Sample records for zoned magma body

  1. Linking Plagioclase Zoning Patterns to Active Magma Processes

    NASA Astrophysics Data System (ADS)

    Izbekov, P. E.; Nicolaysen, K. P.; Neill, O. K.; Shcherbakov, V.; Eichelberger, J. C.; Plechov, P.

    2016-12-01

    Plagioclase, one of the most common and abundant mineral phases in volcanic products, will vary in composition in response to changes in temperature, pressure, composition of the ambient silicate melt, and melt H2O concentration. Changes in these parameters may cause dissolution or growth of plagioclase crystals, forming characteristic textural and compositional variations (zoning patterns), the complete core-to-rim sequence of which describes events experienced by an individual crystal from its nucleation to the last moments of its growth. Plagioclase crystals in a typical volcanic rock may look drastically dissimilar despite their spatial proximity and the fact that they have erupted together. Although they shared last moments of their growth during magma ascent and eruption, their prior experiences could be very different, as plagioclase crystals often come from different domains of the same magma system. Distinguishing similar zoning patterns, correlating them across the entire population of plagioclase crystals, and linking these patterns to specific perturbations in the magmatic system may provide additional perspective on the variety, extent, and timing of magma processes at active volcanic systems. Examples of magma processes, which may be distinguished based on plagioclase zoning patterns, include (1) cooling due to heat loss, (2) heating and/or pressure build up due to an input of new magmatic material, (3) pressure drop in response to magma system depressurization, and (4) crystal transfer between different magma domains/bodies. This review will include contrasting examples of zoning patters from recent eruptions of Augustine and Cleveland Volcanoes in Alaska, Sakurajima Volcano in Japan, Karymsky, Bezymianny, and Tolbachik Volcanoes in Kamchatka, as well as from the drilling into an active magma body at Krafla, Iceland.

  2. Linking Plagioclase Zoning Patterns to Active Magma Processes

    NASA Astrophysics Data System (ADS)

    Izbekov, P. E.; Nicolaysen, K. P.; Neill, O. K.; Shcherbakov, V.; Plechov, P.; Eichelberger, J. C.

    2015-12-01

    Plagioclase, one of the most common and abundant mineral phases in volcanic products, will vary in composition in response to changes in temperature, pressure, composition of the ambient silicate melt, and melt H2O concentration. Changes in these parameters may cause dissolution or growth of plagioclase crystals, forming characteristic textural and compositional variations (zoning patterns), the complete core-to-rim sequence of which describes events experienced by an individual crystal from its nucleation to the last moments of its growth. Plagioclase crystals in a typical volcanic rock may look drastically dissimilar despite their spatial proximity and the fact that they have erupted together. Although they shared last moments of their growth during magma ascent and eruption, their prior experiences could be very different, as plagioclase crystals often come from different domains of the same magma system. Distinguishing similar zoning patterns, correlating them across the entire population of plagioclase crystals, and linking these patterns to specific perturbations in the magmatic system may provide additional perspective on the variety, extent, and timing of magma processes at active volcanic systems. Examples of magma processes, which may be distinguished based on plagioclase zoning patterns, include (1) cooling due to heat loss, (2) heating and/or pressure build up due to an input of new magmatic material, (3) pressure drop in response to magma system depressurization, and (4) crystal transfer between different magma domains/bodies. This review will include contrasting examples of zoning patters from recent eruptions of Karymsky, Bezymianny, and Tolbachik Volcanoes in Kamchatka, Augustine and Cleveland Volcanoes in Alaska, as well as from the drilling into an active magma body at Krafla, Iceland.

  3. Deep magma body beneath the summit and rift zones of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Delaney, P.T.; Fiske, R.S.; Miklius, Asta; Okamura, A.T.; Sako, M.K.

    1990-01-01

    A magnitude 7.2 earthquake in 1975 caused the south flank of Kilauea Volcano, Hawaii, to move seaward in response to slippage along a deep fault. Since then, a large part of the volcano's edifice has been adjusting to this perturbation. The summit of Kilauea extended at a rate of 0.26 meter per year until 1983, the south flank uplifted more than 0.5 meter, and the axes of both the volcano's rift zones extended and subsided; the summit continues to subside. These ground-surface motions have been remarkably steady and much more widespread than those caused by either recurrent inflation and deflation of the summit magma chamber or the episodic propagation of dikes into the rift zones. Kilauea's magmatic system is, therefore, probably deeper and more extensive than previously thought; the summit and both rift zones may be underlain by a thick, near vertical dike-like magma system at a depth of 3 to 9 kilometers.

  4. Deep magma body beneath the summit and rift zones of kilauea volcano, hawaii.

    PubMed

    Delaney, P T; Fiske, R S; Miklius, A; Okamura, A T; Sako, M K

    1990-03-16

    A magnitude 7.2 earthquake in 1975 caused the south flank of Kilauea Volcano, Hawaii, to move seaward in response to slippage along a deep fault. Since then, a large part of the volcano's edifice has been adjusting to this perturbation. The summit of Kilauea extended at a rate of 0.26 meter per year until 1983, the south flank uplifted more than 0.5 meter, and the axes of both the volcano's rift zones extended and subsided; the summit continues to subside. These ground-surface motions have been remarkably steady and much more widespread than those caused by either recurrent inflation and deflation of the summit magma chamber or the episodic propagation of dikes into the rift zones. Kilauea's magmatic system is, therefore, probably deeper and more extensive than previously thought; the summit and both rift zones may be underlain by a thick, near vertical dike-like magma system at a depth of 3 to 9 kilometers.

  5. Why Is There an Abrupt Transition from Solid Rock to Low Crystallinity Magma in Drilled Magma Bodies?

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Carrigan, C. R.; Sun, Y.; Lavallée, Y.

    2017-12-01

    We report on a preliminary evaluation, from basic principles of heat and mass transfer, on the unexpectedly abrupt transition from cuttings of solid rock to fragments of crystal poor glass during drilling into magma bodies. Our analysis is based on conditions determined and inferred for the 2009 IDDP-1 well in Krafla Caldera, which entered apparently liquidus rhyolite magma at about 900oC at a depth of 2104 m. Simple conduction would predict some 30 m of crystallization and partial crystallization since the latest time the magma could have been intruded, approximately 30 years prior to discovery by drilling. Option 1: The expected crystallization of magma has occurred but interstitial melt remains. The pressure difference between lithostatic load of about 50 MPa on the mush and 20 MPa hydrostatic pressure in the well causes pore melt to flow from the permeable mush into the borehole, where it becomes the source of the quenched melt chips. To be viable, this mechanism must work over the time frame of a day. Option 2: The expected crystallization is occurring, but high Rayleigh number thermal convection in the magma chamber continuously displaces crystallizing roof magma by liquidus magma from the interior of the body. To be viable, this mechanism must result in overturning magma in the chamber on a time scale that is much shorter than that of crystallization. Option 3: Flow-induced crystal migration away from zones of high shear created during drilling into magma may preferentially produce low-crystal-content melt at the boundary of the borehole, which is then sampled.

  6. Sombrero uplift above the Altiplano-Puna Magma Body: evidence of a ballooning mid-crustal diapir.

    PubMed

    Fialko, Yuri; Pearse, Jill

    2012-10-12

    The Altiplano-Puna ultralow-velocity zone in the central Andes, South America, is the largest active magma body in Earth's continental crust. Space geodetic observations reported an uplift in the Altiplano-Puna proper at a rate of ~10 mm/year; however, the nature of the inferred inflation source has been uncertain. We present data showing that the uplift has persisted at a nearly constant rate over the past two decades, and is surrounded by a broad zone of subsidence. We show that the ongoing uplift and peripheral subsidence may result from a large mid-crustal diapir fed by partial melt from the Altiplano-Puna Magma Body.

  7. Voluminous eruption from a zoned magma body after an increase in supply rate at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Paduan, J. B.; Clague, D. A.; Dreyer, B. M.; Merle, S. G.; Bobbitt, A. M.; Caress, D. W.; Philip, B. T.; Kelley, D. S.; Nooner, S. L.

    2016-12-01

    Axial Seamount is the best monitored submarine volcano in the world, providing an exceptional window into the dynamic interactions between magma storage, transport, and eruption processes in a mid-ocean ridge setting. An eruption in April 2015 produced the largest volume of erupted lava since monitoring and mapping began in the mid-1980s after the shortest repose time, due to a recent increase in magma supply. The higher rate of magma replenishment since 2011 resulted in the eruption of the most mafic lava in the last 500-600 years. Eruptive fissures at the volcano summit produced pyroclastic ash that was deposited over an area of at least 8 km2. A systematic spatial distribution of compositions is consistent with a single dike tapping different parts of a thermally and chemically zoned magma reservoir that can be directly related to previous multichannel seismic-imaging results.

  8. Melt inclusion shapes: Timekeepers of short-lived giant magma bodies

    DOE PAGES

    Pamukcu, Ayla S.; Gualda, Guilherme A. R.; Bégué, Florence; ...

    2015-09-24

    The longevity of giant magma bodies in the Earth’s crust prior to eruption is poorly constrained, but recognition of short time scales by multiple methods suggests that the accumulation and eruption of these giant bodies may occur rapidly. We describe a new method that uses textures of quartz-hosted melt inclusions, determined using quantitative three-dimensional propagation phase-contrast X-ray tomography, to estimate quartz crystallization times and growth rates, and we compare the results to those from Ti diffusion profiles. We investigate three large-volume, high-silica rhyolite eruptions: the 240 ka Ohakuri-Mamaku and 26.5 ka Oruanui (Taupo Volcanic Zone, New Zealand), and the 760more » ka Bishop Tuff (California, USA). Our results show that (1) longevity estimates from melt inclusion textures and Ti diffusion profiles are comparable, (2) quartz growth rates average ∼10−12 m/s, and (3) quartz melt inclusions give decadal to centennial time scales, revealing that giant magma bodies can develop over notably short historical time scales.« less

  9. Origin of reverse compositional and textural zoning in granite plutons by localized thermal overturn of stratified magma chambers

    NASA Astrophysics Data System (ADS)

    Trubač, Jakub; Janoušek, Vojtěch; Žák, Jiří; Somr, Michael; Kabele, Petr; Švancara, Jan; Gerdes, Axel; Žáčková, Eliška

    2017-04-01

    This study integrates gravimetry and thermal modelling with petrology, U-Th-Pb monazite and zircon geochronology and whole-rock geochemistry of the early Carboniferous Říčany Pluton, Bohemian Massif, in order to discuss the origin of compositional and textural zoning in granitic plutons and complex histories of horizontally stratified, multiply replenished magma chambers. The pluton consists of two coeval, nested biotite (-muscovite) granite facies: outer one, strongly porphyritic (SPm) and inner one, weakly porphyritic (WPc). Their contact is concealed but is likely gradational over several hundreds of meters. The two facies have nearly identical modal composition, are subaluminous to slightly peraluminous and geochemically evolved. Mafic microgranular enclaves, commonly associated with K-feldspar phenocryst patches, are abundant in the pluton center and indicate a repeated basic magma injection and its multistage interactions with the granitic magma and nearly solidified cumulates. Furthermore, the gravimetric data show that the nested pluton is only a small outcrop of a large anvil-like body reaching the depth of at least 14 km, where the pluton root is expected. Trace-element compositions reveal that the pluton is doubly reversely zoned. On the pluton scale, the outer SRG is geochemically more evolved than the inner WPc. On the scale of individual units, outward whole-rock geochemical variations within each facies (SPm, WPc) are compatible with fractional crystallization dominated by feldspars. The proposed genetic model invokes vertical overturn of a deeper, horizontally stratified anvil-shaped magma chamber. The overturn was driven by reactivation of resident felsic magma from the K-feldspar-rich crystal mush. The energy for the melt remobilization, extraction and subsequent ascent is thought to be provided by a long-lived thermal anomaly above the pluton feeding zone, enhanced by the multiple injections of hot basic magmas. In general, it is concluded

  10. Magma differentiation in volcanic conduits - the clinopyroxenite body of Fuerteventura (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Tornare, Evelyne; Bussy, François

    2014-05-01

    Fractionation processes and magma differentiation/mixing occur at various levels during magma transportation through the crust. These processes are usually thought to occur in magmatic chambers or reservoirs into which magma stagnates before continuing to ascent and/or erupt. Here we discuss dynamic fractionation and magma differentiation processes in the plumbing system of an ocean island volcano. Fuerteventura, Canary Island, allows insight into the root-zone of an alkaline ocean island volcano. The PX1 pluton is a 22 Ma-old vertically layered mafic intrusion emplaced at ca. 0.1 GPa. This body shows large- and small-scale alternations of cumulate assemblages evolving from ol-rich wehrlite to clinopyroxenite to gabbro. These cumulates are intruded by numerous dykes of various compositions and veins of more evolved melt. Dykes, veins, and the large scale lithological variations define a general NNE-SSW vertical layering within the pluton. In some areas free of layering, numerous wehrlitic and clinopyroxenitic enclaves appear in a slightly more evolved matrix revealing clear mixing features of crystal mushes. Neither horizontal layering nor marginal facies are observed within PX1. Thus, clinopyroxenites do not represent accumulation of crystals through gravitational settling in a magma chamber. Compositions of cpx define a clear differentiation trend among all lithologies, from sp-bearing dunite (average cpx mg#: 85.99) to plg-ol- or kst-clinopyroxenites (mg#: 75.4). Chemically zoned cpx are present in all coarse-grained lithologies. They are characterised by a rather primitive resorbed core (higher Cr and Mg content), surrounded by a more evolved rim (higher Ti, Al and REE contents, similar to cpx in the matrix). Rims sometimes preserve clear oscillatory zoning and resorbtion features. Cores are interpreted as inherited crystals from deeper levels, whereas rims are considered to have crystallized at the final emplacement level in the root zone of the volcano. We

  11. Lifetime and size of shallow magma bodies controlled by crustal-scale magmatism

    NASA Astrophysics Data System (ADS)

    Karakas, Ozge; Degruyter, Wim; Bachmann, Olivier; Dufek, Josef

    2017-06-01

    Magmatic processes on Earth govern the mass, energy and chemical transfer between the mantle, crust and atmosphere. To understand magma storage conditions in the crust that ultimately control volcanic activity and growth of continents, an evaluation of the mass and heat budget of the entire crustal column during magmatic episodes is essential. Here we use a numerical model to constrain the physical conditions under which both lower and upper crustal magma bodies form. We find that over long durations of intrusions (greater than 105 to 106 yr), extensive lower crustal mush zones develop, which modify the thermal budget of the upper crust and reduce the flux of magma required to sustain upper crustal magma reservoirs. Our results reconcile physical models of magma reservoir construction and field-based estimates of intrusion rates in numerous volcanic and plutonic localities. Young igneous provinces (less than a few hundred thousand years old) are unlikely to support large upper crustal reservoirs, whereas longer-lived systems (active for longer than 1 million years) can accumulate magma and build reservoirs capable of producing super-eruptions, even with intrusion rates smaller than 10-3 to 10-2 km3 yr-1. Hence, total duration of magmatism should be combined with the magma intrusion rates to assess the capability of volcanic systems to form the largest explosive eruptions on Earth.

  12. A cascade of magmatic events during the assembly and eruption of a super-sized magma body

    NASA Astrophysics Data System (ADS)

    Allan, Aidan. S. R.; Barker, Simon J.; Millet, Marc-Alban; Morgan, Daniel J.; Rooyakkers, Shane M.; Schipper, C. Ian; Wilson, Colin J. N.

    2017-07-01

    We use comprehensive geochemical and petrological records from whole-rock samples, crystals, matrix glasses and melt inclusions to derive an integrated picture of the generation, accumulation and evacuation of 530 km3 of crystal-poor rhyolite in the 25.4 ka Oruanui supereruption (New Zealand). New data from plagioclase, orthopyroxene, amphibole, quartz, Fe-Ti oxides, matrix glasses, and plagioclase- and quartz-hosted melt inclusions, in samples spanning different phases of the eruption, are integrated with existing data to build a history of the magma system prior to and during eruption. A thermally and compositionally zoned, parental crystal-rich (mush) body was developed during two periods of intensive crystallisation, 70 and 10-15 kyr before the eruption. The mush top was quartz-bearing and as shallow as 3.5 km deep, and the roots quartz-free and extending to >10 km depth. Less than 600 year prior to the eruption, extraction of large volumes of 840 °C low-silica rhyolite melt with some crystal cargo (between 1 and 10%), began from this mush to form a melt-dominant (eruptible) body that eventually extended from 3.5 to 6 km depth. Crystals from all levels of the mush were entrained into the eruptible magma, as seen in mineral zonation and amphibole model pressures. Rapid translation of crystals from the mush to the eruptible magma is reflected in textural and compositional diversity in crystal cores and melt inclusion compositions, versus uniformity in the outermost rims. Prior to eruption the assembled eruptible magma body was not thermally or compositionally zoned and at temperatures of 790 °C, reflecting rapid cooling from the 840 °C low-silica rhyolite feedstock magma. A subordinate but significant volume (3-5 km3) of contrasting tholeiitic and calc-alkaline mafic material was co-erupted with the dominant rhyolite. These mafic clasts host crystals with compositions which demonstrate that there was some limited pre-eruptive physical interaction of mafic

  13. Zinc isotope systematics of subduction-zone magmas

    NASA Astrophysics Data System (ADS)

    Huang, J.; Zhang, X. C.; Huang, F.; Yu, H.

    2016-12-01

    Subduction-zone magmas are generated by partial melting of mantle wedge triggered by addition of fluids derived from subducted hydrothermally altered oceanic lithosphere. Source of the fluids may be sediment, altered oceanic crust and serpentinized peridotite/serpentinite. Knowledge of the exact fluid source can facilitate our better understanding of the mechanism of fluid flux, element cycling and crust-mantle interaction in subduction zones. Zinc isotopes have the potential to place a constraint on this issue, because (1) Zn has an intermediate mobility during fluid-rock interaction and is enriched in subduction-zone fluids (e.g., Li et al., 2013); (2) sediment, altered oceanic crust and serpentinite have distinct Zn isotopic compositions (Pons et al., 2011); and (3) the mantle has a homogeneous Zn isotope composition (δ66Zn = 0.28 ± 0.05‰, Chen et al., 2013). Thus, the Zn isotopic composition of subduction-zone magmas reflects the characteristics of slab-derived fluids of different sources. Here, high-precision Zn isotope analyses were conducted on igneous rocks from arcs of Central America, Kamchatka, South Lesser Antilles, and Aleutian. One rhyolite with 75.1 wt.% SiO2 and 0.2 wt.% FeOT displays the heaviest δ66Zn value of 0.394‰ (relative to JMC Lyon) that probably results from the crystallization of Fe-Ti oxides during the late-stage differentiation. The rest of rocks have Zn isotopic compositions (0.161 to 0.339‰) similar to or lighter than those of the mantle. In an individual arc, the δ66Zn values of rocks show broad negative correlations with Ba/Th and 87Sr/86Sr ratios, suggesting that the slab-derived fluids should have lighter δ66Zn as well as higher Ba/Th and 87Sr/86Sr ratios relative to the mantle. These features are in accordance with those of serpentinites. Thus, addition of serpentinite-derived 66Zn-depleted fluids into the mantle wedge can explain the declined δ66Zn of subduction-zone magmas. ReferenceChen et al. (2013) EPSL 369

  14. Magma volumes and storage in the middle crust

    NASA Astrophysics Data System (ADS)

    Memeti, V.; Barnes, C. G.; Paterson, S. R.

    2015-12-01

    Quantifying magma volumes in magma plumbing systems is mostly done through geophysical means or based on volcanic eruptions. Detailed studies of plutons, however, are useful in revealing depths and evolving volumes of stored magmas over variable lifetimes of magma systems. Knowledge of the location, volume, and longevity of stored magma is critical for understanding where in the crust magmas attain their chemical signature, how these systems physically behave and how source, storage levels, and volcanoes are connected. Detailed field mapping, combined with single mineral geochemistry and geochronology of plutons, allow estimates of size and longevity of melt-interconnected magma batches that existed during the construction of magma storage sites. The Tuolumne intrusive complex (TIC) recorded a 10 myr magmatic history. Detailed maps of the major units in different parts of the TIC indicate overall smaller scale (cm- to <1 km) compositional variation in the oldest, outer Kuna Crest unit and mainly larger scale (>10 km) changes in the younger Half Dome and Cathedral Peak units. Mineral-scale trace element data from hornblende of granodiorites to gabbros from the Kuna Crest lobe show distinct hornblende compositions and zoning patterns. Mixed hornblende populations occur only at the transition to the main TIC. This compositional heterogeneity in the first 1-2 myr points to low volume magmatism resulting in smaller, discrete and not chemically interacting magma bodies. Trace element and Sr- and Pb-isotope data from growth zones of K-feldspar phenocrysts from the two younger granodiorites indicate complex mineral zoning, but general isotopic overlap, suggesting in-situ, inter-unit mixing and fractionation. This is supported by hybrid zones between units, mixing of zircon, hornblende, and K-feldspar populations and late leucogranites. Thus, magma body sizes increased later resulting in overall more homogeneous, but complexly mixing magma mushes that fractionated locally.

  15. The chemical and isotopic differentiation of an epizonal magma body: Organ Needle pluton, New Mexico

    USGS Publications Warehouse

    Verplanck, P.L.; Farmer, G.L.; McCurry, M.; Mertzman, S.A.

    1999-01-01

    Major and trace element, and Nd and Sr isotopic compositions of whole rocks and mineral separates from the Oligocene, alkaline Organ Needle pluton (ONP), southern New Mexico, constrain models for the differentiation of the magma body parental to this compositionally zoned and layered epizonal intrusive body. The data reveal that the pluton is rimmed by lower ??(Nd) (~-5) and higher 87Sr/86Sr (~0.7085) syenitic rocks than those in its interior (??(Nd) ~ 2, 87Sr/86Sr ~0.7060) and that the bulk compositions of the marginal rocks become more felsic with decreasing structural depth. At the deepest exposed levels of the pluton, the ??(Nd)~-5 lithology is a compositionally heterogeneous inequigranular syenite. Modal, compositional and isotopic data from separates of rare earth element (REE)-bearing major and accesory mineral phases (hornblende, titanite, apatite, zircon) demonstrate that this decoupling of trace and major elements in the inequigranular syenite results from accumulation of light REE (LREE)-bearing minerals that were evidently separated from silicic magmas as the latter rose along the sides of the magma chamber. Chemical and isotopic data for microgranular mafic enclaves, as well as for restite xenoliths of Precambrian granite wall rock, indicate that the isotopic distinction between the marginal and interior facies of the ONP probably reflects assimilation of the wall rock by ??(Nd) ~-2 mafic magmas near the base of the magma system. Fractional crystallization and crystal liquid separation of the crystally contaminated magma at the base and along the margins of the chamber generated the highly silicic magmas that ultimately pooled at the chamber top.

  16. Differentiation and magma mixing on Kilauea's east rift zone: A further look at the eruptions of 1955 and 1960. Part II. The 1960 lavas

    USGS Publications Warehouse

    Wright, T.L.; Helz, R.T.

    1996-01-01

    New and detailed petrographic observations, mineral compositional data, and whole-rock vs glass compositional trends document magma mixing in lavas erupted from Kilauea's lower east rift zone in 1960. Evidence includes the occurrence of heterogeneous phenocryst assemblages, including resorbed and reversely zoned minerals in the lavas inferred to be hybrids. Calculations suggest that this mixing, which is shown to have taken place within magma reservoirs recharged at the end of the 1955 eruption, involved introduction of four different magmas. These magmas originated beneath Kilauea's summit and moved into the rift reservoirs beginning 10 days after the eruption began. We used microprobe analyses of glass to calculate temperatures of liquids erupted in 1955 and 1960. We then used the calculated proportions of stored and recharge components to estimate the temperature of the recharge components, and found those temperatures to be consistent with the temperature of the same magmas as they appeared at Kilauea's summit. Our studies reinforce conclusions reached in previous studies of Kilauea's magmatic plumbing. We infer that magma enters shallow storage beneath Kilauea's summit and also moves laterally into the fluid core of the East rift zone. During this process, if magmas of distinctive chemistry are present, they retain their chemical identity and the amount of cooling is comparable for magma transported either upward or laterally to eruption sites. Intrusions within a few kilometers of the surface cool and crystallize to produce fractionated magma. Magma mixing occurs both within bodies of previously fractionated magma and when new magma intersects a preexisting reservoir. Magma is otherwise prevented from mixing, either by wall-rock septa or by differing thermal and density characteristics of the successive magma batches.

  17. Intrusion of granitic magma into the continental crust facilitated by magma pulsing and dike-diapir interactions: Numerical simulations

    NASA Astrophysics Data System (ADS)

    Cao, Wenrong; Kaus, Boris J. P.; Paterson, Scott

    2016-06-01

    We conducted a 2-D thermomechanical modeling study of intrusion of granitic magma into the continental crust to explore the roles of multiple pulsing and dike-diapir interactions in the presence of visco-elasto-plastic rheology. Multiple pulsing is simulated by replenishing source regions with new pulses of magma at a certain temporal frequency. Parameterized "pseudo-dike zones" above magma pulses are included. Simulation results show that both diking and pulsing are crucial factors facilitating the magma ascent and emplacement. Multiple pulses keep the magmatic system from freezing and facilitate the initiation of pseudo-dike zones, which in turn heat the host rock roof, lower its viscosity, and create pathways for later ascending pulses of magma. Without diking, magma cannot penetrate the highly viscous upper crust. Without multiple pulsing, a single magma body solidifies quickly and it cannot ascent over a long distance. Our results shed light on the incremental growth of magma chambers, recycling of continental crust, and evolution of a continental arc such as the Sierra Nevada arc in California.

  18. Melt production constrained by the topographic signature of the Altiplano-Puna Magma Body

    NASA Astrophysics Data System (ADS)

    Perkins, J. P.; Ward, K. M.; de Silva, S. L.; Zandt, G.; Beck, S. L.; Finnegan, N. J.

    2015-12-01

    The Altiplano-Puna Magma Body (APMB) is a ~200 km diameter, ~10 km thick elliptical zone of low seismic shear velocity interpreted as partial melt within the mid crust of the Central Andes (Ward et al., 2014). It is thought to be the crustal magmatic source for a flare-up of large-volume ignimbrites since 10 Ma (e.g. de Silva et al., 1989), and recent rapid uplift events such as those at Uturuncu volcano appear to be associated with magmatism from the APMB at depth (e.g., Fialko and Pearse, 2011). Hence, the APMB is a first-order geologic feature on par with the Sierra Nevada batholith in CA. Here we use the topographic signature of the low-density APMB in order to quantitatively constrain the melt production necessary to generate a magmatic zone of this size. A long-wavelength, ~1 km high topographic dome spatially coincides with the seismically measured extent of the APMB. The peak of the long wavelength dome acts as a regional drainage divide, and exposed basement rock elevations show that doming is a structural feature and does not reflect solely the accumulation of volcanic deposits on the plateau. Additionally, the minimal free-air gravity anomaly above the APMB and the dome's length scale suggest that the uplift is isostatically compensated. Based on a buried load isostatic model (e.g., Forsyth, 1985), the dome above the APMB implies that 5.6-5.8 km of crustal thickening occurred during the emplacement of the magma body. Our estimate compares well with calculations of crustal addition using magma chamber volume and a standard melt mixing model (Ward et al., 2014), and suggests that the magma production rate for the APMB may be within the range of 70-117 km3/km/yr, similar to rates of the Late Cretaceous magmatic episode in the Sierra Nevada Batholith (e.g., Ducea, 2001). Surface topography may therefore be able to provide quantitative constraints on the magnitude of pluton-scale melt fluxes.

  19. A refined model for Kilauea's magma plumbing system

    NASA Astrophysics Data System (ADS)

    Poland, M. P.; Miklius, A.; Montgomery-Brown, E. D.

    2011-12-01

    Studies of the magma plumbing system of Kilauea have benefitted from the volcano's frequent eruptive activity, ease of access, and particularly the century-long observational record made possible by the Hawaiian Volcano Observatory. The explosion of geophysical data, especially seismic and geodetic, collected since the first model of Kilauea's magmatic system was published in 1960 allows for a detailed characterization of Kilauea's magma storage areas and transport pathways. Using geological, geochemical, and geophysical observations, we propose a detailed model of Kilauea's magma plumbing that we hope will provide a refined framework for studies of Kilauea's eruptive and intrusive activity. Kilauea's summit region is underlain by two persistently active, hydraulically linked magma storage areas. The larger reservoir is centered at ~3 km depth beneath the south caldera and is connected to Kilauea's two rift zones, which radiate from the summit to the east and southwest. All magma that enters the Kilauea edifice passes through this primary storage area before intrusion or eruption. During periods of increased magma storage at the summit, as was the case during 2003-2007, uplift may occur above temporary magma storage volumes, for instance, at the intersection of the summit and east rift zone at ~3 km depth, and within the southwest rift zone at ~2 km depth. The east rift zone is the longer and more active of Kilauea's two rift zones and apparently receives more magma from the summit. Small, isolated pods of magma exist within both rift zones, as indicated by deformation measurements, seismicity, petrologic data, and geothermal drilling results. These magma bodies are probably relicts of past intrusions and eruptions and can be highly differentiated. Within the deeper part of the rift zones, between about 3 km and 9 km depth, magma accumulation is hypothesized based on surface deformation indicative of deep rift opening. There is no direct evidence for magma within

  20. Timescales of quartz crystallization and the longevity of the Bishop giant magma body.

    PubMed

    Gualda, Guilherme A R; Pamukcu, Ayla S; Ghiorso, Mark S; Anderson, Alfred T; Sutton, Stephen R; Rivers, Mark L

    2012-01-01

    Supereruptions violently transfer huge amounts (100 s-1000 s km(3)) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted ~760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500-3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies.

  1. Petrogenesis of the Elephant Moraine A79001 meteorite Multiple magma pulses on the shergottite parent body

    NASA Technical Reports Server (NTRS)

    Mcsween, H. Y., Jr.; Jarosewich, E.

    1983-01-01

    The EETA 79001 achondrite consists of two distinct igneous lithologies joined along a planar, non-brecciated contact. Both are basaltic rocks composed primarily of pigeonite, augite, and maskelynite, but one contains zoned megacrysts of olivine, orthopyroxene, and chromite that represent disaggregated xenoliths of harzburzite. Both lithologies probably formed from successive volcanic flows or multiple injections of magma into a small, shallow chamber. Many similarities between the two virtually synchronous magmas suggest that they are related. Possible mechanisms to explain their differences involve varying degrees of assimilation, fractionation from similar parental magmas, or partial melting of a similar source peridotite; of these, assimilation of the observed megacryst assemblage seems most plausible. However, some isotopic contamination may be required in any of these petrogenetic models. The meteorite has suffered extensive shock metamorphism and localized melting during a large impact event that probably excavated and liberated it from its parent body.

  2. Rapid Crystallization of the Bishop Magma

    NASA Astrophysics Data System (ADS)

    Gualda, G. A.; Anderson, A. T.; Sutton, S. R.

    2007-12-01

    Substantial effort has been made to understand the longevity of rhyolitic magmas, and particular attention has been paid to the systems in the Long Valley area (California). Recent geochronological data suggest discrete magma bodies that existed for hundreds of thousands of years. Zircon crystallization ages for the Bishop Tuff span 100-200 ka, and were interpreted to reflect slow crystallization of a liquid-rich magma. Here we use the diffusional relaxation of Ti zoning in quartz to investigate the longevity of the Bishop magma. We have used such an approach to show the short timescales of crystallization of Ti-rich rims on quartz from early- erupted Bishop Tuff. We have now recognized Ti-rich cores in quartz that can be used to derive the timescales of their crystallization. We studied four samples of the early-erupted Bishop. Hand-picked crystals were mounted on glass slides and polished. Cathodoluminescence (CL) images were obtained using the electron microprobe at the University of Chicago. Ti zoning was documented using the GeoSoilEnviroCARS x-ray microprobe at the Advanced Photon Source (Argonne National Lab). Quartz crystals in all 4 samples include up to 3 Ti-bearing zones: a central core (50-100 μm in diameter, ca. 50 ppm Ti), a volumetrically predominant interior (~40 ppm Ti), and in some crystals a 50-100 μm thick rim (50 ppm Ti). Maximum estimates of core residence times were calculated using a 1D diffusion model, as the time needed to smooth an infinitely steep profile to fit the observed profile. Surprisingly, even for the largest crystals studied - ca. 2 mm in diameter - core residence times are less than 1 ka. Calculated growth rates imply that even cm-sized crystals crystallized in less than 10 ka. Crystal size distribution data show that crystals larger than 3 mm are exceedingly rare, such that the important inference is that the bulk of the crystallization of the early-erupted Bishop magma occurred in only a few thousand years. This timescale

  3. Timescales of Quartz Crystallization and the Longevity of the Bishop Giant Magma Body

    PubMed Central

    Gualda, Guilherme A. R.; Pamukcu, Ayla S.; Ghiorso, Mark S.; Anderson, Alfred T.; Sutton, Stephen R.; Rivers, Mark L.

    2012-01-01

    Supereruptions violently transfer huge amounts (100 s–1000 s km3) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted ∼760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500–3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies. PMID:22666359

  4. Timescales of Quartz Crystallization and the Longevity of the Bishop Giant Magma Body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gualda, Guilherme A.R.; Pamukcu, Ayla S.; Ghiorso, Mark S.

    Supereruptions violently transfer huge amounts (100 s-1000 s km{sup 3}) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted {approx}760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain themore » timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500-3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies.« less

  5. The Fish Canyon magma body, San Juan volcanic field, Colorado: Rejuvenation and eruption of an upper-crustal batholith

    USGS Publications Warehouse

    Bachmann, Olivier; Dungan, M.A.; Lipman, P.W.

    2002-01-01

    More than 5000 km3 of nearly compositionally homogeneous crystalrich dacite (~68 wt % SiO2: ~45% Pl + Kfs + Qtz + Hbl + Bt + Spn + Mag + Ilm + Ap + Zrn + Po) erupted from the Fish Canyon magma body during three phases: (1) the pre-caldera Pagosa Peak Dacite (an unusual poorly fragmented pyroclastic deposit, ~ 200 km3); (2) the syn-collapse Fish Canyon Tuff (one of the largest known ignimbrites, ~ 5000 km3); (3) the post-collapse Nutras Creek Dacite (a volumetrically minor lava). The late evolution of the Fish Canyon magma is characterized by rejuvenation of a near-solidus upper-crustal intrusive body (mainly crystal mush) of batholithic dimensions. The necessary thermal input was supplied by a shallow intrusion of more mafic magma represented at the surface by sparse andesitic enclaves in late-erupted Fish Canyon Tuff and by the post-caldera Huerto Andesite. The solidified margins of this intrusion are represented by holocrystalline xenoliths with Fish Canyon mineralogy and mineral chemistry and widely dispersed partially remelted polymineralic aggregates, but dehydration melting was not an important mechanism in the rejuvenation of the Fish Canyon magma. Underlying mafic magma may have evolved H2O-F-S-Cl-rich fluids that fluxed melting in the overlying crystal mush. Manifestations of the late up-temperature magma evolution are: (1) resorbed quartz, as well as feldspars displaying a wide spectrum of textures indicative of both resorption and growth, including Rapakivi textures and reverse growth zoning (An27-28 to An32-33) at the margins of many plagioclase phenocrysts; (2) high Sr, Ba, and Eu contents in the high-SiO2 rhyolite matrix glass, which are inconsistent with extreme fractional crystallization of feldspar; (3) oscillatory and reverse growth zoning toward the margins of many euhedral hornblende phenocrysts (rimward increases from ~5??5-6 to 7??7-8??5 wt % Al2O3). Homogeneity in magma composition at the chamber-wide scale, contrasting with extreme textural

  6. Where do arc magmas differentiate? A seismic and geochemical search for active, deep crustal MASH zones

    NASA Astrophysics Data System (ADS)

    Pu, X.; Delph, J. R.; Shimizu, K.; Rasmussen, D. J.; Ratschbacher, B. C.

    2017-12-01

    Deep zones of mixing, assimilation, storage, and homogenization (MASH) are thought to be one of the primary locations where primitive arc magmas stall, interact with crustal material, and differentiate. Support for deep crustal MASH zones is found in exposed crustal sections, where mafic-ultramafic lithologies occur in the lower crust. However, geophysical observations of active deep MASH zones are rare, and their ubiquity is difficult to assess solely based on geochemistry. Using a multidisciplinary approach, we investigate the role of deep crustal processing by investigating two contrasting arcs: the Central Volcanic Zone (CVZ) of the Andes, characterized by thick crust ( 60 km) and large volume silicic eruptions that extend into the back arc, and the Cascadia arc, characterized by thinner crust ( 40 km) and less evolved eruptions. In the southern Puna region of the CVZ, shear-wave velocities in the uppermost mantle are slow ( 3.9 km/s) compared to the minimum expected shear velocity for melt-free mantle lithosphere ( 4.2 km/s). This is consistent with the presence of a melt-bearing MASH zone near the crust-mantle transition. Sr isotopes indicate the magmas interacted with continental crust, and elevated Dy/Yb ratios suggest this process occurred in the garnet stability field (> 1 GPa). Major element signatures (e.g., ASI vs. SiO2) also suggest contribution from partial melting of the lower crust. The signature of lower crustal differentiation (high Dy/Yb) is also observed in the nearby ignimbrites from Cerro Galan, despite the presence of a large slow velocity body at depths too shallow for garnet stability, suggesting that the geochemical signatures of deep MASH zones may be retained regardless of whether magmas stall at shallower depths. Similarly elevated Dy/Yb ratios and slow shear-wave velocities in the upper mantle are common in the CVZ, implying deep MASH zones are pervasive there. A similar approach is applied to Cascadia, where seismic and geochemical

  7. A rapid mechanism to remobilize and homogenize highly crystalline magma bodies.

    PubMed

    Burgisser, Alain; Bergantz, George W

    2011-03-10

    The largest products of magmatic activity on Earth, the great bodies of granite and their corresponding large eruptions, have a dual nature: homogeneity at the large scale and spatial and temporal heterogeneity at the small scale. This duality calls for a mechanism that selectively removes the large-scale heterogeneities associated with the incremental assembly of these magmatic systems and yet occurs rapidly despite crystal-rich, viscous conditions seemingly resistant to mixing. Here we show that a simple dynamic template can unify a wide range of apparently contradictory observations from both large plutonic bodies and volcanic systems by a mechanism of rapid remobilization (unzipping) of highly viscous crystal-rich mushes. We demonstrate that this remobilization can lead to rapid overturn and produce the observed juxtaposition of magmatic materials with very disparate ages and complex chemical zoning. What distinguishes our model is the recognition that the process has two stages. Initially, a stiff mushy magma is reheated from below, producing a reduction in crystallinity that leads to the growth of a subjacent buoyant mobile layer. When the thickening mobile layer becomes sufficiently buoyant, it penetrates the overlying viscous mushy magma. This second stage rapidly exports homogenized material from the lower mobile layer to the top of the system, and leads to partial overturn within the viscous mush itself as an additional mechanism of mixing. Model outputs illustrate that unzipping can rapidly produce large amounts of mobile magma available for eruption. The agreement between calculated and observed unzipping rates for historical eruptions at Pinatubo and at Montserrat demonstrates the general applicability of the model. This mechanism furthers our understanding of both the formation of periodically homogenized plutons (crust building) and of ignimbrites by large eruptions.

  8. Mushy Magma beneath Yellowstone

    NASA Astrophysics Data System (ADS)

    Chu, R.; Helmberger, D. V.; Sun, D.; Jackson, J. M.; Zhu, L.

    2009-12-01

    A recent prospective on the Yellowstone Caldera discounts its explosive potential based on inferences from tomographic studies on regional earthquake data which suggests a high degree of crystallization of the underlying magma body. In this study, we analyzed P-wave receiver functions recorded by broadband stations above the caldera from 100 teleseismic earthquakes between January and November 2008. After applying a number of waveform modeling tools, we obtained much lower seismic velocities than previous estimates, 2.3 km/sec (Vp) and 1.1 km/sec (Vs), with a thickness of 3.6 km in the upper crust. This shallow low velocity zone is severe enough to cause difficulties with seismic tool applications. In particular, seismologists expect teleseismic P-waves to arrive with motions up and away or down and back. Many of the observations recorded by the Yellowstone Intermountain Seismic Array, however, violate this assumption. We show that many of the first P-wave arrivals observed at seismic stations on the edge of the caldera do not travel through the magma body but have taken longer but faster paths around the edge or wrap-around phases. Three stations near the trailing edge have reversal radial-component motions, while stations near the leading edge do not. Adding our constraints on geometry, we conclude that this relatively shallow magma body has a volume of over 4,300 km3. We estimate the magma body by assuming a fluid-saturated porous material consisting of granite and a mixture of rhyolite melt and supercritical water and CO2 at temperatures of 800 oC and pressure at 5 km (0.1 GPa).Theoretical calculations of seismic wave speed suggests that the magma body beneath the Yellowstone Caldera has a porosity of 32% filled with 92% rhyolite melt and 8% water-CO2 by volume.

  9. Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil

    NASA Astrophysics Data System (ADS)

    Tommasi, AndréA.; Vauchez, Alain; Femandes, Luis A. D.; Porcher, Carla C.

    1994-04-01

    . Synkinematic granitoids localize most, if not all, deformation in the studied shear zone. The regional continuity and the pervasive character of the magmatic fabric in the various synkinematic granitic bodies, consistently displaying similar plane and direction of flow, argue for accommodation of large amounts of orogen-parallel movement by viscous deformation of these magmas. Moreover, activation of high-temperature deformation mechanisms probably allowed a much easier deformation of the hot synkinematic granites than of the colder country rock and, consequently, contributed significantly to the localization of deformation. Finally, the small extent of the low-temperature deformation suggests that the strike-slip deformation ended approximately synchronously with the final cooling of the peraluminous granites. The evolution of the deformation reflects the strong influence of synkinematic magma emplacement and subsequent cooling on the thermomechanical evolution of the shear zone. Magma intrusion in an orogen-scale transcurrent shear zone deeply modifies the rheological behavior of the continental crust. It triggers an efficient thermomechanical softening localized within the fault that may subsist long enough for large displacements to be accommodated. Therefore the close association of deformation and synkinematic magmatism probably represents an important factor controlling the mechanical response of continental plates in collisional environments.

  10. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Bacon, C.R.; Druitt, T.H.

    1988-01-01

    The climactic eruption of Mount Mazama has long been recognized as a classic example of rapid eruption of a substantial fraction of a zoned magma body. Increased knowledge of eruptive history and new chemical analyses of ???350 wholerock and glass samples of the climactic ejecta, preclimactic rhyodacite flows and their inclusions, postcaldera lavas, and lavas of nearby monogenetic vents are used here to infer processes of chemical evolution of this late Pleistocene - Holocene magmatic system. The 6845??50 BP climactic eruption vented ???50 km3 of magma to form: (1) rhyodacite fall deposit; (2) welded rhyodacite ignimbrite; and (3) lithic breccia and zoned ignimbrite, these during collapse of Crater Lake caldera. Climactic ejecta were dominantly homogeneous rhyodacite (70.4??0.3% SiO2), followed by subordinate andesite and cumulate scoriae (48-61% SiO2). The gap in wholerock composition reflects mainly a step in crystal content because glass compositions are virtually continuous. Two types of scoriae are distinguished by different LREE, Rb, Th, and Zr, but principally by a twofold contrast in Sr content: High-Sr (HSr) and low-Sr (LSr) scoriae. HSr scoriae were erupted first. Trace element abundances indicate that HSr and LSr scoriae had different calcalkaline andesite parents; basalt was parental to some mafic cumulate scoriae. Parental magma compositions reconstructed from scoria wholerock and glass data are similar to those of inclusions in preclimactic rhyodacites and of aphyric lavas of nearby monogenetic vents. Preclimactic rhyodacite flows and their magmatic inclusions give insight into evolution of the climactic chamber. Evolved rhyodacite flows containing LSr andesite inclusions were emplaced between ???30000 and ???25000 BP. At 7015??45 BP, the Llao Rock vent produced a zoned rhyodacite pumice fall, then rhyodacite lava with HSr andesite inclusions. The Cleetwood rhyodacite flow, emplaced immediately before the climactic eruption and compositionally

  11. Magma reservoirs and neutral buoyancy zones on Venus - Implications for the formation and evolution of volcanic landforms

    NASA Technical Reports Server (NTRS)

    Head, James W.; Wilson, Lionel

    1992-01-01

    The production of magma reservoirs and neutral buoyancy zones (NBZs) on Venus and the implications of their development for the formation and evolution of volcanic landforms are examined. The high atmospheric pressure on Venus reduces volatile exsolution and generally serves to inhibit the formation of NBZs and shallow magma reservoirs. For a range of common terrestrial magma-volatile contents, magma ascending and erupting near or below mean planetary radius (MPR) should not stall at shallow magma reservoirs; such eruptions are characterized by relatively high total volumes and effusion rates. For the same range of volatile contents at 2 km above MPR, about half of the cases result in the direct ascent of magma to the surface and half in the production of neutral buoyancy zones. NBZs and shallow magma reservoirs begin to appear as gas content increases and are nominally shallower on Venus than on earth. For a fixed volatile content, NBZs become deeper with increasing elevation: over the range of elevations treated in this study (-1 km to +4.4 km) depths differ by a factor of 2-4. Factors that may account for the low height of volcanoes on Venus are discussed.

  12. Sidewall crystallization and saturation front formation in silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Lake, E. T.

    2012-12-01

    The cooling and crystallization style of silicic magma bodies in the upper crust falls on a continuum between whole-chamber processes of convection, crystal settling, and cumulate formation and interface driven processes of conduction and crystallization front migration. In the former case, volatile saturation occurs uniformly chamber wide, in the latter volatile saturation occurs along an inward propagating front. Ambient thermal gradient primarily controls the propagation rate; warm (> 30 °C / km) geothermal gradients promote 1000m+ thick crystal mush zones but slow crystallization front propagation. Cold geothermal gradients support the opposite. Magma chamber geometry plays a second order role in controlling propagation rates; bodies with high surface to magma ratio and large Earth's surface parallel faces exhibit more rapid propagation and smaller mush zones. Crystallization front propagation occurs at speeds of up to 6 cm/year (rhyolitic magma, thin sill geometry, 10 °C / km geotherm), far faster than diffusion of volatiles in magma and faster than bubbles can nucleate and ascend under certain conditions. Saturation front propagation is fixed by pressure and magma crystal content; above certain modest initial water contents (4.4 wt% in a dacite) mobile magma above 10 km depth always contains a saturation front. Saturation fronts propagate down from the magma chamber roof at lower water contents (3.3 wt% in a dacite at 5 km depth), creating an upper saturated interface for most common (4 - 6 wt%) magma water contents. This upper interface promotes the production of a fluid pocket underneath the apex of the magma chamber. Magma de-densification by bubble nucleation promotes convection and homogenization in dacitic systems. If the fluid pocket grew rapidly without draining, hydro-fracturing and eruption would result. The combination of fluid escape pathways and metal scavenging would generate economic vein or porphyry deposits.

  13. Large-scale magmatic layering in the Main Zone of the Bushveld Complex and episodic downward magma infiltration

    NASA Astrophysics Data System (ADS)

    Hayes, Ben; Ashwal, Lewis D.; Webb, Susan J.; Bybee, Grant M.

    2017-03-01

    The Bellevue drillcore intersects 3 km of Main and Upper Zone cumulates in the Northern Limb of the Bushveld Complex. Main Zone cumulates are predominately gabbronorites, with localized layers of pyroxenite and anorthosite. Some previous workers, using bulk rock major, trace and isotopic compositions, have suggested that the Main Zone crystallized predominantly from a single pulse of magma. However, density measurements throughout the Bellevue drillcore reveal intervals that show up-section increases in bulk rock density, which are difficult to explain by crystallization from a single batch of magma. Wavelet analysis of the density data suggests that these intervals occur on length-scales of 40 to 170 m, thus defining a scale of layering not previously described in the Bushveld Complex. Upward increases in density in the Main Zone correspond to upward increases in modal pyroxene, producing intervals that grade from a basal anorthosite (with 5% pyroxene) to gabbronorite (with 30-40% pyroxene). We examined the textures and mineral compositions of a 40 m thick interval showing upwardly increasing density to establish how this type of layering formed. Plagioclase generally forms euhedral laths, while orthopyroxene is interstitial in texture and commonly envelops finer-grained and embayed plagioclase grains. Minor interstitial clinopyroxene was the final phase to crystallize from the magma. Plagioclase compositions show negligible change up-section (average An62), with local reverse zoning at the rims of cumulus laths (average increase of 2 mol%). In contrast, interstitial orthopyroxene compositions become more primitive up-section, from Mg# 57 to Mg# 63. Clinopyroxene similarly shows an up-section increase in Mg#. Pyroxene compositions record the primary magmatic signature of the melt at the time of crystallization and are not an artefact of the trapped liquid shift effect. Combined, the textures and decoupled mineral compositions indicate that the upward density

  14. Anomalously high b-values in the South Flank of Kilauea volcano, Hawaii: Evidence for the distribution of magma below Kilauea's East rift zone

    USGS Publications Warehouse

    Wyss, M.; Klein, F.; Nagamine, K.; Wiemer, S.

    2001-01-01

    The pattern of b-value of the frequency-magnitude relation, or mean magnitude, varies little in the Kaoiki-Hilea area of Hawaii, and the b-values are normal, with b = 0.8 in the top 10 km and somewhat lower values below that depth. We interpret the Kaoiki-Hilea area as relatively stable, normal Hawaiian crust. In contrast, the b-values beneath Kilauea's South Flank are anomalously high (b = 1.3-1.7) at depths between 4 and 8 km, with the highest values near the East Rift zone, but extending 5-8 km away from the rift. Also, the anomalously high b-values vary along strike, parallel to the rift zone. The highest b-values are observed near Hiiaka and Pauahi craters at the bend in the rift, the next highest are near Makaopuhi and also near Puu Kaliu. The mildest anomalies occur adjacent to the central section of the rift. The locations of the three major and two minor b-value anomalies correspond to places where shallow magma reservoirs have been proposed based on analyses of seismicity, geodetic data and differentiated lava chemistry. The existence of the magma reservoirs is also supported by magnetic anomalies, which may be areas of dike concentration, and self-potential anomalies, which are areas of thermal upwelling above a hot source. The simplest explanation of these anomalously high b-values is that they are due to the presence of active magma bodies beneath the East Rift zone at depths down to 8 km. In other volcanoes, anomalously high b-values correlate with volumes adjacent to active magma chambers. This supports a model of a magma body beneath the East Rift zone, which may widen and thin along strike, and which may reach 8 km depth and extend from Kilauea's summit to a distance of at least 40 km down rift. The anomalously high b-values at the center of the South Flank, several kilometers away from the rift, may be explained by unusually high pore pressure throughout the South Flank, or by anomalously strong heterogeneity due to extensive cracking, or by both

  15. Primitive andesites from the Taupo Volcanic Zone formed by magma mixing

    NASA Astrophysics Data System (ADS)

    Beier, Christoph; Haase, Karsten M.; Brandl, Philipp A.; Krumm, Stefan H.

    2017-05-01

    Andesites with Mg# >45 erupted at subduction zones form either by partial melting of metasomatized mantle or by mixing and assimilation processes during melt ascent. Primitive whole rock basaltic andesites from the Pukeonake vent in the Tongariro Volcanic Centre in New Zealand's Taupo Volcanic Zone contain olivine, clino- and orthopyroxene, and plagioclase xeno- and antecrysts in a partly glassy matrix. Glass pools interstitial between minerals and glass inclusions in clinopyroxene, orthopyroxene and plagioclase as well as matrix glasses are rhyolitic to dacitic indicating that the melts were more evolved than their andesitic bulk host rock analyses indicate. Olivine xenocrysts have high Fo contents up to 94%, δ18O(SMOW) of +5.1‰, and contain Cr-spinel inclusions, all of which imply an origin in equilibrium with primitive mantle-derived melts. Mineral zoning in olivine, clinopyroxene and plagioclase suggest that fractional crystallization occurred. Elevated O isotope ratios in clinopyroxene and glass indicate that the lavas assimilated sedimentary rocks during stagnation in the crust. Thus, the Pukeonake andesites formed by a combination of fractional crystallization, assimilation of crustal rocks, and mixing of dacite liquid with mantle-derived minerals in a complex crustal magma system. The disequilibrium textures and O isotope compositions of the minerals indicate mixing processes on timescales of less than a year prior to eruption. Similar processes may occur in other subduction zones and require careful study of the lavas to determine the origin of andesite magmas in arc volcanoes situated on continental crust.

  16. Magma ascent and emplacement in a continental rift setting: lessons from alkaline complexes in active and ancient rift zones

    NASA Astrophysics Data System (ADS)

    Hutchison, William; Lloyd, Ryan; Birhanu, Yelebe; Biggs, Juliet; Mather, Tamsin; Pyle, David; Lewi, Elias; Yirgu, Gezahgen; Finch, Adrian

    2017-04-01

    A key feature of continental rift evolution is the development of large chemically-evolved alkaline magmatic systems in the shallow crust. At active alkaline systems, for example in the East African Rift, the volcanic complexes pose significant hazards to local populations but can also sustain major geothermal resources. In ancient rifts, for example the Gardar province in Southern Greenland, these alkaline magma bodies can host some of the world's largest rare element deposits in resources such as rare earths, niobium and tantalum. Despite their significance, there are major uncertainties about how such magmas are emplaced, the mechanisms that trigger eruptions and the magmatic and hydrothermal processes that generate geothermal and mineral resources. Here we compare observations from active caldera volcanoes in the Ethiopian Rift with compositionally equivalent ancient (1300-1100 Ma) plutonic systems in the Gardar Rift province (Greenland). In the Ethiopian Rift Valley we use InSAR and GPS data to evaluate the temporal and spatial evolution of ground deformation at Aluto and Corbetti calderas. We show that unrest at Aluto is characterized by short (3-6 month) accelerating uplift pulses likely caused by magmatic fluid intrusion at 5 km. At Corbetti, uplift is steady ( 6.6 cm/yr) and sustained over many years with analytical source models suggesting deformation is linked to sill intrusion at depths of 7 km. To evaluate the validity of these contrasting deformation mechanisms (i.e. magmatic fluid intrusion and sill emplacement) we carried out extensive field, structural and geochemical analysis in the roof zones of two alkaline plutons (Ilímaussaq and Motzfeldt) in Greenland. Our results show that the volatile contents (F, Cl, OH and S) of these magmas were exceptionally high and that there is evidence for ponding of magmatic fluids in the roof zone of the magma reservoir. We also identified extensive sill networks at the contact between the magma reservoir and the

  17. High-precision Pb Isotopes Reveal Two Small Magma Bodies Beneath the Summit of Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Pietruszka, A. J.; Heaton, D. E.; Marske, J. P.; Garcia, M. O.

    2013-12-01

    The summit magma storage reservoir of Kilauea Volcano is one of the most important components of the volcano's magmatic plumbing system, but its geometry is poorly known. High-precision Pb isotopic analyses of Kilauea summit lavas (1959-1982) define the minimum number of magma bodies within the summit reservoir and their volumes. The 206Pb/204Pb ratios of these lavas display a temporal decrease due to changes in the composition of the parental magma delivered to the volcano. Analyses of multiple lavas from some individual eruptions reveal small but significant differences in 206Pb/204Pb. The extra-caldera lavas from Aug. 1971 and Jul. 1974 display lower Pb isotope ratios and higher MgO contents (10 wt. %) than the intra-caldera lavas (MgO ~7-8 wt. %) from each eruption. From 1971 to 1982, the 206Pb/204Pb ratios of the lavas define two separate decreasing temporal trends. The intra-caldera lavas from 1971, 1974, 1975, Apr. 1982 and the lower MgO lavas from Sep. 1982 have higher 206Pb/204Pb ratios at a given time (compared to the extra-caldera lavas and the higher MgO lavas from Sep. 1982). These trends require that the intra- and extra-caldera lavas (and the Sep. 1982 lavas) were supplied from two separate, partially isolated magma bodies. Numerous studies (Fiske and Kinoshita, 1969; Klein et al., 1987) have long identified the locus of Kilauea's summit reservoir ~2 km southeast of Halemaumau (HMM) at a depth of ~2-7 km, but more recent investigations have discovered a second magma body located <1 km below the east rim of HMM (Battaglia et al., 2003; Johnson et al., 2010). The association between the vent locations of the extra-caldera lavas near the southeast rim of the caldera and their higher MgO contents suggests that these lavas tapped the deeper magma body. In contrast, the lower MgO intra-caldera lavas were likely derived from the shallow magma body beneath HMM. Residence time modeling based on the Pb isotope ratios of the lavas suggests that the magma volume

  18. Magnetotelluric Investigations of the Yellowstone Caldera: Understanding the Emplacement of Crustal Magma Bodies

    NASA Astrophysics Data System (ADS)

    Gurrola, R. M.; Neal, B. A.; Bennington, N. L.; Cronin, R.; Fry, B.; Hart, L.; Imamura, N.; Kelbert, A.; Bowles-martinez, E.; Miller, D. J.; Scholz, K. J.; Schultz, A.

    2017-12-01

    Wideband magnetotellurics (MT) presents an ideal method for imaging conductive shallow magma bodies associated with contemporary Yellowstone-Snake River Plain (YSRP) magmatism. Particularly, how do these magma bodies accumulate in the mid to upper crust underlying the Yellowstone Caldera, and furthermore, what role do hydrothermal fluids play in their ascent? During the summer 2017 field season, two field teams from Oregon State University and the University of Wisconsin-Madison installed forty-four wideband MT stations within and around the caldera, and using data slated for joint 3-D inversion with existing seismic data, two 2-D vertical conductivity sections of the crust and upper mantle were constructed. These models, in turn, provide preliminary insight into the emplacement of crustal magma bodies and hydrothermal processes in the YSRP region.

  19. The chemically zoned 1949 eruption on La Palma (Canary Islands): Petrologic evolution and magma supply dynamics of a rift zone eruption

    NASA Astrophysics Data System (ADS)

    Klügel, Andreas; Hoernle, Kaj A.; Schmincke, Hans-Ulrich; White, James D. L.

    2000-03-01

    The 1949 rift zone eruption along the Cumbre Vieja ridge on La Palma involved three eruptive centers, 3 km spaced apart, and was chemically and mineralogically zoned. Duraznero crater erupted tephrite for 14 days and shut down upon the opening of Llano del Banco, a fissure that issued first tephrite and, after 3 days, basanite. Hoyo Negro crater opened 4 days later and erupted basanite, tephrite, and phonotephrite, while Llano del Banco continued to issue basanite. The eruption ended with Duraznero erupting basanite with abundant crustal and mantle xenoliths. The tephrites and basanites from Duraznero and Llano del Banco show narrow compositional ranges and define a bimodal suite. Each batch ascended and evolved separately without significant intermixing, as did the Hoyo Negro basanite, which formed at lower degrees of melting. The magmas fractionated clinopyroxene +olivine±kaersutite±Ti-magnetite at 600-800 MPa and possibly 800-1100 MPa. Abundant reversely zoned phenocrysts reflect mixing with evolved melts at mantle depths. Probably as early as 1936, Hoyo Negro basanite entered the deep rift system at 200-350 MPa. Some shallower pockets of this basanite evolved to phonotephrite through differentiation and assimilation of wall rock. A few months prior to eruption, a mixing event in the mantle may have triggered the final ascent of the magmas. Most of the erupted tephrite and basanite ascended from mantle depths within hours to days without prolonged storage in crustal reservoirs. The Cumbre Vieja rift zone differs from the rift zones of Kilauea volcano (Hawaii) in lacking a summit caldera or a summit reservoir feeding the rift system and in being smaller and less active with most of the rift magma solidifying between eruptions.

  20. Magma Reservoir Processes Revealed by Geochemistry of the Ongoing East Rift Zone Eruption, Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Thornber, C. R.

    2002-12-01

    Geochemical data were examined for a suite of 1,000 near-vent lava samples from the Pu`u `O`o-Kupaianaha eruption of Kilauea, collected from January 1983 through October 2001. Bulk lava and glass compositions reveal short- and long-term changes in pre-eruptive magma conditions that can be correlated with changes in edifice deformation, shallow magma transfer and eruptive behavior. Two decades of eruption on Kilauea's east rift zone has yielded ~2 km3 of lava, 97% of which is sparsely olivine-phyric with an MgO range of 6.8 to 9.6 wt%. During separate brief intervals of low-volume, fissure eruption (episodes 1 to 3 and 54), isolated rift-zone reservoirs with lower-MgO and olv-cpx-plg-phryic magma were incorporated by more mafic magma immediately prior to eruption. During prolonged, near-continuous eruption(e.g.,episodes 48-53 and most of 55), steady-state effusion is marked by cyclic variations in olivine-saturated magma chemistry. Bulk lava MgO and eruption temperature vary in cycles of monthly to bi-annual frequency, while olivine-incompatible elements vary inversely to these cycles. However, MgO-normalized values and ratios of highly to moderately incompatible elements (HINCE/MINCE), which nullify olivine fractionation effects, reveal cycles in magma chemistry that occur prior to olivine crystallization over the magmatic temperature range that is tapped by this eruption (1205-1155°C). These short-term cycles are superimposed on a long-term decrease of HINCE/MINCE, which is widely thought to reflect a 20-year change in mantle-source conditions. While HINCE/MINCE variation in primitive recharge magma cannot be ruled out, the short-term fluctuations of this signature may require unreasonably complex mantle variations. Alternatively, the correspondence of HINCE/MINCE cycles with edifice deformation and eruptive behavior suggests that the long-term evolving magmatic condition is a result of prolonged succession of short-term shallow magmatic events. The consistent

  1. Seismic evidence for a crustal magma reservoir beneath the upper east rift zoneof Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Lin, Guoqing; Amelung, Falk; Lavallee, Yan; Okubo, Paul G.

    2014-01-01

    An anomalous body with low Vp (compressional wave velocity), low Vs (shear wave velocity), and high Vp/Vs anomalies is observed at 8–11 km depth beneath the upper east rift zone of Kilauea volcano in Hawaii by simultaneous inversion of seismic velocity structure and earthquake locations. We interpret this body to be a crustal magma reservoir beneath the volcanic pile, similar to those widely recognized beneath mid-ocean ridge volcanoes. Combined seismic velocity and petrophysical models suggest the presence of 10% melt in a cumulate magma mush. This reservoir could have supplied the magma that intruded into the deep section of the east rift zone and caused its rapid expansion following the 1975 M7.2 Kalapana earthquake.

  2. Influence of stretching and density contrasts on the chemical evolution of continental magmas: An example from the Ivrea-Verbano Zone

    USGS Publications Warehouse

    Sinigoi, S.; Quick, J.E.; Mayer, A.; Budahn, J.

    1996-01-01

    The southern Ivrea-Verbano Zone of the Italian Western Alps contains a huge mafic complex that intruded high-grade metamorphic rocks while they were resident in the lower crust. Geologic mapping and chemical variations of the igneous body were used to study the evolution of underplated crust. Slivers of crustal rocks (septa) interlayered with igneous mafic rocks are concentrated in a narrow zone deep in the complex (Paragneiss-bearing Belt) and show evidence of advanced degrees of partial melting. Variations of rare-earth-element patterns and Sr isotope composition of the igneous rocks across the sequence are consistent with increasing crustal contamination approaching the septa. Therefore, the Paragneiss-bearing Belt is considered representative of an "assimilation region" where in-situ interaction between mantle- and crust-derived magmas resulted in production of hybrid melts. Buoyancy caused upwards migration of the hybrid melts that incorporated the last septa and were stored at higher levels, feeding the Upper Mafic Complex. Synmagmatic stretching of the assimilation region facilitated mixing and homogenization of melts. Chemical variations of granitoids extracted from the septa show that deep septa are more depleted than shallow ones. This suggests that the first incorporated septa were denser than the later ones, as required by the high density of the first-injected mafic magmas. It is inferred that density contrasts between mafic melts and crustal rocks play a crucial role for the processes of contamination of continental magmas. In thick under- plated crust, the extraction of early felsic/hybrid melts from the lower crust may be required to increase the density of the lower crust and to allow the later mafic magmas to penetrate higher crustal levels.

  3. Magma Chambers, Thermal Energy, and the Unsuccessful Search for a Magma Chamber Thermostat

    NASA Astrophysics Data System (ADS)

    Glazner, A. F.

    2015-12-01

    Although the traditional concept that plutons are the frozen corpses of huge, highly liquid magma chambers ("big red blobs") is losing favor, the related notion that magma bodies can spend long periods of time (~106years) in a mushy, highly crystalline state is widely accepted. However, analysis of the thermal balance of magmatic systems indicates that it is difficult to maintain a significant portion in a simmering, mushy state, whether or not the system is eutectic-like. Magma bodies cool primarily by loss of heat to the Earth's surface. The balance between cooling via energy loss to the surface and heating via magma accretion can be denoted as M = ρLa/q, where ρ is magma density, L is latent heat of crystallization, a is the vertical rate of magma accretion, and q is surface heat flux. If M>1, then magma accretion outpaces cooling and a magma chamber forms. For reasonable values of ρ, L, and q, the rate of accretion amust be > ~15 mm/yr to form a persistent volume above the solidus. This rate is extremely high, an order of magnitude faster than estimated pluton-filling rates, and would produce a body 10 km thick in 700 ka, an order of magnitude faster than geochronology indicates. Regardless of the rate of magma supply, the proportion of crystals in the system must vary dramatically with depth at any given time owing to transfer of heat. Mechanical stirring (e.g., by convection) could serve to homogenize crystal content in a magma body, but this is unachievable in crystal-rich, locked-up magma. Without convection the lower part of the magma body becomes much hotter than the top—a process familiar to anyone who has scorched a pot of oatmeal. Thermal models that succeed in producing persistent, large bodies of magma rely on scenarios that are unrealistic (e.g., omitting heat loss to the planet's surface), self-fulfilling prophecies (e.g., setting unnaturally high temperatures as fixed boundary conditions), or physically unreasonable (e.g., magma is intruded

  4. Crystallisation ages in coeval silicic magma bodies: 238U-230Th disequilibrium evidence from the Rotoiti and earthquake flat eruption deposits, Taupo volcanic zone, New Zealand

    USGS Publications Warehouse

    Charlier, B.L.A.; Peate, D.W.; Wilson, C.J.N.; Lowenstern, J. B.; Storey, M.; Brown, S.J.A.

    2003-01-01

    The timescales over which moderate to large bodies of silicic magma are generated and stored are addressed here by studies of two geographically adjacent, successive eruption deposits in the Taupo Volcanic Zone, New Zealand. The earlier, caldera-forming Rotoiti eruption (>100 km3 magma) at Okataina volcano was followed, within months at most, by the Earthquake Flat eruption (??? 10 km3 magma) from nearby Kapenga volcano; both generated nonwelded ignimbrite and coeval widespread fall deposits. The Rotoiti and Earthquake Flat deposits are both crystal-rich high-silica rhyolites, with sparse glass-bearing granitoid fragments also occurring in Rotoiti lag breccias generated during caldera collapse. Here we report 238U-230Th disequilibrium data on whole rocks and mineral separates from representative Rotoiti and Earthquake Flat pumices and the co-eruptive Rotoiti granitoid fragments using TIMS and in situ zircon analyses by SIMS. Multiple-grain zircon-controlled crystallisation ages measured by TIMS from the Rotoiti pumice range from 69??3 ka ( 350 ka, with a pronounced peak at 70-90 ka. The weighted mean of isochrons is 83??14 ka, in accord with the TIMS data. One glass-bearing Rotoiti granitoid clast yielded an age of 57??8 ka by TIMS (controlled by Th-rich phases that, however, are not apparently present in the juvenile pumices). Another glass-bearing Rotoiti granitoid yielded SIMS zircon model ages peaking at 60-90 ka, having a similar age distribution to the pumice. Age data from pumices are consistent with a published 64??4 ka eruptive age (now modified to 62??2 ka), but chemical and/or mineralogical data imply that the granitoid lithics are not largely crystalline Rotoiti rhyolite, but instead represent contemporaneous partly molten intrusions reflecting different sources in their chemistries and mineralogies. Similarly, although the Earthquake Flat eruption immediately followed (and probably was triggered by) the Rotoiti event, age data from juvenile material

  5. Mushy magma processes in the Tuolumne intrusive complex, Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Memeti, V.; Paterson, S. R.

    2012-12-01

    Debates continue on the nature of volcanic-plutonic connections and the mechanisms of derivation of large volcanic eruptions, which require large volumes of magma to be readily available within a short period of time. Our focus to understand these magma plumbing systems has been to study the nature of their mid-to upper crustal sections, such as the 1,000 km2, 95-85 Ma old Tuolumne intrusive complex in the Sierra Nevada, California, USA. The Tuolumne intrusive complex is a great example where the magma mush model nicely explains observations derived from several datasets. These data suggest that a magma mush body was present and may have been quite extensive especially at times when the Tuolumne intrusive complex was undergoing waxing periods of magmatism (increased magma input), which alternated with waning periods of magmatism (decreased magma addition) and thus a smaller mush body, essentially mimicking in style periodic flare-ups and lulls at the arc scale. During waxing stages, magma erosion and mixing were the dominant processes, whereas waning stages allowed mush domains to continue to undergo fractional crystallization creating additional compositional variations. Over time, the imprint left behind by previous waxing and waning stages was partly overprinted, but individual crystals successfully recorded the compositions of these earlier magmas. Waxing periods in the Tuolumne intrusive complex during which large magma mush bodies formed are supported by the following evidence: 1) Hybrid units and gradational contacts are commonly present between major Tuolumne units. 2) CA-TIMS U/Pb zircon geochronology data demonstrate that antecrystic zircon recycling took place unidirectional from the oldest, marginal unit toward the younger, interior parts of the intrusion, where increasing zircon age spread encompasses the entire age range of the Tuolumne. 3) The younger, interior units also show an increasing scatter and complexity in geochemical element and isotope

  6. The crustal magma storage system of Volcán Quizapu, Chile, and the effects of magma mixing on magma diversity

    USGS Publications Warehouse

    Bergantz, George W.; Cooper, Kari M.; Hildreth, Edward; Ruprecht, Phillipp

    2012-01-01

    Crystal zoning as well as temperature and pressure estimates from phenocryst phase equilibria are used to constrain the architecture of the intermediate-sized magmatic system (some tens of km3) of Volcán Quizapu, Chile, and to document the textural and compositional effects of magma mixing. In contrast to most arc magma systems, where multiple episodes of open-system behavior obscure the evidence of major magma chamber events (e.g. melt extraction, magma mixing), the Quizapu magma system shows limited petrographic complexity in two large historical eruptions (1846–1847 and 1932) that have contrasting eruptive styles. Quizapu magmas and peripheral mafic magmas exhibit a simple binary mixing relationship. At the mafic end, basaltic andesite to andesite recharge magmas complement the record from peripheral cones and show the same limited range of compositions. The silicic end-member composition is almost identical in both eruptions of Quizapu. The effusive 1846–1847 eruption records significant mixing between the mafic and silicic end-members, resulting in hybridized andesites and mingled dacites. These two compositionally simple eruptions at Volcán Quizapu present a rare opportunity to isolate particular aspects of magma evolution—formation of homogeneous dacite magma and late-stage magma mixing—from other magma chamber processes. Crystal zoning, trace element compositions, and crystal-size distributions provide evidence for spatial separation of the mafic and silicic magmas. Dacite-derived plagioclase phenocrysts (i.e. An25–40) show a narrow range in composition and limited zonation, suggesting growth from a compositionally restricted melt. Dacite-derived amphibole phenocrysts show similar restricted compositions and furthermore constrain, together with more mafic amphibole phenocrysts, the architecture of the magmatic system at Volcán Quizapu to be compositionally and thermally zoned, in which an andesitic mush is overlain by a homogeneous dacitic

  7. Is Eruption Style Linked to Magma Residence Time at Kilauea Volcano? Results from Chemical Zoning in Olivine

    NASA Astrophysics Data System (ADS)

    Lynn, K. J.; Costa Rodriguez, F.; Shea, T.; Garcia, M. O.

    2015-12-01

    Kilauea is generally characterized by its modern effusive activity, but the past 2500 years were dominated by cycles of explosive and effusive eruptions lasting 100's of years (Swanson et al. 2012). These different eruption styles may reflect variable volatile contents in the source that control magma ascent rate and storage durations (e.g., Sides et al. 2014). A detailed petrological study of the dominantly explosive Keanakako'i tephras (1500-1820 CE) was undertaken to better understand the storage and transport conditions preceding high-energy eruptions. Here, we focus on preliminary results for olivine from the 1500 CE Basal Reticulite (>600 m fountain; May et al. 2015). Olivine major (Fe, Mg), minor (Mn, Ca, Ni) and trace (Li, Na, Al, P, Sc, Ti, V, Cr, Co, Zn) element traverses and 2D maps were collected for 10 crystals and reveal two major populations. The dominant population has homogeneous Fo89 and Fo87 cores with thin (3-12 μm) rims of intermediate composition (Fo87.5-88.5). Normal, reverse, and complex trace element zoning (Al, P, Ti, Cr) is prominent in these otherwise homogenous (Fo, Ni, Ca, Mn) crystals. 2D maps reveal early skeletal growth and the progressive decrease of Cr from core to rim suggests olivine and Cr-spinel crystallization, which should produce significant Fo zoning. Absence of Fo zoning could imply significant storage time in a reservoir allowing homogenization. The majority of rim compositions are out of equilibrium with adhering glass, and Fe-Mg modeling indicates that their residence within the carrier melt was of a few days. A second population consists of strongly zoned (normal and reverse) crystals with a wide range of core Fo (78 to 89) and Fo82-84 rims. Timescales from Fe-Mg zoning are up to 1 year, and may record storage histories before interaction with the carrier melt. The diversity in olivine zoning suggests at least two stages of magma mixing, and a more complex evolution for the magmas that fed the reticulite eruptions

  8. The timing of compositionally-zoned magma reservoirs and mafic 'priming' weeks before the 1912 Novarupta-Katmai rhyolite eruption

    USGS Publications Warehouse

    Singer, Brad S.; Costa, Fidel; Herrin, Jason S.; Hildreth, Wes; Fierstein, Judith

    2016-01-01

    The June 6, 1912 eruption of more than 13 km3 of dense rock equivalent (DRE) magma at Novarupta vent, Alaska was the largest of the 20th century. It ejected >7 km3 of rhyolite, ~1.3 km3 of andesite and ~4.6 km3 of dacite. Early ideas about the origin of pyroclastic flows and magmatic differentiation (e.g., compositional zonation of reservoirs) were shaped by this eruption. Despite being well studied, the timing of events that led to the chemically and mineralogically zoned magma reservoir remain poorly known. Here we provide new insights using the textures and chemical compositions of plagioclase and orthopyroxene crystals and by reevaluating previous U-Th isotope data. Compositional zoning of the magma reservoir likely developed a few thousand years before the eruption by several additions of mafic magma below an extant silicic reservoir. Melt compositions calculated from Sr contents in plagioclase fill the compositional gap between 68 and 76% SiO2 in whole pumice clasts, consistent with uninterrupted crystal growth from a continuum of liquids. Thus, our findings support a general model in which large volumes of crystal-poor rhyolite are related to intermediate magmas through gradual separation of melt from crystal-rich mush. The rhyolite is incubated by, but not mixed with, episodic recharge pulses of mafic magma that interact thermochemically with the mush and intermediate magmas. Hot, Mg-, Ca-, and Al-rich mafic magma intruded into, and mixed with, deeper parts of the reservoir (andesite and dacite) multiple times. Modeling the relaxation of the Fe-Mg concentrations in orthopyroxene and Mg in plagioclase rims indicates that the final recharge event occurred just weeks prior to the eruption. Rapid addition of mass, volatiles, and heat from the recharge magma, perhaps aided by partial melting of cumulate mush below the andesite and dacite, pressurized the reservoir and likely propelled a ~10 km lateral dike that allowed the overlying rhyolite to reach the surface.

  9. Crystal zoning in a large-volume ignimbrite: constraints on the thermal history of a supervolcano magma system

    NASA Astrophysics Data System (ADS)

    Matthews, N. E.; Pyle, D. M.; Wilson, C. J.

    2009-12-01

    Chemical zoning of crystals provides an important archive of information that allows for the reconstruction of complex thermal histories and changes in melt composition of the magma reservoir during crystallization. Here we investigate cathodoluminescence (CL) and Ti zonation in quartz crystals extracted from pumices from the Whakamaru and Rangitaiki ignimbrite units (part of the large-volume Whakamaru Group Ignimbrites), New Zealand, to reconstruct the thermal history of the parent magma chamber(s). CL intensity images are taken as a proxy for Ti content and temperature variation during crystal growth, and direct estimates of temperature are made using the TitaniQ geothermometer (Wark & Watson 2006 Cont. Min. Pet.) based on Ti concentration in quartz. These results are reviewed in comparison with temperatures from Fe-Ti oxide geothermometry. Quartz zoning is also compared to zonation in feldspars (using BSE imaging) from the same pumice clasts in order to establish the degree to which different crystal species record similar or contrasting magmatic histories. Quartz crystals in Whakamaru pumice display a variety of CL zoning patterns and resorption boundaries. Overgrowths typically appear to truncate CL growth zoning within the crystal core, indicating periods of resorption and subsequent re-growth - consistent with magma recharge causing a marked change in conditions (temperature and/or volatile saturation) and multi-stage crystallisation. Crystals typically display a dark (lower Ti) resorbed core, with an abrupt change to a CL-bright rim, although irregular textures and complex variations between crystals are observed. Core-to-rim profiles of Ti concentration in analysed quartz crystals show Ti variations within the range 50-225 ppm, corresponding to crystallisation temperatures of 733-935°C (assuming TiO2 activity in the melt of 0.6), with the lowest values recorded in the crystal core, increasing in a step-wise pattern towards the rim. These values are

  10. Variations in magma supply rate at Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Dvorak, John J.; Dzurisin, Daniel

    1993-01-01

    When an eruption of Kilauea lasts more than 4 months, so that a well-defined conduit has time to develop, magma moves freely through the volcano from a deep source to the eruptive site at a constant rate of 0.09 km3/yr. At other times, the magma supply rate to Kilauea, estimated from geodetic measurements of surface displacements, may be different. For example, after a large withdrawal of magma from the summit reservoir, such as during a rift zone eruption, the magma supply rate is high initially but then lessens and exponentially decays as the reservoir refills. Different episodes of refilling may have different average rates of magma supply. During four year-long episodes in the 1960s, the annual rate of refilling varied from 0.02 to 0.18 km3/yr, bracketing the sustained eruptive rate of 0.09 km3/yr. For decade-long or longer periods, our estimate of magma supply rate is based on long-term changes in eruptive rate. We use eruptive rate because after a few dozen eruptions the volume of magma that passes through the summit reservoir is much larger than the net change of volume of magma stored within Kilauea. The low eruptive rate of 0.009 km3/yr between 1840 and 1950, compared to an average eruptive rate of 0.05 km3/yr since 1950, suggests that the magma supply rate was lower between 1840 and 1950 than it has been since 1950. An obvious difference in activity before and since 1950 was the frequency of rift zone eruptions: eight rift zone eruptions occurred between 1840 and 1950, but more than 20 rift zone eruptions have occurred since 1950. The frequency of rift zone eruptions influences magma supply rate by suddenly lowering pressure of the summit magma reservoir, which feeds magma to rift zone eruptions. A temporary drop of reservoir pressure means a larger-than-normal pressure difference between the reservoir and a deeper source, so magma is forced to move upward into Kilauea at a faster rate.

  11. Crystalline heterogeneities and instabilities in thermally convecting magma chamber

    NASA Astrophysics Data System (ADS)

    Culha, C.; Suckale, J.; Qin, Z.

    2016-12-01

    A volcanic vent can supply different densities of crystals over an eruption time period. This has been seen in Hawai'i's Kilauea Iki 1959 eruption; however it is not common for all Kilauea or basaltic eruptions. We ask the question: Under what conditions can homogenous magma chamber cultivate crystalline heterogeneities? In some laboratory experiments and numerical simulations, a horizontal variation is observed. The region where crystals reside is identified as a retention zone: convection velocity balances settling velocity. Simulations and experiments that observe retention zones assume crystals do not alter the convection in the fluid. However, a comparison of experiments and simulations of convecting magma with crystals suggest that large crystal volume densities and crystal sizes alter fluid flow considerably. We introduce a computational method that fully resolves the crystalline phase. To simulate basaltic magma chambers in thermal convection, we built a numerical solver of the Navier-Stoke's equation, continuity equation, and energy equation. The modeled magma is assumed to be a viscous, incompressible fluid with a liquid and solid phase. Crystals are spherical, rigid bodies. We create Rayleigh-Taylor instability through a cool top layer and hot bottom layer and update magma density while keeping crystal temperature and size constant. Our method provides a detailed picture of magma chambers, which we compare to other models and experiments to identify when and how crystals alter magma chamber convection. Alterations include stratification, differential settling and instabilities. These characteristics are dependent on viscosity, convection vigor, crystal volume density and crystal characteristics. We reveal that a volumetric crystal density variation may occur over an eruption time period, if right conditions are met to form stratifications and instabilities in magma chambers. These conditions are realistic for Kilauea Iki's 1959 eruption.

  12. High-precision Pb isotopes reveal two small magma bodies beneath the summit of Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Pietruszka, A. J.; Heaton, D. E.; Marske, J. P.; Garcia, M. O.

    2011-12-01

    The summit magma storage reservoir of Kilauea Volcano is one of the most important components of the volcano's magmatic pluming system, but the geometry (size and shape) of this reservoir is poorly known. Here we use high-precision Pb isotopic analyses of historical Kilauea summit lavas (1823-2010) to define the minimum number of magma bodies within the summit reservoir and their volumes. The 206Pb/204Pb ratios of these lavas display a systematic temporal fluctuation characterized by low values in 1823, a gradual increase to a maximum in 1921, an abrupt drop to relatively constant intermediate values from 1929 to 1959, and a rapid decrease to 2010. These variations indicate that Kilauea's summit reservoir is being supplied by rapidly changing parental magma compositions derived from a mantle source that is heterogeneous on a small scale. Analyses of multiple lavas from several individual eruptions reveal small but significant differences in 206Pb/204Pb ratios (~0.01-0.03). For example, the extra-caldera lavas from Aug. 1971 and Jul. 1974 display significantly lower Pb isotope ratios and higher MgO contents (10 wt. %) than the intra-caldera lavas (MgO ~7-8 wt. %) from each eruption. From 1971 to 1982, the 206Pb/204Pb ratios of the lavas define two separate decreasing temporal trends. The intra-caldera lavas from 1971, 1974, 1975, Apr. 1982 and the lower MgO lavas from Sep. 1982 have consistently higher 206Pb/204Pb ratios at a given time (compared to the extra-caldera lavas and the higher MgO lavas from Sep. 1982). These trends require that the intra- and extra-caldera lavas (and the Sep. 1982 lavas) were supplied from two separate magma bodies. Numerous studies by HVO scientists (e.g., Fiske and Kinoshita, 1969; Klein et al., 1987) have long identified the main locus of Kilauea's summit reservoir ~2 km southeast of Halemaumau (near the caldera rim) at a depth of ~2-7 km, but more recent investigations have discovered a secondary magma body located <1 km below the

  13. Two magma bodies beneath the summit of Kilauea Volcano unveiled by isotopically distinct melt deliveries from the mantle

    USGS Publications Warehouse

    Pietruszka, Aaron J.; Heaton, Daniel E.; Marske, Jared P.; Garcia, Michael O.

    2015-01-01

    The summit magma storage reservoir of Kīlauea Volcano is one of the most important components of the magmatic plumbing system of this frequently active basaltic shield-building volcano. Here we use new high-precision Pb isotopic analyses of Kīlauea summit lavas—from 1959 to the active Halema‘uma‘u lava lake—to infer the number, size, and interconnectedness of magma bodies within the volcano's summit reservoir. From 1971 to 1982, the 206Pb/204Pb ratios of the lavas define two separate magma mixing trends that correlate with differences in vent location and/or pre-eruptive magma temperature. These relationships, which contrast with a single magma mixing trend for lavas from 1959 to 1968, indicate that Kīlauea summit eruptions since at least 1971 were supplied from two distinct magma bodies. The locations of these magma bodies are inferred to coincide with two major deformation centers identified by geodetic monitoring of the volcano's summit region: (1) the main locus of the summit reservoir ∼2–4 km below the southern rim of Kīlauea Caldera and (2) a shallower magma body <2 km below the eastern rim of Halema‘uma‘u pit crater. Residence time modeling suggests that the total volume of magma within Kīlauea's summit reservoir during the late 20th century (1959–1982) was exceedingly small (∼0.1–0.5 km3). Voluminous Kīlauea eruptions, such as the ongoing, 32-yr old Pu‘u ‘Ō‘ō rift eruption (>4 km3 of lava erupted), must therefore be sustained by a nearly continuous supply of new melt from the mantle. The model results show that a minimum of four compositionally distinct, mantle-derived magma batches were delivered to the volcano (at least three directly to the summit reservoir) since 1959. These melt inputs correlate with the initiation of energetic (1959 Kīlauea Iki) and/or sustained (1969–1974 Mauna Ulu, 1983-present Pu‘u ‘Ō‘ō and 2008-present Halema‘uma‘u) eruptions. Thus, Kīlauea's eruptive behavior is partly tied to

  14. Recycling and recharge processes at the Hasandağ Stratovolcano, Central Anatolia: Insights on magma chamber systematics from plagioclase textures and zoning patterns

    NASA Astrophysics Data System (ADS)

    Gall, H. D.; Cipar, J. H.; Crispin, K. L.; Kürkçüoğlu, B.; Furman, T.

    2017-12-01

    We elucidate crystal recycling and magma recharge processes at Hasandağ by investigating compositional zoning patterns and textural variation in plagioclase crystals from Quaternary basaltic andesite through dacite lavas. Previous work on Hasandağ intermediate compositions identified thermochemical disequilibrium features and showed abundant evidence for magma mixing1,2. We expand on this work through detailed micro-texture and mineral diffusion analysis to explore the mechanisms and timescales of crystal transport and mixing processes. Thermobarometric calculations constrain the plumbing system to 1.2-2 kbar and 850-950°C, corresponding to a felsic magma chamber at 4.5 km. Electron microprobe results reveal plagioclase phenocrysts from all lava types have common core (An33-46) and rim (An36-64) compositions, with groundmass laths (An57-67) resembling the phenocryst rims. Low An cores are ubiquitous, regardless of bulk rock chemistry, and suggest a consistent composition within the magma reservoir prior to high An rim growth. High An rims are regularly enriched in Mg, Fe, Ti and Sr, which we attribute to mafic recharge and magma mixing. We assess mixing timescales by inverse diffusion modeling of Mg profiles across the core-rim boundaries. Initial results suggest mixing to eruption processes occur on the order of days to months. Heterogeneous calculated timescales within thin sections indicate crystal populations with different growth histories. Crystals often display prominent sieve-textured zones just inside the rim, as well as other disequilibrium features such as oscillatory zoning or resorbed and patchy-zoned cores. We interpret these textures to indicate mobilization of a homogeneous dacitic reservoir with abundant An35 plagioclase crystals by frequent injection of mafic magma. Variability in observed textures and calculated timescales manifests during defrosting of a highly crystalline felsic mush, through different degrees of magma mixing. This process

  15. Barium isotope geochemistry of subduction-zone magmas

    NASA Astrophysics Data System (ADS)

    Yu, H.; Nan, X.; Huang, J.; Wörner, G.; Huang, F.

    2017-12-01

    Subduction zones are crucial tectonic setting to study material exchange between crust and mantle, mantle partial melting with fluid addition, and formation of ore-deposits1-3. The geochemical characteristics of arc lavas from subduction zones are different from magmas erupted at mid-ocean ridges4, because there are addition of fluids/melts from subducted AOC and its overlying sediments into their source regions in the sub-arc mantle4. Ba is highly incompatible during mantle melting5, and it is enriched in crust (456 ppm)6 relative to the mantle (7.0 ppm)7. The subducted sediments are also enriched in Ba (776 ppm of GLOSS)8. Moreover, because Ba is fluid soluble during subduction, it has been used to track contributions of subduction-related fluids to arc magmas9 or recycled sediments to the mantle10-11. To study the Ba isotope fractionation behavior during subduction process, we analyzed well-characterized, chemically-diverse arc lavas from Central American, Kamchatka, Central-Eastern Aleutian, and Southern Lesser Antilles. The δ137/134Ba of Central American arc lavas range from -0.13 to 0.24‰, and have larger variation than the arc samples from other locations. Except one sample from Central-Eastern Aleutian arc with obviously heavy δ137/134Ba values (0.27‰), all other samples from Kamchatka, Central-Eastern Aleutian, Southern Lesser Antilles arcs are within the range of OIB. The δ137/134Ba is not correlated with the distance to trench, partial melting degrees (Mg#), or subducting slab-derived components. The samples enriched with heavy Ba isotopes have low Ba contents, indicating that Ba isotopes can be fractionated at the beginning of dehydration process with small amount of Ba releasing to the mantle wedge. With the dehydration degree increasing, more Ba of the subducted slab can be added to the source of arc lavas, likely homogenizing the Ba isotope signatures. 1. Rudnick, R., 1995 Nature; 2. Tatsumi, Y. & Kogiso, T., 2003; 3. Sun, W., et al., 2015 Ore

  16. Determination of crystal residence timescales in magma reservoirs by diffusion modeling of dendritic phosphorus zoning patterns in olivine

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Potrafke, A.

    2016-12-01

    Deciphering the early stages of crystallization and the chronological evolution of phenocrysts in magma reservoirs is one of the main goals in volcanology. Established approaches that model the concentration evolution of fast diffusing elements like Fe/Mg carry limited information on timescales once the concentration gradients are homogenized. Elements that diffuse more slowly, such as P and Al, become useful in these cases. We present a novel modeling tool that combines high-resolution EMP mapping of slow diffusing phosphorus in olivine with 2D kinetic modeling of the diffusive relaxation of initial chemical zoning pattern of P as well as Fe/Mg. The modeling approach offers a new possibility for determining crystal residence times in magma reservoirs. P diffusion coefficients from the experimental determination of [1] and Fe/Mg diffusion coefficients from [2] were used. The method yields a time-bracket between the minimum time required to homogenize the zoning of fast-diffusing Fe/Mg and the maximum time period for which details of chemical zoning of slow-diffusing P may be retained. To illustrate the approach we have studied the compositional zoning patterns of 7 olivine crystals from Piton de la Fournaise volcano, La Réunion. All crystals show a narrow range of forsterite contents (=Fo82-84) with fully homogenized Fe/Mg distribution, whereas P-mapping reveals oscillatory to dendritic zoning patterns [3]. P concentrations scatter in the range of 0.4 wt-% to below detection limit. Revealed phosphorus zoning patterns were considered to display the initial crystal architecture, whereas Fe and Mg zoning has been wiped out due to faster diffusion. For La Réunion magmas at 1453 K, timescales between few days to weeks were determined to be the time brackets for growth and residence of the olivine crystals in the magmas. These short residence times combined with knowledge of very fast developing dendritic crystals that have recently been revealed worldwide [e.g. 3

  17. Generation, ascent and eruption of magma on the Moon: New insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 1: Theory)

    NASA Astrophysics Data System (ADS)

    Wilson, Lionel; Head, James W.

    2017-02-01

    We model the ascent and eruption of lunar mare basalt magmas with new data on crustal thickness and density (GRAIL), magma properties, and surface topography, morphology and structure (Lunar Reconnaissance Orbiter). GRAIL recently measured the broad spatial variation of the bulk density structure of the crust of the Moon. Comparing this with the densities of lunar basaltic and picritic magmas shows that essentially all lunar magmas were negatively buoyant everywhere within the lunar crust. Thus positive excess pressures must have been present in melts at or below the crust-mantle interface to enable them to erupt. The source of such excess pressures is clear: melt in any region experiencing partial melting or containing accumulated melt, behaves as though an excess pressure is present at the top of the melt column if the melt is positively buoyant relative to the host rocks and forms a continuously interconnected network. The latter means that, in partial melt regions, probably at least a few percent melting must have taken place. Petrologic evidence suggests that both mare basalts and picritic glasses may have been derived from polybaric melting of source rocks in regions extending vertically for at least a few tens of km. This is not surprising: the vertical extent of a region containing inter-connected partial melt produced by pressure-release melting is approximately inversely proportional to the acceleration due to gravity. Translating the ∼25 km vertical extent of melting in a rising mantle diapir on Earth to the Moon then implies that melting could have taken place over a vertical extent of up to 150 km. If convection were absent, melting could have occurred throughout any region in which heat from radioisotope decay was accumulating; in the extreme this could have been most of the mantle. The maximum excess pressure that can be reached in a magma body depends on its environment. If melt percolates upward from a partial melt zone and accumulates as a magma

  18. Calderas and magma reservoirs

    NASA Astrophysics Data System (ADS)

    Cashman, Katharine V.; Giordano, Guido

    2014-11-01

    Large caldera-forming eruptions have long been a focus of both petrological and volcanological studies; petrologists have used the eruptive products to probe conditions of magma storage (and thus processes that drive magma evolution), while volcanologists have used them to study the conditions under which large volumes of magma are transported to, and emplaced on, the Earth's surface. Traditionally, both groups have worked on the assumption that eruptible magma is stored within a single long-lived melt body. Over the past decade, however, advances in analytical techniques have provided new views of magma storage regions, many of which provide evidence of multiple melt lenses feeding a single eruption, and/or rapid pre-eruptive assembly of large volumes of melt. These new petrological views of magmatic systems have not yet been fully integrated into volcanological perspectives of caldera-forming eruptions. Here we explore the implications of complex magma reservoir configurations for eruption dynamics and caldera formation. We first examine mafic systems, where stacked-sill models have long been invoked but which rarely produce explosive eruptions. An exception is the 2010 eruption of Eyjafjallajökull volcano, Iceland, where seismic and petrologic data show that multiple sills at different depths fed a multi-phase (explosive and effusive) eruption. Extension of this concept to larger mafic caldera-forming systems suggests a mechanism to explain many of their unusual features, including their protracted explosivity, spatially variable compositions and pronounced intra-eruptive pauses. We then review studies of more common intermediate and silicic caldera-forming systems to examine inferred conditions of magma storage, time scales of melt accumulation, eruption triggers, eruption dynamics and caldera collapse. By compiling data from large and small, and crystal-rich and crystal-poor, events, we compare eruptions that are well explained by simple evacuation of a zoned

  19. Two magma bodies beneath the summit of Kīlauea Volcano unveiled by isotopically distinct melt deliveries from the mantle

    NASA Astrophysics Data System (ADS)

    Pietruszka, Aaron J.; Heaton, Daniel E.; Marske, Jared P.; Garcia, Michael O.

    2015-03-01

    The summit magma storage reservoir of Kīlauea Volcano is one of the most important components of the magmatic plumbing system of this frequently active basaltic shield-building volcano. Here we use new high-precision Pb isotopic analyses of Kīlauea summit lavas-from 1959 to the active Halema'uma'u lava lake-to infer the number, size, and interconnectedness of magma bodies within the volcano's summit reservoir. From 1971 to 1982, the 206Pb/204Pb ratios of the lavas define two separate magma mixing trends that correlate with differences in vent location and/or pre-eruptive magma temperature. These relationships, which contrast with a single magma mixing trend for lavas from 1959 to 1968, indicate that Kīlauea summit eruptions since at least 1971 were supplied from two distinct magma bodies. The locations of these magma bodies are inferred to coincide with two major deformation centers identified by geodetic monitoring of the volcano's summit region: (1) the main locus of the summit reservoir ∼2-4 km below the southern rim of Kīlauea Caldera and (2) a shallower magma body <2 km below the eastern rim of Halema'uma'u pit crater. Residence time modeling suggests that the total volume of magma within Kīlauea's summit reservoir during the late 20th century (1959-1982) was exceedingly small (∼0.1-0.5 km3). Voluminous Kīlauea eruptions, such as the ongoing, 32-yr old Pu'u 'Ō'ō rift eruption (>4 km3 of lava erupted), must therefore be sustained by a nearly continuous supply of new melt from the mantle. The model results show that a minimum of four compositionally distinct, mantle-derived magma batches were delivered to the volcano (at least three directly to the summit reservoir) since 1959. These melt inputs correlate with the initiation of energetic (1959 Kīlauea Iki) and/or sustained (1969-1974 Mauna Ulu, 1983-present Pu'u 'Ō'ō and 2008-present Halema'uma'u) eruptions. Thus, Kīlauea's eruptive behavior is partly tied to the delivery of new magma batches

  20. Fault-Magma Interactions during Early Continental Rifting: Seismicity of the Magadi-Natron-Manyara basins, Africa

    NASA Astrophysics Data System (ADS)

    Weinstein, A.; Oliva, S. J.; Ebinger, C.; Aman, M.; Lambert, C.; Roecker, S. W.; Tiberi, C.; Muirhead, J.

