Sample records for zoned magma chamber

  1. Crypto-magma chambers beneath Mt. Fuji

    NASA Astrophysics Data System (ADS)

    Kaneko, Takayuki; Yasuda, Atsushi; Fujii, Toshitsugu; Yoshimoto, Mitsuhiro

    2010-06-01

    Mt. Fuji consists dominantly of basalt. A study of olivine-hosted melt-inclusions from layers of air-fall scoria, however, shows clear evidence of andesitic liquids. Whole rock compositions show a narrow range of SiO 2, but a wide range of FeO*/MgO and incompatible elements. Phenocrystic plagioclase generally shows bi-modal distributions in compositional frequency, while most olivine phenocrysts show uni-modal distribution with reverse zoning and often contain andesitic melt-inclusions. These suggest that magmas erupted from Fuji are generated through mixing between basaltic and more SiO 2-rich (often andesitic) end-members. We propose that Fuji's magmatic plumbing system consists of at least two magma chambers: a relatively deep (˜20 km) basaltic one and a relatively shallow (˜ 8-9 km) and more SiO 2-rich one. Evolved basalts with wide compositional ranges of incompatible elements are generated in the deep basaltic magma chamber by prevalent fractional crystallization of pyroxenes with olivine and calcic plagioclase at high pressure. Meanwhile basaltic magma left behind by the previous eruption in the conduit accumulates in a shallow magma chamber, and is differentiated to more SiO 2-rich composition by fractional crystallization of olivine, less-calcic plagioclase, and clinopyroxene. Shortly before a new eruption, a large amount of evolved basaltic magma containing calcic plagioclase rises from the deeper magma chamber and is mixed with the more SiO 2-rich magma in the shallow chamber, to generate the hybrid basaltic magma.

  2. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Bacon, C.R.; Druitt, T.H.

    1988-01-01

    The climactic eruption of Mount Mazama has long been recognized as a classic example of rapid eruption of a substantial fraction of a zoned magma body. Increased knowledge of eruptive history and new chemical analyses of ???350 wholerock and glass samples of the climactic ejecta, preclimactic rhyodacite flows and their inclusions, postcaldera lavas, and lavas of nearby monogenetic vents are used here to infer processes of chemical evolution of this late Pleistocene - Holocene magmatic system. The 6845??50 BP climactic eruption vented ???50 km3 of magma to form: (1) rhyodacite fall deposit; (2) welded rhyodacite ignimbrite; and (3) lithic breccia and zoned ignimbrite, these during collapse of Crater Lake caldera. Climactic ejecta were dominantly homogeneous rhyodacite (70.4??0.3% SiO2), followed by subordinate andesite and cumulate scoriae (48-61% SiO2). The gap in wholerock composition reflects mainly a step in crystal content because glass compositions are virtually continuous. Two types of scoriae are distinguished by different LREE, Rb, Th, and Zr, but principally by a twofold contrast in Sr content: High-Sr (HSr) and low-Sr (LSr) scoriae. HSr scoriae were erupted first. Trace element abundances indicate that HSr and LSr scoriae had different calcalkaline andesite parents; basalt was parental to some mafic cumulate scoriae. Parental magma compositions reconstructed from scoria wholerock and glass data are similar to those of inclusions in preclimactic rhyodacites and of aphyric lavas of nearby monogenetic vents. Preclimactic rhyodacite flows and their magmatic inclusions give insight into evolution of the climactic chamber. Evolved rhyodacite flows containing LSr andesite inclusions were emplaced between ???30000 and ???25000 BP. At 7015??45 BP, the Llao Rock vent produced a zoned rhyodacite pumice fall, then rhyodacite lava with HSr andesite inclusions. The Cleetwood rhyodacite flow, emplaced immediately before the climactic eruption and compositionally

  3. Sidewall crystallization and saturation front formation in silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Lake, E. T.

