Sample records for zone trapped waves

  1. Quantitative analysis of seismic fault zone waves in the rupture zone of the 1992 Landers, California, earthquake: Evidence for a shallow trapping structure

    USGS Publications Warehouse

    Peng, Z.; Ben-Zion, Y.; Michael, A.J.; Zhu, L.

    2003-01-01

    We analyse quantitatively a waveform data set of 238 earthquakes recorded by a dense seismic array across and along the rupture zone of the 1992 Landers earthquake. A grid-search method with station delay corrections is used to locate events that do not have catalogue locations. The quality of fault zone trapped waves generated by each event is determined from the ratios of seismic energy in time windows corresponding to trapped waves and direct S waves at stations close to and off the fault zone. Approximately 70 per cent of the events with S-P times of less than 2 s, including many clearly off the fault, produce considerable trapped wave energy. This distribution is in marked contrast with previous claims that trapped waves are generated only by sources close to or inside the Landers rupture zone. The time difference between the S arrival and trapped waves group does not grow systematically with increasing hypocentral distance and depth. The dispersion measured from the trapped waves is weak. These results imply that the seismic trapping structure at the Landers rupture zone is shallow and does not extend continuously along-strike by more than a few kilometres. Synthetic waveform modelling indicates that the fault zone waveguide has depth of approximately 2-4 km, a width of approximately 200 m, an S-wave velocity reduction relative to the host rock of approximately 30-40 per cent and an S-wave attenuation coefficient of approximately 20-30. The fault zone waveguide north of the array appears to be shallower and weaker than that south of the array. The waveform modelling also indicates that the seismic trapping structure below the array is centred approximately 100 m east of the surface break.

  2. Seismic fault zone trapped noise

    NASA Astrophysics Data System (ADS)

    Hillers, G.; Campillo, M.; Ben-Zion, Y.; Roux, P.

    2014-07-01

    Systematic velocity contrasts across and within fault zones can lead to head and trapped waves that provide direct information on structural units that are important for many aspects of earthquake and fault mechanics. Here we construct trapped waves from the scattered seismic wavefield recorded by a fault zone array. The frequency-dependent interaction between the ambient wavefield and the fault zone environment is studied using properties of the noise correlation field. A critical frequency fc ≈ 0.5 Hz defines a threshold above which the in-fault scattered wavefield has increased isotropy and coherency compared to the ambient noise. The increased randomization of in-fault propagation directions produces a wavefield that is trapped in a waveguide/cavity-like structure associated with the low-velocity damage zone. Dense spatial sampling allows the resolution of a near-field focal spot, which emerges from the superposition of a collapsing, time reversed wavefront. The shape of the focal spot depends on local medium properties, and a focal spot-based fault normal distribution of wave speeds indicates a ˜50% velocity reduction consistent with estimates from a far-field travel time inversion. The arrival time pattern of a synthetic correlation field can be tuned to match properties of an observed pattern, providing a noise-based imaging tool that can complement analyses of trapped ballistic waves. The results can have wide applicability for investigating the internal properties of fault damage zones, because mechanisms controlling the emergence of trapped noise have less limitations compared to trapped ballistic waves.

  3. Linear excitation of the trapped waves by an incident wave

    NASA Astrophysics Data System (ADS)

    Postacioglu, Nazmi; Sinan Özeren, M.

    2016-04-01

    The excitation of the trapped waves by coastal events such as landslides has been extensively studied. The events in the open sea have in general larger magnitude. However the incident waves produced by these events in the open sea can only excite the the trapped waves through no linearity if the isobaths are straight lines that are in parallel with the coastline. We will show that the imperfections of the coastline can couple the incident and trapped waves using only linear processes. The Coriolis force is neglected in this work . Accordingly the trapped waves are consequence of uneven bathimetry. In the bathimetry we consider, the sea is divided into zones of constant depth and the boundaries between the zones are a family of hyperbolas. The boundary conditions between the zones will lead to an integral equation for the source distribution on the boundaries. The solution will contain both radiating and trapped waves. The trapped waves pose a serious threat for the coastal communities as they can travel long distances along the coastline without losing their energy through geometrical spreading.

  4. Quantitative analysis of seismic trapped waves in the rupture zone of the Landers, 1992, California earthquake: Evidence for a shallow trapping structure

    NASA Astrophysics Data System (ADS)

    Peng, Z.; Ben-Zion, Y.; Michael, A. J.; Zhu, L.

    2002-12-01

    Waveform modeling of seismic fault zone (FZ) trapped waves has been claimed to provide a high resolution imaging of FZ structure at seismogenic depth. We analyze quantitatively a waveform data set generated by 238 Landers aftershocks recorded by a portable seismic array (Lee, 1999). The array consists of 33 three-component L-22 seismometers, 22 of which on a line crossing the surface rupture zone of the mainshock. A subset of 93 aftershocks were also recorded by the Southern California Seismic Network, while the other events were recorded only by the FZ array. We locate the latter subset of events with a "grid-search relocation method" using accurately picked P and S arrival times, a half-space velocity model, and back-azimuth adjustment to correct the effect of low velocity FZ material on phase arrivals. Next we determine the quality of FZ trapped wave generation from the ratio of trapped waves to S-wave energy for stations relatively close to and far from the FZ. Energy ratios exceeding 4, between 2 and 4, and less than 2, are assigned quality A, B, and C of trapped wave generation. We find that about 70% of nearby events with S-P time less than 2 sec, including many clearly off the fault, generate FZ trapped waves with quality A or B. This distribution is in marked contrast with previous claims that trapped waves at Landers are generated only by sources close to or inside the fault zone (Li et al., 1994, 2000). The existence of trapped waves due to sources outside the Landers rupture zone indicates that the generating structure is shallow, as demonstrated in recent 3D calculations of wave propagation in irregular FZ structures (Fohrmann et al., 2002). The time difference between the S arrivals and trapped wave group does not grow systematically with increasing source-receiver distance along the fault, in agreement with the above conclusion. The dispersion of trapped waves at Landers is rather weak, again suggesting a short propagation distance inside the low

  5. A shallow fault-zone structure illuminated by trapped waves in the Karadere-Duzce branch of the North Anatolian Fault, western Turkey

    USGS Publications Warehouse

    Ben-Zion, Y.; Peng, Z.; Okaya, D.; Seeber, L.; Armbruster, J.G.; Ozer, N.; Michael, A.J.; Baris, S.; Aktar, M.

    2003-01-01

    We discuss the subsurface structure of the Karadere-Duzce branch of the North Anatolian Fault based on analysis of a large seismic data set recorded by a local PASSCAL network in the 6 months following the Mw = 7.4 1999 Izmit earthquake. Seismograms observed at stations located in the immediate vicinity of the rupture zone show motion amplification and long-period oscillations in both P- and S-wave trains that do not exist in nearby off-fault stations. Examination of thousands of waveforms reveals that these characteristics are commonly generated by events that are well outside the fault zone. The anomalous features in fault-zone seismograms produced by events not necessarily in the fault may be referred to generally as fault-zone-related site effects. The oscillatory shear wave trains after the direct S arrival in these seismograms are analysed as trapped waves propagating in a low-velocity fault-zone layer. The time difference between the S arrival and trapped waves group does not grow systematically with increasing source-receiver separation along the fault. These observations imply that the trapping of seismic energy in the Karadere-Duzce rupture zone is generated by a shallow fault-zone layer. Traveltime analysis and synthetic waveform modelling indicate that the depth of the trapping structure is approximately 3-4 km. The synthetic waveform modelling indicates further that the shallow trapping structure has effective waveguide properties consisting of thickness of the order of 100 m, a velocity decrease relative to the surrounding rock of approximately 50 per cent and an S-wave quality factor of 10-15. The results are supported by large 2-D and 3-D parameter space studies and are compatible with recent analyses of trapped waves in a number of other faults and rupture zones. The inferred shallow trapping structure is likely to be a common structural element of fault zones and may correspond to the top part of a flower-type structure. The motion amplification

  6. The effect of gradational velocities and anisotropy on fault-zone trapped waves

    NASA Astrophysics Data System (ADS)

    Gulley, A. K.; Eccles, J. D.; Kaipio, J. P.; Malin, P. E.

    2017-08-01

    Synthetic fault-zone trapped wave (FZTW) dispersion curves and amplitude responses for FL (Love) and FR (Rayleigh) type phases are analysed in transversely isotropic 1-D elastic models. We explore the effects of velocity gradients, anisotropy, source location and mechanism. These experiments suggest: (i) A smooth exponentially decaying velocity model produces a significantly different dispersion curve to that of a three-layer model, with the main difference being that Airy phases are not produced. (ii) The FZTW dispersion and amplitude information of a waveguide with transverse-isotropy depends mostly on the Shear wave velocities in the direction parallel with the fault, particularly if the fault zone to country-rock velocity contrast is small. In this low velocity contrast situation, fully isotropic approximations to a transversely isotropic velocity model can be made. (iii) Fault-aligned fractures and/or bedding in the fault zone that cause transverse-isotropy enhance the amplitude and wave-train length of the FR type FZTW. (iv) Moving the source and/or receiver away from the fault zone removes the higher frequencies first, similar to attenuation. (v) In most physically realistic cases, the radial component of the FR type FZTW is significantly smaller in amplitude than the transverse.

  7. Subsurface fault damage zone of the 2014 Mw 6.0 South Napa, California, earthquake viewed from fault‐zone trapped waves

    USGS Publications Warehouse

    Li, Yong-Gang; Catchings, Rufus D.; Goldman, Mark R.

    2016-01-01

    The aftershocks of the 24 August 2014 Mw 6.0 South Napa earthquake generated prominent fault‐zone trapped waves (FZTWs) that were recorded on two 1.9‐km‐long seismic arrays deployed across the northern projection (array 1, A1) and the southern part (A2) of the surface rupture of the West Napa fault zone (WNFZ). We also observed FZTWs on an array (A3) deployed across the intersection of the Franklin and Southampton faults, which appear to be the southward continuations of the WNFZ. A1, A2, and A3 consisted of 20, 20, and 10 L28 (4.5 Hz) three‐component seismographs. We analyzed waveforms of FZTWs from 55 aftershocks in both time and frequency to characterize the fault damage zone associated with this Mw 6.0 earthquake. Post‐S coda durations of FZTWs increase with epicentral distances and focal depths from the recording arrays, suggesting a low‐velocity waveguide along the WNFZ to depths in excess of 5–7 km. Locations of the aftershocks showing FZTWs, combined with 3D finite‐difference simulations, suggest the subsurface rupture zone having an S‐wave speed reduction of ∼40%–50% between A1 and A2, coincident with the ∼14‐km‐long mapped surface rupture zone and at least an ∼500‐m‐wide deformation zone. The low‐velocity waveguide along the WNFZ extends further southward to at least A3, but with a more moderate‐velocity reduction of 30%–35% at ray depth. This last FZTW observation suggests continuity between the WNFZ and Franklin fault. The waveguide effect may have localized and amplified ground shaking along the WNFZ and the faults farther to the south (see a companion paper by Catchings et al., 2016).

  8. A mechanism study of sound wave-trapping barriers.

    PubMed

    Yang, Cheng; Pan, Jie; Cheng, Li

    2013-09-01

    The performance of a sound barrier is usually degraded if a large reflecting surface is placed on the source side. A wave-trapping barrier (WTB), with its inner surface covered by wedge-shaped structures, has been proposed to confine waves within the area between the barrier and the reflecting surface, and thus improve the performance. In this paper, the deterioration in performance of a conventional sound barrier due to the reflecting surface is first explained in terms of the resonance effect of the trapped modes. At each resonance frequency, a strong and mode-controlled sound field is generated by the noise source both within and in the vicinity outside the region bounded by the sound barrier and the reflecting surface. It is found that the peak sound pressures in the barrier's shadow zone, which correspond to the minimum values in the barrier's insertion loss, are largely determined by the resonance frequencies and by the shapes and losses of the trapped modes. These peak pressures usually result in high sound intensity component impinging normal to the barrier surface near the top. The WTB can alter the sound wave diffraction at the top of the barrier if the wavelengths of the sound wave are comparable or smaller than the dimensions of the wedge. In this case, the modified barrier profile is capable of re-organizing the pressure distribution within the bounded domain and altering the acoustic properties near the top of the sound barrier.

  9. Trapped waves on the mid-latitude β-plane

    NASA Astrophysics Data System (ADS)

    Paldor, Nathan; Sigalov, Andrey

    2008-08-01

    A new type of approximate solutions of the Linearized Shallow Water Equations (LSWE) on the mid-latitude β-plane, zonally propagating trapped waves with Airy-like latitude-dependent amplitude, is constructed in this work, for sufficiently small radius of deformation. In contrast to harmonic Poincare and Rossby waves, these newly found trapped waves vanish fast in the positive half-axis, and their zonal phase speed is larger than that of the corresponding harmonic waves for sufficiently large meridional domains. Our analysis implies that due to the smaller radius of deformation in the ocean compared with that in the atmosphere, the trapped waves are relevant to observations in the ocean whereas harmonic waves typify atmospheric observations. The increase in the zonal phase speed of trapped Rossby waves compared with that of harmonic ones is consistent with recent observations that showed that Sea Surface Height features propagated westwards faster than the phase speed of harmonic Rossby waves.

  10. Island-Trapped Waves, Internal Waves, and Island Circulation

    DTIC Science & Technology

    2014-09-30

    from the government of Palau to allow us to deliver some water and food to the officers. Governor Patris of Hatohobei State and the Coral Reef ...Island-trapped waves , internal waves , and island circulation T. M. Shaun Johnston Scripps Institution of Oceanography University of California...large islands (Godfrey, 1989; Firing et al., 1999); • Westward propagating eddies and/or Rossby waves encounter large islands and produce boundary

  11. Fault-zone guided waves from explosions in the San Andreas fault at Parkfield and Cienega Valley, California

    USGS Publications Warehouse

    Li, Y.-G.; Ellsworth, W.L.; Thurber, C.H.; Malin, P.E.; Aki, K.

    1997-01-01

    Fault-zone guided waves were successfully excited by near-surface explosions in the San Andreas fault zone both at Parkfield and Cienega Valley, central California. The guided waves were observed on linear, three-component seismic arrays deployed across the fault trace. These waves were not excited by explosions located outside the fault zone. The amplitude spectra of guided waves show a maximum peak at 2 Hz at Parkfield and 3 Hz at Cienega Valley. The guided wave amplitude decays sharply with observation distance from the fault trace. The explosion-excited fault-zone guided waves are similar to those generated by earthquakes at Parkfield but have lower frequencies and travel more slowly. These observations suggest that the fault-zone wave guide has lower seismic velocities as it approaches the surface at Parkfield. We have modeled the waveforms as S waves trapped in a low-velocity wave guide sandwiched between high-velocity wall rocks, resulting in Love-type fault-zone guided waves. While the results are nonunique, the Parkfield data are adequately fit by a shallow wave guide 170 m wide with an S velocity 0.85 km/sec and an apparent Q ??? 30 to 40. At Cienega Valley, the fault-zone wave guide appears to be about 120 m wide with an S velocity 0.7 km/sec and a Q ??? 30.

  12. Wave trapping by dual porous barriers near a wall in the presence of bottom undulation

    NASA Astrophysics Data System (ADS)

    Kaligatla, R. B.; Manisha; Sahoo, T.

    2017-09-01

    Trapping of oblique surface gravity waves by dual porous barriers near a wall is studied in the presence of step type varying bottom bed that is connected on both sides by water of uniform depths. The porous barriers are assumed to be fixed at a certain distance in front of a vertical rigid wall. Using linear water wave theory and Darcy's law for flow past porous structure, the physical problem is converted into a boundary value problem. Using eigenfunction expansion in the uniform bottom bed region and modified mild-slope equation in the varying bottom bed region, the mathematical problem is handled for solution. Moreover, certain jump conditions are used to account for mass conservation at slope discontinuities in the bottom bed profile. To understand the effect of dual porous barriers in creating tranquility zone and minimum load on the sea wall, reflection coefficient, wave forces acting on the barrier and the wall, and surface wave elevation are computed and analyzed for different values of depth ratio, porous-effect parameter, incident wave angle, gap between the barriers and wall and slope length of undulated bottom. The study reveals that with moderate porosity and suitable gap between barriers and sea wall, using dual barriers an effective wave trapping system can be developed which will exert less wave force on the barriers and the rigid wall. The proposed wave trapping system is likely to be of immense help for protecting various facilities/ infrastructures in coastal environment.

  13. Oblique wave trapping by vertical permeable membrane barriers located near a wall

    NASA Astrophysics Data System (ADS)

    Koley, Santanu; Sahoo, Trilochan

    2017-12-01

    The effectiveness of a vertical partial flexible porous membrane wave barrier located near a rigid vertical impermeable seawall for trapping obliquely incident surface gravity waves are analyzed in water of uniform depth under the assumption of linear water wave theory and small amplitude membrane barrier response. From the general formulation of the submerged membrane barrier, results for bottom-standing and surface-piercing barriers are computed and analyzed in special cases. Using the eigenfunction expansion method, the boundary-value problems are converted into series relations and then the required unknowns are obtained using the least squares approximation method. Various physical quantities of interests like reflection coefficient, wave energy dissipation, wave forces acting on the membrane barrier and the seawall are computed and analyzed for different values of the wave and structural parameters. The study will be useful in the design of the membrane wave barrier for the creation of tranquility zone in the lee side of the barrier to protect the seawall.

  14. Excitation and trapping of lower hybrid waves in striations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borisov, N.; Institute of Terrestrial Magnetism, Ionosphere and Radio Waves Propagation; Honary, F.

    2008-12-15

    The theory of lower hybrid (LH) waves trapped in striations in warm ionospheric plasma in the three-dimensional case is presented. A specific mechanism of trapping associated with the linear transformation of waves is discussed. It is shown analytically that such trapping can take place in elongated plasma depletions with the frequencies below and above the lower hybrid resonance frequency of the ambient plasma. The theory is applied mainly to striations generated artificially in ionospheric modification experiments and partly to natural plasma depletions in the auroral upper ionosphere. Typical amplitudes and transverse scales of the trapped LH waves excited in ionosphericmore » modification experiments are estimated. It is shown that such waves possibly can be detected by backscattering at oblique sounding in very high frequency (VHF) and ultra high frequency (UHF) ranges.« less

  15. Trapped electron losses by interactions with coherent VLF waves

    NASA Astrophysics Data System (ADS)

    Walt, M.; Inan, U. S.; Voss, H. D.

    1996-07-01

    VLF whistler waves from lightning enter the magnetosphere and cause the precipitation of energetic trapped electrons by pitch angle scattering. These events, known as Lightning-induced Electron Precipitation (LEP) have been detected by satellite and rocket instruments and by perturbations of VLF waves traveling in the earth-ionosphere waveguide. Detailed comparison of precipitating electron energy spectra and time dependence are in general agreement with calculations of trapped electron interactions with ducted whistler waves. In particular the temporal structure of the precipitation and the dynamic energy spectra of the electrons confirm this interpretation of the phenomena. There are discrepancies between observed and measured electron flux intensities and pitch angle distributions, but these quantities are sensitive to unknown wave intensities and trapped particle fluxes near the loss cone angle. The overall effect of lightning generated VLF waves on the lifetime of trapped electrons is still uncertain. The flux of electrons deflected into the bounce loss cone by a discrete whistler wave has been measured in a few cases. However, the area of the precipitation region is not known, and thus the total number of electrons lost in an LEP event can only be estimated. While the LEP events are dramatic, more important effects on trapped electrons may arise from the small but numerous deflections which increase the pitch angle diffusion rate of the electron population.

  16. Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates.

    PubMed

    Tian, Zhenhua; Yu, Lingyu

    2017-01-05

    The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region near the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Moreover, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.

  17. Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Zhenhua; Yu, Lingyu

    The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region nearmore » the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Furthermore, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.« less

  18. Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates

    DOE PAGES

    Tian, Zhenhua; Yu, Lingyu

    2017-01-05

    The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region nearmore » the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Furthermore, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.« less

  19. Ecological traps in shallow coastal waters-Potential effect of heat-waves in tropical and temperate organisms.

    PubMed

    Vinagre, Catarina; Mendonça, Vanessa; Cereja, Rui; Abreu-Afonso, Francisca; Dias, Marta; Mizrahi, Damián; Flores, Augusto A V

    2018-01-01

    Mortality of fish has been reported in tide pools during warm days. That means that tide pools are potential ecological traps for coastal organisms, which happen when environmental changes cause maladaptive habitat selection. Heat-waves are predicted to increase in intensity, duration and frequency, making it relevant to investigate the role of tide pools as traps for coastal organisms. However, heat waves can also lead to acclimatization. If organisms undergo acclimatization prior to being trapped in tide pools, their survival chances may increase. Common tide pool species (46 species in total) were collected at a tropical and a temperate area and their upper thermal limits estimated. They were maintained for 10 days at their mean summer sea surface temperature +3°C, mimicking a heat-wave. Their upper thermal limits were estimated again, after this acclimation period, to calculate each species' acclimation response. The upper thermal limits of the organisms were compared to the temperatures attained by tide pool waters to investigate if 1) tide pools could be considered ecological traps and 2) if the increase in upper thermal limits elicited by the acclimation period could make the organisms less vulnerable to this threat. Tropical tide pools were found to be ecological traps for an important number of common coastal species, given that they can attain temperatures higher than the upper thermal limits of most of those species. Tide pools are not ecological traps in temperate zones. Tropical species have higher thermal limits than temperate species, but lower acclimation response, that does not allow them to survive the maximum habitat temperature of tropical tide pools. This way, tropical coastal organisms seem to be, not only more vulnerable to climate warming per se, but also to an increase in the ecological trap effect of tide pools.

  20. Ecological traps in shallow coastal waters—Potential effect of heat-waves in tropical and temperate organisms

    PubMed Central

    Mendonça, Vanessa; Cereja, Rui; Abreu-Afonso, Francisca; Dias, Marta; Mizrahi, Damián; Flores, Augusto A. V.

    2018-01-01

    Mortality of fish has been reported in tide pools during warm days. That means that tide pools are potential ecological traps for coastal organisms, which happen when environmental changes cause maladaptive habitat selection. Heat-waves are predicted to increase in intensity, duration and frequency, making it relevant to investigate the role of tide pools as traps for coastal organisms. However, heat waves can also lead to acclimatization. If organisms undergo acclimatization prior to being trapped in tide pools, their survival chances may increase. Common tide pool species (46 species in total) were collected at a tropical and a temperate area and their upper thermal limits estimated. They were maintained for 10 days at their mean summer sea surface temperature +3°C, mimicking a heat-wave. Their upper thermal limits were estimated again, after this acclimation period, to calculate each species’ acclimation response. The upper thermal limits of the organisms were compared to the temperatures attained by tide pool waters to investigate if 1) tide pools could be considered ecological traps and 2) if the increase in upper thermal limits elicited by the acclimation period could make the organisms less vulnerable to this threat. Tropical tide pools were found to be ecological traps for an important number of common coastal species, given that they can attain temperatures higher than the upper thermal limits of most of those species. Tide pools are not ecological traps in temperate zones. Tropical species have higher thermal limits than temperate species, but lower acclimation response, that does not allow them to survive the maximum habitat temperature of tropical tide pools. This way, tropical coastal organisms seem to be, not only more vulnerable to climate warming per se, but also to an increase in the ecological trap effect of tide pools. PMID:29420657

  1. Trapped mountain wave excitations over the Kathmandu valley, Nepal

    NASA Astrophysics Data System (ADS)

    Regmi, Ram P.; Maharjan, Sangeeta

    2015-11-01

    Mid-wintertime spatial and temporal distributions of mountain wave excitation over the Kathmandu valley has been numerically simulated using Weather Research and Forecasting (WRF) modeling system. The study shows that low-level trapped mountain waves may remain very active during the night and early morning in the sky over the southern rim of the surrounding mountains, particularly, over the lee of Mt. Fulchoki. Calculations suggest that mountain wave activities are at minimum level during afternoon. The low-level trapped mountain waves in the sky over southern gateway of Tribhuvan International Airport (TIA) may pose risk for landings and takeoffs of light aircrafts. Detailed numerical and observational studies would be very important to reduce risk of air accidents and discomfort in and around the Kathmandu valley.

  2. Scanning dimensional measurement using laser-trapped microsphere with optical standing-wave scale

    NASA Astrophysics Data System (ADS)

    Michihata, Masaki; Ueda, Shin-ichi; Takahashi, Satoru; Takamasu, Kiyoshi; Takaya, Yasuhiro

    2017-06-01

    We propose a laser trapping-based scanning dimensional measurement method for free-form surfaces. We previously developed a laser trapping-based microprobe for three-dimensional coordinate metrology. This probe performs two types of measurements: a tactile coordinate and a scanning measurement in the same coordinate system. The proposed scanning measurement exploits optical interference. A standing-wave field is generated between the laser-trapped microsphere and the measured surface because of the interference from the retroreflected light. The standing-wave field produces an effective length scale, and the trapped microsphere acts as a sensor to read this scale. A horizontal scan of the trapped microsphere produces a phase shift of the standing wave according to the surface topography. This shift can be measured from the change in the microsphere position. The dynamics of the trapped microsphere within the standing-wave field was estimated using a harmonic model, from which the measured surface can be reconstructed. A spherical lens was measured experimentally, yielding a radius of curvature of 2.59 mm, in agreement with the nominal specification (2.60 mm). The difference between the measured points and a spherical fitted curve was 96 nm, which demonstrates the scanning function of the laser trapping-based microprobe for free-form surfaces.

  3. Trapping force and optical lifting under focused evanescent wave illumination.

    PubMed

    Ganic, Djenan; Gan, Xiaosong; Gu, Min

    2004-11-01

    A physical model is presented to understand and calculate trapping force exerted on a dielectric micro-particle under focused evanescent wave illumination. This model is based on our recent vectorial diffraction model by a high numerical aperture objective operating under the total internal condition. As a result, trapping force in a focused evanescent spot generated by both plane wave (TEM00) and doughnut beam (TEM*01) illumination is calculated, showing an agreement with the measured results. It is also revealed by this model that unlike optical trapping in the far-field region, optical axial trapping force in an evanescent focal spot increases linearly with the size of a trapped particle. This prediction shows that it is possible to overcome the force of gravity to lift a polystyrene particle of up to 800 nm in radius with a laser beam of power 10 microW.

  4. Ion gyroradius effects on particle trapping in kinetic Alfven waves along auroral field lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiano, P. A.; Johnson, J. R.; Chaston, C. C.

    In this study, a 2-D self-consistent hybrid gyrofluid-kinetic electron model is used to investigate Alfven wave propagation along dipolar magnetic field lines for a range of ion to electron temperature ratios. The focus of the investigation is on understanding the role of these effects on electron trapping in kinetic Alfven waves sourced in the plasma sheet and the role of this trapping in contributing to the overall electron energization at the ionosphere. This work also builds on our previous effort by considering a similar system in the limit of fixed initial parallel current, rather than fixed initial perpendicular electric field.more » It is found that the effects of particle trapping are strongest in the cold ion limit and the kinetic Alfven wave is able to carry trapped electrons a large distance along the field line yielding a relatively large net energization of the trapped electron population as the phase speed of the wave is increased. However, as the ion temperature is increased, the ability of the kinetic Alfven wave to carry and energize trapped electrons is reduced by more significant wave energy dispersion perpendicular to the ambient magnetic field which reduces the amplitude of the wave. This reduction of wave amplitude in turn reduces both the parallel current and the extent of the high-energy tails evident in the energized electron populations at the ionospheric boundary (which may serve to explain the limited extent of the broadband electron energization seen in observations). Here, even in the cold ion limit, trapping effects in kinetic Alfven waves lead to only modest electron energization for the parameters considered (on the order of tens of eV) and the primary energization of electrons to keV levels coincides with the arrival of the wave at the ionospheric boundary.« less

  5. Ion gyroradius effects on particle trapping in kinetic Alfven waves along auroral field lines

    DOE PAGES

    Damiano, P. A.; Johnson, J. R.; Chaston, C. C.

    2016-11-10

    In this study, a 2-D self-consistent hybrid gyrofluid-kinetic electron model is used to investigate Alfven wave propagation along dipolar magnetic field lines for a range of ion to electron temperature ratios. The focus of the investigation is on understanding the role of these effects on electron trapping in kinetic Alfven waves sourced in the plasma sheet and the role of this trapping in contributing to the overall electron energization at the ionosphere. This work also builds on our previous effort by considering a similar system in the limit of fixed initial parallel current, rather than fixed initial perpendicular electric field.more » It is found that the effects of particle trapping are strongest in the cold ion limit and the kinetic Alfven wave is able to carry trapped electrons a large distance along the field line yielding a relatively large net energization of the trapped electron population as the phase speed of the wave is increased. However, as the ion temperature is increased, the ability of the kinetic Alfven wave to carry and energize trapped electrons is reduced by more significant wave energy dispersion perpendicular to the ambient magnetic field which reduces the amplitude of the wave. This reduction of wave amplitude in turn reduces both the parallel current and the extent of the high-energy tails evident in the energized electron populations at the ionospheric boundary (which may serve to explain the limited extent of the broadband electron energization seen in observations). Here, even in the cold ion limit, trapping effects in kinetic Alfven waves lead to only modest electron energization for the parameters considered (on the order of tens of eV) and the primary energization of electrons to keV levels coincides with the arrival of the wave at the ionospheric boundary.« less

  6. De-trapping Magnetic Mirror Confined Fast Electrons by Shear Alfvén Waves

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Gekelman, W. N.; Pribyl, P.; Papadopoulos, K.

    2013-12-01

    Highly energetic electrons produced naturally or artificially can be trapped in the Earth's radiation belts for months, posing a danger to valuable space satellites. Concepts that can lead to radiation belts mitigation have drawn a great deal of interest. We report a clear demonstration in a controlled lab experiment that a shear Alfvén wave can effectively de-trap energetic electrons confined by a magnetic mirror field. The experiment is performed in a quiescent afterglow plasma in the Large Plasma Device (LaPD) at UCLA. A hot electron ring, along with hard x-rays of energies of 100 keV ~ 3 MeV, is generated by 2nd harmonic electron cyclotron resonance heating and is trapped in a magnetic mirror field (Rmirror = 1.1 ~ 4, Bmin = 438 Gauss). A shear Alfvén wave (fAlfvén ~ 0.5 fci, BAlfvén / B0 ~ 0.1%), is launched with a rotating magnetic field antenna with arbitrary polarization. Irradiated by the Alfvén wave, the loss of electrons is modulated at fAlfvén. The periodic loss of electrons is found to be related to the spatial distortion of the hot electron ring, and continues even after the termination of the wave. The effect is found to be caused only by the right-hand (electron diamagnetic direction) circularly polarized component of the Alfvén wave. Hard x-ray tomography, constructed from more than 1000 chord projections at each axial location, shows electrons are lost in both the radial and axial direction. X-ray spectroscopy shows electrons over a broad range of energy de-trapped by the Alfvén wave, which suggests a non-resonant nature of the de-trapping process. The de-trapping process is found to be accompanied by electro-magnetic fluctuations in the frequency range of 1~5 fLH, which are also modulated at the frequency of the Alfvén wave. To exclude the possible role of whistler waves in this electron de-trapping process, whistler waves at these frequencies are launched with an antenna in absence of the Alfvén wave and no significant electron loss

  7. Short-crested waves in the surf zone

    NASA Astrophysics Data System (ADS)

    Wei, Zhangping; Dalrymple, Robert A.; Xu, Munan; Garnier, Roland; Derakhti, Morteza

    2017-05-01

    This study investigates short-crested waves in the surf zone by using the mesh-free Smoothed Particle Hydrodynamics model, GPUSPH. The short-crested waves are created by generating intersecting wave trains in a numerical wave basin with a beach. We first validate the numerical model for short-crested waves by comparison with large-scale laboratory measurements. Then short-crested wave breaking over a planar beach is studied comprehensively. We observe rip currents as discussed in Dalrymple (1975) and undertow created by synchronous intersecting waves. The wave breaking of the short-crested wavefield created by the nonlinear superposition of intersecting waves and wave-current interaction result in the formation of isolated breakers at the ends of breaking wave crests. Wave amplitude diffraction at these isolated breakers gives rise to an increase in the alongshore wave number in the inner surf zone. Moreover, 3-D vortices and multiple circulation cells with a rotation frequency much lower than the incident wave frequency are observed across the outer surf zone to the beach. Finally, we investigate vertical vorticity generation under short-crested wave breaking and find that breaking of short-crested waves generates vorticity as pointed out by Peregrine (1998). Vorticity generation is not only observed under short-crested waves with a limited number of wave components but also under directional wave spectra.

  8. Matter-wave dark solitons in boxlike traps

    NASA Astrophysics Data System (ADS)

    Sciacca, M.; Barenghi, C. F.; Parker, N. G.

    2017-01-01

    Motivated by the experimental development of quasihomogeneous Bose-Einstein condensates confined in boxlike traps, we study numerically the dynamics of dark solitons in such traps at zero temperature. We consider the cases where the side walls of the box potential rise either as a power law or a Gaussian. While the soliton propagates through the homogeneous interior of the box without dissipation, it typically dissipates energy during a reflection from a wall through the emission of sound waves, causing a slight increase in the soliton's speed. We characterize this energy loss as a function of the wall parameters. Moreover, over multiple oscillations and reflections in the boxlike trap, the energy loss and speed increase of the soliton can be significant, although the decay eventually becomes stabilized when the soliton equilibrates with the ambient sound field.

  9. Scattering of magnetic mirror trapped electrons by an Alfven wave

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Gekelman, W. N.; Pribyl, P.; Papadopoulos, K.; Karavaev, A. V.; Shao, X.; Sharma, A. S.

    2010-12-01

    Highly energetic particles from large solar flares or other events can be trapped in the Earth’s magnetic mirror field and pose a danger to intricate space satellites. Aiming for artificially de-trapping these particles, an experimental and theoretical study of the interactions of a shear Alfven wave with electrons trapped in a magnetic mirror was performed on the Large Plasma Device (LaPD) at UCLA, with critical parameter ratios matched in the lab plasma to those in space. The experiment was done in a quiescent afterglow plasma with ne≈5×1011cm-3, Te≈0.5eV, B0≈1000G, L=18m, and diameter=60cm. A magnetic mirror was established in LaPD (mirror ratio≈1.5, Lmirror≈3m). An electron population with large v⊥ (E⊥≈1keV) was introduced by microwave heating at upper-hybrid frequency with a 2.45GHz pulsed microwave source at up to 5kW. A shear Alfven wave with arbitrary polarization (fwave≈0.5fci , Bwave/B0≈0.5%) was launched by a Rotating Magnetic Field (RMF) antenna axially 2m away from the center of the mirror. It was observed that the Alfven wave effectively eliminated the trapped electrons. A diagnostic probe was developed for this experiment to measure electrons with large v⊥ in the background plasma. Plasma density and temperature perturbations from the Alfven wave were observed along with electron scattering. Computer simulations tracking single particle motion with wave field are ongoing. In these the Alfven wave’s effect on the electrons pitch angle distribution by a Monte-Carlo method is studied. Planned experiments include upgrading the microwave source for up to 100kW pulses to make electrons with higher transverse energy and longer mirror trapping time. This work is supported by The Office of Naval Research under a MURI award. Work was done at the Basic Plasma Science Facility which is supported by DOE and NSF.

  10. Wave energy trapping and localization in a plate with a delamination

    NASA Astrophysics Data System (ADS)

    Glushkov, Evgeny; Glushkova, Natalia; Golub, Mikhail V.; Moll, Jochen; Fritzen, Claus-Peter

    2012-12-01

    The research aims at an experimental approval of the trapping mode effect theoretically predicted for an elastic plate-like structure with a horizontal crack. The effect is featured by a sharp capture of incident wave energy at certain resonance frequencies with its localization between the crack and plate surfaces in the form of energy vortices yielding long-enduring standing waves. The trapping modes are eigensolutions of the related diffraction problem associated with nearly real complex points of its discrete frequency spectrum. To detect such resonance motion, a laser vibrometer based system has been employed for the acquisition and appropriate visualization of piezoelectrically actuated out-of-plane surface motion of a two-layer aluminum plate with an artificial strip-like delamination. The measurements at resonance and off-resonance frequencies have revealed a time-harmonic oscillation of good quality above the delamination in the resonance case. It lasts for a long time after the scattered waves have left that area. The measured frequency of the trapped standing-wave oscillation is in a good agreement with that predicted using the integral equation based mathematical model.

  11. Tracer diffusion in a sea of polymers with binding zones: mobile vs. frozen traps.

    PubMed

    Samanta, Nairhita; Chakrabarti, Rajarshi

    2016-10-19

    We use molecular dynamics simulations to investigate the tracer diffusion in a sea of polymers with specific binding zones for the tracer. These binding zones act as traps. Our simulations show that the tracer can undergo normal yet non-Gaussian diffusion under certain circumstances, e.g., when the polymers with traps are frozen in space and the volume fraction and the binding strength of the traps are moderate. In this case, as the tracer moves, it experiences a heterogeneous environment and exhibits confined continuous time random walk (CTRW) like motion resulting in a non-Gaussian behavior. Also the long time dynamics becomes subdiffusive as the number or the binding strength of the traps increases. However, if the polymers are mobile then the tracer dynamics is Gaussian but could be normal or subdiffusive depending on the number and the binding strength of the traps. In addition, with increasing binding strength and number of polymer traps, the probability of the tracer being trapped increases. On the other hand, removing the binding zones does not result in trapping, even at comparatively high crowding. Our simulations also show that the trapping probability increases with the increasing size of the tracer and for a bigger tracer with the frozen polymer background the dynamics is only weakly non-Gaussian but highly subdiffusive. Our observations are in the same spirit as found in many recent experiments on tracer diffusion in polymeric materials and question the validity of using Gaussian theory to describe diffusion in a crowded environment in general.

  12. Rarefaction shock waves and Hugoniot curve in the presence of free and trapped particles

    NASA Astrophysics Data System (ADS)

    Niknam, A. R.; Hashemzadeh, M.; Shokri, B.; Rouhani, M. R.

    2009-12-01

    The effects of the relativistic ponderomotive force and trapped particles in the presence of ponderomotive force on the rarefaction shock waves are investigated. The ponderomotive force alters the electron density distribution. This force and relativistic mass affect the plasma frequency. These physical parameters modify the total pressure and the existence condition of the rarefaction shock wave. Furthermore, the trapping of particles by the high frequency electromagnetic field considerably changes the existence condition of the rarefaction shock wave. The total pressure and Hugoniot curve are obtained by considering the relativistic ponderomotive force and trapped particles.

  13. Fault-zone waves observed at the southern Joshua Tree earthquake rupture zone

    USGS Publications Warehouse

    Hough, S.E.; Ben-Zion, Y.; Leary, P.

    1994-01-01

    Waveform and spectral characteristics of several aftershocks of the M 6.1 22 April 1992 Joshua Tree earthquake recorded at stations just north of the Indio Hills in the Coachella Valley can be interpreted in terms of waves propagating within narrow, low-velocity, high-attenuation, vertical zones. Evidence for our interpretation consists of: (1) emergent P arrivals prior to and opposite in polarity to the impulsive direct phase; these arrivals can be modeled as headwaves indicative of a transfault velocity contrast; (2) spectral peaks in the S wave train that can be interpreted as internally reflected, low-velocity fault-zone wave energy; and (3) spatial selectivity of event-station pairs at which these data are observed, suggesting a long, narrow geologic structure. The observed waveforms are modeled using the analytical solution of Ben-Zion and Aki (1990) for a plane-parallel layered fault-zone structure. Synthetic waveform fits to the observed data indicate the presence of NS-trending vertical fault-zone layers characterized by a thickness of 50 to 100 m, a velocity decrease of 10 to 15% relative to the surrounding rock, and a P-wave quality factor in the range 25 to 50.

  14. Fault zone reverberations from cross-correlations of earthquake waveforms and seismic noise

    NASA Astrophysics Data System (ADS)

    Hillers, Gregor; Campillo, Michel

    2016-03-01

    Seismic wavefields interact with low-velocity fault damage zones. Waveforms of ballistic fault zone head waves, trapped waves, reflected waves and signatures of trapped noise can provide important information on structural and mechanical fault zone properties. Here we extend the class of observable fault zone waves and reconstruct in-fault reverberations or multiples in a strike-slip faulting environment. Manifestations of the reverberations are significant, consistent wave fronts in the coda of cross-correlation functions that are obtained from scattered earthquake waveforms and seismic noise recorded by a linear fault zone array. The physical reconstruction of Green's functions is evident from the high similarity between the signals obtained from the two different scattered wavefields. Modal partitioning of the reverberation wavefield can be tuned using different data normalization techniques. The results imply that fault zones create their own ambiance, and that the here reconstructed reverberations are a key seismic signature of wear zones. Using synthetic waveform modelling we show that reverberations can be used for the imaging of structural units by estimating the location, extend and magnitude of lateral velocity contrasts. The robust reconstruction of the reverberations from noise records suggests the possibility to resolve the response of the damage zone material to various external and internal loading mechanisms.

  15. Fault zone characterization using P- and S-waves

    NASA Astrophysics Data System (ADS)

    Wawerzinek, Britta; Buness, Hermann; Polom, Ulrich; Tanner, David C.; Thomas, Rüdiger

    2014-05-01

    Although deep fault zones have high potential for geothermal energy extraction, their real usability depends on complex lithological and tectonic factors. Therefore a detailed fault zone exploration using P- and S-wave reflection seismic data is required. P- and S-wave reflection seismic surveys were carried out along and across the eastern border of the Leinetal Graben in Lower Saxony, Germany, to analyse the structural setting, different reflection characteristics and possible anisotropic effects. In both directions the P-wave reflection seismic measurements show a detailed and complex structure. This structure was developed during several tectonic phases and comprises both steeply- and shallowly-dipping faults. In a profile perpendicular to the graben, a strong P-wave reflector is interpreted as shallowly west-dipping fault that is traceable from the surface down to 500 m depth. It is also detectable along the graben. In contrast, the S-waves show different reflection characteristics: There is no indication of the strong P-wave reflector in the S-wave reflection seismic measurements - neither across nor along the graben. Only diffuse S-wave reflections are observable in this region. Due to the higher resolution of S-waves in the near-surface area it is possible to map structures which cannot be detected in P-wave reflection seismic, e.g the thinning of the uppermost Jurassic layer towards the south. In the next step a petrophysical analysis will be conducted by using seismic FD modelling to a) determine the cause (lithological, structural, or a combination of both) of the different reflection characteristics of P- and S-waves, b) characterize the fault zone, as well as c) analyse the influence of different fault zone properties on the seismic wave field. This work is part of the gebo collaborative research programme which is funded by the 'Niedersächsisches Ministerium für Wissenschaft und Kultur' and Baker Hughes.

  16. Bifurcation analysis for ion acoustic waves in a strongly coupled plasma including trapped electrons

    NASA Astrophysics Data System (ADS)

    El-Labany, S. K.; El-Taibany, W. F.; Atteya, A.

    2018-02-01

    The nonlinear ion acoustic wave propagation in a strongly coupled plasma composed of ions and trapped electrons has been investigated. The reductive perturbation method is employed to derive a modified Korteweg-de Vries-Burgers (mKdV-Burgers) equation. To solve this equation in case of dissipative system, the tangent hyperbolic method is used, and a shock wave solution is obtained. Numerical investigations show that, the ion acoustic waves are significantly modified by the effect of polarization force, the trapped electrons and the viscosity coefficients. Applying the bifurcation theory to the dynamical system of the derived mKdV-Burgers equation, the phase portraits of the traveling wave solutions of both of dissipative and non-dissipative systems are analyzed. The present results could be helpful for a better understanding of the waves nonlinear propagation in a strongly coupled plasma, which can be produced by photoionizing laser-cooled and trapped electrons [1], and also in neutron stars or white dwarfs interior.

  17. Two-zone elastic-plastic single shock waves in solids.

    PubMed

    Zhakhovsky, Vasily V; Budzevich, Mikalai M; Inogamov, Nail A; Oleynik, Ivan I; White, Carter T

    2011-09-23

    By decoupling time and length scales in moving window molecular dynamics shock-wave simulations, a new regime of shock-wave propagation is uncovered characterized by a two-zone elastic-plastic shock-wave structure consisting of a leading elastic front followed by a plastic front, both moving with the same average speed and having a fixed net thickness that can extend to microns. The material in the elastic zone is in a metastable state that supports a pressure that can substantially exceed the critical pressure characteristic of the onset of the well-known split-elastic-plastic, two-wave propagation. The two-zone elastic-plastic wave is a general phenomenon observed in simulations of a broad class of crystalline materials and is within the reach of current experimental techniques.

  18. Trapping of high-energy electrons into regime of surfatron acceleration by electromagnetic waves in space plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erokhin, A. N.; Erokhin, N. S.; Milant'ev, V. P.

    2012-05-15

    The phenomenon of trapping of weakly relativistic charged particles (with kinetic energies on the order of mc{sup 2}) into a regime of surfatron acceleration by an electromagnetic wave that propagates in plasma across a weak external magnetic field has been studied using nonlinear numerical calculations based on a solution of the relativistic equations of motion. Analysis showed that, for the wave amplitude above a certain threshold value and the initial wave phase outside the interval favorable for the surfing regime, the trajectory of a charged particle initially corresponds to its cyclotron rotation in the external magnetic field. For the initialmore » particle energies studied, the period of this rotation is relatively short. After a certain number (from several dozen to several thousand and above) of periods of rotation, the wave phase takes a value that is favorable for trapping of the charged particle on its trajectory by the electromagnetic wave, provided the Cherenkov resonance conditions are satisfied. As a result, the wave traps the charged particle and imparts it an ultrarelativistic acceleration. In momentum space, the region of trapping into the regime of surfing on an electromagnetic wave turns out to be rather large.« less

  19. Dust Acoustic Solitary Waves in Dusty Plasma with Trapped Electrons Having Different Temperature Nonthermal Ions

    NASA Astrophysics Data System (ADS)

    Deka, Manoj Kr.

    2016-12-01

    In this report, a detailed investigation on the study of dust acoustics solitary waves solution with negatively dust charge fluctuation in dusty plasma corresponding to lower and higher temperature nonthermal ions with trapped electrons is presented. We consider temporal variation of dust charge as a source of dissipation term to derive the lower order modified Kadomtsev-Petviashvili equation by using the reductive perturbation technique. Solitary wave solution is obtained with the help of sech method in presence of trapped electrons and low (and high) temperature nonthermal ions. Both nonthermality of ions and trapped state of the electrons are found to have an imperative control on the nonlinear coefficient, dissipative coefficient as well as height of the wave potential.

  20. The Influence of Trapped Particles on the Parametric Decay Instability of Near-Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Affolter, M.; Anderegg, F.; Dubin, D. H. E.; Driscoll, C. F.

    2017-10-01

    We present quantitative measurements of a decay instability to lower frequencies of near-acoustic waves. These experiments are conducted on pure ion plasmas confined in a cylindrical Penning-Malmberg trap. The axisymmetric, standing plasma waves have near-acoustic dispersion, discretized by the axial wave number kz =mz(π /Lp) . The nonlinear coupling rates are measured between large amplitude mz = 2 (pump) waves and small amplitude mz = 1 (daughter) waves, which have a small frequency detuning Δω = 2ω1 -ω2 . Classical 3-wave parametric coupling rates are proportional to pump wave amplitude as Γ (δn2 /n0) , with oscillatory energy exchange for Γ < Δω / 2 and decay instability for Γ > Δω / 2 . Experiments on cold plasmas agree quantitatively for oscillatory energy exchange, and agree within a factor-of-two for decay instability rates. However, nascent theory suggest that this latter agreement is merely fortuitous, and that the instability mechanism is trapped particles. Experiments at higher temperatures show that trapped particles reduce the instability threshold below classical 3-wave theory predictions. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693. M. Affolter is supported by the DOE FES Postdoctoral Research Program administered by ORISE for the DOE. ORISE is managed by ORAU under DOE Contract Number DE-SC0014664.

  1. Seismic Velocity and Its Temporal Variations of Hutubi Basin Revealed by Near Surface Trapped Waves

    NASA Astrophysics Data System (ADS)

    Ji, Z.; Wang, B.; Wang, H.; Wang, Q.; Su, J.

    2017-12-01

    Sedimentary basins amplify bypassing seismic waves, which may increase the seismic hazard in basin area. The study of basin structure and its temporal variation is of key importance in the assessment and mitigation of seismic hazard in basins. Recent investigations of seismic exploration have shown that basins may host a distinct wave train with strong energy. It is usually named as Trapped Wave or Whispering Gallery (WG) Phase. In this study, we image the velocity structure and monitor its temporal changes of Hutubi basin in Xinjiang, Northwestern China with trapped wave generated from an airgun source. Hutubi basin is located at mid-segment of the North Tianshan Mountain. Hutubi aigun signal transmitting station was constructed in May 2013. It is composed of six longlife airgun manufactured by BOLT. Prominent trapped waves with strong energy and low velocity are observed within 40km from the source. The airgun source radiates repeatable seismic signals for years. The trapped waves have relative low frequency 0.15s-4s and apparent low velocities of 200m/s to 1000m/s. In the temporal-frequency diagram, at least two groups of wave train can be identified. Based on the group velocity dispersion curves, we invert the S-wave velocity profile of Hutubi basin. The velocity structure is further verified with synthetic seismogram. Velocity variations and Rayleigh wave polarization changes are useful barometers of underground stress status. We observed that the consistent seasonal variations in velocity and polarization. According to the simulate results, we suggest that the variations may be related to the changes of groundwater level and the formation and disappearance of frozen soil.

  2. Analysis of iodinated contrast delivered during thermal ablation: is material trapped in the ablation zone?

    PubMed

    Wu, Po-Hung; Brace, Chris L

    2016-08-21

    Intra-procedural contrast-enhanced CT (CECT) has been proposed to evaluate treatment efficacy of thermal ablation. We hypothesized that contrast material delivered concurrently with thermal ablation may become trapped in the ablation zone, and set out to determine whether such an effect would impact ablation visualization. CECT images were acquired during microwave ablation in normal porcine liver with: (A) normal blood perfusion and no iodinated contrast, (B) normal perfusion and iodinated contrast infusion or (C) no blood perfusion and residual iodinated contrast. Changes in CT attenuation were analyzed from before, during and after ablation to evaluate whether contrast was trapped inside of the ablation zone. Visualization was compared between groups using post-ablation contrast-to-noise ratio (CNR). Attenuation gradients were calculated at the ablation boundary and background to quantitate ablation conspicuity. In Group A, attenuation decreased during ablation due to thermal expansion of tissue water and water vaporization. The ablation zone was difficult to visualize (CNR  =  1.57  ±  0.73, boundary gradient  =  0.7  ±  0.4 HU mm(-1)), leading to ablation diameter underestimation compared to gross pathology. Group B ablations saw attenuation increase, suggesting that iodine was trapped inside the ablation zone. However, because the normally perfused liver increased even more, Group B ablations were more visible than Group A (CNR  =  2.04  ±  0.84, boundary gradient  =  6.3  ±  1.1 HU mm(-1)) and allowed accurate estimation of the ablation zone dimensions compared to gross pathology. Substantial water vaporization led to substantial attenuation changes in Group C, though the ablation zone boundary was not highly visible (boundary gradient  =  3.9  ±  1.1 HU mm(-1)). Our results demonstrate that despite iodinated contrast being trapped in the ablation zone, ablation visibility

  3. Regional P wave velocity structure of the Northern Cascadia Subduction Zone

    USGS Publications Warehouse

    Ramachandran, K.; Hyndman, R.D.; Brocher, T.M.

    2006-01-01

    This paper presents the first regional three-dimensional, P wave velocity model for the Northern Cascadia Subduction. Zone (SW British Columbia and NW Washington State) constructed through tomographic inversion of first-arrival traveltime data from active source experiments together with earthquake traveltime data recorded at permanent stations. The velocity model images the structure of the subducting Juan de Fuca plate, megathrust, and the fore-arc crust and upper mantle. Beneath southern Vancouver Island the megathrust above the Juan de Fuca plate is characterized by a broad zone (25-35 km depth) having relatively low velocities of 6.4-6.6 km/s. This relative low velocity zone coincides with the location of most of the episodic tremors recently mapped beneath Vancouver Island, and its low velocity may also partially reflect the presence of trapped fluids and sheared lower crustal rocks. The rocks of the Olympic Subduction Complex are inferred to deform aseismically as evidenced by the lack of earthquakes withi the low-velocity rocks. The fore-arc upper mantle beneath the Strait of Georgia and Puget Sound is characterized by velocities of 7.2-7.6 km/s. Such low velocities represent regional serpentinization of the upper fore-arc mantle and provide evidence for slab dewatering and densification. Tertiary sedimentary basins in the Strait of Georgia and Puget Lowland imaged by the velocity model lie above the inferred region of slab dewatering and densification and may therefore partly result from a higher rate of slab sinking. In contrast, sedimentary basins in the Strait of Juan de Fuca lie in a synclinal depression in the Crescent Terrane. The correlation of in-slab earthquake hypocenters M>4 with P wave velocities greater than 7.8 km/s at the hypocenters suggests that they originate near the oceanic Moho of the subducting Juan de Fuca plate. Copyright 2006 by the American Geophysical Union.

  4. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert

    The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born–Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersionmore » of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.« less

  5. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching

    DOE PAGES

    Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert; ...

    2017-05-24

    The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born–Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersionmore » of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.« less

  6. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching

    NASA Astrophysics Data System (ADS)

    Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert; van Driel, Tim B.; Chollet, Matthieu; Glownia, James M.; Song, Sanghoon; Zhu, Diling; Pace, Elisabetta; Matar, Samir F.; Nielsen, Martin M.; Benfatto, Maurizio; Gaffney, Kelly J.; Collet, Eric; Cammarata, Marco

    2017-05-01

    The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.

  7. Shallow seismic structure of Kunlun fault zone in northern Tibetan Plateau, China: Implications for the 2001 M s8.1 Kunlun earthquake

    USGS Publications Warehouse

    Wang, Chun-Yong; Mooney, W.D.; Ding, Z.; Yang, J.; Yao, Z.; Lou, H.

    2009-01-01

    The shallow seismic velocity structure of the Kunlun fault zone (KLFZ) was jointly deduced from seismic refraction profiling and the records of trapped waves that were excited by five explosions. The data were collected after the 2001 Kunlun M s8.1 earthquake in the northern Tibetan Plateau. Seismic phases for the in-line record sections (26 records up to a distance of 15 km) along the fault zone were analysed, and 1-D P- and S-wave velocity models of shallow crust within the fault zone were determined by using the seismic refraction method. Sixteen seismic stations were deployed along the off-line profile perpendicular to the fault zone. Fault-zone trapped waves appear clearly on the record sections, which were simulated with a 3-D finite difference algorithm. Quantitative analysis of the correlation coefficients of the synthetic and observed trapped waveforms indicates that the Kunlun fault-zone width is 300 m, and S-wave quality factor Q within the fault zone is 15. Significantly, S-wave velocities within the fault zone are reduced by 30-45 per cent from surrounding rocks to a depth of at least 1-2 km, while P-wave velocities are reduced by 7-20 per cent. A fault-zone with such P- and S-low velocities is an indication of high fluid pressure because Vs is affected more than Vp. The low-velocity and low-Q zone in the KLFZ model is the effect of multiple ruptures along the fault trace of the 2001 M s8.1 Kunlun earthquake. ?? 2009 The Authors Journal compilation ?? 2009 RAS.

  8. Gas exchange in the ice zone: the role of small waves and big animals

    NASA Astrophysics Data System (ADS)

    Loose, B.; Takahashi, A.; Bigdeli, A.

    2016-12-01

    The balance of air-sea gas exchange and net biological carbon fixation determine the transport and transformation of carbon dioxide and methane in the ocean. Air-sea gas exchange is mostly driven by upper ocean physics, but biology can also play a role. In the open ocean, gas exchange increases proportionate to the square of wind speed. When sea ice is present, this dependence breaks down in part because breaking waves and air bubble entrainment are damped out by interactions between sea ice and the wave field. At the same time, sea ice motions, formation, melt, and even sea ice-associated organisms can act to introduce turbulence and air bubbles into the upper ocean, thereby enhancing air-sea gas exchange. We take advantage of the knowledge advances of upper ocean physics including bubble dynamics to formulate a model for air-sea gas exchange in the sea ice zone. Here, we use the model to examine the role of small-scale waves and diving animals that trap air for insulation, including penguins, seals and polar bears. We compare these processes to existing parameterizations of wave and bubble dynamics in the open ocean, to observe how sea ice both mitigates and locally enhances air-sea gas transfer.

  9. Slab anisotropy from subduction zone guided waves in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, K. H.; Tseng, Y. L.; Hu, J. C.

    2014-12-01

    Frozen-in anisotropic structure in the oceanic lithosphere and faulting/hydration in the upper layer of the slab are expected to play an important role in anisotropic signature of the subducted slab. Over the past several decades, despite the advances in characterizing anisotropy using shear wave splitting method and its developments, the character of slab anisotropy remains poorly understood. In this study we investigate the slab anisotropy using subduction zone guided waves characterized by long path length in the slab. In the southernmost Ryukyu subduction zone, seismic waves from events deeper than 100 km offshore northern Taiwan reveal wave guide behavior: (1) a low-frequency (< 1 Hz) first arrival recognized on vertical and radial components but not transverse component (2) large, sustained high-frequency (3-10 Hz) signal in P and S wave trains. The depth dependent high-frequency content (3-10Hz) confirms the association with a waveguide effect in the subducting slab rather than localized site amplification effects. Using the selected subduction zone guided wave events, we further analyzed the shear wave splitting for intermediate-depth earthquakes in different frequency bands, to provide the statistically meaningful shear wave splitting parameters. We determine shear wave splitting parameters from the 34 PSP guided events that are deeper than 100 km with ray path traveling along the subducted slab. From shear wave splitting analysis, the slab and crust effects reveal consistent polarization pattern of fast directions of EN-WS and delay time of 0.13 - 0.27 sec. This implies that slab anisotropy is stronger than the crust effect (<0.1 s) but weaker than the mantle wedge and sub-slab mantle effect (0.3-1.3 s) in Taiwan.

  10. Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers

    PubMed Central

    Wu, Mu-ying; Ling, Dong-xiong; Ling, Lin; Li, William; Li, Yong-qing

    2017-01-01

    Optical manipulation and label-free characterization of nanoscale structures open up new possibilities for assembly and control of nanodevices and biomolecules. Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped particle, but is generally less effective for individual nanoparticles. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints. PMID:28211526

  11. Gravitational instability of polytropic spheres containing region of trapped null geodesics: a possible explanation of central supermassive black holes in galactic halos

    NASA Astrophysics Data System (ADS)

    Stuchlík, Zdeněk; Schee, Jan; Toshmatov, Bobir; Hladík, Jan; Novotný, Jan

    2017-06-01

    We study behaviour of gravitational waves in the recently introduced general relativistic polytropic spheres containing a region of trapped null geodesics extended around radius of the stable null circular geodesic that can exist for the polytropic index N > 2.138 and the relativistic parameter, giving ratio of the central pressure pc to the central energy density ρc, higher than σ = 0.677. In the trapping zones of such polytropes, the effective potential of the axial gravitational wave perturbations resembles those related to the ultracompact uniform density objects, giving thus similar long-lived axial gravitational modes. These long-lived linear perturbations are related to the stable circular null geodesic and due to additional non-linear phenomena could lead to conversion of the trapping zone to a black hole. We give in the eikonal limit examples of the long-lived gravitational modes, their oscillatory frequencies and slow damping rates, for the trapping zones of the polytropes with N in (2.138,4). However, in the trapping polytropes the long-lived damped modes exist only for very large values of the multipole number l > 50, while for smaller values of l the numerical calculations indicate existence of fast growing unstable axial gravitational modes. We demonstrate that for polytropes with N >= 3.78, the trapping region is by many orders smaller than extension of the polytrope, and the mass contained in the trapping zone is about 10-3 of the total mass of the polytrope. Therefore, the gravitational instability of such trapping zones could serve as a model explaining creation of central supermassive black holes in galactic halos or galaxy clusters.

  12. Guided wave energy trapping to detect hidden multilayer delamination damage

    NASA Astrophysics Data System (ADS)

    Leckey, Cara A. C.; Seebo, Jeffrey P.

    2015-03-01

    Nondestructive Evaluation (NDE) and Structural Health Monitoring (SHM) simulation tools capable of modeling three-dimensional (3D) realistic energy-damage interactions are needed for aerospace composites. Current practice in NDE/SHM simulation for composites commonly involves over-simplification of the material parameters and/or a simplified two-dimensional (2D) approach. The unique damage types that occur in composite materials (delamination, microcracking, etc) develop as complex 3D geometry features. This paper discusses the application of 3D custom ultrasonic simulation tools to study wave interaction with multilayer delamination damage in carbon-fiber reinforced polymer (CFRP) composites. In particular, simulation based studies of ultrasonic guided wave energy trapping due to multilayer delamination damage were performed. The simulation results show changes in energy trapping at the composite surface as additional delaminations are added through the composite thickness. The results demonstrate a potential approach for identifying the presence of hidden multilayer delamination damage in applications where only single-sided access to a component is available. The paper also describes recent advancements in optimizing the custom ultrasonic simulation code for increases in computation speed.

  13. Scattering of Magnetic Mirror-Trapped Fast Electrons by a Shear Alfvén Wave

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Gekelman, W. N.; Pribyl, P.; Papadopoulos, K.

    2011-12-01

    Highly energetic electrons produced naturally or artificially can be trapped in the earth's radiation belts for months, posing a danger to satellites in space. An experimental investigation of the scattering of mirror trapped fast electrons by a shear Alfvén wave is performed at the Large Plasma Device (LaPD) at UCLA, and sheds light on a technique for artificially de-trapping the hazardous electrons in space. The experiment is performed in a quiescent afterglow plasma (ne ≈ 0.1 to 1×1012cm-3, Te ≈ 0.5 eV, B0 = 400 to 1200 G, L = 18 m, and diameter = 0.6 m). The magnetic field is programmed to include a mirror section approximately 3 m long, with 1.1 ≤Rmirror≤ 4. A trapped fast electron population is generated in the mirror section using second harmonic Electron Cyclotron Heating (ECH). The heating source comprises a 25 kW magnetron, operating at 2.45 GHz, with the microwave power injected for 10 - 50 ms. Longer injection periods (τ>30ms) result in a population of runaway electrons (energies up to 5MeV) as evidenced by X-ray production when the electron orbits hit a probe or the waveguide. The fastest electrons are generated in an annular region in front of the waveguide, with a radial extent of several cm and axial extent L ≈ 1 m. Shear Alfvén waves are launched with Bwave/B0 less than 0.5%, at frequencies ranging from 115 to 230 kHz (0.19 to 0.75 of fci in the straight field). Using the X-ray production, v⊥ probes and Langmuir probes as diagnostics, the Alfvén waves are observed to have a dramatic effect on the run-away electrons (E~105eV) as well as the less energetic electrons (E~102eV): the Alfvén wave can modify the trapped electron orbits to the extent that they are lost from the mirror trap. Possible mechanisms for scattering include the shear Alfvén wave breaking of one or more adiabatic invariants of an electron in a mirror field. This work is supported by The Office of Naval Research and performed at the Basic Plasma Science Facility

  14. Remote Sensing Characterization of Two-dimensional Wave Forcing in the Surf Zone

    NASA Astrophysics Data System (ADS)

    Carini, R. J.; Chickadel, C. C.; Jessup, A. T.

    2016-02-01

    In the surf zone, breaking waves drive longshore currents, transport sediment, shape bathymetry, and enhance air-sea gas and particle exchange. Furthermore, wave group forcing influences the generation and duration of rip currents. Wave breaking exhibits large gradients in space and time, making it challenging to measure in situ. Remote sensing technologies, specifically thermal infrared (IR) imagery, can provide detailed spatial and temporal measurements of wave breaking at the water surface. We construct two-dimensional maps of active wave breaking from IR imagery collected during the Surf Zone Optics Experiment in September 2010 at the US Army Corps of Engineers' Field Research Facility in Duck, NC. For each breaker identified in the camera's field of view, the crest-perpendicular length of the aerated breaking region (roller length) and wave direction are estimated and used to compute the wave energy dissipation rate. The resultant dissipation rate maps are analyzed over different time scales: peak wave period, infragravity wave period, and tidal wave period. For each time scale, spatial maps of wave breaking are used to characterize wave forcing in the surf zone for a variety of wave conditions. The following phenomena are examined: (1) wave dissipation rates over the bar (location of most intense breaking) have increased variance in infragravity wave frequencies, which are different from the peak frequency of the incoming wave field and different from the wave forcing variability at the shoreline, and (2) wave forcing has a wider spatial distribution during low tide than during high tide due to depth-limited breaking over the barred bathymetry. Future work will investigate the response of the variability in wave setup, longshore currents and rip currents, to the variability in wave forcing in the surf zone.

  15. A scenario for magnonic spin-wave traps

    PubMed Central

    Busse, Frederik; Mansurova, Maria; Lenk, Benjamin; von der Ehe, Marvin; Münzenberg, Markus

    2015-01-01

    Spatially resolved measurements of the magnetization dynamics on a thin CoFeB film induced by an intense laser pump-pulse reveal that the frequencies of resulting spin-wave modes depend strongly on the distance to the pump center. This can be attributed to a laser generated temperature profile. We determine a shift of 0.5 GHz in the spin-wave frequency due to the spatial thermal profile induced by the femtosecond pump pulse that persists for up to one nanosecond. Similar experiments are presented for a magnonic crystal composed of a CoFeB-film based antidot lattice with a Damon Eshbach mode at the Brillouin zone boundary and its consequences are discussed. PMID:26279466

  16. Gravitational instability of polytropic spheres containing region of trapped null geodesics: a possible explanation of central supermassive black holes in galactic halos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuchlík, Zdeněk; Schee, Jan; Toshmatov, Bobir

    We study behaviour of gravitational waves in the recently introduced general relativistic polytropic spheres containing a region of trapped null geodesics extended around radius of the stable null circular geodesic that can exist for the polytropic index N > 2.138 and the relativistic parameter, giving ratio of the central pressure p {sub c} to the central energy density ρ{sub c}, higher than σ = 0.677. In the trapping zones of such polytropes, the effective potential of the axial gravitational wave perturbations resembles those related to the ultracompact uniform density objects, giving thus similar long-lived axial gravitational modes. These long-lived linearmore » perturbations are related to the stable circular null geodesic and due to additional non-linear phenomena could lead to conversion of the trapping zone to a black hole. We give in the eikonal limit examples of the long-lived gravitational modes, their oscillatory frequencies and slow damping rates, for the trapping zones of the polytropes with N element of (2.138,4). However, in the trapping polytropes the long-lived damped modes exist only for very large values of the multipole number ℓ > 50, while for smaller values of ℓ the numerical calculations indicate existence of fast growing unstable axial gravitational modes. We demonstrate that for polytropes with N ≥ 3.78, the trapping region is by many orders smaller than extension of the polytrope, and the mass contained in the trapping zone is about 10{sup −3} of the total mass of the polytrope. Therefore, the gravitational instability of such trapping zones could serve as a model explaining creation of central supermassive black holes in galactic halos or galaxy clusters.« less

  17. Transient cnoidal waves explain the formation and geometry of fault damage zones

    NASA Astrophysics Data System (ADS)

    Veveakis, Manolis; Schrank, Christoph

    2017-04-01

    The spatial footprint of a brittle fault is usually dominated by a wide area of deformation bands and fractures surrounding a narrow, highly deformed fault core. This diffuse damage zone relates to the deformation history of a fault, including its seismicity, and has a significant impact on flow and mechanical properties of faulted rock. Here, we propose a new mechanical model for damage-zone formation. It builds on a novel mathematical theory postulating fundamental material instabilities in solids with internal mass transfer associated with volumetric deformation due to elastoviscoplastic p-waves termed cnoidal waves. We show that transient cnoidal waves triggered by fault slip events can explain the characteristic distribution and extent of deformation bands and fractures within natural fault damage zones. Our model suggests that an overpressure wave propagating away from the slipping fault and the material properties of the host rock control damage-zone geometry. Hence, cnoidal-wave theory may open a new chapter for predicting seismicity, material and geometrical properties as well as the location of brittle faults.

  18. Modulation of Precipitation in the Olympic Mountains by Trapped Gravity Waves

    NASA Astrophysics Data System (ADS)

    Heymsfield, G. M.; Tian, L.; Grecu, M.; McLinden, M.; Li, L.

    2017-12-01

    Precipitation over the Olympic Mountains was studied intensely with multiple aircraft and ground-based measurements during the Olympic Mountains Experiment (OLYMPEX) during the fall-winter season 2015-2016 as part of validation for the Global Precipitation Mission (GPM) (Houze et al. 2017) and the Radar Definition Experiment (RADEX) supported by the Aerosol Chemistry, Ecosystem (ACE) NASA Decadal Mission. This presentation focuses on observations of a broad frontal cloud system with strong flow over the mountains on 5 December 2015. Unique observations of trapped waves were obtained with in the three Goddard Space Flight Center nadir-looking, X- through W-band, Doppler radars on the NASA high-altitude ER-2: the High-altitude Wind and Rain Airborne Profiler (HIWRAP) at Ku and Ka-band, the W-band Cloud Radar System (CRS), and the ER-2 X-band Radar (EXRAD). Analysis of the aircraft measurements showed the presence of deep, trapped gravity waves on a scale ranging from 10-25 km in the nadir-looking Doppler and reflectivity observations. These waves cause localized vertical up/down motions on the order of 1-2 ms-1 and they are superimposed on the widespread south-southwest flow over the Olympic Mountains. While much of this widespread flow over the mountains produces copious amounts of snowfall, the gravity waves play an important role in modulating this precipitation indirectly through microphysical processes in the ice region. We will describe analyses of the interactions between the air motions and precipitation structure for this case and other cases we observed similar waves. We will present preliminary results from precipitation retrievals based on optimal estimation (Grecu et al. 2011).

  19. Impacts of wave-induced circulation in the surf zone on wave setup

    NASA Astrophysics Data System (ADS)

    Guérin, Thomas; Bertin, Xavier; Coulombier, Thibault; de Bakker, Anouk

    2018-03-01

    Wave setup corresponds to the increase in mean water level along the coast associated with the breaking of short-waves and is of key importance for coastal dynamics, as it contributes to storm surges and the generation of undertows. Although overall well explained by the divergence of the momentum flux associated with short waves in the surf zone, several studies reported substantial underestimations along the coastline. This paper investigates the impacts of the wave-induced circulation that takes place in the surf zone on wave setup, based on the analysis of 3D modelling results. A 3D phase-averaged modelling system using a vortex force formalism is applied to hindcast an unpublished field experiment, carried out at a dissipative beach under moderate to very energetic wave conditions (Hm 0 = 6m at breaking and Tp = 22s). When using an adaptive wave breaking parameterisation based on the beach slope, model predictions for water levels, short waves and undertows improved by about 30%, with errors reducing to 0.10 m, 0.10 m and 0.09 m/s, respectively. The analysis of model results suggests a very limited impact of the vertical circulation on wave setup at this dissipative beach. When extending this analysis to idealized simulations for different beach slopes ranging from 0.01 to 0.05, it shows that the contribution of the vertical circulation (horizontal and vertical advection and vertical viscosity terms) becomes more and more relevant as the beach slope increases. In contrast, for a given beach slope, the wave height at the breaking point has a limited impact on the relative contribution of the vertical circulation on the wave setup. For a slope of 0.05, the contribution of the terms associated with the vertical circulation accounts for up to 17% (i.e. a 20% increase) of the total setup at the shoreline, which provides a new explanation for the underestimations reported in previously published studies.

  20. Seismic-wave attenuation associated with crustal faults in the New Madrid seismic zone

    USGS Publications Warehouse

    Hamilton, R.M.; Mooney, W.D.

    1990-01-01

    The attenuation of upper crustal seismic waves that are refracted with a velocity of about 6 kilometers per second varies greatly among profiles in the area of the New Madrid seismic zone in the central Mississippi Valley. The waves that have the strongest attenuation pass through the seismic trend along the axis of the Reelfoot rift in the area of the Blytheville arch. Defocusing of the waves in a low-velocity zone and/ or seismic scattering and absorption could cause the attenuation; these effects are most likely associated with the highly deformed rocks along the arch. Consequently, strong seismic-wave attenuation may be a useful criterion for identifying seismogenic fault zones.

  1. Optical trapping and Raman spectroscopy of single nanostructures using standing-wave Raman tweezers

    NASA Astrophysics Data System (ADS)

    Wu, Mu-ying; He, Lin; Chen, Gui-hua; Yang, Guang; Li, Yong-qing

    2017-08-01

    Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped micro-particle, but is generally less effective for individual nano-sized objects in the 10-100 nm range. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap (SWOT) with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus is more stable and sensitive in measuring nanoparticles in liquid with 4-8 fold increase in the Raman signals. It can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, polystyrene beads (100 nm), SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles with a low laser power of a few milliwatts. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints.

  2. Waves and mesoscale features in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chih Y.

    1993-01-01

    Ocean-ice interaction processes in the Marginal Ice Zone (MIZ) by waves and mesoscale features, such as upwelling and eddies, are studied using ERS-1 Synthetic Aperture Radar (SAR) imagery and wave-ice interaction models. Satellite observations of mesoscale features can play a crucial role in ocean-ice interaction study.

  3. Large-scale bedforms induced by supercritical flows and wave-wave interference in the intertidal zone (Cap Ferret, France)

    NASA Astrophysics Data System (ADS)

    Vaucher, Romain; Pittet, Bernard; Humbert, Thomas; Ferry, Serge

    2017-11-01

    The Cap Ferret sand spit is situated along the wave-dominated, tidally modulated Atlantic coast of western France, characterized by a semidiurnal macrotidal range. It displays peculiar dome-like bedforms that can be observed at low tide across the intertidal zone. These bedforms exhibit a wavelength of ca. 1.2 m and an elevation of ca. 30 cm. They occur only when the incident wave heights reach 1.5-2 m. The internal stratifications are characterized by swaley-like, sub-planar, oblique-tangential, oblique-tabular, as well as hummocky-like stratifications. The tabular and tangential stratifications comprise prograding oblique sets (defined as foresets and backsets) that almost always show variations in their steepness. Downcutting into the bottomsets of the oblique-tangential stratifications is common. The sets of laminae observed in the bedforms share common characteristics with those formed by supercritical flows in flume experiments of earlier studies. These peculiar bedforms are observed at the surf-swash transition zone where the backwash flow reaches supercritical conditions. This type of flow can explain their internal architecture but not their general dome-like (three-dimensional) morphology. Wave-wave interference induced by the geomorphology (i.e. tidal channel) of the coastal environment is proposed as explanation for the localized formation of such bedforms. This study highlights that the combination of supercritical flows occurring in the surf-swash transition zone and wave-wave interferences can generate dome-like bedforms in intertidal zones.

  4. Large-scale bedforms induced by supercritical flows and wave-wave interference in the intertidal zone (Cap Ferret, France)

    NASA Astrophysics Data System (ADS)

    Vaucher, Romain; Pittet, Bernard; Humbert, Thomas; Ferry, Serge

    2018-06-01

    The Cap Ferret sand spit is situated along the wave-dominated, tidally modulated Atlantic coast of western France, characterized by a semidiurnal macrotidal range. It displays peculiar dome-like bedforms that can be observed at low tide across the intertidal zone. These bedforms exhibit a wavelength of ca. 1.2 m and an elevation of ca. 30 cm. They occur only when the incident wave heights reach 1.5-2 m. The internal stratifications are characterized by swaley-like, sub-planar, oblique-tangential, oblique-tabular, as well as hummocky-like stratifications. The tabular and tangential stratifications comprise prograding oblique sets (defined as foresets and backsets) that almost always show variations in their steepness. Downcutting into the bottomsets of the oblique-tangential stratifications is common. The sets of laminae observed in the bedforms share common characteristics with those formed by supercritical flows in flume experiments of earlier studies. These peculiar bedforms are observed at the surf-swash transition zone where the backwash flow reaches supercritical conditions. This type of flow can explain their internal architecture but not their general dome-like (three-dimensional) morphology. Wave-wave interference induced by the geomorphology (i.e. tidal channel) of the coastal environment is proposed as explanation for the localized formation of such bedforms. This study highlights that the combination of supercritical flows occurring in the surf-swash transition zone and wave-wave interferences can generate dome-like bedforms in intertidal zones.

  5. Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling

    DTIC Science & Technology

    2014-09-30

    At the same time, the PIs participate in Australian efforts of developing wave-ocean- ice coupled models for Antarctica . Specific new physics modules...Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling Alexander V. Babanin Swinburne University of Technology, PO Box...operational forecast. Altimeter climatology and the wave models will be used to study the current and future wind/wave and ice trends. APPROACH

  6. Wave trapping and flow around an irregular near circular island in a stratified sea

    NASA Astrophysics Data System (ADS)

    Dyke, Phil

    2005-12-01

    Wave trapping and induced flow around an island is examined. The exactly circular island solutions are reprised and the solutions extended, and shown to apply to a stratified sea. The homogeneous solutions are then used to deduce the wave trapping and flow around a near circular island. It turns out that the cotidal pattern for a perfectly circular island is relatively immune to variations in geometry and radially dependent depth variations. This helps explain the similarity in the behaviour of the tides around various islands (the Pribilof Islands near Alaska, Oahu in Hawaii, Cook Island off north west Australia, Bermuda off the eastern coast of the USA, and Bear Island in the Norwegian Sea). The dominant steady drift and its rate of decay off-shore is also calculated.

  7. Fault Zone Imaging from Correlations of Aftershock Waveforms

    NASA Astrophysics Data System (ADS)

    Hillers, Gregor; Campillo, Michel

    2018-03-01

    We image an active fault zone environment using cross correlations of 154 15 s long 1992 Landers earthquake aftershock seismograms recorded along a line array. A group velocity and phase velocity dispersion analysis of the reconstructed Rayleigh waves and Love waves yields shear wave velocity images of the top 100 m along the 800 m long array that consists of 22 three component stations. Estimates of the position, width, and seismic velocity of a low-velocity zone are in good agreement with the findings of previous fault zone trapped waves studies. Our preferred solution indicates the zone is offset from the surface break to the east, 100-200 m wide, and characterized by a 30% velocity reduction. Imaging in the 2-6 Hz range resolves further a high-velocity body of similar width to the west of the fault break. Symmetry and shape of zero-lag correlation fields or focal spots indicate a frequency and position dependent wavefield composition. At frequencies greater than 4 Hz surface wave propagation dominates, whereas at lower frequencies the correlation field also exhibits signatures of body waves that likely interact with the high-velocity zone. The polarization and late arrival times of coherent wavefronts observed above the low-velocity zone indicate reflections associated with velocity contrasts in the fault zone environment. Our study highlights the utility of the high-frequency correlation wavefield obtained from records of local and regional seismicity. The approach does not depend on knowledge of earthquake source parameters, which suggests the method can return images quickly during aftershock campaigns to guide network updates for optimal coverage of interesting geological features.

  8. Wave effects on ocean-ice interaction in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Hakkinen, Sirpa; Peng, Chih Y.

    1993-01-01

    The effects of wave train on ice-ocean interaction in the marginal ice zone are studied through numerical modeling. A coupled two-dimensional ice-ocean model has been developed to include wave effects and wind stress for the predictions of ice edge dynamics. The sea ice model is coupled to the reduced-gravity ocean model through interfacial stresses. The main dynamic balance in the ice momentum is between water-ice stress, wind stress, and wave radiation stresses. By considering the exchange of momentum between waves and ice pack through radiation stress for decaying waves, a parametric study of the effects of wave stress and wind stress on ice edge dynamics has been performed. The numerical results show significant effects from wave action. The ice edge is sharper, and ice edge meanders form in the marginal ice zone owing to forcing by wave action and refraction of swell system after a couple of days. Upwelling at the ice edge and eddy formation can be enhanced by the nonlinear effects of wave action; wave action sharpens the ice edge and can produce ice meandering, which enhances local Ekman pumping and pycnocline anomalies. The resulting ice concentration, pycnocline changes, and flow velocity field are shown to be consistent with previous observations.