    2017-12-01

    Although magmatism may occur during the earliest stages of continental rifting, its role in strain accommodation remains weakly constrained by largely 2D studies. We analyze seismicity data from a 13-month, 39-station broadband seismic array to determine the role of magma intrusion on state-of-stress and strain localization, and their along-strike variations. Precise earthquake locations using cluster analyses and a new 3D velocity model reveal lower crustal earthquakes along projections of steep border faults that degas CO2. Seismicity forms several disks interpreted as sills at 6-10 km below a monogenetic cone field. The sills overlie a lower crustal magma chamber that may feed eruptions at Oldoinyo Lengai volcano. After determining a new ML scaling relation, we determine a b-value of 0.87 ± 0.03. Focal mechanisms for 66 earthquakes, and a longer time period of relocated earthquakes from global arrays reveal an along-axis stress rotation of 50 o ( N150 oE) in the magmatically active zone. Using Kostrov summation of local and teleseismic mechanisms, we find opening directions of N122ºE and N92ºE north and south of the magmatically active zone. The stress rotation facilitates strain transfer from border fault systems, the locus of early stage deformation, to the zone of magma intrusion in the central rift. Our seismic, structural, and geochemistry results indicate that frequent lower crustal earthquakes are promoted by elevated pore pressures from volatile degassing along border faults, and hydraulic fracture around the margins of magma bodies. Earthquakes are largely driven by stress state around inflating magma bodies, and more dike intrusions with surface faulting, eruptions, and earthquakes are expected.

  1. The Surtsey Magma Series

    PubMed Central

    Ian Schipper, C.; Jakobsson, Sveinn P.; White, James D.L.; Michael Palin, J.; Bush-Marcinowski, Tim

    2015-01-01

    The volcanic island of Surtsey (Vestmannaeyjar, Iceland) is the product of a 3.5-year-long eruption that began in November 1963. Observations of magma-water interaction during pyroclastic episodes made Surtsey the type example of shallow-to-emergent phreatomagmatic eruptions. Here, in part to mark the 50th anniversary of this canonical eruption, we present previously unpublished major-element whole-rock compositions, and new major and trace-element compositions of sideromelane glasses in tephra collected by observers and retrieved from the 1979 drill core. Compositions became progressively more primitive as the eruption progressed, with abrupt changes corresponding to shifts between the eruption’s four edifices. Trace-element ratios indicate that the chemical variation is best explained by mixing of different proportions of depleted ridge-like basalt, with ponded, enriched alkalic basalt similar to that of Iceland’s Eastern Volcanic Zone; however, the systematic offset of Surtsey compositions to lower Nb/Zr than other Vestmannaeyjar lavas indicates that these mixing end members are as-yet poorly contained by compositions in the literature. As the southwestern-most volcano in the Vestmannaeyjar, the geochemistry of the Surtsey Magma Series exemplifies processes occurring within ephemeral magma bodies on the extreme leading edge of a propagating off-axis rift in the vicinity of the Iceland plume. PMID:26112644

  2. The Surtsey Magma Series.

    PubMed

    Schipper, C Ian; Jakobsson, Sveinn P; White, James D L; Michael Palin, J; Bush-Marcinowski, Tim

    2015-06-26

    The volcanic island of Surtsey (Vestmannaeyjar, Iceland) is the product of a 3.5-year-long eruption that began in November 1963. Observations of magma-water interaction during pyroclastic episodes made Surtsey the type example of shallow-to-emergent phreatomagmatic eruptions. Here, in part to mark the 50(th) anniversary of this canonical eruption, we present previously unpublished major-element whole-rock compositions, and new major and trace-element compositions of sideromelane glasses in tephra collected by observers and retrieved from the 1979 drill core. Compositions became progressively more primitive as the eruption progressed, with abrupt changes corresponding to shifts between the eruption's four edifices. Trace-element ratios indicate that the chemical variation is best explained by mixing of different proportions of depleted ridge-like basalt, with ponded, enriched alkalic basalt similar to that of Iceland's Eastern Volcanic Zone; however, the systematic offset of Surtsey compositions to lower Nb/Zr than other Vestmannaeyjar lavas indicates that these mixing end members are as-yet poorly contained by compositions in the literature. As the southwestern-most volcano in the Vestmannaeyjar, the geochemistry of the Surtsey Magma Series exemplifies processes occurring within ephemeral magma bodies on the extreme leading edge of a propagating off-axis rift in the vicinity of the Iceland plume.

  3. Volatile content of Hawaiian magmas and volcanic vigor

    NASA Astrophysics Data System (ADS)

    Blaser, A. P.; Gonnermann, H. M.; Ferguson, D. J.; Plank, T. A.; Hauri, E. H.; Houghton, B. F.; Swanson, D. A.

    2014-12-01

    We test the hypothesis that magma supply to Kīlauea volcano, Hawai'i may be affected by magma volatile content. We find that volatile content and magma flow from deep source to Kīlauea's summit reservoirs are non-linearly related. For example, a 25-30% change in volatiles leads to a near two-fold increase in magma supply. Hawaiian volcanism provides an opportunity to develop and test hypotheses concerning dynamic and geochemical behavior of hot spot volcanism on different time scales. The Pu'u 'Ō'ō-Kupaianaha eruption (1983-present) is thought to be fed by essentially unfettered magma flow from the asthenosphere into a network of magma reservoirs at approximately 1-4 km below Kīlauea's summit, and from there into Kīlauea's east rift zone, where it erupts. Because Kīlauea's magma becomes saturated in CO2 at about 40 km depth, most CO2 is thought to escape buoyantly from the magma, before entering the east rift zone, and instead is emitted at the summit. Between 2003 and 2006 Kīlauea's summit inflated at unusually high rates and concurrently CO2emissions doubled. This may reflect a change in the balance between magma supply to the summit and outflow to the east rift zone. It remains unknown what caused this surge in magma supply or what controls magma supply to Hawaiian volcanoes in general. We have modeled two-phase magma flow, coupled with H2O-CO2 solubility, to investigate the effect of changes in volatile content on the flow of magma through Kīlauea's magmatic plumbing system. We assume an invariant magma transport capacity from source to vent over the time period of interest. Therefore, changes in magma flow rate are a consequence of changes in magma-static and dynamic pressure throughout Kīlauea's plumbing system. We use measured summit deformation and CO2 emissions as observational constraints, and find from a systematic parameter analysis that even modest increases in volatiles reduce magma-static pressures sufficiently to generate a 'surge' in

  4. Evidence for magma mixing within the Laacher See magma chamber (East Eifel, Germany)

    USGS Publications Warehouse

    Worner, G.; Wright, T.L.

    1984-01-01

    The final pyroclastic products of the late Quaternary phonolitic Laacher See volcano (East Eifel, W.-Germany) range from feldspar-rich gray phonolite to dark olivine-bearing rocks with variable amounts of feldspar and Al-augite megacrysts. Petrographically and chemically homogeneous clasts occur along with composite lapilli spanning the compositional range from phonolite (MgO 0.9%) to mafic hybrid rock (MgO 7.0%) for all major and trace elements. Both a basanitic and a phonolitic phenocryst paragenesis occur within individual clasts. The phonolite-derived phenocrysts are characterized by glass inclusions of evolved composition, rare inverse zoning and strong resorption indicating disequilibrium with the mafic hybrid matrix. Basanitic (magnesian) clinopyroxene and olivine, in contrast, show skeletal (normally zoned) overgrowths indicative of post-mixing crystallization. In accord with petrographical and other chemical evidence, mass balance calculations suggest mixing of an evolved Laacher See phonolite containing variable amounts of mineral cumulates and a megacryst-bearing basanite magma. Magma mixing occurred just prior to eruption (hours) of the lowermost magma layer of the Laacher See magma chamber but did not trigger the volcanic activity. ?? 1984.

  5. Possible Time Dependent Deformation over Socorro Magma Body from GPS and InSAR

    NASA Astrophysics Data System (ADS)

    Havazli, E.; Wdowinski, S.; Amelug, F.

    2015-12-01

    The Socorro Magma Body (SMB) is one of the largest, currently active magma intrusions in the Earth's continental crust. The area of Socorro is a segment of the Rio Grande Rift that display a broad seismic anomaly and ground deformation. The seismic reflector is imaged at 19 km depth coinciding with the occurrence of numerous small earthquake swarms. Broad crustal uplift was also observed above this reflector and led to the hypothesis of the presence of a large mid-crustal sill-like magma body. Previous geodetic studies over the area reveal ground deformation at the rate of 2-3 mm/yr from 1992 to 2006. The magma body was modeled as a penny-shaped crack of 21 km radius at 19 km depth based on InSAR results [Finnegan et. al., 2009]. In this study we expand the uplift measurement period over the SMB to two decades by using additional InSAR and GPS observations. We extended the InSAR observation record by analyzing 27 Envisat scenes acquired during the years 2006-2010. Continuous GPS observation acquired by the SC01 station since 2001 and three more recent Plate Boundary Observatory stations, which were installed between 2005 and 2011, provide high temporal record of uplift over the past decade and a half. We analyzed the InSAR data using ROI_PAC software package and calculated the temporal evolution of the vertical displacement using time series analysis. Preliminary results of 2006-2010 Envisat data show no significant deformation above the 1-2 mm noise level, which disagree with the previous ERS-1/2 results; 2-3 mm/yr during 1992-2006. This disagreement suggests a time dependent uplift of the SMB, which is also supported by GPS observations. The average uplift rate of the SC01 station is 0.9±0.02 mm/yr for 2001-2015 and 0.6±0.08 mm/yr for 2006-2010. Furthermore the SC01 time series exhibits episodic uplift events. The observed time dependent uplift suggests that magma supply in the middle crust may also occur episodically, as in shallow magmatic systems.

  6. From rock to magma and back again: The evolution of temperature and deformation mechanism in conduit margin zones

    NASA Astrophysics Data System (ADS)

    Heap, Michael J.; Violay, Marie; Wadsworth, Fabian B.; Vasseur, Jérémie

    2017-04-01

    Explosive silicic volcanism is driven by gas overpressure in systems that are inefficient at outgassing. The zone at the margin of a volcanic conduit-thought to play an important role in the outgassing of magma and therefore pore pressure changes and explosivity-is the boundary through which heat is exchanged from the hot magma to the colder country rock. Using a simple heat transfer model, we first show that the isotherm for the glass transition temperature (whereat the glass within the groundmass transitions from a glass to an undercooled liquid) moves into the country rock when the magma within the conduit can stay hot, or into the conduit when the magma is quasi-stagnant and cools (on the centimetric scale over days to months). We then explore the influence of a migrating viscous boundary on compactive deformation micromechanisms in the conduit margin zone using high-pressure (effective pressure of 40 MPa), high-temperature (up to 800 °C) triaxial deformation experiments on porous andesite. Our experiments show that the micromechanism facilitating compaction in andesite is localised cataclastic pore collapse at all temperatures below the glass transition of the amorphous groundmass glass Tg (i.e., rock). In this regime, porosity is only reduced within the bands of crushed pores; the porosity outside the bands remains unchanged. Further, the strength of andesite is a positive function of temperature below the threshold Tg due to thermal expansion driven microcrack closure. The micromechanism driving compaction above Tg (i.e., magma) is the distributed viscous flow of the melt phase. In this regime, porosity loss is distributed and is accommodated by the widespread flattening and closure of pores. We find that viscous flow is much more efficient at reducing porosity than cataclastic pore collapse, and that it requires stresses much lower than those required to form bands of crushed pores. Our study therefore highlights that temperature excursions can result in a

  7. Magma transport and olivine crystallization depths in Kīlauea's east rift zone inferred from experimentally rehomogenized melt inclusions

    NASA Astrophysics Data System (ADS)

    Tuohy, Robin M.; Wallace, Paul J.; Loewen, Matthew W.; Swanson, Donald A.; Kent, Adam J. R.

    2016-07-01

    Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2 concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai'i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n = 10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n = 38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at <6 km depth, with the majority of olivine in the 1-3 km depth range. These depths are consistent with the interpretation that the Kīlauea Iki magma was supplied from Kīlauea's summit magma reservoir (∼2-5 km depth). In contrast, olivine from Kapoho, which was the rift zone extension of the Kīlauea Iki eruption, crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the summit

  8. Kilauea east rift zone magmatism: An episode 54 perspective

    USGS Publications Warehouse

    Thornber, C.R.; Heliker, C.; Sherrod, D.R.; Kauahikaua, J.P.; Miklius, Asta; Okubo, P.G.; Trusdell, F.A.; Budahn, J.R.; Ridley, W.I.; Meeker, G.P.

    2003-01-01

    On January 29 30, 1997, prolonged steady-state effusion of lava from Pu'u'O'o was briefly disrupted by shallow extension beneath Napau Crater, 1 4 km uprift of the active Kilauea vent. A 23-h-long eruption (episode 54) ensued from fissures that were overlapping or en echelon with eruptive fissures formed during episode 1 in 1983 and those of earlier rift zone eruptions in 1963 and 1968. Combined geophysical and petrologic data for the 1994 1999 eruptive interval, including episode 54, reveal a variety of shallow magmatic conditions that persist in association with prolonged rift zone eruption. Near-vent lava samples document a significant range in composition, temperature and crystallinity of pre-eruptive magma. As supported by phenocryst liquid relations and Kilauea mineral thermometers established herein, the rift zone extension that led to episode 54 resulted in mixture of near-cotectic magma with discrete magma bodies cooled to ???1100??C. Mixing models indicate that magmas isolated beneath Napau Crater since 1963 and 1968 constituted 32 65% of the hybrid mixtures erupted during episode 54. Geophysical measurements support passive displacement of open-system magma along the active east rift conduit into closed-system rift-reservoirs along a shallow zone of extension. Geophysical and petrologic data for early episode 55 document the gradual flushing of episode 54 related magma during magmatic recharge of the edifice.

  9. Modeling Mantle Shear Zones, Melt Focusing and Stagnation - Are Non Volcanic Margins Really Magma Poor?

    NASA Astrophysics Data System (ADS)

    Lavier, L. L.; Muntener, O.

    2011-12-01

    Mantle peridotites from ocean-continent transition zones (OCT's) and ultraslow spreading ridges question the commonly held assumption of a simple link between mantle melting and MORB. 'Ancient' and partly refertilized mantle in rifts and ridges illustrates the distribution of the scale of upper mantle heterogeneity even on a local scale. Upwelling of partial melts that enter the conductive lithospheric mantle inevitably leads to freezing of the melt and metasomatized lithosphere. Field data and petrology demonstrates that ancient, thermally undisturbed, pyroxenite-veined subcontinental mantle blobs formed parts of the ocean floor next to thinned continental crust. Similar heterogeneity might be created in the oceanic lithosphere where the thermal boundary layer (TBM) is thick and veined with metasomatic assemblages. This cold, ancient, 'subcontinental domain' is separated by ductile shear zones (or some other form of permeability barriers) from an infiltrated ('hot') domain dominated by refertilized spinel and/or plagioclase peridotite. The footwall of these mantle shear zones display complex refertilization processes and high-temperature deformation. We present numerical models that illustrate the complex interplay of km-scale refertilization with active deformation and melt focusing on top of the mantle. Melt lubricated shear zones focus melt flow in shear fractures (melt bands) occurring along grain boundaries. Continuous uplift and cooling leads to crystallization, and crystal plastic deformation prevails in the subsolidus state. Below 800oC if water is present deformation by shearing of phyllosilicates may become prevalent. We develop physical boundary conditions for which stagnant melt beneath a permeability barrier remains trapped rather than being extracted to the surface via melt-filled fractures. We explore the parameter space for fracturing and drainage and development of anastomozing impermeable shear zones. Our models might be useful to constrain the

  10. Compositional zoning of the bishop tuff

    USGS Publications Warehouse

    Hildreth, W.; Wilson, C.J.N.

    2007-01-01

    the bulk compositional gradient, implying both that few crystals settled or were transported far and that the observed crystals contributed little to establishing that gradient. Upward increases in aqueous gas and dissolved water, combined with the adiabatic gradient (for the 5 km depth range tapped) and the roofward decline in liquidus temperature of the zoned melt, prevented significant crystallization against the roof, consistent with dominance of crystal-poor magma early in the eruption and lack of any roof-rind fragments among the Bishop ejecta, before or after onset of caldera collapse. A model of secular incremental zoning is advanced wherein numerous batches of crystal-poor melt were released from a mush zone (many kilometers thick) that floored the accumulating rhyolitic melt-rich body. Each batch rose to its own appropriate level in the melt-buoyancy gradient, which was selfsustaining against wholesale convective re-homogenization, while the thick mush zone below buffered it against disruption by the deeper (non-rhyolitic) recharge that augmented the mush zone and thermally sustained the whole magma chamber. Crystal-melt fractionation was the dominant zoning process, but it took place not principally in the shallow melt-rich body but mostly in the pluton-scale mush zone before and during batchwise melt extraction. ?? Published by Oxford University Press (2007).

  11. Co-existing calcic amphiboles in calc-alkaline andesites: Possible evidence of a zoned magma chamber

    NASA Astrophysics Data System (ADS)

    Green, Nathan L.

    1982-03-01

    Hornblende-biotite andesites erupted from Mount Price and Clinker Peak volcanoes, southwestern British Columbia, contain two texturally and compositionally distinct calcic amphiboles: pargasitic hornblende xenocrysts and magnesio-hornblende microphenocrysts. Disequilibrium relationships exhibited by these amphiboles and associated minerals suggest that the magnesio-hornblendes precipitated under chemical and thermal conditions that were intermediate between those under which pargasitic hornblende and biotite, respectively, crystallized. Experimental studies of crystallization in double-diffusive systems (Chen and Turner, 1980; Turner, 1980; McBirney, 1980) suggest that these varied magmatic environments can be explained as a consequence of progressive crystallization within a zoned magma chamber. Although gravitational settling may have played a role, the observed mineral assemblages probably developed by convective mixing of crystals precipitated at the cooling margins with those crystallized in the interior of the compositionally stratified magma column.

  12. Imaging the crustal magma sources beneath Mauna Loa and Kilauea volcanoes, Hawaii

    USGS Publications Warehouse

    Okubo, Paul G.; Benz, Harley M.; Chouet, Bernard A.

    1997-01-01

    Three-dimensional seismic P-wave traveltime tomography is used to image the magma sources beneath Mauna Loa and Kilauea volcanoes, Hawaii. High-velocity bodies (>6.4 km/s) in the upper 9 km of the crust beneath the summits and rift zones of the volcanoes correlate with zones of high magnetic intensities and are interpreted as solidified gabbro-ultramafic cumulates from which the surface volcanism is derived. The proximity of these high-velocity features to the rift zones is consistent with a ridge-spreading model of the volcanic flank. Southeast of the Hilina fault zone, along the south flank of Kilauea, low-velocity material (<6.0 km/s) is observed extending to depths of 9–11 km, indicating that the Hilina fault may extend possibly as deep as the basal decollement. Along the southeast flank of Mauna Loa, a similar low-velocity zone associated with the Kaoiki fault zone is observed extending to depths of 6–8 km. These two upper crustal low-velocity zones suggest common stages in the evolution of the Hawaiian shield volcanoes in which these fault systems are formed as a result of upper crustal deformation in response to magma injection within the volcanic edifice.

  13. Oxygen isotope study of the Long Valley magma system, California: isotope thermometry and convection in large silicic magma bodies

    NASA Astrophysics Data System (ADS)

    Bindeman, Ilya; Valley, John

    2002-07-01

    of their longevity (>105 years) and convection. However, remaining isotopic zoning in some quartz phenocrysts, trace element gradients in feldspars, and quartz and zircon crystal size distributions are more consistent with far shorter timescales (102-104 years). We propose a sidewall-crystallization model that promotes convective homogenization, roofward accumulation of more evolved and stagnant, volatile-rich liquid, and develops compositional and temperature gradients in pre-climactic magma chamber. Crystal + melt + gas bubbles mush near chamber walls of variable δ18O gets periodically remobilized in response to chamber refill by new hotter magmas. One such episode of chamber refill by high-Ti, Sr, Ba, Zr, and volatile-richer magma happened 103-104 years prior to the 0.76-Ma caldera collapse that caused magma mixing at the base, mush thawing near the roof and walls, and downward settling of phenocrysts into this hybrid melt.

  14. Petrologic constraints on rift-zone processes - Results from episode 1 of the Puu Oo eruption of Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Garcia, M.O.; Ho, R.A.; Rhodes, J.M.; Wolfe, E.W.

    1989-01-01

    The Puu Oo eruption in the middle of Kilauea volcano's east rift zone provides an excellent opportunity to utilize petrologic constraints to interpret rift-zone processes. Emplacement of a dike began 24 hours before the start of the eruption on 3 January 1983. Seismic and geodetic evidence indicates that the dike collided with a magma body in the rift zone. Most of the lava produced during the initial episode of the Puu Oo eruption is of hybrid composition, with petrographic and geochemical evidence of mixing magmas of highly evllved and more mafic compositions. Some olivine and plagioclase grains in the hybrid lavas show reverse zoning. Whole-rock compositional variations are linear even for normally compatible elements like Ni and Cr. Leastsquares mixing calculations yield good residuals for major and trace element analyses for magma mixing. Crystal fractionation calculations yield unsatisfactory residuals. The highly evolved magma is similar in composition to the lava from the 1977 eruption and, at one point, vents for these two eruptions are only 200 m apart. Possibly both the 1977 lava and the highly evolved component of the episode 1 Puu Oo lava were derived from a common body of rift-zone-stored magma. The more mafic mixing component may be represented by the most mafic lava from the January 1983 eruption; it shows no evidence of magma mixing. The dike that was intruded just prior to the start of the Puu Oo eruption may have acted as a hydraulic plunger causing mixing of the two rift-zone-stored magmas. ?? 1989 Springer-Verlag.

  15. Decoding magma plumbing and geochemical evolution beneath the Lastarria volcanic complex (Northern Chile)-Evidence for multiple magma storage regions

    NASA Astrophysics Data System (ADS)

    Stechern, André; Just, Tobias; Holtz, François; Blume-Oeste, Magdalena; Namur, Olivier

    2017-05-01

    The petrology of quaternary andesites and dacites from Lastarria volcano was investigated to reconstruct the magma plumbing and storage conditions beneath the volcano. The mineral phase compositions and whole-rock major and trace element compositions were used to constrain temperature, pressure and possible mechanisms for magma differentiation. The applied thermobarometric models include two-pyroxene thermobarometry, plagioclase-melt thermometry, amphibole composition thermobarometry, and Fe-Ti oxide thermo-oxybarometry. The overall temperature estimation is in the range 840 °C to 1060 °C. Calculated oxygen fugacity ranges between NNO to NNO + 1. Results of the geo-barometric calculations reveal multiple magma storage regions, with a distinct storage level in the uppermost crust ( 6.5-8 km depth), a broad zone at mid-crustal levels ( 10-18 km depth), and a likely deeper zone at intermediate to lower crustal levels (> 20 km depth). The highest temperatures in the range 940-1040 °C are recorded in minerals stored in the mid-crustal levels ( 10-18 km depth). The whole-rock compositions clearly indicate that magma mixing is the main parameter controlling the general differentiation trends. Complex zoning patterns and textures in the plagioclase phenocrysts confirm reheating and remobilization processes due to magma replenishment.

  16. Patchy distribution of magma that fed the Bishop Tuff supereruption: Evidence from matrix glass major and trace-element compositions

    NASA Astrophysics Data System (ADS)

    Gualda, G. A. R.; Ghiorso, M. S.; Hurst, A. A.; Allen, M. C.; Bradshaw, R. W.

    2017-12-01

    For more than 40 years, the Bishop Tuff has been the archetypical example of a singular, zoned magma body that fed a supereruption. Early-erupted material is pyroxene-free and crystal poor (<20 wt. %), presumably erupted from the upper parts of the magma body; late-erupted material is orthopyroxene and clinopyroxene-bearing, commonly more crystal rich (up to 30 wt. % crystals), and presumably tapped magma from the lower portions of the magma body. Fe-Ti oxide compositions suggest higher crystallization temperatures for late-erupted magmas (as high as 820 °C) than for early-erupted magmas (as low as 700 °C). Pressures and temperatures derived from major element compositions of glass inclusions led Gualda & Ghiorso (2013, CMP) to suggest an alternative model of lateral juxtaposition of two main magma bodies - each one feeding early-erupted and late-erupted units. Chamberlain et al. (2015, JPet) and Evans et al. (2016, AmMin) recently disputed this interpretation. We present a large dataset of matrix glass compositions for 161 pumice clasts that span the stratigraphy of the deposit. We calculate crystallization pressures based on major-element glass compositions using rhyolite-MELTS geobarometry, and crystallization temperatures based on Zr in glass using zircon saturation geothermometry. We apply the same methods to 1538 major-element and 615 trace-element analyses from Chamberlain et al. The results overwhelmingly demonstrate that there is no difference in crystallization temperature or pressure between early and late-erupted magmas. Crystallization pressures and temperatures are unimodal, with modes of 150 MPa and 730 °C (calibration of Watson & Harrison). Our results strongly support lateral juxtaposition of two main magma bodies. Smaller units recognized by Chamberlain et al. crystallized at the same pressures as the main bodies - this suggests the coexistence of larger and smaller magma bodies at the time of the Bishop Tuff supereruption. We compare our

  17. Lower continental crust formation through focused flow in km-scale melt conduits: The zoned ultramafic bodies of the Chilas Complex in the Kohistan island arc (NW Pakistan)

    NASA Astrophysics Data System (ADS)

    Jagoutz, O.; Müntener, O.; Burg, J.-P.; Ulmer, P.; Jagoutz, E.

    2006-02-01

    Whole-rock and Sm-Nd isotopic data of the main units of the Chilas zoned ultramafic bodies (Kohistan paleo-island arc, NW Pakistan) indicate that ultramafic rocks and gabbronorite sequences stem from a common magma. However, field observations rule out formation of both ultramafic and mafic sequences in terms of gravitational crystal settling in a large magma chamber. Contacts between ultramafic and gabbronorite sequences show emplacement of the dunitic bodies into a semi-consolidated gabbronoritic crystal-mush, which in turn has intruded and reacted with the ultramafic rocks to produce concentric zoning. Field and petrological observations indicate a replacive origin of the dunite. Bulk Mg#'s of dunitic rocks range from 0.87-0.81 indicating that the dunite-forming melt underwent substantial fractionation-differentiation and that percolative fractional crystallization probably generated the dunitic core. The REE chemistry of clinopyroxene in primitive dunite samples and the Nd isotopic composition of ultramafic rocks are in equilibrium with the surrounding gabbronorite. Accordingly, liquids that formed the dunitic rocks and later the mafic sequence derived from a similar depleted source ( ɛNd˜4.8). We propose a mechanism for the comagmatic emplacement, where km-scale ultramafic bodies represent continuous channels reaching down into the upper mantle. The melt-filled porosity in these melt channels diminishes the mean-depth-integrated density difference to the surrounding rocks. Due to buoyancy forces, melt channels raise into the overlying crustal sequence. In the light of such processes, the ultramafic bodies are interpreted as melt channels through which the Chilas gabbronorite sequence was fed. The estimated basaltic-andesitic, low Mg# (˜0.53) bulk composition of the Chilas gabbronorite sequence closely matches estimates of lower crustal compositions. Since the mafic sequence originated from a primary, high Mg# (> 0.7) basaltic arc magma, differentiation of

  18. The interplay between crystallization, replenishment and hybridization in large felsic magma chambers

    NASA Astrophysics Data System (ADS)

    Bateman, R.

    1995-09-01

    While hybridized granitoid magmas are readily identifiable, the mechanisms of hybridization in large crustal magma chambers are so not clearly understood. Characteristic features of hybrid granitoids are (1) both the granitoid and included enclaves are commonly hybrids, as shown by mineralogy, geochemistry and isotopes; (2) mixing seen in zoned plutons and synplutonic dykes and enclaves occurred early; (3) zoned plagioclase phenocrysts commonly show very complex life histories of growth and dissolution; (4) mafic end-members in hybrids are commonly fractionated magmas and (5) stratification in subvolcanic granitoid magma chambers is not uncommon, and stratification has been identified in some deeper level plutons. Hybridization must overcome the tendency to form a stable stratification of dense mafic magma underlying less dense felsic magma. Experimental work with magma analogues and theoretical considerations reveal very severe thermal, rheological and dynamical limitations on mixing: only very similar (composition, temperature) magmas are likely to mix to homogeneity, and only moderately silicic hybrids are likely to be produced. However, "impossibly" silicic hybrids do exist. Synchronous, interactive fractional crystallization and hybridization may provide a mechanism for hybridization of magmas, in the following manner. A mafic magma intrudes into the base of a stratified felsic magma and is cooled against it. Crystallization of the upper boundary layer of the mafic magma yields an eventually buoyant residual melt that overturns and mixes with an adjacent stratum of the felsic magma chamber. Subsequently, melt released by crystallization pf this, now-hybrid zone mixes with adjacent, more felsic zones. Thus, a suite of hybrid magmas are progressively formed. Density inhibitions are overcome by the generation of relatively low density residual melts. As crystallization proceeds, later injections are preserved as dykes and enclaves composed of hybrid magma. In

  19. The influence of regional extensional tectonic stress on the eruptive behaviour of subduction-zone volcanoes

    NASA Astrophysics Data System (ADS)

    Tost, M.; Cronin, S. J.

    2015-12-01

    Regional tectonic stress is considered a trigger mechanism for explosive volcanic activity, but the related mechanisms at depth are not well understood. The unique geological setting of Ruapehu, New Zealand, allows investigation on the effect of enhanced regional extensional crustal tension on the eruptive behaviour of subduction-zone volcanoes. The composite cone is located at the southwestern terminus of the Taupo Volcanic Zone, one of the most active silicic magma systems on Earth, which extends through the central part of New Zealand's North Island. Rhyolitic caldera eruptions are limited to its central part where crustal extension is highest, whereas lower extension and additional dextral shear dominate in the southwestern and northeastern segments characterized by andesitic volcanism. South of Ruapehu, the intra-arc rift zone traverses into a compressional geological setting with updoming marine sequences dissected by reverse and normal faults. The current eruptive behaviour of Ruapehu is dominated by small-scaled vulcanian eruptions, but our studies indicate that subplinian to plinian eruptions have frequently occurred since ≥340 ka and were usually preceded by major rhyolitic caldera unrest in the Taupo Volcanic Zone. Pre-existing structures related to the NNW-SSE trending subduction-zone setting are thought to extend at depth and create preferred pathways for the silicic magma bodies, which may facilitate the development of large (>100 km3) dyke-like upper-crustal storage systems prior to major caldera activity. This may cause enhanced extensional stress throughout the entire intra-arc setting, including the Ruapehu area. During periods of caldera dormancy, the thick crust underlying the volcano and the enhanced dextral share rate likely impede ascent of larger andesitic magma bodies, and storage of andesitic melts dominantly occurs within small-scaled magma bodies at middle- to lower-crustal levels. During episodes of major caldera unrest, ascent and

  20. Thermal evolution of magma reservoirs in the shallow crust and incidence on magma differentiation: the St-Jean-du-Doigt layered intrusion (Brittany, France)

    NASA Astrophysics Data System (ADS)

    Barboni, M.; Bussy, F.; Ovtcharova, M.; Schoene, B.

    2009-12-01

    Understanding the emplacement and growth of intrusive bodies in terms of mechanism, duration, thermal evolution and rates are fundamental aspects of crustal evolution. Recent studies show that many plutons grow in several Ma by in situ accretion of discrete magma pulses, which constitute small-scale magmatic reservoirs. The residence time of magmas, and hence their capacities to interact and differentiate, are controlled by the local thermal environment. The latter is highly dependant on 1) the emplacement depth, 2) the magmas and country rock composition, 3) the country rock thermal conductivity, 4) the rate of magma injection and 5) the geometry of the intrusion. In shallow level plutons, where magmas solidify quickly, evidence for magma mixing and/or differentiation processes is considered by many authors to be inherited from deeper levels. We show however that in-situ differentiation and magma interactions occurred within basaltic and felsic sills at shallow depth (0.3 GPa) in the St-Jean-du-Doigt bimodal intrusion, France. Field evidence coupled to high precision zircon U-Pb dating document progressive thermal maturation within the incrementally built laccolith. Early m-thick mafic sills are homogeneous and fine-grained with planar contacts with neighbouring felsic sills; within a minimal 0.5 Ma time span, the system gets warmer, adjacent sills interact and mingle, and mafic sills are differentiating in the top 40 cm of the layer. Rheological and thermal modelling show that observed in-situ differentiation-accumulation processes may be achieved in less than 10 years at shallow depth, provided that (1) the differentiating sills are injected beneath consolidated, yet still warm basalt sills, which act as low conductive insulating screens, (2) the early mafic sills accreted under the roof of the laccolith as a 100m thick top layer within 0.5 My, and (3) subsequent and sustained magmatic activity occurred on a short time scale (years) at an injection rate of ca. 0

  1. Pressurized magma reservoir within the east rift zone of Kīlauea Volcano, Hawai`i: Evidence for relaxed stress changes from the 1975 Kalapana earthquake

    NASA Astrophysics Data System (ADS)

    Baker, Scott; Amelung, Falk

    2015-03-01

    We use 2000-2012 InSAR data from multiple satellites to investigate magma storage in Kīlauea's east rift zone (ERZ). The study period includes a surge in magma supply rate and intrusion-eruptions in 2007 and 2011. The Kupaianaha area inflated by ~5 cm prior to the 2007 intrusion and the Nāpau Crater area by ~10 cm following the 2011 intrusion. For the Nāpau Crater area, elastic modeling suggests an inflation source at 5 ± 2 km depth or more below sea level. The reservoir is located in the deeper section of the rift zone for which secular magma intrusion was inferred for the period following the 1975 Mw7.7 décollement earthquake. Reservoir pressurization suggests that in this section of the ERZ, extensional stress changes due to the earthquake have largely been compensated for and that this section is approaching its pre-1975 state. Reservoir pressurization also puts the molten core model into question for this section of Kīlauea's rift zone.

  2. Geophysical Evidence for the Locations, Shapes and Sizes, and Internal Structures of Magma Chambers beneath Regions of Quaternary Volcanism

    NASA Astrophysics Data System (ADS)

    Iyer, H. M.

    1984-04-01

    This paper is a review of seismic, gravity, magnetic and electromagnetic techniques to detect and delineate magma chambers of a few cubic kilometres to several thousand cubic kilometres volume. A dramatic decrease in density and seismic velocity, and an increase in seismic attenuation and electrical conductivity occurs at the onset of partial melting in rocks. The geophysical techniques are based on detecting these differences in physical properties between solid and partially molten rock. Although seismic refraction techniques, with sophisticated instrumentation and analytical procedures, are routinely used for detailed studies of crustal structure in volcanic regions, their application for magma detection has been quite limited. In one study, in Yellowstone National Park, U.S.A., fan-shooting and time-term techniques have been used to detect an upper-crustal magma chamber. Attenuation and velocity changes in seismic waves from explosions and earthquakes diffracted around magma chambers are observed near some volcanoes in Kamchatka. Strong attenuation of shear waves from regional earthquakes, interpreted as a diffraction effect, has been used to model magma chambers in Alaska, Kamchatka, Iceland, and New Zealand. One of the most powerful techniques in modern seismology, the seismic reflection technique with vibrators, was used to confirm the existence of a strong reflector in the crust near Socorro, New Mexico, in the Rio Grande Rift. This reflector, discovered earlier from data from local earthquakes, is interpreted as a sill-like magma body. In the Kilauea volcano, Hawaii, mapping seismicity patterns in the upper crust has enabled the modelling of the complex magma conduits in the crust and upper mantle. On the other hand, in the Usu volcano, Japan, the magma conduits are delineated by zones of seismic quiescence. Three-dimensional modelling of laterally varying structures using teleseismic residuals is proving to be a very promising technique for detecting and

  3. Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 1. Intereruption deformation, 1997–2008

    USGS Publications Warehouse

    Lu, Zhong; Dzurisin, Daniel; Biggs, Juliet; Wicks, Charles; McNutt, Steve

    2010-01-01

    Starting soon after the 1997 eruption at Okmok volcano and continuing until the start of the 2008 eruption, magma accumulated in a storage zone centered ~3.5 km beneath the caldera floor at a rate that varied with time. A Mogi-type point pressure source or finite sphere with a radius of 1 km provides an adequate fit to the deformation field portrayed in time-sequential interferometric synthetic aperture radar images. From the end of the 1997 eruption through summer 2004, magma storage increased by 3.2–4.5 × 107 m3, which corresponds to 75–85% of the magma volume erupted in 1997. Thereafter, the average magma supply rate decreased such that by 10 July 2008, 2 days before the start of the 2008 eruption, magma storage had increased by 3.7–5.2 × 107 m3 or 85–100% of the 1997 eruption volume. We propose that the supply rate decreased in response to the diminishing pressure gradient between the shallow storage zone and a deeper magma source region. Eventually the effects of continuing magma supply and vesiculation of stored magma caused a critical pressure threshold to be exceeded, triggering the 2008 eruption. A similar pattern of initially rapid inflation followed by oscillatory but generally slowing inflation was observed prior to the 1997 eruption. In both cases, withdrawal of magma during the eruptions depressurized the shallow storage zone, causing significant volcano-wide subsidence and initiating a new intereruption deformation cycle.

  4. Formation of tectonic peperites from alkaline magmas intruded into wet sediments in the Beiya area, western Yunnan, China

    USGS Publications Warehouse

    Xu, Xing-Wang; Cai, Xin-Ping; Zhong, Jia-You; Song, Bao-Chang; Peters, Stephen G.

    2007-01-01

    Tertiary (3.78 Ma to 3.65 Ma) biotite-K-feldspar porphyritic bodies intrude Tertiary, poorly consolidated lacustrine sedimentary rocks in the Beiya mineral district in southwestern China. The intrusives are characterized by a microcrystalline and vitreous-cryptocrystalline groundmass, by replacement of some tabular K-feldspar phenocrysts with microcrystalline chlorite and calcite, and by Fe-rich rings surrounding biotite phenocrysts. Peculiar structures, such as contemporary contact faults and slickensides, ductile shear zones and flow folds, foliation and lineations, tension fractures, and banded and boudin peperites, are developed along the contact zones of the intrusives. These features are related to the forceful intrusion of the alkaline magmas into the wet Tertiary sediments. The partially consolidated magmas were deformed and flattened by continued forceful magma intrusion that produced boudinaged and banded peperites. These peperites characterized by containing oriented deformation fabrics are classified as tectonic peperites as a new type of peperite, and formation of these tectonic peperites was related to fracturing of magmas caused by forceful intrusion and shear deformation and to contemporary migration and injection of fluidized sediments along fractures that dismembered the porphyritic magma. Emplacement of the magma into the wet sediments in the Beiya area is interpreted to be related to a large pressure difference rather than to the buoyancy force.

  5. Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz

    PubMed Central

    Budd, David A.; Troll, Valentin R.; Deegan, Frances M.; Jolis, Ester M.; Smith, Victoria C.; Whitehouse, Martin J.; Harris, Chris; Freda, Carmela; Hilton, David R.; Halldórsson, Sæmundur A.; Bindeman, Ilya N.

    2017-01-01

    Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic δ18O values. Overall, Toba quartz crystals exhibit comparatively high δ18O values, up to 10.2‰, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in δ18O values in outermost growth zones compared to their cores, with values as low as 6.7‰ (maximum ∆core−rim = 1.8‰). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-δ18O component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-δ18O component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems. PMID:28120860

  6. Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz

    NASA Astrophysics Data System (ADS)

    Budd, David A.; Troll, Valentin R.; Deegan, Frances M.; Jolis, Ester M.; Smith, Victoria C.; Whitehouse, Martin J.; Harris, Chris; Freda, Carmela; Hilton, David R.; Halldórsson, Sæmundur A.; Bindeman, Ilya N.

    2017-01-01

    Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic δ18O values. Overall, Toba quartz crystals exhibit comparatively high δ18O values, up to 10.2‰, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in δ18O values in outermost growth zones compared to their cores, with values as low as 6.7‰ (maximum Δcore-rim = 1.8‰). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-δ18O component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-δ18O component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems.

  7. Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz.

    PubMed

    Budd, David A; Troll, Valentin R; Deegan, Frances M; Jolis, Ester M; Smith, Victoria C; Whitehouse, Martin J; Harris, Chris; Freda, Carmela; Hilton, David R; Halldórsson, Sæmundur A; Bindeman, Ilya N

    2017-01-25

    Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic δ 18 O values. Overall, Toba quartz crystals exhibit comparatively high δ 18 O values, up to 10.2‰, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in δ 18 O values in outermost growth zones compared to their cores, with values as low as 6.7‰ (maximum ∆ core-rim  = 1.8‰). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-δ 18 O component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-δ 18 O component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems.

  8. Reaction of Rhyolitic Magma to its Interception by the IDDP-1 Well, Krafla, 2009

    NASA Astrophysics Data System (ADS)

    Saubin, É.; Kennedy, B.; Tuffen, H.; Villeneuve, M.; Watson, T.; Nichols, A. R.; Schipper, I.; Cole, J. W.; Mortensen, A. K.; Zierenberg, R. A.

    2017-12-01

    The unexpected encounter of rhyolitic magma during IDDP-1 geothermal borehole drilling at Krafla, Iceland in 2009, temporarily created the world's hottest geothermal well. This allowed new questions to be addressed. i) How does magma react to drilling? ii) Are the margins of a magma chamber suitable for long-term extraction of supercritical fluids? To investigate these questions, we aim to reconstruct the degassing and deformation behaviour of the enigmatic magma by looking for correlations between textures in rhyolitic material retrieved from the borehole and the recorded drilling data. During drilling, difficulties were encountered in two zones, at 2070 m and below 2093 m depth. Drilling parameters are consistent with the drill bit encountering a high permeability zone and the contact zone of a magma chamber, respectively. Magma was intercepted three times between 2101-2104.4 m depth, which culminated in an increase in standpipe pressure followed by a decrease in weight on bit interpreted as representing the ascent of magma within the borehole. Circulation returned one hour after the last interception, carrying cuttings of glassy particles, felsite with granophyre and contaminant clasts from drilling, which were sampled as a time-series for the following 9 hours. The nature of glassy particles in this time-series varied through time, with a decrease in the proportion of vesicular clasts and a commensurate increase in dense glassy clasts, transitioning from initially colourless to brown glass. Componentry data show a sporadic decrease in felsite (from 34 wt. %), an increase in glassy particles during the first two hours (from 63 wt. % to 94 wt. %) and an increase in contaminant clasts towards the end of the cutting retrieval period. These temporal variations are probably related to the magma body architecture and interactions with the borehole. Transition from vesicular to dense clasts suggests a change in the degassing process that could be related to an early

  9. Along-strike variability of primitive magmas (major and volatile elements) inferred from olivine-hosted melt inclusions, southernmost Andean Southern Volcanic Zone, Chile

    NASA Astrophysics Data System (ADS)

    Weller, D. J.; Stern, C. R.

    2018-01-01

    Glass compositions of melt inclusions in olivine phenocrysts found in tephras derived from explosive eruptions of the four volcanoes along the volcanic front of the southernmost Andean Southern Volcanic Zone (SSVZ) are used to constrain primitive magma compositions and melt generation parameters. Primitive magmas from Hudson, Macá, and Melimoyu have similar compositions and are formed by low degrees (8-18%) of partial melting. Compared to these other three centers, primitive magmas from Mentolat have higher Al2O3 and lower MgO, TiO2 and other incompatible minor elements, and are generated by somewhat higher degrees (12-20%) of partial melting. The differences in the estimated primitive parental magma compositions between Mentolat and the other three volcanic centers are consistent with difference in the more evolved magmas erupted from these centers, Mentolat magmas having higher Al2O3 and lower MgO, TiO2 and other incompatible minor element contents, suggesting that these differences are controlled by melting processes in the mantle source region above the subducted oceanic plate. Parental magma S = 1430-594 and Cl = 777-125 (μg/g) contents of Hudson, Macá, and Melimoyu are similar to other volcanoes further north in the SVZ. However, Mentolat primitive magmas have notably higher concentrations of S = 2656-1227 and Cl = 1078-704 (μg/g). The observed along-arc changes in parental magma chemistry may be due to the close proximity below Mentolat of the subducted Guamblin Fracture Zone that could efficiently transport hydrous mineral phases, seawater, and sediment into the mantle, driving enhanced volatile fluxed melting beneath this center compared to the others. Table S2. Olivine-hosted melt inclusion compositions, host-olivine compositions, and the post-entrapment crystallization corrected melt inclusion compositions. Table S3. Olivine-hosted melt inclusion modeling information. Table S4. Major element compositions of the fractionation corrected melt inclusion

  10. Water contents, temperatures and diversity of the magmas of the catastrophic eruption of Nevado del Ruiz, Colombia, November 13, 1985

    NASA Astrophysics Data System (ADS)

    Melson, William G.; Allan, James F.; Jerez, Deborah Reid; Nelen, Joseph; Calvache, Marta Lucia; Williams, Stanley N.; Fournelle, John; Perfit, Mike

    1990-07-01

    The petrology of the highly phyric two-pyroxene andesitic to dacitic pyroclastic rocks of the November 13, 1985 eruption of Nevado del Ruiz, Colombia, reveals evidence of: (1) increasingly fractionated bulk compositions with time; (2) tapping of a small magma chamber marginally zoned in regard to H 2O contents (1 to 4%), temperature (960-1090°C), and amount of residual melt (35 to 65%); (3) partial melting and assimilation of degassed zones in the hotter less dense interior of the magma chamber; (4) probable heating, thermal disruption and mineralogic and compositional contamination of the magma body by basaltic magma "underplating"; and (5) crustal contamination of the magmas during ascent and within the magma chamber. Near-crater fall-back or "spill-over" emitted in the middle of the eruptive sequence produced a small pyroclastic flow that became welded in its central and basal portions because of ponding and thus heat conservation on the flat glaciated summit near the Arenas crater. The heterogeneity of Ruiz magmas may be related to the comparatively small volume (0.03 km 3) of the eruption, nearly ten times less than the 0.2 km 3 of the Plinian phase of Mount St. Helens, and probable steep thermal and PH 2O gradients of a small source magma chamber, estimated at 300 m long and 100 m wide for an assumed ellipsoidal shape.

  11. Magma transport and olivine crystallization depths in Kīlauea’s East Rift Zone inferred from experimentally rehomogenized melt inclusions

    USGS Publications Warehouse

    Tuohy, Robin M; Wallace, Paul J.; Loewen, Matthew W; Swanson, Don; Kent, Adam J R

    2016-01-01

    Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai‘i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n=10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n=38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at <6 km depth, with the majority of olivine in the 1-3 km depth range. These depths are consistent with the interpretation that the Kīlauea Iki magma was supplied from Kīlauea’s summit magma reservoir (∼2-5 km depth). In contrast, olivine from Kapoho, which was the rift zone extension of the Kīlauea Iki eruption, crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the

  12. Complexities in Shallow Magma Transport at Kilauea (Invited)

    NASA Astrophysics Data System (ADS)

    Swanson, D. A.

    2013-12-01

    The standard model of Kilauea's shallow plumbing system includes magma storage under the caldera and conduits in the southwest rift zone (SWRZ) and the east rift zone (ERZ). As a field geologist, I find that seemingly aberrant locations and trends of some eruptive vents indicate complexities in shallow magma transport not addressed by the standard model. This model is not wrong but instead incomplete, because it does not account for the development of offshoots from the main plumbing. These offshoots supply magma to the surface at places that tell us much about the complicated stress system within the volcano. Perhaps most readily grasped are fissures peripheral to the north and south sides of the caldera. Somehow magma can apparently be injected into caldera-bounding faults from the summit reservoir complex, but the process and pathways are unclear. Of more importance is the presence of fissures with ENE trends on the east side of the caldera, including Kilauea Iki. Is this a rift zone that forms an acute angle with the ERZ? I think there is another explanation: the main part of the ERZ has migrated ~5 km SSE during the past few tens of thousands of years owing to seaward movement of the south flank, but older parts of the rift zone can be reactivated. The fissures east of the caldera have the ERZ trend and may record such reactivation; this interpretation includes the location of the largest eruption (15th century) known from Kilauea. Whether or not this interpretation has validity, the question remains: what changes in the plumbing system allow magma to erupt east of the caldera? The SWRZ can be divided into two sections, the SWRZ proper and the seismically active part (SASWRZ) southeast of the SWRZ. The total width of both sections is ~4 km. The SWRZ might be migrating SSE, as is the ERZ. Fissures in the SWRZ proper trend SW. Fissures in the SASWRZ, however, have ENE trends like that of the ERZ, although, because of en echelon offsets, the fissure zone itself

  13. Caldera resurgence driven by magma viscosity contrasts.

    PubMed

    Galetto, Federico; Acocella, Valerio; Caricchi, Luca

    2017-11-24

    Calderas are impressive volcanic depressions commonly produced by major eruptions. Equally impressive is the uplift of the caldera floor that may follow, dubbed caldera resurgence, resulting from magma accumulation and accompanied by minor eruptions. Why magma accumulates, driving resurgence instead of feeding large eruptions, is one of the least understood processes in volcanology. Here we use thermal and experimental models to define the conditions promoting resurgence. Thermal modelling suggests that a magma reservoir develops a growing transition zone with relatively low viscosity contrast with respect to any newly injected magma. Experiments show that this viscosity contrast provides a rheological barrier, impeding the propagation through dikes of the new injected magma, which stagnates and promotes resurgence. In explaining resurgence and its related features, we provide the theoretical background to account for the transition from magma eruption to accumulation, which is essential not only to develop resurgence, but also large magma reservoirs.

  14. Magma mixing in the 1100 AD Montaña Reventada composite lava flow, Tenerife, Canary Islands: interaction between rift zone and central volcano plumbing systems

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Deegan, F. M.; Troll, V. R.; Carracedo, J. C.; Chadwick, J. P.; Chew, D. M.

    2011-09-01

    Zoned eruption deposits commonly show a lower felsic and an upper mafic member, thought to reflect eruption from large, stratified magma chambers. In contrast, the Montaña Reventada composite flow (Tenerife) consists of a lower basanite and a much thicker upper phonolite. A sharp interface separates basanite and phonolite, and chilled margins at this contact indicate the basanite was still hot upon emplacement of the phonolite, i.e. the two magmas erupted in quick succession. Four types of mafic to intermediate inclusions are found in the phonolite. Inclusion textures comprise foamy quenched ones, others with chilled margins and yet others that are physically mingled, reflecting progressive mixing with a decreasing temperature contrast between the end-members. Analysis of basanite, phonolite and inclusions for majors, traces and Sr, Nd and Pb isotopes show the inclusions to be derived from binary mixing of basanite and phonolite end-members in ratios of 2:1 to 4:1. Although, basanite and phonolite magmas were in direct contact, contrasting 206Pb/204Pb ratios show that they are genetically distinct (19.7193(21)-19.7418(31) vs. 19.7671(18)-19.7807(23), respectively). We argue that the Montaña Reventada basanite and phonolite first met just prior to eruption and had limited interaction time only. Montaña Reventada erupted from the transition zone between two plumbing systems, the phonolitic Teide-Pico Viejo complex and the basanitic Northwest rift zone. A rift zone basanite dyke most likely intersected the previously emplaced phonolite magma chamber. This led to eruption of geochemically and texturally unaffected basanite, with the inclusion-rich phonolite subsequently following into the established conduit.

  15. Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 2. Coeruptive deflation, July-August 2008

    USGS Publications Warehouse

    Lu, Zhong; Dzurisin, Daniel

    2010-01-01

    A hydrovolcanic eruption near Cone D on the floor of Okmok caldera, Alaska, began on 12 July 2008 and continued until late August 2008. The eruption was preceded by inflation of a magma reservoir located beneath the center of the caldera and ∼3 km below sea level (bsl), which began immediately after Okmok's previous eruption in 1997. In this paper we use data from several radar satellites and advanced interferometric synthetic aperture radar (InSAR) techniques to produce a suite of 2008 coeruption deformation maps. Most of the surface deformation that occurred during the eruption is explained by deflation of a Mogi-type source located beneath the center of the caldera and 2–3 km bsl, i.e., essentially the same source that inflated prior to the eruption. During the eruption the reservoir deflated at a rate that decreased exponentially with time with a 1/e time constant of ∼13 days. We envision a sponge-like network of interconnected fractures and melt bodies that in aggregate constitute a complex magma storage zone beneath Okmok caldera. The rate at which the reservoir deflates during an eruption may be controlled by the diminishing pressure difference between the reservoir and surface. A similar mechanism might explain the tendency for reservoir inflation to slow as an eruption approaches until the pressure difference between a deep magma production zone and the reservoir is great enough to drive an intrusion or eruption along the caldera ring-fracture system.

  16. Taxonomy of Magma Mixing II: Thermochemistry of Mixed Crystal-Bearing Magmas Using the Magma Chamber Simulator

    NASA Astrophysics Data System (ADS)

    Bohrson, W. A.; Spera, F. J.; Neilson, R.; Ghiorso, M. S.

    2013-12-01

    Magma recharge and magma mixing contribute to the diversity of melt and crystal populations, the abundance and phase state of volatiles, and thermal and mass characteristics of crustal magma systems. The literature is replete with studies documenting mixing end-members and associated products, from mingled to hybridized, and a catalytic link between recharge/mixing and eruption is likely. Given its importance and the investment represented by thousands of detailed magma mixing studies, a multicomponent, multiphase magma mixing taxonomy is necessary to systematize the array of governing parameters (e.g., pressure (P), temperature (T), composition (X)) and attendant outcomes. While documenting the blending of two melts to form a third melt is straightforward, quantification of the mixing of two magmas and the subsequent evolution of hybrid magma requires application of an open-system thermodynamic model. The Magma Chamber Simulator (MCS) is a thermodynamic, energy, and mass constrained code that defines thermal, mass and compositional (major, trace element and isotope) characteristics of melt×minerals×fluid phase in a composite magma body-recharge magma-crustal wallrock system undergoing recharge (magma mixing), assimilation, and crystallization. In order to explore fully hybridized products, in MCS, energy and mass of recharge magma (R) are instantaneously delivered to resident magma (M), and M and R are chemically homogenized and thermally equilibrated. The hybrid product achieves a new equilibrium state, which may include crystal resorption or precipitation and/or evolution of a fluid phase. Hundreds of simulations systematize the roles that PTX (and hence mineral identity and abundance) and the mixing ratio (mass of M/mass of R) have in producing mixed products. Combinations of these parameters define regime diagrams that illustrate possible outcomes, including: (1) Mixed melt composition is not necessarily a mass weighted mixture of M and R magmas because

  17. Numerical simulation of plagioclase rim growth during magma ascent at Bezymianny Volcano, Kamchatka

    NASA Astrophysics Data System (ADS)

    Gorokhova, N. V.; Melnik, O. E.; Plechov, P. Yu.; Shcherbakov, V. D.

    2013-08-01

    Slow CaAl-NaSi interdiffusion in plagioclase crystals preserves chemical zoning of plagioclase in detail, which, along with strong dependence of anorthite content in plagioclase on melt composition, pressure, and temperature, make this mineral an important source of information on magma processes. A numerical model of zoned crystal growth is developed in the paper. The model is based on equations of multicomponent diffusion with diagonal cross-component diffusion terms and accounts for mass conservation on the melt-crystal interface and growth rate controlled by undercooling. The model is applied to the data of plagioclase rim zoning from several recent Bezymianny Volcano (Kamchatka) eruptions. We show that an equilibrium growth model cannot explain crystallization of naturally observed plagioclase during magma ascent. The developed non-equilibrium model reproduced natural plagioclase zoning and allowed magma ascent rates to be constrained. Matching of natural and simulated zoning suggests ascent from 100 to 50 MPa during 15-20 days. Magma ascent rate from 50 MPa to the surface varies from eruption to eruption: plagioclase zoning from the December 2006 eruption suggests ascent to the surface in less than 1 day, whereas plagioclase zoning from March 2000 and May 2007 eruptions are better explained by magma ascent over periods of more than 30 days). Based on comparison of diffusion coefficients for individual elements a mechanism of atomic diffusion during plagioclase crystallization is proposed.

  18. Constraining the Size and Depth of a Shallow Crustal Magma Body at Newberry Volcano Using P-Wave Tomography and Finite-Difference Waveform Modeling

    NASA Astrophysics Data System (ADS)

    Beachly, M. W.; Hooft, E. E.; Toomey, D. R.; Waite, G. P.

    2011-12-01

    Imaging magmatic systems improves our understanding of magma ascent and storage in the crust and contributes to hazard assessment. Seismic tomography reveals crustal magma bodies as regions of low velocity; however the ability of delay-time tomography to detect small, low-velocity bodies is limited by wavefront healing. Alternatively, crustal magma chambers have been identified from secondary phases including P and S wave reflections and conversions. We use a combination of P-wave tomography and finite-difference waveform modeling to characterize a shallow crustal magma body at Newberry Volcano, central Oregon. Newberry's eruptions are silicic within the central caldera and mafic on its periphery suggesting a central silicic magma storage system. The system may still be active with a recent eruption ~1300 years ago and a drill hole temperature of 256° C at only 932 m depth. A low-velocity anomaly previously imaged at 3-5 km beneath the caldera indicates either a magma body or a fractured pluton. With the goal of detecting secondary arrivals from a magma chamber beneath Newberry Volcano, we deployed a line of densely-spaced (~300 m), three-component seismometers that recorded a shot of opportunity from the High Lava Plains Experiment in 2008. The data record a secondary P-wave arrival originating from beneath the caldera. In addition we combine travel-time data from our 2008 experiment with data collected in the 1980's by the USGS for a P-wave tomography inversion to image velocity structure to 6 km depth. The inversion includes 16 active sources, 322 receivers and 1007 P-wave first arrivals. The tomography results reveal a high-velocity, ring-like anomaly beneath the caldera ring faults to 2 km depth that surrounds a shallow low-velocity region. Beneath 2.5 km high-velocity anomalies are concentrated east and west of the caldera. A central low-velocity body lies below 3 km depth. Tomographic inversions of synthetic data suggest that the central low-velocity body

  19. Status of the Magma Energy Project

    NASA Astrophysics Data System (ADS)

    Dunn, J. C.

    The current magma energy project is assessing the engineering feasibility of extracting thermal energy directly from crustal magma bodies. The estimated size of the U.S. resource (50,000 to 500,000 quads) suggests a considerable potential impact on future power generation. In a previous seven-year study, we concluded that there are no insurmountable barriers that would invalidate the magma energy concept. Several concepts for drilling, energy extraction, and materials survivability were successfully demonstrated in Kilauea Iki lava lake, Hawaii. The present program is addressing the engineering design problems associated with accessing magma bodies and extracting thermal energy for power generation. The normal stages for development of a geothermal resource are being investigated: exploration, drilling and completions, production, and surface power plant design. Current status of the engineering program and future plans are described.

  20. The magma plumbing system in the Mariana Trough back-arc basin at 18° N

    NASA Astrophysics Data System (ADS)

    Lai, Zhiqing; Zhao, Guangtao; Han, Zongzhu; Huang, Bo; Li, Min; Tian, Liyan; Liu, Bo; Bu, Xuejiao

    2018-04-01

    Mafic magmas are common in back-arc basin, once stalled in the crust, these magmas may undergo different evolution. In this paper, compositional and textural variations of plagioclase as well as mineral-melt geothermobarometry are presented for basalts erupted from the central Mariana Trough (CMT). These data reveal crystallization conditions and we attempt a reconstruction of the magma plumbing system of the CMT. Plagioclase megacrysts, phenocrysts, microphenocrysts, microlites, olivine, spinel, and clinopyroxene have been recognized in basalt samples, using BSE images and compositional features. The last three minerals are homogeneous as microphenocrysts. Mineral-melt barometry indicates that plagioclase crystals crystallized and eventually grew into phenocrysts and megacrysts in mush zone with depth of 5-9 km, in which the normal zoning plagioclases crystallized in the interval of various batches of basic magma recharging. Plagioclase megacrysts and phenocrysts were dissolved and/or resorbed, when new basic magmas injected into the mush zone near Moho depth. It is inferred that magma extracted from the mush zone, and adiabatically ascended via different pathways. Some basaltic magmas underwent plagioclase and clinopyroxene microphenocrysts crystallization in low-pressure before eruption. Plagioclase microlites and outermost rims probably crystallized after eruption.

  1. The role of viscous magma mush spreading in volcanic flank motion at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Plattner, C.; Amelung, F.; Baker, S.; Govers, R.; Poland, M.

    2013-01-01

    Multiple mechanisms have been suggested to explain seaward motion of the south flank of Kīlauea Volcano, Hawai‘i. The consistency of flank motion during both waxing and waning magmatic activity at Kīlauea suggests that a continuously acting force, like gravity body force, plays a substantial role. Using finite element models, we test whether gravity is the principal driver of long-term motion of Kīlauea's flank. We compare our model results to geodetic data from Global Positioning System and interferometric synthetic aperture radar during a time period with few magmatic and tectonic events (2000-2003), when deformation of Kīlauea was dominated by summit subsidence and seaward motion of the south flank. We find that gravity-only models can reproduce the horizontal surface velocities if we incorporate a regional décollement fault and a deep, low-viscosity magma mush zone. To obtain quasi steady state horizontal surface velocities that explain the long-term seaward motion of the flank, we find that an additional weak zone is needed, which is an extensional rift zone above the magma mush. The spreading rate in our model is mainly controlled by the magma mush viscosity, while its density plays a less significant role. We find that a viscosity of 2.5 × 1017–2.5 × 1019 Pa s for the magma mush provides an acceptable fit to the observed horizontal surface deformation. Using high magma mush viscosities, such as 2.5 × 1019 Pa s, the deformation rates remain more steady state over longer time scales. These models explain a significant amount of the observed subsidence at Kīlauea's summit. Some of the remaining subsidence is probably a result of magma withdrawal from subsurface reservoirs

  2. Distribution of Magma and Hydrothermal Fluids Beneath the Laguna del Maule Volcanic Field, Central Chile Using Magnetotelluric Data

    NASA Astrophysics Data System (ADS)

    Unsworth, M. J.; Cordell, D. R.; Diaz, D.; Reyes, V.

    2016-12-01

    Geodetic data has shown that the surface around the Laguna del Maule volcanic field in central Chile has been moving upwards at rates in excess of 19 cm/yr since 2007 over a 200 km2 area. It has been hypothesized that this ground deformation is due to the inflation of a magma body beneath the lake. InSAR deformation modeling and gravity inversion suggest that the depth to the magma body is between 3 km b.s.l. and 0 km (at sea level). This magma body is a likely source for the large number of rhyolitic eruptions at this location over the last 25 ka. A dense broadband magnetotelluric (MT) array was collected from 2009 to 2015 and inverted using the ModEM inversion algorithm to produce a three-dimensional electrical resistivity model. The presence of a large surface conductor (<0.5 Ωm; 2.3 km a.s.l.) spatially coincident with the lake bed has the potential to attenuate signal and decrease resolution beneath the area of inflation. Additional broadband MT data were collected in 2016 and this new data suggest there is a mid-depth, weakly conductive feature (5 Ωm; 1 km b.s.l.) coincident with the area of maximum inflation which is resolvable despite the low-resistivity surface layer. There are many conductive features which lie on the perimeter of the zone of inflation including a large low-resistivity zone (<5 Ωm) at 5 km depth (3 km b.s.l.) north-west of the lake and a large low-resistivity zone (<10 Ωm) at 5 km depth (3 km b.s.l) north of the lake. The complex, three-dimensional model structure is supported by phase tensor analysis showing poorly-defined strike and high beta skew values (>3) at periods >2 s. The conductive features identified could be interpreted as either hydrothermal systems or magma and further analysis will contribute to better understanding this dynamic system.

  3. Disequilibrium growth of olivine in mafic magmas revealed by phosphorus zoning patterns of olivine from mafic-ultramafic intrusions

    NASA Astrophysics Data System (ADS)

    Xing, Chang-Ming; Wang, Christina Yan; Tan, Wei

    2017-12-01

    Olivine from mafic-ultramafic intrusions rarely displays growth zoning in major and some minor elements, such as Fe, Mg and Ni, due to fast diffusion of these elements at high temperatures. These elements in olivine are thus not useful in deciphering magma chamber processes, such as magma convection, multiple injection and mixing. High-resolution X-ray elemental intensity mapping reveals distinct P zoning patterns of olivine from two mafic-ultramafic intrusions in SW China. Polyhedral olivine grains from lherzolite and dunite of the Abulangdang intrusion show P-rich dendrites similar to those observed in volcanic rocks. Rounded olivine grains from net-textured Fe-Ti oxide ores of the Baima layered intrusion have irregular P-rich patches/bands crosscut and interlocked by P-poor olivine domains. P-rich patches/bands contain 250 to 612 ppm P, much higher than P-poor olivine domains with 123 to 230 ppm P. In electron backscattered diffraction (EBSD) maps, P-rich patches/bands within a single olivine grain have the same crystallographic orientation, indicating that they were remnants of the same crystal. Thus, both P-rich patches/bands and P-poor olivine domains in the same grain show a disequilibrium texture and clearly record two-stage growth. The P-rich patches/bands are likely the remnants of a polyhedral olivine crystal that formed in the first stage, whereas the P-poor olivine domains containing rounded Ti-rich magnetite and Fe-rich melt inclusions may have formed from an Fe-rich ambient melt in the second stage. The complex P zoning of olivine can be attributed to the dissolution of early polyhedral olivine and re-precipitation from the Fe-rich ambient melt. The early polyhedral olivine was in chemical disequilibrium with the ambient melt that may have been developed by silicate liquid immiscibility in a crystal mush. Our study implies that olivine crystals in igneous cumulates with an equilibrium appearance may have experienced disequilibrium growth processes

  4. Timescales and conditions of crystallization in the Pokai and Chimpanzee Ignimbrites, Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Connor, M.; Gualda, G. A.; Gravley, D. M.

    2013-12-01

    Silicic magmas give rise to explosive eruptions that are both of scientific and societal interest. The central Taupo Volcanic Zone in New Zealand has been volcanically active for 2 Ma and represents the most active volcanic area in the world today. Particularly intense volcanic activity took place as part of a flare-up event that occurred from ~340 to ~240 ka, when 7 large ignimbrite eruptions took place, as well as many smaller eruptions, which erupted a total of at least 3000 km3 of magma. This project seeks to identify the conditions and timescales over which magma bodies that gave rise to these ignimbrite eruptions evolved. We aim to understand how much of the tens of thousands of years between successive eruptions were characterized by the presence of large bodies of silicic magma within the crust, as well the magma distribution within the crust during those times. We focus on the Chimpanzee and Pokai ignimbrites, which together erupted ~150 km3 of magma. The Pokai ignimbrite erupted at ~275 ka, while the Chimpanzee ignimbrite (undated) erupted between ~320 and 275 ka. Pumice clasts from the Chimpanzee and Pokai ignimbrite were collected in the field. Pumice bulk densities were measured using a submersion technique. Quartz and plagioclase crystals were extracted through a crushing, sieving, and winnowing procedure. Whole crystals were hand-picked under a conventional microscope, mounted on epoxy, and polished to expose grain interiors. Grain mounts were analyzed under an SEM using back-scattered electron, cathodoluminescence (CL), and energy-dispersive x-ray (EDX) imaging. Bulk-densities vary from 0.42 to 0.81 g/cm3 for Pokai and between 0.52 and 0.64 g/cm3 for Chimpanzee pumice clasts. Plagioclase is the dominant crystal phase in both units. Several plagioclase crystals have inclusions of orthopyroxene, ilmenite, magnetite, and zircon, which in some cases form clusters. Quartz is rare but is present in pumice from both deposits. Both plagioclase and quartz

  5. Magma batches in the Timber Mountain magmatic system, Southwestern Nevada Volcanic Field, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Mills, James G.; Saltoun, Benjamin W.; Vogel, Thomas A.

    1997-09-01

    The common occurrence of compositionally and mineralogically zoned ash flow sheets, such as those of the Timber Mountain Group, provides evidence that the source magma bodies were chemically and thermally zoned. The Rainier Mesa and Ammonia Tanks tuffs of the Timber Mountain Group are both large volume (1200 and 900 km 3, respectively) chemically zoned (57-78 wt.% SiO 2) ash flow sheets. Evidence of distinct magma batches in the Timber Mountain system are based on: (1) major- and trace-element variations of whole pumice fragments; (2) major-element variations in phenocrysts; (3) major-element variations in glass matrix; and (4) emplacement temperatures calculated from Fe-Ti oxides and feldspars. There are three distinct groups of pumice fragments in the Rainier Mesa Tuff: a low-silica group and two high-silica groups (a low-Th and a high-Th group). These groups cannot be related by crystal fractionation. The low-silica portion of the Rainier Mesa Tuff is distinct from the low-silica portion of the overlying Ammonia Tanks Tuff, even though the age difference is less than 200,000 years. Three distinct groups occur in the Ammonia Tanks Tuff: a low-silica, intermediate-silica and a high-silica group. Part of the high-silica group may be due to mixing of the two high-silica Rainier Mesa groups. The intermediate-silica group may be due to mixing of the low- and high-silica Ammonia Tanks groups. Three distinct emplacement temperatures occur in the Rainier Mesa Tuff (869, 804, 723 °C) that correspond to the low-silica, high-Th and low-Th magma batches, respectively. These temperature differences could not have been maintained for any length of time in the magma chamber (cf. Turner, J.S., Campbell, I.H., 1986. Convection and mixing in magma chambers. Earth-Sci. Rev. 23, 255-352; Martin, D., Griffiths, R.W., Campbell, I.H., 1987. Compositional and thermal convection in magma chambers. Contrib. Mineral. Petrol. 96, 465-475) and therefore eruption must have occurred soon

  6. Magma-tectonic interactions in Kīlauea's Southwest Rift Zone in 2006 through coupled geodetic/seismological analysis

    NASA Astrophysics Data System (ADS)

    Wauthier, C.; Roman, D. C.; Poland, M. P.

    2015-12-01

    For much of the first 20 years of Kīlauea's 1983-present Pu'u 'Ō'ō eruption, deformation was characterized by subsidence at the volcano's summit and along both the East Rift Zone (ERZ) and Southwest Rift Zone (SWRZ). At the end of 2003, however, Kīlauea's summit began a 4-year period of inflation due to a surge in magma supply to the volcano. In 2006, the SWRZ also experienced atypical inflation, which was last observed in 1981-82 during a series of dike intrusions. To investigate the active magma sources and their interactions with faulting in the SWRZ during 2006, we integrate contemporary geodetic data from InSAR and GPS with double-couple fault-plane solutions for volcano-tectonic earthquakes and Coulomb stress modeling. According to the rate of deformation measured in daily GPS data, two distinct periods can be defined, spanning January to 15 March 2006 (period 1) and 16 March to 30 September 2006 (period 2). Geodetic models suggest that, during period 1, deformation, due to pressurization of magma in a vertical prolate-spheroidal conduit, in the south caldera area. In addition, a major seismic swarm occurred in both the SWRZ and ERZ. Our preliminary results also suggest that, during period 2, magma was still overpressurizing the same prolate-spheroid but a subhorizontal sill also intruded further to the southwest in the seismic SWRZ (SSWRZ). The beginning of period 2 also corresponds to a switch from subsidence to inflation of the SWRZ. Faulting in the upper ERZ is primarily strike-slip, with no obvious change in FPS orientation between periods 1 and 2. In contrast, faulting in the upper SSWRZ occurs as dip-slip motion on near-vertical faults. SSWRZ FPS show a mix of orientations including NW- and NE-striking faults, which along with relative earthquake locations, suggest a series of right-stepping fault segments, particularly during period 2. Calculated Coulomb stress changes indicate that faulting in the upper SSWRZ may result from stresses produced by

  7. Magma storage prior to the 1912 eruption at Novarupta, Alaska

    USGS Publications Warehouse

    Hammer, J.E.; Rutherford, M.J.; Hildreth, W.

    2002-01-01

    New analytical and experimental data constrain the storage and equilibration conditions of the magmas erupted in 1912 from Novarupta in the 20th century's largest volcanic event. Phase relations at H2O+CO2 fluid saturation were determined for an andesite (58.7 wt% SiO2) and a dacite (67.7 wt%) from the compositional extremes of intermediate magmas erupted. The phase assemblages, matrix melt composition and modes of natural andesite were reproduced experimentally under H2O-saturated conditions (i.e., PH2O=PTOT) in a negatively sloping region in T-P space from 930 ??C/100 MPa to 960 ??C/75 MPa with fO2???N NO + 1. The H2O-saturated equilibration conditions of the dacite are constrained to a T-P region from 850 ??C/ 50 MPa to 880 ??C/25 MPa. If H2O-saturated, these magmas equilibrated at (and above) the level where coerupted rhyolite equilibrated (???100 MPa), suggesting that the andesite-dacite magma reservoir was displaced laterally rather than vertically from the rhyolite magma body. Natural mineral and melt compositions of intermediate magmas were also reproduced experimentally under saturation conditions with a mixed (H2O + CO2) fluid for the same range in PH2O. Thus, a storage model in which vertically stratified mafic to silicic intermediate magmas underlay H2O-saturated rhyolite is consistent with experimental findings only if the intermediates have XH2Ofl=0.7 and 0.9 for the extreme compositions, respectively. Disequilibrium features in natural pumice and scoria include pristine minerals existing outside their stability fields, and compositional zoning of titanomagnetite in contact with ilmenite. Variable rates of chemical equilibration which would eliminate these features constrain the apparent thermal excursion and re-distribution of minerals to the time scale of days.

  8. Crypto-magma chambers beneath Mt. Fuji

    NASA Astrophysics Data System (ADS)

    Kaneko, Takayuki; Yasuda, Atsushi; Fujii, Toshitsugu; Yoshimoto, Mitsuhiro

    2010-06-01

    Mt. Fuji consists dominantly of basalt. A study of olivine-hosted melt-inclusions from layers of air-fall scoria, however, shows clear evidence of andesitic liquids. Whole rock compositions show a narrow range of SiO 2, but a wide range of FeO*/MgO and incompatible elements. Phenocrystic plagioclase generally shows bi-modal distributions in compositional frequency, while most olivine phenocrysts show uni-modal distribution with reverse zoning and often contain andesitic melt-inclusions. These suggest that magmas erupted from Fuji are generated through mixing between basaltic and more SiO 2-rich (often andesitic) end-members. We propose that Fuji's magmatic plumbing system consists of at least two magma chambers: a relatively deep (˜20 km) basaltic one and a relatively shallow (˜ 8-9 km) and more SiO 2-rich one. Evolved basalts with wide compositional ranges of incompatible elements are generated in the deep basaltic magma chamber by prevalent fractional crystallization of pyroxenes with olivine and calcic plagioclase at high pressure. Meanwhile basaltic magma left behind by the previous eruption in the conduit accumulates in a shallow magma chamber, and is differentiated to more SiO 2-rich composition by fractional crystallization of olivine, less-calcic plagioclase, and clinopyroxene. Shortly before a new eruption, a large amount of evolved basaltic magma containing calcic plagioclase rises from the deeper magma chamber and is mixed with the more SiO 2-rich magma in the shallow chamber, to generate the hybrid basaltic magma.

  9. Evolution of rhyolitic magmas in the crustal magmatic system beneath the Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Johnson, E. R.; Kamenetsky, V.; McPhie, J.; Wallace, P. J.

    2009-12-01

    The Taupo Volcanic Zone (TVZ) produces the most frequent rhyolitic eruptions on Earth. This volcanic arc is also characterized by bimodal volcanism, with eruptions of andesite (primarily in the NE and SW of the zone) and minor basalt. Here we use melt inclusions (MI) to investigate the magmatic evolution of rhyolites in the TVZ and their link to TVZ basalts. Our study focuses on recent (<50 ka) explosive rhyolitic eruptions, as well as several small-volume explosive basaltic eruptions, from the Okataina Volcanic Centre in the northern part of the TVZ. The rhyolitic melts of the TVZ are thought to be formed via fractionation of a basaltic parent plus assimilation of metasedimentary crust. Trace element data from our TVZ melt inclusions lend support to this idea, with constant ratios of incompatible trace elements (e.g., U/Th) in the TVZ basalts and rhyolites. Assuming that these elements are completely incompatible, we have calculated that the TVZ rhyolites can be produced by ~80% fractional crystallization of a basaltic parent. We have also used MI volatile contents to assess the pressures (and thus depths) in the crust of magma emplacement and differentiation. Both the TVZ rhyolites and basalts are volatile-rich. Quartz-hosted MI in the rhyolites typically contain 5.5- 7.6 wt% H2O and up to 2500 ppm Cl, and olivine-hosted MI in the basalts contain up to 4.5 wt% H2O and 1250 ppm Cl. The H2O concentrations imply crystallization pressures of at least 200-440 MPa for the rhyolites, which correspond to depths of ~8-16 km. However, the presence of rhyolitic MI with lower H2O (3.5-5 wt%) suggests that crystallization may have occurred over a wide range of pressures. Additionally, the basalts erupted in the TVZ likely crystallized at minimum pressures of 100-200 MPa. Together, this suggests that basaltic and rhyolitic melt zones occur over a wide range of depths (~4-16 km). Furthermore, the emplacement of the basaltic parent and the AFC process to create the rhyolites had

  10. Multiple melt bodies fed the AD 2011 eruption of Puyehue-Cordón Caulle, Chile.

    PubMed

    Alloway, B V; Pearce, N J G; Villarosa, G; Outes, V; Moreno, P I

    2015-12-02

    Within the volcanological community there is a growing awareness that many large- to small-scale, point-source eruptive events can be fed by multiple melt bodies rather than from a single magma reservoir. In this study, glass shard major- and trace-element compositions were determined from tephra systematically sampled from the outset of the Puyehue-Cordón Caulle (PCC) eruption (~1 km(3)) in southern Chile which commenced on June 4(th), 2011. Three distinct but cogenetic magma bodies were simultaneously tapped during the paroxysmal phase of this eruption. These are readily identified by clear compositional gaps in CaO, and by Sr/Zr and Sr/Y ratios, resulting from dominantly plagioclase extraction at slightly different pressures, with incompatible elements controlled by zircon crystallisation. Our results clearly demonstrate the utility of glass shard major- and trace-element data in defining the contribution of multiple magma bodies to an explosive eruption. The complex spatial association of the PCC fissure zone with the Liquiñe-Ofqui Fault zone was likely an influential factor that impeded the ascent of the parent magma and allowed the formation of discrete melt bodies within the sub-volcanic system that continued to independently fractionate.

  11. Crystal residence times from trace element zoning in plagioclase reveal changes in magma transfer dynamics at Mt. Etna during the last 400 years

    NASA Astrophysics Data System (ADS)

    Viccaro, Marco; Barca, Donatella; Bohrson, Wendy A.; D'Oriano, Claudia; Giuffrida, Marisa; Nicotra, Eugenio; Pitcher, Bradley W.

    2016-04-01

    Trace element zoning in plagioclase of selected alkaline lavas from the historic (1607-1892 AD) and recent (1983-2013 AD) activity of Mt. Etna volcano has been used to explore the possible role that volcano-tectonics exert on magma transfer dynamics. The observed textural characteristics of crystals include near-equilibrium textures (i.e., oscillatory zoning) and textures with variable extent of disequilibrium (patchy zoning, coarse sieve textures and dissolved cores). Historic crystals exhibit lower K concentrations at lower anorthite contents, a feature in agreement with the general more potassic character of the recent lavas if compared to the historic products. Historic plagioclases have statistically higher Ba and lower Sr concentrations than the recent crystals, which result in different Sr/Ba ratios for the two suites of plagioclase. Variations in the anorthite content along core-to-rim profiles obtained on crystals with different types of textures for both the historic and recent eruptive periods were evaluated particularly versus Sr/Ba. At comparable average An contents, crystals characterized by oscillatory zoning, which are representative of near-equilibrium crystallization from the magma, display distinct Sr/Ba ratios. We suggest that these features are primarily related to recharge of a new, geochemically-distinct magma into the storage and transport system of the volcano. In addition to distinct trace element and textural characteristics of plagioclase, Sr diffusion modeling for plagioclase suggests that residence times are generally shorter for crystals found in recently erupted lavas (25-77 years, average 43 years) compared to those of the historic products (43-163 years, average 99 years). Shorter residences times correlate with gradual increases in eruption volume and eruption frequency rates through time. We attribute these features to an increasing influence, since the 17th century, of extensional tectonic structures within the upper 10 km of

  12. Evidence for seismogenic fracture of silicic magma.

    PubMed

    Tuffen, Hugh; Smith, Rosanna; Sammonds, Peter R

    2008-05-22

    It has long been assumed that seismogenic faulting is confined to cool, brittle rocks, with a temperature upper limit of approximately 600 degrees C (ref. 1). This thinking underpins our understanding of volcanic earthquakes, which are assumed to occur in cold rocks surrounding moving magma. However, the recent discovery of abundant brittle-ductile fault textures in silicic lavas has led to the counter-intuitive hypothesis that seismic events may be triggered by fracture and faulting within the erupting magma itself. This hypothesis is supported by recent observations of growing lava domes, where microearthquake swarms have coincided with the emplacement of gouge-covered lava spines, leading to models of seismogenic stick-slip along shallow shear zones in the magma. But can fracturing or faulting in high-temperature, eruptible magma really generate measurable seismic events? Here we deform high-temperature silica-rich magmas under simulated volcanic conditions in order to test the hypothesis that high-temperature magma fracture is seismogenic. The acoustic emissions recorded during experiments show that seismogenic rupture may occur in both crystal-rich and crystal-free silicic magmas at eruptive temperatures, extending the range of known conditions for seismogenic faulting.

  13. Storage, migration, and eruption of magma at Kilauea volcano, Hawaii, 1971-1972

    USGS Publications Warehouse

    Duffield, W.A.; Christiansen, R.L.; Koyanagi, R.Y.; Peterson, D.W.

    1982-01-01

    The magmatic plumbing system of Kilauea Volcano consists of a broad region of magma generation in the upper mantle, a steeply inclined zone through which magma rises to an intravolcano reservoir located about 2 to 6 km beneath the summit of the volcano, and a network of conduits that carry magma from this reservoir to sites of eruption within the caldera and along east and southwest rift zones. The functioning of most parts of this system was illustrated by activity during 1971 and 1972. When a 29-month-long eruption at Mauna Ulu on the east rift zone began to wane in 1971, the summit region of the volcano began to inflate rapidly; apparently, blockage of the feeder conduit to Mauna Ulu diverted a continuing supply of mantle-derived magma to prolonged storage in the summit reservoir. Rapid inflation of the summit area persisted at a nearly constant rate from June 1971 to February 1972, when a conduit to Mauna Ulu was reopened. The cadence of inflation was twice interrupted briefly, first by a 10-hour eruption in Kilauea Caldera on 14 August, and later by an eruption that began in the caldera and migrated 12 km down the southwest rift zone between 24 and 29 September. The 14 August and 24-29 September eruptions added about 107 m3 and 8 ?? 106 m3, respectively, of new lava to the surface of Kilauea. These volumes, combined with the volume increase represented by inflation of the volcanic edifice itself, account for an approximately 6 ?? 106 m3/month rate of growth between June 1971 and January 1972, essentially the same rate at which mantle-derived magma was supplied to Kilauea between 1952 and the end of the Mauna Ulu eruption in 1971. The August and September 1971 lavas are tholeiitic basalts of similar major-element chemical composition. The compositions can be reproduced by mixing various proportions of chemically distinct variants of lava that erupted during the preceding activity at Mauna Ulu. Thus, part of the magma rising from the mantle to feed the Mauna Ulu

  14. Final report - Magma Energy Research Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colp, J.L.

    1982-10-01

    Scientific feasibility was demonstrated for the concept of magma energy extraction. The US magma resource is estimated at 50,000 to 500,000 quads of energy - a 700- to 7000-yr supply at the current US total energy use rate of 75 quads per year. Existing geophysical exploration systems are believed capable of locating and defining magma bodies and were demonstrated over a known shallow buried molten-rock body. Drilling rigs that can drill to the depths required to tap magma are currently available and experimental boreholes were drilled well into buried molten rock at temperatures up to 1100/sup 0/C. Engineering materials compatiblemore » with the buried magma environment are available and their performances were demonstrated in analog laboratory experiments. Studies show that energy can be extracted at attractive rates from magma resources in all petrologic compositions and physical configurations. Downhole heat extraction equipment was designed, built, and demonstrated successfully in buried molten rock and in the very hot margins surrounding it. Two methods of generating gaseous fuels in the high-temperature magmatic environment - generation of H/sub 2/ by the interaction of water with the ferrous iron and H/sub 2/, CH/sub 4/, and CO generation by the conversion of water-biomass mixtures - have been investigated and show promise.« less

  15. Nested granites in question: Contrasted emplacement kinematics of independent magmas in the Zaër pluton, Morocco

    NASA Astrophysics Data System (ADS)

    Bouchez, Jean Luc; Diot, Herve

    1990-10-01

    The concentrically zoned Zaër pluton (Variscan Meseta of Morocco), previously modeled as the nesting of two magmas forming a ballooning pluton, is here subjected to a study of its internal magmatic and solid-state structures. The magmatic flow patterns, derived mainly from anisotropy of magnetic susceptibility measurements, together with structural observations down to thin-section scale, indicate that these two magmas have undergone totally independent kinematics of emplacement. This supports recent isotope geochemistry and geochronology data indicating independent origin of the magmas and diachronism of emplacement, respectively. Thus, we propose that a magma diapir, probably emplaced within a crustal fracture zone, cooled down to brittle conditions, before a likely flat-lying fracture was opened within the fracture zone and was filled with a new and compositionally different pulse of magma.

  16. Electron microprobe study of lunar and planetary zoned plagioclase feldspars: An analytical and experimental study of zoning in plagioclase

    NASA Technical Reports Server (NTRS)

    Smith, R. K.; Lofgren, G. E.

    1982-01-01

    Natural and experimentally grown zoned plagioclase feldspars were examined by electron microprobe. The analyses revealed discontinuous, sector, and oscillary chemical zoning superimposed on continuous normal or reverse zoning trends. Postulated mechanisms for the origin of zoning are based on either physical changes external to the magma (P, T, H2O saturation) or kinetic changes internal to the magma (diffusion, supersaturation, growth rate). Comparison of microprobe data on natural zoned plagioclase with zoned plagioclase grown in controlled experiments show that it may be possible to distinguish zonal development resulting from physio-chemical changes to the bulk magma from local kinetic control on the growth of individual crystals.

  17. Tiny crystals give away the where and when of magma ascent

    NASA Astrophysics Data System (ADS)

    Ruth, D. C. S.; Costa Rodriguez, F.; Bouvet de Maisonneuve, C.; Franco, L.; Cortes, J. A.; Calder, E.

    2016-12-01

    Open vent volcanoes exhibit passive degassing and can transition to explosive behavior, with limited or no warning. Melt inclusion chemistry and volatile contents have been used to infer the inner dynamics of magma storage, recharge, degassing, and eruption triggering mechanisms. However, the interpretation of melt inclusion chemistry is ambiguous because it cannot constrain the residence times of the host crystals, which could have various sources and growth histories. To resolve this issue we combine diffusion chronometry and melt inclusion entrapment pressures from olivine crystals sourced from the 2008 eruption of Llaima volcano (Chile). Olivine crystals (core Fo70-84, rim Fo77-84) are dominantly reverse zoned, although normal zoned and complex zoned crystals are observed. These data reflect mixing between the mafic injecting magma and the crystal-rich resident magma. Fe/Mg diffusion timescales range between 16 and 1375 days. The diffusion data show a non-uniform distribution with no discernible peaks, indicating that magma injection is likely progressive, rather than punctuated. Entrapment pressures range between 8 and 151 MPa, overlapping with an inferred crystal-rich region. Longer timescales correspond to higher pressures, strongly suggesting a link between magma residence time and ascent from depth. To our knowledge, this relationship has not been previously demonstrated. We infer that mafic magma intruded at depths of 5 km below the edifice and mingled with a pre-existing crystal-mush 3 yr before the eruption. Magma migration and mingling continued and stalled at 2.5 km depth about a year prior to the eruption. Precursory activity such as volcano-tectonic and long period seismicity, and a series of minor explosions overlap with the diffusion times 6 months before the eruption. Similar diffusion timescales have been reported for eruptions at other open vent volcanoes. Our study provides the first temporal and spatial constraints on magma storage and ascent

  18. The relationship between the height of a volcano and the depth to its magma source zone - A critical reexamination

    NASA Technical Reports Server (NTRS)

    Wilson, Lionel; Head, James W., III; Parfitt, Elisabeth A.

    1992-01-01

    The relationship between the maximum height to which a volcanic edifice is able to grow and the depth at which the partial melts providing its magma supply are formed is used to infer various aspects of the thermal and stress state of the lithosphere beneath volcanic constructs on earth, Mars, Io, and Venus. The assumptions behind this relationship are examined, and it is shown that many of them require geologically unreasonable conditions. The evidence cited in the literature for the relationship is assessed critically, and it is found that there are other factors that may explain the observations. It is concluded that volcano heights on the terrestrial planets cannot be related in any simple way to lithospheric thickness or depth to the magma source zone, and the range of other vectors controlling volcano height are reviewed.

  19. Deep magma transport at Kilauea volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Wright, Thomas L.; Klein, Fred W.

    2006-03-01

    The shallow part of Kilauea's magma system is conceptually well-understood. Long-period and short-period (brittle-failure) earthquake swarms outline a near-vertical magma transport path beneath Kilauea's summit to 20 km depth. A gravity high centered above the magma transport path demonstrates that Kilauea's shallow magma system, established early in the volcano's history, has remained fixed in place. Low seismicity at 4-7 km outlines a storage region from which magma is supplied for eruptions and intrusions. Brittle-failure earthquake swarms shallower than 5 km beneath the rift zones accompany dike emplacement. Sparse earthquakes extend to a decollement at 10-12 km along which the south flank of Kilauea is sliding seaward. This zone below 5 km can sustain aseismic magma transport, consistent with recent tomographic studies. Long-period earthquake clusters deeper than 40 km occur parallel to and offshore of Kilauea's south coast, defining the deepest seismic response to magma transport from the Hawaiian hot spot. A path connecting the shallow and deep long-period earthquakes is defined by mainshock-aftershock locations of brittle-failure earthquakes unique to Kilauea whose hypocenters are deeper than 25 km with magnitudes from 4.4 to 5.2. Separation of deep and shallow long-period clusters occurs as the shallow plumbing moves with the volcanic edifice, while the deep plumbing is centered over the hotspot. Recent GPS data agrees with the volcano-propagation vector from Kauai to Maui, suggesting that Pacific plate motion, azimuth 293.5° and rate of 7.4 cm/yr, has been constant over Kilauea's lifetime. However, volcano propagation on the island of Hawaii, azimuth 325°, rate 13 cm/yr, requires southwesterly migration of the locus of melting within the broad hotspot. Deep, long-period earthquakes lie west of the extrapolated position of Kilauea backward in time along a plate-motion vector, requiring southwesterly migration of Kilauea's magma source. Assumed ages of 0

  20. Deep magma transport at Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Wright, T.L.; Klein, F.W.

    2006-01-01

    The shallow part of Kilauea's magma system is conceptually well-understood. Long-period and short-period (brittle-failure) earthquake swarms outline a near-vertical magma transport path beneath Kilauea's summit to 20 km depth. A gravity high centered above the magma transport path demonstrates that Kilauea's shallow magma system, established early in the volcano's history, has remained fixed in place. Low seismicity at 4-7 km outlines a storage region from which magma is supplied for eruptions and intrusions. Brittle-failure earthquake swarms shallower than 5 km beneath the rift zones accompany dike emplacement. Sparse earthquakes extend to a decollement at 10-12 km along which the south flank of Kilauea is sliding seaward. This zone below 5 km can sustain aseismic magma transport, consistent with recent tomographic studies. Long-period earthquake clusters deeper than 40 km occur parallel to and offshore of Kilauea's south coast, defining the deepest seismic response to magma transport from the Hawaiian hot spot. A path connecting the shallow and deep long-period earthquakes is defined by mainshock-aftershock locations of brittle-failure earthquakes unique to Kilauea whose hypocenters are deeper than 25 km with magnitudes from 4.4 to 5.2. Separation of deep and shallow long-period clusters occurs as the shallow plumbing moves with the volcanic edifice, while the deep plumbing is centered over the hotspot. Recent GPS data agrees with the volcano-propagation vector from Kauai to Maui, suggesting that Pacific plate motion, azimuth 293.5?? and rate of 7.4 cm/yr, has been constant over Kilauea's lifetime. However, volcano propagation on the island of Hawaii, azimuth 325??, rate 13 cm/yr, requires southwesterly migration of the locus of melting within the broad hotspot. Deep, long-period earthquakes lie west of the extrapolated position of Kilauea backward in time along a plate-motion vector, requiring southwesterly migration of Kilauea's magma source. Assumed ages of 0

  1. Fate of a perched crystal layer in a magma ocean

    NASA Technical Reports Server (NTRS)

    Morse, S. A.

    1992-01-01

    The pressure gradients and liquid compressibilities of deep magma oceans should sustain the internal flotation of native crystals owing to a density crossover between crystal and liquid. Olivine at upper mantle depths near 250 km is considered. The behavior of a perched crystal layer is part of the general question concerning the fate of any transient crystal carried away from a cooling surface, whether this be a planetary surface or the roof of an intrusive magma body. For magma bodies thicker than a few hundred meters at modest crustal depths, the major cooling surface is the roof even when most solidification occurs at the floor. Importation of cool surroundings must also be invoked for the generation of a perched crystal layer in a magma ocean, but in this case the perched layer is deeply embedded in the hot part of the magma body, and far away from any cooling surface. Other aspects of this study are presented.

  2. Testing a New Method for Imaging Crustal Magma Bodies: A Pilot Study at Newberry Volcano, Central OR

    NASA Astrophysics Data System (ADS)

    Beachly, M. W.; Hooft, E. E.; Toomey, D. R.; Waite, G. P.; Durant, D. T.

    2010-12-01

    Magmatic systems are often imaged using delay time seismic tomography, though a known limitation is that wavefront healing limits the ability of transmitted waves to detect small, low-velocity regions such as magma chambers. Crustal magma chambers have been successfully identified using secondary arrivals, including both P and S wave reflections and conversions. Such secondary phases are often recorded by marine seismic experiments owing to the density and quality of airgun data, which improves the identification of coherent arrivals. In 2008 we conducted a pilot study at Newberry volcano to test a new method of detecting secondary arrivals in a terrestrial setting. Our experimental geometry used a line of densely spaced (~300 m), three-component seismometers to record a shot-of-opportunity from the High Lave Plains Experiment. An ideal study would record several shots, however, data from this single event proves the concept. As part of our study, we also reanalyze all existing seismic data from Newberry volcano to obtain a tomographic image of the velocity structure to 6 km depth. Newberry is a lone shield volcano in central Oregon, located 40 km east of the Cascade axis. Newberry eruptions are silicic within the central caldera and mafic on its periphery suggesting a central silicic magma storage system, possibly located at upper crustal depths. The system may still be active with a recent eruption ~1300 years ago, and a central drill hole temperature of 256° C at only 932 m depth. A low-velocity anomaly previously imaged at 3-5 km beneath the caldera indicates either a magma body or a fractured pluton. Our tomographic study combines our 2008 seismic data with profile and array data collected in the 1980s by the USGS. In total, the inversion includes 16 active sources and 322 receivers yielding 1007 P-wave first arrivals. Beneath the caldera ring faults we image a high-velocity ring-like anomaly extending to 2 km depth. This anomaly is inferred to be near

  3. The Meaning of "Magma"

    NASA Astrophysics Data System (ADS)

    Bartley, J. M.; Glazner, A. F.; Coleman, D. S.

    2016-12-01

    Magma is a fundamental constituent of the Earth, and its properties, origin, evolution, and significance bear on issues ranging from volcanic hazards to planetary evolution. Unfortunately, published usages indicate that the term "magma" means distinctly different things to different people and this can lead to miscommunication among Earth scientists and between scientists and the public. Erupting lava clearly is magma; the question is whether partially molten rock imaged at depth and too crystal-rich to flow should also be called magma. At crystal fractions > 50%, flow can only occur via crystal deformation and solution-reprecipitation. As the solid fraction increases to 90% or more, the material becomes a welded crystal framework with melt in dispersed pores and/or along grain boundaries. Seismic images commonly describe such volumes of a few % melt as magma, yet the rheological differences between melt-rich and melt-poor materials make it vital not to confuse a large rock volume that contains a small melt fraction with melt-rich material. To ensure this, we suggest that "magma" be reserved for melt-rich materials that undergo bulk fluid flow on timescales consonant with volcanic eruptions. Other terms should be used for more crystal-rich and largely immobile partially molten rock (e.g., "crystal mush," "rigid sponge"). The distinction is imprecise but useful. For the press, the public, and even earth scientists who do not study magmatic systems, "magma" conjures up flowing lava; reports of a large "magma" body that contains a few percent melt can engender the mistaken perception of a vast amount of eruptible magma. For researchers, physical processes like crystal settling are commonly invoked to account for features in plutonic rocks, but many such processes are only possible in melt-rich materials.

