climate changes are inferred to control changes in the erosional efficiency of the Alps (Willett et al., 2006), the tectonic response to a given change of climate is expected to be coeval and of similar type in all parts of the chain. This is especially true for an orogen as small as the Alps, whose different portions are all affected by the same climatic conditions. However, the mode of exhumation of the Eastern Alps is very different than that of the Western and Central Alps. The exhumation front progressively shifted towards the foreland in the latter case, whereas it remained focused in the axial zone of the orogen in the former case (Rosenberg and Berger, 2009). As a consequence, a broad metamorphic belt, with cooling ages younging from the axial zone towards the foreland formed in the western Alps, and a narrow metamorphic belt with cooling ages younging towards the axial zone of the orogen formed in the Eastern Alps. These first-order differences

  1. Quantifying the Variation in Shear Zone Character with Depth: a Case Study from the Simplon Shear Zone, Central Alps

    NASA Astrophysics Data System (ADS)

    Cawood, T. K.; Platt, J. P.

    2017-12-01

    A widely-accepted model for the rheology of crustal-scale shear zones states that they comprise distributed strain at depth, in wide, high-temperature shear zones, which narrow to more localized, high-strain zones at lower temperature and shallower crustal levels. We test and quantify this model by investigating how the width, stress, temperature and deformation mechanisms change with depth in the Simplon Shear Zone (SSZ). The SSZ marks a major tectonic boundary in the central Alps, where normal-sense motion and rapid exhumation of the footwall have preserved evidence of older, deeper deformation in rocks progressively further into the currently-exposed footwall. As such, microstructures further from the brittle fault (which represents the most localized, most recently-active part of the SSZ) represent earlier, higher- temperature deformation from deeper crustal levels, while rocks closer to the fault have been overprinted by successively later, cooler deformation at shallower depths. This study uses field mapping and microstructural studies to identify zones representing deformation at various crustal levels, and characterize each in terms of zone width (representing width of the shear zone at that time and depth) and dominant deformation mechanism. In addition, quartz- (by Electron Backscatter Diffraction, EBSD) and feldspar grain size (measured optically) piezometry are used to calculate the flow stress for each zone, while the Ti-in-quartz thermometer (TitaniQ) is used to calculate the corresponding temperature of deformation. We document the presence of a broad zone in which quartz is recrystallized by the Grain Boundary Migration (GBM) mechanism and feldspar by Subgrain Rotation (SGR), which represents the broad, deep zone of deformation occurring at relatively high temperatures and low stresses. In map view, this transitions to successively narrower zones, respectively characterized by quartz SGR and feldspar Bulge Nucleation (BLG); quartz BLG and brittle

  2. Sensitivity to Regional Earthquake Triggering and Magnitude-Frequency Characteristics of Microseismicity Detected via Matched-Filter Analysis, Central Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Boese, C. M.; Townend, J.; Chamberlain, C. J.; Warren-Smith, E.

    2016-12-01

    Microseismicity recorded since 2008 by the Southern Alps Microseismicity Borehole Array (SAMBA) and other predominantly short-period seismic networks deployed in the central Southern Alps, New Zealand, reveals distinctive patterns of triggering in response to regional seismicity (magnitudes larger than 5, epicentral distances of 100-500 km). Using matched-filter detection methods implemented in the EQcorrscan package (Chamberlain et al., in prep.), we analyze microseismicity occurring in several geographically distinct swarms in order to examine the responses of specific microearthquake sources to earthquakes of different sizes occurring at different distances and azimuths. The swarms exhibit complex responses to regional seismicity which reveal that microearthquake triggering in these cases involves a combination of extrinsic factors (related to the dynamic stresses produced by the regional earthquake) and intrinsic factors (controlled by the local state of stress and possibly by hydrogeological processes). We find also that the microearthquakes detected by individual templates have Gutenberg-Richter magnitude-frequency characteristics. Since the detected events, by design, have very similar hypocentres and focal mechanisms, the observed scaling pertains to a restricted set of fault planes.

  3. Ivrea mantle wedge and arc of the Western Alps (II): Kinematic evolution of the Alps-Apennines orogenic system

    NASA Astrophysics Data System (ADS)

    Schmid, Stefan; Kissling, Eduard; van Hinsbergen, Douwe J. J.; Molli, Giancarlo

    2017-04-01

    Integration of geological and geophysical data on the deep structure of the Alps (Kissling et al. 2017) reveals that the deep-seated Ivrea mantle played a crucial role during the formation of the arc of the Western Alps. Exhumation of the mantle beneath the Ivrea Zone to shallow crustal depths during Mesozoic rifting led to the formation of a strong Ivrea mantle wedge; its strength exceeds that of surrounding mostly quartz-bearing units, and consequently allows for indentation and wedging of a quasi-rigid Ivrea mantle wedge into the Western Alps during Alpine orogeny. A first early stage (pre-35 Ma) of the West-Alpine orogenic evolution is characterized by top-NNW thrusting in sinistral transpression causing at least some 260km displacement of internal Western Alps and E-W-striking Alps farther east, together with the Adria micro-plate, towards N to NNW with respect to stable Europe. It is during the second stage (35-25 Ma) that the Ivrea mantle wedge played a crucial role by accentuating the arc. This stage is associated with top-WNW thrusting in the external zones of the central portion of the arc and lateral indentation and wedging of the Ivrea mantle slice beneath the already existing nappe pile towards WNW by some 100-150km. The final stage of arc formation (25-0 Ma) is associated with orogeny in the Apennines leading to oroclinal bending in the southernmost Western Alps that by now became parts of the Apenninic orogen, in connection with the 50° counterclockwise rotation of the Corsica-Sardinia block and the Ligurian Alps. The lithological composition of some tectonic units originating from the Alpine Tethys (Piemont-Liguria Ocean) found in the Alps and the northern Apennines has much in common. The non-metamorphic parts of the Piemont-Liguria derived units form the upper plate of the Western Alps that is devoid of Austroalpine elements, while the lower plate includes highly metamorphic units derived from the same Piemont-Liguria Ocean. This points to a

  4. The internal structure of eclogite-facies ophiolite complexes: Implications from the Austroalpine outliers within the Zermatt-Saas Zone, Western Alps

    NASA Astrophysics Data System (ADS)

    Weber, Sebastian; Martinez, Raul

    2016-04-01

    The Western Alpine Penninic domain is a classical accretionary prism that formed after the closure of the Penninic oceans in the Paleogene. Continental and oceanic nappes were telescoped into the Western Alpine stack associated with continent-continent collision. Within the Western Alpine geologic framework, the ophiolite nappes of the Zermatt-Saas Zone and the Tsate Unit are the remnants of the southern branch of the Piemonte-Liguria ocean basin. In addition, a series of continental basement slices reported as lower Austroalpine outliers have preserved an eclogitic high-pressure imprint, and are tectonically sandwiched between these oceanic nappes. Since the outliers occur at an unusual intra-ophiolitic setting and show a polymetamorphic character, this group of continental slices is of special importance for understanding the tectono-metamorphic evolution of Western Alps. Recently, more geochronological data from the Austroalpine outliers have become available that make it possible to establish a more complete picture of their complex geological history. The Lu-Hf garnet-whole rock ages for prograde growth of garnet fall into the time interval of 52 to 62 Ma (Weber et al., 2015, Fassmer et al. 2015), but are consistently higher than the Lu-Hf garnet-whole rock ages from several other locations throughout the Zermatt-Saas zone that range from 52 to 38 Ma (Skora et al., 2015). This discrepancy suggests that the Austroalpine outliers may have been subducted earlier than the ophiolites of the Zermatt-Saas Zone and therefore have been tectonically emplaced into their present intra-ophiolite position. This points to the possibility that the Zermatt-Saas Zone consists of tectonic subunits, which reached their respective pressure peaks over a prolonged time period, approximately 10-20 Ma. The pressure-temperature estimates from several members of the Austroalpine outliers indicate a complex distribution of metamorphic peak conditions, without ultrahigh

  5. Is the Mantle-Crust Transition in the Finero Complex (southern Alps) a Fossil Continental Moho?

    NASA Astrophysics Data System (ADS)

    Zanetti, A.; Langone, A.; Tommasi, A.; Vauchez, A.; Padron-Navarta, J. A.; Giovanardi, T.; Mazzucchelli, M.

    2017-12-01

    The geophysical studies indicate that the mantle-continental crust discontinuity is usually the site of complex intercalations of rocks having different physical and chemical properties. The possibility to directly characterize such rocks is extremely limited, because very few fossil continental Moho discontinuities crop out: in addition, most of them are considered to be representative of island arc environments. To address this issue, a comprehensive investigation has been carried out in the Finero Complex (Ivrea-Verbano Zone; Southern Alps), where the Phlogopite Peridotite (PP) mantle unit is surrounded by mafic-ultramafic rocks interpreted as intrusive crustal bodies. The crustal unit placed in contact with the PP is the Layered Internal Zone (LIZ), which is overlaid by the Amphibole Peridotite unit. At the contact with LIZ, the typical phlogopite-amphibole-harzburgite forming the PP unit is replaced by a weakly-deformed amphibole-biotite-bearing orthopyroxenite layer. Orthopyroxenite amphibole shows the typical LILE and LREE enrichments and the HFSE and HREE depletion observed in the rest of the mantle unit. This suggests that orthopyroxenite was segregated during the pervasive metasomatic event characterising the PP unit. The LIZ is formed by hornblendites, amphibole-garnet gabbros, pyroxenites and garnet hornblendites. The Amphibole Peridotite unit consists of peridotites, hornblendites and pyroxenites. In the LIZ, the melt intrusion locally involved the assimilation of early gabbroic cumulates, and the segregation of garnet hornblendites by substitution of pyroxenites. In the Amphibole Peridotite, late porous-flow melt migration produced secondary recrystallisation fronts, associated to the development of trace element gradients due to ion-exchange processes. Our observations suggest that the transition between PP and LIZ is primary. The LIZ and Amphibole Peridotite units record multiple events of migration of melt, whose composition varied from LREE

  6. Application of Phase-Weighted Stacking to Low-Frequency Earthquakes near the Alpine Fault, Central Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Baratin, L. M.; Townend, J.; Chamberlain, C. J.; Savage, M. K.

    2015-12-01

    Characterising seismicity in the vicinity of the Alpine Fault, a major transform boundary late in its typical earthquake cycle, may provide constraints on the state of stress preceding a large earthquake. Here, we use recently detected tremor and low-frequency earthquakes (LFEs) to examine how slow tectonic deformation is loading the Alpine Fault toward an anticipated major rupture. We work with a continuous seismic dataset collected between 2009 and 2012 from a network of short-period seismometers, the Southern Alps Microearthquake Borehole Array (SAMBA). Fourteen primary LFE templates have been used to scan the dataset using a matched-filter technique based on an iterative cross-correlation routine. This method allows the detection of similar signals and establishes LFE families with common hypocenter locations. The detections are then combined for each LFE family using phase-weighted stacking (Thurber et al., 2014) to produce a signal with the highest possible signal to noise ratio. We find this method to be successful in increasing the number of LFE detections by roughly 10% in comparison with linear stacking. Our next step is to manually pick polarities on first arrivals of the phase-weighted stacked signals and compute preliminary locations. We are working to estimate LFE focal mechanism parameters and refine the focal mechanism solutions using an amplitude ratio technique applied to the linear stacks. LFE focal mechanisms should provide new insight into the geometry and rheology of the Alpine Fault and the stress field prevailing in the central Southern Alps.

  7. Modelling the impact of vegetation on marly catchments in the Southern Alps of France

    NASA Astrophysics Data System (ADS)

    Carriere, Alexandra; Le Bouteiller, Caroline; Tucker, Greg; Naaim, Mohamed

    2017-04-01

    The Southern Alps of France have been identified as a hot-spot in a global climate change context where the rainfall intensity increase may exacerbate the erosion of already badly erodible lands: Badlands. Vegetalization methods are a promising area of research for erosion control and slope and riverbed stabilization. Nevertheless the impact of vegetation on erosive dynamics is still poorly understood. We own data collected over the last thirty years on marly catchments in the Southern Alps of France from the Draix-Bléone Observatory, part of the Network of Drainage Basins RBV. These are temporal data of sedimentary flux at the scale of the precipitation event but also more recent topographic data on watersheds with areas ranging from 10-3 square kilometers to twenty square kilometers. Erosion rates in this landscape reach 1 cm per year. We simulate the topographic evolution of the catchments over a few decades to centuries with the landscape evolution model Landlab, using our data to calibrate and explicitly validate the model. This model, in comparison with other landscape evolution models, incorporates a more advanced vegetation module in terms of ecology. Nevertheless the erosion-vegetation coupling is not present in Landlab and we are working on its construction. To this end we use an erosion module and a vegetation module that we seek to couple. We want to see how the erosion laws parameters depend on the vegetation cover. We have implemented the calibration of parameters of a non-linear diffusion module coupled with a transport-limited law by comparing the simulated annual sediment flux with the one of the data of the observatory as a function of the percentage of vegetation cover of the ground. We obtained average values of parameters adjusted according to vegetation cover. We observe that the values of the erosion laws parameters are strongly affected by the percentage of vegetation cover. We will then spatialize these parameters on our vegetation maps in

  8. Strength of plate coupling in the southern Ryukyu subduction zone

    NASA Astrophysics Data System (ADS)

    Doo, Wen-Bin; Lo, Chung-Liang; Wu, Wen-Nan; Lin, Jing-Yi; Hsu, Shu-Kun; Huang, Yin-Sheng; Wang, Hsueh-Fen

    2018-01-01

    Understanding the strength of a plate coupling is critical for assessing potential seismic and tsunamic hazards in subduction zones. The interaction between an overriding plate and the associated subducting plate can be used to evaluate the strength of plate coupling by examining the mantle lithospheric buoyancy. Here, we calculate the mantle lithosphere buoyancy across the northern portion of the southern Ryukyu subduction zone based on gravity modeling with the constraints from a newly derived P-wave seismic velocity model. The result indicates that the strength of the plate coupling in the study area is relatively strong, which is consistent with previous observations in the southernmost Ryukyu subduction zone. Because few large earthquakes (Mw > 7) have occurred in the southern Ryukyu subduction zone, a large amount of energy is locked and accumulated by plate coupling, that could be released in the near future.

  9. Warming and glacier recession in the Rakaia valley, Southern Alps of New Zealand, during Heinrich Stadial 1

    NASA Astrophysics Data System (ADS)

    Putnam, Aaron E.; Schaefer, Joerg M.; Denton, George H.; Barrell, David J. A.; Andersen, Bjørn G.; Koffman, Tobias N. B.; Rowan, Ann V.; Finkel, Robert C.; Rood, Dylan H.; Schwartz, Roseanne; Vandergoes, Marcus J.; Plummer, Mitchell A.; Brocklehurst, Simon H.; Kelley, Samuel E.; Ladig, Kathryn L.

    2013-11-01

    The termination of the last ice age featured a major reconfiguration of Earth's climate and cryosphere, yet the underlying causes of these massive changes continue to be debated. Documenting the spatial and temporal variations of atmospheric temperature during deglaciation can help discriminate among potential drivers. Here, we present a 10Be surface-exposure chronology and glaciological reconstruction of ice recession following the Last Glacial Maximum (LGM) in the Rakaia valley, Southern Alps of New Zealand. Innermost LGM moraines at Big Ben have an age of 17,840 ± 240 yrs, whereas ice-marginal moraines or ice-molded bedrock surfaces at distances up-valley from Big Ben of 12.5 km (Lake Coleridge), ∼25 km (Castle Hill), ∼28 km (Double Hill), ∼43 km (Prospect Hill), and ∼58 km (Reischek knob) have ages of 17,020 ± 70 yrs, 17,100 ± 110 yrs, 16,960 ± 370 yrs, 16,250 ± 340 yrs, and 15,660 ± 160 yrs, respectively. These results indicate extensive recession of the Rakaia glacier, which we attribute primarily to the effects of climatic warming. In conjunction with geomorphological maps and a glaciological reconstruction for the Rakaia valley, we use our chronology to infer timing and magnitude of past atmospheric temperature changes. Compared to an overall temperature rise of ∼4.65 °C between the end of the LGM and the start of the Holocene, the glacier recession between ∼17,840 and ∼15,660 yrs ago is attributable to a net temperature increase of ∼4.0 °C (from -6.25 to -2.25 °C), accounting for ∼86% of the overall warming. Approximately 3.75 °C (∼70%) of the warming occurred between ∼17,840 and ∼16,250 yrs ago, with a further 0.75 °C (∼16%) increase between ∼16,250 and ∼15,660 yrs ago. A sustained southward shift of the Subtropical Front (STF) south of Australia between ∼17,800 and ∼16,000 yrs ago coincides with the warming over the Rakaia valley, and suggests a close link between Southern Ocean frontal boundary positions and

  10. Warming and glacier recession in the Rakaia valley, Southern Alps of New Zealand, during Heinrich Stadial 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaron E. Putnam; Joerg M. Schaefe; George H .Denton

    2013-11-01

    The termination of the last ice age featured a major reconfiguration of Earth's climate and cryosphere, yet the underlying causes of these massive changes continue to be debated. Documenting the spatial and temporal variations of atmospheric temperature during deglaciation can help discriminate among potential drivers. Here, we present a 10Be surface-exposure chronology and glaciological reconstruction of ice recession following the Last Glacial Maximum (LGM) in the Rakaia valley, Southern Alps of New Zealand. Innermost LGM moraines at Big Ben have an age of 17,840 +/- 240 yrs, whereas ice-marginal moraines or ice-molded bedrock surfaces at distances up-valley from Big Benmore » of 12.5 km (Lake Coleridge), approximately 25 km (Castle Hill), approximately 28 km (Double Hill), approximately 43 km (Prospect Hill), and approximately 58 km (Reischek knob) have ages of 17,020 +/- 70 yrs, 17,100 +/- 110 yrs, 16,960 +/- 370 yrs, 16,250 +/- 340 yrs, and 15,660 +/- 160 yrs, respectively. These results indicate extensive recession of the Rakaia glacier, which we attribute primarily to the effects of climatic warming. In conjunction with geomorphological maps and a glaciological reconstruction for the Rakaia valley, we use our chronology to infer timing and magnitude of past atmospheric temperature changes. Compared to an overall temperature rise of approximately 4.65?degrees C between the end of the LGM and the start of the Holocene, the glacier recession between approximately 17,840 and approximately 15,660 yrs ago is attributable to a net temperature increase of approximately 4.0?degrees C (from -6.25 to -2.25?degrees C), accounting for approximately 86% of the overall warming. Approximately 3.75?degrees C (approximately 70%) of the warming occurred between approximately 17,840 and approximately 16,250 yrs ago, with a further 0.75?degrees C (approximately 16%) increase between approximately 16,250 and approximately 15,660 yrs ago. A sustained southward shift of the

  11. 10Be exposure dating of the timing of Neoglacial glacier advances in the Ecrins-Pelvoux massif, southern French Alps

    NASA Astrophysics Data System (ADS)

    Le Roy, Melaine; Deline, Philip; Carcaillet, Julien; Schimmelpfennig, Irene; Ermini, Magali; Aster Team

    2017-12-01

    Alpine glacier variations are known to be reliable proxies of Holocene climate. Here, we present a terrestrial cosmogenic nuclide (TCN)-based glacier chronology relying on 24 new 10Be exposure ages, which constrain maximum Neoglacial positions of four small to mid-sized glaciers (Rateau, Lautaret, Bonnepierre and Etages) in the Ecrins-Pelvoux massif, southern French Alps. Glacier advances, marked by (mainly lateral) moraine ridges that are located slightly outboard of the Little Ice Age (LIA, c. 1250-1860 AD) maximum positions, were dated to 4.25 ± 0.44 ka, 3.66 ± 0.09 ka, 2.09 ± 0.10 ka, c. 1.31 ± 0.17 ka and to 0.92 ± 0.02 ka. The '4.2 ka advance', albeit constrained by rather scattered dates, is to our knowledge exposure-dated here for the first time in the Alps. It is considered as one of the first major Neoglacial advance in the western Alps, in agreement with other regional paleoclimatological proxies. We further review Alpine and Northern Hemisphere mid-to-high latitude evidence for climate change and glacier activity concomitant with the '4.2 ka event'. The '2.1 ka advance' was not extensively dated in the Alps and is thought to represent a prominent advance in early Roman times. Other Neoglacial advances dated here match the timing of previously described Alpine Neoglacial events. Our results also suggest that a Neoglacial maximum occurred at Etages Glacier 0.9 ka ago, i.e. during the Medieval Climate Anomaly (MCA, c. 850-1250 AD). At Rateau Glacier, discordant results are thought to reflect exhumation and snow cover of the shortest moraine boulders. Overall, this study highlights the need to combine several sites to develop robust Neoglacial glacier chronologies in order to take into account the variability in moraine deposition pattern and landform obliteration and conservation.

  12. Interseismic coupling, seismic potential, and earthquake recurrence on the southern front of the Eastern Alps (NE Italy)

    NASA Astrophysics Data System (ADS)

    Cheloni, D.; D'Agostino, N.; Selvaggi, G.

    2014-05-01

    Here we use continuous GPS observations to document the geodetic strain accumulation across the South-Eastern Alps (NE Italy). We estimate the interseismic coupling on the intracontinental collision thrust fault and discuss the seismic potential and earthquake recurrence. We invert the GPS velocities using the back slip approach to simultaneously estimate the relative angular velocity and the degree of interseismic coupling on the thrust fault that separates the Eastern Alps and the Venetian-Friulian plain. Comparison between the rigid rotation predicted motion and the shortening observed across the area indicates that the South-Eastern Alpine thrust front absorbs about 70% of the total convergence between the Adria and Eurasia plates. The coupling is computed on a north dipping fault following the continuous external seismogenic thrust front of the South-Eastern Alps. The modeled thrust fault is currently locked from the surface to a depth of ≈10 km. The transition zone between locked and creeping portions of the fault roughly corresponds with the belt of microseismicity parallel and to the north of the mountain front. The estimated moment deficit rate is 1.3 ± 0.4 × 1017 Nm/yr. The comparison between the estimated moment deficit and that released historically by the earthquakes suggests that to account for the moment deficit the following two factors or their combination should be considered: (1) a significant part of the observed interseismic coupling is released aseismically and (2) infrequent "large" events with long return period (> 1000 years) and with magnitudes larger than the value assigned to the largest historical events (Mw≈ 6.7).

  13. Observations of paraglacial processes on glacier forelands in Aoraki/Mount Cook National Park, Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Winkler, Stefan

    2015-04-01

    The large and extensively debris-covered valley glaciers in Aoraki/Mount Cook National Park immediate east of the Main Divide in the Southern Alps of New Zealand experienced a substantial frontal retreat and vertical downwasting during the past few decades, often connected with the development of a proglacial lake and retreat by calving. Their Holocene glacier forelands are characterised by huge lateral moraines and multi-ridged lateral moraine systems alongside smaller terminal moraines and frontal outwash heads. Placed within a very dynamic general geomorphological regime of various efficient process-systems, these Holocene glacier forelands are currently affected by substantial paraglacial modification. These paraglacial processes have already caused some consequences for the touristic infrastructure in the area and are likely to cause further problems for the accessibility of established tramping routes, tourist huts, and lookouts in the near and medium future. One of the first steps in a project under development presented here is a detailed visual comparison of changes documented during the past 15 Years on the glacier forelands of Hooker, Mueller and Tasman Glaciers in Aoraki/Mount Cook National Park. It reveals considerable erosion especially on the proximal slopes of the lateral moraines by gully development and retreat of erosion scars at their crest in order of several metres in just a few years. Different processes contribute to high erosion rates, among others rill erosion connected to mid-slope springs that only are temporarily active following substantial rainfall events, efficient gully incision, and slumping. Although any quantification of the actual erosion rates is just preliminary and further studies are necessary in order to make reliable predictions for future development, the amount of paraglacial erosion in this environment is very high compared to other regions and highlights the current importance of the paraglacial process-system in the

  14. Kinematics, seismotectonics and seismic potential of the eastern sector of the European Alps from GPS and seismic deformation data

    NASA Astrophysics Data System (ADS)

    Serpelloni, E.; Vannucci, G.; Anderlini, L.; Bennett, R. A.

    2016-10-01

    We present a first synoptic view of the seismotectonics and kinematics of the eastern sector of the European Alps using geodetic and seismological data. The study area marks the boundary between the Adriatic and the Eurasian plates, through a wide zone of deformation including a variety of tectonic styles within a complex network of crustal and lithospheric faults. A new dense GPS velocity field, new focal mechanisms and seismic catalogues, with uniformly re-calibrated magnitudes (from 1005), are used to estimate geodetic and seismic deformation rates and to develop interseismic kinematic and fault locking models. Kinematic indicators from seismological and geodetic data are remarkably consistent at different spatial scales. In addition to large-scale surface motion, GPS velocities highlight more localized deformation features revealing a complex configuration of interacting tectonic blocks, for which new constraints are provided in this work accounting for elastic strain build up at faults bonding rotating blocks. The geodetic and seismological data highlight two belts of higher deformation rates running WSW-ENE along the Eastern Southern Alps (ESA) in Italy and E-W in Slovenia, where deformation is more distributed. The highest geodetic strain-rates are observed in the Montello-Cansiglio segment of the ESA thrust front, for which the higher density of the GPS network provides indications of limited interseismic locking. Most of the dextral shear between the Eastern Southern Alps and the Eastern Alps blocks is accommodated along the Fella-Sava fault rather than the Periadriatic fault. In northern Croatia and Slovenia geodetic and seismological data allow constraining the kinematics of the active structures bounding the triangular-shaped region encompassing the Sava folds, which plays a major role in accommodating the transition from Adria- to Pannonian-like motion trends. The analysis of the seismic and geodetic moment rates provides new insights into the seismic

  15. Interseismic coupling, seismic potential and earthquake recurrence on the southern front of the Eastern Alps (NE Italy)

    NASA Astrophysics Data System (ADS)

    Cheloni, Daniele; D'Agostino, Nicola; Selvaggi, Giulio

    2014-05-01

    The interaction of the African, Arabian, and Eurasia plates in the "greater" Mediterranean region yields to a broad range of tectonic processes including active subduction, continental collision, major continental strike-slip faults and "intra-plate" mountain building. In this puzzling region the convergence between Adria microplate and Eurasia plate is partly or entirely absorbed within the South-Eastern Alps, where the Adriatic lithosphere underthrusts beneath the mountain belt. Historical seismicity and instrumentally recorded earthquakes show thrust faulting on north-dipping low-angle faults in agreement with geological observations of active mountain building and active fold growing at the foothills of the South-Eastern Alps. In this study, we use continuous GPS observations to document the geodetic strain accumulation across the South-Eastern Alps (NE Italy). We estimate the pattern of interseismic coupling on the intra-continental collision north-dipping thrust faults that separate the Eastern Alps and the Venetian-Friulian plain using the back-slip approach and discuss the seismic potential and earthquake recurrence. Comparison between the rigid-rotation predicted motion and the shortening observed across the studied area indicates that the South-Eastern Alpine thrust front absorbs about 80% of the total convergence rate between the Adria microplate and Eurasia plate. The modelled thrust fault is currently locked from the surface to a depth of approximately 10 km. The transition zone between locked and creeping portions of the fault roughly corresponds with the belt of microseismicity parallel and to the north of the mountain front. The estimated moment deficit rate is 1.27±0.14×10^17 Nm/yr. The comparison between the estimated moment deficit and that released historically by the earthquakes suggests that to account for the moment deficit the following two factors or their combination should be considered: (1) a significant part of the observed

  16. The initial superposition of oceanic and continental units in the southern Western Alps: constraints on geometrical restoration and kinematics of the continental subduction wedge

    NASA Astrophysics Data System (ADS)

    Dumont, Thierry; Schwartz, Stéphane; Matthews, Steve; Malusa, Marco; Jouvent, Marine

    2017-04-01

    older in the oceanic rocks (Malusà et al. 2015). Finally, further SE, the Voltri massif shows a huge volume of serpentinized mantle which locally overlies continental basement (strongly metamorphosed), and is interpreted as an exhumed remnant of the subduction channel (Federico et al., 2007). In all these localities the transport directions during initial pulses of stacking were consistently oriented generally towards the NW to N, taking into account the subsequent Oligocene and younger collision-related deformation (complex folds, thrusts, backfolds and backthrusts, and block-rotations). It is thus possible to attempt reconstructing an early stage continental subduction wedge involving these different elements from the subduction channel to the most frontal part of the accretionary complex. However, this early Alpine orogen which was active throughout the Eocene is interpreted to have propagated generally towards the NW to N, prior to subsequent pulses of more westerly directed deformation from the Oligocene onwards within the southern part of the Western Alps arc. It is therefore essential to continually improve high-resolution 3D geophysical imaging to facilitate a better understanding of the complex western termination of the Alpine orogen. References: Dumont T., Schwartz S., Guillot S., Simon-Labric S., Tricart P. & Jourdan S. (2012), Structural and sedimentary record of the Oligocene revolution in the Western Alpine arc. Jour. Geodynamics, doi:10.1016/j.jog.2011.11.006 Federico L., Crispini L., Scambelluri M. & Capponi G. (2007), Ophiolite mélange zone records exhumation in a fossil subduction channel. Geology, 35, p. 499-502 Malusà M.G., Faccenna C., Baldwin S.L., Fitzgerald P.G., Rossetti F., Balestrieri M.L., Danišík M., Ellero A., Ottria G. & Piromallo C. (2015), Contrasting styles of (U)HP rock exhumation along the Cenozoic Adria-Europe plate boundary (Western Alps, Calabria, Corsica). Geochem. Geophys. Geosyst. ,16, p. 1786-1824 Tricart P. & Schwartz S

  17. Hot Alps (Invited)

    NASA Astrophysics Data System (ADS)

    Speranza, F.; Minelli, L.; Pignatelli, A.; Gilardi, M.

    2013-12-01

    Although it is frequently assumed that crust of Alpine orogens is hot due to the occurrence of thick and young (hence radiogenic) crust, evidence on the thermal ranking of orogens is contradictory. Heat flow measurements from shallow wells (depth ≤ 1 km) in the Alps yield a relatively cold thermal regime of 50-80 mW/m2, but data are likely biased by meteoric cold-water circulation. Here we report on the spectral analysis of the aeromagnetic residuals of northern Italy to derive the Curie point depth (CPD), assumed to represent the 600°C isotherm depth. Airborne magnetics were acquired on whole Italy during the 1970s by the national oil company AGIP (now Eni). Data were gathered by several surveys carried out at 1000-13,300 feet (300-4000 m) altitude, with flight line spacing of 2-10 km. Surveys of the Alps and Po Plain (northern Italy) were obtained both with a line spacing of 5 km (and 5 km tie lines), at an altitude of 4000-5000 and 13,300 feet, respectively. To evaluate CPDs we used the centroid method (routinely adopted in recent CPD studies on East Asia and central-southern Europe) on 72 square windows of 100-110 km edge, with a 50% degree of superposition. CPDs vary between 16 and 38 km (22 km on average) in the Po Plain, located south of the Alps and representing the Adriatic-African foreland area. Conversely, the Alps yield very shallow CPDs, ranging between 6 and 15 km (10 km on average). CPDs fall systematically above local Moho depths, implying that magnetic source bottoms documented in this study do not represent a lithological boundary over non-magnetic peridotitic mantle, but can be safely associated with CPDs and the 600°C isotherm. CPDs from the Po Plain are in rough agreement with reported heat flow values of 25-60 mW/m2, and imply and average thermal conductivity (k) of the Po Plain crust of 1.5 W/m°K, at the lower bound of k values measured and inferred for the crust. Conversely, the average 10 km CPD documented in the Alps translates into

  18. Alps to Apennines zircon roller coaster along the Adria microplate margin.

    PubMed

    Jacobs, J; Paoli, G; Rocchi, S; Ksienzyk, A K; Sirevaag, H; Elburg, M A

    2018-02-09

    We have traced the particle path of high-pressure metasedimentary rocks on Elba Island, Northern Apennines, with the help of a U-Pb-Hf detrital zircon study. One quarter of the analysed zircons are surprisingly young, 41-30 Ma, with a main age peak at ca. 32 Ma, indicating an unexpected early Oligocene maximum deposition age. These Oligocene ages with negative εHf indicate a volcanic source region in the central-southern Alps. Though young by geological means, these zircons record an extraordinary geodynamic history. They originated in a volcanic arc, during the convergence/collision of the the Adria microplate with Europe from ca. 65 to 30 Ma. Thereafter, the Oligocene zircons travelled ca. 400 km southward along the Adria margin and the accretionary prism to present-day Tuscany, where they were subducted to depths of at least 40 km. Shortly thereafter, they were brought to the surface again in the wake of hinge roll back of the Apennine subduction zone and the resulting rapid extensional exhumation. Such a zircon roller coaster requires a microplate that has back-to-back subduction zones with opposing polarities on two sides.

  19. Continuous and large sediment supply in a steep landslide scar, Southern Japanese Alps

    NASA Astrophysics Data System (ADS)

    Nishii, Ryoko; Imaizumi, Fumitoshi; Daimaru, Hiromu; Murakami, Wataru

    2018-07-01

    Continuous sediment supply in the Aka-kuzure landslide scar, in the tectonically active alpine Southern Japanese Alps, was investigated using airborne light detection and ranging data in 2000, 2003, 2007 and 2012. In addition, we focused on the spatial variability of denudation patterns based on topographical analyses using DEMs. Denudation volume for the past 12 years reached about 106 m3 and mean annual denudation rate ranged from 0.25 to 0.31 m/yr. Topographical analyses revealed that sediment supply in the scar consists of a combination of two denudation types, sporadic-deep and wide-thin. These denudation types have different roles in the topographical development of the landslide scar. Sporadic-deep type supplies less volume than wide-thin type but still contributes to channel development, as it mainly occurs on lower-order streams and tends to change the convex slope into a concave slope. In contrast, although denudation depth of the wide-thin type is thin, the area affected by this type extends to the whole landslide scar. Consequently, the wide-thin type accounts for most of the total volume lost, for which detachment by frost shattering is suggested as an important role.

  20. Plant-wax D/H ratios in the southern European Alps record multiple aspects of climate variability

    NASA Astrophysics Data System (ADS)

    Wirth, Stefanie B.; Sessions, Alex L.

    2016-09-01

    We present a Younger Dryas-Holocene record of the hydrogen isotopic composition of sedimentary plant waxes (δDwax) from the southern European Alps (Lake Ghirla, N-Italy) to investigate its sensitivity to climatic forcing variations in this mid-latitude region (45°N). A modern altitudinal transect of δD values of river water and leaf waxes in the Lake Ghirla catchment is used to test present-day climate sensitivity of δDwax. While we find that altitudinal effects on δDwax are minor at our study site, temperature, precipitation amount, and evapotranspiration all appear to influence δDwax to varying extents. In the lake-sediment record, δDwax values vary between -134 and -180‰ over the past 13 kyr. The long-term Holocene pattern of δDwax parallels the trend of decreasing temperature and is thus likely forced by the decline of northern hemisphere summer insolation. Shorter-term fluctuations, in contrast, may reflect both temperature and moisture-source changes. During the cool Younger Dryas and Little Ice Age (LIA) periods we observe unexpectedly high δDwax values relative to those before and after. We suggest that a change towards a more D-enriched moisture source is required during these intervals. In fact, a shift from northern N-Atlantic to southern N-Atlantic/western Mediterranean Sea sources would be consistent with a southward migration of the Westerlies with climate cooling. Prominent δDwax fluctuations in the early and middle Holocene are negative and potentially associated with temperature declines. In the late Holocene (<4 kyr BP), excursions are partly positive (as for the LIA) suggesting a stronger influence of moisture-source changes on δDwax variation. In addition to isotopic fractionations of the hydrological cycle, changes in vegetation composition, in the length of the growing season, and in snowfall amount provide additional potential sources of variability, although we cannot yet quantitatively assess these in the paleo-record. We

  1. The hydraulic structure of the Gole Larghe Fault Zone (Italian Southern Alps) through the seismic cycle

    NASA Astrophysics Data System (ADS)

    Bistacchi, A.; Mittempergher, S.; Di Toro, G.; Smith, S. A. F.; Garofalo, P. S.

    2017-12-01

    The 600 m-thick, strike slip Gole Larghe Fault Zone (GLFZ) experienced several hundred seismic slip events at c. 8 km depth, well-documented by numerous pseudotachylytes, was then exhumed and is now exposed in beautiful and very continuous outcrops. The fault zone was also characterized by hydrous fluid flow during the seismic cycle, demonstrated by alteration halos and precipitation of hydrothermal minerals in veins and cataclasites. We have characterized the GLFZ with > 2 km of scanlines and semi-automatic mapping of faults and fractures on several photogrammetric 3D Digital Outcrop Models (3D DOMs). This allowed us obtaining 3D Discrete Fracture Network (DFN) models, based on robust probability density functions for parameters of fault and fracture sets, and simulating the fault zone hydraulic properties. In addition, the correlation between evidences of fluid flow and the fault/fracture network parameters have been studied with a geostatistical approach, allowing generating more realistic time-varying permeability models of the fault zone. Based on this dataset, we have developed a FEM hydraulic model of the GLFZ for a period of some tens of years, covering one seismic event and a postseismic period. The higher permeability is attained in the syn- to early post-seismic period, when fractures are (re)opened by off-fault deformation, then permeability decreases in the postseismic due to fracture sealing. The flow model yields a flow pattern consistent with the observed alteration/mineralization pattern and a marked channelling of fluid flow in the inner part of the fault zone, due to permeability anisotropy related to the spatial arrangement of different fracture sets. Amongst possible seismological applications of our study, we will discuss the possibility to evaluate the coseismic fracture intensity due to off-fault damage, and the heterogeneity and evolution of mechanical parameters due to fluid-rock interaction.

  2. Resprout and survival of willows (Salix purpurea and S. incana), Poplars (Populus nigra) and Tamaris (Tamarix gallica) cuttings in marly gullies with Southern aspect in a mountainous and Mediterranean climate (Southern Alps, France)

    NASA Astrophysics Data System (ADS)

    Rey, Freddy; Labonne, Sophie; Dangla, Laure; Lavandier, Géraud

    2014-05-01

    In the Southern French Alps under a mountainous and Mediterranean climate, a current strategy of bioengineering is developed for trapping sediment in marly gullies with surface area less than 1 ha. It is based on the use of structures in the form of brush layers and brush mats of cuttings on deadwood microdams. Purple and white Willows (Salix purpurea and S. incana) are recommended here as they proved their efficiency to resprout and survive in such environment. However, these species installed in Southern gullies did not survive in previous experiments, due to the too harsh conditions of solar radiation and drought. We thus decided to test other species, namely black Poplar (Populus nigra) and Tamaris (Tamarix gallica), which proved their resistance to drought conditions in other experiments. To this view, bioengineering structures have been built in 2010 in eroded marly gullies in the Roubines and Fontaugier catchments (Southern Alps, France). We tested two installation modalities: one in spring and a second in autumn. Seventy-eight bioengineering structures (50 in spring and 28 in autumn), among which 32 made with Poplar cuttings and 28 with Tamaris cuttings, as well as 11 structures with purple Willow and 7 with white Willow as controls, were built in 6 experimental gullies. After 3 observation years for each modality (2010 to 2012, and 2011 to 2013, respectively), results first revealed that Willow species succeeded in surviving in gullies in Southern aspect (76 % for the cuttings installed in spring and 52 % for those installed in autumn), which is in contradiction with previous results. Second, Poplar showed a good ability to survive (62 % for the cuttings installed in spring and 33 % for those installed in autumn). Tamaris obtained the worst score with 26 % and 38 % of survival for the cuttings installed in spring and autumn, respectively. Globally, excepted for Tamaris, survival rates were better for the cuttings installed in spring. The bioengineering

  3. Eclogite nappe-stack in the Grivola-Urtier Ophiolites (Southern Aosta Valley, Western Alps)

    NASA Astrophysics Data System (ADS)

    Tartarotti, Paola

    2013-04-01

    In the Western Alpine chain, ophiolites represent a section of the Mesozoic Tethys oceanic lithosphere, involved in subduction during the convergence between the paleo-Africa and paelo-Europe continents during the Cretaceous - Eocene. The Western Alpine ophiolites consist of several tectonic units, the most famous being the Zermatt-Saas and Combin nappes, and other major ophiolite bodies as the Voltri, Monviso, and Rocciavrè that show different rock assemblages and contrasting metamorphic imprints. The Grivola-Urtier (GU) unit is exposed in the southern Aosta Valley, covering an area of about 100 km2; it is tectonically sandwiched between the continentally-derived Pennidic Gran Paradiso Nappe below, and the Austroalpine Mount Emilius klippe above. This unit has been so far considered as part of the Zermatt-Saas nappe extending from the Saas-Fee area (Switzerland) to the Aosta Valley (Italy). The GU unit consists of serpentinized peridotites that include pods and boudinaged layers of eclogitic Fe-metagabbro and trondhjemite, rodingites and chloriteschists transposed in the main foliation together with calcschists and micaschists. All rocks preserve particularly fresh eclogitic mineral assemblages. The contact between the serpentinites and calcshists is marked by a tectonic mélange consisting of mylonitic marble and calcschist with stretched and boudinaged serpentinite blocks. Continentally-derived allochthonous blocks ranging in size from100 meters to meters are also included within the ophiolites. New field, petrographic and geochemical data reveal the complex nature of the fossil Tethyan oceanic lithosphere exposed in the southern Aosta Valley, as well as the extent and size of the continental-oceanic tectonic mélange. The geological setting of the GU unit is here inferred as a key tool for understanding the complex architecture of the ophiolites in the Western Alps.

  4. Mountaineering accidents in the European Alps: have the numbers increased in recent years?

    PubMed

    Lischke, V; Byhahn, C; Westphal, K; Kessler, P

    2001-01-01

    Media reports convey the impression that the incidence of fatal accidents in the European Alps has increased. Because more specific data are lacking, we analyzed available data from the mountain rescue services in Germany, Austria, southern Tirol, Zermatt/Switzerland, and Chamonix/France from 1987 until 1997. Information was gathered from the annual reports of the Austrian Mountain Rescue Service, the Swiss Alpine Club Rescue Station in Zermatt, the Mountain Rescue Service of the Southern Tirol Alpine Club, the Mountain Rescue Service of the Bavarian Red Cross, and the Department of Mountain Medicine and Traumatology from the Hospital in Chamonix. Although the total number of rescue missions and injured alpinists increased significantly during the period, the number of fatalities retrieved during such rescue missions showed no significant increase. Even taking into account the varying definitions of "mountain accident" used in these countries, available data from the analyzed areas of the European Alps do not demonstrate a drastic increase in the number of fatalities. In the future, data concerning mountain accidents in the European Alps should be monitored according to standard definitions and stored by the International Commission for Alpine Rescue.

  5. Test of bioengineering structures in large eroded marly gullies (1 to 3 ha) in a mountainous and Mediterranean climate: resistance of the structures and survival of willow cuttings (Southern Alps, France)

    NASA Astrophysics Data System (ADS)

    Rey, Freddy; Labonne, Sophie; Dangla, Laure; Lavandier, Géraud

    2014-05-01

    In the Southern French Alps under a mountainous and Mediterranean climate, bioengineering structures installed in gully bottoms of highly weathered marly catchments aim at trapping a part of the eroded materials in order to reduce suspended sediment in the water system. They are made of brush layers and brush mats of cuttings on deadwood microdams. Purple and white Willows (Salix purpurea and S. incana) are used as they proved their efficiency to survive in such environment and efficiently trap marly sediment, but only in gullies with surface area less than 1 ha. Extrapolating their use to larger gullies could allow increasing the impact of such operations for reduction of sediment yield at the scale of large catchments. To this view, bioengineering structures have been built in spring and autumn 2010 in large eroded marly gullies with surface areas between 1 and 3 ha, in the Roubines and Fontaugier catchments (Southern Alps, France). 165 bioengineering structures (150 in spring and 15 in autumn) were built in 10 experimental gullies. After 3 observation years for each modality (2010 to 2012, and 2011 to 2013, respectively), the results revealed that 2/3 of the structures well resisted to damages due to concentrated flows. However, they were generally filled of sediment very rapidly, thus killing a large number of cuttings, particularly in the brush mats in gullies with surface area comprised between 2 and 3 ha. Therefore it has been proved that cuttings survival is possible in gullies with surface area less than 3 ha. In the French Southern Alps, bioengineering strategies have been improved by adding gullies of 1 to 3 ha in restoration plans. For gullies with surface area superior to 2 ha, it is recommended to first install the brush layers, and 1 to 2 years later the brush mats.

  6. Fallout Radionuclides as Tracers in Southern Alps Sediment Studies

    NASA Astrophysics Data System (ADS)

    Carey, A. E.; Karanovic, Z.; Dibb, J. E.

    2005-12-01

    The primary geologic processes shaping the landscape are physical and chemical weathering and the transport of solids by erosion. As part of our studies on the coupling between physical erosion and chemical weathering, we have determined depositional and erosional processes in New Zealand's tectonically active, rapidly uplifting Southern Alps, specifically focusing on the Hokitika River watershed. The South Island watersheds we are studying are subject to extreme orographic precipitation (as high as 7-12 m annually) and high landslide frequency, but have modest topography due to the rapid erosion. In concert with our studies of chemical weathering and physical erosion, we have used the atmospherically-delivered radionuclides of 7Be, 137Cs and 210Pbexcess to determine the relative magnitude of particle residence time in the high elevation Cropp and Whitcombe subwatersheds and the rates of sedimentation. One- and two-box modeling with 7Be and 210Pbexcess was used to determine soil and sediment residence times. Residence time of fine suspended particles is short and particles can travel the length of the river during a single storm, probably due to the short duration, high-intensity rainfalls which produce rapidly moving, steep flood waves. The readily detected peak of 137Cs activity in Cropp terrace and Hokitika gorge soils yielded sedimentation rates of 0.06-0.12 cm yr-1. At the Cropp terrace, inventory models of 210Pbexcess yield soil accumulation rates significantly less than those determined using the 137Cs activity peak. We attribute the differences to overestimation of 210Pbexcess in surface soils and to contrasting fallout fluxes, geochemical behavior and radionuclide contents of sedimenting materials. Total inventories of 210Pbexcess in soils greatly exceed the expected direct atmospheric deposition, suggesting that lateral transport of this nuclide occurs within the watershed. At the Hokitika gorge, all nuclides studied yielded similar sedimentation rates

  7. Upper-Mantel Earthquakes in the Australia-Pacific Plate Boundary Zone and the Roots of the Alpine Fault

    NASA Astrophysics Data System (ADS)

    Boese, C. M.; Warren-Smith, E.; Townend, J.; Stern, T. A.; Lamb, S. H.

    2016-12-01

    Seismicity in the upper mantle in continental collision zones is relatively rare, but observed around the world. Temporary seismometer deployments have repeatedly detected mantle earthquakes at depths of 40-100 km within the Australia-Pacific plate boundary zone beneath the South Island of New Zealand. Here, the transpressive Alpine Fault constitutes the primary plate boundary structure linking subduction zones of opposite polarity farther north and south. The Southern Alps Microearthquake Borehole Array (SAMBA) has been operating continuously since November 2008 along a 50 km-long section of the central Alpine Fault, where the rate of uplift of the Southern Alps is highest. To date it has detected more than 40 small to moderate-sized mantle events (1≤ML≤3.9). The Central Otago Seismic Array (COSA) has been in operation since late 2012 and detected 15 upper mantle events along the sub-vertical southern Alpine Fault. Various mechanisms have been proposed to explain the occurrence of upper mantle seismicity in the South Island, including intra-continental subduction (Reyners 1987, Geology); high shear-strain gradients due to depressed geotherms and viscous deformation of mantle lithosphere (Kohler and Eberhart-Phillips 2003, BSSA); high strain rates resulting from plate bending (Boese et al. 2013, EPSL), and underthrusting of the Australian plate (Lamb et al. 2015, G3). Focal mechanism analysis reveals a variety of mechanisms for the upper mantle events but predominantly strike-slip and reverse faulting. In this study, we apply spectral analysis to better constrain source parameters for these mantle events. These results are interpreted in conjunction with new information about crustal structure and low-frequency earthquakes near the Moho and in light of existing velocity, attenuation and resistivity models.

  8. Serpentinite slices within a tectonic zone at the base of the Juvavic nappe system in the Northern Calcareous Alps (Austria): characterization and origin

    NASA Astrophysics Data System (ADS)

    Boehm, Katharina; Schuster, Ralf; Wagreich, Michael; Koller, Friedrich; Wimmer-Frey, Ingeborg

    2014-05-01

    The investigated serpentinites are present in an ENE-WSW orientated tectonic zone at the base of Juvavic nappes (Northern Calcareous Alps), situated at the eastern margin of the Eastern Alps (Lower Austria). They form small tectonically squeezed slices, which are embedded in Permotriassic schists and Middle to Upper Triassic limestones. These serpentinites play an important, but not yet understood role in reconstructing Neotethys evolution, Alpine Orogeny and the correlation of Dinarides and Alps. The largest serpentinite body near to Unterhöflein is 400 to 100 meters in size and was investigated by mineralogical (XRD) and petrological/geochemical (XRF) methods. The primary mineral composition is olivine + orthopyroxene + clinopyroxene + chrome spinel. Pseudomorphs of pyroxenes are visible macroscopically, but almost all primary minerals are replaced by serpentine minerals. Former olivine is converted to chrysotile minerals, which show typical reticulate textures, orthopyroxene turned into lizardite pseudomorphs and chrome spinel is almost completely altered to magnetite. Major contents of chrysotile-α, chrysotile-γ and lizardite and minor antigorite, as well as secondary minerals like talc, chlorite and hydrogrossular were identified with XRD. Results from whole rock geochemistry indicate harzburgitic precursor rocks for the serpentinites. According to the low antigorite content, the rocks have only a weak metamorphic imprint and therefore an obduction rather than a subduction history is likely. This leads to the assumption that these serpentinites possibly originate from the Neotethys and not from the Penninic oceanic realm. Further, the tectonic position of the serpentinite slices is in close vicinity to sediments of the Meliata unit which also occur between Juvavic and underlying Tirolic nappe system (Mandl & Ondrejickova, 1993). Additionally, remnants from ophiolite nappes are found reworked into the surrounding Upper Cretaceous Gosau Group. In the latter

  9. Holocene geological records of flood regime in French Alps

    NASA Astrophysics Data System (ADS)

    Arnaud, Fabien; Wilhelm, Bruno; Giguet-Covex, Charline; Jenny, Jean-Philippe; Fouinat, Laurent; Sabatier, Pierre; Debret, Maxime; Révillon, Sidonie; Chapron, Emmanuel; Revel, Marie

    2014-05-01

    In this paper we present a review of a ca. 10-years research effort (1-9) aiming at reconstructing floods dynamics in in French Alps through the Holocene, based on lake sediment records. We will particularly discuss how such geological records can be considered as representative of past climate. This implies a wise interpretation of data in order to really understand "what does the core really says". Namely, we showed that different lake systems record different types of flood events. Low altitude lakes, fed by large-scale catchment areas are more sensitive to regional heavy rainfall events (2-5), whereas high altitude small lakes record local extreme rainfall events (6). Moreover, human societies' development must be taken into account as it is susceptible to modulate the climate-geological record relationship (7). Altogether our data permit the establishment of a Holocene-long perspective upon both regional heavy rainfall and torrential activities in high elevation sites. We hence show that both types of events frequency co-evolve in Northern as well as Southern French Alps where Holocene colder spells generally present higher flood frequencies (6-9). On the other hand, intensities of torrential events present a North-South opposite pattern: during warm spells (e.g. the Medieval Warm Period or nowadays), northern Alps are subject to rare but extremely intense heavy rainfall events, whereas in the southern Alps torrential floods are both rare and weak. During cold spells (e.g. the Little Ice Age), the inverse pattern is observed: torrential floods are more frequent everywhere and above-average intensity in Southern Alps. This point is particularly important for risk management in mountain areas in a context of global warming. Our results point out how complex can be the response of regional system to global climate changes. We are hence far from completely understanding this complexity which is moreover imperfectly simulated by climate models. As geological

  10. Differential Properties of Human ALP+ Periodontal Ligament Stem Cells vs Their ALP- Counterparts

    PubMed Central

    Tran, Quynh T; El-Ayachi, Ikbale; Bhatti, Fazal-Ur-Rehman; Bahabri, Rayan; Al-Habib, Mey; Huang, George TJ

    2015-01-01

    Characterizing subpopulations of stem cells is important to understand stem cell properties. Tissue-nonspecific alkaline phosphatase (ALP) is associated with mineral tissue forming cells as well as stem cells. Information regarding ALP subpopulation of human periodontal ligament stem cells (hPDLSCs) is limited. In the present study, we examined ALP+ and ALP− hPDLSC subpopulations, their surface markers STRO-1 and CD146, and the expression of stemness genes at various cell passages. We found that ALP+ subpopulation had higher levels of STRO-1 (30.6 ± 5.6%) and CD146 (90.4 ± 3.3%) compared to ALP− (STRO-1: 0.5 ± 0.1%; CD146: 75.3 ± 7.2%). ALP+ cells expressed significantly higher levels of stemness associated genes, NANOG, OCT4 and SOX than ALP− cells at low cell passages of 2-3 (p<0.05). ALP+ and ALP− cells had similar osteogenic, chondrogenic and neurogenic potential while ALP−, not ALP+ cells, lacked adipogenic potential. Upon continuous culturing and passaging, ALP+ continued to express higher stemness genes and STRO-1 and CD146 than ALP− cells at ≥passage 19. Under conditions (over-confluence and vitamin C treatment) when ALP+ subpopulation was increased, the stemness gene levels of ALP+ was no longer significantly higher than those in ALP− cells. In conclusion, ALP+ hPDLSCs possess differential properties from their ALP− counterparts. PMID:26807329

  11. Potential improvement of Schmidt-hammer exposure-age dating (SHD) of moraines in the Southern Alps, New Zealand, by application of the new electronic Schmidt-hammer (SilverSchmidt)

    NASA Astrophysics Data System (ADS)

    Winkler, Stefan; Corbett, David

    2014-05-01

    The Southern Alps of New Zealand are among the few key study sites for investigating Holocene glacier chronologies in the mid-latitudinal Southern Hemisphere. Their characteristic highly dynamic geomorphological process systems prove, however, to be a considerable challenge for all attempts to date and palaeoclimatologically interpret the existing Holocene moraines record. As a multi-proxy approach combining 10Be terrestrial cosmogenic nuclide dating (TCND) with Schmidt-hammer testing, the recently developed Schmidt-hammer exposure-age dating (SHD) has already shown its potential in this study area (cf. Winkler 2005, 2009, 2013). An electronic Schmidt-hammer (named SilverSchmidt) was introduced by the manufacturer of the original mechanical Schmidt-hammer (Proceq SA) a few years ago. It offers, in particular, facilities for much easier data processing and constitutes a major improvement and potential replacement for the mechanical Schmidt-hammer. However, its different approach to the measurement of surface hardness - based on Q-(velocity) values instead of R-(rebound) values - is a potential drawback. This difference effectively means that measurements from the two instruments are not easily interconvertible and, hence, that the instruments cannot be used interchangeably without previous comparative tests of both instruments under field conditions. Both instruments used in this comparative study were N-type models with identical impact energy of 2.207 Nm for the plunger. To compare both instruments and explore interconvertibility, parallel measurements were performed on a selected number of boulders (10 boulders per site with 5 impacts each, at least 2 sites per moraine) on moraines of homogeneous lithology but different established ages covering the entire Holocene and the Late Glacial. All moraines are located east of the Main Divide of the Southern Alps at Mueller Glacier, Tasman Glacier, and in the outer Tasman River Valley. All paired samples (n = 50) were

  12. Drainage capture and discharge variations driven by glaciation in the Southern Alps, New Zealand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ann V. Rowan; Mitchell A. Plummer; Simon H. Brocklehurst

    Sediment flux in proglacial fluvial settings is primarily controlled by discharge, which usually varies predictably over a glacial–interglacial cycle. However, glaciers can flow against the topographic gradient to cross drainage divides, reshaping fluvial drainage networks and dramatically altering discharge. In turn, these variations in discharge will be recorded by proglacial stratigraphy. Glacial-drainage capture often occurs in alpine environments where ice caps straddle range divides, and more subtly where shallow drainage divides cross valley floors. We investigate discharge variations resulting from glacial-drainage capture over the past 40 k.y. for the adjacent Ashburton, Rangitata, and Rakaia basins in the Southern Alps, Newmore » Zealand. Although glacial-drainage capture has previously been inferred in the range, our numerical glacier model provides the first quantitative demonstration that this process drives larger variations in discharge for a longer duration than those that occur due to climate change alone. During the Last Glacial Maximum, the effective drainage area of the Ashburton catchment increased to 160% of the interglacial value with drainage capture, driving an increase in discharge exceeding that resulting from glacier recession. Glacial-drainage capture is distinct from traditional (base level–driven) drainage capture and is often unrecognized in proglacial deposits, complicating interpretation of the sedimentary record of climate change.« less

  13. Parameterization of a numerical 2-D debris flow model with entrainment: a case study of the Faucon catchment, Southern French Alps

    NASA Astrophysics Data System (ADS)

    Hussin, H. Y.; Luna, B. Quan; van Westen, C. J.; Christen, M.; Malet, J.-P.; van Asch, Th. W. J.

    2012-10-01

    The occurrence of debris flows has been recorded for more than a century in the European Alps, accounting for the risk to settlements and other human infrastructure that have led to death, building damage and traffic disruptions. One of the difficulties in the quantitative hazard assessment of debris flows is estimating the run-out behavior, which includes the run-out distance and the related hazard intensities like the height and velocity of a debris flow. In addition, as observed in the French Alps, the process of entrainment of material during the run-out can be 10-50 times in volume with respect to the initially mobilized mass triggered at the source area. The entrainment process is evidently an important factor that can further determine the magnitude and intensity of debris flows. Research on numerical modeling of debris flow entrainment is still ongoing and involves some difficulties. This is partly due to our lack of knowledge of the actual process of the uptake and incorporation of material and due the effect of entrainment on the final behavior of a debris flow. Therefore, it is important to model the effects of this key erosional process on the formation of run-outs and related intensities. In this study we analyzed a debris flow with high entrainment rates that occurred in 2003 at the Faucon catchment in the Barcelonnette Basin (Southern French Alps). The historic event was back-analyzed using the Voellmy rheology and an entrainment model imbedded in the RAMMS 2-D numerical modeling software. A sensitivity analysis of the rheological and entrainment parameters was carried out and the effects of modeling with entrainment on the debris flow run-out, height and velocity were assessed.

  14. Deep resistivity sounding studies in detecting shear zones: A case study from the southern granulite terrain of India

    NASA Astrophysics Data System (ADS)

    Singh, S. B.; Stephen, Jimmy

    2006-10-01

    The resistivity signatures of the major crustal scale shear zones that dissect the southern granulite terrain (SGT) of South India into discrete geological fragments have been investigated. Resistivity structures deduced from deep resistivity sounding measurements acquired with a 10 km long Schlumberger spreads yield significant insights into the resistivity distribution within the E-W trending shear system comprising the Moyar-Bhavani-Salem-Attur shear zone (MBSASZ) and Palghat-Cauvery shear zone (PCSZ). Vertical and lateral extensions of low resistivity features indicate the possible existence of weak zones at different depths throughout the shear zones. The MBSASZ characterized by very low resistivity in its deeper parts (>2500 m), extends towards the south with slightly higher resistivities to encompass the PCSZ. A major resistivity transition between the northern and southern parts is evident in the two-dimensional resistivity images. The northern Archaean granulite terrain exhibits a higher resistivity than the southern Neoproterozoic granulite terrain. Though this resistivity transition is not clear at greater depths, the extension of low resistivity zones has been well manifested. It is speculated here that a network of crustal scale shear zones in the SGT may have influenced the strength of the lithosphere.

  15. Study geomorphology, past and present, linear trench, tectonics relationship between Pyrenees and Alps

    NASA Technical Reports Server (NTRS)

    Guillemot, J. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. ERTS-1 images obviously show up some large linear features trending N 80 E or N 30 E common to both Alps and Pyrenees. One of them, the Ligurian Fault, had been previously forecast by Laubscher in an interpretation of the Alps by the plate tectonic theory, but it extends westward farthest from the Alps, cutting the Pyrenees axis. These lineaments have been interpreted as reflections of deep seated wrench faults in the surficial part of the sedimentary series. A large set of such lineaments is perceptible in western Europe, such as the Guadalquivir Fault in southern Spain, Ligurian Fault, Insubrian Fault, Northern-Jura Fault, Metz Fault. Perhaps these may be interpreted as transform faults of the mid-Atlantic ridge or of a paleo-rift seated in the Rhine-Rhone graben.

  16. Mesozoic (Lower Jurassic) red stromatactis limestones from the Southern Alps (Arzo, Switzerland): calcite mineral authigenesis and syneresis-type deformation

    NASA Astrophysics Data System (ADS)

    Neuweiler, Fritz; Bernoulli, Daniel

    2005-02-01

    The Broccatello lithological unit (Lower Jurassic, Hettangian to lower parts of Upper Sinemurian) near the village of Arzo (southern Alps, southern Switzerland) is a mound-shaped carbonate deposit that contains patches of red stromatactis limestone. Within the largely bioclastic Broccatello unit, the stromatactis limestone is distinguished by its early-diagenetic cavity system, a relatively fine-grained texture, and an in-situ assemblage of calcified siliceous sponges (various demosponges and hexactinellids). A complex shallow subsurface diagenetic pathway can be reconstructed from sediment petrography in combination with comparative geochemical analysis (carbon and oxygen isotopes; trace and rare earth elements, REE + Y). This pathway includes organic matter transformation, aragonite and skeletal opal dissolution, patchy calcification and lithification, sediment shrinkage, sagging and collapse, partial REE remobilization, and multiple sediment infiltration. These processes occurred under normal-marine, essentially oxic conditions and were independent from local, recurring syn-sedimentary faulting. It is concluded that the stromatactis results from a combination of calcite mineral authigenesis and syneresis-type deformation. The natural stromatactis phenomenon may thus be best explained by maturation processes of particulate polymer gels expected to form in fine-grained carbonate sediments in the shallow subsurface. Conditions favorable for the evolution of stromatactis appear to be particularly frequent during drowning of tropical or subtropical carbonate platforms.

  17. The Effect of Riparian Zones in Structuring Small Mammal Communities in the Southern Appalachians

    Treesearch

    Joshua Laerm; Michael A. Menzel; Dorothy J. Wolf; James R. Welch

    1997-01-01

    Riparian zones have been shown to be important in structuring vertebrate communities and in maintaining biodiversity. We examined the role of riparian zones in structuring small mammal communities in a southern Appalachian watershed at Coweeta Hydrological Laboratory, Macon County, North Carolina. We established pitfall and live-trap grids in three replicates each of...

  18. Paleoseismology of the Southern Section of the Black Mountains and Southern Death Valley Fault Zones, Death Valley, United States

    USGS Publications Warehouse

    Sohn, Marsha S.; Knott, Jeffrey R.; Mahan, Shannon

    2014-01-01

    The Death Valley Fault System (DVFS) is part of the southern Walker Lane–eastern California shear zone. The normal Black Mountains Fault Zone (BMFZ) and the right-lateral Southern Death Valley Fault Zone (SDVFZ) are two components of the DVFS. Estimates of late Pleistocene-Holocene slip rates and recurrence intervals for these two fault zones are uncertain owing to poor relative age control. The BMFZ southernmost section (Section 1W) steps basinward and preserves multiple scarps in the Quaternary alluvial fans. We present optically stimulated luminescence (OSL) dates ranging from 27 to 4 ka of fluvial and eolian sand lenses interbedded with alluvial-fan deposits offset by the BMFZ. By cross-cutting relations, we infer that there were three separate ground-rupturing earthquakes on BMFZ Section 1W with vertical displacement between 5.5 m and 2.75 m. The slip-rate estimate is ∼0.2 to 1.8 mm/yr, with an earthquake recurrence interval of 4,500 to 2,000 years. Slip-per-event measurements indicate Mw 7.0 to 7.2 earthquakes. The 27–4-ka OSL-dated alluvial fans also overlie the putative Cinder Hill tephra layer. Cinder Hill is offset ∼213 m by SDVFZ, which yields a tentative slip rate of 1 to 8 mm/yr for the SDVFZ.

  19. Crustal architecture and tectonic evolution of the Cauvery Suture Zone, southern India

    NASA Astrophysics Data System (ADS)

    Chetty, T. R. K.; Yellappa, T.; Santosh, M.

    2016-11-01

    The Cauvery suture zone (CSZ) in southern India has witnessed multiple deformations associated with multiple subduction-collision history, with incorporation of the related accretionary belts sequentially into the southern continental margin of the Archaean Dharwar craton since Neoarchean to Neoproterozoic. The accreted tectonic elements include suprasubduction complexes of arc magmatic sequences, high-grade supracrustals, thrust duplexes, ophiolites, and younger intrusions that are dispersed along the suture. The intra-oceanic Neoarchean-Neoproterozoic arc assemblages are well exposed in the form of tectonic mélanges dominantly towards the eastern sector of the CSZ and are typically subjected to complex and multiple deformation events. Multi-scale analysis of structural elements with detailed geological mapping of the sub-regions and their structural cross sections, geochemical and geochronological data and integrated geophysical observations suggest that the CSZ is an important zone that preserves the imprints of multiple cycles of Precambrian plate tectonic regimes.

  20. SKS splitting results in central Italy and Dinaric region inside the AlpArray-CASE project

    NASA Astrophysics Data System (ADS)

    Salimbeni, S.; Prevolnik, S.; Pondrelli, S.; Molinari, I.; Stipcevic, J.; Kissling, E.; Šipka, V.; Herak, M.

    2017-12-01

    In the framework of the AlpArray project (AlpArray Seismic Network, 2015), the complementary "Central Adriatic Seismic Experiment" (CASE; AlpArray Seismic Network, 2016) was established as collaboration between ETH Zürich, University of Zagreb, INGV and Republic Hydrometeorological Service of Republic of Srpska. The CASE project consists of 9 temporary stations, installed in October 2016, located in Bosnia and Herzegovina, Croatia and Italy. Temporary broadband seismic stations, with the permanent stations present in the region shared by the Croatian Seismological Service and INGV, make an almost continuous transect cutting the Central-Southern Appenines, the central Adriatic region, central External Dinarides and finishing at the eastern margin of the Internal Dinarides. The presence of the the Apenninic and Dinarides slabs, verging in opposite directions and plunging along the opposite sides of the Adriatic plate, make this area a peculiar spot to understand the complex dynamic of the region. Various tomographic images (e.g. Bijwaard and Spakman, 2000; Piromallo and Morelli, 2003) shows not continuous slabs under the Appenines and the Dinarides, suggesting the presence of slab-gaps right beneath the region covered by the CASE experiment. Here we present the preliminary results of the SKS splitting analysis performed on the data recorded by the temporary and permanent seismic stations included in the CASE project. The new results, in combination with previous interpretation, will provide clues about how Northern and Southern Apennines are connected at depth, how the slab rollback of the Apennines thrust belt acted and if and how the Apennines are in relation with the Dinaric region. Together with the measurements from previous studies and from the AlpArray project, our new data will support the mapping of the seismic anisotropy deformation pattern from Western Alps to Pannonian region.

  1. 76 FR 34859 - Safety Zone; Augusta Southern Nationals Drag Boat Race, Savannah River, Augusta, GA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ...-AA00 Safety Zone; Augusta Southern Nationals Drag Boat Race, Savannah River, Augusta, GA AGENCY: Coast... Boat Race. The Augusta Southern Nationals Drag Boat Race will consist of a series of high-speed boat... hazards associated with the high-speed boat races. Discussion of Rule From July 14, 2011 through July 17...

  2. Seismic attenuation structure beneath Nazca Plate subduction zone in southern Peru

    NASA Astrophysics Data System (ADS)

    Jang, H.; Kim, Y.; Clayton, R. W.

    2017-12-01

    We estimate seismic attenuation in terms of quality factors, QP and QS using P and S phases, respectively, beneath Nazca Plate subduction zone between 10°S and 18.5°S latitude in southern Peru. We first relocate 298 earthquakes with magnitude ranges of 4.0-6.5 and depth ranges of 20-280 km. We measure t*, which is an integrated attenuation through the seismic raypath between the regional earthquakes and stations. The measured t* are inverted to construct three-dimensional attenuation structures of southern Peru. Checkerboard test results for both QP and QS structures ensure good resolution in the slab-dip transition zone between flat and normal slab subduction down to a depth of 200 km. Both QP and QS results show higher attenuation continued down to a depth of 50 km beneath volcanic arc and also beneath the Quimsachata volcano, the northernmost young volcano, located far east of the main volcanic front. We also observe high attenuation in mantle wedge especially beneath the normal subduction region in both QP and QS (100-130 in QP and 100-125 in QS) and slightly higher QP and QS beneath the flat-subduction and slab-dip transition regions. We plan to relate measured attenuation in the mantle wedge to material properties such as viscosity to understand the subduction zone dynamics.

  3. Structure and Deformation in the Transpressive Zone of Southern California Inferred from Seismicity, Velocity, and Qp Models

    NASA Astrophysics Data System (ADS)

    Hauksson, E.; Shearer, P.

    2004-12-01

    We synthesize relocated regional seismicity and 3D velocity and Qp models to infer structure and deformation in the transpressive zone of southern California. These models provide a comprehensive synthesis of the tectonic fabric of the upper to middle crust, and the brittle ductile transition zone that in some cases extends into the lower crust. The regional seismicity patterns in southern California are brought into focus when the hypocenters are relocated using the double difference method. In detail, often the spatial correlation between background seismicity and late Quaternary faults is improved as the hypocenters become more clustered, and the spatial patterns are more sharply defined. Along some of the strike-slip faults the seismicity clusters decrease in width and form alignments implying that in many cases the clusters are associated with a single fault. In contrast, the Los Angeles Basin seismicity remains mostly scattered, reflecting a 3D distribution of the tectonic compression. We present the results of relocating 327,000 southern California earthquakes that occurred between 1984 and 2002. In particular, the depth distribution is improved and less affected by layer boundaries in velocity models or other similar artifacts, and thus improves the definition of the brittle ductile transition zone. The 3D VP and VP/VS models confirm existing tectonic interpretations and provide new insights into the configuration of the geological structures in southern California. The models extend from the US-Mexico border in the south to the Coast Ranges and Sierra Nevada in the north, and have 15 km horizontal grid spacing and an average vertical grid spacing of 4 km, down to 22 km depth. The heterogeneity of the crustal structure as imaged in both the VP and VP/VS models is larger within the Pacific than the North America plate, reflecting regional asymmetric variations in the crustal composition and past tectonic processes. Similarly, the relocated seismicity is

  4. Subduction-Zone Metamorphic Pathway for Deep Carbon Cycling: Evidence from the Italian Alps and the Tianshan

    NASA Astrophysics Data System (ADS)

    Bebout, G. E.; Collins, N.; Cook-Kollars, J.; Angiboust, S.; Agard, P.; Scambelluri, M.; John, T.; Kump, L. R.

    2013-12-01

    Depending on the magnitude of the poorly constrained C flux in ultramafic rocks, on a global basis, sediments and altered oceanic crust (AOC) together deliver 70-95% of the C currently entering subduction zones. We are investigating extents of retention and metamorphic release of C in deeply subducted AOC and carbonate-rich sediment represented by HP/UHP meta-ophiolitic and metasedimentary rocks in the Italian Alps and in the Tianshan. Study of metapelite devolatilization in the same W. Alps suite (Bebout et al., 2013, Chem. Geol.) provides a geochemical framework for study of C behavior along prograde P-T paths similar to those experienced in forearcs of most modern subduction margins. Study of veins in the Tianshan affords examination of C mobility in UHP fluids, in later stages as metabasaltic rocks were fragmented in the subduction channel. Our results for sediments and AOC indicate impressive retention of oxidized C (carbonate) and reduced C (variably metamorphosed organic matter) to depths approaching those beneath arc volcanic fronts. In metasedimentary rocks, extensive isotopic exchange between the oxidized and reduced C resulted in shifts in both reservoirs toward upper mantle compositions. Much of the carbonate in metabasalts has C and O isotopic compositions overlapping with those for carbonate in AOC, with some HP/UHP metamorphic veins showing greater influence of organic C signatures from metasedimentary rocks. Calculations of prograde devolatilization histories using Perple-X demonstrate that, in most forearcs, very little decarbonation occurs in the more carbonate-rich rocks unless they are flushed by H2O-rich fluids from an external source, for example, from the hydrated ultramafic section of subducting slabs (cf. Gorman et al., 2006; G3) or from more nearby rocks experiencing dehydration (e.g., metapelites). A comparison of the most recently published thermal models for modern subduction zones (van Keken et al., 2011, JGR) with calculated and

  5. Interdependency of fission yeast Alp14/TOG and coiled coil protein Alp7 in microtubule localization and bipolar spindle formation.

    PubMed

    Sato, Masamitsu; Vardy, Leah; Angel Garcia, Miguel; Koonrugsa, Nirada; Toda, Takashi

    2004-04-01

    The Dis1/TOG family plays a pivotal role in microtubule organization. In fission yeast, Alp14 and Dis1 share an essential function in bipolar spindle formation. Here, we characterize Alp7, a novel coiled-coil protein that is required for organization of bipolar spindles. Both Alp7 and Alp14 colocalize to the spindle pole body (SPB) and mitotic spindles. Alp14 localization to these sites is fully dependent upon Alp7. Conversely, in the absence of Alp14, Alp7 localizes to the SPBs, but not mitotic spindles. Alp7 forms a complex with Alp14, where the C-terminal region of Alp14 interacts with the coiled-coil domain of Alp7. Intriguingly, this Alp14 C terminus is necessary and sufficient for mitotic spindle localization. Overproduction of either full-length or coiled-coil region of Alp7 results in abnormal V-shaped spindles and stabilization of interphase microtubules, which is induced independent of Alp14. Alp7 may be a functional homologue of animal TACC. Our results shed light on an interdependent relationship between Alp14/TOG and Alp7. We propose a two-step model that accounts for the recruitment of Alp7 and Alp14 to the SPB and microtubules.

  6. Younger Dryas equilibrium line altitudes and precipitation patterns in the Alps

    NASA Astrophysics Data System (ADS)

    Kerschner, Hanns; Moran, Andrew; Ivy-Ochs, Susan

    2016-04-01

    Moraine systems of the "Egesen Stadial" are widespread and easily identifiable features in the Alps. Absolute dating with terrestrial cosmogenic radionuclides shows that the maximum extent was reached during the early Younger Dryas (YD), probably as a reaction to the intense climatic downturn subsequent to Lateglacial Interstadial. In recent years, several new studies and the availability of high-quality laser-scan hillshades and orthophotos allowed a significant extension of the database of YD glaciers as "palaeoprecipitation gauges" to large hitherto unmapped regions in the Austrian and Swiss Alps. The equilibrium line altitude (ELA) of the glaciers and its lowering relative to the Little Ice Age ELA (dELA) shows a distinct and systematic spatial pattern. Along the northern slope of the Alps, dELAs are usually large (around 400 m and perhaps even more), while dELAs range around 200 m in the well sheltered areas of the central Alps, e.g. in the Engadine and in western Tyrol. Both stochastic glacier-climate models (e.g. Ohmura et al. 1992) and the heat- and mass balance equation (Kuhn 1981) allow the reconstruction of precipitation change under the assumption of a spatially constant summer temperature depression, which in turn can be estimated from biological proxies. This allows to draw the spatial pattern of precipitation change with considerable detail. Precipitation change is clearly controlled by the local relief like high mountain chains, deeply incised and long valleys and mountain passes. Generally the contrast between the northern fringe of the Alps and the interior was more pronounced than today. Climate in the Northern and and Northwestern Alps was rather wet with precipitation totals eventually exceeding modern annual sums. The central Alps received 20 - 30% less precipitation than today, mainly due to reduced winter precipitation. In the southern Alps, still scarce spatial information points to precipitation sums which were approximately similar to

  7. Interdependency of Fission Yeast Alp14/TOG and Coiled Coil Protein Alp7 in Microtubule Localization and Bipolar Spindle FormationD⃞

    PubMed Central

    Sato, Masamitsu; Vardy, Leah; Angel Garcia, Miguel; Koonrugsa, Nirada; Toda, Takashi

    2004-01-01

    The Dis1/TOG family plays a pivotal role in microtubule organization. In fission yeast, Alp14 and Dis1 share an essential function in bipolar spindle formation. Here, we characterize Alp7, a novel coiled-coil protein that is required for organization of bipolar spindles. Both Alp7 and Alp14 colocalize to the spindle pole body (SPB) and mitotic spindles. Alp14 localization to these sites is fully dependent upon Alp7. Conversely, in the absence of Alp14, Alp7 localizes to the SPBs, but not mitotic spindles. Alp7 forms a complex with Alp14, where the C-terminal region of Alp14 interacts with the coiled-coil domain of Alp7. Intriguingly, this Alp14 C terminus is necessary and sufficient for mitotic spindle localization. Overproduction of either full-length or coiled-coil region of Alp7 results in abnormal V-shaped spindles and stabilization of interphase microtubules, which is induced independent of Alp14. Alp7 may be a functional homologue of animal TACC. Our results shed light on an interdependent relationship between Alp14/TOG and Alp7. We propose a two-step model that accounts for the recruitment of Alp7 and Alp14 to the SPB and microtubules. PMID:14742702

  8. ALPS - A LINEAR PROGRAM SOLVER

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1994-01-01

    Linear programming is a widely-used engineering and management tool. Scheduling, resource allocation, and production planning are all well-known applications of linear programs (LP's). Most LP's are too large to be solved by hand, so over the decades many computer codes for solving LP's have been developed. ALPS, A Linear Program Solver, is a full-featured LP analysis program. ALPS can solve plain linear programs as well as more complicated mixed integer and pure integer programs. ALPS also contains an efficient solution technique for pure binary (0-1 integer) programs. One of the many weaknesses of LP solvers is the lack of interaction with the user. ALPS is a menu-driven program with no special commands or keywords to learn. In addition, ALPS contains a full-screen editor to enter and maintain the LP formulation. These formulations can be written to and read from plain ASCII files for portability. For those less experienced in LP formulation, ALPS contains a problem "parser" which checks the formulation for errors. ALPS creates fully formatted, readable reports that can be sent to a printer or output file. ALPS is written entirely in IBM's APL2/PC product, Version 1.01. The APL2 workspace containing all the ALPS code can be run on any APL2/PC system (AT or 386). On a 32-bit system, this configuration can take advantage of all extended memory. The user can also examine and modify the ALPS code. The APL2 workspace has also been "packed" to be run on any DOS system (without APL2) as a stand-alone "EXE" file, but has limited memory capacity on a 640K system. A numeric coprocessor (80X87) is optional but recommended. The standard distribution medium for ALPS is a 5.25 inch 360K MS-DOS format diskette. IBM, IBM PC and IBM APL2 are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation.

  9. Imprint of Southern Red Sea Major Tectonic Zone In A New Bouguer Anomaly Map of Southern Yemen Margin

    NASA Astrophysics Data System (ADS)

    Blecha, V.

    A new Bouguer anomaly map of western part of southern Yemen margin has been compiled. Densities of rock samples from main geological units (Precambrian base- ment, Mesozoic sediments, Tertiary volcanites) have been measured and used for grav- ity modeling. Regional gravity map indicates decrease of thickness of continental crust from volcanites of the Yemen Trap Series towards the coast of the Gulf of Aden. Most remarkable feature in the map of residual anomalies is a positive anomaly over the Dhala graben. The Dhala graben is a prominent geological structure in the area of study trending parallel to the Red Sea axis. Gravity modeling on a profile across the Dhala graben presumes intrusive plutonic rocks beneath the graben. There are two other areas in the southwestern tip of Arabia, which have essentially the same struc- tural position as the Dhala graben: the Jabal Tirf volcanic rift zone in the southern Saudi Arabia and Jabal Hufash extensional zone in northern Yemen. All three areas extend along the line trending parallel to the Red Sea axis with length of about 500 km. The line coincides with the axis of Afar (Danakil) depression after Arabia is shifted and rotated back to Africa. These facts imply conclusion that the Oligocene - Early Miocene magmatic activity on the Jabal Tirf - Dhala lineament is related to the same original deep tectonic zone, forming present-day Afar depression and still active.

  10. Possible detachment zone in Precambrian rocks of Kanjamalai Hills, Cauvery Suture Zone, Southern India: Implications to accretionary tectonics

    NASA Astrophysics Data System (ADS)

    Mohanty, D. P.; Chetty, T. R. K.

    2014-07-01

    Existence of a possible detachment zone at Elampillai region, NW margin of Kanjamalai Hills, located in the northern part of Cauvery Suture Zone (CSZ), Southern India, is reported here for the first time. Detailed structural mapping provides anatomy of the zone, which are rarely preserved in Precambrian high grade terranes. The detachment surface separates two distinct rock units of contrasting lithological and structural characters: the upper and lower units. The detachment zone is characterized by a variety of fold styles with the predominance of tight isoclinal folds with varied plunge directions, limb rotations and the hinge line variations often leading to lift-off fold like geometries and deformed sheath folds. Presence of parasitic folding and associated penetrative strains seem to be controlled by differences in mechanical stratigraphy, relative thicknesses of the competent and incompetent units, and the structural relief of the underlying basement. Our present study in conjunction with other available geological, geochemical and geochronological data from the region indicates that the structures of the detachment zone are genetically related to thrust tectonics forming a part of subduction-accretion-collision tectonic history of the Neoproterozoic Gondwana suture.

  11. The topography of a continental indenter: The interplay between crustal deformation, erosion, and base level changes in the eastern Southern Alps

    PubMed Central

    Heberer, B.; Prasicek, G.; Neubauer, F.; Hergarten, S.

    2017-01-01

    Abstract The topography of the eastern Southern Alps (ESA) reflects indenter tectonics causing crustal shortening, surface uplift, and erosional response. Fluvial drainages were perturbed by Pleistocene glaciations that locally excavated alpine valleys. The Late Miocene desiccation of the Mediterranean Sea and the uplift of the northern Molasse Basin led to significant base level changes in the far field of the ESA and the Eastern Alps (EA), respectively. Among this multitude of mechanisms, the processes that dominate the current topographic evolution of the ESA and the ESA‐EA drainage divide have not been identified. We demonstrate the expected topographic effects of each mechanism in a one‐dimensional model and compare them with observed channel metrics. We find that the normalized steepness index increases with uplift rate and declines from the indenter tip in the northwest to the foreland basin in the southeast. The number and amplitude of knickpoints and the distortion in longitudinal channel profiles similarly decrease toward the east. Changes in slope of χ‐transformed channel profiles coincide spatially with the Valsugana‐Fella fault linking crustal stacking and uplift induced by indenter tectonics with topographic evolution. Gradients in χ across the ESA‐EA drainage divide imply an ongoing, north directed shift of the Danube‐ESA watershed that is most likely driven by a base level rise in the northern Molasse basin. We conclude that the regional uplift pattern controls the geometry of ESA‐EA channels, while base level changes in the far field control the overall architecture of the orogen by drainage divide migration. PMID:28344912

  12. The topography of a continental indenter: The interplay between crustal deformation, erosion, and base level changes in the eastern Southern Alps.

    PubMed

    Robl, J; Heberer, B; Prasicek, G; Neubauer, F; Hergarten, S

    2017-01-01

    The topography of the eastern Southern Alps (ESA) reflects indenter tectonics causing crustal shortening, surface uplift, and erosional response. Fluvial drainages were perturbed by Pleistocene glaciations that locally excavated alpine valleys. The Late Miocene desiccation of the Mediterranean Sea and the uplift of the northern Molasse Basin led to significant base level changes in the far field of the ESA and the Eastern Alps (EA), respectively. Among this multitude of mechanisms, the processes that dominate the current topographic evolution of the ESA and the ESA-EA drainage divide have not been identified. We demonstrate the expected topographic effects of each mechanism in a one-dimensional model and compare them with observed channel metrics. We find that the normalized steepness index increases with uplift rate and declines from the indenter tip in the northwest to the foreland basin in the southeast. The number and amplitude of knickpoints and the distortion in longitudinal channel profiles similarly decrease toward the east. Changes in slope of χ -transformed channel profiles coincide spatially with the Valsugana-Fella fault linking crustal stacking and uplift induced by indenter tectonics with topographic evolution. Gradients in χ across the ESA-EA drainage divide imply an ongoing, north directed shift of the Danube-ESA watershed that is most likely driven by a base level rise in the northern Molasse basin. We conclude that the regional uplift pattern controls the geometry of ESA-EA channels, while base level changes in the far field control the overall architecture of the orogen by drainage divide migration.

  13. Seismic anisotropy in localized shear zones versus distributed tectonic fabrics: examples from geologic and seismic observations in western North America and the European Alps

    NASA Astrophysics Data System (ADS)

    Mahan, Kevin H.; Schulte-Pelkum, Vera; Condit, Cailey; Leydier, Thomas; Goncalves, Philippe; Raju, Anissha; Brownlee, Sarah; Orlandini, Omero F.

    2017-04-01

    Modern methods for detecting seismic anisotropy offer an array of promising tools for imaging deep crustal deformation but also present challenges, especially with respect to potential biases in both the detection methods themselves as well as in competing processes for localized versus distributed deformation. We address some of these issues from the geophysical perspective by employing azimuthally dependent amplitude and polarity variations in teleseismic receiver functions combined with a compilation of published rock elasticity tensors from middle and deep crustal rocks, and from the geological perspective through studies of shear zone deformation processes. Examples are highlighted at regional and outcrop scales from western North America and the European Alps. First, in regional patterns, strikes of seismically detected fabric from receiver functions in California show a strong alignment with current strike-slip motion between the Pacific and North American plates, with high signal strength near faults and from depths below the brittle-ductile transition suggesting these faults have deep ductile roots. In contrast, despite NE-striking shear zones being the most prominent features portrayed on Proterozoic tectonic maps of the southwestern USA, receiver function anisotropy from the central Rocky Mountain region appears to more prominently reflect broadly distributed Proterozoic fabric domains that preceded late-stage localized shear zones. Possible causes for the discrepancy fall into two categories: those that involve a) bias in seismic sampling and/or b) deformation processes that lead to either weaker anisotropy in the shear zones compared to adjacent domains or to a symmetry that is different from that conventionally assumed. Most of these explanations imply that the seismically sampled domains contain important structural information that is distinct from the shear zones. The second set of examples stem from studies of outcrop-scale shear zones in upper

  14. Slab detachment under the Eastern Alps seen by seismic anisotropy

    PubMed Central

    Qorbani, Ehsan; Bianchi, Irene; Bokelmann, Götz

    2015-01-01

    We analyze seismic anisotropy for the Eastern Alpine region by inspecting shear-wave splitting from SKS and SKKS phases. The Eastern Alpine region is characterized by a breakdown of the clear mountain-chain-parallel fast orientation pattern that has been previously documented for the Western Alps and for the western part of the Eastern Alps. The main interest of this paper is a more detailed analysis of the anisotropic character of the Eastern Alps, and the transition to the Carpathian–Pannonian region. SK(K)S splitting measurements reveal a rather remarkable lateral change in the anisotropy pattern from the west to the east of the Eastern Alps with a transition area at about 12°E. We also model the backazimuthal variation of the measurements by a vertical change of anisotropy. We find that the eastern part of the study area is characterized by the presence of two layers of anisotropy, where the deeper layer has characteristics similar to those of the Central Alps, in particular SW–NE fast orientations of anisotropic axes. We attribute the deeper layer to a detached slab from the European plate. Comparison with tomographic studies of the area indicates that the detached slab might possibly connect with the lithosphere that is still in place to the west of our study area, and may also connect with the slab graveyard to the East, at the depth of the upper mantle transition zone. On the other hand, the upper layer has NW–SE fast orientations coinciding with a low-velocity layer which is found above a more-or-less eastward dipping high-velocity body. The anisotropy of the upper layer shows large-scale NW–SE fast orientation, which is consistent with the presence of asthenospheric flow above the detached slab foundering into the deeper mantle. PMID:25843968

  15. Slab detachment under the Eastern Alps seen by seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Qorbani, Ehsan; Bianchi, Irene; Bokelmann, Götz

    2015-01-01

    We analyze seismic anisotropy for the Eastern Alpine region by inspecting shear-wave splitting from SKS and SKKS phases. The Eastern Alpine region is characterized by a breakdown of the clear mountain-chain-parallel fast orientation pattern that has been previously documented for the Western Alps and for the western part of the Eastern Alps. The main interest of this paper is a more detailed analysis of the anisotropic character of the Eastern Alps, and the transition to the Carpathian-Pannonian region. SK(K)S splitting measurements reveal a rather remarkable lateral change in the anisotropy pattern from the west to the east of the Eastern Alps with a transition area at about 12°E. We also model the backazimuthal variation of the measurements by a vertical change of anisotropy. We find that the eastern part of the study area is characterized by the presence of two layers of anisotropy, where the deeper layer has characteristics similar to those of the Central Alps, in particular SW-NE fast orientations of anisotropic axes. We attribute the deeper layer to a detached slab from the European plate. Comparison with tomographic studies of the area indicates that the detached slab might possibly connect with the lithosphere that is still in place to the west of our study area, and may also connect with the slab graveyard to the East, at the depth of the upper mantle transition zone. On the other hand, the upper layer has NW-SE fast orientations coinciding with a low-velocity layer which is found above a more-or-less eastward dipping high-velocity body. The anisotropy of the upper layer shows large-scale NW-SE fast orientation, which is consistent with the presence of asthenospheric flow above the detached slab foundering into the deeper mantle.

  16. Thermal and climatic zoning for construction in the southern part of Chile

    NASA Astrophysics Data System (ADS)

    Verichev, Konstantin; Salimova, Alisa; Carpio, Manuel

    2018-05-01

    This paper presents the results of the updated boundaries of thermal zones in the tree southern regions of Chile, based on the method of heating degrees-days according to hourly temperature measurements at meteorological stations in the last decade. The Ministry of Housing and Urban Planning of Chile has not updated these boundaries since 1999. Using the Climatic Severity index method, the relative energy consumption of dwellings was analyzed for cooling and heating in summer and winter periods, respectively. The analysis revealed that, within the limits of a single thermal zone, the energy costs for cooling in the summer period of the same house may differ by 50 %.

  17. Statistical downscaling of regional climate scenarios for the French Alps : Impacts on snow cover

    NASA Astrophysics Data System (ADS)

    Rousselot, M.; Durand, Y.; Giraud, G.; Mérindol, L.; Déqué, M.; Sanchez, E.; Pagé, C.; Hasan, A.

    2010-12-01

    Mountain areas are particularly vulnerable to climate change. Owing to the complexity of mountain terrain, climate research at scales relevant for impacts studies and decisive for stakeholders is challenging. A possible way to bridge the gap between these fine scales and those of the general circulation models (GCMs) consists of combining high-resolution simulations of Regional Climate Models (RCMs) to statistical downscaling methods. The present work is based on such an approach. It aims at investigating the impacts of climate change on snow cover in the French Alps for the periods 2021-2050 and 2071-2100 under several IPCC hypotheses. An analogue method based on high resolution atmospheric fields from various RCMs and climate reanalyses is used to simulate local climate scenarios. These scenarios, which provide meteorological parameters relevant for snowpack evolution, subsequently feed the CROCUS snow model. In these simulations, various sources of uncertainties are thus considered (several greenhouse gases emission scenarios and RCMs). Results are obtained for different regions of the French Alps at various altitudes. For all scenarios, temperature increase is relatively uniform over the Alps. This regional warming is larger than that generally modeled at the global scale (IPCC, 2007), and particularly strong in summer. Annual precipitation amounts seem to decrease, mainly as a result of decreasing precipitation trends in summer and fall. As a result of these climatic evolutions, there is a general decrease of the mean winter snow depth and seasonal snow duration for all massifs. Winter snow depths are particularly reduced in the Northern Alps. However, the impact on seasonal snow duration is more significant in the Southern and Extreme Southern Alps, since these regions are already characterized by small winter snow depths at low elevations. Reference : IPCC (2007a). Climate change 2007 : The physical science basis. Contribution of working group I to the

  18. The mafic-ultramafic complex of Aniyapuram, Cauvery Suture Zone, southern India: Petrological and geochemical constraints for Neoarchean suprasubduction zone tectonics

    NASA Astrophysics Data System (ADS)

    Yellappa, T.; Venkatasivappa, V.; Koizumi, T.; Chetty, T. R. K.; Santosh, M.; Tsunogae, T.