  9. Trapping and exclusion zones in complex streaming patterns around a large assembly of microfluidic bubbles under ultrasound

    NASA Astrophysics Data System (ADS)

    Combriat, Thomas; Mekki-Berrada, Flore; Thibault, Pierre; Marmottant, Philippe

    2018-01-01

    Pulsating bubbles have proved to be a versatile tool for trapping and sorting particles. In this article, we investigate the different streaming patterns that can be obtained with a group of bubbles in a confined geometry under ultrasound. In the presence of an external flow strong enough to oppose the streaming velocities but not drag the trapped bubbles, we observe either the appearance of exclusion zones near the bubbles or asymmetric streaming patterns that we interpret as the superposition of a two-dimensional (2D) streaming function and of a potential flow. When studying a lattice of several bubbles, we show that the streaming pattern can be accurately predicted by superimposing the contributions of every pair of bubbles present in the lattice, thus allowing one to predict the sizes and the shapes of exclusion zones created by a group of bubbles under acoustic excitation. We suggest that such systems could be used to enhance mixing at a small scale or to catch and release chemical species initially trapped in vortices created around bubble pairs.

  10. Experimental investigation of change of energy of infragavity waves in dependence on spectral characteristics of an irregular wind waves in coastal zone

    NASA Astrophysics Data System (ADS)

    Saprykina, Yana; Divinskii, Boris

    2013-04-01

    An infragravity waves are long waves with periods of 20 - 300 s. Most essential influence of infragarvity waves on dynamic processes is in a coastal zone, where its energy can exceed the energy of wind waves. From practical point of view, the infragravity waves are important, firstly, due to their influence on sand transport processes in a coastal zone. For example, interacting with group structure of wind waves the infragravity waves can define position of underwater bars on sandy coast. Secondly, they are responsible on formation of long waves in harbors. Main source of infragravity waves is wave group structure defined by sub-nonlinear interactions of wind waves (Longuet-Higgins, Stewart, 1962). These infragravity waves are bound with groups of wind waves and propagate with wave group velocity. Another type of infragravity waves are formed in a surf zone as a result of migration a wave breaking point (Symonds, et al., 1982). What from described above mechanisms of formation of infragravity waves prevails, till now it is unknown. It is also unknown how energy of infragravity waves depends on energy of input wind waves and how it changes during nonlinear wave transformation in coastal zone. In our work on the basis of the analysis of data of field experiment and numerical simulation a contribution of infragravity waves in total wave energy in depending on integral characteristics of an irregular wave field in the conditions of a real bathymetry was investigated. For analysis the data of field experiment "Shkorpilovtsy-2007" (Black sea) and data of numerical modeling of Boussinesq type equation with extended dispersion characteristics (Madsen et al., 1997) were used. It was revealed that infragravity waves in a coastal zone are defined mainly by local group structure of waves, which permanently changes due to nonlinearity, shoaling and breaking processes. Free infragravity waves appearing after wave breaking exist together with bound infragravity waves. There are

  11. Subduction zone guided waves in Northern Chile

    NASA Astrophysics Data System (ADS)

    Garth, Thomas; Rietbrock, Andreas

    2016-04-01

    Guided wave dispersion is observed in subduction zones as high frequency energy is retained and delayed by low velocity structure in the subducting slab, while lower frequency energy is able to travel at the faster velocities associated with the surrounding mantle material. As subduction zone guided waves spend longer interacting with the low velocity structure of the slab than any other seismic phase, they have a unique capability to resolve these low velocity structures. In Northern Chile, guided wave arrivals are clearly observed on two stations in the Chilean fore-arc on permanent stations of the IPOC network. High frequency (> 5 Hz) P-wave arrivals are delayed by approximately 2 seconds compared to the low frequency (< 2 Hz) P-wave arrivals. Full waveform finite difference modelling is used to test the low velocity slab structure that cause this P-wave dispersion. The synthetic waveforms produced by these models are compared to the recorded waveforms. Spectrograms are used to compare the relative arrival times of different frequencies, while the velocity spectra is used to constrain the relative amplitude of the arrivals. Constraining the waveform in these two ways means that the full waveform is also matched, and the low pass filtered observed and synthetic waveforms can be compared. A combined misfit between synthetic and observed waveforms is then calculated following Garth & Rietbrock (2014). Based on this misfit criterion we constrain the velocity model by using a grid search approach. Modelling the guided wave arrivals suggest that the observed dispersion cannot be solely accounted for by a single low velocity layer as suggested by previous guided wave studies. Including dipping low velocity normal fault structures in the synthetic model not only accounts for the observed strong P-wave coda, but also produces a clear first motion dispersion. We therefore propose that the lithospheric mantle of the subducting Nazca plate is highly hydrated at intermediate

  12. 77 FR 50062 - Safety Zone; Embry-Riddle Wings and Waves, Atlantic Ocean; Daytona Beach, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... 1625-AA00 Safety Zone; Embry-Riddle Wings and Waves, Atlantic Ocean; Daytona Beach, FL AGENCY: Coast...-Riddle Wings and Waves air show. The event is scheduled to take place from Thursday, October 11, 2012...: Sec. 165.T07-0653 Safety Zone; Embry Riddle Wings and Waves, Atlantic Ocean, Daytona Beach, FL. (a...

  13. Remote sensing of the correlation between breakpoint oscillations and infragravity waves in the surf and swash zone

    NASA Astrophysics Data System (ADS)

    Moura, T.; Baldock, T. E.

    2017-04-01

    A novel remote sensing methodology to determine the dominant infragravity mechanism in the inner surf and swash zone in the field is presented. Video observations of the breakpoint motion are correlated with the shoreline motion and inner surf zone water levels to determine the relationship between the time-varying breakpoint oscillations and the shoreline motion. The results of 13 field data sets collected from three different beaches indicate that, inside the surf zone, the dominance of bound wave or breakpoint forcing is strongly dependent on the surf zone width and the type of short wave breaking. Infragravity generation by bound wave release was stronger for conditions with relatively narrow surf zones and plunging waves; breakpoint forcing was dominant for wider surf zones and spilling breaker conditions.

  14. Computation of Acoustic Waves Through Sliding-Zone Interfaces Using an Euler/Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    1996-01-01

    The effect of a patched sliding-zone interface on the transmission of acoustic waves is examined for two- and three-dimensional model problems. A simple but general interpolation scheme at the patched boundary passes acoustic waves without distortion, provided that a sufficiently small time step is taken. A guideline is provided for the maximum permissible time step or zone speed that gives an acceptable error introduced by the sliding-zone interface.

  15. Wave attenuation in the marginal ice zone during LIMEX

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Vachon, Paris W.; Peng, Chih Y.; Bhogal, A. S.

    1992-01-01

    The effect of ice cover on ocean-wave attenuation is investigated for waves under flexure in the marginal ice zone (MIZ) with SAR image spectra and the results of models. Directional wavenumber spectra are taken from the SAR image data, and the wave-attenuation rate is evaluated with SAR image spectra and by means of the model by Liu and Mollo-Christensen (1988). Eddy viscosity is described by means of dimensional analysis as a function of ice roughness and wave-induced velocity, and comparisons are made with the remotely sensed data. The model corrects the open-water model by introducing the effects of a continuous ice sheet, and turbulent eddy viscosity is shown to depend on ice thickness, floe sizes, significant wave height, and wave period. SAR and wave-buoy data support the trends described in the model results, and a characteristic rollover is noted in the model and experimental wave-attenuation rates at high wavenumbers.

  16. Ocean Wave Energy Regimes of the Circumpolar Coastal Zones

    NASA Astrophysics Data System (ADS)

    Atkinson, D. E.

    2004-12-01

    Ocean wave activity is a major enviromental forcing agent of the ice-rich sediments that comprise large sections of the arctic coastal margins. While it is instructive to possess information about the wind regimes in these regions, direct application to geomorphological and engineering needs requires knowledge of the resultant wave-energy regimes. Wave energy information has been calculated at the regional scale using adjusted reanalysis model windfield data. Calculations at this scale are not designed to account for local-scale coastline/bathymetric irregularities and variability. Results will be presented for the circumpolar zones specified by the Arctic Coastal Dynamics Project.

  17. Modelling guided waves in the Alaskan-Aleutian subduction zone

    NASA Astrophysics Data System (ADS)

    Coulson, Sophie; Garth, Thomas; Reitbrock, Andreas

    2016-04-01

    Subduction zone guided wave arrivals from intermediate depth earthquakes (70-300 km depth) have a huge potential to tell us about the velocity structure of the subducting oceanic crust as it dehydrates at these depths. We see guided waves as the oceanic crust has a slower seismic velocity than the surrounding material, and so high frequency energy is retained and delayed in the crustal material. Lower frequency energy is not retained in this crustal waveguide and so travels at faster velocities of the surrounding material. This gives a unique observation at the surface with low frequency energy arriving before the higher frequencies. We constrain this guided wave dispersion by comparing the waveforms recorded in real subduction zones with simulated waveforms, produced using finite difference full waveform modelling techniques. This method has been used to show that hydrated minerals in the oceanic crust persist to much greater depths than accepted thermal petrological subduction zone models would suggest in Northern Japan (Garth & Rietbrock, 2014a), and South America (Garth & Rietbrock, in prep). These observations also suggest that the subducting oceanic mantle may be highly hydrated at intermediate depth by dipping normal faults (Garth & Rietbrock 2014b). We use this guided wave analysis technique to constrain the velocity structure of the down going ~45 Ma Pacific plate beneath Alaska. Dispersion analysis is primarily carried out on guided wave arrivals recorded on the Alaskan regional seismic network. Earthquake locations from global earthquake catalogues (ISC and PDE) and regional earthquake locations from the AEIC (Alaskan Earthquake Information Centre) catalogue are used to constrain the slab geometry and to identify potentially dispersive events. Dispersed arrivals are seen at stations close to the trench, with high frequency (>2 Hz) arrivals delayed by 2 - 4 seconds. This dispersion is analysed to constrain the velocity and width of the proposed waveguide

  18. Wave attenuation in the marginal ice zone during LIMEX

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chih Y.; Vachon, Paris W.

    1991-01-01

    During LIMEX'87 and '89, the CCRS CV-580 aircraft collected SAR (synthetic aperture radar) data over the marginal ice zone off the coast of Newfoundland. Based upon the wavenumber spectra from SAR data, the wave attenuation rate is estimated and compared with a model. The model-data comparisons are reasonably good for the ice conditions during LIMEX (Labrador Ice Margin Experiment). Both model and SAR-derived wave attenuation rates show a roll-over at high wavenumbers.

  19. A linear model for rotors produced by trapped lee waves with a simple representation of boundary layer friction

    NASA Astrophysics Data System (ADS)

    Teixeira, Miguel A. C.

    2017-04-01

    A linear model is used to diagnose the onset of rotors in flow over 2D ridges, for atmospheres that are neutrally stratified near the surface and stably stratified aloft, with a sharp temperature inversion in between, where trapped lee waves may propagate. This is achieved by coupling an inviscid two-layer mountain-wave model with a bulk boundary-layer model. The full model shows some ability to detect flow stagnation as a function of key input parameters, such as the Froude number and the height of the inversion, by comparison with results from numerical simulations and laboratory experiments carried out by previous authors. The effect of a boundary layer is essential to correctly predict flow stagnation, as the inviscid version of the model severely overestimates the dimensionless critical mountain height necessary for stagnation to occur. An improved model that includes only the effects of mean flow deceleration and amplification of the velocity perturbation within the boundary layer predicts flow stagnation much better in the most non-hydrostatic cases treated here, where waves appear to be directly forced by the orography. However, in the most hydrostatic case, only the full model, taking into account the feedback of the boundary layer on the inviscid flow, satisfactorily predicts flow stagnation, although the corresponding stagnation condition is unable to discriminate between rotors and hydraulic jumps. This is due to the fact that the trapped lee waves associated with the rotors are not forced directly by the orography in this case, but rather seem to be generated indirectly by nonlinear processes. This mechanism is, to a certain extent, mimicked by the modified surface boundary condition adopted in the full model, where an "effective orography" that differs from the real one forces the trapped lee waves. Versions of the model not including this feedback severely underestimate the amplitude of the trapped lee waves in the most hydrostatic case, partly

  20. Modeling Wave-Ice Interactions in the Marginal Ice Zone

    NASA Astrophysics Data System (ADS)

    Orzech, Mark; Shi, Fengyan; Bateman, Sam; Veeramony, Jay; Calantoni, Joe

    2015-04-01

    The small-scale (O(m)) interactions between waves and ice floes in the marginal ice zone (MIZ) are investigated with a coupled model system. Waves are simulated with the non-hydrostatic finite-volume model NHWAVE (Ma et al., 2012) and ice floes are represented as bonded collections of smaller particles with the discrete element system LIGGGHTS (Kloss et al., 2012). The physics of fluid and ice are recreated as authentically as possible, to allow the coupled system to supplement and/or substitute for more costly and demanding field experiments. The presentation will first describe the development and validation of the coupled system, then discuss the results of a series of virtual experiments in which ice floe and wave characteristics are varied to examine their effects on energy dissipation, MIZ floe size distribution, and ice pack retreat rates. Although Wadhams et al. (1986) suggest that only a small portion (roughly 10%) of wave energy entering the MIZ is reflected, dissipation mechanisms for the remaining energy have yet to be delineated or measured. The virtual experiments are designed to focus on specific properties and processes - such as floe size and shape, collision and fracturing events, and variations in wave climate - and measure their relative roles the transfer of energy and momentum from waves to ice. Questions to be examined include: How is energy dissipated by ice floe collisions, fracturing, and drag, and how significant is the wave attenuation associated with each process? Do specific wave/floe length scale ratios cause greater wave attenuation? How does ice material strength affect the rate of wave energy loss? The coupled system will ultimately be used to test and improve upon wave-ice parameterizations for large-scale climate models. References: >Kloss, C., C. Goniva, A. Hager, S. Amberger, and S. Pirker (2012). Models, algorithms and validation for opensource DEM and CFD-DEM. Progress in Computational Fluid Dynamics 12(2/3), 140-152. >Ma, G

  1. On the multistream approach of relativistic Weibel instability. II. Bernstein-Greene-Kruskal-type waves in magnetic trapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghizzo, A.

    2013-08-15

    The stationary state with magnetically trapped particles is investigated at the saturation of the relativistic Weibel instability, within the “multiring” model in a Hamiltonian framework. The multistream model and its multiring extension have been developed in Paper I, under the assumption that the generalized canonical momentum is conserved in the perpendicular direction. One dimensional relativistic Bernstein-Greene-Kruskal waves with deeply trapped particles are addressed using similar mathematical formalism developed by Lontano et al.[Phys. Plasmas 9, 2562 (2002); Phys. Plasmas 10, 639 (2003)] using several streams and in the presence of both electrostatic and magnetic trapping mechanisms.

  2. Monochromatic body waves excited by great subduction zone earthquakes

    NASA Astrophysics Data System (ADS)

    Ihmlé, Pierre F.; Madariaga, Raúl

    Large quasi-monochromatic body waves were excited by the 1995 Chile Mw=8.1 and by the 1994 Kurile Mw=8.3 events. They are observed on vertical/radial component seismograms following the direct P and Pdiff arrivals, at all azimuths. We devise a slant stack algorithm to characterize the source of the oscillations. This technique aims at locating near-source isotropic scatterers using broadband data from global networks. For both events, we find that the oscillations emanate from the trench. We show that these monochromatic waves are due to localized oscillations of the water column. Their period corresponds to the gravest ID mode of a water layer for vertically traveling compressional waves. We suggest that these monochromatic body waves may yield additional constraints on the source process of great subduction zone earthquakes.

  3. Sharp acoustic vortex focusing by Fresnel-spiral zone plates

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Romero-García, Vicent; García-Raffi, Luis M.; Camarena, Francisco; Staliunas, Kestutis

    2018-05-01

    We report the optimal focusing of acoustic vortex beams by using flat lenses based on a Fresnel-spiral diffraction grating. The flat lenses are designed by spiral-shaped Fresnel zone plates composed of one or several arms. The constructive and destructive interferences of the diffracted waves by the spiral grating result in sharp acoustic vortex beams, following the focal laws obtained in analogy with the Fresnel zone plate lenses. In addition, we show that the number of arms determines the topological charge of the vortex, allowing the precise manipulation of the acoustic wave field by flat lenses. The experimental results in the ultrasonic regime show excellent agreement with the theory and full-wave numerical simulations. A comparison with beam focusing by Archimedean spirals also showing vortex focusing is given. The results of this work may have potential applications for particle trapping, ultrasound therapy, imaging, or underwater acoustic transmitters.

  4. The Consequences of Alfven Waves and Parallel Potential Drops in the Auroral Zone

    NASA Technical Reports Server (NTRS)

    Schriver, David

    2003-01-01

    The goal of this research is to examine the causes of field-aligned plasma acceleration in the auroral zone using satellite data and numerical simulations. A primary question to be addressed is what causes the field-aligned acceleration of electrons (leading to precipitation) and ions (leading to upwelling ions) in the auroral zone. Data from the Fast Auroral SnapshoT (FAST) and Polar satellites is used when the two satellites are in approximate magnetic conjunction and are in the auroral region. FAST is at relatively low altitudes and samples plasma in the midst of the auroral acceleration region while Polar is at much higher altitudes and can measure plasmas and waves propagating towards the Earth. Polar can determine the sources of energy streaming earthward from the magnetotail, either in the form of field-aligned currents, electromagnetic waves or kinetic particle energy, that ultimately leads to the acceleration of plasma in the auroral zone. After identifying and examining several events, numerical simulations are run that bridges the spatial region between the two satellites. The code is a one-dimensional, long system length particle in cell simulation that has been developed to model the auroral region. A main goal of this research project is to include Alfven waves in the simulation to examine how these waves can accelerate plasma in the auroral zone.

  5. P and S wave attenuation tomography of the Japan subduction zone

    NASA Astrophysics Data System (ADS)

    Wang, Zewei; Zhao, Dapeng; Liu, Xin; Chen, Chuanxu; Li, Xibing

    2017-04-01

    We determine the first high-resolution P and S wave attenuation (Q) tomography beneath the entire Japan Islands using a large number of high-quality t∗ data collected from P and S wave velocity spectra of 4222 local shallow and intermediate-depth earthquakes. The suboceanic earthquakes used in this study are relocated precisely using sP depth phases. Significant landward dipping high-Q zones are revealed clearly, which reflect the subducting Pacific slab beneath Hokkaido and Tohoku, and the subducting Philippine Sea (PHS) slab beneath SW Japan. Prominent low-Q zones are visible in the crust and mantle wedge beneath the active arc volcanoes in Hokkaido, Tohoku, and Kyushu, which reflect source zones of arc magmatism caused by fluids from the slab dehydration and corner flow in the mantle wedge. Our results also show that nonvolcanic low-frequency earthquakes (LFEs) in SW Japan mainly occur in the transition zone between a narrow low-Q belt and its adjacent high-Q zones right above the flat segment of the PHS slab. This feature suggests that the nonvolcanic LFEs are caused by not only fluid-affected slab interface but also specific conditions such as high pore pressure which is influenced by the overriding plate.

  6. Wave-Ice interaction in the Marginal Ice Zone: Toward a Wave-Ocean-Ice Coupled Modeling System

    DTIC Science & Technology

    2015-09-30

    MIZ using WW3 (3 frequency bins, ice retreat in August and ice advance in October); Blue (solid): Based on observations near Antarctica by Meylan...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave- Ice interaction in the Marginal Ice Zone: Toward a...Wave-Ocean- Ice Coupled Modeling System W. E. Rogers Naval Research Laboratory, Code 7322 Stennis Space Center, MS 39529 phone: (228) 688-4727

  7. Shear-horizontal vibration modes of an oblate elliptical cylinder and energy trapping in contoured acoustic wave resonators.

    PubMed

    He, Huijing; Yang, Jiashi; Kosinski, John A

    2012-08-01

    We study shear-horizontal free vibrations of an elastic cylinder with an oblate elliptical cross section and a traction-free surface. Exact vibration modes and frequencies are obtained. The results show the existence of thickness-shear and thickness-twist modes. The energy-trapping behavior of these modes is examined. Trapped modes are found wherein the vibration energy is largely confined to the central portion of the cross section and little vibration energy is found at the edges. It is also shown that face-shear modes are not allowed in such a cylinder. The results are useful for the understanding of the energy trapping phenomenon in contoured acoustic wave resonators.

  8. TURBULENCE, TRANSPORT, AND WAVES IN OHMIC DEAD ZONES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gole, Daniel; Simon, Jacob B.; Armitage, Philip J.

    We use local numerical simulations to study a vertically stratified accretion disk with a resistive mid-plane that damps magnetohydrodynamic (MHD) turbulence. This is an idealized model for the dead zones that may be present at some radii in protoplanetary and dwarf novae disks. We vary the relative thickness of the dead and active zones to quantify how forced fluid motions in the dead zone change. We find that the residual Reynolds stress near the mid-plane decreases with increasing dead zone thickness, becoming negligible in cases where the active to dead mass ratio is less than a few percent. This impliesmore » that purely Ohmic dead zones would be vulnerable to episodic accretion outbursts via the mechanism of Martin and Lubow. We show that even thick dead zones support a large amount of kinetic energy, but this energy is largely in fluid motions that are inefficient at angular momentum transport. Confirming results from Oishi and Mac Low, the perturbed velocity field in the dead zone is dominated by an oscillatory, vertically extended circulation pattern with a low frequency compared to the orbital frequency. This disturbance has the properties predicted for the lowest order r mode in a hydrodynamic disk. We suggest that in a global disk similar excitations would lead to propagating waves, whose properties would vary with the thickness of the dead zone and the nature of the perturbations (isothermal or adiabatic). Flows with similar amplitudes would buckle settled particle layers and could reduce the efficiency of pebble accretion.« less

  9. Crustal seismic structure beneath the Deccan Traps area (Gujarat, India), from local travel-time tomography

    NASA Astrophysics Data System (ADS)

    Prajapati, Srichand; Kukarina, Ekaterina; Mishra, Santosh

    2016-03-01

    The Gujarat region in western India is known for its intra-plate seismic activity, including the Mw 7.7 Bhuj earthquake, a reverse-faulting event that reactivated normal faults of the Mesozoic Kachchh rift zone. The Late Cretaceous Deccan Traps, one of the largest igneous provinces on the Earth, cover the southern part of Gujarat. This study is aimed at bringing light to the crustal rift zone structure and likely origin of the Traps based on the velocity structure of the crust beneath Gujarat. Tomographic inversion of the Gujarat region was done using the non-linear, passive-source tomographic algorithm, LOTOS. We use high-quality arrival times of 22,280 P and 22,040 S waves from 3555 events recorded from August 2006 to May 2011 at 83 permanent and temporary stations installed in Gujarat state by the Institute of Seismological Research (ISR). We conclude that the resulting high-velocity anomalies, which reach down to the Moho, are most likely related to intrusives associated with the Deccan Traps. Low velocity anomalies are found in sediment-filled Mesozoic rift basins and are related to weakened zones of faults and fracturing. A low-velocity anomaly in the north of the region coincides with the seismogenic zone of the reactivated Kachchh rift system, which is apparently associated with the channel of the outpouring of Deccan basalt.

  10. Superthermal Electron Magnetosphere-Ionosphere Coupling in the Diffuse Aurora in the Presence of ECH Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Tripathi, A. K.; Singhal, R. P.; Himwich, Elizabeth; Glocer, A.; Sibeck, D. G.

    2015-01-01

    There are two main theories for the origin of the diffuse auroral electron precipitation: first, pitch angle scattering by electrostatic electron cyclotron harmonic (ECH) waves, and second, by whistler mode waves. Precipitating electrons initially injected from the plasma sheet to the loss cone via wave-particle interaction processes degrade in the atmosphere toward lower energies and produce secondary electrons via impact ionization of the neutral atmosphere. These secondary electrons can escape back to the magnetosphere, become trapped on closed magnetic field lines, and deposit their energy back to the inner magnetosphere. ECH and whistler mode waves can also move electrons in the opposite direction, from the loss cone into the trap zone, if the source of such electrons exists in conjugate ionospheres located at the same field lines as the trapped magnetospheric electron population. Such a situation exists in the simulation scenario of superthermal electron energy interplay in the region of diffuse aurora presented and discussed by Khazanov et al. (2014) and will be quantified in this paper by taking into account the interaction of secondary electrons with ECH waves.

  11. Alongshore momentum transfer to the nearshore zone from energetic ocean waves generated by passing hurricanes

    NASA Astrophysics Data System (ADS)

    Mulligan, Ryan P.; Hanson, Jeffrey L.

    2016-06-01

    Wave and current measurements from a cross-shore array of nearshore sensors in Duck, NC, are used to elucidate the balance of alongshore momentum under energetic wave conditions with wide surf zones, generated by passing hurricanes that are close to and far from to the coast. The observations indicate that a distant storm (Hurricane Bill, 2009) with large waves has low variability in directional wave characteristics resulting in alongshore currents that are driven mainly by the changes in wave energy. A storm close to the coast (Hurricane Earl, 2010), with strong local wind stress and combined sea and swell components in wave energy spectra, has high variability in wave direction and wave period that influence wave breaking and nearshore circulation as the storm passes. During both large wave events, the horizontal current shear is strong and radiation stress gradients, bottom stress, wind stress, horizontal mixing, and cross-shore advection contribute to alongshore momentum at different spatial locations across the nearshore region. Horizontal mixing during Hurricane Earl, estimated from rotational velocities, was particularly strong suggesting that intense eddies were generated by the high horizontal shear from opposing wind-driven and wave-driven currents. The results provide insight into the cross-shore distribution of the alongshore current and the connection between flows inside and outside the surf zone during major storms, indicating that the current shear and mixing at the interface between the surf zone and shallow inner shelf is strongly dependent on the distance from the storm center to the coast.

  12. Finite-frequency wave propagation through outer rise fault zones and seismic measurements of upper mantle hydration

    USGS Publications Warehouse

    Miller, Nathaniel; Lizarralde, Daniel

    2016-01-01

    Effects of serpentine-filled fault zones on seismic wave propagation in the upper mantle at the outer rise of subduction zones are evaluated using acoustic wave propagation models. Modeled wave speeds depend on azimuth, with slowest speeds in the fault-normal direction. Propagation is fastest along faults, but, for fault widths on the order of the seismic wavelength, apparent wave speeds in this direction depend on frequency. For the 5–12 Hz Pn arrivals used in tomographic studies, joint-parallel wavefronts are slowed by joints. This delay can account for the slowing seen in tomographic images of the outer rise upper mantle. At the Middle America Trench, confining serpentine to fault zones, as opposed to a uniform distribution, reduces estimates of bulk upper mantle hydration from ~3.5 wt % to as low as 0.33 wt % H2O.

  13. On the correct implementation of Fermi-Dirac statistics and electron trapping in nonlinear electrostatic plane wave propagation in collisionless plasmas

    NASA Astrophysics Data System (ADS)

    Schamel, Hans; Eliasson, Bengt

    2016-05-01

    Quantum statistics and electron trapping have a decisive influence on the propagation characteristics of coherent stationary electrostatic waves. The description of these strictly nonlinear structures, which are of electron hole type and violate linear Vlasov theory due to the particle trapping at any excitation amplitude, is obtained by a correct reduction of the three-dimensional Fermi-Dirac distribution function to one dimension and by a proper incorporation of trapping. For small but finite amplitudes, the holes become of cnoidal wave type and the electron density is shown to be described by a ϕ ( x ) 1 / 2 rather than a ϕ ( x ) expansion, where ϕ ( x ) is the electrostatic potential. The general coefficients are presented for a degenerate plasma as well as the quantum statistical analogue to these steady state coherent structures, including the shape of ϕ ( x ) and the nonlinear dispersion relation, which describes their phase velocity.

  14. On a new scenario for the saturation of the low-threshold two-plasmon parametric decay instability of an extraordinary wave in the inhomogeneous plasma of magnetic traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusakov, E. Z., E-mail: Evgeniy.Gusakov@mail.ioffe.ru; Popov, A. Yu., E-mail: a.popov@mail.ioffe.ru; Irzak, M. A., E-mail: irzak@mail.ioffe.ru

    The most probable scenario for the saturation of the low-threshold two-plasmon parametric decay instability of an electron cyclotron extraordinary wave has been analyzed. Within this scenario two upperhybrid plasmons at frequencies close to half the pump wave frequency radially trapped in the vicinity of the local maximum of the plasma density profile are excited due to the excitation of primary instability. The primary instability saturation results from the decays of the daughter upper-hybrid waves into secondary upperhybrid waves that are also radially trapped in the vicinity of the local maximum of the plasma density profile and ion Bernstein waves.

  15. Quantifying Wave Breaking Shape and Type in the Surf-Zone Using LiDAR

    NASA Astrophysics Data System (ADS)

    Albright, A.; Brodie, K. L.; Hartzell, P. J.; Glennie, C. L.

    2017-12-01

    Waves change shape as they shoal and break across the surf-zone, ultimately dissipating and transferring their energy into turbulence by either spilling or plunging. This injection of turbulence and changes in wave shape can affect the direction of sediment transport at the seafloor, and ultimately lead to morphological evolution. Typical methods for collecting wave data in the surf-zone include in-situ pressure gauges, velocimeters, ultrasonic sensors, and video imagery. Drawbacks to these data collection methods are low spatial resolution of point measurements, reliance on linear theory to calculate sea-surface elevations, and intensive computations required to extract wave properties from stereo 2D imagery. As a result, few field measurements of the shapes of plunging and/or spilling breakers exist, and existing knowledge is confined to results of laboratory studies. We therefore examine the use of a multi-beam scanning Light Detection and Ranging (LiDAR) remote sensing instrument with the goal of classifying the breaking type of propagating waves in the surf-zone and quantitatively determining wave morphometric properties. Data were collected with a Velodyne HDL-32E LiDAR scanner (360° vertical field of view) mounted on an arm of the Coastal Research Amphibious Buggy (CRAB) at the U.S. Army Corps of Engineers Field Research Facility in Duck, North Carolina. Processed laser scan data are used to visualize the lifecycle of a wave (shoaling, breaking, broken) and identify wave types (spilling, plunging, non-breaking) as they pass beneath the scanner. For each rotation of the LiDAR scanner, the point cloud data are filtered, smoothed, and detrended in order to identify individual waves and measure their properties, such as speed, height, period, upward/downward slope, asymmetry, and skewness. The 3D nature of point cloud data is advantageous for research, because it enables viewing from any angle. In our analysis, plan views are used to separate individual waves

  16. Fetch-Trapping in Hurricane Isabel

    NASA Astrophysics Data System (ADS)

    Pearse, A. J.; Hanson, J. L.

    2005-12-01

    Hurricane Isabel made landfall near Drum Inlet on the Outer Banks of North Carolina on September 18, 2003, and caused extensive monetary and coastal damage. Storm surge and battering waves were a primary cause of damage, as in most hurricanes. Data collected at the US Army Corps of Engineers Field Research Facility (FRF) in Duck, NC, the National Data Buoy Center (NDBC), and the Coastal Data Information Program (CDIP) suggest that the waves generated by Hurricane Isabel were larger and had longer periods than would be suggested by a traditional semi-empirical wave growth model with similar fetch and wind speed values. It is likely that this enhanced growth was due to the trapping of storm waves within the moving fetch of the hurricane. The purpose of this study was to empirically confirm the enhancement and to identify the degree of fetch-trapping that occurred. Directional wave spectra from 577 individual wave records were collected from buoys in three locations: CDIP station 078 in King's Bay, GA, the FRF Waverider in NC, and NDBC Station 44025 off Long Island, NY. A wave partitioning approach was used to isolate the individual swell components from the evolving wave field at each station. A backward raytrace along great-circle routes was employed to identify the intersection of each swell system with the official National Hurricane Center (NHC) Isabel track. This allowed matching each observed swell component with a generation time, storm translation speed, and peak wind speed. Wave period, rather than amplitude, was used in this study because amplitude is significantly affected by the bottom topography whereas period is conserved. Using the identified wind speeds and an average fetch of 200 km (approximated using NOAA wind field charts), the actual waves showed wave period enhancements up to 60% over predictions using the standard wave growth model. A variety of resonance criteria are applied to evaluate fetch trapping in Hurricane Isabel. The most enhanced

  17. Persistent and energetic bottom-trapped topographic Rossby waves observed in the southern South China Sea.

    PubMed

    Shu, Yeqiang; Xue, Huijie; Wang, Dongxiao; Chai, Fei; Xie, Qiang; Cai, Shuqun; Chen, Rongyu; Chen, Ju; Li, Jian; He, Yunkai

    2016-04-14

    Energetic fluctuations with periods of 9-14 days below a depth of 1400 m were observed in the southern South China Sea (SCS) from 5 years of direct measurements. We interpreted such fluctuations as topographic Rossby waves (TRWs) because they obey the dispersion relation. The TRWs persisted from May 24, 2009 to August 23, 2013, and their bottom current speed with a maximum of ~10 cm/s was one order of magnitude greater than the mean current and comparable to the tidal currents near the bottom. The bottom-trapped TRWs had an approximate trapping depth of 325 m and reference wavelength of ~82 km, which were likely excited by eddies above. Upper layer current speed that peaked approximately every 2 months could offer the energy sources for the persistent TRWs in the southern SCS. Energetic bottom-trapped TRWs may have a comparable role in deep circulation to tides in areas with complex topography.

  18. Persistent and energetic bottom-trapped topographic Rossby waves observed in the southern South China Sea

    PubMed Central

    Shu, Yeqiang; Xue, Huijie; Wang, Dongxiao; Chai, Fei; Xie, Qiang; Cai, Shuqun; Chen, Rongyu; Chen, Ju; Li, Jian; He, Yunkai

    2016-01-01

    Energetic fluctuations with periods of 9–14 days below a depth of 1400 m were observed in the southern South China Sea (SCS) from 5 years of direct measurements. We interpreted such fluctuations as topographic Rossby waves (TRWs) because they obey the dispersion relation. The TRWs persisted from May 24, 2009 to August 23, 2013, and their bottom current speed with a maximum of ~10 cm/s was one order of magnitude greater than the mean current and comparable to the tidal currents near the bottom. The bottom-trapped TRWs had an approximate trapping depth of 325 m and reference wavelength of ~82 km, which were likely excited by eddies above. Upper layer current speed that peaked approximately every 2 months could offer the energy sources for the persistent TRWs in the southern SCS. Energetic bottom-trapped TRWs may have a comparable role in deep circulation to tides in areas with complex topography. PMID:27075644

  19. Physical enviroment of 2-D animal cell aggregates formed in a short pathlength ultrasound standing wave trap.

    PubMed

    Bazou, Despina; Kuznetsova, Larisa A; Coakley, W Terence

    2005-03-01

    2-D mammalian cell aggregates can be formed and levitated in a 1.5 MHz single half wavelength ultrasound standing wave trap. The physical environment of cells in such a trap has been examined. Attention was paid to parameters such as temperature, acoustic streaming, cavitation and intercellular forces. The extent to which these factors might be intrusive to a neural cell aggregate levitated in the trap was evaluated. Neural cells were exposed to ultrasound at a pressure amplitude of 0.54 MPa for 30 s; a small aggregate had been formed at the center of the trap. The pressure amplitude was then decreased to 0.27 MPa for 2 min, at which level the aggregation process continued at a slower rate. The pressure amplitude was then decreased to 0.06 MPa for 1 h. Temperature measurements that were conducted in situ with a 200 microm thermocouple over a 30 min period showed that the maximum temperature rise was less than 0.5 K. Acoustic streaming was measured by the particle image velocimetry method (PIV). It was shown that the hydrodynamic stress imposed on cells by acoustic streaming is less than that imposed by gentle preparative centrifugation procedures. Acoustic spectrum analysis showed that cavitation activity does not occur in the cell suspensions sonicated at the above pressures. White noise was detected only at a pressure amplitude of 1.96 MPa. Finally, it was shown that the attractive acoustic force between ultrasonically agglomerated cells is small compared with the normal attractive van der Waals force that operates at close cell surface separations. It is concluded that the standing wave trap operates only to concentrate cells locally, as in tissue, and does not modify the in vitro expression of surface receptor interactions.

  20. Trapped Modes in a Three-Layer Fluid

    NASA Astrophysics Data System (ADS)

    Saha, Sunanda; Bora, Swaroop Nandan

    2018-03-01

    In this work, trapped mode frequencies are computed for a submerged horizontal circular cylinder with the hydrodynamic set-up involving an infinite depth three-layer incompressible fluid with layer-wise different densities. The impermeable cylinder is fully immersed in either the bottom layer or the upper layer. The effect of surface tension at the surface of separation is neglected. In this set-up, there exist three wave numbers: the lowest one on the free surface and the other two on the internal interfaces. For each wave number, there exist two modes for which trapped waves exist. The existence of these trapped modes is shown by numerical evidence. We investigate the variation of these trapped modes subject to change in the depth of the middle layer as well as the submergence depth. We show numerically that two-layer and single-layer results cannot be recovered in the double and single limiting cases of the density ratios tending to unity. The existence of trapped modes shows that in general, a radiation condition for the waves at infinity is insufficient for the uniqueness of the solution of the scattering problem.

  1. Coupling of Waves, Turbulence and Thermodynamics Across the Marginal Ice Zone

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Coupling of Waves, Turbulence and Thermodynamics across...developing Thermodynamically Forced Marginal Ice Zone. Submitted to JGR. Heiles,A. S., NPS thesis, Sep. 2014 Schmidt, B. K., NPS thesis March 2012 Shaw

  2. Peculiarities of energy trapping of the UHF elastic waves in diamond-based piezoelectric layered structure. I. Waveguide criterion.

    PubMed

    Kvashnin, G M; Sorokin, B P; Novoselov, A S

    2018-03-01

    Finite Element Modeling of the peculiarities of the trapping energy phenomenon in application to the piezoelectric layered structure (PLS) "Al/(0 0 1) AlN/Mo/(1 0 0) diamond" has been fulfilled. The resonant properties of longitudinal bulk acoustic waves (BAW) as well as frequency dependence of impedance within the 1 - 6 GHz band have been studied. The investigation of distribution of elastic energy flow and elastic displacements in a PLS cross-section allowed us to obtain an important information on energy trapping (ET) in PLS. Experimentally and as a result of modeling, it has been found that Q minimums are observed in PLS at quarter-wave resonance in the thin-film piezoelectric transducer (TFPT). Maximal Q value was observed at half-wave resonance in TFPT. It has been established that the ET-effect depends considerably on the mutual location of the n-th overtone's antiresonant frequency f a , n and cut-off frequencies of substrate f s , n-k- 1 and f s , n-k where f s , n-k- 1 waves to be stowed on the thickness of TFPT. The total violation of the ET-effect will be arisen at the condition f >f s , n-k , when the BAW energy excites the symmetrical or antisymmetrical Lamb waves. Copyright © 2017. Published by Elsevier B.V.

  3. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1992-01-01

    In the area of solar physics, new calculations of the acoustic wave energy fluxes generated in the solar convective zone was performed. The original theory developed was corrected by including a new frequency factor describing temporal variations of the turbulent energy spectrum. We have modified the original Stein code by including this new frequency factor, and tested the code extensively. Another possible source of the mechanical energy generated in the solar convective zone is the excitation of magnetic flux tube waves which can carry energy along the tubes far away from the region. The problem as to how efficiently those waves are generated in the Sun was recently solved. The propagation of nonlinear magnetic tube waves in the solar atmosphere was calculated, and mode coupling, shock formation, and heating of the local medium was studied. The wave trapping problems and evaluation of critical frequencies for wave reflection in the solar atmosphere was studied. It was shown that the role played by Alfven waves in the wind accelerations and the coronal hole heating is dominant. Presently, we are performing calculations of wave energy fluxes generated in late-type dwarf stars and studying physical processes responsible for the heating of stellar chromospheres and coronae. In the area of physics of waves, a new analytical approach for studying linear Alfven waves in smoothly nonuniform media was recently developed. This approach is presently being extended to study the propagation of linear and nonlinear magnetohydrodynamic (MHD) waves in stratified, nonisothermal and solar atmosphere. The Lighthill theory of sound generation to nonisothermal media (with a special temperature distribution) was extended. Energy cascade by nonlinear MHD waves and possible chaos driven by these waves are presently considered.

  4. Electron Trapping and Charge Transport by Large Amplitude Whistlers

    NASA Technical Reports Server (NTRS)

    Kellogg, P. J.; Cattell, C. A.; Goetz, K.; Monson, S. J.; Wilson, L. B., III

    2010-01-01

    Trapping of electrons by magnetospheric whistlers is investigated using data from the Waves experiment on Wind and the S/WAVES experiment on STEREO. Waveforms often show a characteristic distortion which is shown to be due to electrons trapped in the potential of the electrostatic part of oblique whistlers. The density of trapped electrons is significant, comparable to that of the unperturbed whistler. Transport of these trapped electrons to new regions can generate potentials of several kilovolts, Trapping and the associated potentials may play an important role in the acceleration of Earth's radiation belt electrons.

  5. Nonlinear Dust Acoustic Waves in a Magnetized Dusty Plasma with Trapped and Superthermal Electrons

    NASA Astrophysics Data System (ADS)

    Ahmadi, Abrishami S.; Nouri, Kadijani M.

    2014-06-01

    In this work, the effects of superthermal and trapped electrons on the oblique propagation of nonlinear dust-acoustic waves in a magnetized dusty (complex) plasma are investigated. The dynamic of electrons is simulated by the generalized Lorentzian (κ) distribution function (DF). The dust grains are cold and their dynamics are simulated by hydrodynamic equations. Using the standard reductive perturbation technique (RPT) a nonlinear modified Korteweg-de Vries (mKdV) equation is derived. Two types of solitary waves; fast and slow dust acoustic solitons, exist in this plasma. Calculations reveal that compressive solitary structures are likely to propagate in this plasma where dust grains are negatively (or positively) charged. The properties of dust acoustic solitons (DASs) are also investigated numerically.

  6. 1D array of dark spot traps formed by counter-propagating nested Gaussian laser beams for trapping and moving atomic qubits

    NASA Astrophysics Data System (ADS)

    Gillen-Christandl, Katharina; Frazer, Travis D.

    2017-04-01

    The standing wave of two identical counter-propagating Gaussian laser beams constitutes a 1D array of bright spots that can serve as traps for single neutral atoms for quantum information operations. Detuning the frequency of one of the beams causes the array to start moving, effectively forming a conveyor belt for the qubits. Using a pair of nested Gaussian laser beams with different beam waists, however, forms a standing wave with a 1D array of dark spot traps confined in all dimensions. We have computationally explored the trap properties and limitations of this configuration and, trading off trap depth and frequencies with the number of traps and trap photon scattering rates, we determined the laser powers and beam waists needed for useful 1D arrays of dark spot traps for trapping and transporting atomic qubits in neutral atom quantum computing platforms.

  7. Study of internal gravity waves in the meteor zone

    NASA Technical Reports Server (NTRS)

    Gavrilov, N. M.

    1987-01-01

    An important component of the dynamical regime of the atmosphere at heights near 100 km are internal gravity waves (IGW) with periods from about 5 min to about 17.5 hrs which propagate from the lower atmospheric layers and are generated in the uppermost region of the atmosphere. As IGW propagate upwards, their amplitudes increase and they have a considerable effect on upper atmospheric processes: (1) they provide heat flux divergences comparable with solar heating; (2) they influence the gaseous composition and produce wave variations of the concentrations of gaseous components and emissions of the upper atmosphere; and (3) they cause considerable acceleration of the mean stream. It was concluded that the periods, wavelengths, amplitudes and velocities of IGW propagation in the meteor zone are now measured quite reliably. However, for estimating the influence of IGW on the thermal regime and the circulation of the upper atmosphere these parameters are not as important as the values of wave fluxes of energy, heat, moment and mass.

  8. Oceanic crust in the mid-mantle beneath Central-West Pacific subduction zones: Evidence from S-to-P converted waveforms

    NASA Astrophysics Data System (ADS)

    He, X.

    2015-12-01

    The fate of subducted slabs is enigmatic, yet intriguing. We analyze seismic arrivals at ~20-50 s after the direct P wave in an array in northeast China (NECESSArray) recordings of four deep earthquakes occurring beneath the west-central Pacific subduction zones (from the eastern Indonesia to Tonga region). We employ the array analyzing techniques of 4th root vespagram and beam-form analysis to constrain the slowness and back azimuth of later arrivals. Our analyses reveal that these arrivals have a slightly lower slowness value than the direct P wave and the back azimuth deviates slightly from the great-circle direction. Along with calculation of one-dimensional synthetic seismograms, we conclude that the later arrival is corresponding to an energy of S-to-P converted at a scatterer below the sources. Total five scatterers are detected at depths varying from ~700 to 1110 km in the study region. The past subducted oceanic crust most likely accounts for the seismic scatterers trapped in the mid-mantle beneath the west-central subduction zones. Our observation in turn reflects that oceanic crust at least partly separated from subducted oceanic lithosphere and may be trapped substantially in the mid-mantle surrounding subduction zones, in particular in the western Pacific subduction zones.

  9. Evidence of shallow fault zone strengthening after the 1992 M7.5 Landers, California, earthquake

    USGS Publications Warehouse

    Li, Y.-G.; Vidale, J.E.; Aki, K.; Xu, Fei; Burdette, T.

    1998-01-01

    Repeated seismic surveys of the Landers, California, fault zone that ruptured in the magnitude (M) 7.5 earthquake of 1992 reveal an increase in seismic velocity with time. P, S, and fault zone trapped waves were excited by near-surface explosions in two locations in 1994 and 1996, and were recorded on two linear, three-component seismic arrays deployed across the Johnson Valley fault trace. The travel times of P and S waves for identical shot-receiver pairs decreased by 0.5 to 1.5 percent from 1994 to 1996, with the larger changes at stations located within the fault zone. These observations indicate that the shallow Johnson Valley fault is strengthening after the main shock, most likely because of closure of cracks that were opened by the 1992 earthquake. The increase in velocity is consistent with the prevalence of dry over wet cracks and with a reduction in the apparent crack density near the fault zone by approximately 1.0 percent from 1994 to 1996.

  10. PIC simulations of the trapped electron filamentation instability in finite-width electron plasma waves

    NASA Astrophysics Data System (ADS)

    Winjum, B. J.; Banks, J. W.; Berger, R. L.; Cohen, B. I.; Chapman, T.; Hittinger, J. A. F.; Rozmus, W.; Strozzi, D. J.; Brunner, S.

    2012-10-01

    We present results on the kinetic filamentation of finite-width nonlinear electron plasma waves (EPW). Using 2D simulations with the PIC code BEPS, we excite a traveling EPW with a Gaussian transverse profile and a wavenumber k0λDe= 1/3. The transverse wavenumber spectrum broadens during transverse EPW localization for small width (but sufficiently large amplitude) waves, while the spectrum narrows to a dominant k as the initial EPW width increases to the plane-wave limit. For large EPW widths, filaments can grow and destroy the wave coherence before transverse localization destroys the wave; the filaments in turn evolve individually as self-focusing EPWs. Additionally, a transverse electric field develops that affects trapped electrons, and a beam-like distribution of untrapped electrons develops between filaments and on the sides of a localizing EPW. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD-061. Supported also under Grants DE-FG52-09NA29552 and NSF-Phy-0904039. Simulations were performed on UCLA's Hoffman2 and NERSC's Hopper.

  11. Optical trapping of nanoparticles by ultrashort laser pulses.

    PubMed

    Usman, Anwar; Chiang, Wei-Yi; Masuhara, Hiroshi

    2013-01-01

    Optical trapping with continuous-wave lasers has been a fascinating field in the optical manipulation. It has become a powerful tool for manipulating micrometer-sized objects, and has been widely applied in physics, chemistry, biology, material, and colloidal science. Replacing the continuous-wave- with pulsed-mode laser in optical trapping has already revealed some novel phenomena, including the stable trap, modifiable trapping positions, and controllable directional optical ejections of particles in nanometer scales. Due to two distinctive features; impulsive peak powers and relaxation time between consecutive pulses, the optical trapping with the laser pulses has been demonstrated to have some advantages over conventional continuous-wave lasers, particularly when the particles are within Rayleigh approximation. This would open unprecedented opportunities in both fundamental science and application. This Review summarizes recent advances in the optical trapping with laser pulses and discusses the electromagnetic formulations and physical interpretations of the new phenomena. Its aim is rather to show how beautiful and promising this field will be, and to encourage the in-depth study of this field.

  12. Numerical modelling of wind effects on breaking waves in the surf zone

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua

    2017-10-01

    Wind effects on periodic breaking waves in the surf zone have been investigated in this study using a two-phase flow model. The model solves the Reynolds-averaged Navier-Stokes equations with the k - 𝜖 turbulence model simultaneously for the flows both in the air and water. Both spilling and plunging breakers over a 1:35 sloping beach have been studied under the influence of wind, with a focus during wave breaking. Detailed information of the distribution of wave amplitudes and mean water level, wave-height-to-water-depth ratio, the water surface profiles, velocity, vorticity, and turbulence fields have been presented and discussed. The inclusion of wind alters the air flow structure above water waves, increases the generation of vorticity, and affects the wave shoaling, breaking, overturning, and splash-up processes. Wind increases the water particle velocities and causes water waves to break earlier and seaward, which agrees with the previous experiment.

  13. Propagation of arbitrary initial wave packets in a quantum parametric oscillator: Instability zones for higher order moments

    NASA Astrophysics Data System (ADS)

    Biswas, Subhadip; Chattopadhyay, Rohitashwa; Bhattacharjee, Jayanta K.

    2018-05-01

    We consider the dynamics of a particle in a parametric oscillator with a view to exploring any quantum feature of the initial wave packet that shows divergent (in time) behaviour for parameter values where the classical motion dynamics of the mean position is bounded. We use Ehrenfest's theorem to explore the dynamics of nth order moment which reduces exactly to a linear non autonomous differential equation of order n + 1. It is found that while the width and skewness of the packet is unbounded exactly in the zones where the classical motion is unbounded, the kurtosis of an initially non-gaussian wave packet can become infinitely large in certain additional zones. This implies that the shape of the wave packet can change drastically with time in these zones.

  14. Imaging the Chicxulub central crater zone from large scale seismic acoustic wave propagation and gravity modeling

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Ortiz-Aleman, C.; Martin, R.

    2017-12-01

    Large complex craters are characterized by central uplifts that represent large-scale differential movement of deep basement from the transient cavity. Here we investigate the central sector of the large multiring Chicxulub crater, which has been surveyed by an array of marine, aerial and land-borne geophysical methods. Despite high contrasts in physical properties,contrasting results for the central uplift have been obtained, with seismic reflection surveys showing lack of resolution in the central zone. We develop an integrated seismic and gravity model for the main structural elements, imaging the central basement uplift and melt and breccia units. The 3-D velocity model built from interpolation of seismic data is validated using perfectly matched layer seismic acoustic wave propagation modeling, optimized at grazing incidence using shift in the frequency domain. Modeling shows significant lack of illumination in the central sector, masking presence of the central uplift. Seismic energy remains trapped in an upper low velocity zone corresponding to the sedimentary infill, melt/breccias and surrounding faulted blocks. After conversion of seismic velocities into a volume of density values, we use massive parallel forward gravity modeling to constrain the size and shape of the central uplift that lies at 4.5 km depth, providing a high-resolution image of crater structure.The Bouguer anomaly and gravity response of modeled units show asymmetries, corresponding to the crater structure and distribution of post-impact carbonates, breccias, melt and target sediments

  15. Properties of the dead zone due to the gas cushion effect in PBX 9502

    NASA Astrophysics Data System (ADS)

    Anderson, William

    2017-06-01

    The gas cushion effect is a well-known phenomenon in which gas trapped between an impactor and an explosive precompresses and deadens a layer of the explosive. We have conducted a series of impact experiments, with and without a trapped gas layer, on the plastic bonded explosive PBX 9502 (95% TATB and 5% Kel-F 800). In each experiment, a 100-oriented LiF window was glued, with an intervening Al foil (a reflector for VISAR), to the surface of a thin (2.5-3.3 mm) PBX 9502 sample and the opposite surface impacted by an impactor at a velocity sufficient to produce an overdriven detonation. VISAR was used to observe arrival of the resulting shock wave and reverberations between the LiF window and the impactor. In three experiments, a gap of 25-38 mm, filled with He gas at a pressure of 0.79 bar, existed between the impactor and the sample at the beginning of the experiment. In these three experiments, a low-amplitude wave reflected from the interface between the reacted explosive and the dead zone was observed to precede the reflection from the impactor. We have used the observed wave amplitudes and arrival times to quantify the properties of the dead zone and, by comparison to existing EOS data for reacted and unreacted PBX 9502, estimate the extent of reaction in the dead zone. This work was supported by the US Department of Energy under contract DE-AC52-06NA25396.

  16. Effects of a strong magnetic field on internal gravity waves: trapping, phase mixing, reflection, and dynamical chaos

    NASA Astrophysics Data System (ADS)

    Loi, Shyeh Tjing; Papaloizou, John C. B.

    2018-07-01

    The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that strong magnetic fields in the cores of some red giants are responsible for their anomalously weak dipole mode amplitudes (the `dipole dichotomy' problem), but a detailed understanding of how gravity waves interact with strong fields is thus far lacking. In this work, we attack the problem through a variety of analytical and numerical techniques, applied to a localized region centred on a null line of a confined axisymmetric magnetic field which is approximated as being cylindrically symmetric. We uncover a rich variety of phenomena that manifest when the field strength exceeds a critical value, beyond which the symmetry is drastically broken by the Lorentz force. When this threshold is reached, the spatial structure of the g modes becomes heavily altered. The dynamics of wave packet propagation transitions from regular to chaotic, which is expected to fundamentally change the organization of the mode spectrum. In addition, depending on their frequency and the orientation of field lines with respect to the stratification, waves impinging on different parts of the magnetized region are found to undergo either reflection or trapping. Trapping regions provide an avenue for energy loss through Alfvén wave phase mixing. Our results may find application in various astrophysical contexts, including the dipole dichotomy problem, the solar interior, and compact star oscillations.

  17. Effects of a strong magnetic field on internal gravity waves: trapping, phase mixing, reflection and dynamical chaos

    NASA Astrophysics Data System (ADS)

    Loi, Shyeh Tjing; Papaloizou, John C. B.

    2018-04-01

    The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that strong magnetic fields in the cores of some red giants are responsible for their anomalously weak dipole mode amplitudes (the "dipole dichotomy" problem), but a detailed understanding of how gravity waves interact with strong fields is thus far lacking. In this work, we attack the problem through a variety of analytical and numerical techniques, applied to a localised region centred on a null line of a confined axisymmetric magnetic field which is approximated as being cylindrically symmetric. We uncover a rich variety of phenomena that manifest when the field strength exceeds a critical value, beyond which the symmetry is drastically broken by the Lorentz force. When this threshold is reached, the spatial structure of the g-modes becomes heavily altered. The dynamics of wave packet propagation transitions from regular to chaotic, which is expected to fundamentally change the organisation of the mode spectrum. In addition, depending on their frequency and the orientation of field lines with respect to the stratification, waves impinging on different parts of the magnetised region are found to undergo either reflection or trapping. Trapping regions provide an avenue for energy loss through Alfvén wave phase mixing. Our results may find application in various astrophysical contexts, including the dipole dichotomy problem, the solar interior, and compact star oscillations.

  18. Biogeochemical flux and phytoplankton succession: A year-long sediment trap record in the Australian sector of the Subantarctic Zone

    NASA Astrophysics Data System (ADS)

    Wilks, Jessica V.; Rigual-Hernández, Andrés S.; Trull, Thomas W.; Bray, Stephen G.; Flores, José-Abel; Armand, Leanne K.

    2017-03-01

    The Subantarctic Zone (SAZ) plays a crucial role in global carbon cycling as a significant sink for atmospheric CO2. In the Australian sector, the SAZ exports large quantities of organic carbon from the surface ocean, despite lower algal biomass accumulation in surface waters than other Southern Ocean sectors. We present the first analysis of diatom and coccolithophore assemblages and seasonality, as well as the first annual quantification of bulk organic components of captured material at the base of the mixed layer (500 m depth) in the SAZ. Sediment traps were moored in the SAZ southwest of Tasmania as part of the long-term SAZ Project for one year (September 2003 to September 2004). Annual mass flux at 500 m and 2000 m was composed mainly of calcium carbonate, while biogenic silica made up on average <10% of material captured in the traps. Organic carbon flux was estimated at 1.1 g m-2 y-1 at 500 m, close to the estimated global mean carbon flux. Low diatom fluxes and high fluxes of coccoliths were consistent with low biogenic silica and high calcium carbonate fluxes, respectively. Diatoms and coccoliths were identified to species level. Diatom and coccolithophore sinking assemblages reflected some seasonal ecological succession. A theoretical scheme of diatom succession in live assemblages is compared to successional patterns presented in sediment traps. This study provides a unique, direct measurement of the biogeochemical fluxes and their main biological carbon vectors just below the winter mixed layer depth at which effective sequestration of carbon occurs. Comparison of these results with previous sediment trap deployments at the same site at deeper depths (i.e. 1000, 2000 and 3800 m) documents the changes particle fluxes experience in the lower "twilight zone" where biological processes and remineralisation of carbon reduce the efficiency of carbon sequestration.

  19. Design of Fresnel Lens-Type Multi-Trapping Acoustic Tweezers

    PubMed Central

    Tu, You-Lin; Chen, Shih-Jui; Hwang, Yean-Ren

    2016-01-01

    In this paper, acoustic tweezers which use beam forming performed by a Fresnel zone plate are proposed. The performance has been demonstrated by finite element analysis, including the acoustic intensity, acoustic pressure, acoustic potential energy, gradient force, and particle distribution. The acoustic tweezers use an ultrasound beam produced by a lead zirconate titanate (PZT) transducer operating at 2.4 MHz and 100 Vpeak-to-peak in a water medium. The design of the Fresnel lens (zone plate) is based on air reflection, acoustic impedance matching, and the Fresnel half-wave band (FHWB) theory. This acoustic Fresnel lens can produce gradient force and acoustic potential wells that allow the capture and manipulation of single particles or clusters of particles. Simulation results strongly indicate a good trapping ability, for particles under 150 µm in diameter, in the minimum energy location. This can be useful for cell or microorganism manipulation. PMID:27886050

  20. Model-simulated coastal trapped waves stimulated by typhoon in northwestern South China Sea

    NASA Astrophysics Data System (ADS)

    Cao, Xuefeng; Shi, Hongyuan; Shi, Maochong; Guo, Peifang; Wu, Lunyu; Ding, Yang; Wang, Lu

    2017-12-01

    In this paper, we apply an unstructured grid coastal ocean model to simulate variations in the sea level and currents forced by two typhoons in the northwestern South China Sea (SCS). The model simulations show distinct differences for the two cases in which the typhoon paths were north and south of the Qiongzhou (QZ) Strait. In both cases, coastal trapped waves (CTWs) are stimulated but their propagation behaviors differ. Model sensitivity simulations suggest the dominant role played by alongshore wind in the eastern SCS (near Shanwei) and southeast of Hainan Island. We also examine the influence of the Leizhou Peninsula by changing the coastline in simulation experiments. Based on our results, we can draw the following conclusions: 1) The CTWs stimulated by the northern typhoon are stronger than the southern CTW. 2) In the two cases, the directions of the current structures of the QZ cross-transect are reversed. The strongest flow cores are both located in the middle-upper area of the strait and the results of our empirical orthogonal function analysis show that the vertical structure is highly barotropic. 3) The simulated CTWs divide into two branches in the QZ Strait for the northern typhoon, and an island trapped wave (ITW) around Hainan Island for the southern typhoon. 4) The Leizhou Peninsula plays a significant role in the distribution of the kinetic energy flux between the two CTW branches. In the presence of the Leizhou Peninsula, the QZ branch has only 39.7 percent of the total energy, whereas that ratio increases to 72.2 percent in its absence.

  1. Plasmonic trapping potentials for cold atoms

    NASA Astrophysics Data System (ADS)

    Mildner, Matthias; Horrer, Andreas; Fleischer, Monika; Zimmermann, Claus; Slama, Sebastian

    2018-07-01

    This paper reports on conceptual and experimental work towards the realization of plasmonic surface traps for cold atoms. The trapping mechanism is based on the combination of a repulsive and an attractive potential generated by evanescent light waves that are plasmonically enhanced. The strength of enhancement can be locally manipulated via the thickness of a metal nanolayer deposited on top of a dielectric substrate. Thus, in principle the trapping geometry can be predefined by the metal layer design. We present simulations of a plasmonic lattice potential using a gold grating with sinusoidally modulated thickness. Experimentally, a first plasmonic test structure is presented and characterized. Furthermore, the surface potential landscape is detected by reflecting ultracold atom clouds from the test structure revealing the influence of both evanescent waves. A parameter range is identified where stable traps can be expected.

  2. Ultrasonic probing of the fracture process zone in rock using surface waves

    NASA Technical Reports Server (NTRS)

    Swanson, P. L.; Spetzler, H.

    1984-01-01

    A microcrack process zone is frequently suggested to accompany macrofractures in rock and play an important role in the resistance to fracture propagation. Attenuation of surface waves propagating through mode I fractures in wedge-loaded double-cantilever beam specimens of Westerly granite has been recorded in an attempt to characterize the structure of the fracture process zone. The ultrasonic measurements do not support the generally accepted model of a macroscopic fracture that incrementally propagates with the accompaniment of a cloud of microcracks. Instead, fractures in Westerly granite appear to form as gradually separating surfaces within a zone having a width of a few millimeters and a length of several tens of millimeters. A fracture process zone of this size would necessitate the use of meter-sized specimens in order for linear elastic fracture mechanics to be applicable.

  3. Modelling wave-induced sea ice break-up in the marginal ice zone

    NASA Astrophysics Data System (ADS)

    Montiel, F.; Squire, V. A.

    2017-10-01

    A model of ice floe break-up under ocean wave forcing in the marginal ice zone (MIZ) is proposed to investigate how floe size distribution (FSD) evolves under repeated wave break-up events. A three-dimensional linear model of ocean wave scattering by a finite array of compliant circular ice floes is coupled to a flexural failure model, which breaks a floe into two floes provided the two-dimensional stress field satisfies a break-up criterion. A closed-feedback loop algorithm is devised, which (i) solves the wave-scattering problem for a given FSD under time-harmonic plane wave forcing, (ii) computes the stress field in all the floes, (iii) fractures the floes satisfying the break-up criterion, and (iv) generates an updated FSD, initializing the geometry for the next iteration of the loop. The FSD after 50 break-up events is unimodal and near normal, or bimodal, suggesting waves alone do not govern the power law observed in some field studies. Multiple scattering is found to enhance break-up for long waves and thin ice, but to reduce break-up for short waves and thick ice. A break-up front marches forward in the latter regime, as wave-induced fracture weakens the ice cover, allowing waves to travel deeper into the MIZ.

  4. Nonlinear propagation of ion-acoustic waves in electron-positron-ion plasma with trapped electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alinejad, H.; Sobhanian, S.; Mahmoodi, J.

    2006-01-15

    A theoretical investigation has been made for ion-acoustic waves in an unmagnetized electron-positron-ion plasma. A more realistic situation in which plasma consists of a negatively charged ion fluid, free positrons, and trapped as well as free electrons is considered. The properties of stationary structures are studied by the reductive perturbation method, which is valid for small but finite amplitude limit, and by pseudopotential approach, which is valid for large amplitude. With an appropriate modified form of the electron number density, two new equations for the ion dynamics have been found. When deviations from isothermality are finite, the modified Korteweg-deVries equationmore » has been found, and for the case that deviations from isothermality are small, calculations lead to a generalized Korteweg-deVries equation. It is shown from both weakly and highly nonlinear analysis that the presence of the positrons may allow solitary waves to exist. It is found that the effect of the positron density changes the maximum value of the amplitude and M (Mach number) for which solitary waves can exist. The present theory is applicable to analyze arbitrary amplitude ion-acoustic waves associated with positrons which may occur in space plasma.« less

  5. Trapped modes in a non-axisymmetric cylindrical waveguide

    NASA Astrophysics Data System (ADS)

    Lyapina, A. A.; Pilipchuk, A. S.; Sadreev, A. F.

    2018-05-01

    We consider acoustic wave transmission in a non-axisymmetric waveguide which consists of a cylindrical resonator and two cylindrical waveguides whose axes are shifted relatively to each other by an azimuthal angle Δϕ. Under variation of the resonator's length L and fixed Δϕ we find bound states in the continuum (trapped modes) due to full destructive interference of resonant modes leaking into the waveguides. Rotation of the waveguide adds complex phases to the coupling strengths of the resonator eigenmodes with the propagating modes of the waveguides tuning Fano resonances to give rise to a wave faucet. Under variation of Δϕ with fixed resonator's length we find symmetry protected trapped modes. For Δϕ ≠ 0 these trapped modes contribute to the scattering function supporting high vortical acoustic intensity spinning inside the resonator. The waveguide rotation brings an important feature to the scattering and provides an instrument for control of acoustic transmittance and wave trapping.

  6. Simplified method for the calculation of irregular waves in the coastal zone

    NASA Astrophysics Data System (ADS)

    Leont'ev, I. O.

    2011-04-01

    A method applicable for the estimation of the wave parameters along a set bottom profile is suggested. It takes into account the principal processes having an influence on the waves in the coastal zone: the transformation, refraction, bottom friction, and breaking. The ability to use a constant mean value of the friction coefficient under conditions of sandy shores is implied. The wave breaking is interpreted from the viewpoint of the concept of the limiting wave height at a given depth. The mean and root-mean-square wave heights are determined by the height distribution function, which transforms under the effect of the breaking. The verification of the method on the basis of the natural data shows that the calculation results reproduce the observed variations of the wave heights in a wide range of conditions, including profiles with underwater bars. The deviations from the calculated values mostly do not exceed 25%, and the mean square error is 11%. The method does not require a preliminary setting and can be implemented in the form of a relatively simple calculator accessible even for an inexperienced user.

  7. Characteristics of a trapped-vortex (TV) combustor

    NASA Technical Reports Server (NTRS)

    Hsu, K.-Y.; Gross, L. P.; Trump, D. D.; Roquemore, W. M.

    1994-01-01

    The characteristics of a Trapped-Vortex (TV) combustor are presented. A vortex is trapped in the cavity established between two disks mounted in tandem. Fuel and air are injected directly into the cavity in such a way as to increase the vortex strength. Some air from the annular flow is also entrained into the recirculation zone of the vortex. Lean blow-out limits of the combustor are determined for a wide range of annular air flow rates. These data indicate that the lean blow-out limits are considerably lower for the TV combustor than for flames stabilized using swirl or bluff-bodies. The pressure loss through the annular duct is also low, being less than 2% for the flow conditions in this study. The instantaneous shape of the recirculation zone of the trapped vortex is measured using a two-color PIV technique. Temperature profiles obtained with CARS indicate a well mixed recirculation zone and demonstrate the impact of primary air injection on the local equivalence ratio.

  8. Stereo Refractive Imaging of Breaking Free-Surface Waves in the Surf Zone

    NASA Astrophysics Data System (ADS)

    Mandel, Tracy; Weitzman, Joel; Koseff, Jeffrey; Environmental Fluid Mechanics Laboratory Team

    2014-11-01

    Ocean waves drive the evolution of coastlines across the globe. Wave breaking suspends sediments, while wave run-up, run-down, and the undertow transport this sediment across the shore. Complex bathymetric features and natural biotic communities can influence all of these dynamics, and provide protection against erosion and flooding. However, our knowledge of the exact mechanisms by which this occurs, and how they can be modeled and parameterized, is limited. We have conducted a series of controlled laboratory experiments with the goal of elucidating these details. These have focused on quantifying the spatially-varying characteristics of breaking waves and developing more accurate techniques for measuring and predicting wave setup, setdown, and run-up. Using dynamic refraction stereo imaging, data on free-surface slope and height can be obtained over an entire plane. Wave evolution is thus obtained with high spatial precision. These surface features are compared with measures of instantaneous turbulence and mean currents within the water column. We then use this newly-developed ability to resolve three-dimensional surface features over a canopy of seagrass mimics, in order to validate theoretical formulations of wave-vegetation interactions in the surf zone.

  9. Modelling wave-induced sea ice break-up in the marginal ice zone

    PubMed Central

    Squire, V. A.

    2017-01-01

    A model of ice floe break-up under ocean wave forcing in the marginal ice zone (MIZ) is proposed to investigate how floe size distribution (FSD) evolves under repeated wave break-up events. A three-dimensional linear model of ocean wave scattering by a finite array of compliant circular ice floes is coupled to a flexural failure model, which breaks a floe into two floes provided the two-dimensional stress field satisfies a break-up criterion. A closed-feedback loop algorithm is devised, which (i) solves the wave-scattering problem for a given FSD under time-harmonic plane wave forcing, (ii) computes the stress field in all the floes, (iii) fractures the floes satisfying the break-up criterion, and (iv) generates an updated FSD, initializing the geometry for the next iteration of the loop. The FSD after 50 break-up events is unimodal and near normal, or bimodal, suggesting waves alone do not govern the power law observed in some field studies. Multiple scattering is found to enhance break-up for long waves and thin ice, but to reduce break-up for short waves and thick ice. A break-up front marches forward in the latter regime, as wave-induced fracture weakens the ice cover, allowing waves to travel deeper into the MIZ. PMID:29118659

  10. Modelling wave-induced sea ice break-up in the marginal ice zone.

    PubMed

    Montiel, F; Squire, V A

    2017-10-01

    A model of ice floe break-up under ocean wave forcing in the marginal ice zone (MIZ) is proposed to investigate how floe size distribution (FSD) evolves under repeated wave break-up events. A three-dimensional linear model of ocean wave scattering by a finite array of compliant circular ice floes is coupled to a flexural failure model, which breaks a floe into two floes provided the two-dimensional stress field satisfies a break-up criterion. A closed-feedback loop algorithm is devised, which (i) solves the wave-scattering problem for a given FSD under time-harmonic plane wave forcing, (ii) computes the stress field in all the floes, (iii) fractures the floes satisfying the break-up criterion, and (iv) generates an updated FSD, initializing the geometry for the next iteration of the loop. The FSD after 50 break-up events is unimodal and near normal, or bimodal, suggesting waves alone do not govern the power law observed in some field studies. Multiple scattering is found to enhance break-up for long waves and thin ice, but to reduce break-up for short waves and thick ice. A break-up front marches forward in the latter regime, as wave-induced fracture weakens the ice cover, allowing waves to travel deeper into the MIZ.

  11. Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves

    USGS Publications Warehouse

    Ellsworth, William L.; Malin, Peter E.

    2011-01-01

    Damage to fault-zone rocks during fault slip results in the formation of a channel of low seismic-wave velocities. Within such channels guided seismic waves, denoted by Fg, can propagate. Here we show with core samples, well logs and Fg-waves that such a channel is crossed by the SAFOD (San Andreas Fault Observatory at Depth) borehole at a depth of 2.7 km near Parkfield, California, USA. This laterally extensive channel extends downwards to at least half way through the seismogenic crust, more than about 7 km. The channel supports not only the previously recognized Love-type- (FL) and Rayleigh-type- (FR) guided waves, but also a new fault-guided wave, which we name FF. As recorded 2.7 km underground, FF is normally dispersed, ends in an Airy phase, and arrives between the P- and S-waves. Modelling shows that FF travels as a leaky mode within the core of the fault zone. Combined with the drill core samples, well logs and the two other types of guided waves, FF at SAFOD reveals a zone of profound, deep, rock damage. Originating from damage accumulated over the recent history of fault movement, we suggest it is maintained either by fracturing near the slip surface of earthquakes, such as the 1857 Fort Tejon M 7.9, or is an unexplained part of the fault-creep process known to be active at this site.

  12. Reduction of LDI threshold by electron trapping

    NASA Astrophysics Data System (ADS)

    Rose, Harvey A.; Russell, David

    2000-10-01

    The effect of trapped electrons on the Langmuir wave decay instability (LDI), considered as a secondary instability to SRS, is twofold. First, for a given level of SRS, the Langmuir wave (LW) response, LW_0, may increase compared to that predicted by the linearized Vlasov equation because of electrons trapped by LW_0, and second, given LW_0, the threshold for LDI is lowered^* by electrons trapped in the LDI daughter wave, LW_1. When kλ D for LW0 is large, say greater than 0.30, then its harmonics, and those of LW_1, are very weakly excited and a complete catalog of nonlinear periodic solutions arising from the LDI is possible. Dependence of the nonlinear LDI threshold on kλ D for a CH plasma will be presented. *This possibility has also been discussed by D. Mourenas, Phys. Plasmas 6, 1258 (1999).

  13. ‘Parabolic’ trapped modes and steered Dirac cones in platonic crystals

    PubMed Central

    McPhedran, R. C.; Movchan, A. B.; Movchan, N. V.; Brun, M.; Smith, M. J. A.

    2015-01-01

    This paper discusses the properties of flexural waves governed by the biharmonic operator, and propagating in a thin plate pinned at doubly periodic sets of points. The emphases are on the design of dispersion surfaces having the Dirac cone topology, and on the related topic of trapped modes in plates for a finite set (cluster) of pinned points. The Dirac cone topologies we exhibit have at least two cones touching at a point in the reciprocal lattice, augmented by another band passing through the point. We show that these Dirac cones can be steered along symmetry lines in the Brillouin zone by varying the aspect ratio of rectangular lattices of pins, and that, as the cones are moved, the involved band surfaces tilt. We link Dirac points with a parabolic profile in their neighbourhood, and the characteristic of this parabolic profile decides the direction of propagation of the trapped mode in finite clusters. PMID:27547089

  14. Quantification of Surf Zone Bathymetry from Video Observations of Wave Breaking

    NASA Astrophysics Data System (ADS)

    Aarninkhof, S.; Ruessink, G.

    2002-12-01

    Cost-efficient methods to quantify surf zone bathymetry with high resolution in time and space would be of great value for coastal research and management. Automated video techniques provide the potential to do so. Time-averaged video observations of the nearshore zone show bright intensities at locations where waves preferentially break. Highly similar patterns are found from model simulations of depth-induced wave breaking, which show increasing rates of wave dissipation in shallow areas like sand bars. Thus, video observations of wave breaking - at least qualitatively - reflect sub-merged beach bathymetry. In search of the quantification of this relationship, we present a new model concept to map sub-merged beach bathymetry from time-averaged video images. This is achieved by matching model-predicted and video-observed rates of wave dissipation. First, time-averaged image intensities are sampled along a cross-shore array and interpreted in terms of a wave dissipation parameter. This involves a correction for the effect of persistent foam, which is visible at time-averaged video images but not predicted by common wave propagation models. The dissipation profiles thus obtained are used to update an initial beach bathymetry through optimisation of the match between measured and modelled rates of wave dissipation. The latter is done by raising the bottom elevation in areas where the measured dissipation rate exceeds the computed dissipation and vice versa. Since the model includes video data with high resolution in time (typically multiple images over a tidal cycle), it allows for virtually continous monitoring of surfzone bathymetry . Model tests against a synthetic data set of artificially generated wave dissipation profiles have shown the model's capability to accurately reconstruct beach bathymetry, over a wide range of morphological configurations. Maximum model deviations were found in the case of highly developed bar-trough systems (bar heights up to 4 m) and

  15. Incorporating fault zone head wave and direct wave secondary arrival times into seismic tomography: Application at Parkfield, California

    NASA Astrophysics Data System (ADS)

    Bennington, N. L.; Thurber, C. H.; Zhang, H.; Peng, Z.; Zhao, P.

    2011-12-01

    Large crustal faults such as the San Andreas fault (SAF) often juxtapose rocks of significantly different elastic properties, resulting in well-defined bimaterial interfaces. A sharp material contrast across the fault interface is expected to generate fault zone head waves (FZHW's) that spend a large portion of their propagation paths refracting along the bimaterial interface (Ben-Zion 1989, 1990; Ben-Zion & Aki 1990). Because of this FZHW's provide a high-resolution tool for imaging the velocity contrast across the fault. Recently, Zhao et al. (2010) systematically analyzed large data sets of near-fault waveforms recorded by several permanent and temporary seismic networks along the Parkfield section of the SAF. The local-scale tomography study of Zhang et al. (2009) for a roughly 10 km3 volume centered on SAFOD and the more regional-scale study of Thurber et al. (2006) for a 130 km x 120 km x 20 km volume centered on the 2004 Parkfield earthquake rupture provide what are probably the best 3D images of the seismic velocity structure of the area. The former shows a low velocity zone associated with the SAF extending to significant depth, and both image the well-known velocity contrast across the fault. Seismic tomography generally uses just first P and/or S arrivals because of the relative simplicity of phase picking and ray tracing. Adding secondary arrivals such as FZHW's, however, can enhance the resolution of structure and strengthen constraints on earthquake locations and focal mechanisms. We present a model of 3D velocity structure for the Parkfield region that utilizes a combination of arrival times for FZHW's and the associated direct-wave secondary arrivals as well as existing P-wave arrival time data. The resulting image provides a higher-resolution model of the SAF at depth than previously published models. In addition, we plan to measure polarizations of the direct P and S waves and FZHW's and incorporate the data into our updated velocity tomography

  16. Pore Fluid Extraction by Reactive Solitary Waves in 3-D

    NASA Astrophysics Data System (ADS)

    Omlin, Samuel; Malvoisin, Benjamin; Podladchikov, Yury Y.

    2017-09-01

    In the lower crust, viscous compaction is known to produce solitary porosity and fluid pressure waves. Metamorphic (de)volatilization reactions can also induce porosity changes in response to the propagating fluid pressure anomalies. Here we present results from high-resolution simulations using Graphic Processing Unit parallel processing with a model that includes both viscous (de)compaction and reaction-induced porosity changes. Reactive porosity waves propagate in a manner similar to viscous porosity waves, but through a different mechanism involving fluid release and trap in the solid by reaction. These waves self-generate from red noise or an ellipsoidal porosity anomaly with the same characteristic size and abandon their source region to propagate at constant velocity. Two waves traveling at different velocities pass through each other in a soliton-like fashion. Reactive porosity waves thus provide an additional mechanism for fluid extraction at shallow depths with implications for ore formation, diagenesis, metamorphic veins formation, and fluid extraction from subduction zones.

  17. A study on the prenatal zone of ultrasonic guided waves in plates

    NASA Astrophysics Data System (ADS)

    Thomas, Tibin; Balasubramaniam, Krishnan

    2017-02-01

    Low frequency guided wave based inspection is an extensively used method for asset management with the advantage of wide area coverage from a single location at the cost of spatial resolution. With the advent of high frequency guided waves, short range inspections with high spatial resolution for monitoring corrosion under pipe supports and tank annular plates has gained widespread interest and acceptance. One of the major challenges in the application of high frequency guided waves in a short range inspection is to attain the desired modal displacements with respect to the application. In this paper, an investigation on the generation and formation of fundamental S0 mode is carried out through numerical simulation and experiments to establish a prenatal zone for guided waves. The effect of frequency, thickness of the plate and frequency-thickness (f*d) is studied. The investigation reveals the existence of a rudimentary form with similar modal features to the fully developed mode. This study helps in the design and development of a high frequency guided wave generator for particular applications which demands waves with very less sensitivity to the surface and loading during the initial phase which immediately evolves to a more sensitive wave towards the surface on propagation for the detection of shallow defects.

  18. Quantum mechanics in rotating-radio-frequency traps and Penning traps with a quadrupole rotating field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, K.; Hasegawa, T.