  4. Silicic magma differentiation in ascent conduits. Experimental constraints

    NASA Astrophysics Data System (ADS)

    Rodríguez, Carmen; Castro, Antonio

    2017-02-01

    Crystallization of water-bearing silicic magmas in a dynamic thermal boundary layer is reproduced experimentally by using the intrinsic thermal gradient of piston-cylinder assemblies. The standard AGV2 andesite under water-undersaturated conditions is set to crystallize in a dynamic thermal gradient of about 35 °C/mm in 10 mm length capsules. In the hotter area of the capsule, the temperature is initially set at 1200 °C and decreases by programmed cooling at two distinct rates of 0.6 and 9.6 °C/h. Experiments are conducted in horizontally arranged assemblies in a piston cylinder apparatus to avoid any effect of gravity settling and compaction of crystals in long duration runs. The results are conclusive about the effect of water-rich fluids that are expelled out the crystal-rich zone (mush), where water saturation is reached by second boiling in the interstitial liquid. Expelled fluids migrate to the magma ahead of the solidification front contributing to a progressive enrichment in the fluxed components SiO2, K2O and H2O. The composition of water-rich fluids is modelled by mass balance using the chemical composition of glasses (quenched melt). The results are the basis for a model of granite magma differentiation in thermally-zoned conduits with application of in-situ crystallization equations. The intriguing textural and compositional features of the typical autoliths, accompanying granodiorite-tonalite batholiths, can be explained following the results of this study, by critical phenomena leading to splitting of an initially homogeneous magma into two magma systems with sharp boundaries. Magma splitting in thermal boundary layers, formed at the margins of ascent conduits, may operate for several km distances during magma transport from deep sources at the lower crust or upper mantle. Accordingly, conduits may work as chromatographic columns contributing to increase the silica content of ascending magmas and, at the same time, leave behind residual mushes that

  5. Examining shear processes during magma ascent

    NASA Astrophysics Data System (ADS)

    Kendrick, J. E.; Wallace, P. A.; Coats, R.; Lamur, A.; Lavallée, Y.

    2017-12-01

    Lava dome eruptions are prone to rapid shifts from effusive to explosive behaviour which reflects the rheology of magma. Magma rheology is governed by composition, porosity and crystal content, which during ascent evolves to yield a rock-like, viscous suspension in the upper conduit. Geophysical monitoring, laboratory experiments and detailed field studies offer the opportunity to explore the complexities associated with the ascent and eruption of such magmas, which rest at a pivotal position with regard to the glass transition, allowing them to either flow or fracture. Crystal interaction during flow results in strain-partitioning and shear-thinning behaviour of the suspension. In a conduit, such characteristics favour the formation of localised shear zones as strain is concentrated along conduit margins, where magma can rupture and heal in repetitive cycles. Sheared magmas often record a history of deformation in the form of: grain size reduction; anisotropic permeable fluid pathways; mineral reactions; injection features; recrystallisation; and magnetic anomalies, providing a signature of the repetitive earthquakes often observed during lava dome eruptions. The repetitive fracture of magma at ( fixed) depth in the conduit and the fault-like products exhumed at spine surfaces indicate that the last hundreds of meters of ascent may be controlled by frictional slip. Experiments on a low-to-high velocity rotary shear apparatus indicate that shear stress on a slip plane is highly velocity dependent, and here we examine how this influences magma ascent and its characteristic geophysical signals.

  6. Self Sealing Magmas

    NASA Astrophysics Data System (ADS)

    von Aulock, Felix W.; Wadsworth, Fabian B.; Kennedy, Ben M.; Lavallee, Yan

    2015-04-01

    During ascent of magma, pressure decreases and bubbles form. If the volume increases more rapidly than the relaxation timescale, the magma fragments catastrophically. If a permeable network forms, the magma degasses non-violently. This process is generally assumed to be unidirectional, however, recent studies have shown how shear and compaction can drive self sealing. Here, we additionally constrain skin formation during degassing and sintering. We heated natural samples of obsidian in a dry atmosphere and monitored foaming and impermeable skin formation. We suggest a model for skin formation that is controlled by diffusional loss of water and bubble collapse at free surfaces. We heated synthetic glass beads in a hydrous atmosphere to measure the timescale of viscous sintering. The beads sinter at drastically shorter timescales as water vapour rehydrates an otherwise degassed melt, reducing viscosity and glass transition temperatures. Both processes can produce dense inhomogeneities within the timescales of magma ascent and effectively disturb permeabilities and form barriers, particularly at the margins of the conduit, where strain localisation takes place. Localised ash in failure zones (i.e. Tuffisite) then becomes associated with water vapour fluxes and alow rapid rehydration and sintering. When measuring permeabilities in laboratory and field, and when discussing shallow degassing in volcanoes, local barriers for degassing should be taken into account. Highlighting the processes that lead to the formation of such dense skins and sintered infills of cavities can help understanding the bulk permeabilities of volcanic systems.

  7. Experimental Study of Lunar and SNC Magmas

    NASA Technical Reports Server (NTRS)

    Rutherford, Malcolm J.

    2004-01-01

    The research described in this progress report involved the study of petrological, geochemical, and volcanic processes that occur on the Moon and the SNC meteorite parent body, generally accepted to be Mars. The link between these studies is that they focus on two terrestrial-type parent bodies somewhat smaller than earth, and the fact that they focus on the types of magmas (magma compositions) present, the role of volatiles in magmatic processes, and on processes of magma evolution on these planets. We are also interested in how these processes and magma types varied over time.In earlier work on the A15 green and A17 orange lunar glasses, we discovered a variety of metal blebs. Some of these Fe-Ni metal blebs occur in the glass; others (in A17) were found in olivine phenocrysts that we find make up about 2 vol 96 of the orange glass magma. The importance of these metal spheres is that they fix the oxidation state of the parent magma during the eruption, and also indicate changes during the eruption . They also yield important information about the composition of the gas phase present, the gas that drove the lunar fire-fountaining. During the tenure of this grant, we have continued to work on the remaining questions regarding the origin and evolution of the gas phase in lunar basaltic magmas, what they indicate about the lunar interior, and how the gas affects volcanic eruptions. Work on Martian magmas petrogenesis questions during the tenure of this grant has resulted in advances in our methods of evaluating magmatic oxidation state variations in Mars and some new insights into the compositional variations that existed in the SNC magmas over time . Additionally, Minitti has continued to work on the problem of possible shock effects on the abundance and distribution of water in Mars minerals.

  8. An Isotopic Perspective into the Magmatic Evolution and Architecture of the Rift Zones of Kīlauea Volcano

    NASA Astrophysics Data System (ADS)

    Pietruszka, A. J.; Marske, J. P.; Garcia, M. O.; Heaton, D. E.; Rhodes, M. M.

    2016-12-01

    We present Pb, Sr, and Nd isotope ratios for Kīlauea's historical rift zone lavas (n=50) to examine the magmatic evolution and architecture of the volcano's East Rift Zone (ERZ) and Southwest Rift Zone (SWRZ). Our results show that Kīlauea's historical eruptive period was preceded by the delivery of a major batch of magma from the summit reservoir to the ERZ. The timing of this intrusion, most likely in the late 17th century, was probably related to the 300-yr period of explosive eruptions that followed the formation of the modern caldera (Swanson et al., 2012; JVGR). This rift-stored magma was a component in lavas from lower ERZ (LERZ) eruptions in 1790(?), 1840, 1955, and 1960. The only other components in these LERZ lavas are related to summit lavas erupted (1) after the 1924 collapse of Halemáumáu and (2) during episodes of high fountaining at Kīlauea Iki in 1959. Thus, the intrusion of magma from the summit reservoir into the LERZ is a rare occurrence that is tied to major volcanological events. Intrusions from the summit reservoir in the 1960s likely flushed most older, stored magma from the upper ERZ (UERZ) and middle ERZ (MERZ), leaving large pockets of 1960s-era magma to serve as a dominant component in many subsequent rift lavas. An increase in the duration of pre-eruptive magma storage from the UERZ ( 0-7 yr) to the MERZ ( 0-19 yr) to the LERZ (up to 335 yr) is likely controlled by a decrease in the rate of magma supply to the more distal portions of the ERZ. Lavas from several UERZ eruptions in the 1960s and 1970s have a component of mantle-derived magma that bypassed the summit reservoir. There is no evidence for a summit bypass into the MERZ, LERZ, or the volcanically active portion of the SWRZ. These results support a recent model for Kīlauea's plumbing system (Poland et al., 2014; USGS Prof. Pap. 1801): the ERZ is connected to the deeper "South Caldera" magma body and the volcanic SWRZ is connected to the shallower Halemáumáu magma body.

  9. Magma-derived CO2 emissions in the Tengchong volcanic field, SE Tibet: Implications for deep carbon cycle at intra-continent subduction zone

    NASA Astrophysics Data System (ADS)

    Zhang, Maoliang; Guo, Zhengfu; Sano, Yuji; Zhang, Lihong; Sun, Yutao; Cheng, Zhihui; Yang, Tsanyao Frank

    2016-09-01

    Active volcanoes at oceanic subduction zone have long been regard as important pathways for deep carbon degassed from Earth's interior, whereas those at continental subduction zone remain poorly constrained. Large-scale active volcanoes, together with significant modern hydrothermal activities, are widely distributed in the Tengchong volcanic field (TVF) on convergent boundary between the Indian and Eurasian plates. They provide an important opportunity for studying deep carbon cycle at the ongoing intra-continent subduction zone. Soil microseepage survey based on accumulation chamber method reveals an average soil CO2 flux of ca. 280 g m-2 d-1 in wet season for the Rehai geothermal park (RGP). Combined with average soil CO2 flux in dry season (ca. 875 g m-2 d-1), total soil CO2 output of the RGP and adjacent region (ca. 3 km2) would be about 6.30 × 105 t a-1. Additionally, we conclude that total flux of outgassing CO2 from the TVF would range in (4.48-7.05) × 106 t a-1, if CO2 fluxes from hot springs and soil in literature are taken into account. Both hot spring and soil gases from the TVF exhibit enrichment in CO2 (>85%) and remarkable contribution from mantle components, as indicated by their elevated 3He/4He ratios (1.85-5.30 RA) and δ13C-CO2 values (-9.00‰ to -2.07‰). He-C isotope coupling model suggests involvement of recycled organic metasediments and limestones from subducted Indian continental lithosphere in formation of the enriched mantle wedge (EMW), which has been recognized as source region of the TVF parental magmas. Contamination by crustal limestone is the first-order control on variations in He-CO2 systematics of volatiles released by the EMW-derived melts. Depleted mantle and recycled crustal materials from subducted Indian continental lithosphere contribute about 45-85% of the total carbon inventory, while the rest carbon (about 15-55%) is accounted by limestones in continental crust. As indicated by origin and evolution of the TVF

  10. Validation of Body Volume Acquisition by Using Elliptical Zone Method.

    PubMed

    Chiu, C-Y; Pease, D L; Fawkner, S; Sanders, R H

    2016-12-01

    The elliptical zone method (E-Zone) can be used to obtain reliable body volume data including total body volume and segmental volumes with inexpensive and portable equipment. The purpose of this research was to assess the accuracy of body volume data obtained from E-Zone by comparing them with those acquired from the 3D photonic scanning method (3DPS). 17 male participants with diverse somatotypes were recruited. Each participant was scanned twice on the same day by a 3D whole-body scanner and photographed twice for the E-Zone analysis. The body volume data acquired from 3DPS was regarded as the reference against which the accuracy of the E-Zone was assessed. The relative technical error of measurement (TEM) of total body volume estimations was around 3% for E-Zone. E-Zone can estimate the segmental volumes of upper torso, lower torso, thigh, shank, upper arm and lower arm accurately (relative TEM<10%) but the accuracy for small segments including the neck, hand and foot were poor. In summary, E-Zone provides a reliable, inexpensive, portable, and simple method to obtain reasonable estimates of total body volume and to indicate segmental volume distribution. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Proceedings of the MEVTV Workshop on The Evolution of Magma Bodies on Mars

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, P. (Editor); Holloway, J. (Editor)

    1990-01-01

    The workshop focused on many of the diverse approaches related to the evolution of magma bodies on Mars that have been pursued during the course of the Mars Evolution of Volcanism, Tectonism, and Volatiles (MEVTV) Program. Approximately 35 scientists from the Mars volcanology, petrology, geochemistry, and modeling communities attended. Segments of the meeting concentrated of laboratory analyses and investigations of SNC meteorites, the interpretation of Viking Orbiter and Lander datasets, and the interpretation of computer codes that model volcanic and tectonic processes on Mars. Abstracts of these reports are presented.

  12. Using Cross-Correlation Methods to Characterize Earthquakes Associated with the Socorro Magma Body

    NASA Astrophysics Data System (ADS)

    Vieceli, R.; Bilek, S. L.; Worthington, L. L.; Schmandt, B.; Aster, R. C.; Dodge, D. A.; Pyle, M. L.; Walter, W. R.

    2017-12-01

    The Socorro Magma Body (SMB), a thin, sill-like body with a top surface-depth of 19 km situated within the Rio Grande Rift in central New Mexico, is one of the largest recognized continental mid-crustal magma bodies in the world by area. SMB-associated inflation leads to slow regional uplift of a few mm/yr and has been linked to longstanding concentrated shallow seismicity (< 10 km depth) with variable spatial and temporal occurrence, including early 20th century events of magnitude 5.5 - 6. Recent small earthquakes (magnitudes 3 to -1) have been monitored with a variety of broadband and short-term local seismic networks over the past several decades, but these routine catalogs have not been relocated or fully interpreted in terms of newer models of the structure, or its emplacement and history. In February 2015 seismic data were collected above the northern and most rapidly uplifting region of the SMB with a densely spaced temporary array, consisting of seven broadband and 804 short period Fairfield nodal vertical component seismographs. The total array area was 50 x 25 km with typical node spacing of 300 m along a road network. In this study, we exploit all available seismic network data in a cross-correlation framework developed at Lawrence Livermore National Laboratory to detect events and characterize earthquake swarms, clusters, and patterns occurring over the last 15 years. We use a power detector to build an initial catalog of small magnitude earthquakes, including 33 events (M <= 2.5) recorded during the February 2015 deployment, as templates to detect additional events. We also develop an updated shallow velocity model for the region and refine event hypocenters using Bayesloc, a bayesian, multiple-event location algorithm. This enhanced seismicity catalog will be utilized in interpreting the recent seismicity of the SMB. LLNL-ABS-735529

  13. Timescale of Petrogenetic Processes Recorded in the Mount Perkins Magma System, Northern Colorado River Extension Corridor, Arizona

    NASA Technical Reports Server (NTRS)

    Danielson, Lisa R.; Metcalf, Rodney V.; Miller, Calvin F.; Rhodes Gregory T.; Wooden, J. L.

    2013-01-01

    The Miocene Mt. Perkins Pluton is a small composite intrusive body emplaced in the shallow crust as four separate phases during the earliest stages of crustal extension. Phase 1 (oldest) consists of isotropic hornblende gabbro and a layered cumulate sequence. Phase 2 consists of quartz monzonite to quartz monzodiorite hosting mafic microgranitoid enclaves. Phase 3 is composed of quartz monzonite and is subdivided into mafic enclave-rich zones and enclave-free zones. Phase 4 consists of aphanitic dikes of mafic, intermediate and felsic compositions hosting mafic enclaves. Phases 2-4 enclaves record significant isotopic disequilibrium with surrounding granitoid host rocks, but collectively enclaves and host rocks form a cogenetic suite exhibiting systematic variations in Nd-Sr-Pb isotopes that correlate with major and trace elements. Phases 2-4 record multiple episodes of magma mingling among cogenetic hybrid magmas that formed via magma mixing and fractional crystallization at a deeper crustal. The mafic end-member was alkali basalt similar to nearby 6-4 Ma basalt with enriched OIB-like trace elements and Nd-Sr-Pb isotopes. The felsic end-member was a subalkaline crustal-derived magma. Phase 1 isotropic gabbro exhibits elemental and isotopic compositional variations at relatively constant SiO2, suggesting generation of isotropic gabbro by an open-system process involving two mafic end-members. One end-member is similar in composition to the OIB-like mafic end-member for phases 2-4; the second is similar to nearby 11-8 Ma tholeiite basalt exhibiting low epsilon (sub Nd), and depleted incompatible trace elements. Phase 1 cumulates record in situ fractional crystallization of an OIB-like mafic magma with isotopic evidence of crustal contamination by partial melts generated in adjacent Proterozoic gneiss. The Mt Perkins pluton records a complex history in a lithospheric scale magma system involving two distinct mantle-derived mafic magmas and felsic magma sourced in the

  14. Phase equilibrium modelling of granite magma petrogenesis: B. An evaluation of the magma compositions that result from fractional crystallization

    NASA Astrophysics Data System (ADS)

    Garcia-Arias, Marcos; Stevens, Gary

    2017-04-01

    Several fractional crystallization processes (flow segregation, gravitational settling, filter-pressing), as well as batch crystallization, have been investigated in this study using thermodynamic modelling (pseudosections) to test whether they are able to reproduce the compositional trends shown by S-type granites. Three starting compositions comprising a pure melt phase and variable amounts of entrained minerals (0, 20 and 40 wt.% of the total magma) have been used to study a wide range of likely S-type magma compositions. The evolution of these magmas was investigated from the segregation from their sources at 0.8 GPa until emplacement at 0.3 GPa in an adiabatic path, followed by isobaric cooling until the solidus was crossed, in a closed-system scenario. The modelled magmas and the fractionated mineral assemblages are compared to the S-type granites of the Peninsula pluton, Cape Granite Suite, South Africa, which have a composition very similar to most of the S-type granites. The adiabatic ascent of the magmas digests partially the entrained mineral assemblage of the magmas, but unless this entrained assemblage represents less than 1 wt.% of the original magma, part of the mineral fraction survives the ascent up to the chosen pressure of emplacement. At the level of emplacement, batch crystallization produces magmas that only plot within the composition of the granites of the Peninsula pluton if the bulk composition of the original magmas already matched that of the granites. Flow segregation of crystals during the ascent and gravitational settling fractional crystallization produce bodies that are generally more mafic than the most mafic granites of the pluton and the residual melts have an almost haplogranitic composition, producing a bimodal compositional distribution not observed in the granites. Consequently, these two processes are ruled out. Filter-pressing fractional crystallization produces bodies in an onion-layer structure that become more felsic

  15. Direct Observation of Rhyolite Magma by Drilling: The Proposed Krafla Magma Drilling Project

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Sigmundsson, F.; Papale, P.; Markusson, S.; Loughlin, S.

    2014-12-01

    Remarkably, drilling in Landsvirkjun Co.'s geothermal field in Krafla Caldera, Iceland has encountered rhyolite magma or hypersolidus rhyolite at 2.1-2.5 km depth in 3 wells distributed over 3.5 km2, including Iceland Deep Drilling Program's IDDP-1 (Mortensen, 2012). Krafla's most recent rifting and eruption (basalt) episode was 1975-1984; deformation since that time has been simple decay. Apparently rhyolite magma was either emplaced during that episode without itself erupting or quietly evolved in situ within 2-3 decades. Analysis of drill cuttings containing quenched melt from IDDP-1 yielded unprecedented petrologic data (Zierenberg et al, 2012). But interpreting active processes of heat and mass transfer requires knowing spatial variations in physical and chemical characteristics at the margin of the magma body, and that requires retrieving core - a not-inconceivable task. Core quenched in situ in melt up to 1150oC was recovered from Kilauea Iki lava lake, Hawaii by the Magma Energy Project >30 years ago. The site from which IDDP-1 was drilled, and perhaps IDDP-1 itself, may be available to attempt the first-ever coring of rhyolite magma, now proposed as the Krafla Magma Drilling Project (KMDP). KMDP would also include geophysical and geochemical experiments to measure the response of the magma/hydrothermal system to fluid injection and flow tests. Fundamental results will reveal the behavior of magma in the upper crust and coupling between magma and the hydrothermal system. Extreme, sustained thermal power output during flow tests of IDDP-1 suggests operation of a Kilauea-Iki-like freeze-fracture-flow boundary propagating into the magma and mining its latent heat of crystallization (Carrigan et al, EGU, 2014). Such an ultra-hot Enhanced Geothermal System (EGS) might be developable beneath this and other magma-heated conventional hydrothermal systems. Additionally, intra-caldera intrusions like Krafla's are believed to produce the unrest that is so troubling in

  16. Magma-poor vs. magma-rich continental rifting and breakup in the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Gouiza, M.; Paton, D.

    2017-12-01

    Magma-poor and magma-rich rifted margins show distinct structural and stratigraphic geometries during the rift to breakup period. In magma-poor margins, crustal stretching is accommodated mainly by brittle faulting and the formation of wide rift basins shaped by numerous graben and half-graben structures. Continental breakup and oceanic crust accretion are often preceded by a localised phase of (hyper-) extension where the upper mantle is embrittled, serpentinized, and exhumed to the surface. In magma-rich margins, the rift basin is narrow and extension is accompanied by a large magmatic supply. Continental breakup and oceanic crust accretion is preceded by the emplacement of a thick volcanic crust juxtaposing and underplating a moderately thinned continental crust. Both magma-poor and magma-rich rifting occur in response to lithospheric extension but the driving forces and processes are believed to be different. In the former extension is assumed to be driven by plate boundary forces, while in the latter extension is supposed to be controlled by sublithospheric mantle dynamics. However, this view fails in explaining observations from many Atlantic conjugate margins where magma-poor and magma-rich segments alternate in a relatively abrupt fashion. This is the case of the Labrador margin where the northern segment shows major magmatic supply during most of the syn-rift phase which culminate in the emplacement of a thick volcanic crust in the transitional domain along with high density bodies underplating the thinned continental crust; while the southern segment is characterized mainly by brittle extension, mantle seprentinization and exhumation prior to continental breakup. In this work, we use seismic and potential field data to describe the crustal and structural architectures of the Labrador margin, and investigate the tectonic and mechanical processes of rifting that may have controlled the magmatic supply in the different segments of the margin.

  17. Conduit magma convection of a rhyolitic magma: Constraints from cosmic-ray muon radiography of Iwodake, Satsuma-Iwojima volcano, Japan

    NASA Astrophysics Data System (ADS)

    Shinohara, Hiroshi; Tanaka, Hiroyuki K. M.

    2012-10-01

    Quantitative re-evaluation of the muon radiography data obtained by Tanaka et al. (2009) was conducted to constrain conduit magma convection at the Iwodake rhyolitic cone of Satsuma-Iwojima volcano, Japan. Re-evaluation of the measurement error considering topography and fake muon counts confirms the existence of a low-density body of 300 m in diameter and with 0.9-1.0 g cm-3 at depths of 135-190 m from the summit crater floor. The low-density material is interpreted as rhyolitic magma with 60% vesicularity on average, and existence of this unstable highly vesiculated magma at shallow depth without any recent eruptive or intrusive activity is considered as evidence of conduit magma convection. The structure of the convecting magma column top was modeled based on density calculations of vesiculated ascending and outgassed descending magmas, compared with the observed density anomaly. The existence of the low-density anomaly was confirmed by comparison with published gravity measurements, and the predicted degassing at the shallow magma conduit top agrees with observed heat discharge anomaly distribution localized at the summit area. This study confirms that high viscosity of silicic magmas can be compensated by a large size conduit to cause the conduit magma convection phenomena. The rare occurrence of conduit magma convection in a rhyolitic magma system at Iwodake is suggested to be due to its specific magma features of low H2O content and high temperature.

  18. Magma supply, storage, and transport at shield-stage Hawaiian volcanoes: Chapter 5 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Poland, Michael P.; Miklius, Asta; Montgomery-Brown, Emily K.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Magma supply to Hawaiian volcanoes has varied over millions of years but is presently at a high level. Supply to Kīlauea’s shallow magmatic system averages about 0.1 km3/yr and fluctuates on timescales of months to years due to changes in pressure within the summit reservoir system, as well as in the volume of melt supplied by the source hot spot. Magma plumbing systems beneath Kīlauea and Mauna Loa are complex and are best constrained at Kīlauea. Multiple regions of magma storage characterize Kīlauea’s summit, and two pairs of rift zones, one providing a shallow magma pathway and the other forming a structural boundary within the volcano, radiate from the summit to carry magma to intrusion/eruption sites located nearby or tens of kilometers from the caldera. Whether or not magma is present within the deep rift zone, which extends beneath the structural rift zones at ~3-km depth to the base of the volcano at ~9-km depth, remains an open question, but we suggest that most magma entering Kīlauea must pass through the summit reservoir system before entering the rift zones. Mauna Loa’s summit magma storage system includes at least two interconnected reservoirs, with one centered beneath the south margin of the caldera and the other elongated along the axis of the caldera. Transport of magma within shield-stage Hawaiian volcanoes occurs through dikes that can evolve into long-lived pipe-like pathways. The ratio of eruptive to noneruptive dikes is large in Hawai‘i, compared to other basaltic volcanoes (in Iceland, for example), because Hawaiian dikes tend to be intruded with high driving pressures. Passive dike intrusions also occur, motivated at Kīlauea by rift opening in response to seaward slip of the volcano’s south flank.

  19. Intrusion of basaltic magma into a crystallizing granitic magma chamber: The Cordillera del Paine pluton in southern Chile

    NASA Astrophysics Data System (ADS)

    Michael, Peter J.

    1991-10-01

    The Cordillera del Paine pluton in the southernmost Andes of Chile represents a deeply dissected magma chamber where mafic magma intruded into crystallizing granitic magma. Throughout much of the 10x15 km pluton, there is a sharp and continuous boundary at a remarkably constant elevation of 1,100 m that separates granitic rocks (Cordillera del Paine or CP granite: 69 77% SiO2) which make up the upper levels of the pluton from mafic and comingled rocks (Paine Mafic Complex or PMC: 45 60% SiO2) which dominate the lower exposures of the pluton. Chilled, crenulate, disrupted contacts of mafic rock against granite demonstrate that partly crystallized granite was intruded by mafic magma which solidified prior to complete crystallization of the granitic magma. The boundary at 1,100 m was a large and stable density contrast between the denser, hotter mafic magma and cooler granitic magma. The granitic magma was more solidified near the margins of the chamber when mafic intrusion occurred, and the PMC is less disrupted by granites there. Near the pluton margins, the PMC grades upward irregularly from cumulate gabbros to monzodiorites. Mafic magma differentiated largely by fractional crystallization as indicated by the presence of cumulate rocks and by the low levels of compatible elements in most PMC rocks. The compositional gap between the PMC and CP granite indicates that mixing (blending) of granitic magma into the mafic magma was less important, although it is apparent from mineral assemblages in mafic rocks. Granitic magma may have incorporated small amounts of mafic liquid that had evolved to >60% SiO2 by crystallization. Mixing was inhibited by the extent of crystallization of the granite, and by the thermal contrast and the stable density contrast between the magmas. PMC gabbros display disequilibrium mineral assemblages including early formed zoned olivine (with orthopyroxene coronas), clinopyroxene, calcic plagioclase and paragasite and later-formed amphibole

  20. Magma Mingling of Multiple Mush Magmas

    NASA Astrophysics Data System (ADS)

    Graham, B.; Leitch, A.; Dunning, G.

    2016-12-01

    This field, petrographic, and geochemical study catalogues complicated magma mingling at the field to thin section scale, and models the emplacement of multiple crystal-rich pulses into a growing magma chamber. Modern theories present magma chambers as short-lived reservoirs that are continuously fed by intermittent magma pulses and suggest processes that occur within them can be highly dynamic. Differences in the rheology of two mingling magmas, largely affected by crystallinity, can result in varied textural features that can be preserved in igneous rocks. Field evidence of complex magma mingling is observed at Wild Cove, located along the northeast shoreline of Fogo Island, Newfoundland, an area interpreted to represent the roof/wall region of the Devonian Fogo Batholith. Fine-grained intermediate enclaves are contained in host rocks of similar composition and occur in round to amoeboid shapes. Dykes of similar composition are also observed near enclaves suggesting they were broken up into globules in localized areas. These provide evidence for a possible mechanism by which enclaves were formed as dykes passed through a more liquid-rich region of the magma chamber. The irregular but sharp nature of the boundaries between units suggest that all co-existed as "mushy" magmas with variable crystallinities reflecting a wide range in temperature between their respective liquidus and solidus. Textural evidence of complex mingling between mush units includes the intrusion of tonalite dykes into quartz diorite and granite mushes. The dykes were later pulled apart and subsequently back-intruded by liquid from the host mush (Figure). Observed magmatic tubes of intermediate magma cross-cutting through magma of near identical composition likely reflect compaction of the underlying mush after intrusion of new pulses of magma into the system. Petrographic examination of contacts between units reveals that few are chilled and medium to coarse grained boundaries are the norm.

  1. Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers.

    PubMed

    Couch, S; Sparks, R S; Carroll, M R

    2001-06-28

    Characteristic features of many porphyritic andesite and dacite lavas are that they are rich in crystals and display a range of disequilibrium features, including reversely zoned crystals, resorption surfaces, wide ranges of mineral compositions and minerals which are not in equilibrium with the surrounding rock matrix. These features are often interpreted as evidence of the mixing of magmas of contrasting composition, temperature and origin. Here, however, we propose that such features can also be caused by convection within a magma body with a single composition, that is heated from below and cooled from above. We describe petrological observations of andesite lava erupted at the Soufrière Hills volcano, Montserrat, which indicate a heating event and the intermingling of crystals that have very different thermal histories. We present experimental data on a representative groundmass composition of this lava, which indicate that it is difficult to explain the calcic compositions of plagioclase overgrowth rims and microphenocrysts unless parts of the magma were at temperatures much higher than the inferred average temperature. The concept of convective self-mixing allows us to explain the occurrence of compositions of minerals that apparently cannot coexist under equilibrium conditions.

  2. Evidences of Multiple Magma Injections in Quaternary Balerang and Rajabasa Volcanoes, Indonesia

    NASA Astrophysics Data System (ADS)

    Hasibuan, R. F.; Ohba, T.; Abdurrachman, M.

    2016-12-01

    Quaternary Balerang and Rajabasa volcanoes are situated along the nearly north-south lineament with a most explosive Krakatau volcanic complex in the south and effusive Sukadana basalt plateau in the north. Some studies have elucidated that Krakatau volcano has multiple magma storage regions beneath together with evidences of magma mixing process. By considering these circumstances, it is necessary to know lateral variations of magmas and to characterize volcanic rocks from Rajabasa volcanic complex which is located between these distinct magmatic systems, in terms of magmatic processes and evolution. Methodologies we used are X-ray fluorescence to determine the whole rock chemistry, K-Ar isotope dating to determine the lifespan of the volcano, as well as EPMA analysis to obtain the chemical composition of minerals. The rock chemistry or TAS plot shows a linear trend, ranging from basaltic (51 wt.%) to rhyolitic (75 wt.%), indicating a chemical heterogeneity of magma. When SiO2 contents are correlated with the relative ages, we found a broad tendency that SiO2 contents progressively decrease with age. The Rajabasa volcano lifespan is known formed at 0.31 Ma while one of the youngest lava is identified erupted at 0.12 Ma. Some plagioclase crystals exhibit disequilibrium textures, like highly sieved core and clear rim regions, also overgrowth rim on the plagioclase and pyroxene crystals whose composition more primitive than the core's composition, indicating magmatic recharge events. Reverse zoning and resorption textures associated with compositional step zoning or progressive zoning are quite common as well in clinopyroxene and plagioclase crystals. By considering these evidences, we conclude that injection of a hotter basaltic magma into colder and more felsic magma occurred beneath the volcanoes.

  3. Petrogenesis of the granitic Donkerhuk batholith in the Damara Belt of Namibia: protracted, syntectonic, short-range, crustal magma transfer

    NASA Astrophysics Data System (ADS)

    Clemens, J. D.; Buick, I. S.; Kisters, A. F. M.; Frei, D.

    2017-07-01

    The areally extensive (>5000 km2), syn-tectonic, ca. 520 Ma, mainly S-type Donkerhuk batholith was constructed through injection of thousands of mainly sheet-like magma pulses over 20-25 Myr. It intruded schists of the Southern Zone accretionary prism in the Damara Belt of Namibia. Each magma pulse had at least partly crystallised prior to the arrival of the following batch. However, much of the batholith may have remained partially molten for long periods, close to the H2O-saturated granite solidus. The batholith shows extreme variation in chemistry, while having limited mineralogical variation, and seems to be the world's most heterogeneous granitic mass. The Nd model ages of 2 Ga suggest that Eburnean rocks of the former magmatic arc, structurally overlain by the accretionary wedge, are the most probable magma sources. Crustal melting was initiated by mantle heat flux, probably introduced by thermal diffusion rather than magma advection. The granitic magmas were transferred from source to sink, with minimal intermediate storage; the whole process having occurred in the middle crust, resulting in feeble crustal differentiation despite the huge volume of silicic magma generated. Source heterogeneity controlled variation in the magmas and neither mixing nor fractionation was prominent. However, due to the transpressional emplacement régime, local filter pressing formed highly silicic liquids, as well as felsic cumulate rocks. The case of the Donkerhuk batholith demonstrates that emplacement-level tectonics can significantly influence compositional evolution of very large syn-tectonic magma bodies.

  4. Deep intrusions, lateral magma transport and related uplift at ocean island volcanoes

    NASA Astrophysics Data System (ADS)

    Klügel, Andreas; Longpré, Marc-Antoine; García-Cañada, Laura; Stix, John

    2015-12-01

    Oceanic intraplate volcanoes grow by accumulation of erupted material as well as by coeval or discrete magmatic intrusions. Dykes and other intrusive bodies within volcanic edifices are comparatively well studied, but intrusive processes deep beneath the volcanoes remain elusive. Although there is geological evidence for deep magmatic intrusions contributing to volcano growth through uplift, this has rarely been demonstrated by real-time monitoring. Here we use geophysical and petrological data from El Hierro, Canary Islands, to show that intrusions from the mantle and subhorizontal transport of magma within the oceanic crust result in rapid endogenous island growth. Seismicity and ground deformation associated with a submarine eruption in 2011-2012 reveal deep subhorizontal intrusive sheets (sills), which have caused island-scale uplift of tens of centimetres. The pre-eruptive intrusions migrated 15-20 km laterally within the lower oceanic crust, opening pathways that were subsequently used by the erupted magmas to ascend from the mantle to the surface. During six post-eruptive episodes between 2012 and 2014, further sill intrusions into the lower crust and upper mantle have caused magma to migrate up to 20 km laterally, resulting in magma accumulation exceeding that of the pre-eruptive phase. A comparison of geobarometric data for the 2011-2012 El Hierro eruption with data for other Atlantic intraplate volcanoes shows similar bimodal pressure distributions, suggesting that eruptive phases are commonly accompanied by deep intrusions of sills and lateral magma transport. These processes add significant material to the oceanic crust, cause uplift, and are thus fundamentally important for the growth and evolution of volcanic islands. We suggest that the development of such a magma accumulation zone in the lower oceanic crust begins early during volcano evolution, and is a consequence of increasing size and complexity of the mantle reservoir system, and potentially

  5. Concomitant skarn and syenitic magma evolution at the margins of the Zippa Mountain pluton

    NASA Astrophysics Data System (ADS)

    Coulson, I. M.; Westphal, M.; Anderson, R. G.; Kyser, T. K.

    2007-07-01

    Zippa Mountain pluton is a Mesozoic concentrically-zoned intrusion, located within the Canadian Cordillera of British Columbia. An extensive phase of K-feldspar bearing syenite grades towards its margins to mela-syenite and clinopyroxenite. This simple pattern of petrological zonation is overprinted by localised occurrences of silica-undersaturated, peralkaline rock types. High-purity wollastonite skarns occur within and peripheral to the intrusion and result from extensive interaction between intrusion-related fluids and Permian limestone/marble, at shallow crustal levels. Field, chemical and isotopic studies provide insights into interaction between a parental syenitic magma and these country rocks. To achieve this, petrological studies of four of the skarn bodies present have been combined with chemical and isotopic data from the pluton, and from drill core through the skarn into the pluton, to reconstruct the stages in the development of wollastonite skarn and progressive magma-country rock interaction. Derivation of peralkaline compositions from the syenitic magma requires either a loss of Si and Al, or addition of Na and/or K. Our studies preclude the addition of alkali elements but highlight extensive Si-infiltration into the limestone, while the conversion of marble to grossular-andradite skarn, indicates Al-infiltration. Fluid egress resulted in de-silicification/de-alumination of the Zippa Mountain magmas, and increased peralkalinity; wollastonite and garnet-bearing skarn formed as a by-product. Hence, the development of peralkaline rock compositions at Zippa Mountain required a parental syenitic magma, and reaction and/or interaction with calcareous country rocks.

  6. Surface uplift in the Central Andes driven by growth of the Altiplano Puna Magma Body

    PubMed Central

    Perkins, Jonathan P.; Ward, Kevin M.; de Silva, Shanaka L.; Zandt, George; Beck, Susan L.; Finnegan, Noah J.

    2016-01-01

    The Altiplano-Puna Magma Body (APMB) in the Central Andes is the largest imaged magma reservoir on Earth, and is located within the second highest orogenic plateau on Earth, the Altiplano-Puna. Although the APMB is a first-order geologic feature similar to the Sierra Nevada batholith, its role in the surface uplift history of the Central Andes remains uncertain. Here we show that a long-wavelength topographic dome overlies the seismically measured extent of the APMB, and gravity data suggest that the uplift is isostatically compensated. Isostatic modelling of the magmatic contribution to dome growth yields melt volumes comparable to those estimated from tomography, and suggests that the APMB growth rate exceeds the peak Cretaceous magmatic flare-up in the Sierran batholith. Our analysis reveals that magmatic addition may provide a contribution to surface uplift on par with lithospheric removal, and illustrates that surface topography may help constrain the magnitude of pluton-scale melt production. PMID:27779183

  7. Surface uplift in the Central Andes driven by growth of the Altiplano Puna Magma Body.

    PubMed

    Perkins, Jonathan P; Ward, Kevin M; de Silva, Shanaka L; Zandt, George; Beck, Susan L; Finnegan, Noah J

    2016-10-25

    The Altiplano-Puna Magma Body (APMB) in the Central Andes is the largest imaged magma reservoir on Earth, and is located within the second highest orogenic plateau on Earth, the Altiplano-Puna. Although the APMB is a first-order geologic feature similar to the Sierra Nevada batholith, its role in the surface uplift history of the Central Andes remains uncertain. Here we show that a long-wavelength topographic dome overlies the seismically measured extent of the APMB, and gravity data suggest that the uplift is isostatically compensated. Isostatic modelling of the magmatic contribution to dome growth yields melt volumes comparable to those estimated from tomography, and suggests that the APMB growth rate exceeds the peak Cretaceous magmatic flare-up in the Sierran batholith. Our analysis reveals that magmatic addition may provide a contribution to surface uplift on par with lithospheric removal, and illustrates that surface topography may help constrain the magnitude of pluton-scale melt production.

  8. Unscrambling the Omlette: a New Bubble and Crystal Clustering Mechanism in Chaotically Mixed Magma Flows

    NASA Astrophysics Data System (ADS)

    Robertson, J.; Metcalfe, G.; Wang, S.; Barnes, S. J.

    2014-12-01

    The concentration of bubbles, crystals or droplets into small volumes of magma is a key trigger for many interesting magmatic processes. For example, gas slugs driving Strombolian eruptions form from the coalesence of exsolved bubbles within a volcanic conduit, while Ni-Cu-PGE magmatic sulfide deposits require a concentration of dense sulfide droplets from a large volume of magma to form a massive ore body. However the physical mechanism for this clustering remains unresolved - especially since small particles in active magma flows are expected to mostly track flow streamlines rather than clustering. We have uncovered a previously unreported clustering mechanism which is applicable to magmatic flows. This mechanism involves the interaction of particles with two kinds of chaotic flow structure: (a) high-strain regions within the well-mixed chaotic zones of the flow, and (b) unmixed islands of stability within the chaotic flow, known as Kolmogorov-Arnold-Moser (KAM) regions. The first figure shows the difference between chaotic and KAM regions in a chaotic laminar pipe flow. Trapping occurs when particles are scattered from high-strain regions in the chaotic zones and become trapped in the KAM regions, leading to a rapid concentration of particles relative to their original distribution (shown in the second series of figures). Using a combination of these analogue experiments and theoretical analysis we outline the conditions under which this clustering process can occur. We examine the onset of secondary density-related instabilities and the effects of increased particle-particle interaction within the clustered particles, and highlight the impact of particle clustering on the dynamics of magma ascent and emplacement.

  9. Linking magma transport structures at Kīlauea volcano

    USGS Publications Warehouse

    Wech, Aaron G.; Thelen, Weston A.

    2015-01-01

    Identifying magma pathways is important for understanding and interpreting volcanic signals. At Kīlauea volcano, seismicity illuminates subsurface plumbing, but the broad spectrum of seismic phenomena hampers event identification. Discrete, long-period events (LPs) dominate the shallow (5-10 km) plumbing, and deep (40+ km) tremor has been observed offshore. However, our inability to routinely identify these events limits their utility in tracking ascending magma. Using envelope cross-correlation, we systematically catalog non-earthquake seismicity between 2008-2014. We find the LPs and deep tremor are spatially distinct, separated by the 15-25 km deep, horizontal mantle fault zone (MFZ). Our search corroborates previous observations, but we find broader-band (0.5-20 Hz) tremor comprising collocated earthquakes and reinterpret the deep tremor as earthquake swarms in a volume surrounding and responding to magma intruding from the mantle plume beneath the MFZ. We propose the overlying MFZ promotes lateral magma transport, linking this deep intrusion with Kīlauea’s shallow magma plumbing.

  10. Preliminary considerations for extraction of thermal effect from magma

    NASA Astrophysics Data System (ADS)

    Hickox, C. E.; Dunn, J. C.

    Simplified mathematical models are developed to describe the extraction of thermal energy from magma based on the concept of a counter-flow heat exchanger inserted into the magma body. Analytical solutions are used to investigate influence of the basic variables on electric power production. Calculations confirm that the proper heat exchanger flow path is down the annulus with hot fluid returning to the surface through the central core. The core must be insulated from the annulus to achieve acceptable wellhead temperatures, but this insulation thickness can be quite small. The insulation is effective in maintaining the colder annular flow below expected formation temperatures so that a net beat gain from the formation above a magma body is predicted. The analynes show that optimum flow rates exist that maximize electric power production. These optimum flow rates are functions of the heat transfer coefficients that describe magma energy extraction.

  11. Shallow velocity structure above the Socorro Magma Body from ambient noise tomography using the large-N Sevilleta array, central Rio Grande Rift, New Mexico

    NASA Astrophysics Data System (ADS)

    Worthington, L. L.; Ranasinghe, N. R.; Schmandt, B.; Jiang, C.; Finlay, T. S.; Bilek, S. L.; Aster, R. C.

    2017-12-01

    The Socorro Magma Body (SMB) is one of the largest recognized active mid-crustal magma intrusions globally. Inflation of the SMB drives sporadically seismogenic uplift at rates of up to of few millimeters per year. We examine the upper crustal structure of the northern section of the SMB region using ambient noise seismic data collected from the Sevilleta Array and New Mexico Tech (NMT) seismic network to constrain basin structure and identify possible upper crustal heterogeneities caused by heat flow and/or fluid or magma migration to shallower depths. The Sevilleta Array comprised 801 vertical-component Nodal seismic stations with 10-Hz seismometers deployed within the Sevilleta National Wildlife Refuge in the central Rio Grande rift north of Socorro, New Mexico, for a period of 12 days during February 2015. Five short period seismic stations from the NMT network located south of the Sevilleta array are also used to improve the raypath coverage outside the Sevilleta array. Inter-station ambient noise cross-correlations were computed from all available 20-minute time windows and stacked to obtain estimates of the vertical component Green's function. Clear fundamental mode Rayleigh wave energy is observed from 3 to 6 s period. Beamforming indicates prominent noise sources from the southwest, near Baja California, and the southeast, in the Gulf of Mexico. The frequency-time analysis method was implemented to measure fundamental mode Rayleigh wave phase velocities and the resulting inter-station travel times were inverted to obtain 2-D phase velocity maps. One-dimensional sensitivity kernels indicate that the Rayleigh wave phase velocity maps are sensitive to a depth interval of 1 to 8 km, depending on wave period. The maps show (up to 40%) variations in phase velocity within the Sevilleta Array, with the largest variations found for periods of 5-6 seconds. Holocene to upper Pleistocene, alluvial sediments found in the Socorro Basin consistently show lower phase

  12. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics.

    PubMed

    Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone

    2016-10-05

    Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics.

  13. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics

    PubMed Central

    Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone

    2016-01-01

    Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics. PMID:27703141

  14. Ground Tilt Time Delays between Kilauea Volcano's Summit and East Rift Zone Caused by Magma Reservoir Buffering

    NASA Astrophysics Data System (ADS)

    Haney, M. M.; Patrick, M. R.; Anderson, K. R.

    2016-12-01

    A cyclic pattern of ground deformation, called a deflation-inflation (DI) cycle, is commonly observed at Kilauea Volcano, Hawai`i. These cycles are an important part of Kilauea's eruptive activity because they directly influence the level of the summit lava lake as well as the effusion rate (and resulting lava flow hazard) at the East Rift Zone eruption site at Pu`u `O`o. DI events normally span several days, and are measured both at the summit and at Pu`u `O`o cone (20 km distance). Signals appear first at the summit and are then observed at Pu`u `O`o after an apparent delay of between 0.5 and 10 hours, which has been previously interpreted as reflecting magma transport time. We propose an alternate explanation, in which the apparent delay is an artifact of buffering by the small magma reservoir thought to exist at Pu`u `O`o. Simple Poiseuille flow modeling demonstrates that this apparent delay can be reproduced by the changing balance of inflow (from the summit) and outflow (to surface lava flows) at the Pu`u `O`o magma reservoir. The apparent delay is sensitive to the geometry of the conduit leaving Pu`u `O`o, feeding surface lava flows. We demonstrate how the reservoir buffering is quantitatively equivalent to a causal low-pass filter, which explains both the apparent delay as well as the smoothed, skewed nature of the signal at Pu`u `O`o relative to the summit. By comparing summit and Pu`u `O`o ground tilt signals over an extended time period, it may be possible to constrain the changing geometry of the shallow magmatic system through time.

  15. Stability of rift axis magma reservoirs: Spatial and temporal evolution of magma supply in the Dabbahu rift segment (Afar, Ethiopia) over the past 30 kyr

    NASA Astrophysics Data System (ADS)

    Medynski, S.; Pik, R.; Burnard, P.; Vye-Brown, C.; France, L.; Schimmelpfennig, I.; Whaler, K.; Johnson, N.; Benedetti, L.; Ayelew, D.; Yirgu, G.

    2015-01-01

    Unravelling the volcanic history of the Dabbahu/Manda Hararo rift segment in the Afar depression (Ethiopia) using a combination of cosmogenic (36Cl and 3He) surface exposure dating of basaltic lava-flows, field observations, geological mapping and geochemistry, we show in this paper that magmatic activity in this rift segment alternates between two distinct magma chambers. Recent activity in the Dabbahu rift (notably the 2005-2010 dyking crises) has been fed by a seismically well-identified magma reservoir within the rift axis, and we show here that this magma body has been active over the last 30 kyr. However, in addition to this axial magma reservoir, we highlight in this paper the importance of a second, distinct magma reservoir, located 15 km west of the current axis, which has been the principal focus of magma accumulation from 15 ka to the subrecent. Magma supply to the axial reservoir substantially decreased between 20 ka and the present day, while the flank reservoir appears to have been regularly supplied with magma since 15 ka ago, resulting in less variably differentiated lavas. The trace element characteristics of magmas from both reservoirs were generated by variable degrees of partial melting of a single homogeneous mantle source, but their respective magmas evolved separately in distinct crustal plumbing systems. Magmatism in the Dabbahu/Manda Hararo rift segment is not focussed within the current axial depression but instead is spread out over at least 15 km on the western flank. This is consistent with magneto-telluric observations which show that two magma bodies are present below the segment, with the main accumulation of magma currently located below the western flank, precisely where the most voluminous recent (<15 ka) flank volcanism is observed at the surface. Applying these observations to slow spreading mid-ocean ridges indicates that magma bodies likely have a lifetime of a least 20 ka, and that the continuity of magmatic activity is

  16. Magma Supply Rate Controls Vigor (And Longevity) of Kīlauea's Ongoing East Rift Zone Eruption

    NASA Astrophysics Data System (ADS)

    Poland, M. P.; Anderson, K. R.

    2015-12-01

    Since 1983, Kīlauea Volcano, Hawai'i, has erupted almost continuously from vents on the East Rift Zone—at 32 years and counting, this is the longest-duration eruption in the past 500 years. Although forecasting the onset of eruptive activity using geophysical, geochemical, and geological monitoring has been demonstrated repeatedly at Kīlauea and elsewhere, little progress has been made in forecasting an eruption's waning or end, particularly in the case of long-lived eruptions. This is especially important at Kīlauea for at least two reasons: (1) caldera formation at the end of another decades-long eruption, in the 15th century, raises the possibility of a link between eruption duration and caldera formation; and (2) long-lived eruptions can have an enduring effect on local population and infrastructure, as demonstrated by the repeated destruction of property by Kīlauea's ongoing rift zone eruption. Data from the past 15 years indicate that the magma supply rate to Kīlauea is an important control on eruptive activity. Joint inversions of geophysical, geochemical, and geological observations demonstrate that in 2006 the supply rate was nearly double that of 2000-2001, resulting in an increase in lava discharge, summit inflation, and the formation of new eruptive vents. In contrast, the magma supply during 2012, and likely through 2014, was less than that of 2000-2001. This lower supply rate was associated with a lower lava discharge and may have played a role in the stalling of lava flows above population centers in the Puna District during 2014-2015. Heightened eruptive vigor may be expected if magma supply increases in the future; however, a further decrease in supply rate—which is likely already below the long-term average—may result in cessation of the eruption. Multidisciplinary monitoring, and particularly tracking of CO2 emissions and surface deformation, should be able to detect changes in supply rate before they are strongly manifested at the

  17. High magma storage rates before the 1983 eruption of Kilauea, Hawaii

    USGS Publications Warehouse

    Cayol, V.; Dieterich, J.H.; Okamura, A.T.; Miklius, Asta

    2000-01-01

    After a magnitude 7.2 earthquake in 1975 and before the start of the ongoing eruption in 1983, deformation of Kilauea volcano was the most rapid ever recorded. Three-dimensional numerical modeling shows that this deformation is consistent with the dilation of a dike within Kilauea's rift zones coupled with creep over a narrow area of a low-angle fault beneath the south flank. Magma supply is estimated to be 0.18 cubic kilometers per year, twice that of previous estimates. The 1983 eruption may be a direct consequence of the high rates of magma storage within the rift zone that followed the 1975 earthquake.

  18. High magma storage rates before the 1983 eruption of kilauea, hawaii

    PubMed

    Cayol; Dieterich; Okamura; Miklius

    2000-06-30

    After a magnitude 7.2 earthquake in 1975 and before the start of the ongoing eruption in 1983, deformation of Kilauea volcano was the most rapid ever recorded. Three-dimensional numerical modeling shows that this deformation is consistent with the dilation of a dike within Kilauea's rift zones coupled with creep over a narrow area of a low-angle fault beneath the south flank. Magma supply is estimated to be 0.18 cubic kilometers per year, twice that of previous estimates. The 1983 eruption may be a direct consequence of the high rates of magma storage within the rift zone that followed the 1975 earthquake.

  19. Degassing-induced crystallization of basaltic magma and effects on lava rheology

    USGS Publications Warehouse

    Lipman, P.W.; Banks, N.G.; Rhodes, J.M.

    1985-01-01

    During the north-east rift eruption of Mauna Loa volcano, Hawaii, on 25 March-14 April 1984 (Fig. 1), microphenocryst contents of erupted lava increased from 0.5 to 30% without concurrent change in either bulk magma composition or eruption temperature (1,140 ?? 3 ??C). The crystallization of the microphenocrysts is interpreted here as being due to undercooling of the magma 20-30 ??C below its liquidas; the undercooling probably resulted from separation and release of volatiles as the magma migrated 12 km from the primary summit reservoir to the eruption site on the north-east rift zone. Such crystallization of magma during an eruption has not been documented previously. The undercooling and crystallization increased the effective viscosity of the magma, leading to decreased eruption rates and stagnation of the lava flow. ?? 1985 Nature Publishing Group.

  20. Structural control on volcanoes and magma paths from local- to orogen-scale: The central Andes case

    NASA Astrophysics Data System (ADS)

    Tibaldi, A.; Bonali, F. L.; Corazzato, C.

    2017-03-01

    Assessing the parameters that control the location and geometry of magma paths is of paramount importance for the comprehension of volcanic plumbing systems and geo-hazards. We analyse the distribution of 1518 monogenic and polygenic volcanoes of Miocene-Quaternary age of the Central Volcanic Zone of the Andes (Chile-Bolivia-Argentina), and reconstruct the magma paths at 315 edifices by analysing the morphostructural characteristics of craters and cones. Then we compare these data with outcropping dykes, tectonic structures and state of stress. Most magma paths trend N-S, NW-SE, and NE-SW, in decreasing order of frequency. The N-S and NW-SE paths coexist in the northern and southern part of the study area, whereas N-S paths dominate east of the Salar de Atacama. Outcropping dykes show the same trends. The regional Holocene stress state is given by an E-W greatest horizontal principal stress. N-S and NNE-SSW reverse faults and folds affect deposits of 4.8, 3.2 and 1.3 Ma BP, especially in the central and southern study areas. A few NW-SE left-lateral strike-slip faults are present in the interior of the volcanic arc, part of which belong to the Calama-Olacapato-El Toro fault. The volcanic chain is also affected by several N-S- and NW-SE-striking normal faults that offset Pliocene and Quaternary deposits. The results indicate different scenarios of magma-tectonic interaction, given by N-S normal and reverse faults and N-S fold hinges that guide volcano emplacement and magma paths. Magma paths are also guided by strike-slip and normal NW-SE faults, especially in the northern part of the study area. Zones with verticalized strata, with bedding striking NE-SW, also acted as preferential magma paths. These data suggest that at convergence zones with continental crust, shallow magma paths can be more sensitive to the presence and geometry of upper crustal weakness zones than to the regional state of stress.

  1. The 2006-2009 activity of the Ubinas volcano (Peru): Petrology of the 2006 eruptive products and insights into genesis of andesite magmas, magma recharge and plumbing system

    NASA Astrophysics Data System (ADS)

    Rivera, Marco; Thouret, Jean-Claude; Samaniego, Pablo; Le Pennec, Jean-Luc

    2014-01-01

    Following a fumarolic episode that started six months earlier, the most recent eruptive activity of the Ubinas volcano (south Peru) began on 27 March 2006, intensified between April and October 2006 and slowly declined until December 2009. The chronology of the explosive episode and the extent and composition of the erupted material are documented with an emphasis on ballistic ejecta. A petrological study of the juvenile products allows us to infer the magmatic processes related to the 2006-2009 eruptions of the andesitic Ubinas volcano. The juvenile magma erupted during the 2006 activity shows a homogeneous bulk-rock andesitic composition (56.7-57.6 wt.% SiO2), which belongs to a medium- to high-K calc-alkaline series. The mineral assemblage of the ballistic blocks and tephra consists of plagioclase > two-pyroxenes > Fe-Ti oxide and rare olivine and amphibole set in a groundmass of the same minerals with a dacitic composition (66-67 wt.% SiO2). Thermo-barometric data, based on two-pyroxene and amphibole stability, records a magma temperature of 998 ± 14 °C and a pressure of 476 ± 36 MPa. Widespread mineralogical and textural features point to a disequilibrium process in the erupted andesite magma. These features include inversely zoned "sieve textures" in plagioclase, inversely zoned clinopyroxene, and olivine crystals with reaction and thin overgrowth rims. They indicate that the pre-eruptive magmatic processes were dominated by recharge of a hotter mafic magma into a shallow reservoir, where magma mingling occurred and triggered the eruption. Prior to 2006, a probable recharge of a mafic magma produced strong convection and partial homogenization in the reservoir, as well as a pressure increase and higher magma ascent rate after four years of fumarolic activity. Mafic magmas do not prevail in the Ubinas pre-historical lavas and tephras. However, mafic andesites have been erupted during historical times (e.g. AD 1667 and 2006-2009 vulcanian eruptions). Hence

  2. Two-pyroxene syenitoids from the Moldanubian Zone of the Bohemian Massif: peculiar magmas derived from a strongly enriched lithospheric mantle source

    NASA Astrophysics Data System (ADS)

    Janoušek, Vojtěch; Holub, František; Gerdes, Axel; Verner, Kryštof

    2013-04-01

    (Ultra-)potassic plutonic rocks constitute a conspicuous association with metamorphic rocks of the high-grade, lower crustal/upper mantle Gföhl Unit (Moldanubian Zone). They can be subdivided into two contrasting suites: (1) coarse Kfs-phyric amphibole-biotite melagranite to quartz syenite (the durbachite series sensu Holub 1997), and (2) essentially even-grained biotite-two-pyroxene quartz syenites to melagranites (Tábor and Jihlava plutons). The latter, "syenitoid suite", characterized by an originally 'dry' mineral assemblage orthopyroxene + clinopyroxene + Mg-biotite, with accessoric zircon, apatite, ilmenite, monazite and/or rutile ± Cr-spinel, is a subject of the current study. Our conventional U-Pb ages for zircon (336.9 ± 0.6 Ma) and rutile (336.8 ± 0.8 Ma) from the Tábor Pluton, together with the age from the Jihlava body (U-Pb zircon: 335.1 ± 0.6 Ma; Kotková et al. 2010), provide a precise time bracket for the emplacement and rapid cooling of the syenitoids below c.600 ° C (closure temperature of U-Pb system in rutile: Cherniak 2000). This is in line with post-tectonic emplacement of hot dry melt into shallow levels of essentially consolidated orogenic crust. Comparably low temperatures obtained by zircon and rutile saturation calculations document probably a delayed onset of crystallization of the accessories in a hot, alkalis and ferromagnesian components-rich magma derived from a mantle source. Indeed, the structural relations inside and around the ultrapotassic plutons suggest that the most important regional HT/LP flat-lying fabric(s) in the Moldanubian Zone are closely related with the emplacement and crystallization of the durbachite suite at 343-338 Ma. They have formed prior to the relatively shallower emplacement of the essentially post-tectonic syenitoids dated at ~337-336 Ma (Žák et al. 2005; Verner et al. 2006, 2008). The two magmatic suites are thus essentially diachronous and not (nearly) contemporaneous (c. 335 Ma) intrusions at

  3. Magma genesis of the acidic volcanism in the intra-arc rift zone of the Izu volcanic arc, Japan

    NASA Astrophysics Data System (ADS)

    Haraguchi, S.; Tokuyama, H.; Ishii, T.

    2010-12-01

    The Izu volcanic arc extends over 550 km from the Izu Peninsula, Japan, to the Nishinoshima Trough or Sofugan tectonic line. It is the northernmost segment of the Izu-Bonin-Mariana arc system, which is located at the eastern side of the Philippine Sea Plate. The recent magmatism of the Izu arc is bimodal and characterized by basalt and rhyolite (e.g. Tamura and Tatsumi 2002). In the southern Izu arc, volcanic front from the Aogashima to the Torishima islands is characterized by submarine calderas and acidic volcanisms. The intra-arc rifting, characterized by back-arc depressions, small volcanic knolls and ridges, is active in this region. Volcanic rocks were obtained in 1995 during a research cruise of the R/V MOANA WAVE (Hawaii University, cruise MW9507). Geochemical variation of volcanic rocks and magma genesis was studied by Hochstaedter et al. (2000, 2001), Machida et al (2008), etc. These studies focused magma and mantle dynamics of basaltic volcanism in the wedge mantle. Acidic volcanic rocks were also dredged during the curies MW9507. However, studies of these acidic volcanics were rare. Herein, we present petrographical and chemical analyses of these acidic rocks, and compare these results with those of other acidic rocks in the Izu arc and lab experiments, and propose a model of magma genesis in a context of acidic volcanism. Dredge sites by the cruise MW9507 are 120, and about 50 sites are in the rift zone. Recovered rocks are dominated by the bimodal assemblage of basalt-basaltic andesite and dacite-rhyolite. The most abundant phase is olivine basalt, less than 50 wt% SiO2. Andesites are minor in volume and compositional gap from 56 to 65 wt% SiO2 exists. The across-arc variation of the HFSE contents and ratios, such as Zr/Y and Nb/Zr of rhyolites exhibit depleted in the volcanic front side and enriched in reararc side. This characteristic is similar to basaltic volcanism pointed out by Hochstaedter et al (2000). The petrographical features of rhyolites

  4. Magma deformation and emplacement in rhyolitic dykes

    NASA Astrophysics Data System (ADS)

    McGowan, Ellen; Tuffen, Hugh; James, Mike; Wynn, Peter

    2016-04-01

    Silicic eruption mechanisms are determined by the rheological and degassing behaviour of highly-viscous magma ascending within shallow dykes and conduits. However, we have little knowledge of how magmatic behaviour shifts during eruptions as dykes and conduits evolve. To address this we have analysed the micro- to macro-scale textures in shallow, dissected rhyolitic dykes at the Tertiary Húsafell central volcano in west Iceland. Dyke intrusion at ~3 Ma was associated with the emplacement of subaerial rhyolitic pyroclastic deposits following caldera formation[1]. The dykes are dissected to ~500 m depth, 2-3 m wide, and crop out in two stream valleys with 5-30 m-long exposures. Dykes intrude diverse country rock types, including a welded ignimbrite, basaltic lavas, and glacial conglomerate. Each of the six studied dykes is broadly similar, exhibiting obsidian margins and microcrystalline cores. Dykes within pre-fractured lava are surrounded by external tuffisite vein networks, which are absent from dykes within conglomerate, whereas dykes failed to penetrate the ignimbrite. Obsidian at dyke margins comprises layers of discrete colour. These display dramatic thickness variations and collapsed bubble structures, and are locally separated by zones of welded, brecciated and flow-banded obsidian. We use textural associations to present a detailed model of dyke emplacement and evolution. Dykes initially propagated with the passage of fragmented, gas-charged magma and generation of external tuffisite veins, whose distribution was strongly influenced by pre-existing fractures in the country rock. External tuffisites retained permeability throughout dyke emplacement due to their high lithic content. The geochemically homogenous dykes then evolved via incremental magma emplacement, with shear deformation localised along emplacement boundary layers. Shear zones migrated between different boundary layers, and bubble deformation promoted magma mobility. Brittle

  5. Nd, Sr, and O isotopic variations in metaluminous ash-flow tuffs and related volcanic rocks at the Timber Mountain/Oasis Valley Caldera, Complex, SW Nevada: implications for the origin and evolution of large-volume silicic magma bodies

    USGS Publications Warehouse

    Farmer, G.L.; Broxton, D.E.; Warren, R.G.; Pickthorn, W.

    1991-01-01

    Nd, Sr and O isotopic data were obtained from silicic ash-flow tuffs and lavas at the Tertiary age (16-9 Ma) Timber (Mountain/Oasis Valley volcanic center (TMOV) in southern Nevada, to assess models for the origin and evolution of the large-volume silicic magma bodies generated in this region. The large-volume (>900 km3), chemically-zoned, Topopah Spring (TS) and Tiva Canyon (TC) members of the Paintbrush Tuff, and the Rainier Mesa (RM) and Ammonia Tanks (AT) members of the younger Timber Mountain Tuff all have internal Nd and Sr isotopic zonations. In each tuff, high-silica rhyolites have lower initial e{open}Nd values (???1 e{open}Nd unit), higher87Sr/86Sr, and lower Nd and Sr contents, than cocrupted trachytes. The TS, TC, and RM members have similar e{open}Nd values for high-silica rhyolites (-11.7 to -11.2) and trachytes (-10.5 to -10.7), but the younger AT member has a higher e{open}Nd for both compositional types (-10.3 and -9.4). Oxygen isotope data confirm that the TC and AT members were derived from low e{open}Nd magmas. The internal Sr and Nd isotopic variations in each tuff are interpreted to be the result of the incorporation of 20-40% (by mass) wall-rock into magmas that were injected into the upper crust. The low e{open}Nd magmas most likely formed via the incorporation of low ??18O, hydrothermally-altered, wall-rock. Small-volume rhyolite lavas and ash-flow tuffs have similar isotopic characteristics to the large-volume ash-flow tuffs, but lavas erupted from extracaldera vents may have interacted with higher ??18O crustal rocks peripheral to the main magma chamber(s). Andesitic lavas from the 13-14 Ma Wahmonie/Salyer volcanic center southeast of the TMOV have low e{open}Nd (-13.2 to -13.8) and are considered on the basis of textural evidence to be mixtures of basaltic composition magmas and large proportions (70-80%) of anatectic crustal melts. A similar process may have occurred early in the magmatic history of the TMOV. The large-volume rhyolites

  6. Chaotic Zones around Rotating Small Bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lages, José; Shevchenko, Ivan I.; Shepelyansky, Dima L., E-mail: jose.lages@utinam.cnrs.fr

    Small bodies of the solar system, like asteroids, trans-Neptunian objects, cometary nuclei, and planetary satellites, with diameters smaller than 1000 km usually have irregular shapes, often resembling dumb-bells or contact binaries. The spinning of such a gravitating dumb-bell creates around it a zone of chaotic orbits. We determine its extent analytically and numerically. We find that the chaotic zone swells significantly if the rotation rate is decreased; in particular, the zone swells more than twice if the rotation rate is decreased 10 times with respect to the “centrifugal breakup” threshold. We illustrate the properties of the chaotic orbital zones in examples ofmore » the global orbital dynamics about asteroid 243 Ida (which has a moon, Dactyl, orbiting near the edge of the chaotic zone) and asteroid 25143 Itokawa.« less

  7. Magma Fragmentation

    NASA Astrophysics Data System (ADS)

    Gonnermann, Helge M.

    2015-05-01

    Magma fragmentation is the breakup of a continuous volume of molten rock into discrete pieces, called pyroclasts. Because magma contains bubbles of compressible magmatic volatiles, decompression of low-viscosity magma leads to rapid expansion. The magma is torn into fragments, as it is stretched into hydrodynamically unstable sheets and filaments. If the magma is highly viscous, resistance to bubble growth will instead lead to excess gas pressure and the magma will deform viscoelastically by fracturing like a glassy solid, resulting in the formation of a violently expanding gas-pyroclast mixture. In either case, fragmentation represents the conversion of potential energy into the surface energy of the newly created fragments and the kinetic energy of the expanding gas-pyroclast mixture. If magma comes into contact with external water, the conversion of thermal energy will vaporize water and quench magma at the melt-water interface, thus creating dynamic stresses that cause fragmentation and the release of kinetic energy. Lastly, shear deformation of highly viscous magma may cause brittle fractures and release seismic energy.

  8. Drilling Magma for Science, Volcano Monitoring, and Energy

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Lavallée, Y.; Blankenship, D.

    2017-12-01

    Magma chambers are central to understanding magma evolution, formation of continental crust, volcanism, and renewal of hydrothermal systems. Information from geology, petrology, laboratory experiments, and geophysical imagery has led to little consensus except a trend to see magma systems as being crystal-dominant (mush) rather than melt dominant. At high melt viscosities, crystal-liquid fractionation may be achieved by separation of melt from mush rather than crystals from liquid suspension. That the dominant volume has properties more akin to solid than liquid might explain the difficulty in detecting magma geophysically. Recently, geothermal drilling has intersected silicic magma at the following depths and SiO2 contents are: Puna, Hawaii, 2.5 km, 67 wt%; Menengai, Kenya 2.1 km, 67 wt%; Krafla, Iceland, 2.1 km, 75 wt%. Some similarities are: 1) Drillers encountered a "soft", sticky formation; 2) Cuttings or chips of clear quenched glass were recovered; 3) The source of the glass flowed up the well; 4) Transition from solid rock to recovering crystal-poor glass occurred in tens of meters, apparently without an intervening mush zone. Near-liquidus magma at the roof despite rapid heat loss there presents a paradox that may be explained by very recent intrusion of magma, rise of liquidus magma to the roof replacing partially crystallized magma, or extremely skewed representation of melt over mush in cuttings (Carrigan et al, this session). The latter is known to occur by filter pressing of ooze into lava lake coreholes (Helz, this session), but cannot be verified in actual magma without coring. Coring to reveal gradients in phase composition and proportions is required for testing any magma chamber model. Success in drilling into and controlling magma at all three locations, in coring lava lakes to over 1100 C, and in numerical modeling of coring at Krafla conditions (Su, this session) show this to be feasible. Other unprecedented experiments are using the known

  9. Crustal Strain Patterns in Magmatic and Amagmatic Early Stage Rifts: Border Faults, Magma Intrusion, and Volatiles

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Keir, D.; Roecker, S. W.; Tiberi, C.; Aman, M.; Weinstein, A.; Lambert, C.; Drooff, C.; Oliva, S. J. C.; Peterson, K.; Bourke, J. R.; Rodzianko, A.; Gallacher, R. J.; Lavayssiere, A.; Shillington, D. J.; Khalfan, M.; Mulibo, G. D.; Ferdinand-Wambura, R.; Palardy, A.; Albaric, J.; Gautier, S.; Muirhead, J.; Lee, H.

    2015-12-01

    Rift initiation in thick, strong continental lithosphere challenges current models of continental lithospheric deformation, in part owing to gaps in our knowledge of strain patterns in the lower crust. New geophysical, geochemical, and structural data sets from youthful magmatic (Magadi-Natron, Kivu), weakly magmatic (Malawi, Manyara), and amagmatic (Tanganyika) sectors of the cratonic East African rift system provide new insights into the distribution of brittle strain, magma intrusion and storage, and time-averaged deformation. We compare and contrast time-space relations, seismogenic layer thickness variations, and fault kinematics using earthquakes recorded on local arrays and teleseisms in sectors of the Western and Eastern rifts, including the Natron-Manyara basins that developed in Archaean lithosphere. Lower crustal seismicity occurs in both the Western and Eastern rifts, including sectors on and off craton, and those with and without central rift volcanoes. In amagmatic sectors, lower crustal strain is accommodated by slip along relatively steep border faults, with oblique-slip faults linking opposing border faults that penetrate to different crustal levels. In magmatic sectors, seismicity spans surface to lower crust beneath both border faults and eruptive centers, with earthquake swarms around magma bodies. Our focal mechanisms and Global CMTs from a 2007 fault-dike episode show a local rotation from ~E-W extension to NE-SE extension in this linkage zone, consistent with time-averaged strain recorded in vent and eruptive chain alignments. These patterns suggest that strain localization via widespread magma intrusion can occur during the first 5 My of rifting in originally thick lithosphere. Lower crustal seismicity in magmatic sectors may be caused by high gas pressures and volatile migration from active metasomatism and magma degassing, consistent with high CO2 flux along fault zones, and widespread metasomatism of xenoliths. Volatile release and

  10. Lava lake level as a gauge of magma reservoir pressure and eruptive hazard

    USGS Publications Warehouse

    Patrick, Matthew R.; Anderson, Kyle R.; Poland, Michael P.; Orr, Tim R.; Swanson, Donald A.

    2015-01-01

    Forecasting volcanic activity relies fundamentally on tracking magma pressure through the use of proxies, such as ground surface deformation and earthquake rates. Lava lakes at open-vent basaltic volcanoes provide a window into the uppermost magma system for gauging reservoir pressure changes more directly. At Kīlauea Volcano (Hawaiʻi, USA) the surface height of the summit lava lake in Halemaʻumaʻu Crater fluctuates with surface deformation over short (hours to days) and long (weeks to months) time scales. This correlation implies that the lake behaves as a simple piezometer of the subsurface magma reservoir. Changes in lava level and summit deformation scale with (and shortly precede) changes in eruption rate from Kīlauea's East Rift Zone, indicating that summit lava level can be used for short-term forecasting of rift zone activity and associated hazards at Kīlauea.

  11. Magma mixing in granitic rocks of the central Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Reid, John B.; Evans, Owen C.; Fates, Dailey G.

    1983-12-01

    The El Capitan alaskite exposed in the North American Wall, Yosemite National Park, was intruded by two sets of mafic dikes that interacted thermally and chemically with the host alaskite. Comparisons of petrographic and compositional data for these dikes and alaskite with published data for Sierra Nevada plutons lead us to suggest that mafic magmas were important in the generation of the Sierra Nevada batholith. Specifically, we conclude that: (1) intrusion of mafic magmas in the lower crust caused partial melting and generation of alaskite (rhyolitic) magmas; (2) interaction between the mafic and felsic magmas lead to the observed linear variation diagrams for major elements; (3) most mafic inclusions in Sierra Nevada plutons represent chilled pillows of mafic magmas, related by fractional crystallization and granitoid assimilation, that dissolve into their felsic host and contaminate it to intermediate (granodioritic) compositions; (4) vesiculation of hydrous mafic magma upon chilling may allow buoyant mafic inclusions and their disaggregation products to collect beneath a pluton's domed ceiling causing the zoning (mafic margins-to-felsic core) that these plutons exhibit.

  12. Magma storage in a strike-slip caldera

    PubMed Central

    Saxby, J.; Gottsmann, J.; Cashman, K.; Gutiérrez, E.

    2016-01-01

    Silicic calderas form during explosive volcanic eruptions when magma withdrawal triggers collapse along bounding faults. The nature of specific interactions between magmatism and tectonism in caldera-forming systems is, however, unclear. Regional stress patterns may control the location and geometry of magma reservoirs, which in turn may control the spatial and temporal development of faults. Here we provide new insight into strike-slip volcano-tectonic relations by analysing Bouguer gravity data from Ilopango caldera, El Salvador, which has a long history of catastrophic explosive eruptions. The observed low gravity beneath the caldera is aligned along the principal horizontal stress orientations of the El Salvador Fault Zone. Data inversion shows that the causative low-density structure extends to ca. 6 km depth, which we interpret as a shallow plumbing system comprising a fractured hydrothermal reservoir overlying a magmatic reservoir with vol% exsolved vapour. Fault-controlled localization of magma constrains potential vent locations for future eruptions. PMID:27447932

  13. Magma storage in a strike-slip caldera.

    PubMed

    Saxby, J; Gottsmann, J; Cashman, K; Gutiérrez, E

    2016-07-22

    Silicic calderas form during explosive volcanic eruptions when magma withdrawal triggers collapse along bounding faults. The nature of specific interactions between magmatism and tectonism in caldera-forming systems is, however, unclear. Regional stress patterns may control the location and geometry of magma reservoirs, which in turn may control the spatial and temporal development of faults. Here we provide new insight into strike-slip volcano-tectonic relations by analysing Bouguer gravity data from Ilopango caldera, El Salvador, which has a long history of catastrophic explosive eruptions. The observed low gravity beneath the caldera is aligned along the principal horizontal stress orientations of the El Salvador Fault Zone. Data inversion shows that the causative low-density structure extends to ca. 6 km depth, which we interpret as a shallow plumbing system comprising a fractured hydrothermal reservoir overlying a magmatic reservoir with vol% exsolved vapour. Fault-controlled localization of magma constrains potential vent locations for future eruptions.

  14. Petrology of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Druitt, T.H.; Bacon, C.R.

    1989-01-01

    Evolution of the magma chamber at Mount Mazama involved repeated recharge by two types of andesite (high-Sr and low-Sr), crystal fractionation, crystal accumulation, assimilation, and magma mixing (Bacon and Druitt 1988). This paper addresses the modal compositions, textures, mineral chemistry and magmatic temperatures of (i) products of the 6845??50 BP climactic eruption, (ii) blocks of partially fused granitoid wallrock found in the ejecta, and (iii) preclimactic rhyodacitic lavas leaked from the chamber in late Pleistocene and early Holocene time. Immediately prior to the climactic eruption the chamber contained ??? 40 km3 of rhyodacite (10 vol% plag + opx + aug + hb + mt + ilm, ???880?? C) overlying high-Sr andesite and cumulus-crystal mush (28-51 vol% plag + hb ?? opx ?? aug + mt ?? ilm, 880?? to ???950?? C), which in turn overlay low-Sr crystal mush (50-66 vol% plag + opx + aug ?? hb ?? ol + mt + ilm, 890?? to ???950??? C). Despite the well known compositional gap in the ejecta, no thermal discontinuity existed in the chamber. Pre-eruptive water contents of pore liquids in most high-Sr and low-Sr mushes were 4-6 wt%, but on average the high-Sr mushes were slightly richer in water. Although parental magmas of the crystal mushes were andesitic, xenocrysts of bytownite and Ni-rich magnesian olivine in some scoriae record the one-time injection of basalt into the chamber. Textures in ol-bearing scoriae preserve evidence for the reactions ol + liq = opx and ol + aug + liq(+ plag?) = hb, which occurred in andesitic liquids at Mount Mazama. Strontium abundances in plagioclase phenocrysts constrain the petrogenesis of preclimactic and climactic rhyodacites. Phenocryst cores derived from high-Sr and low-Sr magmas have different Sr contents which can be resolved by microprobe. Partition coefficients for plagioclase in andesitic to rhyolitic glasses range from 2 to 7, and increase as glass %SiO2 increases. Evolved Pleistocene rhyodacites (???30-25,000 BP) and

  15. Alteration and geochemical zoning in Bodie Bluff, Bodie mining district, eastern California

    USGS Publications Warehouse

    Herrera, P.A.; Closs, L.G.; Silberman, M.L.

    1993-01-01

    Banded, epithermal quartz-adularia veins have produced about 1.5 million ounces of gold and 7 million ounces of silver from the Bodie mining district, eastern California. The veins cut dacitic lava flows, pyroclastic rocks and intrusions. Sinter boulders occur in a graben structure at the top of Bodie Bluff and fragments of sinter and mineralized quartz veins occur in hydrothermal breccias nearby. Explosive venting evidently was part of the evolution of the ore-forming geothermal systems which, at one time, must had reached the paleosurface. Previous reconnaissance studies at Bodie Bluff suggested that the geometry of alteration mineral assemblages and distribution of some of the major and trace elements throughout the system correspond to those predicted by models of hot-spring, volcanic rock hosted precious metal deposits (Silberman, 1982; Silberman and Berger, 1985). The current study was undertaken to evaluate these sugestions further. About 500 samples of quartz veins and altered rocks, including sinter, collected over a vertical extent of 200 meters within Bodie Bluff were petrographically examined and chemically analyzed for trace elements by emission spectrographic and atomic absorption methods. Sixty-five samples were analyzed for major elements by X-ray fluorescence methods. The results of these analyses showed that, in general, alteration mineral assemblage and vertical geochemical zoning patterns follow those predicted for hot-spring deposits, but that geochemical zoning patterns for sinter and quartz veins (siliceous deposits), and altered wall rocks are not always similar. The predicted depth-concentration patterns for some elements, notably Au, Ag, Hg, and Tl in quartz veins, and Hg, As and Ag in wall rocks were not as expected, or were perturbed by the main ore producing zone. For both quartz veins and altered wall rocks, the main ore zone had elevated metal contents. Increased concentration of many of these elements could indicate proximity to this

  16. The 3D Distribution of Magma Bodies that Fed the Paraná Silicic Volcanics, Brazil: A Combination of Field Evidence, Textural Analysis, and Geothermobarometry

    NASA Astrophysics Data System (ADS)

    Harmon, L.; Gualda, G. A. R.; Gravley, D. M.

    2016-12-01

    The Paraná Silicic Volcanics include some of the largest eruptive deposits known in the geological record. However, we know very little about the magma bodies that fed these eruptions. Combining physical volcanology, geochemistry, and geothermobarometry techniques, we aim to find the sources of extinct magma bodies to build a 3D view of the magma structure at the time by discovering storage conditions, eruption styles, and post-eruption alteration. The approach elucidates temporal and spatial eruption styles and sequences of the silicic units that make up the Palmas unit of the Serra Geral formation, Brazil. We use field investigations to determine the history of volcanic deposits, domes, and changes in eruptive style; we map and characterize volcanic deposits based on thickness (thicker is proximal to source) and distribution of effusive (proximal to source) and explosive deposits. We focus on several exposed canyons that exhibit either exclusively explosive or effusive, or a clear progression from explosive to effusive deposits. The progression from explosive to effusive indicates a system change from explosively energetic to effusively waning. Additionally, observation of pervasive flow banding in both effusive and explosive deposits indicates rheomorphic flow through many portions of the field area, an indicator of hot emplacement. Geochemical work focuses on the pre-eruptive magma conditions to determine the depth of magma bodies. We utilize glass bearing samples of both the explosively deposited juvenile blob-like structures and obsidian samples to determine crystallization depth. The glass is variably altered, via silicification and devitrification processes, with the blobs more greatly silicified than the obsidian. We use rhyolite-MELTS geothermobarometry when pristine glass can be found. Initial results indicate shallow ( 80 MPa) storage conditions for the explosively erupted blobs. The combination of techniques builds a 3D understanding of extinct super

  17. The Quench Control of Water Estimates in Convergent Margin Magmas

    NASA Astrophysics Data System (ADS)

    Gavrilenko, M.; Krawczynski, M.; Ruprecht, P.

    2017-12-01

    Mineral-hosted glassy melt inclusions (MIs) have been used to quantify magma volatile contents for several decades. Despite the growing number of volatile studies utilizing MIs, it has not been tested whether there is a physical limit on how much dissolved volatiles a glassy MI can contain. We explored the limits of MIs as hydrous magma recorders in an experimental study, showing that there is a limit of dissolved H2O that glassy MIs cannot exceed. These results show there is potential bias in the glassy MI data set; they can only faithfully record pre-eruptive H2O contents in the upper-most part of the Earth's crust where H2O-solubility is low. The current MI database cannot be used to robustly estimate the full range of arc magmas and therefore assess volatile budgets in primitive or evolved compositions. Such magmas may contain much larger amounts of H2O than currently recognized and the diversity of magma evolutionary pathways in subduction zones is likely being significantly underappreciated.

  18. Magma transport and storage at Kilauea volcano, Hawaii II: 1952-2008

    NASA Astrophysics Data System (ADS)

    Klein, F.; Wright, T. L.

    2011-12-01

    We trace the evolution of Kilauea between the Halemaumau eruptions of 1952 and 2008. The magma supply path from the mantle is defined by the distribution of earthquakes deeper than 20 km. We compared the accumulated moment release from deep magma supply, south flank and rift zone earthquakes. We identified every intrusion and eruption in time plots of summit tilt and seismic activity in all regions, and plotted the earthquake distribution for ~ 1 week covering the period prior to, during and following the event. The establishment and continued growth of modern seismic and geodetic networks allow us to define three types of intrusions. 'Normal' intrusions occur with or without eruption and are accompanied by sharp tilt deflation at Kilauea's summit. 'Inflationary' intrusions occur during periods of summit inflation accompanied by rift earthquake swarms in the near-summit parts of both rift zones. 'Slow' intrusions are defined by isolated swarms of south flank earthquakes distributed perpendicular to the rift zones. Magnitudes of inflation and deflation shown by the daily tilt record at Kilauea's summit are converted to volume using a factor determined by previous workers. Magma supply rates are determined by summation of the volumes in cubic kilometers of (1) net summit inflation (2) sharp summit deflation accompanying rift activity and (3) summit and long continuous rift eruptions, divided by the elapsed time in years. Eruption efficiency is calculated by comparing the volumes of rift eruption and summit deflation. In this study we have reached the following conclusions: 1) Magma supply rates have increased from the pre-1952 value of 0.062 km3/yr to 0.1 km3/yr during the Mauna Ulu eruption of 1969-74 to 0.2 km3/yr during much of the eruption that began in 1983. 2) Eruption efficiencies show cyclic increases with increased activity, culminating in an efficiency averaging 100% during episodes of high fountaining in the period 1983-86. 3) Some south flank earthquake

  19. From Mush to Eruption in 1000 Years: Rapid Assembly of the Super-Sized Oruanui Magma Body

    NASA Astrophysics Data System (ADS)

    Allan, A. S.; Morgan, D. J.; Wilson, C. J.; Millet, M.

    2012-12-01

    The mush model is useful in explaining how large volumes of evolved silicic melt can be generated in and extracted from a crystal-rich source to form crystal-poor rhyolite magma bodies at shallow crustal levels. It is unclear, however, how processes of melt extraction and/or formation of the melt-dominant magma body might be reflected in the crystal record, and what physical and temporal constraints can be applied. Textural observations and in situ geochemical fingerprints in crystals from pumices of the ~25.4 ka Oruanui eruption (Taupo, New Zealand), offer new perspectives on the processes, physical conditions and timing of the melt extraction and accumulation. Almost all orthopyroxene (opx) and plagioclase (plag) cores have textures showing a period of disequilibrium (partial dissolution and/or resorption) followed by stable conditions (infilling of raddled cores; euhedral rim overgrowths). Trace element contents in amphibole (amph), which was stable and actively crystallizing in all but the most evolved parcels of Oruanui magma, complement textural evidence showing that Mn and Zn liberated by opx dissolution were preferentially sequestered in amph. Concentrations of these opx-loving elements show a prominent inflection when plotted against indices of melt evolution (e.g. Eu/Eu* in amph) marking a return to opx stability and subsequent crystallization. Plagioclase, the most abundant crystal phase, records a more complex history with significant inheritance, but textural and chemical evidence suggests that at least some of Oruanui plag crystals experienced the same departure from and return to stability as the opx. Amphibole trace element data are linked to in situ estimates of P-T-fO2 and melt H2O determined via the Ridolfi et al. (2010: Contrib Mineral Petrol 160, 45) thermobarometer. Textural and geochemical evidence combined with P-T-H2O model values indicate that three major Oruanui crystal phases (opx, amph, plag) record a significant decompression event

  20. Origin of Aphyric Phonolitic Magmas: Natural Evidences and Experimental Constraints

    NASA Astrophysics Data System (ADS)

    Masotta, M.; Freda, C.; Gaeta, M.

    2010-12-01

    Large explosive phonolitic eruptions are commonly characterised by aphyric juvenile eruptive products. Taking into account the low density contrast among phonolitic composition and settling phases (i.e., feldspar and leucite), the almost complete lack of crystals in these differentiated compositions rises the question of which process could produce such an efficient crystal-melt separation. Seeking for an answer, we have investigated crystallization in presence of a thermal gradient as a possible mechanism for crystal-melt separation, considering both chemical and physical effects acting on a variably crystallized system. Using a natural tephri-phonolitic composition as starting material (M.te Aguzzo scoria cone, Sabatini Volcanic District, Central Italy), we have reproduced thermal gradient-driven crystallization in order to simulate the crystallization process in a thermally zoned magma chamber. Crystallization degree (paragenesis made of clinopyroxene±feldspars±leucite) as well as melt composition varies along the thermal gradient. In particular, melt composition ranges from the tephri-phonolitic starting composition at the bottom of the charge (hottest and aphyric zone) to phonolitic at the top (cooler and heterogeneously-crystallised zone). Backscattered images of experimental products clearly evidence: i) the aphyric tephri-phonolitic melt region at the bottom of the charge; ii) a drop-shaped crystal clustering in the middle zone; and iii) large aphyric belt and pockets (up to 100 µm wide) of phonolitic melt, with large deformed-shaped sanidine occurring at their margin, at the charge top region. The latter two features, resulting from solid-melt displacements, suggest that the segregation of phonolitic melt can be related to crystal sinking and compaction. On the other hand, the compositional variability of the melt along the thermal gradient is directly related to the crystallization degree, indicating that chemical diffusion and thermal migration have

  1. Petrology of the 1877 eruption of Cotopaxi Volcano, Ecuador: Insight on magma evolution and storage

    NASA Astrophysics Data System (ADS)

    Saalfeld, M. A.; Panter, K. S.; Kelley, D.

    2017-12-01

    Cotopaxi is a stratovolcano in the Northern Andes Volcanic Zone, and has a history of bimodal volcanism, alternating between rhyolite and andesite. With Cotopaxi reawakening in 2015 after 100 years of quiescence, the question of what is occurring beneath the surface becomes especially poignant. To answer this question, we must look to the volcano's past. This work characterizes the mineralogy and geochemistry of the recent eruptive products of Cotopaxi, with emphasis on the two pulses of the 1877 eruption. Additionally, pressure and temperature are estimated for magmas prior to eruption. This will allow a better understanding of the magma plumbing system and its evolution over time. Over the past 500 years Cotopaxi has had five major eruptive events (VEI 3-4), which occurred in 1532, 1742, 1744, 1768, and 1877, and included pyroclastic surges, scoria flows, and lahars. After the initial pulse of the 1877 eruption and the subsequent lahars, a second pulse of magma produced a pyroclastic density current containing scoria clasts up to 1 meter in diameter. All samples are basaltic andesite to andesite (56-59 wt. % SiO2), and a mineral assemblage of pl + opx + cpx + mag ± ol. Plagioclase range from An47 to An78 and show both normal and reverse zoning. Normally zoned crystals exhibit greater compositional variation between cores and rims than reversely zoned crystals (median Ancore-Anrim 8% vs 4%, respectively), indicating that crystal fractionation is a dominant process but that mixing also played a role in magma genesis. Pyroxenes occur as augite and enstatite and do not exhibit significant zoning. The similar petrology of these eruptions suggests that they were part of a relatively long-lived system that underwent differentiation and replenishment between eruptions. Thermobarometric data indicate that magma storage occurred at temperatures of 1100-1150°C and pressures ranging from 2 kbar (during the 1877 eruption) to 4 kbar (during the 1742 eruption), which is

  2. Loki Patera: A Magma Sea Story

    NASA Technical Reports Server (NTRS)

    Veeder, G. J.; Matson, D. L.; Rathbun, A. G.

    2005-01-01

    We consider Loki Patera on Io as the surface expression of a large uniform body of magma. Our model of the Loki magma sea is some 200 km across; larger than a lake but smaller than an ocean. The depth of the magma sea is unknown, but assumed to be deep enough that bottom effects can be ignored. Edge effects at the shore line can be ignored to first order for most of the interior area. In particular, we take the dark material within Loki Patera as a thin solidified lava crust whose hydrostatic shape follows Io's isostatic surface (approx. 1815 km radius of curvature). The dark surface of Loki appears to be very smooth on both regional and local (subresolution) scales. The thermal contrast between the low and high albedo areas within Loki is consistent with the observed global correlation. The composition of the model magma sea is basaltic and saturated with dissolved SO2 at depth. Its average, almost isothermal, temperature is at the liquidus for basalt. Additional information is included in the original extended abstract.

  3. Seismic detection of the summit magma complex of kilauea volcano, hawaii.

    PubMed

    Thurber, C H

    1984-01-13

    Application of simultaneous inversion of seismic P-wave arrival time data to the investigation of the crust beneath Kilauea Volcano yields a detailed picture of the volcano's heterogeneous structure. Zones of anomalously high seismic velocity are found associated with the volcano's rift zones. A low-velocity zone at shallow depth directly beneath the caldera coincides with an aseismic region interpreted as being the locus of Kilauea's summit magma complex.

  4. Forecasting magma-chamber rupture at Santorini volcano, Greece.

    PubMed

    Browning, John; Drymoni, Kyriaki; Gudmundsson, Agust

    2015-10-28

    How much magma needs to be added to a shallow magma chamber to cause rupture, dyke injection, and a potential eruption? Models that yield reliable answers to this question are needed in order to facilitate eruption forecasting. Development of a long-lived shallow magma chamber requires periodic influx of magmas from a parental body at depth. This redistribution process does not necessarily cause an eruption but produces a net volume change that can be measured geodetically by inversion techniques. Using continuum-mechanics and fracture-mechanics principles, we calculate the amount of magma contained at shallow depth beneath Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions, and geodetic measurements of the 2011-2012 unrest period, that the measured 0.02% increase in volume of Santorini's shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano.

  5. Forecasting magma-chamber rupture at Santorini volcano, Greece

    PubMed Central

    Browning, John; Drymoni, Kyriaki; Gudmundsson, Agust

    2015-01-01

    How much magma needs to be added to a shallow magma chamber to cause rupture, dyke injection, and a potential eruption? Models that yield reliable answers to this question are needed in order to facilitate eruption forecasting. Development of a long-lived shallow magma chamber requires periodic influx of magmas from a parental body at depth. This redistribution process does not necessarily cause an eruption but produces a net volume change that can be measured geodetically by inversion techniques. Using continuum-mechanics and fracture-mechanics principles, we calculate the amount of magma contained at shallow depth beneath Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions, and geodetic measurements of the 2011–2012 unrest period, that the measured 0.02% increase in volume of Santorini’s shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano. PMID:26507183

  6. The influence of magma viscosity on convection within a magma chamber

    NASA Astrophysics Data System (ADS)

    Schubert, M.; Driesner, T.; Ulmer, P.

    2012-12-01

    Magmatic-hydrothermal ore deposits are the most important sources of metals like Cu, Mo, W and Sn and a major resource for Au. It is well accepted that they are formed by the release of magmatic fluids from a batholith-sized magma body. Traditionally, it has been assumed that crystallization-induced volatile saturation (called "second boiling") is the main mechanism for fluid release, typically operating over thousands to tens of thousands of years (Candela, 1991). From an analysis of alteration halo geometries caused by magmatic fluids, Cathles and Shannon (2007) suggested much shorter timescales in the order of hundreds of years. Such rapid release of fluids cannot be explained by second boiling as the rate of solidification scales with the slow conduction of heat away from the system. However, rapid fluid release is possible if convection is assumed within the magma chamber. The magma would degas in the upper part of the magma chamber and volatile poor magma would sink down again. Such, the rates of degassing can be much higher than due to cooling only. We developed a convection model using Navier-Stokes equations provided by the computational fluid dynamics platform OpenFOAM that gives the possibility to use externally derived meshes with complex (natural) geometries. We implemented a temperature, pressure, composition and crystal fraction dependent viscosity (Ardia et al., 2008; Giordano et al., 2008; Moore et al., 1998) and a temperature, pressure, composition dependent density (Lange1994). We found that the new viscosity and density models strongly affect convection within the magma chamber. The dependence of viscosity on crystal fraction has a particularly strong effect as the steep viscosity increase at the critical crystal fraction leads to steep decrease of convection velocity. As the magma chamber is cooling from outside to inside a purely conductive layer is developing along the edges of the magma chamber. Convection continues in the inner part of the

  7. Conditions Leading to Sudden Release of Magma Pressure

    NASA Astrophysics Data System (ADS)

    Damjanac, B.; Gaffney, E. S.

    2005-12-01

    Buildup of magmatic pressures in a volcanic system can arise from a variety of mechanisms. Numerical models of the response of volcanic structures to buildup of pressures in magma in dikes and conduits provide estimates of the pressures needed to reopen blocked volcanic vents. They also can bound the magnitude of sudden pressure drops in a dike or conduit due to such reopening. Three scenarios are considered: a dike that is sheared off by covolcanic normal faulting, a scoria cone over a conduit that is blocked by in-falling scoria and some length of solidified magma, and a lava flow whose feed has partially solidified due to an interruption of magma supply from below. For faulting, it is found that magma would be able to follow the fault to a new surface eruption. A small increase in magma pressure over that needed to maintain flow prior to faulting is required to open the new path, and the magma pressure needed to maintain flow is lower but still greater than for the original dike. The magma pressure needed to overcome the other types of blockages depends on the details of the blockage. For example, for a scoria cone, it depends on the depth of the slumped scoria and on the depth to which the magma has solidified in the conduit. In general, failure of the blockage is expected to occur by radial hydrofracture just below the blocked length of conduit at magma pressures of 10 MPa or less, resulting in radial dikes. However, this conclusion is based on the assumption that the fluid magma has direct access to the rock surrounding the conduit. If, on the other hand, there is a zone of solidified basalt, still hot enough to deform plastically, surrounding the molten magma in the conduit, this could prevent breakout of a hydrofracture and allow higher pressures to build up. In such cases, pressures could build high enough to deform the overlying strata (scoria cone or lava flow). Models of such deformations suggest the possibility of more violent eruptions resulting from

  8. Using Earthquake Location and Coda Attenuation Analysis to Explore Shallow Structures Above the Socorro Magma Body, New Mexico

    NASA Astrophysics Data System (ADS)

    Schmidt, J. P.; Bilek, S. L.; Worthington, L. L.; Schmandt, B.; Aster, R. C.