    2014-12-01

    Several Precambrian mafic-ultramafic complexes occur along the Cauvery Suture Zone (CSZ) in Southern Granulite Terrain, India. Their origin, magmatic evolution and relationship with the associated high-grade rocks have not been resolved. The Aniyapuram Mafic-Ultramafic Complex (AMUC), the focus of the present study in southern part of the CSZ, is dominantly composed of peridotites, pyroxenites, gabbros, metagabbros/mafic granulites, hornblendites, amphibolites, plagiogranites, felsic granulites and ferruginous cherts. The rock types in the AMUC are structurally emplaced within hornblende gneiss (TTG) basement rocks and are highly deformed. The geochemical signature of the amphibolites indicates tholeiitic affinity for the protolith with magma generation in island arc-setting. N-MORB normalized pattern of the amphibolites show depletion in HFS-elements (P, Zr, Sm, Ti, and Y) and enrichment of LIL-elements (Rb, Ba, Th, Sr) with negative Nb anomalies suggesting involvement of subduction component in the depleted mantle source and formation in a supra-subduction zone tectonic setting. Our new results when correlated with the available age data suggest that the lithological association of AMUC represent the remnants of the Neoarchean oceanic lithosphere.

  19. ALPS: A Linear Program Solver

    NASA Technical Reports Server (NTRS)

    Ferencz, Donald C.; Viterna, Larry A.

    1991-01-01

    ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program.

  20. Low Velocity Zones along the San Jacinto Fault, Southern California, inferred from Local Earthquakes

    NASA Astrophysics Data System (ADS)

    Li, Z.; Yang, H.; Peng, Z.; Ben-Zion, Y.; Vernon, F.

    2013-12-01

    Natural fault zones have regions of brittle damage leading to a low-velocity zone (LVZ) in the immediate vicinity of the main fault interface. The LVZ may amplify ground motion, modify rupture propagation, and impact derivation of earthquke properties. Here we image low-velocity fault zone structures along the San Jacinto Fault (SJF), southern California, using waveforms of local earthquakes that are recorded at several dense arrays across the SJFZ. We use generalized ray theory to compute synthetic travel times to track the direct and FZ-reflected waves bouncing from the FZ boundaries. This method can effectively reduce the trade-off between FZ width and velocity reduction relative to the host rock. Our preliminary results from travel time modeling show the clear signature of LVZs along the SJF, including the segment of the Anza seismic gap. At the southern part near the trifrication area, the LVZ of the Clark Valley branch (array JF) has a width of ~200 m with ~55% reduction in Vp and Vs. This is consistent with what have been suggested from previous studies. In comparison, we find that the velocity reduction relative to the host rock across the Anza seismic gap (array RA) is ~50% for both Vp and Vs, nearly as prominent as that on the southern branches. The width of the LVZ is ~230 m. In addition, the LVZ across the Anza gap appears to locate in the northeast side of the RA array, implying potential preferred propagation direction of past ruptures.

  1. Formation of albitite-hosted uranium within IOCG systems: the Southern Breccia, Great Bear magmatic zone, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Montreuil, Jean-François; Corriveau, Louise; Potter, Eric G.

    2015-03-01

    Uranium and polymetallic U mineralization hosted within brecciated albitites occurs one kilometer south of the magnetite-rich Au-Co-Bi-Cu NICO deposit in the southern Great Bear magmatic zone (GBMZ), Canada. Concentrations up to 1 wt% U are distributed throughout a 3 by 0.5 km albitization corridor defined as the Southern Breccia zone. Two distinct U mineralization events are observed. Primary uraninite precipitated with or without pyrite-chalcopyrite ± molybdenite within magnetite-ilmenite-biotite-K-feldspar-altered breccias during high-temperature potassic-iron alteration. Subsequently, pitchblende precipitated in earthy hematite-specular hematite-chlorite veins associated with a low-temperature iron-magnesium alteration. The uraninite-bearing mineralization postdates sodic (albite) and more localized high-temperature potassic-iron (biotite-magnetite ± K-feldspar) alteration yet predates potassic (K-feldspar), boron (tourmaline) and potassic-iron-magnesium (hematite ± K-feldspar ± chlorite) alteration. The Southern Breccia zone shares attributes of the Valhalla (Australia) and Lagoa Real (Brazil) albitite-hosted U deposits but contains greater iron oxide contents and lower contents of riebeckite and carbonates. Potassium, Ni, and Th are also enriched whereas Zr and Sr are depleted with respect to the aforementioned albitite-hosted U deposits. Field relationships, geochemical signatures and available U-Pb dates on pre-, syn- and post-mineralization intrusions place the development of the Southern Breccia and the NICO deposit as part of a single iron oxide alkali-altered (IOAA) system. In addition, this case example illustrates that albitite-hosted U deposits can form in albitization zones that predate base and precious metal ore zones in a single IOAA system and become traps for U and multiple metals once the tectonic regime favors fluid mixing and oxidation-reduction reactions.

  2. Sensitivity of Daily Doses of Biologically Active Radiation, To Ozone Changes In Southern French Alps

    NASA Astrophysics Data System (ADS)

    de La Casinière, A.; Touré, M. L.; Masserot, D.; Lenoble, J.; Cabot, T.; Pinedo Vega, J. L.

    Global UV irradiance spectra we re recorded each half an hour between sunrise and sunset, along the year 2000 in Briançon (1300m asl) at the CEMBREU (Centre Européen Médical Bioclimatique de Recherche et d'Enseignement Universitaire), a site of the French spectral UV network in Southern Alps. From these spectra are retrieved atmospheric transmissivities corresponding to daily doses of various biologically active radiation. A transmissivity is defined as the ratio of the ground level value of a daily dose to the extra -atmospheric value of this daily dose. The daily doses studied relate to UVB, erythema, DNA damage, and plant damage. Multiple linear correlations of the various transmissivities with the three predictors (daily sunshine fraction), µmin (cosine of the daily minimum SZA), and (daily total ozone column) assumed to be independent variables, are done for year 2000. These correlations permit to assess the mean sensitivities of the various transmissivities, to changes in for different cloud cover conditions in Briançon. The variations of each sensitivity is studied as a function of , µmin and . Comparing the results obtained with those given in the literature, we find for = 1 (that is for a strong probability of clear sky conditions) and SZA min = 45°, a radiation amplification factor (RAF) of the erythemal daily dose equal to 1.1 when = 285 DU, and to 1.4 when = 315 DU.

  3. Origin and age of zircon-bearing chromitite layers from the Finero phlogopite peridotite (Ivrea-Verbano Zone, Western Alps) and geodynamic consequences

    NASA Astrophysics Data System (ADS)

    Zanetti, Alberto; Giovanardi, Tommaso; Langone, Antonio; Tiepolo, Massimo; Wu, Fu-Yuan; Dallai, Luigi; Mazzucchelli, Maurizio

    2016-10-01

    An investigation has been performed on three chromitite layers segregated in dunite bodies of the Phlogopite Peridotite mantle unit in the Finero complex (FPP, Ivrea-Verbano Zone, Southern Alps) aimed at providing new constraints to their origin and evolution. Field relationships, the sub-chondritic Hf isotopic composition of the zircons (εHf(188) as low as - 5.4), the heavy O isotopic composition of zircons and pyroxenes (δ18O up to 6.9‰), the strict similarity of the trace element composition between the clinopyroxenes and amphiboles from the chromitites and those from the phlogopite harzburgites and pyroxenites forming the typical FPP association, as well as the REE composition of zircons, which approaches equilibrium with the associate clinopyroxene, suggest that the studied chromitites were segregated from melts, highly contaminated from continental crust, during the pervasive cycle of metasomatism recorded by the FPP. An LA-ICP-HRMS survey of chromitite zircon grains has provided Early Jurassic U-Pb ages mostly between 199 ± 3 Ma and 178 ± 2 Ma, with a pronounced peak at 187 Ma. Relevant exceptions are inherited domains of two grains giving Triassic ages of 242 ± 7 Ma and 229 ± 7 Ma, and a third homogeneous zircon giving 208 ± 3 Ma. Our geochronological data and those reported in the literature show that the FPP chromitites have zircon populations with different internal CL textures, but the same sub-chondritic Hf isotopic composition, which define an overall U-Pb age span from 290 Ma to 180. The segregation of the chromitite layers and the main pervasive metasomatism likely occurred in the Early Permian (in a post-collisional, transtensional setting) or before (possibly, in a subduction-related setting). The rejuvenation of the zircon ages was accompanied by a progressive disappearance of the internal zoning, interpreted as the result of a prolonged residence at mantle depths with progressive re-equilibration of the U-Pb system due to thermal

  4. Immediate and delayed signal of slab breakoff in Oligo/Miocene Molasse deposits from the European Alps

    PubMed Central

    Schlunegger, Fritz; Castelltort, Sébastien

    2016-01-01

    High-resolution 32–20 Ma-old stratigraphic records from the Molasse foreland basin situated north of the Alps, and Gonfolite Lombarda conglomerates deposited on the southern Alpine margin, document two consecutive sedimentary responses - an immediate and delayed response - to slab breakoff beneath the central Alps c. 32–30 Ma ago. The first signal, which occurred due to rebound and surface uplift in the Alps, was a regional and simultaneous switch from basin underfill to overfill at 30 Ma paired with shifts to coarse-grained depositional environments in the foreland basin. The second signal, however, arrived several million years after slab breakoff and was marked by larger contributions of crystalline clasts in the conglomerates, larger clast sizes, larger sediment fluxes and shifts to more proximal facies. We propose that this secondary pulse reflects a delayed whiplash-type erosional response to surface uplift, where erosion and sediment flux became amplified through positive feedbacks once larger erosional thresholds of crystalline bedrock were exceeded. PMID:27510939

  5. Evidences for the austroalpine - southalpine up-doming after the end of the variscan orogenesis (central and eastern alps)

    NASA Astrophysics Data System (ADS)

    Martin, S.; Tumiati, S.

    2003-04-01

    The structural and petrographic studies of the basement units in the Alpine region, independently from their present tectonic setting in the nappe pile, suggest that at the end of the Variscan orogenesis they were in such a position that they suffered relevant up-doming and cooling since Late Carboniferous (Thöni, 1981; Mottana et al., 1985; Martin et al., 1996; Bertotti et al., 1999). This up-doming has been interpreted as due to an isostatic rebound related to the detachment of the slab after the cessation of the subduction at the end of the Variscan orogenesis (Neubauer and Handler, 2000; Ranalli, 2003). The metamorphic setting of the Southalpine basement between the Tonale pass and Lake Maggiore in the Southern Alps, is due to processes which, by extension denudation and erosion, locally took to the surface portions of middle-to-high grade basement, within a horst-graben environment (Cassinis et al., 1997). The basements of the Orobic, Lake Como and Lake Maggiore areas are composed of kyanite-garnet or sillimanite-bearing schists (e.g., Gneiss di Morbegno, Scisti di Edolo, Scisti dei Laghi; Boriani et al., 1990; Siletto et al., 1993), or of low grade schists (e.g., Filladi di Ambria) intruded by Early Permian plutons, covered by continental and volcanic deposits of Late Carboniferous to Permian age, after a marked unconformity (Cadel et al., 1996). The thickness of this clastic cover ranges between a few hundreds to thousands of meters; the clast compositions suggest a low-grade basement as a dominant source; the structures indicate alternance of uplift and collapse and continue deformation during sedimentation (Cassinis et al., 1974). Most of the Upper Austroalpine units of the central and eastern Alps (e.g., Tonale nappe, Languard, Ortles and Campo units) have structural and lithological similarities with the Orobic, Lake Como and Lake Maggiore basement units confirming their appartenance to the same pre-Alpine paleogeographic environment which suffered up

  6. Triggered Slow Slip and Afterslip on the Southern Hikurangi Subduction Zone Following the Kaikōura Earthquake

    NASA Astrophysics Data System (ADS)

    Wallace, Laura M.; Hreinsdóttir, Sigrún; Ellis, Susan; Hamling, Ian; D'Anastasio, Elisabetta; Denys, Paul

    2018-05-01

    The 2016 MW7.8 Kaikōura earthquake ruptured a complex sequence of strike-slip and reverse faults in New Zealand's northeastern South Island. In the months following the earthquake, time-dependent inversions of Global Positioning System and interferometric synthetic aperture radar data reveal up to 0.5 m of afterslip on the subduction interface beneath the northern South Island underlying the crustal faults that ruptured in the earthquake. This is clear evidence that the far southern end of the Hikurangi subduction zone accommodates plate motion. The MW7.8 earthquake also triggered widespread slow slip over much of the subduction zone beneath the North Island. The triggered slow slip included immediate triggering of shallow (<15 km), short (2-3 weeks) slow slip events along much of the east coast, and deep (>30 km), long-term (>1 year) slow slip beneath the southern North Island. The southern Hikurangi slow slip was likely triggered by large (0.5-1.0 MPa) static Coulomb stress increases.

  7. Steady-State ALPS for Real-Valued Problems

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.

    2009-01-01

    The two objectives of this paper are to describe a steady-state version of the Age-Layered Population Structure (ALPS) Evolutionary Algorithm (EA) and to compare it against other GAs on real-valued problems. Motivation for this work comes from our previous success in demonstrating that a generational version of ALPS greatly improves search performance on a Genetic Programming problem. In making steady-state ALPS some modifications were made to the method for calculating age and the method for moving individuals up layers. To demonstrate that ALPS works well on real-valued problems we compare it against CMA-ES and Differential Evolution (DE) on five challenging, real-valued functions and on one real-world problem. While CMA-ES and DE outperform ALPS on the two unimodal test functions, ALPS is much better on the three multimodal test problems and on the real-world problem. Further examination shows that, unlike the other GAs, ALPS maintains a genotypically diverse population throughout the entire search process. These findings strongly suggest that the ALPS paradigm is better able to avoid premature convergence then the other GAs.

  8. 13 CFR 120.840 - Accredited Lenders Program (ALP).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (ALP). (a) General. Under the ALP program, SBA designates qualified CDCs as ALP CDCs, gives them... approval and servicing actions. (b) Application. A CDC must apply for ALP status to the Lead SBA Office.... (c) Eligibility. In order for a CDC to be eligible to receive ALP status, its application must show...

  9. 13 CFR 120.840 - Accredited Lenders Program (ALP).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (ALP). (a) General. Under the ALP program, SBA designates qualified CDCs as ALP CDCs, gives them... approval and servicing actions. (b) Application. A CDC must apply for ALP status to the Lead SBA Office.... (c) Eligibility. In order for a CDC to be eligible to receive ALP status, its application must show...

  10. 13 CFR 120.840 - Accredited Lenders Program (ALP).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (ALP). (a) General. Under the ALP program, SBA designates qualified CDCs as ALP CDCs, gives them... approval and servicing actions. (b) Application. A CDC must apply for ALP status to the Lead SBA Office.... (c) Eligibility. In order for a CDC to be eligible to receive ALP status, its application must show...

  11. 13 CFR 120.840 - Accredited Lenders Program (ALP).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (ALP). (a) General. Under the ALP program, SBA designates qualified CDCs as ALP CDCs, gives them... approval and servicing actions. (b) Application. A CDC must apply for ALP status to the Lead SBA Office.... (c) Eligibility. In order for a CDC to be eligible to receive ALP status, its application must show...

  12. 13 CFR 120.840 - Accredited Lenders Program (ALP).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (ALP). (a) General. Under the ALP program, SBA designates qualified CDCs as ALP CDCs, gives them... approval and servicing actions. (b) Application. A CDC must apply for ALP status to the Lead SBA Office.... (c) Eligibility. In order for a CDC to be eligible to receive ALP status, its application must show...

  13. Nannofossil biostratigraphy, strontium and carbon isotope stratigraphy, cyclostratigraphy and an astronomically calibrated duration of the Late Campanian Radotruncana calcarata Zone

    PubMed Central

    Wagreich, Michael; Hohenegger, Johann; Neuhuber, Stephanie

    2012-01-01

    A section from the southern (Austro-Alpine Northern Calcareous Alps) margin of the Penninic Ocean in the NW Tethys realm of Late Campanian age is investigated stratigraphically. Plankton foraminifer and nannofossil biostratigraphy designate the presence of the Globotruncana ventricosa Zone and the Radotruncana (Globotruncanita) calcarata Zone, and standard nannofossil zones CC21–UC15cTP and CC22ab–UC15deTP. The combination of carbon isotope stratigraphy, strontium isotopes, and cyclostratigraphy allows a detailed chronostratigraphic correlation. Periodicity was obtained by power spectral analysis, sinusoidal regression, and Morlet wavelets. The duration of the calcarata Total Range Zone is calculated by orbital cyclicity expressed in thickness data of limestone–marl rhythmites and stable carbon isotope data. Precessional, obliquity, and short and long eccentricity cycles are identified and give an extent of c. 806 kyr for the zone. Mean sediment accumulation rates are as low as 1.99 cm/kyr and correspond well to sediment accumulation rates in similar settings. We further discuss chronostratigraphic implications of our data. PMID:27087718

  14. Nannofossil biostratigraphy, strontium and carbon isotope stratigraphy, cyclostratigraphy and an astronomically calibrated duration of the Late Campanian Radotruncana calcarata Zone.

    PubMed

    Wagreich, Michael; Hohenegger, Johann; Neuhuber, Stephanie

    2012-12-01

    A section from the southern (Austro-Alpine Northern Calcareous Alps) margin of the Penninic Ocean in the NW Tethys realm of Late Campanian age is investigated stratigraphically. Plankton foraminifer and nannofossil biostratigraphy designate the presence of the Globotruncana ventricosa Zone and the Radotruncana ( Globotruncanita ) calcarata Zone, and standard nannofossil zones CC21-UC15c TP and CC22ab-UC15de TP . The combination of carbon isotope stratigraphy, strontium isotopes, and cyclostratigraphy allows a detailed chronostratigraphic correlation. Periodicity was obtained by power spectral analysis, sinusoidal regression, and Morlet wavelets. The duration of the calcarata Total Range Zone is calculated by orbital cyclicity expressed in thickness data of limestone-marl rhythmites and stable carbon isotope data. Precessional, obliquity, and short and long eccentricity cycles are identified and give an extent of c. 806 kyr for the zone. Mean sediment accumulation rates are as low as 1.99 cm/kyr and correspond well to sediment accumulation rates in similar settings. We further discuss chronostratigraphic implications of our data.

  15. Lithospheric structure of the southern French Alps inferred from broadband analysis

    NASA Astrophysics Data System (ADS)

    Bertrand, E.; Deschamps, A.

    2000-11-01

    Broadband receiver functions analysis is commonly used to evaluate the fine-scale S-velocity structure of the lithosphere. We analyse teleseismic P-waves and their coda from 30 selected teleseismic events recorded at three seismological stations of to the French TGRS network in the Alpes Maritimes. Receiver functions are computed in the time domain using an SVD matrix inversion method. Dipping Moho and lateral heterogeneities beneath the array are inferred from the amplitude, arrival time and polarity of locally-generated PS phases. We propose that the Moho dips 11° towards 25°±10°N below station CALF, in the outer part of the Alpine belt. At this station, we determine a Moho depth of about 20±2 km; the same depth is suggested below SAOF station also located in the fold-trust belt. Beneath station STET located in the inner part of the Alpine belt, the Moho depth increases to 30 km and dips towards the N-NW. Moreover, 1D-modelling of summed receiver function from STET station constrains a crustal structure significantly different from that observed at stations located in the outer part of the Alps. Indeed, beneath CALF and SAOF stations we need a 2 km thick shallow low velocity layer to fit best the observed receiver functions whereas this layer seems not to be present beneath STET station. Because recent P-coda studies have shown that near-receiver scattering can dominate teleseismic P-wave recordings in tectonically complicated areas, we account for effect of scattering energy in our records from array measurements. As the array aperture is wide relative to the heterogeneity scale length in the area, the array analysis produces only smooth imaging of scatterers beneath the stations.

  16. Effects of large deep-seated landslides on hillslope morphology, western Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Korup, Oliver

    2006-03-01

    Morphometric analysis and air photo interpretation highlight geomorphic imprints of large landslides (i.e., affecting ≥1 km2) on hillslopes in the western Southern Alps (WSA), New Zealand. Large landslides attain kilometer-scale runout, affect >50% of total basin relief, and in 70% are slope clearing, and thus relief limiting. Landslide terrain shows lower mean local relief, relief variability, slope angles, steepness, and concavity than surrounding terrain. Measuring mean slope angle smoothes out local landslide morphology, masking any relationship between large landslides and possible threshold hillslopes. Large failures also occurred on low-gradient slopes, indicating persistent low-frequency/high-magnitude hillslope adjustment independent of fluvial bedrock incision. At the basin and hillslope scale, slope-area plots partly constrain the effects of landslides on geomorphic process regimes. Landslide imprints gradually blend with relief characteristics at orogen scale (102 km), while being sensitive to length scales of slope failure, topography, sampling, and digital elevation model resolution. This limits means of automated detection, and underlines the importance of local morphologic contrasts for detecting large landslides in the WSA. Landslide controls on low-order drainage include divide lowering and shifting, formation of headwater basins and hanging valleys, and stream piracy. Volumes typically mobilized, yet still stored in numerous deposits despite high denudation rates, are >107 m3, and theoretically equal to 102 years of basin-wide debris production from historic shallow landslides; lack of absolute ages precludes further estimates. Deposit size and mature forest cover indicate residence times of 101-104 years. On these timescales, large landslides require further attention in landscape evolution models of tectonically active orogens.

  17. Late Quaternary glaciation of the Upper Soca River Region (Southern Julian Alps, NW Slovenia)

    USGS Publications Warehouse

    Bavec, Milos; Tulaczyk, Slawek M.; Mahan, Shannon; Stock, Gregory M.

    2004-01-01

    Extent of Late Quaternary glaciers in the Upper Soc??a River Region (Southern Julian Alps, SE Europe) has been analyzed using a combination of geological mapping, glaciological modeling, and sediment dating (radiocarbon, U/Th series and Infrared Stimulated Luminescence-IRSL). Field investigations focused mainly on relatively well preserved Quaternary sequences in the Bovec Basin, an intramontane basin located SW of the Mediterranean/Black Sea divide and surrounded by mountain peaks reaching from approximately 2100 up to 2587 m a.s.l. Within the Basin we recognized two Late Quaternary sedimentary assemblages, which consist of the same facies association of diamictons, laminated lacustrine deposits and sorted fluvial sediments. Radiocarbon dating of the upper part of the lake sediments sequence (between 12790??85 and 5885??60 14C years b.p.) indicates that the younger sedimentary assemblage was deposited during the last glacial maximum and through early Holocene (Marine Isotope Stage 21, MIS 2-1). Sediment ages obtained for the older assemblage with U/Th and IRSL techniques (between 154.74??22.88 and 129.93??7.90 ka b.p. for selected samples) have large errors but both methods yield results consistent with deposition during the penultimate glacial-interglacial transition (MIS 6-5). Based on analyses of field data combined with glaciological modeling, we argue that both sediment complexes formed due to high sediment productivity spurred by paraglacial conditions with glaciers present in the uplands around the Bovec Basin but not extending down to the basin floor. Our study shows that the extent and intensity of direct glacial sedimentation by Late Quaternary glaciers in the region was previously significantly overestimated. ?? 2004 Elsevier B.V. All rights reserved.

  18. Late quaternary paleoseismology of the southern Steens fault zone, northern Nevada

    USGS Publications Warehouse

    Personius, S.F.; Crone, A.J.; Machette, M.N.; Mahan, S.A.; Kyung, J.B.; Cisneros, H.; Lidke, D.J.

    2007-01-01

    The 192-km-long Steens fault zone is the most prominent normal fault system in the northern Basin and Range province of western North America. We use trench mapping and radiometric dating to estimate displacements and timing of the last three surface-rupturing earthquakes (E1-E3) on the southern part of the fault south of Denio, Nevada. Coseismic displacements range from 1.1 to 2.2 ?? 0.5 m, and radiometric ages indicate earthquake times of 11.5 ?? 2.0 ka (E3), 6.1 ?? 0.5 ka (E2), and 4.6 ?? 1.0 ka (E1). These data yield recurrence intervals of 5.4 ?? 2.1 k.y. between E3 and E2, 1.5 ?? 1.1 k.y. between E2 and E1, and an elapsed time of 4.6 ?? 1.0 k.y. since E1. The recurrence data yield variable interval slip rates (between 0.2 ?? 0.22 and 1.5 ?? 2.3 mm/yr), but slip rates averaged over the past ???18 k.y. (0.24 ?? 0.06 mm/year) are similar to long-term (8.5-12.5 Ma) slip rates (0.2 ?? 0.1 mm /yr) measured a few kilometers to the north. We infer from the lack of significant topographic relief across the fault in Bog Hot Valley that the fault zone is propagating southward and may now be connected with a fault at the northwestern end of the Pine Forest Range. Displacements documented in the trench and a rupture length of 37 km indicate a history of three latest Quaternary earthquakes with magnitudes of M 6.6-7.1 on the southern part of the Steens fault zone.

  19. Seismic signature of the Alpine indentation, evidence from the Eastern Alps

    PubMed Central

    Bianchi, I.; Bokelmann, G.

    2014-01-01

    The type of collision between the European and the Adriatic plates in the easternmost Alps is one of the most interesting questions regarding the Alpine evolution. Tectonic processes such as compression, escape and uplift are interconnected and shape this area. We can understand these ongoing processes better, if we look for signs of the deformation within the Earth's deep crust of the region. By collecting records from permanent and temporary seismic networks, we assemble a receiver function dataset, and analyze it with the aim of giving new insights on the structure of the lower crust and of the shallow portion of the upper mantle, which are inaccessible to direct observation. Imaging is accomplished by performing common conversion depth stacks along three profiles that crosscut the Eastern Alpine orogen, and allow isolating features consistently persistent in the area. The study shows a moderately flat Moho underlying a seismically anisotropic middle-lower crust from the Southern Alps to the Austroalpine nappes. The spatial progression of anisotropic axes reflects the orientation of the relative motion and of the stress field detected at the surface. These observations suggest that distributed deformation is due to the effect of the Alpine indentation. In the shallow upper mantle right below the Moho interface, a further anisotropic layer is recognized, extended from the Bohemian Massif to the Northern Calcareous Alps. PMID:26525181

  20. Seismic signature of the Alpine indentation, evidence from the Eastern Alps.

    PubMed

    Bianchi, I; Bokelmann, G

    2014-12-01

    The type of collision between the European and the Adriatic plates in the easternmost Alps is one of the most interesting questions regarding the Alpine evolution. Tectonic processes such as compression, escape and uplift are interconnected and shape this area. We can understand these ongoing processes better, if we look for signs of the deformation within the Earth's deep crust of the region. By collecting records from permanent and temporary seismic networks, we assemble a receiver function dataset, and analyze it with the aim of giving new insights on the structure of the lower crust and of the shallow portion of the upper mantle, which are inaccessible to direct observation. Imaging is accomplished by performing common conversion depth stacks along three profiles that crosscut the Eastern Alpine orogen, and allow isolating features consistently persistent in the area. The study shows a moderately flat Moho underlying a seismically anisotropic middle-lower crust from the Southern Alps to the Austroalpine nappes. The spatial progression of anisotropic axes reflects the orientation of the relative motion and of the stress field detected at the surface. These observations suggest that distributed deformation is due to the effect of the Alpine indentation. In the shallow upper mantle right below the Moho interface, a further anisotropic layer is recognized, extended from the Bohemian Massif to the Northern Calcareous Alps.

  1. The balance of frictional heat production, thermal pressurization, and slip resistance on exhumed mid-crustal faults (Adamello batholith, Southern Italian Alps)

    NASA Astrophysics Data System (ADS)

    Griffith, W. A.; di Toro, G.; Pollard, D. D.

    2005-12-01

    Exhumed faults cutting the Adamello batholith (Italian Alps) were active ca. 30 Ma at seismogenic depths of 9-11 km. The faults "exploited preexisting joints and can be classified into three groups containing: (A) only cataclasite (a fault rock with no evidence of melting), (B) cataclasite and pseudotachylyte (solidified friction-induced melts produced during earthquakes), and (C) only pseudotachylyte. The majority of pseudotachylyte-bearing faults in this outcrop overprint pre-existing cataclasites (Type B), suggesting a transition between slip styles; however, some faults exhibiting pseudotachylyte and no cataclasite (Type C) display evidence of only one episode of slip. Faults of Type A never transitioned to frictional melting. We attempt to compare faults of type A, B, and C in terms of a simple one-dimensional thermo-mechanical model introduced by Lachenbruch (1980) describing the interaction between frictional heating, pore fluid pressure, and shear resistance during slip. The interaction of these three parameters influences how much elastic strain is relieved during an earthquake. For a conceptualized fault zone of finite thickness, the interplay between the shear resistance, heat production, and pore fluid pressure can be expressed as a non-linear partial differential equation relating these processes to the strain rate acting within a fault zone during a slip event. The behavior of fault zones in terms of these coupled processes during an earthquake depends on a number of parameters, such as thickness of the principal slipping zone, net coseismic slip, fault rock permeability and thermal diffusivity. Ideally, the governing equations should be testable on real fault zones if the requisite parameters can be measured or reasonably estimated. The model can be further simplified if the peak temperature reached during slip and the coseismic slip rate can be constrained. The contrasting nature of slip on the three Adamello fault types highlights (1) important

  2. Effects of riparian zone buffer widths on vegetation diversity in southern Appalachian headwater catchments

    Treesearch

    Katherine J. Elliott; James M. Vose

    2016-01-01

    In mountainous areas such as the southern Appalachians USA, riparian zones are difficult to define. Vegetation is a commonly used riparian indicator and plays a key role in protecting water resources, but adequate knowledge of floristic responses to riparian disturbances is lacking. Our objective was to quantify changes in stand-level floristic diversity of...

  3. Quantifying Vertical Exhumation in Intracontinental Strike-Slip Faults: the Garlock fault zone, southern California

    NASA Astrophysics Data System (ADS)

    Chinn, L.; Blythe, A. E.; Fendick, A.

    2012-12-01

    New apatite fission-track ages show varying rates of vertical exhumation at the eastern terminus of the Garlock fault zone. The Garlock fault zone is a 260 km long east-northeast striking strike-slip fault with as much as 64 km of sinistral offset. The Garlock fault zone terminates in the east in the Avawatz Mountains, at the intersection with the dextral Southern Death Valley fault zone. Although motion along the Garlock fault west of the Avawatz Mountains is considered purely strike-slip, uplift and exhumation of bedrock in the Avawatz Mountains south of the Garlock fault, as recently as 5 Ma, indicates that transpression plays an important role at this location and is perhaps related to a restricting bend as the fault wraps around and terminates southeastward along the Avawatz Mountains. In this study we complement extant thermochronometric ages from within the Avawatz core with new low temperature fission-track ages from samples collected within the adjacent Garlock and Southern Death Valley fault zones. These thermochronometric data indicate that vertical exhumation rates vary within the fault zone. Two Miocene ages (10.2 (+5.0/-3.4) Ma, 9.0 (+2.2/-1.8) Ma) indicate at least ~3.3 km of vertical exhumation at ~0.35 mm/yr, assuming a 30°C/km geothermal gradient, along a 2 km transect parallel and adjacent to the Mule Spring fault. An older Eocene age (42.9 (+8.7/-7.3) Ma) indicates ~3.3 km of vertical exhumation at ~0.08 mm/yr. These results are consistent with published exhumation rates of 0.35 mm/yr between ~7 and ~4 Ma and 0.13 mm/yr between ~15 and ~9 Ma, as determined by apatite fission-track and U-Th/He thermochronometry in the hanging-wall of the Mule Spring fault. Similar exhumation rates on both sides of the Mule Spring fault support three separate models: 1) Thrusting is no longer active along the Mule Spring fault, 2) Faulting is dominantly strike-slip at the sample locations, or 3) Miocene-present uplift and exhumation is below detection levels

  4. A regional tephrostratigraphic framework for central and southern European climate archives during the Last Glacial to Interglacial transition: comparisons north and south of the Alps

    NASA Astrophysics Data System (ADS)

    Lane, C. S.; Blockley, S. P. E.; Lotter, A. F.; Finsinger, W.; Filippi, M. L.; Matthews, I. P.

    2012-03-01

    This paper summarises the results of tephrochronological investigations into a suite of central and southern European records, which include: Rotmeer, southern Germany; Soppensee and Rotsee, central Swiss Plateau; Lago di Lavarone and Lago Piccolo di Avigliana, Italian southern Alpine foreland. These sites provide records of palaeoenvironmental changes for the Last Glacial to Interglacial Transition (LGIT) at the boundary between North Atlantic and Mediterranean climatic influences. Chemical characterisation of glass shards in volcanic ash layers indicates that multiple volcanic sources have contributed to the central European tephra record. Amongst other volcanic markers, the Laacher See Tephra, originating from the Eifel region of Germany c. 12.9 ± 0.1 ka, and the Vedde Ash from Iceland c. 12.1 ± 0.1 ka, are found co-located within the sediments of Rotmeer, Soppensee, Rotsee and Lago Piccolo di Avigliana. These key horizons, which bracket the onset of the Younger Dryas stadial, provide precise calendrically-dated tie points around which a detailed picture of the timing of local and regional environmental transitions can be constructed. Using the co-located tephra layers the re-colonisation of Northern Italian catchment areas by Quercus is shown to occur just prior to the deposition of the Laacher See Tephra layer, whereas to the North of the Alps Quercus and other thermophilous trees do not reappear until several centuries after the deposition of the Vedde Ash. Furthermore, the discovery of the Vedde Ash in Lago Piccolo di Avigliana and Lago di Lavarone is indicative of atmospheric transport of polar air into southern Europe during the Younger Dryas stadial, matching evidence proposed for such transport of polar air during the Last Glacial Maximum (LGM).

  5. Evidence for an upper mantle low velocity zone beneath the southern Basin and Range-Colorado Plateau transition zone

    USGS Publications Warehouse

    Benz, H.M.; McCarthy, J.

    1994-01-01

    A 370-km-long seismic refraction/wide-angle reflection profile recorded during the Pacific to Arizona Crustal Experiment (PACE) detected an upper mantle P-wave low-velocity zone (LVZ) in the depth range 40 to 55 km beneath the Basin and Range in southern Arizona. Interpretation of seismic data places constraints on the sub-crustal lithosphere of the southern Basin and Range Province, which is important in light of the active tectonics of the region and the unknown role of the sub-crustal lithosphere in the development of the western United States. Forward travel time and synthetic seismogram techniques are used to model this shallow upper mantle LVZ. Modeling results show that the LVZ is defined by a 5% velocity decrease relative to a Pn velocity of 7.95 km s−1, suggesting either a ∼3–5% mafic partial melt or high-temperature, sub-solidus peridotite.

  6. Diffuse Extension of the Southern Mariana Margin: Implications for Subduction Zone Infancy and Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Martinez, F.; Stern, R. J.; Kelley, K. A.; Ohara, Y.; Sleeper, J. D.; Ribeiro, J. M.; Brounce, M. N.

    2017-12-01

    Opening of the southern Mariana margin takes place in contrasting modes: Extension normal to the trench forms crust that is passively accreted to a rigid Philippine Sea plate and forms along focused and broad accretion axes. Extension also occurs parallel to the trench and has split apart an Eocene-Miocene forearc terrain accreting new crust diffusely over a 150-200 km wide zone forming a pervasive volcano-tectonic fabric oriented at high angles to the trench and the backarc spreading center. Earthquake seismicity indicates that the forearc extension is active over this broad area and basement samples date young although waning volcanic activity. Diffuse formation of new oceanic crust and lithosphere is unusual; in most oceanic settings extension rapidly focuses to narrow plate boundary zones—a defining feature of plate tectonics. Diffuse crustal accretion has been inferred to occur during subduction zone infancy, however. We hypothesize that, in a near-trench extensional setting, the continual addition of water from the subducting slab creates a weak overriding hydrous lithosphere that deforms broadly. This process counteracts mantle dehydration and strengthening proposed to occur at mid-ocean ridges that may help to focus deformation and melt delivery to narrow plate boundary zones. The observations from the southern Mariana margin suggest that where lithosphere is weakened by high water content narrow seafloor spreading centers cannot form. These conditions likely prevail during subduction zone infancy, explaining the diffuse contemporaneous volcanism inferred in this setting.

  7. Seismotectonics investigations in the internal Cottian Alps (Italian Western Alps)

    NASA Astrophysics Data System (ADS)

    Perrone, Gianluigi; Eva, Elena; Solarino, Stefano; Cadoppi, Paola; Balestro, Gianni; Fioraso, Gianfranco; Tallone, Sergio

    2010-05-01

    The inner Cottian Alps represent an area of a low- to moderate- magnitude seismicity (Eva et al., 1990) even though some historical earthquakes reached VIII degree of the Mercalli's scale. Although the frame of seismicity is quite well known, the relation between faults and earthquake sources is still under debate. The low deformation rates and the occurrence of several glacial-interglacial cycles during the Pleistocene partly masked the geomorphological evidences of the recent tectonic activity. Recent studies based on field mapping and structural analysis (Balestro et al., 2009; Perrone et al., 2009) allowed characterizing the size and extension of the regional-scale faults dissecting this area of the Western Alps. Here, we combine the results of these novel studies and updated seismological data with the aim to investigate the relations between mapped faults and seismic activity. In the analyzed area both continental crust and oceanic tectonic units, belonging to the Penninic Domain of the Western Alps, crop out. The main brittle tectonic feature of this area is represented by the Lis-Trana Deformation Zone (LTZ), an N-S striking, steep structure that extends for about 35 km from the Lower Lanzo valleys to the Lower Sangone Valley. The occurrence of steep faults displacing the metamorphic basement, showed in seismic sections carried out for oil exploration (Bertotti & Mosca, 2009), suggests that the LTZ may be prolonged Southward beneath the Plio-Quaternary deposits of the Po Plain. West of the LTZ some other minor E-W and N-S faults are also present. Zircon and apatite fission-track data indicate that the activity of these faults started since the Oligocene. Two main faulting stages characterize the post-metamorphic structural evolution of this area: the earlier (faulting stage A; Oligocene?-Early Miocene?) is associated to right-lateral movements along the LTZ and sinistral movements along E-W faults; the subsequent faulting stage (faulting stage B; post

  8. P wave anisotropic tomography of the Alps

    NASA Astrophysics Data System (ADS)

    Hua, Yuanyuan; Zhao, Dapeng; Xu, Yixian

    2017-06-01

    The first tomographic images of P wave azimuthal and radial anisotropies in the crust and upper mantle beneath the Alps are determined by joint inversions of arrival time data of local earthquakes and teleseismic events. Our results show the south dipping European plate with a high-velocity (high-V) anomaly beneath the western central Alps and the north dipping Adriatic plate with a high-V anomaly beneath the Eastern Alps, indicating that the subduction polarity changes along the strike of the Alps. The P wave azimuthal anisotropy is characterized by mountain chain-parallel fast-velocity directions (FVDs) in the western central Alps and NE-SW FVDs in the Eastern Alps, which may be caused by mantle flow induced by the slab subductions. Our results reveal a negative radial anisotropy (i.e., Vph < Vpv) within the subducting slabs and a positive radial anisotropy (i.e., Vph > Vpv) in the low-velocity mantle wedge, which may reflect the subvertical plate subduction and its induced mantle flow. The results of anisotropic tomography provide important new information on the complex mantle structure and dynamics of the Alps and adjacent regions.

  9. The Western Tauern Window (Eastern Alps): Timing and Interplay of Folds and Sinistral Shear Zones as Result of South-Alpine Indentation

    NASA Astrophysics Data System (ADS)

    Schneider, Susanne; Rosenberg, Claudio; Hammerschmidt, Konrad

    2010-05-01

    The Tauern Window (TW) is the only domain within the Eastern Alps where deep crustal, Tertiary metamorphic rocks were exhumed to surface. The window is bounded by large-scale faults, partly considered to be responsible for its exhumation (e.g., Selverstone 1988, Fügenschuh 1997), and it is also cross cut internally by large-scale shear zones, whose significance in terms of type and timing of deformation, exhumation, and large-scale kinematic links is the subject of our investigation. These shear zones (Ahorn, Olperer, Greiner, Ahrntal) are widespread throughout the western TW, from the mm- to the km-scale. They are sinistral and located in the steep limbs of upright antiforms, forming a mylonitic foliation, that strikes parallel to the axial planes of these upright folds. We present new structural and geochronological data, obtained by in-situ dating of microstructurally defined syn- and postkinematic grains, to constrain the duration and termination of folding and sinistral shearing. Previous dating suggested initiation of shearing contemporaneous to nappe stacking between 32-and 30Ma, ongoing until 15Ma (Glodny et al., 2008). However, the fabric of the dated grains was not related to deformation phases defined from structural overprinting relationships, and the classical separation technique did not allow to separate synkinematic from pre- and post- kinematic grains. The northern margin of the western TW is pervasively overprinted by the Ahorn Shear Zone (Rosenberg & Schneider 2008), which shows S-side up kinematic indicators in addition to the sinistral ones, and a pronounced southward increase in metamorphic grade from lower greenschist facies to amphibolite facies conditions, within 2km. Phengites of the mylonitic foliation dated with the Rb/Sr in-situ technique, yield formation ages of 14-24Ma . The southern margin of the western TW is overprinted by the sinistral Ahrntal Fault (Schneider et al. 2009), which cuts discordantly several nappes from the

  10. Braided river flow and invasive vegetation dynamics in the Southern Alps, New Zealand.

    PubMed

    Caruso, Brian S; Edmondson, Laura; Pithie, Callum

    2013-07-01

    In mountain braided rivers, extreme flow variability, floods and high flow pulses are fundamental elements of natural flow regimes and drivers of floodplain processes, understanding of which is essential for management and restoration. This study evaluated flow dynamics and invasive vegetation characteristics and changes in the Ahuriri River, a free-flowing braided, gravel-bed river in the Southern Alps of New Zealand's South Island. Sixty-seven flow metrics based on indicators of hydrologic alteration and environmental flow components (extreme low flows, low flows, high flow pulses, small floods and large floods) were analyzed using a 48-year flow record. Changes in the areal cover of floodplain and invasive vegetation classes and patch characteristics over 20 years (1991-2011) were quantified using five sets of aerial photographs, and the correlation between flow metrics and cover changes were evaluated. The river exhibits considerable hydrologic variability characteristic of mountain braided rivers, with large variation in floods and other flow regime metrics. The flow regime, including flood and high flow pulses, has variable effects on floodplain invasive vegetation, and creates dynamic patch mosaics that demonstrate the concepts of a shifting mosaic steady state and biogeomorphic succession. As much as 25 % of the vegetation cover was removed by the largest flood on record (570 m(3)/s, ~50-year return period), with preferential removal of lupin and less removal of willow. However, most of the vegetation regenerated and spread relatively quickly after floods. Some flow metrics analyzed were highly correlated with vegetation cover, and key metrics included the peak magnitude of the largest flood, flood frequency, and time since the last flood in the interval between photos. These metrics provided a simple multiple regression model of invasive vegetation cover in the aerial photos evaluated. Our analysis of relationships among flow regimes and invasive

  11. Last Glacial Maximum Dated by Means of 10Be in the Maritime Alps (Italy)

    NASA Astrophysics Data System (ADS)

    Granger, D. E.; Spagnolo, M.; Federici, P.; Pappalardo, M.; Ribolini, A.; Cyr, A. J.

    2006-12-01

    Relatively few exposure dates of LGM moraines boulders are available for the European Alps, and none on the southern flank. Ponte Murato (PM) is a frontal moraine at 860 m asl in the Gesso Basin (Maritime Alps, SW European Alps). The PM moraine dams the 157 km2 Gesso della Barra Valley and it represents the lowermost frontal moraine of the entire Gesso Valley, near the outlet of the valley in the Po Plain. Its ELA, determined from the paleo- shape of the supposed Gesso della Barra glacier, is 1746 m asl. Tetti Bandito (TB) is a small and badly preserved glacial deposit, tentatively attributed to a lateral-frontal moraine, that is positioned 5 km downvalley from the PM deposit at 800 m asl. There are no other glacial deposits downvalley from the TB moraine in the Gesso Basin or farther NE in the piedmont region of the upper Po Plain. Boulders sampled on the PM and on the TB moraine crests gave a 10Be cosmogenic age of respectively 16300 ± 880 ka (average value) and 18798 ± 973 ka. This result constrains the PM frontal moraine within the LGM interval but also suggests that the maximum expansion of the Gesso Basin glacier was more downvalley at some point during the last glaciation. If the TB is a lateral-frontal moraine as supposed, the two TB and PM moraines would represent the outer and inner moraine crests of the same LGM stadial, with the outer moraine much less pronounced than the inner moraine, similarly to the maximalstand and the hochstand described in the Eastern Alps (Van Husen, 1997). Within this perspective, the PM and TB dates are consistent with a European Alps LGM corresponding to MIS 2 (Ivy-Ochs et al., 2004). This study of the Maritime Alps moraines is also in agreement with the Upper Würm climatic theory (Florineth and Schlüchter, 2000) of a stronger influence of the W and SW incoming humid airflows in the European Alps, differently from the nearby Vosges and Pyrenees mountain chains where more dry conditions were probably responsible for a very

  12. First-order similarities and differences between Alps, Dinarides, Hellenides and Anatolides-Taurides

    NASA Astrophysics Data System (ADS)

    Schmid, Stefan M.; Bernoulli, Daniel; Fügenschuh, Bernhard; Matenco, Liviu; Schefer, Senecio; Oberhänsli, Roland; van Hinsbergen, Douwe; Ustaszewski, Kamil

    2013-04-01

    We correlated tectonic units across several circum-Mediterranean orogen strands between the Alps, Carpathians, the Balkan Peninsula, the Aegean and Western Turkey. Our compilation allows discussing fundamental along-strike similarities and differences. One first-order difference is that Dinarides-Hellenides, Anatolides and Taurides represent orogens of opposite subduction polarity and age with respect to the Alps and Carpathians. The internal Dinarides are linked to the Alps and Western Carpathians along the Mid-Hungarian fault zone, a suspected former trench-trench transform fault; its lithospheric root was obliterated during Neogene back-arc extension that formed the Pannonian Basin. Dinarides and Hellenides alike consist of far-travelled nappes detached from the Adriatic continental margin along décollement horizons in Paleozoic or younger stratigraphic levels during Cretaceous and Cenozoic orogeny. The more internal nappes (i.e. Jadar-Kopaonik, Drina-Ivanjica, East Bosnian-Durmitor and their Pelagonian and Almopias equivalents in the Hellenides) are composite nappes whereby the allochthonous Adriatic margin sequences passively carry ophiolites (Western Vardar Ophiolitic Unit) obducted during the latest Jurassic-earliest Cretaceous. These obducted ophiolitic units, as well as ophiolites obducted onto Europe-derived units presently found in the East Carpathians (Eastern Vardar Ophiolitic Unit obducted onto the Dacia continental block), root in one single Neotethys ocean that started closing with the initiation of obduction in the latest Jurassic; final suturing occurred during Cretaceous times, terminating with the formation of the Sava-Izmir-Ankara suture in the latest Cretaceous. Ophiolitic "massifs" found outside the Sava-Izmir-Ankara suture zone do not mark oceanic sutures, nor do the Drina-Ivanjica and Pelagonian "massifs" represent independent continental fragments (terranes). The same logic applies to Western Turkey with the difference that the ophiolites

  13. Recent, climate-driven river incision rate fluctuations in the Mercantour crystalline massif, southern French Alps

    NASA Astrophysics Data System (ADS)

    Petit, C.; Goren, L.; Rolland, Y.; Bourlès, D.; Braucher, R.; Saillard, M.; Cassol, D.

    2017-06-01

    We present a new geomorphological analysis of the Tinée River tributaries in the southern French Alps based on numerical inverse and forward modelling of their longitudinal profiles. We model their relative uplift history with respect to the main channel, hence the incision rate history of this channel. Inverse models show that all tributaries have consistent incision rate histories with alternating high and low values. A comparison with global temperature curves shows that these variations correlate with quaternary climate changes. We suggest that during warm periods, a wave of regressive erosion propagates in the Tinée River, while its tributaries deeply incise their substratum to catch up with the falling base-level. We also show that the post 140 ka history of this landscape evolution is dominated by fluvial incision. We then perform forward models of river incision and simulate the incision of the Tinée River system over a time span of 600 ka. This model allows us to extract time and space incision rate variations of the Tinée River. With a background of a few mm.yr-1, incision rate can increase up to more than 1 cm yr-1 during short periods of time due to climatic oscillations. This result is compatible with published cosmogenic nuclide based dating, which evidenced incision rates from 0.2 to 24 mm yr-1. The part of the channel located between 12 and 20 km downstream from the source has undergone several periods of rapid incision rates, which could explain the steep hillslopes and the triggering of a landslide ∼10 ka ago.

  14. Sonograph mosaic of northern California and southern Oregon Exclusive Economic Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cacchione, D.A.; Drake, D.E.; Clarke, S.H.

    1985-02-01

    During June 15 to July 9, 1984, the third leg of the cooperative US Geological Survey-Institute of Oceanographic Sciences GLORIA survey of the conterminous US Exclusive Economic Zone (EEZ) collected digital acoustic data off northern California and southern Oregon. The region covered during leg 3 extends from the 200-m isobath westward to the 375-km (200-nmi) EEZ boundary and from about 39/sup 0/ to 43/sup 0/N. The survey used the IOS GLORIA long-range side-scan sonar, a 2-channel airgun seismic reflection system, and 3.5 kHz and 10 kHz high-resolution seismic systems. The GLORIA data were collected in a pattern that permitted overlappingmore » coverage so that a mosaic of the sonographs could be constructed. These sonographs were slant-range and anamorphically corrected aboard ship, and a mosaic was constructed at a scale of 1:375,000. Among the most striking geomorphic features revealed in this segment of the EEZ is the Mendocino transform fault, which extends for more than 120 nmi along the northern base of the Mendocino fracture zone and delineates the southern boundary of the Gorda plate. Other features clearly revealed are the complex geometry of the Gorda rift valley, and the subparallel flanking ridges and dramatically deformed base of the continental slope at the eastern boundary of the Gorda plate. The data are presently being processed by image analytical techniques to enhance the fine-scale features such as sediment waves, slumps, and areas of differing sedimentary facies.« less

  15. Altitudinal and chiral signature of persistent organochlorine pesticides in air, soil, and spruce needles (Picea abies) of the Alps.

    PubMed

    Shen, Heqing; Henkelmann, Bernhard; Levy, Walkiria; Zsolnay, Adam; Weiss, Peter; Jakobi, Gert; Kirchner, Manfred; Moche, Wolfgang; Braun, Katharina; Schramm, Karl-Werner

    2009-04-01

    The present study investigated the distribution, transportation, and biodegradation of the selected chiral persistent organochlorine pesticides (OCP) in the Alps. In the complex environment, we found the movement and fate of OCP could be defined by many factors. Taking HCE as an example, below the timberline its accumulation from air into SPMD increased with altitude and seasonally changed, but the trends reversed above the timberline. In soil, the tendency of HCE concentrations vs organic materials followed a sigmoid curve, and HCE concentration-altitude correlations are positive in central Alps but negative in southern Alps. The HCE enantiomeric ratios (ERs) in soil correlated to HCE isomers concentrations, the humus pH values, and the sampling site altitudes. HCE shift from humus to mineral soil can also be traced by ERs. The altitudinal and longitudinal trends in needles suggested that alpha-HCH has a more complex movementthan HCE in Alps. In conclusion, altitude conducted condensation, plant canopies, organic material in soil, and geographic specific precipitations may affect OCP distributions and transportation, whereas altitude conducted temperature and soil pH could dictate their fate in the environment.

  16. A new late glacial to early Holocene palaeobotanical and archaeological record in the Eastern Pre-Alps: the Palughetto basin (Cansiglio Plateau, Italy)

    NASA Astrophysics Data System (ADS)

    Avigliano, Roberto; di Anastasio, Giulio; Improta, Salvatore; Peresani, Marco; Ravazzi, Cesare

    2000-12-01

    A late glacial to early Holocene lacustrine and peat succession, rich in conifer remains and including some palaeolithic flint artefacts, has been investigated in the Palughetto intermorainic basin (Venetian Pre-Alps). The geomorphological and stratigraphical relationships, 14C dates and pollen analyses allow a reconstruction of the environmental history of the basin and provide significant insights into the reforestation and peopling of the Pre-Alps. The onset of peat accumulation is dated to 14.4-14.1 kyr cal. BP, coinciding with reforestation at middle altitudes that immediately post-dates the immigration of Larix decidua and Picea abies subsp. europaea. Plant macrofossils point to the expansion of spruce about 14.3 kyr cal. BP, so far one of the earliest directly dated in the late glacial period of southern Europe. The previous hypothesis of an early Holocene spruce immigration in the Southern Alps from Slovenia needs reconsideration. Organic sedimentation stopped at the end of the Younger Dryas and was followed by the evolution of hydromorphic soils containing lithic artefacts, anthropic structures and wood charcoal. The typological features of the flint implements refer human occupation of the site to the end of the recent Epigravettian. Charcoals yielded dates either consistent with, or younger than, the archaeological chronology, in the early and middle Holocene.

  17. Late Quaternary glacier sensitivity to temperature and precipitation distribution in the Southern Alps of New Zealand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ann V. Rowan; Simon H. Brocklehurst; David M. Schultz

    2014-05-01

    Glaciers respond to climate variations and leave geomorphic evidence that represents an important terrestrial paleoclimate record. However, the accuracy of paleoclimate reconstructions from glacial geology is limited by the challenge of representing mountain meteorology in numerical models. Precipitation is usually treated in a simple manner and yet represents difficult-to-characterize variables such as amount, distribution, and phase. Furthermore, precipitation distributions during a glacial probably differed from present-day interglacial patterns. We applied two models to investigate glacier sensitivity to temperature and precipitation in the eastern Southern Alps of New Zealand. A 2-D model was used to quantify variations in the length ofmore » the reconstructed glaciers resulting from plausible precipitation distributions compared to variations in length resulting from change in mean annual air temperature and precipitation amount. A 1-D model was used to quantify variations in length resulting from interannual climate variability. Assuming that present-day interglacial values represent precipitation distributions during the last glacial, a range of plausible present-day precipitation distributions resulted in uncertainty in the Last Glacial Maximum length of the Pukaki Glacier of 17.1?km (24%) and the Rakaia Glacier of 9.3?km (25%), corresponding to a 0.5°C difference in temperature. Smaller changes in glacier length resulted from a 50% decrease in precipitation amount from present-day values (-14% and -18%) and from a 50% increase in precipitation amount (5% and 9%). Our results demonstrate that precipitation distribution can produce considerable variation in simulated glacier extents and that reconstructions of paleoglaciers should include this uncertainty.« less

  18. Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean

    PubMed Central

    Hwang, Yen-Ting; Frierson, Dargan M. W.

    2013-01-01

    The double-Intertropical Convergence Zone (ITCZ) problem, in which excessive precipitation is produced in the Southern Hemisphere tropics, which resembles a Southern Hemisphere counterpart to the strong Northern Hemisphere ITCZ, is perhaps the most significant and most persistent bias of global climate models. In this study, we look to the extratropics for possible causes of the double-ITCZ problem by performing a global energetic analysis with historical simulations from a suite of global climate models and comparing with satellite observations of the Earth’s energy budget. Our results show that models with more energy flux into the Southern Hemisphere atmosphere (at the top of the atmosphere and at the surface) tend to have a stronger double-ITCZ bias, consistent with recent theoretical studies that suggest that the ITCZ is drawn toward heating even outside the tropics. In particular, we find that cloud biases over the Southern Ocean explain most of the model-to-model differences in the amount of excessive precipitation in Southern Hemisphere tropics, and are suggested to be responsible for this aspect of the double-ITCZ problem in most global climate models. PMID:23493552

  19. Low temperature thermochronology in the Eastern Alps: Implications for structural and topographic evolution

    PubMed Central

    Wölfler, Andreas; Stüwe, Kurt; Danišík, Martin; Evans, Noreen J.

    2012-01-01

    According to new apatite fission track, zircon- and apatite (U–Th)/He data, we constrain the near-surface history of the southeastern Tauern Window and adjacent Austrolapine units. The multi-system thermochronological data demonstrate that age-elevation correlations may lead to false implications about exhumation and cooling in the upper crust. We suggest that isothermal warping in the Penninic units that are in the position of a footwall, is due to uplift, erosion and the buildup of topography. Additionally we propose that exhumation rates in the Penninic units did not increase during the Middle Miocene, thus during the time of lateral extrusion. In contrast, exhumation rates of the Austroalpine hangingwall did increase from the Paleogene to the Neogene and the isotherms in this unit were not warped. The new zircon (U–Th)/He ages as well as zircon fission track ages from the literature document a Middle Miocene exhumation pulse which correlates with a period of enhanced sediment accumulation during that time. However, enhanced sedimentation- and exhumation rates at the Miocene/Pliocene boundary, as observed in the Western- and Central Alps, cannot be observed in the Eastern Alps. This contradicts a climatic trigger for surface uplift, and makes a tectonic trigger and/or deep-seated mechanism more obvious to explain surface uplift in the Eastern Alps. In combination with already published geochronological ages, our new data demonstrate Oligocene to Late Miocene fault activity along the Möll valley fault that constitutes a major shear zone in the Eastern Alps. In this context we suggest a geometrical and temporal relationship of the Katschberg-, Polinik–Möll valley- and Mur–Mürz faults that define the extruding wedge in the eastern part of the Eastern Alps. Equal deformation- and fission track cooling ages along the Katschberg–Brenner- and Simplon normal faults demonstrate overall Middle Miocene extension in the whole alpine arc. PMID:27065501

  20. Vascular plant flora of the alpine zone in the southern Rocky Mountains, U.S.A

    Treesearch

    James F. Fowler; B. E. Nelson; Ronald L. Hartman

    2014-01-01

    Field detection of changes in occurrence, distribution, or abundance of alpine plant species is predicated on knowledge of which species are in specific locations. The alpine zone of the Southern Rocky Mountain Region has been systematically inventoried by the staff and floristics graduate students from the Rocky Mountain Herbarium over the last 27 years. It is...

  1. The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen

    NASA Astrophysics Data System (ADS)

    Hetényi, György; Molinari, Irene; Clinton, John; Bokelmann, Götz; Bondár, István; Crawford, Wayne C.; Dessa, Jean-Xavier; Doubre, Cécile; Friederich, Wolfgang; Fuchs, Florian; Giardini, Domenico; Gráczer, Zoltán; Handy, Mark R.; Herak, Marijan; Jia, Yan; Kissling, Edi; Kopp, Heidrun; Korn, Michael; Margheriti, Lucia; Meier, Thomas; Mucciarelli, Marco; Paul, Anne; Pesaresi, Damiano; Piromallo, Claudia; Plenefisch, Thomas; Plomerová, Jaroslava; Ritter, Joachim; Rümpker, Georg; Šipka, Vesna; Spallarossa, Daniele; Thomas, Christine; Tilmann, Frederik; Wassermann, Joachim; Weber, Michael; Wéber, Zoltán; Wesztergom, Viktor; Živčić, Mladen

    2018-04-01

    The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.

  2. The San Gabriel mountains bright reflective zone: Possible evidence of young mid-crustal thrust faulting in southern California

    USGS Publications Warehouse

    Ryberg, T.; Fuis, G.S.

    1998-01-01

    During the Los Angeles Region Seismic Experiment (LARSE), a reflection/retraction survey was conducted along a line extending northeastward from Seal Beach, California, to the Mojave Desert, crossing the Los Angeles basin and San Gabriel Mountains. Shots and receivers were spaced most densely through the San Gabriel Mountains for the purpose of obtaining a combined reflection and refraction image of the crust in that area. A stack of common-midpoint (CMP) data reveals a bright reflective zone, 1-s thick, that dominates the stack and extends throughout most of the mid-crust of the San Gabriel Mountains. The top of this zone ranges in depth from 6 s (???18-km depth) in the southern San Gabriel Mountains to 7.5 s (???23-km depth) in the northern San Gabriel Mountains. The zone bends downward beneath the surface traces of the San Gabriel and San Andreas faults. It is brightest between these two faults, where it is given the name San Gabriel Mountains 'bright spot' (SGMBS). and becomes more poorly defined south of the San Gabriel fault and north of the San Andreas fault. The polarity of the seismic signal at the top of this zone is clearly negative, and our analysis suggests it represents a negative velocity step. The magnitude of the velocity step is approximately 1.7 km/s. In at least one location, an event with positive polarity can be observed 0.2 s beneath the top of this zone, indicating a thickness of the order of 500 m for the low-velocity zone at this location. Several factors combine to make the preferred interpretation of this bright reflective zone a young fault zone, possibly a 'master' decollement. (1) It represents a significant velocity reduction. If the rocks in this zone contain fluids, such a reduction could be caused by a differential change in fluid pressure between the caprock and the rocks in the SGMBS; near-lithostatic fluid pressure is required in the SGMBS. Such differential changes are believed to occur in the neighborhood of active fault

  3. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps)

    NASA Astrophysics Data System (ADS)

    Vavra, Gerhard; Schmid, Rolf; Gebauer, Dieter

    Several types of growth morphologies and alteration mechanisms of zircon crystals in the high-grade metamorphic Ivrea Zone (IZ) are distinguished and attributed to magmatic, metamorphic and fluid-related events. Anatexis of pelitic metasediments in the IZ produced prograde zircon overgrowths on detrital cores in the restites and new crystallization of magmatic zircons in the associated leucosomes. The primary morphology and Th-U chemistry of the zircon overgrowth in the restites show a systematic variation apparently corresponding to the metamorphic grade: prismatic (prism-blocked) low-Th/U types in the upper amphibolite facies, stubby (fir-tree zoned) medium-Th/U types in the transitional facies and isometric (roundly zoned) high-Th/U types in the granulite facies. The primary crystallization ages of prograde zircons in the restites and magmatic zircons in the leucosomes cannot be resolved from each other, indicating that anatexis in large parts of the IZ was a single and short lived event at 299+/-5Ma (95% c. l.). Identical U/Pb ages of magmatic zircons from a metagabbro (293+/-6Ma) and a metaperidotite (300+/-6Ma) from the Mafic Formation confirm the genetic context of magmatic underplating and granulite facies anatexis in the IZ. The U-Pb age of 299+/-5Ma from prograde zircon overgrowths in the metasediments also shows that high-grade metamorphic (anatectic) conditions in the IZ did not start earlier than 20Ma after the Variscan amphibolite facies metamorphism in the adjacent Strona-Ceneri Zone (SCZ). This makes it clear that the SCZ cannot represent the middle to upper crustal continuation of the IZ. Most parts of zircon crystals that have grown during the granulite facies metamorphism became affected by alteration and Pb-loss. Two types of alteration and Pb-loss mechanisms can be distinguished by cathodoluminescence imaging: zoning-controlled alteration (ZCA) and surface-controlled alteration (SCA). The ZCA is attributed to thermal and/or decompression pulses

  4. The ALP miracle: unified inflaton and dark matter

    NASA Astrophysics Data System (ADS)

    Daido, Ryuji; Takahashi, Fuminobu; Yin, Wen

    2017-05-01

    We propose a scenario where both inflation and dark matter are described by a single axion-like particle (ALP) in a unified manner. In a class of the minimal axion hilltop inflation, the effective masses at the maximum and mimimum of the potential have equal magnitude but opposite sign, so that the ALP inflaton is light both during inflation and in the true vacuum. After inflation, most of the ALPs decay and evaporate into plasma through a coupling to photons, and the remaining ones become dark matter. We find that the observed CMB and matter power spectrum as well as the dark matter abundance point to an ALP of mass mphi = Script O(0.01) eV and the axion-photon coupling gphi γ γ = Script O(10-11) GeV-1: the ALP miracle. The suggested parameter region is within the reach of the next generation axion helioscope, IAXO, and high-intensity laser experiments in the future. Furthermore, thermalized ALPs contribute to hot dark matter and its abundance is given in terms of the effective number of extra neutrino species, Δ Neff simeq 0.03, which can be tested by the future CMB and BAO observations. We also discuss a case with multiple ALPs, where the coupling to photons can be enhanced in the early Universe by an order of magnitude or more, which enlarges the parameter space for the ALP miracle. The heavy ALP plays a role of the waterfall field in hybrid inflation, and reheats the Universe, and it can be searched for in various experiments such as SHiP.

  5. Seismicity and structure of Nazca Plate subduction zone in southern Peru

    NASA Astrophysics Data System (ADS)

    Lim, H.; Kim, Y.; Clayton, R. W.

    2015-12-01

    We image the Nazca plate subduction zone system by detecting and (re)locating intra-slab earthquakes in southern Peru. Dense seismic arrays (PeruSE, 2013) were deployed along four lines to target geophysical characterization of the subduction system in the transition zone between flat and normal dipping segments of the Nazca plate (2-15°S). The arc volcanism is absent near the flat slab segment, and currently, the correlation between the location of the active volcanic front and corresponding slab depth is neither clear nor consistent between previously published models from seismicity. We detect 620 local earthquakes from August 2008 to February 2013 by manually picking 6559 and 4145 arrival times for P- and S-phases, respectively. We observe that the S-phase data is helpful to reduce the trade-off between origin time and depth of deeper earthquakes (>100 km). Earthquake locations are relocated to constrain the Nazca slab-mantle interface in the slab-dip transition zone using 7322 measurements of differential times of nearby earthquake pairs by waveform cross-correlation. We also employ the double-difference tomography (Zhang and Thurber, 2003) to further improve earthquake source locations and the spatial resolution of the velocity structure simultaneously. The relocated hypocenters clearly delineate the dipping Wadati-Benioff zone in the slab-dip transition zone between the shallow- (25°) to-flat dipping slab segment in the north and the normal (40°) dipping segment in the south. The intermediate-depth seismicity in the flat slab region stops at a depth of ~100 km and a horizontal distance of ~400 km from the trench. We find a significant slab-dip difference (up to 10°) between our relocated seismicity and previously published slab models along the profile region sampling the normal-dip slab at depth (>100 km).

  6. Age and prematurity of the Alps

    NASA Astrophysics Data System (ADS)

    Hergarten, Stefan; Stüwe, Kurt; Wagner, Thomas

    2010-05-01

    Although the Alps are among the best studied mountain ranges on Earth, the age of their topography is almost unknown. Even their relative stage of evolution is unclear: Are the Alps still growing, in a steady state or even decaying? Using the mean slope at given catchment size as a new geomorphic parameter we analyse the topography of the Alps. Our analysis provides one of the first quantitative constraints that shows that the range is still in its infancy: In contrast to several other mountain ranges, the Alps have still more than half of their evolution to a geomorphic steady state to go. Combining our results with sediment data from the surrounding accumulation spaces we infer that the formation of substantial topography began only 5-6 million years ago. Our results challenge a general consensus that the topographic evolution is distributed over much of the Miocene.

  7. Glacial influence and stream macroinvertebrate biodiversity under climate change: Lessons from the Southern Alps.

    PubMed

    Lencioni, Valeria

    2018-05-01

    The aim of this work was to highlight the main ecological predictors driving invertebrate distribution in eight glacier-fed streams in the Southern Alps. Thirty-five sites belonging to four stream types were sampled monthly during the ablation season of one, two or three years between 1996 and 2014. Taxa from glacial (kryal and glacio-rhithral) and non-glacial (kreno-rhithral and lake outlet) sites were separated by canonical correspondence analysis (CCA) along a glacial influence gradient and a hydrological-altitudinal gradient. High glacial influence was associated mainly with low maximum water temperature (Tmax), high Glacial Index (calculated as a function of glacier area and distance from the glacier), and the abundance of Diamesa species (D. steinboecki, D. goetghebueri, D. zernyi, and D. latitarsis). Change-point analysis and Threshold Indicator Taxa Analysis confirmed the CCA results in identifying these Diamesa species as the taxa with the strongest preference for high percent glacier cover in the catchment (change point~30%) and low Tmax (change point~6°C). Temporal changes in community structure were highlighted in seven sites fed by glaciers under different retreat rates. Where the rate was faster and the remaining glacier smaller (≪1km 2 ), the most cold-stenothermal kryal inhabitant, D. steinboecki, almost disappeared or survived only as brachypterous populations, whereas other Diamesinae (Pseudokiefferiella parva), Orthocladiinae (e.g. Eukiefferiella, Orthocladius), Limoniidae, Baetidae, Nemouridae, and non-insect taxa (e.g. Oligochaeta, Hydracarina) became more abundant. Upstream migration was observed in Diamesa spp. which conquered new stream reaches left free by the retreating glacier, and euriecious taxa which colonized reaches with ameliorated environmental conditions, no longer the exclusive habitat of Diamesa spp. Co-occurrence of stochastic and deterministic assembly processes seem to drive spatio-temporal changes in these invertebrate

  8. Pre-Alpine contrasting tectono-metamorphic evolutions within the Southern Steep Belt, Central Alps

    NASA Astrophysics Data System (ADS)

    Roda, Manuel; Zucali, Michele; Li, Zheng-Xiang; Spalla, Maria Iole; Yao, Weihua

    2018-06-01

    In the Southern Steep Belt, Italian Central Alps, relicts of the pre-Alpine continental crust are preserved. Between Valtellina and Val Camonica, a poly-metamorphic rock association occurs, which belongs to the Austroalpine units and includes two classically subdivided units: the Languard-Campo nappe (LCN) and the Tonale Series (TS). The outcropping rocks are low to medium grade muscovite, biotite and minor staurolite-bearing gneisses and micaschists, which include interlayered garnet- and biotite-bearing amphibolites, marbles, quartzites and pegmatites, as well as sillimanite-bearing gneisses and micaschists. Permian intrusives (granitoids, diorites and minor gabbros) emplaced in the metamorphic rocks. We performed a detailed structural, petrological and geochronological analysis focusing on the two main lithotypes, namely, staurolite-bearing micaschists and sillimanite-bearing paragneisses, to reconstruct the Variscan and Permian-Triassic history of this crustal section. The reconstruction of the tectono-metamorphic evolution allows for the distinction between two different tectono-metamorphic units during the early pre-Alpine evolution (D1) and predates the Permian intrusives, which comprise rocks from both TS and LCN. In the staurolite-bearing micaschists, D1 developed under amphibolite facies conditions (P = 0.7-1.1 GPa, T = 580-660 °C), while in the sillimanite-bearing paragneisses formed under granulite facies conditions (P = 0.6-1.0 GPa, T> 780 °C). The two tectono-metamorphic units coupled together during the second pre-Alpine stage (D2) under granulite-amphibolite facies conditions at a lower pressure (P = 0.4-0.6 GPa, T = 620-750 °C) forming a single tectono-metamorphic unit (Languard-Tonale Tectono-Metamorphic Unit), which comprised the previously distinguished LCN and TS. Geochronological analyses on zircon rims indicate ages ranging between 250 and 275 Ma for D2, contemporaneous with the emplacement of Permian intrusives. This event developed under

  9. A Development Testbed for ALPS-Based Systems

    DTIC Science & Technology

    1988-10-01

    alloted to tile application because of size or power constraints). Given an underlying support ALPS architecture such as the d-ALPS architecture, a...resource on which it is assigned at runtime. A second representation problem is that most graph analysis algorithms treat either graphs with weighted links...subtask) associated with it but is treated like other links. In d-ALPS, as a priority precedence link, it would cause the binding of a pro- cessor: as a

  10. Total mercury and methylmercury in high altitude surface snow from the French Alps.

    PubMed

    Marusczak, Nicolas; Larose, Catherine; Dommergue, Aurélien; Yumvihoze, Emmanuel; Lean, David; Nedjai, Rachid; Ferrari, Christophe

    2011-09-01

    Surface snow samples were collected weekly from the 31st of December 2008 to the 21st of June 2009 from Lake Bramant in the French Alps. Total mercury (THg), total dissolved mercury (THgD), methylmercury (MeHg) and particle distributions in surface snow were analyzed. Results showed that THg concentrations, MeHg concentrations and particle load increased with snow surface temperature, which is an indicator of rising temperatures as the season progresses. Significant correlations between MeHg and snow surface temperature and MeHg and total particles greater than 10 μm were observed. This suggests that the MeHg found in the snow originates from atmospheric deposition processes rather than in situ snowpack sources. This study suggests that an important post-winter atmospheric deposition of MeHg and THg occurs on summital zones of the French Alps and it is likely that this contamination originates from the surrounding valleys. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Spatial and space-time clustering of tuberculosis in Gurage Zone, Southern Ethiopia.

    PubMed

    Tadesse, Sebsibe; Enqueselassie, Fikre; Hagos, Seifu

    2018-01-01

    Spatial targeting is advocated as an effective method that contributes for achieving tuberculosis control in high-burden countries. However, there is a paucity of studies clarifying the spatial nature of the disease in these countries. This study aims to identify the location, size and risk of purely spatial and space-time clusters for high occurrence of tuberculosis in Gurage Zone, Southern Ethiopia during 2007 to 2016. A total of 15,805 patient data that were retrieved from unit TB registers were included in the final analyses. The spatial and space-time cluster analyses were performed using the global Moran's I, Getis-Ord [Formula: see text] and Kulldorff's scan statistics. Eleven purely spatial and three space-time clusters were detected (P <0.001).The clusters were concentrated in border areas of the Gurage Zone. There were considerable spatial variations in the risk of tuberculosis by year during the study period. This study showed that tuberculosis clusters were mainly concentrated at border areas of the Gurage Zone during the study period, suggesting that there has been sustained transmission of the disease within these locations. The findings may help intensify the implementation of tuberculosis control activities in these locations. Further study is warranted to explore the roles of various ecological factors on the observed spatial distribution of tuberculosis.

  12. How steep are the Alps?

    NASA Astrophysics Data System (ADS)

    Robl, Jörg; Prasicek, Günther; Stüwe, Kurt; Hergarten, Stefan

    2014-05-01

    The topography of the European Alps reflects continental collision, crustal thickening and buoyancy driven surface uplift, overprinted by erosional processes. Topographic gradients generally steepen from the valley floors up to about 1500 m - 2000 m followed by an unexpected decrease in slope up to about 2900 m and a further increase to the highest summits of the range. Several studies have interpreted this pattern and the accompanied maximum in the hypsometric curve in terms of either the critical slope stability angle, the prematurity of the Alps caused by recent tectonic uplift, or the effect of the glacial "buzz saw" related to the Pleistocene glaciation cycles. There is consensus that the lithological inventory represents a first order parameter for the steepness of fluvial channels and the angle of hillslopes in steady state and that the response time of a transient landscape is controlled by lithology. In this study we systematically explore the slope-elevation distributions for several hundred continuous domains of the major structural units of the Alps. For this, we apply a novel numerical code to determine the predominant cause for the observed peculiar topography. We compare adjacent alpine domains with contrasting lithology to explore lithological effects on the limiting slope stability angle. We analyze domains with different lithology in the non-glaciated parts of the orogen to highlight the state of maturity related to a recent uplift event. We evaluate the glacial effects on the landscape by the comparison of areas belonging to the same structural units but affected by a variable amount of glacial imprint. The results show that lithology has a major impact on the morphometric characteristics of the European Alps. Adjacent but different structural units show a significant variability in their slope-elevation distributions although they have experienced the same uplift history and the same amount of glacial imprint. This suggests that the response

  13. QUANTIFICATION OF GLACIAL EROSION IN THE ALPS USING VERY LOW-TEMPERATURE THERMOCHRONOLOGY (OSL & AHe)

    NASA Astrophysics Data System (ADS)

    Champagnac, J.; Herman, F.; Rhodes, E. J.; Fellin, M.; Jaiswal, M.; Schwenninger, J.; Reverman, R. L.

    2009-12-01

    üselmann P., et al.,et al. Abrupt glacial valley incision at 0.8 Ma dated from cave deposits in Switzerland. Geology 35, 33-42 (2007). Herman F. and Braun J. Evolution of the glacial landscape of the Southern Alps of New Zealand: Insights from a glacial erosion model, J. Geophys. Res., 113, F02009, doi:10.1029/2007JF000807 (2008). Herman F., Rhodes E.J. and Braun J. A new thermochronometer reveals steady state relief and exhumation in a small active orogen during the last glacial cycle, submitted. Kuhlemann J., et al., Quantifying tectonic versus erosive denudation by the sediment budget: the Miocene core complexes of the Alps, Tectonophysics 330, 1-23 (2000). Muttoni G., et al., Onset of major Pleistocene glaciations in the Alps. Geology 31, 989-992 (2003). Vernon, A.J., et al., Increase in late Neogene denudation of the European Alps confirmed by analysis of a fission-track thermochronology database. Earth and Planetary Science Letters, 270 (3-4), pp. 316-329 (2008).

  14. Effects of Southern Hemispheric Wind Changes on Global Oxygen and the Pacific Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Getzlaff, J.; Dietze, H.; Oschlies, A.

    2016-02-01

    We use a coupled ocean biogeochemistry-circulation model to compare the impact of changes in southern hemispheric winds with that of warming induced buoyancy fluxes on dissolved oxygen. Changes in the southern hemispheric wind fields, which are in line with an observed shift of the southern annual mode, are a combination of a strengthening and poleward shift of the southern westerlies. We differentiate between effects caused by a strengthening of the westerlies and effects of a southward shift of the westerlies that is accompanied by a poleward expansion of the tropical trade winds. Our results confirm that the Southern Ocean plays an important role for the marine oxygen supply: a strengthening of the southern westerlies, that leads to an increase of the water formation rates of the oxygen rich deep and intermediate water masses, can counteract part of the warming-induced decline in marine oxygen levels. The wind driven intensification of the Southern Ocean meridional overturning circulation drives an increase of the global oxygen supply. Furthermore the results show that the shift of the boundary between westerlies and trades results in an increase of subantarctic mode water and an anti-correlated decrease of deep water formation and reduces the oceanic oxygen supply. In addition we find that the increased meridional extension of the southern trade winds, results in a strengthening and southward shift of the subtropical wind stress curl. This alters the subtropical gyre circulation (intensification and southward shift) and with it decreases the water mass transport into the oxygen minimum zone. In a business-as-usual CO2 emission scenario, the poleward shift of the trade-to-westerlies boundary is as important for the future evolution of the suboxic volume as direct warming-induced changes.

  15. Detrital Geochemical Fingerprints of Rivers Along Southern Tibet and Nepal: Implications for Erosion of the Indus-Yarlung Suture Zone and the Himalayas

    NASA Astrophysics Data System (ADS)

    Hassim, M. F. B.; Carrapa, B.; DeCelles, P. G.; Kapp, P. A.; Gehrels, G. E.

    2014-12-01

    Our detrital geochemical study of modern sand collected from tributaries of the Yarlung River in southern Tibet and the Kali Gandaki River and its tributaries in Nepal shed light on the ages and exhumation histories of source rocks within the Indus-Yarlung Suture (IYS) zone and the Himalayas. Seven sand samples from rivers along the suture zone in southern Tibet between Xigatze to the east and Mt. Kailas to the west were collected for detrital zircon U-Pb geochronologic and Apatite Fission Track (AFT) thermochronologic analyses. Zircon U-Pb ages for all rivers range between 15 and 3568 Ma. Rivers draining the northern side of the suture zone mainly yield ages between 40 and 60 Ma, similar to the age of the Gangdese magmatic arc. Samples from rivers draining the southern side of the suture zone record a Tethyan Himalayan signal characterized by age clusters at 500 Ma and 1050 Ma. Our results indicate that the ages and proportion of U-Pb zircons ages of downstream samples from tributaries of the Yarlung River directly reflect source area ages and relative area of source rock exposure in the catchment basin. Significant age components at 37 - 40 Ma, 47 - 50 Ma, 55 - 58 Ma and 94 - 97 Ma reflect episodicity in Gangdese arc magmatism. Our AFT ages show two main signals at 23-18 Ma and 12 Ma, which are in agreement with accelerated exhumation of the Gangdese batholith during these time intervals. The 23 - 18 Ma signal partly overlaps with deposition of the Kailas Formation along the suture zone and may be related to exhumation due to upper plate extension in southern Tibet in response to Indian slab rollback and/or break-off events. Detrital thermochronology of four sand samples from the Kali Gandaki River and some of its tributaries in Nepal is underway and will provide constraints on the timing of erosion of the central Nepal Himalaya.

  16. Radiocarbon dating with annual-resolution of subfossil trees from the Younger Dryas event in the southern French Alps

    NASA Astrophysics Data System (ADS)

    Capano, Manuela; Miramont, Cécile; Guibal, Frédéric; Kromer, Bernd; Tuna, Thibaut; Fagault, Yoann; Bard, Edouard

    2017-04-01

    Tree rings are an important archive for the calibration of radiocarbon data. The younger part of the IntCal curve is based essentially on tree-ring chronologies, absolutely dated by dendrochronological analysis. For the Northern Hemisphere (NH), a gap still exists between the absolutely dated sequences and a floating chronology. Based on the Southern Hemisphere (SH) tree-ring chronologies a link has been previously proposed (Reimer et al. 2013, Radiocarbon; see also update in Hogg et al. 2016, Radiocarbon). By measuring radiocarbon at annual resolution in French subfossil pines (Pinus sylvestris L.) we propose to improve the connection between the absolute chronology and the floating chronology. Several subfossil pines have been found in the Southern French Alps; they were buried by flood deposits, allowing their preservation. Some trees discovered in the Barbier riverbed were dated to the Younger Dryas periods by previous decadal radiocarbon measurements, performed in Heidelberg and Mannheim. The trees selected for our new study are Barb12 and Barb17 (analyzed sequences of 163 and 152 rings, respectively). These sequences were sampled at annual resolution when permitted by the ring width. As a first step, every third ring was pretreated for radiocarbon analysis. These samples were sliced in small pieces and pretreated by using the ABA-B method before being combusted, graphitized with the AGE system and measured with AixMICADAS (Bard et al. 2015, Nucl. Instr. Meth. B). From the comparison with the kauri sequence, the Barb12-17 sequence can be dated from about 12835 to 12606 cal. BP. It can also be used to calculate the interhemispheric gradient (IHG) over the overlapping period. In order to reduce the inter-annual variability, the Barb12-17 record was smoothed, grouped and averaged over the same decades as in the Kauri record. On the basis of twenty values, a mean IHG value of ca. 60 years was calculated. Quantification of the IHG around 50 yr is particularly

  17. Investigations on socio economic indicators of French Alps ski industry from an explicit spatial modelling of managed snow on ski slopes

    NASA Astrophysics Data System (ADS)

    Spandre, Pierre; François, Hugues; Morin, Samuel; George-Marcelpoil, Emmanuelle; Lafaysse, Matthieu

    2017-04-01

    Investigations of the capacity of ski resorts to anticipate, cope with and recover from the impact of natural snow scarcity through snow management (grooming, snowmaking) have been realized in most of the major regions in terms of international ski offer although not in the French Alps hitherto. The present work therefore introduces an innovative approach for the investigation of socio economic implications of changes in snow conditions for the French Alps ski resorts based on a panel of 129 resorts representing 96% of the total French Alps ski lifts infrastructures. We integrated detailed spatial representations of ski resorts (including priority areas for snowmaking equipment) along with physically based snowpack modelling (including the physical impact of grooming and snowmaking). The viability of ski resorts was further adressed thanks to a commonly used rule based on the snow season duration at the village and ski lifts average elevations along with the development of original viability indicators of snow conditions in the French Alps ski resorts based on the specific periods for the economic success of winter sports: Christmas and February school holidays. Such indicators were correlated to the number of ski lifts tickets sales over the 2001 - 2014 period and proved to be relevant to investigate and predict the evolutions of ski lifts tickets sales under the current ski market conditions in the French Alps. Our results outlined the contrast of snow conditions between French Alps ski resorts, even when accounting for snow management, particularly regarding the geographical location of resorts (Southern versus Northern Alps), the size and related elevation range of ski resorts. Our physically based approach also allowed to compute the water and energy requirements for the production of Machine Made snow since the start of the development of snowguns in the French Alps. Our computations proved to be strongly correlated to the observed amounts of water from the

  18. A magnetotelluric feasibility study of the Alps

    NASA Astrophysics Data System (ADS)

    Ritter, O.; Weckmann, U.

    2016-12-01

    The Alps are a famous and extensive mountain range system in central Europe. The mountains were formed as the African and Eurasian tectonic plates collided and they have been a prime target for geological and geophysical investigations since the beginning of modern geosciences. Consequently, the Alps have been investigated with active and passive seismological methods and extensive sets of potential field data exist. Hardly anything is known, however, about the deep electrical conductivity structure, as it has been notoriously difficult to acquire magnetotelluric (MT) data in the Alps. The Alps are densely populated and a lot of infrastructure for tourism has been built over the years. MT measurements, which rely on natural variations of the electromagnetic background fields, are severely hampered by this man-made noise. Here, we report on a feasibility study to acquire MT data in the Alps, where all stations are deployed outside the valleys, on high mountain ranges and alpine pastures. Overall we recorded MT data at 7 stations, along an approximately north-south profile centred on Mayrhofen in the Austrian Alps. The average station spacing was 5 kilometers. The data were processed using robust remote-reference processing and the results clearly show that MT measurements are feasible. We used Mare2DEM for 2D inversion to include a somewhat realistic topography. The 2D section indicates moderate resistivity for the top 2 - 5 km, consistent with the regional geology, which suggests (meta-) sedimentary sequences. From depths of 5 km and below resistivities exceed 5,000 Ohmm. This means we can sense very deep with MT but also, that we should be cautious with an interpretation of this short profile. The data also clearly indicate 3D effects. We therefore propose to deploy an array of stations covering the entire Alps in USArray style, e.g. with a station spacing of approximately 50 km, to derive a 3D model of the deep electrical resistivity structure of the Alps. Such a

  19. The potential of radar-based ensemble forecasts for flash-flood early warning in the southern Swiss Alps

    NASA Astrophysics Data System (ADS)

    Liechti, K.; Panziera, L.; Germann, U.; Zappa, M.

    2013-10-01

    This study explores the limits of radar-based forecasting for hydrological runoff prediction. Two novel radar-based ensemble forecasting chains for flash-flood early warning are investigated in three catchments in the southern Swiss Alps and set in relation to deterministic discharge forecasts for the same catchments. The first radar-based ensemble forecasting chain is driven by NORA (Nowcasting of Orographic Rainfall by means of Analogues), an analogue-based heuristic nowcasting system to predict orographic rainfall for the following eight hours. The second ensemble forecasting system evaluated is REAL-C2, where the numerical weather prediction COSMO-2 is initialised with 25 different initial conditions derived from a four-day nowcast with the radar ensemble REAL. Additionally, three deterministic forecasting chains were analysed. The performance of these five flash-flood forecasting systems was analysed for 1389 h between June 2007 and December 2010 for which NORA forecasts were issued, due to the presence of orographic forcing. A clear preference was found for the ensemble approach. Discharge forecasts perform better when forced by NORA and REAL-C2 rather then by deterministic weather radar data. Moreover, it was observed that using an ensemble of initial conditions at the forecast initialisation, as in REAL-C2, significantly improved the forecast skill. These forecasts also perform better then forecasts forced by ensemble rainfall forecasts (NORA) initialised form a single initial condition of the hydrological model. Thus the best results were obtained with the REAL-C2 forecasting chain. However, for regions where REAL cannot be produced, NORA might be an option for forecasting events triggered by orographic precipitation.

  20. Subduction / exhumation dynamics: Petrochronology in the Glacier-Rafray slice (Western Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Burn, Marco; Lanari, Pierre; Engi, Martin

    2014-05-01

    Petrochronology is the combination of in situ age-dating, geothermobarometry and structural geology and aims to unravel Pressure-Temperature-deformation-time (P-T-ɛ-t) paths. To link P-T conditions to deformation stages is daily business for metamorphic petrologists, but recent micro-mapping techniques (XMapTools program) provide an additional tool to achieve this goal. Absolute age is often difficult to assess in metamorphic rocks, as it is challenging to link specific P-T conditions to most of the mineral chronometers. Allanite is a common accessory phase in high-P metamorphic rocks and is a potential target to determine Th(-U)/Pb ages. Allanite from a leucocratic gneiss of the Glacier-Rafray slice in the western Alps consists of several chemically different zones: one major zone can be linked to a first high-P phengite generation. To determine the age of this high-P growth zone we used La-ICP-MS in situ techniques, which allowed us to date an appropriate growth rim per grain. Even so particular care was required when evaluating the isotope signals laser ablation leads to the excavation of a volume, which potentially can be chemically and/or age-zoned. We have developed a new method to track changes in the plasma during the ablation. This method aims to identify discrete age zones. La-ICP-MS spectra have been modeled so as to reproduce the shape of the spectra measured. These results indicate that high-P allanite first grew in equilibrium with phengite at 84 ± 4 Ma, whereas a second growth event occurred at ~40 Ma. A final epidotic rim grew at greenschist facies conditions, but this stage could not be dated. These findings have implications for our interpretation of several units in the Western Alps: In the Sesia Zone (former Adriatic margin), the earliest high-P metamorphism occurred at 85 Ma (Regis et al., 2014), precisely as the first high-P peak we discovered in the Glacier-Rafray slice. Austroalpine klippen such as this are commonly seen as extensional

  1. Simulated effects of southern hemispheric wind changes on the Pacific oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Getzlaff, Julia; Dietze, Heiner; Oschlies, Andreas

    2016-01-01

    A coupled ocean biogeochemistry-circulation model is used to investigate the impact of observed past and anticipated future wind changes in the Southern Hemisphere on the oxygen minimum zone in the tropical Pacific. We consider the industrial period until the end of the 21st century and distinguish effects due to a strengthening of the westerlies from effects of a southward shift of the westerlies that is accompanied by a poleward expansion of the tropical trade winds. Our model results show that a strengthening of the westerlies counteracts part of the warming-induced decline in the global marine oxygen inventory. A poleward shift of the trade-westerlies boundary, however, triggers a significant decrease of oxygen in the tropical oxygen minimum zone. In a business-as-usual CO2 emission scenario, the poleward shift of the trade-westerlies boundary and warming-induced increase in stratification contribute equally to the expansion of suboxic waters in the tropical Pacific.

  2. Sedimentary record of subsidence pulse at the Triassic/Jurassic boundary interval in the Slovenian Basin (eastern Southern Alps)

    NASA Astrophysics Data System (ADS)

    Rožič, Boštjan; Jurkovšek, Tea Kolar; Rožič, Petra Žvab; Gale, Luka

    2017-08-01

    In the Alpine Realm the Early Jurassic is characterized by the disintegration and partial drowning of vast platform areas. In the eastern part of the Southern Alps (present-day NW Slovenia), the Julian Carbonate Platform and the adjacent, E-W extending Slovenian Basin underwent partial disintegration, drowning and deepening from the Pliensbachian on, whereas only nominal environmental changes developed on the large Dinaric (Friuli, Adriatic) Carbonate Platform to the south (structurally part of the Dinarides). These events, however, were preceded by an earlier - and as yet undocumented extensional event - that took place near the Triassic/Jurassic boundary. This paper provides evidence of an accelerated subsidence from four selected areas within the Slovenian Basin, which show a trend of eastwardly-decreasing deformation. In the westernmost (Mrzli vrh) section - the Upper Triassic platform-margin - massive dolomite is overlain by the earliest Jurassic toe-of-slope carbonate resediments and further, by basin-plain micritic limestone. Further east (Perbla and Liščak sections) the Triassic-Jurassic transition interval is marked by an increase in resedimented carbonates. We relate this to the increasing inclination and segmentation of the slope and adjacent basin floor. The easternmost (Mt. Porezen) area shows a rather monotonous, latest Triassic-Early Jurassic basinal sedimentation. However, changes in the thickness of the Hettangian-Pliensbachian Krikov Formation point to a tilting of tectonic blocks within the basin area. Lateral facies changes at the base of the formation indicate that the tilting occurred at and/or shortly after the Triassic/Jurassic boundary

  3. 33 CFR 100.1101 - Southern California annual marine events for the San Diego Captain of the Port Zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... events for the San Diego Captain of the Port Zone. 100.1101 Section 100.1101 Navigation and Navigable... NAVIGABLE WATERS § 100.1101 Southern California annual marine events for the San Diego Captain of the Port... 83] 1. San Diego Fall Classic Sponsor San Diego Rowing Club. Event Description Competitive rowing...