    2010-03-15

    Quantum-mechanical analysis of ion motion in a rotating-radio-frequency (rrf) trap or in a Penning trap with a quadrupole rotating field is carried out. Rrf traps were introduced by Hasegawa and Bollinger [Phys. Rev. A 72, 043404 (2005)]. The classical motion of a single ion in this trap is described by only trigonometric functions, whereas in the conventional linear radio-frequency (rf) traps it is by the Mathieu functions. Because of the simple classical motion in the rrf trap, it is expected that the quantum-mechanical analysis of the rrf traps is also simple compared to that of the linear rf traps. Themore » analysis of Penning traps with a quadrupole rotating field is also possible in a way similar to the rrf traps. As a result, the Hamiltonian in these traps is the same as the two-dimensional harmonic oscillator, and energy levels and wave functions are derived as exact results. In these traps, it is found that one of the vibrational modes in the rotating frame can have negative energy levels, which means that the zero-quantum-number state (''ground'' state) is the highest energy state.« less

  19. Gene Expression Analysis of Mouse Embryonic Stem Cells Following Levitation in an Ultrasound Standing Wave Trap

    PubMed Central

    Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael

    2011-01-01

    In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08–0.85 MPa) and times (5–60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. (E-mail: Bazoud@tcd.ie) PMID:21208732

  20. A unified spectral,parameterization for wave breaking: from the deep ocean to the surf zone

    NASA Astrophysics Data System (ADS)

    Filipot, J.

    2010-12-01

    A new wave-breaking dissipation parameterization designed for spectral wave models is presented. It combines wave breaking basic physical quantities, namely, the breaking probability and the dissipation rate per unit area. The energy lost by waves is fi[|#12#|]rst calculated in the physical space before being distributed over the relevant spectral components. This parameterization allows a seamless numerical model from the deep ocean into the surf zone. This transition from deep to shallow water is made possible by a dissipation rate per unit area of breaking waves that varies with the wave height, wavelength and water depth.The parameterization is further tested in the WAVEWATCH III TM code, from the global ocean to the beach scale. Model errors are smaller than with most specialized deep or shallow water parameterizations.

  1. Internal structure of the San Jacinto fault zone in the trifurcation area southeast of Anza, California, from data of dense seismic arrays

    NASA Astrophysics Data System (ADS)

    Qin, L.; Ben-Zion, Y.; Qiu, H.; Share, P.-E.; Ross, Z. E.; Vernon, F. L.

    2018-04-01

    We image the internal structure of the San Jacinto fault zone (SJFZ) in the trifurcation area southeast of Anza, California, with seismic records from dense linear and rectangular arrays. The examined data include recordings from more than 20 000 local earthquakes and nine teleseismic events. Automatic detection algorithms and visual inspection are used to identify P and S body waves, along with P- and S-types fault zone trapped waves (FZTW). The location at depth of the main branch of the SJFZ, the Clark fault, is identified from systematic waveform changes across lines of sensors within the dense rectangular array. Delay times of P arrivals from teleseismic and local events indicate damage asymmetry across the fault, with higher damage to the NE, producing a local reversal of the velocity contrast in the shallow crust with respect to the large-scale structure. A portion of the damage zone between the main fault and a second mapped surface trace to the NE generates P- and S-types FZTW. Inversions of high-quality S-type FZTW indicate that the most likely parameters of the trapping structure are width of ˜70 m, S-wave velocity reduction of 60 per cent, Q value of 60 and depth of ˜2 km. The local reversal of the shallow velocity contrast across the fault with respect to large-scale structure is consistent with preferred propagation of earthquake ruptures in the area to the NW.

  2. Cross-shelf transport induced by coastal trapped waves along the coast of East China Sea

    NASA Astrophysics Data System (ADS)

    Jiang, Lin; Dong, Changming; Yin, Liping

    2017-08-01

    Cross-shelf transport is important due to its role in the transport of nutrients, larvae, sediments, and pollutants. The role of coastal trapped waves (CTWs) and their contribution to the cross-shelf transport is presently unknown. The impact of wind-driven CTWs on the structure of the cross-shelf currents and transport is investigated in the East China Sea (ECS) starting from theory. The cross-shelf currents are divided into four terms: the geostrophic balance (GB) term, the second-order wave (SOW) term, the bottom friction (BF) term and Ekman (EK) term, as well as three modes: the Kelvin wave (KW) mode, the first shelf wave (SW1) mode and the second shelf wave (SW2) mode. Comparison among these decompositions shows that (1) for the four terms, the effect of the GB and EK terms is continual, while that of the BF term is confined to 60u2013240 km offshore, and the contribution of the SOW term can be ignored; (2) for the three modes, the KW and SW1 modes are dominant in cross-shelf transport. The results show that the total cross-shelf transport travels onshore under idealized wind stress on the order of 10-1, and it increases along the cross-shelf direction and peaks about -0.73 Sv at the continental shelf margin. With the increase of linear bottom friction coefficient, the cross-shelf transport declines with distance with the slope becoming more uniform.

  3. New electron trap in p-type Czochralski silicon

    NASA Technical Reports Server (NTRS)

    Mao, B.-Y.; Lagowski, J.; Gatos, H. C.

    1984-01-01

    A new electron trap (acceptor level) was discovered in p-type Czochralski (CZ) silicon by current transient spectroscopy. The behavior of this trap was found to be similar to that of the oxygen thermal donors; thus, 450 C annealing increases the trap concentration while high-temperature annealing (1100-1200 C) leads to the virtual elimination of the trap. The new trap is not observed in either float-zone or n-type CZ silicon. Its energy level depends on the group III doping element in the sample. These findings suggest that the trap is related to oxygen, and probably to the acceptor impurity as well.

  4. Gene expression analysis of mouse embryonic stem cells following levitation in an ultrasound standing wave trap.

    PubMed

    Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael

    2011-02-01

    In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08-0.85 MPa) and times (5-60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Imaging San Jacinto Fault damage zone structure using dense linear arrays: application of ambient noise tomography, Rayleigh wave ellipticity, and site amplification

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Lin, F. C.; Allam, A. A.; Ben-Zion, Y.

    2017-12-01

    The San Jacinto fault is presently the most seismically active component of the San Andreas Transform system in Southern California. To study the damage zone structure, two dense linear geophone arrays (BS and RR) were deployed across the Clark segment of the San Jacinto Fault between Anza and Hemet during winter 2015 and Fall 2016, respectively. Both arrays were 2 km long with 20 m station spacing. Month-long three-component ambient seismic noise data were recorded and used to calculate multi-channel cross-correlation functions. All three-component noise records of each array were normalized simultaneously to retain relative amplitude information between different stations and different components. We observed clear Rayleigh waves and Love waves on the cross-correlations of both arrays at 0.3 - 1 s period. The phase travel times of the Rayleigh waves on both arrays were measured by frequency-time analysis (FTAN), and inverted for Rayleigh wave phase velocity profiles of the upper 500 m depth. For both arrays, we observe prominent asymmetric low velocity zones which narrow with depth. At the BS array near the Hemet Stepover, an approximately 250m wide slow zone is observed to be offset by 75m to the northeast of the surface fault trace. At the RR array near the Anza segment of the fault, a similar low velocity zone width and offset are observed, along with a 10% across-fault velocity contrast. Analyses of Rayleigh wave ellipticity (H/V ratio), Love wave phase travel times, and site amplification are in progress. By using multiple measurements from ambient noise cross-correlations, we can obtain strong constraints on the local damage zone structure of the San Jacinto Fault. The results contribute to improved understanding of rupture directivity, maximum earthquake magnitude and more generally seismic hazard associated with the San Jacinto fault zone.

  6. A semi-analytical method for near-trapped mode and fictitious frequencies of multiple scattering by an array of elliptical cylinders in water waves

    NASA Astrophysics Data System (ADS)

    Chen, Jeng-Tzong; Lee, Jia-Wei

    2013-09-01

    In this paper, we focus on the water wave scattering by an array of four elliptical cylinders. The null-field boundary integral equation method (BIEM) is used in conjunction with degenerate kernels and eigenfunctions expansion. The closed-form fundamental solution is expressed in terms of the degenerate kernel containing the Mathieu and the modified Mathieu functions in the elliptical coordinates. Boundary densities are represented by using the eigenfunction expansion. To avoid using the addition theorem to translate the Mathieu functions, the present approach can solve the water wave problem containing multiple elliptical cylinders in a semi-analytical manner by introducing the adaptive observer system. Regarding water wave problems, the phenomena of numerical instability of fictitious frequencies may appear when the BIEM/boundary element method (BEM) is used. Besides, the near-trapped mode for an array of four identical elliptical cylinders is observed in a special layout. Both physical (near-trapped mode) and mathematical (fictitious frequency) resonances simultaneously appear in the present paper for a water wave problem by an array of four identical elliptical cylinders. Two regularization techniques, the combined Helmholtz interior integral equation formulation (CHIEF) method and the Burton and Miller approach, are adopted to alleviate the numerical resonance due to fictitious frequency.

  7. A note on specific variability of long surface gravity waves and drag coefficient in coastal upwelling zone

    NASA Astrophysics Data System (ADS)

    Krzyścin, Janusz

    1990-01-01

    In this paper we solve analytically wave kinematic equations and the wave energy transport equation, for basic long surface gravity wave in the coastal upwelling zone. Using Gent and Taylor's (1978) parameterization of drag coefficient (which includes interaction between long surface waves and the air flow) we find variability of this coefficient due to wave amplification and refraction caused by specific surface water current in the region. The drag coefficient grows towards the shore. The growth is faster for stronger current. When the angle between waves and the current is less than 90° the growth is mainly connected with the waves steepness, but when the angle is larger, it is caused by relative growth of the wave phase velocity.

  8. Manipulating matter rogue waves and breathers in Bose-Einstein condensates.

    PubMed

    Manikandan, K; Muruganandam, P; Senthilvelan, M; Lakshmanan, M

    2014-12-01

    We construct higher-order rogue wave solutions and breather profiles for the quasi-one-dimensional Gross-Pitaevskii equation with a time-dependent interatomic interaction and external trap through the similarity transformation technique. We consider three different forms of traps: (i) the time-independent expulsive trap, (ii) time-dependent monotonous trap, and (iii) time-dependent periodic trap. Our results show that when we change a parameter appearing in the time-independent or time-dependent trap the second- and third-order rogue waves transform into the first-order-like rogue waves. We also analyze the density profiles of breather solutions. Here we also show that the shapes of the breathers change when we tune the strength of the trap parameter. Our results may help to manage rogue waves experimentally in a BEC system.

  9. Propagation of acoustic-gravity waves in arctic zones with elastic ice-sheets

    NASA Astrophysics Data System (ADS)

    Kadri, Usama; Abdolali, Ali; Kirby, James T.

    2017-04-01

    We present an analytical solution of the boundary value problem of propagating acoustic-gravity waves generated in the ocean by earthquakes or ice-quakes in arctic zones. At the surface, we assume elastic ice-sheets of a variable thickness, and show that the propagating acoustic-gravity modes have different mode shape than originally derived by Ref. [1] for a rigid ice-sheet settings. Computationally, we couple the ice-sheet problem with the free surface model by Ref. [2] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice-sheets cause inter modal transition at the edges and multidirectional reflections. We then derive a depth-integrated equation valid for spatially slowly varying thickness of ice-sheet and water depth. Surprisingly, and unlike the free-surface setting, here it is found that the higher acoustic-gravity modes exhibit a larger contribution. These modes travel at the speed of sound in water carrying information on their source, e.g. ice-sheet motion or submarine earthquake, providing various implications for ocean monitoring and detection of quakes. In addition, we found that the propagating acoustic-gravity modes can result in orbital displacements of fluid parcels sufficiently high that may contribute to deep ocean currents and circulation, as postulated by Refs. [1, 3]. References [1] U. Kadri, 2016. Generation of Hydroacoustic Waves by an Oscillating Ice Block in Arctic Zones. Advances in Acoustics and Vibration, 2016, Article ID 8076108, 7 pages http://dx.doi.org/10.1155/2016/8076108 [2] A. Abdolali, J. T. Kirby and G. Bellotti, 2015, Depth-integrated equation for hydro-acoustic waves with bottom damping, J. Fluid Mech., 766, R1 doi:10.1017/jfm.2015.37 [3] U. Kadri, 2014. Deep ocean water transportation by acoustic?gravity waves. J. Geophys. Res. Oceans, 119, doi:10.1002/ 2014JC010234

  10. A unified spectral parameterization for wave breaking: From the deep ocean to the surf zone

    NASA Astrophysics Data System (ADS)

    Filipot, J.-F.; Ardhuin, F.

    2012-11-01

    A new wave-breaking dissipation parameterization designed for phase-averaged spectral wave models is presented. It combines wave breaking basic physical quantities, namely, the breaking probability and the dissipation rate per unit area. The energy lost by waves is first explicitly calculated in physical space before being distributed over the relevant spectral components. The transition from deep to shallow water is made possible by using a dissipation rate per unit area of breaking waves that varies with the wave height, wavelength and water depth. This parameterization is implemented in the WAVEWATCH III modeling framework, which is applied to a wide range of conditions and scales, from the global ocean to the beach scale. Wave height, peak and mean periods, and spectral data are validated using in situ and remote sensing data. Model errors are comparable to those of other specialized deep or shallow water parameterizations. This work shows that it is possible to have a seamless parameterization from the deep ocean to the surf zone.

  11. Radar Remote Sensing of Waves and Currents in the Nearshore Zone

    DTIC Science & Technology

    2006-01-01

    and application of novel microwave, acoustic, and optical remote sensing techniques. The objectives of this effort are to determine the extent to which...Doppler radar techniques are useful for nearshore remote sensing applications. Of particular interest are estimates of surf zone location and extent...surface currents, waves, and bathymetry. To date, optical (video) techniques have been the primary remote sensing technology used for these applications. A key advantage of the radar is its all weather day-night operability.

  12. Shallow Vs Structure Accross Hayward Fault Zone Inferred from Multichannel Analysis of Surface Waves (MASW)

    NASA Astrophysics Data System (ADS)

    Chan, J. H.; Richardson, I. S.; Strayer, L. M.; Catchings, R.; McEvilly, A.; Goldman, M.; Criley, C.; Sickler, R. R.

    2017-12-01

    The Hayward Fault Zone (HFZ) includes the Hayward fault (HF), as well as several named and unnamed subparallel, subsidiary faults to the east, among them the Quaternary-active Chabot Fault (CF), the Miller Creek Fault (MCF), and a heretofore unnamed fault, the Redwood Thrust Fault (RTF). With an ≥M6.0 recurrence interval of 130 y for the HF and the last major earthquake in 1868, the HFZ is a major seismic hazard in the San Francisco Bay Area, exacerbated by the many unknown and potentially active secondary faults of the HFZ. In 2016, researchers from California State University, East Bay, working in concert with the United States Geological Survey conducted the East Bay Seismic Investigation (EBSI). We deployed 296 RefTek RT125 (Texan) seismographs along a 15-km-long linear seismic profile across the HF, extending from the bay in San Leandro to the hills in Castro Valley. Two-channel seismographs were deployed at 100 m intervals to record P- and S-waves, and additional single-channel seismographs were deployed at 20 m intervals where the seismic line crossed mapped faults. The active-source survey consisted of 16 buried explosive shots located at approximately 1-km intervals along the seismic line. We used the Multichannel Analysis of Surfaces Waves (MASW) method to develop 2-D shear-wave velocity models across the CF, MCF, and RTF. Preliminary MASW analysis show areas of anomalously low S-wave velocities , indicating zones of reduced shear modulus, coincident with these three mapped faults; additional velocity anomalies coincide with unmapped faults within the HFZ. Such compliant zones likely correspond to heavily fractured rock surrounding the faults, where the shear modulus is expected to be low compared to the undeformed host rock.

  13. Transverse ion energization and low-frequency plasma waves in the mid-altitude auroral zone - A case study

    NASA Technical Reports Server (NTRS)

    Peterson, W. K.; Shelley, E. G.; Boardsen, S. A.; Gurnett, D. A.; Ledley, B. G.; Sugiura, M.; Moore, T. E.

    1988-01-01

    Evidence of transverse ion energization at altitudes of several earth radii in the auroral zone was reexamined using several hundred hours of high-sensitivity and high-resolution plasma data obtained by the Dynamics Explorer 1 satellite. The data on particle environment encountered at midaltitudes in the auroral zone disclosed rapid variations in the values of total density, thermal structure, and composition of the plasma in the interval measured; the modes of low-frequency plasma waves also varied rapidly. It was not possible to unambiguously identify in these data particle and wave signature of local transverse ion energization; however, many intervals were found where local transverse ion heating was consistent with the observations.

  14. Wave-induced bedload transport - a study of the southern Baltic coastal zone

    NASA Astrophysics Data System (ADS)

    Dudkowska, Aleksandra; Gic-Grusza, Gabriela

    2017-03-01

    The wave-induced bedload transport and spatial distribution of its magnitude in the southern Baltic coastal zone of Poland are estimated. The vicinity of Lubiatowo was selected as a representative part of the Polish coast. It was assumed that transport is a function of shear stress; alternative approaches, based on force balances and discharge relationships, were not considered in the present study. Four models were studied and compared over a wide range of bottom shear stress and wind-wave conditions. The set of models comprises classic theories that assume a simplified influence of turbulence on sediment transport (e.g., advocated by authors such as Du Boys, Meyer-Peter and Müller, Ribberink, Engelund and Hansen). It is shown that these models allow to estimate transport comparable to measured values under similar environmental conditions. A united general model for bedload transport is proposed, and a set of maps of wave bedload transport for various wind conditions in the study area is presented.

  15. Can compliant fault zones be used to measure absolute stresses in the upper crust?

    NASA Astrophysics Data System (ADS)

    Hearn, E. H.; Fialko, Y.

    2009-04-01

    Geodetic and seismic observations reveal long-lived zones with reduced elastic moduli along active crustal faults. These fault zones localize strain from nearby earthquakes, consistent with the response of a compliant, elastic layer. Fault zone trapped wave studies documented a small reduction in P and S wave velocities along the Johnson Valley Fault caused by the 1999 Hector Mine earthquake. This reduction presumably perturbed a permanent compliant structure associated with the fault. The inferred changes in the fault zone compliance may produce a measurable deformation in response to background (tectonic) stresses. This deformation should have the same sense as the background stress, rather than the coseismic stress change. Here we investigate how the observed deformation of compliant zones in the Mojave Desert can be used to constrain the fault zone structure and stresses in the upper crust. We find that gravitational contraction of the coseismically softened zones should cause centimeters of coseismic subsidence of both the compliant zones and the surrounding region, unless the compliant fault zones are shallow and narrow, or essentially incompressible. We prefer the latter interpretation because profiles of line of sight displacements across compliant zones cannot be fit by a narrow, shallow compliant zone. Strain of the Camp Rock and Pinto Mountain fault zones during the Hector Mine and Landers earthquakes suggests that background deviatoric stresses are broadly consistent with Mohr-Coulomb theory in the Mojave upper crust (with μ ≥ 0.7). Large uncertainties in Mojave compliant zone properties and geometry preclude more precise estimates of crustal stresses in this region. With improved imaging of the geometry and elastic properties of compliant zones, and with precise measurements of their strain in response to future earthquakes, the modeling approach we describe here may eventually provide robust estimates of absolute crustal stress.

  16. An Optical Trap for Relativistic Plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Ping

    2002-11-01

    Optical traps have achieved remarkable success recently in confining ultra-cold matter.Traps capable of confining ultra-hot matter, or plasma, have also been built for applications such as basic plasma research and thermonuclear fusion. For instance, low-density plasmas with temperature less than 1 keV have been confined with static magnetic fields in Malmberg-Penning traps. Low-density 10-50 keV plasmas are confined in magnetic mirrors and tokamaks. High density plasmas have been trapped in optical traps with kinetic energies up to 10 keV [J. L. Chaloupka and D. D. Meyerhofer, Phys. Rev. Lett. 83, 4538 (1999)]. We present the results of experiment, theory and numerical simulation on an optical trap capable of confining relativistic plasma. A stationary interference grating with submicron spacing is created when two high-power (terawatt) laser pulses of equal wavelength (1-micron) are focused from orthogonal directions to the same point in space and time in high density underdense plasma. Light pressure gradients bunch electrons into sheets located at the minima of the interference pattern. The density of the bunched electrons is found to be up to ten times the background density, which is orders-of-magnitude above that previously reported for other optical traps or plasma waves. The amplitudes and frequencies of multiple satellites in the scattered spectrum also indicate the presence of a highly nonlinear ion wave and an electron temperature about 100 keV. Energy transfer from the stronger beam to the weaker beam is also observed. Potential applications include a test-bed for detailed studies of relativistic nonlinear scattering, a positron source and an electrostatic wiggler. This research is also relevant to fast igniter fusion or ion acceleration experiments, in which laser pulses with intensities comparable to those used in the experiment may also potentially beat [Y. Sentoku, et al., Appl. Phys. B 74, 207215 (2002)]. The details of a specific application, the

  17. Automatic identification of fault zone head waves and direct P waves and its application in the Parkfield section of the San Andreas Fault, California

    NASA Astrophysics Data System (ADS)

    Li, Zefeng; Peng, Zhigang

    2016-06-01

    Fault zone head waves (FZHWs) are observed along major strike-slip faults and can provide high-resolution imaging of fault interface properties at seismogenic depth. In this paper, we present a new method to automatically detect FZHWs and pick direct P waves secondary arrivals (DWSAs). The algorithm identifies FZHWs by computing the amplitude ratios between the potential FZHWs and DSWAs. The polarities, polarizations and characteristic periods of FZHWs and DSWAs are then used to refine the picks or evaluate the pick quality. We apply the method to the Parkfield section of the San Andreas Fault where FZHWs have been identified before by manual picks. We compare results from automatically and manually picked arrivals and find general agreement between them. The obtained velocity contrast at Parkfield is generally 5-10 per cent near Middle Mountain while it decreases below 5 per cent near Gold Hill. We also find many FZHWs recorded by the stations within 1 km of the background seismicity (i.e. the Southwest Fracture Zone) that have not been reported before. These FZHWs could be generated within a relatively wide low velocity zone sandwiched between the fast Salinian block on the southwest side and the slow Franciscan Mélange on the northeast side. Station FROB on the southwest (fast) side also recorded a small portion of weak precursory signals before sharp P waves. However, the polarities of weak signals are consistent with the right-lateral strike-slip mechanisms, suggesting that they are unlikely genuine FZHW signals.

  18. MHD Waves in Coronal Loops with a Shell

    NASA Astrophysics Data System (ADS)

    Mikhalyaev, B. B.; Solov'ev, A. A.

    2004-04-01

    We consider a model of a coronal loop in the form of a cord surrounded by a coaxial shell. Two slow magnetosonic waves longitudinally propagate within a thin flux tube on the m = 0 cylindrical mode with velocities close to the tube velocities in the cord and the shell. One wave propagates inside the cord, while the other propagates inside the shell. A peculiar feature of the second wave is that the plasma in the cord and the shell oscillates with opposite phases. There are two fast magnetosonic waves on each of the cylindrical modes with m > 0. If the plasma density in the shell is lower than that in the surrounding corona, then one of the waves is radiated into the corona, which causes the loop oscillations to be damped, while the other wave is trapped by the cord, but can also be radiated out under certain conditions. If the plasma density in the shell is higher than that in the cord, then one of the waves is trapped by the shell, while the other wave can also be trapped by the shell under certain conditions. In the wave trapped by the shell and the wave radiated by the tube, the plasma in the cord and the shell oscillates with opposite phases.

  19. Transport of horseshoe crab eggs by waves and swash on an estuarine beach: Implications for foraging shorebirds

    USGS Publications Warehouse

    Nordstrom, K.F.; Jackson, N.L.; Smith, D.R.; Weber, R.G.

    2006-01-01

    The abundance of horseshoe crab eggs in the swash zone and remaining on the beach after tide levels fall was evaluated to identify how numbers of eggs available to shorebirds differ with fluctuations in spawning numbers of horseshoe crabs, wave energies and beach elevation changes. Field data were gathered 1-6 June 2004 at Slaughter Beach on the west side of Delaware Bay, USA. Counts of spawning crabs and process data from a pressure transducer and an anemometer and wind vane were related to number of eggs, embryos and larvae taken at depth and on the surface of the foreshore and in the active swash zone using a streamer trap. Beach elevation changes and depths of sediment activation were used to determine the potential for buried eggs to be exhumed by waves and swash. Mean significant wave heights during high water levels ranged from 0.08 to 0.40 m. Spawning counts were low (50-140 females km-1) when wave heights were low; no spawning occurred when wave heights were high. Vegetative litter (wrack) on the beach provides local traps for eggs, making more eggs available for shorebirds. Accumulation of litter on days when wave energy is low increases the probability that eggs will remain on the surface. High wave energies transport more eggs in the swash, but these eggs are dispersed or buried, and fewer eggs remain on the beach. Peaks in the number of eggs in the swash uprush occur during tidal rise and around time of high tide. The number of eggs in transport decreases during falling tide. Many more eggs move in the active swash zone than are found on the beach after water level falls, increasing the efficiency of bird foraging in the swash. Greater numbers of eggs in the swash during rising tide than falling tide and fewer eggs at lower elevations on the beach, imply that foraging becomes less productive as the tide falls and may help account for the tendency of shorebirds to feed on rising tides rather than on falling or low tides on days when no spawning occurs

  20. Subwavelength and directional control of flexural waves in zone-folding induced topological plates

    NASA Astrophysics Data System (ADS)

    Chaunsali, Rajesh; Chen, Chun-Wei; Yang, Jinkyu

    2018-02-01

    Inspired by the quantum spin Hall effect shown by topological insulators, we propose a plate structure that can be used to demonstrate the pseudospin Hall effect for flexural waves. The system consists of a thin plate with periodically arranged resonators mounted on its top surface. We extend a technique based on the plane-wave expansion method to identify a double Dirac cone emerging due to the zone-folding in frequency band structures. This particular design allows us to move the double Dirac cone to a lower frequency than the resonating frequency of local resonators. We then manipulate the pattern of local resonators to open subwavelength Bragg band gaps that are topologically distinct. Building on this method, we verify numerically that a waveguide at an interface between two topologically distinct resonating plate structures can be used for guiding low-frequency, spin-dependent one-way flexural waves along a desired path with bends.

  1. Wave evolution in the marginal ice zone - Model predictions and comparisons with on-site and remote data

    NASA Technical Reports Server (NTRS)

    Liu, A. K.; Holt, B.; Vachon, P. W.

    1989-01-01

    The ocean-wave dispersion relation and viscous attenuation by a sea ice cover were studied for waves in the marginal ice zone (MIZ). The Labrador ice margin experiment (Limex), conducted off the east coast of Newfoundland, Canada in March 1987, provided aircraft SAR, wave buoy, and ice property data. Based on the wave number spectrum from SAR data, the concurrent wave frequency spectrum from ocean buoy data, and accelerometer data on the ice during Limex '87, the dispersion relation has been derived and compared with the model. Accelerometers were deployed at the ice edge and into the ice pack. Data from the accelerometers were used to estimate wave energy attenuation rates and compared with the model. The model-data comparisons are reasonably good for the ice conditions observed during Limex' 87.

  2. Evidence of Enhanced Subrosion in a Fault Zone and Characterization of Hazard Zones with Elastic Parameters derived from SH-wave reflection Seismics and VSP

    NASA Astrophysics Data System (ADS)

    Wadas, S. H.; Tanner, D. C.; Tschache, S.; Polom, U.; Krawczyk, C. M.

    2017-12-01

    Subrosion, the dissolution of soluble rocks, e.g., sulfate, salt, or carbonate, requires unsaturated water and fluid pathways that enable the water to flow through the subsurface and generate cavities. Over time, different structures can occur that depend on, e.g., rock solubility, flow rate, and overburden type. The two main structures are sinkholes and depressions. To analyze the link between faults, groundwater flow, and soluble rocks, and to determine parameters that are useful to characterize hazard zones, several shear-wave (SH) reflection seismic profiles were surveyed in Thuringia in Germany, where Permian sulfate rocks and salt subcrop close to the surface. From the analysis of the seismic sections we conclude that areas affected by tectonic deformation phases are prone to enhanced subrosion. The deformation of fault blocks leads to the generation of a damage zone with a dense fracture network. This increases the rock permeability and thus serves as a fluid pathway for, e.g., artesian-confined groundwater. The more complex the fault geometry and the more interaction between faults, the more fractures are generated, e.g., in a strike slip-fault zone. The faults also act as barriers for horizontal groundwater flow perpendicular to the fault surfaces and as conduits for groundwater flow along the fault strike. In addition, seismic velocity anomalies and attenuation of seismic waves are observed. Low velocities <200 m/s and high attenuation may indicate areas affected by subrosion. Other parameters that characterize the underground stability are the shear modulus and the Vp/Vs ratio. The data revealed zones of low shear modulus <100 MPa and high Vp/Vs ratio >2.5, which probably indicate unstable areas due to subrosion. Structural analysis of S-wave seismics is a valuable tool to detect near-surface faults in order to determine whether or not an area is prone to subrosion. The recognition of even small fault blocks can help to better understand the hydrodynamic

  3. Low-grazing angle laser scans of foreshore topography, swash and inner surf-zone wave heights, and mean water level: validation and storm response

    NASA Astrophysics Data System (ADS)

    Brodie, K. L.; McNinch, J. E.; Forte, M.; Slocum, R.

    2010-12-01

    Accurately predicting beach evolution during storms requires models that correctly parameterize wave runup and inner surf-zone processes, the principle drivers of sediment exchange between the beach and surf-zone. Previous studies that aimed at measuring wave runup and swash zone water levels have been restricted to analyzing water-elevation time series of (1) the shoreward-most swash excursion using video imaging or near-bed resistance wires, or (2) the free water surface at a particular location on the foreshore using pressure sensors. These data are often compared with wave forcing parameters in deeper water as well as with beach topography observed at finite intervals throughout the time series to identify links between foreshore evolution, wave spectra, and water level variations. These approaches have lead to numerous parameterizations and empirical equations for wave runup but have difficulty providing adequate data to quantify and understand short-term spatial and temporal variations in foreshore evolution. As a result, modeling shoreline response and changes in sub-aerial beach volume during storms remains a substantial challenge. Here, we demonstrate a novel technique in which a terrestrial laser scanner is used to continuously measure beach and foreshore topography as well as water elevation (and wave height) in the swash and inner surf-zone during storms. The terrestrial laser scanner is mounted 2-m above the dune crest at the Field Research Facility in Duck, NC in line with cross-shore wave gauges located at 2-m, 3-m, 5-m, 6-m, and 8-m of water depth. The laser is automated to collect hourly, two-dimensional, 20-minute time series of data along a narrow swath in addition to an hourly three-dimensional laser scan of beach and dune topography +/- 250m alongshore from the laser. Low grazing-angle laser scans are found to reflect off of the surface of the water, providing spatially (e.g. dx <= 0.1 m) and temporally (e.g. dt = 3Hz) dense elevation data of

  4. Identification of the Low-velocity Zone Beneath the Northern Taiwan by the P-wave Delays Analysis

    NASA Astrophysics Data System (ADS)

    Chang, C. W.; Che-Min, L.

    2017-12-01

    Taipei City, the capital of Taiwan, located in northern Taiwan is near to the Tatun volcano group and the Shanchiao fault which is an active fault. This region is a complex tectonic environment. The Tatun volcano group is seen as a dormant volcano. Recently, the location of the magma reservoir of the Tatun volcano was discussed again. However, the volume and the location of the magma reservoir are still unclear. There are several seismic networks operated by different institutions around Taipei and Tatun volcano. In this study, we combined the data of these networks to analysis the P-wave arrival times for clarifying the magma reservoir. The events with hypocenters are deeper than 100 km and the local magnitude (ML) are larger than 4.0 were collected to analysis. Our results show that the stations could be separated into three groups by the slope of the P-wave arrival time. They are distributed at the western of the Basin edge, the Jin-Shan Plain areal and the Taipei Basin, respectively. When the epicenter distance of the different stations is the same, the P-wave arrival time of the stations on the west side of the basin edge will be 0.3 0.5 seconds later than that in the Taipei Basin, and the stations on the Jin-Shan Plain will be 0.1 0.4 seconds later than in the Taipei Basin. The slope of the P-wave arrival time in 3 groups is very different, indicating that the low-velocity zone is existed in shallow crustal beneath of these areas. However, the low-velocity zone can be connected to the magma reservoir of the Tatun volcano group or submarine volcano of Keelung Island or not? It can be discussed the correlation between the magma reservoir and the low-velocity zone by more events collected.

  5. Spatial characterization of innervation zones under electrically elicited M-wave.

    PubMed

    Zhang, C; Peng, Y; Li, S; Zhou, P; Munoz, A; Tang, D; Zhang, Y

    2016-08-01

    The three dimensional (3D) innervation zone (IZ) imaging approach (3DIZI) has been developed in our group to localize the IZ of a particular motor unit (MU) from its motor unit action potentials decomposed from high-density surface electromyography (EMG) recordings. In this study, the developed 3DIZI approach was combined with electrical stimulation to investigate global distributions of IZs in muscles from electrically elicited M-wave recordings. Electrical stimulations were applied to the musculocutaneous nerve to activate supramaximal muscle response of the biceps brachii in one healthy subject, and high-density (128 channels) surface EMG signals of the biceps brachii muscles were recorded. The 3DIZI approach was then employed to image the IZ distribution of IZs in the 3D space of the biceps brachii. The performance of the M-wave based 3DIZI approach was evaluated with different stimulation intensities. Results show that the reconstructed IZs under supramaximal stimulation are spatially distributed in the center region of muscle belly which is consistent with previous studies. With sub-maximal stimulation intensity, the imaged IZ centers became more proximally and deeply located. The proposed M-wave based 3DIZI approach demonstrated its capability of imaging global distribution of IZs in muscles, which provide valuable information for clinical applications such as guiding botulinum toxin injection in treating muscle spasticity.

  6. Diurnal tidal currents attributed to free baroclinic coastal-trapped waves on the Pacific shelf off the southeastern coast of Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Kuroda, Hiroshi; Kusaka, Akira; Isoda, Yutaka; Honda, Satoshi; Ito, Sayaka; Onitsuka, Toshihiro

    2018-04-01

    To understand the properties of tides and tidal currents on the Pacific shelf off the southeastern coast of Hokkaido, Japan, we analyzed time series of 9 current meters that were moored on the shelf for 1 month to 2 years. Diurnal tidal currents such as the K1 and O1 constituents were more dominant than semi-diurnal ones by an order of magnitude. The diurnal tidal currents clearly propagated westward along the coast with a typical phase velocity of 2 m s-1 and wavelength of 200 km. Moreover, the shape and phase of the diurnal currents measured by a bottom-mounted ADCP were vertically homogeneous, except in the vicinity of the bottom boundary layer. These features were very consistent with theoretically estimated properties of free baroclinic coastal-trapped waves of the first mode. An annual (semi-annual) variation was apparent for the phase (amplitude) of the O1 tidal current, which was correlated with density stratification (intensity of an along-shelf current called the Coastal Oyashio). These possible causes are discussed in terms of the propagation and generation of coastal-trapped waves.

  7. Mojave Compliant Zone Structure and Properties: Constraints from InSAR and Mechanical Models

    NASA Astrophysics Data System (ADS)

    Hearn, E. H.; Fialko, Y.; Finzi, Y.

    2007-12-01

    Long-lived zones with significantly lower elastic strength than their surroundings are associated with active Mojave faults (e.g., Li et al., 1999; Fialko et al., 2002, 2004). In an earthquake these weak features concentrate strain, causing them to show up as anomalous, short length-scale features in SAR interferograms (Fialko et al., 2002). Fault-zone trapped wave studies indicate that the 1999 Hector Mine earthquake caused a small reduction in P- and S-wave velocities in a compliant zone along the Landers earthquake rupture (Vidale and Li, 2003). This suggests that coseismic strain concentration, and the resulting damage, in the compliant zone caused a further reduction in its elastic strength. Even a small coseismic strength drop should make a compliant zone (CZ) deform, in response to the total (not just the coseismic) stress. The strain should be in the sense which is compatible with the orientations and values of the region's principal stresses. However, as indicated by Fialko and co-workers (2002, 2004), the sense of coseismic strain of Mojave compliant zones was consistent with coseismic stress change, not the regional (background) stress. Here we use finite-element models to investigate how InSAR measurements of Mojave compliant zone coseismic strain places limits on their dimensions and on upper crustal stresses. We find that unless the CZ is shallow, narrow, and has a high Poisson's ratio (e.g., 0.4), CZ contraction under lithostatic stress overshadows deformation due to deviatoric background stress or coseismic stress change. We present ranges of CZ dimensions which are compatible with the observed surface deformation and address how these dimensions compare with new results from damage-controlled fault evolution models.

  8. Small Effect of Hydration on Elastic Wave Velocities of Ringwoodite in Earth's Transition Zone

    NASA Astrophysics Data System (ADS)

    Schulze, K.; Marquardt, H.; Boffa Ballaran, T.; Kurnosov, A.; Kawazoe, T.; Koch-Müller, M.

    2017-12-01

    Ringwoodite can incorporate significant amounts of hydrogen as OH-defects into its crystal structure. The measurement of 1.4 wt.% H20 in a natural ringwoodite diamond inclusion (Pearson et al. 2014) showed that hydrous ringwoodite can exist in the Earth's mantle. Since ringwoodite is considered to be the major phase in the mantle between 520 and 660 km depth it likely plays an important role for Earth's deep water cycle and the mantle water budget. Previous experimental work has shown that hydration reduces seismic wave velocities in ringwoodite, motivating attempts to map the hydration state of the mantle using seismic wave speed variations as depicted by seismic tomography. However, large uncertainties on the actual effects at transition zone pressures and temperatures remain. A major difficulty is the comparability of studies with different experimental setups and pressure- and temperature conditions. Here, we present results from a comparative elasticity study designed to quantify the effects of hydration on the seismic wave velocities of ringwoodite in Earth's transition zone. Focused ion beam cut single-crystals of four samples of either Fo90 or Fo100 ringwoodite with hydration states between 0.21 - 1.71 wt.% H2O were loaded in the pressure chamber of one diamond-anvil cell to ensure identical experimental conditions. Single-crystal Brillouin Spectroscopy and X-ray diffraction measurements were performed at room temperature to a pressure of 22 GPa. Additional experiments at high pressure and temperatures up to 500 K were performed. Our data collected at low pressures show a significant reduction of elastic wave velocities with hydration, consistent with previous work. However, in contrast to previous inferences, our results indicate that pressure significantly reduces the effect of hydration. Based on the outcome of our work, the redution in aggregate velocities caused by 1 wt.% H2O becomes smaller than 1% in ringwoodite at pressures equivalent to the Earth

  9. Instability due to trapped electrons in magnetized multi-ion dusty plasmas

    NASA Astrophysics Data System (ADS)

    Haider, M. M.; Ferdous, T.; Duha, S. S.

    2015-05-01

    An attempt has been made to find out the effects of trapped electrons in dust-ion-acoustic solitary waves in magnetized multi-ion plasmas, as in most space plasmas, the hot electrons follow the trapped/vortex-like distribution. To do so, we have derived modified Zakharov-Kuznetsov equation using reductive perturbation method and its solution. A small- perturbation technique was employed to find out the instability criterion and growth rate of such a wave.

  10. Evidence for self-refraction in a convergence zone: NPE (Nonlinear progressive wave equation) model results

    NASA Technical Reports Server (NTRS)

    Mcdonald, B. Edward; Plante, Daniel R.

    1989-01-01

    The nonlinear progressive wave equation (NPE) model was developed by the Naval Ocean Research and Development Activity during 1982 to 1987 to study nonlinear effects in long range oceanic propagation of finite amplitude acoustic waves, including weak shocks. The NPE model was applied to propagation of a generic shock wave (initial condition provided by Sandia Division 1533) in a few illustrative environments. The following consequences of nonlinearity are seen by comparing linear and nonlinear NPE results: (1) a decrease in shock strength versus range (a well-known result of entropy increases at the shock front); (2) an increase in the convergence zone range; and (3) a vertical meandering of the energy path about the corresponding linear ray path. Items (2) and (3) are manifestations of self-refraction.

  11. Importance of Antecedent Beach and Surf-Zone Morphology to Wave Runup Predictions

    DTIC Science & Technology

    2016-10-01

    position on the dune, the laser reflects well off of the water surface when foam is present (blue dots, Figure 1B). Maximum range of measurement...depends upon the amount of breaking and foam present in the surf-zone at any given time, but rarely exceeds 150 m for this laser scanner. Drawbacks to...determined by reverse-shoaling data from the FRF’s 11 m Acoustic Wave and Current (AWAC) profiler to deep water values. Local water levels (tide and surge

  12. [Characteristics of Waves Generated Beneath the Solar Convection Zone by Penetrative Overshoot

    NASA Technical Reports Server (NTRS)

    Julien, Keith

    2000-01-01

    The goal of this project was to theoretically and numerically characterize the waves generated beneath the solar convection zone by penetrative overshoot. Three dimensional model simulations were designed to isolate the effects of rotation and shear. In order to overcome the numerically imposed limitations of finite Reynolds numbers (Re) below solar values, series of simulations were designed to elucidate the Reynolds-number dependence (hoped to exhibit mathematically simple scaling on Re) so that one could cautiously extrapolate to solar values.

  13. Head-on collision of the second mode internal solitary waves

    NASA Astrophysics Data System (ADS)

    Terletska, Kateryna; Maderich, Vladimir; Jung, Kyung Tae

    2017-04-01

    Second mode internal waves are widespread in offshore areas, and they frequently follow the first mode internal waves on the oceanic shelf. Large amplitude internal solitary waves (ISW) of second mode containing trapped cores associated with closed streamlines can also transport plankton and nutrients. An interaction of ISWs with trapped cores takes place in a specific manner. It motivated us to carry out a computational study of head-on collision of ISWs of second mode propagating in a laboratory-scale numerical tank using the nonhydrostatic 3D numerical model based on the Navier-Stokes equations for a continuously stratified fluid. Three main classes of ISW of second mode propagating in the pycnocline layer of thickness h between homogeneous deep layers can be identified: (i) the weakly nonlinear waves; (ii) the stable strongly nonlinear waves with trapped cores; and (iii) the shear unstable strongly nonlinear waves (Maderich et al., 2015). Four interaction regimes for symmetric collision were separated from simulation results using this classification: (A) an almost elastic interaction of the weakly nonlinear waves; (B) a non-elastic interaction of waves with trapped cores when ISW amplitudes were close to critical non-dimensional amplitude a/h; (C) an almost elastic interaction of stable strongly nonlinear waves with trapped cores; (D) non-elastic interaction of the unstable strongly nonlinear waves. The unexpected result of simulation was that relative loss of energy due to the collision was maximal for regime B. New regime appeared when ISW of different amplitudes belonged to class (ii) collide. In result of interaction the exchange of mass between ISW occurred: the trapped core of smaller wave was entrained by core of larger ISW without mixing forming a new ISW of larger amplitude whereas in smaller ISW core of smaller wave totally substituted by fluid from larger wave. Overall, the wave characteristics induced by head-on collision agree well with the

  14. Anisotropy in subduction zones: Insights from new source side S wave splitting measurements from India

    NASA Astrophysics Data System (ADS)

    Roy, Sunil K.; Kumar, M. Ravi; Davuluri, Srinagesh

    2017-08-01

    This study presents 106 splitting and 40 null measurements of source side anisotropy in subduction zones, utilizing direct S waves registered at two stations sited on the Indian continent, which show null shear wave splitting measurements for SKS phases. Our results suggest that trench-parallel anisotropy is dominant beneath the Philippines, Mariana, Izu-Bonin, and edge of the Java slab, while plate motion-parallel anisotropy is observed beneath the Solomon, Aegean, Japan, and Java slabs. Results from Kuril and Aleutian regions reveal trench-oblique anisotropy. We chose to interpret these observations primarily in terms of mantle flow beneath a subduction zone. While the two-dimensional (2-D) slab entrained flow model offers a simple explanation for trench-normal fast polarization azimuths (FPA), the trench-parallel FPA can be reconciled by extension due to slab rollback. The model that invokes age of the subducting lithosphere can explain anisotropy in the subslab, derived from rays recorded at the updip stations. However, when downdip stations are used, contributions from the slab and supraslab need to be considered. In Japan, anisotropy in the subslab mantle shallower than 300 km might be associated with trench-parallel mantle flow resulting in the alignment of FPA in the same direction. Anisotropy in the deeper part, above the transition zone, is probably associated with 2-D flow resulting in trench-normal FPA. Anisotropy in the Mariana Trench might be associated with trench-parallel mantle flow in the supraslab region, with similar deformation in the upper mantle and the transition zone.

  15. Numerical modeling of nonlinear modulation of coda wave interferometry in a multiple scattering medium with the presence of a localized micro-cracked zone

    NASA Astrophysics Data System (ADS)

    Chen, Guangzhi; Pageot, Damien; Legland, Jean-Baptiste; Abraham, Odile; Chekroun, Mathieu; Tournat, Vincent

    2018-04-01

    The spectral element method is used to perform a parametric sensitivity study of the nonlinear coda wave interferometry (NCWI) method in a homogeneous sample with localized damage [1]. The influence of a strong pump wave on a localized nonlinear damage zone is modeled as modifications to the elastic properties of an effective damage zone (EDZ), depending on the pump wave amplitude. The local change of the elastic modulus and the attenuation coefficient have been shown to vary linearly with respect to the excitation amplitude of the pump wave as in previous experimental studies of Zhang et al. [2]. In this study, the boundary conditions of the cracks, i.e. clapping effects is taken into account in the modeling of the damaged zone. The EDZ is then modeled with random cracks of random orientations, new parametric studies are established to model the pump wave influence with two new parameters: the change of the crack length and the crack density. The numerical results reported constitute another step towards quantification and forecasting of the nonlinear acoustic response of a cracked material, which proves to be necessary for quantitative non-destructive evaluation.

  16. Ripple Trap

    NASA Technical Reports Server (NTRS)

    2006-01-01

    3 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the margin of a lava flow on a cratered plain in the Athabasca Vallis region of Mars. Remarkably, the cratered plain in this scene is essentially free of bright, windblown ripples. Conversely, the lava flow apparently acted as a trap for windblown materials, illustrated by the presence of the light-toned, wave-like texture over much of the flow. That the lava flow surface trapped windblown sand and granules better than the cratered plain indicates that the flow surface has a rougher texture at a scale too small to resolve in this image.

    Location near: 10.7oN, 204.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter

  17. Wave propagation in the marginal ice zone - Model predictions and comparisons with buoy and synthetic aperture radar data

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Holt, Benjamin; Vachon, Paris W.

    1991-01-01

    Ocean wave dispersion relation and viscous attenuation by a sea ice cover are studied for waves propagating into the marginal ice zone (MIZ). The Labrador ice margin experiment (LIMEX), conducted on the MIZ off the east coast of Newfoundland, Canada in March 1987, provided aircraft SAR imagery, ice property and wave buoy data. Wave energy attenuation rates are estimated from SAR data and the ice motion package data that were deployed at the ice edge and into the ice pack, and compared with a model. It is shown that the model data comparisons are quite good for the ice conditions observed during LIMEX 1987.

  18. Ray-tracing studies and path-integrated gains of ELF unducted whistler mode waves in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Goertz, C. K.

    1983-01-01

    Gyroresonance and Landau resonance interactions between unducted low-frequency whistler waves and trapped electrons in the earth's plasmasphere have been studied. Ray paths for waves launched near the plasmapause have been traced. In agreement with recent findings by Thorne et al. (1979), waves have been found which return through the equatorial zone with field-aligned wave normal angles. However, when the growth along the ray path is calculated for such waves, assuming an electron distribution function of the form E exp -n sin exp m alpha, it is found that for all the waves considered, the local growth rate becomes negative before plasmapause reflection, limiting the total gain to small values. Most waves reach zero gain before reflection. This is the result of Landau damping at oblique propagation angles, which necessarily occurs before reflection can take place. It is concluded that the concept of cyclic ray paths does not provide an explanation for the generation of unguided plasmaspheric hiss.

  19. Modified stimulated Raman scattering of a laser induced by trapped electrons in a plasma

    NASA Astrophysics Data System (ADS)

    Baliyan, Sweta; Rafat, Mohd.; Ahmad, Nafis; Sajal, Vivek

    2017-10-01

    The plasma wave, generated in stimulated Raman scattering process by an intense laser in the plasmas, traps a significant number of electrons in its potential energy minima. These electrons travel with the phase velocity of plasma wave and oscillate with bounce frequency. When the bounce frequency of electrons becomes equal to the growth rate of Raman process, resonance takes place. Now, Raman scattering gets modified by parametrically exciting a trapped electron mode and an electromagnetic sideband. The ponderomotive force due to the pump and sideband drives the plasma wave, whereas the density perturbation due to the trapped electron mode couples with the oscillating velocity of electrons due to the laser to produce a nonlinear current, driving the sideband.

  20. Acoustic trapping of active matter

    PubMed Central

    Takatori, Sho C.; De Dier, Raf; Vermant, Jan; Brady, John F.

    2016-01-01

    Confinement of living microorganisms and self-propelled particles by an external trap provides a means of analysing the motion and behaviour of active systems. Developing a tweezer with a trapping radius large compared with the swimmers' size and run length has been an experimental challenge, as standard optical traps are too weak. Here we report the novel use of an acoustic tweezer to confine self-propelled particles in two dimensions over distances large compared with the swimmers' run length. We develop a near-harmonic trap to demonstrate the crossover from weak confinement, where the probability density is Boltzmann-like, to strong confinement, where the density is peaked along the perimeter. At high concentrations the swimmers crystallize into a close-packed structure, which subsequently ‘explodes' as a travelling wave when the tweezer is turned off. The swimmers' confined motion provides a measurement of the swim pressure, a unique mechanical pressure exerted by self-propelled bodies. PMID:26961816

  1. Acoustic trapping of active matter

    NASA Astrophysics Data System (ADS)

    Takatori, Sho C.; de Dier, Raf; Vermant, Jan; Brady, John F.

    2016-03-01

    Confinement of living microorganisms and self-propelled particles by an external trap provides a means of analysing the motion and behaviour of active systems. Developing a tweezer with a trapping radius large compared with the swimmers' size and run length has been an experimental challenge, as standard optical traps are too weak. Here we report the novel use of an acoustic tweezer to confine self-propelled particles in two dimensions over distances large compared with the swimmers' run length. We develop a near-harmonic trap to demonstrate the crossover from weak confinement, where the probability density is Boltzmann-like, to strong confinement, where the density is peaked along the perimeter. At high concentrations the swimmers crystallize into a close-packed structure, which subsequently `explodes' as a travelling wave when the tweezer is turned off. The swimmers' confined motion provides a measurement of the swim pressure, a unique mechanical pressure exerted by self-propelled bodies.

  2. Test particle simulation study of whistler wave packets observed near Comet Giacobini-Zinner

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Matsumoto, H.; Tsurutani, B. T.

    1989-01-01

    Nonlinear interactions of water group ions with large-amplitude whistler wave packets detected at the leading edge of steepened magnetosonic waves observed near Comet Giacobini-Zinner (GZ) are studied using test particle simulations of water-ion interactions with a model wave based on GZ data. Some of the water ions are found to be decelerated in the steepened portion of the magnetosonic wave to the resonance velocity with the whistler wave packets. Through resonance and related nonlinear interaction with the large-amplitude whistler waves, the water ions become trapped by the packet. An energy balance calculation demonstrates that the trapped ions lose their kinetic energy during the trapped motion in the packet. Thus, the nonlinear trapping motion in the wave structure leads to effective energy transfer from the water group ions to the whistler wave packets in the leading edge of the steepened MHD waves.

  3. Synchronization of Long Ocean Waves by Coastal Relief on the Southeast Shelf of Sakhalin Island

    NASA Astrophysics Data System (ADS)

    Kovalev, Dmitry P.; Kovalev, Peter D.

    2017-12-01

    The phenomenon of synchronization (trapping) of coming waves by the resonant water area in a coastal zone of the sea found from the observed data is considered in the paper. Edge waves with the period of about 10.7 minutes are visually observed in sea level fluctuations near the village of Okhotskoye and the cape Ostri on the southeast coast of Sakhalin Island. These waves are synchronized with the resonance water area. It becomes apparent from the unlimited increase of a phase between the bottom stations installed at distance of about 7.5km. In relation to the phenomenon found, the problem of weak and periodic impact on regular self-oscillatory system — Van der Paul’s oscillator — is considered. Good compliance between theoretical model and data of experiments is obtained.

  4. Observationally constrained modeling of sound in curved ocean internal waves: examination of deep ducting and surface ducting at short range.

    PubMed

    Duda, Timothy F; Lin, Ying-Tsong; Reeder, D Benjamin

    2011-09-01

    A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional parabolic equation computational code, and the results are compared to measured propagation along fixed 3 and 6 km source/receiver paths. The measurements were made on the shelf of the South China Sea northeast of Tung-Sha Island. Construction of the time-varying three-dimensional sound-speed fields used in the modeling simulations was guided by environmental data collected concurrently with the acoustic data. Computed three-dimensional propagation results compare well with field observations. The simulations allow identification of time-dependent sound forward scattering and ducting processes within the curved internal gravity waves. Strong acoustic intensity enhancement was observed during passage of high-amplitude nonlinear waves over the source/receiver paths, and is replicated in the model. The waves were typical of the region (35 m vertical displacement). Two types of ducting are found in the model, which occur asynchronously. One type is three-dimensional modal trapping in deep ducts within the wave crests (shallow thermocline zones). The second type is surface ducting within the wave troughs (deep thermocline zones). © 2011 Acoustical Society of America

  5. On the influence of reflection over a rhythmic swash zone on surf zone dynamics

    NASA Astrophysics Data System (ADS)

    Almar, Rafael; Nicolae Lerma, Alexandre; Castelle, Bruno; Scott, Timothy

    2018-05-01

    The reflection of incident gravity waves over an irregular swash zone morphology and the resulting influence on surf zone dynamics remains mostly unexplored. The wave-phase resolving SWASH model is applied to investigate this feedback using realistic low-tide terraced beach morphology with well-developed beach cusps. The rhythmic reflection generates a standing wave that mimics a subharmonic edge wave, from the superimposition of incident and two-dimensional reflected waves. This mechanism is enhanced by shore-normal, narrow-banded waves in both direction and frequency. Our study suggests that wave reflection over steep beaches could be a mechanism for the development of rhythmic morphological features such as beach cusps and rip currents.

  6. Quantum information processing with trapped ions

    NASA Astrophysics Data System (ADS)

    Gaebler, John

    2013-03-01

    Trapped ions are one promising architecture for scalable quantum information processing. Ion qubits are held in multizone traps created from segmented arrays of electrodes and transported between trap zones using time varying electric potentials applied to the electrodes. Quantum information is stored in the ions' internal hyperfine states and quantum gates to manipulate the internal states and create entanglement are performed with laser beams and microwaves. Recently we have made progress in speeding up the ion transport and cooling processes that were the limiting tasks for the operation speed in previous experiments. We are also exploring improved two-qubit gates and new methods for creating ion entanglement. This work was supported by IARPA, ARO contract No. EAO139840, ONR and the NIST Quantum Information Program

  7. Mortality during a Large-Scale Heat Wave by Place, Demographic Group, Internal and External Causes of Death, and Building Climate Zone

    PubMed Central

    Joe, Lauren; Hoshiko, Sumi; Dobraca, Dina; Jackson, Rebecca; Smorodinsky, Svetlana; Smith, Daniel; Harnly, Martha

    2016-01-01

    Mortality increases during periods of elevated heat. Identification of vulnerable subgroups by demographics, causes of death, and geographic regions, including deaths occurring at home, is needed to inform public health prevention efforts. We calculated mortality relative risks (RRs) and excess deaths associated with a large-scale California heat wave in 2006, comparing deaths during the heat wave with reference days. For total (all-place) and at-home mortality, we examined risks by demographic factors, internal and external causes of death, and building climate zones. During the heat wave, 582 excess deaths occurred, a 5% increase over expected (RR = 1.05, 95% confidence interval (CI) 1.03–1.08). Sixty-six percent of excess deaths were at home (RR = 1.12, CI 1.07–1.16). Total mortality risk was higher among those aged 35–44 years than ≥65, and among Hispanics than whites. Deaths from external causes increased more sharply (RR = 1.18, CI 1.10–1.27) than from internal causes (RR = 1.04, CI 1.02–1.07). Geographically, risk varied by building climate zone; the highest risks of at-home death occurred in the northernmost coastal zone (RR = 1.58, CI 1.01–2.48) and the southernmost zone of California’s Central Valley (RR = 1.43, CI 1.21–1.68). Heat wave mortality risk varied across subpopulations, and some patterns of vulnerability differed from those previously identified. Public health efforts should also address at-home mortality, non-elderly adults, external causes, and at-risk geographic regions. PMID:27005646

  8. Mortality during a Large-Scale Heat Wave by Place, Demographic Group, Internal and External Causes of Death, and Building Climate Zone.

    PubMed

    Joe, Lauren; Hoshiko, Sumi; Dobraca, Dina; Jackson, Rebecca; Smorodinsky, Svetlana; Smith, Daniel; Harnly, Martha

    2016-03-09

    Mortality increases during periods of elevated heat. Identification of vulnerable subgroups by demographics, causes of death, and geographic regions, including deaths occurring at home, is needed to inform public health prevention efforts. We calculated mortality relative risks (RRs) and excess deaths associated with a large-scale California heat wave in 2006, comparing deaths during the heat wave with reference days. For total (all-place) and at-home mortality, we examined risks by demographic factors, internal and external causes of death, and building climate zones. During the heat wave, 582 excess deaths occurred, a 5% increase over expected (RR = 1.05, 95% confidence interval (CI) 1.03-1.08). Sixty-six percent of excess deaths were at home (RR = 1.12, CI 1.07-1.16). Total mortality risk was higher among those aged 35-44 years than ≥ 65, and among Hispanics than whites. Deaths from external causes increased more sharply (RR = 1.18, CI 1.10-1.27) than from internal causes (RR = 1.04, CI 1.02-1.07). Geographically, risk varied by building climate zone; the highest risks of at-home death occurred in the northernmost coastal zone (RR = 1.58, CI 1.01-2.48) and the southernmost zone of California's Central Valley (RR = 1.43, CI 1.21-1.68). Heat wave mortality risk varied across subpopulations, and some patterns of vulnerability differed from those previously identified. Public health efforts should also address at-home mortality, non-elderly adults, external causes, and at-risk geographic regions.

  9. Making the most of CZ seismics: Improving shallow critical zone characterization using surface-wave analysis

    NASA Astrophysics Data System (ADS)

    Pasquet, S.; Wang, W.; Holbrook, W. S.; Bodet, L.; Carr, B.; Flinchum, B. A.

    2017-12-01

    Estimating porosity and saturation in the shallow subsurface over large lateral scales is vitally important for understanding the development and evolution of the Critical Zone (CZ). Because elastic properties (P- and S-wave velocities) are particularly sensitive to porosity and saturation, seismic methods (in combination with petrophysical models) are effective tools for mapping CZ architecture and processes. While many studies employ P-wave refraction methods, fewer use the surface waves that are typically also recorded in those same surveys. Here we show the value of exploiting surface waves to extract supplementary shear-wave velocity (Vs) information in the CZ. We use a new, user-friendly, open-source MATLAB-based package (SWIP) to invert surface-wave data and estimate lateral variations of Vs in the CZ. Results from synthetics show that this approach enables the resolution of physical property variations in the upper 10-15 m below the surface with lateral scales of about 5 m - a vast improvement compared to P-wave tomography alone. A field example at a Yellowstone hydrothermal system also demonstrates the benefits of including Vs in the petrophysical models to estimate not only porosity but also saturation, thus highlighting subsurface gas pathways. In light of these results, we strongly suggest that surface-wave analysis should become a standard approach in CZ seismic surveys.

  10. Planetary plasma waves

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    1993-01-01

    The primary types of plasma waves observed in the vicinity of the planets Venus, Mars, Earth, Jupiter, Saturn, Uranus, and Neptune are described. The observations are organized according to the various types of plasma waves observed, ordered according to decreasing distance from the planet, starting from the sunward side of the planet, and ending in the region near the closest approach. The plasma waves observed include: electron plasma oscillations and ion acoustic waves; trapped continuum radiation; electron cyclotron and upper hybrid waves; whistler-mode emissions; electrostatic ion cyclotron waves; and electromagnetic ion cyclotron waves.

  11. Nanophotonic trapping for precise manipulation of biomolecular arrays.

    PubMed

    Soltani, Mohammad; Lin, Jun; Forties, Robert A; Inman, James T; Saraf, Summer N; Fulbright, Robert M; Lipson, Michal; Wang, Michelle D

    2014-06-01

    Optical trapping is a powerful manipulation and measurement technique widely used in the biological and materials sciences. Miniaturizing optical trap instruments onto optofluidic platforms holds promise for high-throughput lab-on-a-chip applications. However, a persistent challenge with existing optofluidic devices has been achieving controlled and precise manipulation of trapped particles. Here, we report a new class of on-chip optical trapping devices. Using photonic interference functionalities, an array of stable, three-dimensional on-chip optical traps is formed at the antinodes of a standing-wave evanescent field on a nanophotonic waveguide. By employing the thermo-optic effect via integrated electric microheaters, the traps can be repositioned at high speed (∼30 kHz) with nanometre precision. We demonstrate sorting and manipulation of individual DNA molecules. In conjunction with laminar flows and fluorescence, we also show precise control of the chemical environment of a sample with simultaneous monitoring. Such a controllable trapping device has the potential to achieve high-throughput precision measurements on chip.

  12. Effect of Sediments on Rupture Dynamics of Shallow Subduction Zone Earthquakes and Tsunami Generation

    NASA Astrophysics Data System (ADS)

    Ma, S.

    2011-12-01

    Low-velocity fault zones have long been recognized for crustal earthquakes by using fault-zone trapped waves and geodetic observations on land. However, the most pronounced low-velocity fault zones are probably in the subduction zones where sediments on the seafloor are being continuously subducted. In this study I focus on shallow subduction zone earthquakes; these earthquakes pose a serious threat to human society in their ability in generating large tsunamis. Numerous observations indicate that these earthquakes have unusually long rupture durations, low rupture velocities, and/or small stress drops near the trench. However, the underlying physics is unclear. I will use dynamic rupture simulations with a finite-element method to investigate the dynamic stress evolution on faults induced by both sediments and free surface, and its relations with rupture velocity and slip. I will also explore the effect of off-fault yielding of sediments on the rupture characteristics and seafloor deformation. As shown in Ma and Beroza (2008), the more compliant hanging wall combined with free surface greatly increases the strength drop and slip near the trench. Sediments in the subduction zone likely have a significant role in the rupture dynamics of shallow subduction zone earthquakes and tsunami generation.

  13. Surface elastic wave detectors

    NASA Technical Reports Server (NTRS)

    Lawson, R. L.

    1971-01-01

    The potential applications of acoustic surface wave technology to multiplex communication systems such as data-bus, are examined. The goals are primarily to characterize certain aspects of surface wave trapped delay lines, surface wave modulation techniques, and surface wave applications that are relevant to the evaluation of surface wave devices in multiplex systems. The results indicate that there is a potential for the application of surface wave technology in data-bus type systems.

  14. Rotating magnetic shallow water waves and instabilities in a sphere

    NASA Astrophysics Data System (ADS)

    Márquez-Artavia, X.; Jones, C. A.; Tobias, S. M.

    2017-07-01

    Waves in a thin layer on a rotating sphere are studied. The effect of a toroidal magnetic field is considered, using the shallow water ideal MHD equations. The work is motivated by suggestions that there is a stably stratified layer below the Earth's core mantle boundary, and the existence of stable layers in stellar tachoclines. With an azimuthal background field known as the Malkus field, ?, ? being the co-latitude, a non-diffusive instability is found with azimuthal wavenumber ?. A necessary condition for instability is that the Alfvén speed exceeds ? where ? is the rotation rate and ? the sphere radius. Magneto-inertial gravity waves propagating westward and eastward occur, and become equatorially trapped when the field is strong. Magneto-Kelvin waves propagate eastward at low field strength, but a new westward propagating Kelvin wave is found when the field is strong. Fast magnetic Rossby waves travel westward, whilst the slow magnetic Rossby waves generally travel eastward, except for some ? modes at large field strength. An exceptional very slow westward ? magnetic Rossby wave mode occurs at all field strengths. The current-driven instability occurs for ? when the slow and fast magnetic Rossby waves interact. With strong field the magnetic Rossby waves become trapped at the pole. An asymptotic analysis giving the wave speed and wave form in terms of elementary functions is possible both in polar trapped and equatorially trapped cases.

  15. Fine structure of the landers fault zone: Segmentation and the rupture process

    USGS Publications Warehouse

    Li, Y.-G.; Vidale, J.E.; Aki, K.; Marone, C.J.; Lee, W.H.K.

    1994-01-01

    Observations and modeling of 3- to 6-hertz seismic shear waves trapped within the fault zone of the 1992 Landers earthquake series allow the fine structure and continuity of the zone to be evaluated. The fault, to a depth of at least 12 kilometers, is marked by a zone 100 to 200 meters wide where shear velocity is reduced by 30 to 50 percent. This zone forms a seismic waveguide that extends along the southern 30 kilometers of the Landers rupture surface and ends at the fault bend about 18 kilometers north of the main shock epicenter. Another fault plane waveguide, disconnected from the first, exists along the northern rupture surface. These observations, in conjunction with surface slip, detailed seismicity patterns, and the progression of rupture along the fault, suggest that several simple rupture planes were involved in the Landers earthquake and that the inferred rupture front hesitated or slowed at the location where the rupture jumped from one to the next plane. Reduction in rupture velocity can tentatively be attributed to fault plane complexity, and variations in moment release can be attributed to variations in available energy.

  16. Structure of the Cascadia Subduction Zone Imaged Using Surface Wave Tomography

    NASA Astrophysics Data System (ADS)

    Schaeffer, A. J.; Audet, P.

    2017-12-01

    Studies of the complete structure of the Cascadia subduction zone from the ridge to the arc have historically been limited by the lack of offshore ocean bottom seismograph (OBS) infrastructure. On land, numerous dense seismic deployments have illuminated detailed structures and dynamics associated with the interaction between the subducting oceanic plate and the overriding continental plate, including cycling of fluids, serpentinization of the overlying forearc mantle wedge, and the location of the upper surface of the Juan de Fuca plate as it subducts beneath the Pacific Northwest. In the last half-decade, the Cascadia Initiative (CI), along with Neptune (ONC) and several other OBS initiatives, have instrumented both the continental shelf and abyssal plains off shore of the Cascadia subduction zone, facilitating the construction of a complete picture of the subduction zone from ridge to trench and volcanic arc. In this study, we present a preliminary azimuthally anisotropic surface-wave phase-velocity based model of the complete system, capturing both the young, unaltered Juan de Fuca plate from the ridge, to its alteration as it enters the subduction zone, in addition to the overlying continent. This model is constructed from a combination of ambient noise cross-correlations and teleseismic two station interferometry, and combines together concurrently running offshore OBS and onshore stations. We furthermore perform a number of representative 1D depth inversions for shear velocity to categorize the pristine oceanic, subducted oceanic, and continental crust and lithospheric structure. In the future the dispersion dataset will be jointly inverted with receiver functions to constrain a 3D shear-velocity model of the complete region.

  17. Mapping Deep Low Velocity Zones in Alaskan Arctic Coastal Permafrost using Seismic Surface Waves

    NASA Astrophysics Data System (ADS)

    Dou, S.; Ajo Franklin, J. B.; Dreger, D. S.

    2012-12-01

    Surface Waves (MASW) suggests the existence of pronounced low shear wave velocity zones that span the depth range of 2 - 30 meters; this zone has shear velocity values comparable to partially thawed soils. Such features coincide with previous findings of very low electrical resistivity structure (as low as ~10 Ohm*m at some locations) from measurements obtained in the first NGEE-Arctic geophysical field campaign (conducted in the week of September 24 - October 1, 2011). These low shear velocity zones are likely representative of regions with high unfrozen water content and thus have important implications on the rate of microbial activity and the vulnerability of deep permafrost carbon pools. Analysis of this dataset required development of a novel inversion approach based on waveform inversion. The existence of multiple closely spaced Rayleigh wave modes made traditional inversion based on mode picking virtually impossible; As a result, we selected a direct misfit evaluation based on comparing dispersion images in the phase velocity/frequency domain. The misfit function was optimized using a global search algorithm, in this case Huyer and Neumaier's Multi Coordinate Search algorithm (MCS). This combination of MCS and waveform misfit allowed recovery of the low velocity region despite the existence of closely spaced modes.

  18. Modified KdV equation for trapped ions in polarized dusty plasma

    NASA Astrophysics Data System (ADS)

    Singh, K.; Kaur, N.; Sethi, P.; Saini, N. S.

    2018-01-01

    In this investigation, the effect of polarization force on dust acoustic solitary waves (DASWs) has been presented in a dusty plasma composed of Maxwellian electrons, vortex-like (trapped) ions, and negatively charged mobile dust grains. It has been found that from the Maxwellian ions distribution to a vortex-like one, the dynamics of small but finite amplitude DA solitary waves is governed by a nonlinear equation of modified Korteweg-de Vries (mKdV) type instead of KdV. The combined effect of trapped ions and polarization force strongly influence the characteristics of DASWs. Only rarefactive solitary structures are formed under the influence of ions trapping and polarization force. The implications of our results are useful in real astrophysical situations of space and laboratory dusty plasmas.

  19. 50 CFR 654.24 - Shrimp/stone crab separation zones.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Shrimp/stone crab separation zones. 654.24... Measures § 654.24 Shrimp/stone crab separation zones. Five zones are established in the management area and... trapping. The zones are as shown in Appendix A, Figure 3, of this part. Although Zone II is entirely within...

  20. 50 CFR 654.24 - Shrimp/stone crab separation zones.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Shrimp/stone crab separation zones. 654... Measures § 654.24 Shrimp/stone crab separation zones. Five zones are established in the management area and... trapping. The zones are as shown in Appendix A, Figure 3, of this part. Although Zone II is entirely within...

  1. Fate of internal waves on a shallow shelf

    NASA Astrophysics Data System (ADS)

    Davis, Kristen; Arthur, Robert; Reid, Emma; Decarlo, Thomas; Cohen, Anne

    2017-11-01

    Internal waves strongly influence the physical and chemical environment of coastal ecosystems worldwide. We report novel observations from a distributed temperature sensing (DTS) system that tracked the transformation of internal waves from the shelf break to the surf zone over a shelf-slope region of a coral atoll in the South China Sea. The spatially-continuous view of the near-bottom temperature field provided by the DTS offers a perspective of physical processes previously available only in laboratory settings or numerical models. These processes include internal wave reflection off a natural slope, shoreward transport of dense fluid within trapped cores, internal ``tide pools'' (dense water left behind after the retreat of an internal wave), and internal run-down (near-bottom, offshore-directed jets of water preceding a breaking internal wave). Analysis shows that the fate of internal waves on this shelf - whether they are transmitted into shallow waters or reflected back offshore - is mediated by local water column density and shear structure, with important implications for nearshore distributions of energy, heat, and nutrients. We acknowledge the US Army Research Laboratory DoD Supercomputing Resource Center for computer time on Excalibur, which was used for the numerical simulations in this work. Funding for field work supported by Academia Sinica and for K.D. and E.R. from NSF.

  2. Interactions of solitary waves and compression/expansion waves in core-annular flows

    NASA Astrophysics Data System (ADS)

    Maiden, Michelle; Anderson, Dalton; El, Gennady; Franco, Nevil; Hoefer, Mark

    2017-11-01

    The nonlinear hydrodynamics of an initial step leads to the formation of rarefaction waves and dispersive shock waves in dispersive media. Another hallmark of these media is the soliton, a localized traveling wave whose speed is amplitude dependent. Although compression/expansion waves and solitons have been well-studied individually, there has been no mathematical description of their interaction. In this talk, the interaction of solitons and shock/rarefaction waves for interfacial waves in viscous, miscible core-annular flows are modeled mathematically and explored experimentally. If the interior fluid is continuously injected, a deformable conduit forms whose interfacial dynamics are well-described by a scalar, dispersive nonlinear partial differential equation. The main focus is on interactions of solitons with dispersive shock waves and rarefaction waves. Theory predicts that a soliton can either be transmitted through or trapped by the extended hydrodynamic state. The notion of reciprocity is introduced whereby a soliton interacts with a shock wave in a reciprocal or dual fashion as with the rarefaction. Soliton reciprocity, trapping, and transmission are observed experimentally and are found to agree with the modulation theory and numerical simulations. This work was partially supported by NSF CAREER DMS-1255422 (M.A.H.) and NSF GRFP (M.D.M.).

  3. Quantity, composition, and source of sediment collected in sediment traps along the fringing coral reef off Molokai, Hawaii

    USGS Publications Warehouse

    Bothner, Michael H.; Reynolds, R.L.; Casso, M.A.; Storlazzi, C.D.; Field, M.E.

    2006-01-01

    Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000–May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates > 1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves.The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.

  4. Quantity, composition, and source of sediment collected in sediment traps along the fringing coral reef off Molokai, Hawaii.

    PubMed

    Bothner, Michael H; Reynolds, Richard L; Casso, Michael A; Storlazzi, Curt D; Field, Michael E

    2006-09-01

    Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000-May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates>1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves. The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.

  5. New Generation of ELF/VLF Wave Injection Experiments for HAARP

    NASA Astrophysics Data System (ADS)

    Sonwalkar, V. S.; Reddy, A.; Watkins, B. J.

    2016-12-01

    We present a ray tracing study to investigate the feasibility of a new generation of wave injection experiments from HAARP transmitter (L 4.9). Highly successful whistler mode wave injection experiments from SIPLE station, Antarctica, have established the importance of such experiments to study magnetospheric wave-particle interactions, and for cold and hot plasma diagnostics [Helliwell and Katsufrakis, 1974; Carpenter and Miller, 1976; Sonwalkar et al., 1997]. Modulated heating experiments from HAARP have shown that it is possible to launch ELF/VLF waves into the magnetosphere that can be observed on the ground after one-, two-, and multi-hop ducted propagation [Inan et al., 2004]. Recent research has also shown that ionospheric heating experiments using HAARP can lead to the formation of magnetospheric ducts [e.g. Milikh et al., 2010; Fallen et al., 2011]. Collectively, these results indicate that the HAARP (or similar) transmitter can be used first to form ducts on nearby L shells, and then to inject and trap transmitter generated ELF/VLF waves in those ducts. Ray tracing studies using a model magnetosphere shows that ELF/VLF waves in a few kilohertz range can be trapped in ducts with L shells near the HAARP transmitter. For example, 1.5 kHz waves injected from L shell = 4.9 and altitude = 200 km can be trapped in ducts located within 0.3 L of the transmitter L-shell. The duct parameters needed for ray-trapping are typically duct width dL 0.1-0.3 and duct enhancement factor dNe/Ne 10-20% or more. The location of plasmapause with respect to transmitter plays a role in the nature of trapping. The duct locations and parameters required for trapping ELF/VLF waves inside the ducts are consistent with past observations of ducts generated by the HAARP transmitter. Ray tracing calculations provide trapped wave normal angles, time delays, resonant energetic electron energy, estimates of wave intensity inside the duct, on the ground, and on satellites such DEMETER, Van

  6. Trapped-Particle Instability Leading to Bursting in Stimulated Raman Scattering Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Brunner; E. Valeo

    2001-11-08

    Nonlinear, kinetic simulations of Stimulated Raman Scattering (SRS) for laser-fusion-relevant conditions present a bursting behavior. Different explanations for this regime has been given in previous studies: Saturation of SRS by increased nonlinear Landau damping [K. Estabrook et al., Phys. Fluids B 1 (1989) 1282] and detuning due to the nonlinear frequency shift of the plasma wave [H.X. Vu et al., Phys. Rev. Lett. 86 (2001) 4306]. Another mechanism, also assigning a key role to the trapped electrons, is proposed here: The break-up of the plasma wave through the trapped-particle instability.

  7. Trapped Electron Instability of Electron Plasma Waves: Vlasov simulations and theory

    NASA Astrophysics Data System (ADS)

    Berger, Richard; Chapman, Thomas; Brunner, Stephan

    2013-10-01

    The growth of sidebands of a large-amplitude electron plasma wave is studied with Vlasov simulations for a range of amplitudes (. 001 < eϕ0 /Te < 1) and wavenumbers (0 . 25 trapped electron. In 2D simulations, we find that the instability persists and co-exists with the filamentation instability. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD.

  8. Wave groupiness variations in the nearshore

    USGS Publications Warehouse

    List, J.H.

    1991-01-01

    This paper proposes a new definition of the groupiness factor, GF, based on the envelope of the incident-wave time series. It is shown that an envelope-based GF has several important advantages over the SIWEH-based groupiness factor, including objective criteria for determining the accuracy of the envelope function and well-defined numerical limits. Using this new GF, the variability of incident wave groupiness in the field is examined both temporally, in unbroken waves at a fixed location, and spatially, in a cross-shore array through the surf zone. Contrary to previous studies using the SIWEH-based GF, results suggest that incident wave groupiness may not be an independent parameter in unbroken waves; through a wide range of spectral shapes, from swell to storm waves, the groupiness did not vary significantly. As expected, the groupiness decreases rapidly as waves break through the surf zone, although significant wave height variability persists even through a saturated surf zone. The source of this inner surf zone groupiness is not identified; however, this observation implies that models of long wave generation must account for nonsteady radiation stress gradients landward of some narrow zone near the mean breakpoint. ?? 1991.

  9. Incorporating fault zone head wave and direct wave secondary arrival times into seismic tomography: Application at Parkfield, California

    NASA Astrophysics Data System (ADS)

    Bennington, Ninfa L.; Thurber, Clifford; Peng, Zhigang; Zhang, Haijiang; Zhao, Peng

    2013-03-01

    We present a three-dimensional (3D) P wave velocity (Vp) model of the Parkfield region that utilizes existing P wave arrival time data, including fault zone head waves (FZHWs), and data from direct wave secondary arrivals (DWSAs). The first-arrival and DWSA travel times are obtained as the global- and local-minimum travel time paths, respectively. The inclusion of FZHWs and DWSAs results in as much as a 5% and a 10% increase in the across-fault velocity contrast, respectively, for the Vp model at Parkfield relative to that of Thurber et al. [2006]. Viewed along strike, three pronounced velocity contrast regions are observed: a pair of strong positive velocity contrasts (SW fast), one NW of the 1966 Parkfield earthquake hypocenter and the other SE of the 2004 Parkfield earthquake hypocenter, and a strong negative velocity contrast (NE fast) between the two hypocenters. The negative velocity contrast partially to entirely encompasses peak coseismic slip estimated in several slip models for the 2004 earthquake, suggesting that the negative velocity contrast played a part in defining the rupture patch of the 2004 Parkfield earthquake. Following Ampuero and Ben-Zion (2008), the pattern of velocity contrasts is consistent with the observed bilateral rupture propagation for the 2004 Parkfield earthquake. Although the velocity contrasts also suggest bilateral rupture propagation for the 1966 Parkfield earthquake, the fault is creeping to the NW here, i.e., exhibiting velocity-strengthening behavior. Thus, it is not surprising that rupture propagated only SE during this event.

  10. Toward Scalable Ion Traps for Quantum Information Processing

    DTIC Science & Technology

    2010-01-01

    3/033031 Abstract. In this paper, we report the design, fabrication and preliminary testing of a 150 zone ion trap array built in a ‘ surface ...gates [4–6]. We report here on the design, fabrication and preliminary testing of a large array built in a ‘ surface -electrode’ geometry [7, 8] and...report the first transport of atomic ions through a surface -electrode trap junction. Transport of ions through a junction has been demonstrated previously

  11. Wave interference: mechanics of the standing wave component and the illusion of "which way" information

    NASA Astrophysics Data System (ADS)

    Hudgins, W. R.; Meulenberg, A.; Penland, R. F.