    2017-12-01

    The Socorro Magma Body (SMB) is a thin, sill-like intrusion with a top at 19 km depth covering approximately 3400 km2 within the Rio Grande Rift. InSAR studies show crustal uplift patterns linked to SMB inflation with deformation rates of 2.5 mm/yr in the area of maximum uplift with some peripheral subsidence. Our understanding of the emplacement history and shallow structure above the SMB is limited. We use a large seismic deployment to explore seismicity and crustal attenuation in the SMB region, focusing on the area of highest observed uplift to investigate the possible existence of fluid/magma in the upper crust. We would expect to see shallower earthquakes and/or higher attenuation if high heat flow, fluid or magma is present in the upper crust. Over 800 short period vertical component geophones situated above the northern portion of the SMB were deployed for two weeks in 2015. This data is combined with other broadband and short period seismic stations to detect and locate earthquakes as well as to estimate seismic attenuation. We use phase arrivals from the full dataset to relocate a set of 33 local/regional earthquakes recorded during the deployment. We also measure amplitude decay after the S-wave arrival to estimate coda attenuation caused by scattering of seismic waves and anelastic processes. Coda attenuation is estimated using the single backscatter method described by Aki and Chouet (1975), filtering the seismograms at 6, 9 and 12 Hz center frequencies. Earthquakes occurred at 2-13 km depth during the deployment, but no spatial patterns linked with the high uplift region were observed over this short duration. Attenuation results for this deployment suggest Q ranging in values of 130 to 2000, averaging around Q of 290, comparable to Q estimates of other studies of the western US. With our dense station coverage, we explore attenuation over smaller scales, and find higher attenuation for stations in the area of maximum uplift relative to stations

  9. Magma differentiation rates from ( 226Ra / 230Th) and the size and power output of magma chambers

    NASA Astrophysics Data System (ADS)

    Blake, Stephen; Rogers, Nick

    2005-08-01

    We present a mathematical model for the evolution of the ( 226Ra / 230Th) activity ratio during simultaneous fractional crystallization and ageing of magma. The model is applied to published data for four volcanic suites that are independently known to have evolved by fractional crystallization. These are tholeiitic basalt from Ardoukoba, Djibouti, MORB from the East Pacific Rise, alkali basalt to mugearite from Vestmannaeyjar, Iceland, and basaltic andesites from Miyakejima, Izu-Bonin arc. In all cases ( 226Ra / 230Th) correlates with indices of fractional crystallization, such as Th, and the data fall close to model curves of constant fractional crystallization rate. The best fit rates vary from 2 to 6 × 10 - 4 yr - 1 . Consequently, the time required to generate moderately evolved magmas ( F ≤ 0.7) is of the order of 500 to 1500 yrs and closed magma chambers will have lifetimes of 1700 to 5000 yrs. These rates and timescales are argued to depend principally on the specific power output (i.e., power output per unit volume) of the magma chambers that are the sites of fractional crystallization. Equating the heat flux at the EPR to the heat flux from the sub-axial magma chamber that evolves at a rate of ca. 3 × 10 - 4 yr - 1 implies that the magma body is a sill of ca. 100 m thickness, a value which coincides with independent estimates from seismology. The similarity of the four inferred differentiation rates suggests that the specific power output of shallow magma chambers in a range of tectonic settings covers a similarly narrow range of ca. 10 to 50 MW km - 3 . Their differentiation rates are some two orders of magnitude slower than that of the basaltic Makaopuhi lava lake, Hawaii, that cooled to the atmosphere. This is consistent with the two orders of magnitude difference in heat flux between Makaopuhi and the East Pacific Rise. ( 226Ra / 230Th) data for magma suites related by fractional crystallization allow the magma differentiation rate to be estimated

  10. Magma-assisted rifting in Ethiopia.

    PubMed

    Kendall, J-M; Stuart, G W; Ebinger, C J; Bastow, I D; Keir, D

    2005-01-13

    The rifting of continents and evolution of ocean basins is a fundamental component of plate tectonics, yet the process of continental break-up remains controversial. Plate driving forces have been estimated to be as much as an order of magnitude smaller than those required to rupture thick continental lithosphere. However, Buck has proposed that lithospheric heating by mantle upwelling and related magma production could promote lithospheric rupture at much lower stresses. Such models of mechanical versus magma-assisted extension can be tested, because they predict different temporal and spatial patterns of crustal and upper-mantle structure. Changes in plate deformation produce strain-enhanced crystal alignment and increased melt production within the upper mantle, both of which can cause seismic anisotropy. The Northern Ethiopian Rift is an ideal place to test break-up models because it formed in cratonic lithosphere with minor far-field plate stresses. Here we present evidence of seismic anisotropy in the upper mantle of this rift zone using observations of shear-wave splitting. Our observations, together with recent geological data, indicate a strong component of melt-induced anisotropy with only minor crustal stretching, supporting the magma-assisted rifting model in this area of initially cold, thick continental lithosphere.

  11. Timing of magma storage at the Vulcano Island during the last 1000 years

    NASA Astrophysics Data System (ADS)

    De Rosa, Rosanna; Donato, Paola; Gioncada, Anna; Giuffrida, Marisa; Nicotra, Eugenio; Viccaro, Marco

    2016-04-01

    Understanding the nature and timescales of magmatic processes is one of the primary goals of modern volcanology, and chemical zoning is an efficient tool to achieve this aim. In basic volcanic rocks, plagioclase is a common phase used for documenting magmatic processes and their timescales. This is chiefly due to its stability over a wide range of physical-chemical conditions and its sensitivity to changes in thermodynamic parameters during its growth in magma storage and transport zones. We present here textural analysis and major (SEM-EDS/WDS) and trace (LA-ICP-MS) element zoning data on plagioclase crystals from selected volcanic products of Vulcano (Aeolian Islands), emitted during the last 1000 years. The collected samples belong to the La Fossa cone (Palizzi latitic lava flow, latitic enclaves within Commenda and Pietre Cotte rhyolitic lava flows, 1888-90 spatter bombs) and Vulcanello peninsula (shoshonitic and shoshonitic-latitic lava flows at the end of Vulcanello I and Vulcanello 3 phases, respectively). Textural observations through polarizing optical microscope, high-contrast BSE images and SEM-EDS/WDS core-to-rim profiles, allowed to discriminate four different plagioclase textures, namely: 1) oscillatory-zoned crystals; 2) sieve-textured rims; 3) dissolved/resorbed cores; 4) cores with coarse sieve-textures. Plagioclase with sieve-textured rims and coarsely-sieved cores (Types 2 and 4) are the most abundant in the analyzed products. The estimates of maximum magma residence time have been obtained on crystals with exclusive oscillatory-zoned patterns (Type 1) or portions of crystals not severely affected by μm-sized glass inclusions caused by disequilibrium. We used one-step modeling of Sr diffusion considering the highest An content of each crystal and magma temperature ranging between 1075 and 1175° C. Textural observations and core-to-rim profiles on plagioclases show that dynamics of magma ascent and storage are markedly different at La Fossa and

  12. Geochemical composition, petrography and 40Ar/39Ar age of the Heldburg phonolite: implications on magma mixing and mingling

    NASA Astrophysics Data System (ADS)

    Abratis, Michael; Viereck, Lothar; Pfänder, Jörg A.; Hentschel, Roland

    2015-11-01

    Differentiated magmatic rocks such as trachyte and phonolite are volumetrically subordinate to mafic volcanic rocks within the Cenozoic Central European Volcanic Province (exceptions are the East Eifel and the Rhön volcanic fields). Within the volcanic field of the "Heldburg dike swarm" (Heldburger Gangschar), the phonolite of the Burgberg near Heldburg represents the only known occurrence of differentiated magmatic rocks. However, the Heldburg phonolite is famous foremost for containing mantle xenoliths (spinel lherzolite). Former studies proposing a cogenetic relationship between the phonolite and the peridotites concluded that the phonolite magma must have evolved under upper mantle conditions. Herewith, we present petrographic and geochemical evidence for magma mixing and mingling in the Heldburg phonolite melt due to the intrusion of mantle-derived basanitic magma, which is exposed today as dikes at the foot of the Heldburg Burgberg. During this process, the mantle xenoliths were introduced into the phonolite melt as they all contain rims of basanitic magma. Extensive mingling features (e.g., schlieren layers, load casts, flame structures, mafic enclaves) are developed, indicating that the basanite and the zoned phonolitic body were melts at the time of mixing. These petrographic and geochemical indications of two coeval melts of different composition are substantiated by 40Ar/39Ar dating, revealing identical ages of ca. 15 Ma.

  13. Oxidized sulfur-rich mafic magma at Mount Pinatubo, Philippines

    USGS Publications Warehouse

    de Hoog, J.C.M.; Hattori, K.H.; Hoblitt, R.P.

    2004-01-01

    Basaltic fragments enclosed in andesitic dome lavas and pyroclastic flows erupted during the early stages of the 1991 eruption of Mount Pinatubo, Philippines, contain amphiboles that crystallized during the injection of mafic magma into a dacitic magma body. The amphiboles contain abundant melt inclusions, which recorded the mixing of andesitic melt in the mafic magma and rhyolitic melt in the dacitic magma. The least evolved melt inclusions have high sulfur contents (up to 1,700 ppm) mostly as SO42, which suggests an oxidized state of the magma (NNO + 1.4). The intrinsically oxidized nature of the mafic magma is confirmed by spinel-olivine oxygen barometry. The value is comparable to that of the dacitic magma (NNO + 1.6). Hence, models invoking mixing as a means of releasing sulfur from the melt are not applicable to Pinatubo. Instead, the oxidized state of the dacitic magma likely reflects that of parental mafic magma and the source region in the sub-arc mantle. Our results fit a model in which long-lived SO2 discharge from underplated mafic magma accumulated in the overlying dacitic magma and immiscible aqueous fluids. The fluids were the most likely source of sulfur that was released into the atmosphere during the cataclysmic eruption. The concurrence of highly oxidized basaltic magma and disproportionate sulfur output during the 1991 Mt. Pinatubo eruption suggests that oxidized mafic melt is an efficient medium for transferring sulfur from the mantle to shallow crustal levels and the atmosphere. As it can carry large amounts of sulfur, effectively scavenge sulfides from the source mantle and discharge SO2 during ascent, oxidized mafic magma forms arc volcanoes with high sulfur fluxes, and potentially contributes to the formation of metallic sulfide deposits. ?? Springer-Verlag 2003.

  14. Evaluation of crustal recycling during the evolution of Archean-age Matachewan basaltic magmas

    NASA Technical Reports Server (NTRS)

    Nelson, Dennis O.

    1989-01-01

    The simplest model for the Matachewan-Hearst Dike (MHD) magmas is assimilation-fractional crystallization (AFC), presumably occurring at the base of the crust during underplating. Subduction zone enriched mantle sources are not required. Trace elements suggest that the mantle sources for the MHD were depleted, but possessed a degree of heterogeneity. Rates of assimilation were approximately 0.5 (= Ma/Mc); the contaminant mass was less than 20 percent. The contaminant was dominated by tonalites-randodiorites, similar to xenoliths and rocks in the Kapuskasing Structural Zone (KSZ). Assimilation of partial melts of light-rare earth and garnet-bearing basaltic precursors may have produced some the MHD magmas. Apparently, previous underplating-AFC processes had already produced a thick crust. The silicic granitoid assimilant for the MHD magmas was probably produced by earlier processing of underplated mafic crust (4, 5, 10, 21 and 30). Calculations suggest that the derived silicic rocks possess negative Ta and Ti anomalies even though they were not the product of subduction.

  15. Experimental Study of Lunar and SNC Magmas

    NASA Astrophysics Data System (ADS)

    Rutherford, Malcolm J.

    2000-08-01

    The research described in this progress report involved the study of petrological, geochemical and volcanic processes that occur on the Moon and the SNC parent body, generally accepted to be Mars. The link between these studies is that they focus on two terrestrial-type parent bodies somewhat smaller than earth, and the fact that they focus on the role of volatiles in magmatic processes and on processes of magma evolution on these planets. The work on the lunar volcanic glasses has resulted in some exciting new discoveries over the years of this grant. During the tenure of the present grant, we discovered a variety of metal blebs in the A17 orange glass. Some of these Fe-Ni metal blebs occur in the glass; others were found in olivine phenocrysts which we find make up about 2 vol % of the orange glass magma. The importance of these metal spheres is that they fix the oxidation state of the parent magma during the eruption, and also indicate changes during the eruption. They also yield important information about the composition of the gas phase present, the gas which drove the lunar fire-fountaining. In an Undergraduate senior thesis project, Nora Klein discovered a melt inclusion that remained in a glassy state in one of the olivine phenocrysts. Analyses of this inclusion gave additional information on the CO2, CO and S contents of the orange glass magma prior to its reaching the lunar surface. The composition of lunar volcanic gases has long been one of the puzzles of lunar magmatic processes. One of the more exciting findings in our research over the past year has been the study of magmatic processes linking the SNC meteorite source magma composition with the andesitic composition rocks found at the Pathfinder site. In this project, graduate student Michelle Minitti showed that there was a clear petrologic link between these two magma types via fractional removal of crystals from the SNC parent melt, but the process only worked if there was at least 1 wt

  16. Experimental Study of Lunar and SNC Magmas

    NASA Technical Reports Server (NTRS)

    Rutherford, Malcolm J.

    2000-01-01

    The research described in this progress report involved the study of petrological, geochemical and volcanic processes that occur on the Moon and the SNC parent body, generally accepted to be Mars. The link between these studies is that they focus on two terrestrial-type parent bodies somewhat smaller than earth, and the fact that they focus on the role of volatiles in magmatic processes and on processes of magma evolution on these planets. The work on the lunar volcanic glasses has resulted in some exciting new discoveries over the years of this grant. During the tenure of the present grant, we discovered a variety of metal blebs in the A17 orange glass. Some of these Fe-Ni metal blebs occur in the glass; others were found in olivine phenocrysts which we find make up about 2 vol % of the orange glass magma. The importance of these metal spheres is that they fix the oxidation state of the parent magma during the eruption, and also indicate changes during the eruption. They also yield important information about the composition of the gas phase present, the gas which drove the lunar fire-fountaining. In an Undergraduate senior thesis project, Nora Klein discovered a melt inclusion that remained in a glassy state in one of the olivine phenocrysts. Analyses of this inclusion gave additional information on the CO2, CO and S contents of the orange glass magma prior to its reaching the lunar surface. The composition of lunar volcanic gases has long been one of the puzzles of lunar magmatic processes. One of the more exciting findings in our research over the past year has been the study of magmatic processes linking the SNC meteorite source magma composition with the andesitic composition rocks found at the Pathfinder site. In this project, graduate student Michelle Minitti showed that there was a clear petrologic link between these two magma types via fractional removal of crystals from the SNC parent melt, but the process only worked if there was at least 1 wt

  17. The origin of alkaline magmas in an intraplate setting near a subduction zone: the Ngatutura Basalts, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Briggs, R. M.; Utting, A. J.; Gibson, I. L.

    1990-01-01

    The Ngatutura Basalts are one of a series of Pliocene-Quaternary alkalic basalt volcanic fields in North Island, New Zealand. They are situated in an intraplate tectonic setting behind the currently active Taupo Volcanic Zone, and 300 km above the subducting slab. The volcanic field consists of 16 small-volume monogenetic volcanic centres composed mainly of eroded scoria cones and lava flows, that occupy an extensional tectonic environment characterized by NE-striking block faulting. In some cases the faults have controlled the localization of volcanic vents. The lavas have restricted compositions, ranging from hawaiites to nepheline hawaiites, and are characterized by enriched LILE, LREE, and HFS elements, with particularly high Nb and Ta, low Ba/Nb, and high Zr/Y and Ce N/Yb N ratios. Nepheline hawaiites are slightly more differentiated than hawaiites and have higher Ce N/Yb N ratios. Petrogenetic modelling suggests that the range in composition was mainly controlled by fractional crystallization of olivine, clinopyroxene, and minor plagioclase and titanomagnetite, which is consistent with the modal phenocryst abundances. Fractionation is explained by side-wall crystallization and flowage differentiation during rapid ascent, rather than gravitative settling in a magma chamber. Ngatutura magmas were probably derived from an enriched garnet lherzolite source within the low-velocity mantle. The process of source enrichment is speculative but our preferred model calls on metasomatizing fluids in the low-velocity zone. There is no geochemical evidence for any influence of the subducted slab on their composition, even though they overlie the Pacific plate subduction zone. This implies that the extent of subduction-related contamination in the mantle wedge is not pervasive, but is confined to a limited region overlying the subducted slab. Also, the "deep mantle plume" responsible for alkalic magmatism must have originated above the slab, because it seems unlikely that

  18. A dynamic balance between magma supply and eruption rate at Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Denlinger, R.P.

    1997-01-01

    The dynamic balance between magma supply and vent output at Kilauea volcano is used to estimate both the volume of magma stored within Kilauea volcano and its magma supply rate. Throughout most of 1991 a linear decline in volume flux from the Kupaianaha vent on Kilauea's east rift zone was associated with a parabolic variation in the elevation of Kilauea's summit as vent output initially exceeded then lagged behind the magma supply to the volcano. The correspondence between summit elevation and tilt established with over 30 years of data provided daily estimates of summit elevation in terms of summit tilt. The minimum in the parabolic variation in summit tilt and elevation (or zero elevation change) occurs when the magma supply to the reservoir from below the volcano equals the magma output from the reservoir to the surface, so that the magma supply rate is given by vent flux on that day. The measurements of vent flux and tilt establish that the magma supply rate to Kilauea volcano on June 19, 1991, was 217,000 ?? 10,000 m3/d (or 0.079 ?? 0.004 km3/yr). This is close to the average eruptive rate of 0.08 km3/yr between 1958 and 1984. In addition, the predictable response of summit elevation and tilt to each east rift zone eruption near Puu Oo since 1983 shows that summit deformation is also a measure of magma reservoir pressure. Given this, the correlation between the elevation of the Puu Oo lava lake (4 km uprift of Kupaianaha and 18 km from the summit) and summit tilt provides an estimate for magma pressure changes corresponding to summit tilt changes. The ratio of the change in volume to the change in reservoir pressure (dV/dP) during vent activity may be determined by dividing the ratio of volume erupted to change in summit tilt (dV/dtilt) by the ratio of pressure change to change in summit tilt (dP/dtilt). This measure of dV/dP, when combined with laboratory measurements of the bulk modulus of tholeitic melt, provides an estimate of 240 ?? 50 km3 for the volume

  19. A dynamic balance between magma supply and eruption rate at Kilauea volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Denlinger, Roger P.

    1997-08-01

    The dynamic balance between magma supply and vent output at Kilauea volcano is used to estimate both the volume of magma stored within Kilauea volcano and its magma supply rate. Throughout most of 1991 a linear decline in volume flux from the Kupaianaha vent on Kilauea's east rift zone was associated with a parabolic variation in the elevation of Kilauea's summit as vent output initially exceeded then lagged behind the magma supply to the volcano. The correspondence between summit elevation and tilt established with over 30 years of data provided daily estimates of summit elevation in terms of summit tilt. The minimum in the parabolic variation in summit tilt and elevation (or zero elevation change) occurs when the magma supply to the reservoir from below the volcano equals the magma output from the reservoir to the surface, so that the magma supply rate is given by vent flux on that day. The measurements of vent flux and tilt establish that the magma supply rate to Kilauea volcano on June 19, 1991, was 217,000±10,000 m3/d (or 0.079±0.004 km3/yr). This is close to the average eruptive rate of 0.08 km3/yr between 1958 and 1984. In addition, the predictable response of summit elevation and tilt to each east rift zone eruption near Puu Oo since 1983 shows that summit deformation is also a measure of magma reservoir pressure. Given this, the correlation between the elevation of the Puu Oo lava lake (4 km uprift of Kupaianaha and 18 km from the summit) and summit tilt provides an estimate for magma pressure changes corresponding to summit tilt changes. The ratio of the change in volume to the change in reservoir pressure (dV/dP) during vent activity may be determined by dividing the ratio of volume erupted to change in summit tilt (dV/dtilt) by the ratio of pressure change to change in summit tilt (dP/dtilt). This measure of dV/dP, when combined with laboratory measurements of the bulk modulus of tholeitic melt, provides an estimate of 240±50 km3 for the volume of

  20. Magma Transport from Deep to Shallow Crust and Eruption

    NASA Astrophysics Data System (ADS)

    White, R. S.; Greenfield, T. S.; Green, R. G.; Brandsdottir, B.; Hudson, T.; Woods, J.; Donaldson, C.; Ágústsdóttir, T.

    2016-12-01

    We have mapped magma transport paths from the deep (20 km) to the shallow (6 km) crust and in two cases to eventual surface eruption under several Icelandic volcanoes (Askja, Bardarbunga, Eyjafjallajokull, Upptyppingar). We use microearthquakes caused by brittle fracture to map magma on the move and tomographic seismic studies of velocity perturbations beneath volcanoes to map the magma storage regions. High-frequency brittle failure earthquakes with magnitudes of typically 0-2 occur where melt is forcing its way through the country rock, or where previously frozen melt is repeatedly re-broken in conduits and dykes. The Icelandic crust on the rift zones where these earthquakes occur is ductile at depths greater than 7 km beneath the surface, so the occurrence of brittle failure seismicity at depths as great as 20 km is indicative of high strain rates, for which magma movement is the most likely explanation. We suggest that high volatile pressures caused by the exsolution of carbon dioxide in the deep crust is driving the magma movement and seismicity at depths of 15-20 km. Eruptions from shallow crustal storage areas are likewise driven by volatile exsolution, though additional volatiles, and in particular water are also involved in the shallow crust.

  1. Short-circuiting magma differentiation from basalt straight to rhyolite?

    NASA Astrophysics Data System (ADS)

    Ruprecht, P.; Winslow, H.

    2017-12-01

    Silicic magmas are the product of varying degrees of crystal fractionation and crustal assimilation/melting. Both processes lead to differentiation that is step-wise rather than continuous for example during melt separation from a crystal mush (Dufek and Bachmann, 2010). However, differentiation is rarely efficient enough to evolve directly from a basaltic to a rhyolitic magma. At Volcán Puyehue-Cordón Caulle, Chile, the magma series is dominated by crystal fractionation where mixing trends between primitive and felsic end members in the bulk rock compositions are almost absent (e.g. P, FeO, TiO2 vs. SiO2). How effective fraction is in this magmatic system is not well-known. The 2011-12 eruption at Cordón Caulle provides new constraints that rhyolitic melts may be derived directly from a basaltic mush. Minor, but ubiquitous mafic, crystal-rich enclaves co-erupted with the predominantly rhyolitic near-aphyric magma. These enclaves are among the most primitive compositions erupted at Puyehue-Cordón Caulle and geochemically resemble closely basaltic magmas that are >10 ka old (Singer et al. 2008) and that have been identified as a parental tholeiitic mantle-derived magma (Schmidt and Jagoutz, 2017) for the Southern Andean Volcanic Zone. The vesiculated nature, the presence of a microlite-rich groundmass, and a lack of a Eu anomaly in these encalves suggest that they represent recharge magma/mush rather than sub-solidus cumulates and therefore have potentially a direct petrogenetic link to the erupted rhyolites. Our results indicate that under some conditions crystal fractionation can be very effective and the presence of rhyolitic magmas does not require an extensive polybaric plumbing system. Instead, primitive mantle-derived magmas source directly evolved magmas. In the case, of the magma system beneath Puyehue-Cordón Caulle, which had three historic rhyolitic eruptions (1921-22, 1960, 2011-12) these results raise the question whether rhyolite magma extraction

  2. Geophysical observations of Kilauea Volcano, Hawaii, 2. Constraints on the magma supply during November 1975-September 1977

    USGS Publications Warehouse

    Dzurisin, D.; Anderson, L.A.; Eaton, G.P.; Koyanagi, R.Y.; Lipman, P.W.; Lockwood, J.P.; Okamura, R.T.; Puniwai, G.S.; Sako, M.K.; Yamashita, K.M.

    1980-01-01

    Following a 22-month hiatus in eruptive activity, Kilauea volcano extruded roughly 35 ?? 106 m3 of tholeiitic basalt from vents along its middle east rift zone during 13 September-1 October, 1977. The lengthy prelude to this eruption began with a magnitude 7.2 earthquake on 29 November, 1975, and included rapid summit deflation episodes in June, July, and August 1976 and February 1977. Synthesis of seismic, geodetic, gravimetric, and electrical self-potential observations suggests the following model for this atypical Kilauea eruptive cycle. Rapid summit deflation initiated by the November 1975 earthquake reflected substantial migration of magma from beneath the summit region of Kilauea into the east and southwest rift zones. Simultaneous leveling and microgravity observations suggest that 40-90 ?? 106 m3 of void space was created within the summit magma chamber as a result of the earthquake. If this volume was filled by magma from depth before the east rift zone intrusive event of June 1976, the average rate of supply was 6-13 ?? 106 m3/month, a rate that is consistent with the value of 9 ?? 106 m3/month suggested from observations of long-duration Kilauea eruptions. Essentially zero net vertical change was recorded at the summit during the 15-month period beginning with the June 1976 intrusion and ending with the September 1977 eruption. This fact suggests that most magma supplied from depth during this interval was eventually delivered to the east rift zone, at least in part during four rapid summit deflation episodes. Microearthquake epicenters migrated downrift to the middle east rift zone for the first time during the later stages of the February 1977 intrusion, an occurrence presumably reflecting movement of magma into the eventual eruptive zone. This observation was confirmed by tilt surveys in May 1977 that revealed a major inflation center roughly 30 km east of the summit in an area of anomalous steaming and forest kill first noted in March 1976. ?? 1980.

  3. Magma storage constrains by compositional zoning of plagioclase from dacites of the caldera forming eruptions of Vetrovoy Isthmus and Lvinaya Past’ Bay (Iturup Island, Kurile Islands)

    NASA Astrophysics Data System (ADS)

    Maksimovich, I. A.; Smirnov, S. Z.; Kotov, A. A.; Timina, T. Yu; Shevko, A. V.

    2017-12-01

    The Vetrovoy Isthmus and the Lvinaya Past’ Bay on the Iturup island (Kuril island arc) are the results of large Plinian eruptions of compositionally similar dacitic magmas. This study is devoted to a comparative analysis of the storage and crystallization conditions for magma reservoirs, which were a source of large-scale explosive eruptions. The plagioclase is most informative mineral in studying of the melt evolution. The studied plagioclases possess a complex zoning patterns, which are not typical for silicic rocks in island-arc systems. It was shown that increase of Ca in the plagioclase up to unusually high An95 is related to increase of H2O pressure in both volcanic magma chambers. The study revealed that minerals of the Vetrovoy Isthmus and Lvinaya Past’ crystallized from compositionally similar melts. Despite the compositional similarity of the melts, the phenocryst assemblage of the Lvinaya Past’ differs from the Vetrovoy Isthmus by the presence of the amphibole, which indicates that the pressure in the magmatic chamber exceeded 1-2 kbar at a 4-6 wt. % of H2O in the melt. The rocks of the Vetrovoy Isthmus do not contain amphibole phenocrysts, but melt and fluid inclusions assemblages in plagioclase demonstrate that the magma degassed in the course of evolution. This is an indication that the pressure did not exceed significantly 1-2 kbar.

  4. Volatile dynamics in crystal-rich magma bodies, perspectives from laboratory experiments and theory

    NASA Astrophysics Data System (ADS)

    Faroughi, S.; Parmigiani, A.; Huber, C.

    2013-12-01

    The amount of volatiles and the dynamics of bubbles play a significant role on the transition between different volcanic eruption behaviors. The transport of exsolved volatiles through zoned magma chambers is complex and remains poorly constrained. Here we focus on the different transport of volatiles under two end member regimes: crystal-poor systems (bubbles form a suspension) versus crystal-rich reservoirs (multiphase porous media flow). We present a combination of multiphase flow laboratory experiments (using silicon oil and water) and a theoretical argument based on Stokes flow streamfunctions to contrast the differences between the transport of exsolved volatiles in both regimes. The first set of experiments involves the buoyant migration of water droplets in silicon oil in the absence of glass beads. We measure the non-linear hydrodynamic interaction between bubbles and its effect on slowing down the average flux of water droplets as the water volume fraction increases. Our experimental results are compared to a theoretical argument in which a streamfunction formulation is used to estimate the effect of a suspension on bubble migration. We find a good agreement between the new theory and our experimental results. The second set of experiments focuses on the transport of water (non-wetting fluid) in porous media saturated with viscous silicon oils. Contrary to suspension dynamics, in multiphase porous media, an increase in the saturation of non-wetting fluid leads to a non-linear increase in its volumetric flux. The steady-state migration of non-wetting fluid is controlled by the formation of viscous fingering instability that greatly enhances transport. We propose that the regime of energy dissipation during the migration of bubbles in heterogeneous magma reservoirs can change, leading to bubble accumulation in crystal-poor regions as fingering becomes unstable and volatiles form a disperse bubble suspension.

  5. Megacrystals track magma convection between reservoir and surface

    NASA Astrophysics Data System (ADS)

    Moussallam, Yves; Oppenheimer, Clive; Scaillet, Bruno; Buisman, Iris; Kimball, Christine; Dunbar, Nelia; Burgisser, Alain; Ian Schipper, C.; Andújar, Joan; Kyle, Philip

    2015-03-01

    Active volcanoes are typically fed by magmatic reservoirs situated within the upper crust. The development of thermal and/or compositional gradients in such magma chambers may lead to vigorous convection as inferred from theoretical models and evidence for magma mixing recorded in volcanic rocks. Bi-directional flow is also inferred to prevail in the conduits of numerous persistently-active volcanoes based on observed gas and thermal emissions at the surface, as well as experiments with analogue models. However, more direct evidence for such exchange flows has hitherto been lacking. Here, we analyse the remarkable oscillatory zoning of anorthoclase feldspar megacrystals erupted from the lava lake of Erebus volcano, Antarctica. A comprehensive approach, combining phase equilibria, solubility experiments and melt inclusion and textural analyses shows that the chemical profiles are best explained as a result of multiple episodes of magma transport between a deeper reservoir and the lava lake at the surface. Individual crystals have repeatedly travelled up-and-down the plumbing system, over distances of up to several kilometers, presumably as a consequence of entrainment in the bulk magma flow. Our findings thus corroborate the model of bi-directional flow in magmatic conduits. They also imply contrasting flow regimes in reservoir and conduit, with vigorous convection in the former (regular convective cycles of ∼150 days at a speed of ∼0.5 mm s-1) and more complex cycles of exchange flow and re-entrainment in the latter. We estimate that typical, 1-cm-wide crystals should be at least 14 years old, and can record several (from 1 to 3) complete cycles between the reservoir and the lava lake via the conduit. This persistent recycling of phonolitic magma is likely sustained by CO2 fluxing, suggesting that accumulation of mafic magma in the lower crust is volumetrically more significant than that of evolved magma within the edifice.

  6. The Consequences of Increased Magma Supply to Kilauea Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Poland, M.; Miklius, A.; Sutton, A. J.; Orr, T.

    2007-12-01

    The summer of 2007 was a time of intense activity at Kilauea. By mid-2007, ~4 years of summit inflation had uplifted and extended the caldera by 30 cm and 55 cm, respectively. Lava continued to erupt from the Pu`u `O`o vent on the east rift zone (ERZ) during the inflation. On May 24, 2007, two M4+ normal-faulting earthquakes occurred on caldera-bounding faults southeast of the summit. The seismicity did not affect summit inflation, which continued until June 17 when a dike intruded the upper and middle ERZ, causing a pause in the eruption, collapse of Pu`u `O`o's floor, and a small eruption 6 km uprift of Pu`u `O`o. The inflated state of the summit, relative timing of summit deflation and east rift zone extension, and abundant co-intrusive earthquake activity suggest forcible intrusion of magma. Lava returned to Pu`u `O`o by July 2, forming a lake that gradually refilled much of the collapsed crater. Early on July 21, the lake drained suddenly, the cone began to collapse, and a 2-km-long series of discontinuous eruptive fissures opened on and beyond the east flank of Pu`u `O`o. Sesimicity in Kilauea's south flank has been elevated since June and several M3+ earthquakes have occurred there, including a M5.4 on August 13. An increase in magma supply to Kilauea's shallow magmatic system is the probable cause for the events of summer 2007. Summit inflation since 2003 occurred during a period of constant or increasing magma supply to Pu`u `O`o, based on SO2 emissions from the ERZ. The rate of inflation increased markedly in early 2006, and uplift also began in the southwest rift zone. CO2 emissions at the summit, indicative of the quantity of magma degassing beneath Kilauea's caldera, more than doubled between 2003 and 2006. Also since 2003, the ERZ immediately downrift of Pu`u `O`o extended, and subsidence in the lower ERZ ceased. Together, these factors suggest that the magma supply rate to Kilauea's shallow magmatic system (the summit and rift zones above about 5 km

  7. Mafic microgranular enclave swarms in the Chenar granitoid stock, NW of Kerman, Iran: evidence for magma mingling

    NASA Astrophysics Data System (ADS)

    Arvin, M.; Dargahi, S.; Babaei, A. A.

    2004-10-01

    Mafic microgranular enclaves (MME) are common in the Early to Middle Miocene Chenar granitoid stock, northwest of Kerman, which is a part of Central Iranian Eocene volcanic belt. They occur individually and in homogeneous or heterogeneous swarms. The MME form a number of two-dimensional structural arrangements, such as dykes, small rafts, vortices, folded lens-shapes and late swarms. The enclaves are elongated, rounded to non-elongated and subrounded in shape and often show some size-sorting parallel to direction of flow. Variation in the elongation of enclaves could reflect variations in the viscosity of the enclave, the time available for enclave deformation and differential strain during flow of the host granitoid magma. The most effective mechanism in the formation of enclave swarms in the Chenar granitoid stock was velocity gradient-related convection currents in the granitoid magma chamber. Gravitational sorting and the break-up of heterogeneous dykes also form MME swarms. The MME (mainly diorite to diorite gabbro) have igneous mineralogy and texture, and are marked by sharp contacts next to their host granitoid rocks. The contact is often marked by a chilled margin with no sign of solid state deformation. Evidence of disequilibrium is manifested in feldspars by oscillatory zoning, resorbed rims, mantling and punctuated growth, together with overgrowth of clinopyroxene/amphibole on quartz crystals, the acicular habit of apatites and the development of Fe-Ti oxides along clinopyroxene cleavages. These observations suggest that the MMEs are derived from a hybrid-magma formed as a result of the intrusion of a mafic magma into the base of a felsic magma chamber. The density contrast between hybrid-magma and the overlying felsic magma was reduced by the release of dissolved fluids and the ascent of exsolved gas bubbles from the mafic magma into the hybrid zone. Further convection in the magma chamber dispersed the hybridized magma as globules in the upper parts of

  8. Geochemical Evolution of Pre-caldera Magmas at Caviahue Caldera, Neuquen Province, Argentina

    NASA Astrophysics Data System (ADS)

    Todd, E.; Ort, M.

    2004-12-01

    Caldera subsidence and glacial erosion at Caviahue, an upper Miocene to Pliocene volcanic center located in the Andean Southern Volcanic Zone (SVZ) at 37°50'S, has exposed a detailed cross-section of pre-caldera volcanic activity from the upper Miocene to the Pliocene. Caldera walls expose 500 to 800 m of ignimbrites, cinder cones, volcanic breccias, and lava flows, which range from 1 to nearly 100 m in thickness. Lavas erupted from the monogenetic pre-caldera volcanic field have compositions ranging from evolved basaltic andesites (4% MgO, 10% FeO) to trachytes. Strong Ni-depletion signatures and high Fe/Mg ratios indicate extensive geochemical modification of Caviahue lavas. Petrologic and geochemical analyses of major and trace element abundances in Caviahue lavas indicate cyclic fractionation and recharge in an upper-crustal magma chamber during pre-caldera volcanism. Compatible and incompatible element abundances (especially Ni, MgO, K, and Zr), plotted in stratigraphic succession, show at least six distinct fractionation trends occurred between emplacement of the oldest exposed lava flows and the eruption of the ignimbrite associated with caldera formation. Each fractionation trend is punctuated by the infusion of a volume of new, more primitive magma. Modeling of recharge events indicates that these introduced from less than half to several times the volume of the existing magma body of new, more primitive (but still evolved) magma to the chamber. Geochemical analyses of lavas deposited between intermittent periods of magma residence and volcanic eruptions show strong patterns of plagioclase, olivine, clinopyroxene, and oxide fractionation. Deposits recognized on the caldera floor thought to be associated with caldera collapse are correlated with extra-caldera trachytic ignimbrite deposits dated at 2.02 Ma, providing a late Pliocene age for caldera collapse. Post-caldera volcanism has been active until present, but has shifted to smaller polygenetic

  9. Composition and origin of basaltic magma of the Hawaiian Islands

    USGS Publications Warehouse

    Powers, H.A.

    1955-01-01

    Silica-saturated basaltic magma is the source of the voluminous lava flows, erupted frequently and rapidly in the primitive shield-building stage of activity, that form the bulk of each Hawaiian volcano. This magma may be available in batches that differ slightly in free silica content from batch to batch both at the same and at different volcanoes; differentiation by fractionation of olivine does not occur within this primitive magma. Silica-deficient basaltic magma, enriched in alkali, is the source of commonly porphyritic lava flows erupted less frequently and in relatively negligible volume during a declining and decadent stage of activity at some Hawaiian volcanoes. Differentiation by fractionation of olivine, plagioclase and augite is evident among these lavas, but does not account for the silica deficiency or the alkali enrichment. Most of the data of Hawaiian volcanism and petrology can be explained by a hypothesis that batches of magma are melted from crystalline paridotite by a recurrent process (distortion of the equatorial bulge by forced and free nutational stresses) that accomplishes the melting only of the plagioclase and pyroxene component but not the excess olivine and more refractory components within a zone of fixed and limited depth. Eruption exhausts the supply of meltable magma under a given locality and, in the absence of more violent melting processes, leaves a stratum of crystalline refractory components. ?? 1955.

  10. Adakitic magmas: modern analogues of Archaean granitoids

    NASA Astrophysics Data System (ADS)

    Martin, Hervé

    1999-03-01

    Both geochemical and experimental petrological research indicate that Archaean continental crust was generated by partial melting of an Archaean tholeiite transformed into a garnet-bearing amphibolite or eclogite. The geodynamic context of tholeiite melting is the subject of controversy. It is assumed to be either (1) subduction (melting of a hot subducting slab), or (2) hot spot (melting of underplated basalts). These hypotheses are considered in the light of modern adakite genesis. Adakites are intermediate to felsic volcanic rocks, andesitic to rhyolitic in composition (basaltic members are lacking). They have trondhjemitic affinities (high-Na 2O contents and K 2O/Na 2O˜0.5) and their Mg no. (0.5), Ni (20-40 ppm) and Cr (30-50 ppm) contents are higher than in typical calc-alkaline magmas. Sr contents are high (>300 ppm, until 2000 ppm) and REE show strongly fractionated patterns with very low heavy REE (HREE) contents (Yb≤1.8 ppm, Y≤18 ppm). Consequently, high Sr/Y and La/Yb ratios are typical and discriminating features of adakitic magmas, indicative of melting of a mafic source where garnet and/or hornblende are residual phases. Adakitic magmas are only found in subduction zone environments, exclusively where the subduction and/or the subducted slab are young (<20 Ma). This situation is well-exemplified in Southern Chile where the Chile ridge is subducted and where the adakitic character of the lavas correlates well with the young age of the subducting oceanic lithosphere. In typical subduction zones, the subducted lithosphere is older than 20 Ma, it is cool and the geothermal gradient along the Benioff plane is low such that the oceanic crust dehydrates before it reaches the solidus temperature of hydrated tholeiite. Consequently, the basaltic slab cannot melt. The released large ion lithophile element (LILE)-rich fluids rise up into the mantle wedge, inducing both its metasomatism and partial melting. Afterwards, the residue is made up of olivine

  11. Thermal and rheological controls on magma migration in dikes: Examples from the east rift zone of Kilauea volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    Parfitt, E. A.; Wilson, L.; Pinkerton, H.

    1993-01-01

    Long-lived eruptions from basaltic volcanoes involving episodic or steady activity indicate that a delicate balance has been struck between the rate of magma cooling in the dike system feeding the vent and the rate of magma supply to the dike system from a reservoir. We describe some key factors, involving the relationships between magma temperature, magma rheology, and dike geometry that control the nature of such eruptions.

  12. Shallow system rejuvenation and magma discharge trends at Piton de la Fournaise volcano (La Réunion Island)

    NASA Astrophysics Data System (ADS)

    Coppola, D.; Di Muro, A.; Peltier, A.; Villeneuve, N.; Ferrazzini, V.; Favalli, M.; Bachèlery, P.; Gurioli, L.; Harris, A. J. L.; Moune, S.; Vlastélic, I.; Galle, B.; Arellano, S.; Aiuppa, A.

    2017-04-01

    Basaltic magma chambers are often characterized by emptying and refilling cycles that influence their evolution in space and time, and the associated eruptive activity. During April 2007, the largest historical eruption of Piton de la Fournaise (Île de La Réunion, France) drained the shallow plumbing system (> 240 ×106 m3) and resulted in collapse of the 1-km-wide summit crater. Following these major events, Piton de la Fournaise entered a seven-year long period of near-continuous deflation interrupted, in June 2014, by a new phase of significant inflation. By integrating multiple datasets (lava discharge rates, deformation, seismicity, gas flux, gas composition, and lava chemistry), we here show that the progressive migration of magma from a deeper (below sea level) storage zone gradually rejuvenated and pressurized the above-sea-level portion of the magmatic system consisting of a vertically-zoned network of relatively small-volume magma pockets. Continuous inflation provoked four small (< 5 ×106 m3) eruptions from vents located close to the summit cone and culminated, during August-October 2015, with a chemically zoned eruption that erupted 45 ± 15 ×106 m3 of lava. This two-month-long eruption evolved through (i) an initial phase of waning discharge, associated to the withdrawal of differentiated magma from the shallow system, into (ii) a month-long phase of increasing lava and SO2 fluxes at the effusive vent, coupled with CO2 enrichment of summit fumaroles, and involving emission of less differentiated lavas, to end with, (iii) three short-lived (∼2 day-long) pulses in lava and gas flux, coupled with arrival of cumulative olivine at the surface and deflation. The activity observed at Piton de la Fournaise in 2014 and 2015 points to a new model of shallow system rejuvenation and discharge, whereby continuous magma supply causes eruptions from increasingly deeper and larger magma storage zones. Downward depressurization continues until unloading of the

  13. Eruptive stratigraphy of the Tatara-San Pedro complex, 36°S, sourthern volcanic zone, Chilean Andes: reconstruction method and implications for magma evolution at long-lived arc volcanic centers

    USGS Publications Warehouse

    Dungan, M.A.; Wulff, A.; Thompson, R.

    2001-01-01

    mafic, intermediate, and silicic eruptive products. Intermediate lava compositions also record different evolution paths, both within and between sequences. No systematic long-term pattern is evident from comparisons at the level of sequences. The considerable diversity of mafic and evolved magmas of the Tatara-San Pedro complex bears on interpretations of regional geochemical trends. The variable role of open-system processes in shaping the compositions of evolved Tatara-San Pedro complex magmas, and even some basaltic magmas, leads to the conclusion that addressing problems such as are magma genesis and elemental fluxes through subduction zones on the basis of averaged or regressed reconnaissance geochemical datasets is a tenuous exercise. Such compositional indices are highly instructive for identifying broad regional trends and first-order problems, but they should be used with extreme caution in attempts to quantify processes and magma sources, including crustal components, implicated in these trends.

  14. Rapid mixing and short storage timescale in the magma dynamics of a steady-state volcano

    NASA Astrophysics Data System (ADS)

    Petrone, Chiara Maria; Braschi, Eleonora; Francalanci, Lorella; Casalini, Martina; Tommasini, Simone

    2018-06-01

    Steady-state volcanic activity implies equilibrium between the rate of magma replenishment and eruption of compositionally homogeneous magmas, lasting for tens to thousands of years in an open conduit system. The Present-day activity of Stromboli volcano (Aeolian Islands, Southern Italy) has long been recognised as typical of a steady-state volcano, with a shallow magmatic reservoir (highly porphyritic or hp-magma) continuously refilled by more mafic magma (with low phenocryst content or lp-magma) at a constant rate and accompanied by mixing, crystallisation and eruption. Our aim is to clarify the timescale and dynamics of the plumbing system at the establishment of the Present-day steady-state activity (<1.2 ka) to pinpoint the onset of the steady-state regime. We investigated the Post-Pizzo (PP) pyroclastic sequence (∼1.7-1.5 ka) and one of the Early Paroxysms (EP) of the Present-day activity, focusing on the clinopyroxene population. Whole rock and clinopyroxene compositional variation among the PP and EP magmas is consistent with the time progression of the Stromboli system towards more mafic and lower 87Sr/86Sr compositions, pointing to the chemical and isotopic signature of the Present-day activity. Clinopyroxenes from both PP and EP record a complex history with compositional zoning that reflects growth in three different melt domains: a high-Mg# proto-lp recharging magma, a low-Mg# proto-hp resident magma, and a transient intermediate-Mg# magma. These are the result of complex turbulent flow fields and mixing regimes produced by repeated injections of the proto-lp magma in the shallow proto-hp magma reservoir. During the PP period the magmatic system was already able to regain the pre-input proto-hp composition, gradually changing toward a less evolved signature after the injection(s) of the more mafic proto-lp magma, owing to efficient (days to a few years) stirring and melt homogenisation (i.e., homogenisation time < residence time). Based upon Fe

  15. Magma transport and storage at Kilauea volcano, Hawaii I: 1790-1952

    NASA Astrophysics Data System (ADS)

    Wright, T. L.; Klein, F.

    2011-12-01

    We trace the evolution of Kilauea from the time of the first oral records of an explosive eruption in 1790 to the long eruption in Halemaumau crater in 1952. The establishment of modern seismic and geodetic networks in the early 1960s showed that eruptions and intrusions were fed from two magma sources beneath the summit at depths of 2-6 and ~1 km respectively (sources 1 and 2), and that seaward spreading of the south flank took place on a decollement at 10-12 km depth at the base of the Kilauea edifice. A third diffuse, pressure-transmitting magma system (source 3) between the shallow East rift zone and the decollement was also identified. We test the null hypothesis that the volcano has behaved similarly throughout its lifetime, and conclude that the null hypothesis is not met for the period preceding the 1952 summit eruption because of changes in magma supply rate and differences in ground deformation patterns. The western missionaries arriving at Kilauea in 1823 were confronted with a caldera-wide lava lake. Filling rates determined by visual observation correspond to magma supply rates that averaged more than 0.3 km3/yr prior to 1840 and declined to 1894, when lava disappeared altogether at Halemaumau crater. The Hawaiian Volcano Observatory (HVO) was established by Thomas A. Jaggar in 1912 adjacent to the Volcano House Hotel on the rim of Kilauea. Instrumental observation at HVO began using a seismometer that doubled as a tiltmeter. A 1912-1924 magma supply rate of 0.024 km3/yr agreed with the rate of filling of Kilauea caldera from 1840-1894. 1924 was a critical year. An intrusion that moved down Kilauea's East rift zone beginning in February culminated beneath the lower East rift zone in April. In May, explosive eruptions accompanied a dramatic draining of Halemaumau. Triangulation results between 1912 and 1921 showed uplift extending far beyond Kilauea caldera and an equally large regional subsidence occurred between 1921 and 1927. HVO tilt narrows the

  16. Origin and emplacement of the andesite of Burroughs Mountain, a zoned, large-volume lava flow at Mount Rainier, Washington, USA

    USGS Publications Warehouse

    Stockstill, K.R.; Vogel, T.A.; Sisson, T.W.

    2002-01-01

    Burroughs Mountain, situated at the northeast foot of Mount Rainier, WA, exposes a large-volume (3.4 km3) andesitic lava flow, up to 350 m thick and extending 11 km in length. Two sampling traverses from flow base to eroded top, over vertical sections of 245 and 300 m, show that the flow consists of a felsic lower unit (100 m thick) overlain sharply by a more mafic upper unit. The mafic upper unit is chemically zoned, becoming slightly more evolved upward; the lower unit is heterogeneous and unzoned. The lower unit is also more phenocryst-rich and locally contains inclusions of quenched basaltic andesite magma that are absent from the upper unit. Widespread, vuggy, gabbronorite-to-diorite inclusions may be fragments of shallow cumulates, exhumed from the Mount Rainier magmatic system. Chemically heterogeneous block-and-ash-flow deposits that conformably underlie the lava flow were the earliest products of the eruptive episode. The felsic-mafic-felsic progression in lava composition resulted from partial evacuation of a vertically-zoned magma reservoir, in which either (1) average depth of withdrawal increased, then decreased, during eruption, perhaps due to variations in effusion rate, or (2) magmatic recharge stimulated ascent of a plume that brought less evolved magma to shallow levels at an intermediate stage of the eruption. Pre-eruptive zonation resulted from combined crystallization- differentiation and intrusion(s) of less evolved magma into the partly crystallized resident magma body. The zoned lava flow at Burroughs Mountain shows that, at times, Mount Rainier's magmatic system has developed relatively large, shallow reservoirs that, despite complex recharge events, were capable of developing a felsic-upward compositional zonation similar to that inferred from large ash-flow sheets and other zoned lava flows. ?? 2002 Elsevier Science B.V. All rights reserved.

  17. Thermal impact of magmatism in subduction zones

    NASA Astrophysics Data System (ADS)

    Rees Jones, David W.; Katz, Richard F.; Tian, Meng; Rudge, John F.

    2018-01-01

    Magmatism in subduction zones builds continental crust and causes most of Earth's subaerial volcanism. The production rate and composition of magmas are controlled by the thermal structure of subduction zones. A range of geochemical and heat flow evidence has recently converged to indicate that subduction zones are hotter at lithospheric depths beneath the arc than predicted by canonical thermomechanical models, which neglect magmatism. We show that this discrepancy can be resolved by consideration of the heat transported by magma. In our one- and two-dimensional numerical models and scaling analysis, magmatic transport of sensible and latent heat locally alters the thermal structure of canonical models by ∼300 K, increasing predicted surface heat flow and mid-lithospheric temperatures to observed values. We find the advection of sensible heat to be larger than the deposition of latent heat. Based on these results we conclude that thermal transport by magma migration affects the chemistry and the location of arc volcanoes.

  18. Time-variable magma pressure at Kīlauea Volcano yields constraint on the volume and volatile content of shallow magma storage

    NASA Astrophysics Data System (ADS)

    Anderson, K. R.; Patrick, M. R.; Poland, M. P.; Miklius, A.

    2015-12-01

    Episodic depressurization-pressurization cycles of Kīlauea Volcano's shallow magma system cause variations in ground deformation, eruption rate, and surface height of the active summit lava lake. The mechanism responsible for these pressure-change cycles remains enigmatic, but associated monitoring signals often show a quasi-exponential temporal history that is consistent with a temporary reduction (or blockage) of supply to Kīlauea's shallow magma storage area. Regardless of their cause, the diverse signals produced by these deflation-inflation (DI) cycles offer an unrivaled opportunity to constrain properties of an active volcano's shallow magma reservoir and relation to its eruptive vents. We model transient behavior at Kīlauea Volcano using a simple mathematical model of an elastic reservoir that is coupled to magma flux through Kīlauea's East Rift Zone (ERZ) at a rate proportional to the difference in pressure between the summit reservoir and the ERZ eruptive vent (Newtonian flow). In this model, summit deflations and ERZ flux reductions are caused by a blockage in supply to the reservoir, while re-inflations occur as the system returns to a steady-state flux condition. The model naturally produces exponential variations in pressure and eruption rate which reasonably, albeit imperfectly, match observations during many of the transient events at Kīlauea. We constrain the model using a diverse range of observations including time-varying summit lava lake surface height and volume change, the temporal evolution of summit ground tilt, time-averaged eruption rate derived from TanDEM-X radar data, and height difference between the summit lava lake and the ERZ eruptive vent during brief eruptive pauses (Patrick et al., 2015). Formulating a Bayesian inverse and including independent prior constraint on magma density, host rock strength, and other properties of the system, we are able to place probabilistic constraints on the volume and volatile content of shallow

  19. Geodesy - the key for constraining rates of magma supply, storage, and eruption

    NASA Astrophysics Data System (ADS)

    Poland, Michael; Anderson, Kyle

    2016-04-01

    Volcanology is an inherently interdisciplinary science that requires joint analysis of diverse physical and chemical datasets to infer subsurface processes from surface observations. Among the diversity of data that can be collected, however, geodetic data are critical for elucidating the main elements of a magmatic plumbing system because of their sensitivity to subsurface changes in volume and mass. In particular, geodesy plays a key role in determining rates of magma supply, storage, and eruption. For example, surface displacements are critical for estimating the volume changes and locations of subsurface magma storage zones, and remotely sensed radar data make it possible to place significant bounds on eruptive volumes. Combining these measurements with geochemical indicators of magma composition and volatile content enables modeling of magma fluxes throughout a volcano's plumbing system, from source to surface. We combined geodetic data (particularly InSAR) with prior geochemical constraints and measured gas emissions from Kīlauea Volcano, Hawai`i, to develop a probabilistic model that relates magma supply, storage, and eruption over time. We found that the magma supply rate to Kīlauea during 2006 was 35-100% greater than during 2000-2001, with coincident increased rates of subsurface magma storage and eruption at the surface. By 2012, this surge in supply had ended, and supply rates were below those of 2000-2001; magma storage and eruption rates were similarly reduced. These results demonstrate the connection between magma supply, storage, and eruption, and the overall importance of magma supply with respect to volcanic hazards at Kīlauea and similar volcanoes. Our model also confirms the importance of geodetic data in modeling these parameters - rates of storage and eruption are, in some cases, almost uniquely constrained by geodesy. Future modeling efforts along these lines should also seek to incorporate gravity data, to better determine magma

  20. Transfer Rates of Magma From Planetary Mantles to the Surface.

    NASA Astrophysics Data System (ADS)

    Wilson, L.; Head, J. W.; Parfitt, E. A.

    2008-12-01

    We discuss the speed at which magma can be transferred to a planetary surface from the deep interior. Current literature describes a combination of slow percolation of melt in the mantle where convection-driven pressure-release melting is occurring, concentration of melt by source region deformation, initiation and growth of magma-filled brittle fractures (dikes) providing wider pathways for melt movement, additional growth and interconnection of dikes with decreasing depth, rise of magma to storage zones (reservoirs) located at levels of neutral buoyancy at the base of or within the crust, and transfer from the storage zones in dikes to feed eruptions or intrusions. We do not take issue with these mechanisms but think that their relative importance in various circumstances is poorly appreciated. On Earth, preservation of diamonds in kimberlites implies very rapid (hours) transfer of melts from depths of 100-300 km, and there is strong geochemical evidence that magmas at mid-ocean ridges reach shallow depths faster than is possible by percolation alone. On the Moon, the petrology of pyroclasts involved in dark-mantle-forming eruptions implies rapid (again probably hours) magma transfer from depths of up to 400 km. The ureilite meteorites, samples of the mantle of a disrupted asteroid 200 km in diameter, have compositions only consistent with the rapid (months) extraction of mafic melt from the mantle. All of these examples imply that brittle fractures (dikes) can sometimes be initiated at depths where mantle rheology would normally be expected to be plastic rather than elastic, and that melt can be fed into these dikes extremely efficiently. Further evidence for this is provided by the giant radial dike swarms observed on Earth, Mars and Venus. The dikes observed (on Earth) and inferred from the presence of radiating graben systems (Mars) and radiating fracture and graben systems (Venus) are so voluminous that they can only be understood if they are fed from

  1. From Magma Fracture to a Seismic Magma Flow Meter

    NASA Astrophysics Data System (ADS)

    Neuberg, J. W.

    2007-12-01

    Seismic swarms of low-frequency events occur during periods of enhanced volcanic activity and have been related to the flow of magma at depth. Often they precede a dome collapse on volcanoes like Soufriere Hills, Montserrat, or Mt St Helens. This contribution is based on the conceptual model of magma rupture as a trigger mechanism. Several source mechanisms and radiation patterns at the focus of a single event are discussed. We investigate the accelerating event rate and seismic amplitudes during one swarm, as well as over a time period of several swarms. The seismic slip vector will be linked to magma flow parameters resulting in estimates of magma flux for a variety of flow models such as plug flow, parabolic- or friction controlled flow. In this way we try to relate conceptual models to quantitative estimations which could lead to estimations of magma flux at depth from seismic low-frequency signals.

  2. Layered intrusion formation by top down thermal migration zone refining (Invited)

    NASA Astrophysics Data System (ADS)

    Lundstrom, C.

    2009-12-01

    The formation of layered mafic intrusions by crystallization from cooling magmas represents the textbook example of igneous differentiation, often attributed to fractional crystallization through gravitational settling. Yet in detail, such interpretations have significant problems such that it remains unclear how these important features form. Put in the Earth perspective that no km scale blob of >50% melt has ever been imaged geophysically and that geochronological studies repeatedly indicate age inconsistencies with “big tank” magma chambers, it may be questioned if km scale magma chambers have ever existed. I will present the case for forming layered intrusions by a top down process whereby arriving basaltic magma reaches a permeability barrier, begins to underplate and forms the intrusion incrementally by sill injection with the body growing downward at ~1 mm/yr rate or less. A temperature gradient zone occurs in the overlying previously emplaced sills, leading to chemical components migrating by diffusion. As long as the rate of diffusion can keep up with rate of sill addition, the body will differentiate along a path similar to a liquid line of descent. In this talk, I will integrate data from 3 areas: 1) laboratory experiments examining the behavior of partially molten silicates in a temperature gradient (thermal migration); 2) numerical modeling of the moving temperature gradient zone process using IRIDIUM (Boudreau, 2003); 3) measurements of Fe isotope ratios and geochronology from the Sonju Lake Intrusion in the Duluth Complex. This model provides the ability to form km scale intrusions by a seismically invisible means, can explain million year offsets in chronology, and has implications for reef development and PGE concentration. Most importantly, this model of top down layered intrusion formation, following a similar recent proposal for granitoid formation (Lundstrom, 2009), represents a testable hypothesis: because temperature gradient driven

  3. Magma-magma interaction in the mantle beneath eastern China

    NASA Astrophysics Data System (ADS)

    Zeng, Gang; Chen, Li-Hui; Yu, Xun; Liu, Jian-Qiang; Xu, Xi-Sheng; Erdmann, Saskia

    2017-04-01

    In addition to magma-rock and rock-rock reaction, magma-magma interaction at mantle depth has recently been proposed as an alternative mechanism to produce the compositional diversity of intraplate basalts. However, up to now no compelling geochemical evidence supports this novel hypothesis. Here we present geochemistry for the Longhai basalts from Fujian Province, southeastern China, which demonstrates the interaction between two types of magma at mantle depth. At Longhai, the basalts form two groups, low-Ti basalts (TiO2/MgO < 0.25) and high-Ti basalts (TiO2/MgO > 0.25). Calculated primary compositions of the low-Ti basalts have compositions close to L + Opx + Cpx + Grt cotectic, and they also have low CaO contents (7.1-8.1 wt %), suggesting a mainly pyroxenite source. Correlations of Ti/Gd and Zr/Hf with the Sm/Yb ratios, however, record binary mixing between the pyroxenite-derived melt and a second, subordinate source-derived melt. Melts from this second source component have low Ti/Gd and high Zr/Hf and Ca/Al ratios, thus likely representing a carbonated component. The Sr, Nd, Hf, and Pb isotopic compositions of the high-Ti basalts are close to the low-Ti basalts. The Sm/Yb ratio of the high-Ti basalts, however, is markedly elevated and characterized by crossing rare earth element patterns at Ho, suggesting that they have source components comparable to the low-Ti basalts, but that they have experienced garnet and clinopyroxene fractionation. We posit that mingling of SiO2-saturated tholeiitic magma with SiO2-undersaturated alkaline magma might trigger such fractionation. Therefore, the model of magma-magma interaction and associated deep evolution of magma in the mantle is proposed to explain the formation of Longhai basalts. It may, moreover, serve as a conceptual model for the formation of tholeiitic to alkaline intraplate basalts worldwide.

  4. Magma degassing triggered by static decompression at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Poland, Michael P.; Jeff, Sutton A.; Gerlach, Terrence M.

    2009-01-01

    During mid-June 2007, the summit of Kīlauea Volcano, Hawai‘i, deflated rapidly as magma drained from the subsurface to feed an east rift zone intrusion and eruption. Coincident with the deflation, summit SO2 emission rates rose by a factor of four before decaying to background levels over several weeks. We propose that SO2 release was triggered by static decompression caused by magma withdrawal from Kīlauea's shallow summit reservoir. Models of the deflation suggest a pressure drop of 0.5–3 MPa, which is sufficient to trigger exsolution of the observed excess SO2 from a relatively small volume of magma at the modeled source depth beneath Kīlauea's summit. Static decompression may also explain other episodes of deflation accompanied by heightened gas emission, including the precursory phases of Kīlauea's 2008 summit eruption. Hazards associated with unexpected volcanic gas emission argue for increased awareness of magma reservoir pressure fluctuations.

  5. Zircon crytallization and recycling in the magma chamber of the rhyolitic Kos Plateau Tuff (Aegean arc)

    USGS Publications Warehouse

    Bachman, O.; Charlier, B.L.A.; Lowenstern, J. B.

    2007-01-01

    In contrast to most large-volume silicic magmas in continental arcs, which are thought to evolve as open systems with significant assimilation of preexisting crust, the Kos Plateau Miff magma formed dominantly by crystal fractionation of mafic parents. Deposits from this ??? 60 km3 pyroclastic eruption (the largest known in the Aegean arc) lack xenocrystic zircons [secondary ion mass spectrometry (SIMS) U-Pb ages on zircon cores never older than 500 ka] and display Sr-Nd whole-rock isotopic ratios within the range of European mantle in an area with exposed Paleozoic and Tertiary continental crust; this evidence implies a nearly closed-system chemical differentiation. Consequently, the age range provided by zircon SIMS U-Th-Pb dating is a reliable indicator of the duration of assembly and longevity of the silicic magma body above its solidus. The age distribution from 160 ka (age of eruption by sanidine 40Ar/39Ar dating; Smith et al., 1996) to ca. 500 ka combined with textural characteristics (high crystal content, corrosion of most anhydrous phenocrysts, but stability of hydrous phases) suggest (1) a protracted residence in the crust as a crystal mush and (2) rejuvenation (reduced crystallization and even partial resorption of minerals) prior to eruption probably induced by new influx of heat (and volatiles). This extended evolution chemically isolated from the surrounding crust is a likely consequence of the regional geodynamics because the thinned Aegean microplate acts as a refractory container for magmas in the dying Aegean subduction zone (continent-continent subduction). ?? 2007 Geological Society of America.

  6. Zircon crystallization and recycling in the magma chamber of the rhyolitic Kos Plateau Tuff (Aegean arc)

    USGS Publications Warehouse

    Bachman, O.; Charlier, B.L.A.; Lowenstern, J. B.

    2007-01-01

    In contrast to most large-volume silicic magmas in continental arcs, which are thought to evolve as open systems with significant assimilation of preexisting crust, the Kos Plateau Tuff magma formed dominantly by crystal fractionation of mafic parents. Deposits from this ~60 km3 pyroclastic eruption (the largest known in the Aegean arc) lack xenocrystic zircons [secondary ion mass spectrometry (SIMS) U-Pb ages on zircon cores never older than 500 ka] and display Sr-Nd whole-rock isotopic ratios within the range of European mantle in an area with exposed Paleozoic and Tertiary continental crust; this evidence implies a nearly closed-system chemical differentiation. Consequently, the age range provided by zircon SIMS U-Th-Pb dating is a reliable indicator of the duration of assembly and longevity of the silicic magma body above its solidus. The age distribution from 160 ka (age of eruption by sanidine 40Ar/39Ar dating; Smith et al., 1996) to ca. 500 ka combined with textural characteristics (high crystal content, corrosion of most anhydrous phenocrysts, but stability of hydrous phases) suggest (1) a protracted residence in the crust as a crystal mush and (2) rejuvenation (reduced crystallization and even partial resorption of minerals) prior to eruption probably induced by new influx of heat (and volatiles). This extended evolution chemically isolated from the surrounding crust is a likely consequence of the regional geodynamics because the thinned Aegean microplate acts as a refractory container for magmas in the dying Aegean subduction zone (continent-continent subduction).

  7. Magma feeding system of Kutcharo and Mashu calderas, Hokkaido, Japan: Evidence of a common basaltic magma evolving into two distinct rock series

    NASA Astrophysics Data System (ADS)

    Miyagi, I.; Itoh, J.; Nguyen, H.

    2009-12-01

    Kutcharo and its adjacent Mashu volcanoes are located in NE Hokkaido, about 150 km west of the Kurile trench. The latest major activity of Kutcharo was 35 thousand years ago (termed KP I) produced about 50 km3 D.R.E, Mashu meanwhile became active after KP I. To understand the magma feeding system of adjoining but distinct Kutcharo (medium-K) and Mashu (low-K) volcanoes, we examined major and trace element, and Sr, Nd, and Pb isotopic compositions of whole rocks. We also studied phenocryst chemical zoning and chemical compositions of melt inclusions in phenocryst. The chemical results of melt inclusions show no distinction between medium- and low-K as being recognized in bulk rock chemistry of the volcanoes. Instead, the results form a smooth trend between low-K rock series and high-K rhyolitic melt end-member (as high as 5 wt. % K2O). There is no significant difference Sr, Nd and Pb isotopes between basalt and rhyolite suggesting genetic relationship. Moreover, the trace element distribution patterns show enrichment increasing gradually from the basalt to rhyolite via andesite indicating fractional crystallization evolution. Chemical zoning in plagioclase phenocryst in KP I (An 80-40) suggest that basaltic magma injected repeatedly into a voluminous felsic magma chamber of Kutcharo volcano. Chemical compositions of olivine phenocryst show that Kutcharo (Fo 86) was hotter as compared to Mashu (Fo 75). Application of MELTS program (Ghiorso and Sack, 1995) on composition of the basaltic melt end-member suggests that crystallization or subsequent re-melting of the basalt may produce medium- to high-K rhyolite melt, and mixing of the rhyolite with basalt may form the observed medium-K Kutcharo and low-K Mashu rock series. It is estimated that total volume of the basaltic magma supplied intermittently beneath the volcanoes was several folds to 10 times larger than the erupted rhyolite magma. And that the basalt injection may be more intensive beneath Kutcharo, leading to

  8. Reconciling Gases With Glasses: Magma Degassing, Overturn and Mixing at Kilauea Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Edmonds, M.; Gerlach, T. M.

    2006-12-01

    Our understanding of the volatile budget at Kilauea Volcano is based on measurements of the abundance of volatile elements in volcanic glasses and gases. Observations of volcanic gases gave rise to a fundamental model describing volatile fractionation between the summit and rift zone during the current eruption [Gerlach and Graeber, 1985]. Other workers' analysis of glasses from the Puna Ridge, Kilauea Iki and Pu`u `O`o indicate that magma degassing, drain-back, mixing and assimilation are important processes at Kilauea Volcano. Volcanic gases have not illustrated these kinds of processes clearly in the past, owing to infrequent and poorly resolved data. New, detailed studies of volcanic gas emissions have refined our understanding of volatile degassing and magma budgets at Kilauea Volcano. Open Path Fourier Transform Infra-Red spectroscopy measurements carried out during 2004-2005 allow retrieval of the relative abundances of the major volatile species H2O, CO2 and SO2, which together make up >99 vol% of the magmatic vapor phase. The proportions of these gases vary over time and space and can be used to infer magma transport, ascent, degassing, overturn and mixing and gas segregation processes within the plumbing system of Kilauea Volcano. Gases from Pu`u `O`o in 2004-2005 display a range in composition. A trend relates molar C/S to the total H2O content of the gases over time and space; total H2O ranges from 60-98 mol %, while molar C/S ranges from <0.01 to >50. The range in volcanic gas composition over time and space is caused by magma degassing, overturn and mixing of partially degassed magma with fresh primary magma beneath Pu`u `O`o. Measurements of the mean rate of magma degassing (from SO2 emissions) and mean lava effusion rate (from geophysical measurements of lava tube flux) suggest that a larger volume (DRE) of magma is degassing than is being erupted, on average. This analysis suggests that magma storage in the Rift Zone might be important during

  9. Evaluation of magma mixing in the subvolcanic rocks of Ghansura Felsic Dome of Chotanagpur Granite Gneiss Complex, eastern India

    NASA Astrophysics Data System (ADS)

    Gogoi, Bibhuti; Saikia, Ashima; Ahmad, Mansoor; Ahmad, Talat

    2018-06-01

    The subvolcanic rocks exposed in the Ghansura Felsic Dome (GFD) of the Bathani volcano-sedimentary sequence at the northern fringe of the Rajgir fold belt in the Proterozoic Chotanagpur Granite Gneiss Complex preserves evidence of magma mixing and mingling in mafic (dolerite), felsic (microgranite) and intermediate (hybrid) rocks. Structures like crenulated margins of mafic enclaves, felsic microgranular enclaves and ocelli with reaction surfaces in mafic rocks, hybrid zones at mafic-felsic contacts, back-veining and mafic flows in the granitic host imply magma mingling phenomena. Textural features like quartz and titanite ocelli, acicular apatite, rapakivi and anti-rapakivi feldspar intergrowths, oscillatory zoned plagioclase, plagioclase with resorbed core and intact rim, resorbed crystals, mafic clots and mineral transporting veins are interpreted as evidence of magma mixing. Three distinct hybridized rocks have formed due to varied interactions of the intruding mafic magma with the felsic host, which include porphyritic diorite, mingled rocks and intermediate rocks containing felsic ocelli. Geochemical signatures confirm that the hybrid rocks present in the study area are mixing products formed due to the interaction of mafic and felsic magmas. Physical parameters like temperature, viscosity, glass transition temperature and fragility calculated for different rock types have been used to model the relative contributions of mafic and felsic end-member magmas in forming the porphyritic diorite. From textural and geochemical investigations it appears that the GFD was a partly solidified magma chamber when mafic magma intruded it leading to the formation of a variety of hybrid rock types.

  10. The 1994-2001 eruptive period at Rabaul, Papua New Guinea: Petrological and geochemical evidence for basalt injections into a shallow dacite magma reservoir, and significant SO2 flux

    NASA Astrophysics Data System (ADS)

    Patia, H.; Eggins, S. M.; Arculus, R. J.; McKee, C. O.; Johnson, R. W.; Bradney, A.

    2017-10-01

    The eruptions that began at Rabaul Caldera on 19 September 1994 had two focal points, the vents Tavurvur and Vulcan, located 6 km apart on opposing sides of the caldera. Vulcan eruptives define a tight cluster of dacite compositions, whereas Tavurvur eruptives span an array from equivalent dacite compositions to mafic andesites. The eruption of geochemically and mineralogically identical dacites from both vents indicates sourcing from the same magma reservoir. This, together with previously reported H2O-CO2 volatile contents of dacite melt inclusions, a caldera-wide seismic low-velocity zone, and a seismically active caldera ring fault structure are consistent with the presence at 3-6 km depth of an extensive, tabular dacitic magma body having volume of about 15-150 km3. The Tavurvur andesites form a linear compositional array and have strongly bimodal phenocryst assemblages that reflect dacite hybridisation with a mafic basalt. The moderately large volume SO2 flux documented in the Tavurvur volcanic plume (and negligible SO2 flux in the Vulcan plume) combined with high dissolved S contents of basaltic melt inclusions trapped in olivine of Tavurvur eruptives, indicate that the amount of degassed basaltic magma was 0.1 km3 and suggest that the injection of this magma was confined to the Tavurvur-side (eastern to northeastern sector) of the caldera. Circumstantial evidence suggests that the eruption was triggered and evolved in response to a series of basaltic magma injections that may have commenced in 1971 and continued up until at least the start of the 1994 eruptions. The presence of zoned plagioclase phenocrysts reflecting older basalt-dacite interaction events (i.e. anorthite cores overgrown with thick andesine rims), evaluation of limited available data for the products of previous eruptions in 1878 and 1937-1943, and the episodic occurrence of major intra-caldera seismo-deformational events indicates that the shallow magma system at Rabaul Caldera is

  11. Magma Mixing: Magmatic Enclaves in Morne Micotrin, Dominica

    NASA Astrophysics Data System (ADS)

    Hickernell, S.; Frey, H. M.; Manon, M. R. F.; Waters, L. E.

    2017-12-01

    the plagioclase are distinctive. Fine-grained enclave plagioclase has patchy, uneven zoning, whereas coarse-grained enclave plagioclase has oscillatory zoning. The presence of these enclaves indicates that there may be several different magma inputs contributing to the system that is feeding Micotrin, and the injection of these unique magmas may be eruption triggers.

  12. Hydrogen, Oxygen and Silicon Isotope Systematics of Groundwater-Magma Interaction in Icelandic Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Kleine, B. I.; Stefansson, A.; Halldorsson, S. A.; Martin, W.; Barnes, J.; Jónasson, K.; Franzson, H.

    2016-12-01

    Magma often encounters groundwater (meteoric or seawater derived) when intruded into the crust. Magma-groundwater interactions result in the formation of hydrothermal fluids which can lead to contact metamorphism and elemental transport in the country rock. In fact, magma-hydrothermal fluid interaction (rather than magma-magmatic fluid interaction) may lead to classic contact metamorphic reactions. In order to explore the importance of hydrothermal fluid during contact metamorphism we use stable isotopes (δD, δ18O, δ30Si) from both active and extinct magma chambers and hydrothermal systems from across Iceland. Quartz grains from various hydrothermal systems, from crustal xenoliths from the Askja central volcano and from the Hafnarfjall pluton, as well as quartz grains associated with low-T zeolites were analysed for δ18O and δ30Si in-situ using SIMS. Whole rock material of these samples was analysed for δD values using a TCEA coupled to an IRMS. Our results indicate that low-T quartz (<150°C) are dominated by negative δ30Si values whereas positive δ30Si values prevail in quartz precipitated at higher T (>300°C). Combining the results from the analyses of δ18O and δD allows further division of samples into (i) seawater and/or rock dominated and (ii) meteoric water dominated hydrothermal systems. In order to isolate the effects of fluid-rock interaction, fluid source and formation temperature at the magma-groundwater contact, δD, δ18O and δ30Si values of rocks and fluids were modeled using the PHREEQC software. Comparison of analytical and model results shows that the isotopic compositions are influenced by multiple processes. In some cases, groundwater penetrates the contact zone and causes alteration at >400°C by groundwater-magma heat interaction. Other cases document "baked" contact zones without groundwater. Our analyses and modeling demonstrates that groundwater flow and permeability are crucial in setting the style of contact metamorphism

  13. Plagioclase populations and zoning in dacite of the 2004-2005 Mount St. Helens eruption: constraints for magma origin and dynamics: Chapter 34 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Streck, Martin J.; Broderick, Cindy A.; Thronber, Carl R.; Clynne, Michael A.; Pallister, John S.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    We propose that crystals with no dissolution surfaces are those that were supplied last to the shallow reservoir, whereas plagioclase with increasingly more complex zoning patterns (that is, the number of zoned bands bounded by dissolution surfaces) result from prolonged residency and evolution in the reservoir. We propose that banding and An zoning across multiple bands are primarily a response to thermally induced fluctuations in crystallinity of the magma in combination with recharge; a lesser role is ascribed to cycling crystals through pressure gradients. Crystals without dissolution surfaces, in contrast, could have grown only in response to steady(?) decompression. Some heating-cooling cycles probably postdate the final eruption in 1986. They resulted from small recharge events that supplied new crystals that then experienced resorption-growth cycles. We suggest that magmatic events shortly prior to the current eruption, recorded in the outermost zones of plagioclase phenocrysts, began with the incorporation of acicular orthopyroxene, followed by last resorption, and concluded with crystallization of euhedral rims. Finally, we propose that 2004-5 dacite is composed mostly of dacite magma that remained after 1986 and underwent subsequent magmatic evolution but, more importantly, contains a component of new dacite from deeper in the magmatic system, which may have triggered the new eruption.

  14. Clinopyroxene-melt element partitioning during interaction between trachybasaltic magma and siliceous crust: Clues from quartzite enclaves at Mt. Etna volcano

    NASA Astrophysics Data System (ADS)

    Mollo, S.; Blundy, J. D.; Giacomoni, P.; Nazzari, M.; Scarlato, P.; Coltorti, M.; Langone, A.; Andronico, D.

    2017-07-01

    A peculiar characteristic of the paroxysmal sequence that occurred on March 16, 2013 at the New South East Crater of Mt. Etna volcano (eastern Sicily, Italy) was the eruption of siliceous crustal xenoliths representative of the sedimentary basement beneath the volcanic edifice. These xenoliths are quartzites that occur as subspherical bombs enclosed in a thin trachybasaltic lava envelope. At the quartzite-magma interface a reaction corona develops due to the interaction between the Etnean trachybasaltic magma and the partially melted quartzite. Three distinct domains are observed: (i) the trachybasaltic lava itself (Zone 1), including Al-rich clinopyroxene phenocrysts dispersed in a matrix glass, (ii) the hybrid melt (Zone 2), developing at the quartzite-magma interface and feeding the growth of newly-formed Al-poor clinopyroxenes, and (iii) the partially melted quartzite (Zone 3), producing abundant siliceous melt. These features makes it possible to quantify the effect of magma contamination by siliceous crust in terms of clinopyroxene-melt element partitioning. Major and trace element partition coefficients have been calculated using the compositions of clinopyroxene rims and glasses next to the crystal surface. Zone 1 and Zone 2 partition coefficients correspond to, respectively, the chemical analyses of Al-rich phenocrysts and matrix glasses, and the chemical analyses of newly-formed Al-poor crystals and hybrid glasses. For clinopyroxenes from both the hybrid layer and the lava flow expected relationships are observed between the partition coefficient, the valence of the element, and the ionic radius. However, with respect to Zone 1 partition coefficients, values of Zone 2 partition coefficients show a net decrease for transition metals (TE), high-field strength elements (HFSE) and rare earth elements including yttrium (REE + Y), and an increase for large ion lithophile elements (LILE). This variation is associated with coupled substitutions on the M1, M2 and

  15. Illuminating magma shearing processes via synchrotron imaging

    NASA Astrophysics Data System (ADS)

    Lavallée, Yan; Cai, Biao; Coats, Rebecca; Kendrick, Jackie E.; von Aulock, Felix W.; Wallace, Paul A.; Le Gall, Nolwenn; Godinho, Jose; Dobson, Katherine; Atwood, Robert; Holness, Marian; Lee, Peter D.

    2017-04-01

    Our understanding of geomaterial behaviour and processes has long fallen short due to inaccessibility into material as "something" happens. In volcanology, research strategies have increasingly sought to illuminate the subsurface of materials at all scales, from the use of muon tomography to image the inside of volcanoes to the use of seismic tomography to image magmatic bodies in the crust, and most recently, we have added synchrotron-based x-ray tomography to image the inside of material as we test it under controlled conditions. Here, we will explore some of the novel findings made on the evolution of magma during shearing. These will include observations and discussions of magma flow and failure as well as petrological reaction kinetics.

  16. Body Buffer Zone and Proxemics in Blocking.

    ERIC Educational Resources Information Center

    Stockwell, John C.; Bahs, Clarence W.

    This paper investigates the effect of personal body buffer zones on compositional arrangements staged by novice directors. Relationships between directors' concepts of personal space and their projection of its dimensions into staging are studied through the use of a variety of proximity measures--distance, area angles of approach, and physical…

  17. Magma hybridization in the Western Tatra Mts. granitoid intrusion (S-Poland, Western Carpathians).

    PubMed

    Burda, Jolanta; Gawęda, Aleksandra; Klötzli, Urs

    In the Variscan Western Tatra granites hybridization phenomena such as mixing and mingling can be observed at the contact of mafic precursors of dioritic composition and more felsic granitic host rocks. The textural evidence of hybridization include: plagioclase-K-feldspar-sphene ocelli, hornblende- and biotite-rimmed quartz ocelli, plagioclase with Ca-rich spike zonation, inversely zoned K-feldspar crystals, mafic clots, poikilitic plagioclase and quartz crystals, mixed apatite morphologies, zoned K-feldspar phenocrysts. The apparent pressure range of the magma hybridization event was calculated at 6.1 kbar to 4.6 kbar, while the temperature, calculated by independent methods, is in the range of 810°C-770°C. U-Pb age data of the hybrid rocks were obtained by in-situ LA-MC-ICP-MS analysis of zircon. The oscillatory zoned zircon crystals yield a concordia age of 368 ± 8 Ma (MSWD = 1.1), interpreted as the age of magma hybridization and timing of formation of the magmatic precursors. It is the oldest Variscan magmatic event in that part of the Tatra Mountains.

  18. In-situ measurement of sulfur isotopic ratios in zoned apatite crystals via SIMS: a new tool for interpreting dynamic sulfur behavior in magmas

    NASA Astrophysics Data System (ADS)

    Economos, R. C.; Boehnke, P.; Burgisser, A.

    2017-12-01

    Sulfur is an important element in igneous systems due to its impact on magma redox, its role in the formation of economically valuable ore deposits, and the influence of catastrophic volcanogenic sulfur degassing on global climate. The mobility and geochemical behavior of sulfur in magmas is complex due to its multi-valent (from S2- to S6+) and multi-phase (solid, immiscible liquid, gaseous, dissolved ions) nature. Sulfur behavior is closely linked with the evolution of oxygen fugacity (fO2) in magmas; the record of fO2 evolution is often difficult to extract from rock records, particularly for intrusive systems that undergo cyclical magmatic processes and crystallize to the solidus. We apply a novel method of measuring S isotopic ratios via secondary ion mass spectrometry (SIMS) in zoned apatite crystals that we interpret as a record of open-system magmatic processes. We analyzed the S concentration and isotopic variations preserved in multiple apatite crystals from single hand specimens from the Cadiz Valley Batholith, CA via electron microprobe and ion microprobe at UCLA. A single, isotopically homogeneous crystal of Durango apatite was characterized for absolute isotopic ratio for this study (UCLA-D1). Isotopic variations in single apatite crystals ranged from 0 to 3.8‰ δ34S and total variation within a single hand sample was 6.1‰ δ34S. High S concentration cores yielded high isotopic ratios while low S concentration rims yielded low isotopic ratios. We favor an explanation of a combination of magma mixing and open-system, ascent-driven degassing under moderately reduced conditions: fO2 at or below NNO +1, although the synchronous crystallization of apatite and anhydrite is also a viable scenario. These findings have implications for the coupled S and fO2 evolution of granitic plutons and suggest that in-situ apatite S isotopic measurements could be a powerful new tool for evaluating redox and S systematics in magmatic systems.

  19. On the Interaction of a Vigorous Hydrothermal System with an Active Magma Chamber: The Puna Magma Chamber, Kilauea East Rift, Hawaii

    NASA Astrophysics Data System (ADS)

    Gregory, R. T.; Marsh, B. D.; Teplow, W.; Fournelle, J.

    2009-12-01

    of dacitic composition of ~67 wt.% SiO2. The melt flowed up the borehole, quenched, and was repeatedly re-drilled over a depth interval of ~8 m, producing several kilograms of clear, colorless vitric cuttings. The melt is of low crystallinity, vesicle-free, at a minimum temperature of ~865°C, and with an apparent viscosity of ~106.5 Pa-s. The magma is separated from the deepest hydrothermal regime at 356°C by 526 m of sealed rock. Heat flux from the magma into the overlying geothermal reservoir at ~2784 mW/m2 is an order of magnitude greater than that for mid-ocean ridges. Typical Hawaiian basalt contains ~0.25 wt.% water. The dacite melt contains ~2.44 wt.% water, and is of normal magmatic δ18O (5.4 ‰) and δD (-61.8‰), which is in contrast to the surrounding hydrothermal waters. A similar preliminary analysis of the water content in the altered basalt just outside the sealed zone shows it to heavily hydrated (~4.94 wt.%) and altered by the hydrothermal field. This suggests that volatile under-saturated magmas are sealed with respect to hydrothermal fields and deeper systems may be even more strongly sealed.

  20. Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: Evidence from the Panzhihua intrusion, SW China

    NASA Astrophysics Data System (ADS)

    Song, Xie-Yan; Qi, Hua-Wen; Hu, Rui-Zhong; Chen, Lie-Meng; Yu, Song-Yue; Zhang, Jia-Fei

    2013-03-01

    Panzhihua intrusion is one of the largest layered intrusions that hosts huge stratiform Fe-Ti oxide layers in the central part of the Emeishan large igneous province, SW China. Up to 60 m thick stratiform massive Fe-Ti oxide layers containing 85 modal% of magnetite and ilmenite and overlying magnetite gabbro compose cyclic units of the Lower Zone of the intrusion. The cyclic units of the Middle Zone consist of magnetite gabbro and overlying gabbro. In these cyclic units, contents of Fe2O3(t), TiO2 and Cr and Fe3+/Ti4+ ratio of the rocks decrease upward, Cr content of magnetite and forsterite percentage of olivine decrease as well. The Upper Zone consists of apatite gabbro characterized by enrichment of incompatible elements (e.g., 12-18 ppm La, 20-28 ppm Y) and increasing of Fe3+/Ti4+ ratio (from 1.3 to 2.3) upward. These features indicate that the Panzhihua intrusion was repeatedly recharged by more primitive magma and evolved magmas had been extracted. Calculations using MELTS indicate that extensive fractionation of olivine and clinopyroxene in deep level resulted in increasing Fe and Ti contents in the magma. When these Fe-Ti-enriched magmas were emplaced along the base of the Panzhihua intrusion, Fe-Ti oxides became an early crystallization phase, leading to a residual magma of lower density. We propose that the unusually thick stratiform Fe-Ti oxide layers resulted from coupling of gravity settling and sorting of the crystallized Fe-Ti oxides from Fe-Ti-enriched magmas and frequent magma replenishment along the floor of the magma chamber.

  1. Emplacement model of obsidian-rhyolite magma deduced from complete internal section of the Akaishiyama lava, Shirataki, northern Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Wada, K.; Sano, K.

    2016-12-01

    Simultaneously explosive and effusive eruptions of silicic magmas has shed light on the vesiculation and outgassing history of ascending magmas in the conduit and emplacement model of obsidian-rhyolite lavas (Castro et al., 2014; Shipper et al, 2013). As well as the knowledge of newly erupted products such as 2008-2009 Chaitén and 2011-2012 Cordón Caule eruptions, field and micro-textural evidences of well-exposed internal structure of obsidian-rhyolite lava leads to reveal eruption processes of silicic magmas. The Shirataki monogenetic volcano field, 2.2 million year age, northern Hokkaido, Japan, contains many outcrops of obsidian and vesiculated rhyolite zones (SiO2=76.7-77.4 wt.%). Among their outcrops, Akaishiyama lava shows good exposures of internal sections from the top to the bottom along the Kyukasawa valley with thickness of about 190 meters, showing the symmetrical structure comprising a upper clastic zone (UCZ; 5m thick), an upper dense obsidian zone (UDO; 15m), an upper banded obsidian zone (UBO; 70-80m), a central rhyolite zone (CR; 65m), a lower banded obsidian zone (LBO; 15m), a lower dense obsidian zone (LDO; 20m), and a lower clastic zone (LCZ; 3m). The upper banded obsidian zone is characterized by existence of spherulite concentration layers with tuffisite veins and rhyolite enclaves. Spherulites consisting of albite, cristobalaite and obsidian glass, are clustered in the dense obsidian. Tuffisite veins show brecciated obsidians in tuffaceous matrix, showing an outgassing path during the emplacement of obsidian lava. Perpendicular dip of spherulite parallel rows indicates the banded zone itself was the domain of vent area. From the observation of these occurrences in the internal section and rock texture, we show the qualitative formation model of Shirataki obsidian-rhyolite lava.

  2. A tale of two magmas: Petrological insights into mafic and intermediate Plinian volcanism at Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Crummy, J. M.; Savov, I. P.; Morgan, D. J.; Wilson, M.; Loughlin, S.; Navarro-Ochoa, C.

    2012-12-01

    Volcán de Colima in western Mexico explosively erupts basaltic to high-silica andesitic magmas. Detailed petrological and geochemical analyses of Holocene tephra fallout deposits reveal two distinct magma types: I. typical calc-alkaline series magmas; and II. mixed calc-alkaline - alkaline magmas. Group I magmas comprise basalt to high-silica andesite (50.7 to 60.4 wt.% SiO2) and typically contain phenocrysts of plagioclase + clinopyroxene + orthopyroxene + Fe-Ti oxides ± hornblende ± olivine. Crystallinity varies from 10-25 vol.% dominated by plagioclase in a groundmass comprising highly vesiculated glass with abundant microlites. Back-scatter electron (BSE) microscope images together with electron microprobe analyses (EPMA) reveal complex zoning patterns and compositional variations in plagioclase and pyroxene phenocrysts. Large scale resorption events with dissolution surfaces cross-cutting multiple growth zones, combined with large steps in An content of up to 20 mol.% in plagioclase, and Mg# varying from 0.74 to 0.86 in clinopyroxene and orthopyroxene, indicates destabilisation and recrystallisation in a more mafic melt: increases in Cr coincident with step increases in Mg# reveal mafic magma recharge. Many plagioclase and pyroxene phenocrysts record multiple magma recharge events; while small-scale oscillations reveal compositional fluctuations as a result of decompression and degassing. Group II magmas comprise basalt to basaltic-andesite (48.3 to 57.5 wt.% SiO2) and contain 10-15 vol.% crystals comprising clinopyroxene + olivine + phlogopite + plagioclase + Fe-Ti oxides ± hornblende ± orthopyroxene. The groundmass comprises highly vesiculated glass with abundant microlites of the same mineral phases. Clinopyroxene phenocrysts have magnesian cores (Mg# 0.88-0.89) that display strong dissolution with clear resorption and recrystallisation. EPMA analyses reveal large compositional differences with the surrounding growth zone (Mg# 0.80) indicating

  3. The role of amphibole in Merapi arc magma petrogenesis: insights from petrology and geochemistry of lava hosted xenoliths and xenocrysts

    NASA Astrophysics Data System (ADS)

    Chadwick, J. P.; Troll, V. R.; Schulz, B.; Dallai, L.; Freda, C.; Schwarzkopf, L. M.; Annersten, H.; Skogby, H.

    2010-05-01

    Recently, increasing attention has been paid to the role of amphibole in the differentiation of arc magmas. The geochemical composition of these magmas suggests that deep to mid crustal fractionation of amphibole has occurred. However, this phase is typically an infrequent modal phenocryst phase in subduction zone eruptive deposits(1). Nevertheless, erupted material only represents a portion of the magmatism produced in subduction zone settings, with many opportunities for melts to stall on route to the surface. This discrepancy between whole rock geochemistry and petrological interpretation of arc magmas has lead many scientists to postulate that, at mid to deep crustal levels, there may be significant volumes of amphibole bearing lithologies. Amphibole instability at shallow levels can also contribute to its scarcity in eruptive deposits. This argument is strengthened by field and petrological evidence, including the widespread occurrence of amphibole-rich intrusive rocks in exhumed orogenicbelts formed during subduction zone activity, e.g. the Adamello batholith (2),as well as the presence of amphibole-rich xenoliths and xenocrysts preserved in arc lavas worldwide, e.g. in Indonesia, Antilles, and Central America. Thus, amphibole appears to play an integral role in subduction zone magmatism and identifying and constraining this role is central to understanding arc magma petrogenisis. Amphibole-rich melts or bodies in the deep to mid crust could be a significant hydrous reservoir for intra-crustal melts and fluids (1). In this preliminary study, we have carried out petrological and geochemical analyses of recent basaltic andesite and amphibole bearing crystalline igneous inclusions and xenocrysts from Merapi volcano in Java, Indonesia. The basaltic andesite geochemistry is consistent with amphibole fractionation and the crystalline inclusions are cogenetic to the Merapi magmatic system. These inclusions are likely to represent fractionation residues reflecting

  4. Compositional gradients in large reservoirs of silicic magma as evidenced by ignimbrites versus Taylor Creek Rhyolite lava domes

    NASA Astrophysics Data System (ADS)

    Duffield, Wendell A.; Ruiz, Joaquin

    1992-04-01

    The Taylor Creek Rhyolite of southwest New Mexico consists of 20 lava domes and flows that were emplaced during a period of a few thousand years or less in late Oligocene time. Including genetically associated pyroclastic deposits, which are about as voluminous as the lava domes and flows, the Taylor Creek Rhyolite represents roughly 100 km3 of magma erupted from vents distributed throughout an area of several hundred square kilometers. Major-element composition is metaluminous to weakly peraluminous high-silica rhyolite and is nearly constant throughout the lava field. The magma reservoir for the Taylor Creek Rhyolite was vertically zoned in trace elements, 87Sr/86Sr, and phenocryst abundance and size. Mean trace-element concentrations, ranges in concentrations, and element-pair correlations are similar to many subalkaline silicic ignimbrites. However, the polarity of the zonation was opposite that in reservoirs for ignimbrites, for most constituents. For example, compared to the Bishop Tuff, only 87Sr/86Sr and Sc increased upward in both reservoirs. Quite likely, a dominant but nonerupted volume of the magma reservoir for the Taylor Creek Rhyolite was zoned like that for the Bishop Tuff, whereas an erupted, few-hundred-meter-thick cap on the magma body was variably contaminated by roof rocks whose contribution to this part of the magma system moderated relatively extreme trace-element concentrations of uncontaminated Taylor Creek Rhyolite but did not change the sense of correlation for most element pairs. The contaminant probably was a Precambrian rock of broadly granitic composition and with very high 87Sr/86Sr. Although examples apparently are not yet reported in the literature, evidence for a similar thin contaminated cap on reservoirs for large-volume silicic ignimbrites may exist in the bottom few meters of ignimbrites or perhaps only in the pumice fallout that normally immediately precedes ignimbrite emplacement. 87Sr/86Sr in sanidine phenocrysts of the

  5. Compositional gradients in large reservoirs of silicic magma as evidenced by ignimbrites versus Taylor Creek Rhyolite lava domes

    USGS Publications Warehouse

    Duffield, W.A.; Ruiz, J.

    1992-01-01

    The Taylor Creek Rhyolite of southwest New Mexico consists of 20 lava domes and flows that were emplaced during a period of a few thousand years or less in late Oligocene time. Including genetically associated pyroclastic deposits, which are about as voluminous as the lava domes and flows, the Taylor Creek Rhyolite represents roughly 100 km3 of magma erupted from vents distributed throughout an area of several hundred square kilometers. Major-element composition is metaluminous to weakly peraluminous high-silica rhyolite and is nearly constant throughout the lava field. The magma reservoir for the Taylor Creek Rhyolite was vertically zoned in trace elements, 87Sr/86Sr, and phenocryst abundance and size. Mean trace-element concentrations, ranges in concentrations, and element-pair correlations are similar to many subalkaline silicic ignimbrites. However, the polarity of the zonation was opposite that in reservoirs for ignimbrites, for most constituents. For example, compared to the Bishop Tuff, only 87Sr/86Sr and Sc increased upward in both reservoirs. Quite likely, a dominant but nonerupted volume of the magma reservoir for the Taylor Creek Rhyolite was zoned like that for the Bishop Tuff, whereas an erupted, few-hundred-meter-thick cap on the magma body was variably contaminated by roof rocks whose contribution to this part of the magma system moderated relatively extreme trace-element concentrations of uncontaminated Taylor Creek Rhyolite but did not change the sense of correlation for most element pairs. The contaminant probably was a Precambrian rock of broadly granitic composition and with very high 87Sr/86Sr. Although examples apparently are not yet reported in the literature, evidence for a similar thin contaminated cap on reservoirs for large-volume silicic ignimbrites may exist in the bottom few meters of ignimbrites or perhaps only in the pumice fallout that normally immediately precedes ignimbrite emplacement. 87Sr/86Sr in sanidine phenocrysts of the

  6. Zircon from historic eruptions in Iceland: reconstructing storage and evolution of silicic magmas

    NASA Astrophysics Data System (ADS)

    Carley, Tamara L.; Miller, Calvin F.; Wooden, Joseph L.; Bindeman, Ilya N.; Barth, Andrew P.

    2011-10-01

    Zoning patterns, U-Th disequilibria ages, and elemental compositions of zircon from eruptions of Askja (1875 AD), Hekla (1158 AD), Öræfajökull (1362 AD) and Torfajökull (1477 AD, 871 AD, 3100 BP, 7500 BP) provide insights into the complex, extended, histories of silicic magmatic systems in Iceland. Zircon compositions, which are correlated with proximity to the main axial rift, are distinct from those of mid-ocean ridge environments and fall at the low-Hf edge of the range of continental zircon. Morphology, zoning patterns, compositions, and U-Th ages all indicate growth and storage in subvolcanic silicic mushes or recently solidified rock at temperatures above the solidus but lower than that of the erupting magma. The eruptive products were likely ascending magmas that entrained a zircon "cargo" that formed thousands to tens of thousands of years prior to the eruptions.

  7. The Parent Magmas of the Cumulate Eucrites: A Mass Balance Approach

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1996-01-01

    eucrite composition and any reasonable partition coefficients. Postcumulus loss of incompatible elements seems possible. It is intriguing that Serra de Mage, Moore County, and Moama are consistent with the same parental magma; could they be from the same igneous body on the eucrite parent asteroid (4 Vesta)?

  8. Magma transfer processes at persistently active volcanoes: insights from gravity observations

    NASA Astrophysics Data System (ADS)

    Locke, Corinne A.; Rymer, Hazel; Cassidy, John

    2003-09-01

    Magma transfer processes at persistently active volcanoes are distinguished by the large magma flux required to sustain the prodigious quantities of heat and gas emitted at the surface. Although the resulting degassed magma has been conjectured to accumulate either deep within the volcanic edifice or in the upper levels of the sub-edifice system, no direct evidence for such active accumulation has been reported. Temporal gravity data are unique in being able to quantify mass changes and have been successfully used to model shallow magma movements on different temporal scales, but have not generally been applied to the investigation of postulated long-term accumulation of magma at greater spatial scales within volcanic systems. Here, we model the critical data acquisition parameters required to detect mass flux at volcanoes, we review existing data from a number of volcanoes that exemplify the measurement of shallow mass changes and present new data from Poas and Telica volcanoes. We show that if a substantial proportion of degassed magma lodges within the sub-edifice region, it would result in measurable annual to decadal gravity increases occurring over spatial scales of tens of kilometres and propose that existing microgravity data from Sakurajima and, possibly, Etna volcanoes could be interpreted in these terms. Furthermore, such repeat microgravity data could be used to determine whether the accumulation rate is in equilibrium with the rate of production of degassed magma as calculated from the surface gas flux and hence identify the build-up of gas-rich magma at depth that may be significant in terms of eruption potential. We also argue that large magma bodies, both molten and frozen, modelled beneath volcanoes from seismic and gravity data, could represent endogenous or cryptic intrusions of degassed magma based on order of magnitude calculations using present-day emission rates and typical volcano lifetimes.