  4. 33 CFR 100.1101 - Southern California annual marine events for the San Diego Captain of the Port Zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... events for the San Diego Captain of the Port Zone. 100.1101 Section 100.1101 Navigation and Navigable... NAVIGABLE WATERS § 100.1101 Southern California annual marine events for the San Diego Captain of the Port... 83] 1. San Diego Fall Classic Sponsor San Diego Rowing Club. Event Description Competitive rowing...

  5. Extragalactic photon-ALP conversion at CTA energies

    DOE PAGES

    Kartavtsev, A.; Raffelt, G.; Vogel, H.

    2017-01-12

    Magnetic fields in extragalactic space between galaxy clusters may induce conversions between photons and axion-like particles (ALPs), thereby shielding the photons from absorption on the extragalactic background light. For TeV gamma rays, the oscillation length (l osc) of the photon-ALP system becomes inevitably of the same order as the coherence length of the magnetic field l and the length over which the field changes significantly (transition length l t) due to refraction on background photons. We derive exact statistical evolution equations for the mean and variance of the photon and ALP transfer functions in the non-adiabatic regime (l osc ~more » l >> l t). We also make analytical predictions for the transfer functions in the quasi-adiabatic regime (l osc ALP masses.« less

  6. Present-day uplift of the western Alps.

    PubMed

    Nocquet, J-M; Sue, C; Walpersdorf, A; Tran, T; Lenôtre, N; Vernant, P; Cushing, M; Jouanne, F; Masson, F; Baize, S; Chéry, J; van der Beek, P A

    2016-06-27

    Collisional mountain belts grow as a consequence of continental plate convergence and eventually disappear under the combined effects of gravitational collapse and erosion. Using a decade of GPS data, we show that the western Alps are currently characterized by zero horizontal velocity boundary conditions, offering the opportunity to investigate orogen evolution at the time of cessation of plate convergence. We find no significant horizontal motion within the belt, but GPS and levelling measurements independently show a regional pattern of uplift reaching ~2.5 mm/yr in the northwestern Alps. Unless a low viscosity crustal root under the northwestern Alps locally enhances the vertical response to surface unloading, the summed effects of isostatic responses to erosion and glaciation explain at most 60% of the observed uplift rates. Rock-uplift rates corrected from transient glacial isostatic adjustment contributions likely exceed erosion rates in the northwestern Alps. In the absence of active convergence, the observed surface uplift must result from deep-seated processes.

  7. Lower Cretaceous dinoflagellate cyst and acritarch stratigraphy of the Cismon APTICORE (Southern Alps, Italy).

    PubMed

    Torricelli

    2000-02-01

    A pelagic sedimentary succession, virtually complete from the Upper Hauterivian to the Upper Aptian and unconformably overlain by the Middle-Upper Albian p.p., was continuously cored in the Belluno Basin (southern Alps, NE Italy) as part of the APTICORE Program. APTICORE at Cismon Valley penetrated 131.8m of limestones, marls and black shales, with 100% recovery of good quality cored material.One hundred and forty-six samples recovered from the marl and shale beds of the Cismon core were processed and analyzed for palynomorphs. Most of them yielded relatively rich and fairly well preserved assemblages of marine and terrestrially-derived palynomorphs.The results of a qualitative study of dinoflagellate cysts and acritarchs are presented and discussed. The distributions of 150 taxa are tabulated against the chronostratigraphy independently established on the basis of original litho-, bio-, chemo-, magnetostratigraphic investigations and of correlations with extensively studied sections outcropping in the vicinity of the Cismon drill site.The acritarch Pinocchiodinium erbae gen. et sp. nov. is described. Due to its distinctive morphology and extremely constant occurrence also in the black shales of the Selli Level, it is proposed as a marker species for the Aptian sediments of the Tethys.The dinoflagellate cysts Kallosphaeridium dolomiticum sp. nov. and Nexosispinum hesperus brevispinosum subsp. nov. are described from the Upper Hauterivian. Additional taxonomic remarks are made about other dinoflagellate cyst species, including the emendations of Tanyosphaeridium magneticum Davies 1983 and Bourkidinium granulatum Morgan 1975.The biostratigraphic value of selected taxa is discussed and compared with data known both from the Tethyan and Boreal realms. In particular, the extinction of Bourkidinium granulatum emend. is proposed as the best dinoflagellate cyst event for the delimitation of the Hauterivian-Barremian boundary in the Northern Hemisphere. The first appearance

  8. Garnet cannibalism provides clues to extensive hydration of lower crustal fragments in a subduction channel (Sesia Zone, Northwestern Alps)

    NASA Astrophysics Data System (ADS)

    Giuntoli, Francesco; Lanari, Pierre; Engi, Martin

    2015-04-01

    The extent to which granulites are transformed to eclogites is thought to impose critical limits on the subduction of continental lower crust. Although it is seldom possible to document such densification processes in detail, the transformation is believed to depend on fluid access and deformation. Remarkably complex garnet porphyroblasts are widespread in eclogite facies micaschists in central parts of the Sesia Zone (Western Italian Alps). They occur in polydeformed samples in assemblages involving phengite+quartz+rutile ±paragonite, Na-amphibole, Na-pyroxene, chloritoid. Detailed study of textural and compositional types reveals a rich inventory of growth and partial resorption zones in garnet. These reflect several stages of the polycyclic metamorphic evolution. A most critical observation is that the relict garnet cores indicate growth at 900 °C and 0.9 GPa. This part of the Eclogitic Micaschist Complex thus derived from granulite facies metapelites of Permian age. These dry rocks must have been extensively hydrated during Cretaceous subduction, and garnet records the conditions of these processes. Garnet from micaschist containing rutile, epidote, paragonite and phengite were investigated in detail. Two types of garnet crystals are found in many thin sections: mm-size porphyroclasts and smaller atoll garnets, some 100 µm in diameter. X-ray maps of the porphyroclasts show complex zoning in garnet: a late Paleozoic HT-LP porphyroclastic core is overgrown by several layers of HP-LT Alpine garnet, these show evidence of growth at the expense of earlier garnet generations. Textures indicate 1-2 stages of resorption, with garnet cores that were fractured and then sealed by garnet veins, rimmed by multiple Alpine overgrowth rims with lobate edges. Garnet rim 1 forms peninsula and embayment structures at the expense of the core. Rim 2 surrounds rim 1, both internally and externally, and seems to have grown mainly at the expense of the core. Rim 3 grew mainly at

  9. Tephrochronology of the southernmost Andean Southern Volcanic Zone, Chile

    NASA Astrophysics Data System (ADS)

    Weller, D. J.; Miranda, C. G.; Moreno, P. I.; Villa-Martínez, R.; Stern, C. R.

    2015-12-01

    Correlations among and identification of the source volcanoes for over 60 Late Glacial and Holocene tephras preserved in eight lacustrine sediment cores taken from small lakes near Coyhaique, Chile (46° S), were made based on the stratigraphic position of the tephra in the cores, lithostratigraphic data (tephra layer thickness and grain size), and tephra petrochemistry (glass color and morphology, phenocryst phases, and bulk-tephra trace element contents determined by ICP-MS). The cores preserve a record of explosive eruptions, since ˜17,800 calibrated years before present (cal years BP), of the volcanoes of the southernmost Andean Southern Volcanic Zone (SSVZ). The suggested source volcanoes for 55 of these tephras include Hudson (32 events), Mentolat (10 events), and either Macá or Cay or some of the many minor monogenetic eruptive centers (MECs; 13 events) in the area. Only four of these eruptions had been previously identified in tephra outcrops in the region, indicating the value of lake cores for identifying smaller eruptions in tephrochronologic studies. The tephra records preserved in these lake cores, combined with those in marine cores, which extend these records back to 20,000 cal years BP, prior to the Last Glacial Maximum, suggest that no significant temporal change in the frequency of explosive eruptions was associated with deglaciation. Over this time period, Hudson volcano, one of the largest and longest lived volcanoes in the Southern Andes, has had >55 eruptions (four of them were very large) and has produced >45 km3 of pyroclastic material, making it also one of the most active volcanoes in the SVZ in terms of both frequency and volume of explosive eruptions.

  10. Saharan dust particles in snow samples of Alps and Apennines during an exceptional event of transboundary air pollution.

    PubMed

    Telloli, Chiara; Chicca, Milvia; Pepi, Salvatore; Vaccaro, Carmela

    2017-12-21

    Southern European countries are often affected in summer by transboundary air pollution from Saharan dust. However, very few studies deal with Saharan dust pollution at high altitudes in winter. In Italy, the exceptional event occurred on February 19, 2014, colored in red the entire mountain range (Alps and Apennines) and allowed to characterize the particulate matter deposited on snow from a morphological and chemical point of view. Snow samples were collected after this event in four areas in the Alps and one in the Apennines. The particulate matter of the melted snow samples was analyzed by scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS) and by inductively coupled plasma mass spectrometry (ICP-MS). These analyses confirmed the presence of Saharan dust particle components in all areas with similar percentages, supported also by the positive correlations between Mg-Ca, Al-Ca, Al-Mg, and Al-K in all samples.

  11. The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink.

    PubMed

    Abelmann, Andrea; Gersonde, Rainer; Knorr, Gregor; Zhang, Xu; Chapligin, Bernhard; Maier, Edith; Esper, Oliver; Friedrichsen, Hans; Lohmann, Gerrit; Meyer, Hanno; Tiedemann, Ralf

    2015-09-18

    Reduced surface-deep ocean exchange and enhanced nutrient consumption by phytoplankton in the Southern Ocean have been linked to lower glacial atmospheric CO2. However, identification of the biological and physical conditions involved and the related processes remains incomplete. Here we specify Southern Ocean surface-subsurface contrasts using a new tool, the combined oxygen and silicon isotope measurement of diatom and radiolarian opal, in combination with numerical simulations. Our data do not indicate a permanent glacial halocline related to melt water from icebergs. Corroborated by numerical simulations, we find that glacial surface stratification was variable and linked to seasonal sea-ice changes. During glacial spring-summer, the mixed layer was relatively shallow, while deeper mixing occurred during fall-winter, allowing for surface-ocean refueling with nutrients from the deep reservoir, which was potentially richer in nutrients than today. This generated specific carbon and opal export regimes turning the glacial seasonal sea-ice zone into a carbon sink.

  12. The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink

    PubMed Central

    Abelmann, Andrea; Gersonde, Rainer; Knorr, Gregor; Zhang, Xu; Chapligin, Bernhard; Maier, Edith; Esper, Oliver; Friedrichsen, Hans; Lohmann, Gerrit; Meyer, Hanno; Tiedemann, Ralf

    2015-01-01

    Reduced surface–deep ocean exchange and enhanced nutrient consumption by phytoplankton in the Southern Ocean have been linked to lower glacial atmospheric CO2. However, identification of the biological and physical conditions involved and the related processes remains incomplete. Here we specify Southern Ocean surface–subsurface contrasts using a new tool, the combined oxygen and silicon isotope measurement of diatom and radiolarian opal, in combination with numerical simulations. Our data do not indicate a permanent glacial halocline related to melt water from icebergs. Corroborated by numerical simulations, we find that glacial surface stratification was variable and linked to seasonal sea-ice changes. During glacial spring–summer, the mixed layer was relatively shallow, while deeper mixing occurred during fall–winter, allowing for surface-ocean refueling with nutrients from the deep reservoir, which was potentially richer in nutrients than today. This generated specific carbon and opal export regimes turning the glacial seasonal sea-ice zone into a carbon sink. PMID:26382319

  13. Modes of orogen-parallel stretching and extensional exhumation in response to microplate indentation and roll-back subduction (Tauern Window, Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Scharf, A.; Handy, M. R.; Favaro, S.; Schmid, S. M.; Bertrand, A.

    2013-09-01

    The Tauern Window exposes a Paleogene nappe stack consisting of highly metamorphosed oceanic (Alpine Tethys) and continental (distal European margin) thrust sheets. In the eastern part of this window, this nappe stack (Eastern Tauern Subdome, ETD) is bounded by a Neogene system of shear (the Katschberg Shear Zone System, KSZS) that accommodated orogen-parallel stretching, orogen-normal shortening, and exhumation with respect to the structurally overlying Austroalpine units (Adriatic margin). The KSZS comprises a ≤5-km-thick belt of retrograde mylonite, the central segment of which is a southeast-dipping, low-angle extensional shear zone with a brittle overprint (Katschberg Normal Fault, KNF). At the northern and southern ends of this central segment, the KSZS loses its brittle overprint and swings around both corners of the ETD to become subvertical, dextral, and sinistral strike-slip faults. The latter represent stretching faults whose displacements decrease westward to near zero. The kinematic continuity of top-east to top-southeast ductile shearing along the central, low-angle extensional part of the KSZS with strike-slip shearing along its steep ends, combined with maximum tectonic omission of nappes of the ETD in the footwall of the KNF, indicates that north-south shortening, orogen-parallel stretching, and normal faulting were coeval. Stratigraphic and radiometric ages constrain exhumation of the folded nappe complex in the footwall of the KSZS to have begun at 23-21 Ma, leading to rapid cooling between 21 and 16 Ma. This exhumation involved a combination of tectonic unroofing by extensional shearing, upright folding, and erosional denudation. The contribution of tectonic unroofing is greatest along the central segment of the KSZS and decreases westward to the central part of the Tauern Window. The KSZS formed in response to the indentation of wedge-shaped blocks of semi-rigid Austroalpine basement located in front of the South-Alpine indenter that was part

  14. Urbanization and depopulation in the Alps.

    PubMed

    Batzing, W; Perlik, M; Dekleva, M

    1996-11-01

    Demographic developments in the European Alpine region are analyzed over the period 1870-1990. The region is defined as including parts of Germany, France, Italy, Liechtenstein, Austria, Switzerland, and Slovenia. "Studies of growth, stagnation, decline, commune size, and altitude in almost 6,000 communes are presented on three colored maps.... It is apparent that two highly divergent processes are at work and, accordingly, statistical mean values reveal little of importance. Approximately one-half of Alpine Europe is undergoing general economic and demographic growth and has experienced significant increase in population since the end of the agricultural era. This development has taken place primarily in low-lying valleys and basins and in areas bordering the Alps that have good access to transport routes. Tourism is not as widespread as generally assumed and is usually characterized by a punctate pattern. Only in the western part of the Eastern Alps does tourism account for widespread population growth at higher altitudes; elsewhere the Alps have not been affected by modern development and the economy and population are declining, with some areas in danger of becoming completely abandoned. The results challenge the earlier concept of the Alps as a rural region, once populated by peasants, where tourism now plays a major role." (EXCERPT)

  15. Variations of the aerosol concentration and chemical composition over the arid steppe zone of Southern Russia in summer

    NASA Astrophysics Data System (ADS)

    Artamonova, M. S.; Gubanova, D. P.; Iordanskii, M. A.; Lebedev, V. A.; Maksimenkov, L. O.; Minashkin, V. M.; Obvintsev, Y. I.; Chketiani, O. G.

    2016-12-01

    Variations in the surface aerosol over the arid steppe zone of Southern Russia have been measured. The parameters of atmospheric aerosol (mass concentration, both dispersed and elemental compositions) and meteorological parameters were measured in Tsimlaynsk raion (Rostov oblast). The chemical composition of aerosol particles in the atmospheric surface layer has been determined, and the coefficients of enrichment of elements with respect to clarkes in the Earth's crust have been calculated. It is shown that, in summer, arid aerosols are transported from both alkaline and sandy soils of Kalmykia to the air basin over the observation zone. Aerosol particles in the surface air layer over this region have been found to contain the products of combustion of oil, coal, and ethylized fuel. These combustion products make a small contribution to the total mass concentration of atmospheric aerosol; however, they are most hazardous to the health of people because of their sizes and heavy-metal contents. A high concentration of submicron sulfur-containing aerosol particles of chemocondensation nature has been recorded. Sources of aerosol of both natural and anthropogenic origins in southern Russia are discussed.

  16. Late Quaternary strike-slip along the Taohuala Shan-Ayouqi fault zone and its tectonic implications in the Hexi Corridor and the southern Gobi Alashan, China

    NASA Astrophysics Data System (ADS)

    Yu, Jing-xing; Zheng, Wen-jun; Zhang, Pei-zhen; Lei, Qi-yun; Wang, Xu-long; Wang, Wei-tao; Li, Xin-nan; Zhang, Ning

    2017-11-01

    The Hexi Corridor and the southern Gobi Alashan are composed of discontinuous a set of active faults with various strikes and slip motions that are located to the north of the northern Tibetan Plateau. Despite growing understanding of the geometry and kinematics of these active faults, the late Quaternary deformation pattern in the Hexi Corridor and the southern Gobi Alashan remains controversial. The active E-W trending Taohuala Shan-Ayouqi fault zone is located in the southern Gobi Alashan. Study of the geometry and nature of slip along this fault zone holds crucial value for better understanding the regional deformation pattern. Field investigations combined with high-resolution imagery show that the Taohuala Shan fault and the E-W trending faults within the Ayouqi fault zone (F2 and F5) are left-lateral strike-slip faults, whereas the NW or WNW-trending faults within the Ayouqi fault zone (F1 and F3) are reverse faults. We collected Optically Stimulated Luminescence (OSL) and cosmogenic exposure age dating samples from offset alluvial fan surfaces, and estimated a vertical slip rate of 0.1-0.3 mm/yr, and a strike-slip rate of 0.14-0.93 mm/yr for the Taohuala Shan fault. Strata revealed in a trench excavated across the major fault (F5) in the Ayouqi fault zone and OSL dating results indicate that the most recent earthquake occurred between ca. 11.05 ± 0.52 ka and ca. 4.06 ± 0.29 ka. The geometry and kinematics of the Taohuala Shan-Ayouqi fault zone enable us to build a deformation pattern for the entire Hexi Corridor and the southern Gobi Alashan, which suggest that this region experiences northeastward oblique extrusion of the northern Tibetan Plateau. These left-lateral strike-slip faults in the region are driven by oblique compression but not associated with the northeastward extension of the Altyn Tagh fault.

  17. Gene Expression of Lytic Endopeptidases AlpA and AlpB from Lysobacter sp. XL1 in Pseudomonads.

    PubMed

    Tsfasman, Irina M; Lapteva, Yulia S; Krasovskaya, Ludmila A; Kudryakova, Irina V; Vasilyeva, Natalia V; Granovsky, Igor E; Stepnaya, Olga A

    2015-01-01

    Development of an efficient expression system for (especially secreted) bacterial lytic enzymes is a complicated task due to the specificity of their action. The substrate for such enzymes is peptidoglycan, the main structural component of bacterial cell walls. For this reason, expression of recombinant lytic proteins is often accompanied with lysis of the producing bacterium. This paper presents data on the construction of an inducible system for expression of the lytic peptidases AlpA and AlpB from Lysobacter sp. XL1 in Pseudomonas fluorescens Q2-87, which provides for the successful secretion of these proteins into the culture liquid. In this system, the endopeptidase gene under control of the T7lac promoter was integrated into the bacterial chromosome, as well as the Escherichia coli lactose operon repressor protein gene. The T7 pol gene under lac promoter control, which encodes the phage T7 RNA polymerase, is maintained in Pseudomonas cells on the plasmids. Media and cultivation conditions for the recombinant strains were selected to enable the production of AlpA and AlpB by a simple purification protocol. Production of recombinant lytic enzymes should contribute to the development of new-generation antimicrobial drugs whose application will not be accompanied by selection of resistant microorganisms. © 2015 S. Karger AG, Basel.

  18. Age and Prematurity of the Alps Derived from Topography

    NASA Astrophysics Data System (ADS)

    Hergarten, S.; Wagner, T.; Stüwe, K.

    2010-09-01

    The European Alps are one of the best studied mountain ranges on Earth, but yet the age of their topography is almost unknown. Even their relative stage of evolution is unclear: Are the Alps still growing, in a steady state or already decaying, and is there a significant difference between Western and Eastern Alps? Using a new geomorphic parameter we analyze the topography of the Alps and provide one of the first quantitative constraints demonstrating that the range is still in its infancy: In contrast to several other mountain ranges, the Alps have still more than half of their evolution to a geomorphic steady state to go. Combining our results with sediment budget data from the surrounding basins we infer that the formation of the present topography began only 5-6 million years ago. Our results question the apparent consensus that the topographic evolution is distributed over much of the Miocene and might give new impulses to the reconstruction of paleoclimate in Central Europe.

  19. Mercury concentration variability in the zooplankton of the southern Baltic coastal zone

    NASA Astrophysics Data System (ADS)

    Bełdowska, Magdalena; Mudrak-Cegiołka, Stella

    2017-12-01

    Being a toxic element, mercury is introduced to the human organism through the consumption of fish and seafood, which in turn often feed on zooplankton. The bioaccumulation of Hg by zooplankton is an important factor influencing the magnitude of the mercury load introduced with food into the predator organism. Therefore the present article attempts to identify the processes and factors influencing Hg concentration in the zooplankton of the coastal zone, an area where marine organisms - an attractive food source for humans - thrive. This is particularly important in areas where climate changes influence the species composition and quantity of plankton. The studies were carried out on three test sites in the coastal zone of the southern Baltic Sea in the period from December 2011 to May 2013. The obtained results show that the shorting of the winter season is conducive to Hg increase in zooplankton and, consequently, in the trophic chain. High mercury concentrations were measured in genus Synchaeta and Keratella when Mesodinium rubrum were predominant in phytoplankton, while other sources of this metal in the plankton fauna were epilithon, epiphton and microbenthos. This is of particular importance when it comes to sheltered bays and estuaries with low water dynamics.

  20. Characterization and monitoring of the excavation damaged zone in fractured gneisses of the Roselend tunnel, French Alps

    NASA Astrophysics Data System (ADS)

    Wassermann, J.; Sabroux, J. C.; Pontreau, S.; Bondiguel, S.; Guillon, S.; Richon, P.; Pili, E.

    2011-04-01

    The Roselend dead-end tunnel was excavated in the last fifties by blasting in the Méraillet crystalline rock mass located on the shore of an artificial reservoir lake in the French Alps. Successive emptying and filling of the reservoir lake induce mechanical deformation of the rock mass. Thus, this tunnel is an exceptional place to study the evolution of the damaged zone (due to the excavation, and named EDZ) under a periodic mechanical or hydraulic loading. From the perspective of radioactive waste isolation in deep geological strata, the EDZ transport properties, and their evolution with time, are of major importance. The purpose of this study is, on the one hand, to quantify the transport properties of the EDZ of the Roselend tunnel through permeability measurements and drill core observations; on the other hand, to monitor the response of the EDZ to external solicitations via borehole pressure measurements. The air permeability has been deduced from pneumatic tests performed along several boreholes. The permeability profiles and the observation of drill cores lead to an estimation of the extent of the EDZ, of about 1 m around the tunnel. The response of the EDZ to barometric pumping has been observed through borehole pressure monitoring. Time-lag and attenuation of the barometric signal that propagates into the EDZ have been measured at a metric scale. The identification of potential time-lag and attenuation variations needs further investigations, the long time series of borehole pressure monitoring shows pressure increase probably due to percolating water during successive snow cover and thawing periods as observed in the Roselend area during winter.

  1. Geochronologic Constraints on Duration of Magma Emplacement and Heat Transfer in the Deep Crust: new data from the Ivrea Zone, Western Alps, Italy

    NASA Astrophysics Data System (ADS)

    Peressini, G.; Quick, J. E.; Poller, U.; Todt, W.; Mayer, A.; Sinigoi, S.; Hofmann, A. W.

    2002-12-01

    The Mafic Complex (MC) of the Ivrea Zone is one of the largest gabbro bodies in the Alps (ca 8 km thick and 30 km long); it intruded the already metamorphic volcano-sedimentary sequence of the Kinzigite Formation (KF) at a depth of more than 20 km during the Late Paleozoic. New geochronologic data constrain the duration of the intrusion. The crustal section, uplifted, tilted and exposed in Alpine time, is tectonically bounded, but essentially undisturbed by Alpine tectonics; the internal structure of the MC and its relations with the KF are well preserved. Intrusion of the MC in extending continental crust is suggested by pre-Triassic, high-T, extensional shear zones in the Ivrea Zone, and is consistent with the internal arcuate structure of the MC, which is defined by high-T foliation and banding, that are discordant to the roof of the intrusion. Rocks in the roof of the MC attain upper-amphibolite grade and show evidence of partial melting within about 2 km of the MC. The country rock was melted as a consequence of heat released by the crystallizing mafic body; the chemistry of the mafic rocks was affected by up to 30% crustal contamination that occurred partially in situ, by mixing of the basaltic melts with anatectic melts derived from depleted crustal rocks. A thin (less than 20 m) seam of leucogranite crystallized from anatectic melt is present at the MC-KF contact. Syntectonic intrusion of leucogranite along shear zones within the KF demonstrates migration of anatectic melts to higher crustal levels. U/Pb SHRIMP ages on magmatic zircons range from 295+4 and 287+4 Ma for the MC, and 280+4 Ma for syntectonic leucogranites in the KF. Thus, intrusion of the MC may have taken as long as 10-15 Ma. Nd-Sm mineral isochrones for the MC range from 244 to 274, indicating that the Complex cooled to temperatures below 750C within about 40 Ma of final crystallization. The heat of crystallization of the MC was accommodated by anatexis and assimilation, and syntectonic

  2. Tectonic lineaments in the cenozoic volcanics of southern Guatemala: Evidence for a broad continental plate boundary zone

    NASA Technical Reports Server (NTRS)

    Baltuck, M.; Dixon, T. H.

    1984-01-01

    The northern Caribbean plate boundary has been undergoing left lateral strike slip motion since middle Tertiary time. The western part of the boundary occurs in a complex tectonic zone in the continental crust of Guatemala and southernmost Mexico, along the Chixoy-Polochic, Motogua and possibly Jocotan-Chamelecon faults. Prominent lineaments visible in radar imagery in the Neogene volcanic belt of southern Guatemala and western El Salvador were mapped and interpreted to suggest southwest extensions of this already broad plate boundary zone. Because these extensions can be traced beneath Quaternary volcanic cover, it is thought that this newly mapped fault zone is active and is accommodating some of the strain related to motion between the North American and Caribbean plates. Onshore exposures of the Motoqua-Polochic fault systems are characterized by abundant, tectonically emplaced ultramafic rocks. A similar mode of emplacement for these off shore ultramafics, is suggested.

  3. Paleomagnetic Data Bearing on the Evolution of the Walker Lane Belt Transfer Zone From mid-Miocene to Present: an Investigation of the Inferred Southern and Eastern Boundaries.

    NASA Astrophysics Data System (ADS)

    Grow, J. S.; Geissman, J. W.; Oldow, J. S.

    2008-12-01

    The Walker Lane Belt (WLB) transfer zone, which initiated in the mid-Miocene, presently links the Eastern California Shear Zone (ECSZ) in the south to the Central Nevada Seismic Belt (CNSB) and WLB to the east and north, respectively. This transfer zone is part of a diffuse intracontinental deformation zone that accommodates some 25 percent of the current motion between the North American and Pacific plates. The boundary of the transfer system is clear on the northern and western margins but the extent of the system to the south and east is only inferred. The extent of deformation and development of the WLB transfer zone since the mid-Miocene is being examined by a paleomagnetic study of 125 sites that includes Miocene to mid-Pliocene volcanic and shallow intrusive rocks near the inferred southern and eastern boundaries. Results from 39 sites inside and along the southern boundary (i.e. Goldfield Hills, Montezuma Range, Clayton Ridge) show about 30° of clockwise rotation (D = 028.3°, I = 57.8°, α95 = 3.9°, discordant from the expected Neogene direction of D = 358°, I = 55°). The area where 13 of these 39 sites are located (i.e. northern Amargosa Range, eastern Slate Ridge) was previously thought to lie outside of the inferred boundary, yet it also shows about 30° of clockwise rotation (D = 031.2°, I = 52.4°, α95 = 6.7°). Areas along the eastern boundary (i.e. southern San Antonio Range) of the transfer zone are still under investigation; data obtained to date are not internally consistent. Overall, the available paleomagnetic data suggest that the southern extent of the WLB transfer zone was larger than previously expected during the mid-Miocene to mid-Pliocene, and based on previous paleomagnetic, structural, and geodetic studies of the area, support a transition from more diffuse to localized deformation (forming the Mina Deflection) at about 3 Ma.

  4. Microstructural record of pressure solution and crystal plastic deformation in carbonate fault rocks from a shallow crustal strike-slip fault, Northern Calcareous Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Bauer, Helene; Rogowitz, Anna; Grasemann, Benhard; Decker, Kurt

    2017-04-01

    This study presents microstructural investigations of natural carbonate fault rocks that formed by a suite of different deformation processes, involving hydro-fracturing, dissolution-precipitation creep and cataclasis. Some fault rocks show also clear indications of crystal plastic deformation, which is quite unexpected, as the fault rocks were formed in an upper crustal setting, raising the question of possible strongly localised, low temperature ductile deformation in carbonate rocks. The investigated carbonate fault rocks are from an exhumed, sinistral strike-slip fault at the eastern segment of the Salzachtal-Ennstal-Mariazell-Puchberg (SEMP) fault system in the Northern Calcareous Alps (Austria). The SEMP fault system formed during eastward lateral extrusion of the Eastern Alps in the Oligocene to Lower Miocene. Based on vitrinite reflectance data form intramontane Teritary basins within the Northern Calcareous Alps, a maximum burial depth of 4 km for the investigated fault segment is estimated. The investigated fault accommodated sinistral slip of several hundreds of meters. Microstructural analysis of fault rocks includes scanning electron microscopy, optical microscopy and electron backscattered diffraction mapping. The data show that fault rocks underwent various stages of evolution including early intense veining (hydro-fracturing) and stylolite formation reworked by localised shear zones. Cross cutting relationship reveals that veins never cross cut clay seams accumulated along stylolites. We conclude that pressure solution processes occured after hydro-fracturing. Clay enriched zones localized further deformation, producing a network of small-scale clay-rich shear zones of up to 1 mm thickness anastomosing around carbonate microlithons, varying from several mm down to some µm in size. Clay seams consist of kaolinit, chlorite and illite matrix and form (sub) parallel zones in which calcite was dissolved. Beside pressure solution, calcite microlithons

  5. The AlpArray-CASE project: temporary broadband seismic network deployment and characterization

    NASA Astrophysics Data System (ADS)

    Dasović, Iva; Molinari, Irene; Stipčević, Josip; Šipka, Vesna; Salimbeni, Simone; Jarić, Dejan; Prevolnik, Snježan; Kissling, Eduard; Clinton, John; Giardini, Domenico

    2017-04-01

    While the northern part of the Adriatic microplate will be accurately imaged within the AlpArray project, its central and southern parts deserve detailed studies to obtain a complete picture of its structure and evolution. The Adriatic microplate forms the upper plate in the Western and Central Alps whereas it forms the lower plate in the Apennines and the Dinarides. However, the tectonics of Adriatic microplate is not well constrained and remains controversial, especially with regard to its contact with the Dinarides. The primary goal of the Central Adriatic Seismic Experiment (CASE) is to provide high quality seismological data and to shed light on seismicity and 3D lithospheric structure of the central Adriatic microplate and its boundaries. The CASE project is an international AlpArray Complementary Experiment carried out by four institutions: Department of Earth Sciences and Swiss Seismological Service of ETH Zürich (CH), Department of Geophysics and Croatian Seismological Service of Faculty of Science at University of Zagreb (HR), Republic Hydrometeorological Service of Republic of Srpska (BIH) and Istituto Nazionale di Geofisica e Vulcanologia (I). It establishes a temporary seismic network, expected to be operational at least for one year, composed by existing permanent and temporary seismic stations operated by the institutions involved and newly deployed temporary seismic stations, installed in November and December 2016, provided by ETH Zürich and INGV: five in Croatia, four in Bosnia and Herzegovina and two in Italy. In this work, we present stations sites and settings and discuss their characteristics in terms of site-effects and noise level of each station. In particular, we analyse the power spectral density estimates in order to investigate major sources of noise and background noise.

  6. Coulomb Stress Change and Seismic Hazard of Rift Zones in Southern Tibet after the 2015 Mw7.8 Nepal Earthquake and Its Mw7.3 Aftershock

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Zha, X.; Lu, Z.

    2015-12-01

    In southern Tibet (30~34N, 80~95E), many north-trending rifts, such as Yadong-Gulu and Lunggar rifts, are characterized by internally drained graben or half-graben basins bounded by active normal faults. Some developed rifts have become a portion of important transportation lines in Tibet, China. Since 1976, eighty-seven >Mw5.0 earthquakes have happened in the rift regions, and fifty-five events have normal faulting focal mechanisms according to the GCMT catalog. These rifts and normal faults are associated with both the EW-trending extension of the southern Tibet and the convergence between Indian and Tibet. The 2015 Mw7.8 Nepal great earthquake and its Mw7.3 aftershock occurred at the main Himalayan Thrust zone and caused tremendous damages in Kathmandu region. Those earthquakes will lead to significant viscoelastic deformation and stress changes in the southern Tibet in the future. To evaluate the seismic hazard in the active rift regions in southern Tibet, we modeled the slip distribution of the 2015 Nepal great earthquakes using the InSAR displacement field from the ALOS-2 satellite SAR data, and calculated the Coulomb failure stress (CFS) on these active normal faults in the rift zones. Because the estimated CFS depends on the geometrical parameters of receiver faults, it is necessary to get the accurate fault parameters in the rift zones. Some historical earthquakes have been studied using the field data, teleseismic data and InSAR observations, but results are in not agreement with each other. In this study, we revaluated the geometrical parameters of seismogenic faults occurred in the rift zones using some high-quality coseismic InSAR observations and teleseismic body-wave data. Finally, we will evaluate the seismic hazard in the rift zones according to the value of the estimated CFS and aftershock distribution.

  7. Review of metamorphic and kinematic data from Internal Crystalline Massifs (Western Alps): PTt paths and exhumation history

    NASA Astrophysics Data System (ADS)

    Gasco, Ivano; Gattiglio, Marco; Borghi, Alessandro

    2013-01-01

    Detailed geological mapping combined with micro-structural and petrological investigation allowed to clarify the tectono-metamorphic relationships between continental and oceanic units transition in the Penninic domain of the Western Alps. The three study areas (Gressoney, Orco and Susa sections) take into consideration the same structural level across the axial metamorphic belt of the Western Italian Alps, i.e., a geological section across the Internal Crystalline Massifs vs Piedmont Zone boundary. The units outcropping in these areas can be grouped into two Tectonic Elements according to their tectono-metamorphic evolution. The Lower Tectonic Element (LTE) consists of the Internal Crystalline Massifs and the Lower Piedmont Zone (Zermatt-Saas like units), both showing well preserved eclogite facies relics. Instead, the Upper Tectonic Element (UTE) consists of the Upper Piedmont Zone (Combin like units) lacking evidence of eclogite facies relics. In the Lower Tectonic Element two main Alpine tectono-metamorphic stages were identified: M1/D1 developed under eclogite facies conditions and M2/D2 is related to the development of the regional foliation under greenschist to epidote-albite amphibolite facies conditions. In the Upper Tectonic Element the metamorphic stage M1/D1 developed under bluschist to greenschist facies conditions and M2/D2 stage under greenschist facies conditions. These two Tectonic Elements are separated by a tectonic contact of regional importance generally developed along the boundary between the Lower and the Upper Piedmont zone under greenschist facies conditions. PT data compared to geochronology indicate that the first exhumation of ICM can be explained by buoyancy forces acting along the subduction channel that occurred during the tectonic coupling between the continental and oceanic eclogite units. These buoyancy forces vanished at the base of the crust where the density difference between the subducted crustal units and the surroundings

  8. The Relationship between Teachers Commitment and Female Students Academic Achievements in Some Selected Secondary School in Wolaita Zone, Southern Ethiopia

    ERIC Educational Resources Information Center

    Bibiso, Abyot; Olango, Menna; Bibiso, Mesfin

    2017-01-01

    The purpose of this study was to investigate the relationship between teacher's commitment and female students academic achievement in selected secondary school of Wolaita zone, Southern Ethiopia. The research method employed was survey study and the sampling techniques were purposive, simple random and stratified random sampling. Questionnaire…

  9. Isotopic composition of sulfate accumulations, Northern Calcareous Alps, Austria

    NASA Astrophysics Data System (ADS)

    Bojar, Ana-Voica; Halas, Stanislaw; Bojar, Hans-Peter; Trembaczowski, Andrzej

    2015-04-01

    The Eastern Alps are characterised by the presence of three main tectonic units, such as the Lower, Middle and Upper Austroalpine, which overlie the Penninicum (Tollmann, 1977). The Upper Austroalpine unit consists of the Northern Calcareous Alps (NCA) overlying the Greywacke zone and corresponding to the Graz Paleozoic, Murau Paleozoic and the Gurktal Nappe. Evaporitic rocks are lacking in the later ones. The Northern Calcareous Alps are a detached fold and thrust belt. The sedimentation started in the Late Carboniferous or Early Permian, the age of the youngest sediments being Eocene. The NCA are divided into the Bajuvaric, Tirolic and Juvavic nappe complexes. The evaporitic Haselgebirge Formation occurs in connection with the Juvavic nappe complex at the base of the Tirolic units (Leitner et al., 2013). The Haselgebirge Formation consists mainly of salt, shales, gypsum and anhydrite and includes the oldest sediments of the NCA. The age of the Haselgebirge Formation, established by using spors and geochronological data, is Permian to Lower Triassic. For the Northern Calcareous Alps, the mineralogy of sulphate accumulations consists mainly of gypsum and anhydrite and subordonates of carbonates. The carbonates as magnesite, dolomite and calcite can be found either as singular crystals or as small accumulations within the hosting gypsum. Sulfides (sphalerite, galena, pyrite), sulfarsenides (enargite, baumhauerite) and native sulphur enrichments are known from several deposits (Kirchner, 1987; Postl, 1990). The investigated samples were selected from various gypsum and halite rich deposits of the Northern Calcareous Alps. A total of over 20 samples were investigated, and both oxygen and sulfur isotopic composition were determined for anhydrite, gyps, polyhalite, blödite and langbeinite. The sulfur isotopic values vary between 10.1 to 14 ‰ (CDT), with three values higher than 14 ‰. The Oxygen isotopic values show a range from 9 to 23 ‰ (SMOW). The sulfur

  10. Artificial and natural radionuclides in soils of the southern and middle taiga zones of Komi Republic

    NASA Astrophysics Data System (ADS)

    Beznosikov, V. A.; Lodygin, E. D.; Shuktomova, I. I.

    2017-07-01

    Specific activities of artificial (137Cs, 90Sr) and natural (40K, 232Th, 226Ra) radionuclides in background soils of southern and middle taiga of Komi Republic have been estimated with consideration for the landscape-geochemical features of the territory. It has been shown that their accumulation and migration in soils are determined by the following factors: position in relief, texture, and organic matter content. No anomalous zones with increased contents of radionuclides in soils have been revealed.

  11. Geomorphic evidence of Quaternary tectonics within an underlap fault zone of southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Giano, Salvatore Ivo; Pescatore, Eva; Agosta, Fabrizio; Prosser, Giacomo

    2018-02-01

    A composite seismic source, the Irpinia - Agri Valley Fault zone, located in the axial sector of the fold-and-thrust belt of southern Apennines, Italy, is investigated. This composite source is made up of a series of nearly parallel, NW-striking normal fault segments which caused many historical earthquakes. Two of these fault segments, known as the San Gregorio Magno and Pergola-Melandro, and the fault-related mountain fronts, form a wedge-shaped, right-stepping, underlap fault zone. This work is aimed at documenting tectonic geomorphology and geology of this underlap fault zone. The goal is to decipher the evidence of surface topographic interaction between two bounding fault segments and their related mountain fronts. In particular, computation of geomorphic indices such as mountain front sinuosity (Smf), water divide sinuosity (Swd), asymmetry factor (AF), drainage basin elongation (Bs), relief ratio (Rh), Hypsometry (HI), normalized steepness (Ksn), and concavity (θ) is integrated with geomorphological analysis, the geological mapping, and structural analysis in order to assess the recent activity of the fault scarp sets recognized within the underlap zone. Results are consistent with the NW-striking faults as those showing the most recent tectonic activity, as also suggested by presence of related slope deposits younger than 38 ka. The results of this work therefore show how the integration of a multidisciplinary approach that combines geomorphology, morphometry, and structural analyses may be key to solving tectonic geomorphology issues in a complex, fold-and-thrust belt configuration.

  12. The XMAP215 Ortholog Alp14 Promotes Microtubule Nucleation in Fission Yeast.

    PubMed

    Flor-Parra, Ignacio; Iglesias-Romero, Ana Belén; Chang, Fred

    2018-06-04

    The organization and number of microtubules (MTs) in a cell depend on the proper regulation of MT nucleation. Currently, the mechanism of nucleation is the most poorly understood aspect of MT dynamics. XMAP215/chTOG/Alp14/Stu2 proteins are MT polymerases that stimulate MT polymerization at MT plus ends by binding and releasing tubulin dimers. Although these proteins also localize to MT organizing centers and have nucleating activity in vitro, it is not yet clear whether these proteins participate in MT nucleation in vivo. Here, we demonstrate that in the fission yeast Schizosaccharomyces pombe, the XMAP215 ortholog Alp14 is critical for efficient MT nucleation in vivo. In multiple assays, loss of Alp14 function led to reduced nucleation rate and numbers of interphase MT bundles. Conversely, activation of Alp14 led to increased nucleation frequency. Alp14 associated with Mto1 and γ-tubulin complex components, and artificially targeting Alp14 to the γ-tubulin ring complexes (γ-TuRCs) stimulated nucleation. In imaging individual nucleation events, we found that Alp14 transiently associated with a γ-tubulin particle shortly before the appearance of a new MT. The transforming acidic coiled-coil (TACC) ortholog Alp7 mediated the localization of Alp14 at nucleation sites but not plus ends, and was required for efficient nucleation but not for MT polymerization. Our findings provide the strongest evidence to date that Alp14 serves as a critical MT nucleation factor in vivo. We suggest a model in which Alp14 associates with the γ-tubulin complex in an Alp7-dependent manner to facilitate the assembly or stabilization of the nascent MT. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Seismicity and structure of Nazca Plate subduction zone in southern Peru

    NASA Astrophysics Data System (ADS)

    Lim, H.; Kim, Y.; Clayton, R. W.; Thurber, C. H.

    2016-12-01

    We define subducting plate geometries in the Nazca subduction zone by (re)locating intra-slab earthquakes in southern Peru (2-18°S) and taking previously published converted phase analysis results, to clarify the slab geometry and inferred relationships to the seismicity. We also provide both P- and S-wave velocities of the subducting Nazca Plate and mantle wedge portions close to the slab using double-difference tomography (Zhang and Thurber, 2003) to understand upper plate volcanism and subduction process. A total of 492 regional earthquakes from August 2008 to February 2013 recorded from the dense seismic array (PeruSE, 2013) are selected for the relocation and tomography. The relocated seismicity shows a smooth contortion in the slab-dip transition zone for 400 km between the shallow (25°)-to-flat dipping interface in the north and 40°-dipping interface in the south. We find a significant slab-dip difference (up to 10°) between our results and previously published slab models along the profile region sampling the normal-dip slab at depth (>100 km). Robust features in both P- and S-wave tomography inversions are dipping low-velocity slabs down to 100 km transitioning to higher-velocities at 100-140 km in both flat slab and dipping slab regions. Differences in the velocities of the mantle wedge between the two regions may indicate different hydration states in the wedge.

  14. A Bi-hemispheric perspective on the last glacial termination from the Southern Alps of New Zealand and the Altai Mountains of western Mongolia

    NASA Astrophysics Data System (ADS)

    Strand, P.; Putnam, A. E.; Schaefer, J. M.; Denton, G.; Putnam, D.; Barrell, D.; Schwartz, R.; Sambuu, O.

    2016-12-01

    The last glacial termination ( 18,000 - 11,000 yrs ago) represents the last great global warming and the last time CO2 rose by a substantial amount before the industrial period. Understanding the processes that drove this glacial to interglacial transition will help refine the global climate system sensitivity to CO2 and will place ongoing global warming into a paleoclimatic context. Here, we test possible drivers of the last glacial termination by comparing chronologies of mountain glacier recession in the middle latitudes of both polar hemispheres. Extra-polar mountain glaciers are highly sensitive to changes in atmospheric temperature. Thus glacier landforms, such as moraine ridges constructed along glacier margins, afford quantitative insight into past climate conditions. We present 10Be surface-exposure chronologies and glacial geomorphologic maps of mountain glacier recession since the Last Glacial Maximum in the Southern Alps of New Zealand (44°S, 170°E) and in the Altai Mountains of western Mongolia (49°N, 88°E). On the basis of these chronologies from opposing hemispheres, we will evaluate the relative roles of rising atmospheric CO2, local insolation forcing, and ocean-atmosphere reorganizations in driving the warming that ended the last ice age.

  15. Hydrogeological impact of fault zones on a fractured carbonate aquifer, Semmering (Austria)

    NASA Astrophysics Data System (ADS)

    Mayaud, Cyril; Winkler, Gerfried; Reichl, Peter

    2015-04-01

    Fault zones are the result of tectonic processes and are geometrical features frequently encountered in carbonate aquifer systems. They can hamper the fluid migration (hydrogeological barriers), propagate the movement of fluid (draining conduits) or be a combination of both processes. Numerical modelling of fractured carbonate aquifer systems is strongly bound on the knowledge of a profound conceptual model including geological and tectonic settings such as fault zones. In further consequence, numerical models can be used to evaluate the conceptual model and its introduced approximations. The study was conducted in a fractured carbonate aquifer built up by permomesozoic dolo/limestones of the Semmering-Wechsel complex in the Eastern Alps (Austria). The aquifer has an assumed thickness of about 200 m and dips to the north. It is covered by a thin quartzite layer and a very low permeable layer of quartz-phyllite having a thickness of up to several hundred meters. The carbonate layer crops out only in the southern part of the investigation area, where it receives autogenic recharge. The geological complexity affects some uncertainties related to the extent of the model area, which was determined to be about 15 km². Three vertical fault zones cross the area approximately in a N-S direction. The test site includes an infrastructural pilot tunnel gallery of 4.3 km length with two pumping stations, respectively active since August 1997 and June 1998. The total pumping rate is about 90 l/s and the drawdown data were analysed analytically, providing a hydraulic conductivity of about 5E-05 m/s for the carbonate layer. About 120 m drawdown between the initial situation and situation with pumping is reported by piezometers. This led to the drying up of one spring located at the southern border of the carbonates. A continuum approach using MODFLOW-2005 was applied to reproduce numerically the observed aquifer behaviour and investigate the impact of the three fault zones. First

  16. Brittle deformation and exhumation mechanisms in the core of the Eastern Alps, The Tauern Window

    NASA Astrophysics Data System (ADS)

    Bertrand, Audrey; Garcia, Sebastian; Rosenberg, Claudio

    2010-05-01

    The Tauern Window (TW) is a Tertiary structural and thermal dome located in the core of the Eastern Alpine orogen and in front of the Dolomite indenter. The Penninic basement and cover units within the TW attained their thermal peak about 30 Myr ago (e.g., Selverstone et al., 1992) followed by cooling and exhumation from Early Oligocene to late Miocene time (e.g., Grundmann and Morteani, 1985). Most exhumation was partly accommodated by two normal faults at the western and eastern ends of the TW (Brenner and Katschberg faults, respectively). Although these normal faults are well described in the literature, their roles in the exhumation of the TW are still under debate: Exhumation accommodated primarily by folding and erosion (e.g., Rosenberg et al., 2004) versus exhumation mainly accommodated by Brenner and Katschberg normal faulting (e.g., Selverstone, 1988; Ratschbacher et al., 1989). New fault-slip data from the TW allow us to reconstruct paleostress axes by inversion and to constrain the relative roles of the folding and orogen-parallel extension during the late deformation history of the TW, in the brittle-field. Our results show little evidence of compression and a clear zoning of the paleostress field in the TW. In the central part of the TW, the σ1 direction is sub-horizontal N-S to NE-SW (strike-slip), whereas it is steep in the footwall of the Brenner and the Katschberg normal faults. Local variability of the σ3 direction are observed; indeed, the σ3 direction varies from E-W to WNW-ESE along the Brenner fault, to NW-SE along the Jaufen fault, the inferred southern continuation of the Brenner fault (Schneider et al., this session). Along the Katschberg fault, the σ3 direction is mainly NNW-SSE oriented, which is consistent with extension in front of a triangular dead zone shape induced by the WSW-striking Dolomites indenter. Nearly no evidence of a stress field compatible with upright folding (D2 phase of deformation) was found in the brittle domain

  17. The role of detachment and interlayer shear zones in the structural evolution of the southern Espinhaço range, eastern Brazil

    NASA Astrophysics Data System (ADS)

    Kuchenbecker, Matheus; Sanglard, Júlio Carlos Destro

    2018-07-01

    Sedimentary rocks usually show a significant mechanical anisotropy due to its layered nature. Because of this, they play an important role controlling rock deformation and the study of the deformation partitioning caused by rheological heterogeneities becomes a crucial step to understand the inversion of sedimentary basins. The detachment and interlayer shear zones, described at southern Espinhaço range, correspond to part of the structural collection that records the compressive deformation which is associated to the Brazilian-Pan African orogeny during Gondwana amalgamation. The mechanical contrast between lithological units is the main parameter of control for the occurrence of these zones which can be found with variable thickness from millimeter interlayer shear zones to regional-sized basement-cover detachment zones. The phyllitic layers are the most incompetent lithotype among metasedimentary rocks and they play an important role in the ductile-brittle regional deformation by accommodating much of the deformation during faulting and/or folding. Even though being a more competent rock, internal interlayer shear zones and other shear structures can be found in quartzite when in contact with weaker rocks. These structures accommodate a significant amount of deformation at the southern Espinhaço range and, because of this, they are of great value in understanding the inversion of the Espinhaço basins during West Gondwana assembly. The focus of the present paper is to discuss the main situations where interlayer shear occurs, to present a brief compendium of the main structures associated to this process and to add parameters to its recognition and interpretation.

  18. Dissolved methane concentration and flux in the coastal zone of the Southern California Bight-Mexican sector: Possible influence of wastewater

    EPA Science Inventory

    We measured dissolved methane concentrations ([CH4]) in the coastal zone of the Southern California Bight-Mexican sector (SCBMex) during two cruises: S1 in the USA–Mexico Border Area (BA) during a short rainstorm and S2 in the entire SCBMex during a drier period a few days later....

  19. SALMON-TRINITY ALPS WILDERNESS, CALIFORNIA.

    USGS Publications Warehouse

    Hotz, Preston E.; Thurber, Horace K.

    1984-01-01

    The Salmon-Trinity Alps Wilderness in the Klamath Mountains province occupies an area of about 648 sq mi in parts of Trinity, Siskiyou, and Humboldt Counties, northwestern California. As a result of field studies it was determined that the Salmon-Trinity Alps Wilderness has an area with substantiated potential for gold resources in known lode deposits. Small amounts of quicksilver have been produced from one mine but there is little promise for the discovery of additional mercury resources. Geochemical sampling showed that anomalously high amounts of several other metals occur in a few places, but there is little promise for the discovery of energy or mineral resources other than mercury and gold.

  20. Extension and gold mineralisation in the hanging walls of active convergent continental shear zones

    NASA Astrophysics Data System (ADS)

    Upton, Phaedra; Craw, Dave

    2014-07-01

    Orogenic gold-bearing quartz veins form in mountain belts adjacent to convergent tectonic boundaries. The vein systems, hosted in extensional structures within compressively deformed rocks, are a widespread feature of these orogens. In many cases the extensional structures that host gold-bearing veins have been superimposed on, and locally controlled by, compressional structures formed within the convergent orogen. Exploring these observations within the context of a three-dimensional mechanical model allows prediction of mechanisms and locations of extensional zones within convergent orogens. Our models explore the effect of convergence angle and mid-crustal strength on stress states and compare them to the Southern Alps and Taiwan. The dilatation zones coincide with the highest mountains, in the hanging walls of major plate boundary faults, and can extend as deep as the brittle-ductile transition. Extensional deformation is favoured in the topographic divide region of oblique orogens with mid-lower crustal rheology that promotes localisation rather than diffuse deformation. In the near surface, topography influences the stress state to a depth approximately equal to the topographic relief, bringing the rock closer to failure and rotating σ1 to near vertical. The distribution of gold-bearing extensional veins may indicate the general position of the topographic divide within exhumed ancient orogens.

  1. Fission yeast Alp14 is a dose-dependent plus end–tracking microtubule polymerase

    PubMed Central

    Al-Bassam, Jawdat; Kim, Hwajin; Flor-Parra, Ignacio; Lal, Neeraj; Velji, Hamida; Chang, Fred

    2012-01-01

    XMAP215/Dis1 proteins are conserved tubulin-binding TOG-domain proteins that regulate microtubule (MT) plus-end dynamics. Here we show that Alp14, a XMAP215 orthologue in fission yeast, Schizosaccharomyces pombe, has properties of a MT polymerase. In vivo, Alp14 localizes to growing MT plus ends in a manner independent of Mal3 (EB1). alp14-null mutants display short interphase MTs with twofold slower assembly rate and frequent pauses. Alp14 is a homodimer that binds a single tubulin dimer. In vitro, purified Alp14 molecules track growing MT plus ends and accelerate MT assembly threefold. TOG-domain mutants demonstrate that tubulin binding is critical for function and plus end localization. Overexpression of Alp14 or only its TOG domains causes complete MT loss in vivo, and high Alp14 concentration inhibits MT assembly in vitro. These inhibitory effects may arise from Alp14 sequestration of tubulin and effects on the MT. Our studies suggest that Alp14 regulates the polymerization state of tubulin by cycling between a tubulin dimer–bound cytoplasmic state and a MT polymerase state that promotes rapid MT assembly. PMID:22696680

  2. Any Light Particle Search (ALPS)

    NASA Astrophysics Data System (ADS)

    Spector, Aaron; Any Light Particle Search (ALPS) Collaboration

    2016-03-01

    High power laser fields enabled by technologies developed for ground-based gravitational-wave observatories open up new opportunities for fundamental physics studies. One of these options is the search for axions and axion-like particles in a pure laboratory experiment. The axion is a solution to the strong CP-problem and a potential dark matter candidate. The axion has also been proposed as an additional channel to cool stars as well as a potential explanation for the TeV transparency problem. The German-US ALPS collaboration is setting up a light-shining-through-walls (LSW) experiment at DESY. LSW experiments are based on the simple idea that a high power laser field traversing a static magnetic field will transform partly into a relativistic axion field. This axion field will travel through an opaque wall into a second static magnetic field region where it turns partly back into an electromagnetic wave field with the same frequency as the laser. The ALPS collaboration is working towards a large scale LSW experiment at DESY in Hamburg, Germany. I will report on the status of the ALPS experiment. This work is supported by the Deutsche Forschungsgemeinschaft, PRISMA, the Helmholtz Association, the National Science Foundation and the Heising-Simons Foundation.

  3. 33 CFR 100.1104 - Southern California Annual Marine Events for the Los Angeles Long Beach Captain of the Port Zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Events for the Los Angeles Long Beach Captain of the Port Zone. 100.1104 Section 100.1104 Navigation and... NAVIGABLE WATERS § 100.1104 Southern California Annual Marine Events for the Los Angeles Long Beach Captain... Description Competitive long distance sailboat race from Los Angeles to Honolulu. Date Bi-annually in early...

  4. Intra-continental subduction and contemporaneous lateral extrusion of the upper plate: insights into Alps-Adria interactions

    NASA Astrophysics Data System (ADS)

    van Gelder, Inge; Willingshofer, Ernst; Sokoutis, Dimitrios; Cloetingh, Sierd

    2017-04-01

    A series of physical analogue experiments were performed to simulate intra-continental subduction contemporaneous with lateral extrusion of the upper plate to study the interferences between these two processes at crustal levels and in the lithospheric mantle. The lithospheric-scale models are specifically designed to represent the collision of the Adriatic microplate with the Eastern Alps, simulated by an intra-continental weak zone to initiate subduction and a weak confined margin perpendicular to the direction of convergence in order to allow for extrusion of the lithosphere. The weak confined margin is the analog for the opening of the Pannonian back-arc basin adjacent to the Eastern Alps with the direction of extension perpendicular to the strike of the orogen. The models show that intra-continental subduction and coeval lateral extrusion of the upper plate are compatible processes. The obtained deformation structures within the extruding region are similar compared to the classical setup where lateral extrusion is provoked by lithosphere-scale indentation. In the models a strong coupling across the subduction boundary allows for the transfer of abundant stresses to the upper plate, leading to laterally varying strain regimes that are characterized by crustal thickening near a confined margin and dominated by lateral displacement of material near a weak lateral confinement. During ongoing convergence the strain regimes propagate laterally, thereby creating an area of overlap characterized by transpression. In models with oblique subduction, with respect to the convergence direction, less deformation of the upper plate is observed and as a consequence the amount of lateral extrusion decreases. Additionally, strain is partitioned along the oblique plate boundary leading to less subduction in expense of right lateral displacement close to the weak lateral confinement. Both oblique and orthogonal subduction models have a strong resemblance to lateral extrusion

  5. A Chronologic Dual-Hemisphere Approach to the Last Glacial Termination from the Southern Alps of New Zealand and the Altai Mountains of Western Mongolia

    NASA Astrophysics Data System (ADS)

    Strand, P.; Putnam, A. E.; Schaefer, J. M.; Denton, G.; Barrell, D.; Putnam, D.; Schwartz, R.; Sambuu, O.; Radue, M. J.; Lindsay, B. J.; Stevens, J.

    2017-12-01

    Understanding the processes that drove the last glacial termination in the tropics and mid-latitudes is a major unresolved problem in paleoclimate. The most recent glacial to interglacial transition represents the last great global warming and the last time CO2 rose by a substantial amount before the industrial period. Determining the speed of this warming will help refine the global climate system sensitivity to CO2 and will place ongoing global warming into a paleoclimatic context. Here, we test possible drivers of the last glacial termination by comparing chronologies of mountain glaciers, which are highly sensitive to changes in atmospheric temperature, in the middle latitudes of both polar hemispheres. The dating of glacier landforms, such as moraine ridges constructed along glacier margins, affords quantitative insight into past climate conditions. We present 10Be surface-exposure chronologies and glacial geomorphologic maps of mountain glacier recession since the Last Glacial Maximum in the Southern Alps of New Zealand (44°S, 170°E) and in the Altai Mountains of western Mongolia (49°N, 88°E). On the basis of these chronologies from opposing hemispheres, we evaluate the relative roles of rising atmospheric CO2, local insolation forcing, and ocean-atmosphere reorganizations in driving the global warming that ended the last ice age.

  6. Spatial and temporal dynamics of sediment in contrasted mountainous watersheds (Mexican transvolcanic belt and French Southern Alps) combining river gauging, elemental geochemistry and fallout radionuclides

    NASA Astrophysics Data System (ADS)

    Evrard, O.; Navratil, O.; Gratiot, N.; Némery, J.; Duvert, C.; Ayrault, S.; Lefèvre, I.; Legout, C.; Bonté, P.; Esteves, M.

    2009-12-01

    In mountainous environments, an excessive fine sediment supply to the rivers typically leads to an increase in water turbidity, contaminant transport and a rapid filling of reservoirs. This situation is particularly problematic in regions where water reservoirs are used to provide drinking water to large cities (e.g. in central Mexico) or where stream water is used to run hydroelectric power plants (e.g. in the French Southern Alps). In such areas, sediment source areas first need to be delineated and sediment fluxes between hillslopes and the river system must be better understood before implementing efficient erosion control measures. In this context, the STREAMS (« Sediment Transport and Erosion Across MountainS ») project funded by the French National Research Agency (ANR) aims at understanding the spatial and temporal dynamics of sediment at the scale of mountainous watersheds (between 500 - 1000 km2) located in contrasted environments. This 3-years study is carried out simultaneously in a volcanic watershed located in the Mexican transvolcanic belt undergoing a subhumid tropical climate, as well as in a sedimentary watershed of the French Southern Alps undergoing a transitional climate with Mediterranean and continental influences. One of the main specificities of this project consists in combining traditional monitoring techniques (i.e. installation of river gauges, turbidimeters and sediment samplers in several sub-catchments) and sediment fingerprinting using elemental geochemistry (measured by Instrumental Neutron Activation Analysis - INAA - and Inductively Coupled Plasma - Mass Spectrometry - ICP-MS) and fallout radionuclides (measured by gamma spectrometry). In the French watershed, geochemical analysis allows outlining different sediment sources (e.g. the contribution of calcareous vs. marl-covered sub-watersheds). Radionuclide ratios (e.g.Be-7/Cs-137) allow identifying the dominant erosion processes occurring within the watershed. Areas mostly

  7. Lithospheric architecture of the South-Western Alps revealed by multiparameter teleseismic full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Beller, S.; Monteiller, V.; Operto, S.; Nolet, G.; Paul, A.; Zhao, L.

    2018-02-01

    The Western Alps, although being intensively investigated, remains elusive when it comes to determining its lithospheric structure. New inferences on the latter are important for the understanding of processes and mechanisms of orogeny needed to unravel the dynamic evolution of the Alps. This situation led to the deployment of the CIFALPS temporary experiment, conducted to address the lack of seismological data amenable to high-resolution seismic imaging of the crust and the upper mantle. We perform a 3-D isotropic full-waveform inversion (FWI) of nine teleseismic events recorded by the CIFALPS experiment to infer 3-D models of both density and P- and S-wave velocities of the Alpine lithosphere. Here, by FWI is meant the inversion of the full seismograms including phase and amplitude effects within a time window following the first arrival up to a frequency of 0.2 Hz. We show that the application of the FWI at the lithospheric scale is able to generate images of the lithosphere with unprecedented resolution and can furnish a reliable density model of the upper lithosphere. In the shallowest part of the crust, we retrieve the shape of the fast/dense Ivrea body anomaly and detect the low velocities of the Po and SE France sedimentary basins. The geometry of the Ivrea body as revealed by our density model is consistent with the Bouguer anomaly. A sharp Moho transition is followed from the external part (30 km depth) to the internal part of the Alps (70-80 km depth), giving clear evidence of a continental subduction event during the formation of the Alpine Belt. A low-velocity zone in the lower lithosphere of the S-wave velocity model supports the hypothesis of a slab detachment in the western part of the Alps that is followed by asthenospheric upwelling. The application of FWI to teleseismic data helps to fill the gap of resolution between traditional imaging techniques, and enables integrated interpretations of both upper and lower lithospheric structures.

  8. Evolution of Late Miocene to Contemporary Displacement Transfer Between the Northern Furnace Creek and Southern Fish Lake Valley Fault Zones and the Central Walker Lane, Western Great Basin, Nevada

    NASA Astrophysics Data System (ADS)

    Oldow, J. S.; Geissman, J. W.

    2013-12-01

    Late Miocene to contemporary displacement transfer from the north Furnace Creek (FCF) and southern Fish Lake Valley (FLVF) faults to structures in the central Walker Lane was and continues to be accommodated by a belt of WNW-striking left-oblique fault zones in the northern part of the southern Walker Lane. The WNW fault zones are 2-9 km wide belts of anastomosing fault strands that intersect the NNW-striking FCF and southern FLVF in northern Death Valley and southern Fish Lake Valley, respectively. The WNW fault zones extend east for over 60 km where they merge with a 5-10 km wide belt of N10W striking faults that marks the eastern boundary of the southern Walker Lane. Left-oblique displacement on WNW faults progressively decreases to the east, as motion is successively transferred northeast on NNE-striking faults. NNE faults localize and internally deform extensional basins that each record cumulative net vertical displacements of between 3.0 and 5.2 km. The transcurrent faults and associated basins decrease in age from south to north. In the south, the WNW Sylvania Mountain fault system initiated left-oblique motion after 7 Ma but does not have evidence of contemporary displacement. Farther north, the left-oblique motion on the Palmetto Mountain fault system initiated after 6.0 to 4.0 Ma and has well-developed scarps in Quaternary deposits. Cumulative left-lateral displacement for the Sylvania Mountain fault system is 10-15 km, and is 8-12 km for the Palmetto fault system. The NNE-striking faults that emanate from the left-oblique faults merge with NNW transcurrent faults farther north in the eastern part of the Mina deflection, which links the Owens Valley fault of eastern California to the central Walker Lane. Left-oblique displacement on the Sylvania Mountain and Palmetto Mountain fault zones deformed the Furnace Creek and Fish Lake Valley faults. Left-oblique motion on Sylvania Mountain fault deflected the FCF into the 15 km wide Cucomungo Canyon restraining

  9. Mineral chemistry of isotropic gabbros from the Manamedu Ophiolite Complex, Cauvery Suture Zone, southern India: Evidence for neoproterozoic suprasubduction zone tectonics

    NASA Astrophysics Data System (ADS)

    Yellappa, T.; Tsunogae, T.; Chetty, T. R. K.; Santosh, M.

    2016-11-01

    The dismembered units of the Neoproterozoic Manamedu Ophiolite Complex (MOC) in the Cauvery Suture Zone, southern India comprises a well preserved ophiolitic sequence of ultramafic cumulates of altered dunites, pyroxenites, mafic cumulates of gabbros, gabbro-norites and anorthosites in association with plagiogranites, isotropic gabbros, metadolerites, metabasalts/amphibolites and thin layers of ferruginous chert bands. The isotropic gabbros occur as intrusions in association with gabbroic anorthosites, plagiogranite and metabasalts/amphibolites. The gabbros are medium to fine grained with euhedral to subhedral orthopyroxenes, clinopyroxenes and subhedral plagioclase, together with rare amphiboles. Mineral chemistry of isotropic gabbros reveal that the clinopyroxenes are diopsidic to augitic in composition within the compositional ranges of En(42-59), Fs(5-12), Wo(31-50). They are Ca-rich and Na poor (Na2O < 0.77 wt%) characterized by high-Mg (Mg# 79-86) and low-Ti (TiO2 < 0.35 wt%) contents. The tectonic discrimination plots of clinopyroxene data indicate island arc signature of the source magma. Our study further confirms the suprasubduction zone origin of the Manamedu ophiolitic suite, associated with the subduction-collision history of the Neoproterozoic Mozambique ocean during the assembly of Gondwana supercontinent.

  10. Carbonation of subduction-zone serpentinite (high-pressure ophicarbonate; Ligurian Western Alps) and implications for the deep carbon cycling

    NASA Astrophysics Data System (ADS)

    Scambelluri, Marco; Bebout, Gray E.; Belmonte, Donato; Gilio, Mattia; Campomenosi, Nicola; Collins, Nathan; Crispini, Laura

    2016-05-01

    Much of the long-term carbon cycle in solid earth occurs in subduction zones, where processes of devolatilization, partial melting of carbonated rocks, and dissolution of carbonate minerals lead to the return of CO2 to the atmosphere via volcanic degassing. Release of COH fluids from hydrous and carbonate minerals influences C recycling and magmatism at subduction zones. Contradictory interpretations exist regarding the retention/storage of C in subducting plates and in the forearc to subarc mantle. Several lines of evidence indicate mobility of C, of uncertain magnitude, in forearcs. A poorly constrained fraction of the 40-115 Mt/yr of C initially subducted is released into fluids (by decarbonation and/or carbonate dissolution) and 18-43 Mt/yr is returned at arc volcanoes. Current estimates suggest the amount of C released into subduction fluids is greater than that degassed at arc volcanoes: the imbalance could reflect C subduction into the deeper mantle, beyond subarc regions, or storage of C in forearc/subarc reservoirs. We examine the fate of C in plate-interface ultramafic rocks, and by analogy serpentinized mantle wedge, via study of fluid-rock evolution of marble and variably carbonated serpentinite in the Ligurian Alps. Based on petrography, major and trace element concentrations, and carbonate C and O isotope compositions, we demonstrate that serpentinite dehydration at 2-2.5 GPa, 550 °C released aqueous fluids triggering breakdown of dolomite in nearby marbles, thus releasing C into fluids. Carbonate + olivine veins document flow of COH fluids and that the interaction of these COH fluids with serpentinite led to the formation of high-P carbonated ultramafic-rock domains (high-P ophicarbonates). We estimate that this could result in the retention of ∼0.5-2.0 Mt C/yr in such rocks along subduction interfaces. As another means of C storage, 1 to 3 km-thick layers of serpentinized forearc mantle wedge containing 50 modal % dolomite could sequester 1.62 to

  11. An improved low-frequency earthquakes catalogue in the vicinity of the late-interseismic central Alpine Fault, Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Baratin, Laura-May; Chamberlain, Calum J.; Townend, John; Savage, Martha K.

    2017-04-01

    Characterising the seismicity associated with slow deformation in the vicinity of the Alpine Fault may provide constraints on the state of stress of this major transpressive margin prior to a large (≥M8) earthquake. Here, we use recently detected tectonic tremor and low-frequency earthquakes (LFEs) to examine how slow tectonic deformation is loading the Alpine Fault toward an anticipated large rupture. We initially work with a continous seismic dataset collected between 2009 and 2012 from an array of short-period seismometers, the Southern Alps Microearthquake Borehole Array. Fourteen primary LFE templates, found through visual inspection within previously identified tectonic tremor, are used in an iterative matched-filter and stacking routine. This method allows the detection of similar signals and establishes LFE families with common locations. We thus generate a 36 month catalogue of 10718 LFEs. The detections are then combined for each LFE family using phase-weighted stacking to yield a signal with the highest possible signal to noise ratio. We found phase-weighted stacking to be successful in increasing the number of LFE detections by roughly 20%. Phase-weighted stacking also provides cleaner phase arrivals of apparently impulsive nature allowing more precise phase picks. We then compute non-linear earthquake locations using a 3D velocity model and find LFEs to occur below the seismogenic zone at depths of 18-34 km, locating on or near the proposed deep extent of the Alpine Fault. To gain insight into deep fault slip behaviour, a detailed study of the spatial-temporal evolution of LFEs is required. We thus generate a more extensive catalogue of LFEs spanning the years 2009 to 2016 using a different technique to detect LFEs more efficiently. This time 638 synthetic waveforms are used as primary templates in the match-filter routine. Of those, 38 templates yield no detections over our 7-yr study period. The remaining 600 templates end up detecting between 370

  12. Shear zones bounding the central zone of the Limpopo Mobile Belt, southern Africa

    NASA Astrophysics Data System (ADS)

    McCouri, Stephen; Vearncombe, Julian R.

    Contrary to previously suggested north-directed thrust emplacement of the central zone of the Limpopo mobile belt, we present evidence indicating west-directed emplacement. The central zone differs from the marginal zones in rock types, structural style and isotopic signature and is an allochthonous thrust sheet. It is bounded in the north by the dextral Tuli-Sabi shear zone and in the south by the sinistral Palala shear zone which are crustal-scale lateral ramps. Published gravity data suggest that the lateral ramps are linked at depth and they probably link at the surface, in a convex westward frontal ramp, in the vicinity of longitude 26°30'E in eastern Botswana. Two phases of movement, the first between 2.7 and 2.6 Ga and the second between 2.0 and 1.8 Ga. occurred on both the Tuli-Sabi and the Palala shear zones.

  13. Collision in the Central Alps: 2. Exhumation of high-pressure fragments

    NASA Astrophysics Data System (ADS)

    Brouwer, F. M.; Burri, T.; Berger, A.; Engi, M.

    2003-04-01

    In the Central Alps high-pressure metamorphic rocks are confined to but a few tectonic units. In the Adula nappe pressures range from about 12 kbar in the north, to 20 kbar in the south [1]. The Southern Steep Belt (SSB) is a high-strain zone at the contact between rocks deriving from Apulia and Eurasia. The SSB contains a tectonic composite of ortho and paragneisses, with widespread bands and lenses of mafic and ultramafic composition. Many of the mafic fragments are garnet-amphibolites or eclogites, with a highly variable degree of retrogression. Our petrological studies indicate that the HP rocks in the SSB show extensive variation in metamorphic pressure. In mafic fragments, pressures retained by assemblages predating the amphibolite facies overprint range from 8 to 21 kbar, while pressure estimates for some peridotites are >30 kbar. Some HP fragments show evidence of substantial heating during decompression. New Lu-Hf and Sm-Nd geochronology, in conjunction with previously published data, indicates a spread in ages obtained from the high-pressure metamorphic assemblage. Thermal models based on simplified kinematics produce computed PTt histories that resemble those documented in individual HP fragments [2]. The SSB is interpreted to represent an exhumed part of a Tectonic Accretion Channel (TAC, cf. [3]), assembled of numerous, relatively small fragments which reflect a variety of paths. The different residence times and exhumation rates reflect a protracted history of subduction and extrusion, in which the fragments moved independently from their current neighbours. Combination of thermal modelling and field-based studies improve our conceptual thinking on the dynamics of exhumation of high-pressure rocks in a convergent orogen. [1] Heinrich (1986) J. Pet. 27: 123-154 [2] Roselle et al. (2002) Amer. J. Sci. 302: 381-409 [3] Engi et al. (2001) Geology 29: 1143-1146

  14. INFLUENCE OF DIFFERENT WATER MASSES AND BIOLOGICAL ACTIVITY ON DIMETHYLSULPHIDE AND DIMETHYLSULPHONIOPROPIONATE IN THE SUBANTARCTIC ZONE OF THE SOUTHERN OCEAN DURING ACE-1

    EPA Science Inventory

    Measurements of salinity, temperature, phytoplankton biomass and speciation, dissolved nitrate, dimethylsulphide (DMS) in seawater and air, and dimethylsulphoniopropionate (DMSP), were made in the subantarctic zone of the Southern Ocean from 40|-54|S, and 140|-153|E during the So...

  15. Structure of Accelerated Learning Program (ALP) Efforts, 2000-01.

    ERIC Educational Resources Information Center

    Baenen, Nancy; Yaman, Kimberly

    This report focuses on the structure of instructional assistance available through the Accelerated Learning Program (ALP) to students who show low achievement in the Wake County Public School System (WCPSS), North Carolina. Context information is also provided on other programs available to these students. Reports on ALP student participation,…

  16. Consistent earthquake catalog derived from changing network configurations: Application to the Rawil Depression in the southwestern Helvetic Alps

    NASA Astrophysics Data System (ADS)

    Lee, Timothy; Diehl, Tobias; Kissling, Edi; Wiemer, Stefan

    2017-04-01

    Earthquake catalogs derived from several decades of observations are often biased by network geometries, location procedures, and data quality changing with time. To study the long-term spatio-temporal behavior of seismogenic fault zones at high-resolution, a consistent homogenization and improvement of earthquake catalogs is required. Assuming that data quality and network density generally improves with time, procedures are needed, which use the best available data to homogeneously solve the coupled hypocenter - velocity structure problem and can be as well applied to earlier network configurations in the same region. A common approach to uniformly relocate earthquake catalogs is the calculation of a so-called "minimum 1D" model, which is derived from the simultaneous inversion for hypocenters and 1D velocity structure, including station specific delay-time corrections. In this work, we will present strategies using the principles of the "minimum 1D" model to consistently relocate hypocenters recorded by the Swiss Seismological Service (SED) in the Swiss Alps over a period of 17 years in a region, which is characterized by significant changes in network configurations. The target region of this study is the Rawil depression, which is located between the Aar and Mont Blanc massifs in southwestern Switzerland. The Rhone-Simplon Fault is located to the south of the Rawil depression and is considered as a dextral strike-slip fault representing the dominant tectonic boundary between Helvetic nappes to the north and Penninic nappes to the south. Current strike-slip earthquakes, however, occur predominantly in a narrow, east-west striking cluster located in the Rawil depression north of the Rhone-Simplon Fault. Recent earthquake swarms near Sion and Sierre in 2011 and 2016, on the other hand, indicate seismically active dextral faults close to the Rhone valley. The region north and south of the Rhone-Simplon Fault is one of the most seismically active regions in

  17. Pre-Alpine (Variscan) Inheritance: A Key for the Location of the Future Valaisan Basin (Western Alps)

    NASA Astrophysics Data System (ADS)

    Ballèvre, M.; Manzotti, P.; Dal Piaz, G. V.

    2018-03-01

    The boundary between the Helvetic and the Penninic (=Briançonnais) Zones has long been recognized as a major fault ("Penninic Front") in the Western Alps. A narrow oceanic domain has been postulated at least along part of this boundary (the Valaisan Basin). However, the information provided by the pre-Triassic basement has not been fully exploited and will be discussed here in detail. The igneous and metamorphic history of the pre-Triassic basement shows significant differences between the External Massifs from the Helvetic Zone, with abundant Late Carboniferous granites, and the basement of the Briançonnais Zone, including the Internal Massifs (Dora-Maira, Gran Paradiso, and Monte Rosa), devoid of Carboniferous granites. A major coal-bearing basin, the "Zone Houillère," opened along this boundary. This limnic intramontane basin has never been properly investigated. The Zone Houillère is not comparable with the external, paralic, flexural, basins on both sides of the Variscan belt but shows similarities with the Saar-Saale Basin. Like the latter, we interpret the Zone Houillère as a transtensional basin opened along a major, crustal-scale, fault zone, namely, the East Variscan Shear Zone. The Permian magmatism and sedimentation displays contrasting distributions, being absent or very localized in the Helvetic Zone, and widespread in the Penninic Zone. The above data indicate that the structural inheritance from the Variscan belt plays a major role in defining the future location of the Valaisan Basin, that is, the boundary between the European paleomargin and the Briançonnais microcontinent.

  18. Deeply subducted continental fragments - Part 1: Fracturing, dissolution-precipitation, and diffusion processes recorded by garnet textures of the central Sesia Zone (western Italian Alps)

    NASA Astrophysics Data System (ADS)

    Giuntoli, Francesco; Lanari, Pierre; Engi, Martin

    2018-02-01

    Contiguous continental high-pressure terranes in orogens offer insight into deep recycling and transformation processes that occur in subduction zones. These remain poorly understood, and currently debated ideas need testing. The approach we chose is to investigate, in detail, the record in suitable rock samples that preserve textures and robust mineral assemblages that withstood overprinting during exhumation. We document complex garnet zoning in eclogitic mica schists from the Sesia Zone (western Italian Alps). These retain evidence of two orogenic cycles and provide detailed insight into resorption, growth, and diffusion processes induced by fluid pulses in high-pressure conditions. We analysed local textures and garnet compositional patterns, which turned out remarkably complex. By combining these with thermodynamic modelling, we could unravel and quantify repeated fluid-rock interaction processes. Garnet shows low-Ca porphyroclastic cores that were stable under (Permian) granulite facies conditions. The series of rims that surround these cores provide insight into the subsequent evolution: the first garnet rim that surrounds the pre-Alpine granulite facies core in one sample indicates that pre-Alpine amphibolite facies metamorphism followed the granulite facies event. In all samples documented, cores show lobate edges and preserve inner fractures, which are sealed by high-Ca garnet that reflects high-pressure Alpine conditions. These observations suggest that during early stages of subduction, before hydration of the granulites, brittle failure of garnet occurred, indicating high strain rates that may be due to seismic failure. Several Alpine rims show conspicuous textures indicative of interaction with hydrous fluid: (a) resorption-dominated textures produced lobate edges, at the expense of the outer part of the granulite core; (b) peninsulas and atoll garnet are the result of replacement reactions; and (c) spatially limited resorption and enhanced transport

  19. Twin Convergence Zones

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's QuikSCAT satellite has confirmed a 30-year old largely unproven theory that there are two areas near the equator where the winds converge year after year and drive ocean circulation south of the equator. By analyzing winds, QuikSCAT has found a year-round southern and northern Intertropical Convergence Zone. This find is important to climate modelers and weather forecasters because it provides more detail on how the oceans and atmosphere interact near the equator. The Intertropical Convergence Zone (ITCZ) is the region that circles the Earth near the equator, where the trade winds of both the Northern and Southern Hemispheres come together. North of the equator, strong sun and warm water of the equator heats the air in the ITCZ, drawing air in from north and south and causing the air to rise. As the air rises it cools, releasing the accumulated moisture in an almost perpetual series of thunderstorms. Satellite data, however, has confirmed that there is an ITCZ north of the equator and a parallel ITCZ south of the equator. Variation in the location of the ITCZ is important to people around the world because it affects the north-south atmospheric circulation, which redistributes energy. It drastically affects rainfall in many equatorial nations, resulting in the wet and dry seasons of the tropics rather than the cold and warm seasons of higher latitudes. Longer term changes in the ITCZ can result in severe droughts or flooding in nearby areas. 'The double ITCZ is usually only identified in the Pacific and Atlantic Oceans on a limited and seasonal basis,' said Timothy Liu, of NASA's Jet Propulsion Laboratory and California Institute of Technology, Pasadena, Calif., and lead researcher on the project. In the eastern Pacific Ocean, the southern ITCZ is usually seen springtime. In the western Atlantic Ocean, the southern ITCZ was recently clearly identified only in the summertime. However, QuikSCAT's wind data has seen the southern ITCZ in all seasons across the

  20. Lower Cretaceous Puez key-section in the Dolomites - towards the mid-Cretaceous super-greenhouse

    NASA Astrophysics Data System (ADS)

    Lukeneder, A.; Halásová, E.; Rehákova, D.; Józsa, Š.; Soták, J.; Kroh, A.; Jovane, L.; Florindo, F.; Sprovieri, M.; Giorgioni, M.; Lukeneder, S.

    2012-04-01

    dtirol' in Bozen, Southern Tyrol. Producing major results with a broad impact requires using tools such as facies analysis supported by lithological, sedimentological and chemical characteristics, isotope and magnetic properties as well as fossil record (ammonites, belemnites, brachiopods, echinoids, planktonic foraminiferas, radiolarians, nannofossils, calcareous dinoflagellates, calpionellids). Foraminiferal study provides the zonal subdivision of the Puez section from Valanginian - Hauterivian gorbachikellids and praehedbergelids (Hedbergella semielongata Zone), Barremo-Aptian praehedbergelids (Blesusciana kuznetzove Zone), Aptian hedbergellids of occulta - aptiana - praetrocoidea group, Early Late Aptian pseudo-planispiral foraminifera (Praehedbergella luterbacheri and Globigerinelloides ferreolensis Zones), important marker species of Hedbergella trocoidea and Paraticinella bejaaouaensis for the Late Aptian zone, Early Albian microperforate hedbergellids (Hedbergella planispira Zone), Mid Albian ticinellids (Ticinella primula Zone), advanced ticinellids like Ticinella roberti etc. (Biticinella breggiensis Zone), Latest Albian rotalliporids (Rotalipora appeninica Zone) up to Early Cenonanian appearance of Thalmanninella (Rotalipora) globotruncanoides. Results of this integrated study will be used for both, the precise biostratigraphy of the sequence studied as well as for the paleoenvironmental reconstruction. Lukeneder A. 2012. New biostratigraphic data on an Upper Hauterivian-Upper Barremian ammonite assemblage from the Dolomites (Southern Alps, Italy). Cretaceous Research. doi:10.1016/j.cretres.2011.11.002 Lukeneder A. 2011. The Biancone and Rosso Ammonitico facies of the northern Trento Plateau (Dolomites, Southern Alps; Italy). Annalen des Naturhistorischen Museum Wien, Serie A, 112, 9-33. Lukeneder A. 2010. Lithostratigraphic definition and stratotype for the Puez Formation: formalisation of the Lower Cretaceous in the Dolomites (S. Tyrol, Italy). Austrian Journals

  1. Alps, Carpathians and Dinarides-Hellenides: about plates, micro-plates and delaminated crustal blocks

    NASA Astrophysics Data System (ADS)

    Schmid, Stefan

    2014-05-01

    thickened crust ripped of the African plate, invaded the northern part of this oceanic embayment, virtually floating on asthenospheric mantle. The presently still surviving semi-detached Vrancea slab in Romania manifests of the combined effect of roll back and delamination of mantle lithosphere. On the other hand Tisza-Dacia, another crustal block formerly ripped off the European plate and forming a single entity since mid-Cretaceous times, also at least partly floating on asthenospheric mantle, invaded the Carpathian embayment from the south. Thereby the Tisza-Dacia crustal block underwent clockwise rotation by as much as 90° due to the corner effect of the Moesian platform firmly attached to Europe since mid-Cretaceous times (Ustaszewski et al. 2008). In the Dinaric-Aegean realm collision occurred much earlier than in the Alps and the Carpathians, i.e. at around the Cretaceous-Cenozoic boundary, provided that one accepts that there is yet no convincing evidence for the existence of a second "Pindos oceanic domain" closing later, i.e. in Eocene times. However, in spite of early collision, the old subduction zone that consumed the northern branch of Neotethys (Meliata-Vardar) since at least mid-Cretaceous times persisted in the eastern Hellenides (but not in the Dinarides) until now, penetrating the transition zone all the way to a depth of some 1500km (Bijwaard et al. 1998). Continued subduction of mantle lithosphere in the Aegean since 60 Ma was concomitant with complete delamination of lithospheric mantle and lower crust from non-subducted or re-exhumed high pressure crustal flakes of largely continental derivation that were piled up to form the subsequently extended Hellenic orogen (Jolivet & Brun 2010). At around 25 Ma when the southern branch of Neotethys (the present-day Eastern Mediterranean ocean) entered this subduction zone, massive extension and core complex formation in the upper plate combined with an acceleration of south-directed hinge retreat of the lower

  2. Seismic probing of continental subduction zones

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Xu, Xiaobing; Malusà, Marco G.

    2017-09-01

    High-resolution images of Earth's interior provide pivotal information for the understanding of a range of geodynamic processes, including continental subduction and exhumation of ultrahigh-pressure (UHP) metamorphic rocks. Here we present a synthesis of available global seismic observations on continental subduction zones, and selected examples of seismic probing from the European Alps, the Himalaya-Tibet and the Qinling-Dabie orogenic belts. Our synthesis and examples show that slabs recognized beneath exhumed continental UHP terranes generally have shallow dip angles (<45°) at depths <100 km, to become much steeper at depths >100 km. Slabs underlined by a clear high velocity anomaly from Earth's surface to the mantle are generally Cenozoic in age. Some of these slabs are continuous, whereas other continental subduction zones are located above discontinuous high velocity anomalies possibly suggesting slab breakoff. The density of seismic stations and the quality of recordings are of primary importance to get high-resolution images of the upper mantle to be used as a starting point to provide reliable geodynamic interpretations. In some cases, areas previously indicated as possible site of slab breakoff, such as the European Alps, have been later proven to be located above a continuous slab by using higher quality travel time data from denser seismic arrays. Discriminating between oceanic and continental slabs can be challenging, but valuable information can be provided by combining teleseismic tomography and receiver function analysis. The upper mantle beneath most continental UHP terranes generally shows complex seismic anisotropy patterns that are potentially preserved even in pre-Cenozoic subduction zones. These patterns can be used to provide information on continental slabs that are no longer highlighted by a clear high-velocity anomaly.

  3. Seismic evidence for water transport out of the mantle transition zone beneath the European Alps

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Park, Jeffrey; Karato, Shun-ichiro

    2018-01-01

    The mantle transition zone has been considered a major water reservoir in the deep Earth. Mass transfer across the transition-zone boundaries may transport water-rich minerals from the transition zone into the water-poor upper or lower mantle. Water release in the mantle surrounding the transition zone could cause dehydration melting and produce seismic low-velocity anomalies if some conditions are met. Therefore, seismic observations of low-velocity layers surrounding the transition zone could provide clues of water circulation at mid-mantle depths. Below the Alpine orogen, a depressed 660-km discontinuity has been imaged clearly using seismic tomography and receiver functions, suggesting downwellings of materials from the transition zone. Multitaper-correlation receiver functions show prominent ∼0.5-1.5% velocity reductions at ∼750-800-km depths, possibly caused by partial melting in the upper part of lower mantle. The gap between the depressed 660-km discontinuity and the low-velocity layers is consistent with metallic iron as a minor phase in the topmost lower mantle reported by laboratory studies. Velocity drops atop the 410-km discontinuity are observed surrounding the Alpine orogeny, suggesting upwelling of water-rich rock from the transition zone in response to the downwelled materials below the orogeny. Our results provide evidence that convective penetration of the mantle transition zone pushes hydrated minerals both upward and downward to add hydrogen to the surrounding mantle.

  4. Post-magmatic solid solutions of CaCeAl2(Fe3+ 2/3□1/3)[Si2O7][SiO4]O(OH), allanite-(Ce) and REE-bearing epidote in miarolitic pegmatites of Permian Baveno granite (Verbania, central-southern alps, Italy)

    NASA Astrophysics Data System (ADS)

    Guastoni, Alessandro; Nestola, Fabrizio; Schiazza, Mariangela

    2017-06-01

    CaCeAl2(Fe3+ 2/3□1/3)[Si2O7][SiO4]O(OH), allanite-(Ce) and rare earth element (REE)-bearing epidote occur as globular aggregates and platy prismatic crystals in miarolitic cavities in a niobium, yttrium, fluorine (NYF) granitic pegmatite at Baveno, Verbania, Southern Alps, Italy. These samples were investigated by means of an electron probe micro-analyser (EPMA) and single-crystal X-ray diffraction. Our EPMA results show that the globular aggregates have the highest REE content in the core portion and decreases to REE-bearing epidote towards the rim whereas the prismatic crystals are characterized by marked oscillatory zoning that have the highest REE contents at the rim of the crystal. The unit-cell parameters of "allanites" have an intermediate unit-cell between CaCeAl2(Fe3+ 2/3□1/3)[Si2O7][SiO4]O(OH), allanite-(Ce) and REE-free epidote, because reflect the strong chemical heterogeneity of the samples which form complete solid solutions. Hydrothermal fluids control the activity and precipitation of incompatible elements like high field strength elements (HFSE), Sc and REE by hydrous F-rich fluids below the critical temperature which allow to deposit accessory minerals in the cavities with decreasing temperature. The source of REE and Y are the sheet and REE-silicates like siderophyllite-annite, and gadolinite-(Y) which underwent partial to complete decomposition by the activity of aggressive F-rich hydrothermal fluids.

  5. Project Hi-CLIMB: A Synoptic View of the Himalayan Collision Zone and Southern Tibet

    NASA Astrophysics Data System (ADS)

    Nábělek, J. L.; Vergne, J.; Hetenyi, G.