    2015-09-01

    Two adjacent coherent light beams, 180° out of phase and traveling on adjacent, parallel paths, remain visibly separated by the null (dark) zone from their mutual interference pattern as they merge. Each half of the pattern can be traced to one of the beams. Does such an experiment provide both "which way" and momentum knowledge? To answer this question, we demonstrate, by examining behavior of wave momentum and energy in a medium, that interfering waves interact. Central to the mechanism of interference is a standing wave component resulting from the combination of coherent waves. We show the mathematics for the formation of the standing wave component and for wave momentum involved in the waves' interaction. In water and in open coaxial cable, we observe that standing waves form cells bounded "reflection zones" where wave momentum from adjacent cells is reversed, confining oscillating energy to each cell. Applying principles observed in standing waves in media to the standing wave component of interfering light beams, we identify dark (null) regions to be the reflection zones. Each part of the interference pattern is affected by interactions between other parts, obscuring "which-way" information. We demonstrated physical interaction experimentally using two beams interfering slightly with one dark zone between them. Blocking one beam "downstream" from the interference region removed the null zone and allowed the remaining beam to evolve to a footprint of a single beam.

  12. Wave-Particle Dynamics of Wave Breaking in the Self-Excited Dust Acoustic Wave

    NASA Astrophysics Data System (ADS)

    Teng, Lee-Wen; Chang, Mei-Chu; Tseng, Yu-Ping; I, Lin

    2009-12-01

    The wave-particle microdynamics in the breaking of the self-excited dust acoustic wave growing in a dusty plasma liquid is investigated through directly tracking dust micromotion. It is found that the nonlinear wave growth and steepening stop as the mean oscillating amplitude of dust displacement reaches about 1/k (k is the wave number), where the vertical neighboring dust trajectories start to crossover and the resonant wave heating with uncertain crest trapping onsets. The dephased dust oscillations cause the abrupt dropping and broadening of the wave crest after breaking, accompanied by the transition from the liquid phase with coherent dust oscillation to the gas phase with chaotic dust oscillation. Corkscrew-shaped phase-space distributions measured at the fixed phases of the wave oscillation cycle clearly indicate how dusts move in and constitute the evolving waveform through dust-wave interaction.

  13. Nanophotonic Trapping for Precise Manipulation of Biomolecular Arrays

    PubMed Central

    Soltani, Mohammad; Lin, Jun; Forties, Robert A.; Inman, James T.; Saraf, Summer N.; Fulbright, Robert M.; Lipson, Michal; Wang, Michelle D.

    2014-01-01

    Optical trapping is a powerful manipulation and measurement technique widely employed in the biological and materials sciences1–8. Miniaturizing optical trap instruments onto optofluidic platforms holds promise for high throughput lab-on-chip applications9–16. However, a persistent challenge with existing optofluidic devices has been controlled and precise manipulation of trapped particles. Here we report a new class of on-chip optical trapping devices. Using photonic interference functionalities, an array of stable, three-dimensional on-chip optical traps is formed at the antinodes of a standing-wave evanescent field on a nanophotonic waveguide. By employing the thermo-optic effect via integrated electric microheaters, the traps can be repositioned at high speed (~ 30 kHz) with nanometer precision. We demonstrate sorting and manipulation of individual DNA molecules. In conjunction with laminar flows and fluorescence, we also show precise control of the chemical environment of a sample with simultaneous monitoring. Such a controllable trapping device has the potential for high-throughput precision measurements on chip. PMID:24776649

  14. Raman gas self-organizing into deep nano-trap lattice

    PubMed Central

    Alharbi, M.; Husakou, A.; Chafer, M.; Debord, B.; Gérôme, F.; Benabid, F.

    2016-01-01

    Trapping or cooling molecules has rallied a long-standing effort for its impact in exploring new frontiers in physics and in finding new phase of matter for quantum technologies. Here we demonstrate a system for light-trapping molecules and stimulated Raman scattering based on optically self-nanostructured molecular hydrogen in hollow-core photonic crystal fibre. A lattice is formed by a periodic and ultra-deep potential caused by a spatially modulated Raman saturation, where Raman-active molecules are strongly localized in a one-dimensional array of nanometre-wide sections. Only these trapped molecules participate in stimulated Raman scattering, generating high-power forward and backward Stokes continuous-wave laser radiation in the Lamb–Dicke regime with sub-Doppler emission spectrum. The spectrum exhibits a central line with a sub-recoil linewidth as low as ∼14 kHz, more than five orders of magnitude narrower than conventional-Raman pressure-broadened linewidth, and sidebands comprising Mollow triplet, motional sidebands and four-wave mixing. PMID:27677451

  15. Evolution of a Directional Wave Spectrum in a 3D Marginal Ice Zone with Random Floe Size Distribution

    NASA Astrophysics Data System (ADS)

    Montiel, F.; Squire, V. A.

    2013-12-01

    A new ocean wave/sea-ice interaction model is proposed that simulates how a directional wave spectrum evolves as it travels through a realistic marginal ice zone (MIZ), where wave/ice dynamics are entirely governed by coherent conservative wave scattering effects. Field experiments conducted by Wadhams et al. (1986) in the Greenland Sea generated important data on wave attenuation in the MIZ and, particularly, on whether the wave spectrum spreads directionally or collimates with distance from the ice edge. The data suggest that angular isotropy, arising from multiple scattering by ice floes, occurs close to the edge and thenceforth dominates wave propagation throughout the MIZ. Although several attempts have been made to replicate this finding theoretically, including by the use of numerical models, none have confronted this problem in a 3D MIZ with fully randomised floe distribution properties. We construct such a model by subdividing the discontinuous ice cover into adjacent infinite slabs of finite width parallel to the ice edge. Each slab contains an arbitrary (but finite) number of circular ice floes with randomly distributed properties. Ice floes are modeled as thin elastic plates with uniform thickness and finite draught. We consider a directional wave spectrum with harmonic time dependence incident on the MIZ from the open ocean, defined as a continuous superposition of plane waves traveling at different angles. The scattering problem within each slab is then solved using Graf's interaction theory for an arbitrary incident directional plane wave spectrum. Using an appropriate integral representation of the Hankel function of the first kind (see Cincotti et al., 1993), we map the outgoing circular wave field from each floe on the slab boundaries into a directional spectrum of plane waves, which characterizes the slab reflected and transmitted fields. Discretizing the angular spectrum, we can obtain a scattering matrix for each slab. Standard recursive

  16. Propagation of acoustic shock waves between parallel rigid boundaries and into shadow zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desjouy, C., E-mail: cyril.desjouy@gmail.com; Ollivier, S.; Dragna, D.

    2015-10-28

    The study of acoustic shock propagation in complex environments is of great interest for urban acoustics, but also for source localization, an underlying problematic in military applications. To give a better understanding of the phenomenon taking place during the propagation of acoustic shocks, laboratory-scale experiments and numerical simulations were performed to study the propagation of weak shock waves between parallel rigid boundaries, and into shadow zones created by corners. In particular, this work focuses on the study of the local interactions taking place between incident, reflected, and diffracted waves according to the geometry in both regular or irregular – alsomore » called Von Neumann – regimes of reflection. In this latter case, an irregular reflection can lead to the formation of a Mach stem that can modify the spatial distribution of the acoustic pressure. Short duration acoustic shock waves were produced by a 20 kilovolts electric spark source and a schlieren optical method was used to visualize the incident shockfront and the reflection/diffraction patterns. Experimental results are compared to numerical simulations based on the high-order finite difference solution of the two dimensional Navier-Stokes equations.« less

  17. Modulational instabilities in acetanilide taking into account both the N H and the C=O vibrational self-trappings

    NASA Astrophysics Data System (ADS)

    Simo, Elie

    2007-02-01

    A model of crystalline acetanilide, ACN accounting for the C=O and N-H vibrational self-trappings is presented. We develop a fully discrete version of ACN. We show that ACN can be described by a set of two coupled discrete nonlinear Schrödinger (DNLS) equations. Modulational instabilities (MI) are studied both theoretically and numerically. Dispersion laws for the wavenumbers and frequencies of the linear modulation waves are determined. We also derived the criterion for the existence of MI. Numerical simulations are carried out for a variety of selected wave amplitudes in the unstable zone. It is shown that instabilities grow as the wavenumbers and amplitudes of the modulated waves increase. MI grow faster in the N-H mode than in the C=O mode. Temporal evolution of the density probabilities of the vibrational excitons are obtained by the numerical integration of the coupled DNLS equations governing the ACN molecule. These investigations confirm the generation of localized modes by the phenomenon of MI and the predominance of the N-H vibrational mode in the MI process of the ACN.

  18. Constraining the hydration of the subducting Nazca plate beneath Northern Chile using subduction zone guided waves

    NASA Astrophysics Data System (ADS)

    Garth, Tom; Rietbrock, Andreas

    2017-09-01

    Guided wave dispersion is observed from earthquakes at 180-280 km depth recorded at stations in the fore-arc of Northern Chile, where the 44 Ma Nazca plate subducts beneath South America. Characteristic P-wave dispersion is observed at several stations in the Chilean fore-arc with high frequency energy (>5 Hz) arriving up to 3 s after low frequency (<2 Hz) arrivals. This dispersion has been attributed to low velocity structure within the subducting Nazca plate which acts as a waveguide, retaining and delaying high frequency energy. Full waveform modelling shows that the single LVL proposed by previous studies does not produce the first motion dispersion observed at multiple stations, or the extended P-wave coda observed in arrivals from intermediate depth events within the Nazca plate. These signals can however be accurately accounted for if dipping low velocity fault zones are included within the subducting lithospheric mantle. A grid search over possible LVL and faults zone parameters (width, velocity contrast and separation distance) was carried out to constrain the best fitting model parameters. Our results imply that fault zone structures of 0.5-1.0 km thickness, and 5-10 km spacing, consistent with observations at the outer rise are present within the subducted slab at intermediate depths. We propose that these low velocity fault zone structures represent the hydrated structure within the lithospheric mantle. They may be formed initially by normal faults at the outer rise, which act as a pathway for fluids to penetrate the deeper slab due to the bending and unbending stresses within the subducting plate. Our observations suggest that the lithospheric mantle is 5-15% serpentinised, and therefore may transport approximately 13-42 Tg/Myr of water per meter of arc. The guided wave observations also suggest that a thin LVL (∼1 km thick) interpreted as un-eclogitised subducted oceanic crust persists to depths of at least 220 km. Comparison of the inferred seismic

  19. Island-trapped Waves, Internal Waves, and Island Circulation

    DTIC Science & Technology

    2015-09-30

    c), which is about 20 times the local Coriolis frequency. This result indicates large Rossby number, strain, and vorticity in the wake, all of which...submarine topography- i.e., seamounts and ridges, which extend into the thermocline. Lee wave effects may be quite important locally, but not resolved or...Baines. Topographic Effects in Stratified Flows. Cambridge Press, 1995. M.-H. Chang, T. Y. Tang, C.-R. Ho, and S.-Y. Chao. Kuroshio-induced wake in the

  20. Dependence of residual displacements on the width and depth of compliant fault zones: a 3D study

    NASA Astrophysics Data System (ADS)

    Kang, J.; Duan, B.

    2011-12-01

    Compliant fault zones have been detected along active faults by seismic investigations (trapped waves and travel time analysis) and InSAR observations. However, the width and depth extent of compliant fault zones are still under debate in the community. Numerical models of dynamic rupture build a bridge between theories and the geological and geophysical observations. Theoretical 2D plane-strain studies of elastic and inelastic response of compliant fault zones to nearby earthquake have been conducted by Duan [2010] and Duan et al [2010]. In this study, we further extend the experiments to 3D with a focus on elastic response. We are specifically interested in how residual displacements depend on the structure and properties of complaint fault zones, in particular on the width and depth extent. We conduct numerical experiments on various types of fault-zone models, including fault zones with a constant width along depth, with decreasing widths along depth, and with Hanning taper profiles of velocity reduction. . Our preliminary results suggest 1) the width of anomalous horizontal residual displacement is only indicative of the width of a fault zone near the surface, and 2) the vertical residual displacement contains information of the depth extent of compliant fault zones.

  1. Controlling matter waves in momentum space

    NASA Astrophysics Data System (ADS)

    Lin, De-Hone

    2014-07-01

    The transformation design method of momentum for matter waves in a harmonic trap is proposed. As applications, we design (1) a momentum invisibility cloak to control the distribution of a wave function in momentum space, (2) a quantum localization cloak that localizes a matter wave around zero momentum, and (3) the unusual quantum states of momentum space. Comprehension of these momentum cloaks in position space through the Fourier transformation is presented. In contrast to the construct of quantum cloaks in position space, the momentum cloaks presented here can only be reached by controlling the spring parameter of the trap and offering a potential there, without needing to control the effective mass of quantum particles themselves. The presented discussions also provide a possible inspiration to help localize and maintain a quantum state in momentum space by way of controlling the shape of a trap and a supplied potential.

  2. Wave-Particle Dynamics of Wave Breaking in the Self-Excited Dust Acoustic Wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, L.-W.; Chang, M.-C.; Tseng, Y.-P.

    2009-12-11

    The wave-particle microdynamics in the breaking of the self-excited dust acoustic wave growing in a dusty plasma liquid is investigated through directly tracking dust micromotion. It is found that the nonlinear wave growth and steepening stop as the mean oscillating amplitude of dust displacement reaches about 1/k (k is the wave number), where the vertical neighboring dust trajectories start to crossover and the resonant wave heating with uncertain crest trapping onsets. The dephased dust oscillations cause the abrupt dropping and broadening of the wave crest after breaking, accompanied by the transition from the liquid phase with coherent dust oscillation tomore » the gas phase with chaotic dust oscillation. Corkscrew-shaped phase-space distributions measured at the fixed phases of the wave oscillation cycle clearly indicate how dusts move in and constitute the evolving waveform through dust-wave interaction.« less

  3. High-fidelity operations in microfabricated surface ion traps

    NASA Astrophysics Data System (ADS)

    Maunz, Peter

    2017-04-01

    Trapped ion systems can be used to implement quantum computation as well as quantum simulation. To scale these systems to the number of qubits required to solve interesting problems in quantum chemistry or solid state physics, the use of large multi-zone ion traps has been proposed. Microfabrication enables the realization of surface electrode ion traps with complex electrode structures. While these traps may enable the scaling of trapped ion quantum information processing (QIP), microfabricated ion traps also pose several technical challenges. Here, we present Sandia's trap fabrication capabilities and characterize trap properties and shuttling operations in our most recent high optical access trap (HOA-2). To demonstrate the viability of Sandia's microfabricated ion traps for QIP we realize robust single and two-qubit gates and characterize them using gate set tomography (GST). In this way we are able to demonstrate the first single qubit gates with a diamond norm of less than 1 . 7 ×10-4 , below a rigorous fault tolerance threshold for general noise of 6 . 7 ×10-4. Furthermore, we realize Mølmer-Sørensen two qubit gates with a process fidelity of 99 . 58(6) % also characterized by GST. These results demonstrate the viability of microfabricated surface traps for state of the art quantum information processing demonstrations. This research was funded, in part, by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA).

  4. A cell sorting and trapping microfluidic device with an interdigital channel

    NASA Astrophysics Data System (ADS)

    Tu, Jing; Qiao, Yi; Xu, Minghua; Li, Junji; Liang, Fupeng; Duan, Mengqin; Ju, An; Lu, Zuhong

    2016-12-01

    The growing interest in cell sorting and trapping is driving the demand for high performance technologies. Using labeling techniques or external forces, cells can be identified by a series of methods. However, all of these methods require complicated systems with expensive devices. Based on inherent differences in cellular morphology, cells can be sorted by specific structures in microfluidic devices. The weir filter is a basic and efficient cell sorting and trapping structure. However, in some existing weir devices, because of cell deformability and high flow velocity in gaps, trapped cells may become stuck or even pass through the gaps. Here, we designed and fabricated a microfluidic device with interdigital channels for cell sorting and trapping. The chip consisted of a sheet of silicone elastomer polydimethylsiloxane and a sheet of glass. A square-wave-like weir was designed in the middle of the channel, comprising the interdigital channels. The square-wave pattern extended the weir length by three times with the channel width remaining constant. Compared with a straight weir, this structure exhibited a notably higher trapping capacity. Interdigital channels provided more space to slow down the rate of the pressure decrease, which prevented the cells from becoming stuck in the gaps. Sorting a mixture K562 and blood cells to trap cells demonstrated the efficiency of the chip with the interdigital channel to sort and trap large and less deformable cells. With stable and efficient cell sorting and trapping abilities, the chip with an interdigital channel may be widely applied in scientific research fields.

  5. Wave Dissipation over Nearshore Beach Morphology: Insights from High-Resolution LIDAR Observations and the SWASH Wave Model

    NASA Astrophysics Data System (ADS)

    Mulligan, R. P.; Gomes, E.; McNinch, J.; Brodie, K. L.

    2016-02-01

    Numerical modelling of the nearshore zone can be computationally intensive due to the complexity of wave breaking, and the need for high temporal and spatial resolution. In this study we apply the SWASH non-hydrostatic wave-flow model that phase-resolves the free surface and fluid motions in the water column at high resolution. The model is forced using observed directional energy spectra, and results are compared to wave observations during moderate storm events. Observations are collected outside the surf zone using acoustic wave and currents sensors, and inside the surf zone over a 100 m transect using high-resolution LIDAR measurements of the sea surface from a sensor mounted on a tower on the beach dune at the Field Research Facility in Duck, NC. The model is applied to four cases with different wave conditions and bathymetry, and used to predict the spatial variability in wave breaking, and correlation between energy dissipation and morphologic features. Model results compare well with observations of spectral evolution outside the surf zone, and with the remotely sensed observations of wave transformation inside the surf zone. The results indicate the importance of nearshore bars, rip-channels, and larger features (major scour depression under the pier following large waves from Hurricane Irene) on the location of wave breaking and alongshore variability in wave energy dissipation.

  6. The South ``West'' Pacific Convergence Zone: Large-scale feedback on atmospheric subsidence to the east

    NASA Astrophysics Data System (ADS)

    Widlansky, M. J.; Webster, P. J.; Hoyos, C.

    2010-12-01

    Three semi-permanent convective cloud bands exist in the Southern Hemisphere extending southeastward from the equator, through the tropics, and into the subtropics. The most prominent of these features occurs in the South Pacific during summer and is referred to as the South Pacific Convergence Zone (SPCZ). Similar cloud bands, with less intensity, exist in the South Indian and Atlantic basins. To the east of each convective zone is a large-scale region of atmospheric subsidence. We attempt to explain the physical mechanisms that promote the diagonal orientation of the SPCZ and also teleconnections that may exist with stratocumulus cloud cover in the southeastern Pacific. It is argued that slowly varying sea surface temperature patterns produce upper tropospheric wind fields that vary substantially in longitude (∂U/∂x). Regions where 200 hPa zonal winds decrease with longitude (i.e., negative zonal stretching deformation, or ∂U/∂x<0) reduce the group speed of the eastward propagating synoptic (3-6 day period) Rossby waves and locally increase the wave energy density. Such a region of wave accumulation occurs in the vicinity of the SPCZ (see Figure), thus providing a hypothesis for the diagonal orientation and a physical basis for earlier observations that the zone traps eastward propagating synoptic disturbances. Controlled numerical experiments and composites of observed life cycles of synoptic waves confirm that disturbances slow in the SPCZ. From the hypothesis comes a more general theory accounting for the SPCZ’s spatial orientation and the lack of disturbances to the east. December-February climatology of 200 hPa zonal winds (shading) and negative zonal stretching deformation (red contours). Large black box located at 20°S-35°S, 165°W-135°W encloses the diagonal region of the SPCZ. 240 W m-2 OLR contour outlined by blue lines.

  7. Acoustic Gravity Waves Generated by an Oscillating Ice Sheet in Arctic Zone

    NASA Astrophysics Data System (ADS)

    Abdolali, A.; Kadri, U.; Kirby, J. T., Jr.

    2016-12-01

    ., 2015, Depth-integrated equation for hydro-acoustic waves with bottom damping, Journal of Fluid Mechanics, 766, R1 doi:10.1017/jfm.2015.37 Kadri, U., 2016, Generation of Hydroacoustic Waves by an Oscillating Ice Block in Arctic Zones, Advances in Acoustics and Vibration. 2016. doi:10.1155/2016/8076108

  8. A versatile electrostatic trap with open optical access

    NASA Astrophysics Data System (ADS)

    Li, Sheng-Qiang; Yin, Jian-Ping

    2018-04-01

    A versatile electrostatic trap with open optical access for cold polar molecules in weak-field-seeking state is proposed in this paper. The trap is composed of a pair of disk electrodes and a hexapole. With the help of a finite element software, the spatial distribution of the electrostatic field is calculated. The results indicate that a three-dimensional closed electrostatic trap is formed. Taking ND3 molecules as an example, the dynamic process of loading and trapping is simulated. The results show that when the velocity of the molecular beam is 10 m/s and the loading time is 0.9964 ms, the maximum loading efficiency reaches 94.25% and the temperature of the trapped molecules reaches about 30.3 mK. A single well can be split into two wells, which is of significant importance to the precision measurement and interference of matter waves. This scheme, in addition, can be further miniaturized to construct one-dimensional, two-dimensional, and three-dimensional spatial electrostatic lattices.

  9. Scenario based tsunami wave height estimation towards hazard evaluation for the Hellenic coastline and examples of extreme inundation zones in South Aegean

    NASA Astrophysics Data System (ADS)

    Melis, Nikolaos S.; Barberopoulou, Aggeliki; Frentzos, Elias; Krassanakis, Vassilios

    2016-04-01

    A scenario based methodology for tsunami hazard assessment is used, by incorporating earthquake sources with the potential to produce extreme tsunamis (measured through their capacity to cause maximum wave height and inundation extent). In the present study we follow a two phase approach. In the first phase, existing earthquake hazard zoning in the greater Aegean region is used to derive representative maximum expected earthquake magnitude events, with realistic seismotectonic source characteristics, and of greatest tsunamigenic potential within each zone. By stacking the scenario produced maximum wave heights a global maximum map is constructed for the entire Hellenic coastline, corresponding to all expected extreme offshore earthquake sources. Further evaluation of the produced coastline categories based on the maximum expected wave heights emphasizes the tsunami hazard in selected coastal zones with important functions (i.e. touristic crowded zones, industrial zones, airports, power plants etc). Owing to its proximity to the Hellenic Arc, many urban centres and being a popular tourist destination, Crete Island and the South Aegean region are given a top priority to define extreme inundation zoning. In the second phase, a set of four large coastal cities (Kalamata, Chania, Heraklion and Rethymno), important for tsunami hazard, due i.e. to the crowded beaches during the summer season or industrial facilities, are explored towards preparedness and resilience for tsunami hazard in Greece. To simulate tsunamis in the Aegean region (generation, propagation and runup) the MOST - ComMIT NOAA code was used. High resolution DEMs for bathymetry and topography were joined via an interface, specifically developed for the inundation maps in this study and with similar products in mind. For the examples explored in the present study, we used 5m resolution for the topography and 30m resolution for the bathymetry, respectively. Although this study can be considered as

  10. Mass-manufacturable polymer microfluidic device for dual fiber optical trapping.

    PubMed

    De Coster, Diane; Ottevaere, Heidi; Vervaeke, Michael; Van Erps, Jürgen; Callewaert, Manly; Wuytens, Pieter; Simpson, Stephen H; Hanna, Simon; De Malsche, Wim; Thienpont, Hugo

    2015-11-30

    We present a microfluidic chip in Polymethyl methacrylate (PMMA) for optical trapping of particles in an 80µm wide microchannel using two counterpropagating single-mode beams. The trapping fibers are separated from the sample fluid by 70µm thick polymer walls. We calculate the optical forces that act on particles flowing in the microchannel using wave optics in combination with non-sequential ray-tracing and further mathematical processing. Our results are compared with a theoretical model and the Mie theory. We use a novel fabrication process that consists of a premilling step and ultraprecision diamond tooling for the manufacturing of the molds and double-sided hot embossing for replication, resulting in a robust microfluidic chip for optical trapping. In a proof-of-concept demonstration, we show the trapping capabilities of the hot embossed chip by trapping spherical beads with a diameter of 6µm, 8µm and 10µm and use the power spectrum analysis of the trapped particle displacements to characterize the trap strength.

  11. High accuracy binary black hole simulations with an extended wave zone

    NASA Astrophysics Data System (ADS)

    Pollney, Denis; Reisswig, Christian; Schnetter, Erik; Dorband, Nils; Diener, Peter

    2011-02-01

    We present results from a new code for binary black hole evolutions using the moving-puncture approach, implementing finite differences in generalized coordinates, and allowing the spacetime to be covered with multiple communicating nonsingular coordinate patches. Here we consider a regular Cartesian near-zone, with adapted spherical grids covering the wave zone. The efficiencies resulting from the use of adapted coordinates allow us to maintain sufficient grid resolution to an artificial outer boundary location which is causally disconnected from the measurement. For the well-studied test case of the inspiral of an equal-mass nonspinning binary (evolved for more than 8 orbits before merger), we determine the phase and amplitude to numerical accuracies better than 0.010% and 0.090% during inspiral, respectively, and 0.003% and 0.153% during merger. The waveforms, including the resolved higher harmonics, are convergent and can be consistently extrapolated to r→∞ throughout the simulation, including the merger and ringdown. Ringdown frequencies for these modes (to (ℓ,m)=(6,6)) match perturbative calculations to within 0.01%, providing a strong confirmation that the remnant settles to a Kerr black hole with irreducible mass Mirr=0.884355±20×10-6 and spin Sf/Mf2=0.686923±10×10-6.

  12. Enhanced sensing and conversion of ultrasonic Rayleigh waves by elastic metasurfaces.

    PubMed

    Colombi, Andrea; Ageeva, Victoria; Smith, Richard J; Clare, Adam; Patel, Rikesh; Clark, Matt; Colquitt, Daniel; Roux, Philippe; Guenneau, Sebastien; Craster, Richard V

    2017-07-28

    Recent years have heralded the introduction of metasurfaces that advantageously combine the vision of sub-wavelength wave manipulation, with the design, fabrication and size advantages associated with surface excitation. An important topic within metasurfaces is the tailored rainbow trapping and selective spatial frequency separation of electromagnetic and acoustic waves using graded metasurfaces. This frequency dependent trapping and spatial frequency segregation has implications for energy concentrators and associated energy harvesting, sensing and wave filtering techniques. Different demonstrations of acoustic and electromagnetic rainbow devices have been performed, however not for deep elastic substrates that support both shear and compressional waves, together with surface Rayleigh waves; these allow not only for Rayleigh wave rainbow effects to exist but also for mode conversion from surface into shear waves. Here we demonstrate experimentally not only elastic Rayleigh wave rainbow trapping, by taking advantage of a stop-band for surface waves, but also selective mode conversion of surface Rayleigh waves to shear waves. These experiments performed at ultrasonic frequencies, in the range of 400-600 kHz, are complemented by time domain numerical simulations. The metasurfaces we design are not limited to guided ultrasonic waves and are a general phenomenon in elastic waves that can be translated across scales.

  13. Quantum Information Experiments with Trapped Ions at NIST

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew

    2015-03-01

    We present an overview of recent trapped-ion quantum information experiments at NIST. Advancing beyond few-qubit ``proof-of-principle'' experiments to the many-qubit systems needed for practical quantum simulation and information processing, without compromising on the performance demonstrated with small systems, remains a major challenge. One approach to scalable hardware development is surface-electrode traps. Micro-fabricated planar traps can have a number of useful features, including flexible electrode geometries, integrated microwave delivery, and spatio-temporal tuning of potentials for ion transport and spin-spin interactions. In this talk we report on a number of on-going investigations with surface traps. Experiments feature a multi-zone trap with closely spaced ions in a triangular arrangement (a first step towards 2D arrays of ions with tunable spin-spin interactions), a scheme for smooth transport through a junction in a 2D structure based on switchable RF potentials, and a micro-fabricated photo-detector integrated into a trap. We also give a progress report on our latest efforts to improve the fidelity of both optical and microwave 2-qubit gates. This work was supported by IARPA, ONR and the NIST Quantum Information Program. The 3-ion and switchable-RF-junction traps were developed in collaboration with Sandia National Laboratory.

  14. Dependence of shear wave seismoelectrics on soil textures: a numerical study in the vadose zone

    NASA Astrophysics Data System (ADS)

    Zyserman, F. I.; Monachesi, L. B.; Jouniaux, L.

    2017-02-01

    In this work, we study seismoelectric conversions generated in the vadose zone, when this region is traversed by a pure SH wave. We assume that the soil is a 1-D partially saturated lossy porous medium and we use the van Genuchten's constitutive model to describe the water saturation profile. Correspondingly, we extend Pride's formulation to deal with partially saturated media. In order to evaluate the influence of different soil textures we perform a numerical analysis considering, among other relevant properties, the electrokinetic coupling, coseismic responses and interface responses (IRs). We propose new analytical transfer functions for the electric and magnetic field as a function of the water saturation, modifying those of Bordes et al. and Garambois & Dietrich, respectively. Further, we introduce two substantially different saturation-dependent functions into the electrokinetic (EK) coupling linking the poroelastic and the electromagnetic wave equations. The numerical results show that the electric field IRs markedly depend on the soil texture and the chosen EK coupling model, and are several orders of magnitude stronger than the electric field coseismic ones. We also found that the IRs of the water table for the silty and clayey soils are stronger than those for the sandy soils, assuming a non-monotonous saturation dependence of the EK coupling, which takes into account the charged air-water interface. These IRs have been interpreted as the result of the jump in the viscous electric current density at the water table. The amplitude of the IR is obtained using a plane SH wave, neglecting both the spherical spreading and the restriction of its origin to the first Fresnel zone, effects that could lower the predicted values. However, we made an estimation of the expected electric field IR amplitudes detectable in the field by means of the analytical transfer functions, accounting for spherical spreading of the SH seismic waves. This prediction yields a value

  15. Analysis of the Characteristics of Inertia-Gravity Waves during an Orographic Precipitation Event

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Ran, Lingkun; Gao, Shouting

    2018-05-01

    A numerical experiment was performed using the Weather Research and Forecasting (WRF) model to analyze the generation and propagation of inertia-gravity waves during an orographic rainstorm that occurred in the Sichuan area on 17 August 2014. To examine the spatial and temporal structures of the inertia-gravity waves and identify the wave types, three wavenumber-frequency spectral analysis methods (Fourier analysis, cross-spectral analysis, and wavelet cross-spectrum analysis) were applied. During the storm, inertia-gravity waves appeared at heights of 10-14 km, with periods of 80-100 min and wavelengths of 40-50 km. These waves were generated over a mountain and propagated eastward at an average speed of 15-20 m s-1. Meanwhile, comparison between the reconstructed inertia-gravity waves and accumulated precipitation showed there was a mutual promotion process between them. The Richardson number and Scorer parameter were used to demonstrate that the eastward-moving inertia-gravity waves were trapped in an effective atmospheric ducting zone with favorable reflector and critical level conditions, which were the primary causes of the long lives of the waves. Finally, numerical experiments to test the sensitivity to terrain and diabatic heating were conducted, and the results suggested a cooperative effect of terrain and diabatic heating contributed to the propagation and enhancement of the waves.

  16. Propagation estimates for dispersive wave equations: Application to the stratified wave equation

    NASA Astrophysics Data System (ADS)

    Pravica, David W.

    1999-01-01

    The plane-stratified wave equation (∂t2+H)ψ=0 with H=-c(y)2∇z2 is studied, where z=x⊕y, x∈Rk, y∈R1 and |c(y)-c∞|→0 as |y|→∞. Solutions to such an equation are solved for the propagation of waves through a layered medium and can include waves which propagate in the x-directions only (i.e., trapped modes). This leads to a consideration of the pseudo-differential wave equation (∂t2+ω(-Δx))ψ=0 such that the dispersion relation ω(ξ2) is analytic and satisfies c1⩽ω'(ξ2)⩽c2 for c*>0. Uniform propagation estimates like ∫|x|⩽|t|αE(UtP±φ0)dkx⩽Cα,β(1+|t|)-β∫E(φ0)dkx are obtained where Ut is the evolution group, P± are projection operators onto the Hilbert space of initial conditions φ∈H and E(ṡ) is the local energy density. In special cases scattering of trapped modes off a local perturbation satisfies the causality estimate ||P+ρΛjSP-ρΛk||⩽Cνρ-ν for each ν<1/2. Here P+ρΛj (P-ρΛk) are remote outgoing/detector (incoming/transmitter) projections for the jth (kth) trapped mode. Also Λ⋐R+ is compact, so the projections localize onto formally-incoming (eventually-outgoing) states.

  17. Seismic constraints on the nature of lower crustal reflectors beneath the extending Southern Transition Zone of the Colorado Plateau, Arizona

    USGS Publications Warehouse

    Parsons, Thomas E.; Howie, John M.; Thompson, George A.

    1992-01-01

    We determine the reflection polarity and exploit variations in P and S wave reflectivity and P wave amplitude versus offset (AVO) to constrain the origin of lower crustal reflectivity observed on new three-component seismic data recorded across the structural transition of the Colorado Plateau. The near vertical incidence reflection data were collected by Stanford University in 1989 as part of the U.S. Geological Survey Pacific to Arizona Crustal Experiment that traversed the Arizona Transition Zone of the Colorado Plateau. The results of independent waveform modeling methods are consistent with much of the lower crustal reflectivity resulting from thin, high-impedance layers. The reflection polarity of the cleanest lower crustal events is positive, which implies that these reflections result from high-velocity contrasts, and the waveform character indicates that the reflectors are probably layers less than or approximately equal to 200 m thick. The lower crustal events are generally less reflective to incident S waves than to P waves, which agrees with the predicted behavior of high-velocity mafic layering. Analysis of the P wave AVO character of lower crustal reflections demonstrates that the events maintain a constant amplitude with offset, which is most consistent with a mafic-layering model. One exception is a high-amplitude (10 dB above background) event near the base of lower crustal reflectivity which abruptly decreases in amplitude at increasing offsets. The event has a pronounced S wave response, which along with its negative AVO trend is a possible indication of the presence of fluids in the lower crust. The Arizona Transition Zone is an active but weakly extended province, which causes us to discard models of lower crustal layering resulting from shearing because of the high degree of strain required to create such layers. Instead, we favor horizontal basaltic intrusions as the primary origin of high-impedance reflectors based on (1) The fact that

  18. Greatly Increasing Trapped Ion Populations for Mobility Separations Using Traveling Waves in Structures for Lossless Ion Manipulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Liulin; Ibrahim, Yehia M.; Garimella, Sandilya V. B.

    The initial use of traveling waves (TW) for ion mobility (IM) separations using a structures for lossless ion manipulations (SLIM) employed an ion funnel trap (IFT) to accumulate ions from a continuous electrospray ionization source, and limited to injected ion populations of ~106 charges due to the onset of space charge effects in the trapping region. Additional limitations arise due to the loss of resolution for the injection of ions over longer periods (e.g. in extended pulses). In this work a new SLIM ‘flat funnel’ (FF) module has been developed and demonstrated to enable the accumulation of much larger ionmore » populations and their injection for IM separations. Ion current measurements indicate a capacity of ~3.2×108 charges for the extended trapping volume, over an order of magnitude greater than the IFT. The orthogonal ion injection into a funnel shaped separation region can greatly reduce space charge effects during the initial IM separation stage, and the gradually reduced width of the path allows the ion packet to be increasingly compressed in the lateral dimension as the separation progresses, allowing e.g. efficient transmission through conductance limits or compatibility with subsequent ion manipulations. This work examined the TW, RF, and DC confining field SLIM parameters involved in ion accumulation, injection, transmission and separation in the FF IM module using both direct ion current and MS measurements. Wide m/z range ion transmission is demonstrated, along with significant increases in signal to noise (S/N) ratios due to the larger ion populations injected. Additionally, we observed a reduction in the chemical background, which was attributed to more efficient desolvation of solvent related clusters over the extended ion accumulation periods. The TW SLIM FF IM module is anticipated to be especially effective as a front end for long path SLIM IM separation modules.« less

  19. An Extreme-ultraviolet Wave Generating Upward Secondary Waves in a Streamer-like Solar Structure

    NASA Astrophysics Data System (ADS)

    Zheng, Ruisheng; Chen, Yao; Feng, Shiwei; Wang, Bing; Song, Hongqiang

    2018-05-01

    Extreme-ultraviolet (EUV) waves, spectacular horizontally propagating disturbances in the low solar corona, always trigger horizontal secondary waves (SWs) when they encounter the ambient coronal structure. We present the first example of upward SWs in a streamer-like structure after the passing of an EUV wave. This event occurred on 2017 June 1. The EUV wave happened during a typical solar eruption including a filament eruption, a coronal mass ejection (CME), and a C6.6 flare. The EUV wave was associated with quasi-periodic fast propagating (QFP) wave trains and a type II radio burst that represented the existence of a coronal shock. The EUV wave had a fast initial velocity of ∼1000 km s‑1, comparable to high speeds of the shock and the QFP wave trains. Intriguingly, upward SWs rose slowly (∼80 km s‑1) in the streamer-like structure after the sweeping of the EUV wave. The upward SWs seemed to originate from limb brightenings that were caused by the EUV wave. All of the results show that the EUV wave is a fast-mode magnetohydrodynamic (MHD) shock wave, likely triggered by the flare impulses. We suggest that part of the EUV wave was probably trapped in the closed magnetic fields of the streamer-like structure, and upward SWs possibly resulted from the release of slow-mode trapped waves. It is believed that the interplay of the strong compression of the coronal shock and the configuration of the streamer-like structure is crucial for the formation of upward SWs.

  20. Characterization of nonequilibrium states of trapped Bose–Einstein condensates

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.; Novikov, A. N.; Bagnato, V. S.

    2018-06-01

    The generation of different nonequilibrium states in trapped Bose–Einstein condensates is studied by numerically solving the nonlinear Schrödinger equation. Inducing nonequilibrium states by shaking a trap creates the following states: weak nonequilibrium, the state of vortex germs, the state of vortex rings, the state of straight vortex lines, the state of deformed vortices, vortex turbulence, grain turbulence, and wave turbulence. A characterization of nonequilibrium states is advanced by introducing effective temperature, Fresnel number, and Mach number.

  1. Features of HF Radio Wave Attenuation in the Midlatitude Ionosphere Near the Skip Zone Boundary

    NASA Astrophysics Data System (ADS)

    Denisenko, P. F.; Skazik, A. I.

    2017-06-01

    We briefly describe the history of studying the decameter radio wave attenuation by different methods in the midlatitude ionosphere. A new method of estimating the attenuation of HF radio waves in the ionospheric F region near the skip zone boundary is presented. This method is based on an analysis of the time structure of the interference field generated by highly stable monochromatic X-mode radio waves at the observation point. The main parameter is the effective electron collision frequency νeff, which allows for all energy losses in the form of equivalent heat loss. The frequency νeff is estimated by matching the assumed (model) and the experimentally observed structures. Model calculations are performed using the geometrical-optics approximation. The spatial attenuation caused by the influence of the medium-scale traveling ionospheric disturbances is taken into account. Spherical shape of the ionosphere and the Earth's magnetic field are roughly allowed for. The results of recording of the level of signals from the RWM (Moscow) station at a frequency of 9.996 MHz at point Rostov are used.

  2. 2D shear-wave ultrasound elastography (SWE) evaluation of ablation zone following radiofrequency ablation of liver lesions: is it more accurate?

    PubMed Central

    Bo, Xiao W; Li, Xiao L; Guo, Le H; Li, Dan D; Liu, Bo J; Wang, Dan; He, Ya P; Xu, Xiao H

    2016-01-01

    Objective: To evaluate the usefulness of two-dimensional quantitative ultrasound shear-wave elastography (2D-SWE) [i.e. virtual touch imaging quantification (VTIQ)] in assessing the ablation zone after radiofrequency ablation (RFA) for ex vivo swine livers. Methods: RFA was performed in 10 pieces of fresh ex vivo swine livers with a T20 electrode needle and 20-W output power. Conventional ultrasound, conventional strain elastography (SE) and VTIQ were performed to depict the ablation zone 0 min, 10 min, 30 min and 60 min after ablation. On VTIQ, the ablation zones were evaluated qualitatively by evaluating the shear-wave velocity (SWV) map and quantitatively by measuring the SWV. The ultrasound, SE and VTIQ results were compared against gross pathological and histopathological specimens. Results: VTIQ SWV maps gave more details about the ablation zone, the central necrotic zone appeared as red, lateral necrotic zone as green and transitional zone as light green, from inner to exterior, while the peripheral unablated liver appeared as blue. Conventional ultrasound and SE, however, only marginally depicted the whole ablation zone. The volumes of the whole ablation zone (central necrotic zone + lateral necrotic zone + transitional zone) and necrotic zone (central necrotic zone + lateral necrotic zone) measured by VTIQ showed excellent correlation (r = 0.915, p < 0.001, and 0.856, p = 0.002, respectively) with those by gross pathological specimen, whereas both conventional ultrasound and SE underestimated the volume of the whole ablation zone. The SWV values of the central necrotic zone, lateral necrotic zone, transitional zone and unablated liver parenchyma were 7.54–8.03 m s−1, 5.13–5.28 m s−1, 3.31–3.53 m s−1 and 2.11–2.21 m s−1, respectively (p < 0.001 for all the comparisons). The SWV value for each ablation zone did not change significantly at different observation times within an hour after RFA

  3. Inherent losses induced absorptive acoustic rainbow trapping with a gradient metasurface

    NASA Astrophysics Data System (ADS)

    Liu, Tuo; Liang, Shanjun; Chen, Fei; Zhu, Jie

    2018-03-01

    Acoustic rainbow trapping represents the phenomenon of strong acoustic dispersion similar to the optical "trapped rainbow," which allows spatial-spectral modulation and broadband trapping of sound. It can be realized with metamaterials that provide the required strong dispersion absent in natural materials. However, as the group velocity cannot be reduced to exactly zero before the forward mode being coupled to the backward mode, such trapping is temporary and the local sound oscillation ultimately radiates backward. Here, we propose a gradient metasurface, a rigid surface structured with gradient perforation along the wave propagation direction, in which the inherent thermal and viscous losses inside the holes are considered. We show that the gradually diminished group velocity of the structure-induced surface acoustic waves (SSAWs) supported by the metasurface becomes anomalous at the trapping position, induced by the existence of the inherent losses, which implies that the system's absorption reaches its maximum. Together with the progressively increased attenuation of the SSAWs along the gradient direction, reflectionless spatial-spectral modulation and sound enhancement are achieved in simulation. Such phenomenon, which we call as absorptive trapped rainbow, results from the balanced interplay among the local resonance inside individual holes, the mutual coupling of adjacent unit cells, and the inherent losses due to thermal conductivity and viscosity. This study deepens the understanding of the SSAWs propagation at a lossy metasurface and may contribute to the practical design of acoustic devices for high performance sensing and filtering.

  4. The Effects Of Tides And Waves On Water-Table Elevations In Coastal Zones

    NASA Astrophysics Data System (ADS)

    Turner, Ian L.; Coates, Bruce P.; Acworth, R. Ian

    1996-02-01

    A resurgence of interest in the literature about coastal zones has highlighted the fact that ocean processes can have a significant influence on unconfined coastal aquifers, resulting in a net super-elevation of the water table at the land-ocean boundary to groundwater discharge. This theoretical and experimental notion appears to be less well recognized in the field of groundwater investigation, where it is more usual to assume that the coastal boundary is equivalent to mean sea level. Coastal over-height is due to the ability of a sloping beach face to `fill' (vertical infiltration) at a greater rate than it can `drain' (horizontal seepage). The results of a three-month monitoring of the groundwater profile within a narrow coastal aquifer at New South Wales, Australia, confirms the significance of tide and wave processes to groundwater elevation. The mean height of the water table on the upper beach face was about 1.2 m above mean sea level, rising to 2.0 m during a period of coincident spring tides, storm waves, and rainfall. This elevation was sufficient to temporarily reverse the direction of groundwater flow. Fourier analysis and cross-correlation are used to help distinguish the role of tides in maintaining groundwater super-elevation from the role of storm waves in further raising the coastal water table for periods of two to three days. The results of a simple numerical simulation demonstrate that estimated rates of groundwater discharge at the study site were halved when the effect of tides and waves was incorporated in the definition of the ocean boundary.

  5. Refracted arrival waves in a zone of silence from a finite thickness mixing layer.

    PubMed

    Suzuki, Takao; Lele, Sanjiva K

    2002-02-01

    Refracted arrival waves which propagate in the zone of silence of a finite thickness mixing layer are analyzed using geometrical acoustics in two dimensions. Here, two simplifying assumptions are made: (i) the mean flow field is transversely sheared, and (ii) the mean velocity and temperature profiles approach the free-stream conditions exponentially. Under these assumptions, ray trajectories are analytically solved, and a formula for acoustic pressure amplitude in the far field is derived in the high-frequency limit. This formula is compared with the existing theory based on a vortex sheet corresponding to the low-frequency limit. The analysis covers the dependence on the Mach number as well as on the temperature ratio. The results show that both limits have some qualitative similarities, but the amplitude in the zone of silence at high frequencies is proportional to omega(-1/2), while that at low frequencies is proportional to omega(-3/2), omega being the angular frequency of the source.

  6. Modeling Water Waves with Smoothed Particle Hydrodynamics

    DTIC Science & Technology

    2013-09-30

    SPH Model for Water Waves and Other Free Surface Flows ...Lagrangian nature of SPH allows the modeling of wave breaking, surf zones, ship waves, and wave-structure interaction, where the free surface becomes...proving to be a competent modeling scheme for free surface flows in three dimensions including the complex flows of the surf zone. As the GPU

  7. Optical Forces on Non-Spherical Nanoparticles Trapped by Optical Waveguides

    NASA Astrophysics Data System (ADS)

    Hasan Ahmed, Dewan; Sung, Hyung Jin

    2011-07-01

    Numerical simulations of a solid-core polymer waveguide structure were performed to calculate the trapping efficiencies of particles with nanoscale dimensions smaller than the wavelength of the trapping beam. A three-dimensional (3-D) finite element method was employed to calculate the electromagnetic field. The inlet and outlet boundary conditions were obtained using an eigenvalue solver to determine the guided and evanescent mode profiles. The Maxwell stress tensor was considered for the calculation of the transverse and downward trapping efficiencies. A particle at the center of the waveguide showed minimal transverse trapping efficiency and maximal downward trapping efficiency. This trend gradually reversed as the particle moved away from the center of the waveguide. Particles with larger surface areas exhibited higher trapping efficiencies and tended to be trapped near the waveguide. Particles displaced from the wave input tended to be trapped at the waveguide surface. Simulation of an ellipsoidal particle showed that the orientation of the major axis along the waveguide's lateral z-coordinate significantly influenced the trapping efficiency. The particle dimensions along the z-coordinate were more critical than the gap distance (vertical displacement from the floor of the waveguide) between the ellipsoid particle and the waveguide. The present model was validated using the available results reported in the literature for different trapping efficiencies.

  8. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications

    NASA Astrophysics Data System (ADS)

    Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane

    The coupled ocean-atmosphere-wave-sediment transport modeling system (COAWST) enables simulations that integrate oceanic, atmospheric, wave and morphological processes in the coastal ocean. Within the modeling system, the three-dimensional ocean circulation module (ROMS) is coupled with the wave generation and propagation model (SWAN) to allow full integration of the effect of waves on circulation and vice versa. The existing wave-current coupling component utilizes a depth dependent radiation stress approach. In here we present a new approach that uses the vortex force formalism. The formulation adopted and the various parameterizations used in the model as well as their numerical implementation are presented in detail. The performance of the new system is examined through the presentation of four test cases. These include obliquely incident waves on a synthetic planar beach and a natural barred beach (DUCK' 94); normal incident waves on a nearshore barred morphology with rip channels; and wave-induced mean flows outside the surf zone at the Martha's Vineyard Coastal Observatory (MVCO). Model results from the planar beach case show good agreement with depth-averaged analytical solutions and with theoretical flow structures. Simulation results for the DUCK' 94 experiment agree closely with measured profiles of cross-shore and longshore velocity data from Garcez Faria et al. (1998, 2000). Diagnostic simulations showed that the nonlinear processes of wave roller generation and wave-induced mixing are important for the accurate simulation of surf zone flows. It is further recommended that a more realistic approach for determining the contribution of wave rollers and breaking induced turbulent mixing can be formulated using non-dimensional parameters which are functions of local wave parameters and the beach slope. Dominant terms in the cross-shore momentum balance are found to be the quasi-static pressure gradient and breaking acceleration. In the alongshore direction

  9. Classification of regimes of internal solitary waves transformation over a shelf-slope topography

    NASA Astrophysics Data System (ADS)

    Terletska, Kateryna; Maderich, Vladimir; Talipova, Tatiana; Brovchenko, Igor; Jung, Kyung Tae

    2015-04-01

    The internal waves shoal and dissipate as they cross abrupt changes of the topography in the coastal ocean, estuaries and in the enclosed water bodies. They can form near the coast internal bores propagating into the shallows and re-suspend seabed pollutants that may have serious ecological consequences. Internal solitary waves (ISW) with trapped core can transport masses of water and marine organisms for some distance. The transport of cold, low-oxygen waters results in nutrient pumping. These facts require development of classification of regimes of the ISWs transformation over a shelf-slope topography to recognize 'hot spots' of wave energy dissipation on the continental shelf. A new classification of regimes of internal solitary wave interaction with the shelf-slope topography in the framework of two-layer fluid is proposed. We introduce a new three-dimensional diagram based on parameters α ,β , γ. Here α is the nondimensional wave amplitude normalized on the thermocline thickness α = ain/h1 (α > 0), β is the blocking parameter introduced in (Talipova et al., 2013) that is the ratio of the height of the bottom layer on the the shelf step h2+ to the incident wave amplitude ain, β = h2+/ain (β > -3), and γ is the parameter inverse to the slope inclination (γ > 0.01). Two mechanisms are important during wave shoaling: (i) wave breaking resulting in mixing and (ii) changing of the polarity of the initial wave of depression on the slope. Range of the parameters at which wave breaking occurs can be defined using the criteria, obtained empirically (Vlasenko and Hutter, 2002). In the three-dimensional diagram this criteria is represented by the surface f1(β,γ) = 0 that separates the region of parameters where breaking takes place from the region without breaking. The polarity change surface f2(α,β) = 0 is obtained from the condition of equality of the depth of upper layer h1 to the depth of the lower layer h2. In the two-layer stratification waves of

  10. The Effects of Hydrogen Band EMIC Waves on Ring Current H+ Ions

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Zhai, Hao; Gao, Zhuxiu

    2017-12-01

    Hydrogen band electromagnetic ion cyclotron (EMIC) waves have received much attention recently because they are found to frequently span larger spatial areas than the other band EMIC waves. Using test particle simulations, we study the nonlinear effects of hydrogen band EMIC waves on ring current H+ ions. A dimensionless parameter R is used to characterize the competition between wave-induced and adiabatic motions. The results indicate that there are three regimes of wave-particle interactions for typical 35 keV H+ ions at L = 5: diffusive (quasi-linear) behavior when αeq ≤ 35° (R ≥ 2.45), the nonlinear phase trapping when 35° < αeq < 50° (0.75 < R < 2.45), and both the nonlinear phase bunching and phase trapping when αeq ≥ 50° (R ≤ 0.75). The phase trapping can transport H+ ions toward large pitch angle, while the phase bunching has the opposite effect. The phase-trapped H+ ions can be significantly accelerated (from 35 keV to over 500 keV) in about 4 min and thus contribute to the formation of high energy components of ring current ions. The results suggest that the effect of hydrogen band EMIC waves is not ignorable in the nonlinear acceleration and resonance scattering of ring current H+ ions.

  11. Nonlinear dynamics of resonant electrons interacting with coherent Langmuir waves

    NASA Astrophysics Data System (ADS)

    Tobita, Miwa; Omura, Yoshiharu

    2018-03-01

    We study the nonlinear dynamics of resonant particles interacting with coherent waves in space plasmas. Magnetospheric plasma waves such as whistler-mode chorus, electromagnetic ion cyclotron waves, and hiss emissions contain coherent wave structures with various discrete frequencies. Although these waves are electromagnetic, their interaction with resonant particles can be approximated by equations of motion for a charged particle in a one-dimensional electrostatic wave. The equations are expressed in the form of nonlinear pendulum equations. We perform test particle simulations of electrons in an electrostatic model with Langmuir waves and a non-oscillatory electric field. We solve equations of motion and study the dynamics of particles with different values of inhomogeneity factor S defined as a ratio of the non-oscillatory electric field intensity to the wave amplitude. The simulation results demonstrate deceleration/acceleration, thermalization, and trapping of particles through resonance with a single wave, two waves, and multiple waves. For two-wave and multiple-wave cases, we describe the wave-particle interaction as either coherent or incoherent based on the probability of nonlinear trapping.

  12. High-resolution imaging of the low velocity layer in Alaskan subduction zone with scattered waves and interferometry

    NASA Astrophysics Data System (ADS)

    Kim, D.; Keranen, K. M.; Abers, G. A.; Kim, Y.; Li, J.; Shillington, D. J.; Brown, L. D.

    2017-12-01

    The physical factors that control the rupture process of great earthquakes at convergent plate boundaries remain incompletely understood. While recent developments in imaging using the teleseismic wavefield have led to marked advances at wavelengths of a couple kilometers to tens of kilometers, higher resolution imaging of the rupture zone would improve the resolution of imaging and thus provide improved parameter estimation, as the teleseismic wavefield is fundamentally limited by its low frequency content. This study compares and evaluates two seismic imaging techniques using the high-frequency signals from teleseismic coda versus earthquake scattered waves to image the subducting Yakutat oceanic plateau in the Alaska subduction zone. We use earthquakes recorded by the MOOS PASSCAL broadband deployment in southern Alaska. In our first method, we select local earthquakes that lie directly beneath and laterally near the recording array for imaging, and extract body wave information via a simple autocorrelation and stacking. Profiles analogous to seismic reflection profile are constructed using the near-vertically travelling waves. In our second method, we compute teleseismic receiver functions within the 0.02-1.0 Hz frequency band. Both results image interfaces that we associate with the subducting oceanic plate in Alaska-Aleutian system, with greater resolution than commonly used methods with teleseismic sources. Structural details from our results can further our understanding of the conditions and materials that characterize the subduction megathrusts, and the techniques can be employed in other regions along the Alaska-Aleutian system and at other convergent margins with suitable seismic arrays.

  13. Heat-Wave Effects on Oxygen, Nutrients, and Phytoplankton Can Alter Global Warming Potential of Gases Emitted from a Small Shallow Lake.

    PubMed

    Bartosiewicz, Maciej; Laurion, Isabelle; Clayer, François; Maranger, Roxane

    2016-06-21

    Increasing air temperatures may result in stronger lake stratification, potentially altering nutrient and biogenic gas cycling. We assessed the impact of climate forcing by comparing the influence of stratification on oxygen, nutrients, and global-warming potential (GWP) of greenhouse gases (the sum of CH4, CO2, and N2O in CO2 equivalents) emitted from a shallow productive lake during an average versus a heat-wave year. Strong stratification during the heat wave was accompanied by an algal bloom and chemically enhanced carbon uptake. Solar energy trapped at the surface created a colder, isolated hypolimnion, resulting in lower ebullition and overall lower GWP during the hotter-than-average year. Furthermore, the dominant CH4 emission pathway shifted from ebullition to diffusion, with CH4 being produced at surprisingly high rates from sediments (1.2-4.1 mmol m(-2) d(-1)). Accumulated gases trapped in the hypolimnion during the heat wave resulted in a peak efflux to the atmosphere during fall overturn when 70% of total emissions were released, with littoral zones acting as a hot spot. The impact of climate warming on the GWP of shallow lakes is a more complex interplay of phytoplankton dynamics, emission pathways, thermal structure, and chemical conditions, as well as seasonal and spatial variability, than previously reported.

  14. Diffusion by one wave and by many waves

    NASA Astrophysics Data System (ADS)

    Albert, J. M.

    2010-03-01

    Radiation belt electrons and chorus waves are an outstanding instance of the important role cyclotron resonant wave-particle interactions play in the magnetosphere. Chorus waves are particularly complex, often occurring with large amplitude, narrowband but drifting frequency and fine structure. Nevertheless, modeling their effect on radiation belt electrons with bounce-averaged broadband quasi-linear theory seems to yield reasonable results. It is known that coherent interactions with monochromatic waves can cause particle diffusion, as well as radically different phase bunching and phase trapping behavior. Here the two formulations of diffusion, while conceptually different, are shown to give identical diffusion coefficients, in the narrowband limit of quasi-linear theory. It is further shown that suitably averaging the monochromatic diffusion coefficients over frequency and wave normal angle parameters reproduces the full broadband quasi-linear results. This may account for the rather surprising success of quasi-linear theory in modeling radiation belt electrons undergoing diffusion by chorus waves.

  15. Constraints on Fault Damage Zone Properties and Normal Modes from a Dense Linear Array Deployment along the San Jacinto Fault Zone

    NASA Astrophysics Data System (ADS)

    Allam, A. A.; Lin, F. C.; Share, P. E.; Ben-Zion, Y.; Vernon, F.; Schuster, G. T.; Karplus, M. S.

    2016-12-01

    We present earthquake data and statistical analyses from a month-long deployment of a linear array of 134 Fairfield three-component 5 Hz seismometers along the Clark strand of the San Jacinto fault zone in Southern California. With a total aperture of 2.4km and mean station spacing of 20m, the array locally spans the entire fault zone from the most intensely fractured core to relatively undamaged host rock on the outer edges. We recorded 36 days of continuous seismic data at 1000Hz sampling rate, capturing waveforms from 751 local events with Mw>0.5 and 43 teleseismic events with M>5.5, including two 600km deep M7.5 events along the Andean subduction zone. For any single local event on the San Jacinto fault, the central stations of the array recorded both higher amplitude and longer duration waveforms, which we interpret as the result of damage-related low-velocity structure acting as a broad waveguide. Using 271 San Jacinto events, we compute the distributions of three quantities for each station: maximum amplitude, mean amplitude, and total energy (the integral of the envelope). All three values become statistically lower with increasing distance from the fault, but in addition show a nonrandom zigzag pattern which we interpret as normal mode oscillations. This interpretation is supported by polarization analysis which demonstrates that the high-amplitude late-arriving energy is strongly vertically polarized in the central part of the array, consistent with Love-type trapped waves. These results, comprising nearly 30,000 separate coseismic waveforms, support the consistent interpretation of a 450m wide asymmetric damage zone, with the lowest velocities offset to the northeast of the mapped surface trace by 100m. This asymmetric damage zone has important implications for the earthquake dynamics of the San Jacinto and especially its ability to generate damaging multi-segment ruptures.

  16. Diffusion in coastal and harbour zones, effects of Waves,Wind and Currents

    NASA Astrophysics Data System (ADS)

    Diez, M.; Redondo, J. M.

    2009-04-01

    As there are multiple processes at different scales that produce turbulent mixing in the ocean, thus giving a large variation of horizontal eddy diffusivities, we use a direct method to evaluate the influence of different ambient parameters such as wave height and wind on coastal dispersion. Measurements of the diffusivity are made by digital processing of images taken from from video recordings of the sea surface near the coast. The use of image analysis allows to estimate both spatial and temporal characteristics of wave fields, surface circulation and mixing in the surf zone, near Wave breakers and inside Harbours. The study of near-shore dispersion [1], with the added complexity of the interaction between wave fields, longshore currents, turbulence and beach morphology, needs detailed measurements of simple mixing processes to compare the respective influences of forcings at different scales. The measurements include simultaneous time series of waves, currents, wind velocities from the studied area. Cuantitative information from the video images is accomplished using the DigImage video processing system [3], and a frame grabber. The video may be controlled by the computer, allowing, remote control of the processing. Spectral analysis on the images has also used n order to estimate dominant wave periods as well as the dispersion relations of dominant instabilities. The measurements presented here consist mostly on the comarison of difussion coeficients measured by evaluating the spread of blobs of dye (milk) as well as by measuring the separation between different buoys released at the same time. We have used a techniques, developed by Bahia(1997), Diez(1998) and Bezerra(2000)[1-3] to study turbulent diffusion by means of digital processing of images taken from remote sensing and video recordings of the sea surface. The use of image analysis allows to measure variations of several decades in horizontal diffusivity values, the comparison of the diffusivities

  17. Large Amplitude Whistlers in the Magnetosphere Observed with Wind-Waves

    NASA Technical Reports Server (NTRS)

    Kellogg, P. J.; Cattell, C. A.; Goetz, K.; Monson, S. J.; Wilson, L. B., III

    2011-01-01

    We describe the results of a statistical survey of Wind-Waves data motivated by the recent STEREO/Waves discovery of large-amplitude whistlers in the inner magnetosphere. Although Wind was primarily intended to monitor the solar wind, the spacecraft spent 47 h inside 5 R(sub E) and 431 h inside 10 R(sub E) during the 8 years (1994-2002) that it orbited the Earth. Five episodes were found when whistlers had amplitudes comparable to those of Cattell et al. (2008), i.e., electric fields of 100 m V/m or greater. The whistlers usually occurred near the plasmapause. The observations are generally consistent with the whistlers observed by STEREO. In contrast with STEREO, Wind-Waves had a search coil, so magnetic measurements are available, enabling determination of the wave vector without a model. Eleven whistler events with useable magnetic measurements were found. The wave vectors of these are distributed around the magnetic field direction with angles from 4 to 48deg. Approximations to observed electron distribution functions show a Kennel-Petschek instability which, however, does not seem to produce the observed whistlers. One Wind episode was sampled at 120,000 samples/s, and these events showed a signature that is interpreted as trapping of electrons in the electrostatic potential of an oblique whistler. Similar waveforms are found in the STEREO data. In addition to the whistler waves, large amplitude, short duration solitary waves (up to 100 mV/m), presumed to be electron holes, occur in these passes, primarily on plasma sheet field lines mapping to the auroral zone.

  18. Waves and instabilities in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L.

    1987-01-01

    The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations.

  19. Carbon Dioxide Emission Peak and Green Innovation-Driven — Research of Escaping Middle Income Trap for China

    NASA Astrophysics Data System (ADS)

    Liu, Jianya; Sun, Zhenqing; Lan, Zirui; Kou, Chunxiao

    2018-06-01

    This study explains and demonstrates whether China has the capability to avoid the Middle Income Trap. The 19th National Congress of CPC report points out: by 2035, China will become an international leader in innovation. At present, China is in the juncture of changing the mode of development, optimizing the economic structure and transforming the growth momentum. The juncture means that it is possible to be stagnation or retrogression of national economy as the national ability of innovation is insufficient, then sticking in the middle-income trap (MIC) for a long time. In this paper, we used the TFP to prove that the input-output ratio of different regions of China, with the per capita GDP and carbon emissions are fitting again, dividing China into optimized zones and non-optimized zones. It can be seen from the results that the optimized zones have achieved the peak of carbon emission and had relative advantages in green innovation. However, if China wants to achieve her overall carbon emissions and get out of the middle income trap, she must optimize the development zones to spillover technologies and talents.

  20. Near-inertial waves and deep ocean mixing

    NASA Astrophysics Data System (ADS)

    Shrira, V. I.; Townsend, W. A.

    2013-07-01

    For the existing pattern of global oceanic circulation to exist, there should be sufficiently strong turbulent mixing in the abyssal ocean, the mechanisms of which are not well understood as yet. The review discusses a plausible mechanism of deep ocean mixing caused by near-inertial waves in the abyssal ocean. It is well known how winds in the atmosphere generate near-inertial waves in the upper ocean, which then propagate downwards losing their energy in the process; only a fraction of the energy at the surface reaches the abyssal ocean. An open question is whether and, if yes, how these weakened inertial motions could cause mixing in the deep. We review the progress in the mathematical description of a mechanism that results in an intense breaking of near-inertial waves near the bottom of the ocean and thus enhances the mixing. We give an overview of the present state of understanding of the problem covering both the published and the unpublished results; we also outline the key open questions. For typical ocean stratification, the account of the horizontal component of the Earth's rotation leads to the existence of near-bottom wide waveguides for near-inertial waves. Due to the β-effect these waveguides are narrowing in the poleward direction. Near-inertial waves propagating poleward get trapped in the waveguides; we describe how in the process these waves are focusing more and more in the vertical direction, while simultaneously their group velocity tends to zero and wave-induced vertical shear significantly increases. This causes the development of shear instability, which is interpreted as wave breaking. Remarkably, this mechanism of local intensification of turbulent mixing in the abyssal ocean can be adequately described within the framework of linear theory. The qualitative picture is similar to wind wave breaking on a beach: the abyssal ocean always acts as a surf zone for near-inertial waves.

  1. FDTD simulation of trapping nanowires with linearly polarized and radially polarized optical tweezers.

    PubMed

    Li, Jing; Wu, Xiaoping

    2011-10-10

    In this paper a model of the trapping force on nanowires is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods, and the tightly focused laser beam is expressed by spherical vector wave functions (VSWFs). The trapping capacities on nanoscale-diameter nanowires are discussed in terms of a strongly focused linearly polarized beam and radially polarized beam. Simulation results demonstrate that the radially polarized beam has higher trapping efficiency on nanowires with higher refractive indices than linearly polarized beam.

  2. FDTD simulation of trapping nanowires with linearly polarized and radially polarized optical tweezers

    PubMed Central

    Li, Jing; Wu, Xiaoping

    2011-01-01

    In this paper a model of the trapping force on nanowires is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods, and the tightly focused laser beam is expressed by spherical vector wave functions (VSWFs). The trapping capacities on nanoscale-diameter nanowires are discussed in terms of a strongly focused linearly polarized beam and radially polarized beam. Simulation results demonstrate that the radially polarized beam has higher trapping efficiency on nanowires with higher refractive indices than linearly polarized beam. PMID:21997083

  3. Impulsively Generated Wave Trains in Coronal Structures. II. Effects of Transverse Structuring on Sausage Waves in Pressurelesss Slabs

    NASA Astrophysics Data System (ADS)

    Li, Bo; Guo, Ming-Zhe; Yu, Hui; Chen, Shao-Xia

    2018-03-01

    Impulsively generated sausage wave trains in coronal structures are important for interpreting a substantial number of observations of quasi-periodic signals with quasi-periods of order seconds. We have previously shown that the Morlet spectra of these wave trains in coronal tubes depend crucially on the dispersive properties of trapped sausage waves, the existence of cutoff axial wavenumbers, and the monotonicity of the dependence of the axial group speed on the axial wavenumber in particular. This study examines the difference a slab geometry may introduce, for which purpose we conduct a comprehensive eigenmode analysis, both analytically and numerically, on trapped sausage modes in coronal slabs with a considerable number of density profiles. For the profile descriptions examined, coronal slabs can trap sausage waves with longer axial wavelengths, and the group speed approaches the internal Alfvén speed more rapidly at large wavenumbers in the cylindrical case. However, common to both geometries, cutoff wavenumbers exist only when the density profile falls sufficiently rapidly at distances far from coronal structures. Likewise, the monotonicity of the group speed curves depends critically on the profile steepness right at the structure axis. Furthermore, the Morlet spectra of the wave trains are shaped by the group speed curves for coronal slabs and tubes alike. Consequently, we conclude that these spectra have the potential for inferring the subresolution density structuring inside coronal structures, although their detection requires an instrumental cadence of better than ∼1 s.

  4. Rapid localized crystallization of lysozyme by laser trapping.

    PubMed

    Yuyama, Ken-Ichi; Chang, Kai-Di; Tu, Jing-Ru; Masuhara, Hiroshi; Sugiyama, Teruki

    2018-02-28

    Confining protein crystallization to a millimetre size was achieved within 0.5 h after stopping 1 h intense trapping laser irradiation, which shows excellent performance in spatial and temporal controllability compared to spontaneous nucleation. A continuous-wave near-infrared laser beam is tightly focused into a glass/solution interfacial layer of a supersaturated buffer solution of hen egg-white lysozyme (HEWL). The crystallization is not observed during laser trapping, but initiated by stopping the laser irradiation. The generated crystals are localized densely in a circular area with a diameter of a few millimetres around the focal spot and show specific directions of the optical axes of the HEWL crystals. To interpret this unique crystallization, we propose a mechanism that nucleation and the subsequent growth take place in a highly concentrated domain consisting of HEWL liquid-like clusters after turning off laser trapping.

  5. Deciphering the 3-D distribution of fluid along the shallow Hikurangi subduction zone using P- and S-wave attenuation

    NASA Astrophysics Data System (ADS)

    Eberhart-Phillips, Donna; Bannister, Stephen; Reyners, Martin

    2017-11-01

    We use local earthquake velocity spectra to solve for the 3-D distribution of P- and S-wave attenuation in the shallow Hikurangi subduction zone in the North Island of New Zealand to gain insight into how fluids control both the distribution of slip rate deficit and slow-slip events at the shallow plate interface. Qs/Qp gives us information on the 3-D distribution of fluid saturation, which we can compare with the previously determined 3-D distribution of Vp/Vs, which gives information on pore fluid pressure. The Hikurangi margin is unusual, in that a large igneous province (the Hikurangi Plateau) is being subducted. This plateau has had two episodes of subduction-first at 105-100 Ma during north-south convergence with Gondwana, and currently during east-west convergence between the Pacific and Australian plates. We find that in the southern part of the subduction zone, where there is a large deficit in slip rate at the plate interface, the plate interface region is only moderately fluid-rich because the underlying plateau had already had an episode of dehydration during Gondwana subduction. But fluid pressure is relatively high, due to an impermeable terrane in the upper plate trapping fluids below the plate interface. The central part of the margin, where the slip rate deficit is very low, is the most fluid-rich part of the shallow subduction zone. We attribute this to an excess of fluid from the subducted plateau. Our results suggest this part of the plateau has unusually high fracture permeability, on account of it having had two episodes of bending-first at the Gondwana trench and now at the Hikurangi Trough. Qs/Qp is consistent with fluids migrating across the plate interface in this region, leaving it drained and producing high fluid pressure in the overlying plate. The northern part of the margin is a region of heterogeneous deficit in slip rate. Here the Hikurangi Plateau is subducting for the first time, so there is less fluid available from its

  6. Resonance Trapping due to Nebula Disk Torques

    NASA Astrophysics Data System (ADS)

    Hahn, J. M.; Ward, W. R.

    1996-03-01

    A protoplanet embedded in the solar nebula launches spiral density waves from its Lindblad resonances in the gas disk, and its gravitational attraction for these disturbances results in a mutual torque exerted between the protoplanet and the disk. Consequently the orbit of a sufficiently massive protoplanet may decay on a timescale shorter than the nebula lifetime, and this mechanism is most significant during the formation of the cores of the giant planets. Due to their increased mobility, migrating protoplanets may have been able to accrete large swaths of the disk and/or encounter other protoplanets. Thus disk torques may have played an important role in determining the formation history and orbit spacings of the giant planets. An interesting phenomenon also associated with orbit decay is resonance trapping, whereby a large body is able to halt further orbit decay of smaller bodies at commensurability resonances. Examples of this effect include the trapping of planetesimals experiencing aerodynamic gas drag and dust suffering Poynting-Robertson drag. Below we address the cosmogonic implications of resonance trapping of planetary embryos experiencing orbit decay due to nebula disk torques. The following employs an approach similar to Malhotra's (1993) discussion of the gas drag trapping problem.

  7. Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler

    NASA Astrophysics Data System (ADS)

    Lee, J.; Park, D. H.; Mittal, S.; Dagenais, M.; Rolston, S. L.

    2013-04-01

    An integrated optical dipole trap uses two-color (red and blue-detuned) traveling evanescent wave fields for trapping cold neutral atoms. To achieve longitudinal confinement, we propose using an integrated optical waveguide coupler, which provides a potential gradient along the beam propagation direction sufficient to confine atoms. This integrated optical dipole trap can support an atomic ensemble with a large optical depth due to its small mode area. Its quasi-TE0 waveguide mode has an advantage over the HE11 mode of a nanofiber, with little inhomogeneous Zeeman broadening at the trapping region. The longitudinal confinement eliminates the need for a one dimensional optical lattice, reducing collisional blockaded atomic loading, potentially producing larger ensembles. The waveguide trap allows for scalability and integrability with nano-fabrication technology. We analyze the potential performance of such integrated atom traps.

  8. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications

    USGS Publications Warehouse

    Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane

    2012-01-01

    Model results from the planar beach case show good agreement with depth-averaged analytical solutions and with theoretical flow structures. Simulation results for the DUCK' 94 experiment agree closely with measured profiles of cross-shore and longshore velocity data from and . Diagnostic simulations showed that the nonlinear processes of wave roller generation and wave-induced mixing are important for the accurate simulation of surf zone flows. It is further recommended that a more realistic approach for determining the contribution of wave rollers and breaking induced turbulent mixing can be formulated using non-dimensional parameters which are functions of local wave parameters and the beach slope. Dominant terms in the cross-shore momentum balance are found to be the quasi-static pressure gradient and breaking acceleration. In the alongshore direction, bottom stress, breaking acceleration, horizontal advection and horizontal vortex forces dominate the momentum balance. The simulation results for the bar/rip channel morphology case clearly show the ability of the modeling system to reproduce horizontal and vertical circulation patterns similar to those found in laboratory studies and to numerical simulations using the radiation stress representation. The vortex force term is found to be more important at locations where strong flow vorticity interacts with the wave-induced Stokes flow field. Outside the surf zone, the three-dimensional model simulations of wave-induced flows for non-breaking waves closely agree with flow observations from MVCO, with the vertical structure of the simulated flow varying as a function of the vertical viscosity as demonstrated by Lentz et al. (2008).

  9. Optical trapping using cascade conical refraction of light.

    PubMed

    O'Dwyer, D P; Ballantine, K E; Phelan, C F; Lunney, J G; Donegan, J F

    2012-09-10

    Cascade conical refraction occurs when a beam of light travels through two or more biaxial crystals arranged in series. The output beam can be altered by varying the relative azimuthal orientation of the two biaxial crystals. For two identical crystals, in general the output beam comprises a ring beam with a spot at its centre. The relative intensities of the spot and ring can be controlled by varying the azimuthal angle between the refracted cones formed in each crystal. We have used this beam arrangement to trap one microsphere within the central spot and a second microsphere on the ring. Using linearly polarized light, we can rotate the microsphere on the ring with respect to the central sphere. Finally, using a half wave-plate between the two crystals, we can create a unique beam profile that has two intensity peaks on the ring, and thereby trap two microspheres on diametrically opposite points on the ring and rotate them around the central sphere. Such a versatile optical trap should find application in optical trapping setups.

  10. Shear-wave splitting in Quaternary sediments: Neotectonic implications in the central New Madrid seismic zone

    USGS Publications Warehouse

    Harris, J.B.

    1996-01-01

    Determining the extent and location of surface/near-surface structural deformation in the New Madrid seismic zone (NMSZ) is very important for evaluating earthquake hazards. A shallow shear-wave splitting experiment, located near the crest of the Lake County uplift (LCU) in the central NMSZ, shows the presence of near-surface azimuthal anisotropy believed to be associated with neotectonic deformation. A shallow fourcomponent data set, recorded using a hammer and mass source, displayed abundant shallow reflection energy on records made with orthogonal source-receiver orientations, an indicator of shear-wave splitting. Following rotation of the data matrix by 40??, the S1 and S2 sections (principal components of the data matrix) were aligned with the natural coordinate system at orientations of N35??W and N55??E, respectively. A dynamic mis-tie of 8 ms at a two-way traveltime of 375 ms produced an average azimuthal anisotropy of ???2% between the target reflector (top of Quaternary gravel at a depth of 35 m) and the surface. Based on the shear-wave polarization data, two explanations for the azimuthal anisotropy in the study area are (1) fractures/cracks aligned in response to near-surface tensional stress produced by uplift of the LCU, and (2) faults/fractures oriented parallel to the Kentucky Bend scarp, a recently identified surface deformation feature believed to be associated with contemporary seismicity in the central NMSZ. In addition to increased seismic resolution by the use of shear-wave methods in unconsolidated, water-saturated sediments, measurement of near-surface directional polarizations, produced by shear-wave splitting, may provide valuable information for identifying neotectonic deformation and evaluating associated earthquake hazards.

  11. A subtle diagenetic trap in the Cretaceous Glauconite Sandstone of Southwest Alberta

    USGS Publications Warehouse

    Meshri, I.D.; Comer, J.B.

    1990-01-01

    Despite the long history of research which documents many studies involving extensive diagenesis, there are a few examples of a fully documented diagenetic trap. In the context of this paper, a trap is a hydrocarbon-bearing reservoir with a seal; because a reservoir without a seal acts as a carrier bed. The difficulty in the proper documentation of diagenetic traps is often due to the lack of: (a) extensive field records on the perforation and production histories, which assist in providing the depth of separation between hydrocarbon production and non-hydrocarbon or water production; and (b) the simultaneous availability of core data from these intervals, which could be studied for the extent and nature of diagenesis. This paper provides documentation for the existence of a diagenetic trap, based on perforation depths, production histories and petrologic data from the cored intervals, in the context of the geologic and stratigraphic setting. Cores from 15 wells and SP logs from 45 wells were carefully correlated and the data on perforated intervals was also acquired. Extensive petrographic work on the collected cores led to the elucidation of a diagenetic trap that separates water overlying and updip from gas downdip. Amoco's Berrymore-Lobstick-Bigoray fields, located near the northeastern edge of the Alberta Basin, are prolific gas producers. The gas is produced from reservoir rock consisting of delta platform deposits formed by coalescing distributary mouth bars. The overlying rock unit is composed of younger distributary channels; although it has a good reservoir quality, it contains and produces water only. The total thickness of the upper, water-bearing and lower gas-bearing sandstone is about 40 ft. The diagenetic seal is composed of a zone 2 to 6 ft thick, located at the base of distributary channels. This zone is cemented with 20-30% ankerite cement, which formed the gas migration and is also relatively early compared to other cements formed in the water

  12. Dispersive Evolution of Nonlinear Fast Magnetoacoustic Wave Trains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pascoe, D. J.; Goddard, C. R.; Nakariakov, V. M., E-mail: D.J.Pascoe@warwick.ac.uk

    2017-10-01

    Quasi-periodic rapidly propagating wave trains are frequently observed in extreme ultraviolet observations of the solar corona, or are inferred by the quasi-periodic modulation of radio emission. The dispersive nature of fast magnetohydrodynamic waves in coronal structures provides a robust mechanism to explain the detected quasi-periodic patterns. We perform 2D numerical simulations of impulsively generated wave trains in coronal plasma slabs and investigate how the behavior of the trapped and leaky components depend on the properties of the initial perturbation. For large amplitude compressive perturbations, the geometrical dispersion associated with the waveguide suppresses the nonlinear steepening for the trapped wave train.more » The wave train formed by the leaky components does not experience dispersion once it leaves the waveguide and so can steepen and form shocks. The mechanism we consider can lead to the formation of multiple shock fronts by a single, large amplitude, impulsive event and so can account for quasi-periodic features observed in radio spectra.« less

  13. One-dimensional numerical study of charged particle trajectories in turbulent electrostatic wave fields

    NASA Technical Reports Server (NTRS)

    Graham, K. N.; Fejer, J. A.

    1976-01-01

    The paper describes a numerical simulation of electron trajectories in weak random electric fields under conditions that are approximately true for Langmuir waves whose wavelength is much longer than the Debye length. Two types of trajectory calculations were made: (1) the initial particle velocity was made equal to the mean phase velocity of the waves, or (2) it was equal to 0.7419 times the mean velocity of the waves, so that the initial velocity differed substantially from all phase velocities of the wave spectrum. When the autocorrelation time is much greater than the trapping time, the particle motion can change virtually instantaneously from one of three states - high-velocity, low-velocity, or trapped state - to another. The probability of instantaneous transition from a high- or low-velocity state becomes small when the difference between the particle velocity and the mean phase velocity of the waves becomes high in comparison to the trapping velocity. Diffusive motion becomes negligible under these conditions also.