  9. Geochemical Evidence for a Terrestrial Magma Ocean

    NASA Technical Reports Server (NTRS)

    Agee, Carl B.

    1999-01-01

    The aftermath of phase separation and crystal-liquid fractionation in a magma ocean should leave a planet geochemically differentiated. Subsequent convective and other mixing processes may operate over time to obscure geochemical evidence of magma ocean differentiation. On the other hand, core formation is probably the most permanent, irreversible part of planetary differentiation. Hence the geochemical traces of core separation should be the most distinct remnants left behind in the mantle and crust, In the case of the Earth, core formation apparently coincided with a magma ocean that extended to a depth of approximately 1000 km. Evidence for this is found in high pressure element partitioning behavior of Ni and Co between liquid silicate and liquid iron alloy, and with the Ni-Co ratio and the abundance of Ni and Co in the Earth's upper mantle. A terrestrial magma ocean with a depth of 1000 km will solidify from the bottom up and first crystallize in the perovskite stability field. The largest effect of perovskite fractionation on major element distribution is to decrease the Si-Mg ratio in the silicate liquid and increase the Si-Mg ratio in the crystalline cumulate. Therefore, if a magma ocean with perovskite fractionation existed, then one could expect to observe an upper mantle with a lower than chondritic Si-Mg ratio. This is indeed observed in modern upper mantle peridotites. Although more experimental work is needed to fully understand the high-pressure behavior of trace element partitioning, it is likely that Hf is more compatible than Lu in perovskite-silicate liquid pairs. Thus, perovskite fractionation produces a molten mantle with a higher than chondritic Lu-Hf ratio. Arndt and Blichert-Toft measured Hf isotope compositions of Barberton komatiites that seem to require a source region with a long-lived, high Lu-Hf ratio. It is plausible that that these Barberton komatiites were generated within the majorite stability field by remelting a perovskite

  10. Deformation patterns, magma supply, and magma storage at Karymsky Volcanic Center, Kamchatka, Russia, 2000-2010, revealed by InSAR

    NASA Astrophysics Data System (ADS)

    Ji, Lingyun; Izbekov, Pavel; Senyukov, Sergey; Lu, Zhong

    2018-02-01

    Under a complex geological region influenced by the subduction of the Pacific plate, Kamchatka Peninsula is one of the most active volcanic arcs in the Pacific Rim. Due to logistical difficulty in instrumentation, shallow magma plumbing systems beneath some of the Kamchatkan volcanoes are poorly understood. InSAR offers a safe and quick method for monitoring volcanic deformation with a high spatial resolution. In this study, a group of satellite radar interferograms that span the time interval from 2000 to 2010 shows eruptive and non-eruptive deformation at Karymsky Volcanic Center (KVC), Kamchatka, Russia. All the interferograms provide details of the activity around the KVC during 2000-2010, as follows: (1) from 2000 to 2004, the Karymsky-AN (Akademia Nauk) area deflated and the MS (Maly Semyachik) area inflated, (2) from 2004 to 2006, the Karymsky-AN area deflated with ongoing eruption, while the MS area subsided without eruption, (3) from 2006 to 2008, as with 2000-2004, the Karymsky-AN area deflated and the MS area inflated, (4) from 2008 to 2010, the Karymsky-AN area inflated up to 3 cm, and the MS area subsided. Point source models suggest that two magma reservoirs provide a good fit to the observed deformation. One source is located beneath the area between Karymsky and AN at a depth of approximately 7.0 km, and the other one is situated beneath MS at a depth of around 5.8 km. Synchronous deformation patterns suggest that two magma systems are fed from the same deep magma source and connected by a fracture zone. The InSAR results are consistent with GPS ground deformation measurements, seismic data, and petrological constraints.

  11. Magma Mixing: Why Picrites are Not So Hot

    NASA Astrophysics Data System (ADS)

    Natland, J. H.

    2010-12-01

    porosity in regions where crustal-level magma chambers and flanking rift zones do not have a chance to form. Low-magma supply is favored. In the ocean basins, such upper mantle mainlining occurs only at certain fracture zones, deep propagating rifts at microplates, or ultra-slow spreading ridges, but no liquids (glasses) with >10% MgO occur at any of these places. On continents, rift structures through cratons might allow this, but so far no picrite, ferropicrite, or meimichite that has been adequately described from these places lacks evidence for end-member mixing. Low-temperature iron-rich magmas can accumulate in the deep lower crust and later rise to form substantial intrusions (e.g. Skaergaard) or erupt as flood basalts (Columbia River). Some komatiites might represent high-temperature liquids, but many are so altered that original liquid compositions cannot be deduced (e.g., Gorgona). The hottest intraplate volcano is Kilauea, Hawaii, where rare picrite glass with 15% MgO has an estimated eruptive temperature (1) of ~1350C and a potential temperature at 1 GPa of ~1420C. Lavas at all other linear island chains, Iceland and even west Greenland where picrites are abundant, are cooler than this. (1) Beattie, P., 1993. CMP 115: 103-111.

  12. Sphene-centered ocellar texture as a petrological tool to unveil the mechanism facilitating magma mixing

    NASA Astrophysics Data System (ADS)

    Gogoi, Bibhuti; Saikia, Ashima; Ahmad, Mansoor

    2015-04-01

    were crystallizing. This led to the incongruent melting of amphibole and biotite to form liquids of sphene composition. Meanwhile, plagioclase continued to grow in the mafic-turned-hybrid system with a different composition after the advent of felsic melt as indicated by compositional zoning in plagioclase crystals. The newly produced sphene-liquid, owing to its higher affinity for felsic phase than mafic, got incorporated into the back-veining felsic melt forming a distinct liquid of its own. The felsic melt also incorporated crystallizing plagioclase grains in it from the mafic matrix. The mixture of felsic melt, sphene-liquid and plagioclase crystals flowed through the biotite, amphibole and plagioclase dominated matrix towards the low pressure zones to occupy the spherical void spaces left behind by escaping of gases/volatiles forming the sphene ocelli. Hibbard, M.J., 1991. Textural anatomy of twelve magma-mixed granitoid systems. In: Didier, J., Barbarin, B. (Eds.) Enclaves and granite petrology, 431-444.

  13. Inflation of a magma chamber surrounded by poroelastic mush shell

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Soule, S. A.; Jones, M.

    2017-12-01

    Recent studies have highlighted the importance of crystal-rich mush in crustal magmatic system [Cashman et. al. 2017]. This potential paradigm shift from isolated melt bodies in elastic crust poses new challenges to our previous understanding of igneous processes. Existing models describing the physical processes in a conventional magma plumbing system may require modification to account for the properties of mush. In this study, we demonstrate that the abundance of very crystalline mush between magma lenses and the crustal rocks influences the mechanical coupling between pressurized magma lenses and their surroundings with regard to deformation and melt transport. We develop a conceptual model invoking a simplified geometry and presumed rheological properties of liquid magma, mush and country rock. In our preliminary study, a magma chamber is modeled as a spherical liquid core enveloped by a shell of poroelastic, magma-(and/or)-gas-bearing mush in an infinite domain of elastic country rock. We interrogate the effect of varying physical properties of the system (e.g., geometry) and mush material (e.g., elastic moduli) on the deformation in the liquid core, mush shell and host rock, as well as pressure built-up in the chamber, upon injection of magma into the liquid core. When we allow the pore spaces to be connected in the mush shell, melt can migrate within the permeable matrix, thereby promoting melt segregation or `leaking' from the core to the shell. These initial results highlight the importance of constraining the physical properties of crystal mush in order for us to properly evaluate the mechanics of magmatic system.

  14. The Shir-Kuh pluton (Central Iran): Magnetic fabric evidences for the coalescence of magma batches during emplacement

    NASA Astrophysics Data System (ADS)

    Sheibi, M.; Bouchez, J. L.; Esmaeily, D.; Siqueira, R.

    2012-03-01

    The ˜136 Ma, NW-SE elongate Shir-Kuh pluton is one of the most poorly understood geological feature of Central Iran. It is composed of peraluminous rocks, corresponding to ilmenite-bearing S-type granites compositionally ranging from granodiorites to leucogranites. These rocks show a continuum in their chemistry attributed to progressive differentiation. This allows using the anisotropy of magnetic susceptibility technique to tempt establishing the relative chronology between emplacements of magma batches in the pluton. The rather low susceptibility magnitudes (Km < 400 μSI) depict a dominant paramagnetic behavior of the pluton. The magnetic fabrics data (magnetic lineation and foliation maps, K, P and T parameters), complemented by field and microstructural observations, reveal that two feeder zones at least, as characterized by areas having steep lineations ascribed to magma flow likely issued from the base of the brittle crust, served as conduits for the magmas. The early Cretaceous age of the pluton, the orientations of the feeding zones, the overall lineation directions throughout the pluton, as well as the S-type nature of the magmas call for a dextral transpressive regime which might have been active in the back-arc region located above the subducting eastern branch of the Neo-Tethys.

  15. Successive mixing and mingling of magmas in a plutonic complex of Northeast Brazil

    NASA Astrophysics Data System (ADS)

    Neves, S. P.; Vauchez, A.

    1995-02-01

    Field and petrographic evidence together with major element geochemistry suggest that mixing and mingling of magmas of contrasting compositions were important petrogenetic processes in the Fazenda Nova/Serra da Japeganga plutonic complex of Northeast Brazil. The complex was emplaced at pressures of 300-500 MPa in amphibolite facies metamorphic rocks of Neoproterozoic age and consists of three main rock types: (1) coarse-grained granite; (2) porphyritic granite and (3) diorite to quartz-monzodiorite. The latter two make up the Fazenda Nova batholith which is located on the northwestern side of the sinistral, NE-trending, Fazenda Nova strike-slip shear zone. NE-plunging stretching lineations in the shear zone suggest that this batholith represents an uplifted, and therefore deeper, portion of the complex. The structure of the complex reflects the stratigraphy in a magma chamber, with the porphyritic granite above the diorite and below the coarse-grained granite. The porphyritic granite has a uniform composition, intermediate in mafic mineral content, quartz, and majorelements between the coarse-grained granite and the diorite. It is free of disequilibrium mineral assemblages, and locally displays gradational contacts with the overlain coarse-grained granite. Most elements display linear correlation with SiO 2 in Harker diagrams. These features are interpreted as resulting from mixing of almost crystal-free felsic and intermediate magmas. Fluid dynamic calculations using the coarse-grained granite and the silica-poorest diorite as end-members in the mixing process show that mechanical mixing was possible, and thermal modelling suggests that the formation of an homogeneous hybrid may have been achieved in less than 50,000 yr. The diorites contain corroded K-feldspar megacrysts, and range in composition from low to relatively high silica contents, partly overlapping with the porphyritic granite. This suggests that a new mixing event occurred during the crystallisation

  16. Titanite-scale insights into multi-stage magma mixing in Early Cretaceous of NW Jiaodong terrane, North China Craton

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Yang, Kui-Feng; Fan, Hong-Rui; Liu, Xuan; Cai, Ya-Chun; Yang, Yue-Heng

    2016-08-01

    The Early Cretaceous Guojialing-type granodiorites in northwestern Jiaodong terrane carry significant records for strong mantle-crust interaction during the destruction of North China Craton (NCC); however, the definite petrogenetic mechanism and detailed magmatic process remain an enigma. Titanite in igneous rocks can serve as an effective petrogenetic indicator. Here, we present integrated geochronological and geochemical studies on titanites from Guojialing-type granodiorites and their dioritic enclaves to constrain their petrogenesis. Titanites from granodiorites (G-type) and plagioclase-rich dioritic enclaves (E-type-I) present an identical U-Pb age ( 130 Ma) and an indistinguishable wide range of Zr and total REEs contents, and Th/U ratios. However, these two types of titanites exhibit distinct micro-scale textures and geochemical compositions. G-type titanites are characterized by oscillatory zonings with two Light BSE zones (LBZ) and two or three dark BSE zones, whereas E-type-I titanites are marked by core-mantle-rim zonings. Drastic increase of LREEs, Zr, Hf, and Fe and decrease of Nb, Ta, Al, and F contents are observed in LBZ of G-type titanites, whereas remarkable reduction of LREEs, Zr, and Hf and elevation of F contents are observed from the cores to the mantles of E-type-I titanites. Based on Zr-in-titanite thermometry, G-type titanites are interpreted to have experienced twice notable temperature increase, while E-type-I titanites are inferred to have undergone a rapid cooling process. Furthermore, we suggest that the drastic chemical changes in G-type and E-type-I titanites are ascribed to early-stage magma mixing between a colder felsic magma and a Fe-, REE-rich hotter dioritic magma. Compared to G-type and E-type-I titanites, titanites from plagioclase-poor dioritic enclaves (E-type-II) are characterized by their occurrence in interstitial space and present a relatively younger U-Pb age ( 128 Ma) and much narrower and lower range of Zr, total

  17. Fractional Crystallisation of Archaean Trondhjemite Magma at 12-7 Kbar: Constraints on Rheology of Archaean Continental Crust

    NASA Astrophysics Data System (ADS)

    Sarkar, Saheli; Saha, Lopamudra; Satyanarayan, Manavalan; Pati, Jayanta

    2015-04-01

    Fractional Crystallisation of Archaean Trondhjemite Magma at 12-7 Kbar: Constraints on Rheology of Archaean Continental Crust Sarkar, S.1, Saha, L.1, Satyanarayan, M2. and Pati, J.K.3 1. Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee-247667, Haridwar, India, 2. HR-ICPMS Lab, Geochemistry Group, CSIR-National Geophysical Research Institute, Hyderabad-50007, India. 3. Department of Earth and Planetary Sciences, Nehru Science Centre, University of Allahabad, Allahabad-211002, India. Tonalite-Trondhjemite-Granodiorite (TTGs) group of rocks, that mostly constitute the Archaean continental crusts, evolved through a time period of ~3.8 Ga-2.7 Ga with major episodes of juvenile magma generations at ~3.6 Ga and ~2.7 Ga. Geochemical signatures, especially HREE depletions of most TTGs conform to formation of this type of magma by partial melting of amphibolites or eclogites at 15-20 kbar pressure. While TTGs (mostly sodic in compositions) dominates the Eoarchaean (~3.8-3.6 Ga) to Mesoarchaean (~3.2-3.0 Ga) domains, granitic rocks (with significantly high potassium contents) became more dominant in the Neoarchaean period. The most commonly accepted model proposed for the formation of the potassic granite in the Neoarchaean time is by partial melting of TTGs along subduction zones. However Archaean granite intrusive into the gabbro-ultramafic complex from Scourie, NW Scotland has been interpreted to have formed by fractional crystallization of hornblende and plagioclase from co-existing trondhjemitic gneiss. In this study we have studied fractional crystallization paths from a Mesoarchaean trondhjemite from the central Bundelkhand craton, India using MELTS algorithm. Fractional crystallization modeling has been performed at pressure ranges of 20 kbar to 7 kbar. Calculations have shown crystallization of garnet-clinopyroxene bearing assemblages with progressive cooling of the magma at 20 kbar. At pressure ranges 19-16 kbar, solid phases

  18. Nature of the magma storage system beneath the Damavand volcano (N. Iran): An integrated study

    NASA Astrophysics Data System (ADS)

    Eskandari, Amir; Amini, Sadraddin; De Rosa, Rosanna; Donato, Paola

    2018-02-01

    Damavand intraplate stratovolcano constructed upon a moderately thick crust (58-67 km) over the last 2 Ma. The erupted products are dominantly trachyandesite-trachyte (TT) lavas and pyroclasts, with minor mafic magmas including tephrite-basanite-trachybasalt and alkali olivine basalts emplaced as cinder cones at the base of the stratovolcano. The TT products are characterized by a mineral assemblage of clinopyroxene (diopside-augite), orthopyroxene (clinoenstatite), feldspar (An2-58, Ab6-69, Or2-56), high Ti phlogopite, F-apatite, Fesbnd Ti oxides, and minor amounts of olivine (Fo73-80), amphibole and zircon, whereas olivine (Fo78-88), high Mg# (80-89) diopside, feldspar, apatite and Fesbnd Ti oxide occur in the mafic magmas. The presence of hydrous and anhydrous minerals, normal zonings, mafic cumulates, and the composition of magmatic inclusions in the TT products suggest evolutionary processes in polybaric conditions. In the same way, disequilibrium textures - including orthopyroxene mantled with clinopyroxene, reaction rim of phlogopite and amphibole, the coexistence of olivine and orthopyroxene, reverse, oscillatory and complex zonings of pyroxene and feldspar crystals - suggest magmatic evolutions in open systems with a varying temperature, oxygen fugacity, water as well as pressure and, to a lesser extent, melt chemistry. Mineral assemblages are used to model the physicochemical conditions and assess default parameters for the thermodynamic simulation of crystallization using MELTS software to track the P-T-H2O-ƒO2 evolution of the magma plumbing system. Thermobarometry and MELTS models estimated the initial nucleation depth at 16-17 kb (56-60 km) for olivine (Fo89) and high Al diopside crystals occurring in the mafic primary magma; it then stopped and underwent fractionation between 8 and 10 kb (28-35 km), corresponding with Moho depth, and continued to differentiate in the lower crust, in agreement with the geophysical models. The mafic rocks were formed

  19. Modelling the petrogenesis of high Rb/Sr silicic magmas

    USGS Publications Warehouse

    Halliday, A.N.; Davidson, J.P.; Hildreth, W.; Holden, P.

    1991-01-01

    Rhyolites can be highly evolved with Sr contents as low as 0.1 ppm and Rb Sr > 2,000. In contrast, granite batholiths are commonly comprised of rocks with Rb Sr 100. Mass-balance modelling of source compositions, differentiation and contamination using the trace-element geochemistry of granites are therefore commonly in error because of the failure to account for evolved differentiates that may have been erupted from the system. Rhyolitic magmas with very low Sr concentrations (???1 ppm) cannot be explained by any partial melting models involving typical crustal source compositions. The only plausible mechanism for the production of such rhyolites is Rayleigh fractional crystallization involving substantial volumes of cumulates. A variety of methods for modelling the differentiation of magmas with extremely high Rb/Sr is discussed. In each case it is concluded that the bulk partition coefficients for Sr have to be large. In the simplest models, the bulk DSr of the most evolved types is modelled as > 50. Evidence from phenocryst/glass/whole-rock concentrations supports high Sr partition coefficients in feldspars from high silica rhyolites. However, the low modal abundance of plagioclase commonly observed in such rocks is difficult to reconcile with such simple fractionation models of the observed trace-element trends. In certain cases, this may be because the apparent trace-element trend defined by the suite of cognetic rhyolites is the product of different batches of magma with separate differentiation histories accumulating in the magma chamber roof zone. ?? 1991.

  20. Magma interaction in the root of an arc batholith

    NASA Astrophysics Data System (ADS)

    Chapman, T.; Robbins, V.; Clarke, G. L.; Daczko, N. R.; Piazolo, S.

    2016-12-01

    Fiordland, New Zealand, preserves extensive Cretaceous arc plutons, emplaced into parts of the Delamerian/Ross Orogen. Dioritic to gabbroic material emplaced at mid to lower crustal levels are exposed in the Malaspina Pluton (c. 1.2 GPa) and the Breaksea Orthogneiss (c. 1.8 GPa). Distinct magmatic pulses can be mapped in both of these plutons consistent with cycles of melt advection. Relationships are consistent with predictions from lower crustal processing zones (MASH and hot zones) considered important in the formation of Cordilleran margins. Metamorphic garnet growth is enhanced along magmatic contacts, such as where hornblende gabbronorite is cut by garnet-clinopyroxene-bearing diorite. Such features are consistent with cycles of incremental emplacement, younger magma having induced localised garnet granulite metamorphism in wall rock of older material. Temperature estimates and microstructures preserved in garnet granulite are consistent with sub-solidus, water-poor conditions in both the Malaspina and Breaksea Orthogneiss. The extent and conditions of the metamorphism implies conditions and duration was incapable of partially melting older wall rock material. The nature of interactions in intermediate to basic compositions are assessed in terms of magma genesis in the Cretaceous batholith. Most of the upper crustal felsic I-type magmatism along the margin being controlled by high-pressure garnet-clinopyroxene fractionation.

  1. The effects of Venus' thermal structure on buoyant magma ascent

    NASA Technical Reports Server (NTRS)

    Sakimoto, S. E. H.; Zuber, M. T.

    1992-01-01

    The recent Magellan images have revealed a broad spatial distribution of surface volcanism on Venus. Previous work in modeling the ascent of magma on both Venus and Earth has indicated that the planetary thermal structure significantly influences the magmatic cooling rates and thus the amount of magma that can be transported to the surface before solidification. In order to understand which aspects of the thermal structure have the greatest influence on the cooling of ascending magma, we have constructed magma cooling curves for both plutonic and crack buoyant ascent mechanisms, and evaluated the curves for variations in the planetary mantle temperature, thermal gradient curvature with depth, surface temperature gradient, and surface temperature. The planetary thermal structure is modeled as T/T(sub 0) = 1-tau(1-Z/Z(sub 0)(exp n), where T is the temperature, T(sub 0) is the source depth temperature, tau = 1-(T(sub s)/T(sub 0)) where T(sub s) is the planetary surface temperature, Z is the depth, Z(sub 0) is the source depth, and n is a constant that controls thermal gradient curvature with depth. The equation is used both for mathematical convenience and flexibility, as well as its fit to the thermal gradients predicted by the cooling half-space models. We assume a constant velocity buoyant ascent, body-averaged magma temperatures and properties, an initially crystal-free magma, and the same liquidus and solidus for both Venus and Earth.

  2. Mush Column Magma Chambers

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  3. Generation of alkaline magmas in subduction zones by melting of mélange diapirs

    NASA Astrophysics Data System (ADS)

    Cruz-Uribe, A. M.; Marschall, H.; Gaetani, G. A.; Le Roux, V.

    2016-12-01

    Alkaline lavas occur globally in subduction-related volcanic arcs. Existing explanations for the occurrence of alkaline lavas in volcanic arcs invoke at least one - and in some cases multiple - `metasomatic' events in addition to the traditional three-component mixing of altered oceanic crust (AOC), sediment melt, and depleted mantle, in order to explain the range of rock types found in a given region. These multi-stage models posit the existence of metasomatized mantle wedge peridotite containing phlogopite or amphibole-enriched veins, which partially melt when fluxed by the addition of materials from the subducted slab. The mélange diapir model is informed by observations and modeling of the subduction side of the arc system, and predicts the generation of alkaline arc magmas by advection of buoyant material from the slab-wedge interface into the mantle wedge below arcs. Here we report results from experiments in which natural mélange materials partially melted at upper mantle conditions were found to produce alkaline magmas compositionally similar to those found in arcs worldwide. The starting material for our experiments is a chlorite-omphacite fels (SY400) from the island of Syros, Greece, that is representative of a hybrid rock containing AOC, sediment, and mantle components. Melting experiments were performed using a piston cylinder apparatus at conditions relevant to the heating-decompression path of mélange diapirs (1000-1300 °C, 1.5-2.5 GPa). The compositions of experimentally produced melts range from 51-61 wt% SiO2, and fall within the trachyte and tephrite-phonolite series (7.5-12.9 wt% Na2O+K2O). Restitic phases in equilibrium with melt include clinopyroxene, garnet (at high P), phlogopite (at high P), amphibole, olivine, rutile, and ilmenite. Partial melts produced in our experiments have trace-element abundance patterns that are typical of alkaline arc lavas, such as enrichment in large ion lithophile elements (Cs, Rb, Ba, Pb, Sr) and alkalis (K

  4. Nature of local magma storage zones and geometry of conduit systems below balsatic eruption sites - Pu'u 'O'o, Kilauea East Rift, Hawaii, example

    NASA Technical Reports Server (NTRS)

    Wilson, Lionel; Head, James W., III

    1988-01-01

    The fluid dynamics of the well-documented eruptive episodes at Pu'u 'O'o, Kilauea are used to investigate quantitatively the size and shape of the shallow conduit system beneath the vent. The possible geometry of this region is considered. The dynamics of the eruptive episodes is used to place restrictions on the size and shape of the region and thermal calculations are used to show that the geometry is consistent with the region being the fluid residue of the partially cooled, major preepisode 1 dike. The Pu'u 'O'o example is used to illustrate some general properties of shallow magma storage zones.

  5. Off-axis magmatism along a subaerial back-arc rift: Observations from the Taupo Volcanic Zone, New Zealand.

    PubMed

    Hamling, Ian J; Hreinsdóttir, Sigrun; Bannister, Stephen; Palmer, Neville

    2016-06-01

    Continental rifting and seafloor spreading play a fundamental role in the generation of new crust. However, the distribution of magma and its relationship with tectonics and volcanism remain poorly understood, particularly in back-arc settings. We show evidence for a large, long-lived, off-axis magmatic intrusion located on the margin of the Taupo Volcanic Zone, New Zealand. Geodetic data acquired since the 1950s show evidence for uplift outside of the region of active extension, consistent with the inflation of a magmatic body at a depth of ~9.5 km. Satellite radar interferometry and Global Positioning System data suggest that there was an increase in the inflation rate from 2003 to 2011, which correlates with intense earthquake activity in the region. Our results suggest that the continued growth of a large magmatic body may represent the birth of a new magma chamber on the margins of a back-arc rift system.

  6. Compositional and mineralogical zoning by inward crystallization of mafic magma: evidence from the Guwoon hornblende gabbro-diorite Complex, Hwacheon, Korea.

    NASA Astrophysics Data System (ADS)

    Park, Y.-R.; Kim, G.-Y.

    2009-04-01

    The small body, ca. 1.3 by 1.6km, of a hot-air ballon shape hornblende gabbro - diorite Complex, in Gowoonri, Hwacheon, Korea consists of marginal diorite and central hornblende gabbro. The volumetrically dominant hornblende gabbro in the core of the Complex shows a zoned distribution with three layers distinguished by different dominant mafic mineral phases. From the margin toward the core of the hornblende gabbro body, the domintant mafic minerals change from amphibole phenocryst of nearly rounded shape in cross section with pyroxene pseudomorph through prismatic shape of amphibole to polycrystalline biotite aggregates. Systematic variations in geochemical characteristics among three distinct zones of hornblende gabbro body are also observed. From the outer zone toward the core, major oxides such as MnO, MgO, and CaO show a decreasing tendency, whereas total FeO/(total FeO + MgO) value shows an increasing tendency. Concentrations of trace elements also show systematic variations. Where incompatible elements such as Ba and Th increase, compatible elements like Cr and Sc decrease from the margin toward the core. The zonal distribution divided by change in dominant mafic mineral phase from pyroxene through amphibole to biotite, and systematic compositional changes in both major and trace elements from the outer zone toward the core of the hornblende gabbro body suggest that an inward crystallization mechanism played a major role in the formation of the hornblende gabbro in Guwoonri, Hwacheon, Korea.

  7. Short Magma Residence Times at Mt. Rainier and the Probable Absence of a Large, Integrated, and Long-lived Magma Reservoir System

    NASA Astrophysics Data System (ADS)

    Sisson, T. W.; Lanphere, M. A.

    2003-12-01

    Intensive, high-precision K-Ar and 40Ar/39Ar geochronology have proven essential for producing modern geologic maps of volcanoes and from these determining the volcanoes' time-volume histories. If sufficiently abundant, these data can also reveal aspects of the magma supply system. For Cascade volcanoes a general result has been the demonstration that edifice growth is highly episodic. Mount Rainier grew in the last 500,000 years atop the remains of an ancestral edifice that was active in the same location 1 - 2 Myr ago. The 500,000 year history of the modern edifice falls into four stages of alternating high and low magmatic output of subequal duration, but major and trace element compositions of eruptives show no correlation with volcano growth stages. Instead, the same spectrum of magmas (andesite to low-Si dacite) erupted throughout the history of the volcano with compositions in the same relative abundances. Superimposed on this seemingly null result are at least 6 brief but pronounced excursions in magma trace-element compositions. Concentrations of Zr, Ba, or Sr can double and then return to background values passing into and out of a single flow or flow-group. Some excursions are tightly bracketed by mapping and by measured ages and have durations no more than the geochronologic measurement precision of about 10,000 years. True excursion durations are potentially much shorter. The brevity and abrupt onsets and cessations of these compositional excursions are evidence against the presence of a sizeable, long-lived magma reservoir anywhere beneath the volcano, including a MASH zone in the lower crust, that would have attenuated, dampened, and homogenized compositional excursions introduced into the magmatic system. Instead, we take 10,000 years as a probable upper limit to the average residence time of magma batches transiting the crustal portion of Mount Rainier's plumbing system. A consistent scenario is that parental magmas enter the crust, differentiate

  8. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano.

    PubMed

    Druitt, T H; Costa, F; Deloule, E; Dungan, M; Scaillet, B

    2012-02-01

    Caldera-forming volcanic eruptions are low-frequency, high-impact events capable of discharging tens to thousands of cubic kilometres of magma explosively on timescales of hours to days, with devastating effects on local and global scales. Because no such eruption has been monitored during its long build-up phase, the precursor phenomena are not well understood. Geophysical signals obtained during recent episodes of unrest at calderas such as Yellowstone, USA, and Campi Flegrei, Italy, are difficult to interpret, and the conditions necessary for large eruptions are poorly constrained. Here we present a study of pre-eruptive magmatic processes and their timescales using chemically zoned crystals from the 'Minoan' caldera-forming eruption of Santorini volcano, Greece, which occurred in the late 1600s BC. The results provide insights into how rapidly large silicic systems may pass from a quiescent state to one on the edge of eruption. Despite the large volume of erupted magma (40-60 cubic kilometres), and the 18,000-year gestation period between the Minoan eruption and the previous major eruption, most crystals in the Minoan magma record processes that occurred less than about 100 years before the eruption. Recharge of the magma reservoir by large volumes of silicic magma (and some mafic magma) occurred during the century before eruption, and mixing between different silicic magma batches was still taking place during the final months. Final assembly of large silicic magma reservoirs may occur on timescales that are geologically very short by comparison with the preceding repose period, with major growth phases immediately before eruption. These observations have implications for the monitoring of long-dormant, but potentially active, caldera systems.

  9. Shallow system rejuvenation and magma discharge trends at Piton de la Fournaise volcano (La Réunion Island)

    NASA Astrophysics Data System (ADS)

    Coppola, Diego; Di Muro, Andrea; Peltier, Aline; Villeneuve, Nicolas; Ferrazzini, Valerie; Favalli, Massimiliano; Bachèlery, Patrick; Gurioli, Lucia; Harris, Andrew; Moune, Séverine; Vlastélic, Ivan; Galle, Bo; Arellano, Santiago; Aiuppa, Alessandro

    2017-04-01

    During April 2007, the largest historical eruption of Piton de la Fournaise (Île de La Réunion, France) drained the shallow plumbing system and resulted in collapse of the summit crater. Following the 2007 eruption, Piton de la Fournaise entered a seven-year long period of near-continuous deflation interrupted, in June 2014, by a new phase of significant inflation. By integrating multiple datasets (lava discharge rates, deformation, seismicity, gas flux, gas composition, and lava chemistry), we here show that the progressive migration of magma from a deeper (below sea level) storage zone gradually rejuvenated and pressurized the above-sea-level portion of the magmatic system to provoke four small (<5 × 10 6 m3) eruptions from vents located close to the summit cone. Progressive increase in output rate between each eruption culminated, with the fifth, longest-lasting (August-October 2015) and largest-volume (45 ± 15 × 10 6 m3) eruption of the cycle. Activity observed in 2014 and 2015 points to a phase of shallow system rejuvenation and discharge, whereby continuous magma supply provoked eruptions from increasingly deeper and larger magma storage zones. Downward depressurization continued until unloading of the deepest, least differentiated magma triggered an "effusive paroxysm" that emptied the main shallow reservoir and terminated the cycle. Such an unloading process may characterize the evolution of shallow magmatic systems at other persistently active effusive centers.

  10. The Role of Magma During Continent-Ocean Transition

    NASA Astrophysics Data System (ADS)

    Bastow, Ian; Keir, Derek; Rooney, Tyrone; Kendall, J.-Michael

    2010-05-01

    Passive margins worldwide are often considered magmatic because they are characterised by thick sequences of extrusive and intrusive igneous rocks emplaced around the time of continental breakup. Despite the global abundance of such margins, however, it is difficult to discriminate between different models of both extension and melt generation, since most ruptured during Gondwana breakup >100Ma and the continent-ocean transition (COT) is now hidden by thick, basaltic seaward dipping reflectors (SDRs). These margins are no longer tectonically active so the roles of faulting, stretching and magma intrusion in accommodating extension, and timing of SDRs emplacement during rift evolution have to be inferred from rifting models or from the geological record preserved at the fully developed passive margin. Similarly mantle processes during COT development have long since ceased, so whether breakup was characterized by broad thermal upwelling, small-scale convection or a fertile geoscientific mantle remains ambiguous. The East African rift in Ethiopia offers a unique opportunity to address all these problems because south-to-north it exposes subaerially the transition from continental rifting and incipient sea-floor spreading within a young flood basalt province. Here we present a suite of geophysical and geochemical observations from Ethiopia that document the significance of magma intrusion and extrusion as rifting evolves from an initially broad zone of stretching and faulting to a narrower axial graben in which magma injection dominates strain.

  11. Magma Plumbing System at a Young Back-Arc Spreading Center: The Marsili Volcano, Southern Tyrrhenian Sea

    NASA Astrophysics Data System (ADS)

    Trua, T.; Marani, M. P.; Gamberi, F.

    2018-01-01

    Although spreading rate is commonly taken as a proxy for decompression mantle melting at mid-ocean ridges (MORs), magmatism at back-arc spreading centers (BASCs) is further influenced by the subduction-related flux melting of the mantle. These regions consequently show a diversity of crustal structures, lava compositions, and morphologies not typically found in MORs. Here we investigate the crustal plumbing system of the small-scale, Marsili back-arc spreading center of the Southern Tyrrhenian Sea using plagioclase data from a wide spectrum of lavas (basalts to andesites) dredged from its summit and flanks. We employ petrological modeling to identify the plagioclase populations carried in the individual lavas, allocate them to plausible magmatic components present within the plumbing system, and trace the processes occurring during magma ascent to the surface. The properties of the system, such as mush porosity and abundance of the melt bodies, vary from one magma extraction zone to another along the BASC, evidencing the local variability of melt supply conditions. The plagioclase crystals document a range of relationships with the host lavas, indicating magma extraction from a composite, vertically extensive mush and melt-lens system resembling that of MORs. At the same time, however, in small BASCs, such as in the case of the Marsili Basin, crustal accretion and resulting morphology are significantly influenced by the three-dimensional setting of the basin margins. This is an important deviation from the conventional model based on the linear continuity and essentially two-dimensional framework of MORs.

  12. Experimental Study of Lunar and SNC Magmas

    NASA Technical Reports Server (NTRS)

    Rutherford, Malcolm J.

    1998-01-01

    The research described in this progress report involved the study of petrological, geochemical and volcanic processes that occur on the Moon and the SNC parent body, generally accepted to be Mars. The link between these studies is that they focus on two terrestrial-type parent bodies somewhat smaller than earth, and the fact that they focus on the role of volatiles in magmatic processes and on processes of magma evolution on these planets. The work on the lunar volcanic glasses has resulted in some exciting new discoveries over the years of this grant. We discovered small metal blebs initially in the Al5 green glass, and determined the significant importance of this metal in fixing the oxidation state of the parent magma (Fogel and Rutherford, 1995). More recently, we discovered a variety of metal blebs in the Al7 orange glass. Some of these Fe-Ni metal blebs were in the glass; others were in olivine phenocrysts. The importance of these metal spheres is that they fix the oxidation state of the parent magma during the eruption, and also indicate changes during the eruption (Weitz et al., 1997) They also yield important information about the composition of the gas phase present, the gas which drove the lunar fire-fountaining. One of the more exciting and controversial findings in our research over the past year has been the possible fractionation of H from D during shock (experimental) of hornblende bearing samples (Minitti et al., 1997). This research is directed at explaining some of the low H2O and high D/H observed in hydrous phases in the SNC meteorites.

  13. Drilling into Rhyolitic Magma at Shallow depth at Krafla Volcanic Complex, NE-Iceland

    NASA Astrophysics Data System (ADS)

    Mortensen, A. K.; Markússon, S. H.; Gudmundsson, Á.; Pálsson, B.

    2017-12-01

    Krafla volcanic complex in NE-Iceland is an active volcano but the latest eruption was the Krafla Fires in 1975-1984. Though recent volcanic activity has consisted of basaltic fissure eruptions, then it is rhyolitic magma that has been intercepted on at least two occasions while drilling geothermal production wells in the geothermal field suggesting a layered magma plumbing system beneath the Krafla volcanic complex. In 2008 quenched rhyolitic glass was retrieved from the bottom of well KJ-39, which is 2865 m deep ( 2571 m true vertical depth). In 2009 magma was again encountered at an even shallower depth and in more than 2,5 km distance from the bottom of well KJ-39, but in 2009 well IDDP-1 was drilled into magma three times just below 2100 m depth. Only on the last occasion was quenched glass retrieved to confirm that magma had been encountered. In well KJ-39 the quenched glass was rhyolitic in composition. The glass contained resorbed minerals of plagioclase, clinopyroxene and titanomagnetite, but the composition of the glass resembles magma that has formed by partial melting of hydrated basalt. The melt was encountered among cuttings from impermeable, coarse basaltic intrusives at a depth, where the well was anticipated to penetrate the Hólseldar volcanic fissure. In IDDP-1 the quenched glass was also rhyolitic in composition. The glass contained less than 5% of phenocrysts, but the phenocryst assemblage included andesine plagioclase, augite, pigeonite, and titanomagnetite. At IDDP-1 the melt was encountered below a permeable zone composed of fine to coarse grained felsite and granophyre. The disclosure of magma in two wells at Krafla volcanic complex verify that rhyolitic magma can be encountered at shallow depth across a larger area within the caldera. The encounter of magma at shallow depth conforms with that superheated conditions have been found at >2000 m depth in large parts of Krafla geothermal field.

  14. The effect of growth rate on the production of Ti-enriched rims of quartz phenocrysts in the Bishop magma bodies.

    NASA Astrophysics Data System (ADS)

    Pamukcu, A. S.; Ghiorso, M. S.; Gualda, G. A. R.

    2015-12-01

    Quartz commonly displays cathodoluminescence (CL) zoning correlated with elevated Ti concentrations. This zoning has been attributed to changes in magmatic intensive variables, suggesting for example, that in the Bishop Tuff (BT) magma bodies, bright-CL rims on quartz phenocrysts grew during a late-stage eruption-triggering thermal event. Yet, these rims are not ubiquitous, discounting their origin by variation in equilibrium growth conditions. Huang & Audetat (2012) suggest that Ti contents in quartz depend strongly on growth rate. Diffusion chronometry indicates that BT bright-CL quartz rims crystallized rapidly (days-weeks) at growth rates of 10-7-10-8 m/s, while interiors grew over centennial-millennial timescales (10-11-10-13 m/s). This result is consistent with CSD analyses that suggest eruptive decompression began <1 year before eruption. We use a numerical model based on the crystal growth equation of Lasaga (1982) to test if BT bright-CL rims could have resulted from elevated syn-eruptive growth rates. Results indicate that Ti contents at the quartz-melt boundary are strongly dependent on growth rate if it exceeds ~10-9 m/s. At 10-8 m/s, enrichment of 1.5-2.5 times the initial concentration is achieved at the boundary in a time frame of days-a week. At 10-7 m/s, enrichment jumps to 4-8 times over the same period. BT quartz interiors contain ~50 ppm Ti, while bright-CL rims have ~75-100 ppm (Wark et al. 2007). Our modeling successfully reproduces these concentrations using the growth rates, and over the timescales, indicated by diffusion chronometry. It also suggests that the rims grew chiefly at a rate of ~10-8 m/s; slower rates do not produce enrichment, and faster rates result in over-enrichment, relative to that observed in natural crystals. We conclude that high-Ti, bright-CL rims on BT quartz resulted from increased growth rates due to eruptive decompression, rather than late-stage fluctuations in magmatic intensive variables, over timescales of days

  15. The role of hydrothermal fluids in the production of subduction zone magmas: Evidence from siderophile and chalcophile trace elements and boron

    NASA Astrophysics Data System (ADS)

    Noll, P. D.; Newsom, H. E.; Leeman, W. P.; Ryan, J. G.

    1996-02-01

    In order to evaluate the processes responsible for the enrichments of certain siderophile/ chalcophile trace elements during the production of subduction-related magmas, representative lavas from seven subduction zones have been analyzed for Pb, As, Sb, Sn, W, Mo, Tl, Cu, and Zn by inductively coupled plasma-mass spectrometry (ICP-MS), radiochemical epithermal neutron activation analysis (RENA), and atomic absorption (AA). The siderophile/chalcophile elements are compared to the highly fluid-mobile element B, the light rare earth elements (LREEs), U, and Th in order to place constraints on their behavior in subduction zones. Boron, As, Sb, and Pb are all enriched in arc lavas and continental crustal rocks more so than expected assuming normal magmatic processes (melting and crystallization). Tin, W, and Mo show little evidence of enrichment. Correlations of Pb/Ce, As/Ce, and Sb/Ce with B/La are statistically significant and have high correlation coefficients (and, more importantly, slopes approaching one) suggesting that Pb, As, and Sb behave similarly to B (i.e., that they are fluid-mobile). In addition, across-arc traverses show that B/La, As/Ce, Pb/Ce, and Sb/Ce ratios decrease dramatically with distance towards the back-arc basin. W/Th, Tl/La, Sn/Sm, and Mo/Ce ratios and Cu and Zn concentrations have much less systematic across-arc variations and correlations with B/La are not as strong (and in some cases, not statistically significant) and the regression lines have much lower slopes. Mixing models between upper mantle, slab-derived fluid, and sediment are consistent with a fluid-derived component in the arcs displaying extra enrichments of B, Pb, As, and Sb. These observations imply efficient mobilization of B, Pb, As, Sb, and possibly Tl into arc magma source regions by hydrothermal fluids derived from metamorphic dehydration reactions within the slab. Tin, W, and Mo show little, if any, evidence of hydrothermal mobilization. Copper appears to be slightly

  16. Hydrogen isotope investigation of amphibole and glass in dacite magmas erupted in 1980-1986 and 2005 at Mount St. Helens, Washington

    USGS Publications Warehouse

    Underwood, S.J.; Feeley, T.C.; Clynne, M.A.

    2013-01-01

    Damph populations in original fresh lava flow surfaces may occur from blending magma domains with different ascent histories in the sub-volcanic environment immediately before eruption. Multi-stage open-system magma degassing operated in each parcel of magma rising toward the surface, whereas the magma below ∼7 km was a relatively closed system, at least to the October 1986 eruption based on the large population of minimally dehydrogenated, rim-free amphibole in the lavas. Magma degassing and possibly H isotope exchange with low-δD fluids around the roof zone may have accompanied the ∼1·5 km upward migration of the 1980 magma body. The low-δDamph (c. –188 to –122‰) oxy-amphibole phenocrysts in lava spines extruded in May 2005 reflect dehydrogenation as ascending viscous magma degassed and crystallized, and fractures that admitted oxygen into the hot solidified lava spine interior facilitated additional iron oxidation.

  17. Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale perspective

    PubMed Central

    Chiaradia, Massimo

    2015-01-01

    Arc magmas originate in subduction zones as partial melts of the mantle, induced by aqueous fluids/melts liberated by the subducted slab. Subsequently, they rise through and evolve within the overriding plate crust. Aside from broadly similar features that distinguish them from magmas of other geodynamic settings (e.g., mid-ocean ridges, intraplate), arc magmas display variably high Sr/Y values. Elucidating the debated origin of high Sr/Y signatures in arc magmas, whether due to mantle-source, slab melting or intracrustal processes, is instrumental for models of crustal growth and ore genesis. Here, using a statistical treatment of >23000 whole rock geochemical data, I show that average Sr/Y values and degree of maturation (MgO depletion at peak Sr/Y values) of 19 out of 22 Pliocene-Quaternary arcs correlate positively with arc thickness. This suggests that crustal thickness exerts a first order control on the Sr/Y variability of arc magmas through the stabilization or destabilization of mineral phases that fractionate Sr (plagioclase) and Y (amphibole ± garnet). In fact, the stability of these mineral phases is function of the pressure at which magma evolves, which depends on crustal thickness. The data presented show also that high Sr/Y Pliocene-Quaternary intermediate-felsic arc rocks have a distinct origin from their Archean counterparts. PMID:25631193

  18. Magma flow between summit and Pu`u `Ō`ō at K¯lauea Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Montagna, C. P.; Gonnermann, H. M.

    2013-07-01

    Volcanic eruptions are often accompanied by spatiotemporal migration of ground deformation, a consequence of pressure changes within magma reservoirs and pathways. We modeled the propagation of pressure variations through the east rift zone (ERZ) of K¯lauea Volcano, Hawai`i, caused by magma withdrawal during the early eruptive episodes (1983-1985) of the ongoing Pu`u `Ō`ō-Kupaianaha eruption. Eruptive activity at the Pu`u `Ō`ō vent was typically accompanied by abrupt deflation that lasted for several hours and was followed by a sudden onset of gradual inflation once the eruptive episode had ended. Similar patterns of deflation and inflation were recorded at K¯lauea's summit, approximately 15 km to the northwest, albeit with time delays of hours. These delay times can be reproduced by modeling the spatiotemporal changes in magma pressure and flow rate within an elastic-walled dike that traverses K¯lauea's ERZ. Key parameters that affect the behavior of the magma-dike system are the dike dimensions, the elasticity of the wall rock, the magma viscosity, and to a lesser degree the magnitude and duration of the pressure variations themselves. Combinations of these parameters define a transport efficiency and a pressure diffusivity, which vary somewhat from episode to episode, resulting in variations in delay times. The observed variations in transport efficiency are most easily explained by small, localized changes to the geometry of the magma pathway.

  19. Extensive, water-rich magma reservoir beneath southern Montserrat

    NASA Astrophysics Data System (ADS)

    Edmonds, M.; Kohn, S. C.; Hauri, E. H.; Humphreys, M. C. S.; Cassidy, M.

    2016-05-01

    South Soufrière Hills and Soufrière Hills volcanoes are 2 km apart at the southern end of the island of Montserrat, West Indies. Their magmas are distinct geochemically, despite these volcanoes having been active contemporaneously at 131-129 ka. We use the water content of pyroxenes and melt inclusion data to reconstruct the bulk water contents of magmas and their depth of storage prior to eruption. Pyroxenes contain up to 281 ppm H2O, with significant variability between crystals and from core to rim in individual crystals. The Al content of the enstatites from Soufrière Hills Volcano (SHV) is used to constrain melt-pyroxene partitioning for H2O. The SHV enstatite cores record melt water contents of 6-9 wt%. Pyroxene and melt inclusion water concentration pairs from South Soufriere Hills basalts independently constrain pyroxene-melt partitioning of water and produces a comparable range in melt water concentrations. Melt inclusions recorded in plagioclase and in pyroxene contain up to 6.3 wt% H2O. When combined with realistic melt CO2 contents, the depth of magma storage for both volcanoes ranges from 5 to 16 km. The data are consistent with a vertically protracted crystal mush in the upper crust beneath the southern part of Montserrat which contains heterogeneous bodies of eruptible magma. The high water contents of the magmas suggest that they contain a high proportion of exsolved fluids, which has implications for the rheology of the mush and timescales for mush reorganisation prior to eruption. A depletion in water in the outer 50-100 μm of a subset of pyroxenes from pumices from a Vulcanian explosion at Soufrière Hills in 2003 is consistent with diffusive loss of hydrogen during magma ascent over 5-13 h. These timescales are similar to the mean time periods between explosions in 1997 and in 2003, raising the possibility that the driving force for this repetitive explosive behaviour lies not in the shallow system, but in the deeper parts of a vertically

  20. Storage of Explosive versus Effusive Rhyolite Magma at the Yellowstone Volcanic Center

    NASA Astrophysics Data System (ADS)

    Gardner, J. E.

    2007-12-01

    The Yellowstone volcanic center has erupted more than 900 km3 of rhyolitic magma in the last 600,000 years (1). Most of that magma extruded as large lava flows, with only a few known explosive eruptions. Why have explosive eruptions been so rare in the recent history of the Yellowstone volcanic system? To explore that question, we focus on the Tuff of Bluff Point (TBP), about 50 km3 of magma that explosively erupted 173 ka, forming the West Thumb caldera (1). Like most other recent eruptions of Yellowstone, TBP is high silica rhyolite, with phenocrysts of quartz, sanidine, and minor ferro-pyroxenes and Fe-Ti oxides. Fe-Ti oxide and pyroxene compositions indicate that the magma had equilibrated at an oxygen fugacity equal to the QFM buffer. Rehomogenized glass inclusions (n=7) in quartz contain 2.2-3.1 wt.% water and between 400-650 ppm CO2. Those volatile contents indicate storage pressures of 90-160 MPa. Ubiquitous pyrrhotite shows that the magma was sulfur saturated, and most likely volatile saturated. The co-existing fluid would be only 42-47% water. Cathodoluminescence (CL) images of quartz phenocrysts reveal mainly concentric growth zones, with occasional dissolution boundaries present. Ti contents in quartz generally decrease from core to rim, indicating cooling of the magma, although the relative temperature changes recorded are only 10-15°, with only minor changes across dissolution boundaries. To put our observations in perspective of the recent Yellowstone magma system, we have begun examining some of the recent rhyolitic lavas, including the Pitchstone Plateau (PP), a single homogeneous lava flow of 70 km3 that erupted 79 ka (1). CL images also reveal mainly concentric quartz growth, with few dissolution boundaries obvious. Ti contents in quartz also generally decrease from core to rim, but are uniformly lower than in those in TBP, suggesting that PP magma was colder than TBP magma. Glass inclusions (n=20) in PP are generally water poor and rarely

  1. Granite emplacement at the termination of a major Variscan transcurrent shear zone: The late collisional Viseu batholith

    NASA Astrophysics Data System (ADS)

    Valle Aguado, B.; Azevedo, M. R.; Nolan, J.; Medina, J.; Costa, M. M.; Corfu, F.; Martínez Catalán, J. R.

    2017-05-01

    A major event of plutonic activity occurred all across the Central Iberian Zone of the Iberian Variscan Belt at the end of Late Paleozoic Variscan collisional tectonism. The present study focuses on the western sector of the Viseu late-post-tectonic batholith (central Portugal), a large composite intrusion comprising three main plutonic units: (a) small bodies of mafic to intermediate composition preferentially concentrated along the northern border, (b) a wide ring of coarse porphyritic biotite monzogranite (Cota-Viseu granite) and (c) a more evolved medium porphyritic, biotite-muscovite monzogranite occupying the central part of the intrusion (Alcafache granite). The compositional zonation pattern of the whole batholith and the complex mixing/mingling relationships between the voluminous Cota-Viseu porphyritic granite and the mafic/intermediate rocks suggest that these melts were withdrawn from a lower crustal source region undergoing partial melting, invasion by mantle-derived mafic magmas, mixing and fractional crystallization. New CA-ID-TIMS U-Pb zircon ages indicate that pluton assembly via multipulse injection of successive magma batches took place between 299.4 ± 0.4 Ma and 296.0 ± 0.6 Ma. A detailed anisotropy of magnetic susceptibility (AMS) survey suggests that pluton emplacement occurred at the extensional termination of a regional-scale, ENE-WSW trending, sinistral D3 shear zone - the Juzbado-Penalva Shear Zone (JPSZ). A dilational opening model involving the development of "en-échelon" tensional gashes at the extensional termination of the fault, followed by progressive opening and widening of north-south trending fractures, provided the space into which the successive magma batches arriving from below were emplaced. Vertical inflation was accommodated by depression of the pluton floor. The proposed model is consistent with the asymmetric wedge-shaped geometry of the intrusion (steep root zone on the northern side, discordant subvertical walls and

  2. Pre-eruption recharge of the Bishop magma system

    USGS Publications Warehouse

    Wark, D.A.; Hildreth, W.; Spear, F.S.; Cherniak, D.J.; Watson, E.B.

    2007-01-01

    The 650 km3 rhyolitic Bishop Tuff (eastern California, USA), which is stratigraphically zoned with respect to temperatures of mineral equilibration, reflects a corresponding thermal gradient in the source magma chamber. Consistent with previous work, application of the new TitaniQ (Ti-in-quartz) thermometer to quartz phenocryst rims documents an ???100 ??C temperature increase with chamber depth at the time of eruption. Application of TitaniQ to quartz phenocryst cores, however, reveals lower temperatures and an earlier gradient that was less steep, with temperature increasing with depth by only ???30 ??C. In many late-erupted crystals, sharp boundaries that separate low-temperature cores from high-temperature rims cut internal cathodoluminescent growth zoning, indicating partial phenocryst dissolution prior to crystallization of the high-temperature rims. Rimward jumps in Ti concentration across these boundaries are too abrupt (e.g., 40 ppm across a distance of <10 ??m) to have survived magmatic temperatures for more than ???100 yr. We interpret these observations to indicate heating-induced partial dissolution of quartz, followed by growth of high-temperature rims (made possible by lowering of water activity due to addition of CO2) within 100 yr of the climactic 760 ka eruption. Hot mafic melts injected into deeper parts of the magma system were the likely source of heat and CO2, raising the possibility that eruption and caldera collapse owe their origin to a recharge event. ?? 2007 Geological Society of America.

  3. Extremely Rapid Crystal Fractionation During Episodes 30-31 of the Pu`u O`o Eruption: Implications for Magma Chamber Processes

    NASA Astrophysics Data System (ADS)

    Garcia, M. O.; Rhodes, J. M.; Pietruszka, A. J.; Rose, W. I.

    2002-12-01

    The Pu`u O`o eruption offers excellent opportunities to examine petrologic and geochemical processes in shallow, basaltic magma chamber due to the intense, multi-disciplinary monitoring of its activity, frequent sampling and repeated eruptions at the same vent. Strong compositional variations were observed during some of the high fire-fountaining (400 m) episodes in 1985. Following a 20-30 day hiatus in eruptive activity, the shallow magma chamber was largely evacuated during brief (1-2 day) eruptions. Samples collected during these episodes, especially at the beginning and end, document the compositional variation between and during eruptive episodes. Lavas and tephra from episodes 30 and 31 showed a remarkable and systematic variation (2 wt% increase in MgO; 7% decrease in incompatible elements like Ba) during and between these episodes. Most of the intra-episode lava compositional variation was observed during a brief period (<2 hours) with little variation before or after. Olivines in these weakly prophyritic Pu`u O`o lavas are in equilibrium with the host rock composition indicating that compositional variation is not related to magma mixing or accumulation of olivine. We interpret the variation to reflect crystal fractionation within the shallow (tens to hundreds of meter deep) Pu`u O`o magma chamber. This extremely high rate of crystallization (up to 0.3%/day) and cooling (2°C/day), compared to estimates of 1°C/year for the rift zone interior, must reflect the high surface area of the dike-shaped and open topped magma chamber. These features may represent the tapping of a diffusive interface separating well mixed zones of hotter and more primitive magma in the lower part of the chamber from cooler, somewhat evolved magma above.

  4. Thermal budget of the lower east rift zone, Kilauea Volcano

    USGS Publications Warehouse

    Delaney, Paul T.; Duffield, Wendell A.; Sass, John H.; Kauahikaua, James P.; ,

    1993-01-01

    The lower east rift zone of Kilauea has been the site of repeated fissure eruptions fed by dikes that traverse the depths of interest to geothermal explorations. We find that a hot-rock-and-magma system of low permeability extending along the rift zone at depths below about 4 km and replenished with magma at a rate that is small in comparison to the modern eruption rate Kilauea can supply heat to an overlying hydrothermal aquifer sufficient to maintain temperatures of about 250??C if the characteristic permeability to 4-km depth is about 10-15m2.

  5. A Re-appraisal of Olivine Sorting and Accumulation in Hawaiian Magmas.

    NASA Astrophysics Data System (ADS)

    Rhodes, J. M.

    2002-12-01

    Bowen never used the m-words (magma mixing) in his highly influential book "The Origin of the Igneous Rocks". Yet, in the past 20-30 years, magma mixing has been proposed as an important, almost ubiquitous, process at volcanoes in all tectonic environments ranging from oceanic basalts to large silicic magma bodies, and as the possible trigger of eruptions. Bowen regarded Hawaiian olivine basalts and picrites as the result of olivine accumulation in a lower MgO magma that was crystallizing and fractionating olivine. This, with variants, has been the party line ever since, the only debate being over the MgO content of the proposed parental magmas. Although magma mixing has been recognized as an important process in differentiated, low-MgO (below 7 percent), Hawaiian magmas, the wide range in MgO (7-30 percent) in Hawaiian olivine tholeiites and picrites is invariably attributed to olivine crystallization, fractionation and accumulation. In this paper I will re-evaluate this hypothesis using well-documented examples from Kilauea, Mauna Kea and Mauna Loa that exhibit well-defined, coherent linear trends of major oxides and trace elements with MgO . If olivine control is the only factor responsible for these trends, then the intersection of the regression lines for each trend should intersect olivine compositions at a common forsterite composition, corresponding to the average accumulated olivine in each of the magmas. In some cases (the ongoing Puu Oo eruption) this simple test holds and olivine fractionation and accumulation can clearly be shown to be the dominant process. In other examples from Mauna Kea and Mauna Loa (1852, 1868, 1950 eruptions, and Mauna Loa in general) the test does not hold, and a more complicated process is required. Additionally, for those magmas that fail the test, CaO/Al2O3 invariably decreases with decreasing MgO content. This should not happen if only olivine fractionation and accumulation are involved. The explanation for these linear

  6. Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals.

    PubMed

    Rubin, Allison E; Cooper, Kari M; Till, Christy B; Kent, Adam J R; Costa, Fidel; Bose, Maitrayee; Gravley, Darren; Deering, Chad; Cole, Jim

    2017-06-16

    Silicic volcanic eruptions pose considerable hazards, yet the processes leading to these eruptions remain poorly known. A missing link is knowledge of the thermal history of magma feeding such eruptions, which largely controls crystallinity and therefore eruptability. We have determined the thermal history of individual zircon crystals from an eruption of the Taupo Volcanic Zone, New Zealand. Results show that although zircons resided in the magmatic system for 10 3 to 10 5 years, they experienced temperatures >650° to 750°C for only years to centuries. This implies near-solidus long-term crystal storage, punctuated by rapid heating and cooling. Reconciling these data with existing models of magma storage requires considering multiple small intrusions and multiple spatial scales, and our approach can help to quantify heat input to and output from magma reservoirs. Copyright © 2017, American Association for the Advancement of Science.

  7. Crustal Structure of Active Deformation Zones in Africa: Implications for Global Crustal Processes

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Keir, D.; Bastow, I. D.; Whaler, K.; Hammond, J. O. S.; Ayele, A.; Miller, M. S.; Tiberi, C.; Hautot, S.

    2017-12-01

    The Cenozoic East African rift (EAR), Cameroon Volcanic Line (CVL), and Atlas Mountains formed on the slow-moving African continent, which last experienced orogeny during the Pan-African. We synthesize primarily geophysical data to evaluate the role of magmatism in shaping Africa's crust. In young magmatic rift zones, melt and volatiles migrate from the asthenosphere to gas-rich magma reservoirs at the Moho, altering crustal composition and reducing strength. Within the southernmost Eastern rift, the crust comprises 20% new magmatic material ponded in the lower crust and intruded as sills and dikes at shallower depths. In the Main Ethiopian Rift, intrusions comprise 30% of the crust below axial zones of dike-dominated extension. In the incipient rupture zones of the Afar rift, magma intrusions fed from crustal magma chambers beneath segment centers create new columns of mafic crust, as along slow-spreading ridges. Our comparisons suggest that transitional crust, including seaward dipping sequences, is created as progressively smaller screens of continental crust are heated and weakened by magma intrusion into 15-20 km thick crust. In the 30 Ma Recent CVL, which lacks a hot spot age progression, extensional forces are small, inhibiting the creation and rise of magma into the crust. In the Atlas orogen, localized magmatism follows the strike of the Atlas Mountains from the Canary Islands hot spot toward the Alboran Sea. CVL and Atlas magmatism has had minimal impact on crustal structure. Our syntheses show that magma and volatiles are migrating from the asthenosphere through the plates, modifying rheology, and contributing significantly to global carbon and water fluxes.

  8. The rheology of crystal-rich magmas (Kuno Award Lecture)

    NASA Astrophysics Data System (ADS)

    Huber, Christian; Aldin Faroughi, Salah; Degruyter, Wim

    2016-04-01

    The rheology of magmas controls not only eruption dynamics but also the rate of transport of magmas through the crust and to a large extent the rate of magma differentiation and degassing. Magma bodies stalled in the upper crust are known to spend most of their lifespan above the solidus at a high crystal content (Cooper and Kent, 2014; Huber et al., 2009), where the probability of melt extraction (crystal fractionation) is the greatest (Dufek and Bachmann, 2010). In this study, we explore a new theoretical framework to study the viscosity of crystal bearing magmas. Since the seminal work of A. Einstein and W. Sutherland in the early 20th century, it has been shown theoretically and tested experimentally that a simple self-similar behavior exist between the relative viscosity of dilute (low crystal content) suspensions and the particle volume fraction. The self-similar nature of that relationship is quickly lost as we consider crystal fractions beyond a few volume percent. We propose that the relative viscosity of crystal-bearing magmas can be fully described by two state variables, the intrinsic viscosity and the crowding factor (a measure of the packing threshold in the suspension). These two state variables can be measured experimentally under different conditions, which allows us to develop closure relationships in terms of the applied shear stress and the crystal shape and size distributions. We build these closure equations from the extensive literature on the rheology of synthetic suspensions, where the nature of the particle shape and size distributions is better constrained and apply the newly developed model to published experiments on crystal-bearing magmas. We find that we recover a self-similar behavior (unique rheology curve) up to the packing threshold and show that the commonly reported break in slope between the relative viscosity and crystal volume fraction around the expected packing threshold is most likely caused by a sudden change in the state

  9. The effect of pressurized magma chamber growth on melt migration and pre-caldera vent locations through time at Mount Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Karlstrom, Leif; Wright, Heather M.; Bacon, Charles R.

    2015-01-01

    The pattern of eruptions at long-lived volcanic centers provides a window into the co-evolution of crustal magma transport, tectonic stresses, and unsteady magma generation at depth. Mount Mazama in the Oregon Cascades has seen variable activity over the last 400 ky, including the 50 km3 climactic eruption at ca. 7.7 ka that produced Crater Lake caldera. The physical mechanisms responsible for the assembly of silicic magma reservoirs that are the precursors to caldera-forming eruptions are poorly understood. Here we argue that the spatial and temporal distribution of geographically clustered volcanic vents near Mazama reflects the development of a centralized magma chamber that fed the climactic eruption. Time-averaged eruption rates at Mount Mazama imply an order of magnitude increase in deep magma influx prior to the caldera-forming event, suggesting that unsteady mantle melting triggered a chamber growth episode that culminated in caldera formation. We model magma chamber–dike interactions over ∼50 ky preceding the climactic eruption to fit the observed distribution of surface eruptive vents in space and time, as well as petrologically estimated deep influx rates. Best fitting models predict an expanding zone of dike capture caused by a growing, oblate spheroidal magma chamber with 10–30 MPa of overpressure. This growing zone of chamber influence causes closest approaching regional mafic vent locations as well as more compositionally evolved Mazama eruptions to migrate away from the climactic eruptive center, returning as observed to the center after the chamber drains during the caldera-forming eruption.

  10. Bubble accumulation and its role in the evolution of magma reservoirs in the upper crust.

    PubMed

    Parmigiani, A; Faroughi, S; Huber, C; Bachmann, O; Su, Y

    2016-04-28

    Volcanic eruptions transfer huge amounts of gas to the atmosphere. In particular, the sulfur released during large silicic explosive eruptions can induce global cooling. A fundamental goal in volcanology, therefore, is to assess the potential for eruption of the large volumes of crystal-poor, silicic magma that are stored at shallow depths in the crust, and to obtain theoretical bounds for the amount of volatiles that can be released during these eruptions. It is puzzling that highly evolved, crystal-poor silicic magmas are more likely to generate volcanic rocks than plutonic rocks. This observation suggests that such magmas are more prone to erupting than are their crystal-rich counterparts. Moreover, well studied examples of largely crystal-poor eruptions (for example, Katmai, Taupo and Minoan) often exhibit a release of sulfur that is 10 to 20 times higher than the amount of sulfur estimated to be stored in the melt. Here we argue that these two observations rest on how the magmatic volatile phase (MVP) behaves as it rises buoyantly in zoned magma reservoirs. By investigating the fluid dynamics that controls the transport of the MVP in crystal-rich and crystal-poor magmas, we show how the interplay between capillary stresses and the viscosity contrast between the MVP and the host melt results in a counterintuitive dynamics, whereby the MVP tends to migrate efficiently in crystal-rich parts of a magma reservoir and accumulate in crystal-poor regions. The accumulation of low-density bubbles of MVP in crystal-poor magmas has implications for the eruptive potential of such magmas, and is the likely source of the excess sulfur released during explosive eruptions.

  11. Million-year melt-presence in monotonous intermediate magma for a volcanic-plutonic assemblage in the Central Andes: Contrasting histories of crystal-rich and crystal-poor super-sized silicic magmas

    NASA Astrophysics Data System (ADS)

    Kaiser, Jason F.; de Silva, Shanaka; Schmitt, Axel K.; Economos, Rita; Sunagua, Mayel

    2017-01-01

    The melt-present lifetime of super-sized monotonous intermediate magmas that feed supereruptions and end life as granodioritic plutons is investigated using zircon chronochemistry. These data add to the ongoing discussion on magma assembly rates and have implications for how continental batholiths are built. Herein, we estimate ∼1.1 Ma of continuous melt presence before and after the climactic caldera-forming 2.89 ± 0.01 Ma (2σ error) Pastos Grandes Ignimbrite (PGI) supereruption (∼1500 km3 of magma) in the Andes of southwest Bolivia. Zircon crystallization in PGI pumice and lava from the faulted Southern Postcaldera Dome span ∼0.7 Ma prior to the climactic eruption and formation of the eponymous caldera, whereas younger, unfaulted Postcaldera Dome lavas (termed Northern and Middle) and a granodioritic plutonic clast within the products of a Pleistocene eruption indicate a further ∼0.4 Ma of post-climactic zircon crystallization. Bulk-rock compositions as well as zircon thermometry and geochemistry indicate the presence of homogeneous dacitic magma before and after the climactic eruption, but a trend to zircon crystallization at higher temperatures and from less evolved melts is seen for post-climactic zircon. We propose a model in which a large volume of crystal-rich dacite magma was maintained above solidus temperatures by periodic andesitic recharge that is chemically invisible in the erupted components. The climactic caldera-forming eruption vented the upper portions of the magma system zircon was saturated. Zircon in postcaldera lavas indicate that residual magma from this system remained locally viable for eruption at least for some time after the caldera-forming event. Subsequently, deeper "remnant" dacite magma previously outside the zone of zircon saturation rose to shallower levels to re-establish hydraulic and isostatic equilibrium where zircon crystallization commenced anew, and drove more resurgent volcanism and uplift. The same magma

  12. Timescales of mixing and storage for Keanakāko`i Tephra magmas (1500-1820 C.E.), Kīlauea Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Lynn, Kendra J.; Garcia, Michael O.; Shea, Thomas; Costa, Fidel; Swanson, Donald A.

    2017-09-01

    The last 2500 years of activity at Kīlauea Volcano (Hawai`i) have been characterized by centuries-long periods dominated by either effusive or explosive eruptions. The most recent period of explosive activity produced the Keanakāko`i Tephra (KT; ca. 1500-1820 C.E.) and occurred after the collapse of the summit caldera (1470-1510 C.E.). Previous studies suggest that KT magmas may have ascended rapidly to the surface, bypassing storage in crustal reservoirs. The storage conditions and rapid ascent hypothesis are tested here using chemical zoning in olivine crystals and thermodynamic modeling. Forsterite contents (Fo; [Mg/(Mg + Fe) × 100]) of olivine core and rim populations are used to identify melt components in Kīlauea's prehistoric (i.e., pre-1823) plumbing system. Primitive (≥Fo88) cores occur throughout the 300+ years of the KT period; they originated from mantle-derived magmas that were first mixed and stored in a deep crustal reservoir. Bimodal olivine populations (≥Fo88 and Fo83-84) record repeated mixing of primitive magmas and more differentiated reservoir components shallower in the system, producing a hybrid composition (Fo85-87). Phase equilibria modeling using MELTS shows that liquidus olivine is not stable at depths >17 km. Thus, calculated timescales likely record mixing and storage within the crust. Modeling of Fe-Mg and Ni zoning patterns (normal, reverse, complex) reveal that KT magmas were mixed and stored for a few weeks to several years before eruption, illustrating a more complex storage history than direct and rapid ascent from the mantle as previously inferred for KT magmas. Complexly zoned crystals also have smoothed compositional reversals in the outer 5-20 µm rims that are out of Fe-Mg equilibrium with surrounding glasses. Diffusion models suggest that these rims formed within a few hours to a few days, indicating that at least one additional, late-stage mixing event may have occurred shortly prior to eruption. Our study

  13. A numerical treatment of melt/solid segregation - Size of the eucrite parent body and stability of the terrestrial low-velocity zone

    NASA Technical Reports Server (NTRS)

    Walker, D.; Stolper, E. M.; Hays, J. F.

    1978-01-01

    Crystal sinking to form cumulates and melt percolation toward segregation in magma pools can be treated with modifications of Stokes' and Darcy's laws, respectively. The velocity of crystals and melt depends, among other things, on the force of gravity (g) driving the separations and the cooling time of the environment. The increase of g promotes more efficient differentiation, whereas the increase of cooling rate limits the extent to which crystals and liquid can separate. The rate at which separation occurs is strongly dependent on the proportion of liquid that is present. The observation of cumulates and segregated melts among the eucrite meteorites is used as a basis for calculating the g (and planet size) required to perform these differentiations. The eucrite parent body was probably at least 10-100 km in radius. The earth's low velocity zone (LVZ) is shown to be unstable with respect to draining itself of excess melt if the melt forms an interconnecting network. A geologically persistent LVZ with a homogeneous distribution of melt can be maintained with melt fractions only on the order of 0.1% or less.

  14. Imaging Seismic Zones and Magma beneath Mount St. Helens with the iMUSH Broadband Array

    NASA Astrophysics Data System (ADS)

    Ulberg, C. W.; Creager, K.; Moran, S. C.; Abers, G. A.; Crosbie, K.; Crosson, R. S.; Denlinger, R. P.; Thelen, W. A.; Kiser, E.; Levander, A.; Bachmann, O.

    2017-12-01

    We deployed 70 broadband seismometers from 2014 to 2016 to image the seismic velocity structure beneath Mount St. Helens (MSH), Washington, as part of the collaborative imaging Magma Under St. Helens (iMUSH) project. The broadband array had a 100 km diameter centered on MSH with an average station spacing of 10 km, augmented by dozens of permanent stations. We picked P- and S-wave arrival times and also incorporated picks from the permanent network. More than 400 local events M>0.5 occurred during the deployment, providing over 12,000 P-wave and 6,000 S-wave arrival times. In addition, we incorporated 23 explosions that were part of the active-source component of iMUSH. We used the program struct3DP to invert travel times to obtain a 3-D seismic velocity model and relocated hypocenters, with travel times computed using a 3-D eikonal-equation solver. Principal features of our 3-D model include: (1) Low P- and S-wave velocities along the St. Helens seismic Zone (SHZ), striking NNW-SSE north of MSH from near the surface to where we lose resolution at 15-20 km depth. This anomaly corresponds to high conductivity as imaged by iMUSH magnetotelluric studies. The SHZ also coincides with a sharp boundary in continental Moho reflectivity that has been interpreted as the eastern boundary of a serpentinized mantle wedge (Hansen et al, 2016). We speculate that the SHZ and low velocities are related to fluids rising from the eastern boundary of the wedge; (2) A 4-5% negative P- and S-wave velocity anomaly beneath MSH at depths of 6-15 km with a quasi-cylindrical geometry and a diameter of 5 km, probably indicating a magma storage region. Based on resolution testing of similar-sized features, it is possible that the velocity anomaly we see underneath MSH is narrower and higher (i.e., more negative) amplitude; (3) A broad, high-amplitude, low P-wave velocity region below 10-km depth extending between Mount Adams and Mount Rainier along and to the east of the main Cascade arc

  15. Multitemperature compaction model of a magma melt in the asthenosphere: A numerical approach

    NASA Astrophysics Data System (ADS)

    Pak, V. V.

    2007-09-01

    A numerical compaction model of a fluid in a viscous skeleton is developed with regard for a phase transition. The temperatures of phases are different. The solution is found by the method of asymptotic expansion relative to the incompressible variant, which removes a number of computational problems related to the weak compressibility of the skeleton. For each approximation, the problem is solved by the finite element method. The process of 2-D compaction of a magmatic melt in the asthenosphere under a fault zone is examined for one-and two-temperature cases. The magmatic flow concentrates in this region due to a lower pore pressure. Higher temperature magma entering from lower levels causes a local heating of the skeleton and intense melting of its fusible component. In the two-temperature model, a magma concentration anomaly develops under the fault zone. The fundamental limitations substantially complicating the corresponding calculations within the framework of a one-temperature model are pointed out and the necessity of applying a multitemperature variant is substantiated.

  16. Numerical simulation of magma chamber dynamics.

    NASA Astrophysics Data System (ADS)

    Longo, Antonella; Papale, Paolo; Montagna, Chiara Paola; Vassalli, Melissa; Giudice, Salvatore; Cassioli, Andrea

    2010-05-01

    Magma chambers are characterized by periodic arrivals of deep magma batches that give origin to complex patterns of magma convection and mixing, and modify the distribution of physical quantities inside the chamber. We simulate the transient, 2D, multi-component homogeneous dynamics in geometrically complex dyke+chamber systems, by means of GALES, a finite element parallel C++ code solving mass, momentum and energy equations for multi-component homogeneous gas-liquid (± crystals) mixtures in compressible-to-incompressible flow conditions. Code validation analysis includes several cases from the classical engineering literature, corresponding to a variety of subsonic to supersonic gas-liquid flow regimes (see http://www.pi.ingv.it/~longo/gales/gales.html). The model allows specification of the composition of the different magmas in the domain, in terms of ten major oxides plus the two volatile species H2O and CO2. Gas-liquid thermodynamics are modeled by using the compositional dependent, non-ideal model in Papale et al. (Chem.. Geol., 2006). Magma properties are defined in terms of local pressure, temperature, and composition including volatiles. Several applications are performed within domains characterized by the presence of one or more magma chambers and one or more dykes, with different geometries and characteristic size from hundreds of m to several km. In most simulations an initial compositional interface is placed at the top of a feeding dyke, or at larger depth, with the deeper magma having a lower density as a consequence of larger volatile content. The numerical results show complex patterns of magma refilling in the chamber, with alternating phases of magma ingression and magma sinking from the chamber into the feeding dyke. Intense mixing takes place in feeding dykes, so that the new magma entering the chamber is always a mixture of the deep and the initially resident magma. Buoyant plume rise occurs through the formation of complex convective

  17. Combined magnetotelluric and petrologic constrains for the nature of the magma storage system beneath the Ciomadul volcano (SE Carpathians)

    NASA Astrophysics Data System (ADS)

    Novák, A.; Harangi, Sz.; Kiss, B.; Szarka, L.; Molnár, Cs.

    2012-04-01

    The Ciomadul volcano is the youngest in the Carpathian-Pannonian region (eastern-central Europe) and there are indications that magma could still reside at the depth. Therefore, we performed a magnetotelluric investigation with the aim to detect a still hot magma reservoir. The results were compared with those coming from the petrological investigations. The Ciomadul volcanic complex contains a central amalgamated set of lava domes and a few peripheral domes with two explosion craters in the central zone. Geologically the domes were built by effusion of high viscosity dacite magma. Lava dome collapses resulted in volcanoclastic deposits (block-and ash flow deposits). The magmatic activity could have been connected to the seismically powerful region of the nearby Vrancea zone. Twelve long period magnetotelluric (MT) soundings were carried out to aim of define to electric resistivity distribution of the volcanic system and find correlation with the petrologic model to confirm the hot magma chamber beneath the region. At each MT site, the horizontal components of the magnetic and the electric fields were observed between the 0.00006-4 Hz frequency range. The vertical component of the magnetic field was also recorded to analyze the lateral conductivity inhomogenities under the subsurface. Soundings were located in non systematic grid and we selected several profiles which may represent the resistivity distribution of subsurface and cross-sections were applied as well. At started by dimensionality analysis and decomposition parameters the most part of the measuring are multi-dimensional. Traditional MT interpretation - 1D, 2D inversion and modeling - was carried out taking into account the decomposition results. 3D interpretation is not realized because of weak resolution of the data and large memory requirement. Both the local 1D inversion and the 2D inversion along the profiles defined a low resistivity zones at about 2 km depth which in continuation at depth with a

  18. Oxygen isotopic determinations of sequentially erupted plagioclases in the 1974 magma of Fuego Volcano, Guatemala

    USGS Publications Warehouse

    Rose, W.I.; Friedman, I.; Woodruff, L.G.

    1980-01-01

    Plagioclases in the 1974 high-Al basalt from Fuego Volcano have ??O18 values of +6.0 to +8.5 per mil. Meteoric water cannot have played a significant role in Fuego's magma. Large, weakly zone clear phenocrysts had ??O18 values in the accepted mantle range, while patchyzoned and oscillatory-zoned plagioclases inferred to have formed later and shallower levels have slightly heavier oxygen isotopic ratios. ?? 1980 Intern. Association of Volcanology and Chemistry of the Earth's Interior.

  19. Magma mixing in granite petrogenesis: Insights from biotite inclusions in quartz and feldspar of Mesozoic granites from South China

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Zhao, Zi-Fu; Zheng, Yong-Fei

    2016-06-01

    Magma mixing is a common process in granite petrogenesis. The major element composition of biotites in granites is primarily controlled by the composition of magmas from which they crystallized. Biotite grains enclosed in quartz and feldspars of granites are naturally protected by their host minerals, so that their compositions are likely original and can potentially be used to track the magma mixing. This is illustrated by a combined study of matrix and inclusion biotites from Mesozoic granites in the Nanling Range, South China. Three granite samples have been used in this study: one two-mica granite and two biotite granites. The biotites of different occurrences in the two-mica granite have no compositional distinctions. Biotites in the two-mica granite have higher Al2O3 and lower MgO than those in the biotite granites. The former is consistent with biotites from typical S-type granites of metasedimentary origin. In contrast, biotites from the biotite granites can be categorized into different groups based on their paragenetic minerals and geochemical compositions. They have relatively low aluminous saturation indices but higher Mg numbers, falling in the transitional field between typical S- and I-type granites. In addition, there are two contrasting zircon populations with nearly identical U-Pb ages in the biotite granites. One shows clearly oscillatory zonings in CL images, whereas the other is totally dark and often overgrew on the former one. The zircons with oscillatory zonings have higher δ18O values than the dark ones, indicating their growth from two compositionally different magmas, respectively, with different sources. An integrated interpretation of all these data indicates that mixing of two different magmas was responsible for the petrogenesis of biotite granites. Therefore, the study of biotite inclusions provides insights into the magma mixing in granite petrogenesis.

  20. Effects of crustal thickness on magmatic differentiation in subduction zone volcanism: A global study

    NASA Astrophysics Data System (ADS)

    Farner, Michael J.; Lee, Cin-Ty A.

    2017-07-01

    The majority of arc magmas are highly evolved due to differentiation within the lithosphere or crust. Some studies have suggested a relationship between crustal thickness and magmatic differentiation, but the exact nature of this relationship is unclear. Here, we examine the interplay of crustal thickness and magmatic differentiation using a global geochemical dataset compiled from active volcanic arcs and elevation as a proxy for crustal thickness. With increasing crustal thickness, average arc magma compositions become more silicic (andesitic) and enriched in incompatible elements, indicating that on average, arc magmas in thick crust are more evolved, which can be easily explained by the longer transit and cooling times of magmas traversing thick arc lithosphere and crust. As crustal thickness increases, arc magmas show higher degrees of iron depletion at a given MgO content, indicating that arc magmas saturate earlier in magnetite when traversing thick crust. This suggests that differentiation within thick crust occurs under more oxidizing conditions and that the origin of oxidation is due to intracrustal processes (contamination or recharge) or the role of thick crust in modulating melting degree in the mantle wedge. We also show that although arc magmas are on average more silicic in thick crust, the most silicic magmas (>70 wt.% SiO2) are paradoxically found in thin crust settings, where average compositions are low in silica (basaltic). We suggest that extreme residual magmas, such as those exceeding 70 wt.% SiO2, are preferentially extracted from shallow crustal magma bodies than from deep-seated magma bodies, the latter more commonly found in regions of thick crust. We suggest that this may be because the convective lifespan of crustal magma bodies is limited by conductive cooling through the overlying crustal lid and that magma bodies in thick crust cool more slowly than in thin crust. When the crust is thin, cooling is rapid, preventing residual magmas

  1. Water content in intraplate basalt magmas from the Longgang area, NE China

    NASA Astrophysics Data System (ADS)

    Mizobuchi, F.; Kuritani, T.; Yoshida, T.; Miyamoto, T.; Nagahashi, Y.; Taniguchi, H.

    2009-12-01

    In northeastern China, intraplate magmatism has been active, and Cenozoic basalts are widely distributed. Beneath the area, the subducted Pacific slab is stagnant in the mantle transition zone, and some previous studies have inferred that the magmatism may have been affected by fluid phases released from the stagnant slab. To test this hypothesis, it is important to know the water content in the source mantle. In this context, the water content in the intraplate magma was estimated using primitive scoria samples from the Longgang area, NE China. Because of the absence of glass inclusions in phenocrysts that enables direct measurement of water content, it was estimated by thermodynamic constraints. During ascent of water-bearing magmas, the water solubility tends to decrease, and water saturation is achieved at depth. Then, crystals can grow rapidly by an increase in the liquidus temperature resulting from water exsolution. Because the microlites in our samples can be regarded as such crystals, the water content in the magma in which the microlites occured was estimated by thermodynamic analyses using the compositions of the microlites and glass. In the calculations, thermodynamic solution models of e.g. Ghiorso&Sack(1995) were used. The calculated water content and the temperature of the magma were about 0.6 wt.% and 1110 degC, respectively. The water content is slightly higher than those of primitive intraplate magmas such as from Hawaii (0.4 wt.%, Wallace & Anderson,1998) and Iceland (0.1-0.4 wt.%, Nichols et al., 2002). Assuming that the degree of melting was 1-2%, the water content of the source asthenospheric mantle was 110-170 ppm. The magma temperature at 80-120 km depth (garnet stability field) was also estimated as 1160-1180 degC, assuming adiabatic ascent. Using the constraints obtained in this study, the effect of stagnant-slab-derived fluids on the magma generation will be evaluated as a future study.

  2. A preparation zone for volcanic explosions beneath Naka-dake crater, Aso volcano, as inferred from magnetotelluric surveys

    NASA Astrophysics Data System (ADS)

    Kanda, Wataru; Tanaka, Yoshikazu; Utsugi, Mitsuru; Takakura, Shinichi; Hashimoto, Takeshi; Inoue, Hiroyuki

    2008-11-01

    The 1st crater of Naka-dake, Aso volcano, is one of the most active craters in Japan, and known to have a characteristic cycle of activity that consists of the formation of a crater lake, drying-up of the lake water, and finally a Strombolian-type eruption. Recent observations indicate an increase in eruptive activity including a decrease in the level of the lake water, mud eruptions, and red hot glows on the crater wall. Temporal variations in the geomagnetic field observed around the craters of Naka-dake also indicate that thermal demagnetization of the subsurface rocks has been occurring in shallow subsurface areas around the 1st crater. Volcanic explosions act to release the energy transferred from magma or volcanic fluids. Measurement of the subsurface electrical resistivity is a promising method in investigating the shallow structure of the volcanic edifices, where energy from various sources accumulates, and in investigating the behaviors of magma and volcanic fluids. We carried out audio-frequency magnetotelluric surveys around the craters of Naka-dake in 2004 and 2005 to determine the detailed electrical structure down to a depth of around 1 km. The main objective of this study is to identify the specific subsurface structure that acts to store energy as a preparation zone for volcanic eruption. Two-dimensional inversions were applied to four profiles across the craters, revealing a strongly conductive zone at several hundred meters depth beneath the 1st crater and surrounding area. In contrast, we found no such remarkable conductor at shallow depths beneath the 4th crater, which has been inactive for 70 years, finding instead a relatively resistive body. The distribution of the rotational invariant of the magnetotelluric impedance tensor is consistent with the inversion results. This unusual shallow structure probably reflects the existence of a supply path of high-temperature volcanic gases to the crater bottom. We propose that the upper part of the

  3. Pressure effect on Fe3+/FeT in silicate melts and applications to magma redox, particularly in magma oceans

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Hirschmann, M. M.

    2014-12-01

    The proportions of Fe3+ and Fe2+ in magmas reflect the redox conditions of their origin and influence the chemical and physical properties of natural silicate liquids, but the relationship between Fe3+/FeT and oxygen fugacity depends on pressure owing to different molar volumes and compressibilities of Fe3+ and Fe2+ in silicates. An important case where the effect of pressure effect may be important is in magma oceans, where well mixed (and therefore potentially uniform Fe3+/FeT) experiencses a wide range of pressures, and therefore can impart different ƒO2 at different depths, influencing magma ocean degassing and early atmospheres, as well as chemical gradients within magma oceans. To investigate the effect of pressure on magmatic Fe3+/FeT we conducted high pressure expeirments on ƒO2-buffered andestic liquids. Quenched glasses were analyzed by Mössbauer spectroscopy. To verify the accuracy of Mössbauer determinations of Fe3+/FeT in glasses, we also conducted low temperature Mössbauer studies to determine differences in the recoilless fraction (ƒ) of Fe2+ and Fe3. These indicate that room temperature Mössbauer determinations of on Fe3+/FeT glasses are systematically high by 4% compared to recoilless-fraction corrected ratios. Up to 7 GPa, pressure decreases Fe3+/FeT, at fixed ƒO2 relative to metal-oxide buffers, meaning that an isochemical magma will become more reduced with decreasing pressure. Consequently, for small planetary bodies such as the Moon or Mercury, atmospheres overlying their MO will be highly reducing, consisting chiefly of H2 and CO. The same may also be true for Mars. The trend may reverse at higher pressure, as is the case for solid peridotite, and so for Earth, Venus, and possibly Mars, more oxidized atmospheres above MO are possible. Diamond anvil experiments are underway to examine this hypothesis.

  4. Magma emplacement in 3D

    NASA Astrophysics Data System (ADS)

    Gorczyk, W.; Vogt, K.

    2017-12-01

    Magma intrusion is a major material transfer process in Earth's continental crust. Yet, the mechanical behavior of the intruding magma and its host are a matter of debate. In this study, we present a series of numerical thermo-mechanical experiments on mafic magma emplacement in 3D.In our model, we place the magmatic source region (40 km diameter) at the base of the mantle lithosphere and connect it to the crust by a 3 km wide channel, which may have evolved at early stages of magmatism during rapid ascent of hot magmatic fluids/melts. Our results demonstrate continental crustal response due to magma intrusion. We observe change in intrusion geometries between dikes, cone-sheets, sills, plutons, ponds, funnels, finger-shaped and stock-like intrusions as well as injection time. The rheology and temperature of the host-rock are the main controlling factors in the transition between these different modes of intrusion. Viscous deformation in the warm and deep crust favours host rock displacement and magma pools along the crust-mantle boundary forming deep-seated plutons or magma ponds in the lower to middle-crust. Brittle deformation in the cool and shallow crust induces cone-shaped fractures in the host rock and enables emplacement of finger- or stock-like intrusions at shallow or intermediate depth. A combination of viscous and brittle deformation forms funnel-shaped intrusions in the middle-crust. Low-density source magma results in T-shaped intrusions in cross-section with magma sheets at the surface.

  5. Probing the melt zone of Kilauea Iki lava lake, Kilauea volcano, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardee, H.C.; Dunn, J.C.; Hills, R.G.

    1981-12-01

    New drilling techniques were recently used to drill and core the melt zone of Kilauea Iki lava lake to a depth of 93 m. A partial melt zone was found to exist at depths between 58 m and 89 m consisting of 40 volume percent melt. Downhole seismic shots detonated in and below the melt zone resulted in the first in situ measurements of seismic velocity directly through well characterized partial melt zone. Periodic seismic sources were used to effectively penetrate the highly fractured hydrothermal zone of the lava lake crust. Low velocity P-wave layers (< or =2.0 km/s) weremore » found at the surface, at 40 m depth, and at 90 m depth. Thermal convective experiments in the melt zone resulted in the first controlled in situ measurements of the interaction of water with a basaltic melt zone. Transient energy rates of 900 kW (980 kW/m/sup 2/) and steady rates of 85 kW (93 kW/m/sup 2/) were observed. The full water recovery (100%), high downhole steam temperatures (670 C), and high energy transfer rates (93 to 980 kW/m/sup 2/) observed in these thermal experiments are consistent with a closed cavity model where the injected water/steam directly contacted basaltic melt or near melt. In addition to understanding lava lakes, these seismic and thermal experiments have applications for the location of magma bodies in the crust and for the efficient extraction of energy from these bodies.« less

  6. Rapid thermal rejuvenation of high-crystallinity magma linked to porphyry copper deposit formation; evidence from the Koloula Porphyry Prospect, Solomon Islands

    NASA Astrophysics Data System (ADS)

    Tapster, S.; Condon, D. J.; Naden, J.; Noble, S. R.; Petterson, M. G.; Roberts, N. M. W.; Saunders, A. D.; Smith, D. J.

    2016-05-01

    Magmas containing the components needed to form porphyry copper deposits are relatively common within arcs, yet mineralising events are uncommon within the long-lived magmatic systems that host them. Understanding what causes the transition from barren to productive intrusions is critical to the development of conceptual deposit models. We have constrained the tempo of pre- and syn-mineralisation magmatic events in relationship to the thermal evolution of the plutonic body that underlies one of the world's youngest exposed plutonic-porphyry systems, the Inamumu Zoned Pluton, Koloula Porphyry Prospect, Solomon Islands. High precision ID-TIMS U-Pb dates of texturally and chemically characterised zircons indicate pluton emplacement over <150 kyr was superseded after ca. 50 kyr by two discrete episodes of mineralising porphyritic melt emplacement. Their associated hydrothermal systems initiated within ca. 30 kyrs of each other. Zircon populations within evolved intrusions contain resorbed cores that were recycled from the deeper magmatic system, yet their youngest dates are statistically indistinguishable from those yielded by crystals lacking resorption. Comparisons of Ti-in-zircon proxy temperatures, modelled zircon saturation temperatures and temperature-crystallinity relationships suggest that prior to being heated and emplaced within the shallow level pluton, magmas were stored at depth in a high-crystallinity (>50% crystals) state, past the point of rheological lock-up. We estimate that thermal rejuvenation of the deeper high-crystallinity magma and generation of a mobile melt fraction may have occurred ≤10 kyr before its transport and emplacement within the porphyry environment. The underlying pluton likely cooled and returned to high-crystallinity states prior to subsequent remobilisation-emplacement events. Titanium-in-zircon geothermometry and whole-rock geochemistry suggest pre-mineralisation intrusions were remobilised by mixing of a silicic magma with a

  7. Effects of Planetary Thermal Structure on the Ascent and Cooling of Magma on Venus

    NASA Technical Reports Server (NTRS)

    Sakimoto, Susan E. H.; Zuber, Maria T.

    1995-01-01

    Magellan radar images of the surface of Venus show a spatially broad distribution of volcanic features. Models of magmatic ascent processes to planetary surfaces indicate that the thermal structure of the interior significantly influences the rate of magmatic cooling and thus the amount of magma that can be transported to the surface before solidification. In order to understand which aspects of planetary thermal structure have the greatest influence on the cooling of buoyantly ascending magma, we have constructed magma cooling profiles for a plutonic ascent mechanism, and evaluated the profiles for variations in the surface and mantle temperature, surface temperature gradient, and thermal gradient curvature. Results show that, for a wide variety of thermal conditions, smaller and slower magma bodies are capable of reaching the surface on Venus compared to Earth, primarily due to the higher surface temperature of Venus. Little to no effect on the cooling and transport of magma are found to result from elevated mantle temperatures, elevation-dependent surface temperature variations, or details of the thermal gradient curvature. The enhanced tendency of magma to reach the surface on Venus may provide at least a partial explanation for the extensive spatial distribution of observed volcanism on the surface.

  8. Magma Mixing, Mingling and Its Accompanying Isotopic and Elemental Partitioning: Records from Titanites in Guojialing-type Granodiorites and Dioritic Enclaves, Jiaodong, North China

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Yang, K. F.; Fan, H. R.; Liu, X.

    2016-12-01

    The grain-scale textural and in-situ compositional analyses on accessory minerals (such as titanite, rutile, apatite, monazite, etc.) have recently been a hot topic for geologists, through which a detailed information on magmatic, metamorphic or hydrothermal process can be extracted. As an attempt to unravel the petrogenesis of Early Cretaceous Guojialing-type granodiorites and their bearing dioritic enclaves, we accomplished an integrated geochronological and geochemical study on titanites within these rocks. Three types of titanites, with distinguishable textural and geochemical features, are identified. G-type titanites (from granodiorites) and E-type-I titanites (from plagioclase-rich dioritic enclaves) yield identical U-Pb age of 130 Ma, but reveal distinct back-scattered electron (BSE) zonings. G-type titanites are characterized by oscillatory zonings whereas E-type-I titanites are marked by core-mantle-rim zonings, exhibiting drastic but contrary variation trends for several key elements (such as LREEs, Zr, Hf and F) among their transition BSE zones. These two types of titanites are interpreted to crystallize coevally, and record a notable temperature and compositional change of two corresponding melts, as a response to magma mixing. E-type-II titanites (from plagioclase-poor dioritic enclaves) yield a relatively younger U-Pb age at 128 Ma, and show typical interstitial growth with narrower and lower range of Zr, total REEs contents, but higher F content and Nb/Ta ratios. Such titanites are perceived to record late-stage mingling, during which F-rich and REE-poor hybrid granodioritic magma squeezed into the incompletely consolidated dioritic enclaves with accompanying fluid-rock interaction. Unlike the dramatic elemental changes in these differentiated titanites, in-situ Nd isotopic compositions are relatively homogeneous, which in our view is a good sign of showing that isotopic equilibrium among two magma systems was more easily reached compared to

  9. Modeling the three-dimensional structure of macroscopic magma transport systems: Application to Kilauea volcano, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, M.P.; Koyanagi, R.Y.; Fiske, R.S.

    1981-08-10

    We report the results of modeling the three-dimensional internal structure of Kilauea's magmatic passageways. The approach uses a clear plexiglass model containing equally-spaced levels upon which well-located seismic hypocenters are plotted. Application of constraining geologic and geophysical criteria to this distributed volume of earthquakes permits the interpretation of seismic structures produced by fracturing in response to locally high fluid pressures. Four magma transport and storage structures produce have been identified within and beneath Kilauea: (1) Primary conduit. The conduit transporting magma into Kilauea's summit storage reservoir rises from the model base (14.6 km) to 6.5 km depth level. It ismore » a zone of intense fracturing and inferred intrusion, whose horizontal sections are elliptical in planform. Over its height, the average major axis of component horizontal section is 3.3 km, with an average minor axis of 1.7 km. This yields an aspect ratio of xi = 0.52. At the 14.6 km level, the strike of the major axis is N67 /sup 0/E. During passage from the upper mantle through the oceanic crust, this axis rotates in a right-handed sense, until the strike is N41 /sup 0/W at the 6.5 km level. (2) Magma chamber complex floor. The interval from 6.5 to 5.7 km, immediately over the primary conduit, is aseismic. This suggests differentially high fluid-to-rock ratios, and relatively weak pathways for further vertical transport into higher levels of the storage complex, as well as lateral leakage eastward into the Mauna Ulu staging area: for later vertical ascent beneath the upper east rift zone. Seismicity within the immediately subjacent rocks that form the top of the primary conduit (at 6.5 km) suggests that this inferred magma-rich horizon forms the effective floor of the summit storage complex. (3) Magma chamber crown. Intense seismicity over the 1.1--1.9 km depth interval defines an elliptical region in plan view.« less

  10. Magmas and reservoirs beneath the Rabaul caldera (Papua New Guinea)

    NASA Astrophysics Data System (ADS)

    Bouvet de Maisonneuve, C.; Costa Rodriguez, F.; Huber, C.

    2013-12-01

    trace element geochemistry, volatile contents, and the comparison of successive eruptions since 1400 y BP to address the question of whether another potentially caldera-forming magma is presently brewing beneath Rabaul. In addition, we apply kinetic modeling of olivine and plagioclase zoning to the recently erupted products to address the prolonged period of seismic and deformational precursory activity. We estimate that at least 20-35 wt% basalt has mixed with the resident silicic magma at time scales that coincide with the main period of unrest (1971 to 1985).