    2012-12-01

    The cooling and crystallization style of silicic magma bodies in the upper crust falls on a continuum between whole-chamber processes of convection, crystal settling, and cumulate formation and interface driven processes of conduction and crystallization front migration. In the former case, volatile saturation occurs uniformly chamber wide, in the latter volatile saturation occurs along an inward propagating front. Ambient thermal gradient primarily controls the propagation rate; warm (> 30 °C / km) geothermal gradients promote 1000m+ thick crystal mush zones but slow crystallization front propagation. Cold geothermal gradients support the opposite. Magma chamber geometry plays a second order role in controlling propagation rates; bodies with high surface to magma ratio and large Earth's surface parallel faces exhibit more rapid propagation and smaller mush zones. Crystallization front propagation occurs at speeds of up to 6 cm/year (rhyolitic magma, thin sill geometry, 10 °C / km geotherm), far faster than diffusion of volatiles in magma and faster than bubbles can nucleate and ascend under certain conditions. Saturation front propagation is fixed by pressure and magma crystal content; above certain modest initial water contents (4.4 wt% in a dacite) mobile magma above 10 km depth always contains a saturation front. Saturation fronts propagate down from the magma chamber roof at lower water contents (3.3 wt% in a dacite at 5 km depth), creating an upper saturated interface for most common (4 - 6 wt%) magma water contents. This upper interface promotes the production of a fluid pocket underneath the apex of the magma chamber. Magma de-densification by bubble nucleation promotes convection and homogenization in dacitic systems. If the fluid pocket grew rapidly without draining, hydro-fracturing and eruption would result. The combination of fluid escape pathways and metal scavenging would generate economic vein or porphyry deposits.

  4. Crystalline heterogeneities and instabilities in thermally convecting magma chamber

    NASA Astrophysics Data System (ADS)

    Culha, C.; Suckale, J.; Qin, Z.

    2016-12-01

    A volcanic vent can supply different densities of crystals over an eruption time period. This has been seen in Hawai'i's Kilauea Iki 1959 eruption; however it is not common for all Kilauea or basaltic eruptions. We ask the question: Under what conditions can homogenous magma chamber cultivate crystalline heterogeneities? In some laboratory experiments and numerical simulations, a horizontal variation is observed. The region where crystals reside is identified as a retention zone: convection velocity balances settling velocity. Simulations and experiments that observe retention zones assume crystals do not alter the convection in the fluid. However, a comparison of experiments and simulations of convecting magma with crystals suggest that large crystal volume densities and crystal sizes alter fluid flow considerably. We introduce a computational method that fully resolves the crystalline phase. To simulate basaltic magma chambers in thermal convection, we built a numerical solver of the Navier-Stoke's equation, continuity equation, and energy equation. The modeled magma is assumed to be a viscous, incompressible fluid with a liquid and solid phase. Crystals are spherical, rigid bodies. We create Rayleigh-Taylor instability through a cool top layer and hot bottom layer and update magma density while keeping crystal temperature and size constant. Our method provides a detailed picture of magma chambers, which we compare to other models and experiments to identify when and how crystals alter magma chamber convection. Alterations include stratification, differential settling and instabilities. These characteristics are dependent on viscosity, convection vigor, crystal volume density and crystal characteristics. We reveal that a volumetric crystal density variation may occur over an eruption time period, if right conditions are met to form stratifications and instabilities in magma chambers. These conditions are realistic for Kilauea Iki's 1959 eruption.

  5. Origin of reverse compositional and textural zoning in granite plutons by localized thermal overturn of stratified magma chambers

    NASA Astrophysics Data System (ADS)

    Trubač, Jakub; Janoušek, Vojtěch; Žák, Jiří; Somr, Michael; Kabele, Petr; Švancara, Jan; Gerdes, Axel; Žáčková, Eliška

    2017-04-01

    This study integrates gravimetry and thermal modelling with petrology, U-Th-Pb monazite and zircon geochronology and whole-rock geochemistry of the early Carboniferous Říčany Pluton, Bohemian Massif, in order to discuss the origin of compositional and textural zoning in granitic plutons and complex histories of horizontally stratified, multiply replenished magma chambers. The pluton consists of two coeval, nested biotite (-muscovite) granite facies: outer one, strongly porphyritic (SPm) and inner one, weakly porphyritic (WPc). Their contact is concealed but is likely gradational over several hundreds of meters. The two facies have nearly identical modal composition, are subaluminous to slightly peraluminous and geochemically evolved. Mafic microgranular enclaves, commonly associated with K-feldspar phenocryst patches, are abundant in the pluton center and indicate a repeated basic magma injection and its multistage interactions with the granitic magma and nearly solidified cumulates. Furthermore, the gravimetric data show that the nested pluton is only a small outcrop of a large anvil-like body reaching the depth of at least 14 km, where the pluton root is expected. Trace-element compositions reveal that the pluton is doubly reversely zoned. On the pluton scale, the outer SRG is geochemically more evolved than the inner WPc. On the scale of individual units, outward whole-rock geochemical variations within each facies (SPm, WPc) are compatible with fractional crystallization dominated by feldspars. The proposed genetic model invokes vertical overturn of a deeper, horizontally stratified anvil-shaped magma chamber. The overturn was driven by reactivation of resident felsic magma from the K-feldspar-rich crystal mush. The energy for the melt remobilization, extraction and subsequent ascent is thought to be provided by a long-lived thermal anomaly above the pluton feeding zone, enhanced by the multiple injections of hot basic magmas. In general, it is concluded

  6. The interplay between crystallization, replenishment and hybridization in large felsic magma chambers

    NASA Astrophysics Data System (ADS)

    Bateman, R.