    2005-12-01

    Project Hi-CLIMB is a broadband seismic experiment whose goal is to produce a high-resolution continuous profile across the Himalaya and southern Tibet. The centerpiece of the project is a closely spaced, linear array of broadband seismographs, extending from the Ganga lowland, across the Himalayas, and onto the central Tibetan plateau. A complementary array of sparsely spaced stations flanks the linear array. Over 270 sites were occupied during the experiment. The principal institutions involved in the field operations were the Oregon State U. and U. of Illinois (USA), Dept. of Mines and Geology (Nepal), Chinese Academy of Geol. Sci. and Peking U. (China) and the Inst. of Earth Sci. (Taiwan). The major funding for this project was provided by the NSF, Continental Dynamics program. We focus on the receiver function images from the main profile. We observe clear Moho and the upper-mantle discontinuities. The Moho, which in southern Nepal is at 45 km depth (relative to sea level), dips at a gentle angle under the Himalaya. Crossing the Himalaya, its depth rapidly increases, reaching the of 70 km near the Yarlung River. We have succeeded in imagining the Main Himalayan Trust (MHT) as it descends northward at a shallow depth from its surface expression, the Main Frontal Thrust in southern Nepal. In Nepal along the profile, MHT is expressed by a pronounced seismic low velocity zone, which we believe indicates a presence of trapped aqueous fluids in the fault zone, thus lowering the strength of the megathrust. The low velocity associated with the MHT disappears for a short distance north but reappears again as the MHT increases its dip under S. Tibet. We believe the characteristics of the low velocity associated with the MHT in S. Tibet indicate a presence of partial melt due to an increase in depth and frictional heating. A low-velocity wedge above the MHT suggests an accumulation of the melt. This could be an ongoing process of generation of the Himalayan granites. The

  6. Kinematics and Seismotectonics of the Montello Thrust Fault (Southeastern Alps, Italy) Revealed by Local GPS and Seismic Networks

    NASA Astrophysics Data System (ADS)

    Serpelloni, E.; Anderlini, L.; Cavaliere, A.; Danesi, S.; Pondrelli, S.; Salimbeni, S.; Danecek, P.; Massa, M.; Lovati, S.

    2014-12-01

    The southern Alps fold-and-thrust belt (FTB) in northern Italy is a tectonically active area accommodating large part of the ~N-S Adria-Eurasia plate convergence, that in the southeastern Alps ranges from 1.5 to 2.5 mm/yr, as constrained by a geodetically defined rotation pole. Because of the high seismic hazard of northeastern Italy, the area is well monitored at a regional scale by seismic and GPS networks. However, more localized seismotectonic and kinematic features, at the scale of the fault segments, are not yet resolved, limiting our knowledge about the seismic potential of the different fault segments belonging to the southeastern Alps FTB. Here we present the results obtained from the analysis of data collected during local seismic and geodetic experiments conducted installing denser geophysical networks across the Montello-Bassano-Belluno system, a segment of the FTB that is presently characterized by a lower sismicity rate with respect to the surrounding domains. The Montello anticline, which is the southernmost tectonic features of the southeastern Alps FTB (located ~15 km south of the mountain front), is a nice example of growing anticline associated with a blind thrust fault. However, how the Adria-Alps convergence is partitioned across the FTB and the seismic potential of the Montello thrust (the area has been struck by a Mw~6.5 in 1695 but the causative fault is still largely debated) remained still unresolved. The new, denser, GPS data show that this area is undergoing among the highest geodetic deformation rates of the entire south Alpine chain, with a steep velocity gradient across the Montello anticline. The earthquakes recorded during the experiment, precisely relocated with double difference methods, and the new earthquake focal mechanisms well correlate with available information about sub-surface geological structures and highlight the seismotectonic activity of the Montello thrust fault. We model the GPS velocities using elastic

  7. The enigma of the Australian Alps, young landscapes and missing cryogenic features.

    NASA Astrophysics Data System (ADS)

    Slee, Adrian; Shulmeister, James; Clark, Doug

    2014-05-01

    Widespread evidence for pre last glacial cycle glaciation of late Quaternary ages has been documented from mid-latitude southern hemisphere mountain environments in New Zealand, southern South America and the Tasmanian Highlands. On mainland Australia however cirque and small valley glaciation in the Australian Alps is limited to OIS 4-3 and the last glacial maximum (OIS 2) (Barrows et al. 2001). This contrasts with the other southern hemisphere glacial records that indicate significantly more extensive glaciations preceding the last glacial cycle. In both the Southern Andes and Tasmania the maximum glaciations occurred prior to 783 kya (Glasser et al. 2008, Colhoun et al. 2010) while in tectonically active New Zealand it is at least clear that the scale of glaciation has been diminishing over the last 3 glacial cycles (Shulmeister et al. 2010). In all these locations early workers argued for extensive ice coverage, but subsequent investigations limited the extent and number of glacial advances before more recent work has locally re-extended the glacial limits and greatly increased the number of glacial advances. Similarly, in the highlands of SE Australia the possibility of more pervasive ice coverage was initially entertained; but since the 1960s and especially the 1980s the general consensus is that the lack of glacial evidence is a result of cold dry conditions prevailing for much of the Quaternary on the Australian Alps (Reeves et al. 2013) Recent work by the authors on the extent of relict periglacial block deposits in Australia have identified these block deposits as far north as 29°30'S on the Great Dividing Range, confirming strong freeze-thaw conditions well into the sub-tropics at moderate (900-1200 m) elevations. Curiously, however, the same mapping work has also highlighted the limited development of block deposits and other freeze-thaw landforms, such as tors, in the highest regions of the Australian Alps, in areas beyond the known limits of

  8. A Thick, Deformed Sedimentary Wedge in an Erosional Subduction Zone, Southern Costa Rica

    NASA Astrophysics Data System (ADS)

    Silver, E. A.; Kluesner, J. W.; Edwards, J. H.; Vannucchi, P.

    2014-12-01

    A paradigm of erosional subduction zones is that the lower part of the wedge is composed of strong, crystalline basement (Clift and Vannucchi, Rev. Geophys., 42, RG2001, 2004). The CRISP 3D seismic reflection study of the southern part of the Costa Rica subduction zone shows quite the opposite. Here the slope is underlain by a series of fault-cored anticlines, with faults dipping both landward and seaward that root into the plate boundary. Deformation intensity increases with depth, and young, near-surface deformation follows that of the deeper structures but with basin inversions indicating a dynamic evolution (Edwards et al., this meeting). Fold wavelength increases landward, consistent with the folding of a landward-thickening wedge. Offscraping in accretion is minimal because incoming sediments on the lower plate are very thin. Within the wedge, thrust faulting dominates at depth in the wedge, whereas normal faulting dominates close to the surface, possibly reflecting uplift of the deforming anticlines. Normal faults form a mesh of NNW and ENE-trending structures, whereas thrust faults are oriented approximately parallel to the dominant fold orientation, which in turn follows the direction of roughness on the subducting plate. Rapid subduction erosion just prior to 2 Ma is inferred from IODP Expedition 334 (Vannucchi et al., 2013, Geology, 49:995-998). Crystalline basement may have been largely removed from the slope region during this rapid erosional event, and the modern wedge may consist of rapidly redeposited material (Expedition 344 Scientists, 2013) that has been undergoing deformation since its inception, producing a structure quite different from that expected of an eroding subduction zone.

  9. An isotopic view of water and nitrate transport through the vadose zone in Oregon's southern Willamette Valley's Groundwater Management Area

    NASA Astrophysics Data System (ADS)

    Brooks, J. R.; Pearlstein, S.; Hutchins, S.; Faulkner, B. R.; Rugh, W.; Willard, K.; Coulombe, R.; Compton, J.

    2017-12-01

    Groundwater nitrate contamination affects thousands of households in Oregon's southern Willamette Valley and many more across the USA. The southern Willamette Valley Groundwater Management Area (GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen (N) inputs to the GWMA comes from agricultural fertilizers, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding N transformations. In partnership with local farmers and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years. Our results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitation water isotopes were highly variable over time, lysimeter water isotopes were surprisingly consistent, more closely resembling long-term precipitation isotope means rather than recent precipitation isotopic signatures. However, some particularly large precipitation events with unique isotopic signatures revealed high spatial variability in transport, with some lysimeters showing greater proportions of recent precipitation inputs than others. In one installation where we have groundwater wells and lysimeters at multiple depths, nitrate/nitrite concentrations decreased with depth. N concentrations

  10. Effects of wood chip amendments on the revegetation performance of plant species on eroded marly terrains in a Mediterranean mountainous climate (Southern Alps, France)

    NASA Astrophysics Data System (ADS)

    Breton, Vincent; Crosaz, Yves; Rey, Freddy

    2016-04-01

    The establishment of plant species can limit soil erosion dynamics in degraded lands. In marly areas in the Southern French Alps, both harsh water erosion and drought conditions in summer due to the Mediterranean mountainous climate prevent the natural implementation and regeneration of vegetation. Soil fertility improvement is sometimes necessary. With the purpose of revegetating such areas, we aimed to evaluate the effects of wood chip amendments on the revegetation performance of different native or sub-spontaneous plant species. We conducted two experiments on steep slopes over three growing seasons (2012-2014). The first consisted of planting seedlings (10 species), and the second consisted of seeding (nine species including six used in the first experiment). First we noted that wood chips were able to remain in place even in steep slope conditions. The planting of seedlings showed both an impact of wood chip amendment and differences between species. A positive effect of wood chips was shown with overall improvement of plant survival (increasing by 11 % on average, by up to 50 % for some species). In the seeding experiment, no plants survived after three growing seasons. However, intermediate results for the first and second years showed a positive effect of wood chips on seedling emergence: seeds of four species only sprouted on wood chips, and for the five other species the average emergence rate increased by 50 %.

  11. Nuclear translocation of the cytoskeleton-associated protein, smALP, upon induction of skeletal muscle differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cambier, Linda; Pomies, Pascal, E-mail: pascal.pomies@crbm.cnrs.fr

    2011-06-17

    Highlights: {yields} The cytoskeleton-associated protein, smALP, is expressed in differentiated skeletal muscle. {yields} smALP is translocated from the cytoplasm to the nucleus of C2C12 myoblasts upon induction of myogenesis. {yields} The differentiation-dependent nuclear translocation of smALP occurs in parallel with the nuclear accumulation of myogenin. {yields} The LIM domain of smALP is essential for the nuclear accumulation of the protein. {yields} smALP might act in the nucleus to control some critical aspect of the muscle differentiation process. -- Abstract: The skALP isoform has been shown to play a critical role in actin organization and anchorage within the Z-discs of skeletalmore » muscles, but no data is available on the function of the smALP isoform in skeletal muscle cells. Here, we show that upon induction of differentiation a nuclear translocation of smALP from the cytoplasm to the nucleus of C2C12 myoblasts, concomitant to an up-regulation of the protein expression, occurs in parallel with the nuclear accumulation of myogenin. Moreover, we demonstrate that the LIM domain of smALP is essential for the nuclear translocation of the protein.« less

  12. Spatial organization of seismicity and fracture pattern at the boundary between Alps and Dinarides

    NASA Astrophysics Data System (ADS)

    Bressan, Gianni; Ponton, Maurizio; Rossi, Giuliana; Urban, Sandro

    2016-04-01

    The paper affords the study of the spatial organization of seismicity in the easternmost region of the Alps (Friuli, in NE Italy and W Slovenia), dominated by the interference between the Alpine and the Dinaric tectonic systems. Two non-conventional methods of spatial analysis are used: fractal analysis and principal component analysis (PCA). The fractal analysis helps to discriminate the cases in which hypocentres clearly define a plane, from the ones in which hypocenter distribution tends to the planarity, without reaching it. The PCA analysis is used to infer the orientation of planes fitting through earthquake foci, or the direction of propagation of the hypocentres. Furthermore, we study the spatial seismicity pattern at the shallow depths in the context of a general damage model, through the crack density distribution. The results of the three methods concur to a complex and composite model of fracturing in the region. The hypocentre pattern fills only partially a plane, i.e. has a fractal dimension close to 2. The three exceptions regard planes with Dinaric trend, without interference with Alpine lineaments. The shallowest depth range (0-10 km depth) is characterized by the activation of planes with variable orientations, reflecting the interference between the Dinaric and the Alpine tectonic structures, and closely bound to the variation of the mechanical properties of the crust. The seismicity occurs mostly in areas characterized by a variation from low to moderate crack density, indicating the sharp transition from zones of low damage to zones of moderate damage. Low crack density indicates the presence of more competent rocks capable of sustaining high strain energy while high crack density areas pertain to highly fractured rocks that cannot store high strain energy. Brittle failure, i.e. seismic activity, is favoured within the sharp transitions from low to moderate crack density zones. The orientation of the planes depicting the seismic activity

  13. Wave-induced bedload transport - a study of the southern Baltic coastal zone

    NASA Astrophysics Data System (ADS)

    Dudkowska, Aleksandra; Gic-Grusza, Gabriela

    2017-03-01

    The wave-induced bedload transport and spatial distribution of its magnitude in the southern Baltic coastal zone of Poland are estimated. The vicinity of Lubiatowo was selected as a representative part of the Polish coast. It was assumed that transport is a function of shear stress; alternative approaches, based on force balances and discharge relationships, were not considered in the present study. Four models were studied and compared over a wide range of bottom shear stress and wind-wave conditions. The set of models comprises classic theories that assume a simplified influence of turbulence on sediment transport (e.g., advocated by authors such as Du Boys, Meyer-Peter and Müller, Ribberink, Engelund and Hansen). It is shown that these models allow to estimate transport comparable to measured values under similar environmental conditions. A united general model for bedload transport is proposed, and a set of maps of wave bedload transport for various wind conditions in the study area is presented.

  14. Algorithms used in the Airborne Lidar Processing System (ALPS)

    USGS Publications Warehouse

    Nagle, David B.; Wright, C. Wayne

    2016-05-23

    The Airborne Lidar Processing System (ALPS) analyzes Experimental Advanced Airborne Research Lidar (EAARL) data—digitized laser-return waveforms, position, and attitude data—to derive point clouds of target surfaces. A full-waveform airborne lidar system, the EAARL seamlessly and simultaneously collects mixed environment data, including submerged, sub-aerial bare earth, and vegetation-covered topographies.ALPS uses three waveform target-detection algorithms to determine target positions within a given waveform: centroid analysis, leading edge detection, and bottom detection using water-column backscatter modeling. The centroid analysis algorithm detects opaque hard surfaces. The leading edge algorithm detects topography beneath vegetation and shallow, submerged topography. The bottom detection algorithm uses water-column backscatter modeling for deeper submerged topography in turbid water.The report describes slant range calculations and explains how ALPS uses laser range and orientation measurements to project measurement points into the Universal Transverse Mercator coordinate system. Parameters used for coordinate transformations in ALPS are described, as are Interactive Data Language-based methods for gridding EAARL point cloud data to derive digital elevation models. Noise reduction in point clouds through use of a random consensus filter is explained, and detailed pseudocode, mathematical equations, and Yorick source code accompany the report.

  15. Si3 AlP: A New Promising Material for Solar Cell Absorber

    NASA Astrophysics Data System (ADS)

    Yang, Jihui; Zhai, Yingteng; Liu, Hengrui; Xiang, Hongjun; Gong, Xingao; Wei, Suhuai

    2014-03-01

    First-principles calculations are performed to study the structural and optoelectronic properties of the newly synthesized nonisovalent and lattice-matched (Si2)0.6(AlP)0.4 alloy [T. Watkins et al., J. Am. Chem. Soc. 2011, 133, 16212.] The most stable structure of Si3AlP is a superlattice along the <111>direction with separated AlP and Si layers, which has a similar optical absorption spectrum to silicon. The ordered C1c1-Si3AlP is found to be the most stable one among all the structures with -AlPSi3- motifs, in agreement with the experimental suggestions. We predict that C1c1-Si3AlP has good optical properties, i.e., it has a larger fundamental band gap and a smaller direct band gap than Si, thus it has much higher absorption in the visible light region, making it a promising candidate for improving the performance of the existing Si-based solar cells.

  16. Induced abortion and associated factors in health facilities of Guraghe zone, southern Ethiopia.

    PubMed

    Tesfaye, Gezahegn; Hambisa, Mitiku Teshome; Semahegn, Agumasie

    2014-01-01

    Unsafe abortion is one of the major medical and public health problems in developing countries including Ethiopia. However, there is a lack of up-to-date and reliable information on induced abortion distribution and its determinant factors in the country. This study was intended to assess induced abortion and associated factors in health facilities of Guraghe zone, Southern Ethiopia. Institution based cross-sectional study was conducted in eight health facilities in Guraghe zone. Client exit interview was conducted on 400 patients using a structured questionnaire. Bivariate and multivariate logistic regression analysis was performed to identify factors associated with induced abortion. Out of 400 women, 75.5% responded that the current pregnancy that ended in abortion is unwanted. However, only 12.3% of the respondents have admitted interference to the current pregnancy. Having more than four pregnancies (AOR = 4.28, CI: (1.24-14.71)), age of 30-34 years (AOR = 0.15, CI: (0.04-0.55)), primary education (AOR = 0.26, CI: (0.13-0.88)), and wanted pregnancy (AOR = 0.44, CI: (0.14-0.65)) were found to have association with induced abortion. The study revealed high level of induced abortion which is underpinned by high magnitude of unwanted pregnancy. There is requirement for widespread expansion of increased access to high quality family planning service and post-abortion care.

  17. Interactions between geomorphology and vegetation in the Western Swiss Alps: first investigations

    NASA Astrophysics Data System (ADS)

    Giaccone, Elisa; Mariéthoz, Grégoire; Lambiel, Christophe

    2017-04-01

    The influence of earth surface processes can modify the microhabitat conditions and the species richness, composition and distribution patterns of plant communities. It is therefore important to understand how geomorphology affects the distribution of plant species to predict future vegetation evolution in a context of climate change. To better analyse the influence of geomorphology on vegetation growth in the alpine periglacial belt, we are studying various geomorphological processes (e.g. cryoturbation and solifluction), permafrost, nivation and ground surface characteristics at three focus sites of the Vaud Alps (Western Swiss Alps). The sites are located at an altitude range comprised between 2000 and 2600 m a.s.l. The geomorphology is characterized mainly by the presence of small glaciers, large moraine deposits, rock glaciers and debris slopes. Monitoring of the ground surface temperatures, permafrost mapping, vegetation survey and drone flights have been carried out to investigate in detail the environmental variables. Initial results show a heterogeneous vegetation cover depending on time since deglaciation, debris size, ground stability and soil age. Debris pioneer species are present on moraines, rock glaciers and debris slope; grassland are developed in zones not affected by LIA glacier advances or other interfering processes such as avalanches. The high-resolution images obtained from drone flights (5 cm/pixel) allow a detailed study of the granulometry. In order to use such geomorphological information on a wider area of interest, the local data acquired on focus sites have to be spatialized to a regional scale. This is accomplished by developing an approach based on remote sensing and multiple-point geostatistics that performs a semi-automated geomorphological mapping (SAGM). The SAGM is based on a training image composed by a geomorphological map yet existent, an orthophoto, the slope, the aspect, the curvature, the granulometry classification and

  18. Phenology in the Western Alps: first results of the PhenoALP project

    NASA Astrophysics Data System (ADS)

    Cremonese, Edoardo; Tracol, Yann

    2010-05-01

    PHENOALP is a EU co-funded Interreg Project under the operational programme for cross-border cooperation "Italy-France (Alps-ALCOTRA)" 2007 - 2013, started in 2009, aiming to get a better understanding of phenological changes in the Alps and build a long term monitoring network. The results obtained after the first year of the project are mainly related to the definition of observation protocols and to the implementation of the observation networks. In particular, we focused on the comparison of different approaches for monitoring alpine grasslands phenology. We developed a new protocol for vegetative and reproductive phases of the seven most common plant growth life forms of alpine pastures: cyperaceae, poaceae (palatable and non palatable), evergreen and deciduous shrubs, forbs and leguminous. For each group quantitative and qualitative variables (e.g. leaves length, bud number, fruits number and phenophases) are monitored during the growing season. Study sites are located along an elevation gradient from 1560 to 2580 m asl and measurements are carried out on marked individuals in permanent plots. The other techniques used to monitor grassland phenology are: analysis of webcam images, weekly nadiral digital images, visual estimations of greening percentage, canopy structural measurements (i.e. height, fraction of absorbed photosynthetically active radiation, leaf are index, etc..) and high frequency radiometric measurements of vegetation indexes related to canopy structure. All methods are providing promising results and our goal is to define a protocol suitable for long term observation based on a reasonable trade-off between the quality and robustness of collected data and the heaviness of the observations. For animal phenology we are focusing on many animal taxa among birds, mammals, amphibians and insects. First results are coming from birds and amphibians. In the case of birds, observations of reproductive phenology of some common alpine species are done

  19. Fault-zone waves observed at the southern Joshua Tree earthquake rupture zone

    USGS Publications Warehouse

    Hough, S.E.; Ben-Zion, Y.; Leary, P.

    1994-01-01

    Waveform and spectral characteristics of several aftershocks of the M 6.1 22 April 1992 Joshua Tree earthquake recorded at stations just north of the Indio Hills in the Coachella Valley can be interpreted in terms of waves propagating within narrow, low-velocity, high-attenuation, vertical zones. Evidence for our interpretation consists of: (1) emergent P arrivals prior to and opposite in polarity to the impulsive direct phase; these arrivals can be modeled as headwaves indicative of a transfault velocity contrast; (2) spectral peaks in the S wave train that can be interpreted as internally reflected, low-velocity fault-zone wave energy; and (3) spatial selectivity of event-station pairs at which these data are observed, suggesting a long, narrow geologic structure. The observed waveforms are modeled using the analytical solution of Ben-Zion and Aki (1990) for a plane-parallel layered fault-zone structure. Synthetic waveform fits to the observed data indicate the presence of NS-trending vertical fault-zone layers characterized by a thickness of 50 to 100 m, a velocity decrease of 10 to 15% relative to the surrounding rock, and a P-wave quality factor in the range 25 to 50.

  20. Static versus dynamic fracturing in shallow carbonate fault zones

    NASA Astrophysics Data System (ADS)

    Fondriest, M.; Doan, M. L.; Aben, F. M.; Fusseis, F.; Mitchell, T. M.; Di Toro, G.

    2015-12-01

    Moderate to large earthquakes often nucleate within and propagate through carbonates in the shallow crust, therefore several field and experimental studies were recently aimed to constrain earthquake-related deformation processes within carbonate fault rocks. In particular, the occurrence of thick belts (10-100s m) of low-strain fault-related breccias (average size of rock fragments >1 cm), which is relatively common within carbonate damage zones, was generally interpreted as resulting from the quasi-static growth of fault zones rather than from the cumulative effect of multiple earthquake ruptures. Here we report the occurrence of up to hundreds of meters thick belts of intensely fragmented dolostones along the major transpressive Foiana Fault Zone (Italian Southern Alps) which was exhumed from < 2 km depth. Such dolostones are reduced into fragments ranging from few centimeters down to few millimeters in size with ultrafine-grained layers in proximity to the principal slip zones. Preservation of the original bedding indicates a lack of significant shear strain in the fragmented dolostones which seem to have been shattered in situ. To investigate the origin of the in-situ shattered rocks, the host dolostones were deformed in uniaxial compression both under quasi-static loading (strain rate ~10-3 s-1) and dynamic loading (strain rate >50 s-1). Dolostones deformed up to failure under low-strain rate were affected by single to multiple discrete (i.e. not interconnected) extensional fractures sub-parallel to the loading direction. Dolostones deformed under high-strain rate were shattered above a strain rate threshold of ~200 s-1(strain >1.2%) while they were split in few fragments or were macroscopically intact for lower strain rates. Experimentally shattered dolostones were reduced into a non-cohesive material with most rock fragments a few millimeters in size and elongated parallel to the loading direction. Fracture networks were investigated by X

  1. Air-sea interaction regimes in the sub-Antarctic Southern Ocean and Antarctic marginal ice zone revealed by icebreaker measurements

    NASA Astrophysics Data System (ADS)

    Yu, Lisan; Jin, Xiangze; Schulz, Eric W.; Josey, Simon A.