  11. Focused seismicity triggered by flank instability on Kīlauea's Southwest Rift Zone

    NASA Astrophysics Data System (ADS)

    Judson, Josiah; Thelen, Weston A.; Greenfield, Tim; White, Robert S.

    2018-03-01

    Swarms of earthquakes at the head of the Southwest Rift Zone on Kīlauea Volcano, Hawai´i, reveal an interaction of normal and strike-slip faulting associated with movement of Kīlauea's south flank. A relocated subset of earthquakes between January 2012 and August 2014 are highly focused in space and time at depths that are coincident with the south caldera magma reservoir beneath the southern margin of Kīlauea Caldera. Newly calculated focal mechanisms are dominantly dextral shear with a north-south preferred fault orientation. Two earthquakes within this focused area of seismicity have normal faulting mechanisms, indicating two mechanisms of failure in very close proximity (10's of meters to 100 m). We suggest a model where opening along the Southwest Rift Zone caused by seaward motion of the south flank permits injection of magma and subsequent freezing of a plug, which then fails in a right-lateral strike-slip sense, consistent with the direction of movement of the south flank. The seismicity is concentrated in an area where a constriction occurs between a normal fault and the deeper magma transport system into the Southwest Rift Zone. Although in many ways the Southwest Rift Zone appears analogous to the more active East Rift Zone, the localization of the largest seismicity (>M2.5) within the swarms to a small volume necessitates a different model than has been proposed to explain the lineament outlined by earthquakes along the East Rift Zone.

  12. Genesis of a zoned granite stock, Seward Peninsula, Alaska

    USGS Publications Warehouse

    Hudson, Travis

    1977-01-01

    A composite epizonal stock of biotite granite has intruded a diverse assemblage of metamorphic rocks in the Serpentine Hot Springs area of north-central Seward Peninsula, Alaska. The metamorphic rocks include amphibolite-facies orthogneiss and paragneiss, greenschist-facies fine-grained siliceous and graphitic metasediments, and a variety of carbonate rocks. Lithologic units within the metamorphic terrane trend generally north-northeast and dip moderately toward the southeast. Thrust faults locally juxtapose lithologic units in the metamorphic assemblage, and normal faults displace both the metamorphic rocks and some parts of the granite stock. The gneisses and graphitic metasediments are believed to be late Precambrian in age, but the carbonate rocks are in part Paleozoic. Dating by the potassium-argon method indicates that the granite stock is Late Cretaceous. The stock has sharp discordant contacts, beyond which is a well-developed thermal aureole with rocks of hornblende hornfels facies. The average mode of the granite is 29 percent plagioclase, 31 percent quartz, 36 percent K-feldspar, and 4 percent biotite. Accessory minerals include apatite, magnetite, sphene, allanite, and zircon. Late-stage or deuteric minerals include muscovite, fluorite, tourmaline, quartz, and albite. The stock is a zoned complex containing rocks with several textural facies that are present in four partly concentric zones. Zone 1 is a discontinuous border unit, containing fine- to coarse-grained biotite granite, that grades inward into zone 2. Zone 2 consists of porphyritic biotite granite with oriented phenocrysts of pinkish-gray microcline in a coarse-grained equigranular groundmass of plagioclase, quartz, and biotite. It is in sharp, concordant to discordant contact with rocks of zone 3. Zone 3 consists of seriate-textured biotite granite that has been intruded by bodies of porphyritic biotite granite containing phenocrysts of plagioclase, K-feldspar, quartz, and biotite in an

  13. Incremental growth of an upper crustal, A-type pluton, Argentina: Evidence of a re-used magma pathway

    NASA Astrophysics Data System (ADS)

    Alasino, Pablo H.; Larrovere, Mariano A.; Rocher, Sebastián; Dahlquist, Juan A.; Basei, Miguel A. S.; Memeti, Valbone; Paterson, Scott; Galindo, Carmen; Macchioli Grande, Marcos; da Costa Campos Neto, Mario

    2017-07-01

    Carboniferous igneous activity in the Sierra de Velasco (NW Argentina) led to the emplacement of several magmas bodies at shallow levels (< 2 kbar). One of these, the San Blas intrusive complex formed over millions of years (≤ 2-3 m.y.) through three periods of magma additions that are characterized by variations in magma sources and emplacement style. The main units, mostly felsic granitoids, have U-Pb zircon crystallization ages within the error range. From older to younger (based on cross-cutting relationships) intrusive units are: (1) the Asha unit (340 ± 7 Ma): a tabular to funnel-shaped intrusion emplaced during a regional strain field dominated by WSW-ENE shortening with contacts discordant to regional host-rock structures; (2) the San Blas unit (344 ± 2 Ma): an approximate cylindrical-shaped intrusion formed by multiple batches of magmas, with a roughly concentric fabric pattern and displacement of the host rock by ductile flow of about 35% of shortening; and (3) the Hualco unit (346 ± 6 Ma): a small body with a possible mushroom geometry and contacts concordant to regional host-rock structures. The magma pulses making up these units define two groups of A-type granitoids. The first group includes the peraluminous granitic rocks of the Asha unit generated mostly by crustal sources (εNdt = - 5.8 and εHft in zircon = - 2.9 to - 4.5). The second group comprises the metaluminous to peraluminous granitic rocks of the youngest units (San Blas and Hualco), which were formed by a heterogeneous mixture between mantle and crustal sources (εNdt = + 0.6 to - 4.8 and εHft in zircon = + 3 to - 6). Our results provide a comprehensive view of the evolution of an intrusive complex formed from multiple non-consanguineous magma intrusions that utilized the same magmatic plumbing system during downward transfer of host materials. As the plutonic system matures, the ascent of magmas is governed by the visco-elastic flow of host rock that for younger batches include

  14. Prolonged ascent and episodic venting of discrete magma batches at the onset of the Huckleberry Ridge supereruption, Yellowstone

    NASA Astrophysics Data System (ADS)

    Myers, Madison L.; Wallace, Paul J.; Wilson, Colin J. N.; Morter, Beth K.; Swallow, Elliot J.

    2016-10-01

    How exceedingly large, volcanic supereruptions begin provides crucial information on the storage, ascent and release of silica-rich magma in catastrophic events. Initial fall deposits of the 2.08 Ma, 2500 km3 Huckleberry Ridge eruption are multiply bedded and in several places contain reworked intervals, indicating time breaks in the opening phases of the eruption. A 2.5 m section of these fall deposits was sampled at nine levels below the earliest ignimbrite (member A) at Mount Everts (Mammoth, Wyoming). We analyzed major and trace elements and volatiles in quartz-hosted melt inclusions (MIs), reentrants (REs; unsealed melt inclusions) and associated obsidian pyroclasts (thick-walled shards) to establish quartz crystallization and storage depths and melt compositional groupings. Systematic relationships between Rb and other incompatible elements (U, Cl, B) indicate ∼55% fractional crystallization between the least and most evolved glass compositions. In contrast, H2O concentrations in MIs show scattered relationships with trace elements and are interpreted to reflect variable loss of H2O by diffusion through the quartz host during magma ascent. The wide H2O variations (1.0-4.7 wt.%) in MIs from individual fall horizons imply as much as ∼14 days of diffusive loss, reflecting highly variable and surprisingly slow decompression conditions. Water and CO2 gradients in reentrants, however, are consistent with final ascent times of <1 to 4 h (ascent rates of ∼ 0.3- 1.5 m / s), similar to those represented by MIs that we infer to have experienced little to no diffusive H2O loss. The wide range of ascent rates for co-erupted crystals mirrors that of intermittent explosive activity at Mount St. Helens in summer 1980, and implies that the Huckleberry Ridge magma body was not strongly overpressured at eruption onset. Restored entrapment pressures and geochemical data for MIs provide evidence for six distinct populations of quartz that originally crystallized in

  15. The chlorine isotope fingerprint of the lunar magma ocean.

    PubMed

    Boyce, Jeremy W; Treiman, Allan H; Guan, Yunbin; Ma, Chi; Eiler, John M; Gross, Juliane; Greenwood, James P; Stolper, Edward M

    2015-09-01

    The Moon contains chlorine that is isotopically unlike that of any other body yet studied in the Solar System, an observation that has been interpreted to support traditional models of the formation of a nominally hydrogen-free ("dry") Moon. We have analyzed abundances and isotopic compositions of Cl and H in lunar mare basalts, and find little evidence that anhydrous lava outgassing was important in generating chlorine isotope anomalies, because (37)Cl/(35)Cl ratios are not related to Cl abundance, H abundance, or D/H ratios in a manner consistent with the lava-outgassing hypothesis. Instead, (37)Cl/(35)Cl correlates positively with Cl abundance in apatite, as well as with whole-rock Th abundances and La/Lu ratios, suggesting that the high (37)Cl/(35)Cl in lunar basalts is inherited from urKREEP, the last dregs of the lunar magma ocean. These new data suggest that the high chlorine isotope ratios of lunar basalts result not from the degassing of their lavas but from degassing of the lunar magma ocean early in the Moon's history. Chlorine isotope variability is therefore an indicator of planetary magma ocean degassing, an important stage in the formation of terrestrial planets.

  16. Magma surge from the mantle: the Father's Day Eruption, Kīlauea Volcano, Hawai'i

    NASA Astrophysics Data System (ADS)

    Salem, L. C.; Edmonds, M.; Maclennan, J.; Houghton, B. F.; Poland, M. P.

    2015-12-01

    The geometry of the shallow plumbing system of Kīlauea Volcano, Hawai'i, is constrained by both geophysical and petrologic studies, yet the loci of lower crustal magma storage and timescales of magma ascent are almost entirely unknown. The petrography and texture of erupted magmas are largely overprinted by processes in the shallow reservoir and conduit. Direct petrological evidence for lower crustal storage and transport is enigmatic but exists in the form of fine-scale crystal zoning in the cores of olivine phenocrysts, in the geochemical heterogeneity of melt inclusions and in fluid inclusion density. The 2007 Father's Day intrusion and eruption occurred at the culmination of a surge in magma supply to the summit reservoir and during a period of heightened CO2 outgassing flux. The erupted lavas provide an opportunity to analyze atypically primitive melts, with > 8.5 wt% MgO in the whole rock, which have undergone relatively little shallow crustal processing. We characterise melt inclusions and their host olivine crystals through a detailed study of olivine morphology, diffusion modelling, and melt and fluid inclusion geochemistry. We show that the melt inclusions preserve primitive geochemical heterogeneity, which we use to reconstruct fractionation, mixing and degassing processes through the crust. We infer timescales and pressures of magma ascent, storage, and CO2 degassing through the crustal plumbing system. These observations are interpreted in the context of the exceptionally detailed set of volcano monitoring data at Kīlauea Volcano.

  17. Elastostatic effects around a magma reservoir and pathway due to historic earthquakes: a case study of Mt. Fuji, Japan

    NASA Astrophysics Data System (ADS)

    Hosono, Masaki; Mitsui, Yuta; Ishibashi, Hidemi; Kataoka, Jun

    2016-12-01

    We discuss elastostatic effects on Mt. Fuji, the tallest volcano in Japan, due to historic earthquakes in Japan. The 1707 Hoei eruption, which was the most explosive historic eruption of Mt. Fuji, occurred 49 days after the Hoei earthquake (Mw 8.7) along the Nankai Trough. It was previously suggested that the Hoei earthquake induced compression of a basaltic magma reservoir and unclamping of a dike-intruded region at depth, possibly triggering magma mixing and the subsequent Plinian eruption. Here, we show that the 1707 Hoei earthquake was a special case of induced volumetric strain and normal stress changes around the magma reservoir and pathway of Mt. Fuji. The 2011 Tohoku earthquake (Mw 9), along the Japan Trench, dilated the magma reservoir. It has been proposed that dilation of a magma reservoir drives the ascent of gas bubbles with magma and further depressurization, leading to a volcanic eruption. In fact, seismicity notably increased around Mt. Fuji during the first month after the 2011 Tohoku earthquake, even when we statistically exclude aftershocks, but the small amount of strain change (< 1 μ strain) may have limited the ascent of magma. For many historic earthquakes, the magma reservoir was compressed and the magma pathway was wholly clamped. This type of interaction has little potential to mechanically trigger the deformation of a volcano. Thus, Mt. Fuji may be less susceptible to elastostatic effects because of its location relative to the sources of large tectonic earthquakes. As an exception, a possible local earthquake in the Fujikawa-kako fault zone could induce a large amount of magma reservoir dilation beneath the southern flank of Mt. Fuji.

  18. The controlling effect of viscous dissipation on magma flow in silicic conduits

    USGS Publications Warehouse

    Mastin, L.G.

    2005-01-01

    Nearly all volcanic conduit models assume that flow is Newtonian and isothermal. Such models predict that, during high-flux silicic eruptions, gradients in pressure with depth increase upward as magma accelerates and becomes more viscous, leading to extremely low pressure and fragmentation at a depth of kilometers below the surface. In this paper I show that shear heating, also known as viscous dissipation, dramatically reduces the pressure gradient required for flow and concentrates shear in narrow zones along the conduit margin. The reduction in friction may eliminate the zone of low pressure predicted by isothermal models and move the fragmentation level up to the surface.

  19. Re-appraisal of the Magma-rich versus Magma-poor Paradigm at Rifted Margins: consequences for breakup processes

    NASA Astrophysics Data System (ADS)

    Tugend, J.; Gillard, M.; Manatschal, G.; Nirrengarten, M.; Harkin, C. J.; Epin, M. E.; Sauter, D.; Autin, J.; Kusznir, N. J.; McDermott, K.

    2017-12-01

    Rifted margins are often classified based on their magmatic budget only. Magma-rich margins are commonly considered to have excess decompression melting at lithospheric breakup compared with steady state seafloor spreading while magma-poor margins have suppressed melting. New observations derived from high quality geophysical data sets and drill-hole data have revealed the diversity of rifted margin architecture and variable distribution of magmatism. Recent studies suggest, however, that rifted margins have more complex and polyphase tectono-magmatic evolutions than previously assumed and cannot be characterized based on the observed volume of magma alone. We compare the magmatic budget related to lithospheric breakup along two high-resolution long-offset deep reflection seismic profiles across the SE-Indian (magma-poor) and Uruguayan (magma-rich) rifted margins. Resolving the volume of magmatic additions is difficult. Interpretations are non-unique and several of them appear plausible for each case involving variable magmatic volumes and mechanisms to achieve lithospheric breakup. A supposedly 'magma-poor' rifted margin (SE-India) may show a 'magma-rich' lithospheric breakup whereas a 'magma-rich' rifted margin (Uruguay) does not necessarily show excess magmatism at lithospheric breakup compared with steady-state seafloor spreading. This questions the paradigm that rifted margins can be subdivided in either magma-poor or magma-rich margins. The Uruguayan and other magma-rich rifted margins appear characterized by an early onset of decompression melting relative to crustal breakup. For the converse, where the onset of decompression melting is late compared with the timing of crustal breakup, mantle exhumation can occur (e.g. SE-India). Our work highlights the difficulty in determining a magmatic budget at rifted margins based on seismic reflection data alone, showing the limitations of margin classification based solely on magmatic volumes. The timing of

  20. Timing of Crystallisation of the Lunar Magma Ocean Constrained by the Oldest Zircon

    NASA Technical Reports Server (NTRS)

    Nemchin, A.; Timms, N.; Pidgeon, R.; Geisler, T.; Reddy, S.; Meyer, C.

    2009-01-01

    The presently favoured concept for the early evolution of the Moon involves consolidation of debris from a giant impact of a Mars sized body with Earth forming a primitive Moon with a thick global layer of melt referred to as the Lunar Magma Ocean1 . It is widely accepted that many significant features observed on the Moon today are the result of crystallisation of this magma ocean. However, controversy exists over the precise timing and duration of the crystallisation process. Resolution of this problem depends on the establishment of precise and robust key crystallisation time points. We report a 4417 6 Myr old zircon in lunar breccia sample 72215,195, which provides a precisely determined younger limit for the solidification of the Lunar Magma Ocean. A model based on these data, together with the age of the Moon forming giant impact, defines an exponential time frame for crystallisation and suggests formation of anorthositic crust after about 80-85% of the magma ocean was solidified. In combination with other zircon ages the 4417 +/- 6 Myr age also suggests that the very small (less than a few per cent) residual portion of the magma ocean continued to solidify during the following 300-500 m.y.

  1. Elemental fingerprints of isotopic contamination of hebridean Palaeocene mantle-derived magmas by archaean sial

    NASA Astrophysics Data System (ADS)

    Thompson, R. N.; Dickin, A. P.; Gibson, I. L.; Morrison, M. A.

    1982-06-01

    5% and 10%. These estimates may be reconciled by postulating that the contaminants were large-fraction cotectic partial melts of Lewisian leucogneisses, leaving plagioclase residua. A corollary of this hypothesis is that it is necessary to postulate that the “magma chambers” where the sialic contamination occurred were, in fact, dykes or (more probably) sills. The very large surface-to-volume ratios of such magmas bodies would permit the systematic stripping, by partial melting, of the most-easily-fusible leucogneisses and pegmatites from the Lewisian crust, whilst failing to melt its major rock types. A present-day analogue to this situation may be the extensive sill-like magma bodies detected by geophysical methods within the continental crust beneath the Rio Grande Rift, southwestern U.S.A.

  2. Disclosing Multiple Magma Degassing Sources Offers Unique Insights of What's Behind the Campi Flegrei Caldera Unrest

    NASA Astrophysics Data System (ADS)

    Moretti, R.; Civetta, L.; Orsi, G.; Arienzo, I.; D'Antonio, M.; Di Renzo, V.

    2013-12-01

    scenarios: 1) only deep gases enter the hydrothermal system, because the shallow magmatic body is now fully crystallized and degassed. 2) The shallow magmatic body, invested by the arrival of deep gases, starts remelting and releasing gases into the hydrothermal system. 3) Magma from the deep reservoir slowly rises to shallow depths, well below the ductile-fragile transition for this area. These three scenarios carry contrasting implications for the volcanic hazard assessment, and demand a comprehensive treatment of geochemical and geophysical data in a way coherent with the knowledge that we have of the 1982-85 unrest

  3. Compositional Zoning in Kilauea Olivine: A Geochemical Tool for Investigating Magmatic Processes at Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Lynn, Kendra J.

    Olivine compositions and zoning patterns have been widely used to investigate the evolution of magmas from their source to the Earthfs surface. Modeling the formation of compositional zoning in olivine crystals has been used to retrieve timescales of magma residence, mixing, and transit. This dissertation is composed of three projects that apply diffusion chronometry principles to investigate how zoned olivine phenocrysts record magmatic processes at Hawaiian volcanoes. Olivine phenocrysts from K.lauea, the most active and thoroughly studied volcano in Hawaiei, are used to develop a better understanding of how Hawaiian olivine crystals record magmatic histories. This work begins by examining how crustal processes such as magma mixing and diffusive reequilibration can modify olivine compositions inherited from growth in parental magmas (Chapter 2). Diffusive re-equilibration of Fe-Mg, Mn, and Ni in olivine crystals overprints the chemical relationships inherited during growth, which strongly impacts interpretations about mantle processes and source components. These issues are further complicated by sectioning effects, where small (400 ƒEm along the c-axis) olivine crystals are more susceptible to overprinting compared to large (800 ƒEm) crystals. Olivine compositions and zoning patterns are then used to show that magmas during K.laueafs explosive Keanak.koei Tephra period (1500-1823 C.E.) were mixed and stored in crustal reservoirs for weeks to months prior to eruption (Chapter 3). Fe-Mg disequilibrium between olivine rims and their surrounding glasses show that a late-stage mixing event likely occurred hours to days prior to eruption, but the exact timescale is difficult to quantify using Fe-Mg and Ni diffusion. Lithium, a rapidly diffusing trace element in olivine, is modeled for the first time in a natural volcanic system to quantify this late-stage, short-duration mixing event (Chapter 4). Lithium zoning in olivine records both growth and diffusion processes

  4. Long-period seismicity at Redoubt Volcano, Alaska, 1989-1990 related to magma degassing

    USGS Publications Warehouse

    Morrissey, M.M.

    1997-01-01

    The mass of exsolved magmatic H2O is estimated and compared to the mass of superheated steam (25-50 Mtons) released through the resonating crack producing the December 13-14, 1989 swarm of long-period seismic events at Redoubt Volcano. Results indicate degassing of a H2O-CO2-SO2-saturated magma upon ascending from at least 12 km to 3-4 km beneath the crater as the source of the superheated steam. The mass of exsolved H2O (3.2-250 Mtons) is estimated from solubility diagrams of H2O-CO2-saturated silicate melts for the ascent history of the Redoubt magmas. Crystal size distribution, seismological, petrological, and geochemical data are used to constrain the ascent history of the two andesitic magmas prior to the eruption. Two stages of crystallization are inferred from crystal size distributions of plagioclase crystals in andesites erupted in December 1989. The first stage occurred 30-150 years before the eruption in both magmas and the second stage occurred at least 8 years and 15 years before the eruption in the dacitic andesite and rhyolitic andesite, respectively. The depths of crystallization are constrained from the spatial and temporal variations of volcano-tectonic earthquakes locations (Lahr et al., 1994) and from the P-wave and S-wave velocity structures (Benz et al., 1996). These data suggest that the rhyolitic andesite magma ascended to a depth of 7-8 km within at least 15 years of the eruption. Within at least 8 years of the eruption, the dacitic andesite magma migrated to a depth just below the other magma body where it resided until hours to days of the eruption. At this time, the dacitic andesite magma mixed with the rhyolitic andesite magma and established the reservoir for the eruption. Near the top of the reservoir, some of the mixed magma was displaced into fractures which extended 4-5 km toward the surface. This displaced magma created the eruption conduit and released the fluids related to the resonating crack. This scenario is consistent with

  5. Volcano geodesy: The search for magma reservoirs and the formation of eruptive vents

    USGS Publications Warehouse

    Dvorak, J.J.; Dzurisin, D.

    1997-01-01

    Routine geodetic measurements are made at only a few dozen of the world's 600 or so active volcanoes, even though these measurements have proven to be a reliable precursor of eruptions. The pattern and rate of surface displacement reveal the depth and rate of pressure increase within shallow magma reservoirs. This process has been demonstrated clearly at Kilauea and Mauna Loa, Hawaii; Long Valley caldera, California; Campi Flegrei caldera, Italy; Rabaul caldera, Papua New Guinea; and Aira caldera and nearby Sakurajima, Japan. Slower and lesser amounts of surface displacement at Yellowstone caldera, Wyoming, are attributed to changes in a hydrothermal system that overlies a crustal magma body. The vertical and horizontal dimensions of eruptive fissures, as well as the amount of widening, have been determined at Kilauea, Hawaii; Etna, Italy; Tolbachik, Kamchatka; Krafla, Iceland; and Asal-Ghoubbet, Djibouti, the last a segment of the East Africa Rift Zone. Continuously recording instruments, such as tiltmeters, extensometers, and dilatometers, have recorded horizontal and upward growth of eruptive fissures, which grew at rates of hundreds of meters per hour, at Kilauea; Izu-Oshima, Japan; Teishi Knoll seamount, Japan; and Piton de la Fournaise, Re??union Island. In addition, such instruments have recorded the hour or less of slight ground movement that preceded small explosive eruptions at Sakurajima and presumed sudden gas emissions at Galeras, Colombia. The use of satellite geodesy, in particular the Global Positioning System, offers the possibility of revealing changes in surface strain both local to a volcano and over a broad region that includes the volcano.

  6. Are recycled carbonates essential to explain light Mg isotopes in magmatic rocks? Insights from Late Cenozoic mantle-derived magmas in Iran

    NASA Astrophysics Data System (ADS)

    Pang, K. N.; Teng, F. Z.; Sun, Y.; Chung, S. L.; Zarrinkoub, M. H.

    2016-12-01

    Mantle-derived magmas at continental collision zones represent probes into the mantle that might have been variably metasomatized prior to collision. To address how and to what extent mantle metasomatism occurred, particularly for the role of recycled carbonates, we conducted a Mg isotopic study of two suites of Late Cenozoic mantle-derived magmas in Iran, part of the Arabia-Eurasia collision zone preceded by the long-lasting Tethyan subduction. The Qal'eh Hasan Ali high-Mg ultrapotassic rocks, low-degree partial melts from the metasomatized lithospheric mantle, have mantle-like δ26Mg (-0.23 to -0.28 ‰) despite high CaO/Al2O3 and Zr/Hf, low Ti/Eu and Hf/Sm, and presence of carbonate globules in devitrified glass indicative of carbonate or carbonatite involvement in their genesis. The absence of light Mg isotopic composition of these rocks indicates that either the recycled carbonates were in the form of calcitic rather than dolomitic melts, or the amount of Mg from the carbonatite was too little to appear in these rocks. The Lut-Sistan alkali basalts, sodic magmas suggested to have derived from low-degree melting of the asthenosphere followed by variable differentiation, display a range of δ26Mg from -0.17 to -0.26 ‰ with three outlying data at -0.37‰, -0.39‰ and -0.56 ‰. The samples with light Mg isotopes do not show greater influence by carbonate or carbonatite in terms of the elemental indices noted above. Instead, they are characterized by lower light and middle REE abundances and slightly lower initial 143Nd/144Nd than the majority of samples. The covariations can be explained by minor incorporation of lower crustal garnet during magma ascent through local thickened crust in the collision zone. We propose that thickened crust where garnet pyroxenites exist is capable of imparting a light Mg isotopic signature to mantle-derived magmas, and that such signature is not unique to the involvement of carbonate or carbonatite in the mantle source.

  7. Chemical Zoning of Feldspars in Lunar Granitoids: Implications for the Origins of Lunar Silicic Magmas

    NASA Technical Reports Server (NTRS)

    Mills, R. D; Simon, J. I.; Alexander, C.M. O'D.; Wang, J.; Christoffersen, R.; Rahman, Z..

    2014-01-01

    Fine-scale chemical and textural measurements of alkali and plagioclase feldspars in the Apollo granitoids (ex. Fig. 1) can be used to address their petrologic origin(s). Recent findings suggest that these granitoids may hold clues of global importance, rather than of only local significance for small-scale fractionation. Observations of morphological features that resemble silicic domes on the unsampled portion of the Moon suggest that local, sizable net-works of high-silica melt (>65 wt % SiO2) were present during crust-formation. Remote sensing data from these regions suggest high concentrations of Si and heat-producing elements (K, U, and Th). To help under-stand the role of high-silica melts in the chemical differentiation of the Moon, three questions must be answered: (1) when were these magmas generated?, (2) what was the source material?, and (3) were these magmas produced from internal differentiation. or impact melting and crystallization? Here we focus on #3. It is difficult to produce high-silica melts solely by fractional crystallization. Partial melting of preexisting crust may therefore also have been important and pos-sibly the primary mechanism that produced the silicic magmas on the Moon. Experimental studies demonstrate that partial melting of gabbroic rock under mildly hydrated conditions can produce high-silica compositions and it has been suggested by that partial melting by basaltic underplating is the mechanism by which high-silica melts were produced on the Moon. TEM and SIMS analyses, coordinated with isotopic dating and tracer studies, can help test whether the minerals in the Apollo granitoids formed in a plutonic setting or were the result of impact-induced partial melting. We analyzed granitoid clasts from 3 Apollo samples: polymict breccia 12013,141, crystalline-matrix breccia 14303,353, and breccia 15405,78

  8. Numerical Modeling of Surface Deformation due to Magma Chamber Inflation/Deflation in a Heterogeneous Viscoelastic Half-space

    NASA Astrophysics Data System (ADS)

    Dichter, M.; Roy, M.

    2015-12-01

    Interpreting surface deformation patterns in terms of deeper processes in regions of active magmatism is challenging and inherently non-unique. This study focuses on interpreting the unusual sombrero-shaped pattern of surface deformation in the Altiplano Puna region of South America, which has previously been modeled as the effect of an upwelling diapir of material in the lower crust. Our goal is to investigate other possible interpretations of the surface deformation feature using a suite of viscoelastic models with varying material heterogeneity. We use the finite-element code PyLith to study surface deformation due to a buried time-varying (periodic) overpressure source, a magma body, at depth within a viscoelastic half-space. In our models, the magma-body is a penny-shaped crack, with a cylindrical region above the crack that is weak relative to the surrounding material. We initially consider a magma body within a homogeneous viscoelastic half-space to determine the effect of the free surface upon deformation above and beneath the source region. We observe a complex depth-dependent phase relationship between stress and strain for elements that fall between the ground surface and the roof of the magma body. Next, we consider a volume of weak material (faster relaxation time relative to background) that is distributed with varying geometry around the magma body. We investigate how surface deformation is governed by the spatial distribution of the weak material and its rheologic parameters. We are able to reproduce a "sombrero" pattern of surface velocities for a range of models with material heterogeneity. The wavelength of the sombrero pattern is primarily controlled by the extent of the heterogeneous region, modulated by flexural effects. Our results also suggest an "optimum overpressure forcing frequency" where the lifetime of the sombrero pattern (a transient phenomenon due to the periodic nature of the overpressure forcing) reaches a maximum. Through further

  9. Silurian/Ordovician asymmetrical sill-like bodies from La Codosera syncline, W Spain: A case of tholeiitic partial melts emplaced in a single magma pulse and derived from a metasomatized mantle source

    NASA Astrophysics Data System (ADS)

    López-Moro, F. J.; Murciego, A.; López-Plaza, M.

    2007-07-01

    A Silurian/Ordovician extensional event in the southernmost sectors of the Central Iberian Zone is inferred from the Sm/Nd isochron obtained (436 ± 17 Ma) after the diabase sills from the La Codosera syncline. From the geochemical and mineralogical points of view, the diabase sills are subalkaline and range between high-Mg tholeiite diabases to tholeiite andesites. LREE enrichment, an Nb negative anomaly, the absence of a Ta trough and a high Nd isotope signature ( ɛNd t = + 6) are the most relevant geochemical features. The diabase bodies are up to 330 m in thickness and were sampled from bottom to top along several different sections, permitting the definition of an accumulation of clinopyroxene, olivine and plagioclase close to chilled margins at the bottom, and abundant pegmatoid layers at the top. Chemical profiles and mass-balance modelling suggest that the bulk rock and chilled margin compositions are not dissimilar, defining an unusual S-type vertical compositional profile for large (> 50 m thick) sills, which in turn strongly suggests a single magma pulse and a probable gravitational settling. Assuming chilled margin samples as the parental magma, as well as Cr-enriched samples as cumulate layers, a two-stage liquid line of descent has been established, the first one consisting of a clinopyroxene-plagioclase-olivine cumulate assemblage. A second stage in relation to the depletion in Ti, Fe and V is accounted for by ilmenite fractionation, along with that of clinopyroxene, plagioclase and olivine fractionation. Thermobarometric estimations reveal that the clinopyroxene (around 1100 °C and 197 MPa) was a late mineral phase, whereas the plagioclase (around 1200 °C) was pre- to syn-emplacement, in agreement with the presence only of plagioclase phenocrysts in the chilled margins and the very abundant positive Eu anomaly. The energy constraint modelling is consistent with the lack of a significant assimilation process owing to the high temperature contrast

  10. Degassing during magma ascent in the Mule Creek vent (USA)

    NASA Astrophysics Data System (ADS)

    Stasiuk, Mark V.; Barclay, Jenni; Carroll, Michael R.; Jaupart, Claude; Ratté, James C.; Sparks, R. Stephen J.; Tait, Stephen R.

    1996-09-01

    The structures and textures of the rhyolite in the Mule Creek vent (New Mexico, USA) indicate mechanisms by which volatiles escape from silicic magma during eruption. The vent outcrop is a 300-m-high canyon wall comprising a section through the top of a feeder conduit, vent and the base of an extrusive lava dome. Field relations show that eruption began with an explosive phase and ended with lava extrusion. Analyses of glass inclusions in quartz phenocrysts from the lava indicate that the magma had a pre-eruptive dissolved water content of 2.5 3.0 wt% and, during eruption, the magma would have been water-saturated over the vertical extent of the present outcrop. However, the vesicularity of the rhyolite is substantially lower than that predicted from closed-system models of vesiculation under equilibrium conditions. At a given elevation in the vent, the volume fraction of primary vesicles in the rhyolite increases from zero close to the vent margin to values of 20 40 vol.% in the central part. In the centre the vesicularity increases upward from approximately 20 vol.% at 300 m below the canyon rim to approximately 40 vol.% at 200 m, above which it shows little increase. To account for the discrepancy between observed vesicularity and measured water content, we conclude that gas escaped during ascent, probably beginning at depths greater than exposed, by flow through the vesicular magma. Gas escape was most efficient near the vent margin, and we postulate that this is due both to the slow ascent of magma there, giving the most time for gas to escape, and to shear, favouring bubble coalescence. Such shear-related permeability in erupting magma is supported by the preserved distribution of textures and vesicularity in the rhyolite: Vesicles are flattened and overlapping near the dense margins and become progressively more isolated and less deformed toward the porous centre. Local zones have textures which suggest the coalescence of bubbles to form permeable

  11. Degassing during magma ascent in the Mule Creek vent (USA)

    USGS Publications Warehouse

    Stasiuk, M.V.; Barclay, J.; Carroll, M.R.; Jaupart, Claude; Ratte, J.C.; Sparks, R.S.J.; Tait, S.R.

    1996-01-01

    The structures and textures of the rhyolite in the Mule Creek vent (New Mexico, USA) indicate mechanisms by which volatiles escape from silicic magma during eruption. The vent outcrop is a 300-m-high canyon wall comprising a section through the top of a feeder conduit, vent and the base of an extrusive lava dome. Field relations show that eruption began with an explosive phase and ended with lava extrusion. Analyses of glass inclusions in quartz phenocrysts from the lava indicate that the magma had a pre-eruptive dissolved water content of 2.5-3.0 wt% and, during eruption, the magma would have been water-saturated over the vertical extent of the present outcrop. However, the vesicularity of the rhyolite is substantially lower than that predicted from closed-system models of vesiculation under equilibrium conditions. At a given elevation in the vent, the volume fraction of primary vesicles in the rhyolite increases from zero close to the vent margin to values of 20-40 vol.% in the central part. In the centre the vesicularity increases upward from approximately 20 vol.% at 300 m below the canyon rim to approximately 40 vol.% at 200 m, above which it shows little increase. To account for the discrepancy between observed vesicularity and measured water content, we conclude that gas escaped during ascent, probably beginning at depths greater than exposed, by flow through the vesicular magma. Gas escape was most efficient near the vent margin, and we postulate that this is due both to the slow ascent of magma there, giving the most time for gas to escape, and to shear, favouring bubble coalescence. Such shear-related permeability in erupting magma is supported by the preserved distribution of textures and vesicularity in the rhyolite: Vesicles are flattened and overlapping near the dense margins and become progressively more isolated and less deformed toward the porous centre. Local zones have textures which suggest the coalescence of bubbles to form permeable

  12. Role of large flank-collapse events on magma evolution of volcanoes. Insights from the Lesser Antilles Arc

    NASA Astrophysics Data System (ADS)

    Boudon, Georges; Villemant, Benoît; Friant, Anne Le; Paterne, Martine; Cortijo, Elsa

    2013-08-01

    Flank-collapse events are now recognized as common processes of destruction of volcanoes. They may occur several times on a volcanic edifice pulling out varying volumes of material from km3 to thousands of km3. In the Lesser Antilles Arc, a large number of flank-collapse events were identified. Here, we show that some of the largest events are correlated to significant variations in erupted magma compositions and eruptive styles. On Montagne Pelée (Martinique), magma production rate has been sustained during several thousand years following a 32 ka old flank-collapse event. Basic and dense magmas were emitted through open-vent eruptions that generated abundant scoria flows while significantly more acidic magmas were produced before the flank collapse. The rapid building of a new cone increased the load on magma bodies at depth and the density threshold. Magma production rate decreased and composition of the erupted products changed to more acidic compared to the preceding period of activity. These low density magma generated plinian and dome-forming eruptions up to the Present. In contrast at Soufrière Volcanic Centre of St. Lucia and at Pitons du Carbet in Martinique, the flank-collapses have an opposite effect: in both cases, the acidic magmas erupted immediately after the flank-collapses. These magmas are highly porphyritic (up to 60% phenocrysts) and much more viscous than the magmas erupted before the flank-collapses. They have been generally emplaced as voluminous and uptight lava domes (called “the Pitons”). Such magmas could not ascent without a significant decrease of the threshold effect produced by the volcanic edifice loading before the flank-collapse.

  13. Mare basalt magma source region and mare basalt magma genesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binder, A.B.

    1982-11-15

    Given the available data, we find that the wide range of mare basaltic material characteristics can be explained by a model in which: (1) The mare basalt magma source region lies between the crust-mantle boundary and a maximum depth of 200 km and consists of a relatively uniform peridotite containing 73--80% olivine, 11--14% pyroxene, 4--8% plagioclase, 0.2--9% ilmenite and 1--1.5% chromite. (2) The source region consists of two or more density-graded rhythmic bands, whose compositions grade from that of the very low TiO/sub 2/ magma source regions (0.2% ilmenite) to that of the very high TiO/sub 2/ magma source regionsmore » (9% ilmenite). These density-graded bands are proposed to have formed as co-crystallizing olivine, pyroxene, plagioclase, ilmenite, and chromite settled out of a convecting magma (which was also parental to the crust) in which these crystals were suspended. Since the settling rates of the different minerals were governed by Stoke's law, the heavier minerals settled out more rapidly and therefore earlier than the lighter minerals. Thus the crystal assemblages deposited nearest the descending side of each convection cell were enriched in heavy ilmenite and chromite with respect to lighter olivine and pyroxene and very much lighter plagioclase. The reverse being the case for those units deposited near the ascending sides of the convection cells.« less

  14. New Approaches for Identifying the P-T-X-t Histories and Eruption Triggers for Silicic Magmas; An Example Examining the Scaup Lake Rhyolite, Yellowstone Caldera, WY

    NASA Astrophysics Data System (ADS)

    Till, C. B.; Boyce, J. W.

    2016-12-01

    The crystal cargoes from past eruptions provide petrologic records of the pressure, temperature and composition of a magma body preceding eruption. Recent advances in diffusion chronometry also now enable us to reconstruct the timing of magmatic events shortly before eruption. Here these techniques are combined to unlock detailed P-T-X-t histories of silicic magma bodies leading to eruption, using the 260 ka Scaup Lake rhyolite lava (SCL) from Yellowstone caldera as an example. The SCL contains 30% phenocrysts of reversely zoned quartz, clinopyroxene, orthopyroxene, plagioclase and sanidine. SCL sanidine and plagioclase reveal ubiquitous bright rims that are enriched in Ba, Sr, Ca and in some cases Mg and Ti relative to the grain interior. Major element transects across the full width of the sanidine rims reveal two pronounced changes in composition that can be equated to heating events (older +25°C, younger +100°C) using sanidine-liquid thermometry and compositional relationships predicted by Rhyolite-MELTS. Renewed precipitation of sanidine at higher temperatures could reflect magma ascent and concomitant exsolution of dissolved H2O, the addition of CO2 by new magma, and/or the addition of K-Na-enriched melt derived from melting sanidine-rich cumulates. The increase in magmaphile elements associated with the 25°C heating event indicate this episode of feldspar growth resulted from the injection of a hotter, less evolved magma 10-40 yrs prior to eruption based on diffusion chronometry (Till et al., Geology, 2015). Estimates using natural and experimental crystal growth rates suggest the second heating event of 100°C recorded in the outermost sanidine rims occurred within 1.5-2 yrs of eruption. This is consistent with a subset of the diffusion chronometry results that indicate rejuvenation-eruption timescales of <10 mo.s. Thermodynamic calculations suggest depressurization of 200-300 MPa could produce ≤25-30°C of heating, requiring additional processes to

  15. Building a large magma chamber at Mount Mazama, Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Wright, H. M.; Karlstrom, L.; Bacon, C. R.

    2012-12-01

    locations, and volumes reveal spatiotemporal patterns that suggest either that melt flux into the system has varied, or that stress-induced focusing of rising magma by a Mazama-centered magma accumulation zone has occurred (cf. Karlstrom et al. 2009), or both. Combined with a non-monotonic increase in the maximum SiO2 content of erupted magma, these patterns suggest cyclic differentiation in a magmatic system that is increasingly affected by a centralized storage zone through time. Finally, we develop approximate melt fraction vs. temperature curves appropriate for Mazama melt evolution from MELTS simulations (at 300 MPa). These model results are combined with a thermomechanical model (Karlstrom et al. 2010) to examine the effect of crustal 'pre-warming' on chamber stability and the degree to which departure from a normal conductive geotherm is necessary to promote large-scale, shallow storage. Bacon, 2008, USGS, Scientific Investigations Map 2932. Bacon and Lanphere, 2006, GSA Bulletin 118: 1331-1359. Ghiorso and Sack, 1995, Contrib Mineral Petrol 119:197-212. Hildreth, 2007, USGS, Professional Paper 1744. Karlstrom et al., 2009, J Geophys Res 114: B10204. Karlstrom et al., 2010, J Volcanol Geotherm Res 190:249-270.

  16. Magma-tectonic interactions in an area of active extension; a review of recent observations, models and interpretations from Iceland

    NASA Astrophysics Data System (ADS)

    Pedersen, Rikke; Sigmundsson, Freysteinn; Drouin, Vincent; Rafn Heimisson, Elías; Parks, Michelle; Dumont, Stéphanie; Árnadóttir, Þóra; Masterlark, Timothy; Ófeigsson, Benedíkt G.; Jónsdóttir, Kristín; Hooper, Andrew

    2016-04-01

    The geological setting of Iceland provides rich opportunities of studying magma-tectonic interactions, as it constitutes Earth's largest part of the mid-oceanic ridge system exposed above sea level. A series of volcanic and seismic zones accommodate the ~2 cm/year spreading between the North-American and Eurasian plates, and the Icelandic hot-spot conveniently provides the means of exposing this oceanic crust-forming setting above sea-level. Both extinct and active plumbing system structures can be studied in Iceland, as the deeply eroded tertiary areas provide views into the structures of extinct volcanic systems, and active processes can be inferred on in the many active volcanic systems. A variety of volcanic and tectonic processes cause the Icelandic crust to deform continuously, and the availability of contemporaneous measurements of crustal deformation and seismicity provide a powerful data set, when trying to obtain insight into the processes working at depth, such as magma migration through the uppermost lithosphere, magma induced host rock deformation and volcanic eruption locations and styles. The inferences geodetic and seismic datasets allow on the active plate spreading processes and subsurface magma movements in Iceland will be reviewed, in particular in relation to the Northern Volcanic Zone (NVZ). There the three phases of a rifting cycle (rifting, post-rifting, inter-rifting) have been observed. The NVZ is an extensional rift segment, bounded to the south by the Icelandic mantle plume, and to the north by the Tjörnes transform zone. The NVZ has typically been divided into five partly overlapping en-echelon fissure swarms, each with a central main volcanic production area. Most recently, additional insight into controlling factors during active rifting has been provided by the Bárðarbunga activity in 2014-2015 that included a major rifting event, the largest effusive eruption in Iceland since 1783, and a gradual caldera collapse. It is evident

  17. In defense of Magnetite-Ilmenite Thermometry in the Bishop Tuff and its implication for gradients in silicic magma reservoirs

    USGS Publications Warehouse

    Evans, Bernard W; Hildreth, Edward; Bachmann, Olivier; Scaillet, Bruno

    2016-01-01

    Despite claims to the contrary, the compositions of magnetite and ilmenite in the Bishop Tuff correctly record the changing conditions of T and fO2 in the magma reservoir. In relatively reduced (∆NNO < 1) siliceous magmas (e.g., Bishop Tuff, Taupo units), Ti behaves compatibly (DTi ≈ 2-3.5), leading to a decrease in TiO2 activity in the melt with cooling and fractionation. In contrast, FeTi-oxides are poorer in TiO2 in more oxidized magmas (∆NNO > 1, e.g., Fish Canyon Tuff, Pinatubo), and the d(aTiO2)/dT slope can be negative. Biotite, FeTi-oxides, liquid, and possibly plagioclase largely maintained equilibrium in the Bishop Tuff magma (unlike the pyroxenes, and cores of quartz, sanidine, and zircon) prior ro and during a mixing event triggered by a deeper recharge, which, based on elemental diffusion profiles in minerals, took place at least several decades before eruption. Equilibrating phases and pumice compositions show evolving chemical variations that correlate well with mutually consistent temperatures based on the FeTi-oxides, sanidine-plagioclase, and ∆18O quartz-magnetite pairs. Early Bishop Tuff (EBT) temperatures are lower (700 to ~780‎°C) than temperatures (780 to >820°C) registered in Late Bishop Tuff (LBT), the latter defined here not strictly stratigraphically, but by the presence of orthopyroxene and reverse-zoned rims on quartz and sanidine. The claimed similarity in compositions, Zr-saturation temperatures and thermodynamically calculated temperatures (730-740°C) between EBT and less evolved LBT reflect the use of glass inclusions in quartz cores in LBT that were inherited from the low temperature rhyolitic part of the reservoir characteristic of the EBT. LBT temperatures as high as 820°C, the preservation of orthopyroxene, and the presence of reverse-zoned minerals (quartz, sanidine, zircons) are consistent with magma recharge at the base of the zoned reservoir, heating the cooler rhyolitic melt, partly remelting cumulate mush

  18. Coupling Thermal and Chemical Signatures of Crustal Magma Bodies: Energy-Constrained Eruption, Recharge, Assimilation, and Fractional Crystallization (E'RAχFC)

    NASA Astrophysics Data System (ADS)

    Bohrson, W. A.; Spera, F. J.

    2004-12-01

    Energy-Constrained Eruption, Recharge, Assimilation and Fractional Crystallization (E'RAχFC) tracks the evolution of an open-system magmatic system by coupling conservation equations governing energy, mass and species (isotopes and trace elements). By linking the compositional characteristics of a composite magmatic system (host magma, recharge magma, wallrock, eruptive reservoir) to its mass and energy fluxes, predictions can be made about the chemical evolution of systems characterized by distinct compositional and thermal characteristics. An interesting application of E'RAχFC involves documenting the influence distinct thermal regimes have on the chemical evolution of magmatic systems. Heat transfer between a magma-country rock system at epizonal depths can be viewed as a conjugate heat transfer problem in which the average country rock-magma boundary temperature, Tb, is governed by the relative vigor of hydrothermal convection in the country rock vs. magma convection. For cases where hydrothermal circulation is vigorous and magmatic heat is efficiently transported away from the boundary, contact aureole temperatures (~Tb) are low. In cases where magmatic heat can not be efficiently transported away from the boundary and hydrothermal cells are absent or poorly developed, Tb is relatively high. Simultaneous solution of the differential equations governing momentum and energy conservation and continuity for the coupled hydrothermal-magmatic conjugate heat transfer system enables calculation of the characteristic timescale for EC-RAFC evolution and development of hydrothermal deposits as a function of material and medium properties, sizes of systems and relative efficiency of hydrothermal vs. magmatic heat transfer. Characteristic timescales lie in the range 102-106 yr depending on system size, magma properties and permeability among other parameters. In E'RAχFC, Tb is approximated by the user-defined equilibration temperature, Teq, which is the temperature at

  19. Variations in the long-term uplift rate due to the Altiplano-Puna magma body observed with Sentinel-1 interferometry

    NASA Astrophysics Data System (ADS)

    Lau, Nicholas; Tymofyeyeva, Ekaterina; Fialko, Yuri

    2018-06-01

    We present new Interferometric Synthetic Aperture Radar (InSAR) observations of surface deformation in the Altiplano-Puna region (South America) where previous studies documented a broad uplift at an average rate of ∼10 mm/yr. We use data from the Sentinel-1 satellite mission to produce high-resolution velocity maps and time series of surface displacements between years 2014-2017. The data reveal that the uplift has slowed down substantially compared to the 1992-2010 epoch and is characterized by short-term fluctuations on time scales of months to years. The observed variations in uplift rate may indicate a non-steady supply of melt and/or volatiles from the partially molten Altiplano-Puna Magma Body (APMB) into an incipient diapir forming in the roof of the APMB.

  20. Using rocks to reveal the inner workings of magma chambers below volcanoes in Alaska’s National Parks

    USGS Publications Warehouse

    Coombs, Michelle L.; Bacon, Charles R.

    2012-01-01

    Alaska is one of the most vigorously volcanic regions on the planet, and Alaska’s national parks are home to many of the state’s most active volcanoes. These pose both local and more distant hazards in the form of lava and pyroclastic flows, lahars (mudflows), ash clouds, and ash fall. Alaska’s volcanoes lie along the arc of the Aleutian-Alaskan subduction zone, caused as the oceanic Pacific plate moves northward and dips below the North American plate. These volcanoes form as water-rich fluid from the down-going Pacific plate is released, lowering the melting temperature of rock in the overlying mantle and enabling it to partially melt. The melted rock (magma) migrates upward, collecting at the base of the approximately 25 mile (40 km) thick crust, occasionally ascending into the shallow crust, and sometimes erupting at the earth’s surface.During volcanic unrest, scientists use geophysical signals to remotely visualize volcanic processes, such as movement of magma in the upper crust. In addition, erupted volcanic rocks, which are quenched samples of magmas, can tell us about subsurface magma characteris-tics, history, and the processes that drive eruptions. The chemical compositions of and the minerals present in the erupted magmas can reveal conditions under which these magmas were stored in crustal “chambers”. Studies of the products of recent eruptions of Novarupta (1912), Aniakchak (1931), Trident (1953-74), and Redoubt (2009) volcanoes reveal the depths and temperatures of magma storage, and tell of complex interactions between magmas of different compositions. One goal of volcanology is to determine the processes that drive or trigger eruptions. Information recorded in the rocks tells us about these processes. Here, we demonstrate how geologists gain these insights through case studies from four recent eruptions of volcanoes in Alaska national parks.

  1. The extimated presence of differentiated higly explosive magmas beneath Vesuvius and Campi Flegrei: evidence from geochemical and textural studies.

    NASA Astrophysics Data System (ADS)

    Pappalardo, Lucia; Mastrolorenzo, Giuseppe

    2010-05-01

    Highly catastrophic explosive eruptions are supplied by Si-rich magmas, generated at shallower level in crust by the evolution of mantle liquids. The timescale of these evolution processes is a crucial factor, because of its control on the length of volcano repose interval leading to high explosive events. Campi Flegrei and Somma-Vesuvius alkaline volcanic systems, located respectively at few kilometers west and east of Neapolitan metropolitan area, produced a variety of eruptions ranging from not explosive lava flows and domes to highly destructive eruptions. Both these high risk volcanoes are in repose time since the last eruption occurred in the 1538 and 1944 BP, respectively. Since that time, the volcanoes experienced fumarolic activity, low level of seismicity with rare earthquakes swarms, as well as two bradyseismic crisis (1969-1972 and 1982-1984) localized in the center of Campi Flegrei caldera, that generated a net uplift of 3.5 m around the town of Pozzuoli. A wide low velocity layer interpreted as an extended magmatic body has been detected at 8-10 km depth beneath these volcanoes by seismic data. The capability of this reservoir to erupt explosively again strongly depends on magma differentiation degree, therefore the knowledge of the time lapse necessary at not explosive mafic liquids to differentiate toward explosive magmas is very crucial to predict the size of a possible short-term future eruption in Campanian area. Our petrologic data indicate that a multi-depth supply system was active under the Campanian Plain since 39 ka. Fractional crystallization during magma cooling associated with upward migration of less dense evolved liquids appears to be the prevalent differentiation process. Our results indicate that huge steam exolution occurred during the late stage of trachyte and phonolite crystallization thus accounting for the high Volcanic Explosivity Index (VEI) of eruptions supplied by these melts. Moreover our CSD data on phenocrysts reveal

  2. Magma oceanography. I - Thermal evolution. [of lunar surface

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.; Longhi, J.

    1977-01-01

    Fractional crystallization and flotation of cumulate plagioclase in a cooling 'magma ocean' provides the simplest explanation for early emplacement of a thick feldspar-rich lunar crust. The complementary mafic cumulates resulting from the differentiation of such a magma ocean have been identified as the ultimate source of mare basalt liquids on the basis or rare-earth abundance patterns and experimental petrology studies. A study is conducted concerning the thermal evolution of the early differentiation processes. A range of models of increasing sophistication are considered. The models developed contain the essence of the energetics and the time scale for magma ocean differentiation. Attention is given to constraints on a magma ocean, modeling procedures, single-component magma oceans, fractionating magma oceans, and evolving magma oceans.

  3. Magma Reservoirs from the Perspective of Supervolcanoes and Granitic Plutons: "Big Red Blobs" and "Balloons and Soda Straws" are Real

    NASA Astrophysics Data System (ADS)

    Christiansen, E. H.

    2016-12-01

    Simple models describing silicic magma reservoirs and their connections with volcanic rocks have been denigrated as "big red blobs" and "balloons-and-soda straws." Although these models are certainly generalized to convey complex relations, there are multiple reasons to accept the existence of large magma chambers and direct connections between volcanoes and plutonic rocks. These include:-Geophysical evidence (seismic, magnetotelluric, and geodetic) for the existence of large bodies of magma in the crust today. Magma is a mixture of liquids, solids, and fluids. It does not have to be melt rich, nor does it need to be mobile and eruptible; it just has to have melt present. -Eruptions of large volumes (>1,000 km3) of dacitic to rhyolitic magma and large collapse calderas (30-50 km across). -The thermal lifetimes of large bodies are extended by high recharge rates. Individual bodies of magma may exist for tens to hundreds of thousands of years.-Geochronological evidence that pluton lifetimes are similar to those of volcanic fields.-Evidence for incremental emplacement of a pluton is not evidence against the former existence of a large magma reservoir, but the natural consequence of ongoing replenishment and crystallization after eruptions cease. Thus, what might have been a large liquid-dominated system at the time of eruption of a large ignimbrite, is subsequently intruded by new batches of magma as it crystallizes and closes down. This destroys the evidence for a large red blob and creates a composite pluton. -Direct and indirect evidence connect plutons to large eruptions. This is shown by field relations, geochronology, as well as chemical, mineralogical, and isotopic similarities of volcanic and plutonic rocks. -Volcanic and plutonic differentiation patterns are very similar, but differ in some ways because cumulates are preserved in the plutonic record and because intrusions continue to differentiate (liquids separate from solids) until the last bit of liquid is

  4. The chlorine isotope fingerprint of the lunar magma ocean

    PubMed Central

    Boyce, Jeremy W.; Treiman, Allan H.; Guan, Yunbin; Ma, Chi; Eiler, John M.; Gross, Juliane; Greenwood, James P.; Stolper, Edward M.

    2015-01-01

    The Moon contains chlorine that is isotopically unlike that of any other body yet studied in the Solar System, an observation that has been interpreted to support traditional models of the formation of a nominally hydrogen-free (“dry”) Moon. We have analyzed abundances and isotopic compositions of Cl and H in lunar mare basalts, and find little evidence that anhydrous lava outgassing was important in generating chlorine isotope anomalies, because 37Cl/35Cl ratios are not related to Cl abundance, H abundance, or D/H ratios in a manner consistent with the lava-outgassing hypothesis. Instead, 37Cl/35Cl correlates positively with Cl abundance in apatite, as well as with whole-rock Th abundances and La/Lu ratios, suggesting that the high 37Cl/35Cl in lunar basalts is inherited from urKREEP, the last dregs of the lunar magma ocean. These new data suggest that the high chlorine isotope ratios of lunar basalts result not from the degassing of their lavas but from degassing of the lunar magma ocean early in the Moon’s history. Chlorine isotope variability is therefore an indicator of planetary magma ocean degassing, an important stage in the formation of terrestrial planets. PMID:26601265

  5. Attenuation in gas-charged magma

    NASA Astrophysics Data System (ADS)

    Collier, L.; Neuberg, J. W.; Lensky, N.; Lyakhovsky, V.; Navon, O.

    2006-05-01

    Low frequency seismic events observed on volcanoes, such as Soufriere Hills Volcano, Montserrat, are thought to be caused by a resonating system. The modelling of seismic waves in gas-charged magma is critical for the understanding of seismic resonance effects in conduits, dykes and cracks. Seismic attenuation, which depends mainly on magma viscosity, gas and crystal content, is an essential factor in such modelling attempts. So far only two-phase gas-melt systems with the assumption of no diffusion and transport of volatiles between the melt and the gas bubbles have been considered. In this study, we develop a method of quantifying attenuation within gas-charged magma, including the effects of diffusion and exsolution of gas into the bubbles. The results show that by including such bubble growth processes attenuation levels are increased within magma. The resulting complex behaviour of attenuation with pressure and frequency indicates that two factors are controlling attenuation, the first due to viscous hindrance or the melt, and the second due diffusion processes. The level of attenuation within a gas-charged magma conduit suggests an upper limit on the length of a resonating conduit section of just a few hundred meters.

  6. Cannibalism of olivine-rich cumulate xenoliths during the 1998 eruption of Piton de la Fournaise (La Réunion hotspot): Implications for the generation of magma diversity

    NASA Astrophysics Data System (ADS)

    Salaün, A.; Villemant, B.; Semet, M. P.; Staudacher, T.

    2010-12-01

    pyroxene or plagioclase (wehrlitic to gabbroic cumulates). The scarcity of AGB magmas is attributed to their shallow transfer path in rarely intruded lateral zones of Piton de la Fournaise volcano: wehrlitic to gabbroic cumulates bodies are either heterogeneously distributed within the edifice or have been depleted in low melting point components in the 'Rift Zone' where most of the recent eruptive events are emplaced. These results emphasize the exceptional chemical homogeneity of the primary basaltic melt involved in volcanic activity of Piton de la Fournaise hotspot for 0.5 Ma and the increasingly recognized role of magma-wall rock interactions in erupted magma compositions.

  7. Radiographic visualization of magma dynamics in an erupting volcano.

    PubMed

    Tanaka, Hiroyuki K M; Kusagaya, Taro; Shinohara, Hiroshi

    2014-03-10

    Radiographic imaging of magma dynamics in a volcanic conduit provides detailed information about ascent and descent of magma, the magma flow rate, the conduit diameter and inflation and deflation of magma due to volatile expansion and release. Here we report the first radiographic observation of the ascent and descent of magma along a conduit utilizing atmospheric (cosmic ray) muons (muography) with dynamic radiographic imaging. Time sequential radiographic images show that the top of the magma column ascends right beneath the crater floor through which the eruption column was observed. In addition to the visualization of this magma inflation, we report a sequence of images that show magma descending. We further propose that the monitoring of temporal variations in the gas volume fraction of magma as well as its position in a conduit can be used to support existing eruption prediction procedures.

  8. Radiographic visualization of magma dynamics in an erupting volcano

    PubMed Central

    Tanaka, Hiroyuki K. M.; Kusagaya, Taro; Shinohara, Hiroshi

    2014-01-01

    Radiographic imaging of magma dynamics in a volcanic conduit provides detailed information about ascent and descent of magma, the magma flow rate, the conduit diameter and inflation and deflation of magma due to volatile expansion and release. Here we report the first radiographic observation of the ascent and descent of magma along a conduit utilizing atmospheric (cosmic ray) muons (muography) with dynamic radiographic imaging. Time sequential radiographic images show that the top of the magma column ascends right beneath the crater floor through which the eruption column was observed. In addition to the visualization of this magma inflation, we report a sequence of images that show magma descending. We further propose that the monitoring of temporal variations in the gas volume fraction of magma as well as its position in a conduit can be used to support existing eruption prediction procedures. PMID:24614612

  9. Rethinking Volcanic Plumbing Systems: The Prevalence of Offset Magma Reservoirs at Holocene Volcanoes

    NASA Astrophysics Data System (ADS)

    Lerner, A. H.; Karlstrom, L.; Hurwitz, S.; Anderson, K. R.; Ebmeier, S. K.

    2016-12-01

    Mechanical models of volcanic overpressure and interpretations of volcanic deposits are generally rooted in the classic paradigm of a magma reservoir being located directly beneath the main topographic high and central conduit of a volcano. We test this framework against recent decades of research on volcanic deformation, seismic tomography, earthquake hypocenter locations, and magnetotellurics, which have provided unprecedented geophysical views of volcanic plumbing systems. In a literature survey of Holocene strato- and shield volcanoes in arc, backarc, continental rift, and intraplate settings, we find that shallow to mid-crustal (< 20 km) magma reservoirs are equally likely to be laterally offset from principle volcanic edifices (n = 20) as they are to be centrally located beneath volcanic topographic highs (n = 19). We classify offset reservoirs as having imaged or modeled centroids that are at least 2 km laterally offset from the central volcanic edifice. The scale and geometry of offset magma reservoirs range widely, with a number of systems having discrete reservoirs laterally offset up to 15 km from the main volcanic edifice, at depths of 2 to 15 km. Other systems appear to have inclined magmatic reservoirs and/or fluid transport zones that continuously extend from beneath the main edifice to lateral distances up to 20 km, at depths of 3 to 18 km. Additionally, over a third of the studied systems have small, centrally located shallow magma or fluid reservoirs at depths of 1 to 5 km. Overall, we find that offset magma reservoirs are more common than is classically perceived, and offset reservoirs are more prevalent in intermediate to evolved stratovolcanoes (19 of 28) than in basaltic shield volcanoes (2 of 7). The reason for the formation of long-lived edifices that are offset from their source magma reservoir(s) is an open question; correlation to regional principal stresses or local tectonics, edifice size, lithology, and morphology, and climate may

  10. Timing magma migration through the Icelandic Crust: from the Moho to the surface

    NASA Astrophysics Data System (ADS)

    Mutch, E. J. F.; Maclennan, J.; Edmonds, M.

    2017-12-01

    The rate of magma transfer throughout the crust, particularly the amount of time it takes for melt to travel from the upper mantle to the surface, is largely unknown. Only one previous study has investigated the timescales of transport of crystals that were in equilibrium with mantle melts [1]. Despite estimating timescales on the order of months to years, the depths from which these crystals were entrained is poorly constrained. Borgarhraun is an exceptionally well-characterised picrite lava flow in the Theistareykir Volcanic System of Northern Iceland. The crystal-cargo of this lava includes macrocrysts of olivine (Fo86-90), plagioclase (An84-90), clinopyroxene and spinel with much rarer wehrlitic nodules. Crystallisation has been estimated to have taken place in deep sub-Moho magma chambers ( 24 km). Melt inclusions in primitive olivine macrocrysts (Fo88-90) are the result of mixing a suite of geochemically distinct mantle melts that were CO2 undersaturated [2-3]. Zoning in the macrocrysts holds a record of concurrent crystallisation and mixing of these variable mantle melts, as well as ascent through the crust prior to eruption [4]. We have conducted a multi-phase, multi-element approach by applying finite-element diffusion models to wehrlite olivines and plagioclase macrocrysts to constrain the timescales of crystal residence and magma ascent prior to eruption. Model results suggest that at 1250 °C the timescale of final ascent was on the order of 20-50 days, whilst longer-term crystal residence times can exceed 700 years. This analysis shows that magma can ascend from the base of the crust to the surface in under a couple of months, suggesting picrites such as Borgarhraun are the result of high speed conduits to sub-Moho magma chambers. These rapid ascent timescales have important implications for the physical modelling of primitive magmas as well as for understanding the architecture of magma-plumbing systems in the temporal domain. References [1] Ruprecht

  11. Two-Stage Magma Mixing and Initial Phase of the 1667 Plinian Eruption of Tarumai Volcano

    NASA Astrophysics Data System (ADS)

    Tomiya, A.; Takeuchi, S.

    2009-12-01

    Plinian eruptions can eject high-viscosity low-T magma with high crystal content. Several mechanisms have been proposed, such as remobilization by addition of volatile from high-T magma (Bachmann & Bergantz, 2006) and precursory eruption of low-viscosity hybrid magma between low-T and high-T magmas (Pallister et al., 1996; Takeuchi & Nakamura, 2001). We discuss this matter by analysis on a Plinian eruption of Tarumai Volcano. Tarumai (Tarumae) is one of the most active volcanoes in Japan. The 1667 eruption is the first one in historical time after thousands of years of dormancy, and one of the largest eruptions (VEI 5) in the volcano (Soya & Sato, 1980). The major eruptive product, Ta-b pumice, is andesite, consisting of abundant phenocrysts (20-40 %) and rhyolitic glass (Soya, 1971; Furukawa, 1998; Nakagawa et al., 2006). Hiraga & Nakagawa (2000) reported that the bulk rock was homogeneous (SiO2 = 58-62 wt.%) from subunit b8 (lower) to b1 (upper). On the other hand, Takeuchi (2001) found that the bottom layer of b8 (b8-bottom) was more mafic (SiO2 = 56-58 wt.%) and interpreted it as precursory hybrid magma. We analyzed phenocrysts in b8-bottom and other subunits of Ta-b, and compared their compositions and textures. The followings are obtained. Plagioclase: the compositions and textures are similar among the subunits; some phenocrysts are calcic with a homogeneous core of An > 90, whereas most have a complex texture with An 65 to 75. Orthopyroxene/clinopyroxene: the compositions and textures are similar among the subunits; most phenocrysts have a homogeneous core of Mg* 62 to 68 for orthopyroxene and Mg* 70 to 74 for clinopyroxene; those in b8-bottom show reverse zonings. Olivine: there are few phenocrysts and they often coexist with the calcic plagioclase. Magnetite: the compositions are homogeneous (Usp 30 to 34, Mg/Mn 5 to 7; type-1) except for those in b8-bottom; there are two types of phenocrysts in b8-bottom, Usp 30 to 34, Mg/Mn 7 to 9 (type-2) and Usp 23 to

  12. The role of volatiles in magma chamber dynamics.

    PubMed

    Huppert, Herbert E; Woods, Andrew W

    2002-12-05

    Many andesitic volcanoes exhibit effusive eruption activity, with magma volumes as large as 10(7)-10(9) m(3) erupted at rates of 1-10 m(3) x s(-1) over periods of years or decades. During such eruptions, many complex cycles in eruption rates have been observed, with periods ranging from hours to years. Longer-term trends have also been observed, and are thought to be associated with the continuing recharge of magma from deep in the crust and with waning of overpressure in the magma reservoir. Here we present a model which incorporates effects due to compressibility of gas in magma. We show that the eruption duration and volume of erupted magma may increase by up to two orders of magnitude if the stored internal energy associated with dissolved volatiles can be released into the magma chamber. This mechanism would be favoured in shallow chambers or volatile-rich magmas and the cooling of magma by country rock may enhance this release of energy, leading to substantial increases in eruption rate and duration.

  13. Wall Rock Assimilation and Magma Migration in the Sierra Nevada Batholith: A Study of the Courtright Intrusive Zone, Central California

    NASA Astrophysics Data System (ADS)

    Torrez, G.; Putirka, K. D.

    2010-12-01

    The Sierra Nevada Batholith is composed of various plutons that interact with each other, and with pre- and syn-batholith metamorphic rocks. In the central part of the Sierra Nevada Batholith, at Courtright Reservoir in California, the younger Mt. Givens Pluton (87-93 Ma; McNulty et al., 2000) intrudes the Dinkey pluton (103 Ma; Bateman et al., 1964), and metasediments (a metamorphic screen) that, in places, separate the two plutons. This Courtright Reservoir Intrusive zone, as termed by Bateman et al. (1964), provides an ideal setting to examine the dynamics of intrusion and assimilation. Whole rock major and trace element compositions of the plutons, their mafic enclaves, and the metasediments, show that all such samples, from both plutons, fall on a single mixing trend. We thus infer that magmas parental to both plutons were roughly similar in composition, and assimilated significant amounts of the same, or very similar metasedimentary wall rocks. We also examined changes in whole rock compositions within the Mt. Givens pluton, as a function of distance from the two rock units with which it is now in contact (the metasediments, and the Dinkey Creek). In the vicinity of the contact between are an abundance of enclaves that are rounded, and appear to have been transported in vertical pipes. Whole rock analysis of the host granitoid material that surrounds these enclaves is clearly more mafic than the granitoid magmas from interior parts of the pluton. These whole rock compositions indicate that the pluton becomes more homogenous moving away from the contact, with a compositional decay occurring over a span of about 50-100 m. There are at least two possible interpretations. The compositional decay may represent a diffusive exchange of mass between an early crystallizing marginal phase of the pluton and the pluton interior. Another (not mutually incompatible) possibility is that the mafic margins represent pipes or tubes (Paterson, 2010), related to some convective

  14. From a long-lived upper-crustal magma chamber to rapid porphyry copper emplacement: Reading the geochemistry of zircon crystals at Bajo de la Alumbrera (NW Argentina)

    NASA Astrophysics Data System (ADS)

    Buret, Yannick; von Quadt, Albrecht; Heinrich, Christoph; Selby, David; Wälle, Markus; Peytcheva, Irena

    2016-09-01

    The formation of world class porphyry copper deposits reflect magmatic processes that take place in a deeper and much larger underlying magmatic system, which provides the source of porphyry magmas, as well as metal and sulphur-charged mineralising fluids. Reading the geochemical record of this large magmatic source region, as well as constraining the time-scales for creating a much smaller porphyry copper deposit, are critical in order to fully understand and quantify the processes that lead to metal concentration within these valuable mineral deposits. This study focuses on the Bajo de la Alumbrera porphyry copper deposit in Northwest Argentina. The deposit is centred on a dacitic porphyry intrusive stock that was mineralised by several pulses of porphyry magma emplacement and hydrothermal fluid injections. To constrain the duration of ore formation, we dated zircons from four porphyry intrusions, including pre-, syn- and post-mineralisation porphyries based on intersection relations between successive intrusion and vein generations, using high precision CA-ID-TIMS. Based on the youngest assemblages of zircon grains, which overlap within analytical error, all four intrusions were emplaced within 29 ka, which places an upper limit on the total duration of hydrothermal mineralisation. Re/Os dating of hydrothermal molybdenite fully overlaps with this high-precision age bracket. However, all four porphyries contain zircon antecrysts which record protracted zircon crystallisation during the ∼200 ka preceding the emplacement of the porphyries. Zircon trace element variations, Ti-in-zircon temperatures, and Hf isotopic compositions indicate that the four porphyry magmas record a common geochemical and thermal history, and that the four intrusions were derived from the same upper-crustal magma chamber. Trace element zoning within single zircon crystals confirms a fractional crystallisation trend dominated by titanite and apatite crystallisation. However, zircon

  15. Seismic Tremors and Three-Dimensional Magma Wagging

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Bercovici, D.

    2015-12-01

    Seismic tremor is a feature shared by many silicic volcanoes and is a precursor of volcanic eruption. Many of the characteristics of tremors, including their frequency band from 0.5 Hz to 7 Hz, are common for volcanoes with very different geophysical and geochemical properties. The ubiquitous characteristics of tremor imply that it results from some generation mechanism that is common to all volcanoes, instead of being unique to each volcano. Here we present new analysis on the magma-wagging mechanism that has been proposed to generate tremor. The model is based on the suggestion given by previous work (Jellinek & Bercovici 2011; Bercovici et.al. 2013) that the magma column is surrounded by a compressible, bubble-rich foam annulus while rising inside the volcanic conduit, and that the lateral oscillation of the magma inside the annulus causes observable tremor. Unlike the previous two-dimensional wagging model where the displacement of the magma column is restricted to one vertical plane, the three-dimensional model we employ allows the magma column to bend in different directions and has angular motion as well. Our preliminary results show that, without damping from viscous deformation of the magma column, the system retains angular momentum and develops elliptical motion (i.e., the horizontal displacement traces an ellipse). In this ''inviscid'' limit, the magma column can also develop instabilities with higher frequencies than what is found in the original two-dimensional model. Lateral motion can also be out of phase for various depths in the magma column leading to a coiled wagging motion. For the viscous-magma model, we predict a similar damping rate for the uncoiled magma column as in the two-dimensional model, and faster damping for the coiled magma column. The higher damping thus requires the existence of a forcing mechanism to sustain the oscillation, for example the gas-driven Bernoulli effect proposed by Bercovici et al (2013). Finally, using our new 3

  16. Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma

    NASA Astrophysics Data System (ADS)

    Wiebe, R. A.; Collins, W. J.

    1998-09-01

    Many granitic plutons contain sheet-like masses of dioritic to gabbroic rocks or swarms of mafic to intermediate enclaves which represent the input of higher temperature, more mafic magma during crystallization of the granitic plutons. Small-scale structures associated with these bodies (e.g. load-cast and compaction features, silicic pipes extending from granitic layers into adjacent gabbroic sheets) indicate that the sheets and enclave swarms were deposited on a floor of the magma chamber (on granitic crystal mush and beneath crystal-poor magma) while the mafic magma was incompletely crystallized. These structures indicate 'way up', typically toward the interior of the intrusions, and appear to indicate that packages of mafic sheets and enclave concentrations in these plutons are a record of sequential deposition. Hence, these plutons preserve a stratigraphic history of events involved in the construction (filling, replenishment) and crystallization of the magma chamber. The distinctive features of these depositional portions of plutons allow them to be distinguished from sheeted intrusions, which usually preserve mutual intrusive contacts and 'dike-sill' relations of different magma types. The considerable thickness of material that can be interpreted as depositional, and the evidence for replenishment, suggest that magma chamber volumes at any one time were probably much less than the final size of the pluton. Thus, magma chambers may be constructed much more slowly than presently envisaged. The present steep attitudes of these structures in many plutons may have developed gradually as the floor of the chamber (along with the underlying solidified granite and country rock) sank during continuing episodes of magma chamber replenishment. These internal magmatic structures support recent suggestions that the room problem for granites could be largely accommodated by downward movement of country rock beneath the magma chamber.

  17. Deducing Water Concentrations in the Parent Magma of Cumulate Clinopyroxene and Olivine: Implications for a Hydrous Parent Melt of a Primitive Deccan Lava

    NASA Astrophysics Data System (ADS)

    Seaman, S. J.

    2017-12-01

    Water concentrations of clinopyroxene megacrysts in the Powai ankaramite flow, located near Mumbai, Deccan province, India, indicate that the parent magma of the flow hosted at least 4.3 wt.% water, an unusually high water concentration for a continental flood basalt magma. The Powai flow hosts clinopyroxene and olivine phenocrysts. Chatterjee and Sheth (2015) showed that phenocrysts in the flow were part of a cumulate layer intruded by basaltic melt at 6 kb and 1230oC, so the phenocrysts record characteristics of the cumulate parent melt. Clinopyroxene phenocrysts are oscillatorily zoned in water, Mg, Fe, and Ca concentrations, and have concentric bands 100-200 microns thick of 10-20 micron diameter melt inclusions. Olivine phenocrysts host only larger isolated melt inclusions. Zones in the cpx phenocrysts where melt inclusion-rich concentric bands occur have higher concentrations of water than inclusion-free zones. Water concentrations of cpx were used to calculate water concentrations in the melt from which the crystals formed using partition coefficients of Hauri et al. (2004). Water concentrations in the parent magma were between 4.3 and 8.2 wt. % based on water concentrations in cpx. Both Mg and Fe are relatively depleted in the water- and melt inclusion-rich zones in cpx, and Ca is enriched in these zones. Oscillatory zoning in cpx may be a result of repeated growth of cpx in water- richer and water-poorer boundary layers where water lowered melt viscosity and enhanced diffusion and crystal growth rates. Water-enhanced growth rates may have resulted in capture of melt inclusions preserved in water-rich cpx zones. Melt inclusions in olivine phenocrysts preserve lower water concentrations ( 1.2 wt. %) than those indicated by water concentration in cpx phenocrysts. This disparity may be evidence of water loss from melt inclusions in olivine (Gaetani et al., 2009) or may indicate that cpx and ol crystals did not crystallize from the same parent at the same time.

  18. Simulation of Layered Magma Chambers.

    ERIC Educational Resources Information Center

    Cawthorn, Richard Grant

    1991-01-01

    The principles of magma addition and liquid layering in magma chambers can be demonstrated by dissolving colored crystals. The concepts of density stratification and apparent lack of mixing of miscible liquids is convincingly illustrated with hydrous solutions at room temperature. The behavior of interstitial liquids in "cumulus" piles…

  19. Mechanisms and timescales of generating eruptible rhyolitic magmas at Yellowstone caldera from zircon and sanidine geochronology and geochemistry

    USGS Publications Warehouse

    Stelten, Mark; Cooper, Kari M.; Vazquez, Jorge A.; Calvert, Andrew T.; Glessner, Justin G

    2015-01-01

    antecrystic zircons require a model where eruptible rhyolites are generated by extracting melt and zircons from a long-lived mush of immobile crystal-rich magma. In this process the larger sanidine crystals remain trapped in the locked crystal network. The extracted melts (plus antecrystic zircon) amalgamate into a liquid dominated (i.e., eruptible) magma body that is maintained as a physically distinct entity relative to the bulk of the long-lived crystal mush. Zircon surfaces and sanidines in each rhyolite crystallize after melt extraction/amalgamation and their ages constrain the residence time of eruptible magmas at Yellowstone. Residence times of the large volume rhyolites (~40 – 70 km3) are ≤ 1 kyr (conservatively < 6 kyr), which suggests that large volumes of rhyolite can be generated rapidly by extracting melt from a crystal mush. Because the lifespan of the crystal mush that sourced the Central Plateau Member rhyolites is two orders of magnitude longer than the residence time of eruptible magma bodies within the reservoir, it is apparent that the Yellowstone magma reservoir spends most of its time in a largely-crystalline (i.e., uneruptible) state, similar to the present-day magma reservoir, and that eruptible magma bodies are ephemeral features.

  20. Storage, Ascent, and Release of Silicic Magma in Caldera-forming Eruptions

    NASA Astrophysics Data System (ADS)

    Myers, Madison Logan

    The mechanisms and timescales associated with the triggering of caldera-forming eruptions remain ambiguous and poorly constrained. Do such eruptions start vigorously, then escalate, or can there be episodicity? Are they triggered through internal processes (e.g. recharge, buoyancy), or can external modulations play an important role? Key to answering these questions is the ability to reconstruct the state of the magma body immediately prior to eruption. My dissertation research seeks to answer these questions through detailed investigation of four voluminous caldera-forming eruptions: (1) 650 km3, 0.767 Ma Bishop Tuff, Long Valley, (2) 530 km3, 25.4 ka Oruanui eruption, Taupo, (3) 2,500 km3, 2.08 Ma Huckleberry Ridge Tuff, Yellowstone and (4) 250 km3, 26.91 Ma Cebolla Creek Tuff, Colorado. The main techniques I applied integrated glass geochemistry (major, trace and volatile), diffusion modeling, and detailed field sampling. In chapters two, three, and four these methods are applied to the initial fall deposits of three supereruptions (Bishop, Oruanui and Huckleberry Ridge) that preserve field-evidence for different opening behaviors. These behaviors range from continuous deposition of fall deposits and ignimbrite (Bishop), to repetitive start/stop behavior, with time breaks between eruptive episodes on the order of weeks to months (Oruanui, Huckleberry Ridge). To reconstruct the timescales of opening activity and relate this to conduit processes, I used two methods that exploit diffusion of volatiles through minerals and melt, providing estimates for the rate at which magmas ascended to the surface. This knowledge is then integrated with the pre-eruptive configuration of the magma body, based on melt inclusion chemistry, to interpret what triggered these systems into unrest. Finally, in chapter five I take a different approach by integrating geochemical data for melt inclusions and phenocryst minerals to test whether the mechanism of heat and volatile recharge

  1. The evolution of magma during continental rifting: New constraints from the isotopic and trace element signatures of silicic magmas from Ethiopian volcanoes

    NASA Astrophysics Data System (ADS)

    Hutchison, William; Mather, Tamsin A.; Pyle, David M.; Boyce, Adrian J.; Gleeson, Matthew L. M.; Yirgu, Gezahegn; Blundy, Jon D.; Ferguson, David J.; Vye-Brown, Charlotte; Millar, Ian L.; Sims, Kenneth W. W.; Finch, Adrian A.

    2018-05-01

    Magma plays a vital role in the break-up of continental lithosphere. However, significant uncertainty remains about how magma-crust interactions and melt evolution vary during the development of a rift system. Ethiopia captures the transition from continental rifting to incipient sea-floor spreading and has witnessed the eruption of large volumes of silicic volcanic rocks across the region over ∼45 Ma. The petrogenesis of these silicic rocks sheds light on the role of magmatism in rift development, by providing information on crustal interactions, melt fluxes and magmatic differentiation. We report new trace element and Sr-Nd-O isotopic data for volcanic rocks, glasses and minerals along and across active segments of the Main Ethiopian (MER) and Afar Rifts. Most δ18 O data for mineral and glass separates from these active rift zones fall within the bounds of modelled fractional crystallization trajectories from basaltic parent magmas (i.e., 5.5-6.5‰) with scant evidence for assimilation of Pan-African Precambrian crustal material (δ18 O of 7-18‰). Radiogenic isotopes (εNd = 0.92- 6.52; 87Sr/86Sr = 0.7037-0.7072) and incompatible trace element ratios (Rb/Nb <1.5) are consistent with δ18 O data and emphasize limited interaction with Pan-African crust. However, there are important regional variations in melt evolution revealed by incompatible elements (e.g., Th and Zr) and peralkalinity (molar Na2 O +K2 O /Al2O3). The most chemically-evolved peralkaline compositions are associated with the MER volcanoes (Aluto, Gedemsa and Kone) and an off-axis volcano of the Afar Rift (Badi). On-axis silicic volcanoes of the Afar Rift (e.g., Dabbahu) generate less-evolved melts. While at Erta Ale, the most mature rift setting, peralkaline magmas are rare. We find that melt evolution is enhanced in less mature continental rifts (where parental magmas are of transitional rather than tholeiitic composition) and regions of low magma flux (due to reduced mantle melt productivity

  2. Fractionation products of basaltic komatiite magmas at lower crustal pressures: implications for genesis of silicic magmas in the Archean

    NASA Astrophysics Data System (ADS)

    Mandler, B. E.; Grove, T. L.

    2015-12-01

    Hypotheses for the origin of crustal silicic magmas include both partial melting of basalts and fractional crystallization of mantle-derived melts[1]. Both are recognized as important processes in modern environments. When it comes to Archean rocks, however, partial melting hypotheses dominate the literature. Tonalite-trondhjemite-granodiorite (TTG)-type silicic magmas, ubiquitous in the Archean, are widely thought to be produced by partial melting of subducted, delaminated or otherwise deeply buried hydrated basalts[2]. The potential for a fractional crystallization origin for TTG-type magmas remains largely unexplored. To rectify this asymmetry in approaches to modern vs. ancient rocks, we have performed experiments at high pressures and temperatures to closely simulate fractional crystallization of a basaltic komatiite magma in the lowermost crust. These represent the first experimental determinations of the fractionation products of komatiite-type magmas at elevated pressures. The aim is to test the possibility of a genetic link between basaltic komatiites and TTGs, which are both magmas found predominantly in Archean terranes and less so in modern environments. We will present the 12-kbar fractionation paths of both Al-depleted and Al-undepleted basaltic komatiite magmas, and discuss their implications for the relative importance of magmatic fractionation vs. partial melting in producing more evolved, silicic magmas in the Archean. [1] Annen et al., J. Petrol., 47, 505-539, 2006. [2] Moyen J-F. & Martin H., Lithos, 148, 312-336, 2012.

  3. Process for forming hydrogen and other fuels utilizing magma

    DOEpatents

    Galt, John K.; Gerlach, Terrence M.; Modreski, Peter J.; Northrup, Jr., Clyde J. M.

    1978-01-01

    The disclosure relates to a method for extracting hydrogen from magma and water by injecting water from above the earth's surface into a pocket of magma and extracting hydrogen produced by the water-magma reaction from the vicinity of the magma.

  4. Comparative Magma Oceanography

    NASA Technical Reports Server (NTRS)

    Jones, J. H.

    1999-01-01

    The question of whether the Earth ever passed through a magma ocean stage is of considerable interest. Geochemical evidence strongly suggests that the Moon had a magma ocean and the evidence is mounting that the same was true for Mars. Analyses of martian (SNC) meteorites have yielded insights into the differentiation history of Mars, and consequently, it is interesting to compare that planet to the Earth. Three primary features of Mars contrast strongly to those of the Earth: (i) the extremely ancient ages of the martian core, mantle, and crust (about 4.55 b.y.); (ii) the highly depleted nature of the martian mantle; and (iii) the extreme ranges of Nd isotopic compositions that arise within the crust and depleted mantle. The easiest way to explain the ages and diverse isotopic compositions of martian basalts is to postulate that Mars had an early magma ocean. Cumulates of this magma ocean were later remelted to form the SNC meteorite suite and some of these melts assimilated crustal materials enriched in incompatible elements. The REE pattern of the crust assimilated by these SNC magmas was LREE enriched. If this pattern is typical of the crust as a whole, the martian crust is probably similar in composition to melts generated by small degrees of partial melting (about 5%) of a primitive source. Higher degrees of partial melting would cause the crustal LREE pattern to be essentially flat. In the context of a magma ocean model, where large degrees of partial melting presumably prevailed, the crust would have to be dominated by late-stage, LREE-enriched residual liquids. Regardless of the exact physical setting, Nd and W isotopic evidence indicates that martian geochemical reservoirs must have formed early and that they have not been efficiently remixed since. The important point is that in both the Moon and Mars we see evidence of a magma ocean phase and that we recognize it as such. Several lines of theoretical inference point to an early Earth that was also hot

  5. Volcanic conduit failure as a trigger to magma fragmentation

    NASA Astrophysics Data System (ADS)

    Lavallée, Y.; Benson, P. M.; Heap, M. J.; Flaws, A.; Hess, K.-U.; Dingwell, D. B.

    2012-01-01

    In the assessment of volcanic risk, it is often assumed that magma ascending at a slow rate will erupt effusively, whereas magma ascending at fast rate will lead to an explosive eruption. Mechanistically viewed, this assessment is supported by the notion that the viscoelastic nature of magma (i.e., the ability of magma to relax at an applied strain rate), linked via the gradient of flow pressure (related to discharge rate), controls the eruption style. In such an analysis, the physical interactions between the magma and the conduit wall are commonly, to a first order, neglected. Yet, during ascent, magma must force its way through the volcanic edifice/structure, whose presence and form may greatly affect the stress field through which the magma is trying to ascend. Here, we demonstrate that fracturing of the conduit wall via flow pressure releases an elastic shock resulting in fracturing of the viscous magma itself. We find that magma fragmentation occurred at strain rates seven orders of magnitude slower than theoretically anticipated from the applied axial strain rate. Our conclusion, that the discharge rate cannot provide a reliable indication of ascending magma rheology without knowledge of conduit wall stability, has important ramifications for volcanic hazard assessment. New numerical simulations are now needed in order to integrate magma/conduit interaction into eruption models.

  6. Geochemical modeling of magma mixing and magma reservoir volumes during early episodes of Kīlauea Volcano's Pu`u `Ō`ō eruption

    NASA Astrophysics Data System (ADS)

    Shamberger, Patrick J.; Garcia, Michael O.

    2007-02-01

    Geochemical modeling of magma mixing allows for evaluation of volumes of magma storage reservoirs and magma plumbing configurations. A new analytical expression is derived for a simple two-component box-mixing model describing the proportions of mixing components in erupted lavas as a function of time. Four versions of this model are applied to a mixing trend spanning episodes 3 31 of Kilauea Volcano’s Puu Oo eruption, each testing different constraints on magma reservoir input and output fluxes. Unknown parameters (e.g., magma reservoir influx rate, initial reservoir volume) are optimized for each model using a non-linear least squares technique to fit model trends to geochemical time-series data. The modeled mixing trend closely reproduces the observed compositional trend. The two models that match measured lava effusion rates have constant magma input and output fluxes and suggest a large pre-mixing magma reservoir (46±2 and 49±1 million m3), with little or no volume change over time. This volume is much larger than a previous estimate for the shallow, dike-shaped magma reservoir under the Puu Oo vent, which grew from ˜3 to ˜10 12 million m3. These volumetric differences are interpreted as indicating that mixing occurred first in a larger, deeper reservoir before the magma was injected into the overlying smaller reservoir.

  7. Biomedical evidence of influence of geopathic zones on the human body: scientifically traceable effects and ways of harmonization.

    PubMed

    Hacker, Gerhard W; Pawlak, Elisabeth; Pauser, Gernot; Tichy, Gottfried; Jell, Hermann; Posch, Gabriele; Kraibacher, Günther; Aigner, Alfred; Hutter, Jörg

    2005-12-01

    Empiric knowledge of the existence of geopathic zones ('water veins' etc) is probably as old as humankind. It has often been tried to experimentally detect direct influences on the body. However, so far, there have been no publications in accepted biomedical journals. The target of this study was to verify influences of 2 different zones above ground on the human body and to test a device for which pilot studies have indicated a potential harmonizing effect in this context. Using a randomized, non-clinical, double-blinded trial design, 52 persons were tested with a gas discharge visualization (GDV) system whilst staying on 2 zones with or without the Geowave device (Geowave-Research, Salzburg, Austria). The 2 zones investigated had been dowsed by experienced professional dowsers and labeled with black dots in a non-persuasive manner, thereby blindly representing areas of geopathy or more neutral zones. The main analytical parameter was the GDV glow image area (area of glow). Complementary calculated parameters were spatial fractality, corona projections and corona diagrams. In the geopathic zone, the detected areas of glow were statistically significantly smaller than in the more neutral zone. With the Geowave blindly mounted in an adjacent room of the above story, a marked increase of the glow image area was found in both zones. The corona projections showed well-recognizable points of body energy deficits in the geopathic zone, mostly associated with the lymphatic system, the cardiovascular system and the pineal gland, which were -- to a distinctly lesser degree -- also present in the more neutral zone. The device tested yielded compensation or harmonization in both zones in most of the test persons. The significant differences in the physical area of glow parameter, which were also noticed for the complementary parameters analyzed, lead to the conclusion that the 2 different zones within the same room (geopathic vs. more neutral zone) exerted different

  8. Shallow magma diversions during explosive maar-diatreme eruptions in mafic volcanic fields

    NASA Astrophysics Data System (ADS)

    Le Corvec, N.; Muirhead, J.; White, J. D. L.

    2017-12-01

    Maar-diatremes are inverted conical structures formed by subterranean excavation and remobilization of country rocks during explosive volcanism and common in mafic volcanic fields. We focus on impacts of excavation and filling of maar-diatremes on the local state of stress, and its subsequent influence on underlying feeder dikes, which are critical for understanding the development of intrusive networks that feed surface eruptions. We address this issue using finite element models in COMSOL Multiphysics®. Inverted conical structures of varying sizes are excavated in a gravitationally loaded elastic half-space, and then progressively filled with volcaniclastic material, resulting in changes in the orientations and magnitudes of stresses generated within surrounding rocks and within the filling portion of the maar-diatreme. Our results show that rapid unloading during maar-diatreme excavation generates a horizontal compressive stress state beneath diatremes. These stresses allow magma to divert laterally as saucer-shaped sills and circumferential dikes at varying depths in the shallow feeder system, and produce intrusion geometries consistent with both field observations from exhumed volcanic fields and conceptual models of diatreme growth. Stresses generated in these models also provide an explanation for the evolving locations of fragmentation zones over the course of diatreme's filling. In particular, results from this study suggest that: (1) extensional stresses at the base of the diatreme fill favor magma ascent in the lower half of the structure, and possibly promote volatile exsolution and magma fragmentation; and (2) increased filling of diatremes creates a shallow compressive stress state that can inhibit magma ascent to the surface, promoting widespread intra-diatreme explosions, efficient mixing of host rock, and upward widening of the diatreme structure.

  9. Characteristics and Significance of Magma Emplacement Horizons, Black Sturgeon Sill, Nipigon, Ontario

    NASA Astrophysics Data System (ADS)

    Zieg, M. J.; Hone, S. V.

    2017-12-01

    Spatial scales strongly control the timescales of processes in igneous intrusions, particularly through the thermal evolution of the magma, which in turn governs the evolution of crystallinity, viscosity, and other important physical and chemical properties of the system. In this study, we have collected a highly detailed data set comprising geochemical (bulk rock composition), textural (size and alignment of plagioclase crystals), and mineralogical (modal abundance) profiles through the central portion of the 250 m thick Black Sturgeon diabase sill. In this data, we have identified characteristic signals in texture (soft and somewhat diffuse chills), composition (reversals in differentiation trends), and mineralogy (olivine accumulations), all coinciding and recurring at roughly 10 meter intervals. Based on these signatures, we are able to map out multiple zones representing discrete pulses of magma that were emplaced sequentially as the intrusion was inflated. Simple thermal calculations suggest that each 10 meters of new crystallization would require repose times on the order of 10-100 years. To build up 250 meters of magma at this rate would only require approximately 250-2500 years, significantly less than the thermal lifetime of the entire sill. The soft chills we observe in the Black Sturgeon sill are therefore consistent with a system that remained warm throughout the emplacement process. Successive pulses were injected into partially crystalline mush, rather than pure liquid (which would result in hybridization) or solid (which would produce sharp hard chills). Episodic emplacement is by now widely recognized as a fundamental process in the formation of large felsic magma chambers; our results suggest that this also may be an important consideration in understanding the evolution of smaller mafic intrusions.

  10. Volatile Behavior in Lunar and Terrestrial Basalts During Shock: Implications for Martian Magmas

    NASA Technical Reports Server (NTRS)

    Chaklader, Johny; Shearer, C. K.; Hoerz, F.; Newsom, H. E.

    2004-01-01

    The amount of water in martian magmas has significant ramifications for the martian atmosphere-hydrosphere cycle. Large D-enrichments have been observed in kaersutitic amphiboles in Zagami, Chassigny and Shergotty meteorites (delta-D values up to 4400 per mil) suggesting that substantial amounts of H escaped Mars in its past. Furthermore, martian meteorites with inclusions of biotite and apatite imply possible origins in a hydrous mantle. However, whether martian magmas ever possessed considerable proportions of water remains controversial and unclear. The H-content of mica and amphibole melt inclusions has been found to be low, while bulk-rock H2O content is also low ranging from 0.013 to 0.035 wt. % in Shergotty. Hydrous martian magmas were considered responsible for light lithophile element (LLE) zoning patterns observed in Nakhlite and Shergottite pyroxenes. Since LLEs, such as Li and B, partition into aqueous fluids at temperatures greater than 350 C, workers interpreted Li-B depletions in pyroxene rims as evidence that supercritical fluid exsolution occurred during magma degassing. In that many martian basalts experienced substantial shock (15-45 GPa) it is possible that the magmatic volatile record preserved in martian basalts has been disturbed. Previous shock experiments suggest that shock processes may effect water content and H/D. To better understand the possible effects of shock on this volatile record, we are studying the redistribution of volatile elements in naturally and experimentally shocked basalts. Here, we report the initial results from shocked basalts associated with the Lonar Crater, India and an experimentally shocked lunar basalt.

  11. Influence of extrusion rate and magma rheology on the growth of lava domes: Insights from particle-dynamics modeling

    NASA Astrophysics Data System (ADS)

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2014-09-01

    possibly inducing dome collapse. Simulation results mimic development of a megaspine upon the influx of fresh magma which leads to the re-direction of magma flow, creating a new shear zone and the switching of dome growth from one side to the other. Our model shows similar dome growth dynamics as observed at Soufriere Hills Volcano, Montserrat, indicating a strong correlation between extrusion rate and its subsequent effect on mechanical properties and variations in magma rheology.

  12. Timescale of Destabilization of a Magma Ocean Cumulate

    NASA Astrophysics Data System (ADS)

    Morison, A.; Labrosse, S.; Deguen, R.; Alboussiere, T.

    2017-12-01

    A common scenario considered during the formation of terrestrial planets is the crystallization of a global magma ocean from the bottom-up. The crystallization of the surface magma ocean is expected to be rapid, on a timescale of the order of 1 Myr. This has lead several authors to assume convection in the solid part of the crystallizing mantle only sets out after the complete solidification of the surface magma ocean. Assuming fractionnal crystallization of this ocean, the magma (and resulting solid) is more and more enriched in FeO as the crystallization progresses. This leads to an unstable stratification and an overturn. After overturn, the resulting solid mantle would be strongly compositionally stratified. The present study tests the assumption that solid-state mantle overturn only occurs after complete crystallization of the surface magma ocean. We model convection in the solid part of the mantle only and parametrize the presence of a magma ocean with boundary conditions. Our model includes through these boundary conditions the possibility for matter to cross the boundary between the solid shell and the magma ocean by melting and freezing. We perfomed a linear stability analysis with respect to the temperature and compositional profiles obtained in a growing magma ocean cumulate to assess the destabilization timescale of such profiles as a function of the crystallized thickness. By comparing this timescale with a model of surface magma ocean crystallization, we deduce the time and crystallized thickness at which the convection timescale is comparable to the age of the solid crystallizing mantle. This time is found to be small ( 1 kyr) compared to the time needed to crystallize the entire surface magma ocean ( 1 Myr).