    1995-09-01

    While hybridized granitoid magmas are readily identifiable, the mechanisms of hybridization in large crustal magma chambers are so not clearly understood. Characteristic features of hybrid granitoids are (1) both the granitoid and included enclaves are commonly hybrids, as shown by mineralogy, geochemistry and isotopes; (2) mixing seen in zoned plutons and synplutonic dykes and enclaves occurred early; (3) zoned plagioclase phenocrysts commonly show very complex life histories of growth and dissolution; (4) mafic end-members in hybrids are commonly fractionated magmas and (5) stratification in subvolcanic granitoid magma chambers is not uncommon, and stratification has been identified in some deeper level plutons. Hybridization must overcome the tendency to form a stable stratification of dense mafic magma underlying less dense felsic magma. Experimental work with magma analogues and theoretical considerations reveal very severe thermal, rheological and dynamical limitations on mixing: only very similar (composition, temperature) magmas are likely to mix to homogeneity, and only moderately silicic hybrids are likely to be produced. However, "impossibly" silicic hybrids do exist. Synchronous, interactive fractional crystallization and hybridization may provide a mechanism for hybridization of magmas, in the following manner. A mafic magma intrudes into the base of a stratified felsic magma and is cooled against it. Crystallization of the upper boundary layer of the mafic magma yields an eventually buoyant residual melt that overturns and mixes with an adjacent stratum of the felsic magma chamber. Subsequently, melt released by crystallization pf this, now-hybrid zone mixes with adjacent, more felsic zones. Thus, a suite of hybrid magmas are progressively formed. Density inhibitions are overcome by the generation of relatively low density residual melts. As crystallization proceeds, later injections are preserved as dykes and enclaves composed of hybrid magma. In

  7. Numerical simulation of magma chamber dynamics.

    NASA Astrophysics Data System (ADS)

    Longo, Antonella; Papale, Paolo; Montagna, Chiara Paola; Vassalli, Melissa; Giudice, Salvatore; Cassioli, Andrea

    2010-05-01

    Magma chambers are characterized by periodic arrivals of deep magma batches that give origin to complex patterns of magma convection and mixing, and modify the distribution of physical quantities inside the chamber. We simulate the transient, 2D, multi-component homogeneous dynamics in geometrically complex dyke+chamber systems, by means of GALES, a finite element parallel C++ code solving mass, momentum and energy equations for multi-component homogeneous gas-liquid (± crystals) mixtures in compressible-to-incompressible flow conditions. Code validation analysis includes several cases from the classical engineering literature, corresponding to a variety of subsonic to supersonic gas-liquid flow regimes (see http://www.pi.ingv.it/~longo/gales/gales.html). The model allows specification of the composition of the different magmas in the domain, in terms of ten major oxides plus the two volatile species H2O and CO2. Gas-liquid thermodynamics are modeled by using the compositional dependent, non-ideal model in Papale et al. (Chem.. Geol., 2006). Magma properties are defined in terms of local pressure, temperature, and composition including volatiles. Several applications are performed within domains characterized by the presence of one or more magma chambers and one or more dykes, with different geometries and characteristic size from hundreds of m to several km. In most simulations an initial compositional interface is placed at the top of a feeding dyke, or at larger depth, with the deeper magma having a lower density as a consequence of larger volatile content. The numerical results show complex patterns of magma refilling in the chamber, with alternating phases of magma ingression and magma sinking from the chamber into the feeding dyke. Intense mixing takes place in feeding dykes, so that the new magma entering the chamber is always a mixture of the deep and the initially resident magma. Buoyant plume rise occurs through the formation of complex convective

  8. Evidence for magma mixing within the Laacher See magma chamber (East Eifel, Germany)

    USGS Publications Warehouse

    Worner, G.; Wright, T.L.