    2017-08-01

    This study analyzed shipboard air-sea measurements acquired by the icebreaker Aurora Australis during its off-winter operation in December 2010 to May 2012. Mean conditions over 7 months (October-April) were compiled from a total of 22 ship tracks. The icebreaker traversed the water between Hobart, Tasmania, and the Antarctic continent, providing valuable in situ insight into two dynamically important, yet poorly sampled, regimes: the sub-Antarctic Southern Ocean and the Antarctic marginal ice zone (MIZ) in the Indian Ocean sector. The transition from the open water to the ice-covered surface creates sharp changes in albedo, surface roughness, and air temperature, leading to consequential effects on air-sea variables and fluxes. Major effort was made to estimate the air-sea fluxes in the MIZ using the bulk flux algorithms that are tuned specifically for the sea-ice effects, while computing the fluxes over the sub-Antarctic section using the COARE3.0 algorithm. The study evidenced strong sea-ice modulations on winds, with the southerly airflow showing deceleration (convergence) in the MIZ and acceleration (divergence) when moving away from the MIZ. Marked seasonal variations in heat exchanges between the atmosphere and the ice margin were noted. The monotonic increase in turbulent latent and sensible heat fluxes after summer turned the MIZ quickly into a heat loss regime, while at the same time the sub-Antarctic surface water continued to receive heat from the atmosphere. The drastic increase in turbulent heat loss in the MIZ contrasted sharply to the nonsignificant and seasonally invariant turbulent heat loss over the sub-Antarctic open water.Plain Language SummaryThe icebreaker Aurora Australis is a research and supply vessel that is regularly chartered by the Australian Antarctic Division during the <span class="hlt">southern</span> summer to operate in waters between Hobart, Tasmania, and Antarctica. The vessel serves as the main lifeline to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1412555L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1412555L"><span>Subduction in the <span class="hlt">Southern</span> Caribbean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Levander, A.; Schmitz, M.; Bezada, M.; Masy, J.; Niu, F.; Pindell, J.</p> <p>2012-04-01</p> <p>The <span class="hlt">southern</span> Caribbean is bounded at either end by subduction <span class="hlt">zones</span>: In the east at the Lesser Antilles subduction <span class="hlt">zone</span> the Atlantic part of the South American plate subducts beneath the Caribbean. In the north and west under the <span class="hlt">Southern</span> Caribbean Deformed Belt accretionary prism, the Caribbean subducts under South America. In a manner of speaking, the two plates subduct beneath each other. Finite-frequency teleseismic P-wave tomography confirms this, imaging the Atlantic and the Caribbean subducting steeply in opposite directions to transition <span class="hlt">zone</span> depths under northern South America (Bezada et al, 2010). The two subduction <span class="hlt">zones</span> are connected by the El Pilar-San Sebastian strike-slip fault system, a San Andreas scale system. A variety of seismic probes identify where the two plates tear as they begin to subduct (Niu et al, 2007; Clark et al., 2008; Miller et al. 2009; Masy et al, 2009). The El Pilar system forms at the southeastern corner of the Antilles subduction <span class="hlt">zone</span> by the Atlantic tearing from South America. The deforming plate edges control mountain building and basin formation at the eastern end of the strike-slip system. In northwestern South America the Caribbean plate tears, its southernmost element subducting at shallow angles under northernmost Colombia and then rapidly descending to transition <span class="hlt">zone</span> depths under Lake Maracaibo (Bezada et al., 2010). We believe that the flat slab produces the Merida Andes, the Perija, and the Santa Marta ranges. The <span class="hlt">southern</span> edge of the nonsubducting Caribbean plate underthrusts northern Venezuela to about the width of the coastal mountains (Miller et al., 2009). We infer that the underthrust Caribbean plate supports the coastal mountains, and controls continuing deformation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.2427F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.2427F"><span>Tsunamigenic potential of a newly discovered active fault <span class="hlt">zone</span> in the outer Messina Strait, <span class="hlt">Southern</span> Italy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fu, Lili; Heidarzadeh, Mohammad; Cukur, Deniz; Chiocci, Francesco L.; Ridente, Domenico; Gross, Felix; Bialas, Jörg; Krastel, Sebastian</p> <p>2017-03-01</p> <p>The 1908 Messina tsunami was the most catastrophic tsunami hitting the coastline of <span class="hlt">Southern</span> Italy in the younger past. The source of this tsunami, however, is still heavily debated, and both rupture along a fault and a slope failure have been postulated as potential origin of the tsunami. Here we report a newly discovered active Fiumefreddo-Melito di Porto Salvo Fault <span class="hlt">Zone</span> (F-MPS_FZ), which is located in the outer Messina Strait in a proposed landslide source area of the 1908 Messina tsunami. Tsunami modeling showed that this fault <span class="hlt">zone</span> would produce devastating tsunamis by assuming slip amounts of ≥5 m. An assumed slip of up to 17 m could even generate a tsunami comparable to the 1908 Messina tsunami, but we do not consider the F-MPS_FZ as a source for the 1908 Messina tsunami because its E-W strike contradicts seismological observations of the 1908 Messina earthquake. Future researches on the F-MPS_FZ, however, may contribute to the tsunami risk assessment in the Messina Strait.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.4947W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.4947W"><span>Low temperature thermochronology in the Easter <span class="hlt">Alps</span>. New data, interpretations and perspectives.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wölfler, Andreas</p> <p>2015-04-01</p> <p>The aim of this study is to evaluate new and published low temperature thermochronological data of the Eastern <span class="hlt">Alps</span> in terms of its Mesozoic and Cenozoic tectonic evolution and the possible connection with deep seated lithospheric processes. In the Eastern <span class="hlt">Alps</span>, the tectonic units that originate from the Penninic domain are buried beneath the Austroalpine nappe stack. Overthrusting of the Austroalpine nappes over the Penninic units occurred throughout the Cretaceous and lasted until the Eocene. During lateral tectonic extrusion in Oligocene to Miocene times the footwall penninic units exposed in the Tauern Window, were tectonically exhumed from below the Austroalpine hanging wall. This is well documented by Miocene to Pliocene zircon- and apatite fission track (ZFT, AFT) and (U-Th)/He data. However, the Austroalpine hanging wall shows a more complex age pattern. Late Cretaceous ZFT data reflect post-metamorphic exhumational cooling after Eo-Alpine metamorphism that goes along with an extensional phase that affected large parts of the Eastern <span class="hlt">Alps</span>. Paleogene AFT and apatite (U-Th)/He data of the Austroalpine units to the east of the Tauern Window reflect exhumation of this area that supplied clastic material, the so-called Augenstein formation. Exhumation and erosion of the area left a probably hilly surface in Early Miocene times that was only moderately uplifted since then. These areas are well known for paleosurfaces exposed in the Gurktal- Kor- and Seckauer <span class="hlt">Alps</span> to the east of the Tauern Window and in the central and eastern Northern Calcareous <span class="hlt">Alps</span>. However, distinct parts of the Austroalpine hanging wall experienced substantial exhumation and surface uplift in the Miocene, contemporaneous to the exhumation of Penninic units and lateral extrusion of the Eastern <span class="hlt">Alps</span>. These areas are restricted to the south and northeast of the Tauern Window and are characterized by steep and rugged reliefs that contrast the hilly and moderately shaped reliefs of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.9579B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.9579B"><span>Fission track ages and Exhumation mechanisms of the Tauern Window, Eastern <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bertrand, Audrey; Rosenberg, Claudio; Garcia, Sebastian</p> <p>2010-05-01</p> <p> units in the core of the TW and that orogen-parallel extension played a subordinate role during unroofing. New fission track ages, complementing the published ones, will be used to obtain a detailed 3D pattern of cooling, especially in the central TW. This pattern, combined with a thermal model, will allow us to discuss the relative importance of the afore mentioned two end-members exhumation mechanisms and to relate them to the temporal evolution of the exhumation processes. References Behrmann, J. H., 1988, Crustal-scale extension in a convergent orogen: The Sterzing-Steinach mylonite <span class="hlt">zone</span> in the Eastern <span class="hlt">Alps</span>. Geodynamica Acta, 2, 63-73. Foster, D. A., Schafer, C., Fanning, M.C., and Hyndmann D. W., 2001, Relationships between crustal partial melting, plutonism, orogeny, and exhumation: Idaho-Bitterroot batholith. Tectonophysics, 342, 313-350. Genser, J. and Neubauer, F., 1989, Low angle normal faults at the eastern margin of the Tauern window (Eastern <span class="hlt">Alps</span>). Mitteilungen der Österreichische Geologische Gesellschaft, 81, 233-243. Rosenberg, C. L., Brun, J.-P., and Gapais, D., 2004, An indentation model of the Eastern <span class="hlt">Alps</span> and the origin of the Tauern Window. Geology, 32, 997-1000. Selverstone, J., 1988, Evidence for East-West crustal extension in the eastern <span class="hlt">Alps</span>: implications for the unroofing history of the Tauern Window. Tectonics, 7, 87-105. Selverstone, J., Franz, G., Thomas, S., Getty, S., 1992. Fluid variability in 2 GPa eclogites as an indicator of fluid behavior during subduction. Contributions to Mineralogy and Petrology 112, 341-357.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3571418','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3571418"><span>A hybrid <span class="hlt">zone</span> of the genus Ctenomys: A case study in <span class="hlt">southern</span> Brazil</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Castilho, Camila S.; Gava, Adriana; de Freitas, Thales R.O.</p> <p>2012-01-01</p> <p>We describe variation at microsatellite loci and the chromosomal polymorphisms of a hybrid population, and hybridizing populations of Ctenomys minutus (the minor tuco-tuco) from the coastal plain of Rio Grande do Sul, <span class="hlt">southern</span> Brazil. Cytogenetic analysis and a survey of six microsatellite loci included 101 specimens of C. minutus from the parental populations (2n/AN = 42/74 and 48a/76) and their contact <span class="hlt">zone</span>. Cytogenetic analysis recorded 26 different karyotypes exhibited by 50 individuals from the hybrid population. Of the 26 karyotypes, only 14% presented a parental-like configuration, and none had the combinations of 2n and AN expected for an F1 hybrid. The remaining karyotypes were alternative hybrid forms, with 2n varying from 42 to 46 and AN from 68 to 80. These results suggest chromosomal rearrangements are only of minor significance in the establishment of reproductive barriers for this species. PMID:23412911</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70101156','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70101156"><span>Miocene burial and exhumation of the India-Asia collision <span class="hlt">zone</span> in <span class="hlt">southern</span> Tibet: response to slab dynamics and erosion</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Carrapa, Barbara; Orme, D.A.; DeCelles, Peter G.; Kapp, Paul; Cosca, Michael A.; Waldrip, R.</p> <p>2014-01-01</p> <p>The India-Asia collision <span class="hlt">zone</span> in <span class="hlt">southern</span> Tibet preserves a record of geodynamic and erosional processes following intercontinental collision. Apatite fission-track and zircon and apatite (U-Th)/He data from the Oligocene–Miocene Kailas Formation, within the India-Asia collision <span class="hlt">zone</span>, show a synchronous cooling signal at 17 ± 1 Ma, which is younger than the ca. 26–21 Ma depositional age of the Kailas Formation, constrained by U-Pb and 40Ar/39Ar geochronology, and requires heating (burial) after ca. 21 Ma and subsequent rapid exhumation. Data from the Gangdese batholith underlying the Kailas Formation also indicate Miocene exhumation. The thermal history of the Kailas Formation is consistent with rapid subsidence during a short-lived phase of early Miocene extension followed by uplift and exhumation driven by rollback and northward underthrusting of the Indian plate, respectively. Significant removal of material from the India-Asia collision <span class="hlt">zone</span> was likely facilitated by efficient incision of the paleo–Indus River and paleo–Yarlung River in response to drainage reorganization and/or intensification of the Asian monsoon.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JSAES..55...83W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JSAES..55...83W"><span>Quaternary incised valleys in <span class="hlt">southern</span> Brazil coastal <span class="hlt">zone</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weschenfelder, Jair; Baitelli, Ricardo; Corrêa, Iran C. S.; Bortolin, Eduardo C.; dos Santos, Cristiane B.</p> <p>2014-11-01</p> <p>High-resolution seismic records obtained in the Rio Grande do Sul coastal <span class="hlt">zone</span>, <span class="hlt">southern</span> Brazil, revealed that prominent valleys and channels developed in the area before the installation of actual coastal plain. Landwards, the paleoincisions can be linked with the present courses of the main river dissecting the area. Oceanwards, they can be linked with related features previously recognized in the continental shelf and slope by means of seismic and morphostructural studies. Based mainly on seismic, core data and geologic reasoning, it can be inferred that the coastal valleys were incised during forced regression events into the coastal prism deposited during previous sea level highstand events of the Quaternary. Seismic data has revealed paleovalleys up to 10 km wide and, in some places, infilled with up to 40 m thick of sediments. The results indicated two distinct periods of cut-and-fill events in the Patos Lagoon area. The filling of the younger incision system is mainly Holocene and its onset is related to the last main regressive event of the Pleistocene, when the sea level fell about 130 m below the actual position. The older incision and filling event is related to the previous regressive-transgressive events of the Middle and Late Pleistocene. The fluvial discharge fed delta systems on the shelf edge during the sea level lowstands. The subsequent transgressions drowned the incised drainage, infilling it and closing the inlets formerly connecting the coastal river to the ocean. The incised features may have played a significant role on the basin-margin architecture, facies distribution and accommodation space during the multitude of up and down sea level events of the Quaternary.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21379394','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21379394"><span>Photosynthetic temperature adaptation of Pinus cembra within the timberline ecotone of the Central Austrian <span class="hlt">Alps</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wieser, Gerhard; Oberhuber, Walter; Walder, Lisa; Spieler, Daniela; Gruber, Andreas</p> <p>2010-04-01</p> <p>Temperature is suggested to determine the upper limit of tree life. Therefore, future climate warming may be of importance for tree distribution within the European <span class="hlt">Alps</span>, where low temperatures limit carbon metabolism.We focused on the effects of air and soil temperature on net photosynthesis (P(n)) of Pinus cembra an evergreen climax species of the timberline ecotone of the Central Austrian <span class="hlt">Alps</span>. Light response and temperature response curves were estimated along an altitudinal gradient ranging from the forest limit up to the krummholz limit in both summer and fall.In general, P(n) was significantly lower in fall as compared to summer. Nevertheless, independent from season mean P(n) values tended to increase with elevation and were positively correlated with root <span class="hlt">zone</span> temperatures. The specific leaf area by contrast declined with increasing elevation. Furthermore, the temperature optimum of net photosynthesis declined with increasing elevation and was positively correlated with the mean maximum air temperature of the 10 days prior the date of measurement.Thus, our findings appear to reflect a long-term adaptation of the photosynthetic apparatus of Pinus cembra to the general temperature conditions with respect to elevation combined with a short term acclimation to the prevailing temperature regime.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3047779','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3047779"><span>Photosynthetic temperature adaptation of Pinus cembra within the timberline ecotone of the Central Austrian <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wieser, Gerhard; Oberhuber, Walter; Walder, Lisa; Spieler, Daniela; Gruber, Andreas</p> <p>2011-01-01</p> <p>Temperature is suggested to determine the upper limit of tree life. Therefore, future climate warming may be of importance for tree distribution within the European <span class="hlt">Alps</span>, where low temperatures limit carbon metabolism. We focused on the effects of air and soil temperature on net photosynthesis (Pn) of Pinus cembra an evergreen climax species of the timberline ecotone of the Central Austrian <span class="hlt">Alps</span>. Light response and temperature response curves were estimated along an altitudinal gradient ranging from the forest limit up to the krummholz limit in both summer and fall. In general, Pn was significantly lower in fall as compared to summer. Nevertheless, independent from season mean Pn values tended to increase with elevation and were positively correlated with root <span class="hlt">zone</span> temperatures. The specific leaf area by contrast declined with increasing elevation. Furthermore, the temperature optimum of net photosynthesis declined with increasing elevation and was positively correlated with the mean maximum air temperature of the 10 days prior the date of measurement. Thus, our findings appear to reflect a long-term adaptation of the photosynthetic apparatus of Pinus cembra to the general temperature conditions with respect to elevation combined with a short term acclimation to the prevailing temperature regime. PMID:21379394</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1712964B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1712964B"><span>Microstructural record of cataclastic and dissolution-precipitation processes from shallow crustal carbonate strike-slip faults, Northern Calcareous <span class="hlt">Alps</span> (Austria)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bauer, Helene; Grasemann, Bernhard; Decker, Kurt</p> <p>2015-04-01</p> <p>The concept of coseismic slip and aseismic creep deformation along faults is supported by the variability of natural fault rocks and their microstructures. Faults in carbonate rocks are characterized by very narrow principal slip <span class="hlt">zones</span> (cm to mm wide) containing (ultra)cataclastic fault rocks that accommodate most of the fault displacement. Fluidization of ultracataclastic sub layers and thermal decomposition of calcite due to frictional heating have been proposed as possible indicators for seismic slip. Dissolution-precipitation (DP) processes are possible mechanism of aseismic sliding, resulting in spaced cleavage solution planes and associated veins, indicating diffusive mass transfer and precipitation in pervasive vein networks. We investigated exhumed, sinistral strike-slip faults in carbonates of the Northern Calcareous <span class="hlt">Alps</span>. The study presents microstructural investigations of natural carbonate fault rocks that formed by cataclastic and dissolution-precipitation related deformation processes. Faults belong to the eastern segment of the Salzachtal-Ennstal-Mariazell-Puchberg (SEMP) fault system that was formed during eastward lateral extrusion of the Eastern <span class="hlt">Alps</span> in Oligocene to Lower Miocene. The investigated faults accommodated sinistral slip between several tens and few hundreds of meters. Microstructural analysis of fault rocks was done with scanning electron microscopy and optical microscopy. Deformation experiments of natural fault rocks are planned to be conducted at the Sapienza University of Roma and should be available at the meeting. The investigated fault rocks give record of alternating cataclastic deformation and DP creep. DP fault rocks reveal various stages of evolution including early stylolites, pervasive pressure solution seams and cleavage, localized shear <span class="hlt">zones</span> with syn-kinematic calcite fibre growth and mixed DP/cataclastic microstructures, involving pseudo sc- and scc'-fabrics. Pressure solution seams host fine grained kaolinit, chlorite</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911332F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911332F"><span>The last deglaciation in New Zealand ; revisiting the Misery moraines at Arthur's Pass in the <span class="hlt">Southern</span> <span class="hlt">Alps</span> of New Zealand</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fink, David; Rother, Henrik; Woodward, Craig; Shulmeister, James; Wilcken, Klaus</p> <p>2017-04-01</p> <p>Recent debate on mid-latitude New Zealand glaciation has focused on reconstructing paleo-climate conditions leading into the (global) Last Glacial Maximum and subsequent deglaciation dynamics during the last termination. Paleo-environmental evidence coupled with reliable glacial chronologies supporting a <span class="hlt">Southern</span> Hemisphere glacial readvance commensurate with Younger Dryas timing ( 11.5-12.5 ka) showing similar cooling as observed in the Northern Hemisphere has also been hotly debated. Many New Zealand lake and pollen records suggest a minor cooling or hiatus in warming during the period from 14.5 - 12.0 ka which pre-dates YD onset and is more commonly associated with the Antarctic Cold Reversal (ACR) (14.7 - 13.0 ka). Achieving the required sub-millennial temporal differentiation using in-situ cosmogenic exposure dating comes with numerous difficulties. The Arthur's Pass Moraine complex, deposited by an alpine glacier advancing out of the Otira Gorge splaying east and westward over the divide of the <span class="hlt">Southern</span> <span class="hlt">Alps</span> in New Zealand ( 950 masl), exhibits a full post-LGM glacial chronology. The moraines consist of multiple cross-valley terminal, lobate and discontinuous latero-terminal moraines up to 3 kilometres down valley from the proximal Misery moraines at the outlet of Otira Gorge. Within the gorge towards the headwall only 1 km up-valley from the Misery sequence, no other moraines are evident. We have determined paired 10-Be and 26-Al exposure ages from 58 greywacke samples taken from all major moraines, including repeat sampling from the Misery moraines. The new exposure ages show that the Arthur's Pass moraine system spans a period of 19.5 ka to 12.0 ka (Putnam local NZ production rate) with mean recessional moraine ages in chrono-stratigraphic sequence. The overall timing of deglaciation after peak LGM conditions is similar to that observed at down-valley terminal positions of the larger outlet river systems of the Rakaia, Waimakariri and Rangitata Valleys</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10384032','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10384032"><span>Hydrological and Oceanographic Considerations for Integrated Coastal <span class="hlt">Zone</span> Management in <span class="hlt">Southern</span> Belize.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Heyman; Kjerfve</p> <p>1999-09-01</p> <p>/ The objectives of this study are to: (1) characterize the meteorology and hydrology of the Maya Mountain-Marine Area Transect in <span class="hlt">southern</span> Belize, (2) employ a simple water balance model to examine the discharge rates of seven watersheds to Port Honduras, (3) test the validity of the hydrological model, (4) explore the implications of potential landscape and hydrological alterations, and (5) examine the value of protected areas. The <span class="hlt">southern</span> coastal portion of the study area is classified as wet tropical forest and the remainder as moist tropical forest. Rainfall is 3000-4000 mm annually. Resulting annual freshwater discharge directly into Port Honduras is calculated at 2.5 x 10(9) m3, a volume equal to the basin. During the rainy season, June-September, 84% of the annual discharge occurs, which causes the bay to become brackish. Port Honduras serves as an important nursery ground for many species of commercially important fish and shellfish. The removal of forest cover in the uplands, as a result of agriculture, aquaculture, and village development, is likely to significantly accelerate erosion. Increased erosion would reduce soil fertility in the uplands and negatively affect mangrove, seagrass, and coral reef productivity in the receiving coastal embayment. Alternatively, the conservation of an existing protected areas corridor, linking the Maya Mountains to the Caribbean Sea, is likely to enhance regional sustainable economic development. This study aims to support environmental management at the scale of the "ecoscape"-a sensible ecological unit of linked watersheds and coastal and marine environments.KEY WORDS: Ecosystem management; Coastal <span class="hlt">zone</span> management; Belize; Hydrologyhttp://link.springer-ny.com/link/service/journals/00267/bibs/24n2p229.html</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGC21C0840K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGC21C0840K"><span>Climate change and wildfire around <span class="hlt">southern</span> Africa</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kimura, K.</p> <p>2013-12-01</p> <p>When the climate change in <span class="hlt">southern</span> Africa is analyzed, the effects of rainfall by Inter Tropical Convergence <span class="hlt">Zone</span>(ITCZ) and cyclone are important. In this study, the rainfall patterns are analyzed with synoptic analysis. The <span class="hlt">southern</span> limit of ITCZ is around the arid <span class="hlt">zone</span> around Namibia, Botswana, Zimbabwe and Mozambique. This <span class="hlt">zone</span> has some effects of both ITCZ and extratropical cyclones by season. As well as this, the eastern part of this area has heavy rainfall by the cyclone from the Indian Ocean once in several years. In the other hand, a lot of wildfire occurs in this area. The main cause of the wildfire is anthropogenic misbehavior of the fire by the slash-and-burn agriculture. Recently we can find the wildfire detected with the satellite imagery like Terra/Aqua MODIS. We can compare the weather environment and the wildfire occurrence with Geographical Information System. We have tried making the fire weather index suitable for the <span class="hlt">southern</span> African semi-arid area.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3988865','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3988865"><span>Induced Abortion and Associated Factors in Health Facilities of Guraghe <span class="hlt">Zone</span>, <span class="hlt">Southern</span> Ethiopia</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hambisa, Mitiku Teshome; Semahegn, Agumasie</p> <p>2014-01-01</p> <p>Unsafe abortion is one of the major medical and public health problems in developing countries including Ethiopia. However, there is a lack of up-to-date and reliable information on induced abortion distribution and its determinant factors in the country. This study was intended to assess induced abortion and associated factors in health facilities of Guraghe <span class="hlt">zone</span>, <span class="hlt">Southern</span> Ethiopia. Institution based cross-sectional study was conducted in eight health facilities in Guraghe <span class="hlt">zone</span>. Client exit interview was conducted on 400 patients using a structured questionnaire. Bivariate and multivariate logistic regression analysis was performed to identify factors associated with induced abortion. Out of 400 women, 75.5% responded that the current pregnancy that ended in abortion is unwanted. However, only 12.3% of the respondents have admitted interference to the current pregnancy. Having more than four pregnancies (AOR = 4.28, CI: (1.24–14.71)), age of 30–34 years (AOR = 0.15, CI: (0.04–0.55)), primary education (AOR = 0.26, CI: (0.13–0.88)), and wanted pregnancy (AOR = 0.44, CI: (0.14–0.65)) were found to have association with induced abortion. The study revealed high level of induced abortion which is underpinned by high magnitude of unwanted pregnancy. There is requirement for widespread expansion of increased access to high quality family planning service and post-abortion care. PMID:24800079</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.7921E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.7921E"><span>The continental Etirol-Levaz slice (Western <span class="hlt">Alps</span>, Italy): Tectonometamorphic evolution of an extensional allochthon</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ewerling, Kathrin; Obermüller, Gerrit; Kirst, Frederik; Froitzheim, Nikolaus; Nagel, Thorsten; Sandmann, Sascha</p> <p>2013-04-01</p> <p> suggest that the ELS experienced two independent stages of high-pressure metamorphism during the Alpine orogeny, e.g. as proposed by Rubatto et al. (2011) for the Sesia Nappe. A lower-pressure stage in between might have been associated with brittle fracturing of high-pressure phases like garnet, glaucophane, and omphacite while the second generations of these minerals might indicate a new stage of increasing pressures and/or temperatures. References Beltrando, M., Rubatto, D. & Manatschal, G. (2010): From passive margins to orogens: The link between ocean-continent transition <span class="hlt">zones</span> and (ultra)high-pressure metamorphism. Geology, 6, 559-562. Dal Piaz, G.V., Cortiana, G., Del Moro, A., Martin, S., Pennacchioni, G. & Tartarotti, P. (2001): Tertiary age and paleostructural inferences of the eclogitic imprint in the Austroalpine outliers and Zermatt-Saas ophiolite, western <span class="hlt">Alps</span>. Int. J. Earth Sci., 90, 668-684. Rubatto, D., Regis, D., Hermann, J., Boston, K., Engi, M., Beltrando, M. & McAlpine, S.R.B. (2011): Yo-yo subduction recorded by accessory minerals in the Italian Western <span class="hlt">Alps</span>. Nature Geoscience, 4, 338-342.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.S31B4397P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.S31B4397P"><span>The Eastern Tennessee Seismic <span class="hlt">Zone</span>: Reactivation of an Ancient Continent-Continent Suture <span class="hlt">Zone</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Powell, C. A.</p> <p>2014-12-01</p> <p>The eastern Tennessee seismic <span class="hlt">zone</span> (ETSZ) may represent reactivation of an ancient shear <span class="hlt">zone</span> that accommodated left-lateral, transpressive motion of the Amazon craton during the Grenville orogeny. Several different lines of evidence support this concept including velocity models for the crust, earthquake hypocenter alignments, focal mechanism solutions, potential field anomalies, paleomagnetic pole positions, and isotopic geochemical studies. The ETSZ trends NE-SW for about 300 km and displays remarkable correlation with the prominent New York - Alabama (NY-AL) aeromagnetic lineament. Vp and Vs models for the crust derived from a local ETSZ earthquake tomography study reveal the presence of a narrow, NE-SW trending, steeply dipping <span class="hlt">zone</span> of low velocities that extends to a depth of at least 24 km and is associated with the vertical projection of the NY-AL aeromagnetic lineament. The low velocity <span class="hlt">zone</span> is interpreted as a major basement fault. The recent Mw 4.2 Perry County eastern Kentucky earthquake occurred north of the ETSZ but has a focal depth and mechanism that are similar to those for ETSZ earthquakes. We investigate the possibility that the proposed ancient shear <span class="hlt">zone</span> extends into eastern Kentucky using Bouguer and aeromagnetic maps. The <span class="hlt">southern</span> end of the ETSZ is characterized by hypocenters that align along planes dipping at roughly 45 degrees and focal mechanisms that contain large normal faulting components. The NY-AL aeromagnetic lineament also changes trend in the <span class="hlt">southern</span> end of the ETSZ and the exact location of the lineament is ambiguous. We suggest that the <span class="hlt">southern</span> portion of the ETSZ involves reactivation of reverse faults (now as normal faults) that mark the ancient transition between a collisional to a more transpressive boundary between Amazonia and Laurentia during the formation of the super continent Rodinia.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJEaS.106..215K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJEaS.106..215K"><span>Kinematics of syn- and post-exhumational shear <span class="hlt">zones</span> at Lago di Cignana (Western <span class="hlt">Alps</span>, Italy): constraints on the exhumation of Zermatt-Saas (ultra)high-pressure rocks and deformation along the Combin Fault and Dent Blanche Basal Thrust</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kirst, Frederik; Leiss, Bernd</p> <p>2017-01-01</p> <p>Kinematic analyses of shear <span class="hlt">zones</span> at Lago di Cignana in the Italian Western <span class="hlt">Alps</span> were used to constrain the structural evolution of units from the Piemont-Ligurian oceanic realm (Zermatt-Saas and Combin <span class="hlt">zones</span>) and the Adriatic continental margin (Dent Blanche nappe) during Palaeogene syn- and post-exhumational deformation. Exhumation of Zermatt-Saas (U)HP rocks to approximately lower crustal levels at ca. 39 Ma occurred during normal-sense top-(S)E shearing under epidote-amphibolite-facies conditions. Juxtaposition with the overlying Combin <span class="hlt">zone</span> along the Combin Fault at mid-crustal levels occurred during greenschist-facies normal-sense top-SE shearing at ca. 38 Ma. The scarcity of top-SE kinematic indicators in the hanging wall of the Combin Fault probably resulted from strain localization along the uppermost Zermatt-Saas <span class="hlt">zone</span> and obliteration by subsequent deformation. A phase of dominant pure shear deformation around 35 Ma affected units in the direct footwall and hanging wall of the Combin Fault. It is interpreted to reflect NW-SE crustal elongation during updoming of the nappe stack as a result of underthrusting of European continental margin units and the onset of continental collision. This phase was partly accompanied and followed by ductile bulk top-NW shearing, especially at higher structural levels, which transitioned into semi-ductile to brittle normal-sense top-NW deformation due to Vanzone phase folding from ca. 32 Ma onwards. Our structural observations suggest that syn-exhumational deformation is partly preserved within units and shear <span class="hlt">zones</span> exposed at Lago di Cignana but also that the Combin Fault and Dent Blanche Basal Thrust experienced significant post-exhumational deformation reworking and overprinting earlier structures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21190503','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21190503"><span>The prevalence of and risk factors for acute mountain sickness in the Eastern and Western <span class="hlt">Alps</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mairer, Klemens; Wille, Maria; Burtscher, Martin</p> <p>2010-01-01</p> <p>Acute mountain sickness (AMS) is the most common condition of high altitude illnesses. Its prevalence varies between 15% and 80% depending on the speed of ascent, absolute altitude reached, and individual susceptibility. Additionally, we assumed that the more experienced mountaineers of the Western <span class="hlt">Alps</span> are less susceptible to developing AMS than recreational mountaineers of the Eastern <span class="hlt">Alps</span> or tourist populations. Therefore, the main goals of the present study were the collection of data regarding the AMS prevalence and triggers in both the Eastern and Western <span class="hlt">Alps</span> using identical methods. A total of 162 mountaineers, 79 in the Eastern <span class="hlt">Alps</span> (3454 m) and 83 in the Western <span class="hlt">Alps</span> (3817 m) were studied on the morning after their first night at high altitude. A diagnosis of AMS was based on a Lake Louise Score (LLS) ≥4, the presence of headache, and at least one additional symptom. Thirty of 79 subjects (38.0%) suffered from AMS at 3454 m in the Eastern <span class="hlt">Alps</span> as did 29 of 83 (34.9%) at 3817 m in the Western <span class="hlt">Alps</span>. After adjustment for altitude, the prevalence in the Western <span class="hlt">Alps</span> constituted 24.5%, which differed significantly (p = 0.04) from that found in the Eastern <span class="hlt">Alps</span>. The lower mountaineering experience of mountaineers in the Eastern <span class="hlt">Alps</span> turned out to be the only factor for explaining their higher AMS prevalence. Thus, expert advice by mountain guides or experienced colleagues could help to reduce the AMS risk in these subjects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Geomo.259...81B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Geomo.259...81B"><span>Can deep seated gravitational slope deformations be activated by regional tectonic strain: First insights from displacement measurements in caves from the Eastern <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baroň, Ivo; Plan, Lukas; Grasemann, Bernhard; Mitroviċ, Ivanka; Lenhardt, Wolfgang; Hausmann, Helmut; Stemberk, Josef</p> <p>2016-04-01</p> <p>Tectonic elastic strain and ground deformations are documented as the most remarkable environmental phenomena occurring prior to local earthquakes in tectonically active areas. The question arises if such strain would be able to trigger mass movements. We discuss a directly observed fault slip and a subsequent minor activation of a deep-seated gravitational slope deformation prior to the M = 3 Bad Fischau earthquake between end of November and early December 2013 in NE Austria. The data originate from two faults in the Emmerberg and Eisenstein Caves in the transition <span class="hlt">zone</span> between the Eastern <span class="hlt">Alps</span> and the Vienna Basin, monitored in the framework of the FWF "Speleotect" project. The fault slips have been observed at the micrometer-level by means of an opto-mechanical 3D crack gauge TM-71. The discussed event started with the fault activation in the Emmerberg Cave on 25 November 2013 recorded by measurements of about 2 μm shortening and 1 μm sinistral parallel slip, which was fully in agreement with the macroscopically documented past fault kinematics. One day later, the mass (micro) movement activated on the opposite side of the mountain ridge in the Eisenstein Cave and it continued on three consecutive days. Further, the fault in the Emmerberg Cave experienced also a subsequent gravitational relaxation on 2/3 December 2013, when the joint opened and the <span class="hlt">southern</span> block subsided towards the valley, while the original sinistral displacement remained irreversible. The process was followed by the M = 3 earthquake in Bad Fischau on 11 December 2013. Our data suggest that tectonic strain could play a higher role on the activation of slow mass movements in the area than expected. Although we cannot fully exclude the co-activation of the mass movement in the Eisenstein Cave by water saturation, the presented data bring new insight into recent geodynamics of the Eastern <span class="hlt">Alps</span> and the Vienna Basin. For better interpretations and conclusions however, we need a much longer</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25417727','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25417727"><span>Genetic and antigenic diversity of Theileria parva in cattle in Eastern and <span class="hlt">Southern</span> <span class="hlt">zones</span> of Tanzania. A study to support control of East Coast fever.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Elisa, Mwega; Hasan, Salih Dia; Moses, Njahira; Elpidius, Rukambile; Skilton, Robert; Gwakisa, Paul</p> <p>2015-04-01</p> <p>This study investigated the genetic and antigenic diversity of Theileria parva in cattle from the Eastern and <span class="hlt">Southern</span> <span class="hlt">zones</span> of Tanzania. Thirty-nine (62%) positive samples were genotyped using 14 mini- and microsatellite markers with coverage of all four T. parva chromosomes. Wright's F index (F(ST) = 0 × 094) indicated a high level of panmixis. Linkage equilibrium was observed in the two <span class="hlt">zones</span> studied, suggesting existence of a panmyctic population. In addition, sequence analysis of CD8+ T-cell target antigen genes Tp1 revealed a single protein sequence in all samples analysed, which is also present in the T. parva Muguga strain, which is a component of the FAO1 vaccine. All Tp2 epitope sequences were identical to those in the T. parva Muguga strain, except for one variant of a Tp2 epitope, which is found in T. parva Kiambu 5 strain, also a component the FAO1 vaccine. Neighbour joining tree of the nucleotide sequences of Tp2 showed clustering according to geographical origin. Our results show low genetic and antigenic diversity of T. parva within the populations analysed. This has very important implications for the development of sustainable control measures for T. parva in Eastern and <span class="hlt">Southern</span> <span class="hlt">zones</span> of Tanzania, where East Coast fever is endemic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1464119','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1464119"><span>Farmers' perception on the importance of variegated grasshopper (Zonocerus variegatus (L.)) in the agricultural production systems of the humid forest <span class="hlt">zone</span> of <span class="hlt">Southern</span> Cameroon</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kekeunou, Sévilor; Weise, Stephan; Messi, Jean; Tamò, Manuel</p> <p>2006-01-01</p> <p>Background Zonocerus variegatus (Linnaeus, 1758) (Orthoptera: Pyrgomorphidae) is known as an agricultural pest in West and Central Africa. However, its importance in the agricultural production system in Cameroon has not been investigated. The study assesses farmers' perception on the importance of Z. variegatus in the agricultural production systems of the humid forest <span class="hlt">zone</span> of <span class="hlt">Southern</span> Cameroon. Methods Research was carried out in 5 villages of each of three Agro-Ecological, Cultural and Demographic Blocks (AECD-Blocks) of the Forest Margin Benchmark Area (FMBA). In each village, a semi-structured survey was used; male and female groups of farmers were interviewed separately. Results Z. variegatus is present throughout the humid forest <span class="hlt">zone</span> of <span class="hlt">Southern</span> Cameroon, where it is ranked as the third most economically important insect pest of agriculture. In the farmers' opinion, Z. variegatus is a polyphagous insect with little impact on young perennial crops. The length of the pre-farming fallow does not affect Z. variegatus pest pressure in the following crops. The increased impact of the grasshopper observed today in the fields, compared to what existed 10 years ago is as a result of deforestation and increase in surface of herbaceous fallow. The damage caused by Z. variegatus is higher in fields adjacent to C. odorata and herbaceous fallows than in those adjacent to forests and shrubby fallows. The fight against this grasshopper is often done through physical methods carried out by hand, for human consumption. The farmers highlight low usage of the chemical methods and a total absence of biological and ecological methods. Conclusion Farmers' perception have contributed to understanding the status of Z. variegatus in the humid forest <span class="hlt">zone</span> of <span class="hlt">Southern</span> Cameroon. The results are in general similar to those obtained in other countries. PMID:16573815</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916444U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916444U"><span>One microplate - three orogens: <span class="hlt">Alps</span>, Dinarides, Apennines and the role of the Adriatic plate</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ustaszewski, Kamil; Le Breton, Eline; Balling, Philipp; Handy, Mark R.; Molli, Giancarlo; Tomljenović, Bruno</p> <p>2017-04-01</p> <p>The motion of the Adriatic microplate with respect to the Eurasian and African plates is responsible for the Mesozoic to present tectonic evolution of the <span class="hlt">Alps</span>, Carpathians, the Dinarides and Hellenides as well as the Apennines. The classical approach for reconstructing plate motions is to assume that tectonic plates are rigid, then apply Euler's theorem to describe their rotation on an ideally spherical Earth by stepwise restorations of magnetic anomalies and fracture <span class="hlt">zones</span> in oceanic basins. However, this approach is inadequate for reconstructing the motion of Mediterranean microplates like Adria, which, at present, is surrounded by convergent margins and whose oceanic portions have by now been entirely subducted. Most constraints on the motion of the Adriatic microplate come either from palaeomagnetics or from shortening estimates in the <span class="hlt">Alps</span>, i.e., its northern margin. This approach renders plate tectonic reconstructions prone to numerous errors, yielding inadmissible misfits in the Ionian Sea between <span class="hlt">southern</span> Italy and northern Greece. At the same time, Adria's western and eastern margins in the Apennines and in the Dinarides have hitherto not been appropriately considered for improving constraints on the motion of Adria. This presentation presents new results of ongoing collaborative research that aims at improving the relative motion path for the Adriatic microplate for the Cenozoic by additionally quantifying and restoring the amount of shortening and extension in a set of geophysical-geological transects from the Tyrrhenian Sea, the Apennines and the Dinarides. Already now, our approach yields an improved motion path for the Adriatic microplate for the last 20 Ma, which minimizes misfits in previous reconstructions. The currently largest challenge in our reconstructions is to reconcile amount and age of shortening in the Dinarides fold-and-thrust belt. For one thing, we see good agreement between the cross-sectional length of subducted material (c. 135 km</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015DokES.464.1033N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015DokES.464.1033N"><span>Influence of frontal <span class="hlt">zones</span> on the distribution of particulate matter and organic compounds in surface waters of the Atlantic and <span class="hlt">Southern</span> Oceans</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nemirovskaya, I. A.; Lisitzin, A. P.; Kravchishina, M. D.; Redzhepova, Z. Yu.</p> <p>2015-10-01</p> <p>Particulate matter and organic compounds (chlorophyll, lipids, and hydrocarbons) were analyzed in surface waters along the routes of R/Vs Akademik Fedorov (cruise 32) and Akademik Treshnikov (cruise 2) in February-May of 2012 and 2014, respectively, in the course of the 57th and 59th Russian Antarctic expeditions. It was found that the frontal <span class="hlt">zones</span> exert the primary influence on the concentrations of the mentioned components in the <span class="hlt">Southern</span> Ocean and in the western part of the Atlantic Ocean. The supply of pollutants into the Eastern Atlantic Ocean on the shelf of the Iberian peninsula results in a pronounced increase in the concentrations of lipids and hydrocarbons causing local anthropogenic pollution <span class="hlt">zones</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA......244S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA......244S"><span>Gps monitoring of the la valette landslide (french <span class="hlt">alps</span>) with two mono-frequency receivers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Squarzoni, C.; Delacourt, C.; Allemand, P.</p> <p>2003-04-01</p> <p>In the last years, the Global Positioning System techniques have been more and more employed in landslide monitoring. Here we present an application of the GPS techniques on the La Valette landslide, located in the Ubaye Valley in the <span class="hlt">southern</span> French <span class="hlt">Alps</span>. This complex landslide is composed by an upper part affected essentially by rotational mechanism, a central part with a generally translational movement and a lower part, occasionally transforming in mud flow in coincidence with strong rainfall events. Displacement rates are in average of a few centimetres per month and can reach one centimetre per day during spring. GPS data presented in this study have been acquired with a couple of mono-frequency GPS receivers Magellan ProMARK X-CM associated with multipath-resistant antennas and processed with the Magellan post-processing software MSTAR. Nine points have been set in the whole <span class="hlt">zone</span>, seven of them in the moving area, one in a stable area near the landslide and one on the facing slope, used as reference point. For each measure, one GPS receiver is placed on the base point and the second one is placed on each monitored point for one-hour sessions. The baseline between base and monitored point ranges from 480 and 1660 m. Nine campaigns of measure have been made between October 2000 and October 2002, to follow the evolution of the surface displacements. The GPS results have been compared with the distance-meter measurements achieved on the same site by RTM Service (Restauration des Terrains de Montagne). The velocities obtained by the two methods are similar. The advantage of the GPS technique is the obtention of the real 3D displacement vector. These measurements have been combined with SAR interferometric data in order to derive a 3D map of the deformation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1110386D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1110386D"><span>Lower Oligocene Alpine geodynamic change: tectonic and sedimentary evidences in the western arc</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dumont, T.; Rolland, Y.; Simon-Labric, T.</p> <p>2009-04-01</p> <p>The formation of the western Alpine arc started during the earliest Oligocene, after a drastic kinematic change in the collisional regime. (A) Previously, south-southeast dipping subduction of the European lithosphere (including Briançonnais) underneath Adria resulted in an underfilled flexural basin propagating towards the north-northwest on the European foreland, which had already been moderately deformed due to the Iberian microplate motion. This propagation appears consistent with the Africa-Europe relative motion (Rosenbaum et al., 2002). During this early stage of collision, some oceanic units were obducted over the <span class="hlt">southern</span> part of European continent (Corsica, Briançonnais). (B) From the early Oligocene on, the western <span class="hlt">Alps</span> kinematics were dominated by lateral (westward) escape of the Internal <span class="hlt">Alps</span> indenter, whose displacement with anticlockwise rotation progressively formed the arc. The structures of this mature stage of collision crosscut the buildup issued from (A), and its kinematics were probably more driven by local lithospheric forces of the Mediterranean domain (Jolivet et al., 1999) than by Africa-Europe convergence. The western and <span class="hlt">southern</span> parts of the western Alpine arc display many evidences for this major syn-collisional change: - Structural interferences are found at various scales. For example, the circular-shape Pelvoux massif resulted in part from crossed shortening stages (SE-NW and E-W; Dumont et al., 2008). It is located in the footwall of two nappes stacks having propagated northwestwards and west- to southwestwards, respectively. The latter crosscuts the former south of Briançon city. - Tectonic transport directions are strongly variable both in the external and in the internal <span class="hlt">zones</span>, but they consistently display anticlockwise rotation through time. The most important changes are found in the <span class="hlt">southern</span> part of the western <span class="hlt">Alps</span>, giving birth to a radial distribution propagating into the external <span class="hlt">zone</span>. - Instead of beeing gradual, the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPA13A3898C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPA13A3898C"><span>The Importance of <span class="hlt">Southern</span> Hemisphere CZOs for Evaluating Spatial Patterns of Chemical Structure in the Critical <span class="hlt">Zone</span> and Assisting Human Development</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chadwick, O.</p> <p>2014-12-01</p> <p>The US Critical <span class="hlt">Zone</span> Exploration Network (CZEN) is a network of sites designed to provide a better understanding of the integrated Earth surface system. The capacity of the critical <span class="hlt">zone</span> to withstand perturbations, whether driven by climate, land use change, or spread of invasive species, depends on its chemical composition and physical state, which in turn depends on the time evolution of the critical <span class="hlt">zone</span>. Many temperate and/or tectonically active critical <span class="hlt">zones</span> contain a relatively short history due to rapid erosion but tectonically quiescent, tropical regions of the planet contain much longer records that need to be understood to cover the full suite of critical <span class="hlt">zone</span> processes. <span class="hlt">Southern</span> Hemisphere Critical <span class="hlt">Zone</span> Observatories such as those proposed for Kruger National Park (KNP) in South Africa and for portions of the Yilgarn Craton in Western Australa will allow us to extend our temporal understanding of development of spatial heterogeneity in the chemical and physical structure of the critical <span class="hlt">zone</span>. In addition to considering Earth and climate boundary conditions, these sites incorporate the roles that humans play in driving critical <span class="hlt">zone</span> processes. For instance along the edges of KNP there is strong evidence of soil erosions due to periurbanization and small-scale agriculture. The existence of KNP provides an important contrast between a "natural" and "human-dominated" landscape that can be exploited to evaluate human impacts on critical <span class="hlt">zone</span> resources and to develop targeted mitigation strategies. Western Australia has an exploitive economy that relies on large-scale agriculture and mineral extraction, both are intensive users of water which is scarce. The proposed CZO there will be partly focused on managing water under intense economic pressures. It is evident that if funding can be found for these sites they will enhance both critical <span class="hlt">zone</span> science and practical applied science.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011EOSTr..92...55P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011EOSTr..92...55P"><span>Understanding the South Pacific Convergence <span class="hlt">Zone</span> and Its Impacts</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Power, Scott</p> <p>2011-02-01</p> <p>International Workshop on the South Pacific Convergence <span class="hlt">Zone</span>; Apia, Samoa, 24-26 August 2010 ; During the <span class="hlt">Southern</span> Hemisphere summer the South Pacific Convergence <span class="hlt">Zone</span> (SPCZ) in the southwestern Pacific Ocean produces the largest rainfall band in the world. The SPCZ tends to move northeast during <span class="hlt">southern</span> winter and El Niño and move southwest during <span class="hlt">southern</span> summer and La Niña. These changes in position have a profound influence on climate (e.g., rainfall, winds, and tropical cyclone frequencies) and life in most of the nations in the southwestern Pacific. Despite the importance of the SPCZ to the region and its prominence in the general circulation of the <span class="hlt">Southern</span> Hemisphere, the SPCZ has been studied relatively little compared with convergence <span class="hlt">zones</span> in the Northern Hemisphere. An international workshop on the SPCZ was held in Samoa and brought together 30 experts from Australia, the Cook Islands, Fiji, France, India, New Caledonia, New Zealand, Samoa, the Solomon Islands, Tonga, Tuvalu, the United Kingdom, the United States, and Vanuatu.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015E%26PSL.429...69R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015E%26PSL.429...69R"><span>Surface exposure chronology of the Waimakariri glacial sequence in the <span class="hlt">Southern</span> <span class="hlt">Alps</span> of New Zealand: Implications for MIS-2 ice extent and LGM glacial mass balance</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rother, Henrik; Shulmeister, James; Fink, David; Alexander, David; Bell, David</p> <p>2015-11-01</p> <p>During the late Quaternary, the <span class="hlt">Southern</span> <span class="hlt">Alps</span> of New Zealand experienced multiple episodes of glaciation with large piedmont glaciers reaching the coastal plains in the west and expanding into the eastern alpine forelands. Here, we present a new 10Be exposure age chronology for a moraine sequence in the Waimakariri Valley (N-Canterbury), which has long been used as a reference record for correlating glacial events across New Zealand and the wider <span class="hlt">Southern</span> Hemisphere. Our data indicate that the Waimakariri glacier reached its maximum last glaciation extent prior to ∼26 ka well before the global last glaciation maximum (LGM). This was followed by a gradual reduction in ice volume and the abandonment of the innermost LGM moraines at about 17.5 ka. Significantly, we find that during its maximum extent, the Waimakariri glacier overflowed the Avoca Plateau, previously believed to represent a mid-Pleistocene glacial surface (i.e. MIS 8). At the same time, the glacier extended to a position downstream of the Waimakariri Gorge, some 15 km beyond the previously mapped LGM ice limit. We use a simple steady-state mass balance model to test the sensitivity of past glacial accumulation to various climatic parameters, and to evaluate possible climate scenarios capable of generating the ice volume required to reach the full local-LGM extent. Model outcomes indicate that under New Zealand's oceanic setting, a cooling of 5 °C, assuming modern precipitation levels, or a cooling of 6.5 °C, assuming a one third reduction in precipitation, would suffice to drive the Waimakariri glacier to the eastern alpine forelands (Canterbury Plains). Our findings demonstrate that the scale of LGM glaciation in the Waimakariri Valley and adjacent major catchments, both in terms of ice volume and downvalley ice extent, has been significantly underestimated. Our observation that high-lying glacial surfaces, so far believed to represent much older glacial episodes, were glaciated during the LGM</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26627690','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26627690"><span>Prevalence of camel trypanosomosis (surra) and associated risk factors in Borena <span class="hlt">zone</span>, <span class="hlt">southern</span> Ethiopia.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Olani, Abebe; Habtamu, Yitbarek; Wegayehu, Teklu; Anberber, Manyazewal</p> <p>2016-03-01</p> <p>A study was made to determine the prevalence of camel trypanosomosis (surra) and its associated risk factors in Borena <span class="hlt">zone</span>, <span class="hlt">southern</span> Ethiopia during 2013-2014. A total of 2400 blood samples were collected and examined by the buffy coat and thin blood film laboratory methods, and data were analyzed using the SPSS statistical software. The overall prevalence of camel trypanosomosis in the area was found to be 2.33 %. Prevalence was significantly different among the surveyed districts (P = 0.000), the pastoral associations (F = 6.408, P = 0.000), altitudinal divisions (P = 0.000), age groups (P = 0.034), and between animals possessing packed cell volume (PCV) values greater than 25 % and less than 25 % (P = 0.000); whereas, prevalence of the disease was not statistically significantly different between the sexes (P = 0.311) and among the body condition score groups (P = 0.739). The PCV of trypanosome positive and trypanosome negative camels differ significantly (P = 0.001), and prevalence of trypanosomosis was seen to be negatively correlated with packed cell volume (r = -0.069, P = 0.000) revealing the effect of camel trypanosomosis on anemia state of parasitized animals. In conclusion, camel trypanosomosis is a serious and economically important disease hampering camel production and productivity in <span class="hlt">southern</span> Ethiopia. Further studies involving more sensitive molecular techniques to reveal the precise magnitude of the disease and to identify the vector species of the parasite are recommended.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSG...104..142P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSG...104..142P"><span>The effect of offset on fracture permeability of rocks from the <span class="hlt">Southern</span> Andes Volcanic <span class="hlt">Zone</span>, Chile</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pérez-Flores, P.; Wang, G.; Mitchell, T. M.; Meredith, P. G.; Nara, Y.; Sarkar, V.; Cembrano, J.</p> <p>2017-11-01</p> <p>The <span class="hlt">Southern</span> Andes Volcanic <span class="hlt">Zone</span> (SVZ) represents one of the largest undeveloped geothermal provinces in the world. Development of the geothermal potential requires a detailed understanding of fluid transport properties of its main lithologies. The permeability of SVZ rocks is altered by the presence of fracture damage <span class="hlt">zones</span> produced by the Liquiñe-Ofqui Fault System (LOFS) and the Andean Transverse Faults (ATF). We have therefore measured the permeability of four representative lithologies from the volcanic basement in this area: crystalline tuff, andesitic dike, altered andesite and granodiorite. For comparative purposes, we have also measured the permeability of samples of Seljadalur basalt, an Icelandic rock with widely studied and reported hydraulic properties. Specifically, we present the results of a systematic study of the effect of fractures and fracture offsets on permeability as a function of increasing effective pressure. Baseline measurements on intact samples of SVZ rocks show that the granodiorite has a permeability (10-18 m2), two orders of magnitude higher than that of the volcanic rocks (10-20 m2). The presence of throughgoing mated macro-fractures increases permeability by between four and six orders of magnitude, with the highest permeability recorded for the crystalline tuff. Increasing fracture offset to produce unmated fractures results in large increases in permeability up to some characteristic value of offset, beyond which permeability changes only marginally. The increase in permeability with offset appears to depend on fracture roughness and aperture, and these are different for each lithology. Overall, fractured SVZ rocks with finite offsets record permeability values consistent with those commonly found in geothermal reservoirs (>10-16 m2), which potentially allow convective/advective flow to develop. Hence, our results demonstrate that the fracture damage <span class="hlt">zones</span> developed within the SVZ produce permeable regions, especially within the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JSAES..48...43T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JSAES..48...43T"><span>A new interpretation for the interference <span class="hlt">zone</span> between the <span class="hlt">southern</span> Brasília belt and the central Ribeira belt, SE Brazil</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trouw, Rudolph A. J.; Peternel, Rodrigo; Ribeiro, Andre; Heilbron, Mônica; Vinagre, Rodrigo; Duffles, Patrícia; Trouw, Camilo C.; Fontainha, Marcos; Kussama, Hugo H.</p> <p>2013-12-01</p> <p>In southeastern Brazil, the Neoproterozoic NNW-SSE trending <span class="hlt">southern</span> Brasília belt is apparently truncated by the ENE-WSW central Ribeira belt. Different interpretations in the literature of the transition between these two belts motivated detailed mapping and additional age dating along the contact <span class="hlt">zone</span>. The result is a new interpretation presented in this paper. The <span class="hlt">southern</span> Brasília belt resulted from E-W collision between the active margin of the Paranapanema paleocontinent, on the western side, now forming the Socorro-Guaxupé Nappe, with the passive margin of the São Francisco paleocontinent on the eastern side. The collision produced an east vergent nappe stack, the Andrelândia Nappe System, along the suture. At its <span class="hlt">southern</span> extreme the Brasília belt was thought to be cut off by a shear <span class="hlt">zone</span>, the "Rio Jaguari mylonites", at the contact with the Embu terrane, pertaining to the Central Ribeira belt. Our detailed mapping revealed that the transition between the Socorro-Guaxupé Nappe (Brasília belt) and the Embu terrane (Ribeira belt) is not a fault but rather a gradational transition that does not strictly coincide with the Rio Jaguari mylonites. A typical Cordilleran type magmatic arc batholith of the Socorro-Guaxupé Nappe with an age of ca. 640 Ma intrudes biotite schists of the Embu terrane and the age of zircon grains from three samples of metasedimentary rocks, one to the south, one to the north and one along the mylonite <span class="hlt">zone</span>, show a similar pattern of derivation from a Rhyacian source area with rims of 670-600 Ma interpreted as metamorphic overgrowth. We dated by LA-MC-ICPMS laser ablation (U-Pb) zircon grains from a calc-alkaline granite, the Serra do Quebra-Cangalha Batholith, located within the Embu terrane at a distance of about 40 km south of the contact with the Socorro Nappe, yielding an age of 680 ± 13 Ma. This age indicates that the Embu terrane was part of the upper plate (Socorro-Guaxupé Nappe) by this time. Detailed mapping</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.S44C..02A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.S44C..02A"><span>Seismological and Geodynamic Monitoring Network in the "javakheti" Test <span class="hlt">Zone</span> in the <span class="hlt">Southern</span> Caucasus</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arakelyan, A.; Babayan, H.; Karakhanyan, A.; Durgaryan, R.; Basilaia, G.; Sokhadze, G.; Bidzinashvili, G.</p> <p>2012-12-01</p> <p>The Javakheti Highland located in the border region between Armenia and Georgia (sharing a border with Turkey) is an area in the <span class="hlt">Southern</span> Caucasus of young Holocene-Quaternary volcanism and a region with convergence of a number of active faults. Issues related to the geometry, kinematics and slip-rate of these faults and assessment of their seismic hazard remain unclear in part due to the fragmentary nature of the studies carried out soley within the borders of each of the countries as opposed to region wide. In the frame of the ISTC A-1418 Project "Open network of scientific Centers for mitigation risk of natural hazards in the <span class="hlt">Southern</span> Caucasus and Central Asia" the Javakheti Highland was selected as a trans-border test-<span class="hlt">zone</span>. This designation allowed for the expansion and upgrading of the seismological and geodynamic monitoring networks under the auspices of several international projects (ISTC CSP-053 Project "Development of Communication System for seismic hazard situations in the <span class="hlt">Southern</span> Caucasus and Central Asia", NATO SfP- 983284 Project "Caucasus Seismic Emergency Response") as well as through joint research programs with the National Taiwan University and Institute of Earth Sciences (IES, Taiwan), Universite Montpellier II (France) and Ecole et Observatoire des Sciences de la Terre-Université de Strasbourg (France). Studies of geodynamic processes, and seismicity of the region and their interaction have been carried out utilizing the newly established seismological and geodynamic monitoring networks and have served as a basis for the study of the geologic and tectonic structure . Upgrading and expansion of seismological and geodynamic networks required urgent solutions to the following tasks: Introduction of efficient online systems for information acquisition, accumulation and transmission (including sattelite systems) from permanent and temporary installed stations, Adoption of international standards for organization and management of databases in GIS</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28752635','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28752635"><span>Hybrid <span class="hlt">zone</span> formation and contrasting outcomes of secondary contact over transects in common toads.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arntzen, Jan W; de Vries, Wouter; Canestrelli, Daniele; Martínez-Solano, Iñigo</p> <p>2017-10-01</p> <p>Much progress in speciation research stems from documenting patterns of morphological and genetic variation in hybrid <span class="hlt">zones</span>. Contrasting patterns of marker introgression in different sections of the contact can provide valuable insights on the relative importance of various evolutionary mechanisms maintaining species differences in the face of hybridization and gene flow and on hybrid <span class="hlt">zone</span> temporal and spatial dynamics. We studied species interactions in the common toads Bufo bufo and B. spinosus in France and northwestern Italy using morphological and molecular data from the mitochondrial and nuclear genomes in an extensive survey, including two independent transects west and east of the <span class="hlt">Alps</span>. At both, we found sharp, coincident and concordant nuclear genetic transitions. However, morphological clines were wider or absent and mtDNA introgression was asymmetric. We discuss alternative, nonexclusive hypotheses about evolutionary processes generating these patterns, including drift, selection, long-distance dispersal and spatial shifts in hybrid <span class="hlt">zone</span> location and structure. The distribution of intraspecific mtDNA lineages supports a scenario in which B. bufo held a local refugium during the last glacial maximum. Present-day genetic profiles are best explained by an advance of B. spinosus from a nearby Iberian refugium, largely superseding the local B. bufo population, followed by an advance of B. bufo from the Balkans, with prongs north and south of the <span class="hlt">Alps</span>, driving B. spinosus southwards. A pendulum moving hybrid <span class="hlt">zone</span>, first northwards and then southwards, explains the wide areas of introgression at either side of the current position of the contact <span class="hlt">zones</span>. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4805176','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4805176"><span>New species of aquatic insects from Europe (Insecta: Trichoptera): <span class="hlt">Alps</span> and Pyrenees as harbours of unknown biodiversity</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>GRAF, WOLFRAM; VITECEK, SIMON; PREVIŠIĆ, ANA; MALICKY, HANS</p> <p>2016-01-01</p> <p>New species are described from the following genera: Consorophylax and Anisogamus, (Trichoptera, Limnephilidae). Additionally the larvae of the genus Anisogamus, and the larval stages of Anisogamus waringeri nov. sp. and A. difformis (McLachlan 1867) are described. The new species Consorophylax vinconi sp. nov. is a microendemic from the <span class="hlt">Southern</span> <span class="hlt">Alps</span> and differs distinctly from its congeners in the shape of the parameres, which are distinctly straitened in the distal quarter in the new species. The new species Anisogamus waringeri sp. nov. represents the second species in the hitherto monospecific genus Anisogamus. Compared to Anisogamus difformis, A. waringeri sp. nov. develops more slender superior appendages; a more rounded basal plate of the intermediate appendages, lacking pointed protuberances; and parameres shorter than the aedaegus, proximally with one dorsal and several ventral tines. Further, the two species are disjunctly distributed in the European mountain ranges (A. difformis: <span class="hlt">Alps</span>, A. waringeri sp. nov.: Pyrenees). Larvae of the genus Anisogamus are characterized by the lack of a dorsal protuberance on the 1st abdominal segment, a unique feature among Limnephilidae. Anisogamus difformis and A. waringeri sp. nov. larvae differ in pronotum shape. The recovery of two new species demonstrates the significance of taxonomic studies in Europe, and the importance of adequate training for young scientists in order to assess a biodiversity under threat of extinction that has yet to be fully described. PMID:25661619</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/53895','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/53895"><span>Areas of residential development in the <span class="hlt">southern</span> Appalachian Mountains are characterized by low riparian <span class="hlt">zone</span> nitrogen cycling and no increase in soil greenhouse gas emissions</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Peter Baas; Jennifer D. Knoepp; Daniel Markewitz; Jacqueline E. Mohan</p> <p>2017-01-01</p> <p>The critical role streamside riparian <span class="hlt">zones</span> play in mitigating the movement of nitrogen (N) and other elements from terrestrial to aquatic ecosystems could be threatened by residential development in the <span class="hlt">southern</span> Appalachian Mountains. Many studies have investigated the influence of agriculture on N loading to streams but less is known about the impacts of residential...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2347384','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2347384"><span>Regulation of the Synthesis of the Angucyclinone Antibiotic Alpomycin in Streptomyces ambofaciens by the Autoregulator Receptor <span class="hlt">Alp</span>Z and Its Specific Ligand▿</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bunet, Robert; Mendes, Marta V.; Rouhier, Nicolas; Pang, Xiuhua; Hotel, Laurence; Leblond, Pierre; Aigle, Bertrand</p> <p>2008-01-01</p> <p>Streptomyces ambofaciens produces an orange pigment and the antibiotic alpomycin, both of which are products of a type II polyketide synthase gene cluster identified in each of the terminal inverted repeats of the linear chromosome. Five regulatory genes encoding Streptomyces antibiotic regulatory proteins (<span class="hlt">alp</span>V, previously shown to be an essential activator gene; <span class="hlt">alp</span>T; and <span class="hlt">alp</span>U) and TetR family receptors (<span class="hlt">alp</span>Z and <span class="hlt">alp</span>W) were detected in this cluster. Here, we demonstrate that <span class="hlt">Alp</span>Z, which shows high similarity to γ-butyrolactone receptors, is at the top of a pathway-specific regulatory hierarchy that prevents synthesis of the <span class="hlt">alp</span> polyketide products. Deletion of the two copies of <span class="hlt">alp</span>Z resulted in the precocious production of both alpomycin and the orange pigment, suggesting a repressor role for <span class="hlt">Alp</span>Z. Consistent with this, expression of the five <span class="hlt">alp</span>-located regulatory genes and of two representative biosynthetic structural genes (<span class="hlt">alp</span>A and <span class="hlt">alp</span>R) was induced earlier in the <span class="hlt">alp</span>Z deletion strain. Furthermore, recombinant <span class="hlt">Alp</span>Z was shown to bind to specific DNA sequences within the promoter regions of <span class="hlt">alp</span>Z, <span class="hlt">alp</span>V, and <span class="hlt">alp</span>XW, suggesting direct transcriptional control of these genes by <span class="hlt">Alp</span>Z. Analysis of solvent extracts of S. ambofaciens cultures identified the existence of a factor which induces precocious production of alpomycin and pigment in the wild-type strain and which can disrupt the binding of <span class="hlt">Alp</span>Z to its DNA targets. This activity is reminiscent of γ-butyrolactone-type molecules. However, the <span class="hlt">Alp</span>Z-interacting molecule(s) was shown to be resistant to an alkali treatment capable of inactivating γ-butyrolactones, suggesting that the <span class="hlt">Alp</span>Z ligand(s) does not possess a lactone functional group. PMID:18296523</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18296523','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18296523"><span>Regulation of the synthesis of the angucyclinone antibiotic alpomycin in Streptomyces ambofaciens by the autoregulator receptor <span class="hlt">Alp</span>Z and its specific ligand.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bunet, Robert; Mendes, Marta V; Rouhier, Nicolas; Pang, Xiuhua; Hotel, Laurence; Leblond, Pierre; Aigle, Bertrand</p> <p>2008-05-01</p> <p>Streptomyces ambofaciens produces an orange pigment and the antibiotic alpomycin, both of which are products of a type II polyketide synthase gene cluster identified in each of the terminal inverted repeats of the linear chromosome. Five regulatory genes encoding Streptomyces antibiotic regulatory proteins (<span class="hlt">alp</span>V, previously shown to be an essential activator gene; <span class="hlt">alp</span>T; and <span class="hlt">alp</span>U) and TetR family receptors (<span class="hlt">alp</span>Z and <span class="hlt">alp</span>W) were detected in this cluster. Here, we demonstrate that <span class="hlt">Alp</span>Z, which shows high similarity to gamma-butyrolactone receptors, is at the top of a pathway-specific regulatory hierarchy that prevents synthesis of the <span class="hlt">alp</span> polyketide products. Deletion of the two copies of <span class="hlt">alp</span>Z resulted in the precocious production of both alpomycin and the orange pigment, suggesting a repressor role for <span class="hlt">Alp</span>Z. Consistent with this, expression of the five <span class="hlt">alp</span>-located regulatory genes and of two representative biosynthetic structural genes (<span class="hlt">alp</span>A and <span class="hlt">alp</span>R) was induced earlier in the <span class="hlt">alp</span>Z deletion strain. Furthermore, recombinant <span class="hlt">Alp</span>Z was shown to bind to specific DNA sequences within the promoter regions of <span class="hlt">alp</span>Z, <span class="hlt">alp</span>V, and <span class="hlt">alp</span>XW, suggesting direct transcriptional control of these genes by <span class="hlt">Alp</span>Z. Analysis of solvent extracts of S. ambofaciens cultures identified the existence of a factor which induces precocious production of alpomycin and pigment in the wild-type strain and which can disrupt the binding of <span class="hlt">Alp</span>Z to its DNA targets. This activity is reminiscent of gamma-butyrolactone-type molecules. However, the <span class="hlt">Alp</span>Z-interacting molecule(s) was shown to be resistant to an alkali treatment capable of inactivating gamma-butyrolactones, suggesting that the <span class="hlt">Alp</span>Z ligand(s) does not possess a lactone functional group.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912545P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912545P"><span>Mantle wedge anisotropy beneath the Western <span class="hlt">Alps</span>: insights from Receiver Function analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Piana Agostinetti, Nicola; Salimbeni, Simone; Pondrelli, Silvia; Malusa', Marco; Zhao, Liang; Eva, Elena; Solarino, Stefano; Paul, Anne; Guillot, Stéphane; Schwartz, Stéphane; Dumont, Thierry; Aubert, Coralie; Wang, Qingchen; Zhu, Rixiang</p> <p>2017-04-01</p> <p>Orogens and subductions <span class="hlt">zones</span> are the locus where crustal materials are recycled into the upper mantle. Such rocks undergo to several metamorphic reactions during which their seismic properties vary due to the changes in P-T conditions. Metamorphic reactions can imply: (a) the formation of schist-like materials, and (b) a pronounced water flux from the subducted crust. Both these processes should generate highly anisotropic volumes at upper mantle depths. Thus, unveiling the presence of seismic anisotropy at such depth level can put constraints on the metamorphic reactions and the P-T conditions of the subducted materials. The Alpine orogen is composed of three main regions where different geodynamic processes shaped a highly heterogeneous mountain chain. Beneath the <span class="hlt">Alps</span>, a high velocity body has been imaged sinking in the upper mantle, indicating the presence of a relict of subduction. Such subduction process has been probably terminated with the closure of the Piemont-Liguria Ocean, but evidence of continental subduction has been found beneath the Western <span class="hlt">Alps</span>. Seismic anisotropy is likely to develop both in the subducted materials and in the mantle wedge, where serpentinized materials could be found due to the low T conditions. We analysed P receiver function (RF) from 46 seismic stations deployed along a linear array crossing the Western <span class="hlt">Alps</span>, where previous studies revealed the presence of the subducted European lower crust to 80 km depth. RF is a widely used tool for reconstructing subsurface seismic structures, based on the recognition of P-to-S converted phases in teleseismic P-wave coda. The RF data-set is migrated at depth and decomposed into azimuthal harmonics. Computing the first, k=0, and the second, k=1, harmonics allows to separate the "isotropic" contribution, due to the change of the isotropic properties of the sampled materials (recorded on the k=0 harmonics), from the "anisotropic" contribution, where the energy is related to the propagation of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ems..confE.168P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ems..confE.168P"><span>The rising greenhouse effect: experiments and observations in and around the <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Philipona, R.</p> <p>2010-09-01</p> <p>The rapid temperature increase of more than 1°C in central Europe over the last three decades is larger than expected from anthropogenic greenhouse warming. Surface radiation flux measurements in and around the <span class="hlt">Alps</span> in fact confirm that not only thermal longwave radiation but also solar shortwave radiation increased since the 1980s. Surface energy budget analyses reveal the rising surface temperature to be well correlated with the radiative forcing, and also show an increase of the kinetic energy fluxes explaining the rise of atmospheric water vapor. Solar radiation mainly increased due to a strong decline of anthropogenic aerosols since mid of the 1980s. While anthropogenic aerosols were mainly accumulated in the boundary layer, this reduction let solar radiation to recover (solar brightening after several decades of solar dimming) mainly at low altitudes around the <span class="hlt">Alps</span>. At high elevations in the <span class="hlt">Alps</span>, solar forcing is much smaller and the respective temperature rise is also found to be smaller than in the lowlands. The fact that temperature increases less in the <span class="hlt">Alps</span> than at low elevations is unexpected in the concept of greenhouse warming, but the radiation budget analyses clearly shows that in the plains solar forcing due to declining aerosols additionally increased surface temperature, whereas in the <span class="hlt">Alps</span> temperature increased primarily due to greenhouse warming that is particularly manifested by a strong water vapor feedback.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9643F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9643F"><span>Glacier retreat and associated sediment dynamics in proglacial areas: a case study from the Silvretta <span class="hlt">Alps</span>, Austria</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Felbauer, Lucia; Pöppl, Ronald</p> <p>2016-04-01</p> <p>Global warming results in an ongoing retreat of glaciers in the <span class="hlt">Alps</span>, leaving behind large amounts of easily erodible sediments. In addition, the debuttressing of rock-walls and the decay of permafrost in the high mountain regions facilitates mass movements of potential disastrous consequences, such as rock falls, landslides and debris flows. Therefore, it is highly important to quantify the amount of sediments that are supplied from the different compartments and to investigate how glacial retreat influences sediment dynamics in proglacial areas. In the presented work glacier retreat and associated sediment dynamics were investigated in the Kromer valley (Silvretta <span class="hlt">Alps</span>, Austria) by analyzing remote sensing data. Glacial retreat from the period of 1950 to 2012 was documented by interpreting aerial photographs. By digitizing the different stages of the glaciers for six time frames, changes in glacier area and length were mapped and quantified. In order to identify, characterize and quantify sediment dynamics in the proglacial areas a high resolution DEM of difference (DoD) between 2007 and 2012 was created and analyzed, further differentiating between different <span class="hlt">zones</span> (e.g. valley bottom, hillslope) and types of geomorphic processes (e.g. fluvial, gravitational). First results will be presented at the EGU General Assembly 2016.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25530639','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25530639"><span>The Influence of Weather Anomalies on Mercury Cycling in the Marine Coastal <span class="hlt">Zone</span> of the <span class="hlt">Southern</span> Baltic-Future Perspective.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bełdowska, Magdalena</p> <p>2015-01-01</p> <p>Despite the decreased emission loads of mercury, historical deposits of this metal in various compartments of the environment may become an additional diffuse source in the future. Global climate change manifests itself in the temperate <span class="hlt">zone</span> in several ways: warmer winters, shorter icing periods, increased precipitation and heightened frequency of extreme events such as strong gales and floods, all of which cause disturbances in the rate and direction of mercury biogeochemical cycling. The present study was conducted at two sites, Oslonino and Gdynia Orlowo (both in the coastal <span class="hlt">zone</span> of the Gulf of Gdansk), from which samples were collected once a month between January 2012 and December 2012. In the <span class="hlt">Southern</span> Baltic region, climate changes can certainly enhance coast to basin fluxes of mercury and the transfer of bioavailable forms of this metal to the food web. They may also, in the future, contribute to uncontrollable increases of mercury in the seawater.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013Tecto..32..516G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013Tecto..32..516G"><span>Thermochronometrically constrained anatomy and evolution of a Miocene extensional accommodation <span class="hlt">zone</span> and tilt domain boundary: The <span class="hlt">southern</span> Wassuk Range, Nevada</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gorynski, Kyle E.; Stockli, Daniel F.; Douglas Walker, J.</p> <p>2013-06-01</p> <p>(AHe) and Zircon (ZHe) (U-Th)/He thermochronometric data from the <span class="hlt">southern</span> Wassuk Range (WR) coupled with 40Ar/39Ar age data from the overlying tilted Tertiary section are used to constrain the thermal evolution of an extensional accommodation <span class="hlt">zone</span> and tilt-domain boundary. AHe and ZHe data record two episodes of rapid cooling related to the tectonic exhumation of the WR fault block beginning at ~15 and ~4 Ma. Extension was accommodated through fault-block rotation and variably tilted the <span class="hlt">southern</span> WR to the west from ~60°-70° in the central WR to ~15°-35° in the southernmost WR and Pine Grove Hills, and minimal tilting in the Anchorite Hills and along the Mina Deflection to the south. Middle Miocene geothermal gradient estimates record heating immediately prior to large-magnitude extension that was likely coeval with the extrusion of the Lincoln Flat andesite at ~14.8 Ma. Geothermal gradients increase from ~19° ± 4°C/km to ≥ 65° ± 20°C/km toward the Mina Deflection, suggesting that it was the focus of Middle Miocene arc magmatism in the upper crust. The decreasing thickness of tilt blocks toward the south resulted from a shallowing brittle/ductile transition <span class="hlt">zone</span>. Postmagmatic Middle Miocene extension and fault-block advection were focused in the northern and central WR and coincidentally moderated the large lateral thermal gradient within the uppermost crust.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T53D2616P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T53D2616P"><span>Evidences of a Lithospheric Fault <span class="hlt">Zone</span> in the Sicily Channel Continental Rift (<span class="hlt">Southern</span> Italy) from Instrumental Seismicity Data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parisi, L.; Calo, M.</p> <p>2013-12-01</p> <p>The Sicily Channel continental rift is located in the African Plate and is submerged by a shallow sea extending from the northern coast of Africa to the <span class="hlt">southern</span> coast of Sicily (<span class="hlt">southern</span> Italy). The area is affected by an extensional regime since early Pliocene, which thins the continental crust and produces NW-SE oriented Pantelleria, Linosa and Malta grabens. The rift-related volcanic activity is represented by Pantelleria and Linosa Islands and a series of magmatic manifestations roughly NNE-SSW aligned, from Linosa Island to the Nameless Bank, in proximity of the Sicilian coast. Recent rapid magmatic ascents occurred along the strip near to the Sicilian coast in a region named Graham Bank. The NNE-SSW strip has already been recognised as a separation belt between the western sector of the rift (Pantelleria graben) and the eastern one (Linosa and Malta grabens). Seismic profiles suggest the presence of near vertical structures associated with strike slip fault <span class="hlt">zones</span>. Bathymetric data show a 15-20 km wide <span class="hlt">zone</span> characterised by several shallow basins irregularly alternated by topographic highs. However, evidences of a N-S or NNE-SSW orientated faults have not been found. In this work we re-localised the instrumental seismicity recorded between 1981 and 2012 in the Sicily Channel and western Sicily using the Double Difference method (Waldhauser, 2001, 2012) and 3D Vp and Vs models (Calò et al., 2013). The statistical analysis of the relocated seismicity together with the study of seismic energy release distribution allows us to describe the main patterns associated with the active faults in the western Sicily Straits. Here we find that most of the events in the Sicily Channel are highly clustered between 12.5°- 13.5°E and 35.5°-37°N with hypocentral depth between 5-40 km, reaching in some cases 70 km of depth. Seismic events seem to be aligned along a sub-vertical shear <span class="hlt">zone</span> that is long at least 250 km and oriented approximately NNE-SSW. The spatial</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004ThApC..77..173C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004ThApC..77..173C"><span>Characterization of potential <span class="hlt">zones</span> of dust generation at eleven stations in the <span class="hlt">southern</span> Sahara</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clark, I.; Assamoi, P.; Bertrand, J.; Giorgi, F.</p> <p></p> <p>Synoptic wind data for multi-decadal periods at eleven stations located in the <span class="hlt">southern</span> Sahara region (Agadez, Atar, Bilma, Dori, Gao, Kayes, Nema, Niamey, Nouadhibou, Ouagadougou and Tessalit) are used to study the monthly dust deflation power over the region. We found that, regardless of the conditions of the soil, the deflation power (or wind efficiency) is not sufficient to generate significant amounts of aerosols south of 15°N. North of this latitude, the deflation power is much larger, with potential <span class="hlt">zones</span> of either very strong deflation (Nouadhibou and Bilma) or severe deflation (Gao, Tessalit, Nema, Atar, Agadez). Stations in the Sahel region such as Gao, Agadez and Tessalit are characterized by a gradual reinforcement of the deflation power between 1970 and 1984 in correspondence of increasing desertification over the region. During this same period, Bilma, a well know region of dust source, experienced a major reduction in deflation power due to shifts in large scale wind patterns.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.9324M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.9324M"><span>Deep thermal disturbances related to the sub-surface groundwater flow (Western <span class="hlt">Alps</span>, France)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mommessin, Grégoire; Dzikowski, Marc; Menard, Gilles; Monin, Nathalie</p> <p>2013-04-01</p> <p>In mountain area, the bedrock of the valley side is affected by a thickness of decompressed rock in subsurface (decompressed <span class="hlt">zone</span>). Groundwater flowing in this <span class="hlt">zone</span> disrupts the depth geothermal gradients. The evolution of thermal gradients under the decompressed <span class="hlt">zone</span> depends of groundwater temperature changes into the decompressed <span class="hlt">zone</span>. In this study, the phenomenon is studied from data acquired in exploration drilling prior to the construction of the France - Italy transalpine tunnel (High Speed Line project between Lyon and Turin). The study area is located in the Vanoise siliceous series between Modane and Avrieux (Western <span class="hlt">Alps</span>, France). Of 31 boreholes, we selected 14 wells showing a natural thermal disturbance (not due to the drilling) linked to the groundwater flow in decompressed <span class="hlt">zone</span>. The drill holes have a length between 200 and 1380m and well logs were carried out (gamma log, acoustic log, temperature log, flowmeter log). The rocks are constituted mainly by quartzite with high thermal conductivity or by schist and gneiss with low thermal conductivity. The decompressed <span class="hlt">zone</span> concerns the quartzite with thicknesses ranging from 50m to 750m where groundwater flow imposes a constant temperature throughout the rock thickness. In the very low permeability rocks under the decompressed <span class="hlt">zone</span>, the thermal gradient shows variations with depth. These variations suggest a water temperature change in the decompressed <span class="hlt">zone</span> probably due to a paleoclimate event. We used the derived of the equation describing the propagation of a temperature in a 1D semi-infinite, in response to a sudden temperature disturbance at the boundary of the medium, to estimate the age and the amplitude of temperature change in the decompressed <span class="hlt">zone</span>. The medium under the decompressed <span class="hlt">zone</span> is supposed to be initially in a steady state and only conductive. Numerical tests assess that the 1D model is applicable in the slope context. The results obtained from 13 wells data show a few warming degrees</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913654R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913654R"><span>The Schistes à Blocs Fm: the ultimate member of the Annot Sandstones in the <span class="hlt">Southern</span> <span class="hlt">Alps</span> (France); slope gullies or canyon system?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rubino, Jean-Loup; Mercier, Louison; Daghdevirenian, Laurent; Migeon, Sébastien; Bousquet, Romain; Broucke, Olivier; Raisson, Francois; Joseph, Philippe; Deschamp, Remi; Imbert, Patrice</p> <p>2017-04-01</p> <p>Described since a long time, the Schistes à Blocs Fm is the ultimate member of the famous tertiary Grès d'Annot Sandstones in <span class="hlt">southern</span> alpine foredeep basin in SE France. It mainly consists of shales, silty shales, debris flows, olistoliths and a subordinate amount of sandstones. Since their introduction, and because of their location down to major thrust sheet, they have been considered as a tectono-sedimentary unit linked to the nappe's emplacement and refer as an olistostrome, (Kerckove 1964-1969). However they are separated from the underlying Annot Sandstones by a major erosional surface which deeply cuts, up to 500m, into the sandy turbidites; this surface definitively predates the infill and the nappe emplacement. This is supported by the fact that imbricates affect the upper part of the Schistes and also because of the age; the Schistes à Blocs being Upper Eocene to Lower Oligocene whilst the nappe is latest Oligocene to Lower Miocene. A detailed analysis of the erosional surface in la Bonette area reveals a complex geometry which shows obvious similarities with these observed either on submarine canyons or in slope dissected by gullies as shown by numerous seabeams or 3D seismic images. The infill is quite complex, no basal lag have been observed, however bioturbations suggest occurrence of by pass. Most commonly the lower part of the infill is made of muddy or silty sediments. In some areas, decametric to pluri hectometric olistoliths are interbedded within these deposits. Debris flows are also common with a muddy matrix and finally isolated turbidite channels including the same material than in the Annot Sandstones occur. The reworked material into the debris flows and in the olistoliths suggests that it doesn't only derived from canyon flanks (sandstones) but includes elements belonging to older tethyan series such as Triassic and Liassic carbonates which must be exposed on the sea floor on local highs in the more internal part of the <span class="hlt">Alps</span> but much</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-06-28/pdf/2013-15549.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-06-28/pdf/2013-15549.pdf"><span>78 FR 38922 - Foreign-Trade <span class="hlt">Zone</span> 189-Kent/Ottawa/Muskegon Counties, Michigan; Authorization of Production...</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-06-28</p> <p>... DEPARTMENT OF COMMERCE Foreign-Trade <span class="hlt">Zones</span> Board [B-19-2013] Foreign-Trade <span class="hlt">Zone</span> 189--Kent/Ottawa/Muskegon Counties, Michigan; Authorization of Production Activity; <span class="hlt">Southern</span> Lithoplate, Inc. (Aluminum Printing Plates); Grand Rapids, Michigan On February 22, 2013, <span class="hlt">Southern</span> Lithoplate, Inc. submitted a...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7203Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7203Z"><span>Geophysical characterization of an active hydrothermal shear <span class="hlt">zone</span> in granitic rocks</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zahner, Tobias; Baron, Ludovic; Holliger, Klaus; Egli, Daniel</p> <p>2016-04-01</p> <p>Hydrothermally active faults and shear <span class="hlt">zones</span> in the crystalline massifs of the central <span class="hlt">Alps</span> are currently of particular interest because of their potential similarities and analogies with planned deep petrothermal reservoirs in the Alpine foreland. In order to better understand such hydrothermal systems, a near-vertical, hydrothermally active shear <span class="hlt">zone</span> embedded in low-permeability granitic rocks has been drilled. This borehole is located on the Grimsel Pass in the central Swiss <span class="hlt">Alps</span>, has an inclination of 24 degrees with regard to the vertical, and crosses the targeted shear <span class="hlt">zone</span> between about 82 and 86 meters depth. The borehole has been fully cored and a comprehensive suite of geophysical logging data has been acquired. The latter comprises multi-frequency sonic, ground-penetrating radar, resistivity, self-potential, gamma-gamma, neutron-neutron, optical televiewer, and caliper log data. In addition to this, we have also performed a surface-to-borehole vertical seismic profiling experiment. The televiewer data and the retrieved core samples show a marked increase of the fracture density in the target region, which also finds its expression in rather pronounced and distinct signatures in all other log data. Preliminary results point towards a close correspondence between the ground-penetrating radar and the neutron-neutron log data, which opens the perspective of constraining the effective fracture porosity at vastly differing scales. There is also remarkably good agreement between the sonic log and the vertical seismic profiling data, which may allow for assessing the permeability of the probed fracture network by interpreting these data in a poroelastic context.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013E%26PSL.383....1B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013E%26PSL.383....1B"><span>Seismic anisotropy and large-scale deformation of the Eastern <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bokelmann, Götz; Qorbani, Ehsan; Bianchi, Irene</p> <p>2013-12-01</p> <p>Mountain chains at the Earth's surface result from deformation processes within the Earth. Such deformation processes can be observed by seismic anisotropy, via the preferred alignment of elastically anisotropic minerals. The <span class="hlt">Alps</span> show complex deformation at the Earth's surface. In contrast, we show here that observations of seismic anisotropy suggest a relatively simple pattern of internal deformation. Together with earlier observations from the Western <span class="hlt">Alps</span>, the SKS shear-wave splitting observations presented here show one of the clearest examples yet of mountain chain-parallel fast orientations worldwide, with a simple pattern nearly parallel to the trend of the mountain chain. In the Eastern <span class="hlt">Alps</span>, the fast orientations do not connect with neighboring mountain chains, neither the present-day Carpathians, nor the present-day Dinarides. In that region, the lithosphere is thin and the observed anisotropy thus resides within the asthenosphere. The deformation is consistent with the eastward extrusion toward the Pannonian basin that was previously suggested based on seismicity and surface geology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JAESc..56..263K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JAESc..56..263K"><span>Rb-Sr, Sm-Nd, and U-Pb geochronology of the rocks within the Khlong Marui shear <span class="hlt">zone</span>, <span class="hlt">southern</span> Thailand</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kanjanapayont, Pitsanupong; Klötzli, Urs; Thöni, Martin; Grasemann, Bernhard; Edwards, Michael A.</p> <p>2012-08-01</p> <p>In <span class="hlt">southern</span> Thailand, the Khlong Marui shear <span class="hlt">zone</span> is dominated by a NNE-SSW striking high topographic lozenge shaped area of ca. 40 km long and 6 km wide between the Khlong Marui Fault and the Bang Kram Fault. The geology within this strike-slip <span class="hlt">zone</span> consists of strongly deformed layers of mylonitic meta-sedimentary rocks associated with orthogneisses, mylonitic granites, and pegmatitic veins with a steeply dipping foliation. The strike-slip deformation is characterized by dextral ductile deformation under amphibolite facies and low to medium greenschist facies. In situ U-Pb ages of inherited zircon cores from all zircons in the Khlong Marui shear <span class="hlt">zone</span> indicate that they have the same material from the Archean. Late Triassic to Late Cretaceous ages obtained for zircon outer cores of the mylonitic granite are probably related to a period of magmatic activity that was significantly influenced by the West Burma and Shan-Thai collision and the subduction along the Sunda Trench. The early dextral ductile deformation phase of the Khlong Marui shear <span class="hlt">zone</span> in the Early Eocene suggested by U-Pb ages of zircon rims, and the later dextral transpressional deformation in the Late Eocene indicated by mica Rb-Sr ages. Rb-Sr, Sm-Nd, and U-Pb dating correlation implies that the major exhumation period of the ductile lens was in the Eocene. This period was tectonically influenced in the SE Asia region by the early India-Asia collision.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.979a2051S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.979a2051S"><span>Response of Gravity, Magnetic, and Geoelectrical Resistivity Methods on Ngeni <span class="hlt">Southern</span> Blitar Mineralization <span class="hlt">Zone</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sunaryo</p> <p>2018-03-01</p> <p>The research with entitle response of gravity, magnetic, and geoelectrical resistivity methods on Ngeni <span class="hlt">Southern</span> Blitar mineralization <span class="hlt">zone</span> has been done. This study aims to find the response of several geophysical methods of gravity, magnetic, and geoelectrical resistivity in an integrated manner. Gravity data acquisition was acquired 224 data which covers the whole region of Blitar district by using Gravity Meter La Coste & Romberg Model “G”, and magnetic data acquisition were acquired 195 data which covers the <span class="hlt">southern</span> Blitar district only by using Proton Precession Magnetometer G-856. Meanwhile geoelectrical resistivity data only done in Ngeni village which is the location of phyropilite mining with the composition content of Fe, Si, Ca, S, Cu, and Mn by using ABEM Terrameter SAS 300C. Gravity data processing was performed to obtain the Bouguer anomaly value, which included unit conversion, tidal correction, drift correction, correction of tie point, base station correction, free air correction, and Bouguer correction. Magnetic data processing has been done by some corrections i.e daily, drift, and IGRF(International Geomagnetic Refference Field) to obtain the total magnetic anomaly. From gravity data processing has been obtained the simple Bouguer anomaly value in range from -10mGal until 115mGal. From this data processing has been obtained the total magnetic anomaly value in range from -650nT until 800nT. Meanwhile from geoelectrical resistivity 3.03Ωm until 11249.91 Ωm. There is a correlation between gravity anomaly, magnetic anomaly, and geoelectrical resistivity anomaly that are associated with deep anomaly, middle anomaly, and shallow anomaly.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1112277V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1112277V"><span>Preliminary comparative study of middle Anisian vertebrate ichnoassociation from South-Eastern <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Valdiserri, D.; Todesco, R.; Avanzini, M.</p> <p>2009-04-01</p> <p> Pelsonian ichno-association seem to corroborate the hypothesis of two different ichoassemblages in the late Middle Triassic (Lucas, 2007). Further studies could allow a better understanding of the evolution of the Chirotherian tracks group and the systematics of the Rhynchosauroidae ichnofamily. References Abel, O. 1926. Der erste Fund einer Tetrapodenfährte in den unteren alpinen Trias. Paläontologische Zeitschrift, 7: 22-24. Avanzini, M., Mietto, P. 2008. Lower and Middle Triassic footprint-based Biochronology in the Italian <span class="hlt">Southern</span> <span class="hlt">Alps</span>. Oryctos, Vol. 8, 2008: 3-13. Avanzini, M., Wachtler, M., Dellantonio, E. & Todesco, R. 2007. A new Late Anisian vertebrate ichnosite from Dolomites (Val Duron, Val di Fassa). Geoitalia 2007, Abstract Vol. 10.1474/ Epitome 02.1081. Lucas, S. G. 2007. Tetrapod Footprint Biostratigraphy and Biochronology, Ichnos, 14,1:5-38 Todesco, R. 2007. Studio paleontologico delle orme di rettili triassici (Pelsonico) nel Conglomerato di Voltago (Valle di Prissiano, Trentino-Alto Adige). Degree thesis, University of Modena and Reggio Emilia. Todesco, R.; Wachtler, M; Kustatscher, E. & Avanzini, M. 2008. Preliminary reporton a new vertebrate track and flora site from Piz da Peres (Anisian-Illyrian): Olang Dolomites, Northern Italy. Geo. <span class="hlt">Alp</span>, 5: 121-137 Valdiserri, D. & Avanzini, M. 2006: A tetrapod ichnoassociation from the Middle Triassic (Anisian, Pelsonian) of Northern Italy. Ichnos, 14: 105-116.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JAESc..42..176C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JAESc..42..176C"><span>Structural anatomy of a dismembered ophiolite suite from Gondwana: The Manamedu complex, Cauvery suture <span class="hlt">zone</span>, <span class="hlt">southern</span> India</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chetty, T. R. K.; Yellappa, T.; Nagesh, P.; Mohanty, D. P.; Venkatasivappa, V.; Santosh, M.; Tsunogae, T.</p> <p>2011-08-01</p> <p>Detailed geological and structural mapping of the Manamedu ophiolite complex (MOC), from the south-eastern part of the Cauvery suture <span class="hlt">zone</span> (CSZ) within the Gondwana collisional suture in <span class="hlt">southern</span> India reveals the anatomy of a dismembered ophiolite succession comprising pyroxenite actinolite-hornblendite, hornblendite, gabbro-norite, gabbro, anorthosite, amphibolite, plagiogranite, mafic dykes, and associated pelagic sediments such as chert-magnetite bands and carbonate horizons. The magmatic foliation trajectory map shows inward dipping foliations and a variety of fold structures. Structural cross-sections of the MOC reveal gentle inward dips with repetition and omission of different lithologies often marked by curvilinear hinge lines. The succession displays imbricate thrust sheets and slices of dismembered ophiolite suites distributed along several localities within the CSZ. The MOC can be interpreted as a deformed large duplex structure associated with south-verging back thrust system, consistent with crustal-scale 'flower structure'. The nature and distribution of ophiolitic rocks in the CSZ suggest supra-subduction <span class="hlt">zone</span> setting associated with the lithospheric subduction of the Neoproterozoic Mozambique Ocean, followed by collision and obduction during the final stage of amalgamation of the Gondwana supercontinent in the end Precambrian.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.T33C0570H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.T33C0570H"><span>The TIPTEQ seismological network in <span class="hlt">Southern</span> Chile - Studying the Seismogenic Coupling <span class="hlt">Zone</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haberland, C.; Rietbrock, A.; Lange, D.; Bataille, K.; Hofmann, S.; Dahm, T.; Scherbaum, F.; Tilman, F.; Hermosilla, G.; Group, T. S.</p> <p>2005-12-01</p> <p>Subduction <span class="hlt">zones</span> generate the world's largest and most destructive earthquakes. Understanding the factors leading to these earthquakes in the coupling <span class="hlt">zone</span> of convergent margins and their interrelation with surface deformation are the main aims of the international and interdisciplinary research initiative TIPTEQ (From The Incoming Plate To megaThrust EarthQuake Processes) which is financed by the German Ministry for Education and Research (BMBF). These aims shall be achieved by obtaining high resolution images of the seismogenic <span class="hlt">zone</span> and the forearc structure, which will form the base for identifying the processes involved. Our studies focus spatially on the nucleation <span class="hlt">zone</span> of the Mw=9.5 1960 Chile earthquake, the worldwide largest instrumentally ever recorded earthquake. Within this project a large temporary seismological network is installed in <span class="hlt">southern</span> Chile since Nov. 2004, covering the forearc between 37° and 39°S. It consists of 120 digitally recording and continuously running seismic stations equipped with short period sensors. The network covers the forearc between 37° and 39°S. The onshore network is complemented by 10 ocean bottom seismometers/hydrophones (OBS/OBH), and the stations (except for 20 stations which will operate until October 2005) were in operation until July 2005. The network is characterized by very short station spacings in the centre which will assure an increased quantity of P and S phase onset times and which will achieve the observation of the whole wavefield (coherent waveforms). A second network of 20 onshore and 20 offshore stations is installed at and around Chiloe Island for a one year period. Until now we collected about 1.2 TByte of data. First steps of the data processing are the event detection, the onset time picking, and the localisation of the (local) earthquakes (catalog). Later steps include the determination of the velocity and attenuation structure (tomography), the analysis of the stress field by moment tensor</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987EM%26P...38..183S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987EM%26P...38..183S"><span>Geology of the <span class="hlt">Southern</span> Ishtar Terra/Guinevere and Sedna Planitae region on Venus</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stofan, E. R.; Head, J. W.; Campbell, D. B.</p> <p>1987-06-01</p> <p>High-resolution high-incidence-angle Arecibo images and Pioneer-Venus data of <span class="hlt">Southern</span> Ishtar Terra and the flanking plains of Guinevere and Sena on Venus are analyzed. The low predominantly volcanic plains of Guinevere and Sedna Planitae are the oldest of the mapped terrains. The complex tectonic deformation in the <span class="hlt">Southern</span> Ishtar Transition <span class="hlt">Zone</span> postdates much of the low plains, and delineates the steep-sloped flanks of Ishtar Terra. Lakshmi Planum is found to have a distinctive volcanic style, and to postdate the <span class="hlt">Southern</span> Ishtar Transition <span class="hlt">Zone</span>, at least in part. Data show relatively recent plains-style volcanism to have occurred locally in Sedna Planitae, and to embay the <span class="hlt">Southern</span> Istar Transition <span class="hlt">Zone</span>. Arecibo data show additional coronae in the lowlands, suggesting that corona formation may be a more widespread process than indicated by Venera 15/16 images.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SolED...5.1031A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SolED...5.1031A"><span>The European <span class="hlt">Alps</span> as an interrupter of the Earth's conductivity structures</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Al-Halbouni, D.</p> <p>2013-07-01</p> <p>Joint interpretation of magnetotelluric and geomagnetic depth sounding results in the period range of 10-105 s in the Western European <span class="hlt">Alps</span> offer new insights into the conductivity structure of the Earth's crust and mantle. This first large scale electromagnetic study in the <span class="hlt">Alps</span> covers a cross-section from Germany to northern Italy and shows the importance of the alpine mountain chain as an interrupter of continuous conductors. Poor data quality due to the highly crystalline underground is overcome by Remote Reference and Robust Processing techniques and the combination of both electromagnetic methods. 3-D forward modeling reveals on the one hand interrupted dipping crustal conductors with maximum conductances of 4960 S and on the other hand a lithosphere thickening up to 208 km beneath the central Western <span class="hlt">Alps</span>. Graphite networks arising from Palaeozoic sedimentary deposits are considered to be accountable for the occurrence of high conductivity and the distribution pattern of crustal conductors. The influence of huge sedimentary Molasse basins on the electromagnetic data is suggested to be minor compared with the influence of crustal conductors. Dipping direction (S-SE) and maximum angle (10.1°) of the northern crustal conductor reveal the main thrusting conditions beneath the Helvetic <span class="hlt">Alps</span> whereas the existence of a crustal conductor in the Briançonnais supports theses about its belonging to the Iberian Peninsula. In conclusion the proposed model arisen from combined 3-D modeling of noise corrected electromagnetic data is able to explain the geophysical influence of various structural features in and around the Western European <span class="hlt">Alps</span> and serves as a background for further upcoming studies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.1356T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.1356T"><span>Characterization of Saharan mineral dust transported to the Colle Gnifetti glacier (<span class="hlt">Southern</span> <span class="hlt">Alps</span>, Switzerland) during the last centuries.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thevenon, Florian; Poté, John; Adatte, Thierry; Chiaradia, Massimo; Hueglin, Christoph; Collaud Coen, Martine</p> <p>2010-05-01</p> <p>The <span class="hlt">Southern</span> <span class="hlt">Alps</span> act as a barrier to the southwesterly dust-laden winds from the Sahara, and the Colle Gnifetti saddle (45°55'N, 7°52'E, 4455 m asl in the Monte Rosa Massif) satisfactory conserves the history of climatic conditions over the last millennium (Thevenon et al., 2009). Therefore, the Colle Gnifetti glacier is a suitable site for i) studying the composition of past Saharan aeolian dust emissions, and for ii) comparing modern dust emissions with preindustrial emissions. The mineral aerosols entrapped in the ice core have been analyzed for their physical (grain-size by image analysis), mineralogical (by X-ray diffraction), and chemical composition (by ICPMS and by mass spectrometry for Sr and Nd isotopic ratios). The mineral dust characteristics are then compared with present day Saharan dust samples collected at the high altitude research station Jungfraujoch (46°55'N, 7°98E, 3580 asl) and with documented potential dust sources. Results show that i) the increases in atmospheric dustiness correlate with larger mean grain size, and that ii) the dust emissions increase after the industrial revolution, probably as a large-scale atmospheric circulation response to anthropogenic climate forcing (Shindell et al., 2001; Thevenon et al., 2009). However, geochemical variations in aeolian mineral particles also indicate that the source areas of the dust, which are now situated in northern and north-western part of the Saharan desert (Collaud Coen et al., 2004), did not change significantly throughout the past. Therefore, the mineralogy (e.g. illite, kaolinite, chlorite, palygorskite) and the geochemistry of the paleo-dust particles transported to Europe, are relevant to assess past African dust sources. REFERENCES: - Thevenon, F., F. S. Anselmetti, S. M. Bernasconi, and M. Schwikowski (2009). Mineral dust and elemental black carbon records from an Alpine ice core (Colle Gnifetti glacier) over the last millennium. J. Geophys. Res., 114, D17102, doi:10</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Geomo.290...58B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Geomo.290...58B"><span>Contrasting medial moraine development at adjacent temperate, maritime glaciers: Fox and Franz Josef Glaciers, South Westland, New Zealand</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brook, Martin; Hagg, Wilfried; Winkler, Stefan</p> <p>2017-08-01</p> <p>Medial moraines form important pathways for sediment transportation in valley glaciers. Despite the existence of well-defined medial moraines on several glaciers in the New Zealand <span class="hlt">Southern</span> <span class="hlt">Alps</span>, medial moraines there have hitherto escaped attention. The evolving morphology and debris content of medial moraines on Franz Josef Glacier and Fox Glacier on the western flank of the <span class="hlt">Southern</span> <span class="hlt">Alps</span> is the focus of this study. These temperate maritime glaciers exhibit accumulation <span class="hlt">zones</span> of multiple basins that feed narrow tongues flowing down steep valleys and terminate 400 m above sea level. The medial moraines at both glaciers become very prominent in the lower ablation <span class="hlt">zones</span>, where the medial moraines widen, and develop steeper flanks coeval with an increase in relative relief. Medial moraine growth appears somewhat self-limiting in that relief and slope angle increase eventually lead to transport of debris away from the medial moraine by mass-movement-related processes. Despite similarities in overall morphologies, a key contrast in medial moraine formation exists between the two glaciers. At Fox Glacier, the medial moraine consists of angular rockfall-derived debris, folded to varying degrees along flow-parallel axes throughout the tongue. The debris originates above the ELA, coalesces at flow-unit boundaries, and takes a medium/high level transport pathway before subsequently emerging at point-sources aligned with gently dipping fold hinges near the snout. In contrast at Franz Josef Glacier, the medial moraine emerges farther down-glacier immediately below a prominent rock knob. Clasts show a mix of angular to rounded shapes representing high level transport and subglacially transported materials, the latter facies possibly also elevated by supraglacial routing of subglacial meltwater. Our observations confirm that a variety of different debris sources, transport pathways, and structural glaciological processes can interact to form medial moraines within New Zealand</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70176038','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70176038"><span>The Eastern California Shear <span class="hlt">Zone</span> as the northward extension of the <span class="hlt">southern</span> San Andreas Fault</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Thatcher, Wayne R.; Savage, James C.; Simpson, Robert W.</p> <p>2016-01-01</p> <p>Cluster analysis offers an agnostic way to organize and explore features of the current GPS velocity field without reference to geologic information or physical models using information only contained in the velocity field itself. We have used cluster analysis of the <span class="hlt">Southern</span> California Global Positioning System (GPS) velocity field to determine the partitioning of Pacific-North America relative motion onto major regional faults. Our results indicate the large-scale kinematics of the region is best described with two boundaries of high velocity gradient, one centered on the Coachella section of the San Andreas Fault and the Eastern California Shear <span class="hlt">Zone</span> and the other defined by the San Jacinto Fault south of Cajon Pass and the San Andreas Fault farther north. The ~120 km long strand of the San Andreas between Cajon Pass and Coachella Valley (often termed the San Bernardino and San Gorgonio sections) is thus currently of secondary importance and carries lesser amounts of slip over most or all of its length. We show these first order results are present in maps of the smoothed GPS velocity field itself. They are also generally consistent with currently available, loosely bounded geologic and geodetic fault slip rate estimates that alone do not provide useful constraints on the large-scale partitioning we show here. Our analysis does not preclude the existence of smaller blocks and more block boundaries in <span class="hlt">Southern</span> California. However, attempts to identify smaller blocks along and adjacent to the San Gorgonio section were not successful.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRB..121.2904T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRB..121.2904T"><span>The Eastern California Shear <span class="hlt">Zone</span> as the northward extension of the <span class="hlt">southern</span> San Andreas Fault</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thatcher, W.; Savage, J. C.; Simpson, R. W.</p> <p>2016-04-01</p> <p>Cluster analysis offers an agnostic way to organize and explore features of the current GPS velocity field without reference to geologic information or physical models using information only contained in the velocity field itself. We have used cluster analysis of the <span class="hlt">Southern</span> California Global Positioning System (GPS) velocity field to determine the partitioning of Pacific-North America relative motion onto major regional faults. Our results indicate the large-scale kinematics of the region is best described with two boundaries of high velocity gradient, one centered on the Coachella section of the San Andreas Fault and the Eastern California Shear <span class="hlt">Zone</span> and the other defined by the San Jacinto Fault south of Cajon Pass and the San Andreas Fault farther north. The ~120 km long strand of the San Andreas between Cajon Pass and Coachella Valley (often termed the San Bernardino and San Gorgonio sections) is thus currently of secondary importance and carries lesser amounts of slip over most or all of its length. We show these first order results are present in maps of the smoothed GPS velocity field itself. They are also generally consistent with currently available, loosely bounded geologic and geodetic fault slip rate estimates that alone do not provide useful constraints on the large-scale partitioning we show here. Our analysis does not preclude the existence of smaller blocks and more block boundaries in <span class="hlt">Southern</span> California. However, attempts to identify smaller blocks along and adjacent to the San Gorgonio section were not successful.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/231058-breaker-zone-aerosol-dynamics-southern-baltic-sea','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/231058-breaker-zone-aerosol-dynamics-southern-baltic-sea"><span>Breaker <span class="hlt">zone</span> aerosol dynamics in the <span class="hlt">southern</span> Baltic Sea</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zielinski, T.; Zielinski, A.</p> <p></p> <p>This paper presents the results of lidar based investigations of aerosol concentrations and their size distributions over the breaker <span class="hlt">zones</span>. The measurements were carried out under various weather conditions over breaker <span class="hlt">zones</span> of the Gulf of Gdansk (1992) and from a station on the open Baltic Sea (International Experiment BAEX in 1993).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S41C0801S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S41C0801S"><span>The Effect of Earthquakes on Episodic Tremor and Slip Events on the <span class="hlt">Southern</span> Cascadia Subduction <span class="hlt">Zone</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sainvil, A. K.; Schmidt, D. A.; Nuyen, C.