  13. Zinc and volatile element loss during planetary magma ocean phases

    NASA Astrophysics Data System (ADS)

    Dhaliwal, Jasmeet K.; Day, James M. D.; Moynier, Frédéric

    2016-10-01

    Zinc is a moderately volatile element and a key tracer of volatile depletion on planetary bodies due to lack of significant isotopic fractionation under high-temperature processes. Terrestrial basalts have δ66Zn values similar to some chondrites (+ 0.15 to 0.3‰ where [{66Zn/64Znsample/66Zn/64ZnJMC-Lyon-1} × 1000]) and elevated Zn concentrations (100 ppm). Lunar mare basalts yield a mean δ66Zn value of +1.4 ± 0.5‰ and have low Zn concentrations (~2 ppm). Late-stage lunar magmatic products, such as ferroan anorthosite, Mg-suite and Alkali suite rocks exhibit heavier δ66Zn values (+3 to +6‰). The heavy δ66Zn lunar signature is thought to reflect evaporative loss and fractionation of zinc, either during a giant impact or in a magma ocean phase.We explore conditions of volatile element loss within a lunar magma ocean (LMO) using models of Zn isotopic fractionation that are widely applicable to planetary magma oceans. For the Moon, our objective was to identify conditions that would yield a δ66Zn signature of ~ +1.4‰ within the mantle, assuming a terrestrial mantle zinc starting composition.We examine two cases of zinc evaporative fractionation: (1) lunar surface zinc fractionation that was completed prior to LMO crystallization and (2) lunar surface zinc fractionation that was concurrent with LMO crystallization. The first case resulted in a homogeneous lunar mantle and the second case yielded a stratified lunar mantle, with the greatest zinc isotopic enrichment in late-stage crystallization products. This latter case reproduces the distribution of zinc isotope compositions in lunar materials quite well.We find that hydrodynamic escape was not a dominant process in losing Zn, but that erosion of a nascent lunar atmosphere, or separation of condensates into a proto-lunar crust are possible. While lunar volatile depletion is still possible as a consequence of the giant impact, this process cannot reproduce the variable δ66Zn found in the Moon. Outgassing

  14. Multiphase Dynamics of Magma Oceans

    NASA Astrophysics Data System (ADS)

    Boukaré, Charles-Edouard; Ricard, Yanick; Parmentier, Edgar M.

    2017-04-01

    Since the earliest study of the Apollo lunar samples, the magma ocean hypothesis has received increasing consideration for explaining the early evolution of terrestrial planets. Giant impacts seem to be able to melt significantly large planets at the end of their accretion. The evolution of the resulting magma ocean would set the initial conditions (thermal and compositionnal structure) for subsequent long-term solid-state planet dynamics. However, magma ocean dynamics remains poorly understood. The major challenge relies on understanding interactions between the physical properties of materials (e.g., viscosity (at liquid or solid state), buoyancy) and the complex dynamics of an extremely vigorously convecting system. Such complexities might be neglected in cases where liquidus/adiabat interactions and density stratification leads to stable situations. However, interesting possibilities arise when exploring magma ocean dynamics in other regime. In the case of the Earth, recent studies have shown that the liquidus might intersect the adiabat at mid-mantle depth and/or that solids might be buoyant at deep mantle conditions. These results require the consideration of more sophisticated scenarios. For instance, how does bottom-up crystallization look with buoyant crystals? To understand this complex dynamics, we develop a multiphase phase numerical code that can handle simultaneously phase change, the convection in each phase and in the slurry, as well as the compaction or decompaction of the two phases. Although our code can only run in a limited parameter range (Rayleigh number, viscosity contrast between phases, Prandlt number), it provides a rich dynamics that illustrates what could have happened. For a given liquidus/adiabat configuration and density contrast between melt and solid, we explore magma ocean scenarios by varying the relative timescales of three first order processes: solid-liquid separation, thermo-chemical convective motions and magma ocean cooling.

  15. Lithospheric magma dynamics beneath the El Hierro Volcano, Canary Islands: insights from fluid inclusions

    NASA Astrophysics Data System (ADS)

    Oglialoro, E.; Frezzotti, M. L.; Ferrando, S.; Tiraboschi, C.; Principe, C.; Groppelli, G.; Villa, I. M.

    2017-10-01

    At active volcanoes, petrological studies have been proven to be a reliable approach in defining the depth conditions of magma transport and storage in both the mantle and the crust. Based on fluid inclusion and mineral geothermobarometry in mantle xenoliths, we propose a model for the magma plumbing system of the Island of El Hierro (Canary Islands). The peridotites studied here were entrained in a lava flow exposed in the El Yulan Valley. These lavas are part of the rift volcanism that occurred on El Hierro at approximately 40-30 ka. The peridotites are spinel lherzolites, harzburgites, and dunites which equilibrated in the shallow mantle at pressures between 1.5 and 2 GPa and at temperatures between 800 and 950 °C (low-temperature peridotites; LT), as well as at higher equilibration temperatures of 900 to 1100 °C (high-temperature peridotites; HT). Microthermometry and Raman analyses of fluid inclusions reveal trapping of two distinct fluid phases: early type I metasomatic CO2-N2 fluids ( X N2 = 0.01-0.18; fluid density (d) = 1.19 g/cm3), coexisting with silicate-carbonate melts in LT peridotites, and late type II pure CO2 fluids in both LT (d = 1.11-1.00 and 0.75-0.65 g/cm3) and HT ( d = 1.04-1.11 and 0.75-0.65 g/cm3) peridotites. While type I fluids represent metasomatic phases in the deep oceanic lithosphere (at depths of 60-65 km) before the onset of magmatic activity, type II CO2 fluids testify to two fluid trapping episodes during the ascent of xenoliths in their host mafic magmas. Identification of magma accumulation zones through interpretation of type II CO2 fluid inclusions and mineral geothermobarometry indicate the presence of a vertically stacked system of interconnected small magma reservoirs in the shallow lithospheric mantle between a depth of 22 and 36 km (or 0.67 to 1 GPa). This magma accumulation region fed a short-lived magma storage region located in the lower oceanic crust at a depth of 10-12 km (or 0.26-0.34 GPa). Following our model

  16. The magma ocean concept and lunar evolution

    NASA Technical Reports Server (NTRS)

    Warren, P. H.

    1985-01-01

    The model of lunar evolution in which the anorthositic plagioclase-rich oldest crust of the moon is formed over a period of 300 Myr or less by crystallization as it floats on a global ocean of magma tens or hundreds of km thick is examined in a review of petrological and theoretical studies. Consideration is given to the classification of lunar rocks, the evidence for primordial deep global differentiation, constraints on the depth of the molten zone, the effects of pressure on mineral stability relationships, mainly-liquid vs mainly-magmifer ocean models, and the evidence for multiple ancient differentiation episodes. A synthesis of the model of primordial differentiation and its aftereffects is presented, and the generalization of the model to the earth and to Mars, Mercury, Venus, and the asteroids is discussed.

  17. Monochromatic body waves excited by great subduction zone earthquakes

    NASA Astrophysics Data System (ADS)

    Ihmlé, Pierre F.; Madariaga, Raúl

    Large quasi-monochromatic body waves were excited by the 1995 Chile Mw=8.1 and by the 1994 Kurile Mw=8.3 events. They are observed on vertical/radial component seismograms following the direct P and Pdiff arrivals, at all azimuths. We devise a slant stack algorithm to characterize the source of the oscillations. This technique aims at locating near-source isotropic scatterers using broadband data from global networks. For both events, we find that the oscillations emanate from the trench. We show that these monochromatic waves are due to localized oscillations of the water column. Their period corresponds to the gravest ID mode of a water layer for vertically traveling compressional waves. We suggest that these monochromatic body waves may yield additional constraints on the source process of great subduction zone earthquakes.

  18. The location and timing of magma degassing during Plinian eruptions

    NASA Astrophysics Data System (ADS)

    Giachetti, T.; Gonnermann, H. M.

    2014-12-01

    Water is the most abundant volatile species in explosively erupting silicic magmas and significantly affects magma viscosity, magma fragmentation and the dynamics of the eruption column. The effect that water has on these eruption processes can be modulated by outgassing degassing from a permeable magma. The magnitude, rate and timing of outgassing during magma ascent, in particular in relation to fragmentation, remains a subject of debate. Here we constrain how much, how fast and where the erupting magma lost its water during the 1060 CE Plinian phase of the Glass Mountain eruption of Medicine Lake Volcano, California. Using thermogravimetric analysis coupled with numerical modeling, we show that the magma lost >90% of its initial water upon eruption. Textural analyses of natural pumices, together with numerical modeling of magma ascent and degassing, indicate that 65-90% of the water exsolved before fragmentation, but very little was able to outgas before fragmentation. The magma attained permeability only within about 1 to 10 seconds before fragmenting and during that time interval permeable gas flow resulted in only a modest amount of gas flux from the un-fragmented magma. Instead, most of the water is lost shortly after fragmentation, because gas can escape rapidly from lapilli-size pyroclasts. This results in an efficient rarefaction of the gas-pyroclast mixture above the fragmentation level, indicating that the development of magma permeability and ensuing permeable outgassing are a necessary condition for sustain explosive eruptions of silicic magma. Magma permeability is thus a double-edged sword, it facilitates both, the effusive and the explosive eruption of silicic magma.

  19. Depth of origin of magma in eruptions.

    PubMed

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-09-26

    Many volcanic hazard factors--such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses--relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11-15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011-2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide.

  20. Characterization and modeling of illite crystal particles and growth mechanisms in a zoned hydrothermal deposit, Lake City, Colorado

    USGS Publications Warehouse

    Bove, D.J.; Eberl, D.D.; McCarty, D.K.; Meeker, G.P.

    2002-01-01

    Mean thickness measurements and crystal-thickness distributions (CTDs) of illite particles vary systematically with changes in hydrothermal alteration type, fracture density, and attendant mineralization in a large acid-sulfate/Mo-porphyry hydrothermal system at Red Mountain, near Lake City, Colorado. The hydrothermal illites characterize an extensive zone of quartz-sericite-pyrite alteration beneath two deeply rooted bodies of magmatic-related, quartz-alunite altered rock. Nineteen illites from a 3000 ft vertical drill hole were analyzed by XRD using the PVP-10 intercalation method and the computer program MudMaster (Bertaut-Warren-Averbach technique). Mean crystallite thicknesses, as determined from 001 reflections, range from 5-7 nanometers (nm) at depths from 0-1700 ft, then sharply increase to 10-16 nm at depths between 1800-2100 ft, and decrease again to 4-5 nm below this level. The interval of largest particle thickness correlates strongly with the zone of most intense quartz-sericite-pyrite alteration (QSP) and attendant high-density stockwork fracturing, and with the highest concentrations of Mo within the drill core. CTD shapes for the illite particles fall into two main categories: asymptotic and lognormal. The shapes of the CTDs are dependent on conditions of illite formation. The asymptotic CTDs correspond to a nucleation and growth mechanism, whereas surface-controlled growth was the dominant mechanism for the lognormal CTDs. Lognormal CTDs coincide with major through-going fractures or stockwork zones, whereas asymptotic CTDs are present in wallrock distal to these intense fracture zones. The increase in illite particle size and the associated zone of intense QSP alteration and stockwork veining was related by proximity to the dacitic magma(s), which supplied both reactants and heat to the hydrothermal system. However, no changes in illite polytype, which in other studies reflect temperature transitions, were observed within this interval.

  1. Seismic evidence for a possible deep crustal hot zone beneath Southwest Washington.

    PubMed

    Flinders, Ashton F; Shen, Yang

    2017-08-07

    Crustal pathways connecting deep sources of melt and the active volcanoes they supply are poorly understood. Beneath Mounts St. Helens, Adams, and Rainier these pathways connect subduction-induced ascending melts to shallow magma reservoirs. Petrogenetic modeling predicts that when these melts are emplaced as a succession of sills into the lower crust they generate deep crustal hot zones. While these zones are increasingly recognized as a primary site for silicic differentiation at a range of volcanic settings globally, imaging them remains challenging. Near Mount Rainier, ascending melt has previously been imaged ~28 km northwest of the volcano, while to the south, the volcano lies on the margin of a broad conductive region in the deep crust. Using 3D full-waveform tomography, we reveal an expansive low-velocity zone, which we interpret as a possible hot zone, linking ascending melts and shallow reservoirs. This hot zone may supply evolved magmas to Mounts St. Helens and Adams, and possibly Rainier, and could contain approximately twice the melt volume as the total eruptive products of all three volcanoes combined. Hot zones like this may be the primary reservoirs for arc volcanism, influencing compositional variations and spatial-segmentation along the entire 1100 km-long Cascades Arc.

  2. Seismic evidence for a possible deep crustal hot zone beneath Southwest Washington

    USGS Publications Warehouse

    Flinders, Ashton; Shen, Yang

    2017-01-01

    Crustal pathways connecting deep sources of melt and the active volcanoes they supply are poorly understood. Beneath Mounts St. Helens, Adams, and Rainier these pathways connect subduction-induced ascending melts to shallow magma reservoirs. Petrogenetic modeling predicts that when these melts are emplaced as a succession of sills into the lower crust they generate deep crustal hot zones. While these zones are increasingly recognized as a primary site for silicic differentiation at a range of volcanic settings globally, imaging them remains challenging. Near Mount Rainier, ascending melt has previously been imaged ~28 km northwest of the volcano, while to the south, the volcano lies on the margin of a broad conductive region in the deep crust. Using 3D full-waveform tomography, we reveal an expansive low-velocity zone, which we interpret as a possible hot zone, linking ascending melts and shallow reservoirs. This hot zone may supply evolved magmas to Mounts St. Helens and Adams, and possibly Rainier, and could contain approximately twice the melt volume as the total eruptive products of all three volcanoes combined. Hot zones like this may be the primary reservoirs for arc volcanism, influencing compositional variations and spatial-segmentation along the entire 1100 km-long Cascades Arc.

  3. Petrogenesis of an Early Cretaceous lamprophyre dike from Kyoto Prefecture, Japan: Implications for the generation of high-Nb basalt magmas in subduction zones

    NASA Astrophysics Data System (ADS)

    Imaoka, Teruyoshi; Kawabata, Hiroshi; Nagashima, Mariko; Nakashima, Kazuo; Kamei, Atsushi; Yagi, Koshi; Itaya, Tetsumaru; Kiji, Michio

    2017-10-01

    We studied a 107 Ma vogesite (a kind of lamprophyre with alkali-feldspar > plagioclase, and hornblende ± clinopyroxene ± biotite) dike in the Kinki district of the Tamba Belt, Kyoto Prefecture, SW Japan, using petrography, mineralogy, K-Ar ages, and geochemistry to evaluate its petrogenesis and tectonic implications. The dike has the very specific geochemical characteristics of a primitive high-Mg basalt, with 48-50 wt.% SiO2 (anhydrous basis), high values of Mg# (67.3-72.4), and high Cr ( 431 ppm), Ni ( 371 ppm), and Co ( 52 ppm) contents. The vogesite is alkaline and ne-normative with high concentrations of large ion lithophile elements (LILEs: Sr = 1270-2200 ppm, Ba = 3910-26,900 ppm), light rare earth elements (LREEs) [(La/Yb)n = 58-62), and high field strength elements (HFSEs: TiO2 = 1.5-1.8 wt.%, Nb = 24-33 ppm, Zr = 171-251 ppm), and the vogesite can be classified as a high-Nb basalt (HNB). The vogesite was formed by the lowest degree of melting of metasomatized mantle in the garnet stability field, and it may also have been formed at higher melting pressures than other Kyoto lamprophyres. The low degree of melting is the primary reason for the high-Nb content of the vogesite, not mantle metasomatism, and a higher degree of melting would have changed the primary magma composition from a HNB to a Nb-enriched basalt (NEB). The vogesite magma was contaminated at an early stage of its development by melts derived from sediments drawn down a subduction zone, as indicated by some geochemical indices and the initial Nd isotope ratios. The vogesite exhibits positive correlations between εSr(107 Ma) values (5.4-50.9) and its high Ba and Sr concentrations, and it has a limited range of εNd(107 Ma) values (+ 0.97 to + 2.4). The fact that the vogesite contains centimeter-sized xenoliths of chert, which are composed of polycrystalline quartz, calcite, barite, pyrite, and magnetite, indicates that the barium contamination took place during the ascent of the

  4. The Crystal Stratigraphy of Ontong Java Plateau Plagioclase Pegacrysts: New Insights into the Evolution of LIP Magmas.

    NASA Astrophysics Data System (ADS)

    Neal, C. R.; Kinman, W. S.

    2003-12-01

    The Ontong Java Plateau (OJP) is the world's largest LIP made up of 2 isotopically distinct lava types that comprise the Singgalo and Kwaimbaita formations (Tejada et al., 2002, J.Pet 43:449). Some Kwaimbaita basaltic flows contain plagioclase-rich cumulate xenoliths. As plagioclase is stable over a range of magmatic conditions, microanalysis of this phase allows the evolution of the parent magma(s) to be constrained (cf. Davidson & Tepley, 1997, Science 275:826). This crystal stratigraphy approach has been applied to cm-size plagioclase megacrysts from three basaltic units (5B, 6, and 7) recovered at ODP Leg 192 Site 1183. Core-to-rim trace element variations were quantified by LA-ICP-MS, major elements by EPMA, and compositional backscatter SEM imaging was used to investigate the subtle compositional zoning and textural features within the plagioclases. All 5 OJP megacrysts sampled show little core-to-rim anorthite variation (82 mol % An +/- 5%); An-rich plagioclase crystals are resistant to re-equilibration and are more likely to retain magmatic trace element signatures (Blundy & Wood, 1991, GCA 55:193). The Unit 7 (oldest) plagioclase contains a relatively Sr, Ga, REE, and Ti poor core bounded by a resorption surface and a relatively Sr, Ga, REE, and Ti rich zone suggesting this crystal was exposed to 2 compositionally distinct magmas. The Unit 6 plagioclase contains a relatively Sr, Ga, REE, and Ti poor core with increasing abundances toward the rim, consistent with evolution through fractional crystallization. This megacryst also contains a distinct resorption surface bounded by a core-like Sr, REE, and Ti poor zone. The three Unit 5B plagioclases display core-to-rim Sr and Ba increases with little core-to-rim REE and Ga variations. The uppermost Unit 5B crystal (youngest) exhibits a core-to-rim decrease in Ti, while the lower 2 crystals display the opposite relationship. We suggest the textural and trace element variations seen in OJP plagioclase megacrysts

  5. Phase petrology reveals shallow magma storage prior to large explosive silicic eruptions at Hekla volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Weber, Gregor; Castro, Jonathan M.

    2017-05-01

    Understanding the conditions that culminate in explosive eruptions of silicic magma is of great importance for volcanic hazard assessment and crisis mitigation. However, geological records of active volcanoes typically show a wide range of eruptive behavior and magnitude, which can vary dramatically for individual eruptive centers. In order to evaluate possible future scenarios of eruption precursors, magmatic system variables for different eruption types need to be constrained. Here we use petrological experiments and microanalysis of crystals to clarify the P-T-x state under which rhyodacitic melts accumulated prior to the H3 eruption; the largest Holocene Plinian eruption of Hekla volcano in Iceland. Cobalt-buffered, H2O-saturated phase equilibrium experiments reproduce the natural H3 pumice phenocryst assemblage (pl > fa + cpx > ilm + mt > ap + zrc) and glass chemistry, at 850 ± 15°C and PH2O of 130 to 175 MPa, implying shallow crustal magma storage between 5 and 6.6 km. The systematics of FeO and anorthite (CaAl2Si2O8) content in plagioclase reveal that thermal gradients were more important than compositional mixing or mingling within this magma reservoir. As these petrological findings indicate magma storage much shallower than is currently thought of Hekla's mafic system, we use the constrained storage depth in combination with deformation modeling to forecast permissible surface uplift patterns that could stem from pre-eruptive magma intrusion. Using forward modeling of surface deformation above various magma storage architectures, we show that vertical surface displacements caused by silicic magma accumulation at ∼6 km depth would be narrower than those observed in recent mafic events, which are fed from a lower crustal storage zone. Our results show how petrological reconstruction of magmatic system variables can help link signs of pre-eruptive geophysical unrest to magmatic processes occurring in reservoirs at shallow depths. This will enhance our

  6. Warm storage for arc magmas

    NASA Astrophysics Data System (ADS)

    Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K.; Harrison, T. Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-12-01

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the “cold storage” model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

  7. Warm storage for arc magmas.

    PubMed

    Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K; Harrison, T Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-12-06

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the "cold storage" model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

  8. Warm storage for arc magmas

    PubMed Central

    Barboni, Mélanie; Schmitt, Axel K.; Harrison, T. Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-01-01

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the “cold storage” model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes. PMID:27799558

  9. Crustal forensics in arc magmas

    NASA Astrophysics Data System (ADS)

    Davidson, Jon P.; Hora, John M.; Garrison, Jennifer M.; Dungan, Michael A.

    2005-01-01

    The geochemical characteristics of continental crust are present in nearly all arc magmas. These characteristics may reflect a specific source process, such as fluid fluxing, common to both arc magmas and the continental crust, and/or may reflect the incorporation of continental crust into arc magmas either at source via subducted sediment, or via contamination during differentiation. Resolving the relative mass contributions of juvenile, mantle-derived material, versus that derived from pre-existing crust of the upper plate, and providing these estimates on an element-by-element basis, is important because: (1) we want to constrain crustal growth rates; (2) we want to quantitatively track element cycling at convergent margins; and (3) we want to determine the origin of economically important elements and compounds. Traditional geochemical approaches for determining the contributions of various components to arc magmas are particularly successful when applied on a comparative basis. Studies of suites from multiple magmatic systems along arcs, for which differentiation effects can be individually constrained, can be used to extrapolate to potential source compositions. In the Lesser Antilles Arc, for example, differentiation trends from individual volcanoes are consistent with open-system evolution. However, such trends do not project back to a common primitive magma composition, suggesting that differentiation modifies magmas that were derived from distinct mantle sources. We propose that such approaches should now be complemented by petrographically constrained mineral-scale isotope and trace element analysis to unravel the contributing components to arc magmas. This innovative approach can: (1) better constrain true end-member compositions by returning wider ranges in geochemical compositions among constituent minerals than is found in whole rocks; (2) better determine magmatic evolution processes from core-rim isotopic or trace element profiles from the phases

  10. Occupant seating anthropometry: body ellipses and contact zones for side-impact protection research

    NASA Astrophysics Data System (ADS)

    Culver, Clyde C.; Viano, David C.

    The study has developed an anthropometric description of seated occupants and determined body regions representing major paths in side-impact crashes. The study has identified five major body ellipses defining the head, shoulder, chest, abdomen and pelvis of seated occupants of various sizes, including the six-year-old child. Body contact zones have been determined for front-seated occupants. These templates provide information for the design of side interiors to improve occupant protection in side-impact crashes by load-transfer and energy-absorption characteristics of biocompatible interiors.

  11. Zircons reveal magma fluxes in the Earth's crust.

    PubMed

    Caricchi, Luca; Simpson, Guy; Schaltegger, Urs

    2014-07-24

    Magma fluxes regulate the planetary thermal budget, the growth of continents and the frequency and magnitude of volcanic eruptions, and play a part in the genesis and size of magmatic ore deposits. However, because a large fraction of the magma produced on the Earth does not erupt at the surface, determinations of magma fluxes are rare and this compromises our ability to establish a link between global heat transfer and large-scale geological processes. Here we show that age distributions of zircons, a mineral often present in crustal magmatic rocks, in combination with thermal modelling, provide an accurate means of retrieving magma fluxes. The characteristics of zircon age populations vary significantly and systematically as a function of the flux and total volume of magma accumulated in the Earth's crust. Our approach produces results that are consistent with independent determinations of magma fluxes and volumes of magmatic systems. Analysis of existing age population data sets using our method suggests that porphyry-type deposits, plutons and large eruptions each require magma input over different timescales at different characteristic average fluxes. We anticipate that more extensive and complete magma flux data sets will serve to clarify the control that the global heat flux exerts on the frequency of geological events such as volcanic eruptions, and to determine the main factors controlling the distribution of resources on our planet.

  12. Magma Reservoirs Feeding Giant Radiating Dike Swarms: Insights from Venus

    NASA Technical Reports Server (NTRS)

    Grosfils, E. B.; Ernst, R. E.

    2003-01-01

    Evidence of lateral dike propagation from shallow magma reservoirs is quite common on the terrestrial planets, and examination of the giant radiating dike swarm population on Venus continues to provide new insight into the way these complex magmatic systems form and evolve. For example, it is becoming clear that many swarms are an amalgamation of multiple discrete phases of dike intrusion. This is not surprising in and of itself, as on Earth there is clear evidence that formation of both magma reservoirs and individual giant radiating dikes often involves periodic magma injection. Similarly, giant radiating swarms on Earth can contain temporally discrete subswarms defined on the basis of geometry, crosscutting relationships, and geochemical or paleomagnetic signatures. The Venus data are important, however, because erosion, sedimentation, plate tectonic disruption, etc. on Earth have destroyed most giant radiating dike swarm's source regions, and thus we remain uncertain about the geometry and temporal evolution of the magma sources from which the dikes are fed. Are the reservoirs which feed the dikes large or small, and what are the implications for how the dikes themselves form? Does each subswarm originate from a single, periodically reactivated reservoir, or do subswarms emerge from multiple discrete geographic foci? If the latter, are these discrete foci located at the margins of a single large magma body, or do multiple smaller reservoirs define the character of the magmatic center as a whole? Similarly, does the locus of magmatic activity change with time, or are all the foci active simultaneously? Careful study of giant radiating dike swarms on Venus is yielding the data necessary to address these questions and constrain future modeling efforts. Here, using giant radiating dike swarms from the Nemesis Tessera (V14) and Carson (V43) quadrangles as examples, we illustrate some of the dike swarm focal region diversity observed on Venus and briefly explore some

  13. CO2 Degassing at Kilauea Volcano: Implications for Primary Magma, Summit Reservoir Dynamics, and Magma Supply Monitoring

    NASA Astrophysics Data System (ADS)

    Gerlach, T. M.; McGee, K. A.; Elias, T.; Sutton, A. J.; Doukas, M. P.

    2001-12-01

    We report a new CO2 emission rate of 8,500 tons/day (t/d) for the summit of Kilauea Volcano, a result several times larger than previous estimates. It is based on 12 experiments on three occasions over four years constraining the SO2 emission rate and the average CO2/SO2 of emissions along the 5.4-km summit COSPEC traverse (by COSPEC, NDIR CO2 analyzer, and CP-FTIR). The core of the summit plume is at ground level along the traverse and gives average CO2/SO2 values that are representative of the overall summit emission, even though CO2 and SO2 variations are commonly uncorrelated. CO2 and SO2 concentrations exceed background by 200-1,000 ppm and 1-7 ppm respectively. Nighttime measurements exclude Park auto exhaust as a source of CO2. The summit CO2 emission rate is nearly constant (95% confidence interval = 300 t/d), despite variable summit SO2 emission rates (62-240 t/d) and CO2/SO2 (54-183). Including other known CO2 emissions on the volcano (mainly from the Pu`u `O`o eruption) gives a total emission rate of about 8,800 t/d. Thus summit CO2 emissions comprise 97% of the total known CO2 output, consistent with the hypothesis that all primary magma supplied to Kilauea arrives under the summit caldera and is thoroughly degassed of excess CO2. A persistent large CO2 anomaly of 200-1,000 ppm indicates the entry to the summit reservoir is beneath a km2-area east of Halemaumau. The bulk CO2 content of primary magma is about 0.70 wt%, inferred from the CO2 emission rate and Kilauea's magma supply rate (0.18 km3/y [Cayol et al., Science, 288, 2343, 2000]). Most of the CO2 is present as exsolved vapor (3.6-11.7 vol%) at summit reservoir depths (2-7 km), making the primary magma strongly buoyant. Magma chamber replenishment models show that robust turbulent mixing of primary and reservoir magma prevents frequent eruption of buoyant primary magma in the summit region. The escape of 90-95% of the CO2 from the summit reservoir provides a potential proxy for monitoring the

  14. Horizontal ground deformation patterns and magma storage during the Puu Oo eruption of Kilauea volcano, Hawaii: episodes 22-42

    USGS Publications Warehouse

    Hoffmann, J.P.; Ulrich, G.E.; Garcia, M.O.

    1990-01-01

    Horizontal ground deformation measurements were made repeatedly with an electronic distance meter near the Puu Oo eruption site approximately perpendicular to Kilauea's east rift zone (ERZ) before and after eruptive episodes 22-42. Line lengths gradually extended during repose periods and rapidly contracted about the same amount following eruptions. The repeated extension and contraction of the measured lines are best explained by the elastic response of the country rock to the addition and subsequent eruption of magma from a local reservoir. The deformation patterns are modeled to constrain the geometry and location of the local reservoir near Puu Oo. The observed deformation is consistent with deformation patterns that would be produced by the expansion of a shallow, steeply dipping dike just uprift of Puu Oo striking parallel to the trend of the ERZ. The modeled dike is centered about 800 m uprift of Puu Oo. Its top is at a depth of 0.4 km, its bottom at about 2.9 km, and the length is about 1.6 km; the dike strikes N65?? E and dips at about 87??SE. The model indicates that the dike expanded by 11 cm during repose periods, for an average volumetric expansion of nearly 500 000 m3. The volume of magma added to the dike during repose periods was variable but correlates positively with the volume of erupted lava of the subsequent eruption and represents about 8% of the new lava extruded. Dike geometry and expansion values are used to estimate the pressure increase near the eruption site due to the accumulation of magma during repose periods. On average, vent pressures increased by about 0.38 MPa during the repose periods, one-third of the pressure increase at the summit. The model indicates that the dikelike body below Puu Oo grew in volume from 3 million cubic meters (Mm3) to about 10-12 Mm3 during the series of eruptions. The width of this body was probably about 2.5-3.0 m. No net long-term deformation was detected along the measured deformation lines. ?? 1990

  15. Lunar magma transport phenomena

    NASA Technical Reports Server (NTRS)

    Spera, Frank J.

    1992-01-01

    An outline of magma transport theory relevant to the evolution of a possible Lunar Magma Ocean and the origin and transport history of the later phase of mare basaltic volcanism is presented. A simple model is proposed to evaluate the extent of fractionation as magma traverses the cold lunar lithosphere. If Apollo green glasses are primitive and have not undergone significant fractionation en route to the surface, then mean ascent rates of 10 m/s and cracks of widths greater than 40 m are indicated. Lunar tephra and vesiculated basalts suggest that a volatile component plays a role in eruption dynamics. The predominant vapor species appear to be CO CO2, and COS. Near the lunar surface, the vapor fraction expands enormously and vapor internal energy is converted to mixture kinetic energy with the concomitant high-speed ejection of vapor and pyroclasts to form lunary fire fountain deposits such as the Apollo 17 orange and black glasses and Apollo 15 green glass.

  16. Depth of origin of magma in eruptions

    PubMed Central

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-01-01

    Many volcanic hazard factors - such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses - relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11–15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011–2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide. PMID:24067336

  17. Thermohydrodynamic model: Hydrothermal system, shallowly seated magma chamber

    NASA Astrophysics Data System (ADS)

    Kiryukhin, A. V.

    1985-02-01

    The results of numerical modeling of heat exchange in the Hawaiian geothermal reservoir demonstrate the possibility of appearance of a hydrothermal system over a magma chamber. This matter was investigated in hydrothermal system. The equations for the conservation of mass and energy are discussed. Two possible variants of interaction between the magma chamber and the hydrothermal system were computated stationary dry magma chamber and dry magma chamber changing volume in dependence on the discharge of magma and taking into account heat exchange with the surrounding rocks. It is shown that the thermal supplying of the hydrothermal system can be ensured by the extraction of heat from a magma chamber which lies at a depth of 3 km and is melted out due to receipt of 40 cubic km of basalt melt with a temperature of 1,300 C. The initial data correspond with computations made with the model to the temperature values in the geothermal reservoir and a natural heat transfer comparable with the actually observed values.

  18. Geochemical evidences of magma dynamics at Campi Flegrei (Italy)

    NASA Astrophysics Data System (ADS)

    Caliro, S.; Chiodini, G.; Paonita, A.

    2014-05-01

    Campi Flegrei caldera, within the Neapolitan area of Italy, is potentially one of the most dangerous volcanoes in the world, and during the last decade it has shown clear signs of reactivation, marked by the onset of uplift and changes in the geochemistry of gas emissions. We describe a 30-year-long data set of the CO2-He-Ar-N2 compositions of fumarolic emissions from La Solfatara crater, which is located in the center of the caldera. The data display continuous decreases in both the N2/He and N2/CO2 ratios since 1985, paralleled by an increase in He/CO2. These variations cannot be explained by either processes of boiling/condensation in the local hydrothermal system or with changes in the mixing proportions between a magmatic vapor and hydrothermal fluids. We applied the magma degassing model of Nuccio and Paonita (2001, Earth Planet. Sci. Lett. 193, 467-481) using the most recent inert-gas solubilities in order to interpret these peculiar features in accordance with petrologic constraints derived from the ranges of the melt compositions and reservoir pressures at Campi Flegrei. The model simulations for mafic melts (trachybasalt and shoshonite) show a remarkably good agreement with the measured data. Both decompressive degassing of an ascending magma and mixing between magmatic fluids exsolved at various levels along the ascent path can explain the long-term geochemical changes. Recalling that (i) a sill-like reservoir of gases at a depth of 3-4 km seems to be the main source of ground inflation and (ii) there is petrologic and geophysical evidence for a reservoir of magma at about 8 km below Campi Flegrei, we suggest that the most-intense episodes of inflation occur when the gas supply to the sill-like reservoir comes from the 8 km-deep magma, although fluids exsolved by magma bodies at shallower depths also contribute to the gas budget. Our work highlights that, in caldera systems where the presence of hydrothermal aquifers commonly masks the magmatic signature

  19. Computer Simulation To Assess The Feasibility Of Coring Magma

    NASA Astrophysics Data System (ADS)

    Su, J.; Eichelberger, J. C.

    2017-12-01

    Lava lakes on Kilauea Volcano, Hawaii have been successfully cored many times, often with nearly complete recovery and at temperatures exceeding 1100oC. Water exiting nozzles on the diamond core bit face quenches melt to glass just ahead of the advancing bit. The bit readily cuts a clean annulus and the core, fully quenched lava, passes smoothly into the core barrel. The core remains intact after recovery, even when there are comparable amounts of glass and crystals with different coefficients of thermal expansion. The unique resulting data reveal the rate and sequence of crystal growth in cooling basaltic lava and the continuous liquid line of descent as a function of temperature from basalt to rhyolite. Now that magma bodies, rather than lava pooled at the surface, have been penetrated by geothermal drilling, the question arises as to whether similar coring could be conducted at depth, providing fundamentally new insights into behavior of magma. This situation is considerably more complex because the coring would be conducted at depths exceeding 2 km and drilling fluid pressures of 20 MPa or more. Criteria that must be satisfied include: 1) melt is quenched ahead of the bit and the core itself must be quenched before it enters the barrel; 2) circulating drilling fluid must keep the temperature of the coring assembling cooled to within operational limits; 3) the drilling fluid column must nowhere exceed the local boiling point. A fluid flow simulation was conducted to estimate the process parameters necessary to maintain workable temperatures during the coring operation. SolidWorks Flow Simulation was used to estimate the effect of process parameters on the temperature distribution of the magma immediately surrounding the borehole and of drilling fluid within the bottom-hole assembly (BHA). A solid model of the BHA was created in SolidWorks to capture the flow behavior around the BHA components. Process parameters used in the model include the fluid properties and

  20. Crystal accumulation and compositional trends in a calc-alkaline batholith: implications for correlation of plutonic and volcanic rocks

    NASA Astrophysics Data System (ADS)

    Barnes, C. G.; Coint, N.

    2013-12-01

    The Wooley Creek batholith is a tilted, calc-alkaline intrusive complex in the Klamath Mountain province, California, that can be divided into two main zones: lower (~159.2 × 0.2 Ma) and upper (~158.2 × 0.3 Ma), separated by a central transition zone. The lower zone consists of multiple intrusive units of gabbro through tonalite, with minor mafic synplutonic dikes and intrusive melagabbro and pyroxenite. Major and trace element data plot in two groups: a mafic group that encompasses pyroxenite to diorite, and a tonalitic group. For each group, Mg/Fe in augite was used to determine the approximate composition of equilibrium melt and then major element mass balance was used to calculate proportions of cumulate phases and melt. For the mafic group, no single parental magma can be identified, which is consistent with assembly via many magma batches. However, the most mafic rocks were derived from basaltic andesite magmas and represent 30 to 100% cumulate augite + opx × plagioclase × olivine. Interstitial melt in the tonalitic group was dacitic, and mass balance indicates from 30 to 80% cumulate pyroxenes + plagioclase × accessory apatite and Fe-Ti oxides. The parental magma was probably silicic andesite. The upper zone varies gradationally from structurally low quartz diorite to uppermost granite. Upper zone magmas ';leaked' to form dacitic to rhyodacitic ';roof dikes'. Previous work (Coint et al., Geosphere, in press) showed that the upper zone formed from an approximately homogeneous magma body and that compositional variation was related to upward percolation of melt. Mass balance supports this interpretation and indicates that (1) the parental magmas were andesitic, (2) structurally low rocks are 15 to 65 % cumulate hornblende + plagioclase × pyroxene, and (3) high-level granite and granodiorite are the fractionated products of this accumulation. These results show that the upper zone is a good example of fractional crystallization within a moderate

  1. Tectonic controls on the genesis of ignimbrites from the Campanian Volcanic Zone, southern Italy

    USGS Publications Warehouse

    Rolandi, G.; Bellucci, F.; Heizler, M.T.; Belkin, H.E.; de Vivo, B.

    2003-01-01

    The Campanian Plain is an 80 x 30 km region of southern Italy, bordered by the Apennine Chain, that has experienced subsidence during the Quaternary. This region, volcanologically active in the last 600 ka, has been identified as the Campanian Volcanic Zone (CVZ). The products of three periods of trachytic ignimbrite volcanism (289-246 ka, 157 ka and 106 ka) have been identified in the Apennine area in the last 300 ka. These deposits probably represent distal ash flow units of ignimbrite eruptions which occurred throughout the CVZ. The resulting deposits are interstratified with marine sediments indicating that periods of repeated volcano-tectonic emergence and subsidence may have occurred in the past. The eruption, defined as the Campanian Ignimbrite (CI), with the largest volume (310 km3), occurred in the CVZ 39 ka ago. The products of the CI eruption consist of two units (unit-1 and unit-2) formed from a single compositionally zoned magma body. Slightly different in composition, three trachytic melts constitute the two units. Unit-1 type A is an acid trachyte, type B is a trachyte and type C of unit-2 is a mafic trachyte. The CI, vented from pre-existing neotectonic faults, formed during the Apennine uplift, Initially the venting of volatile-rich type A magma deposited the products to the N-NE of the CVZ. During the eruption, the Acerra graben already affected by a NE-SW fault system, was transected by E-W faults, forming a cross-graben that extended to the gulf of Naples. E-W faults were then further dislocated by NE-SW transcurrent movements. This additional collapse significantly influenced the deposition of the B-type magma of unit-1, and the C-type magma of unit-2 toward the E-SE and S, in the Bay of Naples. The pumice fall deposit underlying the CI deposits, until now thought to be associated with the CI eruption, is not a strict transition from plinian to CI-forming activity. It is derived instead from an independent source probably located near the

  2. Water and the oxidation state of subduction zone magmas.

    PubMed

    Kelley, Katherine A; Cottrell, Elizabeth

    2009-07-31

    Mantle oxygen fugacity exerts a primary control on mass exchange between Earth's surface and interior at subduction zones, but the major factors controlling mantle oxygen fugacity (such as volatiles and phase assemblages) and how tectonic cycles drive its secular evolution are still debated. We present integrated measurements of redox-sensitive ratios of oxidized iron to total iron (Fe3+/SigmaFe), determined with Fe K-edge micro-x-ray absorption near-edge structure spectroscopy, and pre-eruptive magmatic H2O contents of a global sampling of primitive undegassed basaltic glasses and melt inclusions covering a range of plate tectonic settings. Magmatic Fe3+/SigmaFe ratios increase toward subduction zones (at ridges, 0.13 to 0.17; at back arcs, 0.15 to 0.19; and at arcs, 0.18 to 0.32) and correlate linearly with H2O content and element tracers of slab-derived fluids. These observations indicate a direct link between mass transfer from the subducted plate and oxidation of the mantle wedge.

  3. Mantle fault zone beneath Kilauea Volcano, Hawaii.

    PubMed

    Wolfe, Cecily J; Okubo, Paul G; Shearer, Peter M

    2003-04-18

    Relocations and focal mechanism analyses of deep earthquakes (>/=13 kilometers) at Kilauea volcano demonstrate that seismicity is focused on an active fault zone at 30-kilometer depth, with seaward slip on a low-angle plane, and other smaller, distinct fault zones. The earthquakes we have analyzed predominantly reflect tectonic faulting in the brittle lithosphere rather than magma movement associated with volcanic activity. The tectonic earthquakes may be induced on preexisting faults by stresses of magmatic origin, although background stresses from volcano loading and lithospheric flexure may also contribute.

  4. Mantle fault zone beneath Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Wolfe, C.J.; Okubo, P.G.; Shearer, P.M.

    2003-01-01

    Relocations and focal mechanism analyses of deep earthquakes (???13 kilometers) at Kilauea volcano demonstrate that seismicity is focused on an active fault zone at 30-kilometer depth, with seaward slip on a low-angle plane, and other smaller, distinct fault zones. The earthquakes we have analyzed predominantly reflect tectonic faulting in the brittle lithosphere rather than magma movement associated with volcanic activity. The tectonic earthquakes may be induced on preexisting faults by stresses of magmatic origin, although background stresses from volcano loading and lithospheric flexure may also contribute.

  5. Fitful and protracted magma assembly leading to a giant eruption, Youngest Toba Tuff, Indonesia

    USGS Publications Warehouse

    Reid, Mary R; Vazquez, Jorge A.

    2017-01-01

    The paroxysmal eruption of the 74 ka Youngest Toba Tuff (YTT) of northern Sumatra produced an extraordinary 2800 km3 of non-welded to densely welded ignimbrite and co-ignimbrite ash-fall. We report insights into the duration of YTT magma assembly obtained from ion microprobe U-Th and U-Pb dates, including continuous age spectra over >50% of final zircon growth, for pumices and a welded tuff spanning the compositional range of the YTT. A relatively large subpopulation of zircon crystals nucleated before the penultimate caldera-related eruption at 501 ka, but most zircons yielded interior dates 100-300 ka thereafter. Zircon nucleation and growth was likely episodic and from diverse conditions over protracted time intervals of >100 to >500 ka. Final zircon growth is evident as thin rim plateaus that are in Th/U chemical equilibrium with hosts, and that give crystallization ages within tens of ka of eruption. The longevity and chemical characteristics of the YTT zircons, as well as evidence for intermittent zircon isolation and remobilization associated with magma recharge, is especially favored at the cool and wet eutectoid conditions that characterize at least half of the YTT, wherein heat fluxes could dissolve major phases but have only a minor effect on larger zircon crystals. Repeated magma recharge may have contributed to the development of compositional zoning in the YTT but, considered together with limited allanite, quartz, and other mineral dating and geospeedometry, regular perturbations to the magma reservoir over >400 ka did not lead to eruption until 74 ka ago.

  6. Oxidation State of Iron in the Izu-Bonin Arc Initial Magma and Its Influence Factors

    NASA Astrophysics Data System (ADS)

    Li, H.; Arculus, R. J.; Brandl, P. A.; Hamada, M.; Savov, I. P.; Zhu, S.; Hickey-Vargas, R.; Tepley, F. J., III; Meffre, S.; Yogodzinski, G. M.; McCarthy, A.; Barth, A. P.; Kanayama, K.; Kusano, Y.; Sun, W.

    2014-12-01

    The redox state of mantle-derived magmas is a controversial issue, especially whether island arc basalts are more oxidized than those from mid-ocean ridges. Usually, arc magmas have higher Fe3+/Fe2+ and calculated oxygen fugacity (fO2) than mid-ocean ridge basalts (MORB). It is the high fO2 of arc magma that apparently delays onset of sulfide fractionation and sequestration of precious/base metals thereby facilitating the formation of many giant gold-copper deposits typically associated with subduction zones. But due to a paucity of Fe3+/Fe2+ data for primary mantle-derived arc magmas, the cause for high fO2 of these magma types is still controversial; causes may include inter alia subduction-released oxidized material addition to the mantle wedge source of arc magma, partial melting of subducted slab, and redox changes occurring during ascent of the magma. Fortunately, IODP expedition 351 drilling at IODP Site U1438 in the Amami-Sankaku Basin of the northwestern Philipine Sea, adjacent to the proto-Izu-Bonin Arc at the Kyushu-Palau Ridge (KPR), recovered not only volcaniclastics derived from the inception of Izu-Bonin Mariana (IBM) arc in the Eocene, but also similar materials for the Arc's subsequent evolution through to the Late Oligocene and abandonment of the KPR as a remnant arc. Samples of the pre-Arc oceanic crustal basement were also recovered enabling us to determine the fO2of the mantle preceding arc inception. As the oxidation state of iron in basaltic glass directly relates to the fO2 , the Fe3+/∑Fe ratio [Fe3+/(Fe3++ Fe2+)] of basaltic glass are quantified by synchrotron-facilitated micro X-ray Absorption Near Edge Structure (XANES) spectroscopy to reflect its fO2. Fe K-edge µ-XANES spectra were recorded in fluorescence mode at Beamline 15U1, Shanghai Synchrotron Radiation Facility (SSRF). Synthetic silicate glass with known Fe3+/∑Fe ratio was used in data handling. The experimental results as well as preliminary data from IODP Expedition 351

  7. MAGMA: analysis of two-channel microarrays made easy.

    PubMed

    Rehrauer, Hubert; Zoller, Stefan; Schlapbach, Ralph

    2007-07-01

    The web application MAGMA provides a simple and intuitive interface to identify differentially expressed genes from two-channel microarray data. While the underlying algorithms are not superior to those of similar web applications, MAGMA is particularly user friendly and can be used without prior training. The user interface guides the novice user through the most typical microarray analysis workflow consisting of data upload, annotation, normalization and statistical analysis. It automatically generates R-scripts that document MAGMA's entire data processing steps, thereby allowing the user to regenerate all results in his local R installation. The implementation of MAGMA follows the model-view-controller design pattern that strictly separates the R-based statistical data processing, the web-representation and the application logic. This modular design makes the application flexible and easily extendible by experts in one of the fields: statistical microarray analysis, web design or software development. State-of-the-art Java Server Faces technology was used to generate the web interface and to perform user input processing. MAGMA's object-oriented modular framework makes it easily extendible and applicable to other fields and demonstrates that modern Java technology is also suitable for rather small and concise academic projects. MAGMA is freely available at www.magma-fgcz.uzh.ch.

  8. Magma heating by decompression-driven crystallization beneath andesite volcanoes.

    PubMed

    Blundy, Jon; Cashman, Kathy; Humphreys, Madeleine

    2006-09-07

    Explosive volcanic eruptions are driven by exsolution of H2O-rich vapour from silicic magma. Eruption dynamics involve a complex interplay between nucleation and growth of vapour bubbles and crystallization, generating highly nonlinear variation in the physical properties of magma as it ascends beneath a volcano. This makes explosive volcanism difficult to model and, ultimately, to predict. A key unknown is the temperature variation in magma rising through the sub-volcanic system, as it loses gas and crystallizes en route. Thermodynamic modelling of magma that degasses, but does not crystallize, indicates that both cooling and heating are possible. Hitherto it has not been possible to evaluate such alternatives because of the difficulty of tracking temperature variations in moving magma several kilometres below the surface. Here we extend recent work on glassy melt inclusions trapped in plagioclase crystals to develop a method for tracking pressure-temperature-crystallinity paths in magma beneath two active andesite volcanoes. We use dissolved H2O in melt inclusions to constrain the pressure of H2O at the time an inclusion became sealed, incompatible trace element concentrations to calculate the corresponding magma crystallinity and plagioclase-melt geothermometry to determine the temperature. These data are allied to ilmenite-magnetite geothermometry to show that the temperature of ascending magma increases by up to 100 degrees C, owing to the release of latent heat of crystallization. This heating can account for several common textural features of andesitic magmas, which might otherwise be erroneously attributed to pre-eruptive magma mixing.

  9. Using magma flow indicators to infer flow dynamics in sills

    NASA Astrophysics Data System (ADS)

    Hoyer, Lauren; Watkeys, Michael K.

    2017-03-01

    Fabrics from Anisotropy of Magnetic Susceptibility (AMS) analyses and Shape Preferred Orientation (SPO) of plagioclase are compared with field structures (such as bridge structures, intrusive steps and magma lobes) formed during magma intrusion in Jurassic sills. This is to constrain magma flow directions in the sills of the Karoo Igneous Province along the KwaZulu-Natal North Coast and to show how accurately certain structures predict a magma flow sense, thus improving the understanding of the Karoo sub-volcanic dynamics. The AMS fabrics are derived from magnetite grains and are well constrained, however the SPO results are commonly steeply inclined, poorly constrained and differ to the AMS fabrics. Both techniques resulted in asymmetrical fabrics. Successful relationships were established between the AMS fabric and the long axes of the magma flow indicators, implying adequate magma flow prediction. However, where numerous sill segments merge, either in the form of magma lobes or bridge structures, the coalescence process creates a new fabric between the segments preserving late-stage magma migration between the merged segments, overprinting the initial magma flow direction.

  10. Fumarole emissions at Mount St. Helens volcano, June 1980 to October 1981: Degassing of a magma-hydrothermal system

    USGS Publications Warehouse

    Gerlach, T.M.; Casadevall, T.J.

    1986-01-01

    This study is an investigation of the chemical changes in the Mount St. Helens fumarole gases up to October 1981, the sources of the fumarole gases, and the stability of gas species in the shallow magma system. These problems are investigated by calculations of element compositions, thermodynamic equilibria, and magmatic volatile-hydrothermal steam mixing models. The fumarole gases are treated as mixtures of magmatic volatiles and hydrothermal steam formed by magma degassing and boiling of local waters in a dryout zone near conduit and dome magma. The magmatic volatile fraction is significant in fumaroles with temperatures in excess of the magma cracking-temperature (??? 700??C) - i.e., the temperature below which cracking is induced by thermal stresses during cooling and solidification. Linear composition changes of the fumarole gases over time appear to be the result of a steady decline in the magmatic volatile mixing fraction, which may be due to the tapping of progressively volatile-depleted magma. The maximum proportion of hydrothermal steam in the fumaroles rose from about 25-35% in September 1980 to around 50-70% by October 1981. Fractional degassing of magmatic CO2 and sulfur also contributed to the chemical changes in the fumarole gases. The steady chemical changes indicate that replenishment of the magma system with undegassed magma was not significant between September 1980 and September 1981. Extrapolations of chemical trends suggest that fumarole gases emitted at the time of formation of the first dome in mid-June 1980 were more enriched in a magmatic volatile fraction and contained a minimum of 9% CO2. Calculations show H2S is the predominant sulfur species in Mount St. Helens magma below depths of 200 m. Rapid release of gases from magma below this depth is a plausible mechanism for producing the high H2S/SO2 observed in Mount St. Helens plumes during explosive eruptions. This study suggests that dacite-andesite volcanos may emit gases richer in CO2

  11. Transition from magma dominant to magma poor rifting along the Nova Scotia Continental Margin

    NASA Astrophysics Data System (ADS)

    Lau, K. H.; Louden, K. E.; Nedimović, M. R.; Whitehead, M.; Farkas, A.; Watremez, L.; Dehler, S. A.

    2011-12-01

    Passive margins have been characterized as magma-dominant (volcanic) or magma-poor (non-volcanic). However, the conditions under which margins might switch states are not well understood as they typically have been studied as end member examples in isolation to each other. The Nova Scotia (NS) continental margin, however, offers an opportunity to study the nature of such a transition between the magma-dominant US East Coast margin to the south and the magma-poor Newfoundland margin to the north within a single rift segment. This transition is evidenced by a clear along-strike reduction in features characteristic of syn-rift volcanism from south-to-north along the NS margin, such as the weakening of the East Coast Magnetic Anomaly (ECMA) and the coincident disappearance of seaward dipping reflector sequences (SDRS) on multichannel seismic (MCS) reflection profiles. Results from recent industry MCS profiles along and across the margin suggest a potentially narrow magma-dominant to magma-poor along-strike transition between the southern and the central NS margin. Such a transition is broadly consistent with results of several widely-spaced, across-strike ocean bottom seismometer (OBS) wide-angle profiles. In the southern region, the crustal structure exhibits a narrow (~120-km wide) ocean-continent transition (OCT) with a high velocity (7.2 km/s) lower crust, interpreted as a gabbro-rich underplated melt, beneath the SDRS and the ECMA, similar to crustal models across the US East Coast. In contrast, profiles across the central and northern margin contain a much wider OCT (150-200-km wide) underlain by a low velocity mantle layer (7.3-7.9 km/s), interpreted as partially serpentinized olivine, which is similar to the magma-poor Newfoundland margin to the north. However, the central-to-northern OBS profiles also exhibit significant variations within the OCT and the along-strike continuity of these OCT structures is not yet clear. In November 2010, we acquired, in the

  12. Geophysical study of a magma chamber near Mussau Island, Papua New Guinea

    USGS Publications Warehouse

    Dadisman, Shawn V.; Marlow, M. S.

    1988-01-01

    Analysis of a 24-channel seismic-reflection data collected near Mussau Island, Papua New Guinea, shows a high-amplitude, negative-polarity reflection that we believe is from the top of a magma chamber.  The reflecting horizon lies at a depth of about 4.4 s subbottom and can be traced laterally for 2.6 km.  On shot gathers, the reflection demonstrates normal moveout appropriate for an in-place event.  The frequency spectrum of the reflection shows a decrease in high-frequency content when compared to the sea floor reflection, as would be expected for a deep subsurface event.  The polarity of the reflection event is negative, suggesting that the reflection horizon is the top of a low-velocity zone.  Magnetic data indicate that the ridge containing the reflecting horizon is magnetic, and the geology of Massau Island suggests that the ridge is volcanic in its origin.  We speculate that the high-amplitude reflection is from the top of a magma chamber some 7-11 km deep.

  13. Aftershock decay, productivity, and stress rates in Hawaii: Indicators of temperature and stress from magma sources

    USGS Publications Warehouse

    Klein, Fred W.; Wright, Tom; Nakata, Jennifer

    2006-01-01

    We examined dozens of aftershock sequences in Hawaii in terms of Gutenberg-Richter and modified Omori law parameters. We studied p, the rate of aftershock decay; Ap, the aftershock productivity, defined as the observed divided by the expected number of aftershocks; and c, the time delay when aftershock rates begin to fall. We found that for earthquakes shallower than 20 km, p values >1.2 are near active magma centers. We associate this high decay rate with higher temperatures and faster stress relaxation near magma reservoirs. Deep earthquakes near Kilauea's inferred magma transport path show a range of p values, suggesting the absence of a large, deep magma reservoir. Aftershock productivity is >4.0 for flank earthquakes known to be triggered by intrusions but is normal (0.25 to 4.0) for isolated main shocks. We infer that continuing, post-main shock stress from the intrusion adds to the main shock's stress step and causes higher Ap. High Ap in other zones suggests less obvious intrusions and pulsing magma pressure near Kilauea's feeding conduit. We calculate stress rates and stress rate changes from pre-main shock and aftershock rates. Stress rate increased after many intrusions but decreased after large M7–8 earthquakes. Stress rates are highest in the seismically active volcano flanks and lowest in areas far from volcanic centers. We found sequences triggered by intrusions tend to have high Ap, high (>0.10 day) c values, a stress rate increase, and sometimes a peak in aftershock rate hours after the main shock. We interpret these values as indicating continuing intrusive stress after the main shock.

  14. Potential Magma Chambers beneath the Tatun Volcanic Area, Taiwan: Results from Magnetotelluric Survey and Monitoring

    NASA Astrophysics Data System (ADS)

    Chen, C.

    2013-12-01

    Previous earthquakes analysis indicated existing seismicity anomaly beneath Tatun volcano, Taiwan, possibly caused by the fluid activity of the volcano. Helium isotope studies also indicated that over 60% of the fumarolic gases and vapors originated from deep mantle in the Tatun volcano area. The chemistry of the fumarolic gases and vapors and seismicity anomaly are important issues in view of possible magma chamber in the Tatun volcano, where is in the vicinity of metropolitan Taipei, only 15 km north of the capital city. In this study magnetotelluric (MT) soundings and monitoring were deployed to understand the geoelectric structures in the Tatun volcano as Electromagnetic methods are sensitive to conductivity contrasts and can be used as a supplementary tool to delineate reservoir boundaries. An anticline extending more than 10 km beneath the Chih-Shin-Shan and Da-You-Kan areas was recognized. Low resistivity at a shallow and highly porous layer 500m thick might indicate circulation of heated water. However, a high resistivity layer at depth between 2 and 6 km was detected. This layer could be associated with high micro-earthquakes zone. The characteristics of this layer produced by either the magma chamber or other geothermal activity were similar to that of some other active volcanic areas in the world. At 6 km underground was a dome structure of medium resistivity. This structure could be interpreted as a magma chamber in which the magma is possibly cooling down, as judged by its relatively high resistivity. The exact attributes of the magma chamber were not precisely determined from the limited MT soundings. At present, a joint monitors including seismic activity, ground deformation, volcanic gases, and changes in water levels and chemistry are conducted by universities and government agencies. When unusual activity is detected, a response team may do more ground surveys to better determine if an eruption is likely.

  15. Magma Differentiation and Storage Inferred from Crystal Textures at Harrat Rahat Volcanic Field, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Witter, M. R.; Mahood, G. A.; Stelten, M. E.; Downs, D. T.; Zahran, H. M.

    2015-12-01

    We present results of a petrographic study of Harrat Rahat volcanic field in western Saudi Arabia as part of a collaborative project between the U.S.G.S. and the Saudi Geological Survey. Lavas range in composition from alkali basalt to trachyphonolite. Basalts have <2-10 vol.% phenocrysts of euhedral olivine and plagioclase (± minor clinopyroxene). In intermediate lavas, phenocrysts (<5 vol.%) of olivine and plagioclase are resorbed, and plagioclase also exhibits sieve textures and strong zoning, indicative of complex magmatic histories. Trachyphonolite lavas have 0-35 vol.% large phenocrysts of anorthoclase and trace fayalitic olivine but are characterized by a size distribution of crystals that is seriate in hand specimen, so that most exceeded 45% crystals at the time of eruption. Some contain groundmass alkali amphibole. Crystal size distributions (CSD) of crystal-rich trachyphonolites produce simple linear trends (see below), which are interpreted as signifying that all the crystals are related through a common nucleation and growth history, at more or less constant pressure. Linear CSDs indicate no loss of small crystals due to reheating of magmas by recharge, no gain of small crystals due to late-stage nucleation on ascent or degassing, and no addition of large phenocrysts by crystal accumulation or magma mixing. Experimental studies demonstrate that silica-undersaturated evolved magmas like those erupted at Harrat Rahat can form by fractionation of alkali basalts at crustal depths greater than ~25 km. The observed phenocryst assemblage in the trachyphonolites, however, forms at shallow depths, ~2-4 km, according to MELTS modeling. Coupled with CSD data, this suggests that deep extraction events yield crystal-poor trachyphonolite magmas that rise to the upper crust where they undergo crystallization. Extensive shallow crystallization of trachyphonolites may have triggered eruptions by causing vapor saturation, which lowers magma density via vesiculation and

  16. Magmatic architecture within a rift segment: Articulate axial magma storage at Erta Ale volcano, Ethiopia

    NASA Astrophysics Data System (ADS)

    Xu, Wenbin; Rivalta, Eleonora; Li, Xing

    2017-10-01

    Understanding the magmatic systems beneath rift volcanoes provides insights into the deeper processes associated with rift architecture and development. At the slow spreading Erta Ale segment (Afar, Ethiopia) transition from continental rifting to seafloor spreading is ongoing on land. A lava lake has been documented since the twentieth century at the summit of the Erta Ale volcano and acts as an indicator of the pressure of its magma reservoir. However, the structure of the plumbing system of the volcano feeding such persistent active lava lake and the mechanisms controlling the architecture of magma storage remain unclear. Here, we combine high-resolution satellite optical imagery and radar interferometry (InSAR) to infer the shape, location and orientation of the conduits feeding the 2017 Erta Ale eruption. We show that the lava lake was rooted in a vertical dike-shaped reservoir that had been inflating prior to the eruption. The magma was subsequently transferred into a shallower feeder dike. We also find a shallow, horizontal magma lens elongated along axis inflating beneath the volcano during the later period of the eruption. Edifice stress modeling suggests the hydraulically connected system of horizontal and vertical thin magmatic bodies able to open and close are arranged spatially according to stresses induced by loading and unloading due to topographic changes. Our combined approach may provide new constraints on the organization of magma plumbing systems beneath volcanoes in continental and marine settings.

  17. Comparative Magma Oceanography

    NASA Technical Reports Server (NTRS)

    Jones, John H.

    1999-01-01

    The question of whether the Earth ever passed through a magma ocean stop is of considerable interest. Geochemical evidence strongly suggests that the Moon had a magma ocean and the evidence is mounting that the same was true for Mars. Analyses of mar (SNC) meteorites have yielded insights into the differentiation history of Mars, and consequently, it is interesting to compare that planet to the Earth. Three primary features of An contrast strongly to those of the Earth: (1) the extremely ancient ages of the martian core, mantle, and crust (approx. 4.55 b.y.); (2) the highly depleted nature of the martian mantle; and (3) the extreme ranges of Nd isotopic compositions that arise within the crust and depleted mantle.

  18. Empirical equations to predict the sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits

    NASA Astrophysics Data System (ADS)

    Li, Chusi; Ripley, Edward M.

    2005-03-01

    Empirical equations to predict the sulfur content of a mafic magma at the time of sulfide saturation have been developed based on several sets of published experimental data. The S content at sulfide saturation (SCSS) can be expressed as: ln X_{text S} = 1.229 - 0.74(10^4/T) - 0.021(P) - 0.311 ln X_{{text{FeO}}} - 6.166X_{{text{SiO}}_{text{2}}} - 9.153X_{{text{Na}}_{text{2}} {text{O + K}}_{text{2}} {text{O}}} - 1.914X_{{text{MgO}}} + 6.594X_{{text{FeO}}} where T is in degrees Kelvin, X is mole fraction and P is in kbar. The squared multiple correlation coefficient ( r 2) for the equation is 0.88. Application of the equation to data from sulfide-saturated mid-ocean ridge basalts (MORB) samples show that the SCSS is closely predicted for primitive MORBs, but that accuracy decreases for lower T (<1,130°C) and more evolved MORB samples. This suggests that because the calibrations are based on anhydrous experimental runs done at temperatures of 1,200°C and above, it is not possible to extrapolate them to significantly lower temperatures and hydrous conditions. Because the SCSS of a primitive MORB magma increases with decreasing P, sulfide saturation in MORB appears to be a function of the degree of en route assimilation of S from country rocks as well as the degree of fractional crystallization in shallow staging chambers. Application of the equation to the high- T impact melt sheet that produced the Sudbury Igneous Complex and associated Ni-Cu sulfide ores indicates that sulfide-saturation was reached at 1,500°C, well above the start of orthopyroxene crystallization at 1,190°C. This would permit ample time for the gravitational settling and collection of immiscible sulfide liquid that produced the high-grade ore bodies. The development of a platinum group element (PGE)-enriched layer in the Sonju Lake Intrusion of the Duluth Complex is thought to be due to the attainment of sulfide saturation in the magma after a period of fractional crystallization. Using the

  19. The Dovyren Intrusive Complex (Southern Siberia, Russia): Insights into dynamics of an open magma chamber with implications for parental magma origin, composition, and Cu-Ni-PGE fertility

    NASA Astrophysics Data System (ADS)

    Ariskin, Alexey; Danyushevsky, Leonid; Nikolaev, Georgy; Kislov, Evgeny; Fiorentini, Marco; McNeill, Andrew; Kostitsyn, Yuri; Goemann, Karsten; Feig, Sandrin T.; Malyshev, Alexey

    2018-03-01

    -mineralised PGE-rich anorthosite in the Main Reef. The geochemical structure of the YDM demonstrates C-shaped distributions of TiO2, K2O, P2O5, and incompatible trace elements, which are 3-5 fold depleted in the cumulate rocks from the inner horizons of the intrusion with respect to the relatively thin lower and upper contact zones. In addition, a marked misbalance between estimates of the average composition of the YDM and that of the proposed olivine-laden parental magmas is established. This misbalance reflects a significant deficit of the YDM in incompatible elements, which argues that 60-70% of basaltic melts had to have been expelled from the Dovyren magma chamber during its consolidation. A possible scenario of the evolution of the open magma chamber is proposed.

  20. Identification of the Low-velocity Zone Beneath the Northern Taiwan by the P-wave Delays Analysis

    NASA Astrophysics Data System (ADS)

    Chang, C. W.; Che-Min, L.

    2017-12-01

    Taipei City, the capital of Taiwan, located in northern Taiwan is near to the Tatun volcano group and the Shanchiao fault which is an active fault. This region is a complex tectonic environment. The Tatun volcano group is seen as a dormant volcano. Recently, the location of the magma reservoir of the Tatun volcano was discussed again. However, the volume and the location of the magma reservoir are still unclear. There are several seismic networks operated by different institutions around Taipei and Tatun volcano. In this study, we combined the data of these networks to analysis the P-wave arrival times for clarifying the magma reservoir. The events with hypocenters are deeper than 100 km and the local magnitude (ML) are larger than 4.0 were collected to analysis. Our results show that the stations could be separated into three groups by the slope of the P-wave arrival time. They are distributed at the western of the Basin edge, the Jin-Shan Plain areal and the Taipei Basin, respectively. When the epicenter distance of the different stations is the same, the P-wave arrival time of the stations on the west side of the basin edge will be 0.3 0.5 seconds later than that in the Taipei Basin, and the stations on the Jin-Shan Plain will be 0.1 0.4 seconds later than in the Taipei Basin. The slope of the P-wave arrival time in 3 groups is very different, indicating that the low-velocity zone is existed in shallow crustal beneath of these areas. However, the low-velocity zone can be connected to the magma reservoir of the Tatun volcano group or submarine volcano of Keelung Island or not? It can be discussed the correlation between the magma reservoir and the low-velocity zone by more events collected.

  1. Moderate-magnitude earthquakes induced by magma reservoir inflation at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Wauthier, Christelle; Roman, Diana C.; Poland, Michael P.

    2013-01-01

    Although volcano-tectonic (VT) earthquakes often occur in response to magma intrusion, it is rare for them to have magnitudes larger than ~M4. On 24 May 2007, two shallow M4+ earthquakes occurred beneath the upper part of the east rift zone of Kīlauea Volcano, Hawai‘i. An integrated analysis of geodetic, seismic, and field data, together with Coulomb stress modeling, demonstrates that the earthquakes occurred due to strike-slip motion on pre-existing faults that bound Kīlauea Caldera to the southeast and that the pressurization of Kīlauea's summit magma system may have been sufficient to promote faulting. For the first time, we infer a plausible origin to generate rare moderate-magnitude VTs at Kīlauea by reactivation of suitably oriented pre-existing caldera-bounding faults. Rare moderate- to large-magnitude VTs at Kīlauea and other volcanoes can therefore result from reactivation of existing fault planes due to stresses induced by magmatic processes.

  2. Processes and time scales of magmatic evolution as revealed by Fe-Mg chemical and isotopic zoning in natural olivines

    NASA Astrophysics Data System (ADS)

    Oeser, Martin; Dohmen, Ralf; Horn, Ingo; Schuth, Stephan; Weyer, Stefan

    2015-04-01

    In this study, we applied high-precision in situ Fe and Mg isotope analyses by femtosecond laser ablation (fs-LA) MC-ICP-MS on chemically zoned olivine xeno- and phenocrysts from intra-plate volcanic regions in order to investigate the magnitude of Fe and Mg isotope fractionation and its suitability to gain information on magma evolution. Our results show that chemical zoning (i.e., Mg#) in magmatic olivines is commonly associated with significant zoning in δ56Fe and δ26Mg (up to 1.7‰ and 0.7‰, respectively). We explored different cases of kinetic fractionation of Fe and Mg isotopes by modeling diffusion in the melt or olivine and simultaneous growth or dissolution. Combining the information of chemical and isotopic zoning in olivine allows to distinguish between various processes that may occur during magma evolution, namely diffusive Fe-Mg exchange between olivine and melt, rapid crystal growth, and Fe-Mg inter-diffusion simultaneous to crystal dissolution or growth. Chemical diffusion in olivine appears to be the dominant process that drives isotope fractionation in magmatic olivine. Simplified modeling of Fe and Mg diffusion is suitable to reproduce both the chemical and the isotopic zoning in most of the investigated olivines and, additionally, provides time information about magmatic processes. For the Massif Central (France), modeling of diffusive re-equilibration of mantle olivines in basanites revealed a short time span (<2 years) between the entrainment of a mantle xenolith in an intra-plate basaltic magma and the eruption of the magma. Furthermore, we determined high cooling rates (on the order of a few tens to hundreds of °C per year) for basanite samples from a single large outcrop in the Massif Central, which probably reflects the cooling of a massive lava flow after eruption. Results from the modeling of Fe and Mg isotope fractionation in olivine point to a systematic difference between βFe and βMg (i.e., βFe/βMg ≈ 2), implying that the

  3. Phase equilibria constraints on models of subduction zone magmatism

    NASA Astrophysics Data System (ADS)

    Myers, James D.; Johnston, Dana A.

    Petrologic models of subduction zone magmatism can be grouped into three broad classes: (1) predominantly slab-derived, (2) mainly mantle-derived, and (3) multi-source. Slab-derived models assume high-alumina basalt (HAB) approximates primary magma and is derived by partial fusion of the subducting slab. Such melts must, therefore, be saturated with some combination of eclogite phases, e.g. cpx, garnet, qtz, at the pressures, temperatures and water contents of magma generation. In contrast, mantle-dominated models suggest partial melting of the mantle wedge produces primary high-magnesia basalts (HMB) which fractionate to yield derivative HAB magmas. In this context, HMB melts should be saturated with a combination of peridotite phases, i.e. ol, cpx and opx, and have liquid-lines-of-descent that produce high-alumina basalts. HAB generated in this manner must be saturated with a mafic phase assemblage at the intensive conditions of fractionation. Multi-source models combine slab and mantle components in varying proportions to generate the four main lava types (HMB, HAB, high-magnesia andesites (HMA) and evolved lavas) characteristic of subduction zones. The mechanism of mass transfer from slab to wedge as well as the nature and fate of primary magmas vary considerably among these models. Because of their complexity, these models imply a wide range of phase equilibria. Although the experiments conducted on calc-alkaline lavas are limited, they place the following limitations on arc petrologic models: (1) HAB cannot be derived from HMB by crystal fractionation at the intensive conditions thus far investigated, (2) HAB could be produced by anhydrous partial fusion of eclogite at high pressure, (3) HMB liquids can be produced by peridotite partial fusion 50-60 km above the slab-mantle interface, (4) HMA cannot be primary magmas derived by partial melting of the subducted slab, but could have formed by slab melt-peridotite interaction, and (5) many evolved calc

  4. Watching magma from space

    USGS Publications Warehouse

    Lu, Zhong; Wicks, Charles W.; Dzurisin, Daniel; Thatcher, Wayne R.; Freymueller, Jeffrey T.; McNutt, Stephen R.; Mann, Dorte

    2000-01-01

    Westdahl is a broad shield volcano at the western end of Unimak Island in the Aleutian chain. It has apparently been dormant since a 1991-92 eruption and seismicity levels have been low. However, satellite radar imaging shows that in the years following 1992 the upper flanks of Westdahl have risen several centimeters, probably from the influx of new magma deep below its summit. Until now, deep magma reservoirs have been difficult to detect beneath most volcanoes. But using space geodetic technologies, specifically interferometric synthetic aperture radar (InSAR), we have discovered a deep magmatic source beneath Westdahl. 

  5. Fractionation, ascent, and extrusion of magma at the Santiaguito volcanic dome, Guatemala

    NASA Astrophysics Data System (ADS)

    Scott, J.; Mather, T. A.; Pyle, D. M.

    2011-12-01

    The silicic dome complex of Santiaguito, Guatemala has exhibited continuous low-level activity for nearly 90 years[1]. Despite its longevity, remarkably little is known about the magmatic plumbing system beneath Santiaguito. We present preliminary constraints on this system, based on petrological analyses of lava samples. Amphibole thermobarometry suggests magma evolves during slow ascent through a phenocryst fractionation zone - a complex of dikes and sills, extending from at least ~24 km to at most ~12 km beneath Santiaguito. Discontinuous plagioclase size distributions suggest this slow fractionation ends at depth, and degassing-induced crystallization of microlites begins. The texture and geochemistry of microlites is consistent with uninterrupted final ascent; there is no evidence of shallow magma storage beneath Santiaguito. The normative composition of matrix glass, and the morphology and volume of plagioclase microlites suggests ascending magma crosses the rigidification threshold within <1 km of the surface. The term "rigidification" refers to the point at which crystallization ends, vesicles are preserved, and ductile behaviour is replaced by dominantly brittle behaviour, previously referred to as "final melt quench". We suggest rigidification slows the ascent of magma and may create the conduit plug previously observed at Santiaguito[2]. This rigid mass of magma may begin to fracture almost immediately to form a semi-permeable plug, before extruding onto the surface as blocky lava. The extrusion rate may be reflected in the extent of matrix glass decomposition to crystalline silica and alkali feldspar. This preliminary picture of the plumbing system beneath Santiaguito may lead to a greater understanding of the behaviour of this enigmatic volcano, and of the danger it poses to the region. However, our findings raise many further questions about the dynamics within silicic dome-forming systems that need to be addressed if we are to work towards a broad

  6. Major and trace element, and Sr isotope compositions of clinopyroxene phenocrysts in mafic dykes on Jiaodong Peninsula, southeastern North China Craton: Insights into magma mixing and source metasomatism

    NASA Astrophysics Data System (ADS)

    Liang, Yayun; Deng, Jun; Liu, Xuefei; Wang, Qingfei; Qin, Cheng; Li, Yan; Yang, Yi; Zhou, Mian; Jiang, Jieyan

    2018-03-01

    Early Cretaceous mafic dyke swarms are widely developed on Jiaodong Peninsula in the southeastern part of the North China Craton (NCC), but their petrogenesis remains enigmatic. We have examined the in-situ major element, trace element and Sr isotope compositions of the clinopyroxene phenocrysts in these dykes in order to evaluate the extent of magma mixing and source metasomatism. Depending on the type of mineral zoning, the clinopyroxene phenocrysts in our samples can be classified into two groups: Group I (reverse zoning) and Group II (no zoning). Based on core compositions, the Group I phenocrysts with obvious reverse zoning can be divided into two subgroups: Groups IA and IB. The cores of Group IA clinopyroxenes have low values of Mg#, low Al2O3 contents, high Na2O contents, and high 87Sr/86Sr ratios, and they were probably derived from newly accreted lower crust that formed through the underplating of basaltic magma. In contrast, the cores of Group IB clinopyroxenes have lower Mg# values and lower contents of Al2O3, ΣREE (total rare earth elements), and incompatible elements, but they have similar 87Sr/86Sr ratios; these cores crystallised from crust-derived andesitic-dacitic magma. Group IA and IB clinopyroxene phenocryst rims (Group I rims) all have similar compositions with higher values of Mg# and higher Al2O3, Cr and Ni contents than the cores. The rims have high 87Sr/86Sr ratios, are enriched in LREEs (light rare earth elements) and LILEs (large ion lithophile elements), and are depleted in HFSEs (high field strength elements); these characteristics indicate that all the high-Mg rims were derived from a similar magma, possibly a relatively primitive magma derived from lithospheric mantle. We suggest, therefore, that the reversely-zoned clinopyroxene phenocrysts (Group I) in the Jiaodong mafic dykes provide evidence of magma mixing between a magma derived from lithospheric mantle and crust-derived andesitic-dacitic melt alongside with the newly accreted

  7. Magma mixing and degassing processes in the magma chamber of Gorely volcano (Kamchatka): evidence from whole-rock and olivine chemistry.

    NASA Astrophysics Data System (ADS)

    Gavrilenko, M.; Ozerov, A.; Kyle, P. R.; Carr, M. J.; Nikulin, A.

    2015-12-01

    Gorely is a shield-type volcano in southern Kamchatka currently in an eruptive phase [1] with prior eruptions recorded in 1980 and 1984 [4]. It is comprised of three main structural units: ancient (middle Pleistocene) edifice called 'Old-Gorely' volcano; thick ignimbrite complex, associated with a caldera forming eruption (40 ka); modern edifice named 'Young Gorely' growing inside the caldera [6]. Gorely lavas consist of a suite of compositions ranging from basalt to rhyolite (calk-alkaline series).In this study we describe the mixing processes in magma chamber [2] based on analysis of whole-rock and mineralogical data in an attempt to compare the magma evolution pathways for 'Old Gorely' and Young Gorely volcanoes. Our results indicate that fractional crystallization (FC) is the dominant process for 'Old Gorely' magmas, while 'Young Gorely' magmas are the result of mixing of primitive and evolved magmas in Gorely magma chamber], which is located at depth range from 2 to 10 km below the volcano edifice [6]. We present results of olivine high-precision electron microprobe data analysis (20kV, 300 nA) [7], alongside traditional methods (WR diagrams, mineral zonation) to demonstrate the difference between 'Old' (FC) and 'Young' (mixing) Gorely magmas. We estimated magma H2O (~3 wt.%) content for Gorely magma using independent methods: 1) using THI [8]; 2) using ΔT Ol-Pl [3]; 3) using Ol-Sp temperatures [9]. Additionally, calculations of [4] and analysis of olivine chemistry allow us to describe water content changes during magma evolution. We show that degassing (H2O removal) is necessary for strong plagioclase fractionation, which is observed in Gorely evolved lavas (less than 5 wt.% of MgO). [1] Aiuppa et al. (2012), GRL. 39(6): p.L06307. [2] Gorbach & Portnyagin (2011) Petrology, 19(2): p.134-166. [3] Danyushevsky (2001) JVGR, 110(3-4): p.265-280. [4] Kirsanov & Melekescev (1991) Active volcanoes of Kamchatka, v.2: p.294-317. [5] Mironov & Portnyagin (2011

  8. Deep Structure of the Zone of Tolbachik Fissure Eruptions (Kamchatka, Klyuchevskoy Volcano Group): Evidence from a Complex of Geological and Geophysical Data

    NASA Astrophysics Data System (ADS)

    Kugaenko, Yu. A.; Saltykov, V. A.; Gorvatikov, A. V.; Stepanova, M. Yu.

    2018-05-01

    With the use of the method of low-frequency microseismic sounding, the configuration of the magmatic feeding system of the Tolbachinsky Dol—a regional zone of areal basaltic volcanism in the southern part of the Klyuchevskoy volcano group in Kamchatka—is studied. The initial data are obtained by a stepby-step recording of the background microseismic noise in 2010-2015 within a thoroughly marked-out survey area covering the zones of fissure eruptions in 1975-1976 and 2012-2013 and, partly, the edifice of the Ploskii (flat) Tolbachik volcano. The depth sections reflecting the distributions of the relative velocities of seismic waves in the Earth's crust are constructed. For a more reliable interpretation of the revealed deep anomalies, the results of independent geological and geophysical studies are used. The ascertained low-velocity structures are closely correlated to the manifestations of present-day volcanism. It is shown that the feeding structure of the Tolbachinsky Dol is spatially heterogeneous, incorporating subvertical and lateral pipeshaped magma conduits, closely spaced magma feeding channels, and shallow magma reservoirs. A longlived local transcrustal magma conducting zone is revealed, and regularities in the deep structure of the feeding systems of fissure eruptions are identified. The configuration of the established subvertical magma conduits permits basalts moving to rise to the surface by different paths, which, inter alia, explains the contrasting magma compositions observed during a single eruption. Thus, based on the instrumental data, it is shown that the magmatic feeding structure of the Tolbachinsky Dol has a number of specific peculiarities and is significantly more complicated than has been previously thought about the areal volcanic fields.

  9. Timing of mafic magmatism VS localization of the deformation: the Ivrea Zone (Italian Alps)

    NASA Astrophysics Data System (ADS)

    Bidault, M.; Geoffroy, L.; Arbaret, L.; Aubourg, C. T.

    2017-12-01

    Mafic magma emplacement is a common feature of continental extension systems, represented at initial stage by volcanic rifts and at more mature stage by volcanic passive margins. In those contexts, lithospheric extension is not isovolumic, magma being notably added to the crust while it is tectonically stretched and thinned. Crystal-scale power-law mechanisms responsible for the continuous flow of the lower crust during extension are composition- and temperature-dependent and additionally, very slow processes. However magma emplacement is a very rapid process. Its effect on the lower crust rheology is dual depending upon the time-scale of the processes: thermal weakening, when newly-formed hot intrusions emplace and heat their surrounding, and rheological chemical hardening when mafic intrusions are cold. Consequently, the localization and type of ductile deformation affecting the lower crust depend on the emplacement rate, volume and spatial organization of the mafic system. The Ivrea Zone is a well-known variscan continental crust section that underwent extension through first gravitational collapse in the Carboniferous and then lithospheric extension until the Permian. From the Late Carboniferous to the Permian, extension in the Ivrea Zone was associated with large volumes of magma intrusion within the lower crust. This volcanic rift stage predated the development of a non-volcanic passive margin during the Jurassic. The entire system was tilted 90° eastward during the Alpine orogeny but remained unaffected by significant metamorphism or pervasive strain. We combine new field observations, Anisotropy of Magnetic Susceptibility data and trace-element geochemistry to investigate the timing, tectonic-setting and consequences of magma emplacement in the in-extension Ivrea lower crust. We propose a new tectonic history, highlighting time-dependent strain transfer and localization in the lower crust, in connection with mafic magma intrusion.

  10. Estimating the magma supply rate at Kilauea volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Wright, T. L.; Klein, F. W.

    2006-12-01

    A frequent question is whether the magma supply rate to Kilauea is constant. Before seaward spreading of the south flank of Kilauea was demonstrated by the slip on a basal decollement that accompanied the M7.2 1975 south flank earthquake, the magma supply rate was equated to the identical eruption rates for three long-lived eruptions (3). Later, a continuous tilt record at Kilauea's summit was used to derive the volume of magma transported during deflations associated with rift eruptions (2), concluding that over a 30-year period about 38% of Kilauea's magma supply was left underground, but agreeing with the equivalency of overall magma supply and sustained eruption rates. Recent modeling of geodetic data gathered during Kilauea's current eruption (1) estimated a supply rate to accommodate spreading at 1.5 times the eruption rate. We approach the problem of magma supply, making two assumptions: 1. Eruption rates are controlled by the capacity of the underground transport paths to deliver magma to the surface. 2. Spreading of Kilauea's south flank is magma-driven and all space created during spreading is filled with new magma. On these premises, and in consideration of the physical properties of magma, eruption rates would have to be less than the supply rate; equivalence would imply a rigid edifice in which an open channel could deliver magma as if it were water. We are working to establish a third indicator of magma supply, the occurrence of seismic swarms in the stressed south flank. Many such swarms have been previously identified in association with documented eruptions and intrusions, but other swarms occur independently and may be associated with passive intrusion filling the room created during spreading. We contrast the seismic and geodetic data gathered during Kilauea's two longest monitored eruptions, Mauna Ulu (1969-1974) and Pu'u `O'o-Kupaianaha (1983-ongoing). For episodic high-fountaining episodes we calculate eruption efficiency as the ratio of

  11. Magma-maintained rift segmentation at continental rupture in the 2005 Afar dyking episode.

    PubMed

    Wright, Tim J; Ebinger, Cindy; Biggs, Juliet; Ayele, Atalay; Yirgu, Gezahegn; Keir, Derek; Stork, Anna

    2006-07-20

    Seafloor spreading centres show a regular along-axis segmentation thought to be produced by a segmented magma supply in the passively upwelling mantle. On the other hand, continental rifts are segmented by large offset normal faults, and many lack magmatism. It is unclear how, when and where the ubiquitous segmented melt zones are emplaced during the continental rupture process. Between 14 September and 4 October 2005, 163 earthquakes (magnitudes greater than 3.9) and a volcanic eruption occurred within the approximately 60-km-long Dabbahu magmatic segment of the Afar rift, a nascent seafloor spreading centre in stretched continental lithosphere. Here we present a three-dimensional deformation field for the Dabbahu rifting episode derived from satellite radar data, which shows that the entire segment ruptured, making it the largest to have occurred on land in the era of satellite geodesy. Simple elastic modelling shows that the magmatic segment opened by up to 8 m, yet seismic rupture can account for only 8 per cent of the observed deformation. Magma was injected along a dyke between depths of 2 and 9 km, corresponding to a total intrusion volume of approximately 2.5 km3. Much of the magma appears to have originated from shallow chambers beneath Dabbahu and Gabho volcanoes at the northern end of the segment, where an explosive fissural eruption occurred on 26 September 2005. Although comparable in magnitude to the ten year (1975-84) Krafla events in Iceland, seismic data suggest that most of the Dabbahu dyke intrusion occurred in less than a week. Thus, magma intrusion via dyking, rather than segmented normal faulting, maintains and probably initiated the along-axis segmentation along this sector of the Nubia-Arabia plate boundary.

  12. Shallow Chamber & Conduit Behavior of Silicic Magma: A Thermo- and Fluid- Dynamic Parameterization Model of Physical Deformation as Constrained by Geodetic Observations: Case Study; Soufriere Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Gunn de Rosas, C. L.

    2013-12-01

    The Soufrière Hills Volcano, Montserrat (SHV) is an active, mainly andesitic and well-studied stratovolcano situated at the northern end of the Lesser Antilles Arc subduction zone in the Caribbean Sea. The goal of our research is to create a high resolution 3D subsurface model of the shallow and deeper aspects of the magma storage and plumbing system at SHV. Our model will integrate inversions using continuous and campaign geodetic observations at SHV from 1995 to the present as well as local seismic records taken at various unrest intervals to construct a best-fit geometry, pressure point source and inflation rate and magnitude. We will also incorporate a heterogeneous media in the crust and use the most contemporary understanding of deep crustal- or even mantle-depth 'hot-zone' genesis and chemical evolution of silicic and intermediate magmas to inform the character of the deep edifice influx. Our heat transfer model will be constructed with a modified 'thin shell' enveloping the magma chamber to simulate the insulating or conducting influence of heat-altered chamber boundary conditions. The final forward model should elucidate observational data preceding and proceeding unrest events, the behavioral suite of magma transport in the subsurface environment and the feedback mechanisms that may contribute to eruption triggering. Preliminary hypotheses suggest wet, low-viscosity residual melts derived from 'hot zones' will ascend rapidly to shallower stall-points and that their products (eventually erupted lavas as well as stalled plutonic masses) will experience and display two discrete periods of shallow evolution; a rapid depressurization crystallization event followed by a slower conduction-controlled heat transfer and cooling crystallization. These events have particular implications for shallow magma behaviors, notably inflation, compressibility and pressure values. Visualization of the model with its inversion constraints will be affected with Com

  13. Magma ocean formation due to giant impacts

    NASA Technical Reports Server (NTRS)

    Tonks, W. B.; Melosh, H. J.

    1992-01-01

    The effect of giant impacts on the initial chemical and thermal states of the terrestrial planets is just now being explored. A large high speed impact creates an approximately hemispherical melt region with a radius that depends on the projectile's radius and impact speed. It is shown that giant impacts on large planets can create large, intact melt regions containing melt volumes up to a few times the volume of the projectile. These large melt regions are not created on asteroid sized bodies. If extruded to the surface, these regions contain enough melt to create a magma ocean of considerable depth, depending on the impact speed, projectile radius, and gravity of the target planet.

  14. High-fluorine rhyolite: An eruptive pegmatite magma at the Honeycomb Hills, Utah

    NASA Astrophysics Data System (ADS)

    Congdon, Roger D.; Nash, W. P.

    1988-11-01

    The Honeycomb Hills rhyolite dome in western Utah displays chemical and mineralogical features characteristic of a rare-element pegmatite magma. The lavas show extreme enrichments in such trace elements as Rb (≤1960 ppm), Cs (≤78), Li (≤344), Sn (≤33), Be (≤270), and Y (≤156). Phenocrysts (10%-50% by volume) include sanidine (Or66-70), plagioclase (Ab83-92), quartz, biotite approaching fluorsiderophyllite, and fluortopaz, as well as accessory phases common to highly differentiated granites and pegmatites, including zircon, thorite, fluocerite, columbite, fergusonite, and samarskite. Low temperatures (600 to 640 °C), coupled with high phenocryst and silica content, might normally preclude eruption due to the extremely high viscosity of the melt. However, high concentrations of fluorine (2%-3%) could domal lavas significantly reduce viscosity and allow eruption of domal lavas even after dewatering of the mama during the initial pyroclastic phase of the eruptive cycle. Fractionation of phenocrysts and accessory phases, for which partition coefficients have been measured, is sufficient to account for most compositional gradients inferred in the preeruptive magma body, although transport by a fluid phase formed a may have caused upward enrichments in Li, Be, and Cs. If the Honeycomb Hills magma had crystallized at depth, it would have formed a rare-element pegmatite.

  15. Zircon Age Distributions Provide Magma Fluxes in the Earth's Crust

    NASA Astrophysics Data System (ADS)

    Caricchi, L.; Simpson, G.; Schaltegger, U.

    2014-12-01

    Magma fluxes control the growth of continents, the frequency and magnitude of volcanic eruptions and are important for the genesis of magmatic ore deposits. A significant part of the magma produced in the Earth's mantle solidifies at depth and this limits our capability of determining magma fluxes, which, in turn, compromises our ability to establish a link between global heat transfer and large-scale geological processes. Using thermal modelling in combination with high precision zircon dating we show that populations of zircon ages provide an accurate mean to retrieve magma fluxes. The characteristics of zircon age populations vary significantly and systematically as function of the flux and total volume of magma accumulated at depth. This new approach provides results that are identical to independent determinations of magma fluxes and volumes of magmatic systems. The analysis of existing age population datasets by our method highlights that porphyry-type deposits, plutons and large eruptions each require magma input over different timescales at characteristic average fluxes.

  16. Comparative velocity structure of active Hawaiian volcanoes from 3-D onshore-offshore seismic tomography

    USGS Publications Warehouse

    Park, J.; Morgan, J.K.; Zelt, C.A.; Okubo, P.G.; Peters, L.; Benesh, N.

    2007-01-01

    We present a 3-D P-wave velocity model of the combined subaerial and submarine portions of the southeastern part of the Island of Hawaii, based on first-arrival seismic tomography of marine airgun shots recorded by the onland seismic network. Our model shows that high-velocity materials (6.5-7.0??km/s) lie beneath Kilauea's summit, Koae fault zone, and the upper Southwest Rift Zone (SWRZ) and upper and middle East Rift Zone (ERZ), indicative of magma cumulates within the volcanic edifice. A separate high-velocity body of 6.5-6.9??km/s within Kilauea's lower ERZ and upper Puna Ridge suggests a distinct body of magma cumulates, possibly connected to the summit magma cumulates at depth. The two cumulate bodies within Kilauea's ERZ may have undergone separate ductile flow seaward, influencing the submarine morphology of Kilauea's south flank. Low velocities (5.0-6.3??km/s) seaward of Kilauea's Hilina fault zone, and along Mauna Loa's seaward facing Kao'iki fault zone, are attributed to thick piles of volcaniclastic sediments deposited on the submarine flanks. Loihi seamount shows high-velocity anomalies beneath the summit and along the rift zones, similar to the interpreted magma cumulates below Mauna Loa and Kilauea volcanoes, and a low-velocity anomaly beneath the oceanic crust, probably indicative of melt within the upper mantle. Around Kilauea's submarine flank, a high-velocity anomaly beneath the outer bench suggests the presence of an ancient seamount that may obstruct outward spreading of the flank. Mauna Loa's southeast flank is also marked by a large, anomalously high-velocity feature (7.0-7.4??km/s), interpreted to define an inactive, buried volcanic rift zone, which might provide a new explanation for the westward migration of Mauna Loa's current SWRZ and the growth of Kilauea's SWRZ. ?? 2007 Elsevier B.V. All rights reserved.

  17. Virtual source reflection imaging of the Socorro Magma Body, New Mexico, using a dense seismic array

    NASA Astrophysics Data System (ADS)

    Finlay, T. S.; Worthington, L. L.; Schmandt, B.; Hansen, S. M.; Bilek, S. L.; Aster, R. C.; Ranasinghe, N. R.

    2017-12-01

    The Socorro Magma Body (SMB) is one of the largest known actively inflating continental magmatic intrusions. Previous studies have relied on sparse instrument coverage to determine its spatial extent, depth, and seismic signature, which characterized the body as a thin sill with a surface at 19 km below the Earth's surface. However, over the last two decades, InSAR and magneto-telluric (MT) studies have shed new light on the SMB and invigorated the scientific debate of the spatial distribution and uplift rate of the SMB. We return to seismic imaging of the SMB with the Sevilleta Array, a 12-day deployment of approximately 800 vertical component, 10-Hz geophones north of Socorro, New Mexico above and around the estimated northern half of the SMB. Teleseismic virtual source reflection profiling (TVR) employs the free surface reflection off of a teleseismic P as a virtual source in dense arrays, and has been used successfully to image basin structure and the Moho in multiple tectonic environments. The Sevilleta Array recorded 62 teleseismic events greater than M5. Applying TVR to the data collected by the Sevilleta Array, we present stacks from four events that produced the with high signal-to-noise ratios and simple source-time functions: the February 11, 2015 M6.7 in northern Argentina, the February 19, 2015 M5.4 in Kamchatka, Russia, and the February 21, 2015 M5.1 and February 22, 2015 M5.5 in western Colombia. Preliminary results suggest eastward-dipping reflectors at approximately 5 km depth near the Sierra Ladrones range in the northwestern corner of the array. Further analysis will focus on creating profiles across the area of maximum SMB uplift and constraining basin geometry.

  18. Chronological evidence that the Moon is either young or did not have a global magma ocean.

    PubMed

    Borg, Lars E; Connelly, James N; Boyet, Maud; Carlson, Richard W

    2011-08-17

    Chemical evolution of planetary bodies, ranging from asteroids to the large rocky planets, is thought to begin with differentiation through solidification of magma oceans many hundreds of kilometres in depth. The Earth's Moon is the archetypical example of this type of differentiation. Evidence for a lunar magma ocean is derived largely from the widespread distribution, compositional and mineralogical characteristics, and ancient ages inferred for the ferroan anorthosite (FAN) suite of lunar crustal rocks. The FANs are considered to be primary lunar flotation-cumulate crust that crystallized in the latter stages of magma ocean solidification. According to this theory, FANs represent the oldest lunar crustal rock type. Attempts to date this rock suite have yielded ambiguous results, however, because individual isochron measurements are typically incompatible with the geochemical make-up of the samples, and have not been confirmed by additional isotopic systems. By making improvements to the standard isotopic techniques, we report here the age of crystallization of FAN 60025 using the (207)Pb-(206)Pb, (147)Sm-(143)Nd and (146)Sm-(142)Nd isotopic systems to be 4,360 ± 3 million years. This extraordinarily young age requires that either the Moon solidified significantly later than most previous estimates or the long-held assumption that FANs are flotation cumulates of a primordial magma ocean is incorrect. If the latter is correct, then much of the lunar crust may have been produced by non-magma-ocean processes, such as serial magmatism.

  19. Chronological evidence that the Moon is either young or did not have a global magma ocean

    NASA Astrophysics Data System (ADS)

    Borg, Lars E.; Connelly, James N.; Boyet, Maud; Carlson, Richard W.

    2011-09-01

    Chemical evolution of planetary bodies, ranging from asteroids to the large rocky planets, is thought to begin with differentiation through solidification of magma oceans many hundreds of kilometres in depth. The Earth's Moon is the archetypical example of this type of differentiation. Evidence for a lunar magma ocean is derived largely from the widespread distribution, compositional and mineralogical characteristics, and ancient ages inferred for the ferroan anorthosite (FAN) suite of lunar crustal rocks. The FANs are considered to be primary lunar flotation-cumulate crust that crystallized in the latter stages of magma ocean solidification. According to this theory, FANs represent the oldest lunar crustal rock type. Attempts to date this rock suite have yielded ambiguous results, however, because individual isochron measurements are typically incompatible with the geochemical make-up of the samples, and have not been confirmed by additional isotopic systems. By making improvements to the standard isotopic techniques, we report here the age of crystallization of FAN 60025 using the 207Pb-206Pb, 147Sm-143Nd and 146Sm-142Nd isotopic systems to be 4,360+/-3 million years. This extraordinarily young age requires that either the Moon solidified significantly later than most previous estimates or the long-held assumption that FANs are flotation cumulates of a primordial magma ocean is incorrect. If the latter is correct, then much of the lunar crust may have been produced by non-magma-ocean processes, such as serial magmatism.