  14. Critical behavior in trapped strongly interacting Fermi gases

    NASA Astrophysics Data System (ADS)

    Taylor, E.

    2009-08-01

    We investigate the width of the Ginzburg critical region and experimental signatures of critical behavior in strongly interacting trapped Fermi gases close to unitarity, where the s -wave scattering length diverges. Despite the fact that the width of the critical region is of the order unity, evidence of critical behavior in the bulk thermodynamics of trapped gases is strongly suppressed by their inhomogeneity. The specific heat of a harmonically confined gas, for instance, is linear in the reduced temperature t=(T-Tc)/Tc above Tc . We also discuss the prospects of observing critical behavior in the local compressibility from measurements of the density profile.

  15. Planktonic Subsidies to Surf-Zone and Intertidal Communities

    NASA Astrophysics Data System (ADS)

    Morgan, Steven G.; Shanks, Alan L.; MacMahan, Jamie H.; Reniers, Ad J. H. M.; Feddersen, Falk

    2018-01-01

    Plankton are transported onshore, providing subsidies of food and new recruits to surf-zone and intertidal communities. The transport of plankton to the surf zone is influenced by wind, wave, and tidal forcing, and whether they enter the surf zone depends on alongshore variation in surf-zone hydrodynamics caused by the interaction of breaking waves with coastal morphology. Areas with gently sloping shores and wide surf zones typically have orders-of-magnitude-higher concentrations of plankton in the surf zone and dense larval settlement in intertidal communities because of the presence of bathymetric rip currents, which are absent in areas with steep shores and narrow surf zones. These striking differences in subsidies have profound consequences; areas with greater subsidies support more productive surf-zone communities and possibly more productive rocky intertidal communities. Recognition of the importance of spatial subsidies for rocky community dynamics has recently advanced ecological theory, and incorporating surf-zone hydrodynamics would be an especially fruitful line of investigation.

  16. Optically assisted trapping with high-permittivity dielectric rings: Towards optical aerosol filtration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alaee, Rasoul; Kadic, Muamer; Rockstuhl, Carsten

    Controlling the transport, trapping, and filtering of nanoparticles is important for many applications. By virtue of their weak response to gravity and their thermal motion, various physical mechanisms can be exploited for such operations on nanoparticles. However, the manipulation based on optical forces is potentially most appealing since it constitutes a highly deterministic approach. Plasmonic nanostructures have been suggested for this purpose, but they possess the disadvantages of locally generating heat and trapping the nanoparticles directly on the surface. Here, we propose the use of dielectric rings made of high permittivity materials for trapping nanoparticles. Thanks to their ability tomore » strongly localize the field in space, nanoparticles can be trapped without contact. We use a semianalytical method to study the ability of these rings to trap nanoparticles. Lastly, the results are supported by full-wave simulations and application of the trapping concept to nanoparticle filtration is suggested.« less

  17. Optically assisted trapping with high-permittivity dielectric rings: Towards optical aerosol filtration

    DOE PAGES

    Alaee, Rasoul; Kadic, Muamer; Rockstuhl, Carsten; ...

    2016-10-04

    Controlling the transport, trapping, and filtering of nanoparticles is important for many applications. By virtue of their weak response to gravity and their thermal motion, various physical mechanisms can be exploited for such operations on nanoparticles. However, the manipulation based on optical forces is potentially most appealing since it constitutes a highly deterministic approach. Plasmonic nanostructures have been suggested for this purpose, but they possess the disadvantages of locally generating heat and trapping the nanoparticles directly on the surface. Here, we propose the use of dielectric rings made of high permittivity materials for trapping nanoparticles. Thanks to their ability tomore » strongly localize the field in space, nanoparticles can be trapped without contact. We use a semianalytical method to study the ability of these rings to trap nanoparticles. Lastly, the results are supported by full-wave simulations and application of the trapping concept to nanoparticle filtration is suggested.« less

  18. Trap style influences wild pig behavior and trapping success

    USGS Publications Warehouse

    Williams, B.L.; Holtfreter, R.W.; Ditchkoff, S.S.; Grand, J.B.

    2011-01-01

    Despite the efforts of many natural resource professionals, wild pig (Sus scrofa) populations are expanding in many areas of the world. Although many creative techniques for controlling pig populations are being explored, trapping has been and still is themost commonly usedmethod of population control formany public and private land managers. We conducted an observational study to examine the efficiency of 2 frequently used trap styles: a small, portable box-style trap and a larger, semi-permanent, corral-style trap.We used game cameras to examine patterns of trap entry by wild pigs around each style of trap, and we conducted a trapping session to compare trapping success between trap styles. Adult female and juvenile wild pigs entered both styles of trap more readily than did adult males, and adult males seemed particularly averse to entering box traps. Less than 10% of adult male visits to box traps resulted in entries, easily the least percentage of any class at any style of trap. Adult females entered corral traps approximately 2.2 times more often per visit than box traps and re-entered corral traps >2 times more frequently. Juveniles entered and reentered both box and corral traps at similar rates. Overall (all-class) entry-per-visit rates at corral traps (0.71) were nearly double that of box traps (0.37). Subsequent trapping data supported these preliminary entry data; the capture rate for corral traps was >4 times that of box traps. Our data suggest that corral traps are temporally and economically superior to box traps with respect to efficiency; that is, corral traps effectively trap more pigs per trap night at a lower cost per pig than do box traps. ?? 2011 The Wildlife Society.

  19. Mapping of Crustal Anisotropy in the New Madrid Seismic Zone with Shear Wave Splitting

    NASA Astrophysics Data System (ADS)

    Martin, P.; Arroucau, P.; Vlahovic, G.

    2013-12-01

    Crustal anisotropy in the New Madrid seismic zone (NMSZ) is investigated by analyzing shear wave splitting measurements from local earthquake data. For the initial data set, the Center for Earthquake Research and Information (CERI) provided over 3000 events, along with 900 seismograms recorded by the Portable Array for Numerical Data Acquisition (PANDA) network. Data reduction led to a final data set of 168 and 43 useable events from the CERI and PANDA data, respectively. From this, 186 pairs of measurements were produced from the CERI data set as well as 49 from the PANDA data set, by means of the automated shear wave splitting measurement program MFAST. Results from this study identified two dominant fast polarization directions, striking NE-SW and WNW-ESE. These are interpreted to be due to stress aligned microcracks in the upper crust. The NE-SW polarization direction is consistent with the maximum horizontal stress orientation of the region and has previously been observed in the NMSZ, while the WNW-ESE polarization direction has not. Path normalized time delays from this study range from 1-33 ms/km for the CERI network data, and 2-31 ms/km for the PANDA data, giving a range of estimated differential shear wave anisotropy between 1% and 8%, with the majority of large path normalized time delays (>20 ms/km) located along the Reelfoot fault segment. The estimated differential shear wave anisotropy values from this study are higher than those previously determined in the region, and are attributed to high crack densities and high pore fluid pressures, which agree with previous results from local earthquake tomography and microseismic swarm analysis in the NMSZ.

  20. Characterizing the structural maturity of fault zones using high-resolution earthquake locations.

    NASA Astrophysics Data System (ADS)

    Perrin, C.; Waldhauser, F.; Scholz, C. H.

    2017-12-01

    We use high-resolution earthquake locations to characterize the three-dimensional structure of active faults in California and how it evolves with fault structural maturity. We investigate the distribution of aftershocks of several recent large earthquakes that occurred on immature faults (i.e., slow moving and small cumulative displacement), such as the 1992 (Mw7.3) Landers and 1999 (Mw7.1) Hector Mine events, and earthquakes that occurred on mature faults, such as the 1984 (Mw6.2) Morgan Hill and 2004 (Mw6.0) Parkfield events. Unlike previous studies which typically estimated the width of fault zones from the distribution of earthquakes perpendicular to the surface fault trace, we resolve fault zone widths with respect to the 3D fault surface estimated from principal component analysis of local seismicity. We find that the zone of brittle deformation around the fault core is narrower along mature faults compared to immature faults. We observe a rapid fall off of the number of events at a distance range of 70 - 100 m from the main fault surface of mature faults (140-200 m fault zone width), and 200-300 m from the fault surface of immature faults (400-600 m fault zone width). These observations are in good agreement with fault zone widths estimated from guided waves trapped in low velocity damage zones. The total width of the active zone of deformation surrounding the main fault plane reach 1.2 km and 2-4 km for mature and immature faults, respectively. The wider zone of deformation presumably reflects the increased heterogeneity in the stress field along complex and discontinuous faults strands that make up immature faults. In contrast, narrower deformation zones tend to align with well-defined fault planes of mature faults where most of the deformation is concentrated. Our results are in line with previous studies suggesting that surface fault traces become smoother, and thus fault zones simpler, as cumulative fault slip increases.

  1. Possible emplacement of crustal rocks into the forearc mantle of the Cascadia Subduction Zone

    USGS Publications Warehouse

    Calvert, A.J.; Fisher, M.A.; Ramachandran, K.; Trehu, A.M.

    2003-01-01

    Seismic reflection profiles shot across the Cascadia forearc show that a 5-15 km thick band of reflections, previously interpreted as a lower crustal shear zone above the subducting Juan de Fuca plate, extends into the upper mantle of the North American plate, reaching depths of at least 50 km. In the extreme western corner of the mantle wedge, these reflectors occur in rocks with P wave velocities of 6750-7000 ms-1. Elsewhere, the forearc mantle, which is probably partially serpentinized, exhibits velocities of approximately 7500 ms-1. The rocks with velocities of 6750-7000 ms-1 are anomalous with respect to the surrounding mantle, and may represent either: (1) locally high mantle serpentinization, (2) oceanic crust trapped by backstepping of the subduction zone, or (3) rocks from the lower continental crust that have been transported into the uppermost mantle by subduction erosion. The association of subparallel seismic reflectors with these anomalously low velocities favours the tectonic emplacement of crustal rocks. Copyright 2003 by the American Geophysical Union.

  2. Parallel Transport Quantum Logic Gates with Trapped Ions.

    PubMed

    de Clercq, Ludwig E; Lo, Hsiang-Yu; Marinelli, Matteo; Nadlinger, David; Oswald, Robin; Negnevitsky, Vlad; Kienzler, Daniel; Keitch, Ben; Home, Jonathan P

    2016-02-26

    We demonstrate single-qubit operations by transporting a beryllium ion with a controlled velocity through a stationary laser beam. We use these to perform coherent sequences of quantum operations, and to perform parallel quantum logic gates on two ions in different processing zones of a multiplexed ion trap chip using a single recycled laser beam. For the latter, we demonstrate individually addressed single-qubit gates by local control of the speed of each ion. The fidelities we observe are consistent with operations performed using standard methods involving static ions and pulsed laser fields. This work therefore provides a path to scalable ion trap quantum computing with reduced requirements on the optical control complexity.

  3. Molecular vibrational trapping revisited: a case study with D2+

    PubMed Central

    Badankó, Péter; Halász, Gábor J.; Vibók, Ágnes

    2016-01-01

    The present theoretical study is concerned with the vibrational trapping or bond hardening, which is a well-known phenomenon predicted by a dressed state representation of small molecules like and in an intense laser field. This phenomenon is associated with a condition where the energy of the light induced, vibrational level coincides with one of the vibrational levels on the field-free potential curve, which at the same time maximizes the wave function overlap between these two levels. One-dimensional numerical simulations were performed to investigate this phenomenon in a more quantitative way than has been done previously by calculating the photodissociation probability of for a wide range of photon energy. The obtained results undoubtedly show that the nodal structure of the field-free vibrational wave functions plays a decisive role in the vibrational trapping, in addition to the current understanding of this phenomenon. PMID:27550642

  4. Near surface structure of the North Anatolian Fault Zone near 30°E from Rayleigh and Love wave tomography using ambient seismic noise.

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Rost, S.; Houseman, G. A.; Hillers, G.

    2017-12-01

    By utilising short period surface waves present in the noise field, we can construct images of shallow structure in the Earth's upper crust: a depth-range that is usually poorly resolved in earthquake tomography. Here, we use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the North Anatolian Fault Zone (NAFZ) in the source region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends 1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We obtain maps of group velocity variation using surface wave tomography applied to short period (1- 6 s) Rayleigh and Love waves to construct high-resolution images of SV and SH-wave velocity in the upper 5 km of a 70 km x 35 km region centred on the eastern end of the fault segment that ruptured in the 1999 Izmit earthquake. The average Rayleigh wave group velocities in the region vary between 1.8 km/s at 1.5 s period, to 2.2 km/s at 6 s period. The NAFZ bifurcates into northern and southern strands in this region; both are active but only the northern strand ruptured in the 1999 event. The signatures of both the northern and southern branches of the NAFZ are clearly associated with strong gradients in seismic velocity that also denote the boundaries of major tectonic units. This observation implies that the fault zone exploits the pre-existing structure of the Intra-Pontide suture zone. To the north of the NAFZ, we observe low S-wave velocities ( 2.0 km/s) associated with the unconsolidated sediments of the Adapazari basin, and blocks of weathered terrigenous clastic sediments. To the south of the northern branch of the NAFZ in the Armutlu block, we detect higher velocities ( 2.9 km/s) associated with a shallow crystalline basement, in particular a block of metamorphosed schists and marbles that bound the northern branch of the NAFZ.

  5. Trapping and assembling of particles and live cells on large-scale random gold nano-island substrates

    PubMed Central

    Kang, Zhiwen; Chen, Jiajie; Wu, Shu-Yuen; Chen, Kun; Kong, Siu-Kai; Yong, Ken-Tye; Ho, Ho-Pui

    2015-01-01

    We experimentally demonstrated the use of random plasmonic nano-islands for optical trapping and assembling of particles and live cells into highly organized pattern with low power density. The observed trapping effect is attributed to the net contribution due to near-field optical trapping force and long-range thermophoretic force, which overcomes the axial convective drag force, while the lateral convection pushes the target objects into the trapping zone. Our work provides a simple platform for on-chip optical manipulation of nano- and micro-sized objects, and may find applications in physical and life sciences. PMID:25928045

  6. Modeling ocean wave propagation under sea ice covers

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Shen, Hayley H.; Cheng, Sukun

    2015-02-01

    Operational ocean wave models need to work globally, yet current ocean wave models can only treat ice-covered regions crudely. The purpose of this paper is to provide a brief overview of ice effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or sea, sea ice can be classified as: landfast ice zone, shear zone, and the marginal ice zone. All ice covers attenuate wave energy. Only long swells can penetrate deep into an ice cover. Being closest to open water, wave propagation in the marginal ice zone is the most complex to model. The physical appearance of sea ice in the marginal ice zone varies. Grease ice, pancake ice, brash ice, floe aggregates, and continuous ice sheet may be found in this zone at different times and locations. These types of ice are formed under different thermal-mechanical forcing. There are three classic models that describe wave propagation through an idealized ice cover: mass loading, thin elastic plate, and viscous layer models. From physical arguments we may conjecture that mass loading model is suitable for disjoint aggregates of ice floes much smaller than the wavelength, thin elastic plate model is suitable for a continuous ice sheet, and the viscous layer model is suitable for grease ice. For different sea ice types we may need different wave ice interaction models. A recently proposed viscoelastic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various ice covers need to be implemented in the operational ocean wave models. In this review, we introduce the sea ice types, previous wave ice interaction models, wave attenuation mechanisms, the methods to calculate wave reflection and transmission between different ice covers, and the effect of ice floe breaking on shaping the sea ice morphology

  7. Can dead zones create structures like a transition disk?

    NASA Astrophysics Data System (ADS)

    Pinilla, Paola; Flock, Mario; Ovelar, Maria de Juan; Birnstiel, Til

    2016-12-01

    Context. Regions of low ionisation where the activity of the magneto-rotational instability is suppressed, the so-called dead zones, have been suggested to explain gaps and asymmetries of transition disks. Dead zones are therefore a potential cause for the observational signatures of transition disks without requiring the presence of embedded planets. Aims: We investigate the gas and dust evolution simultaneously assuming simplified prescriptions for a dead zone and a magnetohydrodynamic (MHD) wind acting on the disk. We explore whether the resulting gas and dust distribution can create signatures similar to those observed in transition disks. Methods: We imposed a dead zone and/or an MHD wind in the radial evolution of gas and dust in protoplanetary disks. For the dust evolution, we included the transport, growth, and fragmentation of dust particles. To compare with observations, we produced synthetic images in scattered optical light and in thermal emission at mm wavelengths. Results: In all models with a dead zone, a bump in the gas surface density is produced that is able to efficiently trap large particles (≳ 1 mm) at the outer edge of the dead zone. The gas bump reaches an amplitude of a factor of 5, which can be enhanced by the presence of an MHD wind that removes mass from the inner disk. While our 1D simulations suggest that such a structure can be present only for 1 Myr, the structure may be maintained for a longer time when more realistic 2D/3D simulations are performed. In the synthetic images, gap-like low-emission regions are seen at scattered light and in thermal emission at mm wavelengths, as previously predicted in the case of planet-disk interaction. Conclusions: Main signatures of transition disks can be reproduced by assuming a dead zone in the disk, such as gap-like structure in scattered light and millimetre continuum emission, and a lower gas surface density within the dead zone. Previous studies showed that the Rossby wave instability can

  8. Pseudopotential Method for Higher Partial Wave Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idziaszek, Zbigniew; Centrum Fizyki Teoretycznej, Polska Akademia Nauk, 02-668 Warsaw; Calarco, Tommaso

    2006-01-13

    We present a zero-range pseudopotential applicable for all partial wave interactions between neutral atoms. For p and d waves, we derive effective pseudopotentials, which are useful for problems involving anisotropic external potentials. Finally, we consider two nontrivial applications of the p-wave pseudopotential: we solve analytically the problem of two interacting spin-polarized fermions confined in a harmonic trap, and we analyze the scattering of p-wave interacting particles in a quasi-two-dimensional system.

  9. Pentacene Schottky diodes studied by impedance spectroscopy: Doping properties and trap response

    NASA Astrophysics Data System (ADS)

    Pahner, Paul; Kleemann, Hans; Burtone, Lorenzo; Tietze, Max L.; Fischer, Janine; Leo, Karl; Lüssem, Björn

    2013-11-01

    We study doping properties and charge carrier trap distributions in pentacene Schottky diodes doped by the fluorinated fullerene derivate C60F36 and 2,2'-(perdiylidene)dimalononitrile (F6-TCNNQ) upon small signal excitation. We show that the charge carrier depletion zones present in these Schottky diodes are tunable by the applied bias and temperature. Mott-Schottky evaluations yield reduced doping efficiencies and dopant activation energies between 19 and 54 meV. In the low-frequency regime, we resolve additional capacitive contributions from inherent charge carrier traps. A Gaussian distributed trap center 0.6 eV above the hole transport level with a density in the range of 1016 cm-3 depending on the material purity is found to be an intrinsic feature of the pentacene matrix. Upon doping, the deep Gaussian trap center saturates in density and broad exponentially tailing trap distributions arise. Subsequent ultraviolet photoelectron spectroscopy measurements are conducted to inspect for energetic broadening due to doping.

  10. Seismic‐wave attenuation determined from tectonic tremor in multiple subduction zones

    USGS Publications Warehouse

    Yabe, Suguru; Baltay, Annemarie S.; Ide, Satoshi; Beroza, Gregory C.

    2014-01-01

    Tectonic tremor provides a new source of observations that can be used to constrain the seismic attenuation parameter for ground‐motion prediction and hazard mapping. Traditionally, recorded earthquakes of magnitude ∼3–8 are used to develop ground‐motion prediction equations; however, typical earthquake records may be sparse in areas of high hazard. In this study, we constrain the distance decay of seismic waves using measurements of the amplitude decay of tectonic tremor, which is plentiful in some regions. Tectonic tremor occurs in the frequency band of interest for ground‐motion prediction (i.e., ∼2–8  Hz) and is located on the subducting plate interface, at the lower boundary of where future large earthquakes are expected. We empirically fit the distance decay of peak ground velocity from tremor to determine the attenuation parameter in four subduction zones: Nankai, Japan; Cascadia, United States–Canada; Jalisco, Mexico; and southern Chile. With the large amount of data available from tremor, we show that in the upper plate, the lower crust is less attenuating than the upper crust. We apply the same analysis to intraslab events in Nankai and show the possibility that waves traveling from deeper intraslab events experience more attenuation than those from the shallower tremor due to ray paths that pass through the subducting and highly attenuating oceanic crust. This suggests that high pore‐fluid pressure is present in the tremor source region. These differences imply that the attenuation parameter determined from intraslab earthquakes may underestimate ground motion for future large earthquakes on the plate interface.

  11. Surface Wave Dynamics in the Coastal Zone

    DTIC Science & Technology

    2014-09-30

    also collected from the Duck measurement site, operated by the USACE Field Research Facility at Duck , North Carolina. The collection and validation...similar analysis for 10 storm periods using wave data collected at Duck , North Carolina. The preparations consist of creating a dedicated unstructured...validated in the Southern North Sea and Duck validation studies. The shallow water source terms for wave breaking and triad interactions are being

  12. Wave-Particle Energy Exchange Directly Observed in a Kinetic Alfven-Branch Wave

    NASA Technical Reports Server (NTRS)

    Gershman, Daniel J.; F-Vinas, Adolfo; Dorelli, John C.; Boardsen, Scott A. (Inventor); Avanov, Levon A.; Bellan, Paul M.; Schwartz, Steven J.; Lavraud, Benoit; Coffey, Victoria N.; Chandler, Michael O.; hide

    2017-01-01

    Alfven waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres, and astrophysical systems, but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASAs Magnetospheric Multiscale (MMS) mission, we utilize Earths magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfven wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via non-linear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.

  13. Fast selective trapping and release of picoliter droplets in a 3D microfluidic PDMS multi-trap system with bubbles.

    PubMed

    Rambach, Richard W; Biswas, Preetika; Yadav, Ashutosh; Garstecki, Piotr; Franke, Thomas

    2018-02-12

    The selective manipulation and incubation of individual picoliter drops in high-throughput droplet based microfluidic devices still remains challenging. We used a surface acoustic wave (SAW) to induce a bubble in a 3D designed multi-trap polydimethylsiloxane (PDMS) device to manipulate multiple droplets and demonstrate the selection, incubation and on-demand release of aqueous droplets from a continuous oil flow. By controlling the position of the acoustic actuation, individual droplets are addressed and selectively released from a droplet stream of 460 drops per s. A complete trapping and releasing cycle can be as short as 70 ms and has no upper limit for incubation time. We characterize the fluidic function of the hybrid device in terms of electric power, pulse duration and acoustic path.

  14. Augmented longitudinal acoustic trap for scalable microparticle enrichment.

    PubMed

    Cui, M; Binkley, M M; Shekhani, H N; Berezin, M Y; Meacham, J M

    2018-05-01

    We introduce an acoustic microfluidic device architecture that locally augments the pressure field for separation and enrichment of targeted microparticles in a longitudinal acoustic trap. Pairs of pillar arrays comprise "pseudo walls" that are oriented perpendicular to the inflow direction. Though sample flow is unimpeded, pillar arrays support half-wave resonances that correspond to the array gap width. Positive acoustic contrast particles of supracritical diameter focus to nodal locations of the acoustic field and are held against drag from the bulk fluid motion. Thus, the longitudinal standing bulk acoustic wave (LSBAW) device achieves size-selective and material-specific separation and enrichment of microparticles from a continuous sample flow. A finite element analysis model is used to predict eigenfrequencies of LSBAW architectures with two pillar geometries, slanted and lamellar. Corresponding pressure fields are used to identify longitudinal resonances that are suitable for microparticle enrichment. Optimal operating conditions exhibit maxima in the ratio of acoustic energy density in the LSBAW trap to that in inlet and outlet regions of the microchannel. Model results guide fabrication and experimental evaluation of realized LSBAW assemblies regarding enrichment capability. We demonstrate separation and isolation of 20  μ m polystyrene and ∼10  μ m antibody-decorated glass beads within both pillar geometries. The results also establish several practical attributes of our approach. The LSBAW device is inherently scalable and enables continuous enrichment at a prescribed location. These features benefit separations applications while also allowing concurrent observation and analysis of trap contents.

  15. ANALYSIS OF POLYCYCLIC AROMATIC HYDROCARBONS BY ION TRAP TANDEM MASS SPECTROMETRY

    EPA Science Inventory

    An ion-trap mass spectrometer with a wave board and tandem mass spectrometry software was used to analyze gas chromatographically separated polycyclic aromatic hydrocarbons (PAHs) by using collision-induced dissociation (CID). The nonresonant (multiple collision) mode was used to...

  16. Formation and propagation of Love waves in a surface layer with a P-wave source. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florence, A.L.; Miller, S.A.

    The objective of this research is to investigate experimentally, and support with theoretical calculations, the formation and propagation of Love waves from a P-wave source due to scattering at material heterogeneities. The P-wave source is a spherical piezoelectric crystal cast in a surface layer of rock simulant overlaying a higher impedance granite substrate. Excitation of the piezoelectric crystal with a known voltage applies a spherical compressional pulse of known amplitude to the surrounding medium. Lateral heterogeneities cast in the surface layer convert incident P-wave energy into shear waves. The horizontally polarized shear waves (SH waves) trapped in the surface layermore » wave guide are the Love waves we will measure at the surface.« less

  17. Observations of storm morphodynamics using Coastal Lidar and Radar Imaging System (CLARIS): Importance of wave refraction and dissipation over complex surf-zone morphology at a shoreline erosional hotspot

    NASA Astrophysics Data System (ADS)

    Brodie, Katherine L.

    Elevated water levels and large waves during storms cause beach erosion, overwash, and coastal flooding, particularly along barrier island coastlines. While predictions of storm tracks have greatly improved over the last decade, predictions of maximum water levels and variations in the extent of damage along a coastline need improvement. In particular, physics based models still cannot explain why some regions along a relatively straight coastline may experience significant erosion and overwash during a storm, while nearby locations remain seemingly unchanged. Correct predictions of both the timing of erosion and variations in the magnitude of erosion along the coast will be useful to both emergency managers and homeowners preparing for an approaching storm. Unfortunately, research on the impact of a storm to the beach has mainly been derived from "pre" and "post" storm surveys of beach topography and nearshore bathymetry during calm conditions. This has created a lack of data during storms from which to ground-truth model predictions and test hypotheses that explain variations in erosion along a coastline. We have developed Coastal Lidar and Radar Imaging System (CLARIS), a mobile system that combines a terrestrial scanning laser and an X-band marine radar system using precise motion and location information. CLARIS can operate during storms, measuring beach topography, nearshore bathymetry (from radar-derived wave speed measurements), surf-zone wave parameters, and maximum water levels remotely. In this dissertation, we present details on the development, design, and testing of CLARIS and then use CLARIS to observe a 10 km section of coastline in Kitty Hawk and Kill Devil Hills on the Outer Banks of North Carolina every 12 hours during a Nor'Easter (peak wave height in 8 m of water depth = 3.4 m). High decadal rates of shoreline change as well as heightened erosion during storms have previously been documented to occur within the field site. In addition, complex

  18. Modeling and observations of ULF waves trapped in a plasmaspheric density plume

    NASA Astrophysics Data System (ADS)

    Degeling, A. W.; Zhang, S.; Foster, J. C.; Shi, Q.; Zong, Q. G.; Rankin, R.

    2017-12-01

    In order for ULF waves to effectively energise radiation belt electrons by drift-resonance, wave power must be significant in regions within the magnetosphere where the ULF wave phase propagation and electron drift directions are roughly aligned. For waves launched along the dayside magnetopause, such a region would be located in the afternoon - dusk sector of the inner magnetosphere. During periods of storm activity and enhanced convection, the plasma density in this region is highly dynamic due to the development of plasmaspheric drainage plume (PDP) structure. This significantly affects the local Alfvén speed, and alters the propagation of ULF waves launched from the magnetopause. It can therefore be expected that the accessibility of ULF wave power for radiation belt energisation is sensitively dependent on the recent history of magnetospheric convection, and the stage of development of the PDP. This is investigated using a 3D model for ULF waves within the magnetosphere in which the plasma density distribution is evolved using an advection model for cold plasma, driven by a (Volland - Stern) convection electrostatic field (resulting in PDP structure). The wave model includes magnetic-field day/night asymmetry, and extends to a paraboloid dayside magnetopause, from which ULF waves are launched at various stages during the PDP development. We find that the plume structure significantly alters the field line resonance (FLR) location, and the turning point for MHD fast waves, introducing strong asymmetry in the ULF wave distribution across the noon meridian. Moreover, the density enhancement within the PDP creates a waveguide or local cavity for MHD fast waves, such that eigenmodes formed allow the penetration of ULF wave power to much lower L within the plume than outside. This may explain satellite observations of the appearance of ULF wave activity within localized density enhancements associated with a PDP. Such an example, made by THEMIS following a

  19. Optical trapping studies of acto-myosin motor proteins

    NASA Astrophysics Data System (ADS)

    Farrow, Rachel E.; Rosenthal, Peter B.; Mashanov, Gregory I.; Holder, Anthony A.; Molloy, Justin E.

    2007-09-01

    Optical tweezers have been used extensively to measure the mechanical properties of individual biological molecules. Over the past 10-15 years optical trapping studies have revealed important information about the way in which motor proteins convert chemical energy to mechanical work. This paper focuses on studies of the acto-myosin motor system that is responsible for muscle contraction and a host of other cellular motilities. Myosin works by binding to filamentous actin, pulling and then releasing. Each cycle of interaction produces a few nanometres movement and a few piconewtons force. Individual interactions can be observed directly by holding an individual actin filament between two optically trapped microspheres and positioning it in the immediate vicinity of a single myosin motor. When the chemical fuel (adenosine triphosphate or ATP) is present the myosin undergoes repeated cycles of interaction with the actin filament producing square-wave like displacements and forces. Analysis of optical trapping data sets enables the size and timing of the molecular motions to be deduced.

  20. Investigating dust trapping in transition disks with millimeter-wave polarization

    NASA Astrophysics Data System (ADS)

    Pohl, A.; Kataoka, A.; Pinilla, P.; Dullemond, C. P.; Henning, Th.; Birnstiel, T.

    2016-08-01

    Context. Spatially resolved polarized (sub-)mm emission has been observed for example in the protoplanetary disk around HL Tau. Magnetically aligned grains are commonly interpreted as the source of polarization. However, self-scattering by large dust grains with a high enough albedo is another polarization mechanism, which is becoming a compelling method independent of the spectral index to constrain the dust grain size in protoplanetary disks. Aims: We study the dust polarization at mm wavelengths in the dust trapping scenario proposed for transition disks, when a giant planet opens a gap in the disk. We investigate the characteristic polarization patterns and their dependence on disk inclination, dust size evolution, planet position, and observing wavelength. Methods: We combine two-dimensional hydrodynamical simulations of planet-disk interactions with self-consistent dust growth models. These size-dependent dust density distributions are used for follow-up three-dimensional radiative transfer calculations to predict the polarization degree at ALMA bands due to scattered thermal emission. Results: Dust self-scattering has been proven to be a viable mechanism for producing polarized mm-wave radiation. We find that the polarization pattern of a disk with a planetary gap after 1 Myr of dust evolution shows a distinctive three-ring structure. Two narrow inner rings are located at the planet gap edges. A third wider ring of polarization is situated in the outer disk beyond 100 au. For increasing observing wavelengths, all three rings change their position slightly, where the innermost and outermost rings move inward. This distance is detectable when comparing the results at ALMA bands 3, 6, and 7. Within the highest polarized intensity regions the polarization vectors are oriented in the azimuthal direction. For an inclined disk there is an interplay between polarization originating from a flux gradient and inclination-induced quadrupole polarization. For

  1. An empirical method to estimate shear wave velocity of soils in the New Madrid seismic zone

    USGS Publications Warehouse

    Wei, B.-Z.; Pezeshk, S.; Chang, T.-S.; Hall, K.H.; Liu, Huaibao P.

    1996-01-01

    In this study, a set of charts are developed to estimate shear wave velocity of soils in the New Madrid seismic zone (NMSZ), using the standard penetration test (SPT) N values and soil depths. Laboratory dynamic test results of soil samples collected from the NMSZ showed that the shear wave velocity of soils is related to the void ratio and the effective confining pressure applied to the soils. The void ratio of soils can be estimated from the SPT N values and the effective confining pressure depends on the depth of soils. Therefore, the shear wave velocity of soils can be estimated from the SPT N value and the soil depth. To make the methodology practical, two corrections should be made. One is that field SPT N values of soils must be adjusted to an unified SPT N??? value to account the effects of overburden pressure and equipment. The second is that the effect of water table to effective overburden pressure of soils must be considered. To verify the methodology, shear wave velocities of five sites in the NMSZ are estimated and compared with those obtained from field measurements. The comparison shows that our approach and the field tests are consistent with an error of less than of 15%. Thus, the method developed in this study is useful for dynamic study and practical designs in the NMSZ region. Copyright ?? 1996 Elsevier Science Limited.

  2. Remote sensing of the marginal ice zone during Marginal Ice Zone Experiment (MIZEX) 83

    NASA Technical Reports Server (NTRS)

    Shuchman, R. A.; Campbell, W. J.; Burns, B. A.; Ellingsen, E.; Farrelly, B. A.; Gloersen, P.; Grenfell, T. C.; Hollinger, J.; Horn, D.; Johannessen, J. A.

    1984-01-01

    The remote sensing techniques utilized in the Marginal Ice Zone Experiment (MIZEX) to study the physical characteristics and geophysical processes of the Fram Strait Region of the Greenland Sea are described. The studies, which utilized satellites, aircraft, helicopters, and ship and ground-based remote sensors, focused on the use of microwave remote sensors. Results indicate that remote sensors can provide marginal ice zone characteristics which include ice edge and ice boundary locations, ice types and concentration, ice deformation, ice kinematics, gravity waves and swell (in the water and the ice), location of internal wave fields, location of eddies and current boundaries, surface currents and sea surface winds.

  3. Unitary Fermi gas in a harmonic trap

    NASA Astrophysics Data System (ADS)

    Chang, S. Y.; Bertsch, G. F.

    2007-08-01

    We present an ab initio calculation of small numbers of trapped, strongly interacting fermions using the Green’s function Monte Carlo method. The ground-state energy, density profile, and pairing gap are calculated for particle numbers N=2 22 using the parameter-free “unitary” interaction. Trial wave functions are taken in the form of correlated pairs in a harmonic oscillator basis. We find that the lowest energies are obtained with a minimum explicit pair correlation beyond that needed to exploit the degeneracy of oscillator states. We find that the energies can be well fitted by the expression aTFETF+Δmod(N,2) where ETF is the Thomas-Fermi energy of a noninteracting gas in the trap and Δ is the pairing gap. There is no evidence of a shell correction energy in the systematics, but the density distributions show pronounced shell effects. We find the value Δ=0.7±0.2ω for the pairing gap. This is smaller than the value found for the uniform gas at a density corresponding to the central density of the trapped gas.

  4. Teleseismic P and S wave attenuation constraints on temperature and melt of the upper mantle in the Alaska Subduction Zone.

    NASA Astrophysics Data System (ADS)

    Soto Castaneda, R. A.; Abers, G. A.; Eilon, Z.; Christensen, D. H.

    2017-12-01

    Recent broadband deployments in Alaska provide an excellent opportunity to advance our understanding of the Alaska-Aleutians subduction system, with implications for subduction processes worldwide. Seismic attenuation, measured from teleseismic body waves, provides a strong constraint on thermal structure as well as an indirect indication of ground shaking expected from large intermediate-depth earthquakes. We measure P and S wave attenuation from pairwise amplitude and phase spectral ratios for teleseisms recorded at 204 Transportable Array, Alaska Regional, and Alaska Volcano Observatory, SALMON (Southern Alaska Lithosphere & Mantle Observation Network) and WVLF (Wrangell Volcanics & subducting Lithosphere Fate) stations in central Alaska. The spectral ratios are inverted in a least squares sense for differential t* (path-averaged attenuation operator) and travel time anomalies at every station. Our preliminary results indicate a zone of low attenuation across the forearc and strong attenuation beneath arc and backarc in the Cook Inlet-Kenai region where the Aleutian-Yakutat slab subducts, similar to other subduction zones. This attenuation differential is observed in both the volcanic Cook Inlet segment and amagmatic Denali segments of the Aleutian subduction zone. By comparison, preliminary results for the Wrangell-St. Elias region past the eastern edge of the Aleutian slab show strong attenuation beneath the Wrangell Volcanic Field, as well as much further south than in the Cook Inlet-Kenai region. This pattern of attenuation seems to indicate a short slab fragment in the east of the subduction zone, though the picture is complex. Results also suggest the slab may focus or transmit energy with minimal attenuation, adding to the complexity. To image the critical transition between the Alaska-Aleutian slab and the region to its east, we plan to incorporate new broadband data from the WVLF array, an ongoing deployment of 37 PASSCAL instruments installed in 2016

  5. Linear Water Waves

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N.; Maz'ya, V.; Vainberg, B.

    2002-08-01

    This book gives a self-contained and up-to-date account of mathematical results in the linear theory of water waves. The study of waves has many applications, including the prediction of behavior of floating bodies (ships, submarines, tension-leg platforms etc.), the calculation of wave-making resistance in naval architecture, and the description of wave patterns over bottom topography in geophysical hydrodynamics. The first section deals with time-harmonic waves. Three linear boundary value problems serve as the approximate mathematical models for these types of water waves. The next section uses a plethora of mathematical techniques in the investigation of these three problems. The techniques used in the book include integral equations based on Green's functions, various inequalities between the kinetic and potential energy and integral identities which are indispensable for proving the uniqueness theorems. The so-called inverse procedure is applied to constructing examples of non-uniqueness, usually referred to as 'trapped nodes.'

  6. Super-Earths as Failed Cores in Orbital Migration Traps

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yasuhiro

    2016-11-01

    I explore whether close-in super-Earths were formed as rocky bodies that failed to grow fast enough to become the cores of gas giants before the natal protostellar disk dispersed. I model the failed cores’ inward orbital migration in the low-mass or type I regime to stopping points at distances where the tidal interaction with the protostellar disk applies zero net torque. The three kinds of migration traps considered are those due to the dead zone's outer edge, the ice line, and the transition from accretion to starlight as the disk's main heat source. As the disk disperses, the traps move toward final positions near or just outside 1 au. Planets at this location exceeding about 3 M ⊕ open a gap, decouple from their host traps, and migrate inward in the high-mass or type II regime to reach the vicinity of the star. I synthesize the population of planets that formed in this scenario, finding that a fraction of the observed super-Earths could have been failed cores. Most super-Earths that formed this way have more than 4 M ⊕, so their orbits when the disks dispersed were governed by type II migration. These planets have solid cores surrounded by gaseous envelopes. Their subsequent photoevaporative mass loss is most effective for masses originally below about 6 M ⊕. The failed core scenario suggests a division of the observed super-Earth mass-radius diagram into five zones according to the inferred formation history.

  7. Photoionization of radiation-induced traps in quartz and alkali feldspars.

    PubMed

    Hütt, G; Jaek, I; Vasilchenko, V

    2001-01-01

    For the optimization of luminescence dating and dosimetry techniques on the basis of the optically stimulated luminescence, the stimulation spectra of quartz and alkali feldspars were measured in the spectral region of 250-1100 nm using optically stimulated afterglow. Optically stimulated luminescence in all studied spectral regions is induced by the same kind of deep traps, that produce thermoluminescence in the regions of palaeodosimetric peaks for both minerals. The mechanism for photoionization of deep traps was proposed as being due to delocalization of the excited state of the corresponding lattice defects. The excited state overlaps the zone states; i.e. is situated in the conduction band. Because of the high quantum yield of deep electron trap ionization in the UV spectral region, the present aim was to study the possibility of using UV-stimulation for palaeodose reconstruction.

  8. Measurement of Trap Length for an Optical Trap

    NASA Technical Reports Server (NTRS)

    Wrbanek, Susan Y.

    2009-01-01

    The trap length along the beam axis for an optical trap formed with an upright, oil-immersion microscope was measured. The goals for this effort were twofold. It was deemed useful to understand the depth to which an optical trap can reach for purposes of developing a tool to assist in the fabrication of miniature devices. Additionally, it was desired to know whether the measured trap length favored one or the other of two competing theories to model an optical trap. The approach was to trap a microsphere of known size and mass and raise it from its initial trap position. The microsphere was then dropped by blocking the laser beam for a pre-determined amount of time. Dropping the microsphere in a free-fall mode from various heights relative to the coverslip provides an estimate of how the trapping length changes with depth in water in a sample chamber on a microscope slide. While it was not possible to measure the trap length with sufficient precision to support any particular theory of optical trap formation, it was possible to find regions where the presence of physical boundaries influenced optical traps, and determine that the trap length, for the apparatus studied, is between 6 and 7 m. These results allow more precise control using optical micromanipulation to assemble miniature devices by providing information about the distance over which an optical trap is effective.

  9. Atomistic modeling trap-assisted tunneling in hole tunnel field effect transistors

    NASA Astrophysics Data System (ADS)

    Long, Pengyu; Huang, Jun Z.; Povolotskyi, Michael; Sarangapani, Prasad; Valencia-Zapata, Gustavo A.; Kubis, Tillmann; Rodwell, Mark J. W.; Klimeck, Gerhard

    2018-05-01

    Tunnel Field Effect Transistors (FETs) have the potential to achieve steep Subthreshold Swing (S.S.) below 60 mV/dec, but their S.S. could be limited by trap-assisted tunneling (TAT) due to interface traps. In this paper, the effect of trap energy and location on OFF-current (IOFF) of tunnel FETs is evaluated systematically using an atomistic trap level representation in a full quantum transport simulation. Trap energy levels close to band edges cause the highest leakage. Wave function penetration into the surrounding oxide increases the TAT current. To estimate the effects of multiple traps, we assume that the traps themselves do not interact with each other and as a whole do not modify the electrostatic potential dramatically. Within that model limitation, this numerical metrology study points to the critical importance of TAT in the IOFF in tunnel FETs. The model shows that for Dit higher than 1012/(cm2 eV) IO F F is critically increased with a degraded IO N/IO F F ratio of the tunnel FET. In order to have an IO N/IO F F ratio higher than 104, the acceptable Dit near Ev should be controlled to no larger than 1012/(cm2 eV) .

  10. Continuity of the West Napa–Franklin fault zone inferred from guided waves generated by earthquakes following the 24 August 2014 Mw 6.0 South Napa earthquake

    USGS Publications Warehouse

    Catchings, Rufus D.; Goldman, Mark R.; Li, Yong-Gang; Chan, Joanne

    2016-01-01

    We measure peak ground velocities from fault‐zone guided waves (FZGWs), generated by on‐fault earthquakes associated with the 24 August 2014 Mw 6.0 South Napa earthquake. The data were recorded on three arrays deployed across north and south of the 2014 surface rupture. The observed FZGWs indicate that the West Napa fault zone (WNFZ) and the Franklin fault (FF) are continuous in the subsurface for at least 75 km. Previously published potential‐field data indicate that the WNFZ extends northward to the Maacama fault (MF), and previous geologic mapping indicates that the FF extends southward to the Calaveras fault (CF); this suggests a total length of at least 110 km for the WNFZ–FF. Because the WNFZ–FF appears contiguous with the MF and CF, these faults apparently form a continuous Calaveras–Franklin–WNFZ–Maacama (CFWM) fault that is second only in length (∼300  km) to the San Andreas fault in the San Francisco Bay area. The long distances over which we observe FZGWs, coupled with their high amplitudes (2–10 times the S waves) suggest that strong shaking from large earthquakes on any part of the CFWM fault may cause far‐field amplified fault‐zone shaking. We interpret guided waves and seismicity cross sections to indicate multiple upper crustal splays of the WNFZ–FF, including a northward extension of the Southhampton fault, which may cause strong shaking in the Napa Valley and the Vallejo area. Based on travel times from each earthquake to each recording array, we estimate average P‐, S‐, and guided‐wave velocities within the WNFZ–FF (4.8–5.7, 2.2–3.2, and 1.1–2.8  km/s, respectively), with FZGW velocities ranging from 58% to 93% of the average S‐wave velocities.

  11. MAGNETIZED ACCRETION AND DEAD ZONES IN PROTOSTELLAR DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzyurkevich, Natalia; Henning, Thomas; Turner, Neal J.

    The edges of magnetically dead zones in protostellar disks have been proposed as locations where density bumps may arise, trapping planetesimals and helping form planets. Magneto-rotational turbulence in magnetically active zones provides both accretion of gas on the star and transport of mass to the dead zone. We investigate the location of the magnetically active regions in a protostellar disk around a solar-type star, varying the disk temperature, surface density profile, and dust-to-gas ratio. We also consider stellar masses between 0.4 and 2 M{sub Sun }, with corresponding adjustments in the disk mass and temperature. The dead zone's size andmore » shape are found using the Elsasser number criterion with conductivities including the contributions from ions, electrons, and charged fractal dust aggregates. The charged species' abundances are found using the approach proposed by Okuzumi. The dead zone is in most cases defined by the ambipolar diffusion. In our maps, the dead zone takes a variety of shapes, including a fish tail pointing away from the star and islands located on and off the midplane. The corresponding accretion rates vary with radius, indicating locations where the surface density will increase over time, and others where it will decrease. We show that density bumps do not readily grow near the dead zone's outer edge, independently of the disk parameters and the dust properties. Instead, the accretion rate peaks at the radius where the gas-phase metals freeze out. This could lead to clearing a valley in the surface density, and to a trap for pebbles located just outside the metal freezeout line.« less

  12. ON HYDRODYNAMIC MOTIONS IN DEAD ZONES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oishi, Jeffrey S.; Mac Low, Mordecai-Mark, E-mail: jsoishi@astro.berkeley.ed, E-mail: mordecai@amnh.or

    We investigate fluid motions near the midplane of vertically stratified accretion disks with highly resistive midplanes. In such disks, the magnetorotational instability drives turbulence in thin layers surrounding a resistive, stable dead zone. The turbulent layers in turn drive motions in the dead zone. We examine the properties of these motions using three-dimensional, stratified, local, shearing-box, non-ideal, magnetohydrodynamical simulations. Although the turbulence in the active zones provides a source of vorticity to the midplane, no evidence for coherent vortices is found in our simulations. It appears that this is because of strong vertical oscillations in the dead zone. By analyzingmore » time series of azimuthally averaged flow quantities, we identify an axisymmetric wave mode particular to models with dead zones. This mode is reduced in amplitude, but not suppressed entirely, by changing the equation of state from isothermal to ideal. These waves are too low frequency to affect sedimentation of dust to the midplane, but may have significance for the gravitational stability of the resulting midplane dust layers.« less

  13. Effect of dust charging and trapped electrons on nonlinear solitary structures in an inhomogeneous magnetized plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Ravinder; Malik, Hitendra K.; Singh, Khushvant

    2012-01-15

    Main concerns of the present article are to investigate the effects of dust charging and trapped electrons on the solitary structures evolved in an inhomogeneous magnetized plasma. Such a plasma is found to support two types of waves, namely, fast wave and slow wave. Slow wave propagates in the plasma only when the wave propagation angle {theta} satisfies the condition {theta}{>=}tan{sup -1}{l_brace}({radical}((1+2{sigma})-[(n{sub dlh}({gamma}{sub 1}-1))/(1+n{sub dlh}{gamma}{sub 1})])-v{sub 0}/u{sub 0}){r_brace}, where v{sub 0}(u{sub 0}) is the z- (x-) component of ion drift velocity, {sigma} = T{sub i}/T{sub eff}, n{sub dlh} = n{sub d0}/(n{sub el0} + n{sub eh0}), and {gamma}{sub 1}=-(1/{Phi}{sub i0})[(1-{Phi}{sub i0}/1+{sigma}(1-{Phi}{submore » i0}))] together with T{sub i} as ion temperature, n{sub el0}(n{sub eh0}) as the density of trapped (isothermal) electrons, {Phi}{sub i0} as the dust grain (density n{sub d0}) surface potential relative to zero plasma potential, and T{sub eff}=(n{sub elo}+n{sub eho})T{sub el}T{sub eh}/(n{sub elo}T{sub eh}+n{sub eho}T{sub el}), where T{sub el}(T{sub eh}) is the temperature of trapped (isothermal) electrons. Both the waves evolve in the form of density hill type structures in the plasma, confirming that these solitary structures are compressive in nature. These structures are found to attain higher amplitude when the charge on the dust grains is fluctuated (in comparison with the case of fixed charge) and also when the dust grains and trapped electrons are more in number; the same is the case with higher temperature of ions and electrons. Slow solitary structures show weak dependence on the dust concentration. Both types of structures are found to become narrower under the application of stronger magnetic field. With regard to the charging of dust grains, it is observed that the charge gets reduced for the higher trapped electron density and temperature of ions and electrons, and dust charging shows weak dependence on the

  14. Lidar Observations of Wave Shape

    NASA Astrophysics Data System (ADS)

    Brodie, K. L.; Raubenheimer, B.; Spore, N.; Gorrell, L.; Slocum, R. K.; Elgar, S.

    2016-02-01

    As waves propagate across the inner-surf zone, through a shorebreak, to the swash, their shapes can evolve rapidly, particularly if there are large changes in water depth over a wavelength. As wave shapes evolve, the time history of near-bed wave-orbital velocities also changes. Asymmetrical near-bed velocities result in preferential directions for sediment transport, and spatial variations in asymmetries can lead to morphological evolution. Thus, understanding and predicting wave shapes in the inner-surf and swash zones is important to improving sediment transport predictions. Here, rapid changes in wave shape, quantified by 3rd moments (skewness and asymmetry) of the sea-surface elevation time series, were observed on a sandy Atlantic Ocean beach near Duck, NC using terrestrial lidar scanners that measure the elevation of the water surface along a narrow cross-shore transect with high spatial [O(1 cm)] and temporal [O(0.5 s)] resolution. The terrestrial lidar scanners were mounted on a tower on the beach dune (about 8 m above the water surface) and on an 8-m tall amphibious tripod [the Coastal Research Amphibious Buggy (CRAB)]. Observations with the dune lidar are used to investigate how bulk wave shape parameters such as wave skewness and asymmetry, and the ratio of wave height to water depth (gamma) vary with beach slope, tide level, and offshore wave conditions. Observations with the lidar mounted on the CRAB are used to investigate the evolution of individual waves propagating across the surf zone and shorebreak to the swash. For example, preliminary observations from the CRAB include a wave that appeared to shoal and then "pitch" backwards immediately prior to breaking and running up the beach. Funded by the USACE Coastal Field Data Collection Program, ASD(R&E), and ONR.

  15. VLF wave-wave interaction experiments in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Chang, D. C. D.

    1978-01-01

    VLF wave-wave interaction experiments were carried out by injecting various forms of VLF pulses into the magnetosphere from a 21.2 km dipole antenna at Siple, Antarctica. The injected signals propagate along a geomagnetic field line and often interact strongly with energetic electrons trapped in the radiation belts near the equator. Signals may be amplified and trigger emissions. These signals may then interact with one another through these energetic electrons. This report is divided into three parts. In the first part, simulations of VLF pulses propagating in the magnetosphere are carried out. In the second part, it is found for the first time that a 10 ms gap in a triggering wave can induce emission, which may then interact with the post-gap signals. In the third part, sideband triggering is reported for the first time.

  16. Light bullets in coupled nonlinear Schrödinger equations with variable coefficients and a trapping potential.

    PubMed

    Xu, Si-Liu; Zhao, Guo-Peng; Belić, Milivoj R; He, Jun-Rong; Xue, Li

    2017-04-17

    We analyze three-dimensional (3D) vector solitary waves in a system of coupled nonlinear Schrödinger equations with spatially modulated diffraction and nonlinearity, under action of a composite self-consistent trapping potential. Exact vector solitary waves, or light bullets (LBs), are found using the self-similarity method. The stability of vortex 3D LB pairs is examined by direct numerical simulations; the results show that only low-order vortex soliton pairs with the mode parameter values n ≤ 1, l ≤ 1 and m = 0 can be supported by the spatially modulated interaction in the composite trap. Higher-order LBs are found unstable over prolonged distances.

  17. Probing the critical zone using passive- and active-source estimates of subsurface shear-wave velocities

    NASA Astrophysics Data System (ADS)

    Callahan, R. P.; Taylor, N. J.; Pasquet, S.; Dueker, K. G.; Riebe, C. S.; Holbrook, W. S.

    2016-12-01

    Geophysical imaging is rapidly becoming popular for quantifying subsurface critical zone (CZ) architecture. However, a diverse array of measurements and measurement techniques are available, raising the question of which are appropriate for specific study goals. Here we compare two techniques for measuring S-wave velocities (Vs) in the near surface. The first approach quantifies Vs in three dimensions using a passive source and an iterative residual least-squares tomographic inversion. The second approach uses a more traditional active-source seismic survey to quantify Vs in two dimensions via a Monte Carlo surface-wave dispersion inversion. Our analysis focuses on three 0.01 km2 study plots on weathered granitic bedrock in the Southern Sierra Critical Zone Observatory. Preliminary results indicate that depth-averaged velocities from the two methods agree over the scales of resolution of the techniques. While the passive- and active-source techniques both quantify Vs, each method has distinct advantages and disadvantages during data acquisition and analysis. The passive-source method has the advantage of generating a three dimensional distribution of subsurface Vs structure across a broad area. Because this method relies on the ambient seismic field as a source, which varies unpredictably across space and time, data quality and depth of investigation are outside the control of the user. Meanwhile, traditional active-source surveys can be designed around a desired depth of investigation. However, they only generate a two dimensional image of Vs structure. Whereas traditional active-source surveys can be inverted quickly on a personal computer in the field, passive source surveys require significantly more computations, and are best conducted in a high-performance computing environment. We use data from our study sites to compare these methods across different scales and to explore how these methods can be used to better understand subsurface CZ architecture.

  18. Foam flow in a model porous medium: II. The effect of trapped gas.

    PubMed

    Jones, S A; Getrouw, N; Vincent-Bonnieu, S

    2018-05-09

    Gas trapping is an important mechanism in both Water or Surfactant Alternating Gas (WAG/SAG) and foam injection processes in porous media. Foams for enhanced oil recovery (EOR) can increase sweep efficiency as they decrease the gas relative permeability, and this is mainly due to gas trapping. However, gas trapping mechanisms are poorly understood. Some studies have been performed during corefloods, but little work has been carried out to describe the bubble trapping behaviour at the pore scale. We have carried out foam flow tests in a micromodel etched with an irregular hexagonal pattern. Image analysis of the foam flow allowed the bubble centres to be tracked and local velocities to be obtained. It was found that the flow in the micromodel is dominated by intermittency and localized zones of trapped gas. The quantity of trapped gas was measured both by considering the fraction of bubbles that were trapped (via velocity thresholding) and by measuring the area fraction containing immobile gas (via image analysis). A decrease in the quantity of trapped gas was observed for both increasing total velocity and increasing foam quality. Calculations of the gas relative permeability were made with the Brooks Corey equation, using the measured trapped gas saturations. The results showed a decrease in gas relative permeabilities, and gas mobility, for increasing fractions of trapped gas. It is suggested that the shear thinning behaviour of foam could be coupled to the saturation of trapped gas.

  19. Velocity Memory Effect for polarized gravitational waves

    NASA Astrophysics Data System (ADS)

    Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2018-05-01

    Circularly polarized gravitational sandwich waves exhibit, as do their linearly polarized counterparts, the Velocity Memory Effect: freely falling test particles in the flat after-zone fly apart along straight lines with constant velocity. In the inside zone their trajectories combine oscillatory and rotational motions in a complicated way. For circularly polarized periodic gravitational waves some trajectories remain bounded, while others spiral outward. These waves admit an additional "screw" isometry beyond the usual five. The consequences of this extra symmetry are explored.

  20. ROSSBY WAVE INSTABILITY AT DEAD ZONE BOUNDARIES IN THREE-DIMENSIONAL RESISTIVE MAGNETOHYDRODYNAMICAL GLOBAL MODELS OF PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyra, Wladimir; Mac Low, Mordecai-Mark, E-mail: wlyra@jpl.nasa.gov, E-mail: mordecai@amnh.org

    It has been suggested that the transition between magnetorotationally active and dead zones in protoplanetary disks should be prone to the excitation of vortices via Rossby wave instability (RWI). However, the only numerical evidence for this has come from alpha disk models, where the magnetic field evolution is not followed, and the effect of turbulence is parameterized by Laplacian viscosity. We aim to establish the phenomenology of the flow in the transition in three-dimensional resistive-magnetohydrodynamical models. We model the transition by a sharp jump in resistivity, as expected in the inner dead zone boundary, using the PENCIL CODE to simulatemore » the flow. We find that vortices are readily excited in the dead side of the transition. We measure the mass accretion rate finding similar levels of Reynolds stress at the dead and active zones, at the {alpha} Almost-Equal-To 10{sup -2} level. The vortex sits in a pressure maximum and does not migrate, surviving until the end of the simulation. A pressure maximum in the active zone also triggers the RWI. The magnetized vortex that results should be disrupted by parasitical magneto-elliptic instabilities, yet it subsists in high resolution. This suggests that either the parasitic modes are still numerically damped or that the RWI supplies vorticity faster than they can destroy it. We conclude that the resistive transition between the active and dead zones in the inner regions of protoplanetary disks, if sharp enough, can indeed excite vortices via RWI. Our results lend credence to previous works that relied on the alpha-disk approximation, and caution against the use of overly reduced azimuthal coverage on modeling this transition.« less

  1. Natural variations in the geomagnetically trapped electron population

    NASA Technical Reports Server (NTRS)

    Vampola, A. L.

    1972-01-01

    Temporal variations in the trapped natural electron flux intensities and energy spectra are discussed and demonstrated using recent satellite data. These data are intended to acquaint the space systems engineer with the types of natural variations that may be encountered during a mission and to augment the models of the electron environment currently being used in space system design and orbit selection. An understanding of the temporal variations which may be encountered should prove helpful. Some of the variations demonstrated here which are not widely known include: (1) addition of very energetic electrons to the outer zone during moderate magnetic storms: (2) addition of energetic electrons to the inner zone during major magnetic storms; (3) inversions in the outer zone electron energy spectrum during the decay phase of a storm injection event and (4) occasional formation of multiple maxima in the flux vs altitude profile of moderately energetic electrons.

  2. Study on acceleration processes of the radiation belt electrons through interaction with sub-packet chorus waves in parallel propagation

    NASA Astrophysics Data System (ADS)

    Hiraga, R.; Omura, Y.

    2017-12-01

    By recent observations, chorus waves include fine structures such as amplitude fluctuations (i.e. sub-packet structure), and it has not been verified in detail yet how energetic electrons are efficiently accelerated under the wave features. In this study, we firstly focus on the acceleration process of a single electron: how it experiences the efficient energy increase by interaction with sub-packet chorus waves in parallel propagation along the Earth's magnetic field. In order to reproduce the chorus waves as seen by the latest observations by Van Allen Probes (Foster et al. 2017), the wave model amplitude in our simulation is structured such that when the wave amplitude nonlinearly grows to reach the optimum amplitude, it starts decreasing until crossing the threshold. Once it crosses the threshold, the wave dissipates and a new wave rises to repeat the nonlinear growth and damping in the same manner. The multiple occurrence of this growth-damping cycle forms a saw tooth-like amplitude variation called sub-packet. This amplitude variation also affects the wave frequency behavior which is derived by the chorus wave equations as a function of the wave amplitude (Omura et al. 2009). It is also reasonable to assume that when a wave packet diminishes and the next wave rises, it has a random phase independent of the previous wave. This randomness (discontinuity) in phase variation is included in the simulation. Through interaction with such waves, dynamics of energetic electrons were tracked. As a result, some electrons underwent an efficient acceleration process defined as successive entrapping, in which an electron successfully continues to surf the trapping potential generated by consecutive wave packets. When successive entrapping occurs, an electron trapped and de-trapped (escape the trapping potential) by a single wave packet falls into another trapping potential generated by the next wave sub-packet and continuously accelerated. The occurrence of successive

  3. Evolution of Spiral and Scroll Waves of Excitation in a Mathematical Model of Ischaemic Border Zone

    PubMed Central

    Biktashev, Vadim N.; Biktasheva, Irina V.; Sarvazyan, Narine A.

    2011-01-01

    Abnormal electrical activity from the boundaries of ischemic cardiac tissue is recognized as one of the major causes in generation of ischemia-reperfusion arrhythmias. Here we present theoretical analysis of the waves of electrical activity that can rise on the boundary of cardiac cell network upon its recovery from ischaemia-like conditions. The main factors included in our analysis are macroscopic gradients of the cell-to-cell coupling and cell excitability and microscopic heterogeneity of individual cells. The interplay between these factors allows one to explain how spirals form, drift together with the moving boundary, get transiently pinned to local inhomogeneities, and finally penetrate into the bulk of the well-coupled tissue where they reach macroscopic scale. The asymptotic theory of the drift of spiral and scroll waves based on response functions provides explanation of the drifts involved in this mechanism, with the exception of effects due to the discreteness of cardiac tissue. In particular, this asymptotic theory allows an extrapolation of 2D events into 3D, which has shown that cells within the border zone can give rise to 3D analogues of spirals, the scroll waves. When and if such scroll waves escape into a better coupled tissue, they are likely to collapse due to the positive filament tension. However, our simulations have shown that such collapse of newly generated scrolls is not inevitable and that under certain conditions filament tension becomes negative, leading to scroll filaments to expand and multiply leading to a fibrillation-like state within small areas of cardiac tissue. PMID:21935402

  4. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1994-01-01

    This paper presents work performed on the generation and physics of acoustic waves in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic wave generation in order to calculate the acoustic wave energy fluxes generated in the solar convective zone. The investigators have also revised and improved the treatment of the generation of magnetic flux tube waves, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube wave energy fluxes for the sun. They also examine the transfer of the wave energy originated in the solar convective zone to the outer atmospheric layers through computation of wave propagation and dissipation in highly nonhomogeneous solar atmosphere. These waves may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven waves in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of wave propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD waves propagating in stratified stellar atmospheres.

  5. The incorporation of fault zone head wave and direct wave secondary arrival times and arrival polarizations into seismic tomography: Application to the Parkfield, California area

    NASA Astrophysics Data System (ADS)

    Bennington, N. L.; Thurber, C. H.; Peng, Z.; Zhao, P.

    2012-12-01

    We present a 3D P-wave velocity (Vp) model of the Parkfield region that utilizes existing P-wave arrival time data, including fault zone head waves (FZHW), plus new data from direct wave secondary arrivals (DWSA). The first-arrival and DWSA travel times are obtained as the global and local minimum travel time paths, respectively. The inclusion of DWSA results in as much as a 10% increase in the across-fault velocity contrast for the Vp model at Parkfield relative to Thurber et al. (2006). Viewed along strike, three pronounced velocity contrast regions are observed: a pair of strong positive velocity contrasts (SW fast), one NW of the 1966 Parkfield hypocenter and the other SE of the 2004 Parkfield hypocenter, and a strong negative velocity contrast (NE fast) between the two hypocenters. The negative velocity contrast partially to entirely encompasses peak coseismic slip estimated in several slip models for the 2004 earthquake, suggesting that the negative velocity contrast played a part in defining the rupture patch of the 2004 Parkfield earthquake. We expand on this work by modifying our seismic tomography algorithm to incorporate arrival polarizations (azimuths). Synthetic tests will be presented to demonstrate the improvements in velocity structure when arrival polarizations are incorporated. These tests will compare the synthetic model recovered when FZHW/DWSA arrivals as well as existing P-wave arrival time data are inverted to that recovered with the same dataset with the inclusion of arrival polarizations. We plan to extend this work to carry out a full scale seismic tomography/relocation inversion at Parkfield, CA utilizing arrival polarizations from all first-P arrivals, and FZHW/DWSA arrivals as well as existing P-wave arrival time data. This effort requires the determination of polarization data for all P-waves and FZHW's at Parkfield. To this end, we use changes in the arrival azimuth from fault normal to source-receiver direction to identify FZHW and

  6. Integrated Optical Dipole Trap for Cold Neutral Atoms with an Optical Waveguide Coupler

    NASA Astrophysics Data System (ADS)

    Lee, J.; Park, D. H.; Mittal, S.; Meng, Y.; Dagenais, M.; Rolston, S. L.

    2013-05-01

    Using an optical waveguide, an integrated optical dipole trap uses two-color (red and blue-detuned) traveling evanescent wave fields for trapping cold neutral atoms. To achieve longitudinal confinement, we propose using an integrated optical waveguide coupler, which provides a potential gradient along the beam propagation direction sufficient to confine atoms. This integrated optical dipole trap can support an atomic ensemble with a large optical depth due to its small mode area. Its quasi-TE0 waveguide mode has an advantage over the HE11 mode of a nanofiber, with little inhomogeneous Zeeman broadening at the trapping region. The longitudinal confinement eliminates the need for a 1D optical lattice, reducing collisional blockaded atomic loading, potentially producing larger ensembles. The waveguide trap allows for scalability and integrability with nano-fabrication technology. We analyze the potential performance of such integrated atom traps and present current research progress towards a fiber-coupled silicon nitride optical waveguide integrable with atom chips. Work is supported by the ARO Atomtronics MURI. Work is supported by the ARO Atomtronics MURI.

  7. Imaging the mantle tranzition zone beneath the South American platform using P- and S-wave receiver functions

    NASA Astrophysics Data System (ADS)

    Bianchi, M.; Heit, B.; Yuan, X.; Assumpcao, M.; Kind, R.

    2009-04-01

    results observed are: 1) A clear cratonic signature, consisting of higher wave velocities for the mantle under the cratons and normal (410km and 660km) depths for the discontinuities 2) Strong presence of the Nazca subducted plate near 410 and 660 km discontinuities under the Southern part of the Parana basin 3) Lack of variation in the Transition Zone thickness and in the mantle velocities due to the presence of the possible plume proposed in 1995 by Vandecar at the Northern Parana basin region and 4) A possible transition zone thinning near the Matiqueira complex, at the Ribeira fold beld, near the Atlantic passive margin.

  8. Between tide and wave marks: a unifying model of physical zonation on littoral shores

    PubMed Central

    Bird, Christopher E.; Franklin, Erik C.; Smith, Celia M.

    2013-01-01

    The effects of tides on littoral marine habitats are so ubiquitous that shorelines are commonly described as ‘intertidal’, whereas waves are considered a secondary factor that simply modifies the intertidal habitat. However mean significant wave height exceeds tidal range at many locations worldwide. Here we construct a simple sinusoidal model of coastal water level based on both tidal range and wave height. From the patterns of emergence and submergence predicted by the model, we derive four vertical shoreline benchmarks which bracket up to three novel, spatially distinct, and physically defined zones. The (1) emergent tidal zone is characterized by tidally driven emergence in air; the (2) wave zone is characterized by constant (not periodic) wave wash; and the (3) submergent tidal zone is characterized by tidally driven submergence. The decoupling of tidally driven emergence and submergence made possible by wave action is a critical prediction of the model. On wave-dominated shores (wave height ≫ tidal range), all three zones are predicted to exist separately, but on tide-dominated shores (tidal range ≫ wave height) the wave zone is absent and the emergent and submergent tidal zones overlap substantially, forming the traditional “intertidal zone”. We conclude by incorporating time and space in the model to illustrate variability in the physical conditions and zonation on littoral shores. The wave:tide physical zonation model is a unifying framework that can facilitate our understanding of physical conditions on littoral shores whether tropical or temperate, marine or lentic. PMID:24109544

  9. Three-dimensional manipulation of single cells using surface acoustic waves

    PubMed Central

    Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P.; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2016-01-01

    The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving “acoustic tweezers” in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner. PMID:26811444

  10. Three-dimensional manipulation of single cells using surface acoustic waves.

    PubMed

    Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2016-02-09

    The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving "acoustic tweezers" in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner.

  11. Spatio-temporal dynamics of turbulence trapped in geodesic acoustic modes

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Kobayashi, T.; Itoh, K.; Kasuya, N.; Kosuga, Y.; Fujisawa, A.; Itoh, S.-I.

    2018-01-01

    The spatio-temporal dynamics of turbulence with the interaction of geodesic acoustic modes (GAMs) are investigated, focusing on the phase-space structure of turbulence, where the phase-space consists of real-space and wavenumber-space. Based on the wave-kinetic framework, the coupling equation between the GAM and the turbulence is numerically solved. The turbulence trapped by the GAM velocity field is obtained. Due to the trapping effect, the turbulence intensity increases where the second derivative of the GAM velocity (curvature of the GAM) is negative. While, in the positive-curvature region, the turbulence is suppressed. Since the trapped turbulence propagates with the GAMs, this relationship is sustained spatially and temporally. The dynamics of the turbulence in the wavenumber spectrum are converted in the evolution of the frequency spectrum, and the simulation result is compared with the experimental observation in JFT-2M tokamak, where the similar patterns are obtained. The turbulence trapping effect is a key to understand the spatial structure of the turbulence in the presence of sheared flows.

  12. Equatorial waves in the NCAR stratospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Boville, B. A.

    1985-01-01

    Equatorially trapped wave modes are very important in the tropical stratospheric momentum balance. Kelvin waves and mixed Rossby-gravity waves are believed to be responsible for the quasi-biennial oscillation of the zonal winds in the equatorial lower stratosphere. Both Kelvin and mixed Rossby-gravity waves have been identified in observations and in numerical models. Kelvin and mixed Rossby-gravity waves are identified in a general circulation model extending from the surface into the mesosphere and looks at the effect on the waves of lowering the top of the model.

  13. 50 CFR 697.19 - Trap limits and trap tag requirements for vessels fishing with lobster traps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... vessels fishing with lobster traps. 697.19 Section 697.19 Wildlife and Fisheries FISHERY CONSERVATION AND... requirements for vessels fishing with lobster traps. (a) Area 1 trap limits. The Area 1 trap limit is 800 traps. Federally permitted lobster fishing vessels shall not fish with, deploy in, possess in, or haul back more...