</p> <p>2017-12-01</p> <p>The goal of this study is to explore how slow slip events on the <span class="hlt">southern</span> Cascadia Subduction <span class="hlt">Zone</span> respond to nearby, offshore earthquakes by examining GPS and tremor data. At intermediate depths on the plate interface ( 40 km), transient fault slip is observed in the form of Episodic Tremor and Slip (ETS) events. These ETS events occur regularly (every 10 months), and have a longer duration than normal earthquakes. Researchers have been documenting slow slip events through data obtained by continuously running GPS stations in the Pacific Northwest. Some studies have proposed that pore fluid may play a role in these ETS events by lowering the effective stress on the fault. The interaction of earthquakes and ETS can provide constraints on the strength of the fault and the level of stress needed to alter ETS behavior. Earthquakes can trigger ETS events, but the connection between these events and earthquake activity is less understood. We originally hypothesized that ETS events would be affected by earthquakes in <span class="hlt">southern</span> Cascadia, and could result in a shift in the recurrence interval of ETS events. ETS events were cataloged using GPS time series provided by PANGA, in conjunction with tremor positions, in <span class="hlt">Southern</span> Cascadia for stations YBHB and DDSN from 1997 to 2017. We looked for evidence of change from three offshore earthquakes that occurred near the Mendocino Triple Junction with moment magnitudes of 7.2 in 2005, 6.5 in 2010, and 6.8 in 2014. Our results showed that the recurrence interval of ETS for stations YBHB and DDSN was not altered by the three earthquake events. Future is needed to explore whether this lack of interaction is explained by the non-optimal orientation of the receiver fault for the earthquake focal mechanisms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3511E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3511E"><span>Fracture distribution and porosity in a fault-bound hydrothermal system (Grimsel Pass, Swiss <span class="hlt">Alps</span>)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Egli, Daniel; Küng, Sulamith; Baumann, Rahel; Berger, Alfons; Baron, Ludovic; Herwegh, Marco</p> <p>2017-04-01</p> <p>The spatial distribution, orientation and continuity of brittle and ductile structures strongly control fluid pathways in a rock mass by joining existing pores and creating new pore space (fractures, joints) but can also act as seals to fluid flow (e.g. ductile shear <span class="hlt">zones</span>, clay-rich fault gouges). In long-lived hydrothermal systems, permeability and the related fluid flow paths are therefore dynamic in space and time. Understanding the evolution and behaviour of naturally porous and permeable rock masses is critical for the successful exploration and sustainable exploitation of hydrothermal systems and can advance methods for planning and implementation of enhanced geothermal systems. This study focuses on an active fault-bound hydrothermal system in the crystalline basement of the Aar Massif (hydrothermal field Grimsel Pass, Swiss <span class="hlt">Alps</span>) that has been exhumed from few kilometres depth and which documents at least 3 Ma of hydrothermal activity. The explored rock unit of the Aar massif is part of the External Crystalline Massifs that hosts a multitude of thermal springs on its <span class="hlt">southern</span> border in the Swiss Rhône valley and furthermore represents the exhumed equivalent of potentially exploitable geothermal reservoirs in the deep crystalline subsurface of the northern Alpine foreland basin. This study combines structural data collected from a 125 m long drillhole across the hydrothermal <span class="hlt">zone</span>, the corresponding drill core and surface mapping. Different methods are applied to estimate the porosity and the structural evolution with regard to porosity, permeability and fracture distribution. Analyses are carried out from the micrometre to decametre scale with main focus on the flow path evolution with time. This includes a large variety of porosity-types including fracture-porosity with up to cm-sized aperture down to grain-scale porosity. Main rock types are granitoid host rocks, mylonites, paleo-breccia and recent breccias. The porosity of the host rock as well as the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Tectp.705...93S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Tectp.705...93S"><span>Observations of SKS splitting beneath the Central and <span class="hlt">Southern</span> External Dinarides in the Adria-Eurasia convergence <span class="hlt">zone</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Subašić, Senad; Prevolnik, Snježan; Herak, Davorka; Herak, Marijan</p> <p>2017-05-01</p> <p>Seismic anisotropy beneath the greater region of the Central and <span class="hlt">Southern</span> External Dinarides is estimated from observations of SKS splitting. The area is located in the broad and complex Africa-Eurasia convergent plate boundary <span class="hlt">zone</span>, where the Adriatic microplate interacts with the Dinarides. We analyzed recordings of 12 broadband seismic stations located in the Croatian coastal region. Evidence of seismic anisotropy was found beneath all stations. Fast axis directions are oriented approximately in the NE-SW to NNE-SSW direction, perpendicularly to the strike of the Dinarides. Average delay times range between 0.6 and 1.0 s. A counter-clockwise rotation in average fast axis directions was observed for the stations in the northern part with respect to the stations in the <span class="hlt">southern</span> part of the studied area. Fast axis directions coincide with the assumed direction of asthenospheric flow through a slab-gap below the Northern and Central External Dinarides, with the maximum tectonic stress orientation in the crust, and with fast directions of Pg and Sg-waves in the crust. These observations suggest that the detected SKS birefringence is primarily caused by the preferred lattice orientation of mantle minerals generated by the asthenospheric flow directed SW-NE to SSW-NNE, with a possible contribution from the crust.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994Tecto..13..421T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994Tecto..13..421T"><span>Magma-assisted strain localization in an orogen-parallel transcurrent shear <span class="hlt">zone</span> of <span class="hlt">southern</span> Brazil</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tommasi, AndréA.; Vauchez, Alain; Femandes, Luis A. D.; Porcher, Carla C.</p> <p>1994-04-01</p> <p>In a lithospheric-scale, orogen-parallel transcurrent shear <span class="hlt">zone</span> of the Pan-African Dom Feliciano belt of <span class="hlt">southern</span> Brazil, two successive generations of magmas, an early calc-alkaline and a late peraluminous, have been emplaced during deformation. Microstructures show that these granitoids experienced a progressive deformation from magmatic to solid state under decreasing temperature conditions. Magmatic deformation is indicated by the coexistence of aligned K-feldspar, plagioclase, micas, and/or tourmaline with undeformed quartz. Submagmatic deformation is characterized by strain features, such as fractures, lattice bending, or replacement reactions affecting only the early crystallized phases. High-temperature solid-state deformation is characterized by extensive grain boundary migration in quartz, myrmekitic K-feldspar replacement, and dynamic recrystallization of both K-feldspar and plagioclase. Decreasing temperature during solid-state deformation is inferred from changes in quartz crystallographic fabrics, decrease in grain size of recrystallized feldspars, and lower Ti amount in recrystallized biotites. Final low-temperature deformation is characterized by feldspar replacement by micas. The geochemical evolution of the synkinematic magmatism, from calc-alkaline metaluminous granodiorites with intermediate 87Sr/86Sr initial ratio to peraluminous granites with very high 87Sr/86Sr initial ratio, suggests an early lower crustal source or a mixed mantle/crustal source, followed by a middle to upper crustal source for the melts. Shearing in lithospheric faults may induce partial melting in the lower crust by shear heating in the upper mantle, but, whatever the process initiating partial melting, lithospheric transcurrent shear <span class="hlt">zones</span> may collect melt at different depths. Because they enhance the vertical permeability of the crust, these <span class="hlt">zones</span> may then act as heat conductors (by advection), promoting an upward propagation of partial melting in the crust</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-11-28/pdf/2012-28790.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-11-28/pdf/2012-28790.pdf"><span>77 FR 70964 - Security <span class="hlt">Zone</span>, Potomac and Anacostia Rivers; Washington, DC</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-11-28</p> <p>... 1625-AA87 Security <span class="hlt">Zone</span>, Potomac and Anacostia Rivers; Washington, DC AGENCY: Coast Guard, DHS. ACTION... to establish a security <span class="hlt">zone</span> during activities associated with the Presidential Inauguration in... extends the <span class="hlt">southern</span> boundary of the proposed security <span class="hlt">zone</span>. This rule prohibits vessels and people from...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1811744H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1811744H"><span>The <span class="hlt">Alp</span>Array Seismic Network: current status and next steps</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hetényi, György; Molinari, Irene; Clinton, John; Kissling, Edi</p> <p>2016-04-01</p> <p>The <span class="hlt">Alp</span>Array initiative (http://www.alparray.ethz.ch) is a large-scale European collaboration to study the entire Alpine orogen at high resolution and in 3D with a large variety of geoscientific methods. The core element of the initiative is an extensive and dense broadband seismological network, the <span class="hlt">Alp</span>Array Seismic Network (AASN), which complements the permanent seismological stations to ensure homogeneous coverage of the greater Alpine area. The some 260 temporary stations of the <span class="hlt">Alp</span>Array Seismic Network are operated as a joint effort by a number of institutions from Austria, Bosnia-Herzegovina, Croatia, Czech Republic, France, Germany, Hungary, Italy, Slovakia and Switzerland. The first stations were installed in Spring 2015 and the full AASN is planned to be operational by early Summer 2016. In this poster we present the actual status of the deployment, the effort undertaken by the contributing groups, station performance, typical noise levels, best practices in installation as well as in data management, often encountered challenges, and planned next steps including the deployment of ocean bottom seismometers in the Ligurian Sea.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Tecto..36.3135L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Tecto..36.3135L"><span>Post-20 Ma Motion of the Adriatic Plate: New Constraints From Surrounding Orogens and Implications for Crust-Mantle Decoupling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Le Breton, Eline; Handy, Mark R.; Molli, Giancarlo; Ustaszewski, Kamil</p> <p>2017-12-01</p> <p>A new kinematic reconstruction that incorporates estimates of post-20 Ma shortening and extension in the Apennines, <span class="hlt">Alps</span>, Dinarides, and Sicily Channel Rift <span class="hlt">Zone</span> (SCRZ) reveals that the Adriatic microplate (Adria) rotated counterclockwise as it subducted beneath the European Plate to the west and to the east, while indenting the <span class="hlt">Alps</span> to the north. Minimum and maximum amounts of rotation are derived by using, respectively, estimates of crustal extension along the SCRZ (minimum of 30 km) combined with crustal shortening in the Eastern <span class="hlt">Alps</span> (minimum of 115 km) and a maximum amount (140 km) of convergence between Adria and Moesia across the <span class="hlt">southern</span> Dinarides and Carpatho-Balkan orogens. When combined with Neogene convergence in the Western <span class="hlt">Alps</span>, the best fit of available structural data constrains Adria to have moved 113 km to the NW (azimuth 325°) while rotating 5 ± 3° counterclockwise relative to Europe since 20 Ma. Amounts of plate convergence predicted by our new model exceed Neogene shortening estimates of several tens of kilometers in both the Apennines and Dinarides. We attribute this difference to crust-mantle decoupling (delamination) during rollback in the Apennines and to distributed deformation related to the northward motion of the Dacia Unit between the <span class="hlt">southern</span> Dinarides and Europe (Moesia). Neogene motion of Adria resulted from a combination of Africa pushing from the south, the Adriatic-Hellenides slab pulling to the northeast, and crustal wedging in the Western <span class="hlt">Alps</span>, which acted as a pivot and stopped farther northwestward motion of Adria relative to Europe.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915920K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915920K"><span>Sedimentary connection between rock glaciers and torrential channels: definition, inventory and quantification from a test area in the south-western Swiss <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kummert, Mario; Barboux, Chloé; Delaloye, Reynald</p> <p>2017-04-01</p> <p>Permafrsot creep is an important sediment transfer process in periglacial alpine hillslopes (Delaloye et al. 2010). Rock glaciers are the visible expression of mountain permafrost creep (Delaloye 2004). Large volumes of rock debris originating from headwalls, moraines and weathering deposits are slowly transported within rock glaciers from their rooting <span class="hlt">zone</span> to their fronts. In the <span class="hlt">Alps</span>, most rock glaciers can be considered as sediment traps, because the sediment output at their margin is usually limited (Gärtner-Roer 2012). However, cases of rock glacier supplying torrential channels with sediments have been documented (e.g. Lugon and Stoffel 2010, Delaloye et al. 2013) Such rock glaciers can act as a sediment source for the triggering of gravitational processes propagating further downstream. Moreover, in such configuration the amount of sediment available is not a finite volume but is gradually renewed or increased as the rock glacier advances. These cases are therefore very specific, especially in the perspective of natural hazards assessment and mitigation. However, in the <span class="hlt">Alps</span> very little is known about such type of rock glaciers. In addition, the sediment transfer rates between the fronts of the rock glaciers and the torrents are often not known. In this context, our study aims at (i) defining better the configurations in which a sedimentary connection exists between rock glaciers and torrential channels, (ii) localizing the cases of active rock glaciers connected to the torrential network and (iii) estimating approximate sediment transfer rates between the fronts and the torrential gullies. For that purpose, an inventory method for the classification of torrential catchments based on the analysis of aerial images and the computation of connectivity indexes have been developped. In addition, sediment transfer rates were estimated taking into account the geometry of the frontal areas and the velocity rates of the rock glaciers derived from DInSAR data. In</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.S31B4401N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.S31B4401N"><span>Lithospheric Deformation Along the <span class="hlt">Southern</span> and Western Suture <span class="hlt">Zones</span> of the Wyoming Province</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nuyen, C.; Porritt, R. W.; O'Driscoll, L.</p> <p>2014-12-01</p> <p>The Wyoming Province is an Archean craton that played an early role in the construction and growth of the North American continent. This region, which encompasses the majority of modern day Wyoming and <span class="hlt">southern</span> Montana, initially collided with other Archean blocks in the Paleoproterozoic (2.0-1.8 Ga), creating the Canadian Shield. From 1.8-1.68 Ga, the Yavapai Province crashed into the Wyoming Province, suturing the two together. The accretion of the Yavapai Province gave way to the Cheyenne Belt, a deformational <span class="hlt">zone</span> that exists along the <span class="hlt">southern</span> border of the Wyoming Province where earlier studies have found evidence for crustal imbrication and double a Moho. Current deformation within the Wyoming province is due to its interaction with the Yellowstone Hotspot, which is currently located in the northwest portion of the region. This study images the LAB along the western and <span class="hlt">southern</span> borders of the Wyoming Province in order to understand how the region's Archean lithosphere has responded to deformation over time. These results shed light on the inherent strength of Archean cratonic lithosphere in general. We employ two methods for this study: common conversion point (CCP) stacking of S to P receiver functions and teleseismic and ambient Rayleigh wave dispersion. The former is used to image the LAB structure while the latter is used to create a velocity gradient for the region. Results from both of the methods reveal a notably shallower LAB depth to the west of the boundary. The shallower LAB west of the Wyoming Province is interpreted to be a result of lithospheric thinning due to the region's interaction with the Yellowstone Hotspot and post-Laramide deformation and extension of the western United States. We interpret the deeper LAB east of the boundary to be evidence for the Wyoming Province's resistance to lithospheric deformation from the hotspot and tectonic processes. CCP images across the Cheyenne Belt also reveal a shallower LAB under the western</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5109590','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5109590"><span>Glacial isostatic uplift of the European <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mey, Jürgen; Scherler, Dirk; Wickert, Andrew D.; Egholm, David L.; Tesauro, Magdala; Schildgen, Taylor F.; Strecker, Manfred R.</p> <p>2016-01-01</p> <p>Following the last glacial maximum (LGM), the demise of continental ice sheets induced crustal rebound in tectonically stable regions of North America and Scandinavia that is still ongoing. Unlike the ice sheets, the Alpine ice cap developed in an orogen where the measured uplift is potentially attributed to tectonic shortening, lithospheric delamination and unloading due to deglaciation and erosion. Here we show that ∼90% of the geodetically measured rock uplift in the <span class="hlt">Alps</span> can be explained by the Earth’s viscoelastic response to LGM deglaciation. We modelled rock uplift by reconstructing the Alpine ice cap, while accounting for postglacial erosion, sediment deposition and spatial variations in lithospheric rigidity. Clusters of excessive uplift in the Rhône Valley and in the Eastern <span class="hlt">Alps</span> delineate regions potentially affected by mantle processes, crustal heterogeneity and active tectonics. Our study shows that even small LGM ice caps can dominate present-day rock uplift in tectonically active regions. PMID:27830704</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27830704','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27830704"><span>Glacial isostatic uplift of the European <span class="hlt">Alps</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mey, Jürgen; Scherler, Dirk; Wickert, Andrew D; Egholm, David L; Tesauro, Magdala; Schildgen, Taylor F; Strecker, Manfred R</p> <p>2016-11-10</p> <p>Following the last glacial maximum (LGM), the demise of continental ice sheets induced crustal rebound in tectonically stable regions of North America and Scandinavia that is still ongoing. Unlike the ice sheets, the Alpine ice cap developed in an orogen where the measured uplift is potentially attributed to tectonic shortening, lithospheric delamination and unloading due to deglaciation and erosion. Here we show that ∼90% of the geodetically measured rock uplift in the <span class="hlt">Alps</span> can be explained by the Earth's viscoelastic response to LGM deglaciation. We modelled rock uplift by reconstructing the Alpine ice cap, while accounting for postglacial erosion, sediment deposition and spatial variations in lithospheric rigidity. Clusters of excessive uplift in the Rhône Valley and in the Eastern <span class="hlt">Alps</span> delineate regions potentially affected by mantle processes, crustal heterogeneity and active tectonics. Our study shows that even small LGM ice caps can dominate present-day rock uplift in tectonically active regions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25250657','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25250657"><span>Comparative assessment of genetic and morphological variation at an extensive hybrid <span class="hlt">zone</span> between two wild cats in <span class="hlt">southern</span> Brazil.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Trigo, Tatiane C; Tirelli, Flávia P; de Freitas, Thales R O; Eizirik, Eduardo</p> <p>2014-01-01</p> <p>Increased attention towards the Neotropical cats Leopardus guttulus and L. geoffroyi was prompted after genetic studies identified the occurrence of extensive hybridization between them at their geographic contact <span class="hlt">zone</span> in <span class="hlt">southern</span> Brazil. This is a region where two biomes intersect, each of which is associated with one of the hybridizing species (Atlantic Forest with L. guttulus and Pampas with L. geoffroyi). In this study, we conducted in-depth analyses of multiple molecular markers aiming to characterize the magnitude and spatial structure of this hybrid <span class="hlt">zone</span>. We also performed a morphological assessment of these species, aiming to test their phenotypic differentiation at the contact <span class="hlt">zone</span>, as well as the correlation between morphological features and the admixture status of the individuals. We found strong evidence for extensive and complex hybridization, with at least 40% of the individuals sampled in Rio Grande do Sul state (southernmost Brazil) identified as hybrids resulting from post-F1 generations. Despite such a high level of hybridization, samples collected in this state still comprised two recognizable clusters (genetically and morphologically). Genetically pure individuals were sampled mainly in regions farther from the contact <span class="hlt">zone</span>, while hybrids concentrated in a central region (exactly at the interface between the two biomes). The morphological data set also revealed a strong spatial structure, which was correlated with the molecular results but displayed an even more marked separation between the clusters. Hybrids often did not present intermediate body sizes and could not be clearly distinguished morphologically from the parental forms. This observation suggests that some selective pressure may be acting on the hybrids, limiting their dispersal away from the hybrid <span class="hlt">zone</span> and perhaps favoring genomic combinations that maintain adaptive phenotypic features of one or the other parental species.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4177223','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4177223"><span>Comparative Assessment of Genetic and Morphological Variation at an Extensive Hybrid <span class="hlt">Zone</span> between Two Wild Cats in <span class="hlt">Southern</span> Brazil</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Trigo, Tatiane C.; Tirelli, Flávia P.; de Freitas, Thales R. O.; Eizirik, Eduardo</p> <p>2014-01-01</p> <p>Increased attention towards the Neotropical cats Leopardus guttulus and L. geoffroyi was prompted after genetic studies identified the occurrence of extensive hybridization between them at their geographic contact <span class="hlt">zone</span> in <span class="hlt">southern</span> Brazil. This is a region where two biomes intersect, each of which is associated with one of the hybridizing species (Atlantic Forest with L. guttulus and Pampas with L. geoffroyi). In this study, we conducted in-depth analyses of multiple molecular markers aiming to characterize the magnitude and spatial structure of this hybrid <span class="hlt">zone</span>. We also performed a morphological assessment of these species, aiming to test their phenotypic differentiation at the contact <span class="hlt">zone</span>, as well as the correlation between morphological features and the admixture status of the individuals. We found strong evidence for extensive and complex hybridization, with at least 40% of the individuals sampled in Rio Grande do Sul state (southernmost Brazil) identified as hybrids resulting from post-F1 generations. Despite such a high level of hybridization, samples collected in this state still comprised two recognizable clusters (genetically and morphologically). Genetically pure individuals were sampled mainly in regions farther from the contact <span class="hlt">zone</span>, while hybrids concentrated in a central region (exactly at the interface between the two biomes). The morphological data set also revealed a strong spatial structure, which was correlated with the molecular results but displayed an even more marked separation between the clusters. Hybrids often did not present intermediate body sizes and could not be clearly distinguished morphologically from the parental forms. This observation suggests that some selective pressure may be acting on the hybrids, limiting their dispersal away from the hybrid <span class="hlt">zone</span> and perhaps favoring genomic combinations that maintain adaptive phenotypic features of one or the other parental species. PMID:25250657</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.S22A..01G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.S22A..01G"><span>Lithospheric structure beneath Central Europe from the POLONAISE'97, CELEBRATION 2000, <span class="hlt">ALP</span> 2002, and SUDETES 2003 seismic refraction experiments</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guterch, A.; Grad, M.; Keller, G. R.</p> <p>2005-12-01</p> <p>Beginning in 1997, Central Europe between the Baltic and Adriatic Seas, has been covered by an unprecedented network of seismic refraction experiments POLONAISE'97, CELEBRATION 2000, <span class="hlt">ALP</span> 2002, and SUDETES 2003, have only been possible due to a massive international consortium consisted of more than 30 institutions from 16 countries in Europe and North America. The majority of recording instruments was provided by the IRIS/PASSCAL Instrument Center and the University of Texas at El Paso (USA), and several other countries also provided instrumentation. Total length of seismic profiles in all experiments is about 20,000 km. The main results of these experiments are: 1) the delineation of the deep structure of the southwestern margin of the East European Craton (<span class="hlt">southern</span> Baltica) and its relationship to younger terranes; delineation of the major terranes and crustal blocks in the Trans European Suture <span class="hlt">Zone</span>; determination of the structural framework of the Pannonian basin; elucidation of the deep structure and evolution of the Western Carpathian Mountains and Eastern <span class="hlt">Alps</span>; determination of the structural relationships between the structural elements of the Bohemian massif and adjacent features; construction of 3-D models of the lithospheric structure; and evaluation and develop geodynamic models for the tectonic evolution of the region. Experiment Working Groups Members: K. Aric, M. Behm, E. Brueckl, W. Chwatal, H. Grassl, S. Hock, V. Hoeck, F. Kohlbeck, E.-M. Rumpfhuber, Ch. Schmid, R. Schmoller, C. Tomek, Ch. Ullrich, F.Weber (Austria), A.A. Belinsky (Belarus), I. Asudeh, R. Clowes, Z. Hajnal (Canada), F. Sumanova (Croatia), M. Broz , P. Hrubcova, M. Korn, O. Karousova, J. Malek, A. Spicak (Czech Republic), S.L. Jensen, P. Joergensen, H. Thybo (Denmark), K. Komminaho, U. Luosto, T. Tiira, J. Yliniemi (Finland), F. Bleibinhaus, R. Brinkmann, B. Forkmann, H. Gebrande, H. Geissler, A. Hemmann, G. Jentzsch, D. Kracke, A. Schulze, K. Schuster (Germany), T. Bodoky, T</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2010/3023/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2010/3023/"><span>A Magnitude 7.1 Earthquake in the Tacoma Fault <span class="hlt">Zone</span>-A Plausible Scenario for the <span class="hlt">Southern</span> Puget Sound Region, Washington</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gomberg, Joan; Sherrod, Brian; Weaver, Craig; Frankel, Art</p> <p>2010-01-01</p> <p>The U.S. Geological Survey and cooperating scientists have recently assessed the effects of a magnitude 7.1 earthquake on the Tacoma Fault <span class="hlt">Zone</span> in Pierce County, Washington. A quake of comparable magnitude struck the <span class="hlt">southern</span> Puget Sound region about 1,100 years ago, and similar earthquakes are almost certain to occur in the future. The region is now home to hundreds of thousands of people, who would be at risk from the shaking, liquefaction, landsliding, and tsunamis caused by such an earthquake. The modeled effects of this scenario earthquake will help emergency planners and residents of the region prepare for future quakes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/21040','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/21040"><span>Detection of brown-rot antigens in <span class="hlt">southern</span> pine</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Carol A. Clausen</p> <p>1996-01-01</p> <p>Brown-rot fungal antigens were detected by particle capture immunoassay(PCI) in <span class="hlt">southern</span> pine 2 X 4’s beyond visible or culturable hyphal growth. Further analysis of test samples revealed changes along the 2 X 4’s that could be grouped into <span class="hlt">zones</span>. <span class="hlt">Zone</span> 1, the point of inoculation through 6 cm, showed low pH, measurable oxalic acid, high moisture, and high protein. <span class="hlt">Zone</span>...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/22125','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/22125"><span>Ecological <span class="hlt">zones</span> in the <span class="hlt">Southern</span> Appalachians: first approximation</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Steven A. Simon; Thomas K. Collins; Gary L. Kauffman; W. Henry McNab; Christopher J. Ulrey</p> <p>2005-01-01</p> <p>Forest environments of the <span class="hlt">Southern</span> Appalachian Mountains and their characteristic plant communities are among the most varied in the Eastern United States. Considerable data are available on the distribution of plant communities relative to temperature and moisture regimes, but not much information on fertility as an environmental influence has been published; nor has...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Tectp.681..135A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Tectp.681..135A"><span>The Galicia-Ossa-Morena <span class="hlt">Zone</span>: Proposal for a new <span class="hlt">zone</span> of the Iberian Massif. Variscan implications</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arenas, Ricardo; Díez Fernández, Rubén; Rubio Pascual, Francisco J.; Sánchez Martínez, Sonia; Martín Parra, Luis Miguel; Matas, Jerónimo; González del Tánago, José; Jiménez-Díaz, Alberto; Fuenlabrada, Jose M.; Andonaegui, Pilar; Garcia-Casco, Antonio</p> <p>2016-06-01</p> <p>Correlation of a group of allochthonous terranes (referred to as basal, ophiolitic and upper units) exposed in the NW and SW of the Iberian Massif, is used to propose a new geotectonic <span class="hlt">zone</span> in the <span class="hlt">southern</span> branch of the Variscan Orogen: the Galicia-Ossa-Morena <span class="hlt">Zone</span>. Recent advances in SW Iberia identify most of the former Ossa-Morena <span class="hlt">Zone</span> as another allochthonous complex of the Iberian Massif, the Ossa-Morena Complex, equivalent to the Cabo Ortegal, Órdenes, Malpica-Tui, Bragança and Morais complexes described in NW Iberia. The new geotectonic <span class="hlt">zone</span> and its counterparts along the rest of the Variscan Orogen constitute an Internal Variscan <span class="hlt">Zone</span> with ophiolites and units affected by high-P metamorphism. The Galicia-Ossa-Morena <span class="hlt">Zone</span> includes a Variscan suture and pieces of continental crust bearing the imprint of Ediacaran-Cambrian events related to the activity of peri-Gondwanan magmatic arcs (Cadomian orogenesis). In the Iberian Massif, the general structure of this geotectonic <span class="hlt">zone</span> represents a duplication of the Gondwanan platform, the outboard sections being juxtaposed on top of domains located closer to the mainland before amalgamation. This interpretation offers an explanation that overcomes some issues regarding the differences between the stratigraphic and paleontological record of the central and <span class="hlt">southern</span> sections of the Iberian Massif. Also, equivalent structural relationships between other major geotectonic domains of the rest of the Variscan Orogen are consistent with our interpretation and allow suspecting similar configurations along strike of the orogen. A number of issues may be put forward in this respect that potentially open new lines of thinking about the architecture of the Variscan Orogen.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://geoinfo.nmt.edu/publications/openfile/details.cfml?Volume=584','USGSPUBS'); return false;" href="https://geoinfo.nmt.edu/publications/openfile/details.cfml?Volume=584"><span>Geologic map and cross sections of the Embudo Fault <span class="hlt">Zone</span> in the <span class="hlt">Southern</span> Taos Valley, Taos County, New Mexico</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bauer, Paul W.; Kelson, Keith I.; Grauch, V.J.S.; Drenth, Benjamin J.; Johnson, Peggy S.; Aby, Scott B.; Felix, Brigitte</p> <p>2016-01-01</p> <p>The <span class="hlt">southern</span> Taos Valley encompasses the physiographic and geologic transition <span class="hlt">zone</span> between the Picuris Mountains and the San Luis Basin of the Rio Grande rift. The Embudo fault <span class="hlt">zone</span> is the rift transfer structure that has accommodated the kinematic disparities between the San Luis Basin and the Española Basin during Neogene rift extension. The eastern terminus of the transfer <span class="hlt">zone</span> coincides with the intersection of four major fault <span class="hlt">zones</span> (Embudo, Sangre de Cristo, Los Cordovas, and Picuris-Pecos), resulting in an area of extreme geologic and hydrogeologic complexities in both the basin-fill deposits and the bedrock. Although sections of the Embudo fault <span class="hlt">zone</span> are locally exposed in the bedrock of the Picuris Mountains and in the late Cenozoic sedimentary units along the top of the Picuris piedmont, the full proportions of the fault <span class="hlt">zone</span> have remained elusive due to a pervasive cover of Quaternary surficial deposits. We combined insights derived from the latest geologic mapping of the area with deep borehole data and high-resolution aeromagnetic and gravity models to develop a detailed stratigraphic/structural model of the rift basin in the <span class="hlt">southern</span> Taos Valley area. The four fault systems in the study area overlap in various ways in time and space. Our geologic model states that the Picuris-Pecos fault system exists in the basement rocks (Picuris formation and older units) of the rift, where it is progressively down dropped and offset to the west by each Embudo fault strand between the Picuris Mountains and the Rio Pueblo de Taos. In this model, the Miranda graben exists in the subsurface as a series of offset basement blocks between the Ponce de Leon neighborhood and the Rio Pueblo de Taos. In the study area, the Embudo faults are pervasive structures between the Picuris Mountains and the Rio Pueblo de Taos, affecting all geologic units that are older than the Quaternary surficial deposits. The Los Cordovas faults are thought to represent the late Tertiary to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24483088','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24483088"><span>[Characteristics and adaptation of seasonal drought in <span class="hlt">southern</span> China under the background of climate change. V. Seasonal drought characteristics division and assessment in <span class="hlt">southern</span> China].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Wan-Hua; Sui, Yue; Yang, Xiao-Guang; Dai, Shu-Wei; Li, Mao-Song</p> <p>2013-10-01</p> <p><span class="hlt">Zoning</span> seasonal drought based on the study of drought characteristics can provide theoretical basis for formulating drought mitigation plans and improving disaster reduction technologies in different arid <span class="hlt">zones</span> under global climate change. Based on the National standard of meteorological drought indices and agricultural drought indices and the 1959-2008 meteorological data from 268 meteorological stations in <span class="hlt">southern</span> China, this paper analyzed the climatic background and distribution characteristics of seasonal drought in <span class="hlt">southern</span> China, and made a three-level division of seasonal drought in this region by the methods of combining comprehensive factors and main factors, stepwise screening indices, comprehensive disaster analysis, and clustering analysis. The first-level division was with the annual aridity index and seasonal aridity index as the main indices and with the precipitation during entire year and main crop growing season as the auxiliary indices, dividing the <span class="hlt">southern</span> China into four primary <span class="hlt">zones</span>, including semi-arid <span class="hlt">zone</span>, sub-humid <span class="hlt">zone</span>, humid <span class="hlt">zone</span>, and super-humid <span class="hlt">zone</span>. On this basis, the four primary <span class="hlt">zones</span> were subdivided into nine second-level <span class="hlt">zones</span>, including one semi-arid area-temperate-cold semi-arid hilly area in Sichuan-Yunnan Plateau, three sub-humid areas of warm sub-humid area in the north of the Yangtze River, warm-tropical sub-humid area in South China, and temperate-cold sub-humid plateau area in Southwest China, three humid areas of temperate-tropical humid area in the Yangtze River Basin, warm-tropical humid area in South China, and warm humid hilly area in Southwest China, and two super-humid areas of warm-tropical super-humid area in South China and temperate-cold super-humid hilly area in the south of the Yangtze River and Southwest China. According to the frequency and intensity of multiple drought indices, the second-level <span class="hlt">zones</span> were further divided into 29 third-level <span class="hlt">zones</span>. The distribution of each seasonal drought <span class="hlt">zone</span> was</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.2530S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.2530S"><span>Dating intrusion and cooling of Cenozoic granitoids in the Dinarides of <span class="hlt">Southern</span> Serbia and discussion of the geodynamic setting of Paleocene-Miocene magmatism in the Balkan Peninsula</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Senecio, Schefer; Cvetković, Vladica; Fügenschuh, Bernhard; Kounov, Alexandre; Ovtcharova, Maria; Schaltegger, Urs; Schmid, Stefan</p> <p>2010-05-01</p> <p>This paper presents the results of high precision single grain U-Pb dating and Hf isotope analyses of thermally annealed and chemically abraded zircons from the Kopaonik, Drenje, Željin, Golija and Polumir intrusions in the inner Dinarides of <span class="hlt">southern</span> Serbia. In addition, new zircon and apatite fission-track data together with local structural observations, allow for constraining the subsequent exhumation history of these intrusions. Two age groups were determined for the granitoid intrusions: (i) Oligocene intrusive bodies (Kopaonik, Drenje, Željin) ranging in age from 31.7 to 30.6 Ma and (ii) Miocene Golija and Polumir intrusions which emplaced at 20.58-20.17 and 18.06-17.74 Ma, respectively. The apatite fission-track modelling combined with zircon central ages show rapid cooling from above 300 to ca. 80 °C between 16 and 10 Ma for granitoids of both age groups, followed by rather slow cooling to surface temperatures for the last 10 Ma. Fast Middle Miocene cooling between 16 and 10 Ma is caused by extensional exhumation of the plutons that are located in the footwall of core-complexes. This documents that Miocene magmatism and core-complex formation leading to formation of the Pannonian basin also affected a part of the mountainous areas of the internal Dinarides. The discussion of an extensive set of age data from the literature and the geodynamic setting of the Balkan Peninsula reveals that there is no direct connection of the Dinaridic Late Eocene to earliest Miocene magmatic belt with contemporaneous Periadriatic intrusions in the <span class="hlt">Alps</span> and along the Mid-Hungarian fault <span class="hlt">zone</span> as proposed in the literature. We insist on the fact that the subduction polarity in the <span class="hlt">Alps</span>, including that within the Western Carpathians north of the Mid-Hungarian fault <span class="hlt">zone</span>, is opposite to that of the Dinarides during the given time span. Instead, we propose that Late Eocene to Oligocene magmatism, which affects the Adria-derived lower plate units of the internal Dinarides, may be</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T31E2958X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T31E2958X"><span>Is the Vincent fault in <span class="hlt">southern</span> California the Laramide subduction <span class="hlt">zone</span> megathrust?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xia, H.; Platt, J. P.</p> <p>2016-12-01</p> <p>The Vincent fault (VF) in the San Gabriel Mountains, <span class="hlt">southern</span> California separates a Meso-Proterozoic gneiss complex and Mesozoic granitoid rocks in the upper plate from the ocean-affiliated Late Cretaceous Pelona schist in the lower plate, and it has been widely interpreted as the original Laramide subduction megathrust. A 500 to 1000 m thick mylonite <span class="hlt">zone</span>, consisting of a low-stress (LS) section at the bottom, a high-stress (HS) section at the top, and a weakly deformed section in between, is developed above the VF. Our kinematic, thermobarometric and geochronological analysis of the mylonite <span class="hlt">zone</span> indicates that the VF is a normal fault. Shear sense indicators including asymmetric porphyroblasts, quartz new grain fabric, mineral fish, and quartz CPO from the HS and the LS sections exhibit a top-to-SE sense of shear on the SW-dipping mylonitic foliation, which is contrary to what one would expect for the Laramide subduction megathrust. A few samples from the LS section were overprinted by HS microstructure, implying that the LS mylonites predate the HS mylonites. TitaniQ thermometer and Si-in-muscovite barometer show that the P-T conditions are 389 ± 6 °C, 5 kbar for the LS mylonites and 329 ± 6 °C, 2.4 kbar for HS mylonites. Considering the temporal sequence of HS and LS mylonites, they are likely to be formed during exhumation. A comparison with the lower plate leads to the same conclusion. The top 80-100 m of the Pelona schist underneath the VF is folded and also mylonitized, forming the Narrows synform and S3 simultaneously. Our previous study found that S3 of the Pelona schist has a top-to-SE sense of shear and similar P-T conditions as the LS mylonite in the upper plate, so S3 of the Pelona schist is likely to be formed together with the LS mylonites in the upper plate. While mylonitization of Pelona schist (S3) overprinted both the subduction-related S1 fabric and the return-flow-related S2 fabric, it is reasonable to argue that the mylonite <span class="hlt">zone</span> above</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7156G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7156G"><span>Modern diatom assemblages as tools for paleoenvironmental reconstruction: a case study from estuarine intertidal <span class="hlt">zones</span> in <span class="hlt">southern</span> Iberia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gomes, Ana; Boski, Tomasz; Moura, Delminda; Szkornik, Katie; Witkowski, Andrzej; Connor, Simon; Laut, Lazaro; Sobrinho, Frederico; Oliveira, Sónia</p> <p>2017-04-01</p> <p>Diatoms are unicellular algae that live in saline, brackish and freshwater environments, either floating in the water column or associated with various substrates (e.g., muddy and sandy sediments). Diatoms are sensitive to changes in environmental variables such as salinity, sediment texture, nutrient availability, light and temperature. This characteristic, along with their short lifespan, allows diatoms to quickly respond to environmental changes. Since the beginning of the 20th century, diatoms have been widely used to study the Holocene evolution of estuaries worldwide, particularly to reconstruct ecological responses to sea-level and climate changes. However, diatoms have been poorly studied in estuarine intertidal <span class="hlt">zones</span>, due to the complexity of these environments, which have both fluvial and marine influences. The aim of this study was to understand diatom diversity and spatial distribution in intertidal <span class="hlt">zones</span> from two geomorphologically and hydrologically distinct estuaries. Sediment samples were collected from within the intertidal <span class="hlt">zones</span> along the Arade and Guadiana River estuaries in <span class="hlt">southern</span> Iberia. The sampling points embraced almost all the tidal and salinity gradients of both estuaries, capturing the highest possible environmental variability and hence of diatom assemblages. At each sampling point, the salinity and pH of the sediment interstitial water were measured. The sediment samples were subdivided for diatom identification, textural analysis and organic matter determination. All sampling points were georeferenced by DGPS and the duration of tidal inundation was calculated for each site. Following diatom identification, the data were analysed statistically (i.e. cluster analysis, PCA, DCA and RDA). The present study revealed that there is a great diatom diversity in both estuaries (418 species), with several species new to science. The most important diatom species (with abundances higher or equal to 5%) occur in five ecological groups, which are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28860675','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28860675"><span>Changes of forest cover and disturbance regimes in the mountain forests of the <span class="hlt">Alps</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bebi, P; Seidl, R; Motta, R; Fuhr, M; Firm, D; Krumm, F; Conedera, M; Ginzler, C; Wohlgemuth, T; Kulakowski, D</p> <p>2017-03-15</p> <p>Natural disturbances, such as avalanches, snow breakage, insect outbreaks, windthrow or fires shape mountain forests globally. However, in many regions over the past centuries human activities have strongly influenced forest dynamics, especially following natural disturbances, thus limiting our understanding of natural ecological processes, particularly in densely-settled regions. In this contribution we briefly review the current understanding of changes in forest cover, forest structure, and disturbance regimes in the mountain forests across the European <span class="hlt">Alps</span> over the past millennia. We also quantify changes in forest cover across the entire <span class="hlt">Alps</span> based on inventory data over the past century. Finally, using the Swiss <span class="hlt">Alps</span> as an example, we analyze in-depth changes in forest cover and forest structure and their effect on patterns of fire and wind disturbances, based on digital historic maps from 1880, modern forest cover maps, inventory data on current forest structure, topographical data, and spatially explicit data on disturbances. This multifaceted approach presents a long-term and detailed picture of the dynamics of mountain forest ecosystems in the <span class="hlt">Alps</span>. During pre-industrial times, natural disturbances were reduced by fire suppression and land-use, which included extraction of large amounts of biomass that decreased total forest cover. More recently, forest cover has increased again across the entire <span class="hlt">Alps</span> (on average +4% per decade over the past 25-115 years). Live tree volume (+10% per decade) and dead tree volume (mean +59% per decade) have increased over the last 15-40 years in all regions for which data were available. In the Swiss <span class="hlt">Alps</span> secondary forests that established after 1880 constitute approximately 43% of the forest cover. Compared to forests established previously, post-1880 forests are situated primarily on steep slopes (>30°), have lower biomass, a more aggregated forest structure (primarily stem-exclusion stage), and have been more strongly</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3067597','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3067597"><span>Characterization and Manipulation of the Pathway-Specific Late Regulator <span class="hlt">Alp</span>W Reveals Streptomyces ambofaciens as a New Producer of Kinamycins ▿ †</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bunet, Robert; Song, Lijiang; Mendes, Marta Vaz; Corre, Christophe; Hotel, Laurence; Rouhier, Nicolas; Framboisier, Xavier; Leblond, Pierre; Challis, Gregory L.; Aigle, Bertrand</p> <p>2011-01-01</p> <p>The genome sequence of Streptomyces ambofaciens, a species known to produce the congocidine and spiramycin antibiotics, has revealed the presence of numerous gene clusters predicted to be involved in the biosynthesis of secondary metabolites. Among them, the type II polyketide synthase-encoding <span class="hlt">alp</span> cluster was shown to be responsible for the biosynthesis of a compound with antibacterial activity. Here, by means of a deregulation approach, we gained access to workable amounts of the antibiotics for structure elucidation. These compounds, previously designated as alpomycin, were shown to be known members of kinamycin family of antibiotics. Indeed, a mutant lacking <span class="hlt">Alp</span>W, a member of the TetR regulator family, was shown to constitutively produce kinamycins. Comparative transcriptional analyses showed that expression of <span class="hlt">alp</span>V, the essential regulator gene required for activation of the biosynthetic genes, is strongly maintained during the stationary growth phase in the <span class="hlt">alp</span>W mutant, a stage at which <span class="hlt">alp</span>V transcripts and thereby transcripts of the biosynthetic genes normally drop off. Recombinant <span class="hlt">Alp</span>W displayed DNA binding activity toward specific motifs in the promoter region of its own gene and that of <span class="hlt">alp</span>V and <span class="hlt">alp</span>Z. These recognition sequences are also targets for <span class="hlt">Alp</span>Z, the γ-butyrolactone-like receptor involved in the regulation of the <span class="hlt">alp</span> cluster. However, unlike that of <span class="hlt">Alp</span>Z, the <span class="hlt">Alp</span>W DNA-binding ability seemed to be insensitive to the signaling molecules controlling antibiotic biosynthesis. Together, the results presented in this study reveal S. ambofaciens to be a new producer of kinamycins and <span class="hlt">Alp</span>W to be a key late repressor of the cellular control of kinamycin biosynthesis. PMID:21193612</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T34C..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T34C..05S"><span>Could Fluid Seeps Originate from the Seismogenic <span class="hlt">Zone</span>? Evidence from <span class="hlt">Southern</span> Costa Rica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silver, E. A.; Kluesner, J. W.; Nale, S. M.; Bangs, N. L.; McIntosh, K. D.; Ranero, C. R.; Tryon, M. D.; Spinelli, G. A.; Rathburn, T.; von Huene, R.</p> <p>2013-12-01</p> <p>The prevailing conceptual model of convergent margin hydrogeology is one in which fluid sourced from porosity loss and dehydration reactions seaward of the updip limit of the seismogenic <span class="hlt">zone</span> reach the seafloor via relatively low angle splay faults that act as high permeability conduits through an otherwise nearly impermeable upper plate [e.g., Lauer and Saffer, GRL, 39:L13604, 2012; Saffer and Tobin, Ann. Rev. Earth Planet. Sci., 39:157-186, 2011]. Interpretation of newly acquired 3D seismic reflection data and high resolvability multibeam and backscatter data, showing evidence for abundant potential fluid seeps sourced beneath the sediment cover and farther landward than previously thought possible, may require reevaluation of this concept. Kluesner et al. [2013, G3, doi:10.1002/ggge.20058], identified 160 potential fluid seeps in an 11 km wide swath off <span class="hlt">southern</span> Costa Rica, based on pockmarks and high backscatter mounds, each showing subsurface indicators of fluid migration in the seismic data. Approximately half of these potential seeps are on the outer continental shelf; these are landward of the updip limit of the seismogenic <span class="hlt">zone</span>, as estimated by both the transition from high to low reflectivity of the plate boundary and the intersection of the 150°C isotherm with the plate boundary [Ranero et al., 2008, G3, doi:10.1029/2007GC001679; Bangs et al., 2012, AGU Fall Meeting, T13A-2587; Bangs et al., this meeting]. We have mapped high probability fluid pathways beneath these potential seeps, based on seismic meta-attribute volumes calculated using user-trained neural network algorithms [Kluesner et al., this meeting]. The mapped fluid pathways are high-angle through the sedimentary section, and they root into basement highs and basement faults. Fluids could originate along the plate interface, where potential sources and pathways are known (Mid-slope sites: Hensen et al., 2004, Geology, 32:201-204), or above or below the interface, although sources from these</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5546047','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5546047"><span>Zooplankton communities and Bythotrephes longimanus in lakes of the montane region of the northern <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Horváth, Zsófia; Vad, Csaba F.; Preiler, Christian; Birtel, Julia; Matthews, Blake; Ptáčníková, Radka; Ptáčník, Robert</p> <p>2017-01-01</p> <p>Abstract Lakes in the <span class="hlt">Alps</span> represent a considerable fraction of nutrient-poor lakes in Central Europe, with unique biodiversity and ecosystem properties. Although some individual lakes are well studied, less knowledge is available on large-scale patterns essential to general understanding of their functioning. Here, we aimed to describe crustacean zooplankton communities (Cladocera, Copepoda) and identify their environmental drivers in the pelagic <span class="hlt">zone</span> of 54 oligotrophic lakes in the montane region of the <span class="hlt">Alps</span> (400–1200 m) in Austria, Germany, and Switzerland, covering a spatial scale of 650 km. Moreover, we aimed to provide data on the distribution and ecological requirements of the North American invader Bythotrephes longimanus in its Central European native range. Communities were mainly dominated by widespread species typical of lowland habitats, and only a few true specialists of oligotrophic alpine lakes were present. The most frequent taxa were the Daphnia longispina complex and Eudiaptomus gracilis, with 48 and 45 occurrences, respectively. Species richness decreased with altitude and increased with lake area. The main structuring factors of community composition were chlorophyll a concentration and depth, which drove an apparent separation of mesotrophic and oligotrophic communities. Bythotrephes had 13 occurrences, showing a preference for deep oligotrophic lakes. Its presence was not coupled with lower crustacean species richness, as was repeatedly observed in North America. Additionally, it frequently co-occurred with the other large predatory cladoceran, Leptodora kindtii. B. longimanus might be considered a truly montane species in Central Europe, given its absence in lowland and alpine lakes. PMID:28824797</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5480595','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5480595"><span>Zooplankton communities and Bythotrephes longimanus in lakes of the montane region of the northern <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Horváth, Zsófia; Vad, Csaba F.; Preiler, Christian; Birtel, Julia; Matthews, Blake; Ptáčníková, Radka; Ptacnik, Robert</p> <p>2017-01-01</p> <p>Lakes in the <span class="hlt">Alps</span> represent a considerable fraction of nutrient-poor lakes in Central Europe, with unique biodiversity and ecosystem properties. Although some individual lakes are well-studied, less knowledge is available on large-scale patterns essential to generalise the understanding of their functioning. Here, we aimed to describe crustacean zooplankton communities (Cladocera, Copepoda) and identify their environmental drivers in the pelagic <span class="hlt">zone</span> of 54 oligotrophic lakes in the montane region of the <span class="hlt">Alps</span> (400–1200 m) in Austria, Germany, and Switzerland, covering a spatial scale of 650 km. Moreover, we aimed to provide data on the distribution and ecological requirements of the North American invader Bytotrephes longimanus in its Central European native range. Communities were mainly dominated by widespread species typical of lowland habitats, and only a few true specialists of oligotrophic alpine lakes were present. The most frequent taxa were the Daphnia longispina complex and Eudiaptomus gracilis, with 48 and 45 occurrences, respectively. Species richness decreased with altitude and increased with lake area. The main structuring factors of community composition were chlorophyll a concentration and depth, which drove an apparent separation of mesotrophic and oligotrophic communities. Bytotrephes had 13 occurrences, showing a preference for deep oligotrophic lakes. Its presence was not coupled with lower crustacean species richness as it was repeatedly observed in North America. Additionally, it frequently co-occurred with the other large predatory cladoceran, Leptodora kindtii. B. longimanus might be considered a truly montane species in Central Europe, given its absence in lowland and alpine lakes. PMID:28649318</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5978V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5978V"><span>Chemical and oxygen isotope <span class="hlt">zonings</span> in garnet from subducted continental crust record mineral replacement and metasomatism</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vho, Alice; Rubatto, Daniela; Regis, Daniele; Baumgartner, Lukas; Bouvier, Anne-Sophie</p> <p>2017-04-01</p> <p>, and variations up to 6.5‰ in Cima Bonze garnets suggest significant metasomatic replacement from external fluids. The combination of oxygen isotopes, trace element geochemistry and P-T modelling allows reconstructing the major stages of metasomatism, as well as identifying the nature of the fluid interacting with the rock at each metamorphic stage. REFERENCES Lardeaux, J. M., & Spalla, M. I. (1991). From granulites to eclogites in the Sesia <span class="hlt">zone</span> (Italian Western <span class="hlt">Alps</span>): A record of the opening and closure of the Piedmont ocean. Journal of Metamorphic Geology, 9, 35-59. Regis, D., Rubatto, D., Darling, J., Cenki-Tok, B., Zucali, M., & Engi, M. (2014). Multiple metamorphic stages within an eclogite-facies terrane (Sesia <span class="hlt">Zone</span>, Western <span class="hlt">Alps</span>) revealed by Th-U-Pb petrochronology. Journal of Petrology, 55(7), 1429-1456. Robyr, M., Darbellay, B., & Baumgartner, L. P. (2014). Matrix-dependent garnet growth in polymetamorphic rocks of the Sesia <span class="hlt">zone</span>, Italian <span class="hlt">Alps</span>. Journal of Metamorphic Geology, 32(1), 3-24.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.S13D4519Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.S13D4519Y"><span>Spatial Distribution of earthquakes off the coast of Fukushima Two Years after the M9 Earthquake: the <span class="hlt">Southern</span> Area of the 2011 Tohoku Earthquake Rupture <span class="hlt">Zone</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamada, T.; Nakahigashi, K.; Shinohara, M.; Mochizuki, K.; Shiobara, H.</p> <p>2014-12-01</p> <p>Huge earthquakes cause vastly stress field change around the rupture <span class="hlt">zones</span>, and many aftershocks and other related geophysical phenomenon such as geodetic movements have been observed. It is important to figure out the time-spacious distribution during the relaxation process for understanding the giant earthquake cycle. In this study, we pick up the <span class="hlt">southern</span> rupture area of the 2011 Tohoku earthquake (M9.0). The seismicity rate keeps still high compared with that before the 2011 earthquake. Many studies using ocean bottom seismometers (OBSs) have been doing since soon after the 2011 Tohoku earthquake in order to obtain aftershock activity precisely. Here we show one of the studies at off the coast of Fukushima which is located on the <span class="hlt">southern</span> part of the rupture area caused by the 2011 Tohoku earthquake. We deployed 4 broadband type OBSs (BBOBSs) and 12 short-period type OBSs (SOBS) in August 2012. Other 4 BBOBSs attached with absolute pressure gauges and 20 SOBSs were added in November 2012. We recovered 36 OBSs including 8 BBOBSs in November 2013. We selected 1,000 events in the vicinity of the OBS network based on a hypocenter catalog published by the Japan Meteorological Agency, and extracted the data after time corrections caused by each internal clock. Each P and S wave arrival times, P wave polarity and maximum amplitude were picked manually on a computer display. We assumed one dimensional velocity structure based on the result from an active source experiment across our network, and applied time corrections every station for removing ambiguity of the assumed structure. Then we adopted a maximum-likelihood estimation technique and calculated the hypocenters. The results show that intensive activity near the Japan Trench can be seen, while there was a quiet seismic <span class="hlt">zone</span> between the trench <span class="hlt">zone</span> and landward high activity <span class="hlt">zone</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol1/pdf/CFR-2011-title33-vol1-sec3-05-30.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol1/pdf/CFR-2011-title33-vol1-sec3-05-30.pdf"><span>33 CFR 3.05-30 - Sector New York Marine Inspection <span class="hlt">Zone</span> and Captain of the Port <span class="hlt">Zone</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>..., longitude 73°40′00″ W; thence south to a point near the <span class="hlt">southern</span> shore of Manursing Island at latitude 40°58... Sector New York's Marine Inspection <span class="hlt">Zone</span> and Captain of the Port <span class="hlt">Zone</span> start near the south shore of Long Island at latitude 40°35′24″ N, longitude 73°46′36″ W proceeding southeast to a point at latitude 38°28...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AnGla..40..119B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AnGla..40..119B"><span>Culturable yeasts in meltwaters draining from two glaciers in the Italian <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buzzini, Pietro; Turchetti, Benedetta; Diolaiuti, Guglielmina; D'Agata, Carlo; Martini, Alessandro; Smiraglia, Claudio</p> <p></p> <p>The meltwaters draining from two glaciers in the Italian <span class="hlt">Alps</span> contain metabolically active yeasts isolable by culture-based laboratory procedures. The average number of culturable yeast cells in the meltwaters was 10 20 colony-forming units (CFU) L-1, whereas supraglacial stream waters originating from overlying glacier ice contained <1 CFU L-1. Yeast cell number increased as the suspended-sediment content of the water samples increased. Basidiomycetous yeasts represent >80% of isolated strains (Cryptococcus spp. and Rhodotorula spp. were 33.3% and 17.8% of total strains, respectively). Culturable yeasts were psychrotolerant, predominantly obligate aerobes and able to degrade organic macromolecules (e.g. starch, esters, lipids, proteins). To the authors' knowledge, this is the first study to report the presence of culturable yeasts in meltwaters originating from glaciers. On the basis of these results, it is reasonable to suppose that the viable yeasts observed in meltwaters derived predominantly from the subglacial <span class="hlt">zone</span> and that they originated from the subglacial microbial community. Their metabolic abilities could contribute to the microbial activity occurring in subglacial environments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.477...59T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.477...59T"><span>Hydrous melts weaken the mantle, crystallization of pargasite and phlogopite does not: Insights from a petrostructural study of the Finero peridotites, <span class="hlt">southern</span> <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tommasi, Andréa; Langone, Antonio; Padrón-Navarta, José Alberto; Zanetti, Alberto; Vauchez, Alain</p> <p>2017-11-01</p> <p>This study reports petrostructural observations in the pargasite and phlogopite-bearing Finero peridotite massif (Italian Western <span class="hlt">Alps</span>), which suggest that the pervasive foliation in this massif was formed by deformation concomitant with percolation of hydrous Si-rich melts: (1) diffuse contacts, but systematic parallelism between the pyroxenitic layers and the foliation of the peridotite (2) strong shape and crystal preferred orientations (SPO and CPO), but subhedral or interstitial shapes and weak intracrystalline deformation of the hydrous phases, (3) CPO, but interstitial shapes of the pyroxenes, (4) very coarse olivine grain sizes, which are correlated to the olivine abundance, and (5) elongated shapes, but weak intracrystalline deformation, and extremely weak and highly variable CPO of olivine. The pervasive deformation of the Finero peridotite occurred therefore under conditions that allowed coexistence of H2O-CO2-bearing melts, pargasite, and spinel, that is, temperatures of 980-1080 °C and pressures <2 GPa. The petrostructural observations suggest that the presence of hydrous melts results in accommodation of large amounts of deformation by stress-controlled dissolution-precipitation and advective transport of matter by the melts and in fast grain boundary migration in olivine. By consequence, it produces significant rheological weakening. Water contents in olivine are <4 ppm wt., implying limited contribution of hydration of olivine to weakening. In addition, the analysis of protomylonites composing the external domains of the shear <span class="hlt">zones</span> that overprint the pervasive foliation indicates that the transition to melt-free conditions results in enhanced contribution of dislocation creep to the deformation. The associated increase of the peridotites' strength leads to onset of strain localization. The latter is not correlated to the local abundance in pargasite or phlogopite, implying that crystallization of amphiboles or phlogopite, even at concentrations of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29475674','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29475674"><span>Environmental radiation and potential ecological risk levels in the intertidal <span class="hlt">zone</span> of <span class="hlt">southern</span> region of Tamil Nadu coast (HBRAs), India.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Punniyakotti, J; Ponnusamy, V</p> <p>2018-02-01</p> <p>Natural radioactivity content and heavy metal concentration in the intertidal <span class="hlt">zone</span> sand samples from the <span class="hlt">southern</span> region of Tamil Nadu coast, India, have been analyzed using gamma ray spectrometer and ICP-OES, respectively. From gamma spectral analysis, the average radioactivity contents of 238 U, 232 Th, and 40 K in the intertidal <span class="hlt">zone</span> sand samples are 12.13±4.21, 59.03±4.26, and 197.03±26.24Bq/kg, respectively. The average radioactivity content of 232 Th alone is higher than the world average value. From the heavy metal analysis, the average Cd, Cr, Cu, Ni, Pb, and Zn concentrations are 3.1, 80.24, 82.84, 23.66, 91.67, and 137.07ppm, respectively. The average Cr and Ni concentrations are lower, whereas other four metal (Cd, Cu, Pb, and Zn) concentrations are higher than world surface rock average values. From pollution assessment parameter values, the pollution level is "uncontaminated to moderately contaminated" in the study area. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018DokES.479..463P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018DokES.479..463P"><span>Ankaramite: A New Type of High-Magnesium and High-Calcium Primitive Melt in the Magnitogorsk Island-Arc <span class="hlt">Zone</span> (<span class="hlt">Southern</span> Urals)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pushkarev, E. V.; Ryazancev, A. V.; Gottman, I. A.; Degtyarev, K. E.; Kamenetsky, V. S.</p> <p>2018-04-01</p> <p>This work describes the geological position, mineral and chemical composition of high-Mg effusive ankaramites occurring as dykes and lava flows. They were found in the mélange <span class="hlt">zone</span> of the western margin of the Magnitogorsk island arc <span class="hlt">zone</span> in the <span class="hlt">Southern</span> Urals. Data on the liquidus association of phenocrysts and on the composition of the matrix of effusives are given. According to the data obtained, the conclusion was drawn that the ankaramites studied can be attributed to the primary island arc melts, which were not subject to essential differentiation. This type of effusives has not been distinguished previously among island arc volcanogenic formations of the Urals. It is shown that ankaramites can be considered to be primary melts parental for dunite-clinopyroxenites-gabbro complexes of Ural-Alaskan type. The occurrence of ankaramites in the Paleozoic island arc formations of the Urals indicates the wehrlite composition of the mantle as the reason for the extremely wide development of wehrlites and clinopyroxenites in different mafic-ultramafic complexes of the Urals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T43H..04C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T43H..04C"><span>Subduction <span class="hlt">Zone</span> Dewatering at the <span class="hlt">Southern</span> End of New Zealand's Hikurangi Margin - Insights from 2D Seismic Tomography</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crutchley, G. J.; Klaeschen, D.</p> <p>2016-12-01</p> <p>The <span class="hlt">southern</span> end of New Zealand's Hikurangi subduction margin is characterised by highly-oblique convergence as it makes a southward transition into a right-lateral transform plate boundary. Long-offset seismic data that cross part of the offshore portion of this transition <span class="hlt">zone</span> give new insight into the nature of the margin. We have carried out two-dimensional pre-stack depth migrations with an iterative reflection tomography to update the velocity field on two seismic lines in this area. The depth-migrated sections show much-improved imaging of faulting within the wedge, and the seismic velocities themselves give clues about the distribution of gas and/or overpressured regions at the plate boundary and within the overlying wedge. A fascinating observation is a major splay fault that has been (or continues to be) a preferred dewatering pathway through the wedge, evidenced by a thermal anomaly that has left its mark on the overlying gas hydrate layer. Another interesting observation is a thick and laterally extensive low velocity <span class="hlt">zone</span> beneath the subduction interface, which might have important implications for the long-term mechanical stability of the interface. Our on-going work on these data is focused on amplitude versus offset analysis in an attempt to better understand the nature of the subduction interface and also the shallower gas hydrate system. This study is an example of how distinct disturbances of the gas hydrate system can provide insight into subduction <span class="hlt">zone</span> fluid flow processes that are important for understanding wedge stability and ultimately earthquake hazard.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015418','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015418"><span>Enrichment of trace elements in garnet amphibolites from a paleo-subduction <span class="hlt">zone</span>: Catalina Schist, <span class="hlt">southern</span> California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sorensen, Sorena S.; Grossman, J.N.</p> <p>1989-01-01</p> <p>The abundance, P-T stability, solubility, and element-partitioning behavior of minerals such as rutile, garnet, sphene, apatite, zircon, zoisite, and allanite are critical variables in models for mass transfer from the slab to the mantle wedge in deep regions of subduction <span class="hlt">zones</span>. The influence of these minerals on the composition of subduction-related magmas has been inferred (and disputed) from inverse modelling of the geochemistry of island-arc basalt, or by experiment. Although direct samples of the dehydration + partial-melting region of a mature subduction <span class="hlt">zone</span> have not been reported from subduction complexes, garnet amphibolites from melanges of circumpacific and Caribbean blueschist terranes reflect high T (>600??C) conditions in shallower regions. Such rocks record geochemical processes that affected deep-seated, high-T portions of paleo-subduction <span class="hlt">zones</span>. In the Catalina Schist, a subduction-<span class="hlt">zone</span> metamorphic terrane of <span class="hlt">southern</span> California, metasomatized and migmatitic garnet amphibolites occur as blocks in a matrix of meta-ultramafic rocks. This mafic and ultramafic complex may represent either slab-derived material accreted to the mantle wedge of a nascent subduction <span class="hlt">zone</span> or a portion of a shear <span class="hlt">zone</span> closely related to the slab-mantle wedge contact, or both. The trace-element geochemistry of the complex and the distribution of trace elements among the minerals of garnet amphibolites were studied by INAA, XRF, electron microprobe, and SEM. In order of increasing alteration from a probable metabasalt protolith, three common types of garnet amphibolite blocks in the Catalina Schist are: (1) non-migmatitic, clinopyroxene-bearing blocks, which are compositionally similar to MORB that has lost an albite component; (2) garnet-amphibolite blocks, which have rinds that reflect local interaction between metabasite, metaperidotite, and fluid; and (3) migmatites that are extremely enriched in Th, HFSE, LREE, and other trace elements. These trace-element enrichments</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-06-12/pdf/2013-13946.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-06-12/pdf/2013-13946.pdf"><span>78 FR 35103 - Extension of Border <span class="hlt">Zone</span> in the State of New Mexico</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-06-12</p> <p>... Record. This change is intended to promote commerce and tourism in <span class="hlt">southern</span> New Mexico while still... border <span class="hlt">zone</span>. In order to facilitate commerce, trade, and tourism in <span class="hlt">southern</span> New Mexico, while still..., trade, and tourism in <span class="hlt">southern</span> New Mexico, while still ensuring that sufficient safeguards are in place...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27120994','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27120994"><span>Revealing heterogeneous nucleation of primary Si and eutectic Si by <span class="hlt">AlP</span> in hypereutectic Al-Si alloys.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Jiehua; Hage, Fredrik S; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter</p> <p>2016-04-28</p> <p>The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of <span class="hlt">AlP</span>. Although P, in the form of <span class="hlt">AlP</span> particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of <span class="hlt">AlP</span> particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of <span class="hlt">AlP</span> particles (or <span class="hlt">AlP</span> 'patch' dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by <span class="hlt">AlP</span> in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3143052','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3143052"><span>Apomixis is not prevalent in subnival to nival plants of the European <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hörandl, Elvira; Dobeš, Christoph; Suda, Jan; Vít, Petr; Urfus, Tomáš; Temsch, Eva M.; Cosendai, Anne-Caroline; Wagner, Johanna; Ladinig, Ursula</p> <p>2011-01-01</p> <p>Background and Aims High alpine environments are characterized by short growing seasons, stochastic climatic conditions and fluctuating pollinator visits. These conditions are rather unfavourable for sexual reproduction of flowering plants. Apomixis, asexual reproduction via seed, provides reproductive assurance without the need of pollinators and potentially accelerates seed development. Therefore, apomixis is expected to provide selective advantages in high-alpine biota. Indeed, apomictic species occur frequently in the subalpine to alpine grassland <span class="hlt">zone</span> of the European <span class="hlt">Alps</span>, but the mode of reproduction of the subnival to nival flora was largely unknown. Methods The mode of reproduction in 14 species belonging to seven families was investigated via flow cytometric seed screen. The sampling comprised 12 species typical for nival to subnival plant communities of the European <span class="hlt">Alps</span> without any previous information on apomixis (Achillea atrata, Androsace alpina, Arabis caerulea, Erigeron uniflorus, Gnaphalium hoppeanum, Leucanthemopsis alpina, Oxyria digyna, Potentilla frigida, Ranunculus alpestris, R. glacialis, R. pygmaeus and Saxifraga bryoides), and two high-alpine species with apomixis reported from other geographical areas (Leontopodium alpinum and Potentilla crantzii). Key Results Flow cytometric data were clearly interpretable for all 46 population samples, confirming the utility of the method for broad screenings on non-model organisms. Formation of endosperm in all species of Asteraceae was documented. Ratios of endosperm : embryo showed pseudogamous apomixis for Potentilla crantzii (ratio approx. 3), but sexual reproduction for all other species (ratios approx. 1·5). Conclusions The occurrence of apomixis is not correlated to high altitudes, and cannot be readily explained by selective forces due to environmental conditions. The investigated species have probably other adaptations to high altitudes to maintain reproductive assurance via sexuality. We</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29412939','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29412939"><span>Fast and sensitive near-infrared fluorescent probes for <span class="hlt">ALP</span> detection and 3d printed calcium phosphate scaffold imaging in vivo.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Park, Chul Soon; Ha, Tai Hwan; Kim, Moonil; Raja, Naren; Yun, Hui-Suk; Sung, Mi Jeong; Kwon, Oh Seok; Yoon, Hyeonseok; Lee, Chang-Soo</p> <p>2018-05-15</p> <p>Alkaline phosphatase (<span class="hlt">ALP</span>) is a critical biological marker for osteoblast activity during early osteoblast differentiation, but few biologically compatible methods are available for its detection. Here, we describe the discovery of highly sensitive and rapidly responsive novel near-infrared (NIR) fluorescent probes (NIR-Phos-1, NIR-Phos-2) for the fluorescent detection of <span class="hlt">ALP</span>. <span class="hlt">ALP</span> cleaves the phosphate group from the NIR skeleton and substantially alters its photophysical properties, therefore generating a large "turn-on" fluorescent signal resulted from the catalytic hydrolysis on fluorogenic moiety. Our assay quantified <span class="hlt">ALP</span> activity from 0 to 1.0UmL -1 with a 10 -5 -10 -3 UmL -1 limit of detection (LOD), showing a response rate completed within 1.5min. A potentially powerful approach to probe <span class="hlt">ALP</span> activity in biological systems demonstrated real-time monitoring using both concentration- and time-dependent variations of endogenous <span class="hlt">ALP</span> in live cells and animals. Based on high binding affinity to bone tissue of phosphate moiety, bone-like scaffold-based <span class="hlt">ALP</span> detection in vivo was accessed using NIR probe-labeled three-dimensional (3D) calcium deficient hydroxyapatite (CDHA) scaffolds. They were subcutaneously implanted into mice and monitored <span class="hlt">ALP</span> signal changes using a confocal imaging system. Our results suggest the possibility of early-stage <span class="hlt">ALP</span> detection during neo-bone formation inside a bone defect, by in vivo fluorescent evaluation using 3D CDHA scaffolds. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1813219M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1813219M"><span>Recognition of hyper-extended rifted margin remnants in the internal <span class="hlt">zone</span> of the Alpine belt: A tribute to Marco Beltrando</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mohn, Geoffroy; Manatschal, Gianreto</p> <p>2016-04-01</p> <p>Marco Beltrando was part of the young generation of Alpine geologists who challenged the interpretation of the Western <span class="hlt">Alps</span> by combining a classical field approach and modern techniques (e.g. 40Ar/39Ar and (U-Th)/He thermochronology). His work provides the foundation to re-interpret some of the classical sections through the Alpine belt and may impact the way of thinking about the nature and structure of internal parts of collisional orogens. This contribution will present the main outcomes of the work of Marco Beltrando and their implications for the understanding of Alpine type orogens. Since his PhD, Marco Beltrando focused most of his work on the study of the internal parts of the Western <span class="hlt">Alps</span>. He investigated in great details the complex, multiphase structural and metamorphic evolution of the Penninic units in the Western <span class="hlt">Alps</span>. He concluded that these units went through several cycles of shortening and extension during the Alpine orogeny, with major implications for the <span class="hlt">Alps</span> but also other orogenic belts. After his PhD, he focused his research on the pre-orogenic evolution of the Alpine belt. He first worked on the Petit St. Bernard area, where he identified relics of the former hyper-extended Tethyan rifted margin. Thanks to his work and his amazing knowledge of the Western <span class="hlt">Alps</span>, he understood the potential importance of rift-inheritance in controlling the architecture and evolution of the Alpine belt. In parallel to the study of the orogenic evolution, he developed a new methodology to recognize rift-related lithostratigraphic units in highly deformed and metamorphosed parts of the <span class="hlt">Alps</span>. His innovative work allowed a re-assessment of several areas in the Western <span class="hlt">Alps</span> and demonstrates the importance of rift inheritance. Recently, he started a new research project on the evolution of the <span class="hlt">Southern</span> <span class="hlt">Alps</span> highlighting the importance of heating and cooling cycles resulting from complex successions of rifting events. In spite of his young age, Marco Beltrando was at</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.3879O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.3879O"><span>The onset of alpine pastoral systems in the Eastern <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oeggl, Klaus; Festi, Daniela; Putzer, Andreas</p> <p>2015-04-01</p> <p>Since the discovery of the Neolithic glacier mummy "Ötzi" in the nival belt of the main Alpine ridge, the onset of alpine pasture is matter of a highly controversial debate both in archaeology and in palaeo-ecology of the Eastern <span class="hlt">Alps</span>. The implication is that his sojourn in the high-altitudes of the <span class="hlt">Alps</span> is considered to be connected with pastoral nomadism. Regrettably any archaeological evidence for the existence of such Neolithic alpine pastoral systems is missing up to now and the assumption is based on palynological data only. However, also the palynological record is ambiguous, because pasture indicators in the alpine regions react positive on grazing as well as on fertilization induced by a higher runoff of precipitation. Thus alpine pasture indicators reflect both grazing pressure and climatic change. Anyhow, alpine pastoral systems are a common practice in Alpine animal husbandry, but from an economic point of view such a seasonal vertical transhumance is costly. There are three main reasons for its practice: i) climatic, ii) economic (mainly in connection with population pressure or mining activities), and iii) cultural ideology. In this study we tested the above mentioned reasons in an interdisciplinary study on the beginning of pastoral activities in high altitudes in the central part of the Eastern <span class="hlt">Alps</span>. This is conducted by palynological analyses of peat deposits situated in the vicinity of the timberline (1600 - 2400 m a.s.l.) combined with archaeological surveys. The investigated sites are located in traditional Alpine transhumance regions and aligned on a transect through the central part of the Eastern <span class="hlt">Alps</span>. The studies reveal that grazing pressure is reflected since the Bronze Age, which is corroborated by archaeological findings in the vicinity of the investigated sites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pages.unibas.ch/earth/tecto/Members/Kounov/Downloads/van_der_Lelij_et_al_2010_(Tectonics).pdf','USGSPUBS'); return false;" href="http://pages.unibas.ch/earth/tecto/Members/Kounov/Downloads/van_der_Lelij_et_al_2010_(Tectonics).pdf"><span>Thermochronology and tectonics of the Leeward Antilles: Evolution of the <span class="hlt">southern</span> Caribbean Plate boundary <span class="hlt">zone</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>van der Lelij, Roelant; Spikings, Richard A.; Kerr, Andrew C.; Kounov, Alexandre; Cosca, Michael; Chew, David; Villagomez, Diego</p> <p>2010-01-01</p> <p>Tectonic reconstructions of the Caribbean Plate are severely hampered by a paucity of geochronologic and exhumation constraints from anastomosed basement blocks along its <span class="hlt">southern</span> margin. New U/Pb, 40Ar/39Ar, apatite fission track, and apatite (U-Th)/He data constrain quantitative thermal and exhumation histories, which have been used to propose a model for the tectonic evolution of the emergent parts of the Bonaire Block and the <span class="hlt">southern</span> Caribbean Plate boundary <span class="hlt">zone</span>. An east facing arc system intruded through an oceanic plateau during ~90 to ~87 Ma and crops out on Aruba. Subsequent structural displacements resulted in >80°C of cooling on Aruba during 70–60 Ma. In contrast, exhumation of the island arc sequence exposed on Bonaire occurred at 85–80 Ma and 55–45 Ma. Santonian exhumation on Bonaire occurred immediately subsequent to burial metamorphism and may have been driven by the collision of a west facing island arc with the Caribbean Plate. Island arc rocks intruded oceanic plateau rocks on Gran Roque at ~65 Ma and exhumed rapidly at 55–45 Ma. We attribute Maastrichtian-Danian exhumation on Aruba and early Eocene exhumation on Bonaire and Gran Roque to sequential diachronous accretion of their basement units to the South American Plate. Widespread unconformities indicate late Eocene subaerial exposure. Late Oligocene–early Miocene dextral transtension within the Bonaire Block drove subsidence and burial of crystalline basement rocks of the Leeward Antilles to ≤1 km. Late Miocene–recent transpression caused inversion and ≤1 km of exhumation, possibly as a result of the northward escape of the Maracaibo Block.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/15744','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/15744"><span>Soil water nitrate concentrations in giant cane and forest riparian buffer <span class="hlt">zones</span></span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Jon E. Schoonover; Karl W. J. Williard; James J. Zaczek; Jean C. Mangun; Andrew D. Carver</p> <p>2003-01-01</p> <p>Soil water nitrate concentrations in giant cane and forest riparian buffer <span class="hlt">zones</span> along Cypress Creek in <span class="hlt">southern</span> Illinois were compared to determine if the riparian <span class="hlt">zones</span> were sources or sinks for nitrogen in the rooting <span class="hlt">zone</span>. Suction lysimeters were used to collect soil water samples from the lower rooting <span class="hlt">zone</span> in each of the two vegetation types. The cane riparian...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22382038-alp-conversion-soft-ray-excess-outskirts-coma-cluster','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22382038-alp-conversion-soft-ray-excess-outskirts-coma-cluster"><span><span class="hlt">ALP</span> conversion and the soft X-ray excess in the outskirts of the Coma cluster</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kraljic, David; Rummel, Markus; Conlon, Joseph P., E-mail: David.Kraljic@physics.ox.ac.uk, E-mail: Markus.Rummel@physics.ox.ac.uk, E-mail: j.conlon1@physics.ox.ac.uk</p> <p>2015-01-01</p> <p>It was recently found that the soft X-ray excess in the center of the Coma cluster can be fitted by conversion of axion-like-particles (<span class="hlt">ALPs</span>) of a cosmic axion background (CAB) to photons. We extend this analysis to the outskirts of Coma, including regions up to 5 Mpc from the center of the cluster. We extract the excess soft X-ray flux from ROSAT All-Sky Survey data and compare it to the expected flux from <span class="hlt">ALP</span> to photon conversion of a CAB. The soft X-ray excess both in the center and the outskirts of Coma can be simultaneously fitted by <span class="hlt">ALP</span> tomore » photon conversion of a CAB. Given the uncertainties of the cluster magnetic field in the outskirts we constrain the parameter space of the CAB. In particular, an upper limit on the CAB mean energy and a range of allowed <span class="hlt">ALP</span>-photon couplings are derived.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EurSS..49..326S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EurSS..49..326S"><span>Composition and structure of aggregates from compacted soil horizons in the <span class="hlt">southern</span> steppe <span class="hlt">zone</span> of European Russia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sorokin, A. S.; Abrosimov, K. N.; Lebedeva, M. P.; Kust, G. S.</p> <p>2016-03-01</p> <p>The composition and structure of aggregates from different agrogenic soils in the <span class="hlt">southern</span> steppe <span class="hlt">zone</span> of European Russia have been studied. It is shown that the multi-level study (from the macro- to microlevel) of these horizons makes it possible to identify soil compaction caused by different elementary soil processes: solonetz-forming, vertisol-forming, and mechanical (wheel) compaction in the rainfed and irrigated soils. The understanding of the genesis of the compaction of soil horizons (natural or anthropogenic) is important for the economic evaluation of soil degradation. It should enable us to make more exact predictions of the rates of degradation processes and undertake adequate mitigation measures. The combined tomographic and micromorphological studies of aggregates of 1-2 and 3-5 mm in diameter from compacted horizons of different soils have been performed for the first time. Additional diagnostic features of negative solonetz- forming processes (low open porosity of aggregates seen on tomograms and filling of a considerable part of the intraped pores with mobile substance) and the vertisol-forming processes (large amount of fine intraaggregate pores seen on tomograms and a virtual absence of humus-clay plasma in the intraped <span class="hlt">zone</span>)—have been identified. It is shown that the combination of microtomographic and micromorphological methods is helpful for studying the pore space of compacted horizons in cultivated soils.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14..403K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14..403K"><span>Pleistocene alterations of drainage network between the <span class="hlt">Alps</span> and the Pannonian Basin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kovács, G.</p> <p>2012-04-01</p> <p>The investigated study area is situated in the transition <span class="hlt">zone</span> between the still uplifting Eastern <span class="hlt">Alps</span> and the subsiding Little Hungarian Plain (Joó 1992), bordered by Lafnitz (Lapincs), Répce (Rabnitz) and Rába (Raab) rivers. The contrasting forcing of the regions of differential uplift created a distinctive surface morphology of typically low relief that has a characteristic drainage network pattern as well. Our study is aimed at the reconstruction of the surface evolution by separation of individual geomorphic domains delineated by their geomorphometric characteristics. The hilly area is mostly covered by Miocene sediments. The mesoscale geomorphological units of the study area are influenced by the uplifting metamorphic core complex of Koszeg-Rechnitz Mountains (Tari - Horváth 1995), by the also metamorphic and relatively uplifting Vas Hill as well as by the subsiding grabens. There are two dominant flow directions alternating downstream. Valley segments are often bordered by steep scarps, which were identified by previous research as listric normal faults and grabens. Largely, the investigated area consists of tilted blocks bordered by 30-60 m high and steep, fault-related escarpments as it was demonstrated by the analysis of lignite layers, topographic sections and topographic swath analyses (Kovács et al. 2010, Kovács et al. 2011). Drainage network reorganizations occurred in several steps during the Pleistocene. Corresponding landforms are abrupt changes in stream direction, wind gaps, uplifted terrace levels built up of sedimentary rocks and wide alluvial valleys. Terraces are best developed along the Strem stream, which has a strikingly small drainage area at present, due to the Pinka River, which captured the upper parts of the drainage basin. The widest valley belongs to Pinka River. Drainage reorganizations are most likely due to the uplifting scarps that diverted the streams. Remainders of previous cross-valleys are wind gaps. Using these</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1818420I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1818420I"><span>Reaching and abandoning the furthest ice extent during the Last Glacial Maximum in the <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ivy-Ochs, Susan; Wirsig, Christian; Zasadni, Jerzy; Hippe, Kristina; Christl, Marcus; Akçar, Naki; Schluechter, Christian</p> <p>2016-04-01</p> <p>During the Last Glacial Maximum (LGM) in the European <span class="hlt">Alps</span> (late Würm) local ice caps and extensive ice fields in the high <span class="hlt">Alps</span> fed huge outlet glaciers that occupied the main valleys and extended onto the forelands as piedmont lobes. Records from numerous sites suggest advance of glaciers beyond the mountain front by around 30 ka (Ivy-Ochs 2015 and references therein). Reaching of the maximum extent occurred by about 27-26 ka, as exemplified by dates from the Rhein glacier area (Keller and Krayss, 2005). Abandonment of the outermost moraines at sites north and south of the <span class="hlt">Alps</span> was underway by about 24 ka. In the high <span class="hlt">Alps</span>, systems of transection glaciers with transfluences over many of the Alpine passes dominated, for example, at Grimsel Pass in the Central <span class="hlt">Alps</span> (Switzerland). 10Be exposure ages of 23 ± 1 ka for glacially sculpted bedrock located just a few meters below the LGM trimline in the Haslital near Grimsel Pass suggest a pulse of ice surface lowering at about the same time that the foreland moraines were being abandoned (Wirsig et al., 2016). Widespread ice surface lowering in the high <span class="hlt">Alps</span> was underway by no later than 18 ka. Thereafter, glaciers oscillated at stillstand and minor re-advance positions on the northern forelands for several thousand years forming the LGM stadial moraines. Final recession back within the mountain front took place by 19-18 ka. Recalculation to a common basis of all published 10Be exposure dates for boulders situated on LGM moraines suggests a strong degree of synchrony for the timing of onset of ice decay both north and south of the <span class="hlt">Alps</span>. Ivy-Ochs, S., 2015, Cuadernos de investigación geográfica 41: 295-315. Keller, O., Krayss, E., 2005, Vierteljahrschr. Naturforsch. Gesell. Zürich 150: 69-85. Wirsig, C. et al., 2016, J. Quat. Sci. 31: 46-59.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4511626','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4511626"><span>Transport accidents among children and adolescents at the emergency service of a teaching hospital in the <span class="hlt">southern</span> <span class="hlt">zone</span> of the city of São Paulo☆☆☆</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gorios, Carlos; de Souza, Renata Maia; Gerolla, Viviane; Maso, Bruno; Rodrigues, Cintia Leci; Armond, Jane de Eston</p> <p>2014-01-01</p> <p>Objective to describe the victim profile and circumstances of transport accidents involving children and adolescents who were attended at a teaching hospital in the <span class="hlt">southern</span> <span class="hlt">zone</span> of the city of São Paulo. Methods this was an individual observational case series study among patients up to the age of 19 years who were attended at a hospital in the <span class="hlt">southern</span> <span class="hlt">zone</span> of the city of São Paulo, state of São Paulo, Brazil, due to traffic accidents. The files notifying suspected or confirmed cases of violence and accidents (SIVVA files) covering January to December 2012 were analyzed. Results among the 149 cases notified, 64.4% related to males and 35.6% to females. The transport accidents were predominantly among males, irrespective of age. The main injury diagnoses were superficial head trauma (24.8%) followed by multiple non-specified trauma (36.4%), in both sexes. Conclusion transport accidents among children and adolescents occurred more often among males. The main transport accidents among the children and adolescents attended as emergency cases were caused by motor vehicles and motorcycles. Among the accident victims, the largest proportion was attended because of being run over. PMID:26229833</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015E%26PSL.412..220F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015E%26PSL.412..220F"><span>Quantifying the Eocene to Pleistocene topographic evolution of the southwestern <span class="hlt">Alps</span>, France and Italy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fauquette, Séverine; Bernet, Matthias; Suc, Jean-Pierre; Grosjean, Anne-Sabine; Guillot, Stéphane; van der Beek, Peter; Jourdan, Sébastien; Popescu, Speranta-Maria; Jiménez-Moreno, Gonzalo; Bertini, Adele; Pittet, Bernard; Tricart, Pierre; Dumont, Thierry; Schwartz, Stéphane; Zheng, Zhuo; Roche, Emile; Pavia, Giulio; Gardien, Véronique</p> <p>2015-02-01</p> <p>We evaluate the topographic evolution of the southwestern <span class="hlt">Alps</span> using Eocene to Pleistocene pollen data combined with existing sedimentological, petrographic and detrital geo- and thermochronological data. We report 32 new pollen analyses from 10 sites completed by an existing dataset of 83 samples from 14 localities situated across the southwestern <span class="hlt">Alps</span>, including both the pro- and the retro-foreland basins. The presence of microthermic tree pollen (mainly Abies, Picea) indicates that this part of the mountain belt attained elevations over 1900 m as early as the Oligocene. Inferred rapid surface uplift during the mid-Oligocene coincided with a previously documented brief phase of rapid erosional exhumation, when maximum erosion rates may have reached values of up to 1.5-2 km/Myr. Slower long-term average exhumation rates of ∼0.3 km/Myr since the Late Oligocene helped maintaining the high Alpine topography of the southwestern <span class="hlt">Alps</span> until today. The relative abundances of meso-microthermic tree pollen (Cathaya, Cedrus and Tsuga) and microthermic tree pollen (Abies, Picea) in the pro- and retro-foreland basin deposits, indicate that the present-day asymmetric topography, with a relatively gentle western flank and steeper eastern flank, was established early in the southwestern <span class="hlt">Alps</span>, at least since the Early Miocene, and possibly since the Oligocene or Late Eocene. Therefore, the high topography and asymmetric morphology of this part of the <span class="hlt">Alps</span> has been maintained throughout the past ∼30 Ma.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017QSRv..170..121S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017QSRv..170..121S"><span>6-kyr record of flood frequency and intensity in the western Mediterranean <span class="hlt">Alps</span> - Interplay of solar and temperature forcing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sabatier, Pierre; Wilhelm, Bruno; Ficetola, Gentile Francesco; Moiroux, Fanny; Poulenard, Jérôme; Develle, Anne-Lise; Bichet, Adeline; Chen, Wentao; Pignol, Cécile; Reyss, Jean-Louis; Gielly, Ludovic; Bajard, Manon; Perrette, Yves; Malet, Emmanuel; Taberlet, Pierre; Arnaud, Fabien</p> <p>2017-08-01</p> <p>The high-resolution sedimentological and geochemical analysis of a sediment sequence from Lake Savine (Western Mediterranean <span class="hlt">Alps</span>, France) led to the identification of 220 event layers for the last 6000 years. 200 were triggered by flood events and 20 by underwater mass movements possibly related to earthquakes that occurred in 5 clusters of increase seismicity. Because human activity could influence the flood chronicle, the presence of pastures was reconstructed through ancient DNA, which suggested that the flood chronicle was mainly driven by hydroclimate variability. Weather reanalysis of historical floods allow to identify that mesoscale precipitation events called "East Return" events were the main triggers of floods recorded in Lake Savine. The first part of this palaeoflood record (6-4 kyr BP) was characterized by increases in flood frequency and intensity in phase with Northern Alpine palaeoflood records. By contrast, the second part of the record (i.e., since 4 kyr BP) was phased with <span class="hlt">Southern</span> Alpine palaeoflood records. These results suggest a palaeohydrological transition at approximately 4 kyr BP, as has been previously described for the Mediterranean region. This may have resulted in a change of flood-prone hydro-meteorological processes, i.e., in the balance between occurrence and intensity of local convective climatic phenomena and their influence on Mediterranean mesoscale precipitation events in this part of the <span class="hlt">Alps</span>. At a centennial timescale, increases in flood frequency and intensity corresponded to periods of solar minima, affecting climate through atmospheric changes in the Euro-Atlantic sector.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25859328','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25859328"><span>Ecological differentiation, lack of hybrids involving diploids, and asymmetric gene flow between polyploids in narrow contact <span class="hlt">zones</span> of Senecio carniolicus (syn. Jacobaea carniolica, Asteraceae).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hülber, Karl; Sonnleitner, Michaela; Suda, Jan; Krejčíková, Jana; Schönswetter, Peter; Schneeweiss, Gerald M; Winkler, Manuela</p> <p>2015-03-01</p> <p>Areas of immediate contact of different cytotypes offer a unique opportunity to study evolutionary dynamics within heteroploid species and to assess isolation mechanisms governing coexistence of cytotypes of different ploidy. The degree of reproductive isolation of cytotypes, that is, the frequency of heteroploid crosses and subsequent formation of viable and (partly) fertile hybrids, plays a crucial role for the long-term integrity of lineages in contact <span class="hlt">zones</span>. Here, we assessed fine-scale distribution, spatial clustering, and ecological niches as well as patterns of gene flow in parental and hybrid cytotypes in <span class="hlt">zones</span> of immediate contact of di-, tetra-, and hexaploid Senecio carniolicus (Asteraceae) in the Eastern <span class="hlt">Alps</span>. Cytotypes were spatially separated also at the investigated microscale; the strongest spatial separation was observed for the fully interfertile tetra- and hexaploids. The three main cytotypes showed highly significant niche differences, which were, however, weaker than across their entire distribution ranges in the Eastern <span class="hlt">Alps</span>. Individuals with intermediate ploidy levels were found neither in the diploid/tetraploid nor in the diploid/hexaploid contact <span class="hlt">zones</span> indicating strong reproductive barriers. In contrast, pentaploid individuals were frequent in the tetraploid/hexaploid contact <span class="hlt">zone</span>, albeit limited to a narrow strip in the immediate contact <span class="hlt">zone</span> of their parental cytotypes. AFLP fingerprinting data revealed introgressive gene flow mediated by pentaploid hybrids from tetra- to hexaploid individuals, but not vice versa. The ecological niche of pentaploids differed significantly from that of tetraploids but not from hexaploids.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816800M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816800M"><span>Eclogitic metatrondhjemites from metaophiolites of the Western <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, Silvana; Tartarotti, Paola; Meyzen, Chrstine; Benciolini, Luca; Toffolo, Luca</p> <p>2016-04-01</p> <p>Eclogitic metatrondhjemites from metaophiolites of the Western <span class="hlt">Alps</span> Martin S.**, Tartarotti P.*, Meyzen C. **, Benciolini L.***, Toffolo L. ** *Dipartimento di Scienze della Terra, Università degli Studi di Milano ** Dipartimento di Geoscienze, Università di Padova *** Dipartimento di Chimica, Fisica e Ambiente, Università di Udine In the Urtier valley (<span class="hlt">southern</span> Aosta Valley, Italy), the Piemonte metaophiolites mainly consist of serpentinized peridotites including pods and boudinaged layers of Fe-metagabbro and trondhjemite transposed in the main eclogitic foliation. The contact between serpentinized peridotites and Fe-metagabbro/trondhjemite is locally lined by chloriteschist and rodingite. The high pressure parageneses in the Fe-metagabbro are omphacite-garnet-rutile-glaucophane-phengite, and in the metatrondhjemite plagioclase-quartz-phengite-clinozoisite-epidote-garnet, respectively. Bulk-rock major and trace elements in addition to O isotope analyses were performed in both rock types. Fe-metagabbros are characterized by MgO wt% ranging between 6.11 and 9.63%, ∑REE= 20-101 ppm, (La/Yb)N = 0.22-0.91; trondhjemites have SiO2 43%, Al2O3 ranging between 21 and 24%, CaO ranging between 17 and 20%, ∑REE = 172 - 272 ppm, (La/Yb)N ranging between 7.78 and 13.70. The δ18O is 5.9 ‰ in a Fe-metagabbro sample and 7.4 ‰ in a trondhjemite sample, suggesting that these rocks have been affected by a weak oceanic low temperature alteration. The high CaO content may indicate a metasomatic process which could have occurred during the oceanic stage or at high pressure conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012BGD.....9.3423P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012BGD.....9.3423P"><span>Late summer particulate organic carbon export and twilight <span class="hlt">zone</span> remineralisation in the Atlantic sector of the <span class="hlt">Southern</span> Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Planchon, F.; Cavagna, A.-J.; Cardinal, D.; André, L.; Dehairs, F.</p> <p>2012-03-01</p> <p>During the Bonus-GoodHope (BGH) expedition (Jan-Mar 2008) we studied the water column distribution of total 234Th and biogenic particulate Ba (Baxs) in the Atlantic sector of the <span class="hlt">Southern</span> Ocean. The objective was to assess the export flux of particulate organic carbon (POC) from the surface to the mesopelagic twilight <span class="hlt">zone</span> along a section between the Cape Basin and Weddell Gyre. Export production of POC was estimated from steady state and non steady state export fluxes of 234Th which were converted into POC fluxes, using the POC/234Th ratio of large (>53 μm) suspended particles, collected via in-situ pumps. Deficits in 234Th activities were observed at all stations from the surface to the bottom of the mixed-layer. 234Th export fluxes from the upper 100 m ranged from 496 ± 57 dpm m-2 d-1 to 1195 ± 120 dpm m-2 d-1 for the steady state model and from 149 ± 18 dpm m-2 d-1 to 1217 ± 146 dpm m-2 d-1 for the non steady state model calculated for a time window of 15 to 22 days preceding the timing of the present cruise. The POC/234Thp ratio of large, potentially sinking particles (>53 μm), was observed to increase with latitude, from 1.9 ± 0.2 μmol dpm-1 and 1.7 ± 0.3 μmol dpm-1 in the Subtropical <span class="hlt">Zone</span> (STZ) and Subantarctic <span class="hlt">Zone</span> (SAZ), respectively, to 3.0 ± 0.2 μmol dpm-1 in the Polar Front <span class="hlt">Zone</span> (PFZ), 4.8 ± 1.9 μmol dpm-1 at the <span class="hlt">Southern</span> Antarctic Circumpolar Current Front (SACCF) to 4.1 ± 1.7 μmol dpm-1 in the northern Weddell Gyre, in line with an increasing contribution of larger cell diatoms. Steady state and non steady state POC export from the upper 100 m ranged from 0.9 ± 0.2 mmolC m-2 d-1 to 5.1 ± 2.1 mmolC m-2 d-1 and from 0.3 ± 0.0 mmolC m-2 d-1 to 4.9 ± 3.2 mmolC m-2 d-1, respectively. From the SAZ to the SACCF, non steady state POC export production represented only 15 to 54 % of the steady state POC flux, suggesting that the intensity of export had decreased over time partly due to the fact that regenerated-production based communities</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992CoMP..111..235I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992CoMP..111..235I"><span>Evolution of the upper mantle beneath the <span class="hlt">southern</span> Baikal rift <span class="hlt">zone</span>: an Sr-Nd isotope study of xenoliths from the Bartoy volcanoes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ionov, D. A.; Kramm, U.; Stosch, H.-G.</p> <p>1992-06-01</p> <p>Anhydrous and amphibole-bearing peridotite xenoliths occur in roughly equal quantitites in the Bartoy volcanic field about 100 km south of the <span class="hlt">southern</span> tip of Lake Baikal in Siberia (Russia). Whole-rock samples and pure mineral separates from nine xenoliths have been analyzed for Sr and Nd isotopes in order to characterize the upper mantle beneath the <span class="hlt">southern</span> Baikal rift <span class="hlt">zone</span>. In an Sr-Nd isotope diagram both dry and hydrous xenoliths from Bartoy plot at the junction between the fields of MORB and ocean island basalts. This contrasts with data available on two other localities around Lake Baikal (Tariat and Vitim) where peridotites typically have Sr-Nd isotope compositions indicative of strong long-term depletion in incompatible elements. Our data indicate significant chemical and isotopic heterogeneity in the mantle beneath Bartoy that may be attributed to its position close to an ancient suture <span class="hlt">zone</span> separating the Siberian Platform from the Mongol-Okhotsk mobile belt and occupied now by the Baikal rift. Two peridotites have clinopyroxenes depleted in light rare earth elements (LREE) with Sr and Nd model ages of about 2 Ga and seem to retain the trace element and isotopic signatures of old depleted lithospheric mantle, while all other xenoliths show different degrees of LREE-enrichment. Amphiboles and clinopyroxenes in the hydrous peridotites are in Sr-Nd isotopic disequilibrium. If this reflects in situ decay of 147Sm and 87Rb rather than heterogeneities produced by recent metasomatic formation of amphiboles then 300 400 Ma have passed since the minerals were last in equilibrium. This age range then indicates an old enrichment episode or repeated events during the Paleozoic in the lithospheric mantle initially depleted maybe ˜2 Ga ago. The Bartoy hydrous and enriched dry peridotites, therefore, are unlikely to represent fragments of a young asthenospheric bulge which, according to seismic reflection studies, reached the Moho at the axis of the Baikal rift <span class="hlt">zone</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title13-vol1/pdf/CFR-2014-title13-vol1-sec120-841.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title13-vol1/pdf/CFR-2014-title13-vol1-sec120-841.pdf"><span>13 CFR 120.841 - Qualifications for the <span class="hlt">ALP</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-01-01</p> <p>.... An applicant for <span class="hlt">ALP</span> status must show that it substantially meets the following criteria: (a) CDC staff experience. The CDC's staff must have well-trained, qualified loan officers who are knowledgeable concerning SBA's lending policies and procedures for the 504 program. The CDC must have at least one loan...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title13-vol1/pdf/CFR-2012-title13-vol1-sec120-841.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title13-vol1/pdf/CFR-2012-title13-vol1-sec120-841.pdf"><span>13 CFR 120.841 - Qualifications for the <span class="hlt">ALP</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>.... An applicant for <span class="hlt">ALP</span> status must show that it substantially meets the following criteria: (a) CDC staff experience. The CDC's staff must have well-trained, qualified loan officers who are knowledgeable concerning SBA's lending policies and procedures for the 504 program. The CDC must have at least one loan...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title13-vol1/pdf/CFR-2013-title13-vol1-sec120-841.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title13-vol1/pdf/CFR-2013-title13-vol1-sec120-841.pdf"><span>13 CFR 120.841 - Qualifications for the <span class="hlt">ALP</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-01-01</p> <p>.... An applicant for <span class="hlt">ALP</span> status must show that it substantially meets the following criteria: (a) CDC staff experience. The CDC's staff must have well-trained, qualified loan officers who are knowledgeable concerning SBA's lending policies and procedures for the 504 program. The CDC must have at least one loan...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title13-vol1/pdf/CFR-2011-title13-vol1-sec120-841.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title13-vol1/pdf/CFR-2011-title13-vol1-sec120-841.pdf"><span>13 CFR 120.841 - Qualifications for the <span class="hlt">ALP</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>.... An applicant for <span class="hlt">ALP</span> status must show that it substantially meets the following criteria: (a) CDC staff experience. The CDC's staff must have well-trained, qualified loan officers who are knowledgeable concerning SBA's lending policies and procedures for the 504 program. The CDC must have at least one loan...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860053057&hterms=bouguer&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbouguer','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860053057&hterms=bouguer&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbouguer"><span>Structure of the <span class="hlt">southern</span> Rio Grande rift from gravity interpretation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Daggett, P. H.; Keller, G. R.; Wen, C.-L.; Morgan, P.</p> <p>1986-01-01</p> <p>Regional Bouguer gravity anomalies in <span class="hlt">southern</span> New Mexico have been analyzed by two-dimensional wave number filtering and poly-nomial trend surface analysis of the observed gravity field. A prominent, regional oval-shaped positive gravity anomaly was found to be associated with the <span class="hlt">southern</span> Rio Grande rift. Computer modeling of three regional gravity profiles suggests that this anomaly is due to crustal thinning beneath the <span class="hlt">southern</span> Rio Grande rift. These models indicate a 25 to 26-km minimum crustal thickness within the rift and suggest that the rift is underlain by a broad <span class="hlt">zone</span> of anomalously low-density upper mantle. The <span class="hlt">southern</span> terminus of the anomalous <span class="hlt">zone</span> is approximately 50 km southwest of El Paso, Texas. A thinning of the rifted crust of 2-3 km relative to the adjacent Basin and Range province indicates an extension of about 9 percent during the formation of the modern <span class="hlt">southern</span> Rio Grande rift. This extension estimate is consistent with estimates from other data sources. The crustal thinning and anomalous mantle is thought to result from magmatic activity related to surface volcanism and high heat flow in this area.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH22B..04V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH22B..04V"><span>Cutting-edge Kinetic Physics with Parker Solar Probe and Solar Orbiter: The Arbitrary Linear Plasma Solver (<span class="hlt">ALPS</span>)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Verscharen, D.; Klein, K. G.; Chandran, B. D. G.; Stevens, M. L.; Salem, C. S.; Bale, S. D.</p> <p>2017-12-01</p> <p>The Arbitrary Linear Plasma Solver (<span class="hlt">ALPS</span>) is a parallelized numerical code that solves the dispersion relation in a hot (even relativistic) magnetized plasma with an arbitrary number of particle species with arbitrary gyrotropic equilibrium distribution functions for any direction of wave propagation with respect to the background field. In this way, <span class="hlt">ALPS</span> retains generality and overcomes the shortcomings of previous (bi-)Maxwellian solvers for the plasma dispersion relations. The unprecedented high-resolution particle and field data products from Parker Solar Probe (PSP) and Solar Orbiter (SO) will require novel theoretical tools. <span class="hlt">ALPS</span> is one such tool, and its use will make possible new investigations into the role of non-Maxwellian distributions in the near-Sun solar wind. It can be applied to numerous high-velocity-resolution systems, ranging from current space missions to numerical simulations. We will briefly discuss the <span class="hlt">ALPS</span> algorithm and demonstrate its functionality based on previous solar-wind measurements. We will then highlight our plans for future applications of <span class="hlt">ALPS</span> to PSP and SO observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Litho.262..135H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Litho.262..135H"><span>Subduction <span class="hlt">zone</span> mantle enrichment by fluids and Zr-Hf-depleted crustal melts as indicated by backarc basalts of the <span class="hlt">Southern</span> Volcanic <span class="hlt">Zone</span>, Argentina</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holm, Paul M.; Søager, Nina; Alfastsen, Mads; Bertotto, Gustavo W.</p> <p>2016-10-01</p> <p>We aim to identify the components metasomatizing the mantle above the subducting Nazca plate under part of the Andean <span class="hlt">Southern</span> Volcanic <span class="hlt">Zone</span> (SVZ). We present new major and ICP-MS trace element and Sr, Nd and high-precision Pb isotope analyses of primitive olivine-phyric alkali basalts from the Northern Segment Volcanic Field, part of the Payenia province in the backarc of the Transitional SVZ. One new 40Ar-39Ar age determination confirms the Late Pleistocene age of this most northerly part of the province. All analysed rocks have typical subduction <span class="hlt">zone</span> type incompatible element enrichment, and the rocks of the Northern Segment, together with the neighbouring Nevado Volcanic Field, have isotopic compositions intermediate between adjacent Transitional SVZ arc rocks and <span class="hlt">southern</span> Payenia OIB-type basaltic rocks. Modelling the Ba-Th-Sm variation we demonstrate that fluids as well as 1-2% melts of upper continental crust (UCC) enriched their mantle sources, and La-Nb-Sm variations additionally indicate that the pre-metasomatic sources ranged from strongly depleted to undepleted mantle. Low Eu/Eu* and Sr/Nd also show evidence for a UCC component in the source. The contribution of Chile Trench sediments to the magmas seems insignificant. The Zr/Sm and Hf/Sm ratios are relatively low in many of the Northern Segment rocks, ranging down to 17 and 0.45, respectively, which, together with relatively high Th/U, is argued to indicate that the metasomatizing crustal melts were derived by partial melting of subducted UCC that had residual zircon, in contrast to the UCC melts added to Transitional SVZ arc magmas. Mixing between depleted and undepleted mantle, enriched by UCC and fluids, is suggested by Sr, Nd and Pb isotopes of the Northern Segment and Nevado magmas. The metasomatized undepleted mantle south of the Northern Segment is suggested to be part of upwelling OIB-type mantle, whereas the pre-metasomatically depleted mantle also can be found as a component in some arc</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017QSRv..177...10S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017QSRv..177...10S"><span>Time constraints for post-LGM landscape response to deglaciation in Val Viola, Central Italian <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scotti, Riccardo; Brardinoni, Francesco; Crosta, Giovanni Battista; Cola, Giuseppe; Mair, Volkmar</p> <p>2017-12-01</p> <p>Across the northern European <span class="hlt">Alps</span>, a long tradition of Quaternary studies has constrained post-LGM (Last Glacial Maximum) landscape history. The same picture remains largely unknown for the <span class="hlt">southern</span> portion of the orogen. In this work, starting from existing 10Be exposure dating of three boulders in Val Viola, Central Italian <span class="hlt">Alps</span>, we present the first detailed, post-LGM reconstruction of landscape (i.e., glacial, periglacial and paraglacial) response south of the Alpine divide. We pursue this task through Schmidt-hammer exposure-age dating (SHD) at 34 sites including moraines, rock glaciers, protalus ramparts, rock avalanche deposits and talus cones. In addition, based on the mapping of preserved moraines and on the numerical SHD ages, we reconstruct the glacier extent of four different stadials, including Egesen I (13.1 ± 1.1 ka), Egesen II (12.3 ± 0.6 ka), Kartell (11.0 ± 1.4 ka) and Kromer (9.7 ± 1.4 ka), whose chronologies agree with available counterparts from north of the Alpine divide. Results show that Equilibrium Line Altitude depressions (ΔELAs) associated to Younger Dryas and Early Holocene stadials are smaller than documented at most available sites in the northern <span class="hlt">Alps</span>. These findings not only support the hypothesis of a dominant north westerly atmospheric circulation during the Younger Dryas, but also suggest that this pattern could have lasted until the Early Holocene. SHD ages on rock glaciers and protalus ramparts indicate that favourable conditions to periglacial landform development occurred during the Younger Dryas (12.7 ± 1.1 ka), on the valley slopes above the glacier, as well as in newly de-glaciated areas, during the Early Holocene (10.7 ± 1.3 and 8.8 ± 1.8 ka). The currently active rock glacier started to develop before 3.7 ± 0.8 ka and can be associated to the Löbben oscillation. Four of the five rock avalanches dated in Val Viola cluster within the Early Holocene, in correspondence of an atmospheric warming phase. By contrast</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2774763','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2774763"><span>Use of Rituximab for Refractory Cytopenias Associated with Autoimmune Lymphoproliferative Syndrome (<span class="hlt">ALPS</span>)</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rao, V. Koneti; Price, Susan; Perkins, Katie; Aldridge, Patricia; Tretler, Jean; Davis, Joie; Dale, Janet K.; Gill, Fred; Hartman, Kip R.; Stork, Linda C.; Gnarra, David J.; Krishnamurti, Lakshmanan; Newburger, Peter E.; Puck, Jennifer; Fleisher, Thomas</p> <p>2009-01-01</p> <p>Background <span class="hlt">ALPS</span> is a disorder of apoptosis resulting in accumulation of autoreactive lymphocytes, leading to marked lymphadenopathy, hepatosplenomegaly and multilineage cytopenias due to splenic sequestration and/or autoimmune destruction often presenting in childhood. We summarize our experience of rituximab use during the last 8 years in twelve patients, 9 children and 3 adults, out of 259 individuals with <span class="hlt">ALPS</span>, belonging to 166 families currently enrolled in studies at the National Institutes of Health. Methods Refractory immune thrombocytopenia (platelet count <20,000) in 9 patients and autoimmune hemolytic anemia (AIHA) in 3 patients led to treatment with rituximab. Among them, 7 patients had undergone prior surgical splenectomy; 3 had significant splenomegaly; and 2 had no palpable spleen. Results In 7 out of 9 patients with <span class="hlt">ALPS</span> and thrombocytopenia, rituximab therapy led to median response duration of 21months (range 14–36 months). In contrast, none of the 3 children treated with rituximab for AIHA responded. Noted toxicities included profound and prolonged hypogammaglobulinemia in 3 patients requiring replacement IVIG, total absence of antibody response to polysaccharide vaccines lasting up to 4 years after rituximab infusions in 1 patient and prolonged neutropenia in 1 patient. Conclusion Toxicities including hypogammaglobulinemia and neutropenia constitute an additional infection risk burden, especially in asplenic individuals, and may warrant avoidance of rituximab until other immunosuppressive medication options are exhausted. Long term follow up of <span class="hlt">ALPS</span> patients with cytopenias after any treatment is necessary to determine relative risks and benefits. PMID:19214977</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3047780','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3047780"><span>Effects of atmospheric and climate change at the timberline of the Central European <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wieser, Gerhard; Matyssek, Rainer; Luzian, Roland; Zwerger, Peter; Pindur, Peter; Oberhuber, Walter; Gruber, Andreas</p> <p>2011-01-01</p> <p>This review considers potential effects of atmospheric change and climate warming within the timberline ecotone of the Central European <span class="hlt">Alps</span>. After focusing on the impacts of ozone (O3) and rising atmospheric CO2 concentration, effects of climate warming on the carbon and water balance of timberline trees and forests will be outlined towards conclusions about changes in tree growth and treeline dynamics. Presently, ambient ground-level O3 concentrations do not exert crucial stress on adult conifers at the timberline of the Central European <span class="hlt">Alps</span>. In response to elevated atmospheric CO2 Larix decidua showed growth increase, whereas no such response was found in Pinus uncinata. Overall climate warming appears as the factor responsible for the observed growth stimulation of timberline trees. Increased seedling re-establishment in the Central European <span class="hlt">Alps</span> however, resulted from invasion into potential habitats rather than upward migration due to climate change, although seedlings will only reach tree size upon successful coupling with the atmosphere and thus loosing the beneficial microclimate of low stature vegetation. In conclusion, future climate extremes are more likely than the gradual temperature increase to control treeline dynamics in the Central European <span class="hlt">Alps</span>. PMID:21379395</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011DSRII..58.2293H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011DSRII..58.2293H"><span>Distribution, abundance and seasonal flux of pteropods in the Sub-Antarctic <span class="hlt">Zone</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Howard, W. R.; Roberts, D.; Moy, A. D.; Lindsay, M. C. M.; Hopcroft, R. R.; Trull, T. W.; Bray, S. G.</p> <p>2011-11-01</p> <p>Pteropods were identified from epipelagic net and trawl samples in the Sub-Antarctic <span class="hlt">Zone</span> during the 2007 mid-summer (January 17-February 20) Sub-Antarctic <span class="hlt">Zone</span> Sensitivity to Environmental Change (SAZ-Sense) voyage, as well as in a moored sediment trap in the same region. Overall pteropod densities during SAZ-Sense were lower than those reported for higher-latitude <span class="hlt">Southern</span> Ocean waters. The four major contributors to the Sub-Antarctic <span class="hlt">Zone</span> pteropod community during the SAZ-Sense voyage, Clio pyramidata forma antarctica, Clio recurva, Limacina helicina antarctica and Limacina retroversa australis, accounted for 93% of all pteropods observed. The distribution of the two dominant pteropods collected in the Sub-Antarctic <span class="hlt">Zone</span>, L. retroversa australis and C. pyramidata forma antarctica, is strongly related to latitude and depth. L. retroversa australis is typical of cold <span class="hlt">southern</span> (50-54°S) polar waters and C. pyramidata forma antarctica is typical of shallow (top 20 m) Sub-Antarctic <span class="hlt">Zone</span> waters. A moored sediment trap deployed to 2100 m at 47°S, 141°E in 2003/04 showed the pteropod flux in the Sub-Antarctic <span class="hlt">Zone</span> had late-Spring and mid-summer peaks. The diversity, abundance and distribution of pteropods collected during SAZ-Sense provide a timely benchmark against which to monitor future changes in SAZ ocean pteropod communities, particularly in light of predictions of declining aragonite saturation in the <span class="hlt">Southern</span> Ocean by the end of the century.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011SedG..235..249B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011SedG..235..249B"><span>Syndepositional tectonics recorded by soft-sediment deformation and liquefaction structures (continental Lower Permian sediments, <span class="hlt">Southern</span> <span class="hlt">Alps</span>, Northern Italy): Stratigraphic significance</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berra, F.; Felletti, F.</p> <p>2011-04-01</p> <p>The Lower Permian succession of the Central <span class="hlt">Southern</span> <span class="hlt">Alps</span> (Lombardy, Northern Italy) was deposited in fault-controlled continental basins, probably related to transtensional tectonics. We focussed our study on the stratigraphic record of the Lower Permian Orobic Basin, which consists of a 1000 m thick succession of prevailing continental clastics with intercalations of ignimbritic flows and tuffs (Pizzo del Diavolo Formation, PDV) resting on the underlying prevailing pyroclastic flows of the Cabianca Volcanite. The PDV consists of a lower part (composed of conglomerates passing laterally to sandstones and distally to silt and shales), a middle part (pelitic, with carbonates) and an upper part (alternating sandstone, silt and volcanic flows). Syndepositional tectonics during the deposition of the PDV is recorded by facies distribution, thickness changes and by the presence of deformation and liquefaction structures interpreted as seismites. Deformation is recorded by both ductile structures (ball-and-pillow, plastic intrusion, disturbed lamination, convolute stratification and slumps) and brittle structures (sand dykes and autoclastic breccias). Both the sedimentological features and the geodynamic setting of the depositional basin confidently support the interpretation of the described deformation features as related to seismic shocks. The most significant seismically-induced deformation is represented by a slumped horizon (about 4 m thick on average) which can be followed laterally for more than 5 km. The slumped bed consists of playa-lake deposits (alternating pelites and microbial carbonates, associated with mud cracks and vertebrate tracks). The lateral continuity and the evidence of deposition on a very low-angle surface along with the deformation/liquefaction of the sediments suggest that the slump was triggered by a high-magnitude earthquake. The stratigraphic distribution of the seismites allows us to identify time intervals of intense seismic activity</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-08-26/pdf/2011-21556.