  20. Bromine cycle in subduction zones through in situ Br monitoring in diamond anvil cells

    NASA Astrophysics Data System (ADS)

    Bureau, Hélène; Foy, Eddy; Raepsaet, Caroline; Somogyi, Andrea; Munsch, Pascal; Simon, Guilhem; Kubsky, Stefan

    2010-07-01

    The geochemical partitioning of bromine between hydrous haplogranitic melts, initially enriched with respect to Br and aqueous fluids, has been continuously monitored in situ during decompression. Experiments were carried out in diamond anvil cells from 890 °C to room temperature and from 1.7 GPa to room pressure, typically from high P, T conditions corresponding to total miscibility (presence of a supercritical fluid). Br contents were measured in aqueous fluids, hydrous melts and supercritical fluids. Partition coefficients of bromine were characterized at pressure and temperature between fluids, hydrous melts and/or glasses, as appropriate: DBrfluid/melt = (Br) fluid/(Br) melt, ranges from 2.18 to 9.2 ± 0.5 for conditions within the ranges 0.66-1.7 GPa, 590-890 °C; and DBrfluid/glass = (Br) fluid/(Br) glass ranges from 60 to 375 at room conditions. The results suggest that because high pressure melts and fluids are capable of accepting high concentrations of bromine, this element may be efficiently removed from the slab to the mantle source of arc magmas. We show that Br may be highly concentrated in subduction zone magmas and strongly enriched in subduction-related volcanic gases, because its mobility is strongly correlated with that of water during magma degassing. Furthermore, our experimental results suggest that a non negligible part of Br present in the subducted slab may remain in the down-going slab, being transported toward the transition zone. This indicates that the Br cycle in subduction zones is in fact divided in two related but independent parts: (1) a shallower one where recycled Br may leave the slab with a water and silica-bearing "fluid" leading to enriched arc magmas that return Br to the atmosphere. (2) A deeper cycle where Br may be recycled back to the mantle maybe to the transition zone, where it may be present in high pressure water-rich metasomatic fluids.

  1. The Role of Magma Mixing in Creating Magmatic Diversity

    NASA Astrophysics Data System (ADS)

    Davidson, J. P.; Collins, S.; Morgan, D. J.

    2012-12-01

    Most magmas derived from the mantle are fundamentally basaltic. An assessment of actual magmatic rock compositions erupted at the earth's surface, however, shows greater diversity. While still strongly dominated by basalts, magmatic rock compositions extend to far more differentiated (higher SiO2, LREE enriched) compositions. Magmatic diversity is generated by differentiation processes, including crystal fractionation/ accumulation, crustal contamination and magma mixing. Among these, magma mixing is arguably inevitable in magma systems that deliver magmas from source-to-surface, since magmas will tend to multiply re-occupy plumbing systems. A given mantle-derived magma type will mix with any residual magmas (and crystals) in the system, and with any partial melts of the wallrock which are generated as it is repeatedly flushed through the system. Evidence for magma mixing can be read from the petrography (identification of crystals derived from different magmas), a technique which is now well-developed and supplemented by isotopic fingerprinting (1,2) As a means of creating diversity, mixing is inevitably not efficient as its tendency is to blend towards a common composition (i.e. converging on homogeneity rather than diversity). It may be surprising then that many systems do not tend to homogenise with time, meaning that the timescales of mixing episodes and eruption must be similar to external magma contributions of distinct composition (recharge?). Indeed recharge and mixing/ contamination may well be related. As a result, the consequences of magma mixing may well bear on eruption triggering. When two magmas mix, volatile exsolution may be triggered by retrograde boiling, with crystallisation of anhydrous phase(s) in either of the magmas (3) or volatiles may be generated by thermal breakdown of a hydrous phase in one of the magmas (4). The generation of gas pressures in this way probably leads to geophysical signals too (small earthquakes). Recent work pulling

  2. Magma beneath Yellowstone National Park

    USGS Publications Warehouse

    Eaton, G.P.; Christiansen, R.L.; Iyer, H.M.; Pitt, A.M.; Mabey, D.R.; Blank, H.R.; Zietz, I.; Gettings, M.E.

    1975-01-01

    The Yellowstone plateau volcanic field is less than 2 million years old, lies in a region of intense tectonic and hydrothermal activity, and probably has the potential for further volcanic activity. The youngest of three volcanic cycles in the field climaxed 600,000 years ago with a voluminous ashflow eruption and the collapse of two contiguous cauldron blocks. Doming 150,000 years ago, followed by voluminous rhyolitic extrusions as recently as 70,000 years ago, and high convective heat flow at present indicate that the latest phase of volcanism may represent a new magmatic insurgence. These observations, coupled with (i) localized postglacial arcuate faulting beyond the northeast margin of the Yellowstone caldera, (ii) a major gravity low with steep bounding gradients and an amplitude regionally atypical for the elevation of the plateau, (iii) an aeromagnetic low reflecting extensive hydrothermal alteration and possibly indicating the presence of shallow material above its Curie temperature, (iv) only minor shallow seismicity within the caldera (in contrast to a high level of activity in some areas immediately outside), (v) attenuation and change of character of seismic waves crossing the caldera area, and (vi) a strong azimuthal pattern of teleseismic P-wave delays, strongly suggest that a body composed at least partly of magma underlies the region of the rhyolite plateau, including the Tertiary volcanics immediately to its northeast. The Yellowstone field represents the active end of a system of similar volcanic foci that has migrated progressively northeastward for 15 million years along the trace of the eastern Snake River Plain (8). Regional aeromagnetic patterns suggest that this course was guided by the structure of the Precambrian basement. If, as suggested by several investigators (24), the Yellowstone magma body marks a contemporary deep mantle plume, this plume, in its motion relative to the North American plate, would appear to be "navigating" along a

  3. Iron Redox Systematics of Martian Magmas

    NASA Technical Reports Server (NTRS)

    Righter, K.; Danielson, L.; Martin, A.; Pando, K.; Sutton, S.; Newville, M.

    2011-01-01

    Martian magmas are known to be FeO-rich and the dominant FeO-bearing mineral at many sites visited by the Mars Exploration rovers (MER) is magnetite [1]. Morris et al. [1] propose that the magnetite appears to be igneous in origin, rather than of secondary origin. However, magnetite is not typically found in experimental studies of martian magmatic rocks [2,3]. Magnetite stability in terrestrial magmas is well understood, as are the stability of FeO and Fe2O3 in terrestrial magmas [4,5]. In order to better understand the variation of FeO and Fe2O3, and the stability of magnetite (and other FeO-bearing phases) in martian magmas we have undertaken an experimental study with two emphases. First we document the stability of magnetite with temperature and fO2 in a shergottite bulk composition. Second, we determine the FeO and Fe2O3 contents of the same shergottite bulk composition at 1 bar and variable fO2 at 1250 C, and at variable pressure. These two goals will help define not only magnetite stability, but pyroxene-melt equilibria that are also dependent upon fO2.

  4. Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000-2012

    NASA Astrophysics Data System (ADS)

    Anderson, Kyle R.; Poland, Michael P.

    2016-08-01

    Estimating rates of magma supply to the world's volcanoes remains one of the most fundamental aims of volcanology. Yet, supply rates can be difficult to estimate even at well-monitored volcanoes, in part because observations are noisy and are usually considered independently rather than as part of a holistic system. In this work we demonstrate a technique for probabilistically estimating time-variable rates of magma supply to a volcano through probabilistic constraint on storage and eruption rates. This approach utilizes Bayesian joint inversion of diverse datasets using predictions from a multiphysical volcano model, and independent prior information derived from previous geophysical, geochemical, and geological studies. The solution to the inverse problem takes the form of a probability density function which takes into account uncertainties in observations and prior information, and which we sample using a Markov chain Monte Carlo algorithm. Applying the technique to Kīlauea Volcano, we develop a model which relates magma flow rates with deformation of the volcano's surface, sulfur dioxide emission rates, lava flow field volumes, and composition of the volcano's basaltic magma. This model accounts for effects and processes mostly neglected in previous supply rate estimates at Kīlauea, including magma compressibility, loss of sulfur to the hydrothermal system, and potential magma storage in the volcano's deep rift zones. We jointly invert data and prior information to estimate rates of supply, storage, and eruption during three recent quasi-steady-state periods at the volcano. Results shed new light on the time-variability of magma supply to Kīlauea, which we find to have increased by 35-100% between 2001 and 2006 (from 0.11-0.17 to 0.18-0.28 km3/yr), before subsequently decreasing to 0.08-0.12 km3/yr by 2012. Changes in supply rate directly impact hazard at the volcano, and were largely responsible for an increase in eruption rate of 60-150% between 2001 and

  5. Geophysical and geochemical evolution of the lunar magma ocean

    NASA Technical Reports Server (NTRS)

    Herbert, F.; Drake, M. J.; Sonett, C. P.

    1978-01-01

    There is increasing evidence that at least the outer few hundred kilometers of the moon were melted immediately following accretion. This paper studies the evolution of this lunar magma ocean. The long time scale for solidification leads to the inference that the plagioclase-rich (ANT) lunar crust began forming, perhaps preceded by local accumulations termed 'rockbergs', at the very beginning of the magma ocean epoch. In this view the cooling and solidification of the magma ocean was primarily controlled by the rate at which heat could be conducted across the floating ANT crust. Thus the thickness of the crust was the factor controlling the lunar solidification time. Heat arising from enthalpy of crystallization was transported in the magma by convection. Mixing length theory is used to deduce the principal flow velocity (typically several cm/s) during convection. The magma ocean is deduced to have been turbulent down to a characteristic length scale of the order of 100 m, and to have overturned on a time scale of the order of 1 yr for most of the magma ocean epoch.

  6. An Episode 56 Perspective on Post-2001 Comagmatic Mixing Along Kilauea's East Rift Zone

    NASA Astrophysics Data System (ADS)

    Thornber, C.; Orr, T.; Lowers, H.; Heliker, C.; Hoblitt, R.

    2007-12-01

    A significant change in the petrology of Pu`u `O`o -Kupaianaha lava occurred in April 2001 (3 years after the onset of the decade-long episode 55). Prior to that time all steady-state eruption products were olivine phryic. After that time and until the Kane Nui o Hamo eruption of June 19, 2007 (episode 56), all magma erupted from vents in and around Pu`u `O`o was olivine and pyroxene-phyric containing <1mm, isolated or clustered clinopyroxene (±olivine, ±plagioclase), usually with resorbed edges. Textures, phase chemistry and low-pressure phase relations define a pre-eruptive mixing environment that is driven by continuous recharge of a stagnant, near-cotectic shallow magma body. The comagmatic nature of the cooler component in the post-2001 hybrid magma is verified by low concentrations of incompatible elements relative to MgO. Since the eruption began in 1983, the olivine-saturated liquid-line-of-descent has progressively shifted toward the present-day low concentrations of incompatible elements. Superimposed on this long-term trend are shorter chemical cycles (months to years) which track fractionation and recharge between comagmatic endmembers of ~10 and ~7 wt% MgO. These shorter cycles correspond to heating and cooling events and imply magmatic recharge of a sustained shallow magma reservoir within the eruptive plumbing system. The longest cooling cycle of the entire eruption began in April 1998 after effusion of the hottest and most- primitive lava erupted since 1985 (episodes 30 and 31). Glass temperatures up to 1168°C and bulk MgO of 9.5 wt% steadily declined for 6 years until late 2004 when they bottomed-out at 1140°C and 6.8 wt%. This signaled a stable near-cotectic magma condition. MgO contents and glass temperatures stailized at ~7.1 wt% and 1146°C for the remainder of episode 55, as the hybrid magmas were stirred by a steady influx of summit-derived magma beneath a complex of intermittently active Pu`u O`o vents. During the June 19, 2007 Kane Nui

  7. Can a fractionally crystallized magma ocean explain the thermo-chemical evolution of Mars?

    NASA Astrophysics Data System (ADS)

    Plesa, A.-C.; Tosi, N.; Breuer, D.

    2014-10-01

    The impact heat accumulated during the late stage of planetary accretion can melt a significant part or even the entire mantle of a terrestrial body, giving rise to a global magma ocean. The subsequent cooling of the interior causes the magma ocean to freeze from the core-mantle boundary (CMB) to the surface due to the steeper slope of the mantle adiabat compared to the slope of the solidus. Assuming fractional crystallization of the magma ocean, dense cumulates are produced close to the surface, largely due to iron enrichment in the evolving magma ocean liquid. A gravitationally unstable mantle thus forms, which is prone to overturn. We investigate the cumulate overturn and its influence on the thermal evolution of Mars using mantle convection simulations in 2D cylindrical geometry. We present a suite of simulations using different initial conditions and a strongly temperature-dependent viscosity. We assume that all radiogenic heat sources have been enriched during the freezing-phase of the magma ocean in the uppermost 50 km and that the initial steam-atmosphere created by the degassing of the freezing magma ocean was rapidly lost, implying that the surface temperature is set to present-day values. In this case, a stagnant lid quickly forms on top of the convective interior preventing the uppermost dense cumulates to sink, even when allowing for a plastic yielding mechanism. Below this dense stagnant lid, the mantle chemical gradient settles to a stable configuration. The convection pattern is dominated by small-scale structures, which are difficult to reconcile with the large-scale volcanic features observed over Mars' surface and partial melting ceases in less than 900 Ma. Assuming that the stagnant lid can break because of additional mechanisms and allowing the uppermost dense layer to overturn, a stable density gradient is obtained, with the densest material and the entire amount of heat sources lying above the CMB. This stratification leads to a strong

  8. A Physical Model for Three-Phase Compaction in Silicic Magma Reservoirs

    NASA Astrophysics Data System (ADS)

    Huber, Christian; Parmigiani, Andrea

    2018-04-01

    We develop a model for phase separation in magma reservoirs containing a mixture of silicate melt, crystals, and fluids (exsolved volatiles). The interplay between the three phases controls the dynamics of phase separation and consequently the chemical and physical evolution of magma reservoirs. The model we propose is based on the two-phase damage theory approach of Bercovici et al. (2001, https://doi.org/10.1029/2000JB900430) and Bercovici and Ricard (2003, https://doi.org/10.1046/j.1365-246X.2003.01854.x) because it offers the leverage of considering interface (in the macroscopic limit) between phases that can deform depending on the mechanical work and phase changes taking place locally in the magma. Damage models also offer the advantage that pressure is defined uniquely to each phase and does not need to be equal among phases, which will enable us to consider, in future studies, the large capillary pressure at which fluids are mobilized in mature, crystal-rich, magma bodies. In this first analysis of three-phase compaction, we solve the three-phase compaction equations numerically for a simple 1-D problem where we focus on the effect of fluids on the efficiency of melt-crystal separation considering the competition between viscous and buoyancy stresses only. We contrast three sets of simulations to explore the behavior of three-phase compaction, a melt-crystal reference compaction scenario (two-phase compaction), a three-phase scenario without phase changes, and finally a three-phase scenario with a parameterized second boiling (crystallization-induced exsolution). The simulations show a dramatic difference between two-phase (melt crystals) and three-phase (melt-crystals-exsolved volatiles) compaction-driven phase separation. We find that the presence of a lighter, significantly less viscous fluid hinders melt-crystal separation.

  9. Lead and strontium isotopic evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field, California

    USGS Publications Warehouse

    Bacon, C.R.; Kurasawa, H.; Delevaux, M.H.; Kistler, R.W.; Doe, B.R.

    1984-01-01

    The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The 2 earliest rhyolites probably were tapped from short-lived silicic reservoirs, in contrast to the other 36 rhyolite domes and lava flows which the isotopic data suggest may have been leaked from the top of a single, long-lived magmatic system. Most Coso basalts show isotopic, geochemical, and mineralogic evidence of interaction with crustal rocks, but one analyzed flow has isotopic ratios that may represent mantle values (87Sr/86Sr=0.7036,206Pb/204Pb=19.05,207Pb/204Pb=15.62,208Pb/204Pb= 38.63). The (initial) isotopic composition of typical rhyolite (87Sr/86Sr=0.7053,206Pb/204Pb=19.29,207Pb/204Pb= 15.68,208Pb/204Pb=39.00) is representative of the middle or upper crust. Andesitic inclusions in the rhyolites are evidently samples of hybrid magmas from the silicic/mafic interface in vertically zoned magma reservoirs. Silicic end-member compositions inferred for these mixed magmas, however, are not those of erupted rhyolite but reflect the zonation within the silicic part of the magma reservoir. The compositional contrast at the interface between mafic and silicic parts of these systems apparently was greater for the earlier, smaller reservoirs. ?? 1984 Springer-Verlag.

  10. Formation of redox gradients during magma-magma mixing

    NASA Astrophysics Data System (ADS)

    Ruprecht, P.; Fiege, A.; Simon, A. C.

    2015-12-01

    Magma-mixing is a key process that controls mass transfer in magmatic systems. The variations in melt compositions near the magma-magma interface potentially change the Fe oxidation state [1] and, thus, affect the solubility and transport of metals. To test this hypothesis, diffusion-couple experiments were performed at 1000 °C, 150 MPa and QFM+4. Synthesized crystal-bearing cylinders of hydrous dacite and hydrous basaltic andesite were equilibrated for up to 80 h. The run products show that mafic components (Fe, Mg, etc.) were transported from the andesite into the dacite, while Si, Na and K diffused from the dacite into the andesite. A crystal dissolution sequence in the order of cpx, opx, plag, and spl/il was observed for the andesite. We combined μ-XANES spectroscopy at Fe K-edge [2] with two-oxide oxybarometry [3] to measure redox profiles within our experiments. Here, fO2 decreased towards the interface within the dacite and increased towards the interface within the andesite. This discontinuous fO2 evolution, with a sharp redox gradient of ~1.8 log fO2 units at the interface was maintained throughout the time-series despite the externally imposed fO2 of the vessel. We propose a combination of two mechanisms that create and sustain this redox gradient: 1) The dissolution of cpx and opx in the andesite mainly introduced Fe2+ into the melt, which diffused towards the dacite, lowering Fe3+/SFe near the interface. 2) Charge balance calculations in the melt during diffusive exchange suggest net positive charge excess in the andesite near the interface (i.e., oxidation) and net negative charge excess in the dacite near the interface (i.e., reduction). We suggest that this (metastable) redox layer can help to explain the contrasting Au/Cu ratios observed for arc-related porphyry-type ore deposits. [1] Moretti (2005), Ann. Geophys. 48, 583-608. [2] Cottrell et al. (2009), Chem. Geol. 268, 167-179. [3] Ghiorso and Evans (2008), Am. J. Sci. 308, 957-1039.

  11. Constraining the timescale of magma stagnation beneath Mauna Kea volcano, Hawaii,using diffusion profiles in olivine phenocrysts

    NASA Astrophysics Data System (ADS)

    Bloch, E. M.; Ganguly, J.

    2009-12-01

    Fe-Mg diffusion profiles have been measured in olivine xenocrysts within alkalic basalts in order to constrain the timescales of magma stagnation beneath Mauna Kea volcano, Hawaii. It has been suggested that during the main tholeiitic shield-building stage, and postshield eruptive stages of Mauna Kea, magmas were stalled and stagnated near the Moho, at a depth of ~15 km. Evidence in support of this hypothesis comes from cumulates formed by gravity-settling and in situ crystallization within magma chambers (Fodor and Galar, 1997), and from clinopyroxene-wholerock thermobarometry on Hamakua basalts (Putirka, in press). The cumulates represent a ‘fossil’ magma chamber which formed primarily from tholeiitic basalts; during the later capping-lava stage of Mauna Kea, alkalic basalts tore off chunks of these cumulates during ascent to the surface. We have measured several diffusion profiles in olivine xenocrysts from a single basalt sample. Because these xenocrysts have homogenous core compositions identical to a neighboring dunite cumulate, and because they are much larger and texturally distinct from compositionally dissimilar olivine phenocrysts, they are interpreted to be cumulate olivines which were dislodged during magma recharge/mixing in the stagnation zone. Although the orientations of the phenocrysts are not yet known, the diffusion profiles have been fit using diffusion coefficients parallel to the c and a crystallographic axes (i.e. minimum and maximum values). Modeling diffusion profiles yields ∫Ddt ≤4.5 x 10-5 cm2. Assuming that the xenocrysts were broken off from the cumulate immediately when the magma chamber was recharged, it is possible to calculate the maximum stagnation time of the basalts. Thus, the retrieved ∫Ddt value yields a maximum stagnation time of ~0.7 years. References: Fodor RV, Galar, PA (1997). A View into the Subsurface of Mauna Kea Volcano, Hawaii: Crystallization Processes Interpreted through the Petrology and Petrography of

  12. Transient rheology of crystallizing andesitic magmas

    NASA Astrophysics Data System (ADS)

    de Biasi, L. J.; Chevrel, M. O.; Hanson, J. B.; Cimarelli, C.; Lavallée, Y.; Dingwell, D. B.

    2012-04-01

    The viscosity of magma strongly influences its rheological behaviour, which is a key determinant of magma transport processes and volcanic eruptions. Understanding the factors controlling the viscosity of magma is important to our assessment of hazards posed by active volcanoes. In nature, magmas span a very wide range in viscosity (10-1 to 1014 Pa s), depending on chemical composition (including volatile content), temperature, and importantly, crystal fraction, which further induces a complex strain rate dependence (i.e. non-Newtonian rheology). Here, we present results of transient viscosities of a crystallizing andesitic melt (57 wt.% SiO2) from Tungurahua volcano (Ecuador). We followed the experimental method developed by Vona et al. (2011) for the concentric cylinder apparatus, but optimized its implementation by leaving the spindle in situ before quenching the experimental products, to preserve the complete developed texture of the sample. The viscosity is investigated under super-liquidus (1400 ° C) and sub-liquidus temperatures (1162 and 1167 ° C). For each temperature increment, thermal equilibrium is achieved over a period of days while the spindle constantly stirs the magma. Simultaneous monitoring of the torque is used to calculate the apparent viscosity of the transient suspension. To get a better understanding of the nucleation and crystal growth processes that are involved at sub-liquidus conditions, further time-step experiments were carried out, where the samples were quenched at various equilibration stages. The mineralogical assemblage, as well as the crystal fraction, distribution and preferential alignment were then quantitatively analyzed. At temperatures below the liquidus, the suspension shows a progressive, but irregular increase of the relative shear viscosity. First, the viscosity slightly increases, possibly due to the crystallization of small, equant oxides and the formation of plagioclase nuclei. After some time (1.5-2.5 days

  13. Syneruptive deep magma transfer and shallow magma remobilization during the 2011 eruption of Shinmoe-dake, Japan—Constraints from melt inclusions and phase equilibria experiments

    NASA Astrophysics Data System (ADS)

    Suzuki, Yuki; Yasuda, Atsushi; Hokanishi, Natsumi; Kaneko, Takayuki; Nakada, Setsuya; Fujii, Toshitsugu

    2013-05-01

    The 2011 Shinmoe-dake eruption started with a phreatomagmatic eruption (Jan 19), followed by climax sub-Plinian events and subsequent explosions (Jan 26-28), lava accumulation in the crater (end of January), and vulcanian eruptions (February-April). We have studied a suite of ejecta to investigate the magmatic system beneath the volcano and remobilization processes in the silicic magma mush. Most of the ejecta, including brown and gray colored pumice clasts (Jan 26-28), ballistically ejected dense lava (Feb 1), and juvenile particles in ash from the phreatomagmatic and vulcanian events are magma mixing products (SiO2 = 57-58 wt.%; 960-980 °C). Mixing occurred between silicic andesite (SA) and basaltic andesite (BA) magmas at a fixed ratio (40%-30% SA and 60%-70% BA). The SA magma had SiO2 = 62-63 wt.% and a temperature of 870 °C, and contains 43 vol.% phenocrysts of pyroxene, plagioclase, and Fe-Ti oxide. The BA magma had SiO2 = 55 wt.% and a temperature of 1030 °C, and contains 9 vol.% phenocrysts of olivine and plagioclase. The SA magma partly erupted without mixing as white parts of pumices and juvenile particles. The two magmatic end-members crystallized at different depths, requiring the presence of two separate magma reservoirs; shallower SA reservoir and deeper BA reservoir. An experimental study reveals that the SA magma had been stored at a pressure of 125 MPa, corresponding to a depth of 5 km. The textures and forms of phenocrysts from the BA magma indicate rapid crystallization directly related to the 2011 eruptive activity. The wide range of H2O contents of olivine melt inclusions (5.5-1.6 wt.%) indicates that rapid crystallization was induced by decompression, with olivine crystallization first (≤ 250 MPa), followed by plagioclase addition. The limited occurrence of olivine melt inclusions trapped at depths of < 5 km is consistent with the proposed magma system model, because olivine crystallization ceased after magma mixing. Our petrological

  14. Effect of permeable flow on cyclic layering in solidifying magma bodies: Insights from an analog experiment of diffusion-precipitation systems

    NASA Astrophysics Data System (ADS)

    Toramaru, A.; Yamauchi, S.

    2012-04-01

    Characteristic structures such as rhythmic layering, cress cumulate, cross bedding, perpendicular feldspar rock etc, are commonly observed in layered intrusion or shallow magmatic intrusions. These structures result from complex processes including thermal and compositional diffusions, crystallization, crystal settling, convection and interaction among three phases (crystals, bubble, melt). In order to understand how the differentiation proceeds in solidifying magma bodies from each characteristic structure together with chemical signatures, it is necessary to evaluate the relative importance among these elemental processes on structures. As an attempt to evaluate the effect of advection on a diffusion-related structure, we carried out an analog experiment of Liesegang system using lead-iodide (PbI2) crystallization in agar media which have been normally used to prohibit convection. In the ordinary Liesegang band formation experiments including only diffusion and crystallization kinetics without any advection and convection, the precipitation bands develop with regular spacing following a geometric progression due to two-component diffusion and reaction with supersaturation. This type of banding structure has been advocated as the same type of cyclic layering or vesicle layering (a sort of rhythmic layering) in dykes or sills. In order to see the effect of one-directional advection on Liesegang band, we apply the electric field (5 V to 25 V for a distance 15 cm) along the concentration gradient in agar media, thereby counteracting flows of lead anion Pb2+ and iodide ion I- are driven at constant velocities. The flows of anions and ions are equivalent to the permeable flows in porous media of crystal mush. The resultant precipitation structures exhibit very curious banding structure in which band spacings do not change with distance, are nearly constant and quite narrow, depending on the voltage, unlike those in ordinary Liesegang bands in which band spacings

  15. Magma wagging and whirling in volcanic conduits

    NASA Astrophysics Data System (ADS)

    Liao, Yang; Bercovici, David; Jellinek, Mark

    2018-02-01

    Seismic tremor characterized by 0.5-7 Hz ground oscillations commonly occur before and during eruptions at silicic volcanoes with widely ranging vent geometries and edifice structures. The ubiquitous characteristics of this tremor imply that its causes are potentially common to silicic volcanoes. Here we revisit and extend to three dimensions the magma-wagging model for tremor (Jellinek and Bercovici, 2011; Bercovici et al., 2013), wherein a stiff magma column rising in a vertical conduit oscillates against a surrounding foamy annulus of bubbly magma, giving rise to tremor. While prior studies were restricted to two-dimensional lateral oscillations, here we explore three-dimensional motion and additional modes of oscillations. In the absence of viscous damping, the magma column undergoes 'whirling' motion: the center of each horizontal section of the column traces an elliptical trajectory. In the presence of viscous effect we identify new 'coiling' and 'uncoiling' column bending shapes with relatively higher and comparable rates of dissipation to the original two-dimensional magma wagging model. We also calculate the seismic P-wave response of the crustal material around the volcanic conduit to the new whirling motions and propose seismic diagnostics for different wagging patterns using the time-lag between seismic stations. We test our model by analyzing pre-eruptive seismic data from the 2009 eruption of Redoubt Volcano. In addition to suggesting that the occurrence of elliptical whirling motion more than 1 week before the eruption, our analysis of seismic time-lags also implies that the 2009 eruption was accompanied by qualitative changes in the magma wagging behavior including fluctuations in eccentricity and a reversal in the direction of elliptical whirling motion when the eruption was immediately impending.

  16. Shear thinning behaviors in magmas

    NASA Astrophysics Data System (ADS)

    Vetere, F. P.; Cassetta, M.; Perugini, D.

    2017-12-01

    of the partly crystallized melt. This new dataset can be used to model the behaviour of lavas during magma rise in conduits and lava flow on Earth surface and other planetary bodies. F. Vetere et al., (2017) Experimental constraints on the rheology, eruption and emplacement dynamics of lavas from Mercury Northern Volcanic Plains". JGR-Planets DOI: 10.1002/2016JE005181

  17. Experimental Constraints on a Vesta Magma Ocean

    NASA Technical Reports Server (NTRS)

    Hoff, C.; Jones, J. H.; Le, L.

    2014-01-01

    A magma ocean model was devised to relate eucrites (basalts) and diogenites (orthopyroxenites), which are found mixed together as clasts in a suite of polymict breccias known as howardites. The intimate association of eucritic and diogenitic clasts in howardites argues strongly that these three classes of achondritic meteorites all originated from the same planetoid. Reflectance spectral evidence (including that from the DAWN mission) has long suggested that Vesta is indeed the Eucrite Parent Body. Specifically, the magma ocean model was generated as follows: (i) the bulk Vesta composition was taken to be 0.3 CV chondrite + 0.7 L chondrite but using only 10% of the Na2O from this mixture; (ii) this composition is allowed to crystallize at 500 bar until approx. 80% of the system is solid olivine + low-Ca pyroxene; (iii) the remaining 20% liquid crystallizes at one bar from 1250C to 1110C, a temperature slightly above the eucrite solidus. All crystallization calculations were performed using MELTS. In this model, diogenites are produced by cocrystallization of olivine and pyroxene in the >1250C temperature regime, with Main Group eucrite liquids being generated in the 1300-1250C temperature interval. Low-Ca pyroxene reappears at 1210C in the one-bar calculations and fractionates the residual liquid to produce evolved eucrite compositions (Stannern Trend). We have attempted to experimentally reproduce the <1250C portion of the MELTS Vesta magma ocean. In the MELTS calculation, the change from 500 bar to one bar results in a shift of the olivine:low-Ca pyroxene boundary so that the 1250C liquid is now in the olivine field and, consequently, olivine should be the first-crystallizing phase, followed by low-Ca pyroxene at 1210C, and plagioclase at 1170C. Because at one bar the olivine:low-Ca pyroxene boundary is a peritectic, fractional crystallization of the 1210C liquid proceeds with only pyroxene crystallization until plagioclase appears. Thus, the predictions of the

  18. Dynamics of a large, restless, rhyolitic magma system at Laguna del Maule, southern Andes, Chile

    USGS Publications Warehouse

    Singer, Brad S.; Andersen, Nathan L.; Le Mével, Hélène; Feigl, Kurt L.; DeMets, Charles; Tikoff, Basil; Thurber, Clifford H.; Jicha, Brian R.; Cardonna, Carlos; Córdova, Loreto; Gil, Fernando; Unsworth, Martyn J.; Williams-Jones, Glyn; Miller, Craig W.; Fierstein, Judith; Hildreth, Edward; Vazquez, Jorge A.

    2014-01-01

    Explosive eruptions of large-volume rhyolitic magma systems are common in the geologic record and pose a major potential threat to society. Unlike other natural hazards, such as earthquakes and tsunamis, a large rhyolitic volcano may provide warning signs long before a caldera-forming eruption occurs. Yet, these signs—and what they imply about magma-crust dynamics—are not well known. This is because we have learned how these systems form, grow, and erupt mainly from the study of ash flow tuffs deposited tens to hundreds of thousands of years ago or more, or from the geophysical imaging of the unerupted portions of the reservoirs beneath the associated calderas. The Laguna del Maule Volcanic Field, Chile, includes an unusually large and recent concentration of silicic eruptions. Since 2007, the crust there has been inflating at an astonishing rate of at least 25 cm/yr. This unique opportunity to investigate the dynamics of a large rhyolitic system while magma migration, reservoir growth, and crustal deformation are actively under way is stimulating a new international collaboration. Findings thus far lead to the hypothesis that the silicic vents have tapped an extensive layer of crystal-poor, rhyolitic melt that began to form atop a magmatic mush zone that was established by ca. 20 ka with a renewed phase of rhyolite eruptions during the Holocene. Modeling of surface deformation, magnetotelluric data, and gravity changes suggest that magma is currently intruding at a depth of ~5 km. The next phase of this investigation seeks to enlarge the sets of geophysical and geochemical data and to use these observations in numerical models of system dynamics.

  19. Chlorine as a geobarometer for alkaline magmas: Evidence from a systematic study of the eruptions of Mount Somma-Vesuvius

    NASA Astrophysics Data System (ADS)

    Balcone-Boissard, H.; Boudon, G.; Cioni, R.; Webster, J. D.; Zdanowicz, G.; Orsi, G.; Civetta, L.

    2016-02-01

    Defining the magma storage conditions of a volcanic system is a major goal in modern volcanology due to its direct implications for the style of a possible eruption, and thus on the associated risk of any crisis and the necessary management and mitigation strategies. Below 200 MPa and at equivalent depths, the strongly non-ideal behaviour of the H-C-O-S-Cl-F system in the silicate melt causes unmixing of the fluid phase to form an H2O-rich vapour and a hydrosaline phase in equilibrium with the silicate melt, both responsible for buffering the chlorine (Cl) concentration. Following this equilibrium, the Cl concentration in melts may be used as a geobarometer for alkaline magmas. Systematic application of this method to the main explosive eruptions of Mount Somma-Vesuvius highlights two main magma ponding zones, at ~180-200 and ~100 MPa. At these pressures, the maximum pre-eruptive H2O contents for the different magma compositions can be estimated; the results obtained, largely in agreement with the current literature, therefore confirm the validity of the method. The Cl geobarometer may help scientists to define the variation of the magmatic reservoir location through time and thus provide strong constraints on pre-eruptive conditions, which are of utmost importance for volcanic crisis management.

  20. Chlorine as a geobarometer for alkaline magmas: Evidence from a systematic study of the eruptions of Mount Somma-Vesuvius

    PubMed Central

    Balcone-Boissard, H.; Boudon, G.; Cioni, R.; Webster, J. D.; Zdanowicz, G.; Orsi, G.; Civetta, L.

    2016-01-01

    Defining the magma storage conditions of a volcanic system is a major goal in modern volcanology due to its direct implications for the style of a possible eruption, and thus on the associated risk of any crisis and the necessary management and mitigation strategies. Below 200 MPa and at equivalent depths, the strongly non-ideal behaviour of the H-C-O-S-Cl-F system in the silicate melt causes unmixing of the fluid phase to form an H2O-rich vapour and a hydrosaline phase in equilibrium with the silicate melt, both responsible for buffering the chlorine (Cl) concentration. Following this equilibrium, the Cl concentration in melts may be used as a geobarometer for alkaline magmas. Systematic application of this method to the main explosive eruptions of Mount Somma-Vesuvius highlights two main magma ponding zones, at ~180–200 and ~100 MPa. At these pressures, the maximum pre-eruptive H2O contents for the different magma compositions can be estimated; the results obtained, largely in agreement with the current literature, therefore confirm the validity of the method. The Cl geobarometer may help scientists to define the variation of the magmatic reservoir location through time and thus provide strong constraints on pre-eruptive conditions, which are of utmost importance for volcanic crisis management. PMID:26888358

  1. Soliton-mediated conduit flow: Deep Hawaiian magma migration

    NASA Astrophysics Data System (ADS)

    Ryan, M.; Stanley, B.

    2006-12-01

    Solitons have first-order attributes that include shape- and volume-conserving packets of fluid that migrate with characteristic wavelengths, amplitudes, wave numbers, and pulse durations. For ascent in dike-like magma- filled fractures, the soliton pulse duration is directly proportional to the conduit wall region viscosity and inversely proportional to the density contrast that drives the flow. Second-order effects that modify pathways include heat loss to conduit wall rocks, and progressive crystallization episodes along conduit walls. Long-lived (and intermediate duration) historical eruption episodes of Kilauea volcano, Hawai'i, include the 1959 Kilauea summit series at Kilauea Iki, the 1969-1974 series at Mauna Ulu and the 1983-to-present series at Pu'u `O'o-Kupaianaha. For each locale, the eruptions display a variable time-series in their erupted volumes, as well as fountain heights and vent flow rates. Inter-episode repose periods, however, often show broad regularity over extended periods. We suggest that these dynamics represent serendipitous windows into the characteristic system dynamics of deep magma migration beneath Hawai'i: all made possible by the chance clearance of mechanical obstructions allowing virtually open-system behavior. The rhythmic `beat' of eruptive episodes within a long-lived series (and their roughly regular repose periods) arise directly from the soliton migration mechanism. For non-summit locales such as Mauna Ulu and Pu'u `O'o-Kupaianaha, the fluid contents of the sub-caldera reservoir and the shallow molten rift zone core modulate the observed intrusion- eruption dynamics as volumetric displacements transmit down-rift the pressure pulses first felt beneath Halemaumau and the summit caldera. Analytic calculations of wave speed, wave length, batch volume, parcel shapes and repose periods reveal the dependence on material properties appropriate for Kilauea intrusions and eruptions. Analogue laboratory experiments using stiff

  2. A Chill Sequence to the Bushveld Complex - Insight into the First Stages of Emplacement and the Parental Magmas to the World's Largest Layered Intrusion

    NASA Astrophysics Data System (ADS)

    Wilson, A.

    2012-04-01

    Evidence of the initial stages of magma emplacement in large mafic chambers is commonly lacking because of resorption of early-formed chills and complicated by the fact that the first magmas that entered the chamber were usually more evolved than the true parental magma. Deep drilling has revealed a rare occurrence of a chill sequence from the eastern Bushveld Complex at the base of a previously unrecognized thick succession of ultramafic rocks that forms part of the Lower Zone. The chill sequence (1.8 m thick) includes a true chill against quartzite floor rock, crystalline quench textured and orthopyroxene spinifex textured rocks. Importantly the chill composition represents a relatively evolved magma formed by the separation of high-Mg olivines prior to its emplacement, probably in a conduit or a pre-chamber. An overlying pyroxene dunite represents the extract that gave rise to the chill and was emplaced either as a crystal slurry derived from the feeder conduit or as the crystallization product from a slightly later influx of primitive magma of komatiitic composition. This highly-Mg rich pyroxene dunite most likely acted as a barrier to the thermal erosion of the chill sequence as the chamber filled. The olivine in the pyroxene dunite layer is the most primitive yet recorded for the Bushveld Complex at Mg# 0.915, and the cores of associated orthopyroxene are Mg# 0.93. Compositions of the orthopyroxene in the quench and spinifex textured units range from Mg# 0.91 to 0.72 and preserve cores close to the original liquidus as well as tracking the complete in-situ solidification process. Olivine contains abundant dendritic exsolution structures of Cr-spinel and Al-rich clinopyroxene indicating that they formed at high temperature from incorporation of Ca, Al and Cr into olivine, with little time to equilibrate before emplacement. Chromite in the section is the most primitive yet recorded for the Bushveld Complex. The komatiite magma that was initially emplaced into

  3. Imaging magma plumbing beneath Askja volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Greenfield, Tim; White, Robert S.

    2015-04-01

    Volcanoes during repose periods are not commonly monitored by dense instrumentation networks and so activity during periods of unrest is difficult to put in context. We have operated a dense seismic network of 3-component, broadband instruments around Askja, a large central volcano in the Northern Volcanic Zone, Iceland, since 2006. Askja last erupted in 1961, with a relatively small basaltic lava flow. Since 1975 the central caldera has been subsiding and there has been no indication of volcanic activity. Despite this, Askja has been one of the more seismically active volcanoes in Iceland. The majority of these events are due to an extensive geothermal area within the caldera and tectonically induced earthquakes to the northeast which are not related to the magma plumbing system. More intriguing are the less numerous deeper earthquakes at 12-24km depth, situated in three distinct areas within the volcanic system. These earthquakes often show a frequency content which is lower than the shallower activity, but they still show strong P and S wave arrivals indicative of brittle failure, despite their location being well below the brittle-ductile boundary, which, in Askja is ~7km bsl. These earthquakes indicate the presence of melt moving or degassing at depth while the volcano is not inflating, as only high strain rates or increased pore fluid pressures would cause brittle fracture in what is normally an aseismic region in the ductile zone. The lower frequency content must be the result of a slower source time function as earthquakes which are both high frequency and low frequency come from the same cluster, thereby discounting a highly attenuating lower crust. To image the plumbing system beneath Askja, local and regional earthquakes have been used as sources to solve for the velocity structure beneath the volcano. Travel-time tables were created using a finite difference technique and the residuals were used to solve simultaneously for both the earthquake locations

  4. Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000–2012

    USGS Publications Warehouse

    Anderson, Kyle R.; Poland, Michael

    2016-01-01

    Estimating rates of magma supply to the world's volcanoes remains one of the most fundamental aims of volcanology. Yet, supply rates can be difficult to estimate even at well-monitored volcanoes, in part because observations are noisy and are usually considered independently rather than as part of a holistic system. In this work we demonstrate a technique for probabilistically estimating time-variable rates of magma supply to a volcano through probabilistic constraint on storage and eruption rates. This approach utilizes Bayesian joint inversion of diverse datasets using predictions from a multiphysical volcano model, and independent prior information derived from previous geophysical, geochemical, and geological studies. The solution to the inverse problem takes the form of a probability density function which takes into account uncertainties in observations and prior information, and which we sample using a Markov chain Monte Carlo algorithm. Applying the technique to Kīlauea Volcano, we develop a model which relates magma flow rates with deformation of the volcano's surface, sulfur dioxide emission rates, lava flow field volumes, and composition of the volcano's basaltic magma. This model accounts for effects and processes mostly neglected in previous supply rate estimates at Kīlauea, including magma compressibility, loss of sulfur to the hydrothermal system, and potential magma storage in the volcano's deep rift zones. We jointly invert data and prior information to estimate rates of supply, storage, and eruption during three recent quasi-steady-state periods at the volcano. Results shed new light on the time-variability of magma supply to Kīlauea, which we find to have increased by 35–100% between 2001 and 2006 (from 0.11–0.17 to 0.18–0.28 km3/yr), before subsequently decreasing to 0.08–0.12 km3/yr by 2012. Changes in supply rate directly impact hazard at the volcano, and were largely responsible for an increase in eruption rate of 60–150% between

  5. Silica-enriched mantle sources of subalkaline picrite-boninite-andesite island arc magmas

    NASA Astrophysics Data System (ADS)

    Bénard, A.; Arculus, R. J.; Nebel, O.; Ionov, D. A.; McAlpine, S. R. B.

    2017-02-01

    Primary arc melts may form through fluxed or adiabatic decompression melting in the mantle wedge, or via a combination of both processes. Major limitations to our understanding of the formation of primary arc melts stem from the fact that most arc lavas are aggregated blends of individual magma batches, further modified by differentiation processes in the sub-arc mantle lithosphere and overlying crust. Primary melt generation is thus masked by these types of second-stage processes. Magma-hosted peridotites sampled as xenoliths in subduction zone magmas are possible remnants of sub-arc mantle and magma generation processes, but are rarely sampled in active arcs. Published studies have emphasised the predominantly harzburgitic lithologies with particularly high modal orthopyroxene in these xenoliths; the former characteristic reflects the refractory nature of these materials consequent to extensive melt depletion of a lherzolitic protolith whereas the latter feature requires additional explanation. Here we present major and minor element data for pristine, mantle-derived, lava-hosted spinel-bearing harzburgite and dunite xenoliths and associated primitive melts from the active Kamchatka and Bismarck arcs. We show that these peridotite suites, and other mantle xenoliths sampled in circum-Pacific arcs, are a distinctive peridotite type not found in other tectonic settings, and are melting residues from hydrous melting of silica-enriched mantle sources. We explore the ability of experimental studies allied with mantle melting parameterisations (pMELTS, Petrolog3) to reproduce the compositions of these arc peridotites, and present a protolith ('hybrid mantle wedge') composition that satisfies the available constraints. The composition of peridotite xenoliths recovered from erupted arc magmas plausibly requires their formation initially via interaction of slab-derived components with refractory mantle prior to or during the formation of primary arc melts. The liquid

  6. Unusual Iron Redox Systematics of Martian Magmas

    NASA Technical Reports Server (NTRS)

    Danielson, L.; Righter, K.; Pando, K.; Morris, R. V.; Graff, T.; Agresti, D.; Martin, A.; Sutton, S.; Newville, M.; Lanzirotti, A.

    2012-01-01

    Martian magmas are known to be FeO-rich and the dominant FeO-bearing mineral at many sites visited by the Mars Exploration rovers (MER) is magnetite. Morris et al. proposed that the magnetite appears to be igneous in origin, rather than of secondary origin. However, magnetite is not typically found in experimental studies of martian magmatic rocks. Magnetite stability in terrestrial magmas is well understood, as are the stabilities of FeO and Fe2O3 in terrestrial magmas. In order to better understand the variation of FeO and Fe2O3, and the stability of magnetite (and other FeO-bearing phases) in martian magmas, we have undertaken an experimental study with two emphases. First, we determine the FeO and Fe2O3 contents of super- and sub-liquidus glasses from a shergottite bulk composition at 1 bar to 4 GPa, and variable fO2. Second, we document the stability of magnetite with temperature and fO2 in a shergottite bulk composition.

  7. Thermally-assisted Magma Emplacement Explains Restless Calderas.

    PubMed

    Amoruso, Antonella; Crescentini, Luca; D'Antonio, Massimo; Acocella, Valerio

    2017-08-11

    Many calderas show repeated unrest over centuries. Though probably induced by magma, this unique behaviour is not understood and its dynamics remains elusive. To better understand these restless calderas, we interpret deformation data and build thermal models of Campi Flegrei caldera, Italy. Campi Flegrei experienced at least 4 major unrest episodes in the last decades. Our results indicate that the inflation and deflation of magmatic sources at the same location explain most deformation, at least since the build-up of the last 1538 AD eruption. However, such a repeated magma emplacement requires a persistently hot crust. Our thermal models show that this repeated emplacement was assisted by the thermal anomaly created by magma that was intruded at shallow depth ~3 ka before the last eruption. This may explain the persistence of the magmatic sources promoting the restless behaviour of the Campi Flegrei caldera; moreover, it explains the crystallization, re-melting and mixing among compositionally distinct magmas recorded in young volcanic rocks. Our model of thermally-assisted unrest may have a wider applicability, possibly explaining also the dynamics of other restless calderas.

  8. Magmatic conditions and processes in the storage zone of the 2004-2006 Mount St. Helens dacite: Chapter 31 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Rutherford, Malcom J.; Devine, Joseph D.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    O2 values of NNO +1 log unit. Magnetite compositions suggest that the 2004-6 magma was formed by mingling of magmas less than 5-8 weeks before eruption and that the magma last equilibrated within this temperature range. The amphibole phenocryst zoning involves approximately equal amounts of a pressure-sensitive Al-Tschermak molecular substitution and a temperature-sensitive edenite substitution in one cycle of growth. Hydrothermal experiments done on the natural dacite show that crystallization of the Fe- and Al-rich amphibole end member requires pressures of 200-300 MPa at temperatures of 900°C, conditions approaching the upper temperature limit of amphibole stability. The dacitic magma crystallizes the An68 plagioclase when the pressure drops to 200 MPa at 900°C. The magma must cool at this depth to produce a complete An68-An40 plagioclase zone and a Mg-rich layer on the amphiboles before the magma is cycled back to a high pressure, when a new layer of Fe-rich amphibole is acquired. The amphibole crystallizing in the dacite experiments at less than 200 MPa is lower in aluminum than any compositions in the natural cyclically zoned phenocrysts. The outer rim on some 2004-6 amphibole phenocrysts appears to have formed in the 100-200 MPa range, as do some phenocrysts in the May 1980 dacite pumice. Plagioclase rims of An35 in the 2004-6 magmas indicate that phenocryst growth continued until the pressure decreased to 130 MPa and that ascent was slow until this depth. Magma then entered the conduit for a relatively rapid ascent to the surface as indicated by the very thin (less than 5 μm) decompression-induced rims on the amphibole phenocrysts.

  9. Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone Plateau Volcanic Field

    USGS Publications Warehouse

    Hildreth, W.; Halliday, A.N.; Christiansen, R.L.

    1991-01-01

    Since 2.2 Ma, the Yellowstone Plateau Volcanic Field has produced ~6000 km3 of rhyolite tuffs and lavas in >60 separate eruptions, as well as ~100 km3 of tholeiitic basalt from >50 vents peripheral to the silicic focus. Intermediate eruptive products are absent. Early postcollapse rhyolites show large shifts in Nd, Sr, Pb, and O isotopic composition caused by assimilation of roof rocks and hydrothermal brines during collapse and resurgence. Younger intracaldera rhyolite lavas record partial isotopic recovery toward precaldera ratios. Thirteen extracaldera rhyolites show none of these effects and have sources independent of the subcaldera magma system. Contributions from the Archaean crust have extreme values and wide ranges of Nd-, Sr, and Pb-isotope ratios, but Yellowstone rhyolites have moderate values and limited ranges. This requires their deep-crustal sources to have been pervasively hybridized by distributed intrusion of Cenozoic basalt, most of which was probably contemporaneous with the Pliocene and Quaternary volcanism. Most Yellowstone basalts had undergone cryptic clinopyroxene fractionation in the lower crust or crust-mantle transition zone and, having also ascended through or adjacent to crustal zones of silicic-magma generation, most underwent some crustal contamination. -from Authors

  10. Thermoneutral zone and scaling of metabolic rate on body mass in small mammals

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.

    1983-01-01

    A 4-species animal model suitable for experimental study of the effect of change in gravitational loading on the scale relationship between metabolic rate and total body mass is used to study the effect of temperature on metabolic rate in six male animals, 8-10 months of age, of each of the four species in the ambient temperature range 20-36 C. The measurements taken permitted partitioning of total body heat output into sensible heat loss by radiation, conduction and convection, and into latent heat loss by evaporation of water from the body surface. It is shown that the condition of thermoneutrality is important for metabolic scale effect studies, and that the thermoneutral zone for the species considered here is a narrow one.

  11. Method for Forming Fiber Reinforced Composite Bodies with Graded Composition and Stress Zones

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay (Inventor); Levine, Stanley R. (Inventor); Smialek, James A. (Inventor)

    1999-01-01

    A near-net, complex shaped ceramic fiber reinforced silicon carbide based composite bodies with graded compositions and stress zones is disclosed. To provide the composite a fiber preform is first fabricated and an interphase is applied by chemical vapor infiltration, sol-gel or polymer processes. This first body is further infiltrated with a polymer mixture containing carbon, and/or silicon carbide, and additional oxide, carbide, or nitride phases forming a second body. One side of the second body is spray coated or infiltrated with slurries containing high thermal expansion and oxidation resistant. crack sealant phases and the other side of this second body is coated with low expansion phase materials to form a third body. This third body consisting of porous carbonaceous matrix surrounding the previously applied interphase materials, is then infiltrated with molten silicon or molten silicon-refractory metal alloys to form a fourth body. The resulting fourth body comprises dense composites consisting of fibers with the desired interphase which are surrounded by silicon carbide and other second phases materials at the outer and inner surfaces comprising material of silicon, germanium, refractory metal suicides, borides, carbides, oxides, and combinations thereof The resulting composite fourth body has different compositional patterns from one side to the other.

  12. Magma genesis, storage and eruption processes at Aluto volcano, Ethiopia: lessons from remote sensing, gas emissions and geochemistry

    NASA Astrophysics Data System (ADS)

    Hutchison, William; Biggs, Juliet; Mather, Tamsin; Pyle, David; Gleeson, Matthew; Lewi, Elias; Yirgu, Gezahgen; Caliro, Stefano; Chiodini, Giovanni; Fischer, Tobias

    2016-04-01

    One of the most intriguing aspects of magmatism during the transition from continental rifting to sea-floor spreading is that large silicic magmatic systems develop within the rift zone. In the Main Ethiopian Rift (MER) these silicic volcanoes not only pose a significant hazard to local populations but they also sustain major geothermal resources. Understanding the journey magma takes from source to surface beneath these volcanoes is vital for determining its eruption style and for better evaluating the geothermal resources that these complexes host. We investigate Aluto, a restless silicic volcano in the MER, and combine a wide range of geochemical and geophysical techniques to constrain magma genesis, storage and eruption processes and shed light on magmatic-hydrothermal-tectonic interactions. Magma genesis and storage processes at Aluto were evaluated using new whole-rock geochemical data from recent eruptive products. Geochemical modelling confirms that Aluto's peralkaline rhyolites, that constitute the bulk of recent erupted products, are generated from protracted fractionation (>80 %) of basalt that is compositionally similar to rift-related basalts found on the margins of the complex. Crustal melting did not play a significant role in rhyolite genesis and melt storage depths of ~5 km can reproduce almost all aspects of their geochemistry. InSAR methods were then used to investigate magma storage and fluid movement at Aluto during an episode of ground deformation that took place between 2008 and 2010. Combining new SAR imagery from different viewing geometries we identified an accelerating uplift pulse and found that source models support depths of magmatic and/or fluid intrusion at ~5 km for the uplift and shallower depths of ~4 km for the subsidence. Finally, gas samples collected on Aluto in 2014 were used to evaluate magma and fluid transport processes. Our results show that gases are predominantly emanating from major fault zones on Aluto and that they

  13. Magnesium Isotopes as a Tracer of Crustal Materials in Volcanic Arc Magmas in the Northern Cascade Arc

    NASA Astrophysics Data System (ADS)

    Brewer, Aaron W.; Teng, Fang-Zhen; Mullen, Emily

    2018-03-01

    Fifteen North Cascade Arc basalts and andesites were analyzed for Mg isotopes to investigate the extent and manner of crustal contributions to this magmatic system. The δ26Mg of these samples vary from within the range of ocean island basalts (the lightest being -0.33 ± 0.07‰) to heavier compositions (as heavy as -0.15 ± 0.06‰). The observed range in chemical and isotopic composition is similar to that of other volcanic arcs that have been assessed to date in the circum-pacific subduction zones and in the Caribbean. The heavy Mg isotope compositions are best explained by assimilation and fractional crystallization within the deep continental crust with a possible minor contribution from the addition of subducting slab-derived fluids to the primitive magma. The bulk mixing of sediment into the primitive magma or mantle source and the partial melting of garnet-rich peridotite are unlikely to have produced the observed range of Mg isotope compositions. The results show that Mg isotopes may be a useful tracer of crustal input into a magma, supplementing traditional methods such as radiogenic isotopic and trace element data, particularly in cases in which a high fraction of crustal material has been added.

  14. Geological setting and petrogenesis of symmetrically zoned, miarolitic granitic pegmatites at Stak Nala, Nanga Parbat - Haramosh Massif, northern Pakistan

    USGS Publications Warehouse

    Laurs, B.M.; Dilles, J.H.; Wairrach, Y.; Kausar, A.B.; Snee, L.W.

    1998-01-01

    Miarolitic granitic pegmatites in the Stak valley in the northeast part of the Nanga Parbat - Haramosh Massif, in northern Pakistan, locally contain economic quantities of bi- and tricolored tourmaline. The pegmatites form flat-lying sills that range from less than 1 m to more than 3 m thick and show symmetrical internal zonation. A narrow outer or border zone of medium-to coarse-grained oligoclase - K-feldspar - quartz grades inward to a very coarse-grained wall zone characterized by K-feldspar - oligoclase - quartz - schorl tourmaline. Radiating sprays of schorl and flaring megacrysts of K-feldspar (intermediate microcline) point inward, indicating progressive crystallization toward the core. The core zone consists of variable mixtures of blocky K-feldspar (intermediate microcline), oligoclase, quartz, and sparse schorl or elbaite, with local bodies of sodic aplite and miarolitic cavities or "pockets". Minor spessartine-almandine garnet and lo??llingite are disseminated throughout the pegmatite, but were not observed in the pockets. The pockets contain well-formed crystals of albite, quartz, K-feldspar (maximum microcline ?? orthoclase overgrowths), schorl-elbaite tourmaline, muscovite or lepidolite, topaz, and small amounts of other minerals. Elbaite is color-zoned from core to rim: green (Fe2+- and Mn2+-bearing), colorless (Mn2+-bearing), and light pink (trace Mn3+). Within ???10 cm of the pegmatites, the granitic gneiss wallrock is bleached owing to conversion of biotite to muscovite, with local quartz and albite added. Schorl is disseminated through the altered gneiss, and veins of schorl with bleached selvages locally traverse the wallrock up to 1 m from the pegmatite contact. The schorl veins can be traced into the outer part of the wall zone, which suggests that they formed from aqueous fluids derived during early saturation of the pegmatite-forming leucogranitic magma rich in H2O, F, B, and Li. Progressive crystallization resulted in a late-stage sodic

  15. Creation of a sharp compositional interface in the Pu`u `O`o shallow magma reservoir, Kilauea volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E.; Garcia, M. O.

    2006-12-01

    Lavas from the early episodes of the Pu`u `O`O eruption (1983-85) of Kilauea Volcano on the island of Hawai'i display rapid compositional variation over short periods for some episodes, especially from the well sampled episode 30 with ~2 wt% MgO variation in <4 hours. Little chemical variation is observed within the episode 30 lavas before or after this abrupt change suggesting a sharp compositional interface within the Pu`u `O`o dike-like shallow reservoir. The change in lava composition throughout the eruption is due to changes in cooling within the dike-like shallow reservoir of Pu`u `O`o. Potential explanations for a sharp interface, such as a reservoir of changing width and changing country rock thermal properties, are evaluated using a simple thermal model of a dike-like body with spatially variable thermal conductivity. The model that best reproduces the compositional data involves a change in thermal conductivity from 2.7 to 11 W m-1 C-1. which is consistent with deep drill hole data in the east rift zone. The change in thermal conductivity may indicate that fluid flow in the east rift zone is restricted at depth possibly by increasing numbers of dikes acting as acuacludes or decreasing pore space due to formation of secondary minerals. Results suggest that country rock thermal gradients can strongly influence magma chemistry in shallow reservoirs.

  16. Hydrogen isotopic fractionation during crystallization of the terrestrial magma ocean

    NASA Astrophysics Data System (ADS)

    Pahlevan, K.; Karato, S. I.

    2016-12-01

    Models of the Moon-forming giant impact extensively melt and partially vaporize the silicate Earth and deliver a substantial mass of metal to the Earth's core. The subsequent evolution of the terrestrial magma ocean and overlying vapor atmosphere over the ensuing 105-6 years has been largely constrained by theoretical models with remnant signatures from this epoch proving somewhat elusive. We have calculated equilibrium hydrogen isotopic fractionation between the magma ocean and overlying steam atmosphere to determine the extent to which H isotopes trace the evolution during this epoch. By analogy with the modern silicate Earth, the magma ocean-steam atmosphere system is often assumed to be chemically oxidized (log fO2 QFM) with the dominant atmospheric vapor species taken to be water vapor. However, the terrestrial magma ocean - having held metallic droplets in suspension - may also exhibit a much more reducing character (log fO2 IW) such that equilibration with the overlying atmosphere renders molecular hydrogen the dominant H-bearing vapor species. This variable - the redox state of the magma ocean - has not been explicitly included in prior models of the coupled evolution of the magma ocean-steam atmosphere system. We find that the redox state of the magma ocean influences not only the vapor speciation and liquid-vapor partitioning of hydrogen but also the equilibrium isotopic fractionation during the crystallization epoch. The liquid-vapor isotopic fractionation of H is substantial under reducing conditions and can generate measurable D/H signatures in the crystallization products but is largely muted in an oxidizing magma ocean and steam atmosphere. We couple equilibrium isotopic fractionation with magma ocean crystallization calculations to forward model the behavior of hydrogen isotopes during this epoch and find that the distribution of H isotopes in the silicate Earth immediately following crystallization represents an oxybarometer for the terrestrial

  17. Fine crustal and uppermost mantle S-wave velocity structure beneath the Tengchong volcanic area inferred from receiver function and surface-wave dispersion: constraints on magma chamber distribution

    NASA Astrophysics Data System (ADS)

    Li, Mengkui; Zhang, Shuangxi; Wu, Tengfei; Hua, Yujin; Zhang, Bo

    2018-03-01

    The Tengchong volcanic area is located in the southeastern margin of the collision zone between the Indian and Eurasian Plates. It is one of the youngest intraplate volcano groups in mainland China. Imaging the S-wave velocity structure of the crustal and uppermost mantle beneath the Tengchong volcanic area is an important means of improving our understanding of its volcanic activity and seismicity. In this study, we analyze teleseismic data from nine broadband seismic stations in the Tengchong Earthquake Monitoring Network. We then image the crustal and uppermost mantle S-wave velocity structure by joint analysis of receiver functions and surface-wave dispersion. The results reveal widely distributed low-velocity zones. We find four possible magma chambers in the upper-to-middle crust and one in the uppermost mantle. The chamber in the uppermost mantle locates in the depth range from 55 to 70 km. The four magma chambers in the crust occur at different depths, ranging from the depth of 7 to 25 km in general. They may be the heat sources for the high geothermal activity at the surface. Based on the fine crustal and uppermost mantle S-wave velocity structure, we propose a model for the distribution of the magma chambers.

  18. Factors controlling the structures of magma chambers in basaltic volcanoes

    NASA Technical Reports Server (NTRS)

    Wilson, L.; Head, James W.

    1991-01-01

    The depths, vertical extents, and lateral extents of magma chambers and their formation are discussed. The depth to the center of a magma chamber is most probably determined by the density structure of the lithosphere; this process is explained. It is commonly assumed that magma chambers grow until the stress on the roof, floor, and side-wall boundaries exceed the strength of the wall rocks. Attempts to grow further lead to dike propagation events which reduce the stresses below the critical values of rock failure. The tensile or compressive failure of the walls is discussed with respect to magma migration. The later growth of magma chambers is accomplished by lateral dike injection into the country rocks. The factors controlling the patterns of growth and cooling of such dikes are briefly mentioned.

  19. Total sulfur dioxide emissions and pre-eruption vapor-saturated magma at Mount St. Helens, 1980-88

    NASA Astrophysics Data System (ADS)

    Gerlach, T. M.; McGee, K. A.

    1994-12-01

    SO2 from explosive volcanism can cause significant climatic and atmospheric impacts, but the source of the sulfur is controversial. Total ozone mapping spectrometer (TOMS), correlation spectrometer (COSPEC), and ash leachate data for Mount St. Helens from the time of the climactic eruption on 18 May 1980 to the final stages of non-explosive degassing in 1988 give a total SO2 emission of 2 Mt. COSPEC data show a sharp drop in emission rate that was apparently controlled by a decreasing rate of magma supply. A total SO2 emission of only 0.08 Mt is estimated from melt inclusion data and the conventional assumption that the main sulfur source was pre-eruption melt; commonly invoked sources of 'excess sulfur' (anhydrite decomposition, basaltic magma, and degassing of non-erupted magma) are unlikely in this case. Thus melt inclusions may significantly underestimate SO2 emissions and impacts of explosive volcanism on climate and the atmosphere. Measured CO2 emissions, together with the H2O content of melt inclusions and experimental solubility data, indicate the Mount St. Helens dacite was vapor-saturated at depth prior to ascent and suggest that a vapor phase was the main source of sulfur for the 2-Mt of SO2. A vapor source is consistent with experimental studies on the Mount St. Helens dacite and removes the need for a much debated shallow magma body.

  20. Why do magmas stall? Insights from petrologic and geodetic data

    NASA Astrophysics Data System (ADS)

    Zimmer, M. M.; Plank, T.; Freymueller, J.; Hauri, E. H.; Larsen, J. F.; Nye, C. J.

    2007-12-01

    Magmas stall at various depths in the crust due to their internal properties (magma viscosity, buoyancy) and external crustal controls (local stress regime, wallrock strength). Annen et al. (JPet 2006) propose a petrological model in which buoyant magma ascends through the crust until the depth of water saturation, after which it crystallizes catastrophically and stalls due to the large increase in magma viscosity. Magmas may erupt from this storage region, or viscous death may result in pluton formation. In order to test this model, and constrain magma storage depths, we combine petrological and geodetic data for several active volcanoes along the Aleutian-Alaska arc. We analyzed glassy, primarily olivine-hosted melt inclusions by SIMS in tephra samples for their pre-eruptive volatile contents, which can be related to the depth of entrapment via pressure-dependent H2O-CO2 solubility models (e.g., VolatileCalc). Melt inclusions are not in equilibrium with pure water vapor (all will contain S and C species), but >50% of the inclusion population are in equilibrium with a vapor containing >85% H2O. Geodetic data (InSAR, GPS) record surface deformation related to volcano inflation/deflation, and can be inverted to solve for the depths of volume change (magma storage) in the crust. In the Aleutians, we find that the maximum melt inclusion trapping depths and geodetic depths correlate, suggesting both techniques record crustal magma storage and crystallization. Melt inclusions from the 1997 Okmok eruption are trapped at ≤3 km; deformation during the eruption and subsequent inflation occurred at 3±0.5 km (Miyagi et al., EPSL 2004; Lu & Masterlark, JGR 2005). At Akutan, melt inclusions and GPS data indicate magma storage at ~5-7 km. Inclusions from flank cones of Makushin yield depths of 7 km, similar to inflation observed beneath the main edifice (6.8 km, Lu et al., JGR 2002). Pleistocene inclusions from Augustine volcano indicate magma storage at 10-18 km, in accord

  1. Magma Chamber of the 26.5 ka Oruanui Eruption, Taupo Volcano, New Zealand

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Anderson, A. T.; Wilson, C. J.; Davis, A. M.

    2004-12-01

    We have investigated melt inclusions and their host quartz crystals from the Bishop-Tuff-sized 26.5 ka Oruanui eruption at Taupo volcano, New Zealand. Compositions (major and trace elements, H2O and CO2) of melt inclusions and cathodoluminescence (CL) images of quartz were obtained for eight individual pumices from early, middle and late depositional units. All melt inclusions are high-silica weakly peraluminous rhyolites. Melt inclusions for different eruptive phases have similar ranges of H2O contents (3.8-5.2 wt %), but late-erupted samples have higher CO2 contents (mostly > 140 ppm). A positive correlation between CO2 and compatible trace elements such as Sr suggests that crystallization and melt entrapment occurred under gas-saturated conditions. Trace elements variations in melt inclusions are consistent with fractionation of 30-40 wt % crystals (plagioclase+quartz+pyroxene+amphibole). Crystal contents in pumices, trace-element contents in melt inclusions, and CL zoning patterns of quartz show no correlation with eruptive phases, suggesting that the Oruanui magma was well mixed before eruption. Some Oruanui quartz crystals contain distinctive CL zonings with a jagged ('restitic') core mantled by a black CL zone. Trace element variations in melt inclusions in the 'restitic' cores are consistent with fractionation of Ba-bearing minerals such as sanidine and/or biotite, both of which are rare or absent in rocks erupted from Taupo volcanic center. The above evidence suggests that Oruanui rhyolite is generated by assimilation of previous intruded rocks or country rocks, differentiated by crystal fractionation, and then mixed prior to eruption. Despite the differences in trace element and volatile contents, and crystal assemblages, both Bishop Tuff and Oruanui magmas involve crystal fractionation as one of the main differentiation mechanisms during their evolution. However, there are pronounced differences in the pre-eruptive stratification of the two chambers

  2. Compositional Variation in Magmas Supplied to the Southern East Pacific Rise, 17°-19° S: Implications for Magma Reservoir Dynamics

    NASA Astrophysics Data System (ADS)

    Bergmanis, E. C.; Sinton, J. M.; Rubin, K. H.; Gregg, T. K.; Cormier, M.

    2002-12-01

    Fine-scale observation and sampling of lavas from the southern EPR 17°-19° S reveal both short- and long-term compositional heterogeneity of flows produced in single eruptive episodes. Located between 17° 24' and 17° 36'S, the 140 x 106 m2 Aldo-Kihi flow reaches a maximum width of 2.2 km between 17° 26' and 17° 28'S; the presence of sheet flows, lava channels, and summit collapse troughs imply that the eruption was centered in this area of broad axial morphology. Some lava channels and collapsed lava tubes extend beyond the margins of the recently erupted Aldo-Kihi flow, indicating that lava distribution systems can persist over at least several hundreds of years and multiple separate eruptions were apparently centered in this region. Extensive glass analyses of the Aldo-Kihi flow show that MgO contents range from 7.7-8.4 wt %; all the samples with greater than 8.0 wt % MgO occur south of 17° 30'S. This result is hard to reconcile with along-axis propagation of a single dike, and suggests vertical eruption from a magma chamber that is compositionally zoned along-axis. Twenty-three other samples older than Aldo-Kihi contain > 8.0 wt % MgO; all but two occur south of 17° 28.4'S suggesting that the displacement of eruptive centers from the location of hottest subaxial magma is a long-lived feature of this region. Lack of compositional variation across some contacts indicates that this length of ridge has erupted compositionally similar lavas in separate volcanic episodes. Elsewhere distinctly different lava compositions include the several-hundred-year-old Rehu-Marka Fe-Ti basalt, and local occurrences of incompatible element-enriched T-MORB. The distribution of rock types in this area requires a complex history of mantle melting, recharge, cooling, and eruption that has been spatially systematic over time scales encompassing several eruptive episodes. Between 18° 31.5' and 18° 34.5'S the South Hump lava is distinctly bimodal with highly evolved ferrobasalts

  3. Experimental constraints on the outgassing dynamics of basaltic magmas

    NASA Astrophysics Data System (ADS)

    Pioli, L.; Bonadonna, C.; Azzopardi, B. J.; Phillips, J. C.; Ripepe, M.

    2012-03-01

    The dynamics of separated two-phase flow of basaltic magmas in cylindrical conduits has been explored combining large-scale experiments and theoretical studies. Experiments consisted of the continuous injection of air into water or glucose syrup in a 0.24 m diameter, 6.5 m long bubble column. The model calculates vesicularity and pressure gradient for a range of gas superficial velocities (volume flow rates/pipe area, 10-2-102 m/s), conduit diameters (100-2 m), and magma viscosities (3-300 Pa s). The model is calibrated with the experimental results to extrapolate key flow parameters such as Co (distribution parameter) and Froude number, which control the maximum vesicularity of the magma in the column, and the gas rise speed of gas slugs. It predicts that magma vesicularity increases with increasing gas volume flow rate and decreases with increasing conduit diameter, until a threshold value (45 vol.%), which characterizes churn and annular flow regimes. Transition to annular flow regimes is expected to occur at minimum gas volume flow rates of 103-104 m3/s. The vertical pressure gradient decreases with increasing gas flow rates and is controlled by magma vesicularity (in bubbly flows) or the length and spacing of gas slugs. This study also shows that until conditions for separated flow are met, increases in magma viscosity favor stability of slug flow over bubbly flow but suggests coexistence between gas slugs and small bubbles, which contribute to a small fraction of the total gas outflux. Gas flow promotes effective convection of the liquid, favoring magma homogeneity and stable conditions.

  4. Petrology of the 1995/2000 Magma of Copahue, Argentina

    NASA Astrophysics Data System (ADS)

    Goss, A.; Varekamp, J. C.

    2001-05-01

    Phreatomagmatic eruptions of Copahue in July/August,1995 and July/August 2000 produced mixed juvenile clasts, silica-rich debris from the hydrothermal system, and magmatic scoria with 88 percent SiO2. These high-SiO2 clasts carry an as yet unidentified (crystobalite?), euhedral silica phase in great abundance, which is riddled with tan, primary melt inclusions. The mixed clasts have bands of mafic material with small euhedral olivine, clinopyroxene, and plagioclase that are mixed with an intermediate magma with coarser, resorbed phenocrysts of olivine, plagioclase, clino- and ortho- pyroxene, and rare occurrences of the silica phase. These ejecta are intimate mixtures of a relatively felsic magma similar to Pleistocene Copahue lavas and a mafic basaltic andesite, with minor contributions of a magma contaminated with silica-rich hydrothermal wallrock material. Two-pyroxene geothermometry indicates crystallization temperatures of 1020 deg - 1045 deg C. Glass inclusions (59-63 percent SiO2) in plagioclase and olivine crystals yield very low volatile contents in the melt (0.4-1.5 percent H2O). The 1995/2000 magmas resided at shallow level and degassed into the active volcano-hydrothermal system which discharges acid fluids into the Copahue crater lake and hot springs. More mafic magma intruded this shallow batch and the mixture rose into the hydrothermal system and assimilated siliceous wall rock. A Ti-diffusion profile in a magnetite crystal suggests that the period between magma mixing and eruption was on the order of 4-10 weeks, and the temperature difference between resident and intruding magma was about 50-60 oC.

  5. Imaging of magma intrusions beneath Harrat Al-Madinah in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Abdelwahed, Mohamed F.; El-Masry, Nabil; Moufti, Mohamed Rashad; Kenedi, Catherine Lewis; Zhao, Dapeng; Zahran, Hani; Shawali, Jamal

    2016-04-01

    High-resolution tomographic images of the crust and upper mantle beneath Harrat Al-Madinah, Saudi Arabia, are obtained by inverting high-quality arrival-time data of local earthquakes and teleseismic events recorded by newly installed borehole seismic stations to investigate the AD 1256 volcanic eruption and the 1999 seismic swarm in the study region. Our tomographic images show the existence of strong heterogeneities marked with low-velocity zones extending beneath the AD 1256 volcanic center and the 1999 seismic swarm area. The low-velocity zone coinciding with the hypocenters of the 1999 seismic swarm suggests the presence of a shallow magma reservoir that is apparently originated from a deeper source (60-100 km depths) and is possibly connected with another reservoir located further north underneath the NNW-aligned scoria cones of the AD 1256 eruption. We suggest that the 1999 seismic swarm may represent an aborted volcanic eruption and that the magmatism along the western margin of Arabia is largely attributed to the uplifting and thinning of its lithosphere by the Red Sea rifting.

  6. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions.

    PubMed

    Wotzlaw, Jörn-Frederik; Bindeman, Ilya N; Stern, Richard A; D'Abzac, Francois-Xavier; Schaltegger, Urs

    2015-09-10

    Large-volume caldera-forming eruptions of silicic magmas are an important feature of continental volcanism. The timescales and mechanisms of assembly of the magma reservoirs that feed such eruptions as well as the durations and physical conditions of upper-crustal storage remain highly debated topics in volcanology. Here we explore a comprehensive data set of isotopic (O, Hf) and chemical proxies in precisely U-Pb dated zircon crystals from all caldera-forming eruptions of Yellowstone supervolcano. Analysed zircons record rapid assembly of multiple magma reservoirs by repeated injections of isotopically heterogeneous magma batches and short pre-eruption storage times of 10(3) to 10(4) years. Decoupled oxygen-hafnium isotope systematics suggest a complex source for these magmas involving variable amounts of differentiated mantle-derived melt, Archean crust and hydrothermally altered shallow-crustal rocks. These data demonstrate that complex magma reservoirs with multiple sub-chambers are a common feature of rift- and hotspot related supervolcanoes. The short duration of reservoir assembly documents rapid crustal remelting and two to three orders of magnitude higher magma production rates beneath Yellowstone compared to continental arc volcanoes. The short pre-eruption storage times further suggest that the detection of voluminous reservoirs of eruptible magma beneath active supervolcanoes may only be possible prior to an impending eruption.

  7. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions

    PubMed Central

    Wotzlaw, Jörn-Frederik; Bindeman, Ilya N.; Stern, Richard A.; D’Abzac, Francois-Xavier; Schaltegger, Urs

    2015-01-01

    Large-volume caldera-forming eruptions of silicic magmas are an important feature of continental volcanism. The timescales and mechanisms of assembly of the magma reservoirs that feed such eruptions as well as the durations and physical conditions of upper-crustal storage remain highly debated topics in volcanology. Here we explore a comprehensive data set of isotopic (O, Hf) and chemical proxies in precisely U-Pb dated zircon crystals from all caldera-forming eruptions of Yellowstone supervolcano. Analysed zircons record rapid assembly of multiple magma reservoirs by repeated injections of isotopically heterogeneous magma batches and short pre-eruption storage times of 103 to 104 years. Decoupled oxygen-hafnium isotope systematics suggest a complex source for these magmas involving variable amounts of differentiated mantle-derived melt, Archean crust and hydrothermally altered shallow-crustal rocks. These data demonstrate that complex magma reservoirs with multiple sub-chambers are a common feature of rift- and hotspot related supervolcanoes. The short duration of reservoir assembly documents rapid crustal remelting and two to three orders of magnitude higher magma production rates beneath Yellowstone compared to continental arc volcanoes. The short pre-eruption storage times further suggest that the detection of voluminous reservoirs of eruptible magma beneath active supervolcanoes may only be possible prior to an impending eruption. PMID:26356304

  8. Zircon reveals protracted magma storage and recycling beneath Mount St. Helens

    USGS Publications Warehouse

    Claiborne, L.L.; Miller, C.F.; Flanagan, D.M.; Clynne, M.A.; Wooden, J.L.

    2010-01-01

    Current data and models for Mount St. Helens volcano (Washington, United States) suggest relatively rapid transport from magma genesis to eruption, with no evidence for protracted storage or recycling of magmas. However, we show here that complex zircon age populations extending back hundreds of thousands of years from eruption age indicate that magmas regularly stall in the crust, cool and crystallize beneath the volcano, and are then rejuvenated and incorporated by hotter, young magmas on their way to the surface. Estimated dissolution times suggest that entrained zircon generally resided in rejuvenating magmas for no more than about a century. Zircon elemental compositions reflect the increasing influence of mafic input into the system through time, recording growth from hotter, less evolved magmas tens of thousands of years prior to the appearance of mafic magmas at the surface, or changes in whole-rock geochemistry and petrology, and providing a new, time-correlated record of this evolution independent of the eruption history. Zircon data thus reveal the history of the hidden, long-lived intrusive portion of the Mount St. Helens system, where melt and crystals are stored for as long as hundreds of thousands of years and interact with fresh influxes of magmas that traverse the intrusive reservoir before erupting. ?? 2010 Geological Society of America.

  9. Explosive volcanism may not be an inevitable consequence of magma fragmentation.

    PubMed

    Gonnermann, Helge M; Manga, Michael

    2003-11-27

    The fragmentation of magma, containing abundant gas bubbles, is thought to be the defining characteristic of explosive eruptions. When viscous stresses associated with the growth of bubbles and the flow of the ascending magma exceed the strength of the melt, the magma breaks into disconnected fragments suspended within an expanding gas phase. Although repeated effusive and explosive eruptions for individual volcanoes are common, the dynamics governing the transition between explosive and effusive eruptions remain unclear. Magmas for both types of eruptions originate from sources with similar volatile content, yet effusive lavas erupt considerably more degassed than their explosive counterparts. One mechanism for degassing during magma ascent, consistent with observations, is the generation of intermittent permeable fracture networks generated by non-explosive fragmentation near the conduit walls. Here we show that such fragmentation can occur by viscous shear in both effusive and explosive eruptions. Moreover, we suggest that such fragmentation may be important for magma degassing and the inhibition of explosive behaviour. This implies that, contrary to conventional views, explosive volcanism is not an inevitable consequence of magma fragmentation.

  10. Electrical conductivity of hydrous andesitic melts pertinent to subduction zones

    NASA Astrophysics Data System (ADS)

    Guo, Xuan; Li, Bin; Ni, Huaiwei; Mao, Zhu

    2017-03-01

    Andesitic magmatism and rocks are widespread at convergent plate boundaries. Electrically conductive bodies beneath subduction zone arc volcanoes, such as the Uturuncu Volcano, Bolivia, may correspond to active reservoirs of H2O-bearing andesitic magma. Laboratory measurements of electrical conductivity of hydrous andesitic melts are required to constrain the physicochemical conditions of these magma reservoirs in combination with magnetotelluric data. This experimental study investigates electrical conductivity of andesitic melts with 0.01-5.9 wt % of H2O at 1164-1573 K and 0.5-1.0 GPa in a piston cylinder apparatus using sweeping-frequency impedance spectroscopy. Electrical conductivity of andesitic melt increases with increasing temperature and H2O concentration but decreases with pressure. Across the investigated range of H2O concentration, electrical conductivity varies by 1.2-2.4 log units, indicating stronger influence of H2O for andesitic melt than for rhyolitic and dacitic melts. Using the Nernst-Einstein equation, the principal charge carrier is inferred to be Na in anhydrous melt but divalent cations in hydrous andesitic melts. The experimental data are regressed into a general electrical conductivity model for andesitic melt accounting for the pressure-temperature-H2O dependences altogether. Modeling results show that the conductive layer at >20 km depths beneath the surface of the Uturuncu Volcano could be interpreted by the presence of less than 20 vol % of H2O-rich andesitic melt (with 6-9 wt % H2O).

  11. Is magma cooling responsible for the periodic activity of Soufrière Hills volcano, Montserrat, West Indies?

    NASA Astrophysics Data System (ADS)

    Caricchi, Luca; Simpson, Guy; Chelle-Michou, Cyril; Neuberg, Jürgen

    2016-04-01

    After 400 years of quiescence, Soufrière Hills volcano on Montserrat (SHV) started erupting in 1995. Ongoing deformation and sulphur dioxide emission demonstrate that this volcanic systems is still restless, however, after 5 years of inactivity it remains unclear whether magma extrusion will restart. Also, if such periodically observed activity at SHV will restart, can we use past monitoring data to attempt to forecast the reawakening of this volcano? Cooling of volatile saturated magma leads to crystallisation, the formation of gas bubbles and expansion. Such volumetric variations are not only potentially responsible for deformation signals observed at the surface (Caricchi et al., 2014), but also lead to pressurisation of the magmatic reservoir and eventually renewed magma extrusion (Tait et al., 1989). We postulate that volcanic activity observed at SHM over the last 20 years could be essentially the result of the unavoidable progressive cooling of a magmatic body, which was probably assembled over thousands of years and experienced internal segregation of eruptible lenses of magma (Christopher et al., 2015). To test this hypothesis, we performed thermal modelling to test if the cooling of a shallow magma body emplaced since 1990 could account for the monitoring signals observed at SHV. The results show that progressive cooling of a 4km3 volume of melt could explain the deformation rate currently observed. Using the deformation rate obtained from the modelling for the first 15 years of cooling, a reservoir volume of about 13 km3 (Paulatto et al., 2012) and a critical value of overpressure of 10 MPa, it would have taken approximately only 3 years to pressurise the reservoir to the critical pressure and restart magma extrusion. This is in agreement with the time interval between previous pauses at SHV before 2010. Considering the current deformation rates, we speculate that magma extrusion could restart in 6-8 years after the end of the last event in 2010, hence

  12. The thermochemical, two-phase dynamics of subduction zones: results from new, fully coupled models

    NASA Astrophysics Data System (ADS)

    Rees Jones, D. W.; Katz, R. F.; May, D.; Tian, M.; Rudge, J. F.

    2017-12-01

    Subduction zones are responsible for most of Earth's subaerial volcanism. However, previous geodynamic modelling of subduction zones has largely neglected magmatism. We previously showed that magmatism has a significant thermal impact, by advecting sensible heat into the lithosphere beneath arc volcanos [1]. Inclusion of this effect helps reconcile subduction zone models with petrological and heat flow observations. Many important questions remain, including how magma-mantle dynamics of subduction zones affects the position of arc volcanos and the character of their lavas. In this presentation, we employ a fully coupled, thermochemical, two-phase flow theory to investigate the dynamics of subduction zones. We present the first results from our new software (SubFUSc), which solves the coupled equations governing conservation of mass, momentum, energy and chemical species. The presence and migration of partial melts affect permeability and mantle viscosity (both directly and through their thermal impact); these, in turn, feed back on the magma-mantle flow. Thus our fully coupled modelling improves upon previous two-phase models that decoupled the governing equations and fixed the thermal structure [2]. To capture phase change, we use a novel, simplified model of the mantle melting in the presence of volatile species. As in the natural system, volatiles are associated with low-degree melting at temperatures beneath the anhydrous solidus; dehydration reactions in the slab supply volatiles into the wedge, triggering silicic melting. We simulate the migration of melts under buoyancy forces and dynamic pressure gradients. We thereby demonstrate the dynamical controls on the pattern of subduction-zone volcanism (particularly its location, magnitude, and chemical composition). We build on our previous study of the thermal consequences of magma genesis and segregation. We address the question of what controls the location of arc volcanoes themselves [3]. [1] Rees Jones, D. W

  13. Eddy Flow during Magma Emplacement: The Basemelt Sill, Antarctica

    NASA Astrophysics Data System (ADS)

    Petford, N.; Mirhadizadeh, S.

    2014-12-01

    The McMurdo Dry Valleys magmatic system, Antarctica, forms part of the Ferrar dolerite Large Igneous Province. Comprising a vertical stack of interconnected sills, the complex provides a world-class example of pervasive lateral magma flow on a continental scale. The lowermost intrusion (Basement Sill) offers detailed sections through the now frozen particle macrostructure of a congested magma slurry1. Image-based numerical modelling where the intrusion geometry defines its own unique finite element mesh allows simulations of the flow regime to be made that incorporate realistic magma particle size and flow geometries obtained directly from field measurements. One testable outcome relates to the origin of rhythmic layering where analytical results imply the sheared suspension intersects the phase space for particle Reynolds and Peclet number flow characteristic of macroscopic structures formation2. Another relates to potentially novel crystal-liquid segregation due to the formation of eddies locally at undulating contacts at the floor and roof of the intrusion. The eddies are transient and mechanical in origin, unrelated to well-known fluid dynamical effects around obstacles where flow is turbulent. Numerical particle tracing reveals that these low Re number eddies can both trap (remove) and eject particles back into the magma at a later time according to their mass density. This trapping mechanism has potential to develop local variations in structure (layering) and magma chemistry that may otherwise not occur where the contact between magma and country rock is linear. Simulations indicate that eddy formation is best developed where magma viscosity is in the range 1-102 Pa s. Higher viscosities (> 103 Pa s) tend to dampen the effect implying eddy development is most likely a transient feature. However, it is nice to think that something as simple as a bumpy contact could impart physical and by implication chemical diversity in igneous rocks. 1Marsh, D.B. (2004), A

  14. Carbon dioxide in magmas and implications for hydrothermal systems

    USGS Publications Warehouse

    Lowenstern, J. B.

    2001-01-01

    This review focuses on the solubility, origin, abundance, and degassing of carbon dioxide (CO2) in magma-hydrothermal systems, with applications for those workers interested in intrusion-related deposits of gold and other metals. The solubility of CO2 increases with pressure and magma alkalinity. Its solubility is low relative to that of H2O, so that fluids exsolved deep in the crust tend to have high CO2/H2O compared with fluids evolved closer to the surface. Similarly, CO2/H2O will typically decrease during progressive decompression- or crystallization-induced degassing. The temperature dependence of solubility is a function of the speciation of CO2, which dissolves in molecular form in rhyolites (retrograde temperature solubility), but exists as dissolved carbonate groups in basalts (prograde). Magnesite and dolomite are stable under a relatively wide range of mantle conditions, but melt just above the solidus, thereby contributing CO2 to mantle magmas. Graphite, diamond, and a free CO2-bearing fluid may be the primary carbon-bearing phases in other mantle source regions. Growing evidence suggests that most CO2 is contributed to arc magmas via recycling of subducted oceanic crust and its overlying sediment blanket. Additional carbon can be added to magmas during magma-wallrock interactions in the crust. Studies of fluid and melt inclusions from intrusive and extrusive igneous rocks yield ample evidence that many magmas are vapor saturated as deep as the mid crust (10-15 km) and that CO2 is an appreciable part of the exsolved vapor. Such is the case in both basaltic and some silicic magmas. Under most conditions, the presence of a CO2-bearing vapor does not hinder, and in fact may promote, the ascent and eruption of the host magma. Carbonic fluids are poorly miscible with aqueous fluids, particularly at high temperature and low pressure, so that the presence of CO2 can induce immiscibility both within the magmatic volatile phase and in hydrothermal systems

  15. Tube pumices as strain markers of the ductile-brittle transition during magma fragmentation

    NASA Astrophysics Data System (ADS)

    Martí, J.; Soriano, C.; Dingwell, D. B.

    1999-12-01

    Magma fragmentation-the process by which relatively slow-moving magma transforms into a violent gas flow carrying fragments of magma-is the defining feature of explosive volcanism. Yet of all the processes involved in explosively erupting systems, fragmentation is possibly the least understood. Several theoretical and laboratory studies on magma degassing and fragmentation have produced a general picture of the sequence of events leading to the fragmentation of silicic magma. But there remains a debate over whether magma fragmentation is a consequence of the textural evolution of magma to a foamed state where disintegration of walls separating bubbles becomes inevitable due to a foam-collapse criterion, or whether magma is fragmented purely by stresses that exceed its tensile strength. Here we show that tube pumice-where extreme bubble elongation is observed-is a well-preserved magmatic `strain marker' of the stress state immediately before and during fragmentation. Structural elements in the pumice record the evolution of the magma's mechanical response from viscous behaviour (foaming and foam elongation) through the plastic or viscoelastic stage, and finally to brittle behaviour. These observations directly support the hypothesis that fragmentation occurs when magma undergoes a ductile-brittle transition and stresses exceed the magma's tensile strength.

  16. Resonance oscillations of the Soufrière Hills Volcano (Montserrat, W.I.) magmatic system induced by forced magma flow from the reservoir into the upper plumbing dike

    NASA Astrophysics Data System (ADS)

    Chen, Chin-Wu; Huang, Hsin-Fu; Hautmann, Stefanie; Sacks, I. Selwyn; Linde, Alan T.; Taira, Taka'aki

    2018-01-01

    Short-period deformation cycles are a common phenomenon at active volcanoes and are often attributed to the instability of magma flow in the upper plumbing system caused by fluctuations in magma viscosity related to cooling, degassing, and crystallization. Here we present 20-min periodic oscillations in ground deformation based on high-precision continuous borehole strain data that were associated with the 2003 massive dome-collapse at the Soufrière Hills Volcano, Montserrat (West Indies). These high-frequency oscillations lasted 80 min and were preceded by a 4-hour episode of rapid expansion of the shallow magma reservoir. Strain amplitude ratios indicate that the deformational changes were generated by pressure variations in the shallow magma reservoir and - with reversed polarity - the adjacent plumbing dike. The unusually short period of the oscillations cannot be explained with thermally induced variations in magma properties. We investigate the underlying mechanism of the oscillations via a numerical model of forced magma flow through a reservoir-dike system accounting for time-dependent dilation/contraction of the dike due to a viscous response in the surrounding host rock. Our results suggest that the cyclic pressure variations are modulated by the dynamical interplay between rapid expansion of the magma chamber and the incapacity of the narrow dike to take up fast enough the magma volumes supplied by the reservoir. Our results allow us to place first order constraints on the viscosity of crustal host rocks and consequently its fractional melt content. Hence, we present for the first time crustal-scale in situ measurements of rheological properties of mush zones surrounding magmatic systems.

  17. The role of magma mixing/mingling and cumulate melting in the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei, Southern Italy)

    NASA Astrophysics Data System (ADS)

    Forni, Francesca; Petricca, Eleonora; Bachmann, Olivier; Mollo, Silvio; De Astis, Gianfilippo; Piochi, Monica

    2018-06-01

    Understanding the mechanisms responsible for the generation of chemical gradients in high-volume ignimbrites is key to retrieve information on the processes that control the maturation and eruption of large silicic magmatic reservoirs. Over the last 60 ky, two large ignimbrites showing remarkable zoning were emplaced during caldera-forming eruptions at Campi Flegrei (i.e., Campanian Ignimbrite, CI, 39 ka and Neapolitan Yellow Tuff, NYT, 15 ka). While the CI displays linear compositional, thermal and crystallinity gradients, the NYT is a more complex ignimbrite characterized by crystal-poor magmas ranging in composition from trachy-andesites to phonolites. By combining major and trace element compositions of matrix glasses and mineral phases from juvenile clasts located at different stratigraphic heights along the NYT pyroclastic sequence, we interpret such compositional gradients as the result of mixing/mingling between three different magmas: (1) a resident evolved magma showing geochemical characteristics of a melt extracted from a cumulate mush dominated by clinopyroxene, plagioclase and oxides with minor sanidine and biotite; (2) a hotter and more mafic magma from recharge providing high-An plagioclase and high-Mg clinopyroxene crystals and (3) a compositionally intermediate magma derived from remelting of low temperature mineral phases (i.e., sanidine and biotite) within the cumulate crystal mush. We suggest that the presence of a refractory crystal mush, as documented by the occurrence of abundant crystal clots containing clinopyroxene, plagioclase and oxides, is the main reason for the lack of erupted crystal-rich material in the NYT. A comparison between the NYT and the CI, characterized by both crystal-poor extracted melts and crystal-rich magmas representing remobilized portions of a "mature" (i.e., sanidine dominated) cumulate residue, allows evaluation of the capability of crystal mushes of becoming eruptible upon recharge.

  18. Petrological constraints on the recycling of mafic crystal mushes, magma ascent and intrusion of braided sills in the Torres del Paine mafic complex (Patagonia)

    NASA Astrophysics Data System (ADS)

    Leuthold, Julien; Müntener, Othmar; Baumgartner, Lukas; Putlitz, Benita

    2014-05-01

    Cumulate and crystal mush disruption and reactivation are difficult to recognise in coarse grained shallow plutonic rocks. Mafic minerals included in hornblende and zoned plagioclase provide snapshots of early crystallization and cumulate formation, but are difficult to interpret in terms of the dynamics of magma ascent and possible links between silicic and mafic rock emplacement. We will present the field relations, the microtextures and the mineral chemistry of the Miocene mafic sill complex of the Torres del Paine intrusive complex (Patagonia, Chile) and its sub-vertical feeder-zone. The mafic sill complex was built up by a succession of braided sills of shoshonitic and high-K calc-alkaline porphyritic hornblende-gabbro and fine grained monzodioritic sills. The mafic units were over-accreted over 41±11 ka, underplating the overlying granite. Local diapiric structures and felsic magma accumulation between sills indicate limited separation of intercumulus liquid from the mafic sills. Anhedral hornblende cores, with olivine + clinopyroxene ± plagioclase ± apatite inclusions, crystallized at temperatures >900°C and pressures of ~300 to ~500 MPa. The corresponding rims and monzodiorite matrix crystallized at <830°C, ~70 MPa. This abrupt compositional variation suggests stability and instability of hornblende during mafic roots recycling and subsequent decompression. The near lack of intercumulus crystals in the sub-vertical feeder zone layered gabbronorite and pyroxene-hornblende gabbronorite stocks testifies that melt is more efficiently extracted than in sills, resulting in a cumulate signature in the feeding system. The emplacement age of the sill complex topmost granitic unit is identical, within uncertainties, to the feeder zone mafic cumulates. Granitic liquids formed by AFC processes and were extracted at high temperature (T>950°C) from the middle crust reservoir to the emplacement level. We show that hornblende-plagioclase thermobarometry is a useful

  19. From mantle to ash cloud: quantifying magma generation, ascent, and degassing rates at Kilauea during short-lived explosive episodes using short-lived U-series radionuclide disequilibria

    NASA Astrophysics Data System (ADS)

    Girard, G.; Reagan, M. K.; Sims, K. W.; Garcia, M. O.; Pietruszka, A. J.; Thornber, C. R.

    2012-12-01

    We analyzed for 238U-series isotopes lava, scoria and ash samples erupted from Kilauea volcano, Hawai'i between 1982 and 2008, in order to investigate processes and timescales of magma generation in the mantle, magma ascent through the crust, and eruption. Timescales of degassing during steady-state lava flow activity occurring in Kilauea East Rift Zone and short-lived explosive episodes that occurred in both the East Rift Zone (Pu'u 'O'o vent opening in 1983 and episode 54 at Nāpau crater in January 1997) and on the summit (Halema'uma'u crater eruptions in March 2008) are compared and contrasted. All samples were found to have small but variable 230Th and 226Ra activity excesses over 238U and 230Th, respectively, with (230Th/238U) ratios ranging from 1.00 to 1.13 and (226Ra/230Th) ratios ranging from 1.03 to 1.17. These two variable isotopic disequilibria may reflect local heterogeneities in the mantle underneath Kilauea, with sources in relatively primitive mantle with (238U)-(230Th)-(226Ra) in secular equilibrium and in recently (< 8000 years) depleted mantle with (230Th) and (226Ra) deficits over parent nuclides. In this model, both types of mantle melt to generate Kilauea magmas and subsequently mix in variable proportions. Samples from the brief explosive episodes span the entire composition range, suggesting that they were fed by heterogeneous magma batches which did not homogenize during ascent from the mantle. (210Pb/226Ra) ratios range from 0.75 to 1.00. The lack of correlation between (210Pb/226Ra) and (226Ra/230Th) or (230Th/238U), and the rapid return to secular equilibrium of 210Pb (< 100 years) suggest a fractionation process distinct from and subsequent to the Ra-Th-U fractionation inherited from mantle melting. We hypothesize that 210Pb deficits originate from 222Rn degassing during magma ascent, and estimate magma ascent from lower crust to surface to take place in a maximum of ~ 7 years for the lava flow samples. Products from the explosive

  20. Relating stress models of magma emplacement to volcano-tectonic earthquakes

    NASA Astrophysics Data System (ADS)

    Vargas-Bracamontes, D.; Neuberg, J.

    2007-12-01

    Among the various types of seismic signals linked to volcanic processes, volcano-tectonic earthquakes are probably the earliest precursors of volcanic eruptions. Understanding their relationship with magma emplacement can provide insight into the mechanisms of magma transport at depth and assist in the ultimate goal of forecasting eruptions. Volcano-tectonic events have been observed to occur on faults that experience increases in Coulomb stress changes as the result of magma intrusions. To simulate stress changes associated with magmatic injections, we test different models of volcanic sources in an elastic half-space. For each source model, we look at several aspects that influence the stress conditions of the magmatic system such as the regional tectonic setting, the effect of varying the elastic parameters of the media, the evolution of the magma with time, as well as the volume and rheology of the ascending magma.