  14. Observations of wave-induced pore pressure gradients and bed level response on a surf zone sandbar

    NASA Astrophysics Data System (ADS)

    Anderson, Dylan; Cox, Dan; Mieras, Ryan; Puleo, Jack A.; Hsu, Tian-Jian

    2017-06-01

    Horizontal and vertical pressure gradients may be important physical mechanisms contributing to onshore sediment transport beneath steep, near-breaking waves in the surf zone. A barred beach was constructed in a large-scale laboratory wave flume with a fixed profile containing a mobile sediment layer on the crest of the sandbar. Horizontal and vertical pore pressure gradients were obtained by finite differences of measurements from an array of pressure transducers buried within the upper several centimeters of the bed. Colocated observations of erosion depth were made during asymmetric wave trials with wave heights between 0.10 and 0.98 m, consistently resulting in onshore sheet flow sediment transport. The pore pressure gradient vector within the bed exhibited temporal rotations during each wave cycle, directed predominantly upward under the trough and then rapidly rotating onshore and downward as the wavefront passed. The magnitude of the pore pressure gradient during each phase of rotation was correlated with local wave steepness and relative depth. Momentary bed failures as deep as 20 grain diameters were coincident with sharp increases in the onshore-directed pore pressure gradients, but occurred at horizontal pressure gradients less than theoretical critical values for initiation of the motion for compact beds. An expression combining the effects of both horizontal and vertical pore pressure gradients with bed shear stress and soil stability is used to determine that failure of the bed is initiated at nonnegligible values of both forces.Plain Language SummaryThe pressure gradient present within the seabed beneath breaking <span class="hlt">waves</span> may be an important physical mechanism transporting sediment. A large-scale laboratory was used to replicate realistic surfzone conditions in controlled tests, allowing for horizontal and vertical pressure gradient magnitudes and the resulting sediment bed response to be observed with</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.G31A1046S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.G31A1046S"><span>Seafloor Geodesy usi­ng <span class="hlt">Wave</span> Gliders to study Earthquake and Tsunami Hazards at Subduction <span class="hlt">Zones</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sathiakumar, S.; Barbot, S.; Hill, E.; Peng, D.; Zerucha, J.; Suhaimee, S.; Chia, G.; Salamena, G. G.; Syahailatua, A.</p> <p>2016-12-01</p> <p>Land-based GNSS networks are now in place to monitor most subduction <span class="hlt">zones</span> of the world. These provide valuable information about the amount of­ geodetic strain accumulated in the region, which in turn gives insight into the seismic potential. However, it is usually impossible to resolve activity on the megathrust near the trench using land-based GNSS data alone, given typical signal-to-noise ratios. Ship-based seafloor geodesy is being used today to fill this observation gap. However, surveys using ships are very expensive, tedious and impractical due to the large areas to be covered. Instead of discrete missions using ships, continuous monitoring of the seafloor using autonomous marine robots would aid in understanding the tectonic setting of the seafloor better at a potentially lower cost, as well as help in designing better warning systems. Thus, we are developing seafloor geodesy capabilities using <span class="hlt">Wave</span> Gliders, a new class of <span class="hlt">wave</span>-propelled, persistent marine autonomous vehicle using a combination of acoustic and GNSS technologies. We use GNSS/INS to position the platform, and acoustic ranging to locate the seafloor. The GNSS/INS system to be integrated with the <span class="hlt">Wave</span> Gliders has stringent requirements of low power, light weight, and high accuracy. All these factors are equally important due to limited power and space in the <span class="hlt">Wave</span> Gliders and the need for highly accurate and precise measurements. With this hardware setup, a limiting factor is the accuracy of measurement of the sound velocity in the water column. We plan to obtain precise positioning of seafloor by exploring a measurement setup that minimizes uncertainties in sound velocity. This will be achieved by making fine-resolution measurements of the two-way travel time of the acoustic <span class="hlt">waves</span> underwater using the <span class="hlt">Wave</span> Gliders, and performing statistical signal processing on this data to obtain more reliable sound velocity measurement. This enhanced seafloor geodetic technique using <span class="hlt">Wave</span> Gliders should</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6962751-types-stratigraphic-traps-lower-cretaceous-muddy-formation-northern-powder-river-basin-wyoming','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6962751-types-stratigraphic-traps-lower-cretaceous-muddy-formation-northern-powder-river-basin-wyoming"><span>Types of stratigraphic <span class="hlt">traps</span> in Lower Cretaceous Muddy Formation, northern Powder River Basin, Wyoming</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lovekin, J.R.; Odland, S.K.; Quartarone, T.S. Gardner, M.H.</p> <p>1986-08-01</p> <p>Stratigraphic <span class="hlt">traps</span> account for most of the oil produced from the Muddy Sandstone in the northern Powder River basin. Two categories of <span class="hlt">traps</span> exist. The first <span class="hlt">trap</span> type is the result of lateral and vertical facies changes. Reservoir facies include tidal channels, point bars, bayhead deltas, barrier islands, and strand-plain sandstones; <span class="hlt">trapping</span> facies include bay-fill and estuarine sediments, mud-filled tidal channels, and flood-plain deposits. The second of the two categories of <span class="hlt">traps</span> results from an unconformity that juxtaposes permeable and impermeable sediments of quite different ages. Structural and diagenetic factors often modify and locally enhance reservoir quality within both categoriesmore » of stratigraphic <span class="hlt">traps</span>. The various types of <span class="hlt">traps</span> are demonstrated by studies of six field areas: (1) barrier-island sandstones, sealed updip by back-barrier shales, produce at Ute and Kitty fields; (2) tidal channels produce at Collums and Kitty fields; (3) bayhead deltas, encased in estuarine sediments, form <span class="hlt">traps</span> at Oedekoven and Kitty fields; (4) fluvial point-bar sandstones form <span class="hlt">traps</span> at Oedekoven, Store, and Kitty fields; (5) unconformity-related <span class="hlt">traps</span> exist where Muddy fluvial valley-fill sediments lap out against impermeable valley walls of Skull Creek Shale on the updip side at Store, Oedekoven, and Kitty fields; and (6) the clay-rich weathered <span class="hlt">zone</span>, directly beneath an intraformational unconformity, forms the seal to the reservoirs at Amos Draw field.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21413303-dark-soliton-decay-due-trap-anharmonicity-atomic-bose-einstein-condensates','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21413303-dark-soliton-decay-due-trap-anharmonicity-atomic-bose-einstein-condensates"><span>Dark soliton decay due to <span class="hlt">trap</span> anharmonicity in atomic Bose-Einstein condensates</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Parker, N. G.; Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1; School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT</p> <p>2010-03-15</p> <p>A number of recent experiments with nearly pure atomic Bose-Einstein condensates have confirmed the predicted dark soliton oscillations when under harmonic <span class="hlt">trapping</span>. However, a dark soliton propagating in an inhomogeneous condensate has also been predicted to be unstable to the emission of sound <span class="hlt">waves</span>. Although harmonic <span class="hlt">trapping</span> supports an equilibrium between the coexisting soliton and sound, we show that the ensuing dynamics are sensitive to <span class="hlt">trap</span> anharmonicities. Such anharmonicities can break the soliton-sound equilibrium and lead to the net decay of the soliton on a considerably shorter time scale than other dissipation mechanisms. Thus, we propose that small realistic modificationsmore » to existing experimental setups could enable the experimental observation of this decay channel.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940031888','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940031888"><span>On the physics of <span class="hlt">waves</span> in the solar atmosphere: <span class="hlt">Wave</span> heating and wind acceleration</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Musielak, Z. E.</p> <p>1993-01-01</p> <p>This paper presents work performed on the generation and physics of acoustic <span class="hlt">waves</span> in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic <span class="hlt">wave</span> generation in order to calculate the acoustic <span class="hlt">wave</span> energy fluxes generated in the solar convective <span class="hlt">zone</span>. The investigators have also revised and improved the treatment of the generation of magnetic flux tube <span class="hlt">waves</span>, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube energy fluxes for the sun. They also examine the transfer of the <span class="hlt">wave</span> energy originated in the solar convective <span class="hlt">zone</span> to the outer atmospheric layers through computation of <span class="hlt">wave</span> propagation and dissipation in highly nonhomogeneous solar atmosphere. These <span class="hlt">waves</span> may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven <span class="hlt">waves</span> in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of <span class="hlt">wave</span> propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD <span class="hlt">waves</span> propagating in stratified stellar atmospheres.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/528031-interaction-electromagnetic-wave-rapidly-created-spatially-periodic-plasma','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/528031-interaction-electromagnetic-wave-rapidly-created-spatially-periodic-plasma"><span>Interaction of an electromagnetic <span class="hlt">wave</span> with a rapidly created spatially periodic plasma</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kuo, S.P.; Faith, J.</p> <p>1997-08-01</p> <p>The interaction of electromagnetic <span class="hlt">waves</span> with rapidly created time-varying spatially periodic plasmas is studied. The numerical results of the collisionless case show that both frequency upshifted and frequency downshifted <span class="hlt">waves</span> are generated. Moreover, the frequency downshifted <span class="hlt">waves</span> are <span class="hlt">trapped</span> by the plasma when the plasma frequency is larger than the <span class="hlt">wave</span> frequency. The <span class="hlt">trapping</span> has the effect of dramatically enhancing the efficiency of the frequency downshift conversion process, by accumulating incident <span class="hlt">wave</span> energy during the plasma transition period. A theory based on the <span class="hlt">wave</span> impedance of each Floquet mode of the periodic structure is formulated, incorporating with the collisional dampingmore » of the plasma. Such a theory explains the recent experimental observations [Faith, Kuo, and Huang, Phys. Rev. E {bold 55}, 1843 (1997)] where the frequency downshifted signals were detected repetitively with considerably enhanced spectral intensities while the frequency upshifted signals were missing. {copyright} {ital 1997} {ital The American Physical Society}« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ZaMP...69...72M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ZaMP...69...72M"><span>Rayleigh-Bloch <span class="hlt">waves</span> <span class="hlt">trapped</span> by a periodic perturbation: exact solutions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Merzon, A.; Zhevandrov, P.; Romero Rodríguez, M. I.; De la Paz Méndez, J. E.</p> <p>2018-06-01</p> <p>Exact solutions describing the Rayleigh-Bloch <span class="hlt">waves</span> for the two-dimensional Helmholtz equation are constructed in the case when the refractive index is a sum of a constant and a small amplitude function which is periodic in one direction and of finite support in the other. These solutions are quasiperiodic along the structure and exponentially decay in the orthogonal direction. A simple formula for the dispersion relation of these <span class="hlt">waves</span> is obtained.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3737H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3737H"><span>Observations and Simulations of the Impact of <span class="hlt">Wave</span>-Current Interaction on <span class="hlt">Wave</span> Direction in the Surf <span class="hlt">Zone</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hopkins, Julia; Elgar, Steve; Raubenheimer, Britt</p> <p>2017-04-01</p> <p>Accurately characterizing the interaction of <span class="hlt">waves</span> and currents can improve predictions of <span class="hlt">wave</span> propagation and subsequent sediment transport in the nearshore. Along the southern shoreline of Martha's Vineyard, MA, <span class="hlt">waves</span> propagate across strong tidal currents as they shoal, providing an ideal environment for investigating <span class="hlt">wave</span>-current interaction. <span class="hlt">Wave</span> directions and mean currents observed for two 1-month-long periods in 7- and 2-m water depths along 11 km of the Martha's Vineyard shoreline have strong tidal modulations. <span class="hlt">Wave</span> directions shift by as much as 70 degrees over a tidal cycle in 7 m depth, and by as much as 25 degrees in 2 m depth. The magnitude of the tidal modulations in the <span class="hlt">wave</span> field decreases alongshore to the west, consistent with the observed decrease in tidal currents from 2.1 to 0.2 m/s. The observations are reproduced accurately by a numerical model (SWAN and Deflt3D-FLOW) that simulates <span class="hlt">waves</span> and currents over the observed bathymetry. Model simulations with and without <span class="hlt">wave</span>-current interaction and tidal depth changes demonstrate that the observed tidal modulations of the <span class="hlt">wave</span> field primarily are caused by <span class="hlt">wave</span>-current interaction and not by tidal changes to water depths over the nearby complex shoals. Sediment transport estimates from simulated <span class="hlt">wave</span> conditions using a range of tidal currents and offshore <span class="hlt">wave</span> fields indicate that the modulation of the <span class="hlt">wave</span> field at Martha's Vineyard can impact the direction of <span class="hlt">wave</span>-induced alongshore sediment transport, sometimes driving transport opposing the direction of the offshore incident <span class="hlt">wave</span> field. As such, the observations and model simulations suggest the importance of <span class="hlt">wave</span>-current interaction to tidally averaged transport in mixed-energy <span class="hlt">wave</span>-and-current nearshore environments. Supported by ASD(R&E), NSF, NOAA (Sea Grant), and ONR.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911079J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911079J"><span>Shoreline-crossing shear-velocity structure of the Juan de Fuca plate and Cascadia subduction <span class="hlt">zone</span> from surface <span class="hlt">waves</span> and receiver functions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Janiszewski, Helen; Gaherty, James; Abers, Geoffrey; Gao, Haiying</p> <p>2017-04-01</p> <p>The Cascadia subduction <span class="hlt">zone</span> (CSZ) is the site of the onshore-offshore Cascadia Initiative, which deployed seismometers extending from the Juan de Fuca ridge to the subduction <span class="hlt">zone</span> and onshore beyond the volcanic arc. This array allows the unique opportunity to seismically image the evolution and along-strike variation of the crust and mantle of the entire CSZ. We compare teleseismic receiver functions, ambient-noise Rayleigh-<span class="hlt">wave</span> phase velocities in the 10-20 s period band, and earthquake-source Rayleigh-<span class="hlt">wave</span> phase velocities from 20-100 s, to determine shear-velocity structure in the upper 200 km. Receiver functions from both onshore and shallow-water offshore sites provide constraints on crustal and plate interface structure. Spectral-domain fitting of ambient-noise empirical Green's functions constrains shear velocity of the crust and shallow mantle. An automated multi-channel cross-correlation analysis of teleseismic Rayleigh <span class="hlt">waves</span> provides deeper lithosphere and asthenosphere constraints. The amphibious nature of the array means it is essential to examine the effect of noise variability on data quality. Ocean bottom seismometers (OBS) are affected by tilt and compliance noise. Removal of this noise from the vertical components of the OBS is essential for the teleseismic Rayleigh <span class="hlt">waves</span>; this stabilizes the output phase velocity maps particularly along the coastline where observations are predominately from shallow water OBS. Our noise-corrected phase velocity maps reflect major structures and tectonic transitions including the transition from high-velocity oceanic lithosphere to low-velocity continental lithosphere, high velocities associated with the subducting slab, and low velocities beneath the ridge and arc. We interpret the resulting shear-velocity model in the context of temperature and compositional variation in the incoming plate and along the strike of the CSZ.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T31D2944J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T31D2944J"><span>Shoreline-Crossing Shear-Velocity Structure of the Juan de Fuca Plate and Cascadia Subduction <span class="hlt">Zone</span> from Surface <span class="hlt">Waves</span> and Receiver Functions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Janiszewski, H. A.; Gaherty, J. B.; Abers, G. A.; Gao, H.</p> <p>2016-12-01</p> <p>The Cascadia subduction <span class="hlt">zone</span> (CSZ) is the site of the onshore-offshore Cascadia Initiative, which deployed seismometers extending from the Juan de Fuca ridge to the subduction <span class="hlt">zone</span> and onshore beyond the volcanic arc. This array allows the unique opportunity to seismically image the evolution and along-strike variation of the crust and mantle of the entire CSZ. We compare teleseismic receiver functions, ambient-noise Rayleigh-<span class="hlt">wave</span> phase velocities in the 10-20 s period band, and earthquake-source Rayleigh-<span class="hlt">wave</span> phase velocities from 20-100 s, to determine shear-velocity structure in the upper 200 km. Receiver functions from both onshore and shallow-water offshore sites provide constraints on crustal and plate interface structure. Spectral-domain fitting of ambient-noise empirical Green's functions constrains shear velocity of the crust and shallow mantle. An automated multi-channel cross-correlation analysis of teleseismic Rayleigh <span class="hlt">waves</span> provides deeper lithosphere and asthenosphere constraints. The amphibious nature of the array means it is essential to examine the effect of noise variability on data quality. Ocean bottom seismometers (OBS) are affected by tilt and compliance noise. Removal of this noise from the vertical components of the OBS is essential for the teleseismic Rayleigh <span class="hlt">waves</span>; this stabilizes the output phase velocity maps particularly along the coastline where observations are predominately from shallow water OBS. Our noise-corrected phase velocity maps reflect major structures and tectonic transitions including the transition from high-velocity oceanic lithosphere to low-velocity continental lithosphere, high velocities associated with the subducting slab, and low velocities beneath the ridge and arc. We interpret the resulting shear-velocity model in the context of temperature and compositional variation in the incoming plate and along the strike of the CSZ.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Nanop...7...26Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Nanop...7...26Y"><span>Dispersion features of complex <span class="hlt">waves</span> in a graphene-coated semiconductor nanowire</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Pengchao; Fesenko, Volodymyr I.; Tuz, Vladimir R.</p> <p>2018-05-01</p> <p>The dispersion features of a graphene-coated semiconductor nanowire operating in the terahertz frequency band are consistently studied in the framework of a special theory of complex <span class="hlt">waves</span>. Detailed classification of the waveguide modes was carried out based on the analysis of characteristics of the phase and attenuation constants obtained from the complex roots of characteristic equation. With such a treatment, the <span class="hlt">waves</span> are attributed to the group of either "proper" or "improper" <span class="hlt">waves</span>, wherein their type is determined as the <span class="hlt">trapped</span> surface <span class="hlt">waves</span>, fast and slow leaky <span class="hlt">waves</span>, and surface plasmons. The dispersion curves of axially symmetric TM0n and TE0n modes, as well as nonsymmetric hybrid EH1n and HE1n modes, were plotted and analyzed in detail, and both radiative regime of leaky <span class="hlt">waves</span> and guided regime of <span class="hlt">trapped</span> surface <span class="hlt">waves</span> are identified. The peculiarities of propagation of the TM modes of surface plasmons were revealed. Two subregions of existence of surface plasmons were found out where they appear as propagating and reactive <span class="hlt">waves</span>. The cutoff conditions for higher-order TM modes of surface plasmons were correctly determined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1240307-multi-dimensional-dynamics-stimulated-brillouin-scattering-laser-speckle-ion-acoustic-wave-bowing-breakup-laser-seeded-two-ion-wave-decay','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1240307-multi-dimensional-dynamics-stimulated-brillouin-scattering-laser-speckle-ion-acoustic-wave-bowing-breakup-laser-seeded-two-ion-wave-decay"><span>Multi-dimensional dynamics of stimulated Brillouin scattering in a laser speckle: Ion acoustic <span class="hlt">wave</span> bowing, breakup, and laser-seeded two-ion-<span class="hlt">wave</span> decay</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Albright, B. J.; Yin, L.; Bowers, K. J.; ...</p> <p>2016-03-04</p> <p>Two- and three-dimensional particle-in-cell simulations of stimulated Brillouin scattering(SBS) in laser speckle geometry have been analyzed to evaluate the relative importance of competing nonlinear processes in the evolution and saturation of SBS. It is found that ion-<span class="hlt">trapping</span>-induced wavefront bowing and breakup of ion acoustic <span class="hlt">waves</span>(IAW) and the associated side-loss of <span class="hlt">trapped</span> ions dominate electron-<span class="hlt">trapping</span>-induced IAW wavefront bowing and breakup, as well as the two-ion-<span class="hlt">wave</span> decay instability over a range of ZT e/T i conditions and incident laser intensities. In the simulations, the latter instability does not govern the nonlinear saturation of SBS; however, evidence of two-ion-<span class="hlt">wave</span> decay is seen, appearingmore » as a modulation of the ion acoustic wavefronts. This modulation is periodic in the laser polarization plane, anti-symmetric across the speckle axis, and of a wavenumber matching that of the incident laser pulse. Furthermore, a simple analytic model is provided for how spatial “imprinting” from a high frequency inhomogeneity (in this case, the density modulation from the laser) in an unstable system with continuum eigenmodes can selectively amplify modes with wavenumbers that match that of the inhomogeneity.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5380972','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5380972"><span><span class="hlt">Wave</span>-particle energy exchange directly observed in a kinetic Alfvén-branch <span class="hlt">wave</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gershman, Daniel J.; F-Viñas, Adolfo; Dorelli, John C.; Boardsen, Scott A.; Avanov, Levon A.; Bellan, Paul M.; Schwartz, Steven J.; Lavraud, Benoit; Coffey, Victoria N.; Chandler, Michael O.; Saito, Yoshifumi; Paterson, William R.; Fuselier, Stephen A.; Ergun, Robert E.; Strangeway, Robert J.; Russell, Christopher T.; Giles, Barbara L.; Pollock, Craig J.; Torbert, Roy B.; Burch, James L.</p> <p>2017-01-01</p> <p>Alfvén <span class="hlt">waves</span> are fundamental plasma <span class="hlt">wave</span> modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These <span class="hlt">waves</span> are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA's Magnetospheric Multiscale (MMS) mission, we utilize Earth's magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén <span class="hlt">wave</span>. Electrons confined between adjacent <span class="hlt">wave</span> peaks may have contributed to saturation of damping effects via nonlinear particle <span class="hlt">trapping</span>. The investigation of these detailed <span class="hlt">wave</span> dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations. PMID:28361881</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28361881','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28361881"><span><span class="hlt">Wave</span>-particle energy exchange directly observed in a kinetic Alfvén-branch <span class="hlt">wave</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gershman, Daniel J; F-Viñas, Adolfo; Dorelli, John C; Boardsen, Scott A; Avanov, Levon A; Bellan, Paul M; Schwartz, Steven J; Lavraud, Benoit; Coffey, Victoria N; Chandler, Michael O; Saito, Yoshifumi; Paterson, William R; Fuselier, Stephen A; Ergun, Robert E; Strangeway, Robert J; Russell, Christopher T; Giles, Barbara L; Pollock, Craig J; Torbert, Roy B; Burch, James L</p> <p>2017-03-31</p> <p>Alfvén <span class="hlt">waves</span> are fundamental plasma <span class="hlt">wave</span> modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These <span class="hlt">waves</span> are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA's Magnetospheric Multiscale (MMS) mission, we utilize Earth's magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén <span class="hlt">wave</span>. Electrons confined between adjacent <span class="hlt">wave</span> peaks may have contributed to saturation of damping effects via nonlinear particle <span class="hlt">trapping</span>. The investigation of these detailed <span class="hlt">wave</span> dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvA..95b2327K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvA..95b2327K"><span>Hybrid quantum systems with <span class="hlt">trapped</span> charged particles</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kotler, Shlomi; Simmonds, Raymond W.; Leibfried, Dietrich; Wineland, David J.</p> <p>2017-02-01</p> <p><span class="hlt">Trapped</span> charged particles have been at the forefront of quantum information processing (QIP) for a few decades now, with deterministic two-qubit logic gates reaching record fidelities of 99.9 % and single-qubit operations of much higher fidelity. In a hybrid system involving <span class="hlt">trapped</span> charges, quantum degrees of freedom of macroscopic objects such as bulk acoustic resonators, superconducting circuits, or nanomechanical membranes, couple to the <span class="hlt">trapped</span> charges and ideally inherit the coherent properties of the charges. The hybrid system therefore implements a "quantum transducer," where the quantum reality (i.e., superpositions and entanglement) of small objects is extended to include the larger object. Although a hybrid quantum system with <span class="hlt">trapped</span> charges could be valuable both for fundamental research and for QIP applications, no such system exists today. Here we study theoretically the possibilities of coupling the quantum-mechanical motion of a <span class="hlt">trapped</span> charged particle (e.g., an ion or electron) to the quantum degrees of freedom of superconducting devices, nanomechanical resonators, and quartz bulk acoustic <span class="hlt">wave</span> resonators. For each case, we estimate the coupling rate between the charged particle and its macroscopic counterpart and compare it to the decoherence rate, i.e., the rate at which quantum superposition decays. A hybrid system can only be considered quantum if the coupling rate significantly exceeds all decoherence rates. Our approach is to examine specific examples by using parameters that are experimentally attainable in the foreseeable future. We conclude that hybrid quantum systems involving a single atomic ion are unfavorable compared with the use of a single electron because the coupling rates between the ion and its counterpart are slower than the expected decoherence rates. A system based on <span class="hlt">trapped</span> electrons, on the other hand, might have coupling rates that significantly exceed decoherence rates. Moreover, it might have appealing properties such</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27602796','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27602796"><span>Ultralow-Power Electronic <span class="hlt">Trapping</span> of Nanoparticles with Sub-10 nm Gold Nanogap Electrodes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barik, Avijit; Chen, Xiaoshu; Oh, Sang-Hyun</p> <p>2016-10-12</p> <p>We demonstrate nanogap electrodes for rapid, parallel, and ultralow-power <span class="hlt">trapping</span> of nanoparticles. Our device pushes the limit of dielectrophoresis by shrinking the separation between gold electrodes to sub-10 nm, thereby creating strong <span class="hlt">trapping</span> forces at biases as low as the 100 mV ranges. Using high-throughput atomic layer lithography, we manufacture sub-10 nm gaps between 0.8 mm long gold electrodes and pattern them into individually addressable parallel electronic <span class="hlt">traps</span>. Unlike pointlike junctions made by electron-beam lithography or larger micron-gap electrodes that are used for conventional dielectrophoresis, our sub-10 nm gold nanogap electrodes provide strong <span class="hlt">trapping</span> forces over a mm-scale <span class="hlt">trapping</span> <span class="hlt">zone</span>. Importantly, our technology solves the key challenges associated with traditional dielectrophoresis experiments, such as high voltages that cause heat generation, bubble formation, and unwanted electrochemical reactions. The strongly enhanced fields around the nanogap induce particle-transport speed exceeding 10 μm/s and enable the <span class="hlt">trapping</span> of 30 nm polystyrene nanoparticles using an ultralow bias of 200 mV. We also demonstrate rapid electronic <span class="hlt">trapping</span> of quantum dots and nanodiamond particles on arrays of parallel <span class="hlt">traps</span>. Our sub-10 nm gold nanogap electrodes can be combined with plasmonic sensors or nanophotonic circuitry, and their low-power electronic operation can potentially enable high-density integration on a chip as well as portable biosensing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70148278','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70148278"><span>Near-field tsunami edge <span class="hlt">waves</span> and complex earthquake rupture</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Geist, Eric L.</p> <p>2013-01-01</p> <p>The effect of distributed coseismic slip on progressive, near-field edge <span class="hlt">waves</span> is examined for continental shelf tsunamis. Detailed observations of edge <span class="hlt">waves</span> are difficult to separate from the other tsunami phases that are observed on tide gauge records. In this study, analytic methods are used to compute tsunami edge <span class="hlt">waves</span> distributed over a finite number of modes and for uniformly sloping bathymetry. Coseismic displacements from static elastic theory are introduced as initial conditions in calculating the evolution of progressive edge-<span class="hlt">waves</span>. Both simple crack representations (constant stress drop) and stochastic slip models (heterogeneous stress drop) are tested on a fault with geometry similar to that of the M w = 8.8 2010 Chile earthquake. Crack-like ruptures that are beneath or that span the shoreline result in similar longshore patterns of maximum edge-<span class="hlt">wave</span> amplitude. Ruptures located farther offshore result in reduced edge-<span class="hlt">wave</span> excitation, consistent with previous studies. Introduction of stress-drop heterogeneity by way of stochastic slip models results in significantly more variability in longshore edge-<span class="hlt">wave</span> patterns compared to crack-like ruptures for the same offshore source position. In some cases, regions of high slip that are spatially distinct will yield sub-events, in terms of tsunami generation. Constructive interference of both non-<span class="hlt">trapped</span> and <span class="hlt">trapped</span> <span class="hlt">waves</span> can yield significantly larger tsunamis than those that produced by simple earthquake characterizations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25855227','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25855227"><span>Diversity and habitat association of small mammals in Aridtsy forest, Awi <span class="hlt">Zone</span>, Ethiopia.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bantihun, Getachew; Bekele, Afework</p> <p>2015-03-18</p> <p>Here, we conducted a survey to examine the diversity, distribution and habitat association of small mammals from August 2011 to February 2012 incorporating both wet and dry seasons in Aridtsy forest, Awi <span class="hlt">Zone</span>, Ethiopia. Using Sherman live <span class="hlt">traps</span> and snap <span class="hlt">traps</span> in four randomly selected <span class="hlt">trapping</span> grids, namely, natural forest, bushland, grassland and farmland, a total of 468 individuals comprising eight species of small mammals (live <span class="hlt">traps</span>) and 89 rodents of six species (snap <span class="hlt">traps</span>) were <span class="hlt">trapped</span> in 2352 and 1200 <span class="hlt">trap</span> nights, respectively. The <span class="hlt">trapped</span> small mammals included seven rodents and one insectivore: Lophuromys flavopuntatus (30.6%), Arvicanthis dembeensis (25.8%), Stenocephalemys albipes (20%), Mastomys natalensis (11.6%), Pelomys harringtoni (6.4%), Acomys cahirinus (4.3%), Lemniscomys zebra (0.2%) and the greater red musk shrew (Crocidura flavescens, 1.1%). Analysis showed statistically significant variations in the abundance and habitat preferences of small mammals between habitats during wet and dry seasons.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhRvA..90e2119L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhRvA..90e2119L"><span>Heating of <span class="hlt">trapped</span> ultracold atoms by collapse dynamics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Laloë, Franck; Mullin, William J.; Pearle, Philip</p> <p>2014-11-01</p> <p>The continuous spontaneous localization (CSL) theory alters the Schrödinger equation. It describes <span class="hlt">wave</span>-function collapse as a dynamical process instead of an ill-defined postulate, thereby providing macroscopic uniqueness and solving the so-called measurement problem of standard quantum theory. CSL contains a parameter λ giving the collapse rate of an isolated nucleon in a superposition of two spatially separated states and, more generally, characterizing the collapse time for any physical situation. CSL is experimentally testable, since it predicts some behavior different from that predicted by standard quantum theory. One example is the narrowing of <span class="hlt">wave</span> functions, which results in energy imparted to particles. Here we consider energy given to <span class="hlt">trapped</span> ultracold atoms. Since these are the coldest samples under experimental investigation, it is worth inquiring how they are affected by the CSL heating mechanism. We examine the CSL heating of a Bose-Einstein condensate (BEC) in contact with its thermal cloud. Of course, other mechanisms also provide heat and also particle loss. From varied data on optically <span class="hlt">trapped</span> cesium BECs, we present an energy audit for known heating and loss mechanisms. The result provides an upper limit on CSL heating and thereby an upper limit on the parameter λ . We obtain λ ≲1 (±1 ) ×10-7 s-1.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.S31A2009A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.S31A2009A"><span>Seismic Velocity Structure of the San Jacinto Fault <span class="hlt">Zone</span> from Double-Difference Tomography and Expected Distribution of Head <span class="hlt">Waves</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allam, A. A.; Ben-Zion, Y.</p> <p>2010-12-01</p> <p>We present initial results of double-difference tomographic images for the velocity structure of the San Jacinto Fault <span class="hlt">Zone</span> (SJFZ), and related 3D forward calculations of <span class="hlt">waves</span> in the immediate vicinity of the SJFZ. We begin by discretizing the SJFZ region with a uniform grid spacing of 500 m, extending 140 km by 80 km and down to 25 km depth. We adopt the layered 1D model of Dreger & Helmberger (1993) as a starting model for this region, and invert for 3D distributions of VP and VS with the double-difference tomography of Zhang & Thurber (2003), which makes use of absolute event-station travel times as well as relative travel times for phases from nearby event pairs. Absolute arrival times of over 78,000 P- and S-<span class="hlt">wave</span> phase picks generated by 1127 earthquakes and recorded at 70 stations near the SJFZ are used. Only data from events with Mw greater than 2.2 are used. Though ray coverage is limited at shallow depths, we obtain relatively high-resolution images from 4 to 13 km which show a clear contrast in velocity across the NW section of the SJFZ. To the SE, in the so-called trifurcation area, the structure is more complicated, though station coverage is poorest in this region. Using the obtained image, the current event locations, and the 3D finite-difference code of Olsen (1994), we estimate the likely distributions of fault <span class="hlt">zone</span> head <span class="hlt">waves</span> as a tool for future deployment of instrument. We plan to conduct further studies by including more travel time picks, including those from newly-deployed stations in the SJFZ area, in order to gain a more accurate image of the velocity structure.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhDT.......165W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhDT.......165W"><span>Secondary Generation of Mountain <span class="hlt">Waves</span> in the Stratosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Woods, Bryan K.</p> <p></p> <p>Secondary generation of mountain <span class="hlt">waves</span> was documented using in situ aircraft data from the Terrain-Induced Rotor Experiment (T-REX). Mountain <span class="hlt">waves</span> propagating from the Sierra Nevada generated secondary <span class="hlt">waves</span> due to stratospheric <span class="hlt">wave</span> breaking. The seminal Eliassen and Palm (1961) relation of mountain <span class="hlt">wave</span> energy and momentum fluxes is observationally verified for the first time. One case of reversed <span class="hlt">wave</span> fluxes in the stratosphere is shown to be the result of multiscale secondary <span class="hlt">waves</span> propagating down from the stratosphere. The Tropopause Inversion Layer (TIL) is shown to be capable of serving as a <span class="hlt">wave</span> duct <span class="hlt">trapping</span> such secondary <span class="hlt">waves</span>. Simple idealized 2D simulations are shown to reproduce secondary <span class="hlt">wave</span> patterns that bare striking resemblance to those observed in T-REX. However, 3D simulations are shown to fail to reproduce realistic secondary <span class="hlt">waves</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006APS..DPPCO3010R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006APS..DPPCO3010R"><span>Langmuir <span class="hlt">wave</span> damping decreases slowly</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rose, Harvey</p> <p>2006-10-01</p> <p>The onset of stimulated Raman scatter in a single laser speckle occurs (D. S. Montgomery et al., Phys. Plasmas, 9, 2311 (2002)) at lower laser intensity, I, than predicted by linear theory based on classical Landau damping, νL, of the SRS daughter Langmuir <span class="hlt">wave</span>. Does this imply that SRS onset in a speckled laser beam, propagating through long scale length plasma, is also at odds with linear theory? It has been shown (Harvey A. Rose and D. F. DuBois, Phys. Rev. Lett. 72, 2883 (1994)) that linear convective gain in speckles with large fluctuations of I about the average, <I >, leads to onset at a value of <I >, Ic, small compared to that for onset in a uniform beam. While nonlinear electron <span class="hlt">trapping</span> effects may occur in very intense speckles, whether or not these effects are sufficient to lower the onset value of <I > below Ic depends on how strongly electrons must be <span class="hlt">trapped</span> before there is significant reduction in νL. As the amplitude of an SRS daughter Langmuir <span class="hlt">wave</span> increases, its νL decreases by the factor ν/φb, due to the competition between electron <span class="hlt">trapping</span>, with electron bounce frequency, φb, and escape of these <span class="hlt">trapped</span> electrons by advection out of a speckle's side, at rate ν. This result (Harvey A. Rose and David A. Russell, Phys. Plasmas, 8, 4784 (2001)) is valid for ν/φb 1. In this talk I present a nonlinear, transit time damping, calculation of νL and find that reduction by a factor of two does not occur until φb/ν 5. This slow turn on of <span class="hlt">trapping</span> effects suggests that the linear calculation of Ic is NIF relevant.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22471838-analysis-dependence-surfatron-acceleration-electrons-electromagnetic-wave-space-plasma-particle-momentum-along-wave-front','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22471838-analysis-dependence-surfatron-acceleration-electrons-electromagnetic-wave-space-plasma-particle-momentum-along-wave-front"><span>Analysis of the dependence of surfatron acceleration of electrons by an electromagnetic <span class="hlt">wave</span> in space plasma on the particle momentum along the <span class="hlt">wave</span> front</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Erokhin, A. N., E-mail: nerokhin@mx.iki.rssi.ru; Zol’nikova, N. N.; Erokhin, N. S.</p> <p></p> <p>Based on the numerical solution of the nonlinear nonstationary second-order equation for the <span class="hlt">wave</span> phase on the particle trajectory, the dynamics of surfatron acceleration of electrons by an electromagnetic <span class="hlt">wave</span> propagating across the external magnetic field in space plasma is analyzed as a function of the electron momentum along the <span class="hlt">wave</span> front. Numerical calculations show that, for strongly relativistic initial values of the electron momentum component along the <span class="hlt">wave</span> front g{sub y}(0) (the other parameters of the problem being the same), electrons are <span class="hlt">trapped</span> into the regime of ultrarelativistic surfatron acceleration within a certain interval of the initial <span class="hlt">wave</span> phasemore » Ψ(0) on the particle trajectory. It is assumed in the calculations that vertical bar Ψ(0) vertical bar ≤ π. For strongly relativistic values of g{sub y}(0), electrons are immediately <span class="hlt">trapped</span> by the <span class="hlt">wave</span> for 19% of the initial values of the phase Ψ(0) (favorable phases). For the rest of the values of Ψ(0), <span class="hlt">trapping</span> does not occur even at long times. This circumstance substantially simplifies estimations of the <span class="hlt">wave</span> damping due to particle acceleration in subsequent calculations. The dynamics of the relativistic factor and the components of the electron velocity and momentum under surfatron acceleration is also analyzed. The obtained results are of interest for the development of modern concepts of possible mechanisms of generation of ultrarelativistic particle fluxes in relatively calm space plasma, as well as for correct interpretation of observational data on the fluxes of such particles and explanation of possible reasons for the deviation of ultrarelativistic particle spectra detected in the heliosphere from the standard power-law scalings and the relation of these variations to space weather and large-scale atmospheric processes similar to tropical cyclones.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990056509&hterms=foreshock&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dforeshock','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990056509&hterms=foreshock&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dforeshock"><span>Nonlinear <span class="hlt">wave</span> particle interaction in the Earth's foreshock</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mazelle, C.; LeQueau, D.; Meziane, K.; Lin, R. P.; Parks, G.; Reme, H.; Sanderson, T.; Lepping, R. P.</p> <p>1997-01-01</p> <p>The possibility that ion beams could provide a free energy source for driving an ion/ion instability responsible for the ULF <span class="hlt">wave</span> occurrence is investigated. For this, the <span class="hlt">wave</span> dispersion relation with the observed parameters is solved. Secondly, it is shown that the ring-like distributions could then be produced by a coherent nonlinear <span class="hlt">wave</span>-particle interaction. It tends to <span class="hlt">trap</span> the ions into narrow cells in velocity space centered around a well-defined pitch-angle, directly related to the saturation <span class="hlt">wave</span> amplitude in the analytical theory. The theoretical predictions with the observations are compared.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015WRR....51.1635A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015WRR....51.1635A"><span>Experimental study on effects of geologic heterogeneity in enhancing dissolution <span class="hlt">trapping</span> of supercritical CO2</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Agartan, Elif; Trevisan, Luca; Cihan, Abdullah; Birkholzer, Jens; Zhou, Quanlin; Illangasekare, Tissa H.</p> <p>2015-03-01</p> <p>Dissolution <span class="hlt">trapping</span> is one of the primary mechanisms that enhance the storage security of supercritical carbon dioxide (scCO2) in saline geologic formations. When scCO2 dissolves in formation brine produces an aqueous solution that is denser than formation brine, which leads to convective mixing driven by gravitational instabilities. Convective mixing can enhance the dissolution of CO2 and thus it can contribute to stable <span class="hlt">trapping</span> of dissolved CO2. However, in the presence of geologic heterogeneities, diffusive mixing may also contribute to dissolution <span class="hlt">trapping</span>. The effects of heterogeneity on mixing and its contribution to stable <span class="hlt">trapping</span> are not well understood. The goal of this experimental study is to investigate the effects of geologic heterogeneity on mixing and stable <span class="hlt">trapping</span> of dissolved CO2. Homogeneous and heterogeneous media experiments were conducted in a two-dimensional test tank with various packing configurations using surrogates for scCO2 (water) and brine (propylene glycol) under ambient pressure and temperature conditions. The results show that the density-driven flow in heterogeneous formations may not always cause significant convective mixing especially in layered systems containing low-permeability <span class="hlt">zones</span>. In homogeneous formations, density-driven fingering enhances both storage in the deeper parts of the formation and contact between the host rock and dissolved CO2 for the potential mineralization. On the other hand, for layered systems, dissolved CO2 becomes immobilized in low-permeability <span class="hlt">zones</span> with low-diffusion rates, which reduces the risk of leakage through any fault or fracture. Both cases contribute to the permanence of the dissolved plume in the formation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6883T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6883T"><span>Upper crustal structure of the North Anatolian Fault <span class="hlt">Zone</span> from ambient seismic noise Rayleigh and Love <span class="hlt">wave</span> tomography</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taylor, George; Rost, Sebastian; Houseman, Gregory; Hillers, Gregor</p> <p>2017-04-01</p> <p>By utilising short period surface <span class="hlt">waves</span> present in the noise field, we can construct images of shallow structure in the Earth's upper crust: a region that is usually poorly resolved in earthquake tomography. Here, we use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the North Anatolian Fault <span class="hlt">Zone</span> (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ˜1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We obtain maps of group velocity variation using surface <span class="hlt">wave</span> tomography applied to short period (1- 6 s) Rayleigh and Love <span class="hlt">waves</span> to construct high-resolution images of the upper 5 km of a 70 km x 35 km region centred on the eastern end of the fault segment that ruptured in the 1999 Izmit earthquake. The average Rayleigh <span class="hlt">wave</span> group velocities in the region vary between 1.8 km/s at 1.5 s period, to 2.2 km/s at 6 s period. The NAFZ bifurcates into northern and southern strands in this region; both are active but only the northern strand moved in the 1999 event. The signatures of both the northern and southern branches of the NAFZ are clearly associated with strong gradients in surface <span class="hlt">wave</span> group velocity. To the north of the NAFZ, we observe low Rayleigh <span class="hlt">wave</span> group velocities ( 1.2 km/s) associated with the unconsolidated sediments of the Adapazari basin, and blocks of weathered terrigenous clastic sediments. To the south of the northern branch of the NAFZ, we detect high velocities ( 2.5 km/s) associated with a shallow crystalline basement, in particular a block of metamorphosed schists and marbles that bound the northern branch of the NAFZ.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2410L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2410L"><span><span class="hlt">Wave</span>-induced current considering <span class="hlt">wave</span>-tide interaction in Haeundae</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lim, Hak Soo</p> <p>2017-04-01</p> <p>The Haeundae, located at the south eastern end of the Korean Peninsula, is a famous beach, which has an approximately 1.6 km long and 70 m wide coastline. The beach has been repeatedly eroded by the swell <span class="hlt">waves</span> caused by typhoons in summer and high <span class="hlt">waves</span> originating in the East Sea in winter. The Korean government conducted beach restoration projects including beach nourishment (620,000 m3) and construction of two submerged breakwaters near both ends of the beach. To prevent the beach erosion and to support the beach restoration project, the Korean government initiated a R&D project, the development of coastal erosion control technology since 2013. As a part of the project, we have been measuring <span class="hlt">waves</span> and currents at a water depth of 22 m, 1.8 km away from the beach using an acoustic <span class="hlt">wave</span> and current meter (AWAC) continuously for more than three years; we have also measured <span class="hlt">waves</span> and currents intensively near the surf-<span class="hlt">zone</span> in summer and winter. In this study, a numerical simulation using a <span class="hlt">wave</span> and current coupled model (ROMS-SWAN) was conducted for determining the <span class="hlt">wave</span>-induced current considering seasonal swell <span class="hlt">waves</span> (Hs : 2.5 m, Tp: 12 s) and for better understanding of the coastal process near the surf-<span class="hlt">zone</span> in Haeundae. By comparing the measured and simulated results, we found that cross-shore current during summer is mainly caused by the eddy produced by the <span class="hlt">wave</span>-induced current near the beach, which in turn, is generated by the strong <span class="hlt">waves</span> coming from the SSW and S directions. During other seasons, longshore <span class="hlt">wave</span>-induced current is produced by the swell <span class="hlt">waves</span> coming from the E and ESE directions. The longshore current heading west toward Dong-Back Island, west end of the beach, during all the seasons and eddy current toward Mipo-Port, east end of the beach, in summer which is well matched with the observed residual current. The <span class="hlt">wave</span>-induced current with long-term measurement data is incorporated in simulation of sediment transport modeling for developing</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25096095','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25096095"><span>Reconstructing surface <span class="hlt">wave</span> profiles from reflected acoustic pulses using multiple receivers.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Walstead, Sean P; Deane, Grant B</p> <p>2014-08-01</p> <p>Surface <span class="hlt">wave</span> shapes are determined by analyzing underwater reflected acoustic signals collected at multiple receivers. The transmitted signals are of nominal frequency 300 kHz and are reflected off surface gravity <span class="hlt">waves</span> that are paddle-generated in a <span class="hlt">wave</span> tank. An inverse processing algorithm reconstructs 50 surface <span class="hlt">wave</span> shapes over a length span of 2.10 m. The inverse scheme uses a broadband forward scattering model based on Kirchhoff's diffraction formula to determine <span class="hlt">wave</span> shapes. The surface reconstruction algorithm is self-starting in that source and receiver geometry and initial estimates of <span class="hlt">wave</span> shape are determined from the same acoustic signals used in the inverse processing. A high speed camera provides ground-truth measurements of the surface <span class="hlt">wave</span> field for comparison with the acoustically derived surface <span class="hlt">waves</span>. Within Fresnel <span class="hlt">zone</span> regions the statistical confidence of the inversely optimized surface profile exceeds that of the camera profile. Reconstructed surfaces are accurate to a resolution of about a quarter-wavelength of the acoustic pulse only within Fresnel <span class="hlt">zones</span> associated with each source and receiver pair. Multiple isolated Fresnel <span class="hlt">zones</span> from multiple receivers extend the spatial extent of accurate surface reconstruction while overlapping Fresnel <span class="hlt">zones</span> increase confidence in the optimized profiles there.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GMS...216..121M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GMS...216..121M"><span>Relationship between Alfvén <span class="hlt">Wave</span> and Quasi-Static Acceleration in Earth's Auroral <span class="hlt">Zone</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mottez, Fabrice</p> <p>2016-02-01</p> <p>There are two main categories of acceleration processes in the Earth's auroral <span class="hlt">zone</span>: those based on quasi-static structures, and those based on Alfvén <span class="hlt">wave</span> (AW). AWs play a nonnegligible role in the global energy budget of the plasma surrounding the Earth because they participate in auroral acceleration, and because auroral acceleration conveys a large portion of the energy flux across the magnetosphere. Acceleration events by double layers (DLs) and by AW have mostly been investigated separately, but many studies cited in this chapter show that they are not independent: these processes can occur simultaneously, and one process can be the cause of the other. The quasi-simultaneous occurrences of acceleration by AW and by quasi-static structures have been observed predominantly at the polar cap boundary of auroral arc systems, where often new bright arcs develop or intensify.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3319085','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3319085"><span>Shock <span class="hlt">Wave</span> Technology and Application: An Update☆</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rassweiler, Jens J.; Knoll, Thomas; Köhrmann, Kai-Uwe; McAteer, James A.; Lingeman, James E.; Cleveland, Robin O.; Bailey, Michael R.; Chaussy, Christian</p> <p>2012-01-01</p> <p>Context The introduction of new lithotripters has increased problems associated with shock <span class="hlt">wave</span> application. Recent studies concerning mechanisms of stone disintegration, shock <span class="hlt">wave</span> focusing, coupling, and application have appeared that may address some of these problems. Objective To present a consensus with respect to the physics and techniques used by urologists, physicists, and representatives of European lithotripter companies. Evidence acquisition We reviewed recent literature (PubMed, Embase, Medline) that focused on the physics of shock <span class="hlt">waves</span>, theories of stone disintegration, and studies on optimising shock <span class="hlt">wave</span> application. In addition, we used relevant information from a consensus meeting of the German Society of Shock <span class="hlt">Wave</span> Lithotripsy. Evidence synthesis Besides established mechanisms describing initial fragmentation (tear and shear forces, spallation, cavitation, quasi-static squeezing), the model of dynamic squeezing offers new insight in stone comminution. Manufacturers have modified sources to either enlarge the focal <span class="hlt">zone</span> or offer different focal sizes. The efficacy of extracorporeal shock <span class="hlt">wave</span> lithotripsy (ESWL) can be increased by lowering the pulse rate to 60–80 shock <span class="hlt">waves</span>/min and by ramping the shock <span class="hlt">wave</span> energy. With the water cushion, the quality of coupling has become a critical factor that depends on the amount, viscosity, and temperature of the gel. Fluoroscopy time can be reduced by automated localisation or the use of optical and acoustic tracking systems. There is a trend towards larger focal <span class="hlt">zones</span> and lower shock <span class="hlt">wave</span> pressures. Conclusions New theories for stone disintegration favour the use of shock <span class="hlt">wave</span> sources with larger focal <span class="hlt">zones</span>. Use of slower pulse rates, ramping strategies, and adequate coupling of the shock <span class="hlt">wave</span> head can significantly increase the efficacy and safety of ESWL. PMID:21354696</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028283','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028283"><span>The Olmsted fault <span class="hlt">zone</span>, southernmost Illinois: A key to understanding seismic hazard in the northern new Madrid seismic <span class="hlt">zone</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bexfield, C.E.; McBride, J.H.; Pugin, Andre J.M.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.</p> <p>2005-01-01</p> <p>Geological deformation in the northern New Madrid seismic <span class="hlt">zone</span>, near Olmsted, Illinois (USA), is analyzed using integrated compressional-<span class="hlt">wave</span> (P) and horizontally polarized-<span class="hlt">wave</span> (SH) seismic reflection and regional and dedicated borehole information. Seismic hazards are of special concern because of strategic facilities (e.g., lock and dam sites and chemical plants on the Ohio River near its confluence with the Mississippi River) and because of alluvial soils subject to high amplification of earthquake shock. We use an integrated approach starting with lower resolution, but deeper penetration, P-<span class="hlt">wave</span> reflection profiles to identify displacement of Paleozoic bedrock. Higher resolution, but shallower penetration, SH-<span class="hlt">wave</span> images show deformation that has propagated upward from bedrock faults into Pleistocene loess. We have mapped an intricate <span class="hlt">zone</span> more than 8 km wide of high-angle faults in Mississippi embayment sediments localized over Paleozoic bedrock faults that trend north to northeast, parallel to the Ohio River. These faults align with the pattern of epicenters in the New Madrid seismic <span class="hlt">zone</span>. Normal and reverse offsets along with positive flower structures imply a component of strike-slip; the current stress regime favors right-lateral slip on northeast-trending faults. The largest fault, the Olmsted fault, underwent principal displacement near the end of the Cretaceous Period 65 to 70 million years ago. Strata of this age (dated via fossil pollen) thicken greatly on the downthrown side of the Olmsted fault into a locally subsiding basin. Small offsets of Tertiary and Quaternary strata are evident on high-resolution SH-<span class="hlt">wave</span> seismic profiles. Our results imply recent reactivation and possible future seismic activity in a critical area of the New Madrid seismic <span class="hlt">zone</span>. This integrated approach provides a strategy for evaluating shallow seismic hazard-related targets for engineering concerns. ?? 2005 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16..115M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16..115M"><span>Soil conservation through sediment <span class="hlt">trapping</span>: A review</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mekonnen, Mulatie; Keesstra, Saskia; Baartman, Jantiene; Maroulis, Jerry; Stroosnijder, Leo</p> <p>2014-05-01</p> <p>Preventing the off-site effects of soil erosion is an essential part of good catchment management. Most efforts are in the form of on-site soil and water conservation measures. However, sediment <span class="hlt">trapping</span> (ST) can be an alternative (or additional) measure to prevent the negative off-site effects of soil erosion. Therefore, not all efforts should focus solely on on-site soil conservation, but also on the safe routing of sediment-laden flows and on creating sites and conditions where sediment can be <span class="hlt">trapped</span>, preferably in a cost effective or even profitable way. ST can be applied on-site (in-field) and off-site and involves both vegetative and structural measures. The main vegetative measures include grass strips, tree or bush buffers, grassed waterways and restoration of the waterways and their riparian <span class="hlt">zone</span>; while structural measures include terraces, ponds and check dams. This paper provides a review of studies that have assessed the sediment <span class="hlt">trapping</span> efficacy (STE) of such vegetative and structural measures. Vegetation type and integration of two or more measures (vegetative as well as structural) are important factors influencing STE. In this review, the STE of most measures was evaluated either individually or in such combinations. In real landscape situations, it is not only important to select the most efficient erosion control measures, but also to determine their optimum location in the catchment. Hence, there is a need for research that shows a more integrated determination of STE at the catchment scale. If integrated measures are implemented at the most appropriate spatial locations within a catchment where they can disconnect landscape units from each other, they will decrease runoff velocity and sediment transport and, subsequently, reduce downstream flooding and sedimentation problems. KEY WORDS: Integrated sediment <span class="hlt">trapping</span>, sediment <span class="hlt">trapping</span> efficacy, vegetative, structural, on-site and off-site measures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoJI.202..370B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoJI.202..370B"><span>Basic data features and results from a spatially dense seismic array on the San Jacinto fault <span class="hlt">zone</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ben-Zion, Yehuda; Vernon, Frank L.; Ozakin, Yaman; Zigone, Dimitri; Ross, Zachary E.; Meng, Haoran; White, Malcolm; Reyes, Juan; Hollis, Dan; Barklage, Mitchell</p> <p>2015-07-01</p> <p>We discuss several outstanding aspects of seismograms recorded during >4 weeks by a spatially dense Nodal array, straddling the damage <span class="hlt">zone</span> of the San Jacinto fault in southern California, and some example results. The waveforms contain numerous spikes and bursts of high-frequency <span class="hlt">waves</span> (up to the recorded 200 Hz) produced in part by minute failure events in the shallow crust. The high spatial density of the array facilitates the detection of 120 small local earthquakes in a single day, most of which not detected by the surrounding ANZA and regional southern California networks. Beamforming results identify likely ongoing cultural noise sources dominant in the frequency range 1-10 Hz and likely ongoing earthquake sources dominant in the frequency range 20-40 Hz. Matched-field processing and back-projection of seismograms provide alternate event location. The median noise levels during the experiment at different stations, <span class="hlt">waves</span> generated by Betsy gunshots, and wavefields from nearby earthquakes point consistently to several structural units across the fault. Seismic <span class="hlt">trapping</span> structure and local sedimentary basin produce localized motion amplification and stronger attenuation than adjacent regions. Cross correlations of high-frequency noise recorded at closely spaced stations provide a structural image of the subsurface material across the fault <span class="hlt">zone</span>. The high spatial density and broad frequency range of the data can be used for additional high resolution studies of structure and source properties in the shallow crust.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1361175-wave-particle-energy-exchange-directly-observed-kinetic-alfven-branch-wave','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1361175-wave-particle-energy-exchange-directly-observed-kinetic-alfven-branch-wave"><span><span class="hlt">Wave</span>-particle energy exchange directly observed in a kinetic Alfvén-branch <span class="hlt">wave</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Gershman, Daniel J.; F-Viñas, Adolfo; Dorelli, John C.; ...</p> <p>2017-03-31</p> <p>Alfvén <span class="hlt">waves</span> are fundamental plasma <span class="hlt">wave</span> modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These <span class="hlt">waves</span> are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA’s Magnetospheric Multiscale (MMS) mission, we utilize Earth’s magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén <span class="hlt">wave</span>. Electronsmore » confined between adjacent <span class="hlt">wave</span> peaks may have contributed to saturation of damping effects via nonlinear particle <span class="hlt">trapping</span>. As a result, the investigation of these detailed <span class="hlt">wave</span> dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1361175','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1361175"><span><span class="hlt">Wave</span>-particle energy exchange directly observed in a kinetic Alfvén-branch <span class="hlt">wave</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gershman, Daniel J.; F-Viñas, Adolfo; Dorelli, John C.</p> <p></p> <p>Alfvén <span class="hlt">waves</span> are fundamental plasma <span class="hlt">wave</span> modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These <span class="hlt">waves</span> are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA’s Magnetospheric Multiscale (MMS) mission, we utilize Earth’s magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén <span class="hlt">wave</span>. Electronsmore » confined between adjacent <span class="hlt">wave</span> peaks may have contributed to saturation of damping effects via nonlinear particle <span class="hlt">trapping</span>. As a result, the investigation of these detailed <span class="hlt">wave</span> dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26647772','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26647772"><span>Broad self-<span class="hlt">trapped</span> and slow light bands based on negative refraction and interference of magnetic coupled modes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fang, Yun-Tuan; Ni, Zhi-Yao; Zhu, Na; Zhou, Jun</p> <p>2016-01-13</p> <p>We propose a new mechanism to achieve light localization and slow light. Through the study on the coupling of two magnetic surface modes, we find a special convex band that takes on a negative refraction effect. The negative refraction results in an energy flow concellation effect from two degenerated modes on the convex band. The energy flow concellation effect leads to forming of the self-<span class="hlt">trapped</span> and slow light bands. In the self-<span class="hlt">trapped</span> band light is localized around the source without reflection wall in the waveguide direction, whereas in the slow light band, light becomes the standing-<span class="hlt">waves</span> and moving standing-<span class="hlt">waves</span> at the center and the two sides of the waveguide, respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29880791','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29880791"><span>Non-fluorescent nanoscopic monitoring of a single <span class="hlt">trapped</span> nanoparticle via nonlinear point sources.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yoon, Seung Ju; Lee, Jungmin; Han, Sangyoon; Kim, Chang-Kyu; Ahn, Chi Won; Kim, Myung-Ki; Lee, Yong-Hee</p> <p>2018-06-07</p> <p>Detection of single nanoparticles or molecules has often relied on fluorescent schemes. However, fluorescence detection approaches limit the range of investigable nanoparticles or molecules. Here, we propose and demonstrate a non-fluorescent nanoscopic <span class="hlt">trapping</span> and monitoring platform that can <span class="hlt">trap</span> a single sub-5-nm particle and monitor it with a pair of floating nonlinear point sources. The resonant photon funnelling into an extremely small volume of ~5 × 5 × 7 nm 3 through the three-dimensionally tapered 5-nm-gap plasmonic nanoantenna enables the <span class="hlt">trapping</span> of a 4-nm CdSe/ZnS quantum dot with low intensity of a 1560-nm continuous-<span class="hlt">wave</span> laser, and the pumping of 1560-nm femtosecond laser pulses creates strong background-free second-harmonic point illumination sources at the two vertices of the nanoantenna. Under the stable <span class="hlt">trapping</span> conditions, intermittent but intense nonlinear optical spikes are observed on top of the second-harmonic signal plateau, which is identified as the 3.0-Hz Kramers hopping of the quantum dot <span class="hlt">trapped</span> in the 5-nm gap.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.S42B..03E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.S42B..03E"><span>Remote Love <span class="hlt">Wave</span> Triggering of Tremor in the Nankai Subduction <span class="hlt">Zone</span>: New Observations and Dynamic Stress Modeling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Enescu, B.; Chao, K.; Obara, K.; Peng, Z.; Matsuzawa, T.; Yagi, Y.</p> <p>2013-12-01</p> <p>The triggering of deep non-volcanic tremor (NVT) in the Nankai region, southwest Japan, by the surface <span class="hlt">waves</span> of several large teleseismic earthquakes has been well documented (e.g., Miyazawa & Mori, 2005). These previous studies report that the Nankai NVT is primarily triggered by the passage of Rayleigh <span class="hlt">waves</span> from the teleseismic events (e.g., Miyazawa & Brodsky, 2008). The relative lack of Love <span class="hlt">wave</span> triggering in Nankai would be, however, an exception to the general observation that triggered tremor shows a positive correlation with the triggering potential, defined using the Coulomb failure criteria (Hill, 2012). To clarify the Nankai NVT triggering mechanism, we have systematically searched for triggered tremor due to large teleseismic events (Mw ≥ 7.5) occurred from 2001 to 2012. Our present analysis focuses on western Shikoku, where triggered NVT has been previously reported (e.g., Miyazawa & Mori, 2006). From a total of 55 teleseismic events, 18 show associated triggered NVT. Our analysis presents clear evidence of triggered NVT that correlates well with the passage of Love <span class="hlt">waves</span>. The most outstanding example is that of the 2012 M8.6 Sumatra earthquake, a strike-slip event characterized by relatively large amplitude Love <span class="hlt">waves</span>. The incoming surface <span class="hlt">waves</span> from this earthquake are almost strike-parallel to the Nankai subduction <span class="hlt">zone</span>, which corresponds to a higher Love <span class="hlt">wave</span> triggering potential (Hill, 2012). The 2001 M7.8 Kunlun, the 2003 M8.3 Tokachi-oki, the 2004 M9.2 & 2007 M8.5 Sumatra, the 2006 M8.3 Kuril-Islands and the 2008 M7.9 Wenchuan earthquakes show as well Love-<span class="hlt">wave</span> associated NVT triggering. In most of these cases the tremor is initiated by the incoming, faster-traveling Love <span class="hlt">waves</span> and continues during the latter, larger-amplitude Rayleigh <span class="hlt">waves</span>. We are also conducting dynamic stress modeling to better understand the triggering mechanism of tremor. Our approach builds up on the methods of Gonzalez-Huizar & Velasco (2011) and Obara (2012). In the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170003122&hterms=cluster&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcluster','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170003122&hterms=cluster&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcluster"><span>Cluster Observations of Non-Time Continuous Magnetosonic <span class="hlt">Waves</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walker, Simon N.; Demekhov, Andrei G.; Boardsen, Scott A.; Ganushkina, Natalia Y.; Sibeck, David G.; Balikhin, Michael A.</p> <p>2016-01-01</p> <p>Equatorial magnetosonic <span class="hlt">waves</span> are normally observed as temporally continuous sets of emissions lasting from minutes to hours. Recent observations, however, have shown that this is not always the case. Using Cluster data, this study identifies two distinct forms of these non temporally continuous use missions. The first, referred to as rising tone emissions, are characterized by the systematic onset of <span class="hlt">wave</span> activity at increasing proton gyroharmonic frequencies. Sets of harmonic emissions (emission elements)are observed to occur periodically in the region +/- 10 off the geomagnetic equator. The sweep rate of these emissions maximizes at the geomagnetic equator. In addition, the ellipticity and propagation direction also change systematically as Cluster crosses the geomagnetic equator. It is shown that the observed frequency sweep rate is unlikely to result from the sideband instability related to nonlinear <span class="hlt">trapping</span> of suprathermal protons in the <span class="hlt">wave</span> field. The second form of emissions is characterized by the simultaneous onset of activity across a range of harmonic frequencies. These <span class="hlt">waves</span> are observed at irregular intervals. Their occurrence correlates with changes in the spacecraft potential, a measurement that is used as a proxy for electron density. Thus, these <span class="hlt">waves</span> appear to be <span class="hlt">trapped</span> within regions of localized enhancement of the electron density.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3701167','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3701167"><span>Extremely Low Loss Phonon-<span class="hlt">Trapping</span> Cryogenic Acoustic Cavities for Future Physical Experiments</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Galliou, Serge; Goryachev, Maxim; Bourquin, Roger; Abbé, Philippe; Aubry, Jean Pierre; Tobar, Michael E.</p> <p>2013-01-01</p> <p>Low loss Bulk Acoustic <span class="hlt">Wave</span> devices are considered from the point of view of the solid state approach as phonon-confining cavities. We demonstrate effective design of such acoustic cavities with phonon-<span class="hlt">trapping</span> techniques exhibiting extremely high quality factors for <span class="hlt">trapped</span> longitudinally-polarized phonons of various wavelengths. Quality factors of observed modes exceed 1 billion, with a maximum Q-factor of 8 billion and Q × f product of 1.6 · 1018 at liquid helium temperatures. Such high sensitivities allow analysis of intrinsic material losses in resonant phonon systems. Various mechanisms of phonon losses are discussed and estimated. PMID:23823569</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PhPl...16k3101Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PhPl...16k3101Y"><span>Onset and saturation of backward stimulated Raman scattering of laser in <span class="hlt">trapping</span> regime in three spatial dimensions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yin, L.; Albright, B. J.; Rose, H. A.; Bowers, K. J.; Bergen, B.; Montgomery, D. S.; Kline, J. L.; Fernández, J. C.</p> <p>2009-11-01</p> <p>A suite of three-dimensional (3D) VPIC [K. J. Bowers et al., Phys. Plasmas 15, 055703 (2008)] particle-in-cell simulations of backward stimulated Raman scattering (SRS) in inertial confinement fusion hohlraum plasma has been performed on the heterogeneous multicore supercomputer, Roadrunner, presently the world's most powerful supercomputer. These calculations reveal the complex nonlinear behavior of SRS and point to a new era of "at scale" 3D modeling of SRS in solitary and multiple laser speckles. The physics governing nonlinear saturation of SRS in a laser speckle in 3D is consistent with that of prior two-dimensional (2D) studies [L. Yin et al., Phys. Rev. Lett. 99, 265004 (2007)], but with important differences arising from enhanced diffraction and side loss in 3D compared with 2D. In addition to <span class="hlt">wave</span> front bowing of electron plasma <span class="hlt">waves</span> (EPWs) due to <span class="hlt">trapped</span> electron nonlinear frequency shift and amplitude-dependent damping, we find for the first time that EPW self-focusing, which evolved from <span class="hlt">trapped</span> particle modulational instability [H. A. Rose and L. Yin, Phys. Plasmas 15, 042311 (2008)], also exhibits loss of angular coherence by formation of a filament necklace, a process not available in 2D. These processes in 2D and 3D increase the side-loss rate of <span class="hlt">trapped</span> electrons, increase <span class="hlt">wave</span> damping, decrease source coherence for backscattered light, and fundamentally limit how much backscatter can occur from a laser speckle. For both SRS onset and saturation, the nonlinear <span class="hlt">trapping</span> induced physics is not captured in linear gain modeling of SRS. A simple metric is described for using single-speckle reflectivities obtained from VPIC simulations to infer the total reflectivity from the population of laser speckles of amplitude sufficient for significant <span class="hlt">trapping</span>-induced nonlinearity to arise.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17800437','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17800437"><span>Jupiter plasma <span class="hlt">wave</span> observations: an initial voyager 1 overview.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Scarf, F L; Gurnett, D A; Kurth, W S</p> <p>1979-06-01</p> <p>The Voyager I plasma <span class="hlt">wave</span> instrument detected low-frequency radio emissions, ion acoustic <span class="hlt">waves</span>, and electron plasma oscillations for a period of months before encountering Jupiter's bow shock. In the outer magnetosphere, measurements of <span class="hlt">trapped</span> radio <span class="hlt">waves</span> were used to derive an electron density profile. Near and within the Io plasma torus the instrument detected high-frequency electrostatic <span class="hlt">waves</span>, strong whistler mode turbulence, and discrete whistlers, apparently associated with lightning. Some strong emissions in the tail region and some impulsive signals have not yet been positively identified.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22157067-dynamics-nonautonomous-rogue-waves-bose-einstein-condensate','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22157067-dynamics-nonautonomous-rogue-waves-bose-einstein-condensate"><span>Dynamics of nonautonomous rogue <span class="hlt">waves</span> in Bose-Einstein condensate</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhao, Li-Chen, E-mail: zhaolichen3@163.com</p> <p>2013-02-15</p> <p>We study rogue <span class="hlt">waves</span> of Bose-Einstein condensate (BEC) analytically in a time-dependent harmonic <span class="hlt">trap</span> with a complex potential. Properties of the nonautonomous rogue <span class="hlt">waves</span> are investigated analytically. It is reported that there are possibilities to 'catch' rogue <span class="hlt">waves</span> through manipulating nonlinear interaction properly. The results provide many possibilities to manipulate rogue <span class="hlt">waves</span> experimentally in a BEC system. - Highlights: Black-Right-Pointing-Pointer One more generalized rogue <span class="hlt">wave</span> solutions are presented. Black-Right-Pointing-Pointer Present one possible way to catch a rouge <span class="hlt">wave</span>. Black-Right-Pointing-Pointer Properties of rogue <span class="hlt">waves</span> are investigated analytically for the first time. Black-Right-Pointing-Pointer Provide many possibilities to manipulate rogue <span class="hlt">waves</span> in BEC.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000GeoRL..27..827O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000GeoRL..27..827O"><span>Mantle transition <span class="hlt">zone</span> structure beneath Tanzania, east Africa</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Owens, Thomas J.; Nyblade, Andrew A.; Gurrola, Harold; Langston, Charles A.</p> <p>2000-03-01</p> <p>We apply a three-dimensional stacking method to receiver functions from the Tanzania Broadband Seismic Experiment to determine relative variations in the thickness of the mantle transition <span class="hlt">zone</span> beneath Tanzania. The transition <span class="hlt">zone</span> under the Eastern rift is 30-40 km thinner than under areas of the Tanzania Craton in the interior of the East African Plateau unaffected by rift faulting. The region of transition <span class="hlt">zone</span> thinning under the Eastern rift is several hundred kilometers wide and coincides with a 2-3% reduction in S <span class="hlt">wave</span> velocities. The thinning of the transition <span class="hlt">zone</span>, as well as the reduction in S <span class="hlt">wave</span> velocities, can be attributed to a 200-300°K increase in temperature. This thermal anomaly at >400 km depth beneath the Eastern rift cannot be easily explained by passive rifting and but is consistent with a plume origin for the Cenozoic rifting, volcanism and plateau uplift in East Africa.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005PhR...415..261L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005PhR...415..261L"><span>Electrostatic <span class="hlt">trapping</span> as a key to the dynamics of plasmas, fluids and other collective systems [review article</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luque, A.; Schamel, H.</p> <p>2005-08-01</p> <p>This review article focusses on the phenomenon of collective particle <span class="hlt">trapping</span> in dilute plasmas and related fluid-like systems. A coherent electrostatic <span class="hlt">wave</span> or fluctuation, being excited by some mechanism in a plasma, is able to <span class="hlt">trap</span> collectively charged particles in its potential trough(s) with the ultimate feedback of stabilizing and manipulating the original cause of growth. This phenomenon is well-known from particle simulations of a current-driven two-stream instability and its subsequent quenching by particle <span class="hlt">trapping</span>. But also the nonlinear Landau damping process resulting in a BGK-like (Bernstein, Green, Kruskal) <span class="hlt">trapped</span> particle mode sets an example. However, as shown in this report, already a slightly driven plasma has many possibilities of generating <span class="hlt">trapped</span> particle modes-the mentioned cases representing only two examples-through which it generally becomes nonlinearly unstable. A direct consequence of this feedback of particle <span class="hlt">trapping</span> is that the macroscopic (dielectric) properties of such a structured plasma may have changed fundamentally such that the relationship to what is known from linear <span class="hlt">wave</span> theory is lost. We, hence, have to deal with a nonlinear kinetic description which, in case of a collisionless, electrostatic plasma, is the Vlasov-Poisson description. The present report is devoted to a large extent to a 1D Vlasov-Poisson system but also consequences for other physical systems will be derived and mentioned. These and other findings will be developed in some detail culminating in a new paradigm for plasma stability which says: a current-carrying plasma is nonlinearly unstable in a much wider region of parameter space than predicted by linear <span class="hlt">wave</span> theory with the consequence that the associated turbulence and anomalous transport are triggered much easier than suggested by standard linear <span class="hlt">wave</span> analysis. Responsible for this new scenario are localized <span class="hlt">trapped</span> particle modes-more specifically electron and ion holes of zero or negative energy</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T51C2936G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T51C2936G"><span>Inferences of Complex Anisotropic Layering and Mantle Flow Beneath the Malawi Rift <span class="hlt">Zone</span> from Shear-<span class="hlt">Wave</span> Splitting</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, S. S.; Reed, C. A.; Yu, Y.; Liu, K. H.; Chindandali, P. R. N.; Mdala, H. S.; Massinque, B.; Mutamina, D. M.</p> <p>2016-12-01</p> <p>Measuring the magnitude and orientation of seismic anisotropy beneath actively extending rift <span class="hlt">zones</span> provides invaluable estimates of the influence of numerous geodynamic parameters upon their evolution. In order to infer the character and origin of extensional forces acting upon the Malawi Rift <span class="hlt">Zone</span> (MRZ) and Luangwa Rift <span class="hlt">Zone</span> (LRZ) of southern Africa, we installed 33 Seismic Arrays For African Rift Initiation (SAFARI) three-component broadband seismic stations in Malawi, Mozambique, and Zambia between 2012-2014. Shear-<span class="hlt">wave</span> splitting parameters, including the fast-component polarization orientation and the splitting time, are extracted from 142 events recorded during that time period for a total of 642 well-defined PKS, SKKS, and SKS phase measurements. Polarizations trend NE-SW along the western flank of the LRZ, whereupon they demonstrate an abrupt shift to N-S within the rift valley and the eastern flank. SWS orientations shift increasingly counterclockwise toward the east until, at 33°E, they shift from WNW-ESE to ENE-WSW, suggesting a systematic change in dominant mantle fabric orientation. The resulting fast orientations demonstrate remarkable variability within the MRZ, with E-W measurements in the north rotating counterclockwise toward the south to N-S within the southernmost MRZ. Measurements revert to E-W and NE-SW orientations toward the east in Mozambique, suggesting the presence of complex two-layer anisotropy. Azimuthal variations of SWS parameters recorded by stations within the central MRZ exhibit excellent 90° periodicity, further suggesting complex anisotropic layering. Lateral variation of measurements between the northern and southern MRZ imply the modulation of the mantle flow system beneath the active rift <span class="hlt">zone</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999JGR...104.7329I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999JGR...104.7329I"><span>Excitation of high-frequency surface <span class="hlt">waves</span> with long duration in the Valley of Mexico</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iida, Masahiro</p> <p>1999-04-01</p> <p>During the 1985 Michoacan earthquake (Ms = 8.1), large-amplitude seismograms with extremely long duration were recorded in the lake bed <span class="hlt">zone</span> of Mexico City. We interpret high-frequency seismic <span class="hlt">wave</span> fields in the three geotechnical <span class="hlt">zones</span> (the hill, the transition, and the lake bed <span class="hlt">zones</span>) in the Valley of Mexico on the basis of a systematic analysis for borehole strong motion recordings. We make identification of <span class="hlt">wave</span> types for real seismograms. First, amplitude ratios between surface and underground seismograms indicate that predominant periods of the surface seismograms are largely controlled by the <span class="hlt">wave</span> field incident into surficial layers in the Valley of Mexico. We interpret recorded surface <span class="hlt">waves</span> as fundamental-mode Love <span class="hlt">waves</span> excited in the Mexican Volcanic Belt by calculating theoretical amplification for different-scale structures. Second, according to a cross-correlation analysis, the hill and transition seismograms are mostly surface <span class="hlt">waves</span>. In the lake bed <span class="hlt">zone</span>, while early portions are noisy body <span class="hlt">waves</span>, late portions are mostly surface <span class="hlt">waves</span>. Third, using two kinds of surface arrays with different station intervals, we investigate high-frequency surface-<span class="hlt">wave</span> propagation in the lake bed <span class="hlt">zone</span>. The <span class="hlt">wave</span> propagation is very complicated, depending upon the time section and the frequency band. Finally, on the basis of a statistical time series model with an information criterion, we separate S- and surface-<span class="hlt">wave</span> portions from lake bed seismograms. Surface <span class="hlt">waves</span> are dominant and are recognized even in the early time section. Thus high-frequency surface <span class="hlt">waves</span> with long duration in the Valley of Mexico are excited by the Mexican Volcanic Belt.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/2277','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/2277"><span>The Effect of Riparian <span class="hlt">Zones</span> in Structuring Small Mammal Communities in the Southern Appalachians</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Joshua Laerm; Michael A. Menzel; Dorothy J. Wolf; James R. Welch</p> <p>1997-01-01</p> <p>Riparian <span class="hlt">zones</span> have been shown to be important in structuring vertebrate communities and in maintaining biodiversity. We examined the role of riparian <span class="hlt">zones</span> in structuring small mammal communities in a southern Appalachian watershed at Coweeta Hydrological Laboratory, Macon County, North Carolina. We established pitfall and live-<span class="hlt">trap</span> grids in three replicates each of...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720055073&hterms=time+zone&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtime%2Bzone','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720055073&hterms=time+zone&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtime%2Bzone"><span>Local-time survey of plasma at low altitudes over the auroral <span class="hlt">zones</span>.</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Frank, L. A.; Ackerson, K. L.</p> <p>1972-01-01</p> <p>Local-time survey of the low-energy proton and electron intensities precipitated into the earth's atmosphere over the auroral <span class="hlt">zones</span> during periods of magnetic quiescence. This survey was constructed by selecting a typical individual satellite crossing of this region in each of eight local-time sectors from a large library of similar observations with the polar-orbiting satellite Injun 5. The <span class="hlt">trapping</span> boundary for more-energetic electron intensities, E greater than 45 keV, was found to be a 'natural coordinate' for delineating the boundary between the two major types of lower-energy, 50 less than or equal to E less than or equal to 15,000 eV, electron precipitation commonly observed over the auroral <span class="hlt">zones</span> at low altitudes. Poleward of this <span class="hlt">trapping</span> boundary inverted 'V' electron precipitation bands are observed in all local-time sectors. These inverted 'V' electron bands in the evening and midnight sectors are typically more energetic and have greater latitudinal widths than their counterparts in the noon and morning sectors. In general, the main contributors to the electron energy influx into the earth's atmosphere over the auroral <span class="hlt">zones</span> are the electron inverted 'V' precipitation poleward of the <span class="hlt">trapping</span> boundary in late evening, the plasma-sheet electron intensities equatorward of this boundary in early morning, and both of these precipitation events near local midnight.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DMP.D1015B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DMP.D1015B"><span>Experiments with BECs in a Painted Potential: Atom SQUID, Matter <span class="hlt">Wave</span> Bessel Beams, and Matter <span class="hlt">Wave</span> Circuits</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boshier, Malcolm; Ryu, Changhyun; Blackburn, Paul; Blinova, Alina; Henderson, Kevin</p> <p>2014-05-01</p> <p>The painted potential is a time-averaged optical dipole potential which is able to create arbitrary and dynamic two dimensional potentials for Bose Einstein condensates (BECs). This poster reports three recent experiments using this technique. First, we have realized the dc atom SQUID geometry of a BEC in a toroidal <span class="hlt">trap</span> with two Josephson junctions. We observe Josephson effects, measure the critical current of the junctions, and find dynamic behavior that is in good agreement with the simple Josephson equations for a tunnel junction with the ideal sinusoidal current-phase relation expected for the parameters of the experiment. Second, we have used free expansion of a rotating toroidal BEC to create matter <span class="hlt">wave</span> Bessel beams, which are of interest because perfect Bessel beams (plane <span class="hlt">waves</span> with amplitude profiles described by Bessel functions) propagate without diffraction. Third, we have realized the basic circuit elements necessary to create complex matter <span class="hlt">wave</span> circuits. We launch BECs at arbitrary velocity along straight waveguides, propagate them around curved waveguides and stadium-shaped waveguide <span class="hlt">traps</span>, and split them coherently at y-junctions that can also act as switches. Supported by LANL/LDRD.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSM43B4309C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSM43B4309C"><span>Nonlinear VLF <span class="hlt">Wave</span> Physics in the Radiation Belts</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crabtree, C. E.; Tejero, E. M.; Ganguli, G.; Mithaiwala, M.; Rudakov, L.; Hospodarsky, G. B.; Kletzing, C.</p> <p>2014-12-01</p> <p>Electromagnetic VLF <span class="hlt">waves</span>, such as whistler mode <span class="hlt">waves</span>, both control the lifetime of <span class="hlt">trapped</span> electrons in the radiation belts by pitch-angle scattering and are responsible for the energization of electrons during storms. Traditional approaches to understanding the influence of <span class="hlt">waves</span> on <span class="hlt">trapped</span> electrons have assumed that the <span class="hlt">wave</span> characteristics (frequency spectrum, <span class="hlt">wave</span>-normal angle distribution, etc.) were both stationary in time and amplitude independent from event to event. In situ data from modern satellite missions, such as the Van Allen probes, are showing that this assumption may not be justified. In addition, recent theoretical results [Crabtree et al. 2012] show that the threshold for nonlinear <span class="hlt">wave</span> scattering can often be met by naturally occurring VLF <span class="hlt">waves</span> in the magnetosphere, with <span class="hlt">wave</span> magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear <span class="hlt">wave</span> scattering (Nonlinear Landau Damping) is an amplitude dependent mechanism that can strongly alter VLF <span class="hlt">wave</span> propagation [Ganguli et al. 2010], primarily by altering the direction of propagation. Laboratory results have confirmed the dramatic change in propagation direction when the pump <span class="hlt">wave</span> has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Nonlinear scattering can alter the macroscopic dynamics of <span class="hlt">waves</span> in the radiation belts leading to the formation of a long-lasting <span class="hlt">wave</span>-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al., 2012]. Such nonlinear <span class="hlt">wave</span> effects can dramatically reduce electron lifetimes. Nonlinear <span class="hlt">wave</span> dynamics such as these occur when there are more than one <span class="hlt">wave</span> present, such a condition necessarily violates the assumption of traditional <span class="hlt">wave</span>-normal analysis [Santolik et al., 2003] which rely on the plane <span class="hlt">wave</span> assumption. To investigate nonlinear <span class="hlt">wave</span> dynamics using modern in situ data we apply the maximum entropy method [Skilling and Bryan, 1984] to solve for the <span class="hlt">wave</span> distribution function</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OGeo....9...37S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OGeo....9...37S"><span>Coda <span class="hlt">Wave</span> Attenuation Characteristics for North Anatolian Fault <span class="hlt">Zone</span>, Turkey</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sertcelik, Fadime; Guleroglu, Mehmet</p> <p>2017-10-01</p> <p>North Anatolian Fault <span class="hlt">Zone</span>, on which large earthquakes have occurred in the past, migrates regularly from east to west, and it is one of the most active faults in the world. The purpose of this study is to estimate the coda <span class="hlt">wave</span> quality factor (Qc) for each of the five sub regionsthat were determined according to the fault rupture of these large earthquakes and along the fault. 978 records have been analyzed for 1.5, 3, 6, 9, 12 and 18 Hz frequencies by Single Backscattering Method. Along the fault, the variations in the Qc with lapse time are determined via, Qc = (136±25)f(0.96±0.027), Qc = (208±22)f(0.85±0.02) Qc = (307±28)f(0.72±0.025) at 20, 30, 40 sec lapse times, respectively. The estimated average frequency-dependence quality factor for all lapse time are; Qc(f) = (189±26)f(0.86±0.02) for Karliova-Tokat region; Qc(f) = (216±19)f(0.76±0.018) for Tokat-Çorum region; Qc(f) = (232±18)f(0.76±0.019) for Çorum-Adapazari region; Qc(f) = (280±28)f(0.79±0.021) for Adapazari-Yalova region; Qc(f) = (252±26)f(0.81±0.022) for Yalova-Gulf of Saros region. The coda <span class="hlt">wave</span> quality factor at all the lapse times and frequencies is Qc(f) = (206±15)f(0.85±0.012) in the study area. The most change of Qc with lapse time is determined at Yalova-Saros region. The result may be related to heterogeneity degree of rapidly decreases towards the deep crust like compared to the other sub region. Moreover, the highest Qc is calculated between Adapazari - Yalova. It was interpreted as a result of seismic energy released by 1999 Kocaeli Earthquake. Besides, it couldn't be established a causal relationship between the regional variation of Qc with frequency and lapse time associated to migration of the big earthquakes. These results have been interpreted as the attenuation mechanism is affected by both regional heterogeneity and consist of a single or multi strands of the fault structure.