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-08-26/pdf/2011-21556.pdf"><span>76 FR 53381 - Endangered and Threatened Wildlife and Plants; Termination of the <span class="hlt">Southern</span> Sea Otter...</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-08-26</p> <p>...We, the U.S. Fish and Wildlife Service (Service), propose to remove the regulations that govern the <span class="hlt">southern</span> sea otter (Enhydra lutris nereis) translocation program, including the establishment of an experimental population of <span class="hlt">southern</span> sea otters, and all associated management actions. We are also proposing to amend the Authority citation for 50 CFR part 17 by removing the reference to Public Law 99- 625, the statute that authorized the Secretary to promulgate regulations establishing the <span class="hlt">southern</span> sea otter translocation program. Removal of the regulations will terminate the program. We are proposing this action because we believe that the <span class="hlt">southern</span> sea otter translocation program has failed to fulfill its purpose, as outlined in the <span class="hlt">southern</span> sea otter translocation plan, and that our recovery and management goals for the species cannot be met by continuing the program. Our conclusion is based, in part, on an evaluation of the program against specific failure criteria established at the program's inception. This proposed action would terminate the designation of the experimental population of <span class="hlt">southern</span> sea otters, abolish the <span class="hlt">southern</span> sea otter translocation and management <span class="hlt">zones</span>, and eliminate the current requirement to remove <span class="hlt">southern</span> sea otters from San Nicolas Island and the management <span class="hlt">zone</span>. This proposed rule would also eliminate future actions, required under the current regulations, to capture and relocate <span class="hlt">southern</span> sea otters for the purpose of establishing an experimental population, and to remove <span class="hlt">southern</span> sea otters in perpetuity from an ``otter-free'' management <span class="hlt">zone</span>. As a result, it would allow <span class="hlt">southern</span> sea otters to expand their range naturally into <span class="hlt">southern</span> California waters. We have prepared a revised draft supplemental environmental impact statement (SEIS) and an initial regulatory flexibility analysis (IRFA) to accompany this proposed rule.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4338502','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4338502"><span>Are different facets of plant diversity well protected against climate and land cover changes? A test study in the French <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Thuiller, Wilfried; Guéguen, Maya; Georges, Damien; Bonet, Richard; Chalmandrier, Loïc; Garraud, Luc; Renaud, Julien; Roquet, Cristina; Van Es, Jérémie; Zimmermann, Niklaus E.; Lavergne, Sébastien</p> <p>2014-01-01</p> <p>Climate and land cover changes are important drivers of the plant species distributions and diversity patterns in mountainous regions. Although the need for a multifaceted view of diversity based on taxonomic, functional and phylogenetic dimensions is now commonly recognized, there are no complete risk assessments concerning their expected changes. In this paper, we used a range of species distribution models in an ensemble-forecasting framework together with regional climate and land cover projections by 2080 to analyze the potential threat for more than 2,500 plant species at high resolution (2.5 km × 2.5 km) in the French <span class="hlt">Alps</span>. We also decomposed taxonomic, functional and phylogenetic diversity facets into α and β components and analyzed their expected changes by 2080. Overall, plant species threats from climate and land cover changes in the French <span class="hlt">Alps</span> were expected to vary depending on the species’ preferred altitudinal vegetation <span class="hlt">zone</span>, rarity, and conservation status. Indeed, rare species and species of conservation concern were the ones projected to experience less severe change, and also the ones being the most efficiently preserved by the current network of protected areas. Conversely, the three facets of plant diversity were also projected to experience drastic spatial re-shuffling by 2080. In general, the mean α-diversity of the three facets was projected to increase to the detriment of regional β-diversity, although the latter was projected to remain high at the montane-alpine transition <span class="hlt">zones</span>. Our results show that, due to a high-altitude distribution, the current protection network is efficient for rare species, and species predicted to migrate upward. Although our modeling framework may not capture all possible mechanisms of species range shifts, our work illustrates that a comprehensive risk assessment on an entire floristic region combined with functional and phylogenetic information can help delimitate future scenarios of biodiversity and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeoJI.199..219C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeoJI.199..219C"><span>Evidences of a lithospheric fault <span class="hlt">zone</span> in the Sicily Channel continental rift (<span class="hlt">southern</span> Italy) from instrumental seismicity data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Calò, M.; Parisi, L.</p> <p>2014-10-01</p> <p>Sicily Channel is a portion of Mediterranean Sea, between Sicily (<span class="hlt">Southern</span> Italy) and Tunisia, representing a part of the foreland Apennine-Maghrebian thrust belt. The seismicity of the region is commonly associated with the normal faulting related to the rifting process and volcanic activity of the region. However, certain seismic patterns suggest the existence of some mechanism coexisting with the rifting process. In this work, we present the results of a statistical analysis of the instrumental seismicity and a reliable relocalization of the events recorded in the last 30 yr in the Sicily Channel and western Sicily using the Double Difference method and 3-D Vp and Vs tomographic models. Our procedure allows us to discern the seismic regime of the Sicily sea from the Tyrrhenian one and to describe the main features of an active fault <span class="hlt">zone</span> in the study area that could not be related to the rifting process. We report that most of the events are highly clustered in the region between 12.5°-13.5°E and 35.5°-37°N with hypocentral depth of 5-40 km, and reaching 70 km depth in the southernmost sector. The alignment of the seismic clusters, the distribution of volcanic and geothermal regions and the location of some large events occurred in the last century suggest the existence of a subvertical shear <span class="hlt">zone</span> extending for least 250 km and oriented approximately NNE-SSW. The spatial distribution of the seismic moment suggests that this transfer fault <span class="hlt">zone</span> is seismically discontinuous showing large seismic gaps in proximity of the Ferdinandea Island, and Graham and Nameless Bank.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T14D..03W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T14D..03W"><span>Slip <span class="hlt">Zone</span> versus Damage <span class="hlt">Zone</span> Micromechanics, Arima-Takasuki Tectonic Line, Japan</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>White, J. C.; Lin, A.</p> <p>2017-12-01</p> <p>The Arima-Takasuki Tectonic Line (ATTL) of <span class="hlt">southern</span> Honshu, Japan is defined by historically active faults and multiple splays producing M7 earthquakes. The damage <span class="hlt">zone</span> of the ATTL comprises a broad <span class="hlt">zone</span> of crushed, comminuted and pulverized granite/rhyolite1,2containing cm-scale slip <span class="hlt">zones</span> and highly comminuted injection veins. In this presentation, prior work on the ATTL fault rocks is extending to include microstructural characterization by transmission electron microscopy (TEM) from recent trenching of the primary slip <span class="hlt">zone</span>, as well as secondary slip <span class="hlt">zones</span>. This is necessary to adequately characterize the extremely fine-grained material (typically less than 1mm) in both damage and core <span class="hlt">zones</span>. Damage <span class="hlt">zone</span> material exhibits generally random textures3 whereas slip <span class="hlt">zones</span> are macroscopically foliated, and compositionally layered, notwithstanding a fairly homogeneous protolith. The latter reflects fluid-rock interaction during both coseismic and interseismic periods. The slip <span class="hlt">zones</span> are microstructurally heterogeneous at all scales, comprising not only cataclasites and phyllosilicate (clay)-rich gouge <span class="hlt">zones</span>, but Fe/Mn pellets or clasts that are contained within gouge. These structures appear to have rolled and would suggest rapid recrystallization and/or growth. A central question related to earthquake recurrence along existing faults is the nature of the gouge. In both near-surface exposures and ongoing drilling at depth, "plastic" or "viscous" gouge <span class="hlt">zones</span> comprise ultra-fine-grained clay-siliciclastic particles that would not necessarily respond in a simple frictional manner. Depending on whether the plastic nature of these slip <span class="hlt">zones</span> develops during or after slip, subsequent focusing of slip within them could be complicated. 1 Mitchell, T.A., Ben-Zion, Y., Shimamoto, T., 2011. Ear. Planet. Sci. Lett. 308, 284-297. 2 Lin, A., Yamashita, K, Tanaka, M. J., 2013. Struc. Geol. 48, 3-13. 3 White, J.C., Lin, A. 2016. Proc. AGU Fall Mtg., T42-02 San Francisco.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850005099','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850005099"><span>Archean sedimentation and tectonics in <span class="hlt">southern</span> Africa</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kidd, W. S. F.</p> <p>1984-01-01</p> <p>Sequences in the Barberton Mountain Land greenstone belt (<span class="hlt">southern</span> Africa) were examined to determine the nature of the sedimentary rocks, their tectonic implications, and their bearing on the present large-scale structural condition of the belt. Also assessed was whether there was evidence for a significant component of shallow-water-deposited sedimentary rocks in the parent materials of the Limpopo belt. The nature of a largehigh strain <span class="hlt">zone</span> on the <span class="hlt">southern</span> margin of the central Limpopo belt was examined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....9453H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....9453H"><span>Natural hazard risk assessment and management in the Matter valley, Swiss <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herz, T.; King, L.; Philippi, S.</p> <p>2003-04-01</p> <p>The Matter valley has a length of about 40 km and is surrounded by some of the highest peaks of the <span class="hlt">Alps</span> resulting in extreme altitudinal differences and a continental character of the climate. These climatic conditions cause a high glacier equilibrium line and therefore a periglacial belt of a large vertical extend. Due to the high relief energy, all kinds of natural hazards typical for high mountain environments occur. The steep western slopes are dominated by rockfalls, slope instabilities in bedrock and avalanches. A widespread cover of unconsolidated sediments on the eastern slopes induces landslides and debris flows, which often reach down to the valley bottom where they can dam up the river. Increasing population and modern land use forms required a more and more sensitive attitude towards natural hazard potentials in this endangered area. Assessment and management of natural hazard risks have been much improved during the last fifteen years and increasing amounts of money are spent each year in order to safeguard settlements, traffic lines, and other objects of the technical infrastructure. Numerous investigations concerning natural hazard risks have been made and the results are considered in the actual land use planning of the Canton. The planning law of the Canton Valais defines risk <span class="hlt">zones</span> as areas, which are endangered by natural hazards like avalanches, rockfalls, landslides and floodings. Risk assessment is done by overview maps (scale 1:25,000) which are specified by detailed risk analyses consisting of registers and detailed maps (scale 1:2,000 to 1:10,000). These analyses are integrated in the land <span class="hlt">zoning</span> by defining <span class="hlt">zones</span> of high, medium and low danger, associated with corresponding prohibitions, restrictions and conditions for utilisation. At present, the incorporation of the avalanche and rockfall register in local <span class="hlt">zoning</span> plans is completed in most communities of the Canton Valais. An additional inventory of 200 slope instabilities was</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917130K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917130K"><span>Ivrea mantle wedge and arc of the Western <span class="hlt">Alps</span> (I): Geophysical evidence for the deep structure</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kissling, Edi; Schmid, Stefan M.; Diehl, Tobias</p> <p>2017-04-01</p> <p>The construction of five crustal-scale profiles across the Western <span class="hlt">Alps</span> and the Ivrea mantle wedge integrates up-to-date geological and geophysical information and reveals important along strike changes in the overall structure of the crust of the Western Alpine arc (Schmid et al. 2017). The 3D crustal model of the Western <span class="hlt">Alps</span> represented by these cross sections is based on recent P-velocity local earthquake tomography that compliments the previously existing wealth of geophysical information about lithosphere structure in the region. As part of Adria mantle lithosphere exhibiting strong upward bending toward the plate boundary along the inner arc of the Western <span class="hlt">Alps</span>, the well-known Ivrea body plays a crucial role in our tectonic model. Until recently, however, the detailed 3D geometry of this key structure was only poorly constrained. In this study we present a review of the many seismic data in the region and we document the construction of our 3D lithosphere model by principles of multidisciplinary seismic tomography. Reference: Stefan M. Schmid, Edi Kissling, Douwe J.J. van Hinsbergen, Giancarlo Molli (2017). Ivrea mantle wedge and arc of the Western <span class="hlt">Alps</span> (2): Kinematic evolution of the <span class="hlt">Alps</span>-Apennines orogenic system. Abstract Volume EGU 2017.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGeo...10..803P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGeo...10..803P"><span>Late summer particulate organic carbon export and twilight <span class="hlt">zone</span> remineralisation in the Atlantic sector of the <span class="hlt">Southern</span> Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Planchon, F.; Cavagna, A.-J.; Cardinal, D.; André, L.; Dehairs, F.</p> <p>2013-02-01</p> <p>As part of the GEOTRACES Bonus-GoodHope (BGH) expedition (January-March 2008) in the Atlantic sector of the <span class="hlt">Southern</span> Ocean, particulate organic carbon (POC) export was examined from the surface to the mesopelagic twilight <span class="hlt">zone</span> using water column distributions of total 234Th and biogenic particulate Ba (Baxs). Surface POC export production was estimated from steady state and non steady state modelling of 234Th fluxes, which were converted into POC fluxes, using the POC/234Th ratio of large, potentially sinking particles (> 53 μm) collected via in situ pumps. Deficits in 234Th activities were observed at all stations from the surface to the bottom of the mixed layer, yielding 234Th export fluxes from the upper 100 m of 496 ± 214 dpm m-2 d-1 to 1195 ± 158 dpm m-2 d-1 for the steady state model and of 149 ±517 dpm m-2 d-1 to 1217 ± 231 dpm m-2 d-1 for the non steady state model. Using the POC/234Thp ratio of sinking particles (ratios varied from 1.7 ± 0.2 μmol dpm-1 to 4.8 ± 1.9 μmol dpm-1) POC export production at 100 m was calculated to range between 0.9 ± 0.4 and 5.1 ± 2.1 mmol C m-2 d-1,assuming steady state and between 0.3 ± 0.9 m-2 d-1 and 4.9 ± 3.3 mmol C m-2 d-1, assuming non steady state. From the comparison of both approaches, it appears that during late summer export decreased by 56 to 16% for the area between the sub-Antarctic <span class="hlt">zone</span> and the <span class="hlt">southern</span> Antarctic Circumpolar Current Front (SACCF), whereas it remained rather constant over time in the HNLC area south of the SACCF. POC export represented only 6 to 54% of new production, indicating that export efficiency was, in general, low, except in the vicinity of the SACCF, where export represented 56% of new production. Attenuation of the POC sinking flux in the upper mesopelagic waters (100-600 m depth interval) was evidenced both, from excess 234Th activities and from particulate biogenic Ba (Baxs) accumulation. Excess 234Th activities, reflected by 234Th/238U ratios as large as 1.21 ± 0</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Tectp.671...42B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Tectp.671...42B"><span>A refinement of the chronology of rift-related faulting in the Broadly Rifted <span class="hlt">Zone</span>, <span class="hlt">southern</span> Ethiopia, through apatite fission-track analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Balestrieri, Maria Laura; Bonini, Marco; Corti, Giacomo; Sani, Federico; Philippon, Melody</p> <p>2016-03-01</p> <p>To reconstruct the timing of rift inception in the Broadly Rifted <span class="hlt">Zone</span> in <span class="hlt">southern</span> Ethiopia, we applied the fission-track method to basement rocks collected along the scarp of the main normal faults bounding (i) the Amaro Horst in the <span class="hlt">southern</span> Main Ethiopian Rift and (ii) the Beto Basin in the Gofa Province. At the Amaro Horst, a vertical traverse along the major eastern scarp yielded pre-rift ages ranging between 121.4 ± 15.3 Ma and 69.5 ± 7.2 Ma, similarly to two other samples, one from the western scarp and one at the <span class="hlt">southern</span> termination of the horst (103.4 ± 24.5 Ma and 65.5 ± 4.2 Ma, respectively). More interestingly, a second traverse at the Amaro northeastern terminus released rift-related ages spanning between 12.3 ± 2.7 and 6.8 ± 0.7 Ma. In the Beto Basin, the ages determined along the base of the main (northwestern) fault scarp vary between 22.8 ± 3.3 Ma and 7.0 ± 0.7 Ma. We ascertain through thermal modeling that rift-related exhumation along the northwestern fault scarp of the Beto Basin started at 12 ± 2 Ma while in the eastern margin of the Amaro Horst faulting took place later than 10 Ma, possibly at about 8 Ma. These results suggest a reconsideration of previous models on timing of rift activation in the different sectors of the Ethiopian Rift. Extensional basin formation initiated more or less contemporaneously in the Gofa Province (~ 12 Ma) and Northern Main Ethiopian Rift (~ 10-12 Ma) at the time of a major reorganization of the Nubia-Somalia plate boundary (i.e., 11 ± 2 Ma). Afterwards, rift-related faulting involved the <span class="hlt">Southern</span> MER (Amaro Horst) at ~ 8 Ma, and only later rifting seemingly affected the Central MER (after ~ 7 Ma).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/448/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/448/"><span>ATM Coastal Topography-Texas, 2001: UTM <span class="hlt">Zone</span> 14</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Klipp, Emily S.; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Yates, Xan; Wright, C. Wayne</p> <p>2009-01-01</p> <p>These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Texas coastline within UTM <span class="hlt">zone</span> 14, acquired October 12-13, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (<span class="hlt">ALPS</span>), a custom-built processing system developed in a NASA-USGS collaboration. <span class="hlt">ALPS</span> supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. <span class="hlt">ALPS</span> is used</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1711550S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1711550S"><span>New insights into the kinematics and seismotectonics of the Adria-Eurasia boundary in the eastern <span class="hlt">Alps</span> from geodetic and seismic data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Serpelloni, Enrico; Vannucci, Gianfranco; Bennett, Richard A.; Anderlini, Letizia; Cavaliere, Adriano</p> <p>2015-04-01</p> <p>In this work we describe a new kinematic and seismotectonic model of the eastern <span class="hlt">Alps</span>, at the boundary between Italy, Austria, Slovenia and Croatia, obtained from the analysis of geodetic (GPS) and seismological data. We use a dense GPS velocity field, obtained from integration of continuous, semi-continuous and survey-mode networks (~200 GPS stations between longitude 10°E and 17°E and latitude 44.5°N and 47.5°N) and an updated seismic and focal mechanisms catalogue, with uniformly calibrated moment magnitudes from ~1000 B.C.. Improved accuracies and precisions of GPS motion rates have been obtained by filtering displacement time-series for the spatially correlated common mode errors. The eastern <span class="hlt">Alps</span> mark the boundary between the Adriatic microplate and the Eurasian plate through a wide <span class="hlt">zone</span> of distributed deformation. Geodetic deformation and seismic release are more localized, and characterized by larger earthquakes, along the southeastern <span class="hlt">Alps</span> fold-and-thrust belt, which accommodates the large part of the ~N-S Adria-Eurasia convergence, and in Slovenia, where a transition from ~N-S shortening to the eastward escape of the Pannonian Basin units occurs through a complex pattern of crustal deformation. GPS velocities well describe the overall kinematics, with a transition from NNW-ward to NE-ward motion trends (in a Eurasian frame) across Slovenia and Austria, but also show small but significant crustal deformation far from the major blocks boundaries. This may suggest internal continuous deformation or a more complex configuration of interacting tectonic blocks in the eastern <span class="hlt">Alps</span>. This second hypothesis is taken into account and tested in this work. We use seismic moment release rate maps, active faults databases and inspections of GPS velocities in different local frames to define the geometry of a kinematic block model, constrained by GPS horizontal velocities, in order to estimate blocks rotations and elastic strain at blocks bounding faults. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=soup&pg=7&id=ED286358','ERIC'); return false;" href="https://eric.ed.gov/?q=soup&pg=7&id=ED286358"><span>Bergsteigen in den Alpen (Mountain Climbing in the <span class="hlt">Alps</span>).</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Hawrysz, Ilse; Budzinski, Elisabeth</p> <p></p> <p>German second language instructional materials contain a short text in German on mountain climbing in the <span class="hlt">Alps</span>, a vocabulary list with translation, a simple German climbing song, a recipe for goulash soup in English, and a short text in English on mountain climbing. (MSE)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026869','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026869"><span>The offshore Palos Verdes fault <span class="hlt">zone</span> near San Pedro, <span class="hlt">Southern</span> California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fisher, M.A.; Normark, W.R.; Langenheim, V.E.; Calvert, A.J.; Sliter, R.</p> <p>2004-01-01</p> <p>High-resolution seismic-reflection data are combined with a variety of other geophysical and geological data to interpret the offshore structure and earthquake hazards of the San Pedro shelf, near Los Angeles, California. Prominent structures investigated include the Wilmington graben, the Palos Verdes fault <span class="hlt">zone</span>, various faults below the west part of the San Pedro shelf and slope, and the deep-water San Pedro basin. The structure of the Palos Verdes fault <span class="hlt">zone</span> changes markedly along strike southeastward across the San Pedro shelf and slope. Under the north part of the shelf, this fault <span class="hlt">zone</span> includes several strands, with the main strand dipping west. Under the slope, the main fault strands exhibit normal separation and mostly dip east. To the southeast near Lasuen Knoll, the Palos Verdes fault <span class="hlt">zone</span> locally is low angle, but elsewhere near this knoll, the fault dips steeply. Fresh seafloor scarps near Lasuen Knoll indicate recent fault movement. We explain the observed structural variation along the Palos Verdes fault <span class="hlt">zone</span> as the result of changes in strike and fault geometry along a master right-lateral strike-slip fault at depth. Complicated movement along this deep fault <span class="hlt">zone</span> is suggested by the possible wave-cut terraces on Lasuen Knoll, which indicate subaerial exposure during the last sea level lowstand and subsequent subsidence of the knoll. Modeling of aeromagnetic data indicates a large magnetic body under the west part of the San Pedro shelf and upper slope. We interpret this body to be thick basalt of probable Miocene age. This basalt mass appears to have affected the pattern of rock deformation, perhaps because the basalt was more competent during deformation than the sedimentary rocks that encased the basalt. West of the Palos Verdes fault <span class="hlt">zone</span>, other northwest-striking faults deform the outer shelf and slope. Evidence for recent movement along these faults is equivocal, because we lack age dates on deformed or offset sediment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017148','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017148"><span>Discordant 14C ages from buried tidal-marsh soils in the Cascadia subduction <span class="hlt">zone</span>, <span class="hlt">southern</span> Oregon coast</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nelson, A.R.</p> <p>1992-01-01</p> <p>Peaty, tidal-marsh soils interbedded with estuarine mud in late Holocene stratigraphic sequences near Coos Bay, Oregon, may have been submerged and buried during great (M > 8) subduction earthquakes, smaller localized earthquakes, or by nontectonic processes. Radiocarbon dating might help distinguish among these alternatives by showing that soils at different sites were submerged at different times along this part of the Cascadia subduction <span class="hlt">zone</span>. But comparison of conventional 14C ages for different materials from the same buried soils shows that they contain materials that differ in age by many hundreds of years. Errors in calibrated soil ages represent about the same length of time as recurrence times for submergence events (150-500 yr)-this similarity precludes using conventional 14C ages to distinguish buried soils along the <span class="hlt">southern</span> Oregon coast. Accelerator mass spectrometer 14C ages of carefully selected macrofossils from the tops of peaty soils should provide more precise estimates of the times of submergence events. ?? 1992.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/33089','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/33089"><span>Hypogeous fungi at tree line in the Australian <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>James M. Trappe; Andrew W Claridge</p> <p>2006-01-01</p> <p>The tree line of the continental Australian <span class="hlt">Alps</span> yielded eighteen species of hypogeous fungi, all probably . forming ectomycorrhizae with Eucalyptus niphophila, the tree species characteristic of that habitat. Six of the species were undescribed. These collections represented six families and twelve genera: Boletaceae (with Chamonixia), Gallaceaceae...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Tectp.677...88K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Tectp.677...88K"><span>Seismic properties of lawsonite eclogites from the <span class="hlt">southern</span> Motagua fault <span class="hlt">zone</span>, Guatemala</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Daeyeong; Wallis, Simon; Endo, Shunsuke; Ree, Jin-Han</p> <p>2016-05-01</p> <p>We present new data on the crystal preferred orientation (CPO) and seismic properties of omphacite and lawsonite in extremely fresh eclogite from the <span class="hlt">southern</span> Motagua fault <span class="hlt">zone</span>, Guatemala, to discuss the seismic anisotropy of subducting oceanic crust. The CPO of omphacite is characterized by (010)[001], and it shows P-wave seismic anisotropies (AVP) of 1.4%-3.2% and S-wave seismic anisotropies (AVS) of 1.4%-2.7%. Lawsonite exhibits (001) planes parallel to the foliation and [010] axes parallel to the lineation, and seismic anisotropies of 1.7%-6.6% AVP and 3.4%-14.7% AVS. The seismic anisotropy of a rock mass consisting solely of omphacite and lawsonite is 1.2%-4.1% AVP and 1.8%-6.8% AVS. For events that propagate more or less parallel to the maximum extension direction, X, the fast S-wave velocity (VS) polarization is parallel to the Z in the Y-Z section (rotated from the X-Z section), causing trench-normal seismic anisotropy for orthogonal subduction. Based on the high modal abundance and strong fabric of lawsonite, the AVS of eclogites is estimated as ~ 11.7% in the case that lawsonite makes up ~ 75% of the rock mass. On this basis, we suggest that lawsonite in both blueschist and eclogite may play important roles in the formation of complex pattern of seismic anisotropy observed in NE Japan: weak trench-parallel anisotropy in the forearc basin domains and trench-normal anisotropy in the backarc region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS41C1975W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS41C1975W"><span>Structural features related to the volcanic gases in <span class="hlt">Southern</span> Okinawa Trough</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, H. F.; Hsu, S. K.; Tsia, C. H.; Chen, S. C.; Wu, M. F.</p> <p>2016-12-01</p> <p>The Okinawa Trough is a rifted back-arc basin, heavily sedimented and formed in an intracontinental rift <span class="hlt">zone</span> behind the Ryukyu trench-arc system. The <span class="hlt">Southern</span> Okinawa Trough (SOT) east of Taiwan is the place where post-collisional extension happened. The collision moved southwestward and the Ryukyu trench-arc extension westward, Arc volcanism is dominant in the Northern Ryukyu volcanic arc and back-arc volcanism in the <span class="hlt">Southern</span> Okinawa Trough. Marine geophysical data including side-scan sonar (SSS), sub-bottom profiler (SBP) and echo sounder system (EK60) data are used in this study. Active fluid activities out of seafloor are obvious from various images observed on these data, such as gas plumes. These hydrothermal vents have been located at a water depth of 1400 m. Our preliminary results show that gas seepage structures appear in the location where is a week <span class="hlt">zone</span>, such as a normal fault in the slope. The hydrothermal activity within the Okinawa Trough is associated with volcanism located in rift <span class="hlt">zones</span> in the <span class="hlt">Southern</span> Okinawa Trough. However, the origin of the submarine hydrothermal fluids within the Okinawa Trough is diverse with contributions from volcanic, sedimentary and magmatic sources, needed further investigations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004JAtS...61.2249J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004JAtS...61.2249J"><span>Gravity Wave Breaking over the Central <span class="hlt">Alps</span>: Role of Complex Terrain.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Qingfang; Doyle, James D.</p> <p>2004-09-01</p> <p>The characteristics of gravity waves excited by the complex terrain of the central <span class="hlt">Alps</span> during the intensive observational period (IOP) 8 of the Mesoscale Alpine Programme (MAP) is studied through the analysis of aircraft in situ measurements, GPS dropsondes, radiosondes, airborne lidar data, and numerical simulations.Mountain wave breaking occurred over the central <span class="hlt">Alps</span> on 21 October 1999, associated with wind shear, wind turning, and a critical level with Richardson number less than unity just above the flight level (5.7 km) of the research aircraft NCAR Electra. The Electra flew two repeated transverses across the Ötztaler Alpen, during which localized turbulence was sampled. The observed maximum vertical motion was 9 m s-1, corresponding to a turbulent kinetic energy (TKE) maximum of 10.5 m2 s-2. Spectrum analysis indicates an inertia subrange up to 5-km wavelength and multiple energy-containing spikes corresponding to a wide range of wavelengths.Manual analysis of GPS dropsonde data indicates the presence of strong flow descent and a downslope windstorm over the lee slope of the Ötztaler Alpen. Farther downstream, a transition occurs across a deep hydraulic jump associated with the ascent of isentropes and local wind reversal. During the first transverse, the turbulent region is convectively unstable as indicated by a positive sensible heat flux within the turbulent portion of the segment. The TKE derived from the flight-level data indicates multiple narrow spikes, which match the patterns shown in the diagnosed buoyancy production rate of TKE. The turbulence is nonisotropic with the major TKE contribution from the -wind component. The convectively unstable <span class="hlt">zone</span> is advected downstream during the second transverse and the turbulence becomes much stronger and more isotropic.The downslope windstorm, flow descent, and transition to turbulence through a hydraulic jump are captured by a real-data Coupled Ocean Atmosphere Mesoscale Predition System (COAMPS</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008MAA.....8...39M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008MAA.....8...39M"><span>A Hannibal's Treck Across The <span class="hlt">Alps</span>: Geomorphological Analysis Of Sites Of Geoarchaeologicals Interest</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mahaney, William C.; Kalm, Volli; Dirszowsky, Randy W.; Milner, Michael W.; Sodhi, Rana; Beukens, Roelf; Dorn, Ron; Tricart, Pierre; Schwartz, Stéphane; Chamorro-Perez, Eva; Boccia, Sal; Barendregt, René W.; Krinsley, D. H.; Seaquist, E. R.; Merrick, David; Kapran, Barbara</p> <p></p> <p>A ~2200 year-old question related to Hannibal's invasion route across the <span class="hlt">Alps</span> into Italia, has been argued by classicists without recovery of material evidence. A comparison of topographical descriptions in the ancient literature with environmental parameters in the <span class="hlt">Alps</span>, attempted here for the first time, provides a database against which various pathways can be assessed. Identification of sites using geological, geomorphological, astronomical, chemical and petrological methods leads to the exclusion of certain transit points and targeting of others where geoarchaeological excavation might yield important evidence related to the military culture of ancient Carthage.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.4852R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.4852R"><span>Detrital fingerprints of fossil continental-subduction <span class="hlt">zones</span> (Axial Belt Provenance, European <span class="hlt">Alps</span>)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Resentini, Alberto; Garzanti, Eduardo; Vezzoli, Giovanni; Andò, Sergio; Malusà, Marco G.; Padoan, Marta; Paparella, Paolo</p> <p>2010-05-01</p> <p>Alpine-type collision orogens are generated by attempted subduction of thinned continental margins. Because of complex tectonic structure, orogenic detritus is characterized by a range of detrital signatures, making its recognition an arduous task (Dickinson and Suczek, 1979). Among the various orogenic sub-provenances, Axial Belt Provenance, derived from the erosion of the neometamorphic axial pile, can be regarded as the most typifying signature of collision orogens (Garzanti et al., 2007). In the Austroalpine Cretaceous and Penninic Eocene axial belts of the <span class="hlt">Alps</span>, we ideally distinguish three structural levels, each characterized by diagnostic detrital fingerprints. The shallow level chiefly consists of offscraped remnant-ocean turbidites and unmetamorphosed continental-margin sediments, and mostly produces lithic to lithoquartzose sedimentaclastic sands yielding very-poor heavy-mineral suites including ultrastable minerals. The intermediate level includes low-grade metasediments and polymetamorphic basements, and sheds lithoquartzose to quartzolithofeldspathic metamorphiclastic sands yielding moderately-rich epidote- amphibole suites with chloritoid or garnet. The deep level contains eclogitic remnants of continent- ocean transitions, and supplies quartzofeldspathic to quartzolithic high-rank metamorphiclastic to lithic ultramaficlastic sands yielding rich to extremely-rich suites dominated by garnet, hornblende, or epidote depending on protoliths (continental vs. oceanic) and pressure/temperature paths followed during exhumation. Although widely overprinted under greenschist-facies or amphibolite-facies conditions, occurrence of ultradense eclogite in source areas is readily revealed by the Heavy Mineral Concentration (HMC) index, which mirrors the average density of source rocks in the absence of hydraulic-sorting effects (Garzanti and Andò 2007). The Metamorphic Index (MI, Garzanti and Vezzoli, 2003) and Hornblende Colour Index (HCI) reflect peak</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JQS....22..203G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JQS....22..203G"><span>Ice-borne prehistoric finds in the Swiss <span class="hlt">Alps</span> reflect Holocene glacier fluctuations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grosjean, Martin; Suter, Peter J.; Trachsel, Mathias; Wanner, Heinz</p> <p>2007-03-01</p> <p>During the hot summer of 2003, reduction of an ice field in the Swiss <span class="hlt">Alps</span> (Schnidejoch) uncovered spectacular archaeological hunting gear, fur, leather and woollen clothing and tools from four distinct windows of time: Neolithic Age (4900 to 4450 cal. yr BP), early Bronze Age (4100-3650 cal. yr BP), Roman Age (1st-3rd century AD), and Medieval times (8-9th century AD and 14-15th century AD). Transalpine routes connecting northern Italy with the northern <span class="hlt">Alps</span> during these slots is consistent with late Holocene maximum glacier retreat. The age cohorts of the artefacts are separated which is indicative of glacier advances when the route was difficult and not used for transit. The preservation of Neolithic leather indicates permanent ice cover at that site from ca. 4900 cal. yr BP until AD 2003, implying that the ice cover was smaller in 2003 than at any time during the last 5000 years. Current glacier retreat is unprecedented since at least that time. This is highly significant regarding the interpretation of the recent warming and the rapid loss of ice in the <span class="hlt">Alps</span>. Copyright</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1383D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1383D"><span>The Ortles ice cores: uncovering an extended climate archive from the Eastern <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dreossi, Giuliano; Barbante, Carlo; Bertò, Michele; Carturan, Luca; De Blasi, Fabrizio; Gabrieli, Jacopo; Gabrielli, Paolo; Seppi, Roberto; Spolaor, Andrea; Stenni, Barbara; Zanoner, Thomas</p> <p>2017-04-01</p> <p>During the last half century, oxygen and hydrogen stable isotope content of ice cores has been extensively used for air temperature reconstructions. The most suitable glaciers of the Alpine area, most exclusively in the Western <span class="hlt">Alps</span>, have been utilized for ice coring for more than four decades. The paleoclimatic potential of the Eastern <span class="hlt">Alps</span> is still largely unexploited and was scarcely utilized in the past mainly because of the lower elevation (compared to Western <span class="hlt">Alps</span>) and hence the difficulty to find glaciers in cold conditions. The warming temperature trend appears to be particularly pronounced in the <span class="hlt">Alps</span>, threatening the preservation of the glaciated areas and creating a sense of urgency in retrieving climatic archives before it is too late. In autumn 2011, four deep cores were drilled on Mt Ortles, South Tyrol, Italy, at 3859 m a.s.l. An extensive reconstructed temperature record for the Ortles summit, based on the surrounding meteorological station data, is available for the last 150 years, while an automatic weather station had been operating from 2011 to 2015 in proximity of the drilling site. The new ice core chronology, based on 210Pb, tritium, beta emissions analysis and 14C measurements of the particulate organic carbon, indicates that the bottom ice is 7000 years old, making it the second most extended glaciological archive ever retrieved in the <span class="hlt">Alps</span>. The three equally long ice cores have been analyzed for oxygen and hydrogen stable isotopes throughout their length, and the goal is to create an Ortles stacked record for d18O and dD and compare the isotopic data to instrumental temperatures and to other Alpine records. Since 2008, several snow pits were dug in proximity of the drilling site during summer, when the temperature can often exceed the melting point. The isotopic profiles of the 2015 snow pit, dug at the end of an exceptionally warm summer, show how the isotope signal is now affected by the post-depositional processes that have occurred</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IJEaS.104....1H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IJEaS.104....1H"><span>Reconstructing the <span class="hlt">Alps</span>-Carpathians-Dinarides as a key to understanding switches in subduction polarity, slab gaps and surface motion</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Handy, Mark R.; Ustaszewski, Kamil; Kissling, Eduard</p> <p>2015-01-01</p> <p>Palinspastic map reconstructions and plate motion studies reveal that switches in subduction polarity and the opening of slab gaps beneath the <span class="hlt">Alps</span> and Dinarides were triggered by slab tearing and involved widespread intracrustal and crust-mantle decoupling during Adria-Europe collision. In particular, the switch from south-directed European subduction to north-directed "wrong-way" Adriatic subduction beneath the Eastern <span class="hlt">Alps</span> was preconditioned by two slab-tearing events that were continuous in Cenozoic time: (1) late Eocene to early Oligocene rupturing of the oppositely dipping European and Adriatic slabs; these ruptures nucleated along a trench-trench transfer fault connecting the <span class="hlt">Alps</span> and Dinarides; (2) Oligocene to Miocene steepening and tearing of the remaining European slab under the Eastern <span class="hlt">Alps</span> and western Carpathians, while subduction of European lithosphere continued beneath the Western and Central <span class="hlt">Alps</span>. Following the first event, post-late Eocene NW motion of the Adriatic Plate with respect to Europe opened a gap along the <span class="hlt">Alps</span>-Dinarides transfer fault which was filled with upwelling asthenosphere. The resulting thermal erosion of the lithosphere led to the present slab gap beneath the northern Dinarides. This upwelling also weakened the upper plate of the easternmost part of the Alpine orogen and induced widespread crust-mantle decoupling, thus facilitating Pannonian extension and roll-back subduction of the Carpathian oceanic embayment. The second slab-tearing event triggered uplift and peneplainization in the Eastern <span class="hlt">Alps</span> while opening a second slab gap, still present between the Eastern and Central <span class="hlt">Alps</span>, that was partly filled by northward counterclockwise subduction of previously unsubducted Adriatic continental lithosphere. In Miocene time, Adriatic subduction thus jumped westward from the Dinarides into the heart of the Alpine orogen, where northward indentation and wedging of Adriatic crust led to rapid exhumation and orogen-parallel escape of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4451210','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4451210"><span>Spatio-Temporal Analysis of Smear-Positive Tuberculosis in the Sidama <span class="hlt">Zone</span>, <span class="hlt">Southern</span> Ethiopia</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dangisso, Mesay Hailu; Datiko, Daniel Gemechu; Lindtjørn, Bernt</p> <p>2015-01-01</p> <p>Background Tuberculosis (TB) is a disease of public health concern, with a varying distribution across settings depending on socio-economic status, HIV burden, availability and performance of the health system. Ethiopia is a country with a high burden of TB, with regional variations in TB case notification rates (CNRs). However, TB program reports are often compiled and reported at higher administrative units that do not show the burden at lower units, so there is limited information about the spatial distribution of the disease. We therefore aim to assess the spatial distribution and presence of the spatio-temporal clustering of the disease in different geographic settings over 10 years in the Sidama <span class="hlt">Zone</span> in <span class="hlt">southern</span> Ethiopia. Methods A retrospective space–time and spatial analysis were carried out at the kebele level (the lowest administrative unit within a district) to identify spatial and space-time clusters of smear-positive pulmonary TB (PTB). Scan statistics, Global Moran’s I, and Getis and Ordi (Gi*) statistics were all used to help analyze the spatial distribution and clusters of the disease across settings. Results A total of 22,545 smear-positive PTB cases notified over 10 years were used for spatial analysis. In a purely spatial analysis, we identified the most likely cluster of smear-positive PTB in 192 kebeles in eight districts (RR= 2, p<0.001), with 12,155 observed and 8,668 expected cases. The Gi* statistic also identified the clusters in the same areas, and the spatial clusters showed stability in most areas in each year during the study period. The space-time analysis also detected the most likely cluster in 193 kebeles in the same eight districts (RR= 1.92, p<0.001), with 7,584 observed and 4,738 expected cases in 2003-2012. Conclusion The study found variations in CNRs and significant spatio-temporal clusters of smear-positive PTB in the Sidama <span class="hlt">Zone</span>. The findings can be used to guide TB control programs to devise effective TB control</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188393','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188393"><span>Origin of the Blytheville Arch, and long-term displacement on the New Madrid seismic <span class="hlt">zone</span>, central United States</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pratt, Thomas L.; Williams, Robert; Odum, Jackson K.; Stephenson, William J.</p> <p>2013-01-01</p> <p>The <span class="hlt">southern</span> arm of the New Madrid seismic <span class="hlt">zone</span> of the central United States coincides with the buried, ~110 km by ~20 km Blytheville Arch antiform within the Cambrian–Ordovician Reelfoot rift graben. The Blytheville Arch has been interpreted at various times as a compressive structure, an igneous intrusion, or a sediment diapir. Reprocessed industry seismic-reflection profiles presented here show a strong similarity between the Blytheville Arch and pop-up structures, or flower structures, within strike-slip fault systems. The Blytheville Arch formed in the Paleozoic, but post–Mid-Cretaceous to Quaternary strata show displacement or folding indicative of faulting. Faults within the graben structure but outside of the Blytheville Arch also appear to displace Upper Cretaceous and perhaps younger strata, indicating that past faulting was not restricted to the Blytheville Arch and New Madrid seismic <span class="hlt">zone</span>. As much as 10–12.5 km of strike slip can be estimated from apparent shearing of the Reelfoot arm of the New Madrid seismic <span class="hlt">zone</span>. There also appears to be ~5–5.5 km of shearing of the Reelfoot topographic scarp at the north end of the <span class="hlt">southern</span> arm of the New Madrid seismic <span class="hlt">zone</span> and of the <span class="hlt">southern</span> portion of Crowley's Ridge, which is a north-trending topographic ridge just south of the seismic <span class="hlt">zone</span>. These observations suggest that there has been substantial strike-slip displacement along the Blytheville Arch and <span class="hlt">southern</span> arm of the New Madrid seismic <span class="hlt">zone</span>, that strike-slip extended north and south of the modern seismic <span class="hlt">zone</span>, and that post–Mid-Cretaceous (post-Eocene?) faulting was not restricted to the Blytheville Arch or to currently active faults within the New Madrid seismic <span class="hlt">zone</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1412593H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1412593H"><span>Assessing the debris flow run-out frequency of a catchment in the French <span class="hlt">Alps</span> using a parameterization analysis with the RAMMS numerical run-out model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hussin, H. Y.; Luna, B. Quan; van Westen, C. J.; Christen, M.; Malet, J.-P.; van Asch, Th. W. J.</p> <p>2012-04-01</p> <p>Debris flows occurring in the European <span class="hlt">Alps</span> frequently cause significant damage to settlements, power-lines and transportation infrastructure which has led to traffic disruptions, economic loss and even death. Estimating the debris flow run-out extent and the parameter uncertainty related to run-out modeling are some of the difficulties found in the Quantitative Risk Assessment (QRA) of debris flows. Also, the process of the entrainment of material into a debris flow is until now not completely understood. Debris flows observed in the French <span class="hlt">Alps</span> entrain 5 - 50 times the amount of volume compared to the initially mobilized source volume. In this study we analyze a debris flow that occurred in 2003 at the Faucon catchment in the Barcelonnette Basin (<span class="hlt">Southern</span> French <span class="hlt">Alps</span>). The analysis was carried out using the Voellmy rheology and an entrainment model imbedded in the RAMMS 2D numerical modeling software. The historic event was back calibrated based on source, entrainment and deposit volumes, including the run-out distance, velocities and deposit heights of the debris flow. This was then followed by a sensitivity analysis of the rheological and entrainment parameters to produce 120 debris flow scenarios leading to a frequency assessment of the run-out distance and deposit height at the debris fan. The study shows that the Voellmy frictional parameters mainly influence the run-out distance and velocity of the flow, while the entrainment parameter has a major impact on the debris flow height. The frequency assessment of the 120 simulated scenarios further gives an indication on the most likely debris flow run-out extents and heights for this catchment. Such an assessment can be an important link between the rheological model parameters and the spatial probability of the run-out for the Quantitative Risk Assessment (QRA) of debris flows.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1113599I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1113599I"><span>Vulnerability and adaptation to water scarcity in the European <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Isoard, S.; McCallum, S.; Prutsch, A.; Benno Hain, B.; Schauser, I.</p> <p>2009-04-01</p> <p>The European Environment Agency (EEA) has recently undertaken a project addressing vulnerability and adaptation to water availability in the European <span class="hlt">Alps</span>. Mountains are indeed one of the most vulnerable regions to climate change in Europe (EEA 2008, IPCC 2007).The <span class="hlt">Alps</span>, in particular, can be presented as the ‘water towers' of Europe (the amount of water delivered by the <span class="hlt">Alps</span> allocates 40% of EU consumption) where changes in water availability affect all socio-economical sectors. This therefore makes adaptation actions a regional topic with an outstanding European dimension. The specific objectives of the study were to highlight the importance of the <span class="hlt">Alps</span> in their function as ‘water towers' for Europe and analyse the vulnerability of the Alpine Region with regard to impacts of climate change (but also to global change as a whole) focussing on water availability. Given the EU and regional policy background with regard to adaptation and water issues, the study assessed the possible needs, constraints and opportunities for adaptation to the adverse impacts for various sectors pending on water resources. Findings of this activity expanded the knowledge base, fed into the preparation of European Commission's 2009 White Paper and the Alpine Convention 2009 Report on the State of the <span class="hlt">Alps</span>, and complemented other recent studies (e.g. OECD 2007, European Parliament Committee on Agriculture & Rural Development 2008). The method used for the study relied on the one hand on findings from recent key publications on climate change impacts (EEA 2008, IPCC 2007) and EU research projects (e.g. ClimCh<span class="hlt">Alp</span>, ProClim); on the other side it was based on selected case studies chosen within the four climatic regions of the eight Alpine countries for which an extensive series of interviews with local and regional stakeholders and decision makers has been undertaken. The interviewees had been directly involved in designing and implementing water availability-related adaptation measures</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019356','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019356"><span>Tectonics and seismicity of the <span class="hlt">southern</span> Washington Cascade range</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stanley, W.D.; Johnson, S.Y.; Qamar, A.I.; Weaver, C.S.; Williams, J.M.</p> <p>1996-01-01</p> <p>Geophysical, geological, and seismicity data are combined to develop a transpressional strain model for the <span class="hlt">southern</span> Washington Cascades region. We use this model to explain oblique fold and fault systems, transverse faults, and a linear seismic <span class="hlt">zone</span> just west of Mt. Rainier known as the western Rainier <span class="hlt">zone</span>. We also attempt to explain a concentration of earthquakes that connects the northwest-trending Mount St. Helens seismic <span class="hlt">zone</span> to the north-trending western Rainier <span class="hlt">zone</span>. Our tectonic model illustrates the pervasive effects of accretionary processes, combined with subsequent transpressive forces generated by oblique subduction, on Eocene to present crustal processes, such as seismicity and volcanism.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110002773','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110002773"><span>Geology of the Terra Cimmeria-Utopia Planitia Highland Lowland Transitional <span class="hlt">Zone</span>: Final Technical Approach and Scientific Results</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Skinner, J. A., Jr.; Tanaka, K. L.</p> <p>2010-01-01</p> <p>The <span class="hlt">southern</span> Utopia highland-lowland transitional <span class="hlt">zone</span> extends from northern Terra Cimmeria to <span class="hlt">southern</span> Utopia Planitia and contains broad, bench-like platforms with depressions, pitted cones, tholi, and lobate flows. The locally occurring geologic units and landforms contrast other transitional regions and record a spatially partitioned geologic history. We systematically delineated and described the geologic units and landforms of the <span class="hlt">southern</span> Utopia-Cimmeria highland-lowland transitional <span class="hlt">zone</span> for the production of a 1:1,000,000-scale geologic map (MTMs 10237, 15237, 20237, 10242, 15242, 20242, 10247, 15247, and 20247). Herein, we present technical and scientific results of this mapping project.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012854','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012854"><span>Origin and distribution of carbon dioxide in the unsaturated <span class="hlt">zone</span> of the <span class="hlt">southern</span> High Plains of Texas</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wood, Warren W.; Petraitis, Michael J.</p> <p>1984-01-01</p> <p>Partial pressures of CO2, O2, N2, and Ar were monitored at two locations in the Ogallala aquifer system on the <span class="hlt">Southern</span> High Plains of Texas. Samples were collected monthly during parts of 1980–1981 from nine depths ranging from 0.6 to 36 meters below land surface. PCO2 was observed to be greater at depth than in the active soil <span class="hlt">zone</span> and thus appears to contradict the normal process in which CO2 is generated in the soil <span class="hlt">zone</span> and diffuses upward to the atmosphere and downward to the water table. The δ13C of the CO2 gas was quite uniform and averaged −17.9 per mil. PO2 declined with depth, suggesting in situ generation of CO2 by the oxidation of carbon. Several hypotheses were considered to explain the origin of the CO2 at depth. It was concluded that the most probable hypothesis was that dissolved and particulate organic carbon introduced by recharging water was oxidized to CO2 by the aerobic microbial community that utilized oxygen diffusing in from the atmosphere. This hypothesis is consistent with the CO2 concentration profile, calculated production profile of CO2, δ13C values of CO2 gas, caliche, soil humic acid fraction, and dissolved carbonate in groundwater. The abundance of CO2, its concentration profile, and its probable origin provide information for evaluating the observed complex sequence of caliche dissolution and precipitation known to occur in the aquifer.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3257H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3257H"><span>The <span class="hlt">Alp</span>Array Seismic Network: status and operation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hetényi, György; Molinari, Irene; Clinton, John; Kissling, Edi</p> <p>2017-04-01</p> <p>The <span class="hlt">Alp</span>Array initiative (http://www.alparray.ethz.ch) is a large-scale European collaboration to study the entire Alpine orogen at high resolution and in 3D with a large variety of geoscientific methods. The core element of the initiative is an extensive and dense broadband seismological network, the <span class="hlt">Alp</span>Array Seismic Network (AASN). Over 300 temporary stations complement the permanent seismological stations to ensure homogeneous coverage of the greater Alpine area. The AASN has officially started operation in January 2016 and is now complete on land. It is operated in a joint effort by a number of institutions from Austria, Bosnia-Herzegovina, Croatia, Czech Republic, France, Germany, Hungary, Italy, Slovakia and Switzerland. In the Ligurian Sea, a 32-station OBS campaign is planned from June 2017 until March 2018. This will complete the coverage of the greater Alpine area at an unprecedented resolution. In this poster we present the actual status of the deployment, the effort undertaken by the contributing groups, station performance, best practices, data management as well as often encountered challenges, and provide a meeting and discussion point during the conference.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.6196S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.6196S"><span>The exhumation of the (U)HP rocks of the Central and Western Penninic <span class="hlt">Alps</span>: comparison study between thermo-mechanical models and field data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schenker, Filippo Luca; Schmalholz, Stefan M.; Baumgartner, Lukas P.; Pleuger, Jan</p> <p>2015-04-01</p> <p>The Central and Western Penninic (CWP) <span class="hlt">Alps</span> form an orogenic wedge of imbricate tectonic nappes. Orogenic wedges form typically at depths < 60 km. Nevertheless, a few nappes and massifs (i.e. Adula/Cima Lunga, Dora-Maira, Monte Rosa, Gran Paradiso, Zermatt-Saas) exhibit High- and Ultra-High-Pressure (U)HP metamorphic rocks suggesting that they were buried by subduction to depths >60 km and subsequently exhumed into the accretionary wedge. Mechanically, the exhumation of the (U)HP rocks from mantle depths can be explained by two contrasting buoyancy-driven models: (1) overall return flow of rocks in a subduction channel and (2) upward flow of individual, lighter rock units within a heavier material (Stokes flow). In this study we compare published numerical exhumation models of (1) and (2) with structural and metamorphic data of the CWP <span class="hlt">Alps</span>. Model (1) predicts the exhumation of large volumes of (U)HP rocks within a viscous channel (1100-500 km2 in a 2D cross-section through the subduction <span class="hlt">zone</span>). The moderate volume (e.g. ~7 km2 in a geological cross-section of the UHP unit of the Dora-Maira) and the coherent architecture of the (U)HP nappes suggests that the exhumation through (1) is unlikely for (U)HP nappes of the CWP <span class="hlt">Alps</span>. Model (2) predicts the exhumation of appropriate volumes of (U)HP rocks, but generally the (U)HP rocks exhume vertically in the overriding plate and are not incorporated into the orogenic wedge. Nevertheless, the exhumation through (2) is feasible either with a vertical or with an extremely viscous and dense subduction channel. Whether these characteristics are applicable to the CWP UHP nappes will be discussed in light of field observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JSG....35...17K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JSG....35...17K"><span>Quantitative kinematic analysis within the Khlong Marui shear <span class="hlt">zone</span>, <span class="hlt">southern</span> Thailand</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kanjanapayont, Pitsanupong; Grasemann, Bernhard; Edwards, Michael A.; Fritz, Harald</p> <p>2012-02-01</p> <p>The NNE trending Khlong Marui shear <span class="hlt">zone</span> has a strong geomorphic signal with marked fault-strike parallel topographic ridges. The lithologies within the strike-slip <span class="hlt">zone</span> mainly consist of vertical layers of mylonitic meta-sedimentary rocks associated with orthogneisses, mylonitic granites, and pegmatitic veins. The pegmatitic veins concordantly intrude the mylonitic foliation but were sheared at the rims indicating syn-kinematic emplacement. Microstructures and mineral assemblages suggest that the rocks in the area have been metamorphosed at amphibolite facies and low to medium greenschist facies by the first deformation. The Khlong Marui shear <span class="hlt">zone</span> was deformed under dextral simple shear flow with a small finite strain. The ductile-to-brittle deformation involves a period of exhumation of lenses of higher grade rocks together with low grade fault rocks probably associated with positive flower structures. The final stage brittle deformation is reflected by normal faulting and formation of proto-cataclasites to cataclasites of the original mylonitic meta-sedimentary host rock. Although clear age-constraints are still missing, we use regional relationships to speculate that earlier dextral strike-slip displacement of the Khlong Marui shear <span class="hlt">zone</span> was related to the West Burma and Shan-Thai collision and subduction along the Sunda Trench in the Late Cretaceous, while the major exhumation period of the ductile lens was tectonically influenced by the early India-Asia collision. The changing stress field has responded by switching from dextral strike-slip to normal faulting in the Khlong Marui shear <span class="hlt">zone</span>, and is associated with "escape tectonics" arising from the overall India-Asia collision.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013CliPa...9..825S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013CliPa...9..825S"><span>Mass-movement and flood-induced deposits in Lake Ledro, <span class="hlt">southern</span> <span class="hlt">Alps</span>, Italy: implications for Holocene palaeohydrology and natural hazards</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simonneau, A.; Chapron, E.; Vannière, B.; Wirth, S. B.; Gilli, A.; Di Giovanni, C.; Anselmetti, F. S.; Desmet, M.; Magny, M.</p> <p>2013-03-01</p> <p>High-resolution seismic profiles and sediment cores from Lake Ledro combined with soil and riverbed samples from the lake's catchment area are used to assess the recurrence of natural hazards (earthquakes and flood events) in the <span class="hlt">southern</span> Italian <span class="hlt">Alps</span> during the Holocene. Two well-developed deltas and a flat central basin are identified on seismic profiles in Lake Ledro. Lake sediments have been finely laminated in the basin since 9000 cal. yr BP and frequently interrupted by two types of sedimentary events (SEs): light-coloured massive layers and dark-coloured graded beds. Optical analysis (quantitative organic petrography) of the organic matter present in soil, riverbed and lacustrine samples together with lake sediment bulk density and grain-size analysis illustrate that light-coloured layers consist of a mixture of lacustrine sediments and mainly contain algal particles similar to the ones observed in background sediments. Light-coloured layers thicker than 1.5 cm in the main basin of Lake Ledro are synchronous to numerous coeval mass-wasting deposits remoulding the slopes of the basin. They are interpreted as subaquatic mass-movements triggered by historical and pre-historical regional earthquakes dated to AD 2005, AD 1891, AD 1045 and 1260, 2545, 2595, 3350, 3815, 4740, 7190, 9185 and 11 495 cal. yr BP. Dark-coloured SEs develop high-amplitude reflections in front of the deltas and in the deep central basin. These beds are mainly made of terrestrial organic matter (soils and lignocellulosic debris) and are interpreted as resulting from intense hyperpycnal flood event. Mapping and quantifying the amount of soil material accumulated in the Holocene hyperpycnal flood deposits of the sequence allow estimating that the equivalent soil thickness eroded over the catchment area reached up to 5 mm during the largest Holocene flood events. Such significant soil erosion is interpreted as resulting from the combination of heavy rainfall and snowmelt. The recurrence of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006DSRI...53.1203H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006DSRI...53.1203H"><span>The seasonal succession of zooplankton in the <span class="hlt">Southern</span> Ocean south of Australia, part II: The Sub-Antarctic to Polar Frontal <span class="hlt">Zones</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hunt, Brian P. V.; Hosie, Graham W.</p> <p>2006-07-01</p> <p>Between October 2001 and March 2002 six transects were completed at monthly intervals in the Sub-Antarctic <span class="hlt">Zone</span> (SAZ) and Inter-Sub-Antarctic Front <span class="hlt">Zone</span> (ISAFZ)/Polar Frontal <span class="hlt">Zone</span> (PFZ) in the <span class="hlt">Southern</span> Ocean south of Australia. Zooplankton were collected with a Continuous Plankton Recorder and NORPAC net and multivariate analysis was used to analyse the seasonal succession of communities. Despite strong, seasonally consistent, biogeographic differences between the SAZ and ISAFZ/PFZ, community structure in all <span class="hlt">zones</span> was dominated by a suite of common taxa. These included the ubiquitous Oithona similis, foraminiferans and appendicularians (Core taxa), occurring in >97% of samples and contributing an average of 75% to total sample abundance, and Calanus simillimus, Rhincalanus gigas, Ctenocalanus citer, Clausocalanus brevipes, Clausocalanus laticeps, Oithona frigida, Limacina spp. and chaetognaths (Summer taxa), present in >57% of samples and occurring at seasonally high densities. Because of the dominance of the Core and Summer taxa, the seasonal succession was most clearly evident as a change in zooplankton densities. In October densities averaged <15 ind m -3, rising to 52 ind m -3 (max=92 ind m -3) in November, and subsequently increasing slowly through to January (ave=115 ind m -3; max=255 ind m -3). Densities peaked abruptly in February (ave=634 ind m -3; max=1593 ind m -3), and remained relatively high in March (ave=193 ind m -3; max=789 ind m -3). A latitudinal lag in seasonal development was observed with peak densities occurring first in the SAZ (February) and then in the ISAFZ/PFZ (March). The seasonal community succession was strongly influenced by species population cycles. The role of zooplankton in biogeochemical cycling in the SAZ and ISAFZ/PFZ was discussed in the light of past sediment trap data collected from the study area.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19083117','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19083117"><span>Communal goat production in <span class="hlt">Southern</span> Africa: a review.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rumosa Gwaze, F; Chimonyo, M; Dzama, K</p> <p>2009-10-01</p> <p>Despite the fact that about 64% of goats in sub-Saharan Africa (SSA) are located in rural arid (38%) and semi-arid (26%) agro-ecological <span class="hlt">zones</span> and that more than 90% of goats in these <span class="hlt">zones</span> are indigenous, information on indigenous breeds is inadequate. This paper reviews the social and economic importance of goats to the communal farmer and assesses the potential of using goats in rural development in <span class="hlt">Southern</span> Africa. Farmers in <span class="hlt">Southern</span> Africa largely use the village goat management system. There are various goat breeds in <span class="hlt">Southern</span> Africa, of which the Mashona, Matabele, Tswana, Nguni and the Landim are the dominant ones. It is, however, not clear if these breeds are distinct. Major constraints to goat production include high disease and parasite prevalence, low levels of management, limited forage availability and poor marketing management. Potential research areas that are required to ensure that goats are vehicles for rural development include evaluation of constraints to goat production, assessing the contribution of goats to household economies and food securities throughout the year, genetic and phenotypic characterisation of the indigenous breeds to identify appropriate strains and sustainable methods of goat improvement through either selection or crossbreeding.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.6864C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.6864C"><span>PHENOALP: a new project on phenology in the Western <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cremonese, E.</p> <p>2009-04-01</p> <p>PHENOALP is a new EU co-funded Interreg Project under the operational programme for cross-border cooperation "Italy-France (<span class="hlt">Alps</span>-ALCOTRA)" 2007 - 2013, aiming to get a better understanding of phenological changes in the <span class="hlt">Alps</span>. The major goals of the project are: 1- The implementation of an observation network in the involved territories (i.e. the Aosta Valley and the Savoies in the Western <span class="hlt">Alps</span>); 2- The definition of a common observation strategy and common protocols; 3- The involvement of local community members (e.g. through schools) in the observation activities as a way to increase the awareness on the issue of the effects of climate change. Project leader is the Environmental Protection Agency of Aosta Valley (ARPA Valle d'Aosta - IT) and the partners are the Research Center on High Altitude Ecosystem (CREA - FR), Mont Avic Regional Parc (IT), Bauges Massif Regional Natural Parc (FR) and the Protected Area Service of Aosta Valley (IT). Project activities are: 1. Pheno-plantes: definition of common observation protocols (e.g. field observation and webcams) of different alpine species (trees and herbaceous) and implementation of the observation network; analysis of the relations between climate and phenological events; application and evaluation of phenological models. 2. Pheno-detection: remote sensing of European larch and high elevation pastures with MODIS data; multitemporal analysis (2000-2011) of phenological variations in the Western <span class="hlt">Alps</span>. 3. Pheno-flux: analysis of the relation between the seasonal and interannual variability of plant phenology and productivity, assessed measuring CO2 fluxes (eddy-covariance technique), radiometric indexes and phenological events at specific (European larch stand and alpine pastures) monitoring site. 4. Pheno-zoo: definition of common observation protocols for the phenology of animal taxa (birds, mammals, amphibians and insects) along altitudinal gradients; implementation of the observation network. 5. Inter</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1097460.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1097460.pdf"><span>Adapting the <span class="hlt">ALP</span> Model for Student and Institutional Needs</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Sides, Meredith</p> <p>2016-01-01</p> <p>With the increasing adoption of accelerated models of learning comes the necessary step of adapting these models to fit the unique needs of the student population at each individual institution. One such college adapted the <span class="hlt">ALP</span> (Accelerated Learning Program) model and made specific changes to the target population, structure and scheduling, and…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29532601','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29532601"><span>Alpine glacial relict species losing out to climate change: The case of the fragmented mountain hare population (Lepus timidus) in the <span class="hlt">Alps</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rehnus, Maik; Bollmann, Kurt; Schmatz, Dirk R; Hackländer, Klaus; Braunisch, Veronika</p> <p>2018-03-13</p> <p>Alpine and Arctic species are considered to be particularly vulnerable to climate change, which is expected to cause habitat loss, fragmentation and-ultimately-extinction of cold-adapted species. However, the impact of climate change on glacial relict populations is not well understood, and specific recommendations for adaptive conservation management are lacking. We focused on the mountain hare (Lepus timidus) as a model species and modelled species distribution in combination with patch and landscape-based connectivity metrics. They were derived from graph-theory models to quantify changes in species distribution and to estimate the current and future importance of habitat patches for overall population connectivity. Models were calibrated based on 1,046 locations of species presence distributed across three biogeographic regions in the Swiss <span class="hlt">Alps</span> and extrapolated according to two IPCC scenarios of climate change (RCP 4.5 & 8.5), each represented by three downscaled global climate models. The models predicted an average habitat loss of 35% (22%-55%) by 2100, mainly due to an increase in temperature during the reproductive season. An increase in habitat fragmentation was reflected in a 43% decrease in patch size, a 17% increase in the number of habitat patches and a 34% increase in inter-patch distance. However, the predicted changes in habitat availability and connectivity varied considerably between biogeographic regions: Whereas the greatest habitat losses with an increase in inter-patch distance were predicted at the <span class="hlt">southern</span> and northern edges of the species' Alpine distribution, the greatest increase in patch number and decrease in patch size is expected in the central Swiss <span class="hlt">Alps</span>. Finally, both the number of isolated habitat patches and the number of patches crucial for maintaining the habitat network increased under the different variants of climate change. Focusing conservation action on the central Swiss <span class="hlt">Alps</span> may help mitigate the predicted effects of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2007/1437/l/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2007/1437/l/"><span>Cascadia Subduction <span class="hlt">Zone</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Frankel, Arthur D.; Petersen, Mark D.</p> <p>2008-01-01</p> <p>The geometry and recurrence times of large earthquakes associated with the Cascadia Subduction <span class="hlt">Zone</span> (CSZ) were discussed and debated at a March 28-29, 2006 Pacific Northwest workshop for the USGS National Seismic Hazard Maps. The CSZ is modeled from Cape Mendocino in California to Vancouver Island in British Columbia. We include the same geometry and weighting scheme as was used in the 2002 model (Frankel and others, 2002) based on thermal constraints (Fig. 1; Fluck and others, 1997 and a reexamination by Wang et al., 2003, Fig. 11, eastern edge of intermediate shading). This scheme includes four possibilities for the lower (eastern) limit of seismic rupture: the base of elastic <span class="hlt">zone</span> (weight 0.1), the base of transition <span class="hlt">zone</span> (weight 0.2), the midpoint of the transition <span class="hlt">zone</span> (weight 0.2), and a model with a long north-south segment at 123.8? W in the <span class="hlt">southern</span> and central portions of the CSZ, with a dogleg to the northwest in the northern portion of the <span class="hlt">zone</span> (weight 0.5). The latter model was derived from the approximate average longitude of the contour of the 30 km depth of the CSZ as modeled by Fluck et al. (1997). A global study of the maximum depth of thrust earthquakes on subduction <span class="hlt">zones</span> by Tichelaar and Ruff (1993) indicated maximum depths of about 40 km for most of the subduction <span class="hlt">zones</span> studied, although the Mexican subduction <span class="hlt">zone</span> had a maximum depth of about 25 km (R. LaForge, pers. comm., 2006). The recent inversion of GPS data by McCaffrey et al. (2007) shows a significant amount of coupling (a coupling factor of 0.2-0.3) as far east as 123.8? West in some portions of the CSZ. Both of these lines of evidence lend support to the model with a north-south segment at 123.8? W.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....12473E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....12473E"><span>Collision in the Central <span class="hlt">Alps</span>: 1. Thermal Modelling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Engi, M.; Roselle, G. T.; Brouwer, F. M.; Berger, A.</p> <p>2003-04-01</p> <p>Recent tectonic reconstructions for the Central <span class="hlt">Alps</span>, based in part on seismic profiles across of the orogen, have produced fairly robust kinematic scenarios for the Tertiary evolution. We have used these to set up 2D finite element models [1] to simulate the thermal evolution at orogenic scales. Results are helpful to understand the metamorphic and geochronological record in the Central <span class="hlt">Alps</span>. Several features recognized as crucial in collisional orogens have been incorporated in our models: Adaptive grids are used to accommodate tectonic mass flow; properties of a tectonic accretion channel (TAC), situated near the footwall of the upper (Apulian) plate, are incorporated (TAC: 5-10 km wide [2]); a mobile fragment (pit: 5-10 km thick, 25-50 km long) at the plate interface is allowed to first be subducted, then to be extruded along the subduction channel to mid-crustal levels during the nappe stacking phase, and finally to be exhumed by backthrusting and erosion; partial melting and its thermal effects are computed. The thermal evolution in crucial parts of the model orogen is depicted in P-T and T-t trajectories, and in time slices showing the evolution of metamorphic facies and degrees of late partial melting. Comparison of simulation results with the regional distribution of (Eocene) high pressure fragments in the Lepontine <span class="hlt">Alps</span> and of their (Oligo/Miocene) Barrovian overprint indicate that (a) decompression is near-isothermal along a very imited part of the path only; (b) the highest temperatures attained following collision do not reach the observed ˜700^oC unless the TAC is fairly radiogenic (heat production ge˜2 μW/m^3) or there is substantial heat advected by asthenospheric melts migrating up the subduction channel; (c) moderate amounts of partial melting occurred within the the TAC during decompression, following the assembly (at mid-crustal levels) of various crustal and mantle fragments with very diverse P-T-t histories. [1] Roselle et al. (2002) Amer</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22284581','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22284581"><span>Medical ethnobotany of the Albanian <span class="hlt">Alps</span> in Kosovo.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mustafa, Behxhet; Hajdari, Avni; Krasniqi, Feriz; Hoxha, Esat; Ademi, Hatixhe; Quave, Cassandra L; Pieroni, Andrea</p> <p>2012-01-28</p> <p>Ethnobotanical studies are crucial in South-Eastern Europe for fostering local development and also for investigating the dynamics of Traditional Environmental Knowledge (TEK) related to plants in one of the most crucial European hotspots for biocultural diversity. The current medico-ethnobotanical survey was conducted in rural alpine communities in Kosovo. The aims of the study were twofold: 1) to document the state of TEK of medicinal plants in these communities; 2) to compare these findings with that of similar field studies previously conducted among local populations inhabiting the Montenegrin and Albanian side of the same Alpine range. Field research was conducted in 36 villages on the Kosovar side of the Albanian <span class="hlt">Alps</span>. Snowball sampling techniques were used to recruit 91 elderly informants (≥ 50 years-old) for participation in semi-structured interviews and structured surveys regarding the use of the local flora for medicinal and food purposes. Standard ethnobotanical methods were employed and prior informed consent was obtained for all study participants. The uses of 98 plants species belonging to 39 families were recorded; the most quoted botanical families were Rosaceae, Asteraceae, and Lamiaceae. Mainly decoctions and infusions were quoted as folk medicinal preparations and the most common uses referred to gastrointestinal and respiratory disorders, as well as illnesses of the uro-genital system. Among the most uncommon medicinal taxa quoted by the informants, Carduus nutans L., Echinops bannaticus Rochel ex Schrad., and Orlaya grandiflora Hoffm. may merit phytochemical and phytopharmacological investigations.Comparison of the data with other ethnobotanical field studies recently conducted on the Albanian and Montenegrin sides of the same <span class="hlt">Alps</span> has shown a remarkable link between the medical ethnobotany of Montenegrin and Kosovar side of the Albanian <span class="hlt">Alps</span>. Moreover, folk uses of the most quoted wild medicinal taxa recorded in Kosovo often include those</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SedG..253....1O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SedG..253....1O"><span>The Miocene Nullarbor Limestone, <span class="hlt">southern</span> Australia; deposition on a vast subtropical epeiric platform</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Connell, Laura G.; James, Noel P.; Bone, Yvonne</p> <p>2012-05-01</p> <p>The early to middle Miocene Nullarbor Limestone forms the vast, karsted Nullarbor Plain in <span class="hlt">southern</span> Australia, and may be the most extensive Miocene carbonate deposit described to date. These carbonates were deposited at <span class="hlt">southern</span> paleolatitudes of ~ 40°S and are interpreted to be subtropical to warm-temperate in character because of the presence of certain genera of tropical coralline algae (rhodoliths and articulated types), large benthic foraminifera, tropical molluscs, zooxanthellate corals, and micrite envelopes. Facies are dominated by skeletal grainstones and floatstones that accumulated in three interpreted paleoenvironments: (1) seagrass banks (upper photic <span class="hlt">zone</span>), (2) rhodolith pavements (lower photic <span class="hlt">zone</span>), and (3) open seafloors (lower photic to subphotic <span class="hlt">zone</span>). A decrease of tropical components from west to east across the platform implies that warm oceanic currents (possibly related to a proto-Leeuwin Current), as well as a period of warm climate (Miocene Climatic Optimum), resulted in subtropical deposition at <span class="hlt">southern</span> latitudes. The <span class="hlt">Southern</span> Ocean extended inboard ~ 450 km from the shelf edge during Nullarbor Limestone deposition, but interpreted paleodepths did not extend much below the base of the photic <span class="hlt">zone</span>. A small slope angle (~ 0.02°) over a wide shelf (~ 300,000 km2) implies deposition on an epeiric platform or epeiric ramp. A Miocene barrier reef was likely coeval with Nullarbor Limestone deposition. Therefore, the inboard portion of the Nullarbor Limestone can be considered part of an extensive back-reef lagoon system on a rimmed epeiric platform, perhaps attaining a size similar to the modern Great Barrier Reef system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016563','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016563"><span>Late Holocene tectonics and paleoseismicity, <span class="hlt">southern</span> Cascadia subduction <span class="hlt">zone</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Clarke, S.H.; Carver, G.A.</p> <p>1992-01-01</p> <p>Holocene deformation indicative of large subduction-<span class="hlt">zone</span> earthquakes has occurred on two large thrust fault systems in the Humboldt Bay region of northern California. Displaced stratigraphic markers record three offsets of 5 to 7 meters each on the Little Salmon fault during the past 1700 years. Smaller and less frequent Holocene displacements have occurred in the Mad River fault <span class="hlt">zone</span>. Elsewhere, as many as five episodes of sudden subsidence of marsh peats and fossil forests and uplift of marine terraces are recorded. Carbon-14 dates suggest that the faulting, subsidence, and uplift events were synchronous. Relations between magnitude and various fault-offset parameters indicate that earthquakes accompanying displacements on the Little Salmon fault had magnitudes of at least 7.6 to 7.8. More likely this faulting accompanied rupture of the boundary between the Gorda and North American plates, and magnitudes were about 8.4 or greater.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17756070','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17756070"><span>Late holocene tectonics and paleoseismicity, <span class="hlt">southern</span> cascadia subduction <span class="hlt">zone</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Clarke, S H; Carver, G A</p> <p>1992-01-10</p> <p>Holocene deformation indicative of large subduction-<span class="hlt">zone</span> earthquakes has occurred on two large thrust fault systems in the Humboldt Bay region of northern California. Displaced stratigraphic markers record three offsets of 5 to 7 meters each on the Little Salmon fault during the past 1700 years. Smaller and less frequent Holocene displacements have occurred in the Mad River fault <span class="hlt">zone</span>. Elsewhere, as many as five episodes of sudden subsidence of marsh peats and fossil forests and uplift of marine terraces are recorded. Carbon-14 dates suggest that the faulting, subsidence, and uplift events were synchronous. Relations between magnitude and various fault-offset parameters indicate that earthquakes accompanying displacements on the Little Salmon fault had magnitudes of at least 7.6 to 7.8. More likely this faulting accompanied rupture of the boundary between the Gorda and North American plates, and magnitudes were about 8.4 or greater.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5914158','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5914158"><span>The lichens of the <span class="hlt">Alps</span> – an annotated checklist</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nimis, Pier Luigi; Hafellner, Josef; Roux, Claude; Clerc, Philippe; Helmut Mayrhofer; Martellos, Stefano; Bilovitz, Peter O.</p> <p>2018-01-01</p> <p>Abstract This is the first attempt to provide an overview of the lichen diversity of the <span class="hlt">Alps</span>, one of the biogegraphically most important and emblematic mountain systems worldwide. The checklist includes all lichenised species, plus a set of non- or doubtfully lichenised taxa frequently treated by lichenologists, excluding non-lichenised lichenicolous fungi. Largely based on recent national or regional checklists, it provides a list of all infrageneric taxa (with synonyms) hitherto reported from the <span class="hlt">Alps</span>, with data on their distribution in eight countries (Austria, France, Germany, Liechtenstein, Monaco, Italy, Slovenia, Switzerland) and in 42 Operational Geographic Units, mostly corresponding to administrative subdivisions within the countries. Data on the main substrates and on the altitudinal distribution are also provided. A short note points to the main ecological requirements of each taxon and/or to open taxonomic problems. Particularly poorly known taxa are flagged and often provided with a short description, to attract the attention of specialists. The total number of infrageneric taxa is 3,163, including 117 non- or doubtfully lichenised taxa. The richness of the lichen biota fairly well corresponds with the percent of the Alpine area occupied by each country: Austria (2,337 taxa), Italy (2,169), France (2,028), Switzerland (1,835), Germany (1,168), Slovenia (890) and Lichtenstein (152), no lichen having ever been reported from Monaco. The number of poorly known taxa is quite high (604, 19.1% of the total), which indicates that, in spite of the <span class="hlt">Alps</span> being one of the lichenologically most studied mountain systems worldwide, much work is still needed to reach a satisfactory picture of their real lichen diversity. Thirteen new combinations are proposed in the genera Agonimia, Aspicilia, Bagliettoa, Bellemerea, Carbonea, Lepra, Miriquidica, Polysporina, Protothelenella, Pseudosagedia and Thelidium. PMID:29706791</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014CoMP..167.1004H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014CoMP..167.1004H"><span>Enrichments of the mantle sources beneath the <span class="hlt">Southern</span> Volcanic <span class="hlt">Zone</span> (Andes) by fluids and melts derived from abraded upper continental crust</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holm, Paul Martin; Søager, Nina; Dyhr, Charlotte Thorup; Nielsen, Mia Rohde</p> <p>2014-05-01</p> <p>Mafic basaltic-andesitic volcanic rocks from the Andean <span class="hlt">Southern</span> Volcanic <span class="hlt">Zone</span> (SVZ) exhibit a northward increase in crustal components in primitive arc magmas from the Central through the Transitional and Northern SVZ segments. New elemental and Sr-Nd-high-precision Pb isotope data from the Quaternary arc volcanic centres of Maipo (NSVZ) and Infernillo and Laguna del Maule (TSVZ) are argued to reflect mainly their mantle source and its melting. For the C-T-NSVZ, we identify two types of source enrichment: one, represented by Antuco in CSVZ, but also present northward along the arc, was dominated by fluids which enriched a pre-metasomatic South Atlantic depleted MORB mantle type asthenosphere. The second enrichment was by melts having the characteristics of upper continental crust (UCC), distinctly different from Chile trench sediments. We suggest that granitic rocks entered the source mantle by means of subduction erosion in response to the northward increasingly strong coupling of the converging plates. Both types of enrichment had the same Pb isotope composition in the TSVZ with no significant component derived from the subducting oceanic crust. Pb-Sr-Nd isotopes indicate a major crustal compositional change at the <span class="hlt">southern</span> end of the NSVZ. Modelling suggests addition of around 2 % UCC for Infernillo and 5 % for Maipo.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-s45-82-029.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-s45-82-029.html"><span>French <span class="hlt">Alps</span>, Mont Blanc, French/Italian Border</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1992-04-02</p> <p>In this southeast looking view, Mont Blanc, on the French/Italian border, (48.0N, 4.5E) the highest mountain peak in all of Europe, is just below and right of center (below the end of the prominent valley of the Aosta River, in the center of the photo. The rivers flow out of the <span class="hlt">Alps</span> into Italy toward Turin. Chamonix, the famous resort town and center of Alpine mountain climbing, lies in the valley just below Mont Blanc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Tecto..37..724P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Tecto..37..724P"><span>Thermochronometry Across the Austroalpine-Pennine Boundary, Central <span class="hlt">Alps</span>, Switzerland: Orogen-Perpendicular Normal Fault Slip on a Major "Overthrust" and Its Implications for Orogenesis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Price, Jason B.; Wernicke, Brian P.; Cosca, Michael A.; Farley, Kenneth A.</p> <p>2018-03-01</p> <p>Fifty-one new and 309 published thermochronometric ages (nine systems with closure temperatures ranging from 450 to 70°C) from the Graubünden region of the Central <span class="hlt">Alps</span> demonstrate that a pronounced thermal mismatch between the Austroalpine allochthon (Alpine "orogenic lid") and the Pennine <span class="hlt">zone</span> persisted until at least 29 Ma and, allowably, until circa 18 Ma. The observed mismatch supports previous suggestions that the famous "overthrust" between the Austroalpine allochthon and the Pennine <span class="hlt">zone</span>, historically regarded as primarily an Eocene top-north thrust fault, is in fact primarily an Oligocene-Miocene normal fault that has a minimum of 60 km of displacement with top-south or top-southeast sense of shear. Two hallmarks of Alpine geology, deposition of the foredeep Molasse and emplacement of the Helvetic nappes, appear to be coeval, peripheral manifestations of crustal thickening via the interposition of the Pennine <span class="hlt">zone</span> as a northward intruding wedge between the Austroalpine "lid" and the European cratonic margin, with the Helvetic system (European margin) acting as the "floor" of the wedge. We presume the Penninic wedge is driven by the buoyant rise of subducted crust no longer able to remain attached to the descending slab. If so, emplacement of the Pennine wedge could have occurred mainly after Adria was juxtaposed against cratonic Europe.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=238500','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=238500"><span>Spatial Distribution, Structure, Biomass, and Physiology of Microbial Assemblages across the <span class="hlt">Southern</span> Ocean Frontal <span class="hlt">Zones</span> during the Late Austral Winter</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hanson, Roger B.; Lowery, H. Kenneth</p> <p>1985-01-01</p> <p>We examined the spatial distributions of picoplankton, nanoplankton, and microplankton biomass and physiological state relative to the hydrography of the <span class="hlt">Southern</span> Ocean along 90° W longitude and across the Drake Passage in the late austral winter. The eastern South Pacific Ocean showed some large-scale biogeographical differences and size class variability. Microbial ATP biomass was greatest in euphotic surface waters. The horizontal distributions of microbial biomass and physiological state (adenylate energy charge ratio) coincided with internal currents (fronts) of the Antarctic Circumpolar Current. In the Drake Passage, the biological scales in the euphotic and aphotic <span class="hlt">zones</span> were complex, and ATP, total adenylate, and adenylate energy charge ratio isopleths were compressed due to the extension of the sea ice from Antarctica and constriction of the Circumpolar Current through the narrow passage. The physiological state of microbial assemblages and biomass were much higher in the Drake Passage than in the eastern South Pacific Ocean. The temperature of Antarctic waters, not dissolved organic carbon, was the major variable controlling picoplankton growth. Estimates of picoplankton production based on ATP increments with time suggest that production under reduced predation pressure was 1 to 10 μg of carbon per liter per day. Our results demonstrate the influence of large-scale hydrographic processes on the distribution and structure of microplankton, nanoplankton, and picoplankton across the <span class="hlt">Southern</span> Ocean. PMID:16346777</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2982231','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2982231"><span>Iron defecation by sperm whales stimulates carbon export in the <span class="hlt">Southern</span> Ocean</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lavery, Trish J.; Roudnew, Ben; Gill, Peter; Seymour, Justin; Seuront, Laurent; Johnson, Genevieve; Mitchell, James G.; Smetacek, Victor</p> <p>2010-01-01</p> <p>The iron-limited <span class="hlt">Southern</span> Ocean plays an important role in regulating atmospheric CO2 levels. Marine mammal respiration has been proposed to decrease the efficiency of the <span class="hlt">Southern</span> Ocean biological pump by returning photosynthetically fixed carbon to the atmosphere. Here, we show that by consuming prey at depth and defecating iron-rich liquid faeces into the photic <span class="hlt">zone</span>, sperm whales (Physeter macrocephalus) instead stimulate new primary production and carbon export to the deep ocean. We estimate that <span class="hlt">Southern</span> Ocean sperm whales defecate 50 tonnes of iron into the photic <span class="hlt">zone</span> each year. Molar ratios of Cexport ∶Feadded determined during natural ocean fertilization events are used to estimate the amount of carbon exported to the deep ocean in response to the iron defecated by sperm whales. We find that <span class="hlt">Southern</span> Ocean sperm whales stimulate the export of 4 × 105 tonnes of carbon per year to the deep ocean and respire only 2 × 105 tonnes of carbon per year. By enhancing new primary production, the populations of 12 000 sperm whales in the <span class="hlt">Southern</span> Ocean act as a carbon sink, removing 2 × 105 tonnes more carbon from the atmosphere than they add during respiration. The ability of the <span class="hlt">Southern</span> Ocean to act as a carbon sink may have been diminished by large-scale removal of sperm whales during industrial whaling. PMID:20554546</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007GeoJI.168..332W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007GeoJI.168..332W"><span>Balancing the plate motion budget in the South Island, New Zealand using GPS, geological and seismological data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wallace, Laura M.; Beavan, John; McCaffrey, Robert; Berryman, Kelvin; Denys, Paul</p> <p>2007-01-01</p> <p>The landmass of New Zealand exists as a consequence of transpressional collision between the Australian and Pacific plates, providing an excellent opportunity to quantify the kinematics of deformation at this type of tectonic boundary. We interpret GPS, geological and seismological data describing the active deformation in the South Island, New Zealand by using an elastic, rotating block approach that automatically balances the Pacific/Australia relative plate motion budget. The data in New Zealand are fit to within uncertainty when inverted simultaneously for angular velocities of rotating tectonic blocks and the degree of coupling on faults bounding the blocks. We find that most of the plate motion budget has been accounted for in previous geological studies, although we suggest that the Porter's Pass/Amberley fault <span class="hlt">zone</span> in North Canterbury, and a <span class="hlt">zone</span> of faults in the foothills of the <span class="hlt">Southern</span> <span class="hlt">Alps</span> may have slip rates about twice that of the geological estimates. Up to 5 mm yr-1 of active deformation on faults distributed within the <span class="hlt">Southern</span> <span class="hlt">Alps</span> <100 km to the east of the Alpine Fault is possible. The role of tectonic block rotations in partitioning plate boundary deformation is less pronounced in the South Island compared to the North Island. Vertical axis rotation rates of tectonic blocks in the South Island are similar to that of the Pacific Plate, suggesting that edge forces dominate the block kinematics there. The southward migrating Chatham Rise exerts a major influence on the evolution of the New Zealand plate boundary; we discuss a model for the development of the Marlborough fault system and Hikurangi subduction <span class="hlt">zone</span> in the context of this migration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004DSRI...51..307P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004DSRI...51..307P"><span>Geochemical particle fluxes in the <span class="hlt">Southern</span> Indian Ocean seasonal ice <span class="hlt">zone</span>: Prydz Bay region, East Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pilskaln, C. H.; Manganini, S. J.; Trull, T. W.; Armand, L.; Howard, W.; Asper, V. L.; Massom, R.</p> <p>2004-02-01</p> <p>Time-series sediment traps were deployed between December 1998 and January 2000 and from March 2000 to February 2001 at two offshore Prydz Bay sites within the seasonal ice <span class="hlt">zone</span> (SIZ) of the <span class="hlt">Southern</span> Indian Ocean located between 62-63°S and 73-76°E to quantify seasonal biogeochemical particle fluxes. Samples were obtained from traps placed at 1400, 2400, and 3400 m during the first deployment year (PZB-1) and from 3300 m in the second deployment year (PZB-2). All geochemical export fluxes were highly seasonal with primary peaks occurring during the austral summer and relatively low fluxes prevailing through the winter months. Secondary flux peaks in mid-winter and in early spring were suggestive of small-scale, sea-ice break-up events and the spring retreat of seasonal ice, respectively. Biogenic silica represented over 70% (by weight) of the collected trap material and provided an annual opal export of 18 g m -2 to 1 km and 3-10 g m -2 to 3 km. POC fluxes supplied an annual export of approximately 1 g m -2, equal to the estimated ocean-wide average. Elevated particulate C org/C inorg and Si bio/C inorg molar ratios indicate a productive, diatom-dominated system, although consistently small fluxes of planktonic foraminifera and pteropod shells document a heterotrophic source of carbonate to deeper waters in the SIZ. The observation of high Si bio/C org ratios and the δ15N time-series data suggest enhanced rates of diatom-POC remineralization in the upper 1000 m relative to bioSiO 2. The occurrence in this region of a pronounced temperature minimum, associated with a strong pycnocline and subsurface particle maximum at 50-100 m, may represent a <span class="hlt">zone</span> where sinking, diatom-rich particulates temporarily accumulate and POC is remineralized.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22532517','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22532517"><span>Synthesis and effect of Ce and Mn co-doping on photoluminescence characteristics of Ca6<span class="hlt">AlP</span>5O20:Eu novel phosphors.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shinde, K N; Dhoble, S J</p> <p>2013-01-01</p> <p>A series of Ca6<span class="hlt">AlP</span>5O20 doped with rare earths (Eu and Ce) and co-doped (Eu, Ce and Eu,Mn) were prepared by combustion synthesis. Under Hg-free excitation, Ca6<span class="hlt">AlP</span>5O20:Eu exhibited Eu(2+) (486 nm) emission in the blue region of the spectrum and under near Hg excitation (245 nm), Ca6<span class="hlt">AlP</span>5O20:Ce phosphor exhibited Ce(3+) emission (357 nm) in the UV range. Photoluminescence (PL) peak intensity increased in Ca6<span class="hlt">AlP</span>5O20:Eu,Ce and Ca6<span class="hlt">AlP</span>5O20:Eu, Mn phosphors due to co-activators of Ce(3+) and Mn(2+) ions. As a result, these ions played an important role in PL emission in the present matrix. Ca6<span class="hlt">AlP</span>5O20:Eu, Ce and Ca6<span class="hlt">AlP</span>5O20:Eu, Mn phosphors provided energy transfer mechanisms via Ce(3+) → Eu(2+) and Eu(2+) → Mn(2+), respectively. Eu ions acted as activators and Ce ions acted as sensitizers. Ce emission energy was well matched with Eu excitation energy in the case of Ca6<span class="hlt">AlP</span>5O20:Eu, Ce and Eu ions acted as activators and Mn ions acted as sensitizers in Ca6<span class="hlt">AlP</span>5O20:Eu, Mn. This study included synthesis of new and efficient phosphate phosphors. The impact of doping and co-doping on photoluminescence properties and energy transfer mechanisms were investigated and we propose a feasible interpretation. Copyright © 2012 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42.4464M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42.4464M"><span>A new 3-D thin-skinned rock glacier model based on helicopter GPR results from the Swiss <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Merz, Kaspar; Green, Alan G.; Buchli, Thomas; Springman, Sarah M.; Maurer, Hansruedi</p> <p>2015-06-01</p> <p>Mountainous locations and steep rugged surfaces covered by boulders and other loose debris are the main reasons why rock glaciers are among the most challenging geological features to investigate using ground-based geophysical methods. Consequently, geophysical surveys of rock glaciers have only ever involved recording data along sparse lines. To address this issue, we acquired quasi-3-D ground-penetrating radar (GPR) data across a rock glacier in the Swiss <span class="hlt">Alps</span> using a helicopter-mounted system. Our interpretation of the derived GPR images constrained by borehole information results in a novel "thin-skinned" rock glacier model that explains a concentration of deformation across a principal shear <span class="hlt">zone</span> (décollement) and faults across which rock glacier lobes are juxtaposed. The new model may be applicable to many rock glaciers worldwide. We suggest that the helicopter GPR method may be useful for 3-D surveying numerous other difficult-to-access mountainous terrains.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014Litho.205..298A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014Litho.205..298A"><span>In search of transient subduction interfaces in the Dent Blanche-Sesia Tectonic System (W. <span class="hlt">Alps</span>)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Angiboust, Samuel; Glodny, Johannes; Oncken, Onno; Chopin, Christian</p> <p>2014-09-01</p> <p>In this paper we study the Alpine metamorphic history of a major tectonic <span class="hlt">zone</span> which formed during Alpine orogeny, the Dent Blanche Thrust (DBT). This contact, located in the Northern Western <span class="hlt">Alps</span>, juxtaposes some ophiolitic metasediment-rich remnants of the Liguro-Piemontese ocean (Tsaté Complex) with a composite continental, km-sized complex (Dent Blanche Tectonic System, DBTS) of Adriatic affinity thrusted over the ophiolite. In order to better understand the geodynamic meaning of the DBT region and adjacent units, we have reconstructed the pressure-temperature-time-deformation (P-T-t-d) history of these two units using modern thermobarometric tools, Rb/Sr geochronology, and field relationships. We show that the Tsaté Complex is formed by a stack of km-thick calcschists-bearing tectonic slices having experienced variable maximum burial temperatures between 360 °C and 490 °C at depths of ca. 25-40 km. Associated deformation ages span a range between 37 Ma and 41 Ma. The Arolla gneissic mylonites at the base of the DBTS experienced high-pressure (12-14 kbar), top-to-NW deformation at ca. 450 °C between 43 and 48 Ma. A first age of ca. 58 Ma has been obtained for high-pressure ductile deformation in the Valpelline shear <span class="hlt">zone</span>, atop Arolla gneisses. Some of the primary, peak metamorphic fabrics have been reworked and later backfolded during exhumation and collisional overprint (ca. 20 km depth, 37-40 Ma) leading to the regional greenschist-facies retrogression which is particularly prominent within Tsaté metasediments. We interpret the Dent Blanche Thrust, at the base of the Arolla unit, as a fossilized subduction interface active between 43 and 48 Ma. Our geochronological results on the shear <span class="hlt">zone</span> lining the top of the Arolla unit, together with previous P-T-t estimates on equivalent blueschist-facies shear <span class="hlt">zones</span> cutting the Sesia unit, indicate an older tectonic activity between 58 and 65 Ma. We demonstrate here that observed younger ages towards lowermost</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008EnGeo..55..441R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008EnGeo..55..441R"><span>Susceptibility analysis for slides and rockfall: an example from the Northern Calcareous <span class="hlt">Alps</span> (Vorarlberg, Austria)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruff, Michael; Rohn, Joachim</p> <p>2008-07-01</p> <p>In this paper a tool for semi-quantitative susceptibility assessment at a regional scale is presented which is applicable at areas with complex geological setting. At a study area within the Northern Calcareous <span class="hlt">Alps</span> geotechnical mappings were implemented into a Geographical Information System and analysed as grid data with a cell size of 25 m. The susceptibility to sliding and falling processes was considered according to five classes (very low, low, medium, high, very high). Susceptibility to sliding was analysed using an index method. The layers of lithology, bedding conditions, tectonic faults, slope angle, slope aspect, vegetation and erosion were combined iteratively. Dropout <span class="hlt">zones</span> of rockfall material were determined with help of a Digital Elevation Model. The movement of rolling rock samples was modelled by a cost analysis of all potential rockfall trajectories. These trajectories were also divided into five susceptibility classes. The susceptibility maps are presented in a general way to be used by communities and spatial planners. Conflict areas of susceptibility and landuse were located and can be presented destinctively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.T21D..06V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.T21D..06V"><span>Analog Modeling of the Interplay between Subduction and Lateral Extrusion in the European <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Gelder, I. E.; Willingshofer, E.; Sokoutis, D.</p> <p>2014-12-01</p> <p>In the European <span class="hlt">Alps</span> lateral extrusion is traditionally viewed as a lithospheric scale process that is related to northward indentation of a weak orogenic wedge (the eastern <span class="hlt">Alps</span>) by a rigid indenter in upper plate position (the Adriatic plate). Critical for the efficiency of the extrusion process is the presence of a 'free boundary' at high angle to the indentation direction. The 'free boundary' in the eastern <span class="hlt">Alps</span> is the result of the eastward extending Pannonian realm synchronous to indentation. However, indentation has become debatable as recent high-resolution tomography suggests that the Adriatic mantle lithosphere subducted under the extruding <span class="hlt">Alps</span>. These findings raise first order questions related to: (a) the partitioning of deformation between lateral extrusion of the upper plate and coeval subduction of Adria, (b) the rheology of the lower and upper plates, and (c) the rheology of the plate contact controlling the amount of extrusion on the upper plate vs. accretion on the lower plate.In this analog modeling study, we couple for the first time lateral extrusion tectonics to subduction of the lower plate; thus, extrusion taking place in the upper plate. Within the lithospheric scale models, the lithospheres of the two plates are weakly coupled along an inclined boundary and have contrasting mantle lithosphere strength (stronger in the subducting plate). The interplay of extrusion vs subduction is inferred by varying the mechanical boundary conditions, e.g. the degree of resistance at the 'unconstrained' margin, the strength contrast between the upper and the lower plates and the width of the indented region.The experimental results emphasize that extrusion in the eastern <span class="hlt">Alps</span> is compatible with coeval subduction of the Adriatic plate. The first experimental series suggests that the following mechanical conditions play a key role in the interplay between extrusion and subduction: (a) the extruding plate is weaker than the subducting plate, (b) the plate</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMIN21B1735H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMIN21B1735H"><span>On-demand Simulation of Atmospheric Transport Processes on the <span class="hlt">Alp</span>EnDAC Cloud</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hachinger, S.; Harsch, C.; Meyer-Arnek, J.; Frank, A.; Heller, H.; Giemsa, E.</p> <p>2016-12-01</p> <p>The "Alpine Environmental Data Analysis Centre" (<span class="hlt">Alp</span>EnDAC) develops a data-analysis platform for high-altitude research facilities within the "Virtual Alpine Observatory" project (VAO). This platform, with its web portal, will support use cases going much beyond data management: On user request, the data are augmented with "on-demand" simulation results, such as air-parcel trajectories for tracing down the source of pollutants when they appear in high concentration. The respective back-end mechanism uses the Compute Cloud of the Leibniz Supercomputing Centre (LRZ) to transparently calculate results requested by the user, as far as they have not yet been stored in <span class="hlt">Alp</span>EnDAC. The queuing-system operation model common in supercomputing is replaced by a model in which Virtual Machines (VMs) on the cloud are automatically created/destroyed, providing the necessary computing power immediately on demand. From a security point of view, this allows to perform simulations in a sandbox defined by the VM configuration, without direct access to a computing cluster. Within few minutes, the user receives conveniently visualized results. The <span class="hlt">Alp</span>EnDAC infrastructure is distributed among two participating institutes [front-end at German Aerospace Centre (DLR), simulation back-end at LRZ], requiring an efficient mechanism for synchronization of measured and augmented data. We discuss our iRODS-based solution for these data-management tasks as well as the general <span class="hlt">Alp</span>EnDAC framework. Our cloud-based offerings aim at making scientific computing for our users much more convenient and flexible than it has been, and to allow scientists without a broad background in scientific computing to benefit from complex numerical simulations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JAESc..78...39C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JAESc..78...39C"><span>Proterozoic orogens in <span class="hlt">southern</span> Peninsular India: Contiguities and complexities</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chetty, T. R. K.; Santosh, M.</p> <p>2013-12-01</p> <p>The Precambrian terranes of <span class="hlt">southern</span> Peninsular India have been central to discussions on the history of formation and breakup of supercontinents. Of particular interest are the Proterozoic high grade metamorphic orogens at the <span class="hlt">southern</span> and eastern margins of the Indian shield, skirting the 3.4 Ga Dharwar craton which not only preserve important records of lower crustal processes and lithospheric geodynamics, but also carry imprints of the tectonic framework related to the assembly of the major Neoproterozoic supercontinents - Rodinia and Gondwana. These Proterozoic orogens are described as <span class="hlt">Southern</span> Granulite Terrane (SGT) in the <span class="hlt">southern</span> tip and the Eastern Ghats Mobile Belt (EGMB) in the eastern domains of the peninsula. The contiguity of these orogens is broken for a distance of ˜400 km and disappears in the Bay of Bengal. These orogens expose windows of middle to lower crust with well-preserved rock records displaying multiple tectonothermal events and multiphase exhumation paths.Recent studies in these orogens have led to the recognition of discrete crustal blocks or terranes separated by major shear <span class="hlt">zone</span> systems, some of which represent collisional sutures. The SGT and EGMB carry several important features such as fold-thrust tectonics, regional granulite facies metamorphism of up to ultrahigh-temperature conditions in some cases, multiple P-T paths, development of lithospheric shear <span class="hlt">zones</span>, emplacement of ophiolites, presence of alkaline and anorthositic complexes, development of crustal-scale "flower structures", transpressional strains, and reactivation tectonics. A heterogeneous distribution of different metamorphic and magmatic assemblages with distinct spatial and temporal strain variations in shaping the fabric elements in different blocks is identified. Both EGMB and SGT share a common transpressional deformation history during the latest Neoproterozoic characterized by the steepening of the initial low angle crustal scale structures leading to a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ECSS..150...67H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ECSS..150...67H"><span>Local extirpations and regional declines of endemic upper beach invertebrates in <span class="hlt">southern</span> California</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hubbard, D. M.; Dugan, J. E.; Schooler, N. K.; Viola, S. M.</p> <p>2014-10-01</p> <p>Along the world's highly valued and populous coastlines, the upper intertidal <span class="hlt">zones</span> of sandy beach ecosystems and the biodiversity that these <span class="hlt">zones</span> support are increasingly threatened by impacts of human activities, coastal development, erosion, and climate change. The upper <span class="hlt">zones</span> of beaches typically support invertebrates with restricted distributions and dispersal, making them particularly vulnerable to habitat loss and fragmentation. We hypothesized that disproportionate loss or degradation of these <span class="hlt">zones</span> in the last century has resulted in declines of upper shore macroinvertebrates in <span class="hlt">southern</span> California. We identified a suite of potentially vulnerable endemic upper beach invertebrates with direct development, low dispersal and late reproduction. Based on the availability of printed sources and museum specimens, we investigated historical changes in distribution and abundance of two intertidal isopod species (Tylos punctatus, Alloniscus perconvexus) in <span class="hlt">southern</span> California. Populations of these isopods have been extirpated at numerous historically occupied sites: T. punctatus from 16 sites (57% decrease), and A. perconvexus from 14 sites (64% decrease). During the same period, we found evidence of only five colonization events. In addition, the northern range limit of the <span class="hlt">southern</span> species, T. punctatus, moved south by 31 km (8% of range on California mainland) since 1971. Abundances of T. punctatus have declined on the mainland coast; only three recently sampled populations had abundances >7000 individuals m-1. For A. perconvexus populations, abundances >100 individuals m-1 now appear to be limited to the northern part of the study area. Our results show that numerous local extirpations of isopod populations have resulted in regional declines and in greatly reduced population connectivity in several major littoral cells of <span class="hlt">southern</span> California. Two of the six major littoral cells (Santa Barbara and Zuma) in the area currently support 74% of the remaining isopod</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.G53B..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.G53B..08S"><span>Hydrological deformation signals in karst systems: new evidence from the European <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Serpelloni, E.; Pintori, F.; Gualandi, A.; Scoccimarro, E.; Cavaliere, A.; Anderlini, L.; Belardinelli, M. E.; Todesco, M.</p> <p>2017-12-01</p> <p>The influence of rainfall on crustal deformation has been described at local scales, using tilt and strain meters, in several tectonic settings. However, the literature on the spatial extent of rainfall-induced deformation is still scarce. We analyzed 10 years of displacement time-series from 150 continuous GPS stations operating across the broad <span class="hlt">zone</span> of deformation accommodating the N-S Adria-Eurasia convergence and the E-ward escape of the Eastern <span class="hlt">Alps</span> toward the Pannonian basin. We applied a blind-source-separation algorithm based on a variational Bayesian Independent Component Analysis method to the de-trended time-series, being able to characterize the temporal and spatial features of several deformation signals. The most important ones are a common mode annual signal, with spatially uniform response in the vertical and horizontal components and a time-variable, non-cyclic, signal characterized by a spatially variable response in the horizontal components, with stations moving (up to 8 mm) in the opposite directions, reversing the sense of movement in time. This implies a succession of extensional/compressional strains, with variable amplitudes through time, oriented normal to rock fractures in karst areas. While seasonal displacements in the vertical component (with an average amplitude of 4 mm over the study area) are satisfactorily reproduced by surface hydrological loading, estimated from global assimilation models, the non seasonal signal is associated with groundwater flow in karst systems, and is mainly influencing the horizontal component. The temporal evolution of this deformation signal is correlated with cumulated precipitation values over periods of 200-300 days. This horizontal deformation can be explained by pressure changes associated with variable water levels within vertical fractures in the vadose <span class="hlt">zones</span> of karst systems, and the water level changes required to open or close these fractures are consistent with the fluctuations of precipitation</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JSAES..71..309A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JSAES..71..309A"><span>Present-day stress tensors along the <span class="hlt">southern</span> Caribbean plate boundary <span class="hlt">zone</span> from inversion of focal mechanism solutions: A successful trial</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Audemard M., Franck A.; Castilla, Raymi</p> <p>2016-11-01</p> <p>This paper presents a compilation of 16 present-day stress tensors along the <span class="hlt">southern</span> Caribbean plate boundary <span class="hlt">zone</span> (PBZ), and particularly in western and along northern Venezuela. As a trial, these new stress tensors along PBZ have been calculated from inversion of 125 focal mechanism solutions (FMS) by applying the Angelier & Mechler's dihedral method, which were originally gathered by the first author and published in 2005. These new tensors are compared to those 59 tensors inverted from fault-slip data measured only in Plio-Quaternary sedimentary rocks, compiled in Audemard et al. (2005), which were originally calculated by several researchers through the inversion methods developed by Angelier and Mechler or Etchecopar et al. The two sets of stress tensors, one derived from geological data and the other one from seismological data, compare very well throughout the PBZ in terms of both stress orientation and shape of the stress tensor. This region is characterized by a compressive strike-slip (transpressional senso lato), occasionally compressional, regime from the <span class="hlt">southern</span> Mérida Andes on the southwest to the gulf of Paria in the east. Significant changes in direction of the maximum horizontal stress (σH = σ1) can be established along it though. The σ1 direction varies progressively from nearly east-west in the <span class="hlt">southern</span> Andes (SW Venezuela) to between NW-SE and NNW-SSE in northwestern Venezuela; this direction remaining constant across northern Venezuela, from Colombia to Trinidad. In addition, the σV defined by inversion of focal mechanisms or by the shape of the stress ellipsoid derived from the Etchecopar et al.'s method better characterize whether the stress regime is transpressional or compressional, or even very rarely trantensional at local scale. The orientation and space variation of this regional stress field in western Venezuela results from the addition of the two major neighbouring interplate maximum horizontal stress orientations (</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6645D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6645D"><span>Quantification of seasonal to annual mass balances from glacier surface albedo derived from optical satellite images, application on 30 glaciers in the French <span class="hlt">Alps</span> for the period 2000-2015.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davaze, Lucas; Rabatel, Antoine; Arnaud, Yves; Sirguey, Pascal; Six, Delphine; Letreguilly, Anne; Dumont, Marie</p> <p>2017-04-01</p> <p>Increasing the number of glaciers monitored for surface mass balance is very challenging, especially using laborious methods based on in situ data. Complementary methods are therefore required to quantify the surface mass balance of unmonitored glaciers. The current study relies on the so-called albedo method, based on the analysis of albedo maps retrieved from optical satellite imagery acquired since 2000 by the MODIS sensor, onboard of TERRA satellite. Recent studies performed on single glaciers in the French <span class="hlt">Alps</span>, the Himalayas or the <span class="hlt">Southern</span> <span class="hlt">Alps</span> of New Zealand revealed substantial relationships between summer minimum glacier-wide surface albedo and annual mass balance, because this minimum surface albedo is directly related to accumulation-area ratio and the equilibrium-line altitude. On the basis of 30 glaciers located in the French <span class="hlt">Alps</span> where annual surface mass balance are available, our study conducted on the period 2000-2015 confirms the robustness and reliability of the relationship between the summer minimum surface albedo and the annual surface mass balance. At the seasonal scale, the integrated summer surface albedo is significantly correlated with the summer mass balance of the six glaciers seasonally surveyed. For the winter season, four of the six glaciers showed a significant correlation when linking the winter surface mass balance and the integrated winter surface albedo, using glacier-dependent thresholds to filter the albedo signal. Sensitivity study on the computed cloud detection algorithm revealed high confidence in retrieved albedo maps. These results are promising to monitor both annual and seasonal glacier-wide surface mass balances of individual glaciers at a regional scale using optical satellite images.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.5289V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.5289V"><span>Average snowcover density values in Eastern <span class="hlt">Alps</span> mountain</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Valt, M.; Moro, D.</p> <p>2009-04-01</p> <p>The Italian Avalanche Warning Services monitor the snow cover characteristics through networks evenly distributed all over the alpine chain. Measurements of snow stratigraphy and density are very frequently performed with sampling rates of 1 -2 times per week. Snow cover density values are used to compute the dimensions of the building roofs as well as to design avalanche barriers. Based on the measured snow densities the Electricity Board can predict the amount of water resources deriving from snow melt in high relieves drainage basins. In this work it was possible to compute characteristic density values of the snow cover in the Eastern <span class="hlt">Alps</span> using the information contained in the database from the ARPA (Agenzia Regionale Protezione Ambiente)-Centro Valanghe di Arabba, and Ufficio Valanghe- Udine. Among the other things, this database includes 15 years of stratigraphic measurements. More than 6,000 snow stratigraphic logs were analysed, in order to derive typical values as for geographical area, altitude, exposure, snow cover thickness and season. Computed values were compared to those established by the current Italian laws. Eventually, experts identified and evaluated the correlations between the seasonal variations of the average snow density and the variations related to the snowfall rate in the period 1994-2008 in the Eastern <span class="hlt">Alps</span> mountain range</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T31G..05B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T31G..05B"><span>The seismogenic Gole Larghe Fault <span class="hlt">Zone</span> (Italian <span class="hlt">Southern</span> <span class="hlt">Alps</span>): quantitative 3D characterization of the fault/fracture network, mapping of evidences of fluid-rock interaction, and modelling of the hydraulic structure through the seismic cycle</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bistacchi, A.; Mittempergher, S.; Di Toro, G.; Smith, S. A. F.; Garofalo, P. S.</p> <p>2016-12-01</p> <p>The Gole Larghe Fault <span class="hlt">Zone</span> (GLFZ) was exhumed from 8 km depth, where it was characterized by seismic activity (pseudotachylytes) and hydrous fluid flow (alteration halos and precipitation of hydrothermal minerals in veins and cataclasites). Thanks to glacier-polished outcrops exposing the 400 m-thick fault <span class="hlt">zone</span> over a continuous area > 1.5 km2, the fault <span class="hlt">zone</span> architecture has been quantitatively described with an unprecedented detail, providing a rich dataset to generate 3D Discrete Fracture Network (DFN) models and simulate the fault <span class="hlt">zone</span> hydraulic properties. The fault and fracture network has been characterized combining > 2 km of scanlines and semi-automatic mapping of faults and fractures on several photogrammetric 3D Digital Outcrop Models (3D DOMs). This allowed obtaining robust probability density functions for parameters of fault and fracture sets: orientation, fracture intensity and density, spacing, persistency, length, thickness/aperture, termination. The spatial distribution of fractures (random, clustered, anticlustered…) has been characterized with geostatistics. Evidences of fluid/rock interaction (alteration halos, hydrothermal veins, etc.) have been mapped on the same outcrops, revealing sectors of the fault <span class="hlt">zone</span> strongly impacted, vs. completely unaffected, by fluid/rock interaction, separated by convolute infiltration fronts. Field and microstructural evidence revealed that higher permeability was obtained in the syn- to early post-seismic period, when fractures were (re)opened by off-fault deformation. We have developed a parametric hydraulic model of the GLFZ and calibrated it, varying the fraction of faults/fractures that were open in the post-seismic, with the goal of obtaining realistic fluid flow and permeability values, and a flow pattern consistent with the observed alteration/mineralization pattern. The fraction of open fractures is very close to the percolation threshold of the DFN, and the permeability tensor is strongly anisotropic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3008735','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3008735"><span>Cross-Scale Analysis of the Region Effect on Vascular Plant Species Diversity in <span class="hlt">Southern</span> and Northern European Mountain Ranges</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lenoir, Jonathan; Gégout, Jean-Claude; Guisan, Antoine; Vittoz, Pascal; Wohlgemuth, Thomas; Zimmermann, Niklaus E.; Dullinger, Stefan; Pauli, Harald; Willner, Wolfgang; Grytnes, John-Arvid; Virtanen, Risto; Svenning, Jens-Christian</p> <p>2010-01-01</p> <p>Background The divergent glacial histories of <span class="hlt">southern</span> and northern Europe affect present-day species diversity at coarse-grained scales in these two regions, but do these effects also penetrate to the more fine-grained scales of local communities? Methodology/Principal Findings We carried out a cross-scale analysis to address this question for vascular plants in two mountain regions, the <span class="hlt">Alps</span> in <span class="hlt">southern</span> Europe and the Scandes in northern Europe, using environmentally paired vegetation plots in the two regions (n = 403 in each region) to quantify four diversity components: (i) total number of species occurring in a region (total γ-diversity), (ii) number of species that could occur in a target plot after environmental filtering (habitat-specific γ-diversity), (iii) pair-wise species compositional turnover between plots (plot-to-plot β-diversity) and (iv) number of species present per plot (plot α-diversity). We found strong region effects on total γ-diversity, habitat-specific γ-diversity and plot-to-plot β-diversity, with a greater diversity in the <span class="hlt">Alps</span> even towards distances smaller than 50 m between plots. In contrast, there was a slightly greater plot α-diversity in the Scandes, but with a tendency towards contrasting region effects on high and low soil-acidity plots. Conclusions/Significance We conclude that there are strong regional differences between coarse-grained (landscape- to regional-scale) diversity components of the flora in the <span class="hlt">Alps</span> and the Scandes mountain ranges, but that these differences do not necessarily penetrate to the finest-grained (plot-scale) diversity component, at least not on acidic soils. Our findings are consistent with the contrasting regional Quaternary histories, but we also consider alternative explanatory models. Notably, ecological sorting and habitat connectivity may play a role in the unexpected limited or reversed region effect on plot α-diversity, and may also affect the larger-scale diversity components. For</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.V42C..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.V42C..01S"><span>The <span class="hlt">Southern</span> Part of the <span class="hlt">Southern</span> Volcanic <span class="hlt">Zone</span> (SSVZ; 42-46S) of the Andes: History of Medium and Large Explosive Holocene Eruptions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stern, C. R.; Naranjo, J. A.</p> <p>2008-12-01</p> <p>Chaitén volcano is one of 13 large volcanic centers, and numerous small cones, comprising the <span class="hlt">southern</span> part of the Andean <span class="hlt">Southern</span> Volcanic <span class="hlt">Zone</span> (SVZ), that results from the subduction of the Nazca plate (at 7.8 cm/yr) between the landward extension of the Chiloé FZ at 42S and the Chile Rise - Trench triple junction at 46S. Chaitén is a rhyolite dome inside a 3 km diameter caldera located 15 km west of the larger Michinmahuida stratovolcano. Other stratovolcanoes in the SSVZ include Yate, Hornopirén, Corcovado, Yanteles, Melimoyu, Mentolat, Cay and Macá. Hudson volcano, the southernmost in the <span class="hlt">Southern</span> SVZ, is a large 10 km caldera, while Huequi and Hualaihué - Cordón Cabrera are a group of small aligned cinder cones possibly related to a larger eroded volcanic complex. Prior to the May 2008 eruption of Chaitén, the only well documented historic eruptions in this segment of the Andean arc were the explosive eruption of Hudson in August 1991 (Naranjo et al. 1993), and two eruptions of Michinmahuida in 1742 and 1834-35. Tephra deposits provide evidence of 11 prehistoric explosive Holocene eruptions of the southernmost SSVZ Hudson volcano, including two large eruptions near <6700 and <3600 BP (Naranjo and Stern 1998). The 6700 BP eruption produced greater than 18 km3 of andesitic tephra, possibly the largest Holocene eruption in all the <span class="hlt">southern</span> Andes. Although Hudson is clearly the most active of the <span class="hlt">Southern</span> SVZ volcanoes in terms of both volume and frequency of explosive eruptions, tephra deposits indicate that seven of the other SSVZ volcanoes, including Chaitén, also have had medium to large Holocene explosive eruptions (Naranjo and Stern 2004). Three of these eruptions were from Corcovado at approximately <9190, <7980 and <6870 BP, one from Yanteles at <9180 BP, two from Melimoyu at <2740 and <1750 BP, one from Mentolat at <6960 and one from Macá at <1540 BP. Two other eruptions, at <6350 and <3820 BP, we interpret as having been produced by</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/449/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/449/"><span>ATM Coastal Topography-Texas, 2001: UTM <span class="hlt">Zone</span> 15</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Klipp, Emily S.; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Yates, Xan; Wright, C. Wayne</p> <p>2009-01-01</p> <p>These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Texas coastline within UTM <span class="hlt">zone</span> 15, from Matagorda Peninsula to Galveston Island, acquired October 12-13, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (<span class="hlt">ALPS</span>), a custom-built processing system developed in a NASA-USGS collaboration. <span class="hlt">ALPS</span> supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T31E2954J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T31E2954J"><span>Carbon Mobility at Subduction Interfaces via Deformation-Enhanced Fluid Infiltration: Evidence from the Swiss/Italian <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jaeckel, K. P.; Bebout, G. E.; Angiboust, S.</p> <p>2016-12-01</p> <p>The interplay between fluid flow and deformation along subduction interfaces, and the extent to which deformation-enhanced fluid infiltration can drive decarbonation and carbonate dissolution, remain poorly understood. Recent work on HP/UHP decarbonation in W. <span class="hlt">Alps</span> suites has indicated that, in intact volumes of metasediment, metabasalt, and ophicarbonate away from major shear <span class="hlt">zones</span> and with few veins, carbonate is largely retained to 80-90 km depths (Cook-Kollars et al., 2014; Collins et al., 2015; Chem. Geol.). Yet uncertain is whether forearc fluid infiltration focused in intensely sheared and fractured <span class="hlt">zones</span> could result in greater mobilization of C from subducting sections, in quantities sufficient to impact subduction <span class="hlt">zone</span> C cycling. Lower-plate rocks at Arosa and Dent Blanche interface exposures (Bachmann et al., 2009, JGR; Angiboust et al., 2015, G3) are primarily calc-schist intercalated with meta-ultramafic and metamafic schist and contain carbonate-bearing veins of varying abundance and texture. At some localities, these sections contain blocks of carbonate, metabasalt, and upper-plate gneiss. Strongly deformed veins concordant with the foliation parallel to the thrust interface commonly contain carbonate and quartz. In highly sheared regions in the Arosa <span class="hlt">Zone</span>, δ18O(VSMOW) values of some host-rocks and veins are shifted from +20 ± 2‰, values observed regionally for the Schistes Lustres, to values of +11 to +13‰. These shifts can be explained by interaction with externally-derived H2O-rich fluids with δ18O of +9 to +11‰. Smaller datasets for Dent Blanche localities hint at similar δ18O shifts. Most of these rocks contain little evidence of C release by decarbonation reactions. Evidence exists for local-scale dissolution of carbonate, during pressure solution, and carbonate-bearing veins reflect C mobility in fluids. Ongoing work assesses whether volumes of carbonate removed in some regions balance with those precipitated nearby in veins and</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919424G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919424G"><span>Fifty years of shear <span class="hlt">zones</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graham, Rodney</p> <p>2017-04-01</p> <p>We are here, of course, because 1967 saw the publication of John Ramsay's famous book. Two years later a memorable field trip from Imperial College to the Outer Hebrides saw John on a bleak headland on the coast of North Uist where a relatively undeformed metadolerite within Lewisian (Precambrian) gneisses contained ductile shear <span class="hlt">zones</span> with metamorphic fabrics in amphibolite facies. One particular outcrop was very special - a shear <span class="hlt">zone</span> cutting otherwise completely isotropic, undeformed metadolerite, with an incremental foliation starting to develop at 45° to the deformation <span class="hlt">zone</span>, and increasing in intensity as it approached the shear direction. Here was proof of the process of simple shear under ductile metamorphic conditions - the principles of simple shear outlined in John Ramsay's 1967 book clearly visible in nature, and verified by Ramsay's mathematical proofs in the eventual paper (Ramsay and Graham, 1970). Later work on the Lewisian on the mainland of Scotland, in South Harris, in Africa, and elsewhere applied Ramsay's simple shear principles more liberally, more imprecisely and on larger scale than at Caisteal Odair, but in retrospect it documented what seems now to be the generality of mid and lower crustal deformation. Deep seismic reflection data show us that on passive margins hyper-stretched continental crust (whether or not cloaked by Seaward Dipping Reflectors) seems to have collapsed onto the mantle. Crustal faults mostly sole out at or above the mantle - so the Moho is a detachment- an 'outer marginal detachment', if you like, and, of course, it must be a ductile shear. On non-volcanic margins this shear <span class="hlt">zone</span> forms the first formed ocean floor before true sea floor spreading gets going to create real oceanic crust. Gianreto Manatschal, Marcel Lemoine and others realised that the serpentinites described in parts of the <span class="hlt">Alps</span> are exposed remnants of this ductile shear <span class="hlt">zone</span>. Associated ophicalcite breccias tell of sea floor exposure, while high</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1811691C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1811691C"><span>Ice cap melting and low viscosity crustal root explain narrow geodetic uplift of the Western <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chery, Jean; Genti, Manon; Vernant, Philippe</p> <p>2016-04-01</p> <p>More than 10 years of geodetic measurements demonstrate an uplift rate of 1-3 mm/yr of the high topography region of the Western <span class="hlt">Alps</span>. By contrast, no significant horizontal motion has been detected. Three uplift mechanisms have been proposed so far: (1) the isostatic response to denudation. However this process is responsible for only a fraction of the observed uplift and (2) the rebound induced by the Wurmian ice cap melting. This process leads to a broader uplifting region than the one evidenced by geodetic observations. (3) a deep source motion associated with slab motion or some deep isostatic unbalance. Using a numerical model accounting for crustal and mantle rheology of the <span class="hlt">Alps</span> and its foreland, we model the response to Wurmian ice cap melting. We show that a crustal viscosity contrast between the foreland and the central part of the <span class="hlt">Alps</span>, the later being weaker with a viscosity of 1021 Pa.s, is needed to produce a narrow uplift. The vertical rates are enhanced if the strong uppermost mantle beneath the Moho is interrupted across the <span class="hlt">Alps</span>, therefore allowing a weak vertical rheological anomaly thanks to the continuity between the low viscosity parts of the crust and mantle. References: Champagnac, J.-D., F. Schlunegger, K. Norton, F. von Blanckenburg, L. M. Abbühl, and M. Schwab (2009), Erosion-driven uplift of the modern Central <span class="hlt">Alps</span>, Tectonophysics, 474(1-2), 236-249. Vernant, P., F. Hivert, J. Chéry, P. Steer, R. Cattin, and A. Rigo (2013), Erosion-induced isostatic rebound triggers extension in low convergent mountain ranges, geology, 41(4), 467-470.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2969R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2969R"><span>Fibrous gypsum veins as diffuse features and within fault <span class="hlt">zones</span>: the case study of the Pisco Basin (Ica desert, <span class="hlt">southern</span> Peru)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rustichelli, Andrea; Di Celma, Claudio; Tondi, Emanuele; Baud, Patrick; Vinciguerra, Sergio</p> <p>2016-04-01</p> <p>New knowledge on patterns of fibrous gypsum veins, their genetic mechanisms, deformation style and weathering are provided by a field- and laboratory-based study carried out on the Neogene to Quaternary Pisco Basin sedimentary strata (porous sandstones, siltstones and diatomites) exposed in the Ica desert, <span class="hlt">southern</span> Peru. Gypsum veins vary considerably in dimensions, attitudes and timing and can develop in layered and moderately fractured rocks also in the absence of evaporitic layers. Veins occur both as diffuse features, confined to certain stratigraphic levels, and localised within fault <span class="hlt">zones</span>. Arrays formed by layer-bounded, mutually orthogonal sets of steeply-dipping gypsum veins are reported for the first time. Vein length, height and spacing depend on the thickness of the bed packages in which they are confined. Within fault <span class="hlt">zones</span>, veins are partly a product of faulting but also inherited layer-bounded features along which faults are superimposed. Due to the different petrophysical properties with respect to the parent rocks and their susceptibility to textural and mineralogical modifications, water dissolution and rupture, gypsum veins may have a significant role in geofluid management. Depending on their patterns and grade of physical and chemical alteration, veins may influence geofluid circulation and storage, acting as barriers to flow and possibly also as conduits.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70176199','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70176199"><span>Characterizing potentially induced earthquake rate changes in the Brawley Seismic <span class="hlt">Zone</span>, <span class="hlt">southern</span> California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Llenos, Andrea L.; Michael, Andrew J.</p> <p>2016-01-01</p> <p>The Brawley seismic <span class="hlt">zone</span> (BSZ), in the Salton trough of <span class="hlt">southern</span> California, has a history of earthquake swarms and geothermal energy exploitation. Some earthquake rate changes may have been induced by fluid extraction and injection activity at local geothermal fields, particularly at the North Brawley Geothermal Field (NBGF) and at the Salton Sea Geothermal Field (SSGF). We explore this issue by examining earthquake rate changes and interevent distance distributions in these fields. In Oklahoma and Arkansas, where considerable wastewater injection occurs, increases in background seismicity rate and aftershock productivity and decreases in interevent distance were indicative of fluid‐injection‐induced seismicity. Here, we test if similar changes occur that may be associated with fluid injection and extraction in geothermal areas. We use stochastic epidemic‐type aftershock sequence models to detect changes in the underlying seismogenic processes, shown by statistically significant changes in the model parameters. The most robust model changes in the SSGF roughly occur when large changes in net fluid production occur, but a similar correlation is not seen in the NBGF. Also, although both background seismicity rate and aftershock productivity increased for fluid‐injection‐induced earthquake rate changes in Oklahoma and Arkansas, the background rate increases significantly in the BSZ only, roughly corresponding with net fluid production rate increases. Moreover, in both fields the interevent spacing does not change significantly during active energy projects. This suggests that, although geothermal field activities in a tectonically active region may not significantly change the physics of earthquake interactions, earthquake rates may still be driven by fluid injection or extraction rates, particularly in the SSGF.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-07-19/pdf/2013-17388.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-07-19/pdf/2013-17388.pdf"><span>78 FR 43141 - Foreign-Trade <span class="hlt">Zone</span> 93-Raleigh-Durham, North Carolina, Authorization of Production Activity...</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-07-19</p> <p>... DEPARTMENT OF COMMERCE Foreign-Trade <span class="hlt">Zones</span> Board [B-23-2013] Foreign-Trade <span class="hlt">Zone</span> 93--Raleigh-Durham, North Carolina, Authorization of Production Activity, <span class="hlt">Southern</span> Lithoplate, Inc. (Aluminum Printing Plates), Youngsville, North Carolina On March 18, 2013, the Triangle J Council of Governments, grantee of...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025531','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025531"><span>Tectonic controls on the genesis of ignimbrites from the Campanian Volcanic <span class="hlt">Zone</span>, <span class="hlt">southern</span> Italy</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rolandi, G.; Bellucci, F.; Heizler, M.T.; Belkin, H.E.; de Vivo, B.</p> <p>2003-01-01</p> <p>The Campanian Plain is an 80 x 30 km region of <span class="hlt">southern</span> Italy, bordered by the Apennine Chain, that has experienced subsidence during the Quaternary. This region, volcanologically active in the last 600 ka, has been identified as the Campanian Volcanic <span class="hlt">Zone</span> (CVZ). The products of three periods of trachytic ignimbrite volcanism (289-246 ka, 157 ka and 106 ka) have been identified in the Apennine area in the last 300 ka. These deposits probably represent distal ash flow units of ignimbrite eruptions which occurred throughout the CVZ. The resulting deposits are interstratified with marine sediments indicating that periods of repeated volcano-tectonic emergence and subsidence may have occurred in the past. The eruption, defined as the Campanian Ignimbrite (CI), with the largest volume (310 km3), occurred in the CVZ 39 ka ago. The products of the CI eruption consist of two units (unit-1 and unit-2) formed from a single compositionally <span class="hlt">zoned</span> magma body. Slightly different in composition, three trachytic melts constitute the two units. Unit-1 type A is an acid trachyte, type B is a trachyte and type C of unit-2 is a mafic trachyte. The CI, vented from pre-existing neotectonic faults, formed during the Apennine uplift, Initially the venting of volatile-rich type A magma deposited the products to the N-NE of the CVZ. During the eruption, the Acerra graben already affected by a NE-SW fault system, was transected by E-W faults, forming a cross-graben that extended to the gulf of Naples. E-W faults were then further dislocated by NE-SW transcurrent movements. This additional collapse significantly influenced the deposition of the B-type magma of unit-1, and the C-type magma of unit-2 toward the E-SE and S, in the Bay of Naples. The pumice fall deposit underlying the CI deposits, until now thought to be associated with the CI eruption, is not a strict transition from plinian to CI-forming activity. It is derived instead from an independent source probably located near the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018584','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018584"><span>Influence of stretching and density contrasts on the chemical evolution of continental magmas: An example from the Ivrea-Verbano <span class="hlt">Zone</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sinigoi, S.; Quick, J.E.; Mayer, A.; Budahn, J.</p> <p>1996-01-01</p> <p>The <span class="hlt">southern</span> Ivrea-Verbano <span class="hlt">Zone</span> of the Italian Western <span class="hlt">Alps</span> contains a huge mafic complex that intruded high-grade metamorphic rocks while they were resident in the lower crust. Geologic mapping and chemical variations of the igneous body were used to study the evolution of underplated crust. Slivers of crustal rocks (septa) interlayered with igneous mafic rocks are concentrated in a narrow <span class="hlt">zone</span> deep in the complex (Paragneiss-bearing Belt) and show evidence of advanced degrees of partial melting. Variations of rare-earth-element patterns and Sr isotope composition of the igneous rocks across the sequence are consistent with increasing crustal contamination approaching the septa. Therefore, the Paragneiss-bearing Belt is considered representative of an "assimilation region" where in-situ interaction between mantle- and crust-derived magmas resulted in production of hybrid melts. Buoyancy caused upwards migration of the hybrid melts that incorporated the last septa and were stored at higher levels, feeding the Upper Mafic Complex. Synmagmatic stretching of the assimilation region facilitated mixing and homogenization of melts. Chemical variations of granitoids extracted from the septa show that deep septa are more depleted than shallow ones. This suggests that the first incorporated septa were denser than the later ones, as required by the high density of the first-injected mafic magmas. It is inferred that density contrasts between mafic melts and crustal rocks play a crucial role for the processes of contamination of continental magmas. In thick under- plated crust, the extraction of early felsic/hybrid melts from the lower crust may be required to increase the density of the lower crust and to allow the later mafic magmas to penetrate higher crustal levels.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/24154','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/24154"><span>Native and introduced earthworms from selected chaparral, woodland, and riparian <span class="hlt">zones</span> in <span class="hlt">southern</span> California</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Hulton B. Wood; Samuel W. James</p> <p>1993-01-01</p> <p>Relatively little is known about the earthworm fauna of <span class="hlt">southern</span> California. Some 20 different species of earthworms were collected and identified in a survey of various <span class="hlt">southern</span> California wildland habitats. The ecology and biology of earthworms are outlined, and the results of the survey are documented. Introduced species belonging to the Lumbricidae family were...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004Sci...304.1659C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004Sci...304.1659C"><span>New Zealand Maritime Glaciation: Millennial-Scale <span class="hlt">Southern</span> Climate Change Since 3.9 Ma</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carter, Robert M.; Gammon, Paul</p> <p>2004-06-01</p> <p>Ocean Drilling Program Site 1119 is ideally located to intercept discharges of sediment from the mid-latitude glaciers of the New Zealand <span class="hlt">Southern</span> <span class="hlt">Alps</span>. The natural gamma ray signal from the site's sediment core contains a history of the South Island mountain ice cap since 3.9 million years ago (Ma). The younger record, to 0.37 Ma, resembles the climatic history of Antarctica as manifested by the Vostok ice core. Beyond, and back to the late Pliocene, the record may serve as a proxy for both mid-latitude and Antarctic polar plateau air temperature. The gamma ray signal, which is atmospheric, also resembles the ocean climate history represented by oxygen isotope time series.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C53B1032S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C53B1032S"><span>Variation trend of snowfall in the Kamikochi region of the Japanese <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suzuki, K.</p> <p>2017-12-01</p> <p>The Japanese <span class="hlt">Alps</span> experience exceptionally heavy snowfall, extreme even by global standards, and in spring and summer the melting snow becomes a valuable water resource. The snow effectively acts as a natural dam when it accumulates in watersheds during winter. However, there have been no observations of the amount of snow in high-altitude regions of Japan. Therefore, we cannot discuss the effect of global warming on the change in the amount of snow in these regions based on direct observation data. We were, however, able to obtain climatic and hydrologic data for high-altitude sites in the Japanese <span class="hlt">Alps</span>, and discuss the variations in these conditions in the Kamikochi region (altitude 1490 m-3190 m) of the Japanese <span class="hlt">Alps</span> over a 68-year period using these observed data. No long-term trends are observed in the annual mean, maximum, or minimum temperatures at Taisho-ike from 1945 to 2012; the total annual precipitation shows a statistically significant decreasing trend. The annual total snowfall at Taisho-ike from 1969 to 2012 shows a statistically significant increasing trend. The annual total runoff of the Azusa River from 1945 to 2012 shows a statistically significant increasing trend, as does the snowmelt runoff to the river (which occurs from May to July). We can thus conclude that the annual snowfall in the Azusa River catchment has increased in recent years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Litho.252..145F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Litho.252..145F"><span>High-pressure metamorphic age and significance of eclogite-facies continental fragments associated with oceanic lithosphere in the Western <span class="hlt">Alps</span> (Etirol-Levaz Slice, Valtournenche, Italy)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fassmer, Kathrin; Obermüller, Gerrit; Nagel, Thorsten J.; Kirst, Frederik; Froitzheim, Nikolaus; Sandmann, Sascha; Miladinova, Irena; Fonseca, Raúl O. C.; Münker, Carsten</p> <p>2016-05-01</p> <p>The Etirol-Levaz Slice in the Penninic <span class="hlt">Alps</span> (Valtournenche, Italy) is a piece of eclogite-facies continental basement sandwiched between two oceanic units, the blueschist-facies Combin <span class="hlt">Zone</span> in the hanging wall and the eclogite-facies Zermatt-Saas <span class="hlt">Zone</span> in the footwall. It has been interpreted as an extensional allochthon from the continental margin of Adria, emplaced onto ultramafic and mafic basement of the future Zermatt-Saas <span class="hlt">Zone</span> by Jurassic, rifting-related detachment faulting, and later subducted together with the future Zermatt-Saas <span class="hlt">Zone</span>. Alternatively, the Etirol-Levaz Slice could be derived from a different paleogeographic domain and be separated from the Zermatt-Saas <span class="hlt">Zone</span> by an Alpine shear <span class="hlt">zone</span>. We present Lu-Hf whole rock-garnet ages of two eclogite samples, one from the center of the unit and one from the border to the Zermatt-Saas <span class="hlt">Zone</span> below. These data are accompanied by a new geological map of the Etirol-Levaz Slice and the surrounding area, as well as detailed petrology of these two samples. Assemblages, mineral compositions and garnet <span class="hlt">zoning</span> in both samples indicate a clockwise PT-path and peak-metamorphic conditions of about 550-600 °C/20-25 kbar, similar to conditions proposed for the underlying Zermatt-Saas <span class="hlt">Zone</span>. Prograde garnet ages of the two samples are 61.8 ± 1.8 Ma and 52.4 ± 2.1 Ma and reflect different timing of subduction. One of these is significantly older than published ages of eclogite-facies metamorphism in the Zermatt-Saas <span class="hlt">Zone</span> and thus contradicts the hypothesis of Mesozoic emplacement. The occurrence of serpentinite and metagabbro bodies possibly derived from the Zermatt-Saas <span class="hlt">Zone</span> inside the Etirol-Levaz Slice suggests that the latter is a tectonic composite. The basement slivers forming the Etirol-Levaz Slice and other continental fragments were subducted earlier than the Zermatt-Saas <span class="hlt">Zone</span>, but nonetheless experienced similar pressure-temperature histories. Our results support the hypothesis that the Zermatt-Saas <span class="hlt">Zone</span> and the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRB..123..859P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRB..123..859P"><span>The Mechanism and Dynamics of N-S Rifting in <span class="hlt">Southern</span> Tibet: Insight From 3-D Thermomechanical Modeling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pang, Yajin; Zhang, Huai; Gerya, Taras V.; Liao, Jie; Cheng, Huihong; Shi, Yaolin</p> <p>2018-01-01</p> <p>N-S trending rifts are widely distributed in <span class="hlt">southern</span> Tibet, suggesting that this region is under E-W extension, behind the N-S collision between the Eurasia and India plates. Geophysical anomalies and Miocene magma extrusions indicate the presence of dispersed weak <span class="hlt">zones</span> in the middle to lower crust in <span class="hlt">southern</span> Tibet. These weak <span class="hlt">zones</span> are partially located underneath the N-S rifting systems. In order to study the formation of rifts in collision <span class="hlt">zones</span>, we have developed a high-resolution 3-D thermomechanical model of continental lithosphere with bidirectional compressional-extensional deformation, and spatially localized weak and low-density <span class="hlt">zones</span> in the middle to lower crust. Our numerical experiments systematically reproduce the development of N-S trending rifts. Model results reveal that the weak middle to lower crust triggers the development of normal faults in the upper crust and surface uplift, whereas regions without such weak layer or with small-scale weak <span class="hlt">zones</span> are characterized by strike-slip faulting. Geodynamic properties (density, depth, and geometry) of the weak middle to lower crust and Moho temperature notably influence the rifting pattern. In addition, rifting formation is critically controlled by large E-W extension, with the ratio of extensional to compressional strain rate larger than 1.5 in the model with continuous weak middle crust. Our simulated rifting patterns correlate well with the observations in <span class="hlt">southern</span> Tibet; we conclude that a combination of the bidirectional compression-extension and the presence of locally weak middle to lower crust triggered the development of the rifting systems in <span class="hlt">southern</span> Tibet.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29380134','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29380134"><span>New insight into defining the lakes of the <span class="hlt">southern</span> Baltic coastal <span class="hlt">zone</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cieśliński, Roman; Olszewska, Alicja</p> <p>2018-01-29</p> <p>There exist many classification systems of hydrographic entities such as lakes found along the coastlines of seas and oceans. Each system has its advantages and can be used with some success in the area of protection and management. This paper aims to evaluate whether the studied lakes are only coastal lakes or rather bodies of water of a completely different hydrological and hydrochemical nature. The attempt to create a new classification system of Polish coastal lakes is related to the incompleteness of lake information in existing classifications. Thus far, the most frequently used are classifications based solely on lake basin morphogenesis or hydrochemical properties. The classifications in this paper are based not only on the magnitude of lake water salinity or hydrochemical analysis but also on isolation from the Baltic Sea and other sources of water. The key element of the new classification system for coastal bodies of water is a departure from the existing system used to classify lakes in Poland and the introduction of ion-"tracking" methods designed to identify anion and cation distributions in each body of water of interest. As a result of the work, a new classification of lakes of the <span class="hlt">southern</span> Baltic Sea coastal <span class="hlt">zone</span> was created. Featured objects such as permanently brackish lakes, brackish lakes that may turn into freshwater lakes from time to time, freshwater lakes that may turn into brackish lakes from time to time, freshwater lakes that experience low levels of salinity due to specific incidents, and permanently freshwater lakes. The authors have adopted 200 mg Cl -  dm -3 as a maximum value of lake water salinity. There are many conditions that determine the membership of a lake to a particular group, but the most important is the isolation lakes from the Baltic Sea. Changing a condition may change the classification of a lake.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4502525','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4502525"><span>Flexural bending of <span class="hlt">southern</span> Tibet in a retro foreland setting</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Erchie; Kamp, Peter J. J.; Xu, Ganqing; Hodges, Kip V.; Meng, Kai; Chen, Lin; Wang, Gang; Luo, Hui</p> <p>2015-01-01</p> <p>The highest elevation of the Tibetan Plateau, lying 5,700 m above sea level, occurs within the part of the Lhasa block immediately north of the India-Tibet suture <span class="hlt">zone</span> (Yarlung Zangbo suture <span class="hlt">zone</span>, YZSZ), being 700 m higher than the maximum elevation of more northern parts of the plateau. Various mechanisms have been proposed to explain this differentially higher topography and the rock uplift that led to it, invoking crustal compression or extension. Here we present the results of structural investigations along the length of the high elevation belt and suture <span class="hlt">zone</span>, which rather indicate flexural bending of the <span class="hlt">southern</span> margin of the Lhasa block (Gangdese magmatic belt) and occurrence of an adjacent foreland basin (Kailas Basin), both elements resulting from supra-crustal loading of the Lhasa block by the Zangbo Complex (Indian plate rocks) via the Great Counter Thrust. Hence we interpret the differential elevation of the <span class="hlt">southern</span> margin of the plateau as due originally to uplift of a forebulge in a retro foreland setting modified by subsequent processes. Identification of this flexural deformation has implications for early evolution of the India-Tibet continental collision <span class="hlt">zone</span>, implying an initial (Late Oligocene) symmetrical architecture that subsequently transitioned into the present asymmetrical wedge architecture. PMID:26174578</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.5446C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.5446C"><span>Sediment Budget Analysis and Hazard Assessment in the Peynin, a Small Alpine Catchment (Upper Guil River, <span class="hlt">Southern</span> <span class="hlt">Alps</span>, France)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carlier, Benoit; Arnaud-Fassetta, Gilles; Fort, Monique; Bouccara, Fanny; Sourdot, Grégoire; Tassel, Adrien; Lissak, Candide; Betard, François; Cossart, Etienne; Madelin, Malika; Viel, Vincent; Charnay, Bérengère; Bletterie, Xavier</p> <p>2014-05-01</p> <p>The upper Guil catchment (<span class="hlt">Southern</span> <span class="hlt">Alps</span>) is prone to hydro-geomorphic hazards. Major hazards are related to catastrophic floods, with an amplification of their impacts due to strong hillslope-channel connectivity as observed in 1957 and 2000. In both cases, the rainfall intensity, aggravated by the pre-existing saturated soils, explained the instantaneous response of the fluvial system, such as destabilisation of slopes, high sediment discharge, and subsequent damages to exposed structures and settlements present in the floodplain and at confluence sites. The Peynin junction with the Guil River is one of these sites, where significant land-use change during the last decades in relation to the development of handicraft and tourism economy has increased debris flow threat to population. Here, we adopt a sediment budget analysis aimed at better understanding the functioning of this small subcatchment. This latter offers a combination of factors that favour torrential and gravitational activity. It receives abundant and intense rainfall during "Lombarde" events (moist air mass from Mediterranean Sea). Its elongated shape and small surface area (15 km²) together with asymmetric slopes (counter dip slope on the left bank) accelerate runoff on a short response time. In addition highly tectonised shaly schists supply a large volume of debris (mostly platy clasts and fine, micaceous sediment). The objectives of this study, carried out in the frame of SAMCO (ANR) project, are threefold: Identify the different sediment storages; Characterise the processes that put sediment into motion; Quantify volumes of sediment storages. We produced a geomorphic map using topographic surveys and aerial photos in order to locate the different sediment storage types and associated processes. This analysis was made with respect to geomorphic coupling and sediment flux activity. In terms of surface area, the dominant landforms in the valley were found to be mass wasting, talus slopes and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014TCry....8.1673C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014TCry....8.1673C"><span>Projected changes of snow conditions and avalanche activity in a warming climate: the French <span class="hlt">Alps</span> over the 2020-2050 and 2070-2100 periods</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Castebrunet, H.; Eckert, N.; Giraud, G.; Durand, Y.; Morin, S.</p> <p>2014-09-01</p> <p>Projecting changes in snow cover due to climate warming is important for many societal issues, including the adaptation of avalanche risk mitigation strategies. Efficient modelling of future snow cover requires high resolution to properly resolve the topography. Here, we introduce results obtained through statistical downscaling techniques allowing simulations of future snowpack conditions including mechanical stability estimates for the mid and late 21st century in the French <span class="hlt">Alps</span> under three climate change scenarios. Refined statistical descriptions of snowpack characteristics are provided in comparison to a 1960-1990 reference period, including latitudinal, altitudinal and seasonal gradients. These results are then used to feed a statistical model relating avalanche activity to snow and meteorological conditions, so as to produce the first projection on annual/seasonal timescales of future natural avalanche activity based on past observations. The resulting statistical indicators are fundamental for the mountain economy in terms of anticipation of changes. Whereas precipitation is expected to remain quite stationary, temperature increase interacting with topography will constrain the evolution of snow-related variables on all considered spatio-temporal scales and will, in particular, lead to a reduction of the dry snowpack and an increase of the wet snowpack. Overall, compared to the reference period, changes are strong for the end of the 21st century, but already significant for the mid century. Changes in winter are less important than in spring, but wet-snow conditions are projected to appear at high elevations earlier in the season. At the same altitude, the <span class="hlt">southern</span> French <span class="hlt">Alps</span> will not be significantly more affected than the northern French <span class="hlt">Alps</span>, which means that the snowpack will be preserved for longer in the <span class="hlt">southern</span> massifs which are higher on average. Regarding avalanche activity, a general decrease in mean (20-30%) and interannual variability is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2007/5207/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2007/5207/"><span>Synthesis of the Hydrogeologic Framework of the Floridan Aquifer System and Delineation of a Major Avon Park Permeable <span class="hlt">Zone</span> in Central and <span class="hlt">Southern</span> Florida</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Reese, Ronald S.; Richardson, Emily</p> <p>2008-01-01</p> <p>The carbonate Floridan aquifer system of central and <span class="hlt">southern</span> Florida (south of a latitude of about 29 degrees north) is an invaluable resource with a complex framework that has previously been mapped and managed primarily in a subregional context according to geopolitical boundaries. As interest and use of the Floridan aquifer system in this area increase, a consistent regional hydrogeologic framework is needed for effective management across these boundaries. This study synthesizes previous studies on the Floridan aquifer system and introduces a new regional hydrogeologic conceptual framework, linking physical relations between central and <span class="hlt">southern</span> Florida and between the west and east coastal areas. The differences in hydrogeologic nomenclature and interpretation across the study area from previous studies were identified and resolved. The Floridan aquifer system consists of the Upper Floridan aquifer, middle confining unit, and Lower Floridan aquifer. This study introduces and delineates a new major, regional productive <span class="hlt">zone</span> or subaquifer, referred to as the Avon Park permeable <span class="hlt">zone</span>. This <span class="hlt">zone</span> is contained within the middle confining unit and synthesizes an extensive <span class="hlt">zone</span> that has been referred to differently in different parts of the study area in previous studies. The name of this <span class="hlt">zone</span> derives from the description of this <span class="hlt">zone</span> as the ?Avon Park highly permeable <span class="hlt">zone</span>? in west-central Florida in a previous study. Additionally, this <span class="hlt">zone</span> has been identified previously in southeastern Florida as the ?middle Floridan aquifer.? An approximately correlative or approximate time-stratigraphic framework was developed and was used to provide guidance in the identification and determination of aquifers, subaquifers, and confining units within the Floridan aquifer system and to determine their structural relations. Two stratigraphic marker horizons within the Floridan aquifer system and a marker unit near the top of the aquifer system were delineated or mapped. The marker</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/44302','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/44302"><span>Invasive species in <span class="hlt">southern</span> Nevada [Chapter 4</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Mathew L. Brooks; Steven M. Ostoja; Jeanne C. Chambers</p> <p>2013-01-01</p> <p><span class="hlt">Southern</span> Nevada contains a wide range of topographies, elevations, and climatic <span class="hlt">zones</span> emblematic of its position at the ecotone between the Mojave Desert, Great Basin, and Colorado Plateau ecoregions. These varied environmental conditions support a high degree of biological diversity (Chapter 1), but they also provide opportunities for a wide range of invasive species...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3285519','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3285519"><span>Medical ethnobotany of the Albanian <span class="hlt">Alps</span> in Kosovo</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2012-01-01</p> <p>Background Ethnobotanical studies are crucial in South-Eastern Europe for fostering local development and also for investigating the dynamics of Traditional Environmental Knowledge (TEK) related to plants in one of the most crucial European hotspots for biocultural diversity. The current medico-ethnobotanical survey was conducted in rural alpine communities in Kosovo. The aims of the study were twofold: 1) to document the state of TEK of medicinal plants in these communities; 2) to compare these findings with that of similar field studies previously conducted among local populations inhabiting the Montenegrin and Albanian side of the same Alpine range. Methods Field research was conducted in 36 villages on the Kosovar side of the Albanian <span class="hlt">Alps</span>. Snowball sampling techniques were used to recruit 91 elderly informants (≥ 50 years-old) for participation in semi-structured interviews and structured surveys regarding the use of the local flora for medicinal and food purposes. Standard ethnobotanical methods were employed and prior informed consent was obtained for all study participants. Results and Conclusion The uses of 98 plants species belonging to 39 families were recorded; the most quoted botanical families were Rosaceae, Asteraceae, and Lamiaceae. Mainly decoctions and infusions were quoted as folk medicinal preparations and the most common uses referred to gastrointestinal and respiratory disorders, as well as illnesses of the uro-genital system. Among the most uncommon medicinal taxa quoted by the informants, Carduus nutans L., Echinops bannaticus Rochel ex Schrad., and Orlaya grandiflora Hoffm. may merit phytochemical and phytopharmacological investigations. Comparison of the data with other ethnobotanical field studies recently conducted on the Albanian and Montenegrin sides of the same <span class="hlt">Alps</span> has shown a remarkable link between the medical ethnobotany of Montenegrin and Kosovar side of the Albanian <span class="hlt">Alps</span>. Moreover, folk uses of the most quoted wild medicinal</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19240751','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19240751"><span>Chromosomal rearrangements and gene flow over time in an inter-specific hybrid <span class="hlt">zone</span> of the Sorex araneus group.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yannic, G; Basset, P; Hausser, J</p> <p>2009-06-01</p> <p>Most hybrid <span class="hlt">zones</span> have existed for hundreds or thousands of years but have generally been observed for only a short time period. Studies extending over periods long enough to track evolutionary changes in the <span class="hlt">zones</span> or assess the ultimate outcome of hybridization are scarce. Here, we describe the evolution over time of the level of genetic isolation between two karyotypically different species of shrews (Sorex araneus and Sorex antinorii) at a hybrid <span class="hlt">zone</span> located in the Swiss <span class="hlt">Alps</span>. We first evaluated hybrid <span class="hlt">zone</span> movement by contrasting patterns of gene flow and changes in cline parameters (centre and width) using 24 microsatellite loci, between two periods separated by 10 years apart. Additionally, we tested the role of chromosomal rearrangements on gene flow by analysing microsatellite loci located on both rearranged and common chromosomes to both species. We did not detect any movement of the hybrid <span class="hlt">zone</span> during the period analysed, suggesting that the <span class="hlt">zone</span> is a typical tension <span class="hlt">zone</span>. However, the gene flow was significantly lower among the rearranged than the common chromosomes for the second period, whereas the difference was only marginally significant for the first period. This further supports the role of chromosomal rearrangements on gene flow between these taxa.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.9677G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.9677G"><span>A new subdivision of the central Sesia <span class="hlt">Zone</span> (Aosta Valley, Italy)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giuntoli, Francesco; Engi, Martin; Manzotti, Paola; Ballèvre, Michel</p> <p>2015-04-01</p> <p>The Sesia <span class="hlt">Zone</span> in the Western <span class="hlt">Alps</span> is a continental terrane probably derived from the NW-Adriatic margin and polydeformed at HP conditions during Alpine convergence. Subdivisions of the Sesia <span class="hlt">Zone</span> classically have been based on the dominant lithotypes: Eclogitic Micaschist Complex, Seconda Zona Diorito-Kinzigitica, and Gneiss Minuti Complex. However, recent work (Regis et al., 2014) on what was considered a single internal unit has revealed that it comprises two or more tectonic slices that experienced substantially different PTDt-evolutions. Therefore, detailed regional petrographic and structural mapping (1:3k to 1:10k) was undertaken and combined with extensive sampling for petrochronological analysis. Results allow us to propose a first tectonic scheme for the Sesia <span class="hlt">Zone</span> between the Aosta Valley and Val d'Ayas. A set of field criteria was developed and applied, aiming to recognize and delimit the first order tectonic units in this complex structural and metamorphic context. The approach rests on three criteria used in the field: (1) Discontinuously visible metasedimentary trails (mostly carbonates) considered to be monocyclic (Permo-Mesozoic protoliths); (2) mappable high-strain <span class="hlt">zones</span>; and (3) visible differences in the metamorphic imprint. None of these key features used are sufficient by themselves, but in combination they allow us to propose a new map that delimits main units. We propose an Internal Complex with three eclogitic sheets, each 0.5-3 km thick. Dominant lithotypes include micaschists associated with mafic rocks and minor orthogneiss. The main foliation is of HP, dipping moderately NW. Each of these sheets is bounded by (most likely monometamorphic) sediments, <10-50 m thick. HP-relics (of eclogite facies) are widespread, but a greenschist facies overprint locally is strong close to the tectonic contact to neighbouring sheets. An Intermediate Complex lies NW of the Internal Complex and comprises two thinner, wedge-shaped units termed slices. These</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeoJI.197.1048K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeoJI.197.1048K"><span>Moho depth across the Trans-European Suture <span class="hlt">Zone</span> from P- and S-receiver functions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knapmeyer-Endrun, Brigitte; Krüger, Frank; Passeq Working Group</p> <p>2014-05-01</p> <p>The Mohorovičić discontinuity, Moho for short, which marks the boundary between crust and mantle, is the main first-order structure within the lithosphere. Geodynamics and tectonic evolution determine its depth level and properties. Here, we present a map of the Moho in central Europe across the Teisseyre-Tornquist <span class="hlt">Zone</span>, a region for which a number of previous studies are available. Our results are based on homogeneous and consistent processing of P- and S-receiver functions for the largest passive seismological data set in this region yet, consisting of more than 40 000 receiver functions from almost 500 station. Besides, we also provide new results for the crustal vP/vS ratio for the whole area. Our results are in good agreement with previous, more localized receiver function studies, as well as with the interpretation of seismic profiles, while at the same time resolving a higher level of detail than previous maps covering the area, for example regarding the Eifel Plume region, Rhine Graben and northern <span class="hlt">Alps</span>. The close correspondence with the seismic data regarding crustal structure also increases confidence in use of the data in crustal corrections and the imaging of deeper structure, for which no independent seismic information is available. In addition to the pronounced, stepwise transition from crustal thicknesses of 30 km in Phanerozoic Europe to more than 45 beneath the East European Craton, we can distinguish other terrane boundaries based on Moho depth as well as average crustal vP/vS ratio and Moho phase amplitudes. The terranes with distinct crustal properties span a wide range of ages, from Palaeoproterozoic in Lithuania to Cenozoic in the <span class="hlt">Alps</span>, reflecting the complex tectonic history of Europe. Crustal thickness and properties in the study area are also markedly influenced by tectonic overprinting, for example the formation of the Central European Basin System, and the European Cenozoic Rift System. In the areas affected by Cenozoic rifting and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T41E..04B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T41E..04B"><span>Timing of mafic magmatism VS localization of the deformation: the Ivrea <span class="hlt">Zone</span> (Italian <span class="hlt">Alps</span>)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bidault, M.; Geoffroy, L.; Arbaret, L.; Aubourg, C. T.</p> <p>2017-12-01</p> <p>Mafic magma emplacement is a common feature of continental extension systems, represented at initial stage by volcanic rifts and at more mature stage by volcanic passive margins. In those contexts, lithospheric extension is not isovolumic, magma being notably added to the crust while it is tectonically stretched and thinned. Crystal-scale power-law mechanisms responsible for the continuous flow of the lower crust during extension are composition- and temperature-dependent and additionally, very slow processes. However magma emplacement is a very rapid process. Its effect on the lower crust rheology is dual depending upon the time-scale of the processes: thermal weakening, when newly-formed hot intrusions emplace and heat their surrounding, and rheological chemical hardening when mafic intrusions are cold. Consequently, the localization and type of ductile deformation affecting the lower crust depend on the emplacement rate, volume and spatial organization of the mafic system. The Ivrea <span class="hlt">Zone</span> is a well-known variscan continental crust section that underwent extension through first gravitational collapse in the Carboniferous and then lithospheric extension until the Permian. From the Late Carboniferous to the Permian, extension in the Ivrea <span class="hlt">Zone</span> was associated with large volumes of magma intrusion within the lower crust. This volcanic rift stage predated the development of a non-volcanic passive margin during the Jurassic. The entire system was tilted 90° eastward during the Alpine orogeny but remained unaffected by significant metamorphism or pervasive strain. We combine new field observations, Anisotropy of Magnetic Susceptibility data and trace-element geochemistry to investigate the timing, tectonic-setting and consequences of magma emplacement in the in-extension Ivrea lower crust. We propose a new tectonic history, highlighting time-dependent strain transfer and localization in the lower crust, in connection with mafic magma intrusion.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.T14A..03K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.T14A..03K"><span>Imaging megathrust <span class="hlt">zone</span> and Yakutat/Pacific plate interface in Alaska subduction <span class="hlt">zone</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Y.; Abers, G. A.; Li, J.; Christensen, D. H.; Calkins, J. A.</p> <p>2012-12-01</p> <p>We image the subducted slab underneath a 450 km long transect of the Alaska subduction <span class="hlt">zone</span>. Dense stations in <span class="hlt">southern</span> Alaska are set up to investigate (1) the geometry and velocity structure of the downgoing plate and their relation to slab seismicity, and (2) the interplate coupled <span class="hlt">zone</span> where the great 1964 (magnitude 9.3) had greatest rupture. The joint teleseismic migration of two array datasets (MOOS, Multidisciplinary Observations of Onshore Subduction, and BEAAR, Broadband Experiment Across the Alaska Range) based on teleseismic receiver functions (RFs) using the MOOS data reveal a shallow-dipping prominent low-velocity layer at ~25-30 km depth in <span class="hlt">southern</span> Alaska. Modeling of these RF amplitudes shows a thin (3-6.5 km) low-velocity layer (shear wave velocity less than 3 km/s), which is ~20-30% slower than normal oceanic crustal velocities, between the subducted slab and the overriding North America plate. The observed low-velocity megathrust layer (with Vp/Vs ratio exceeding 2.0) may be due to a thick sediment input from the trench in combination of elevated pore fluid pressure in the channel. The subducted crust below the low-velocity channel has gabbroic velocities with a thickness of 11-15 km. Both velocities and thickness of the low-velocity channel abruptly increase as the slab bends in central Alaska, which agrees with previously published RF results. Our image also includes an unusually thick low-velocity crust subducting with a ~20 degree dip down to 130 km depth at approximately 200 km inland beneath central Alaska. The unusual nature of this subducted segment has been suggested to be due to the subduction of the Yakutat terrane. Subduction of this buoyant crust could explain the shallow dip of the thrust <span class="hlt">zone</span> beneath <span class="hlt">southern</span> Alaska. We also show a clear image of the Yakutat and Pacific plate subduction beneath the Kenai Peninsula, and the along-strike boundary between them at megathrust depths. Our imaged western edge of the Yakutat terrane, at</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..APR.C9004B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..APR.C9004B"><span><span class="hlt">ALPS</span>: the Dark Matter Generator (coming in 2019)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barke, Simon; Bush, Zachary; Baum, Claire; Hollis, Hal; Mueller, Guido; Tanner, David</p> <p>2017-01-01</p> <p>Very promising dark matter candidates are axion-like particles: sub-eV particles that are expected to (weakly) interact with photons in the presence of a static electric or magnetic field. This interaction can turn photons into axions and back into photons. Hence, in order to generate axions, we will set up a 100 meter long Fabry-Perot cavity that can hold a 150,000 watt laser field and have a 5.3 tesla magnetic field along the entire length. If the theory holds up, a fraction of the photons should transform into relativistic axions. These axions would then propagate through any optical barrier and enter a matched cavity that is situated within an identical magnetic field. Here, some of the axions should turn back into photons of equal energy. Thus these photons resonate in the otherwise empty cavity where they can be detected. It is unknown if axion-like particles exist in the targeted mass range. However, the <span class="hlt">ALPS</span> detection principle is very convenient because we will know the exact energy of the regenerated photons beforehand thus making a detection much easier.The final stage of the <span class="hlt">ALPS</span> experiment will be completed by 2019 at the German Electron Synchrotron (DESY) site in Hamburg, Germany. This work is supported by grants from the Heising-Simons Foundation and the National Science Foundation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H51H0712A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H51H0712A"><span>The Influence of Land Subsidence, Quarrying, Drainage, Irrigation and Forest Fire on Groundwater Resources and Biodiversity Along the <span class="hlt">Southern</span> Po Plain Coastal <span class="hlt">Zone</span> (Italy)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Antonellini, M. A.; Mollema, P. N.</p> <p>2014-12-01</p> <p>The coastal <span class="hlt">zone</span> of the <span class="hlt">southern</span> Po plain is characterized by low lying land, which is reclaimed to permit settlements and agriculture. The history, tourism resorts and peculiar coastal environments make this territory attractive and valuable. Natural and fluid-extraction-induced land subsidence along with coastal erosion are major problems. Touristic development has strongly modified the landscape; coastal dunes have been in part removed to make room for hotels and quarrying has caused the formation of gravel pit lakes close to the shoreline. Protected natural areas include a belt of coastal dunes, wetlands, and the internal historical forests of San Vitale and Classe. The dunes have largely lost their original vegetation ecosystem, because years ago they have been colonized with pine trees to protect the adjacent farmland from sea spray. These pine forests are currently a fire hazard. Land reclamation drainage keeps the water table artificially low. Results of these anthropogenic disturbances on the hydrology include a decrease in infiltration rates, loss of freshwater surface bodies, encroachment of saltwater inland from the river estuaries, salinization of the aquifer, wetlands and soil with a loss in plant and aquatic species biodiversity. Feedback mechanisms are complex: as land subsidence continues, drainage increases at the same pace promoting sea-water intrusion. The salinity of the groundwater does not allow for plant species richness nor for the survival of large pine trees. Farmland irrigation and fires in the pine forests, on the other hand, allow for increased infiltration and freshening of the aquifer and at the same time promote plant species diversity. Our work shows that the characteristics of the <span class="hlt">southern</span> Po coastal <span class="hlt">zone</span> require integrated management of economic activities, natural areas, and resources. This approach is different from the ad hoc measures taken so far, because it requires long term planning and setting a priority of objectives.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740011833','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740011833"><span>Crustal extension and transform faulting in the <span class="hlt">southern</span> Basin Range Province. [California, Arizona, and Nevada</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liggett, M. A. (Principal Investigator); Childs, J. F.</p> <p>1974-01-01</p> <p>The author has identified the following significant results. Field reconnaissance and study of geologic literature guided by analysis of ERTS-1 MSS imagery have led to a hypothesis of tectonic control of Miocene volcanism, plutonism, and related mineralization in part of the Basin Range Province of <span class="hlt">southern</span> Nevada and northwestern Arizona. The easterly trending right-lateral Las Vegas Shear <span class="hlt">Zone</span> separates two volcanic provinces believed to represent areas of major east-west crustal extension. One volcanic province is aligned along the Colorado River south of the eastern termination of the Las Vegas Shear <span class="hlt">Zone</span>; the second province is located north of the western termination of the shear <span class="hlt">zone</span> in <span class="hlt">southern</span> Nye County, Nevada. Geochronologic, geophysical, and structural evidence suggests that the Las Vegas Shear <span class="hlt">Zone</span> may have formed in response to crustal extension in the two volcanic provinces in a manner similar to the formation of a ridge-ridge transform fault, as recognized in ocean floor tectonics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..118a2002A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..118a2002A"><span>The geometry of pull-apart basins in the <span class="hlt">southern</span> part of Sumatran strike-slip fault <span class="hlt">zone</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aribowo, Sonny</p> <p>2018-02-01</p> <p>Models of pull-apart basin geometry have been described by many previous studies in a variety tectonic setting. 2D geometry of Ranau Lake represents a pull-apart basin in the Sumatran Fault <span class="hlt">Zone</span>. However, there are unclear geomorphic traces of two sub-parallel overlapping strike-slip faults in the boundary of the lake. Nonetheless, clear geomorphic traces that parallel to Kumering Segment of the Sumatran Fault are considered as inactive faults in the <span class="hlt">southern</span> side of the lake. I demonstrate the angular characteristics of the Ranau Lake and Suoh complex pull-apart basins and compare with pull-apart basin examples from published studies. I use digital elevation model (DEM) image to sketch the shape of the depression of Ranau Lake and Suoh Valley and measure 2D geometry of pull-apart basins. This study shows that Ranau Lake is not a pull-apart basin, and the pull-apart basin is actually located in the eastern side of the lake. Since there is a clear connection between pull-apart basin and volcanic activity in Sumatra, I also predict that the unclear trace of the pull-apart basin near Ranau Lake may be covered by Ranau Caldera and Seminung volcanic products.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.884a2112S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.884a2112S"><span><span class="hlt">ALP</span> gene expression in cDNA samples from bone tissue engineering using a HA/TCP/Chitosan scaffold</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stephanie, N.; Katarina, H.; Amir, L. R.; Gunawan, H. A.</p> <p>2017-08-01</p> <p>This study examined the potential use of hydroxyapatite (HA)/tricalcium phosphate (TCP)/Chitosan as a bone tissue engineering scaffold. The potential for using HA/TCP/chitosan as a scaffold was analyzed by measuring expression of the <span class="hlt">ALP</span> osteogenic gene in cDNA from bone biopsies from four Macaque nemestrina. Experimental conditions included control (untreated), treatment with HA/TCP 70:30, HA/TCP 50:50, and HA/TCP/chitosan. cDNA samples were measured quantitively with Real-Time PCR (qPCR) and semi-quantitively by gel electrophoresis. There were no significant differences in <span class="hlt">ALP</span> gene expression between treatment subjects after two weeks, but the HA/TCP/chitosan treatment gave the highest level of expression after four weeks. The scaffold using the HA/TCP/chitosan combination induced a higher level of expression of the osteogenic gene <span class="hlt">ALP</span> than did scaffold without chitosan.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23197531','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23197531"><span>Chemically and geographically distinct solid-phase iron pools in the <span class="hlt">Southern</span> Ocean.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>von der Heyden, B P; Roychoudhury, A N; Mtshali, T N; Tyliszczak, T; Myneni, S C B</p> <p>2012-11-30</p> <p>Iron is a limiting nutrient in many parts of the oceans, including the unproductive regions of the <span class="hlt">Southern</span> Ocean. Although the dominant fraction of the marine iron pool occurs in the form of solid-phase particles, its chemical speciation and mineralogy are challenging to characterize on a regional scale. We describe a diverse array of iron particles, ranging from 20 to 700 nanometers in diameter, in the waters of the <span class="hlt">Southern</span> Ocean euphotic <span class="hlt">zone</span>. Distinct variations in the oxidation state and composition of these iron particles exist between the coasts of South Africa and Antarctica, with different iron pools occurring in different frontal <span class="hlt">zones</span>. These speciation variations can result in solubility differences that may affect the production of bioavailable dissolved iron.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1215590S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1215590S"><span>Thrust exhumation of the <span class="hlt">Southern</span> Marginal <span class="hlt">Zone</span> of the Limpopo Complex in the Neoarchaean: link of distinct high-grade shear <span class="hlt">zones</span> with DC and IC P-T-t paths</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smit, C. Andre; van Reenen, Dirk D.</p> <p>2010-05-01</p> <p>The Limpopo Complex is a ~750km long E-W trending <span class="hlt">zone</span> of predominantly granulite facies rocks situated between the Archaean Kaapvaal and Zimbabwe cratons of <span class="hlt">southern</span> Africa. Large ductile shear <span class="hlt">zones</span> are an integral part of the Limpopo architecture, defining the boundaries between the belt and the adjacent cratons and are interpreted to have been responsible for uplift (exhumation) of over thickened crust during the Neoarchaean [10 and references therein; 1]. The Hout River Shear <span class="hlt">Zone</span> forms the terrane boundary between the granite-greenstone terrane of the Kaapvaal craton in the south and the high-grade <span class="hlt">Southern</span> Marginal <span class="hlt">Zone</span> (SMZ) of the Limpopo Complex in the north. Integrated structural, metamorphic, magmatic and age data collected over a period of more than 30 years provide convincing evidence for a Neoarchean high-grade tectono-metamorphic event that affected the SMZ in the interval ~2.72 - 2.60 Ga [4; 5, 6; 7; 2; 8; 9; 11]. The thrust-controlled exhumation of the SMZ is demonstrated by the convergence of a retrograde P-T path in the hanging wall (SMZ) and a prograde P-T loop in the footwall (Kaapvaal Craton) of the steeply SW-verging Hout River Shear <span class="hlt">Zone</span> [4; 5]. The coeval ages (~2.69 Ga) of the two contrasting metamorphic histories are indicated by geochronological data [2; 3]. In addition, the establishment of a retrograde isograd and <span class="hlt">zone</span> of rehydrated granulites in the hanging wall by hydrous CO2-rich fluids derived by dehydration of the low-grade rocks in the footwall provides another convincing link between the two contrasting metamorphic environments [10]. Distinct retrograde P-T paths [4; 6; 8] linked to distinct shear deformational events document evidence for a two-stage post-peak exhumation history of the SMZ: (i) granulites sampled far from the contact with the cool rocks of the Kaapvaal Craton are characterized by P-T paths with two distinct decompression-cooling (DC) stages (DC=>DC paths), (ii) granulites sampled close to this contact are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014TCD.....8..581C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014TCD.....8..581C"><span>Projected changes of snow conditions and avalanche activity in a warming climate: a case study in the French <span class="hlt">Alps</span> over the 2020-2050 and 2070-2100 periods</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Castebrunet, H.; Eckert, N.; Giraud, G.; Durand, Y.; Morin, S.</p> <p>2014-01-01</p> <p>Projecting changes in snow cover due to climate warming is important for many societal issues, including adaptation of avalanche risk mitigation strategies. Efficient modeling of future snow cover requires high resolution to properly resolve the topography. Here, we detail results obtained through statistical downscaling techniques allowing simulations of future snowpack conditions for the mid- and late 21st century in the French <span class="hlt">Alps</span> under three climate change scenarios. Refined statistical descriptions of snowpack characteristics are provided with regards to a 1960-1990 reference period, including latitudinal, altitudinal and seasonal gradients. These results are then used to feed a statistical model of avalanche activity-snow conditions-meteorological conditions relationships, so as to produce the first prognoses at annual/seasonal time scales of future natural avalanche activity eventually based on past observations. The resulting statistical indicators are fundamental for the mountain economy in terms of changes anticipation. At all considered spatio-temporal scales, whereas precipitations are expected to remain quite stationary, temperature increase interacting with topography will control snow-related variables, for instance the rate of decrease of total and dry snow depths, and the successive increase/decrease of the wet snow pack. Overall, with regards to the reference period, changes are strong for the end of the 21st century, but already significant for the mid-century. Changes in winter are somewhat less important than in spring, but wet snow conditions will appear at high elevations earlier in the season. For a given altitude, the <span class="hlt">Southern</span> French <span class="hlt">Alps</span> will not be significantly more affected than the Northern French <span class="hlt">Alps</span>, so that the snowpack characteristics will be preserved more lately in the <span class="hlt">southern</span> massifs of higher mean altitude. Regarding avalanche activity, a general -20-30% decrease and interannual variability is forecasted, relatively strong</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA498435','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA498435"><span>Characterization of a Mud Deposit Offshore of the Patos Lagoon, <span class="hlt">Southern</span> Brazil</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-02-01</p> <p>Journal Article 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Characterization of mud deposit offshore of the Patos lagoon, <span class="hlt">southern</span> Brazil 5a...deposition of mud on the beach along the shoreface of Rio Grande do Sul, Brazil dramatically influences the normal operations in the littoral <span class="hlt">zone</span>...Continental Shelf Research journal homepage: www.elsevier.com/locate/csr Characterization of a mud deposit offshore of the Patos Lagoon, <span class="hlt">southern</span> Brazil</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26676992','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26676992"><span>Evidence of divergent selection for drought and cold tolerance at landscape and local scales in Abies alba Mill. in the French Mediterranean <span class="hlt">Alps</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Roschanski, Anna M; Csilléry, Katalin; Liepelt, Sascha; Oddou-Muratorio, Sylvie; Ziegenhagen, Birgit; Huard, Frédéric; Ullrich, Kristian K; Postolache, Dragos; Vendramin, Giovanni G; Fady, Bruno</p> <p>2016-02-01</p> <p>Understanding local adaptation in forest trees is currently a key research and societal priority. Geographically and ecologically marginal populations provide ideal case studies, because environmental stress along with reduced gene flow can facilitate the establishment of locally adapted populations. We sampled European silver fir (Abies alba Mill.) trees in the French Mediterranean <span class="hlt">Alps</span>, along the margin of its distribution range, from pairs of high- and low-elevation plots on four different mountains situated along a 170-km east-west transect. The analysis of 267 SNP loci from 175 candidate genes suggested a neutral pattern of east-west isolation by distance among mountain sites. F(ST) outlier tests revealed 16 SNPs that showed patterns of divergent selection. Plot climate was characterized using both in situ measurements and gridded data that revealed marked differences between and within mountains with different trends depending on the season. Association between allelic frequencies and bioclimatic variables revealed eight genes that contained candidate SNPs, of which two were also detected using F(ST) outlier methods. All SNPs were associated with winter drought, and one of them showed strong evidence of selection with respect to elevation. Q(ST)-F(ST) tests for fitness-related traits measured in a common garden suggested adaptive divergence for the date of bud flush and for growth rate. Overall, our results suggest a complex adaptive picture for A. alba in the <span class="hlt">southern</span> French <span class="hlt">Alps</span> where, during the east-to-west Holocene recolonization, locally advantageous genetic variants established at both the landscape and local scales. © 2015 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4686684','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4686684"><span>Bacterial Composition and Survival on Sahara Dust Particles Transported to the European <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Meola, Marco; Lazzaro, Anna; Zeyer, Josef</p> <p>2015-01-01</p> <p>Deposition of Sahara dust (SD) particles is a frequent phenomenon in Europe, but little is known about the viability and composition of the bacterial community transported with SD. The goal of this study was to characterize SD-associated bacteria transported to the European <span class="hlt">Alps</span>, deposited and entrapped in snow. During two distinct events in February and May 2014, SD particles were deposited and promptly covered by falling snow, thus preserving them in distinct ochre layers within the snowpack. In June 2014, we collected samples at different depths from a snow profile at the Jungfraujoch (Swiss <span class="hlt">Alps</span>; 3621 m a.s.l.). After filtration, we performed various microbiological and physicochemical analyses of the snow and dust particles therein that originated in Algeria. Our results show that bacteria survive and are metabolically active after the transport to the European <span class="hlt">Alps</span>. Using high throughput sequencing, we observed distinct differences in bacterial community composition and structure in SD-layers as compared to clean snow layers. Sporulating bacteria were not enriched in the SD-layers; however, phyla with low abundance such as Gemmatimonadetes and Deinococcus-Thermus appeared to be specific bio-indicators for SD. Since many members of these phyla are known to be adapted to arid oligotrophic environments and UV radiation, they are well suited to survive the harsh conditions of long-range airborne transport. PMID:26733988</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://ngmdb.usgs.gov/Prodesc/proddesc_78432.htm','USGSPUBS'); return false;" href="http://ngmdb.usgs.gov/Prodesc/proddesc_78432.htm"><span>Trench Logs and Scarp Data from an Investigation of the Steens Fault <span class="hlt">Zone</span>, Bog Hot Valley and Pueblo Valley, Humboldt County, Nevada</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Personius, Stephen F.; Crone, Anthony J.; Machette, Michael N.; Kyung, Jai Bok; Cisneros, Hector; Lidke, David J.; Mahan, Shannon</p> <p>2006-01-01</p> <p>Introduction: This report contains field and laboratory data from a study of the Steens fault <span class="hlt">zone</span> near Denio, Nev. The 200-km-long Steens fault <span class="hlt">zone</span> forms the longest, most topographically prominent fault-bounded escarpment in the Basin and Range of <span class="hlt">southern</span> Oregon and northern Nevada. The down-to-the-east normal fault is marked by Holocene fault scarps along nearly half its length, including the <span class="hlt">southern</span> one-third of the fault from the vicinity of Pueblo Mountain in <span class="hlt">southern</span> Oregon to the <span class="hlt">southern</span> margin of Bog Hot Valley (BHV) southwest of Denio, Nev. We studied this section of the fault to better constrain late Quaternary slip rates, which we hope to compare to deformation rates derived from a recently established geodetic network in the region (Hammond and Thatcher, 2005). We excavated a trench in May 2003 across one of a series of right-stepping fault scarps that extend south from the <span class="hlt">southern</span> end of the Pueblo Mountains and traverse the floor of Bog Hot Valley, about 4 km south of Nevada State Highway 140. This site was chosen because of the presence of well-preserved fault scarps, their development on lacustrine deposits thought to be suitable for luminescence dating, and the proximity of two geodetic stations that straddle the fault <span class="hlt">zone</span>. We excavated a second trench in the <span class="hlt">southern</span> BHV, but the fault <span class="hlt">zone</span> in this trench collapsed during excavation and thus no information about fault history was documented from this site. We also excavated a soil pit on a lacustrine barrier bar in the <span class="hlt">southern</span> Pueblo Valley (PV) to better constrain the age of lacustrine deposits exposed in the trench. The purpose of this report is to present photomosaics and trench logs, scarp profiles and slip data, soils data, luminescence and radiocarbon ages, and unit descriptions obtained during this investigation. We do not attempt to use the data presented herein to construct a paleoseismic history of this part of the Steens fault <span class="hlt">zone</span>; that history will be the subject of a future</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP41D..03A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP41D..03A"><span>Holocene Erosion Patterns in European <span class="hlt">Alps</span> Viewed from Lake Sediment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arnaud, F.; Poulenard, J.; Giguet-Covex, C.; Wilhelm, B.; Revillon, S.; Jenny, J. P.; Revel, M.; Enters, D.; Bajard, M.; Fouinat, L.; Doyen, E.; Simonneau, A.; Chapron, E.; Vannière, B.; Sabatier, P.</p> <p>2016-12-01</p> <p>In this paper we review the scientific efforts that were led over the last decades to reconstruct erosion from continuous alpine lake sediment records. Whereas most available geological records of Holocene terrigenous input focused in climate we propose a regional approach without any a priori regarding erosion forcing factors. In that aim, we integrated a set of sediment sequences from various environment along an altitudinal gradient from 200 up to 2400m asl in Northern French <span class="hlt">Alps</span>. Altogether our data point climate change as one of the main factor of erosion variability. In particular, the last two cold spells that occurred during the early middle age (Dark Age) and between the 14th and the 20th century AD (Little Ice Age) appear to be outstanding compared to any other periods of enhanced erosion along the Holocene. The climatic forcing of those erosion phases is supported by an increase in the contribution of glacier-eroded material at a regional scale. However, at local scales, our data point the growing importance, since at least the mid Bronze Age (ca. 3500 cal. BP) of human activities as a major erosion factor. This influence peaked during the late Iron Age and Antiquity periods (200 BC - 400 AD) when we record a regional generalised period of enhanced erosion in response to the development of pasturing activities. Thanks to provenance and weathering markers, we evidenced a strong relationship between the changes in ecosystems, soil development and erosion patterns. We hence showed the vegetal colonisation of bared soil led to a period of intense weathering while new soils were under formation between 11,000 and 8,000 cal. BP. Soils then knew an optimum until the onset of the Neoglacial at ca. 4,500 cal. BP prior to decline under both climate and human pressures. Altogether our data point the complexity of processes that affected the Earth critical <span class="hlt">zone</span> along the Holocene and especially since humans became a major geologic agent. However, we highlight the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..43.3193C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..43.3193C"><span>Ice cap melting and low-viscosity crustal root explain the narrow geodetic uplift of the Western <span class="hlt">Alps</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chéry, J.; Genti, M.; Vernant, P.</p> <p>2016-04-01</p> <p>More than 10 years of geodetic measurements demonstrate an uplift rate of 1-3 mm/yr of the high topography region of the Western <span class="hlt">Alps</span>. By contrast, no significant horizontal motion has been detected. Two uplift mechanisms have been proposed: (1) the isostatic response to denudation responsible for only a fraction of the observed uplift and (2) the rebound induced by the Wurmian ice cap melting which predicts a broader uplifting region than the one evidenced by geodetic observations. Using a numerical model to fit the geodetic data, we show that a crustal viscosity contrast between the foreland and the central part of the <span class="hlt">Alps</span>, the latter being weaker with a viscosity of 1021 Pa s, is needed. The vertical rates are enhanced if the strong uppermost mantle beneath the Moho is interrupted across the <span class="hlt">Alps</span>, therefore allowing a weak vertical rheological anomaly over the entire lithosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27910723','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27910723"><span>Powered mobility intervention: understanding the position of tool use learning as part of implementing the <span class="hlt">ALP</span> tool.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nilsson, Lisbeth; Durkin, Josephine</p> <p>2017-10-01</p> <p>To explore the knowledge necessary for adoption and implementation of the Assessment of Learning Powered mobility use (<span class="hlt">ALP</span>) tool in different practice settings for both adults and children. To consult with a diverse population of professionals working with adults and children, in different countries and various settings; who were learning about or using the <span class="hlt">ALP</span> tool, as part of exploring and implementing research findings. Classical grounded theory with a rigorous comparative analysis of data from informants together with reflections on our own rich experiences of powered mobility practice and comparisons with the literature. A core category learning tool use and a new theory of cognizing tool use, with its interdependent properties: motivation, confidence, permissiveness, attentiveness and co-construction has emerged which explains in greater depth what enables the application of the <span class="hlt">ALP</span> tool. The scientific knowledge base on tool use learning and the new theory conveys the information necessary for practitioner's cognizing how to apply the learning approach of the <span class="hlt">ALP</span> tool in order to enable tool use learning through powered mobility practice as a therapeutic intervention in its own right. This opens up the possibility for more children and adults to have access to learning through powered mobility practice. Implications for rehabilitation Tool use learning through powered mobility practice is a therapeutic intervention in its own right. Powered mobility practice can be used as a rehabilitation tool with individuals who may not need to become powered wheelchair users. Motivation, confidence, permissiveness, attentiveness and co-construction are key properties for enabling the application of the learning approach of the <span class="hlt">ALP</span> tool. Labelling and the use of language, together with honing observational skills through viewing video footage, are key to developing successful learning partnerships.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27852239','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27852239"><span>Determinants of use of health facility for childbirth in rural Hadiya <span class="hlt">zone</span>, <span class="hlt">Southern</span> Ethiopia.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Asseffa, Netsanet Abera; Bukola, Fawole; Ayodele, Arowojolu</p> <p>2016-11-16</p> <p>Maternal mortality remains a major global public health concern despite many international efforts. Facility-based childbirth increases access to appropriate skilled attendance and emergency obstetric care services as the vast majority of obstetric complications occur during delivery. The purpose of the study was to determine the proportion of facility delivery and assess factors influencing utilization of health facility for childbirth. A cross-sectional study was conducted in two rural districts of Hadiya <span class="hlt">zone</span>, <span class="hlt">southern</span> Ethiopia. Participants who delivered within three years of the survey were selected by stratified random sampling. Trained interviewers administered a pre-tested semi-structured questionnaire. We employed bivariate analysis and logistic regression to identify determinants of facility-based delivery. Data from 751 participants showed that 26.9% of deliveries were attended in health facilities. In bivariate analysis, maternal age, education, husband's level of education, possession of radio, antenatal care, place of recent ANC attended, planned pregnancy, wealth quintile, parity, birth preparedness and complication readiness, being a model family and distance from the nearest health facility were associated with facility delivery. On multiple logistic regression, age, educational status, antenatal care, distance from the nearest health facility, wealth quintile, being a model family, planned pregnancy and place of recent ANC attended were the determinants of facility-based childbirth. Efforts to improve institutional deliveries in the region must strengthen initiatives that promote female education, opportunities for wealth creation, female empowerment and increased uptake of family planning among others. Service related barriers and cultural influences on the use of health facility for childbirth require further evaluation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12510896','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12510896"><span>Distribution and phenology of ixodid ticks in <span class="hlt">southern</span> Zambia.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Speybroeck, N; Madder, M; Van Den Bossche, P; Mtambo, J; Berkvens, N; Chaka, G; Mulumba, M; Brandt, J; Tirry, L; Berkvens, D</p> <p>2002-12-01</p> <p>Distribution data for epidemiologically important ticks (Acari: Ixodidae) in the <span class="hlt">Southern</span> Province of Zambia, one of the main cattle areas of the country, are presented. Boophilus microplus (Canestrini) was not recorded in <span class="hlt">southern</span> Zambia, whereas Boophilus decoloratus (Koch) is present throughout the area. New distribution patterns for less economically important ixodid ticks are also discussed. <span class="hlt">Southern</span> Zambia is a transition <span class="hlt">zone</span> because it is the most northern area in Africa where mixed Rhipicephalus appendiculatus Neumann and Rhipicephalus zambeziensis Walker, Norval & Corwin populations were reported. Although a second generation of adult R. appendiculatus/R. zamnbeziensis was encountered, simulations indicated that this phenomenon is very rare in <span class="hlt">southern</span> Zambia, mainly because of the colder temperatures during the early dry season and lower rainfall. These simulations were supported by a development trial under experimental conditions. Tick body size measurements showed that <span class="hlt">southern</span> Zambian ticks are larger than eastern Zambian R. appendiculatus. It is hypothesized that body size is related to diapausing intensity in this species. The epidemiological consequences are that a different approach to control Theileria parva (Theiler) (Piroplasmida: Theileriidae) and other tick-borne diseases is needed in <span class="hlt">southern</span> Zambia, compared to the one adopted in eastern Zambia.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70196519','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70196519"><span>Thermochronometry across the Austroalpine-Pennine boundary, Central <span class="hlt">Alps</span>, Switzerland: Orogen-perpendicular normal fault slip on a major ‘overthrust’ and its implications for orogenesis</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Price, Jason B.; Wernicke, Brian P.; Cosca, Michael A.; Farley, Kenneth A.</p> <p>2018-01-01</p> <p>Fifty‐one new and 309 published thermochronometric ages (nine systems with closure temperatures ranging from ~450 to 70°C) from the Graubünden region of the Central <span class="hlt">Alps</span> demonstrate that a pronounced thermal mismatch between the Austroalpine allochthon (Alpine “orogenic lid”) and the Pennine <span class="hlt">zone</span> persisted until at least 29 Ma and, allowably, until circa 18 Ma. The observed mismatch supports previous suggestions that the famous “overthrust” between the Austroalpine allochthon and the Pennine <span class="hlt">zone</span>, historically regarded as primarily an Eocene top‐north thrust fault, is in fact primarily an Oligocene‐Miocene normal fault that has a minimum of 60 km of displacement with top‐south or top‐southeast sense of shear. Two hallmarks of Alpine geology, deposition of the foredeep Molasse and emplacement of the Helvetic nappes, appear to be coeval, peripheral manifestations of crustal thickening via the interposition of the Pennine <span class="hlt">zone</span> as a northward intruding wedge between the Austroalpine “lid” and the European cratonic margin, with the Helvetic system (European margin) acting as the “floor” of the wedge. We presume the Penninic wedge is driven by the buoyant rise of subducted crust no longer able to remain attached to the descending slab. If so, emplacement of the Pennine wedge could have occurred mainly after Adria was juxtaposed against cratonic Europe.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.8320R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.8320R"><span>Landslide Hazard Assessment and Mapping in the Guil Catchment (Queyras, <span class="hlt">Southern</span> French <span class="hlt">Alps</span>): From Landslide Inventory to Susceptibility Modelling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roulleau, Louise; Bétard, François; Carlier, Benoît; Lissak, Candide; Fort, Monique</p> <p>2016-04-01</p> <p>Landslides are common natural hazards in the <span class="hlt">Southern</span> French <span class="hlt">Alps</span>, where they may affect human lives and cause severe damages to infrastructures. As a part of the SAMCO research project dedicated to risk evaluation in mountain areas, this study focuses on the Guil river catchment (317 km2), Queyras, to assess landslide hazard poorly studied until now. In that area, landslides are mainly occasional, low amplitude phenomena, with limited direct impacts when compared to other hazards such as floods or snow avalanches. However, when interacting with floods during extreme rainfall events, landslides may have indirect consequences of greater importance because of strong hillslope-channel connectivity along the Guil River and its tributaries (i.e. positive feedbacks). This specific morphodynamic functioning reinforces the need to have a better understanding of landslide hazards and their spatial distribution at the catchment scale to prevent local population from disasters with multi-hazard origin. The aim of this study is to produce a landslide susceptibility mapping at 1:50 000 scale as a first step towards global estimation of landslide hazard and risk. The three main methodologies used for assessing landslide susceptibility are qualitative (i.e. expert opinion), deterministic (i.e. physics-based models) and statistical methods (i.e. probabilistic models). Due to the rapid development of geographical information systems (GIS) during the last two decades, statistical methods are today widely used because they offer a greater objectivity and reproducibility at large scales. Among them, multivariate analyses are considered as the most robust techniques, especially the logistic regression method commonly used in landslide susceptibility mapping. However, this method like others is strongly dependent on the accuracy of the input data to avoid significant errors in the final results. In particular, a complete and accurate landslide inventory is required before the modelling</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25442552','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25442552"><span>Purification of barley dimeric α-amylase inhibitor-1 (BDAI-1) and avenin-like protein-a (<span class="hlt">ALP</span>) from beer and their impact on beer foam stability.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Iimure, Takashi; Kihara, Makoto; Sato, Kazuhiro; Ogushi, Kensuke</p> <p>2015-04-01</p> <p>Foam stability is a key factor of beer quality for consumers and brewers. Recent beer proteome analyses have suggested that barley dimeric α-amylase inhibitor-1 (BDAI-1) and avenin-like protein-a (<span class="hlt">ALP</span>) derived from barley are important for beer foam stability. In this study, BDAI-1 and <span class="hlt">ALP</span> were purified from a Japanese commercial beer sample using salt precipitation and column chromatography. The purification level was verified using two-dimensional gel electrophoresis, mass spectrometry, and database searches. Purified BDAI-1 and <span class="hlt">ALP</span> were added to a beer sample to compare the foam stability to that of a control beer sample. As a result, beer foam stability was significantly improved by BDAI-1 but not by <span class="hlt">ALP</span>, thereby suggesting that BDAI-1 affects beer foam stability whereas <span class="hlt">ALP</span> does not. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7502D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7502D"><span>Protracted weakening during lower crustal shearing along an extensional shear <span class="hlt">zone</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>degli Alessandrini, Giulia; Menegon, Luca; Giuntoli, Francesco</p> <p>2017-04-01</p> <p>This study investigates grain-scale deformation mechanisms in the mafic lower continental crust, with particular focus on the role of syn-kinematic metamorphic reactions and their product - symplectites - in promoting grain size reduction, phase mixing and thus strain localization. The investigated extensional shear <span class="hlt">zone</span> is hosted in the Finero mafic-ultramafic complex in the Italian <span class="hlt">Southern</span> <span class="hlt">Alps</span>. Field and microstructural observations indicate that strain partitioned in gabbroic layers where the primary mineralogical assemblage contained amphibole, forming ultramylonites. These ultramylonites are characterized by isolated porphyroclasts of amphibole, garnet, clinopyroxene and orthopyroxene, embedded in a matrix of plagioclase (ca. 39 vol%) + amphibole (25 vol%) + clinopyroxene (18 vol%) + orthopyroxene (11 vol%) + Fe-Ti oxides (6 vol%) ± apatite (<1 vol%). Matrix grain-size is consistently below 30 μm for all phases. EBSD results are consistent with deformation by grain-size sensitive creep. Amphibole shows a CPO with [001] axes preferentially aligned parallel to the stretching lineation, which we interpret as oriented grain growth during heterogeneous nucleation of amphibole. Pyroxenes and plagioclase lack a CPO and evidence for dislocation creep and dynamic recrystallization. Protracted shearing was initiated by syn-kinematic metamorphic reactions: garnet porphyroclasts formed orthopyroxene + plagioclase symplectites and amphibole porphyroclasts formed pyroxene + plagioclase symplectites. The latter reaction indicates that strain localization initiated with dehydration reactions leading to primary amphibole breakdown into pyroxene and plagioclase, now preserved in the ultramylonite. Geothermobarometry using plagioclase-amphibole pairs in the ultramylonites indicate temperature conditions of ca. 800˚ C and pressures from 8 to 6kbar. This suggests that protracted shearing in the ultramylonites occurred at decreasing pressure and nearly constant T. We suggest</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123..746B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123..746B"><span>Physical and Biological Drivers of Biogeochemical Tracers Within the Seasonal Sea Ice <span class="hlt">Zone</span> of the <span class="hlt">Southern</span> Ocean From Profiling Floats</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Briggs, Ellen M.; Martz, Todd R.; Talley, Lynne D.; Mazloff, Matthew R.; Johnson, Kenneth S.</p> <p>2018-02-01</p> <p>Here we present initial findings from nine profiling floats equipped with pH, O2, NO3-, and other biogeochemical sensors that were deployed in the seasonal ice <span class="hlt">zone</span> (SIZ) of the <span class="hlt">Southern</span> Ocean in 2014 and 2015 through the <span class="hlt">Southern</span> Ocean Carbon and Climate Observations and Modelling (SOCCOM) project. A large springtime phytoplankton bloom was observed that coincided with sea ice melt for all nine floats. We argue this bloom results from a shoaling of the mixed layer depth, increased vertical stability, and enhanced nutrient and light availability as the sea ice melts. This interpretation is supported by the absence of a springtime bloom when one of the floats left the SIZ in the second year of observations. During the sea ice covered period, net heterotrophic conditions were observed. The rate of uptake of O2 and release of dissolved inorganic carbon (derived from pH and estimated total alkalinity) and NO3- is reminiscent of biological respiration and is nearly Redfieldian for the nine floats. A simple model of mixed layer physics was developed to separate the physical and biological components of the signal in pH and O2 over one annual cycle for a float in the Ross Sea SIZ. The resulting annual net community production suggests that seasonal respiration during the ice covered period of the year nearly balances the production in the euphotic layer of up to 5 mol C m-2 during the ice free period leading to a net of near zero carbon exported to depth for this one float.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1615622P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1615622P"><span>Tectonic overpressure may reconcile the structural and petrological records of the Adula nappe (Central <span class="hlt">Alps</span>)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pleuger, Jan; Podladchikov, Yuri</p> <p>2014-05-01</p> <p>The Penninic <span class="hlt">Alps</span> are the result of progressive underthrusting of oceanic and continental domains below the Adriatic microplate. Situated in the internal part of the Alpine orogen, they expose basement and thinned cover nappes which have been metamorphosed to variable degree, among them several units which were subjected to ultrahigh-pressure metamorphism. Due to the more or less strong nappe-internal deformation of these units, cross sections through the Penninic <span class="hlt">Alps</span> cannot be restored kinematically by area or line balancing techniques. Instead, such restorations attempt to consistently reconcile geochronological and structural data and petrological pressure-temperature estimates. Pressure data are usually converted into depth assuming that they were lithostatic which puts the ultrahigh-pressure units to subcrustal depths. Tectonic exhumation of a unit from such a depth by whatever mechanism requires a large-scale normal fault with several tens of kilometres of displacement in the hanging wall of the unit. However, for all Penninic ultrahigh-pressure units (Dora Maira unit, Zermatt-Saas <span class="hlt">zone</span>, Monviso unit, Adula-Cima Lunga nappe), the oldest mappable post-peak-pressure structures are related to top-to-the-foreland shearing, i.e. thrusting. There are two potential solutions to this dilemma. The first one is that either the exhumation was indeed accommodated by a large-scale normal fault which became completely overprinted during later deformational stages. The other one is that peak pressures were not lithostatic. To our knowledge, the first solution is applied to all kinematic models of the <span class="hlt">Alps</span> so far. In order to explore the feasibility of the second solution, we performed a purely structural restoration of the NFP20-East cross section without lithostatic pressure-to-depth-conversions. This cross-section comprises the ultrahigh-pressure Adula nappe (up to ca. 30 kbar) and relies on quantitative strain data from the overlying units. The result shows that, in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28234735','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28234735"><span>Use of Sirolimus (Rapamycin) for Treatment of Cytopenias and Lymphoproliferation Linked to Autoimmune Lymphoproliferative Syndrome (<span class="hlt">ALPS</span>). Two Case Reports.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cayrol, Julie; Garrido Colino, Carmen</p> <p>2017-05-01</p> <p>Autoimmune lymphoproliferative syndrome (<span class="hlt">ALPS</span>) is a disorder of lymphocyte apoptosis. Children present with chronic nonmalignant lymphadenopathy, hepatosplenomegaly, and autoimmune cytopenias. Recent advances show efficacy of treatment with immunosuppressive drugs. Sirolimus, an mammalian target of rapamycin inhibitor, improves autoimmune cytopenias and lymphoproliferation, with a safe profile. We present 2 patients, a 5-year-old girl and 15-year-old boy, diagnosed with <span class="hlt">ALPS</span> with initial partial response to steroid treatment. Autoimmune cytopenias and lymphoproliferation then became refractory to treatment, with recurrence of symptoms. In both cases, treatment with sirolimus was started, with a rapid response, complete remission of cytopenias, and resolution of lymphoproliferation, with no significant adverse effects. sirolimus is an effective and safe drug for controlling children with cytopenias and lymphoproliferation linked to <span class="hlt">ALPS</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.2448M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.2448M"><span>The Seismotectonic Model of <span class="hlt">Southern</span> Africa</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Midzi, Vunganai; Mulabisana, Thifelimbulu; Manzunzu, Brassnavy</p> <p>2013-04-01</p> <p>Presented in this report is a summary of the major structures and seismotectonic <span class="hlt">zones</span> in <span class="hlt">Southern</span> Africa (Botswana, Lesotho, Namibia, South Africa and Swaziland), which includes available information on fault plane solutions and stress data. Reports published by several experts contributed much to the prepared <span class="hlt">zones</span>. The work was prepared as part of the requirements for the SIDA/IGCP Project 601 titled "Seismotectonics and Seismic Hazards in Africa" as well as part of the seismic source characterisation of the GEM-Africa Seismic hazard study. The seismic data used are part of the earthquake catalogue being prepared for the GEM-Africa project, which includes historical and instrumental records as collected from various agencies. Seventeen seismic <span class="hlt">zones</span>/sources were identified and demarcated using all the available information. Two of the identiied sources are faults with reliable evidence of their activity. Though more faults have been identified in unpublished material as being active, more work is being carried out to obtain information that can be used to characterise them before they are included in the seismotectonic model. Explanations for the selected boundaries of the <span class="hlt">zones</span> are also given in the report. It should be noted that this information is the first draft of the seismic source <span class="hlt">zones</span> of the region. Futher interpreation of the data is envisaged which might result in more than one version of the <span class="hlt">zones</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/27967','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/27967"><span>Recovery of the Chaparral Riparian <span class="hlt">Zone</span> After Wildfire</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Frank W. Davis; Edward A. Keller; Anuja Parikh; Joan Florsheim</p> <p>1989-01-01</p> <p>After the Wheeler Fire in <span class="hlt">southern</span> California in July 1985, we monitored sediment deposition and vegetation recovery in a section of the severely burned chaparral riparian <span class="hlt">zone</span> of the North Fork of Matilija Creek, near Ojai, California. Increased runoff was accompanied by low magnitude debris flows and fluvial transport of gravel, most of which was added to the channel...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17789780','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17789780"><span>Earthquake hazards on the cascadia subduction <span class="hlt">zone</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Heaton, T H; Hartzell, S H</p> <p>1987-04-10</p> <p>Large subduction earthquakes on the Cascadia subduction <span class="hlt">zone</span> pose a potential seismic hazard. Very young oceanic lithosphere (10 million years old) is being subducted beneath North America at a rate of approximately 4 centimeters per year. The Cascadia subduction <span class="hlt">zone</span> shares many characteristics with subduction <span class="hlt">zones</span> in <span class="hlt">southern</span> Chile, southwestern Japan, and Colombia, where comparably young oceanic lithosphere is also subducting. Very large subduction earthquakes, ranging in energy magnitude (M(w)) between 8 and 9.5, have occurred along these other subduction <span class="hlt">zones</span>. If the Cascadia subduction <span class="hlt">zone</span> is also storing elastic energy, a sequence of several great earthquakes (M(w) 8) or a giant earthquake (M(w) 9) would be necessary to fill this 1200-kilometer gap. The nature of strong ground motions recorded during subduction earthquakes of M(w) less than 8.2 is discussed. Strong ground motions from even larger earthquakes (M(w) up to 9.5) are estimated by simple simulations. If large subduction earthquakes occur in the Pacific Northwest, relatively strong shaking can be expected over a large region. Such earthquakes may also be accompanied by large local tsunamis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-sl3-121-2438.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-sl3-121-2438.html"><span>Snow covered <span class="hlt">Alps</span> of France, Italy, and Switzerland</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1973-07-30</p> <p>SL3-121-2438 (July-September 1973) --- The <span class="hlt">Alps</span> of Switzerland, France and Italy are featured in this exceptional photograph taken by a hand-held camera from the Skylab space station during the second manned Skylab mission. Also visible in the out-the-window 70mm Hasselblad view are Lake Geneva, Lake of Lucerne, Rhone River and many other features. The Skylab 3 crewmen, astronauts Alan L. Bean, Owen K. Garriott and Jack R. Lousma completed a 59-day mission with a successful splashdown on Sept. 25, 1973. Photo credit: NASA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24766974','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24766974"><span>Resuscitation Outcomes Consortium-Amiodarone, Lidocaine or Placebo Study (ROC-<span class="hlt">ALPS</span>): Rationale and methodology behind an out-of-hospital cardiac arrest antiarrhythmic drug trial.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kudenchuk, Peter J; Brown, Siobhan P; Daya, Mohamud; Morrison, Laurie J; Grunau, Brian E; Rea, Tom; Aufderheide, Tom; Powell, Judy; Leroux, Brian; Vaillancourt, Christian; Larsen, Jonathan; Wittwer, Lynn; Colella, M Riccardo; Stephens, Shannon W; Gamber, Mark; Egan, Debra; Dorian, Paul</p> <p>2014-05-01</p> <p>Despite their wide use, whether antiarrhythmic drugs improve survival after out-of-hospital cardiac arrest (OHCA) is not known. The ROC-<span class="hlt">ALPS</span> is evaluating the effectiveness of these drugs for OHCA due to shock-refractory ventricular fibrillation or pulseless ventricular tachycardia (VF/VT). <span class="hlt">ALPS</span> will randomize 3,000 adults across North America with nontraumatic OHCA, persistent or recurring VF/VT after ≥1 shock, and established vascular access to receive up to 450 mg amiodarone, 180 mg lidocaine, or placebo in the field using a double-blind protocol, along with standard resuscitation measures. The designated target population is all eligible randomized recipients of any dose of <span class="hlt">ALPS</span> drug whose initial OHCA rhythm was VF/VT. A safety analysis includes all randomized patients regardless of their eligibility, initial arrhythmia, or actual receipt of <span class="hlt">ALPS</span> drug. The primary outcome of <span class="hlt">ALPS</span> is survival to hospital discharge; a secondary outcome is functional survival at discharge assessed as a modified Rankin Scale score ≤3. The principal aim of <span class="hlt">ALPS</span> is to determine if survival is improved by amiodarone compared with placebo; secondary aim is to determine if survival is improved by lidocaine vs placebo and/or by amiodarone vs lidocaine. Prioritizing comparisons in this manner acknowledges where differences in outcome are most expected based on existing knowledge. Each aim also represents a clinically relevant comparison between treatments that is worth investigating. Results from <span class="hlt">ALPS</span> will provide important information about the choice and value of antiarrhythmic therapies for VF/VT arrest with direct implications for resuscitation guidelines and clinical practice. Copyright © 2014 Mosby, Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010IJEaS..99.1827S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010IJEaS..99.1827S"><span>A new perspective on the significance of the Ranotsara shear <span class="hlt">zone</span> in Madagascar</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schreurs, Guido; Giese, Jörg; Berger, Alfons; Gnos, Edwin</p> <p>2010-12-01</p> <p>The Ranotsara shear <span class="hlt">zone</span> in Madagascar has been considered in previous studies to be a >350-km-long, intracrustal strike-slip shear <span class="hlt">zone</span> of Precambrian/Cambrian age. Because of its oblique strike to the east and west coast of Madagascar, the Ranotsara shear <span class="hlt">zone</span> has been correlated with shear <span class="hlt">zones</span> in <span class="hlt">southern</span> India and eastern Africa in Gondwana reconstructions. Our assessment using remote sensing data and field-based investigations, however, reveals that what previously has been interpreted as the Ranotsara shear <span class="hlt">zone</span> is in fact a composite structure with a ductile deflection <span class="hlt">zone</span> confined to its central segment and prominent NW-SE trending brittle faulting along most of its length. We therefore prefer the more neutral term “Ranotsara Zone”. Lithologies, tectonic foliations, and axial trace trajectories of major folds can be followed from south to north across most of the Ranotsara <span class="hlt">Zone</span> and show only a marked deflection along its central segment. The ductile deflection <span class="hlt">zone</span> is interpreted as a result of E-W indentation of the Antananarivo Block into the less rigid, predominantly metasedimentary rocks of the Southwestern Madagascar Block during a late phase of the Neoproterozoic/Cambrian East African Orogeny (c. 550-520 Ma). The Ranotsara <span class="hlt">Zone</span> shows significant NW-SE striking brittle faulting that reactivates part of the NW-SE striking ductile structures in the flexure <span class="hlt">zone</span>, but also extends along strike toward the NW and toward the SE. Brittle reactivation of ductile structures along the central segment of the Ranotsara <span class="hlt">Zone</span>, confirmed by apatite-fission track results, may have led to the formation of a shallow Neogene basin underlying the Ranotsara plain. The present-day drainage pattern suggests on-going normal fault activity along the central segment. The Ranotsara <span class="hlt">Zone</span> is not a megascale intracrustal strike-slip shear <span class="hlt">zone</span> that crosscuts the entire basement of <span class="hlt">southern</span> Madagascar. It can therefore not be used as a piercing point in Gondwana</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016QSRv..148..115R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016QSRv..148..115R"><span>Inferring LGM sedimentary and climatic changes in the <span class="hlt">southern</span> Eastern <span class="hlt">Alps</span> foreland through the analysis of a 14C ages database (Brenta megafan, Italy)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rossato, Sandro; Mozzi, Paolo</p> <p>2016-09-01</p> <p>The analysis of a database of radiocarbon ages is proposed as a tool for investigating major glaciofluvial systems of the Last Glacial Maximum (LGM) in the Alpine foreland, and their relations with glacier dynamics and climatic fluctuations. Our research concerns the Brenta megafan (NE Italy), where 110 radiocarbon dates integrate a robust regional stratigraphic and palaeoclimatic framework. Age-depth models allowed us to calculate sedimentation rates, while the time distribution of peat layers, which recurrently formed in this region during the LGM, were estimated through meta-analysis. The reliability of statistical results was carefully evaluated using Pearson and Spearman coefficients. Sedimentation rates in the Brenta megafan markedly fluctuated during LGM: ≈1.8 m/ka between 40 and 26.7 ka cal BP; ≈3 m/ka between 26.7 and 23.8 ka cal BP and ≈1.4 m/ka from 23.8 to 17.5 ka cal BP, when the distributary system deactivated due to fan-head trenching. This is evidence that sediment input and routing in the glaciofluvial distributary system was particularly efficient during the central part of LGM, when glaciers were stable at their outermost position. Meta-analysis indicates an increase in peat formation in correspondence with global (Heinrich Event 3 and/or the Greenland Interstadial 5.1 and 4 for the 30.5, 29.6 and 28.8 ka cal BP peaks) and regional (23.5 ka cal BP) wet events. Other peaks at 22.2, 21.8, 20.2 and 19 ka cal BP correlate with fluctuations of south-eastern Alpine glaciers. Significant peat formation continued until ≈18 ka cal BP, when the last peak occurred. A marked decrease in peat formation is recorded concomitantly with the onset of Heinrich Event 2 (i.e. the 26 ka cal BP trough). The good correspondence of sedimentary events in the Brenta glaciofluvial system with the dynamics of glaciers and glaciofluvial and lacustrine systems in the <span class="hlt">southern</span> Eastern <span class="hlt">Alps</span> suggests a common climatic forcing on the whole region during the LGM. Peat layer</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26869727','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26869727"><span>Lichenized and lichenicolous fungi from the Albanian <span class="hlt">Alps</span> (Kosovo, Montenegro).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Strasser, Eva A; Hafellner, Josef; Stešević, Danijela; Geci, Fehmi; Mayrhofer, Helmut</p> <p>2015-11-01</p> <p>396 taxa (381 species) of lichenized and 45 species of lichenicolous fungi from the upper montane, subalpine and alpine belts of the Albanian <span class="hlt">Alps</span> (= Prokletije Mountain Range, Bjeshkët e Nemuna) are presented. 92 lichenized and 26 lichenicolous fungi are new to Montenegro, 165 lichenized and 24 lichenicolous fungi are new to Kosovo, and 25 lichenized fungi (23 species) are new for the Balkan Peninsula.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JAESc..35..391S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JAESc..35..391S"><span>The continuation of the Kazerun fault system across the Sanandaj-Sirjan <span class="hlt">zone</span> (Iran)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Safaei, Homayon</p> <p>2009-08-01</p> <p>The Kazerun (or Kazerun-Qatar) fault system is a north-trending dextral strike-slip fault <span class="hlt">zone</span> in the Zagros mountain belt of Iran. It probably originated as a structure in the Panafrican basement. This fault system played an important role in the sedimentation and deformation of the Phanerozoic cover sequence and is still seismically active. No previous studies have reported the continuation of this important and ancient fault system northward across the Sanandaj-Sirjan <span class="hlt">zone</span>. The Isfahan fault system is a north-trending dextral strike-slip fault across the Sanandaj-Sirjan <span class="hlt">zone</span> that passes west of Isfahan city and is here recognized for the first time. This important fault system is about 220 km long and is seismically active in the basement as well as the sedimentary cover sequence. This fault system terminates to the south near the Main Zagros Thrust and to the north at the <span class="hlt">southern</span> boundary of the Urumieh-Dokhtar <span class="hlt">zone</span>. The Isfahan fault system is the boundary between the northern and <span class="hlt">southern</span> parts of Sanandaj-Sirjan <span class="hlt">zone</span>, which have fundamentally different stratigraphy, petrology, geomorphology, and geodynamic histories. Similarities in the orientations, kinematics, and geologic histories of the Isfahan and Kazerun faults and the way they affect the magnetic basement suggest that they are related. In fact, the Isfahan fault is a continuation of the Kazerun fault across the Sanandaj-Sirjan <span class="hlt">zone</span> that has been offset by about 50 km of dextral strike-slip displacement along the Main Zagros Thrust.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21814203','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21814203"><span><span class="hlt">Southern</span> Ocean dust-climate coupling over the past four million years.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martínez-Garcia, Alfredo; Rosell-Melé, Antoni; Jaccard, Samuel L; Geibert, Walter; Sigman, Daniel M; Haug, Gerald H</p> <p>2011-08-03</p> <p>Dust has the potential to modify global climate by influencing the radiative balance of the atmosphere and by supplying iron and other essential limiting micronutrients to the ocean. Indeed, dust supply to the <span class="hlt">Southern</span> Ocean increases during ice ages, and 'iron fertilization' of the subantarctic <span class="hlt">zone</span> may have contributed up to 40 parts per million by volume (p.p.m.v.) of the decrease (80-100 p.p.m.v.) in atmospheric carbon dioxide observed during late Pleistocene glacial cycles. So far, however, the magnitude of <span class="hlt">Southern</span> Ocean dust deposition in earlier times and its role in the development and evolution of Pleistocene glacial cycles have remained unclear. Here we report a high-resolution record of dust and iron supply to the <span class="hlt">Southern</span> Ocean over the past four million years, derived from the analysis of marine sediments from ODP Site 1090, located in the Atlantic sector of the subantarctic <span class="hlt">zone</span>. The close correspondence of our dust and iron deposition records with Antarctic ice core reconstructions of dust flux covering the past 800,000 years (refs 8, 9) indicates that both of these archives record large-scale deposition changes that should apply to most of the <span class="hlt">Southern</span> Ocean, validating previous interpretations of the ice core data. The extension of the record beyond the interval covered by the Antarctic ice cores reveals that, in contrast to the relatively gradual intensification of glacial cycles over the past three million years, <span class="hlt">Southern</span> Ocean dust and iron flux rose sharply at the Mid-Pleistocene climatic transition around 1.25 million years ago. This finding complements previous observations over late Pleistocene glacial cycles, providing new evidence of a tight connection between high dust input to the <span class="hlt">Southern</span> Ocean and the emergence of the deep glaciations that characterize the past one million years of Earth history.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032861','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032861"><span>Seismotectonic implications of sand blows in the <span class="hlt">southern</span> Mississippi Embayment</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cox, R.T.; Hill, A.A.; Larsen, D.; Holzer, T.; Forman, S.L.; Noce, T.; Gardner, C.; Morat, J.</p> <p>2007-01-01</p> <p>We explore seismically-induced sand blows from the <span class="hlt">southern</span> Mississippi Embayment and their implications in resolving the question of near or distal epicentral source region. This was accomplished using aerial photography, field excavations, and cone penetration tests. Our analysis shows that three sand blow fields exhibit a distinct chronology of strong ground motion for the <span class="hlt">southern</span> embayment: (1) The Ashley County, Arkansas sand blow field, near the Arkansas/Louisiana state border, experienced four Holocene sand venting episodes; (2) to the north, the Desha County field experienced at least three episodes of liquefaction; and (3) the Lincoln-Jefferson Counties field experienced at least one episode. Cone penetration tests (CPT) conducted in and between the sand blow fields suggest that the fields may not be distal liquefaction associated with New Madrid seismic <span class="hlt">zone</span> earthquakes but rather are likely associated with strong earthquakes on local faults. This conclusion is consistent with the differences in timing of the <span class="hlt">southern</span> embayment sand venting episodes and those in the New Madrid seismic <span class="hlt">zone</span>. These results suggest that active tectonism and strong seismicity in intraplate North America may not be localized at isolated weak spots, but rather widespread on fault systems that are favorably oriented for slip in the contemporary stress field. ?? 2006 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.2713D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.2713D"><span>The Influence of The Geological and Geomorphological Settings On The Shallow Landslides Triggered During The 19th June, 1996 Heavy Rainfalls In <span class="hlt">Southern</span> Apuan <span class="hlt">Alps</span> (italy)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>D'Amato Avanzi, G.; Giannecchini, R.; Puccinelli, A.</p> <p></p> <p>On June the 19th, 1996 many disastrous shallow landslides (nearly 700) occurred in the <span class="hlt">southern</span> Apuan <span class="hlt">Alps</span> (Tuscany, Italy) as a consequence of an exceptionally heavy rainstorm (474 mm/12 hours). Here, the results of the studies on the landslides oc- curred in the most severely damaged basins (Cardoso, Mulina and Turrite di Galli- cano torrents) are summarized. The most significant parameters of the landslides were analysed, to identify the factors which most influenced their activation. Moreover, the total amount of mobilized material was estimated. The most common type of landslide movement was complex, from very to extremely rapid, debris slide-debris flow, with a high length to breadth ratio. Most of them were probably first time landslides; ca. 90% of them involved the colluvium cover of slopes. The studies in the landslide sites also highlighted many geomorphically and geologically recurrent factors, summarized be- low. 85% of landslides occurred on rather steep slopes (30-45), in first-order basins and hollows. In these situations, the concave geometry of the colluvium/bedrock inter- face favoured the convergence of groundwater flow and the build-up of pore pressure, leading to failure. In landslide sites, a concave shape of the surface and a rectilinear profile of the slope were a frequent feature. The bedrock of landslide sites was gener- ally made up of impervious or scarcely pervious rocks. In many cases, the presence of a main discontinuity in the bedrock (bedding or schistosity) dipping downslope was significant. The total surface involved in landslides of June 19, 1996 was estimated at ca. 1 Km2, 2.2% of the basins surface. More than 80% of this surface was covered by chestnut trees: thus, ca. 7,000 chestnut trees were uprooted by the landslides and fell into the riverbeds. This significantly contributed to the extensive destruction and blockage of bridge spans. The total volume of mobilized material was estimated at ca. 1,350,000 m3: most of this</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>