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22271317-zoned-near-zero-refractive-index-fishnet-lens-antenna-steering-millimeter-waves','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22271317-zoned-near-zero-refractive-index-fishnet-lens-antenna-steering-millimeter-waves"><span><span class="hlt">Zoned</span> near-zero refractive index fishnet lens antenna: Steering millimeter <span class="hlt">waves</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pacheco-Peña, V., E-mail: victor.pacheco@unavarra.es; Orazbayev, B., E-mail: b.orazbayev@unavarra.es; Beaskoetxea, U., E-mail: unai.beaskoetxea@unavarra.es</p> <p>2014-03-28</p> <p>A <span class="hlt">zoned</span> fishnet metamaterial lens is designed, fabricated, and experimentally demonstrated at millimeter wavelengths to work as a negative near-zero refractive index lens suitable for compact lens antenna configurations. At the design frequency f = 56.7 GHz (λ{sub 0} = 5.29 mm), the <span class="hlt">zoned</span> fishnet metamaterial lens, designed to have a focal length FL = 9λ{sub 0}, exhibits a refractive index n = −0.25. The focusing performance of the diffractive optical element is briefly compared with that of a non-<span class="hlt">zoned</span> fishnet metamaterial lens and an isotropic homogeneous <span class="hlt">zoned</span> lens made of a material with the same refractive index. Experimental and numerically-computed radiation diagrams of the fabricated <span class="hlt">zoned</span> lens are presentedmore » and compared in detail with that of a simulated non-<span class="hlt">zoned</span> lens. Simulation and experimental results are in good agreement, demonstrating an enhancement generated by the <span class="hlt">zoned</span> lens of 10.7 dB, corresponding to a gain of 12.26 dB. Moreover, beam steering capability of the structure by shifting the feeder on the xz-plane is demonstrated.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016QuIP...15.5281M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016QuIP...15.5281M"><span>Scalable digital hardware for a <span class="hlt">trapped</span> ion quantum computer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mount, Emily; Gaultney, Daniel; Vrijsen, Geert; Adams, Michael; Baek, So-Young; Hudek, Kai; Isabella, Louis; Crain, Stephen; van Rynbach, Andre; Maunz, Peter; Kim, Jungsang</p> <p>2016-12-01</p> <p>Many of the challenges of scaling quantum computer hardware lie at the interface between the qubits and the classical control signals used to manipulate them. Modular ion <span class="hlt">trap</span> quantum computer architectures address scalability by constructing individual quantum processors interconnected via a network of quantum communication channels. Successful operation of such quantum hardware requires a fully programmable classical control system capable of frequency stabilizing the continuous <span class="hlt">wave</span> lasers necessary for loading, cooling, initialization, and detection of the ion qubits, stabilizing the optical frequency combs used to drive logic gate operations on the ion qubits, providing a large number of analog voltage sources to drive the <span class="hlt">trap</span> electrodes, and a scheme for maintaining phase coherence among all the controllers that manipulate the qubits. In this work, we describe scalable solutions to these hardware development challenges.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29740516','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29740516"><span>The pitfalls of short-range endemism: high vulnerability to ecological and landscape <span class="hlt">traps</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mason, Leanda D; Bateman, Philip W; Wardell-Johnson, Grant W</p> <p>2018-01-01</p> <p>Ecological <span class="hlt">traps</span> attract biota to low-quality habitats. Landscape <span class="hlt">traps</span> are <span class="hlt">zones</span> caught in a vortex of spiralling degradation. Here, we demonstrate how short-range endemic (SRE) traits may make such taxa vulnerable to ecological and landscape <span class="hlt">traps</span>. Three SRE species of mygalomorph spider were used in this study: Idiommata blackwalli, Idiosoma sigillatum and an undescribed Aganippe sp. Mygalomorphs can be long-lived (>43 years) and select sites for permanent burrows in their early dispersal phase. Spiderlings from two species, I. blackwalli ( n = 20) and Aganippe sp. ( n = 50), demonstrated choice for microhabitats under experimental conditions, that correspond to where adults typically occur in situ . An invasive veldt grass microhabitat was selected almost exclusively by spiderlings of I. sigillatum . At present, habitat dominated by veldt grass in Perth, Western Australia, has lower prey diversity and abundance than undisturbed habitats and therefore may act as an ecological <span class="hlt">trap</span> for this species. Furthermore, as a homogenising force, veldt grass can spread to form a landscape <span class="hlt">trap</span> in naturally heterogeneous ecosystems. Selection of specialised microhabitats of SREs may explain high extinction rates in old, stable landscapes undergoing (human-induced) rapid change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870040136&hterms=midi&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dmidi','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870040136&hterms=midi&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dmidi"><span>Nonlinear density <span class="hlt">waves</span> in planetary rings</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Borderies, Nicole; Goldreich, Peter; Tremaine, Scott</p> <p>1986-01-01</p> <p>The steady-state structure of planetary rings in the presence of density <span class="hlt">waves</span> at the Lindblad resonances of a satellite is indicated. The study is based on the dispersion relation and damping rate for nonlinear density <span class="hlt">waves</span>, derived by Shu et al. (1985) and by Borderies, Goldreich, and Tremaine (1985). It is shown that strong density <span class="hlt">waves</span> lead to an enhancement of the background surface density in the <span class="hlt">wave</span> <span class="hlt">zone</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17878533','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17878533"><span>Quadrupole ion <span class="hlt">traps</span> and <span class="hlt">trap</span> arrays: geometry, material, scale, performance.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ouyang, Z; Gao, L; Fico, M; Chappell, W J; Noll, R J; Cooks, R G</p> <p>2007-01-01</p> <p>Quadrupole ion <span class="hlt">traps</span> are reviewed, emphasizing recent developments, especially the investigation of new geometries, guided by multiple particle simulations such as the ITSIM program. These geometries include linear ion <span class="hlt">traps</span> (LITs) and the simplified rectilinear ion <span class="hlt">trap</span> (RIT). Various methods of fabrication are described, including the use of rapid prototyping apparatus (RPA), in which 3D objects are generated through point-by-point laser polymerization. Fabrication in silicon using multilayer semi-conductor fabrication techniques has been used to construct arrays of micro-<span class="hlt">traps</span>. The performance of instruments containing individual <span class="hlt">traps</span> as well as arrays of <span class="hlt">traps</span> of various sizes and geometries is reviewed. Two types of array are differentiated. In the first type, <span class="hlt">trap</span> arrays constitute fully multiplexed mass spectrometers in which multiple samples are examined using multiple sources, analyzers and detectors, to achieve high throughput analysis. In the second, an array of individual <span class="hlt">traps</span> acts collectively as a composite <span class="hlt">trap</span> to increase <span class="hlt">trapping</span> capacity and performance for a single sample. Much progress has been made in building miniaturized mass spectrometers; a specific example is a 10 kg hand-held tandem mass spectrometer based on the RIT mass analyzer. The performance of this instrument in air and water analysis, using membrane sampling, is described.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5126218-morphology-auroral-zone-radio-wave-scintillation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5126218-morphology-auroral-zone-radio-wave-scintillation"><span>Morphology of auroral <span class="hlt">zone</span> radio <span class="hlt">wave</span> scintillation</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rino, C.L.; Matthews, S.J.</p> <p>1980-08-01</p> <p>This paper describes the morphology of midnight sector and morning sector auroral <span class="hlt">zone</span> scintillation observations made over a two-year period using the Wideband satelite, which is in a sun-synchronous, low-altitude orbit. No definitive seasonal variation was found. The nighttime data showed the highest scintillation ocurrence levels, but significant amounts of morning scintillation were observed. For the most part the scintillation activity followed the general pattern of local magnetic activity. The most prominent feature in the nightime data is a localized amplitude and phase scintillation enhancement at the point where the propagation vector lies within an L shell. A geometrical effectmore » due to a dynamic slab of sheetlike structures in the F region is hypothesized as the source of his enhancement. The data have been sorted by magnetic activity, proximity to local midnight, and season. The general features of the data are in agreement with the accepted morphology of auroral <span class="hlt">zone</span> scintillation.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10599E..1YB','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10599E..1YB"><span>Guided <span class="hlt">wave</span> crack detection and size estimation in stiffened structures</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhuiyan, Md Yeasin; Faisal Haider, Mohammad; Poddar, Banibrata; Giurgiutiu, Victor</p> <p>2018-03-01</p> <p>Structural health monitoring (SHM) and nondestructive evaluation (NDE) deals with the nondestructive inspection of defects, corrosion, leaks in engineering structures by using ultrasonic guided <span class="hlt">waves</span>. In the past, simplistic structures were often considered for analyzing the guided <span class="hlt">wave</span> interaction with the defects. In this study, we focused on more realistic and relatively complicated structure for detecting any defect by using a non-contact sensing approach. A plate with a stiffener was considered for analyzing the guided <span class="hlt">wave</span> interactions. Piezoelectric wafer active transducers were used to produce excitation in the structures. The excitation generated the multimodal guided <span class="hlt">waves</span> (aka Lamb <span class="hlt">waves</span>) that propagate in the plate with stiffener. The presence of stiffener in the plate generated scattered <span class="hlt">waves</span>. The direct <span class="hlt">wave</span> and the additional scattered <span class="hlt">waves</span> from the stiffener were experimentally recorded and studied. These <span class="hlt">waves</span> were considered as a pristine case in this research. A fine horizontal semi-circular crack was manufactured by using electric discharge machining in the same stiffener. The presence of crack in the stiffener produces additional scattered <span class="hlt">waves</span> as well as <span class="hlt">trapped</span> <span class="hlt">waves</span>. These scattered <span class="hlt">waves</span> and <span class="hlt">trapped</span> <span class="hlt">wave</span> modes from the cracked stiffener were experimentally measured by using a scanning laser Doppler vibrometer (SLDV). These <span class="hlt">waves</span> were analyzed and compared with that from the pristine case. The analyses suggested that both size and shape of the horizontal crack may be predicted from the pattern of the scattered <span class="hlt">waves</span>. Different features (reflection, transmission, and mode-conversion) of the scattered <span class="hlt">wave</span> signals are analyzed. We found direct transmission feature for incident A0 <span class="hlt">wave</span> mode and modeconversion feature for incident S0 mode are most suitable for detecting the crack in the stiffener. The reflection feature may give a better idea of sizing the crack.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS33A1450K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS33A1450K"><span>Spatial distributions of biogeochemical reactions in freshwater-saltwater mixing <span class="hlt">zones</span> of sandy beach aquifers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, K. H.; Michael, H. A.; Ullman, W. J.; Cai, W. J.</p> <p>2017-12-01</p> <p>Beach aquifers host biogeochemically dynamic mixing <span class="hlt">zones</span> between fresh and saline groundwaters of contrasting origins, histories, and compositions. Seawater, driven up the beachface by <span class="hlt">waves</span> and tides, infiltrates into the sand and meets the seaward-discharging fresh groundwater, creating and maintaining a highly reactive intertidal circulation cell well-defined by salinity. Seawater supplies oxygen and reactive carbon to the circulation cell, supporting biogeochemical reactions within the cell that transform and attenuate dissolved nutrient fluxes from terrestrial sources. We investigated the spatial distribution of chemical reaction <span class="hlt">zones</span> within the intertidal circulation cell at Cape Shores, Lewes, Delaware. Porewater samples were collected from multi-level wells along a beach-perpendicular transect. Samples were analyzed for particulate carbon and reactive solutes, and incubated to obtain rates of oxic respiration and denitrification. High rates of oxic respiration were observed higher on the beach, in the landward freshwater-saline water mixing <span class="hlt">zone</span>, where dissolved oxygen availability was high. Denitrification was dominant in lower areas of the beach, below the intertidal discharge point. High respiration rates did not correlate with particulate carbon concentrations entrained within porewater, suggesting that dissolved organic carbon or immobile particulate carbon <span class="hlt">trapped</span> within the sediment can contribute to and alter bulk reactivity. A better understanding of the sources and sinks of carbon within the beach will improve our ability to predict nutrient fluxes to estuaries and oceans, aiding the management of coastal environments and ecosystems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1402612-driving-ionospheric-outflows-magnetospheric-o+-energy-density-alfven-waves','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1402612-driving-ionospheric-outflows-magnetospheric-o+-energy-density-alfven-waves"><span>Driving ionospheric outflows and magnetospheric O + energy density with Alfvén <span class="hlt">waves</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Chaston, C. C.; Bonnell, J. W.; Reeves, Geoffrey D.; ...</p> <p>2016-05-11</p> <p>We show how dispersive Alfvén <span class="hlt">waves</span> observed in the inner magnetosphere during geomagnetic storms can extract O + ions from the topside ionosphere and accelerate these ions to energies exceeding 50 keV in the equatorial plane. This occurs through <span class="hlt">wave</span> <span class="hlt">trapping</span>, a variant of “shock” surfing, and stochastic ion acceleration. These processes in combination with the mirror force drive field-aligned beams of outflowing ionospheric ions into the equatorial plane that evolve to provide energetic O + distributions <span class="hlt">trapped</span> near the equator. These <span class="hlt">waves</span> also accelerate preexisting/injected ion populations on the same field lines. We show that the action of dispersivemore » Alfvén <span class="hlt">waves</span> over several minutes may drive order of magnitude increases in O + ion pressure to make substantial contributions to magnetospheric ion energy density. These <span class="hlt">wave</span> accelerated ions will enhance the ring current and play a role in the storm time evolution of the magnetosphere.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI51C0333H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI51C0333H"><span>Teleseismic P-<span class="hlt">wave</span> tomography of the Sunda-Banda Arc subduction <span class="hlt">zone</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harris, C. W.; Miller, M. S.; Widiyantoro, S.; Supendi, P.; O'Driscoll, L.; Roosmawati, N.; Porritt, R.</p> <p>2017-12-01</p> <p>The Sunda-Banda Arc is the site of multiple ongoing tectonic deformation processes and is perhaps the best example of the transition from subduction of oceanic lithosphere to an active arc-continent collision. Investigating the mantle structure that has resulted from the collision of continental Australia, as well as the concurrent phenomena of continental subduction, slab-rollback, lithospheric tearing, and subduction polarity reversal is possible through seismic tomography. While both regional scale and global tomographic models have previously been constructed to study the tectonics this region, here we use 250 seismic stations that span the length of this convergent margin to invert for P-<span class="hlt">wave</span> velocity perturbations in the upper mantle. We combine data from a temporary deployment of 30 broadband instruments as part of the NSF-funded Banda Arc Project, along with data from permanent broadband stations maintained by the Meteorological, Climatological, and Geophysical Agency of Indonesia (BMKG) to image mantle structure, in particular the subducted Indo-Australian plate. The BMKG dataset spans 2009-2017 and includes >200 broadband seismometers. The Banda Arc array (network YS) adds coverage and resolution to southeastern Indonesia and Timor-Leste, where few permanent seismometers are located but the Australian continent-Banda Arc collision is most advanced. The preliminary model was computed using 50,000 teleseismic P-<span class="hlt">wave</span> travel-time residuals and 3D finite frequency sensitivity kernels. Results from the inversion of the combined dataset are presented as well as resolution tests to assess the quality of the model. The velocity model shows an arcuate Sunda-Banda slab with morphological changes along strike that correlate with the tectonic collision. The model also features the double-sided Molucca Sea slab and regions of high velocity below the bottom of the transition <span class="hlt">zone</span>. The resolution added by the targeted USC deployment is clear when comparing models that</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22317204','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22317204"><span>Safety illusion and error <span class="hlt">trap</span> in a collectively-operated machine accident.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>de Almeida, Ildeberto Muniz; Nobre, Hildeberto; do Amaral Dias, Maria Dionísia; Vilela, Rodolfo Andrade Gouveia</p> <p>2012-01-01</p> <p>Workplace accidents involving machines are relevant for their magnitude and their impacts on worker health. Despite consolidated critical statements, explanation centered on errors of operators remains predominant with industry professionals, hampering preventive measures and the improvement of production-system reliability. Several initiatives were adopted by enforcement agencies in partnership with universities to stimulate production and diffusion of analysis methodologies with a systemic approach. Starting from one accident case that occurred with a worker who operated a brake-clutch type mechanical press, the article explores cognitive aspects and the existence of <span class="hlt">traps</span> in the operation of this machine. It deals with a large-sized press that, despite being endowed with a light curtain in areas of access to the pressing <span class="hlt">zone</span>, did not meet legal requirements. The safety devices gave rise to an illusion of safety, permitting activation of the machine when a worker was still found within the operational <span class="hlt">zone</span>. Preventive interventions must stimulate the tailoring of systems to the characteristics of workers, minimizing the creation of <span class="hlt">traps</span> and encouraging safety policies and practices that replace judgments of behaviors that participate in accidents by analyses of reasons that lead workers to act in that manner.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE24A1441S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE24A1441S"><span>Ice Floe Breaking in Contemporary Third Generation Operational <span class="hlt">Wave</span> Models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sévigny, C.; Baudry, J.; Gauthier, J. C.; Dumont, D.</p> <p>2016-02-01</p> <p>The dynamical <span class="hlt">zone</span> observed at the edge of the consolidated ice area where are found the <span class="hlt">wave</span>-fractured floes (i.e. marginal ice <span class="hlt">zone</span> or MIZ) has become an important topic in ocean modeling. As both operational and climate ocean models now seek to reproduce the complex atmosphere-ice-ocean system with realistic coupling processes, many theoretical and numerical studies have focused on understanding and modeling this <span class="hlt">zone</span>. Few attempts have been made to embed <span class="hlt">wave</span>-ice interactions specific to the MIZ within a two-dimensional model, giving the possibility to calculate both the attenuation of surface <span class="hlt">waves</span> by sea ice and the concomitant breaking of the sea ice-cover into smaller floes. One of the first challenges consists in improving the parameterization of <span class="hlt">wave</span>-ice dynamics in contemporary third generation operational <span class="hlt">wave</span> models. A simple <span class="hlt">waves</span>-in-ice model (WIM) similar to the one proposed by Williams et al. (2013a,b) was implemented in WAVEWATCH III. This WIM considers ice floes as floating elastic plates and predicts the dimensionless attenuation coefficient by the use of a lookup-table-based, <span class="hlt">wave</span> scattering scheme. As in Dumont et al. (2011), the different frequencies are treated individually and floe breaking occurs for a particular frequency when the expected <span class="hlt">wave</span> amplitude exceeds the allowed strain amplitude, which considers ice floes properties and wavelength in ice field. The model is here further refined and tested in idealized two-dimensional cases, giving preliminary results of the performance and sensitivity of the parameterization to initial <span class="hlt">wave</span> and ice conditions. The effects of the <span class="hlt">wave</span>-ice coupling over the incident <span class="hlt">wave</span> spectrum are analyzed as well as the resulting floe size distribution. The model gives prognostic values of the lateral extent of the marginal ice <span class="hlt">zone</span> with maximum ice floe diameter that progressively increases with distance from the ice edge.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/1000706','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/1000706"><span>Use of egg <span class="hlt">traps</span> to investigate lake trout spawning in the Great Lakes</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schreiner, Donald R.; Bronte, Charles R.; Payne, N. Robert; Fitzsimons, John D.; Casselman, John M.</p> <p>1995-01-01</p> <p>Disk-shaped <span class="hlt">traps</span> were used to examine egg deposition by lake trout (Salvelinus namaycush) at 29 sites in the Great Lakes. The main objectives were to; first, evaluate the disk <span class="hlt">trap</span> as a device for sampling lake trout eggs in the Great Lakes, and second, summarize what has been learned about lake trout spawning through the use of disk <span class="hlt">traps</span>. Of the 5,085 <span class="hlt">traps</span> set, 60% were classified as functional when retrieved. Evidence of lake trout egg deposition was documented in each of the lakes studied at 14 of 29 sites. A total of 1,147 eggs were <span class="hlt">trapped</span>. The percentage of <span class="hlt">traps</span> functioning and catch per effort were compared among sites based on depth, timing of egg deposition, distance from shore, size of reef, and type of reef (artificial or natural). Most eggs were caught on small, shallow, protected reefs that were close to shore. Use of disk <span class="hlt">traps</span> on large, shallow, unprotected offshore reefs or along unprotected shorelines was generally unsuccessful due to the effects of heavy wind and <span class="hlt">wave</span> action. Making multiple lifts at short intervals, and retrieval before and re-deployment after storms are recommended for use in exposed areas. On large reefs, preliminary surveys to identify preferred lake trout spawning habitat may be required to deploy disk <span class="hlt">traps</span> most effectively. Egg deposition by hatchery-reared fish was widespread throughout the Great Lakes, and the use of artificial structures by these fish was extensive.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28214750','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28214750"><span>Propagation of thickness shear <span class="hlt">waves</span> in a periodically corrugated quartz crystal plate and its application exploration in acoustic <span class="hlt">wave</span> filters.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Peng; Cheng, Li</p> <p>2017-05-01</p> <p>The propagation of thickness shear <span class="hlt">waves</span> in a periodically corrugated quartz crystal plate is investigated in the present paper using a power series expansion technique. In the proposed simulation model, an equivalent continuity of shear stress moment is introduced as an approximation to handle sectional interfaces with abrupt thickness changes. The Bloch theory is applied to simulate the band structures for three different thickness variation patterns. It is shown that the power series expansion method exhibits good convergence and accuracy, in agreement with results by finite element method (FEM). A broad stop band can be obtained in the power transmission spectra owing to the <span class="hlt">trapped</span> thickness shear modes excited by the thickness variation, whose physical mechanism is totally different from the well-known Bragg scattering effect and is insensitive to the structural periodicity. Based on the observed energy <span class="hlt">trapping</span> phenomenon, an acoustic <span class="hlt">wave</span> filter is proposed in a quartz plate with sectional decreasing thickness, which inhibits <span class="hlt">wave</span> propagation in different regions. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010TePhL..36..952G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010TePhL..36..952G"><span>Free-electron maser with high-selectivity Bragg resonator using coupled propagating and <span class="hlt">trapped</span> modes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ginzburg, N. S.; Golubev, I. I.; Golubykh, S. M.; Zaslavskii, V. Yu.; Zotova, I. V.; Kaminsky, A. K.; Kozlov, A. P.; Malkin, A. M.; Peskov, N. Yu.; Perel'Shteĭn, É. A.; Sedykh, S. N.; Sergeev, A. S.</p> <p>2010-10-01</p> <p>A free-electron maser (FEM) with a double-mirror resonator involving a new modification of Bragg structures operating on coupled propagating and quasi-cutoff (<span class="hlt">trapped</span>) modes has been studied. The presence of <span class="hlt">trapped</span> <span class="hlt">waves</span> in the feedback chain improves the selectivity of Bragg resonators and ensures stable single-mode generation regime at a considerable superdimensionality of the interaction space. The possibility of using the new feedback mechanism has been confirmed by experiments with a 30-GHz FEM pumped by the electron beam of LIU-3000 (JINR) linear induction accelerator, in which narrow-band generation was obtained at a power of ˜10 MW and a frequency close to the cutoff frequency of the <span class="hlt">trapped</span> mode excited in the input Bragg reflector.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMOS13D1224Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMOS13D1224Y"><span>Observation of <span class="hlt">wave</span> celerity evolution in the nearshore using digital video imagery</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoo, J.; Fritz, H. M.; Haas, K. A.; Work, P. A.; Barnes, C. F.; Cho, Y.</p> <p>2008-12-01</p> <p>Celerity of incident <span class="hlt">waves</span> in the nearshore is observed from oblique video imagery collected at Myrtle Beach, S.C.. The video camera covers the field view of length scales O(100) m. Celerity of <span class="hlt">waves</span> propagating in shallow water including the surf <span class="hlt">zone</span> is estimated by applying advanced image processing and analysis methods to the individual video images sampled at 3 Hz. Original image sequences are processed through video image frame differencing, directional low-pass image filtering to reduce the noise arising from foam in the surf <span class="hlt">zone</span>. The breaking <span class="hlt">wave</span> celerity is computed along a cross-shore transect from the <span class="hlt">wave</span> crest tracks extracted by a Radon transform-based line detection method. The observed celerity from the nearshore video imagery is larger than the linear <span class="hlt">wave</span> celerity computed from the measured water depths over the entire surf <span class="hlt">zone</span>. Compared to the nonlinear shallow water <span class="hlt">wave</span> equation (NSWE)-based celerity computed using the measured depths and <span class="hlt">wave</span> heights, in general, the video-based celerity shows good agreements over the surf <span class="hlt">zone</span> except the regions across the incipient <span class="hlt">wave</span> breaking locations. In the regions across the breaker points, the observed <span class="hlt">wave</span> celerity is even larger than the NSWE-based celerity due to the transition of <span class="hlt">wave</span> crest shapes. The observed celerity using the video imagery can be used to monitor the nearshore geometry through depth inversion based on the nonlinear <span class="hlt">wave</span> celerity theories. For this purpose, the exceeding celerity across the breaker points needs to be corrected accordingly compared to a nonlinear <span class="hlt">wave</span> celerity theory applied.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNS23A0013L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNS23A0013L"><span>Sonic logging for detecting the excavation disturbed and fracture <span class="hlt">zones</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, Y. C.; Chang, Y. F.; Liu, J. W.; Tseng, C. W.</p> <p>2017-12-01</p> <p>This study presents a new sonic logging method to detect the excavation disturbed <span class="hlt">zone</span> (EDZ) and fracture <span class="hlt">zones</span> in a tunnel. The EDZ is a weak rock <span class="hlt">zone</span> where its properties and conditions have been changed by excavation, which results such as fracturing, stress redistribution and desaturation in this <span class="hlt">zone</span>. Thus, the EDZ is considered as a physically less stable and could form a continuous and high-permeable pathway for groundwater flow. Since EDZ and fracture <span class="hlt">zone</span> have the potential of affecting the safety of the underground openings and repository performance, many studies were conducted to characterize the EDZ and fracture <span class="hlt">zone</span> by different methods, such as the rock mass displacements and strain measurements, seismic refraction survey, seismic tomography and hydraulic test, etc. In this study, we designed a new sonic logging method to explore the EDZ and fracture <span class="hlt">zone</span> in a tunnel at eastern Taiwan. A high power and high frequency sonic system was set up which includes a two hydrophones pitch-catch technique with a common-offset immersed in water-filled uncased wells and producing a 20 KHz sound to scan the well rock. Four dominant sonic events were observed in the measurements, they are refracted P- and S-<span class="hlt">wave</span> along the well rock, direct water <span class="hlt">wave</span> and the reverberation in the well water. Thus the measured P- and S-<span class="hlt">wave</span> velocities, the signal-to-noise ratio of the refraction and the amplitudes of reverberation along the well rock were used as indexes to determine the EDZ and fracture <span class="hlt">zone</span>. Comparing these indexes with core samples shows that significant changes in the indexes are consistent with the EDZ and fracture <span class="hlt">zone</span>. Thus, the EDZ and fracture <span class="hlt">zone</span> can be detected by this new sonic method conclusively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990JCrGr.106...34B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990JCrGr.106...34B"><span>Purification of selenium by <span class="hlt">zone</span> refining</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burger, A.; Henderson, D. O.; Morgan, S. H.; Feng, J.; Silberman, E.</p> <p>1990-11-01</p> <p>We studied the purification of Se using <span class="hlt">zone</span> refining, with emphasis on the efficiency of this technique in removing the Cu impurity, which is known to be related to a <span class="hlt">trapping</span> center in CdSe. After 78 passes it was found that Cu accumulates at one end section of the ingot, while at the opposite end the level was below the detection limit of the atomic absorption spectroscopic analysis employed. Infrared spectroscopic data, differential solubility and differential scanning calorimetry measurements also indicate that the effective distribution coefficient, k, for the Cu solute, is less than 1. A model for the various phases present during <span class="hlt">zone</span> melting is presented and the possibility of segregating impurities having k>1 is discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21537339-projectile-channeling-chain-bundle-dusty-plasma-liquids-wave-excitation-projectile-wave-interaction','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21537339-projectile-channeling-chain-bundle-dusty-plasma-liquids-wave-excitation-projectile-wave-interaction"><span>Projectile channeling in chain bundle dusty plasma liquids: <span class="hlt">Wave</span> excitation and projectile-<span class="hlt">wave</span> interaction</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chang, Mei-Chu; Tseng, Yu-Ping; I, Lin</p> <p>2011-03-15</p> <p>The microscopic channeling dynamics of projectiles in subexcitable chain bundle dusty plasma liquids consisting of long chains of negatively charged dusts suspended in low pressure glow discharges is investigated experimentally using fast video-microscopy. The long distance channeling of the projectile in the channel formed by the surrounding dust chain bundles and the excitation of a narrow wake associated with the elliptical motions of the background dusts are demonstrated. In the high projectile speed regime, the drag force due to wake <span class="hlt">wave</span> excitation increases with the decreasing projectile speed. The excited <span class="hlt">wave</span> then leads the slowed down projectile after the projectilemore » speed is decreased below the resonant speed of <span class="hlt">wave</span> excitation. The <span class="hlt">wave</span>-projectile interaction causes the increasing projectile drag below the resonant speed and the subsequent oscillation around a descending average level, until the projectile settles down to the equilibrium point. Long distance projectile surfing through the resonant crest <span class="hlt">trapping</span> by the externally excited large amplitude solitary <span class="hlt">wave</span> is also demonstrated.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022359','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022359"><span>Fracture process <span class="hlt">zone</span> in granite</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zang, A.; Wagner, F.C.; Stanchits, S.; Janssen, C.; Dresen, G.</p> <p>2000-01-01</p> <p>In uniaxial compression tests performed on Aue granite cores (diameter 50 mm, length 100 mm), a steel loading plate was used to induce the formation of a discrete shear fracture. A <span class="hlt">zone</span> of distributed microcracks surrounds the tip of the propagating fracture. This process <span class="hlt">zone</span> is imaged by locating acoustic emission events using 12 piezoceramic sensors attached to the samples. Propagation velocity of the process <span class="hlt">zone</span> is varied by using the rate of acoustic emissions to control the applied axial force. The resulting velocities range from 2 mm/s in displacement-controlled tests to 2 ??m/s in tests controlled by acoustic emission rate. <span class="hlt">Wave</span> velocities and amplitudes are monitored during fault formation. P <span class="hlt">waves</span> transmitted through the approaching process <span class="hlt">zone</span> show a drop in amplitude of 26 dB, and ultrasonic velocities are reduced by 10%. The width of the process <span class="hlt">zone</span> is ???9 times the grain diameter inferred from acoustic data but is only 2 times the grain size from optical crack inspection. The process <span class="hlt">zone</span> of fast propagating fractures is wider than for slow ones. The density of microcracks and acoustic emissions increases approaching the main fracture. Shear displacement scales linearly with fracture length. Fault plane solutions from acoustic events show similar orientation of nodal planes on both sides of the shear fracture. The ratio of the process <span class="hlt">zone</span> width to the fault length in Aue granite ranges from 0.01 to 0.1 inferred from crack data and acoustic emissions, respectively. The fracture surface energy is estimated from microstructure analysis to be ???2 J. A lower bound estimate for the energy dissipated by acoustic events is 0.1 J. Copyright 2000 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910048402&hterms=fast+memory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfast%2Bmemory','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910048402&hterms=fast+memory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfast%2Bmemory"><span><span class="hlt">Wave</span>-particle interactions on the FAST satellite</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Temerin, M. A.; Carlson, C. W.; Cattell, C. A.; Ergun, R. E.; Mcfadden, J. P.</p> <p>1990-01-01</p> <p>NASA's Fast Auroral Snapshot, or 'FAST' satellite, scheduled for launch in 1993, will investigate the plasma physics of the low altitude auroral <span class="hlt">zone</span> from a 3500-km apogee polar orbit. FAST will give attention to <span class="hlt">wave</span>, double-layer, and soliton production processes due to electrons and ions, as well as to <span class="hlt">wave-wave</span> interactions, and the acceleration of electrons and ions by <span class="hlt">waves</span> and electric fields. FAST will employ an intelligent data-handling system capacle of data acquisition at rates of up to 1 Mb/sec, in addition to a 1-Gbit solid-state memory. The data need be gathered for only a few minutes during passes through the auroral <span class="hlt">zone</span>, since the most interesting auroral phenomena occur in such narrow regions as auroral arcs, electrostatic shocks, and superthermal electron bursts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1810943H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1810943H"><span>Impacts of <span class="hlt">wave</span> energy conversion devices on local <span class="hlt">wave</span> climate: observations and modelling from the Perth <span class="hlt">Wave</span> Energy Project</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy</p> <p>2016-04-01</p> <p>As demonstrated by the Australian <span class="hlt">Wave</span> Energy Atlas (AWavEA), the southern and western margins of the country possess considerable <span class="hlt">wave</span> energy resources. The Australia Government has made notable investments in pre-commercial <span class="hlt">wave</span> energy developments in these areas, however little is known about how this technology may impact local <span class="hlt">wave</span> climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ <span class="hlt">wave</span> measurement devices have been deployed surrounding the 3 <span class="hlt">wave</span> energy converters of the Carnegie <span class="hlt">Wave</span> Energy Limited's Perth <span class="hlt">Wave</span> Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of <span class="hlt">wave</span> energy converters will be discussed. The intended project outcomes are to establish <span class="hlt">zones</span> of impact defined in terms of changes in local <span class="hlt">wave</span> energy spectra and to initiate best practice guidelines for the establishment of <span class="hlt">wave</span> energy conversion sites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011DSRII..58.2293H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011DSRII..58.2293H"><span>Distribution, abundance and seasonal flux of pteropods in the Sub-Antarctic <span class="hlt">Zone</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Howard, W. R.; Roberts, D.; Moy, A. D.; Lindsay, M. C. M.; Hopcroft, R. R.; Trull, T. W.; Bray, S. G.</p> <p>2011-11-01</p> <p>Pteropods were identified from epipelagic net and trawl samples in the Sub-Antarctic <span class="hlt">Zone</span> during the 2007 mid-summer (January 17-February 20) Sub-Antarctic <span class="hlt">Zone</span> Sensitivity to Environmental Change (SAZ-Sense) voyage, as well as in a moored sediment <span class="hlt">trap</span> in the same region. Overall pteropod densities during SAZ-Sense were lower than those reported for higher-latitude Southern Ocean waters. The four major contributors to the Sub-Antarctic <span class="hlt">Zone</span> pteropod community during the SAZ-Sense voyage, Clio pyramidata forma antarctica, Clio recurva, Limacina helicina antarctica and Limacina retroversa australis, accounted for 93% of all pteropods observed. The distribution of the two dominant pteropods collected in the Sub-Antarctic <span class="hlt">Zone</span>, L. retroversa australis and C. pyramidata forma antarctica, is strongly related to latitude and depth. L. retroversa australis is typical of cold southern (50-54°S) polar waters and C. pyramidata forma antarctica is typical of shallow (top 20 m) Sub-Antarctic <span class="hlt">Zone</span> waters. A moored sediment <span class="hlt">trap</span> deployed to 2100 m at 47°S, 141°E in 2003/04 showed the pteropod flux in the Sub-Antarctic <span class="hlt">Zone</span> had late-Spring and mid-summer peaks. The diversity, abundance and distribution of pteropods collected during SAZ-Sense provide a timely benchmark against which to monitor future changes in SAZ ocean pteropod communities, particularly in light of predictions of declining aragonite saturation in the Southern Ocean by the end of the century.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAP...121p4901L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAP...121p4901L"><span>Deep-level stereoscopic multiple <span class="hlt">traps</span> of acoustic vortices</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Yuzhi; Guo, Gepu; Ma, Qingyu; Tu, Juan; Zhang, Dong</p> <p>2017-04-01</p> <p>Based on the radiation pattern of a planar piston transducer, the mechanisms underlying the generation of axially controllable deep-level stereoscopic multiple <span class="hlt">traps</span> of acoustic vortices (AV) using sparse directional sources were proposed with explicit formulae. Numerical simulations for the axial and cross-sectional distributions of acoustic pressure and phase were conducted for various ka (product of the <span class="hlt">wave</span> number and the radius of transducer) values at the frequency of 1 MHz. It was demonstrated that, for bigger ka, besides the main-AV (M-AV) generated by the main lobes of the sources, cone-shaped side-AV (S-AV) produced by the side lobes were closer to the source plane at a relatively lower pressure. Corresponding to the radiation angles of pressure nulls between the main lobe and the side lobes of the sources, vortex valleys with nearly pressure zero could be generated on the central axis to form multiple <span class="hlt">traps</span>, based on Gor'kov potential theory. The number and locations of vortex valleys could be controlled accurately by the adjustment of ka. With the established eight-source AV generation system, the existence of the axially controllable multiple <span class="hlt">traps</span> was verified by the measured M-AV and S-AVs as well as the corresponding vortex valleys. The favorable results provided the feasibility of deep-level stereoscopic control of AV and suggested potential application of multiple <span class="hlt">traps</span> for particle manipulation in the area of biomedical engineering.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.2424C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.2424C"><span>Abyssal Upwelling in Mid-Ocean Ridge Fracture <span class="hlt">Zones</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clément, Louis; Thurnherr, Andreas M.</p> <p>2018-03-01</p> <p>Turbulence in the abyssal ocean plays a fundamental role in the climate system by sustaining the deepest branch of the overturning circulation. Over the western flank of the Mid-Atlantic Ridge in the South Atlantic, previously observed bottom-intensified and tidally modulated mixing of abyssal waters appears to imply a counterintuitive densification of deep and bottom waters. Here we show that inside fracture <span class="hlt">zones</span>, however, turbulence is elevated away from the seafloor because of intensified downward propagating near-inertial <span class="hlt">wave</span> energy, which decays below a subinertial shear maximum. Ray-tracing simulations predict a decay of <span class="hlt">wave</span> energy subsequent to <span class="hlt">wave</span>-mean flow interactions. The hypothesized <span class="hlt">wave</span>-mean flow interactions drive a deep flow toward lighter densities of up to 0.6 Sv over the mid-ocean ridge flank in the Brazil Basin, and the same process may also cause upwelling of abyssal waters in other ocean basins with mid-ocean ridges with fracture <span class="hlt">zones</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/7195620-evaporite-geometries-diagenetic-traps-lower-san-andres-northwest-shelf-new-mexico','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7195620-evaporite-geometries-diagenetic-traps-lower-san-andres-northwest-shelf-new-mexico"><span>Evaporite geometries and diagenetic <span class="hlt">traps</span>, lower San Andres, Northwest shelf, New Mexico</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Keller, D.R.</p> <p></p> <p>An east-west-trending belt of lower San Andres oil fields extends 80 mi across southeastern New Mexico from the Pecos River near Roswell to the Texas-New Mexico border. These fields are along a porosity pinch-out <span class="hlt">zone</span> where porous carbonates grade laterally into bedded anhydrite and halite. The lower San Andres <span class="hlt">traps</span> are associated with pre-Tertiary structural or stratigraphic <span class="hlt">traps</span>. Oil and water production relationships from these fields are not consistent with present-day structure. These fields have been commonly interpreted to be hydrodynamic <span class="hlt">traps</span> created by the eastern flow of fresh surface water that enters the lower San Andres outcrops west ofmore » Pecos River. There is no evidence, however, that surface water has moved through the lower San Andres in this area. This conclusion is supported by the fact that formation-water resistivities are uniform throughout the producing trend, no significant dissolution of carbonates or evaporites has occurred, and there has been no increase in biogradation of oils adjacent to the lower San Andres outcrops. These fields actually are diagenetic <span class="hlt">traps</span> created by porosity occlusion in the water column beneath the oil accumulations. Hydrocarbons originally were <span class="hlt">trapped</span> in pre-Tertiary structural and structural-stratigraphic <span class="hlt">traps</span>. Bedded evaporites were effective barriers to vertical and lateral hydrocarbon migration. Eastward tilting of the Northwest shelf during the Tertiary opened these <span class="hlt">traps</span>, but the oil remained in these structurally unfavorable positions because of the diagenetic sealing. The gas-solution drive in these reservoirs is a result of this sealing. The sequence of events leading to diagenetic entrapment include (1) Triassic and Jurassic migration of hydrocarbons into broad, low-relief post-San Andres structural and structural-stratigraphic <span class="hlt">traps</span>; (2) rapid occlusion of porosity in the water column beneath oil reservoirs, and (3) Tertiary tilt-out <span class="hlt">traps</span>.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMNH23A1870J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMNH23A1870J"><span>Sensitivity of Tsunami <span class="hlt">Waves</span> and Coastal Inundation/Runup to Seabed Displacement Models: Application to the Cascadia Subduction <span class="hlt">zone</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jalali Farahani, R.; Fitzenz, D. D.; Nyst, M.</p> <p>2015-12-01</p> <p>Major components of tsunami hazard modeling include earthquake source characterization, seabed displacement, <span class="hlt">wave</span> propagation, and coastal inundation/run-up. Accurate modeling of these components is essential to identify the disaster risk exposures effectively, which would be crucial for insurance industry as well as policy makers to have tsunami resistant design of structures and evacuation planning (FEMA, 2008). In this study, the sensitivity and variability of tsunami coastal inundation due to Cascadia megathrust subduction earthquake are studied by considering the different approaches for seabed displacement model. The first approach is the analytical expressions that were proposed by Okada (1985, 1992) for the surface displacements and strains of rectangular sources. The second approach was introduced by Meade (2006) who introduced analytical solutions for calculating displacements, strains, and stresses on triangular sources. In this study, the seabed displacement using triangular representation of geometrically complex fault surfaces is compared with the Okada rectangular representations for the Cascadia subduction <span class="hlt">zone</span>. In the triangular dislocation algorithm, the displacement is calculated using superposition of two angular dislocations for each of the three triangle legs. The triangular elements could give a better and gap-free representation of the fault surfaces. In addition, the rectangular representation gives large unphysical vertical displacement along the shallow-depth fault edge that generates unrealistic short-wavelength <span class="hlt">waves</span>. To study the impact of these two different algorithms on the final tsunami inundation, the initial tsunami <span class="hlt">wave</span> as well as <span class="hlt">wave</span> propagation and the coastal inundation are simulated. To model the propagation of tsunami <span class="hlt">waves</span> and coastal inundation, 2D shallow water equations are modeled using the seabed displacement as the initial condition for the numerical model. Tsunami numerical simulation has been performed on high</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDQ32011R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDQ32011R"><span>Shoaling internal solitary <span class="hlt">waves</span> of depression over gentle slopes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rivera, Gustavo; Diamessis, Peter</p> <p>2017-11-01</p> <p>The shoaling of an internal solitary <span class="hlt">wave</span> (ISW) of depression over gentle slopes is explored through fully nonlinear and non-hydrostatic simulations using a high resolution/accuracy deformed spectral multidomain penalty method. During shoaling, the <span class="hlt">wave</span> does not disintegrate as in the case of steeper slope but, instead, maintains its symmetric shape. At the core of the <span class="hlt">wave</span>, an unstable region forms, characterized by the entrapment of heavier-over-light fluid. The formation of this convective instability is attributed to the vertical stretching by the ISW of the near-surface vorticity layer associated with the baroclinic background current. According to recent field observations in the South China Sea, the unstable region drives localized turbulent mixing within the <span class="hlt">wave</span>, estimated to be up to four times larger than that in the open ocean, in the form of a recirculating <span class="hlt">trapped</span> core. In this talk, emphasis is placed on the structure of the unstable region and the persistence of a possible recirculating core using simulations which capture 2D <span class="hlt">wave</span> propagation combined with 3D representation of the transition to turbulence. As such, a preliminary understanding of the underlying fluid mechanics and the potential broader oceanic significance of ISWs with <span class="hlt">trapped</span> cores is offered. Financial support gratefully acknowledged to NSF OCE Grant 1634257.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840033448&hterms=vlahos&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3Dvlahos','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840033448&hterms=vlahos&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3Dvlahos"><span>Stochastic three-<span class="hlt">wave</span> interaction in flaring solar loops</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vlahos, L.; Sharma, R. R.; Papadopoulos, K.</p> <p>1983-01-01</p> <p>A model is proposed for the dynamic structure of high-frequency microwave bursts. The dynamic component is attributed to beams of precipitating electrons which generate electrostatic <span class="hlt">waves</span> in the upper hybrid branch. Coherent upconversion of the electrostatic <span class="hlt">waves</span> to electromagnetic <span class="hlt">waves</span> produces an intrinsically stochastic emission component which is superposed on the gyrosynchrotron continuum generated by stably <span class="hlt">trapped</span> electron fluxes. The role of the density and temperature of the ambient plasma in the <span class="hlt">wave</span> growth and the transition of the three <span class="hlt">wave</span> upconversion to stochastic, despite the stationarity of the energy source, are discussed in detail. The model appears to reproduce the observational features for reasonable parameters of the solar flare plasma.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26675464','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26675464"><span>Comparison of <span class="hlt">Trapping</span> Performance Between the Original BG-Sentinel® <span class="hlt">Trap</span> and BG-Sentinel 2® <span class="hlt">Trap</span> (1).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arimoto, Hanayo; Harwood, James F; Nunn, Peter J; Richardson, Alec G; Gordon, Scott; Obenauer, Peter J</p> <p>2015-12-01</p> <p>Recently, the BG-Sentinel® <span class="hlt">trap</span> (BGS) <span class="hlt">trap</span> has been reconfigured for increased durability during harsh field conditions. We evaluated the attractiveness of this redesigned <span class="hlt">trap</span>, BG-Sentinel 2® (BGS2), and its novel granular lure cartridge system relative to the original <span class="hlt">trap</span> and lure. Granular lures containing different combinations of lactic acid, ammonia, hexanoic acid, and octenol were also evaluated. Lure cartridges with all components except octenol <span class="hlt">trapped</span> significantly more Aedes albopictus than lures containing octenol. This new granular lure combination and original BG-Lure® system were paired with BGS and BGS2 <span class="hlt">traps</span> to compare relative attractiveness of the lures and the <span class="hlt">traps</span>. All evaluations were conducted under field conditions in a suburban neighborhood in northeastern Florida from July to October 2014. Overall, the average numbers of Ae. albopictus collected by BGS or BGS2 were similar regardless of the lure type (i.e., mesh bag versus granules) (P  =  0.56). The functionality and durability of both <span class="hlt">trap</span> models are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22649711-direct-exchange-between-silicon-nanocrystals-tunnel-oxide-traps-under-illumination-single-electron-photodetector','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22649711-direct-exchange-between-silicon-nanocrystals-tunnel-oxide-traps-under-illumination-single-electron-photodetector"><span>Direct exchange between silicon nanocrystals and tunnel oxide <span class="hlt">traps</span> under illumination on single electron photodetector</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chatbouri, S., E-mail: Samir.chatbouri@yahoo.com; Troudi, M.; Sghaier, N.</p> <p>2016-09-15</p> <p>In this paper we present the <span class="hlt">trapping</span> of photogenerated charge carriers for 300 s resulted by their direct exchange under illumination between a few silicon nanocrystals (ncs-Si) embedded in an oxide tunnel layer (SiO{sub x} = 1.5) and the tunnel oxide <span class="hlt">traps</span> levels for a single electron photodetector (photo-SET or nanopixel). At first place, the presence of a photocurrent limited in the inversion <span class="hlt">zone</span> under illumination in the I–V curves confirms the creation of a pair electron/hole (e–h) at high energy. This photogenerated charge carriers can be <span class="hlt">trapped</span> in the oxide. Using the capacitance-voltage under illumination (the photo-CV measurements) wemore » show a hysteresis chargement limited in the inversion area, indicating that the photo-generated charge carriers are stored at <span class="hlt">traps</span> levels at the interface and within ncs-Si. The direct exchange of the photogenerated charge carriers between the interface <span class="hlt">traps</span> levels and the ncs-Si contributed on the photomemory effect for 300 s for our nanopixel at room temperature.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvF...2f4401P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvF...2f4401P"><span>Slanted snaking of localized Faraday <span class="hlt">waves</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pradenas, Bastián; Araya, Isidora; Clerc, Marcel G.; Falcón, Claudio; Gandhi, Punit; Knobloch, Edgar</p> <p>2017-06-01</p> <p>We report on an experimental, theoretical, and numerical study of slanted snaking of spatially localized parametrically excited <span class="hlt">waves</span> on the surface of a water-surfactant mixture in a Hele-Shaw cell. We demonstrate experimentally the presence of a hysteretic transition to spatially extended parametrically excited surface <span class="hlt">waves</span> when the acceleration amplitude is varied, as well as the presence of spatially localized <span class="hlt">waves</span> exhibiting slanted snaking. The latter extend outside the hysteresis loop. We attribute this behavior to the presence of a conserved quantity, the liquid volume <span class="hlt">trapped</span> within the meniscus, and introduce a universal model based on symmetry arguments, which couples the <span class="hlt">wave</span> amplitude with such a conserved quantity. The model captures both the observed slanted snaking and the presence of localized <span class="hlt">waves</span> outside the hysteresis loop, as demonstrated by numerical integration of the model equations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFD.L8004R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFD.L8004R"><span>Surfing with capillary <span class="hlt">waves</span>: a survival strategy for <span class="hlt">trapped</span> bees</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roh, Chris; Gharib, Morteza</p> <p>2017-11-01</p> <p>Honeybees are able to propel themselves at the water surface. A rapid vibration (30-220 Hz) of wings at the air-water interface results in a locomotion speed of 3-4 cm/s. A mechanism for generating thrust required for achieving and maintaining such speed must be different from their mechanism of flight inasmuch as they are in a different fluid environment. In this study, we present the thrust generating mechanism of the honeybee at the air-water interface. A close observation of the wing's interaction with the water surface showed that the wing does not penetrate nor detach from the water surface. Moreover, the stroke speed of the wing exceeds the minimum capillary <span class="hlt">wave</span> speed, which signifies that the wing constantly generates the capillary <span class="hlt">wave</span> by pulling on the surface with its wetted underside. Observation of such interaction suggests that honeybee's locomotion at the water surface resembles surfing on the self-generated capillary <span class="hlt">wave</span>. A further evidence of described mechanism is explored by constructing a similarly sized mechanical model. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1511414; additional support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1523313','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1523313"><span>Optical <span class="hlt">trapping</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Neuman, Keir C.; Block, Steven M.</p> <p>2006-01-01</p> <p>Since their invention just over 20 years ago, optical <span class="hlt">traps</span> have emerged as a powerful tool with broad-reaching applications in biology and physics. Capabilities have evolved from simple manipulation to the application of calibrated forces on—and the measurement of nanometer-level displacements of—optically <span class="hlt">trapped</span> objects. We review progress in the development of optical <span class="hlt">trapping</span> apparatus, including instrument design considerations, position detection schemes and calibration techniques, with an emphasis on recent advances. We conclude with a brief summary of innovative optical <span class="hlt">trapping</span> configurations and applications. PMID:16878180</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvL.120o5001S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvL.120o5001S"><span>Observation of Poincaré-Andronov-Hopf Bifurcation in Cyclotron Maser Emission from a Magnetic Plasma <span class="hlt">Trap</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shalashov, A. G.; Gospodchikov, E. D.; Izotov, I. V.; Mansfeld, D. A.; Skalyga, V. A.; Tarvainen, O.</p> <p>2018-04-01</p> <p>We report the first experimental evidence of a controlled transition from the generation of periodic bursts of electromagnetic radiation into the continuous-<span class="hlt">wave</span> regime of a cyclotron maser formed in magnetically confined nonequilibrium plasma. The kinetic cyclotron instability of the extraordinary <span class="hlt">wave</span> of weakly inhomogeneous magnetized plasma is driven by the anisotropic electron population resulting from electron cyclotron plasma heating in a MHD-stable minimum-B open magnetic <span class="hlt">trap</span>.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title50-vol9/pdf/CFR-2010-title50-vol9-sec697-19.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title50-vol9/pdf/CFR-2010-title50-vol9-sec697-19.pdf"><span>50 CFR 697.19 - <span class="hlt">Trap</span> limits and <span class="hlt">trap</span> tag requirements for vessels fishing with lobster <span class="hlt">traps</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>... vessels fishing with lobster <span class="hlt">traps</span>. 697.19 Section 697.19 Wildlife and Fisheries FISHERY CONSERVATION AND... requirements for vessels fishing with lobster <span class="hlt">traps</span>. (a) <span class="hlt">Trap</span> limits for vessels fishing or authorized to fish... management area designation certificate or valid limited access American lobster permit specifying one or...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title50-vol11/pdf/CFR-2011-title50-vol11-sec697-19.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title50-vol11/pdf/CFR-2011-title50-vol11-sec697-19.pdf"><span>50 CFR 697.19 - <span class="hlt">Trap</span> limits and <span class="hlt">trap</span> tag requirements for vessels fishing with lobster <span class="hlt">traps</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-10-01</p> <p>... vessels fishing with lobster <span class="hlt">traps</span>. 697.19 Section 697.19 Wildlife and Fisheries FISHERY CONSERVATION AND... requirements for vessels fishing with lobster <span class="hlt">traps</span>. (a) <span class="hlt">Trap</span> limits for vessels fishing or authorized to fish... management area designation certificate or valid limited access American lobster permit specifying one or...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1429661-efficient-band-trap-tunneling-model-including-heterojunction-band-offset','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1429661-efficient-band-trap-tunneling-model-including-heterojunction-band-offset"><span>Efficient Band-to-<span class="hlt">Trap</span> Tunneling Model Including Heterojunction Band Offset</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gao, Xujiao; Huang, Andy; Kerr, Bert</p> <p></p> <p>In this paper, we present an efficient band-to-<span class="hlt">trap</span> tunneling model based on the Schenk approach, in which an analytic density-of-states (DOS) model is developed based on the open boundary scattering method. The new model explicitly includes the effect of heterojunction band offset, in addition to the well-known field effect. Its analytic form enables straightforward implementation into TCAD device simulators. It is applicable to all one-dimensional potentials, which can be approximated to a good degree such that the approximated potentials lead to piecewise analytic <span class="hlt">wave</span> functions with open boundary conditions. The model allows for simulating both the electric-field-enhanced and band-offset-enhanced carriermore » recombination due to the band-to-<span class="hlt">trap</span> tunneling near the heterojunction in a heterojunction bipolar transistor (HBT). Simulation results of an InGaP/GaAs/GaAs NPN HBT show that the proposed model predicts significantly increased base currents, due to the hole-to-<span class="hlt">trap</span> tunneling enhanced by the emitter-base junction band offset. Finally, the results compare favorably with experimental observation.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1429661-efficient-band-trap-tunneling-model-including-heterojunction-band-offset','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1429661-efficient-band-trap-tunneling-model-including-heterojunction-band-offset"><span>Efficient Band-to-<span class="hlt">Trap</span> Tunneling Model Including Heterojunction Band Offset</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Gao, Xujiao; Huang, Andy; Kerr, Bert</p> <p>2017-10-25</p> <p>In this paper, we present an efficient band-to-<span class="hlt">trap</span> tunneling model based on the Schenk approach, in which an analytic density-of-states (DOS) model is developed based on the open boundary scattering method. The new model explicitly includes the effect of heterojunction band offset, in addition to the well-known field effect. Its analytic form enables straightforward implementation into TCAD device simulators. It is applicable to all one-dimensional potentials, which can be approximated to a good degree such that the approximated potentials lead to piecewise analytic <span class="hlt">wave</span> functions with open boundary conditions. The model allows for simulating both the electric-field-enhanced and band-offset-enhanced carriermore » recombination due to the band-to-<span class="hlt">trap</span> tunneling near the heterojunction in a heterojunction bipolar transistor (HBT). Simulation results of an InGaP/GaAs/GaAs NPN HBT show that the proposed model predicts significantly increased base currents, due to the hole-to-<span class="hlt">trap</span> tunneling enhanced by the emitter-base junction band offset. Finally, the results compare favorably with experimental observation.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S41E..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S41E..01M"><span>Imaging the Alaskan subduction <span class="hlt">zone</span> with joint inversion of ambient noise and teleseismic surface <span class="hlt">waves</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin-Short, R.; Allen, R. M.; Porritt, R.</p> <p>2017-12-01</p> <p>Alaska consists of a complex arrangement of terranes of various geological affinities, mostof which have been accreted to the margin of North America over the last 200Myr. Today,the southern margin of Alaska is a site of active subduction, displaying a myriad ofenigmatic tectonic features. These include transition from compressional to strike-slipdominated deformation, accretion of the over-thickened Yakutat terrane, termination ofAleutian arc magnetism and the Wrangell Volcanic Field, whose magma source remainsdebated. The ongoing deployment of Transportable Array (TA) seismometers across Alaskaprovides an unprecedented opportunity to image these features in detail and learn moreabout the tectonic history of the region. Here we present a three dimensional model ofshear <span class="hlt">wave</span> (Vsv) velocity beneath Alaska constructed using joint inversion of phasevelocity maps derived from ambient noise and teleseismic surface <span class="hlt">wave</span> tomography. Thismodel possesses good resolution from the upper crust to about 150km depth, thuscomplementing recent body <span class="hlt">wave</span> models of the region, which lack resolution above 100km.In the upper crust, we are able to distinguish major sedimentary basins and the cores ofmountain belts. At mid-crustal depths, we see a sharp velocity contrast across the Denalifault, suggesting that it marks a significant step in crustal thickness. In the mantle wedgeabove the subducting Yakutat terrane we observe a high velocity anomaly that may berelated to paucity of volcanism in this region. At greater depths, we image the subductingPacific-Yakutat slab as an elongate, high velocity anomaly that terminates abruptly at 145ºW, slightly further east than suggested by the Wadati-Benioff <span class="hlt">zone</span> alone. There is alarge, low velocity anomaly beneath the Wrangell Volcanic Field, hinting that magmatismhere may be related to mantle upwelling around the slab edge.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/182705-hydrodynamic-force-characteristics-slender-cylinders-splash-zone','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/182705-hydrodynamic-force-characteristics-slender-cylinders-splash-zone"><span>Hydrodynamic force characteristics of slender cylinders in the splash <span class="hlt">zone</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Haritos, N.; Daliri, M.R.</p> <p>1995-12-31</p> <p>This paper presents results from a pilot experimental program of research being performed on segmented vertical surface-piercing cylinders in the Department of Civil and Environmental Engineering at The University of Melbourne. The primary aim of this investigation is to determine the influence of the splash <span class="hlt">zone</span> on the hydrodynamic force characteristics of such cylinders to <span class="hlt">wave</span> loading in the Morison regime. This influence is assessed from a comparison of the observed force characteristics of instrumented segments located in the splash <span class="hlt">zone</span> with the corresponding results obtained from similarly instrumented segments located in the fully submerged <span class="hlt">zone</span> and from those obtainedmore » for the cylinder as a whole via measurements of the cylinder tip restraint force. Results to hand for uni-directional regular <span class="hlt">waves</span> suggest that there appears to be a mild frequency dependence in the inertia force coefficient in the splash <span class="hlt">zone</span> which only marginally exceeds the corresponding values observed for a submerged segment immediately below this <span class="hlt">zone</span>.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title50-vol13/pdf/CFR-2012-title50-vol13-sec697-19.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title50-vol13/pdf/CFR-2012-title50-vol13-sec697-19.pdf"><span>50 CFR 697.19 - <span class="hlt">Trap</span> limits and <span class="hlt">trap</span> tag requirements for vessels fishing with lobster <span class="hlt">traps</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-10-01</p> <p>... vessels fishing with lobster <span class="hlt">traps</span>. 697.19 Section 697.19 Wildlife and Fisheries FISHERY CONSERVATION AND... requirements for vessels fishing with lobster <span class="hlt">traps</span>. (a) <span class="hlt">Trap</span> limits for vessels fishing or authorized to fish in any Nearshore Management Area. (1) Through August 31, 2003, vessels fishing in or issued a...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/449664-hydrodynamic-force-characteristics-splash-zone','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/449664-hydrodynamic-force-characteristics-splash-zone"><span>Hydrodynamic force characteristics in the splash <span class="hlt">zone</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Daliri, M.R.; Haritos, N.</p> <p>1996-12-31</p> <p>A comprehensive experimental study concerned with the hydrodynamic force characteristics of both rigid and compliant surface piercing cylinders, with a major focus on the local nature of these characteristics as realized in the splash <span class="hlt">zone</span> and in the fully submerged <span class="hlt">zone</span> immediately below this region, has been in progress at the University of Melbourne for the last three years. This paper concentrates on a portion of this study associated with uni-directional regular <span class="hlt">wave</span> inputs with <span class="hlt">wave</span> steepness (H/{lambda}) in the range 0.0005--0.1580 and Keulegan-Carpenter (KC) numbers in the range 2--15 which encompasses inertia force dominant (KC<5) to drag force significantmore » conditions (5« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1013695','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1013695"><span><span class="hlt">Wave</span> Climate and <span class="hlt">Wave</span> Mixing in the Marginal Ice <span class="hlt">Zones</span> of Arctic Seas, Observations and Modelling</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>ababanin.com/ LONG-TERM GOALS The long-term goals of the present project are two: wind/<span class="hlt">wave</span> climatology for the Arctic Seas, and their current...OBJECTIVES The wind/<span class="hlt">wave</span> climatology for the Arctic Seas will be developed based on altimeter observations. It will have a major scientific and...applied significance as presently there is no reference climatology for this region of the ocean available. The new versions of <span class="hlt">wave</span> models for the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25c2123A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25c2123A"><span>Ion acoustic solitons in an electronegative plasma with electron <span class="hlt">trapping</span> and nonextensivity effects</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ali Shan, S.</p> <p>2018-03-01</p> <p>The impact of electron <span class="hlt">trapping</span> and nonextensivity on the low frequency ion acoustic solitary <span class="hlt">waves</span> in an electronegative plasma is investigated. The energy integral equation with the Sagdeev truncated approach is derived, which is then solved with the help of suitable parameters and necessary conditions to get the solitary structures. The minimum Mach (M) number needed to calculate the solitary structures is found to be varying under the impact of <span class="hlt">trapping</span> efficiency determining factor β and entropic index q. The results have been illustrated with the help of physically acceptable parameters and the amplitude of nonlinear solitary structures is found to be modified significantly because of electron <span class="hlt">trapping</span> efficiency β and entropic index q. This study has been made with reference to Laboratory observation, which can also be helpful in Space and astrophysical plasmas where electronegative plasmas have been reported.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22518599-migration-traps-disks-around-supermassive-black-holes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22518599-migration-traps-disks-around-supermassive-black-holes"><span>MIGRATION <span class="hlt">TRAPS</span> IN DISKS AROUND SUPERMASSIVE BLACK HOLES</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry</p> <p></p> <p>Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign,more » <span class="hlt">trapping</span> migrating objects. Our analysis shows that major migration <span class="hlt">traps</span> generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R{sub g}, where R{sub g} = 2GM/c{sup 2} is the Schwarzschild radius. At these <span class="hlt">traps</span>, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational <span class="hlt">wave</span> source populations.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170000975&hterms=climate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dclimate','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170000975&hterms=climate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dclimate"><span>Tropical <span class="hlt">Waves</span> and the Quasi-Biennial Oscillation in a 7-km Global Climate Simulation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Holt, Laura A.; Alexander, M. Joan; Coy, Lawrence; Molod, Andrea; Putman, William; Pawson, Steven</p> <p>2016-01-01</p> <p>This study investigates tropical <span class="hlt">waves</span> and their role in driving a quasi-biennial oscillation (QBO)-like signal in stratospheric winds in a global 7-km-horizontal-resolution atmospheric general circulation model. The Nature Run (NR) is a 2-year global mesoscale simulation of the Goddard Earth Observing System Model, version 5 (GEOS-5). In the tropics, there is evidence that the NR supports a broad range of convectively generated <span class="hlt">waves</span>. The NR precipitation spectrum resembles the observed spectrum in many aspects, including the preference for westward-propagating <span class="hlt">waves</span>. However, even with very high horizontal resolution and a healthy population of resolved <span class="hlt">waves</span>, the zonal force provided by the resolved <span class="hlt">waves</span> is still too low in the QBO region and parameterized gravity <span class="hlt">wave</span> drag is the main driver of the NR QBO-like oscillation (NRQBO). The authors suggest that causes include coarse vertical resolution and excessive dissipation. Nevertheless, the very-high-resolution NR provides an opportunity to analyze the resolved <span class="hlt">wave</span> forcing of the NR-QBO. In agreement with previous studies, large-scale Kelvin and small-scale <span class="hlt">waves</span> contribute to the NRQBO driving in eastward shear <span class="hlt">zones</span> and small-scale <span class="hlt">waves</span> dominate the NR-QBO driving in westward shear <span class="hlt">zones</span>. <span class="hlt">Waves</span> with zonal wavelength,1000 km account for up to half of the small-scale (,3300 km) resolved <span class="hlt">wave</span> forcing in eastward shear <span class="hlt">zones</span> and up to 70% of the small-scale resolved <span class="hlt">wave</span> forcing in westward shear <span class="hlt">zones</span> of the NR-QBO.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3904145','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3904145"><span>Light <span class="hlt">trapping</span> and surface plasmon enhanced high-performance NIR photodetector</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Luo, Lin-Bao; Zeng, Long-Hui; Xie, Chao; Yu, Yong-Qiang; Liang, Feng-Xia; Wu, Chun-Yan; Wang, Li; Hu, Ji-Gang</p> <p>2014-01-01</p> <p>Heterojunctions near infrared (NIR) photodetectors have attracted increasing research interests for their wide-ranging applications in many areas such as military surveillance, target detection, and light vision. A high-performance NIR light photodetector was fabricated by coating the methyl-group terminated Si nanowire array with plasmonic gold nanoparticles (AuNPs) decorated graphene film. Theoretical simulation based on finite element method (FEM) reveals that the AuNPs@graphene/CH3-SiNWs array device is capable of <span class="hlt">trapping</span> the incident NIR light into the SiNWs array through SPP excitation and coupling in the AuNPs decorated graphene layer. What is more, the coupling and <span class="hlt">trapping</span> of freely propagating plane <span class="hlt">waves</span> from free space into the nanostructures, and surface passivation contribute to the high on-off ratio as well. PMID:24468857</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1615997L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1615997L"><span>Analysis of X-band radar images for the detection of the reflected and diffracted <span class="hlt">waves</span> in coastal <span class="hlt">zones</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ludeno, Giovanni; Natale, Antonio; Soldovieri, Francesco; Vicinanza, Diego; Serafino, Francesco</p> <p>2014-05-01</p> <p>The observation of nearshore <span class="hlt">waves</span> and the knowledge of the sea state parameters can play a crucial role for the safety of harbors and ocean engineering. In the last two decades, different algorithms for the estimation of sea state parameters, surface currents and bathymetry from X-band radar data have been developed and validated [1, 2]. The retrieval of ocean <span class="hlt">wave</span> parameters such as significant height, period, direction and wavelength of the dominant <span class="hlt">wave</span> is based on the spectral analysis of data sequences collected by nautical X-band radars [3]. In particular, the reconstruction of the <span class="hlt">wave</span> motion is carried out through the inversion procedure explained in [1-3], which exploits the dispersion relationship to define a band pass filter used to separate the energy associated with the ocean <span class="hlt">waves</span> from the background noise. It is worth to note that the shape of such a band pass filter depends upon the value of both the surface currents and bathymetry; in our reconstruction algorithm these parameters are estimated through the (Normalized Scalar Product) procedure [1], which outperforms other existing methods (e.g., the Least Squares) [4]. From the reconstructed <span class="hlt">wave</span> elevation sequences we can get the directional spectrum that provides useful information (i.e., wavelength, period, direction and amplitude) relevant to the main <span class="hlt">waves</span> contributing to the <span class="hlt">wave</span> motion. Of course, in coastal <span class="hlt">zones</span> a number of diffraction and reflection phenomena can be observed, due to sea-<span class="hlt">waves</span> impinging obstacles as jetties, breakwaters and boats. In the present paper we want to show the capability to detect reflected and diffracted sea-<span class="hlt">waves</span> offered by the processing of X-band radar data. Further details relevant to the obtained results will be provided in the full paper and at the conference time. References [1] F. Serafino, C. Lugni, F. Soldovieri, "A novel strategy for the surface current determination from marine X-Band radar data", IEEE Geosci. and Remote Sensing Letters, vol. 7, no</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19518712','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19518712"><span>Nonlinear <span class="hlt">waves</span> in subwavelength waveguide arrays: evanescent bands and the "phoenix soliton".</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Peleg, Or; Segev, Mordechai; Bartal, Guy; Christodoulides, Demetrios N; Moiseyev, Nimrod</p> <p>2009-04-24</p> <p>We formulate <span class="hlt">wave</span> propagation in arrays of subwavelength waveguides with sharp index contrasts and demonstrate the collapse of bands into evanescent modes and lattice solitons with superluminal phase velocity. We find a self-reviving soliton ("phoenix soliton") comprised of coupled forward- and backward-propagating light, originating solely from evanescent bands. In the linear regime, all Bloch <span class="hlt">waves</span> comprising this beam decay, whereas a proper nonlinearity assembles them into a propagating self-<span class="hlt">trapped</span> beam. Finally, we simulate the dynamics of such a beam and observe breakup into temporal pulses, indicating a new kind of slow-light gap solitons, <span class="hlt">trapped</span> in time and in one transverse dimension.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910055758&hterms=quasi+particle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dquasi%2Bparticle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910055758&hterms=quasi+particle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dquasi%2Bparticle"><span>Numerical studies of electron dynamics in oblique quasi-perpendicular collisionless shock <span class="hlt">waves</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liewer, P. C.; Decyk, V. K.; Dawson, J. M.; Lembege, B.</p> <p>1991-01-01</p> <p>Linear and nonlinear electron damping of the whistler precursor <span class="hlt">wave</span> train to low Mach number quasi-perpendicular oblique shocks is studied using a one-dimensional electromagnetic plasma simulation code with particle electrons and ions. In some parameter regimes, electrons are observed to <span class="hlt">trap</span> along the magnetic field lines in the potential of the whistler precursor <span class="hlt">wave</span> train. This <span class="hlt">trapping</span> can lead to significant electron heating in front of the shock for low beta(e). Use of a 64-processor hypercube concurrent computer has enabled long runs using realistic mass ratios in the full particle in-cell code and thus simulate shock parameter regimes and phenomena not previously studied numerically.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21615163','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21615163"><span>Coaxial ion <span class="hlt">trap</span> mass spectrometer: concentric toroidal and quadrupolar <span class="hlt">trapping</span> regions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Peng, Ying; Hansen, Brett J; Quist, Hannah; Zhang, Zhiping; Wang, Miao; Hawkins, Aaron R; Austin, Daniel E</p> <p>2011-07-15</p> <p>We present the design and results for a new radio-frequency ion <span class="hlt">trap</span> mass analyzer, the coaxial ion <span class="hlt">trap</span>, in which both toroidal and quadrupolar <span class="hlt">trapping</span> regions are created simultaneously. The device is composed of two parallel ceramic plates, the facing surfaces of which are lithographically patterned with concentric metal rings and covered with a thin film of germanium. Experiments demonstrate that ions can be <span class="hlt">trapped</span> in either region, transferred from the toroidal to the quadrupolar region, and mass-selectively ejected from the quadrupolar region to a detector. Ions <span class="hlt">trapped</span> in the toroidal region can be transferred to the quadrupole region using an applied ac signal in the radial direction, although it appears that the mechanism of this transfer does not involve resonance with the ion secular frequency, and the process is not mass selective. Ions in the quadrupole <span class="hlt">trapping</span> region are mass analyzed using dipole resonant ejection. Multiple transfer steps and mass analysis scans are possible on a single population of ions, as from a single ionization/<span class="hlt">trapping</span> event. The device demonstrates better mass resolving power than the radially ejecting halo ion <span class="hlt">trap</span> and better sensitivity than the planar quadrupole ion <span class="hlt">trap</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24170245','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24170245"><span>Laser <span class="hlt">trapping</span>-induced crystallization of L-phenylalanine through its high-concentration domain formation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yuyama, Ken-ichi; Wu, Chi-Shiun; Sugiyama, Teruki; Masuhara, Hiroshi</p> <p>2014-02-01</p> <p>We present the laser <span class="hlt">trapping</span>-induced crystallization of L-phenylalanine through high-concentration domain formation in H2O and D2O solutions which is achieved by focusing a continuous-<span class="hlt">wave</span> (CW) near-infrared laser beam at the solution surface. Upon laser irradiation into the H2O solution, laser <span class="hlt">trapping</span> of the liquid-like clusters increases the local concentration, accompanying laser heating, and a single plate-like crystal is eventually prepared at the focal spot. On the other hand, in the D2O solution, a lot of the monohydrate needle-like crystals are observed, not at the focal spot where the concentration is high enough to trigger crystal nucleation, but in the 0.5-1.5 mm range from the focal spot. The dynamics and mechanism of the amazing crystallization behaviour induced by laser <span class="hlt">trapping</span> are discussed from the viewpoints of the concentration increase due to laser heating depending on solvent, the large high-concentration domain formation by laser <span class="hlt">trapping</span> of liquid-like clusters, and the orientational disorder of molecules/clusters at the domain edge.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JLTP..187..580J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JLTP..187..580J"><span>Stable <span class="hlt">Trapping</span> of Multielectron Helium Bubbles in a Paul <span class="hlt">Trap</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Joseph, E. M.; Vadakkumbatt, V.; Pal, A.; Ghosh, A.</p> <p>2017-06-01</p> <p>In a recent experiment, we have used a linear Paul <span class="hlt">trap</span> to store and study multielectron bubbles (MEBs) in liquid helium. MEBs have a charge-to-mass ratio (between 10^{-4} and 10^{-2} C/kg) which is several orders of magnitude smaller than ions (between 10^6 and 10^8 C/kg) studied in traditional ion <span class="hlt">traps</span>. In addition, MEBs experience significant drag force while moving through the liquid. As a result, the experimental parameters for stable <span class="hlt">trapping</span> of MEBs, such as magnitude and frequency of the applied electric fields, are very different from those used in typical ion <span class="hlt">trap</span> experiments. The purpose of this paper is to model the motion of MEBs inside a linear Paul <span class="hlt">trap</span> in liquid helium, determine the range of working parameters of the <span class="hlt">trap</span>, and compare the results with experiments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25108178','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25108178"><span>Numerical study of <span class="hlt">wave</span> effects on groundwater flow and solute transport in a laboratory beach.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Geng, Xiaolong; Boufadel, Michel C; Xia, Yuqiang; Li, Hailong; Zhao, Lin; Jackson, Nancy L; Miller, Richard S</p> <p>2014-09-01</p> <p>A numerical study was undertaken to investigate the effects of <span class="hlt">waves</span> on groundwater flow and associated inland-released solute transport based on tracer experiments in a laboratory beach. The MARUN model was used to simulate the density-dependent groundwater flow and subsurface solute transport in the saturated and unsaturated regions of the beach subjected to <span class="hlt">waves</span>. The Computational Fluid Dynamics (CFD) software, Fluent, was used to simulate <span class="hlt">waves</span>, which were the seaward boundary condition for MARUN. A no-<span class="hlt">wave</span> case was also simulated for comparison. Simulation results matched the observed water table and concentration at numerous locations. The results revealed that <span class="hlt">waves</span> generated seawater-groundwater circulations in the swash and surf <span class="hlt">zones</span> of the beach, which induced a large seawater-groundwater exchange across the beach face. In comparison to the no-<span class="hlt">wave</span> case, <span class="hlt">waves</span> significantly increased the residence time and spreading of inland-applied solutes in the beach. <span class="hlt">Waves</span> also altered solute pathways and shifted the solute discharge <span class="hlt">zone</span> further seaward. Residence Time Maps (RTM) revealed that the <span class="hlt">wave</span>-induced residence time of the inland-applied solutes was largest near the solute exit <span class="hlt">zone</span> to the sea. Sensitivity analyses suggested that the change in the permeability in the beach altered solute transport properties in a nonlinear way. Due to the slow movement of solutes in the unsaturated <span class="hlt">zone</span>, the mass of the solute in the unsaturated <span class="hlt">zone</span>, which reached up to 10% of the total mass in some cases, constituted a continuous slow release of solutes to the saturated <span class="hlt">zone</span> of the beach. This means of control was not addressed in prior studies. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10075E..0MO','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10075E..0MO"><span>Investigation of HIV-1 infected and uninfected cells using the optical <span class="hlt">trapping</span> technique</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ombinda-Lemboumba, S.; Malabi, R.; Lugongolo, M. Y.; Thobakgale, S. L.; Manoto, S.; Mthunzi-Kufa, P.</p> <p>2017-02-01</p> <p>Optical <span class="hlt">trapping</span> has emerged as an essential tool for manipulating single biological material and performing sophisticated spectroscopy analysis on individual cell. The optical <span class="hlt">trapping</span> technique has been used to grab and immobilize cells from a tightly focused laser beam emitted through a high numerical aperture objective lens. Coupling optical <span class="hlt">trapping</span> with other technologies is possible and allows stable sample <span class="hlt">trapping</span>, while also facilitating molecular, chemical and spectroscopic analysis. For this reason, we are exploring laser <span class="hlt">trapping</span> combined with laser spectroscopy as a potential non-invasive method of interrogating individual cells with a high degree of specificity in terms of information generated. Thus, for the delivery of as much pathological information as possible, we use a home-build optical <span class="hlt">trapping</span> and spectroscopy system for real time probing human immunodeficiency virus (HIV-1) infected and uninfected single cells. Briefly, our experimental rig comprises an infrared continuous <span class="hlt">wave</span> laser at 1064 nm with power output of 1.5 W, a 100X high numerical aperture oil-immersion microscope objective used to capture and immobilise individual cell samples as well as an excitation source. Spectroscopy spectral patterns obtained by the 1064 nm laser beam excitation provide information on HIV-1 infected and uninfected cells. We present these preliminary findings which may be valuable for the development of an HIV-1 point of care detection system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026667','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026667"><span>Shear <span class="hlt">wave</span> velocity variation across the Taupo Volcanic <span class="hlt">Zone</span>, New Zealand, from receiver function inversion</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bannister, S.; Bryan, C.J.; Bibby, H.M.</p> <p>2004-01-01</p> <p>The Taupo Volcanic <span class="hlt">Zone</span> (TVZ), New Zealand is a region characterized by very high magma eruption rates and extremely high heat flow, which is manifest in high-temperature geothermal waters. The shear <span class="hlt">wave</span> velocity structure across the region is inferred using non-linear inversion of receiver functions, which were derived from teleseismic earthquake data. Results from the non-linear inversion, and from forward synthetic modelling, indicate low S velocities at ???6- 16 km depth near the Rotorua and Reporoa calderas. We infer these low-velocity layers to represent the presence of high-level bodies of partial melt associated with the volcanism. Receiver functions at other stations are complicated by reverberations associated with near-surface sedimentary layers. The receiver function data also indicate that the Moho lies between 25 and 30 km, deeper than the 15 ?? 2 km depth previously inferred for the crust-mantle boundary beneath the TVZ. ?? 2004 RAS.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.894a2072P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.894a2072P"><span>Effect of <span class="hlt">wave</span> action on near-well <span class="hlt">zone</span> cleaning</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pen'kovskii, V. I.; Korsakova, N. K.</p> <p>2017-10-01</p> <p>Drilling filtrate invasion into the producing formation and native water accumulating of the near-well <span class="hlt">zone</span> in well operation reduce the well productivity. As a result of that, depending on characteristic capillary pressure scale and differential pressure drawdown, oil production rate may become lower than expected one. In this paper, it is considered the hysteresis effects of capillary pressure after reversion of displacement. As applied to laboratory experiment conditions, the solution of problem of oil flow in formation model with a pressure drop on the model sides harmonically varied with time is presented. It was estimated a range of fluid vibration effective action on the near-well <span class="hlt">zone</span> cleaning from capillary locking water. The plant simulating extraction of oil from formation using widely practised sucker-rod pump has been created. Formation model is presented as a slot filled with broken glass between two plates. In the process, natural oil and sodium chloride solution were used as working fluids. The experiments qualitatively confirm a positive effect of jack pumps on the near-well <span class="hlt">zone</span> cleaning.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28372439','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28372439"><span>An in situ <span class="hlt">trap</span> capacitance measurement and ion-<span class="hlt">trapping</span> detection scheme for a Penning ion <span class="hlt">trap</span> facility.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Reza, Ashif; Banerjee, Kumardeb; Das, Parnika; Ray, Kalyankumar; Bandyopadhyay, Subhankar; Dam, Bivas</p> <p>2017-03-01</p> <p>This paper presents the design and implementation of an in situ measurement setup for the capacitance of a five electrode Penning ion <span class="hlt">trap</span> (PIT) facility at room temperature. For implementing a high Q resonant circuit for the detection of <span class="hlt">trapped</span> electrons/ions in a PIT, the value of the capacitance of the <span class="hlt">trap</span> assembly is of prime importance. A tunable Colpitts oscillator followed by a unity gain buffer and a low pass filter is designed and successfully implemented for a two-fold purpose: in situ measurement of the <span class="hlt">trap</span> capacitance when the electric and magnetic fields are turned off and also providing RF power at the desired frequency to the PIT for exciting the <span class="hlt">trapped</span> ions and subsequent detection. The setup is tested for the in situ measurement of <span class="hlt">trap</span> capacitance at room temperature and the results are found to comply with those obtained from measurements using a high Q parallel resonant circuit setup driven by a standard RF signal generator. The Colpitts oscillator is also tested successfully for supplying RF power to the high Q resonant circuit, which is required for the detection of <span class="hlt">trapped</span> electrons/ions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.3799M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.3799M"><span>Rip currents and alongshore flows in single channels dredged in the surf <span class="hlt">zone</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt; Warner, John C.; Kumar, Nirnimesh</p> <p>2017-05-01</p> <p>To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf <span class="hlt">zone</span> at five different times, and the subsequent evolution of currents and morphology was observed for a range of <span class="hlt">wave</span> and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident <span class="hlt">waves</span> and channel bathymetry, and with an extended set of <span class="hlt">wave</span> conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf <span class="hlt">zone</span>. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are <span class="hlt">wave</span>-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to <span class="hlt">wave</span> conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-<span class="hlt">wave</span>-driven-setup across the nonuniform bathymetry (a function of <span class="hlt">wave</span> height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-<span class="hlt">wave</span>-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf <span class="hlt">zone</span> is saturated) set by the vertical scale of the bathymetric variability.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70189256','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70189256"><span>Rip currents and alongshore flows in single channels dredged in the surf <span class="hlt">zone</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt; Warner, John C.; Kumar, Nirnimesh</p> <p>2017-01-01</p> <p>To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf <span class="hlt">zone</span> at five different times, and the subsequent evolution of currents and morphology was observed for a range of <span class="hlt">wave</span> and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident <span class="hlt">waves</span> and channel bathymetry, and with an extended set of <span class="hlt">wave</span> conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf <span class="hlt">zone</span>. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are <span class="hlt">wave</span>-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to <span class="hlt">wave</span> conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-<span class="hlt">wave</span>-driven-setup across the nonuniform bathymetry (a function of <span class="hlt">wave</span> height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-<span class="hlt">wave</span>-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf <span class="hlt">zone</span> is saturated) set by the vertical scale of the bathymetric variability.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/4261860','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/4261860"><span>COLD <span class="hlt">TRAPS</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Thompson, W.I.</p> <p>1958-09-30</p> <p>A cold <span class="hlt">trap</span> is presented for removing a condensable component from a gas mixture by cooling. It consists of a shell, the exterior surface of which is chilled by a refrigerant, and conductive fins welded inside the shell to condense the gas, and distribute the condensate evenly throughout the length of the <span class="hlt">trap</span>, so that the <span class="hlt">trap</span> may function until it becomes completely filled with the condensed solid. The contents may then be removed as either a gas or as a liquid by heating the <span class="hlt">trap</span>. This device has particuinr use as a means for removing uranium hexafluoride from the gaseous diffusion separation process during equipment breakdown and repair periods.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S13A0635B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S13A0635B"><span>Full-waveform inversion of surface <span class="hlt">waves</span> in exploration geophysics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borisov, D.; Gao, F.; Williamson, P.; Tromp, J.</p> <p>2017-12-01</p> <p>Full-waveform inversion (FWI) is a data fitting approach to estimate high-resolution properties of the Earth from seismic data by minimizing the misfit between observed and calculated seismograms. In land seismics, the source on the ground generates high-amplitude surface <span class="hlt">waves</span>, which generally represent most of the energy recorded by ground sensors. Although surface <span class="hlt">waves</span> are widely used in global seismology and engineering studies, they are typically treated as noise within the seismic exploration community since they mask deeper reflections from the intervals of exploration interest. This is mainly due to the fact that surface <span class="hlt">waves</span> decay exponentially with depth and for a typical frequency range (≈[5-50] Hz) sample only the very shallow part of the subsurface, but also because they are much more sensitive to S-<span class="hlt">wave</span> than P-<span class="hlt">wave</span> velocities. In this study, we invert surface <span class="hlt">waves</span> in the hope of using them as additional information for updating the near surface. In a heterogeneous medium, the main challenge of surface <span class="hlt">wave</span> inversion is associated with their dispersive character, which makes it difficult to define a starting model for conventional FWI which can avoid cycle-skipping. The standard approach to dealing with this is by inverting the dispersion curves in the Fourier (f-k) domain to generate locally 1-D models, typically for the shear wavespeeds only. However this requires that the near-surface <span class="hlt">zone</span> be more or less horizontally invariant over a sufficient distance for the spatial Fourier transform to be applicable. In regions with significant topography, such as foothills, this is not the case, so we revert to the time-space domain, but aim to minimize the differences of envelopes in the early stages of the inversion to resolve the cycle-skipping issue. Once the model is good enough, we revert to the classic waveform-difference inversion. We first present a few synthetic examples. We show that classical FWI might be <span class="hlt">trapped</span> in a local minimum even for</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27283181','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27283181"><span>Basic study of less invasive high-intensity focused ultrasound (HIFU) in fetal therapy for twin reversed arterial perfusion (<span class="hlt">TRAP</span>) sequence.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ichizuka, Kiyotake; Matsuoka, Ryu; Aoki, Hiroko; Hasegawa, Junichi; Okai, Takashi; Umemura, Shin-Ichiro</p> <p>2016-10-01</p> <p>The objective of the present study was to develop a high-intensity focused ultrasound (HIFU) transducer more suitable for clinical use in fetal therapy for twin reversed arterial perfusion (<span class="hlt">TRAP</span>) sequence. We created a cooling and degassed water-circulating-type HIFU treatment device. HIFU was applied to renal branch vessels in three rabbits. Sequential HIFU irradiation contains a trigger <span class="hlt">wave</span>, heating <span class="hlt">wave</span>, and rest time. The duration of HIFU application was 10 s/course. Targeting could be achieved by setting the imaging probe in the center and placing the HIFU beam and imaging ultrasonic <span class="hlt">wave</span> on the same axis. We confirmed under sequential HIFU irradiation with a total intensity of 1.94 kW/cm(2) (spatial average temporal average intensity) that the vein and artery were occluded in all three rabbits. Simultaneous occluding of the veins and arteries was confirmed with trigger <span class="hlt">waves</span> and a resting phase using the HIFU transducer treatment device created for this study. Clinical application appears possible and may represent a promising option for fetal therapy involving <span class="hlt">TRAP</span> sequence.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22114667','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22114667"><span>New mechanism of spiral <span class="hlt">wave</span> initiation in a reaction-diffusion-mechanics system.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Weise, Louis D; Panfilov, Alexander V</p> <p>2011-01-01</p> <p>Spiral <span class="hlt">wave</span> initiation in the heart muscle is a mechanism for the onset of dangerous cardiac arrhythmias. A standard protocol for spiral <span class="hlt">wave</span> initiation is the application of a stimulus in the refractory tail of a propagating excitation <span class="hlt">wave</span>, a region that we call the "classical vulnerable <span class="hlt">zone</span>." Previous studies of vulnerability to spiral <span class="hlt">wave</span> initiation did not take the influence of deformation into account, which has been shown to have a substantial effect on the excitation process of cardiomyocytes via the mechano-electrical feedback phenomenon. In this work we study the effect of deformation on the vulnerability of excitable media in a discrete reaction-diffusion-mechanics (dRDM) model. The dRDM model combines FitzHugh-Nagumo type equations for cardiac excitation with a discrete mechanical description of a finite-elastic isotropic material (Seth material) to model cardiac excitation-contraction coupling and stretch activated depolarizing current. We show that deformation alters the "classical," and forms a new vulnerable <span class="hlt">zone</span> at longer coupling intervals. This mechanically caused vulnerable <span class="hlt">zone</span> results in a new mechanism of spiral <span class="hlt">wave</span> initiation, where unidirectional conduction block and rotation directions of the consequently initiated spiral <span class="hlt">waves</span> are opposite compared to the mechanism of spiral <span class="hlt">wave</span> initiation due to the "classical vulnerable <span class="hlt">zone</span>." We show that this new mechanism of spiral <span class="hlt">wave</span> initiation can naturally occur in situations that involve <span class="hlt">wave</span> fronts with curvature, and discuss its relation to supernormal excitability of cardiac tissue. The concept of mechanically induced vulnerability may lead to a better understanding about the onset of dangerous heart arrhythmias via mechano-electrical feedback.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SMaS...25h5017C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SMaS...25h5017C"><span>Manipulating <span class="hlt">waves</span> by distilling frequencies: a tunable shunt-enabled rainbow <span class="hlt">trap</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cardella, Davide; Celli, Paolo; Gonella, Stefano</p> <p>2016-08-01</p> <p>In this work, we propose and test a strategy for tunable, broadband <span class="hlt">wave</span> attenuation in electromechanical waveguides with shunted piezoelectric inclusions. Our strategy is built upon the vast pre-existing literature on vibration attenuation and bandgap generation in structures featuring periodic arrays of piezo patches, but distinguishes itself for several key features. First, we demystify the idea that periodicity is a requirement for <span class="hlt">wave</span> attenuation and bandgap formation. We further embrace the idea of ‘organized disorder’ by tuning the circuits as to resonate at distinct neighboring frequencies. In doing so, we create a tunable ‘rainbow trap’ (Tsakmakidis et al 2007 Nature 450 397-401) capable of attenuating <span class="hlt">waves</span> with broadband characteristics, by distilling (sequentially) seven frequencies from a traveling wavepacket. Finally, we devote considerable attention to the implications in terms of packet distortion of the spectral manipulation introduced by shunting. This work is also meant to serve as a didactic tool for those approaching the field of shunted piezoelectrics, and attempts to provide a different perspective, with abundant details, on how to successfully design an experimental setup involving resistive-inductive shunts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22599876-twisted-electron-acoustic-waves-plasmas','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22599876-twisted-electron-acoustic-waves-plasmas"><span>Twisted electron-acoustic <span class="hlt">waves</span> in plasmas</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Aman-ur-Rehman, E-mail: amansadiq@gmail.com; Department of Physics and Applied Mathematics; Ali, S.</p> <p>2016-08-15</p> <p>In the paraxial limit, a twisted electron-acoustic (EA) <span class="hlt">wave</span> is studied in a collisionless unmagnetized plasma, whose constituents are the dynamical cold electrons and Boltzmannian hot electrons in the background of static positive ions. The analytical and numerical solutions of the plasma kinetic equation suggest that EA <span class="hlt">waves</span> with finite amount of orbital angular momentum exhibit a twist in its behavior. The twisted <span class="hlt">wave</span> particle resonance is also taken into consideration that has been appeared through the effective <span class="hlt">wave</span> number q{sub eff} accounting for Laguerre-Gaussian mode profiles attributed to helical phase structures. Consequently, the dispersion relation and the damping ratemore » of the EA <span class="hlt">waves</span> are significantly modified with the twisted parameter η, and for η → ∞, the results coincide with the straight propagating plane EA <span class="hlt">waves</span>. Numerically, new features of twisted EA <span class="hlt">waves</span> are identified by considering various regimes of wavelength and the results might be useful for transport and <span class="hlt">trapping</span> of plasma particles in a two-electron component plasma.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29068333','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29068333"><span>Bed turbulent kinetic energy boundary conditions for <span class="hlt">trapping</span> efficiency and spatial distribution of sediments in basins.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Isenmann, Gilles; Dufresne, Matthieu; Vazquez, José; Mose, Robert</p> <p>2017-10-01</p> <p>The purpose of this study is to develop and validate a numerical tool for evaluating the performance of a settling basin regarding the <span class="hlt">trapping</span> of suspended matter. The Euler-Lagrange approach was chosen to model the flow and sediment transport. The numerical model developed relies on the open source library OpenFOAM ® , enhanced with new particle/wall interaction conditions to limit sediment deposition in <span class="hlt">zones</span> with favourable hydrodynamic conditions (shear stress, turbulent kinetic energy). In particular, a new relation is proposed for calculating the turbulent kinetic energy threshold as a function of the properties of each particle (diameter and density). The numerical model is compared to three experimental datasets taken from the literature and collected for scale models of basins. The comparison of the numerical and experimental results permits concluding on the model's capacity to predict the <span class="hlt">trapping</span> of particles in a settling basin with an absolute error in the region of 5% when the sediment depositions occur over the entire bed. In the case of sediment depositions localised in preferential <span class="hlt">zones</span>, their distribution is reproduced well by the model and <span class="hlt">trapping</span> efficiency is evaluated with an absolute error in the region of 10% (excluding cases of particles with very low density).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010026442','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010026442"><span>Idealized Simulations of the Effects of Amazon Convection and Baroclinic <span class="hlt">Waves</span> on the South Atlantic Convergence <span class="hlt">Zone</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ferreira, Rosana Nieto; Suarez, Max J.; Nigam, Sumant; Einaudi, Franco (Technical Monitor)</p> <p>2001-01-01</p> <p>The South Atlantic Convergence <span class="hlt">Zone</span> (SACZ) is a NW-SE oriented, stationary region of enhanced convergence and convection that extends southeastward from the ITCZ convection anchored over the Amazon region. On daily satellite images each SACZ episode is seen as a progression of one or several midlatitude cold fronts that intrude into the subtropics and tropics, becoming stationary over southeastern Brazil for a few days. Previous studies have shown that while Amazon convection plays a fundamental role in the formation of the SACZ, Atlantic sea surface temperatures and the Andes Mountains play a relatively minor role in the strength and location of the SACZ. The role of interactions between Amazon convection and midlatitude baroclinic <span class="hlt">waves</span> in establishing the origin, position, and maintenance of the SACZ is studied here using idealized dry, multilayer global model simulations that do not include the effects of topography. The model simulations produce SACZ-like regions of low-level convergence in the presence of Amazon convection embedded in a mean-flow that contains propagating baroclinic <span class="hlt">waves</span>. The results of these simulations indicate that Amazon convection plays two fundamental roles in the formation and location of the SACZ. First, it produces a NW-SE oriented region of low-level convergence to the SE of Amazon convection. Second, it produces a storm-track region and accompanying stronger midlatitude baroclinic <span class="hlt">waves</span> in the region of the SACZ. It is suggested that in the presence of moist effects, the 'seedling' SACZ regions produced in these simulations can be enhanced to produce the observed SACZ.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17930666','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17930666"><span><span class="hlt">Trapping</span> of ultracold polar molecules with a thin-wire electrostatic <span class="hlt">trap</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kleinert, J; Haimberger, C; Zabawa, P J; Bigelow, N P</p> <p>2007-10-05</p> <p>We describe the realization of a dc electric-field <span class="hlt">trap</span> for ultracold polar molecules, the thin-wire electrostatic <span class="hlt">trap</span> (TWIST). The thin wires that form the electrodes of the TWIST allow us to superimpose the <span class="hlt">trap</span> onto a magneto-optical <span class="hlt">trap</span> (MOT). In our experiment, ultracold polar NaCs molecules in their electronic ground state are created in the MOT via photoassociation, achieving a continuous accumulation in the TWIST of molecules in low-field seeking states. Initial measurements show that the TWIST <span class="hlt">trap</span> lifetime is limited only by the background pressure in the chamber.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29433003','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29433003"><span>Mixing of ultrasonic Lamb <span class="hlt">waves</span> in thin plates with quadratic nonlinearity.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Feilong; Zhao, Youxuan; Cao, Peng; Hu, Ning</p> <p>2018-07-01</p> <p>This paper investigates the propagation of Lamb <span class="hlt">waves</span> in thin plates with quadratic nonlinearity by one-way mixing method using numerical simulations. It is shown that an A 0 -mode <span class="hlt">wave</span> can be generated by a pair of S 0 and A 0 mode <span class="hlt">waves</span> only when mixing condition is satisfied, and mixing <span class="hlt">wave</span> signals are capable of locating the damage <span class="hlt">zone</span>. Additionally, it is manifested that the acoustic nonlinear parameter increases linearly with quadratic nonlinearity but monotonously with the size of mixing <span class="hlt">zone</span>. Furthermore, because of frequency deviation, the waveform of the mixing <span class="hlt">wave</span> changes significantly from a regular diamond shape to toneburst trains. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ApJ...803L..23K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ApJ...803L..23K"><span>Partial Reflection and <span class="hlt">Trapping</span> of a Fast-mode <span class="hlt">Wave</span> in Solar Coronal Arcade Loops</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, Pankaj; Innes, D. E.</p> <p>2015-04-01</p> <p>We report on the first direct observation of a fast-mode <span class="hlt">wave</span> propagating along and perpendicular to cool (171 Å) arcade loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA). The <span class="hlt">wave</span> was associated with an impulsive/compact flare near the edge of a sunspot. The EUV wavefront expanded radially outward from the flare center and decelerated in the corona from 1060 to 760 km s-1 within ˜3-4 minutes. Part of the EUV <span class="hlt">wave</span> propagated along a large-scale arcade of cool loops and was partially reflected back to the flare site. The phase speed of the <span class="hlt">wave</span> was about 1450 km s-1, which is interpreted as a fast-mode <span class="hlt">wave</span>. A second overlying loop arcade, orientated perpendicular to the cool arcade, is heated and becomes visible in the AIA hot channels. These hot loops sway in time with the EUV <span class="hlt">wave</span>, as it propagated to and fro along the lower loop arcade. We suggest that an impulsive energy release at one of the footpoints of the arcade loops causes the onset of an EUV shock <span class="hlt">wave</span> that propagates along and perpendicular to the magnetic field.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27519419','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27519419"><span>Comparative evaluation of the efficiency of the BG-Sentinel <span class="hlt">trap</span>, CDC light <span class="hlt">trap</span> and Mosquito-oviposition <span class="hlt">trap</span> for the surveillance of vector mosquitoes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Yiji; Su, Xinghua; Zhou, Guofa; Zhang, Hong; Puthiyakunnon, Santhosh; Shuai, Shufen; Cai, Songwu; Gu, Jinbao; Zhou, Xiaohong; Yan, Guiyun; Chen, Xiao-Guang</p> <p>2016-08-12</p> <p>The surveillance of vector mosquitoes is important for the control of mosquito-borne diseases. To identify a suitable surveillance tool for the adult dengue vector Aedes albopictus, the efficacy of the BG-Sentinel <span class="hlt">trap</span>, CDC light <span class="hlt">trap</span> and Mosquito-oviposition <span class="hlt">trap</span> (MOT) on the capture of vector mosquitoes were comparatively evaluated in this study. The capture efficiencies of the BG-Sentinel <span class="hlt">trap</span>, CDC light <span class="hlt">trap</span> and Mosquito-oviposition <span class="hlt">trap</span> for common vector mosquitoes were tested in a laboratory setting, through the release-recapture method, and at two field sites of Guangzhou, China from June 2013 to May 2014. The captured mosquitoes were counted, species identified and compared among the three <span class="hlt">traps</span> on the basis of species. In the release-recapture experiments in a laboratory setting, the BG-Sentinel <span class="hlt">trap</span> caught significantly more Aedes albopictus and Culex quinquefasciatus than the CDC light <span class="hlt">trap</span> and Mosquito-ovitrap, except for Anopheles sinensis. The BG-Sentinel <span class="hlt">trap</span> had a higher efficacy in capturing female rather than male Ae. albopictus and Cx. quinquefasciatus, but the capture in CDC light <span class="hlt">traps</span> displayed no significant differences. In the field trial, BG-Sentinel <span class="hlt">traps</span> collected more Aedes albopictus than CDC light <span class="hlt">traps</span> and MOTs collected in both urban and suburban areas. The BG-Sentinel <span class="hlt">trap</span> was more sensitive for monitoring the population density of Aedes albopictus than the CDC light <span class="hlt">trap</span> and MOT during the peak months of the year 2013. However, on an average, CDC light <span class="hlt">traps</span> captured significantly more Cx. quinquefasciatus than BG-Sentinel <span class="hlt">traps</span>. The population dynamics of Cx. quinquefasciatus displayed a significant seasonal variation, with the lowest numbers in the middle of the year. This study indicates that the BG-Sentinel <span class="hlt">trap</span> is more effective than the commonly used CDC light <span class="hlt">trap</span> and MOT in sampling adult Aedes albopictus and Culex quinquefasciatus. We recommend its use in the surveillance of dengue vector mosquitoes in China.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090033877&hterms=english+context&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Denglish%2Bcontext','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090033877&hterms=english+context&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Denglish%2Bcontext"><span>Facilitating Heliophysics Research by the Virtual <span class="hlt">Wave</span> Observatory (VWO) Context Data Search Capability</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fung, Shing F.; Shao, Xi; Garcia, Leonard N.; Galkin, Ivan A.; Benson, Robert F.</p> <p>2009-01-01</p> <p><span class="hlt">Wave</span> phenomena, ranging from freely propagating electromagnetic radiation (e.g., solar radio bursts, AKR) to plasma <span class="hlt">wave</span> modes <span class="hlt">trapped</span> in various plasma regimes (e.g., whistlers, Langmuir and ULF <span class="hlt">waves</span>) and atmospheric gravity <span class="hlt">waves</span>, are ubiquitous in the heliosphere. Because <span class="hlt">waves</span> can propagate, <span class="hlt">wave</span> data obtained at a given observing location may pertain to <span class="hlt">wave</span> oscillations generated locally or from afar. While <span class="hlt">wave</span> data analysis requires knowledge of <span class="hlt">wave</span> characteristics specific to different <span class="hlt">wave</span> modes, the search for appropriate data for heliophysics <span class="hlt">wave</span> studies also requires knowledge of <span class="hlt">wave</span> phenomena. In addition to deciding whether the interested <span class="hlt">wave</span> activity is electrostatic (i.e., locally <span class="hlt">trapped</span>) or electromagnetic (with propagation over distances), considerations must be given to the dependence of the <span class="hlt">wave</span> activity on observer's location or viewing geometry, propagating frequency range and whether the <span class="hlt">wave</span> data were acquired by passive or active observations. Occurances of natural <span class="hlt">wave</span> emissions i the magnetosphere (e.g, auroral kilometric radiation) are often dependent also on the state (e.e., context) of the magnetosphere that varies with the changing solar wind, IMF and geomagnetic conditions. Fung and Shao [2008] showed recently that magnetospheric state can be specified by a set of suitably time-shifted solar wind, IMF and the multi-scale geomagnetic response parameters. These parameters form a magnetospheric state vector that provides the basis for searching magnetospheric <span class="hlt">wave</span> data by their context conditions. Using the IMAGE Radio Plasma Imager (RPI) data and the NASA Magnetospheric State Query System (MSOS) [Fung, 2004], this presentation demonstrates the VWO context data search capability under development and solicits feedback from the Heliophysics research community for improvements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23306446','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23306446"><span>Position control of desiccation cracks by memory effect and Faraday <span class="hlt">waves</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nakayama, Hiroshi; Matsuo, Yousuke; Takeshi, Ooshida; Nakahara, Akio</p> <p>2013-01-01</p> <p>Pattern formation of desiccation cracks on a layer of a calcium carbonate paste is studied experimentally. This paste is known to exhibit a memory effect, which means that a short-time application of horizontal vibration to the fresh paste predetermines the direction of the cracks that are formed after the paste is dried. While the position of the cracks (as opposed to their direction) is still stochastic in the case of horizontal vibration, the present work reports that their positioning is also controllable, at least to some extent, by applying vertical vibration to the paste and imprinting the pattern of Faraday <span class="hlt">waves</span>, thus breaking the translational symmetry of the system. The experiments show that the cracks tend to appear in the node <span class="hlt">zones</span> of the Faraday <span class="hlt">waves</span>: in the case of stripe-patterned Faraday <span class="hlt">waves</span>, the cracks are formed twice more frequently in the node <span class="hlt">zones</span> than in the anti-node <span class="hlt">zones</span>, presumably due to the localized horizontal motion. As a result of this preference of the cracks to the node <span class="hlt">zones</span>, the memory of the square lattice pattern of Faraday <span class="hlt">waves</span> makes the cracks run in the oblique direction differing by 45 degrees from the intuitive lattice direction of the Faraday <span class="hlt">waves</span>.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016LatJP..53c..22B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016LatJP..53c..22B"><span><span class="hlt">Wave</span> Energy Potential in the Latvian EEZ</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beriņš, J.; Beriņš, J.; Kalnačs, J.; Kalnačs, A.</p> <p>2016-06-01</p> <p>The present article deals with one of the alternative forms of energy - sea <span class="hlt">wave</span> energy potential in the Latvian Exclusice Economic <span class="hlt">Zone</span> (EEZ). Results have been achieved using a new method - VEVPP. Calculations have been performed using the data on <span class="hlt">wave</span> parameters over the past five years (2010-2014). We have also considered <span class="hlt">wave</span> energy potential in the Gulf of Riga. The conclusions have been drawn on the recommended methodology for the sea <span class="hlt">wave</span> potential and power calculations for <span class="hlt">wave</span>-power plant pre-design stage.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22472246-trajectories-electrons-large-longitudinal-momenta-phase-plane-during-surfatron-acceleration-electromagnetic-wave','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22472246-trajectories-electrons-large-longitudinal-momenta-phase-plane-during-surfatron-acceleration-electromagnetic-wave"><span>Trajectories of electrons with large longitudinal momenta in the phase plane during surfatron acceleration by an electromagnetic <span class="hlt">wave</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mkrtichyan, G. S., E-mail: hay-13@mail.ru</p> <p>2015-07-15</p> <p>The trajectories of electrons with large longitudinal momenta in the phase plane in the course of their surfatron acceleration by an electromagnetic <span class="hlt">wave</span> propagating in space plasma across the external magnetic field are analyzed. Electrons with large longitudinal momenta are <span class="hlt">trapped</span> immediately if the initial <span class="hlt">wave</span> phase Ψ(0) on the particle trajectory is positive. For negative values of Ψ(0), no electrons <span class="hlt">trapping</span> by the <span class="hlt">wave</span> is observed over the available computational times. According to numerical calculations, the trajectories of <span class="hlt">trapped</span> particles in the phase plane have a singular point of the stable focus type and the behavior of the trajectorymore » corresponds to the motion in a complex nonstationary effective potential well. For some initial phases, electrons are confined in the region of the accelerating electric field for relatively short time, the energy gain being about 50–130% and more.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSMG54B2040R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSMG54B2040R"><span>The Effect of Vegetation on Sea-Swell <span class="hlt">Waves</span>, Infragravity <span class="hlt">Waves</span> and <span class="hlt">Wave</span>-Induced Setup</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roelvink, J. A.; van Rooijen, A.; McCall, R. T.; Van Dongeren, A.; Reniers, A.; van Thiel de Vries, J.</p> <p>2016-02-01</p> <p>Aquatic vegetation in the coastal <span class="hlt">zone</span> (e.g. mangrove trees) attenuates <span class="hlt">wave</span> energy and thereby reduces flood risk along many shorelines worldwide. However, in addition to the attenuation of incident-band (sea-swell) <span class="hlt">waves</span>, vegetation may also affect infragravity-band (IG) <span class="hlt">waves</span> and the <span class="hlt">wave</span>-induced water level setup (in short: <span class="hlt">wave</span> setup). Currently, knowledge on the effect of vegetation on IG <span class="hlt">waves</span> and <span class="hlt">wave</span> setup is lacking, while they are they are key parameters for coastal risk assessment. In this study, the process-based storm impact model XBeach was extended with formulations for attenuation of sea-swell and IG <span class="hlt">waves</span> as well as the effect on the <span class="hlt">wave</span> setup, in two modes: the sea-swell <span class="hlt">wave</span> phase-resolving (non-hydrostatic) and the phase-averaged (surfbeat) mode. In surfbeat mode a <span class="hlt">wave</span> shape model was implemented to estimate the <span class="hlt">wave</span> phase and to capture the intra-<span class="hlt">wave</span> scale effect of emergent vegetation and nonlinear <span class="hlt">waves</span> on the <span class="hlt">wave</span> setup. Both modeling modes were validated using data from two flume experiments and show good skill in computing the attenuation of both sea-swell and IG <span class="hlt">waves</span> as well as the effect on the <span class="hlt">wave</span>-induced water level setup. In surfbeat mode, the prediction of nearshore mean water levels greatly improved when using the <span class="hlt">wave</span> shape model, while in non-hydrostatic mode this effect is directly accounted for. Subsequently, the model was used to study the influence of the bottom profile slope and the location of the vegetation field on the computed <span class="hlt">wave</span> setup with and without vegetation. It was found that the reduction is <span class="hlt">wave</span> setup is strongly related to the location of vegetation relative to the <span class="hlt">wave</span> breaking point, and that the <span class="hlt">wave</span> setup is lower for milder slopes. The extended version of XBeach developed within this study can be used to study the nearshore hydrodynamics on coasts fronted by vegetation such as mangroves. It can also serve as tool for storm impact studies on coasts with aquatic vegetation, and can help to quantify the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NHESS..17.2335W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NHESS..17.2335W"><span>Structural analysis of S-<span class="hlt">wave</span> seismics around an urban sinkhole: evidence of enhanced dissolution in a strike-slip fault <span class="hlt">zone</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wadas, Sonja H.; Tanner, David C.; Polom, Ulrich; Krawczyk, Charlotte M.</p> <p>2017-12-01</p> <p>In November 2010, a large sinkhole opened up in the urban area of Schmalkalden, Germany. To determine the key factors which benefited the development of this collapse structure and therefore the dissolution, we carried out several shear-<span class="hlt">wave</span> reflection-seismic profiles around the sinkhole. In the seismic sections we see evidence of the Mesozoic tectonic movement in the form of a NW-SE striking, dextral strike-slip fault, known as the Heßleser Fault, which faulted and fractured the subsurface below the town. The strike-slip faulting created a <span class="hlt">zone</span> of small blocks ( < 100 m in size), around which steep-dipping normal faults, reverse faults and a dense fracture network serve as fluid pathways for the artesian-confined groundwater. The faults also acted as barriers for horizontal groundwater flow perpendicular to the fault planes. Instead groundwater flows along the faults which serve as conduits and forms cavities in the Permian deposits below ca. 60 m depth. Mass movements and the resulting cavities lead to the formation of sinkholes and dissolution-induced depressions. Since the processes are still ongoing, the occurrence of a new sinkhole cannot be ruled out. This case study demonstrates how S-<span class="hlt">wave</span> seismics can characterize a sinkhole and, together with geological information, can be used to study the processes that result in sinkhole formation, such as a near-surface fault <span class="hlt">zone</span> located in soluble rocks. The more complex the fault geometry and interaction between faults, the more prone an area is to sinkhole occurrence.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.S12A..07C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.S12A..07C"><span>Shear-<span class="hlt">wave</span> Velocity Structure and Inter-Seismic Strain Accumulation in the Up-Dip Region of the Cascadia Subduction <span class="hlt">Zone</span>: Similarities to Tohoku?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Collins, J. A.; McGuire, J. J.; Wei, M.</p> <p>2013-12-01</p> <p>The up-dip region of subduction <span class="hlt">zone</span> thrusts is difficult to study using land-based seismic and geodetic networks, yet documenting its ability to store and release elastic strain is critical for understanding the mechanics of great subduction earthquakes and tsunami generation. The 2011 Tohoku earthquake produced extremely large slip in the shallowest portion of the subduction <span class="hlt">zone</span> beneath a region of the fore-arc that is comprised of extremely low-velocity, unconsolidated sediments [Tsuru et al. JGR 2012]. The influence of the sediment material properties on the co-seismic slip distribution and tsunami generation can be considerable through both the effects on the dynamic wavefield during the rupture [Kozdon and Dunham, BSSA 2012] and potentially the build up of strain during the inter-seismic period. As part of the 2010-2011 SeaJade experiment [Scherwath et al, EOS 2011], we deployed 10 ocean bottom seismographs (OBS) on the continental slope offshore of Vancouver Island in the region of the NEPTUNE Canada observatory. One goal of the experiment is to measure the shear modulus of the sediments lying above the subducting plate using the seafloor compliance technique. Using seafloor acceleration measured by broadband seismometer and seafloor pressure measured by Differential Pressure Gauge (DPG), we estimate the compliance spectrum in the infra-gravity <span class="hlt">wave</span> band (~0.002-0.04 Hz) at 9 sites following the methodology of Crawford et al. [JGR, 1991]. We calibrated DPG sensitivities using laboratory measurements and by comparing teleseismic Rayleigh arrivals recorded on the seismometer and DPG channels [Webb, pers. comm]. We correct the vertical-component seismometer data for tilt using the procedure of Crawford and Webb [BSSA, 2000], Corrections for the gravitational attraction of the surface gravity <span class="hlt">waves</span> [Crawford et al., JGR, 1998] are important at frequencies of 0.003-0.006 Hz only. Typically, the coherences are high (>0.7) in the 0.006 to 0.03 Hz range. We invert</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5690C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5690C"><span>Boundary conditions <span class="hlt">traps</span> when modeling interseismic deformation at subduction <span class="hlt">zones</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Contreras, Marcelo; Gerbault, Muriel; Tassara, Andres; Bataille, Klaus; Araya, Rodolfo</p> <p>2017-04-01</p> <p>In order to gain insight on the controling factors for elastic strain build-up in subduction <span class="hlt">zones</span>, such as those triggering the Mw 8. 2010 Maule earthquake, we published a modeling study to test the influence of the subducting plate thickness, variations in the updip and downdip limit of a 100% locked interplate <span class="hlt">zone</span>, elastic parameters, and velocity reduction at the base of the subducted slab (Contreras et al., Andean Geology 43(3), 2016). When comparing our modeled predictions with interseismic GPS observations, our results indicated little influence of the subducting plate thickness, but a necessity to reduce the velocity at the corner-base of the subducted slab below the trench region, to 10% of the far-field convergence rate. Complementary numerical models allowed us to link this velocity reduction at the base of subducting slab with a long-term high flexural stress resulting from the mechanical interaction of the slab with the underlying mantle. This study discusses that even if only a small amount of these high deviatoric stresses transfer energy towards the upper portion of the slab, it may participate in triggering large earthquakes such as the Mw8.8 Maule event. The definition of initial and boundary conditions between short-term to long-term models evidence the mechanical inconsistencies that may appear when considering pre-flexed subducting slabs and unloaded underlying asthenosphere, potentially creating mis-balanced large stress discontinuities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ChPhB..25j7102M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ChPhB..25j7102M"><span>Observation of <span class="hlt">trapped</span> light induced by Dwarf Dirac-cone in out-of-plane condition for photonic crystals</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Majumder, Subir; Biswas, Tushar; Bhadra, Shaymal K.</p> <p>2016-10-01</p> <p>Existence of out-of-plane conical dispersion for a triangular photonic crystal lattice is reported. It is observed that conical dispersion is maintained for a number of out-of-plane <span class="hlt">wave</span> vectors (k z ). We study a case where Dirac like linear dispersion exists but the photonic density of states is not vanishing, called Dwarf Dirac cone (DDC) which does not support localized modes. We demonstrate the <span class="hlt">trapping</span> of such modes by introducing defects in the crystal. Interestingly, we find by k-point sampling as well as by tuning <span class="hlt">trapped</span> frequency that such a conical dispersion has an inherent light confining property and it is governed by neither of the known <span class="hlt">wave</span> confining mechanisms like total internal reflection, band gap guidance. Our study reveals that such a conical dispersion in a non-vanishing photonic density of states induces unexpected intense <span class="hlt">trapping</span> of light compared with those at other points in the continuum. Such studies provoke fabrication of new devices with exciting properties and new functionalities. Project supported by Director, CSIR-CGCRI, the DST, Government of India, and the CSIR 12th Plan Project (GLASSFIB), India.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28792054','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28792054"><span>Droplet <span class="hlt">trapping</span> and fast acoustic release in a multi-height device with steady-state flow.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rambach, Richard W; Linder, Kevin; Heymann, Michael; Franke, Thomas</p> <p>2017-10-11</p> <p>We demonstrate a novel multilayer polydimethylsiloxane (PDMS) device for selective storage and release of single emulsion droplets. Drops are captured in a microchannel cavity and can be released on-demand through a triggered surface acoustic <span class="hlt">wave</span> pulse. The surface acoustic <span class="hlt">wave</span> (SAW) is excited by a tapered interdigital transducer (TIDT) deposited on a piezoelectric lithium niobate (LiNbO 3 ) substrate and inverts the pressure difference across the cavity <span class="hlt">trap</span> to push a drop out of the <span class="hlt">trap</span> and back into the main flow channel. Droplet capture and release does not require a flow rate change, flow interruption, flow inversion or valve action and can be achieved in as fast as 20 ms. This allows both on-demand droplet capture for analysis and monitoring over arbitrary time scales, and continuous device operation with a high droplet rate of 620 drops per s. We hence decouple long-term droplet interrogation from other operations on the chip. This will ease integration with other microfluidic droplet operations and functional components.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984JPhB...17.4577D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984JPhB...17.4577D"><span>Potentialities of a new sigma(+)-sigma(-)laser configuration for radiative cooling and <span class="hlt">trapping</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dalibard, J.; Reynaud, S.; Cohen-Tannoudji, C.</p> <p>1984-11-01</p> <p>In the process of cooling and <span class="hlt">trapping</span> neutral atoms, a new laser configuration is investigated which consists of two counterpropagating laser beams with orthogonal sigma(+) and sigma(-)polarizations. It is shown that such a configuration looks more promising than an ordinary standing <span class="hlt">wave</span> (where the two counterpropagating <span class="hlt">waves</span> have the same polarization), and this result is explained as being due to angular momentum conservation which prevents any coherent redistribution of photons between the two <span class="hlt">waves</span>. The present conclusions are based on a quantitative calculation of the various parameters (potential depth, friction coefficient, diffusion coefficient) describing the mean value and the fluctuations of the radiative forces experienced, in such a laser configuration, by an atom with a J = 0 ground state and a J = 1 excited state.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28128072','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28128072"><span>Nematode-<span class="hlt">Trapping</span> Fungi.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jiang, Xiangzhi; Xiang, Meichun; Liu, Xingzhong</p> <p>2017-01-01</p> <p>Nematode-<span class="hlt">trapping</span> fungi are a unique and intriguing group of carnivorous microorganisms that can <span class="hlt">trap</span> and digest nematodes by means of specialized <span class="hlt">trapping</span> structures. They can develop diverse <span class="hlt">trapping</span> devices, such as adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and nonconstricting rings. Nematode-<span class="hlt">trapping</span> fungi have been found in all regions of the world, from the tropics to Antarctica, from terrestrial to aquatic ecosystems. They play an important ecological role in regulating nematode dynamics in soil. Molecular phylogenetic studies have shown that the majority of nematode-<span class="hlt">trapping</span> fungi belong to a monophyletic group in the order Orbiliales (Ascomycota). Nematode-<span class="hlt">trapping</span> fungi serve as an excellent model system for understanding fungal evolution and interaction between fungi and nematodes. With the development of molecular techniques and genome sequencing, their evolutionary origins and divergence, and the mechanisms underlying fungus-nematode interactions have been well studied. In recent decades, an increasing concern about the environmental hazards of using chemical nematicides has led to the application of these biological control agents as a rapidly developing component of crop protection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22621895','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22621895"><span>An ex situ evaluation of TBA- and MTBE-baited bio-<span class="hlt">traps</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>North, Katharine P; Mackay, Douglas M; Annable, Michael D; Sublette, Kerry L; Davis, Greg; Holland, Reef B; Petersen, Daniel; Scow, Kate M</p> <p>2012-08-01</p> <p>Aquifer microbial communities can be investigated using Bio-<span class="hlt">traps</span>(®) ("bio-<span class="hlt">traps</span>"), passive samplers containing Bio-Sep(®) beads ("bio-beads") that are deployed in monitoring wells to be colonized by bacteria delivered via groundwater flow through the well. When bio-beads are "baited" with organic contaminants enriched in (13)C, stable isotope probing allows assessment of the composition and activity of the microbial community. This study used an ex situ system fed by groundwater continuously extracted from an adjacent monitoring well within an experimentally-created aerobic <span class="hlt">zone</span> treating a tert-butyl alcohol (TBA) plume. The goal was to evaluate aspects of bio-<span class="hlt">trap</span> performance that cannot be studied quantitatively in situ. The measured groundwater flow through a bio-<span class="hlt">trap</span> housing suggests that such <span class="hlt">traps</span> might typically "sample" about 1.8 L per month. The desorption of TBA or methyl tert-butyl ether (MTBE) bait from bio-<span class="hlt">traps</span> during a typical deployment duration of 6 weeks was approximately 90% and 45%, respectively, of the total initial bait load, with initially high rate of mass loss that decreased markedly after a few days. The concentration of TBA in groundwater flowing by the TBA-baited bio-beads was estimated to be as high as 3400 mg/L during the first few days, which would be expected to inhibit growth of TBA-degrading microbes. Initial inhibition was also implied for the MTBE-baited bio-<span class="hlt">trap</span>, but at lower concentrations and for a shorter time. After a few days, concentrations in groundwater flowing through the bio-<span class="hlt">traps</span> dropped below inhibitory concentrations but remained 4-5 orders of magnitude higher than TBA or MTBE concentrations within the aquifer at the experimental site. Desorption from the bio-beads during ex situ deployment occurred at first as predicted by prior sorption analyses of bio-beads but with apparent hysteresis thereafter, possibly due to mass transfer limitations caused by colonizing microbes. These results suggest that TBA- or MTBE</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22617061-quasi-optical-simulation-electron-cyclotron-plasma-heating-mirror-magnetic-trap','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22617061-quasi-optical-simulation-electron-cyclotron-plasma-heating-mirror-magnetic-trap"><span>Quasi-optical simulation of the electron cyclotron plasma heating in a mirror magnetic <span class="hlt">trap</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shalashov, A. G., E-mail: ags@appl.sci-nnov.ru; Balakin, A. A.; Khusainov, T. A.</p> <p></p> <p>The resonance microwave plasma heating in a large-scale open magnetic <span class="hlt">trap</span> is simulated taking into account all the basic <span class="hlt">wave</span> effects during the propagation of short-wavelength <span class="hlt">wave</span> beams (diffraction, dispersion, and aberration) within the framework of the consistent quasi-optical approximation of Maxwell’s equations. The quasi-optical method is generalized to the case of inhomogeneous media with absorption dispersion, a new form of the quasi-optical equation is obtained, the efficient method for numerical integration is found, and simulation results are verified on the GDT facility (Novosibirsk).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T51A2859G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T51A2859G"><span>Seismic Evidence of A Widely Distributed West Napa Fault <span class="hlt">Zone</span>, Hendry Winery, Napa, California</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goldman, M.; Catchings, R.; Chan, J. H.; Criley, C.</p> <p>2015-12-01</p> <p>Following the 24 August 2014 Mw 6.0 South Napa earthquake, surface rupture was mapped along the West Napa Fault <span class="hlt">Zone</span> (WNFZ) for a distance of ~ 14 km and locally within <span class="hlt">zones</span> up to ~ 2 km wide. Near the northern end of the surface rupture, however, several strands coalesced to form a narrow, ~100-m-wide <span class="hlt">zone</span> of surface rupture. To determine the location, width, and shallow (upper few hundred meters) geometry of the fault <span class="hlt">zone</span>, we acquired an active-source seismic survey across the northern surface rupture in February 2015. We acquired both P- and S-<span class="hlt">wave</span> data, from which we developed reflection images and tomographic images of Vp, Vs, Vp/Vs, and Poisson's ratio of the upper 100 m. We also used small explosive charges within surface ruptures located ~600 m north of our seismic array to record fault-<span class="hlt">zone</span> guided <span class="hlt">waves</span>. Our data indicate that at the latitude of the Hendry Winery, the WNFZ is characterized by at least five fault traces that are spaced 60 to 200 m apart. <span class="hlt">Zones</span> of low-Vs, low-Vp/Vs, and disrupted reflectors highlight the fault traces on the tomography and reflection images. On peak-ground-velocity (PGV) plots, the most pronounced high-amplitude guided-<span class="hlt">wave</span> seismic energy coincides precisely with the mapped surface ruptures, and the guided <span class="hlt">waves</span> also show discrete high PGV <span class="hlt">zones</span> associated with unmapped fault traces east of the surface ruptures. Although the surface ruptures of the WNFZ were observed only over a 100-m-wide <span class="hlt">zone</span> at the Hendry Winery, our data indicate that the fault <span class="hlt">zone</span> is at least 400 m wide, which is probably a minimum width given the 400-m length of our seismic profile. Slip on the WNFZ is generally considered to be low relative to most other Bay Area faults, but we suggest that the West Napa Fault is a <span class="hlt">zone</span> of widely distributed shear, and to fully account for the total slip on the WNFZ, slip on all traces of this wide fault <span class="hlt">zone</span> must be considered.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.T32A..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.T32A..03M"><span>Mantle Structure Beneath East Africa and Zambia from Body <span class="hlt">Wave</span> Tomography</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mulibo, G.; Nyblade, A.; Tugume, F.</p> <p>2011-12-01</p> <p>In this study, P and S travel time residuals from teleseismic earthquakes recorded on over 60 temporary AfricaArray seismic stations deployed in Uganda, Kenya, Tanzania and Zambia between 2007 and 2011 are being inverted, together with travel time residuals from previous deployments, for a 3D image of mantle <span class="hlt">wave</span> speeds variations extending to a depth of 1200 km. Preliminary results show that at depths of 200 km of less, low <span class="hlt">wave</span> speed anomalies are well developed beneath the Eastern and Western Branches of the East African Rift System. At deep depths, the low <span class="hlt">wave</span> speed anomalies focus under the center and southern part of the East African Plateau and extend into the transition <span class="hlt">zone</span>. At transition <span class="hlt">zone</span> depths and within the top part of the lower mantle, the low <span class="hlt">wave</span> speed anomaly shifts to the southwest beneath Zambia, indicating that the low <span class="hlt">wave</span> speed anomaly is continuous across the transition <span class="hlt">zone</span> and that it extends into the lower mantle. This result suggests that the upper mantle low <span class="hlt">wave</span> speed anomaly beneath East Africa is connected to the African superplume anomaly in the lower mantle beneath southern Africa.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3701H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3701H"><span>Nonnormality increases variance of gravity <span class="hlt">waves</span> <span class="hlt">trapped</span> in a tilted box</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harlander, Uwe; Borcia, Ion Dan; Krebs, Andreas</p> <p>2017-04-01</p> <p>We study the prototype problem of internal gravity <span class="hlt">waves</span> in a square domain tilted with respect to the gravity vector by an angle theta. Only when theta is zero regular normal modes exist, for all other angles <span class="hlt">wave</span> attractors and singularities dominate the flow. We show that the linear operator of the governing PDE becomes non-normal for nonzero theta giving rise to non-modal transient growth. This growth depends on the underlying norm: for the variance norm significant growth rates can be found whereas for the energy norm, no growth is possible since there is no source for energy (in contrast to shear fows, for which the mean flow feeds the perturbations). We continue by showing that the nonnormality of the system matrix is increasing with theta and reaches a maximum when theta is 45 degree. Moreover, the growth rate is increasing as can be expected from the increasing nonnormality of the matrix. Our results imply that at least the most simple <span class="hlt">wave</span> attractors can be seen as those initial flow fields that gain most of the variance during a given time period.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..DPPYP8033C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..DPPYP8033C"><span>X-ray Imaging and preliminary studies of the X-ray self-emission from an innovative plasma-<span class="hlt">trap</span> based on the Bernstein <span class="hlt">waves</span> heating mechanism</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caliri, C.; Romano, F. P.; Mascali, D.; Gammino, S.; Musumarra, A.; Castro, G.; Celona, L.; Neri, L.; Altana, C.</p> <p>2013-10-01</p> <p>Electron Cyclotron Resonance Ion Sources (ECRIS) are based on ECR heated plasmas emitting high fluxes of X-rays. Here we illustrate a pilot study of the X-ray emission from a compact plasma-<span class="hlt">trap</span> in which an off-resonance microwave-plasma interaction has been attempted, highlighting a possible Bernstein-<span class="hlt">Waves</span> based heating mechanism. EBWs-heating is obtained via the inner plasma EM-to-ES <span class="hlt">wave</span> conversion and enables to reach densities much larger than the cut-off ones. At LNS-INFN, an innovative diagnostic technique based on the design of a Pinhole Camera (PHC) coupled to a CCD device for X-ray Imaging of the plasma (XRI) has been developed, in order to integrate X-ray traditional diagnostics (XRS). The complementary use of electrostatic probes measurements and X-ray diagnostics enabled us to gain knowledge about the high energy electrons density and temperature and about the spatial structure of the source. The combination of the experimental data with appropriate modeling of the plasma-source allowed to estimate the X-ray emission intensity in different energy domains (ranging from EUV up to Hard X-rays). The use of ECRIS as X-ray source for multidisciplinary applications, is now a concrete perspective due to the intense fluxes produced by the new plasma heating mechanism.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T11D2645H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T11D2645H"><span>Widespread imaging of the lower crust, Moho, and upper mantle from Rayleigh <span class="hlt">waves</span>: A comparison of the Cascadia and Aleutian-Alaska subduction <span class="hlt">zones</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haney, M. M.; Tsai, V. C.; Ward, K. M.</p> <p>2016-12-01</p> <p>Recently, Haney and Tsai (2015) developed a new approach to Rayleigh-<span class="hlt">wave</span> inversion based on assumptions that are similar to those used in the formulation of the Dix equation in reflection seismology. Here we apply the Dix technique to Rayleigh-<span class="hlt">wave</span> phase-velocity maps by Ekstrom (2013) and Ward (2015) of the contiguous US and Alaska, respectively, at periods between 12 and 45 s. We refine the initial Dix result with subsequent nonlinear inversion to estimate Moho depth together with shear-<span class="hlt">wave</span> velocity of the lower crust and upper mantle. In the contiguous US, the Moho we image agrees well with recent receiver function studies. There is an apparent deepening of the Moho to the west of the Cascades volcanic chain that we interpret as the waveguide interface transitioning to the slab due to the continental Moho becoming transparent above the mantle forearc. This feature abruptly terminates at the southern extent of the Cascadia subduction <span class="hlt">zone</span>. We compare the depths of this "apparent Moho" with published estimates of the depth to the Juan de Fuca Plate since, owing to the paucity of tectonic earthquakes, the Slab1.0 model is not defined in Cascadia. Our result in Alaska is the first regional Moho map derived explicitly from seismic <span class="hlt">waves</span>. We find that crustal thickness is generally correlated with topography, with thicker crust beneath mountain ranges in southern Alaska. North of the Denali Fault, the Moho is smoother than to the south and located at typical depths of 30-35 km. There are also indications that the waveguide interface we solve for beneath Prince William Sound is actually the subducting slab instead of the continental Moho. The slab structure beneath Prince William Sound extends further east than the Pacific slab represented in the Slab1.0 model. Using the limited number of broadband seismometers in the Aleutian Islands, we obtain preliminary estimates for the crustal structure beneath the western portion of the Aleutian-Alaska subduction <span class="hlt">zone</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70118543','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70118543"><span>The Spar Lake strata-Bound Cu-Ag deposit formed across a mixing <span class="hlt">zone</span> between <span class="hlt">trapped</span> natural gas and metals-bearing brine</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hayes, Timothy S.; Landis, Gary P.; Whelan, Joseph F.; Rye, Robert O.; Moscati, Richard J.</p> <p>2012-01-01</p> <p>Ore formation at the Spar Lake red bed-associated strata-bound Cu deposit took place across a mixing and reaction <span class="hlt">zone</span> between a hot oxidized metals-transporting brine and a reservoir of “sour” (H2S-bearing) natural gas <span class="hlt">trapped</span> in the host sandstones. Fluid inclusion volatile analyses have very high CH4 concentrations (≥1 mol % in most samples), and a sample from the fringe of the deposit has between 18 and 36 mol % CH4. The ratio of CH4/CO2 in fluid inclusions appears to vary regularly across the deposit, with the lowest CH4/CO2 ratios from high-grade chalcocite-bearing ore, and the highest from the chalcopyrite-bearing fringe. The helium R/Ra isotope ratios (0.23–0.98) and concentrations define a mixture between crustal and atmospheric helium. The volatiles in fluid inclusions (CH4, CO2, H2S, SO2, H2, H2O, and other organic gases) and values of fO2 and temperature calculated from the volatiles data all show gradations across the deposit that are completely consistent with such a mixing and reaction <span class="hlt">zone</span>. Other volatiles from the fluid inclusions (HCl, HF, 3He, Msup>4He, N2, Ar) characterize the brine and give evidence for only shallow crustal fluids with no magmatic influences. The brine entered the gas reservoir from below and along the axis of the deposit and migrated out along bedding to the southwest, northeast, and northwest. Metals-transporting brines may have been fed into the host sandstones from the East Fault, but that remains uncertain. Abundant ore-stage Fe and Mn calcite cements from the reduced fringe have δ13C values as low as −18.4‰, and many values less than −10‰, which indicate that significant carbonate was generated by oxidation of organic carbon from the natural gas. The <span class="hlt">zone</span> of calcite cements with very low δ13C values approximately envelopes chalcocite-bearing ore. Sulfur isotope data of Cu, Pb, and Fe sulfides and barite indicate derivation of roughly half of the orebody sulfide directly from sour gas H2S. That sour gas H</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720021152','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720021152"><span>Analysis of inner and outer <span class="hlt">zone</span>: OGO-1 and OGO-2 electron spectrometer and ion chamber data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pfitzer, K. A.</p> <p>1972-01-01</p> <p>The dynamic processes governing the acceleration and loss of electrons in the radiation <span class="hlt">zones</span> are investigated. The radial diffusion coefficient was determined for a McIlwain parameter between 1.6 and 2.2 for electrons having a first adiabatic invariant of 12 MeV/gauss. The coefficient is larger than earlier values and suggests that there exists a lower limit to the fluxes in the inner <span class="hlt">zone</span>. The agreement between observed and calculated magnetic fields and particle fluxes is improved by using solar wind pressure as input to the magnetic field models. Changes in the plasma pressure can cause apparent local time asymmetries in particle flux. A comparison of the magnetic field models with observed location of the <span class="hlt">trapping</span> boundary also indicates the need for including distributed currents within the magnetosphere. The high latitude <span class="hlt">trapping</span> boundary is only weakly dependent on A sub p, and the <span class="hlt">trapping</span> boundary data are improved by including in the models a stand-off distance which varies with the plasma pressure.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005SPIE.5958..645J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005SPIE.5958..645J"><span>How the stiffness of the optical <span class="hlt">trap</span> depends on the proximity of the dielectric interface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jákl, Petr; Šerý, Mojmír; Liška, Miroslav; Zemánek, Pavel</p> <p>2005-09-01</p> <p>When a probe confined in a single focused laser beam approaches the surface, it is getting more influenced by the retroreflected beam. This beam interferes with the incident one and a weak standing <span class="hlt">wave</span> (SW) is created, which slightly modulates the incident beam. We studied experimentally how this phenomena influences the optical <span class="hlt">trap</span> properties if SW is created using surfaces of two different reflectivities. We used polystyrene probes of diameters 690 nm and 820 nm, tracked their positions with quadrant photodiode (QPD) and analysed their thermal motion to get the axial <span class="hlt">trap</span> stiffness along optical axis.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JFM...529..279S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JFM...529..279S"><span>Kinematics and depth-integrated terms in surf <span class="hlt">zone</span> <span class="hlt">waves</span> from laboratory measurement</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stansby, Peter K.; Feng, Tong</p> <p>2005-04-01</p> <p>Kinematics of nominally periodic surf <span class="hlt">zone</span> <span class="hlt">waves</span> have been measured in the laboratory using LDA (laser Doppler anemometry), above trough level as well as below, for weakly plunging breakers transforming into bores in shallower water. The aim was to determine, through phase- or ensemble-averaging, periodic flow structures in a two-dimensional vertical plane, from large-scale down to small-scale vortical structures. Coherent multiple vortical structures were evident at the initiation of breaking, becoming elongated along the surface during bore propagation. The initial region is likely to become more extensive as <span class="hlt">waves</span> become more strongly plunging and could explain the difference in turbulence characteristics between plunging and spilling breakers observed elsewhere. Comparison of vorticity magnitudes with hydraulic-jump measurements showed some similarities during the initial stages of breaking, but these quickly grew less as breaking progressed into shallower water. Period-averaged kinematics and vorticity were also obtained showing shoreward mass transport above trough level and undertow below, with a thick layer of vorticity at trough level and a thin layer of vorticity of opposite rotation at the bed. There were also concentrated regions of mean vorticity near the end of the plunging region. Residual turbulence of relatively high frequency was presented as Reynolds stresses, showing marked anisotrophy. Dynamic pressure (pressure minus its hydrostatic component) was determined from the kinematics. The magnitudes of different effects were evaluated through the depth-integrated Reynolds-averaged Navier-Stokes (RANS) equations, which may be reduced to nine terms (the standard inviscid terms of the shallow-water equations conserving mass and momentum with hydrostatic pressure, and six additional terms), assuming that the complex, often aerated, free surface is treated as a simple interface. All terms were evaluated, assuming that a space/time transformation was</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5614346','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5614346"><span>Experimental Methods for <span class="hlt">Trapping</span> Ions Using Microfabricated Surface Ion <span class="hlt">Traps</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hong, Seokjun; Lee, Minjae; Kwon, Yeong-Dae; Cho, Dong-il "Dan"; Kim, Taehyun</p> <p>2017-01-01</p> <p>Ions <span class="hlt">trapped</span> in a quadrupole Paul <span class="hlt">trap</span> have been considered one of the strong physical candidates to implement quantum information processing. This is due to their long coherence time and their capability to manipulate and detect individual quantum bits (qubits). In more recent years, microfabricated surface ion <span class="hlt">traps</span> have received more attention for large-scale integrated qubit platforms. This paper presents a microfabrication methodology for ion <span class="hlt">traps</span> using micro-electro-mechanical system (MEMS) technology, including the fabrication method for a 14 µm-thick dielectric layer and metal overhang structures atop the dielectric layer. In addition, an experimental procedure for <span class="hlt">trapping</span> ytterbium (Yb) ions of isotope 174 (174Yb+) using 369.5 nm, 399 nm, and 935 nm diode lasers is described. These methodologies and procedures involve many scientific and engineering disciplines, and this paper first presents the detailed experimental procedures. The methods discussed in this paper can easily be extended to the <span class="hlt">trapping</span> of Yb ions of isotope 171 (171Yb+) and to the manipulation of qubits. PMID:28872137</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15277550','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15277550"><span>Structure and properties of the glandular surface in the digestive <span class="hlt">zone</span> of the pitcher in the carnivorous plant Nepenthes ventrata and its role in insect <span class="hlt">trapping</span> and retention.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gorb, Elena; Kastner, Victoria; Peressadko, Andrei; Arzt, Eduard; Gaume, Laurence; Rowe, Nick; Gorb, Stanislav</p> <p>2004-08-01</p> <p>Carnivorous plants of the genus Nepenthes grow in nutrient-poor habitats and have evolved specialised <span class="hlt">trapping</span> organs, known as pitchers. These are composed of different surface <span class="hlt">zones</span> serving the functions of attraction, capture and digestion of insects, which represent a main source of nitrogen. To investigate the role of the glandular digestive <span class="hlt">zone</span> in the <span class="hlt">trapping</span> mechanism of the pitcher, structural, mechanical and physico-chemical studies were applied to N. ventrata and combined with insect behavioural experiments. It was found that the glandular surface is microscopically rough since it is regularly structured with multicellular glands situated in epidermal depressions. The presence of downward-directed 'hoods' over the upper part of glands and sloped depressions in the proximal direction of the pitcher causes a marked anisotropy of the surface. The glandular <span class="hlt">zone</span> surface is composed of relatively stiff material (Young's modulus, 637.19+/-213.44 kPa). It is not homogeneous, in terms of adhesive properties, and contains numerous areas without adhesion as well as adhesive areas differing greatly in tenacity values (range, 1.39-28.24 kPa). The surface is readily wettable with water (contact angle, 31.9-36.0 degrees C) and has a high surface free energy (56.84-61.93 mN m(-1)) with a relatively high polar component (33.09-52.70 mN m(-1)). To examine the effect of the glandular secretion on attachment systems of insects having hairy and smooth adhesive pads, forces generated on different surfaces by Calliphora vicina flies and Pyrrhocoris apterus bugs, respectively, were measured. Flies attached equally well to both fresh and air-dried glandular surfaces whereas bugs generated a significantly lower force on the fresh glandular surface compared with the air-dried one. It is assumed that the contribution of the glandular surface to insect retention, due to its effect on insect attachment, differs depending on insect weight and the type of insect attachment system</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1714375A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1714375A"><span>Laboratory modeling of edge <span class="hlt">wave</span> generation over a plane beach by breaking <span class="hlt">waves</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abcha, Nizar; Ezersky, Alexander; Pelinovsky, Efim</p> <p>2015-04-01</p> <p>Edge <span class="hlt">waves</span> play an important role in coastal hydrodynamics: in sediment transport, in formation of coastline structure and coastal bottom topography. Investigation of physical mechanisms leading to the edge <span class="hlt">waves</span> generation allows us to determine their effect on the characteristics of spatially periodic patterns like crescent submarine bars and cusps observed in the coastal <span class="hlt">zone</span>. In the present paper we investigate parametric excitation of edge <span class="hlt">wave</span> with frequency two times less than the frequency of surface <span class="hlt">wave</span> propagating perpendicular to the beach. Such mechanism of edge <span class="hlt">wave</span> generation has been studied previously in a large number of papers using the assumption of non-breaking <span class="hlt">waves</span>. This assumption was used in theoretical calculations and such conditions were created in laboratory experiments. In the natural conditions, the <span class="hlt">wave</span> breaking is typical when edge <span class="hlt">waves</span> are generated at sea beach. We study features of such processes in laboratory experiments. Experiments were performed in the <span class="hlt">wave</span> flume of the Laboratory of Continental and Coast Morphodynamics (M2C), Caen. The flume is equipment with a <span class="hlt">wave</span> maker controlled by computer. To model a plane beach, a PVC plate is placed at small angle to the horizontal bottom. Several resistive probes were used to measure characteristics of <span class="hlt">waves</span>: one of them was used to measure free surface displacement near the <span class="hlt">wave</span> maker and two probes were glued on the inclined plate. These probes allowed us to measure run-up due to parametrically excited edge <span class="hlt">waves</span>. Run-up height is determined by processing a movie shot by high-speed camera. Sub-harmonic generation of standing edge <span class="hlt">waves</span> is observed for definite control parameters: edge <span class="hlt">waves</span> represent themselves a spatial mode with wavelength equal to double width of the flume; the frequency of edge <span class="hlt">wave</span> is equal to half of surface <span class="hlt">wave</span> frequency. Appearance of sub-harmonic mode instability is studied using probes and movie processing. The dependence of edge <span class="hlt">wave</span> exponential</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S41C0813D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S41C0813D"><span>Seismic <span class="hlt">Wave</span> Velocity in the Subducted Oceanic Crust from Autocorrelation of Tectonic Tremor Signals</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ducellier, A.; Creager, K.</p> <p>2017-12-01</p> <p>Hydration and dehydration of minerals in subduction <span class="hlt">zones</span> play a key role in the geodynamic processes that generate seismicity and that allow tectonic plates to subduct. Detecting the presence of water in the subducted plate is thus crucial to better understand the seismogenesis and the consequent seismic hazard. A landward dipping, low velocity layer has been detected in most subduction <span class="hlt">zones</span>. In Cascadia, this low velocity <span class="hlt">zone</span> is characterized by a low S-<span class="hlt">wave</span> velocity and a very high Poisson's ratio, which has been interpreted as high pore-fluid pressure in the upper half part of the subducted oceanic crust. Most previous studies were based on seismic reflection imaging, receiver function analysis, or body <span class="hlt">wave</span> tomography, with seismic sources located far from the low velocity <span class="hlt">zone</span>. In contrast, the sources of the tectonic tremors generated during Episodic Tremor and Slip (ETS) events are located on the plate boundary. As the sources of the tremors are much closer to the low velocity <span class="hlt">zone</span>, seismic <span class="hlt">waves</span> recorded during ETS events should illuminate the area with greater precision. Most methods to detect and locate tectonic tremors and low-frequency earthquakes are based on the cross correlation of seismic signals; either signals at the same station for different events, or the same event at different stations. We use the autocorrelation of the seismic signal recorded by eight arrays of stations, located in the Olympic Peninsula, Washington. Each tremor, assumed to be on the plate boundary, generates a direct <span class="hlt">wave</span> and reflected and converted <span class="hlt">waves</span> from both the strong shear-<span class="hlt">wave</span> velocity contrast in the mid-oceanic crust, and from the Moho of the subducted oceanic crust. The time lag between the arrivals of these different <span class="hlt">waves</span> at a seismic station corresponds to a peak of amplitude on the autocorrelation signals. Using the time lags observed for different locations of the tremor source, we intend to invert for the seismic <span class="hlt">wave</span> velocity of the subducted oceanic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015987','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015987"><span>Acceleration spectra for subduction <span class="hlt">zone</span> earthquakes</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Boatwright, J.; Choy, G.L.</p> <p>1989-01-01</p> <p>We estimate the source spectra of shallow earthquakes from digital recordings of teleseismic P <span class="hlt">wave</span> groups, that is, P+pP+sP, by making frequency dependent corrections for the attenuation and for the interference of the free surface. The correction for the interference of the free surface assumes that the earthquake radiates energy from a range of depths. We apply this spectral analysis to a set of 12 subduction <span class="hlt">zone</span> earthquakes which range in size from Ms = 6.2 to 8.1, obtaining corrected P <span class="hlt">wave</span> acceleration spectra on the frequency band from 0.01 to 2.0 Hz. Seismic moment estimates from surface <span class="hlt">waves</span> and normal modes are used to extend these P <span class="hlt">wave</span> spectra to the frequency band from 0.001 to 0.01 Hz. The acceleration spectra of large subduction <span class="hlt">zone</span> earthquakes, that is, earthquakes whose seismic moments are greater than 1027 dyn cm, exhibit intermediate slopes where u(w)???w5/4 for frequencies from 0.005 to 0.05 Hz. For these earthquakes, spectral shape appears to be a discontinuous function of seismic moment. Using reasonable assumptions for the phase characteristics, we transform the spectral shape observed for large earthquakes into the time domain to fit Ekstrom's (1987) moment rate functions for the Ms=8.1 Michoacan earthquake of September 19, 1985, and the Ms=7.6 Michoacan aftershock of September 21, 1985. -from Authors</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017bhns.work...33H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017bhns.work...33H"><span><span class="hlt">Wave</span> excitation at Lindblad resonances using the method of multiple scales</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Horák, Jiří</p> <p>2017-12-01</p> <p>In this note, the method of multiple scales is adopted to the problem of excitation of non–axisymmetric acoustic <span class="hlt">waves</span> in vertically integrated disk by tidal gravitational fields. We derive a formula describing a waveform of exited <span class="hlt">wave</span> that is uniformly valid in a whole disk as long as only a single Lindblad resonance is present. Our formalism is subsequently applied to two classical problems: <span class="hlt">trapped</span> p–mode oscillations in relativistic accretion disks and the excitation of <span class="hlt">waves</span> in infinite disks.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850021594','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850021594"><span>Turbulence and <span class="hlt">wave</span> particle interactions in solar-terrestrial plasmas</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dulk, G. A.; Goldman, M. V.; Toomre, J.</p> <p>1985-01-01</p> <p>Activities in the following study areas are reported: (1) particle and <span class="hlt">wave</span> processes in solar flares; (2) solar convection <span class="hlt">zone</span> turbulence; and (3) solar radiation emission. To investigate the amplification of cyclotron maser radiation in solar flares, a radio frequency. (RF) heating model was developed for the corona surrounding the energy release site. Then nonlinear simulations of compressible convection display prominent penetration by plumes into regions of stable stratification at the base of the solar convection <span class="hlt">zone</span>, leading to the excitation of internal gravity <span class="hlt">waves</span> there. Lastly, linear saturation of electron-beam-driven Langmuir <span class="hlt">waves</span> by ambient density fluctuations, nonlinear saturation by strong turbulence processes, and radiation emission mechanisms are examined. An additional section discusses solar magnetic fields and hydromagnetic <span class="hlt">waves</span> in inhomogeneous media, and the effect of magnetic fields on stellar oscillation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70135102','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70135102"><span>Vertical structure of mean cross-shore currents across a barred surf <span class="hlt">zone</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Haines, John W.; Sallenger, Asbury H.</p> <p>1994-01-01</p> <p>Mean cross-shore currents observed across a barred surf <span class="hlt">zone</span> are compared to model predictions. The model is based on a simplified momentum balance with a turbulent boundary layer at the bed. Turbulent exchange is parameterized by an eddy viscosity formulation, with the eddy viscosity Aυ independent of time and the vertical coordinate. Mean currents result from gradients due to <span class="hlt">wave</span> breaking and shoaling, and the presence of a mean setup of the free surface. Descriptions of the <span class="hlt">wave</span> field are provided by the <span class="hlt">wave</span> transformation model of Thornton and Guza [1983]. The <span class="hlt">wave</span> transformation model adequately reproduces the observed <span class="hlt">wave</span> heights across the surf <span class="hlt">zone</span>. The mean current model successfully reproduces the observed cross-shore flows. Both observations and predictions show predominantly offshore flow with onshore flow restricted to a relatively thin surface layer. Successful application of the mean flow model requires an eddy viscosity which varies horizontally across the surf <span class="hlt">zone</span>. Attempts are made to parameterize this variation with some success. The data does not discriminate between alternative parameterizations proposed. The overall variability in eddy viscosity suggested by the model fitting should be resolvable by field measurements of the turbulent stresses. Consistent shortcomings of the parameterizations, and the overall modeling effort, suggest avenues for further development and data collection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4526238','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4526238"><span>Analysis of Rapid Multi-Focal <span class="hlt">Zone</span> ARFI Imaging</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rosenzweig, Stephen; Palmeri, Mark; Nightingale, Kathryn</p> <p>2015-01-01</p> <p>Acoustic radiation force impulse (ARFI) imaging has shown promise for visualizing structure and pathology within multiple organs; however, because the contrast depends on the push beam excitation width, image quality suffers outside of the region of excitation. Multi-focal <span class="hlt">zone</span> ARFI imaging has previously been used to extend the region of excitation (ROE), but the increased acquisition duration and acoustic exposure have limited its utility. Supersonic shear <span class="hlt">wave</span> imaging has previously demonstrated that through technological improvements in ultrasound scanners and power supplies, it is possible to rapidly push at multiple locations prior to tracking displacements, facilitating extended depth of field shear <span class="hlt">wave</span> sources. Similarly, ARFI imaging can utilize these same radiation force excitations to achieve tight pushing beams with a large depth of field. Finite element method simulations and experimental data are presented demonstrating that single- and rapid multi-focal <span class="hlt">zone</span> ARFI have comparable image quality (less than 20% loss in contrast), but the multi-focal <span class="hlt">zone</span> approach has an extended axial region of excitation. Additionally, as compared to single push sequences, the rapid multi-focal <span class="hlt">zone</span> acquisitions improve the contrast to noise ratio by up to 40% in an example 4 mm diameter lesion. PMID:25643078</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.473.5267M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.473.5267M"><span><span class="hlt">Trapping</span> of low-mass planets outside the truncated inner edges of protoplanetary discs</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miranda, Ryan; Lai, Dong</p> <p>2018-02-01</p> <p>We investigate the migration of a low-mass (≲10 M⊕) planet near the inner edge of a protoplanetary disc using two-dimensional viscous hydrodynamics simulations. We employ an inner boundary condition representing the truncation of the disc at the stellar corotation radius. As described by Tsang, <span class="hlt">wave</span> reflection at the inner disc boundary modifies the Type I migration torque on the planet, allowing migration to be halted before the planet reaches the inner edge of the disc. For low-viscosity discs (α ≲ 10-3), planets may be <span class="hlt">trapped</span> with semi-major axes as large as three to five times the inner disc radius. In general, planets are <span class="hlt">trapped</span> closer to the inner edge as either the planet mass or the disc viscosity parameter α increases, and farther from the inner edge as the disc thickness is increased. This planet <span class="hlt">trapping</span> mechanism may impact the formation and migration history of close-in compact multiplanet systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.S32B0846G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.S32B0846G"><span>Rg-Lg coupling as a Lg-<span class="hlt">wave</span> excitation mechanism</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ge, Z.; Xie, X.</p> <p>2003-12-01</p> <p>Regional phase Lg is predominantly comprised of shear <span class="hlt">wave</span> energy <span class="hlt">trapped</span> in the crust. Explosion sources are expected to be less efficient for excitation of Lg phases than earthquakes to the extent that the source can be approximated as isotropic. Shallow explosions generate relatively large surface <span class="hlt">wave</span> Rg compared to deeper earthquakes, and Rg is readily disrupted by crustal heterogeneity. Rg energy may thus scatter into <span class="hlt">trapped</span> crustal S-<span class="hlt">waves</span> near the source region and contribute to low-frequency Lg <span class="hlt">wave</span>. In this study, a finite-difference modeling plus the slowness analysis are used for investigating the above mentioned Lg-<span class="hlt">wave</span> excitation mechanism. The method allows us to investigate near source energy partitioning in multiple domains including frequency, slowness and time. The main advantage of this method is that it can be applied at close range, before Lg is actually formed, which allows us to use very fine near source velocity model to simulate the energy partitioning process. We use a layered velocity structure as the background model and add small near source random velocity patches to the model to generate the Rg to Lg coupling. Two types of simulations are conducted, (1) a fixed shallow explosion source vs. randomness at different depths and (2) a fixed shallow randomness vs. explosion sources at different depths. The results show apparent couplings between the Rg and Lg <span class="hlt">waves</span> at lower frequencies (0.3-1.5 Hz). A shallow source combined with shallow randomness generates the maximum Lg-<span class="hlt">wave</span>, which is consistent with the Rg energy distribution of a shallow explosion source. The Rg energy and excited Lg energy show a near linear relationship. The numerical simulation and slowness analysis suggest that the Rg to Lg coupling is an effective excitation mechanism for low frequency Lg-<span class="hlt">waves</span> from a shallow explosion source.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19495329','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19495329"><span>Analysis of <span class="hlt">wave</span> propagation in a two-dimensional photonic crystal with negative index of refraction: plane <span class="hlt">wave</span> decomposition of the Bloch modes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martínez, Alejandro; Míguez, Hernán; Sánchez-Dehesa, José; Martí, Javier</p> <p>2005-05-30</p> <p>This work presents a comprehensive analysis of electromagnetic <span class="hlt">wave</span> propagation inside a two-dimensional photonic crystal in a spectral region in which the crystal behaves as an effective medium to which a negative effective index of refraction can be associated. It is obtained that the main plane <span class="hlt">wave</span> component of the Bloch mode that propagates inside the photonic crystal has its <span class="hlt">wave</span> vector k' out of the first Brillouin <span class="hlt">zone</span> and it is parallel to the Poynting vector ( S' ? k'> 0 ), so light propagation in these composites is different from that reported for left-handed materials despite the fact that negative refraction can take place at the interface between air and both kinds of composites. However, <span class="hlt">wave</span> coupling at the interfaces is well explained using the reduced <span class="hlt">wave</span> vector ( k' ) in the first Brillouin <span class="hlt">zone</span>, which is opposed to the energy flow, and agrees well with previous works dealing with negative refraction in photonic crystals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=304418','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=304418"><span><span class="hlt">Wave</span> energy and intertidal productivity</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Leigh, Egbert G.; Paine, Robert T.; Quinn, James F.; Suchanek, Thomas H.</p> <p>1987-01-01</p> <p>In the northeastern Pacific, intertidal <span class="hlt">zones</span> of the most <span class="hlt">wave</span>-beaten shores receive more energy from breaking <span class="hlt">waves</span> than from the sun. Despite severe mortality from winter storms, communities at some <span class="hlt">wave</span>-beaten sites produce an extraordinary quantity of dry matter per unit area of shore per year. At <span class="hlt">wave</span>-beaten sites of Tatoosh Island, WA, sea palms, Postelsia palmaeformis, can produce > 10 kg of dry matter, or 1.5 × 108 J, per m2 in a good year. Extraordinarily productive organisms such as Postelsia are restricted to <span class="hlt">wave</span>-beaten sites. Intertidal organisms cannot transform <span class="hlt">wave</span> energy into chemical energy, as photosynthetic plants transform solar energy, nor can intertidal organisms “harness” <span class="hlt">wave</span> energy. Nonetheless, <span class="hlt">wave</span> energy enhances the productivity of intertidal organisms. On exposed shores, <span class="hlt">waves</span> increase the capacity of resident algae to acquire nutrients and use sunlight, augment the competitive ability of productive organisms, and protect intertidal residents by knocking away their enemies or preventing them from feeding. PMID:16593813</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AcAau.135..114S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AcAau.135..114S"><span>Detonation onset following shock <span class="hlt">wave</span> focusing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smirnov, N. N.; Penyazkov, O. G.; Sevrouk, K. L.; Nikitin, V. F.; Stamov, L. I.; Tyurenkova, V. V.</p> <p>2017-06-01</p> <p>The aim of the present paper is to study detonation initiation due to focusing of a shock <span class="hlt">wave</span> reflected inside a cone. Both numerical and experimental investigations were conducted. Comparison of results made it possible to validate the developed 3-d transient mathematical model of chemically reacting gas mixture flows incorporating hydrogen - air mixtures. The results of theoretical and numerical experiments made it possible improving kinetic schemes and turbulence models. Several different flow scenarios were detected in reflection of shock <span class="hlt">waves</span> all being dependent on incident shock <span class="hlt">wave</span> intensity: reflecting of shock <span class="hlt">wave</span> with lagging behind combustion <span class="hlt">zone</span>, formation of detonation <span class="hlt">wave</span> in reflection and focusing, and intermediate transient regimes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/944946-molecular-dynamics-simulation-study-trapping-ions-nanoscale-paul-trap','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/944946-molecular-dynamics-simulation-study-trapping-ions-nanoscale-paul-trap"><span>A molecular dynamics simulation study on <span class="hlt">trapping</span> ions in a nanoscale Paul <span class="hlt">trap</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhao, Xiongce; Krstic, Predrag S</p> <p>2008-01-01</p> <p>We found by molecular dynamics simulations that a low energy ion can be <span class="hlt">trapped</span> effectively in a nanoscale Paul <span class="hlt">trap</span> in both vacuum and in aqueous environment when appropriate AC/DC electric fields are applied to the system. Using the negatively charged chlorine ion as an example, we show that the <span class="hlt">trapped</span> ion oscillates around the center of the nanotrap with the amplitude dependent on the parameters of the system and applied voltage. Successful <span class="hlt">trapping</span> of the ion within nanoseconds requires electric bias of GHz frequency, in the range of hundreds of mV. The oscillations are damped in the aqueous environment,more » but polarization of the water molecules requires application of the higher voltage biases to reach the improved stability of the <span class="hlt">trapping</span>. Application of a supplemental DC driving field along the <span class="hlt">trap</span> axis can effectively drive the ion off the <span class="hlt">trap</span> center and out of the <span class="hlt">trap</span>, opening a possibility of studying DNA and other biological molecules using embedded probes while achieving a full control of their translocation and localization in the <span class="hlt">trap</span>.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Tectp.712..623N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Tectp.712..623N"><span>Attenuation of Lg <span class="hlt">waves</span> in the New Madrid seismic <span class="hlt">zone</span> of the central United States using the coda normalization method</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nazemi, Nima; Pezeshk, Shahram; Sedaghati, Farhad</p> <p>2017-08-01</p> <p>Unique properties of coda <span class="hlt">waves</span> are employed to evaluate the frequency dependent quality factor of Lg <span class="hlt">waves</span> using the coda normalization method in the New Madrid seismic <span class="hlt">zone</span> of the central United States. Instrument and site responses are eliminated and source functions are isolated to construct the inversion problem. For this purpose, we used 121 seismograms from 37 events with moment magnitudes, M, ranging from 2.5 to 5.2 and hypocentral distances from 120 to 440 km recorded by 11 broadband stations. A singular value decomposition (SVD) algorithm is used to extract Q values from the data, while the geometric spreading exponent is assumed to be a constant. Inversion results are then fitted with a power law equation from 3 to 12 Hz to derive the frequency dependent quality factor function. The final results of the analysis are QVLg (f) = (410 ± 38) f0.49 ± 0.05 for the vertical component and QHLg (f) = (390 ± 26) f0.56 ± 0.04 for the horizontal component, where the term after ± sign represents one standard error. For stations within the Mississippi embayment with an average sediment depth of 1 km around the Memphis metropolitan area, estimation of quality factor using the coda normalization method is not well-constrained at low frequencies (f < 3 Hz). There may be several reasons contributing to this issue, such as low frequency surface <span class="hlt">wave</span> contamination, site effects, or even a change in coda <span class="hlt">wave</span> scattering regime which can exacerbate the scatter of the data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3582699','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3582699"><span>An ex situ evaluation of TBA- and MTBE-baited bio-<span class="hlt">traps</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>North, Katharine P.; Mackay, Douglas M.; Annable, Michael D.; Sublette, Kerry L.; Davis, Greg; Holland, Reef B.; Petersen, Daniel; Scow, Kate M.</p> <p>2013-01-01</p> <p>Aquifer microbial communities can be investigated using Bio-<span class="hlt">traps</span>® (“bio-traps”), passive samplers containing Bio-Sep® beads (“bio-beads”) that are deployed in monitoring wells to be colonized by bacteria delivered via groundwater flow through the well. When bio-beads are “baited” with organic contaminants enriched in 13C, stable isotope probing allows assessment of the composition and activity of the microbial community. This study used an ex situ system fed by groundwater continuously extracted from an adjacent monitoring well within an experimentally-created aerobic <span class="hlt">zone</span> treating a tert-butyl alcohol (TBA) plume. The goal was to evaluate aspects of bio-<span class="hlt">trap</span> performance that cannot be studied quantitatively in situ. The measured groundwater flow through a bio-<span class="hlt">trap</span> housing suggests that such <span class="hlt">traps</span> might typically “sample” about 1.8 L per month. The desorption of TBA or methyl tert-butyl ether (MTBE) bait from bio-<span class="hlt">traps</span> during a typical deployment duration of 6 weeks was approximately 90% and 45%, respectively, of the total initial bait load, with initially high rate of mass loss that decreased markedly after a few days. The concentration of TBA in groundwater flowing by the TBA-baited bio-beads was estimated to be as high as 3400 mg/L during the first few days, which would be expected to inhibit growth of TBA-degrading microbes. Initial inhibition was also implied for the MTBE-baited bio-<span class="hlt">trap</span>, but at lower concentrations and for a shorter time. After a few days, concentrations in groundwater flowing through the bio-<span class="hlt">traps</span> dropped below inhibitory concentrations but remained 4–5 orders of magnitude higher than TBA or MTBE concentrations within the aquifer at the experimental site. Desorption from the bio-beads during ex situ deployment occurred at first as predicted by prior sorption analyses of bio-beads but with apparent hysteresis thereafter, possibly due to mass transfer limitations caused by colonizing microbes. These results suggest that</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919429K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919429K"><span>Equatorial magnetic Rossby <span class="hlt">waves</span> — evidence for a thin, strongly-buoyant stratified layer in earth's core</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knezek, Nicholas; Buffett, Bruce</p> <p>2017-04-01</p> <p>A low density stratified layer at the top of Earth's core has been proposed by many authors on the basis of chemical and thermodynamic arguments and has implications for Earth's thermal history, core energetics, and core-mantle interactions. Past studies claiming to detect a layer using perturbations in seismic <span class="hlt">wave</span> speeds are contentious due to the extremely small magnitude of the detected signal. Recently, several studies have instead argued for the existence of a stratified layer by hypothesizing that oscillations in the observed geomagnetic field arise from <span class="hlt">waves</span> propagating in the layer. In particular, 60 year oscillations in dipole strength have been attributed to global MAC <span class="hlt">waves</span>, and 8 year oscillations of secular acceleration have been attributed to equatorially-<span class="hlt">trapped</span> <span class="hlt">waves</span>. We use a new hybrid finite-volume and Fourier numerical method we developed to model magnetohydrodynamic <span class="hlt">waves</span> in a thin layer and show that a thin, strongly buoyant layer can produce equatorially-<span class="hlt">trapped</span> <span class="hlt">waves</span> with similar structures and periods to the observed 8 year signal. Using these simulated <span class="hlt">wave</span> structures, we provide additional evidence for the existence of several propagating <span class="hlt">wave</span> modes and place constraints on estimates for the <span class="hlt">wave</span> periods, stratified layer thickness, and strength of buoyancy within the layer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19700000433','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19700000433"><span>Sorption vacuum <span class="hlt">trap</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barrington, A. E.; Caruso, A. J.</p> <p>1970-01-01</p> <p>Modified sorption <span class="hlt">trap</span> for use in high vacuum systems contains provisions for online regeneration of sorbent material. <span class="hlt">Trap</span> is so constructed that it has a number of encapsulated resistance heaters and a valving and pumping device for removing gases from heated sorbing material. Excessive downtime is eliminated with this <span class="hlt">trap</span>.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>