    1984-01-01

    The final pyroclastic products of the late Quaternary phonolitic Laacher See volcano (East Eifel, W.-Germany) range from feldspar-rich gray phonolite to dark olivine-bearing rocks with variable amounts of feldspar and Al-augite megacrysts. Petrographically and chemically homogeneous clasts occur along with composite lapilli spanning the compositional range from phonolite (MgO 0.9%) to mafic hybrid rock (MgO 7.0%) for all major and trace elements. Both a basanitic and a phonolitic phenocryst paragenesis occur within individual clasts. The phonolite-derived phenocrysts are characterized by glass inclusions of evolved composition, rare inverse zoning and strong resorption indicating disequilibrium with the mafic hybrid matrix. Basanitic (magnesian) clinopyroxene and olivine, in contrast, show skeletal (normally zoned) overgrowths indicative of post-mixing crystallization. In accord with petrographical and other chemical evidence, mass balance calculations suggest mixing of an evolved Laacher See phonolite containing variable amounts of mineral cumulates and a megacryst-bearing basanite magma. Magma mixing occurred just prior to eruption (hours) of the lowermost magma layer of the Laacher See magma chamber but did not trigger the volcanic activity. ?? 1984.

  9. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics.

    PubMed

    Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone

    2016-10-05

    Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics.

  10. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics

    PubMed Central

    Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone

    2016-01-01

    Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics. PMID:27703141

  11. Co-existing calcic amphiboles in calc-alkaline andesites: Possible evidence of a zoned magma chamber

    NASA Astrophysics Data System (ADS)

    Green, Nathan L.

    1982-03-01

    Hornblende-biotite andesites erupted from Mount Price and Clinker Peak volcanoes, southwestern British Columbia, contain two texturally and compositionally distinct calcic amphiboles: pargasitic hornblende xenocrysts and magnesio-hornblende microphenocrysts. Disequilibrium relationships exhibited by these amphiboles and associated minerals suggest that the magnesio-hornblendes precipitated under chemical and thermal conditions that were intermediate between those under which pargasitic hornblende and biotite, respectively, crystallized. Experimental studies of crystallization in double-diffusive systems (Chen and Turner, 1980; Turner, 1980; McBirney, 1980) suggest that these varied magmatic environments can be explained as a consequence of progressive crystallization within a zoned magma chamber. Although gravitational settling may have played a role, the observed mineral assemblages probably developed by convective mixing of crystals precipitated at the cooling margins with those crystallized in the interior of the compositionally stratified magma column.

  12. Petrology of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Druitt, T.H.; Bacon, C.R.

    1989-01-01

    Evolution of the magma chamber at Mount Mazama involved repeated recharge by two types of andesite (high-Sr and low-Sr), crystal fractionation, crystal accumulation, assimilation, and magma mixing (Bacon and Druitt 1988). This paper addresses the modal compositions, textures, mineral chemistry and magmatic temperatures of (i) products of the 6845??50 BP climactic eruption, (ii) blocks of partially fused granitoid wallrock found in the ejecta, and (iii) preclimactic rhyodacitic lavas leaked from the chamber in late Pleistocene and early Holocene time. Immediately prior to the climactic eruption the chamber contained ??? 40 km3 of rhyodacite (10 vol% plag + opx + aug + hb + mt + ilm, ???880?? C) overlying high-Sr andesite and cumulus-crystal mush (28-51 vol% plag + hb ?? opx ?? aug + mt ?? ilm, 880?? to ???950?? C), which in turn overlay low-Sr crystal mush (50-66 vol% plag + opx + aug ?? hb ?? ol + mt + ilm, 890?? to ???950??? C). Despite the well known compositional gap in the ejecta, no thermal discontinuity existed in the chamber. Pre-eruptive water contents of pore liquids in most high-Sr and low-Sr mushes were 4-6 wt%, but on average the high-Sr mushes were slightly richer in water. Although parental magmas of the crystal mushes were andesitic, xenocrysts of bytownite and Ni-rich magnesian olivine in some scoriae record the one-time injection of basalt into the chamber. Textures in ol-bearing scoriae preserve evidence for the reactions ol + liq = opx and ol + aug + liq(+ plag?) = hb, which occurred in andesitic liquids at Mount Mazama. Strontium abundances in plagioclase phenocrysts constrain the petrogenesis of preclimactic and climactic rhyodacites. Phenocryst cores derived from high-Sr and low-Sr magmas have different Sr contents which can be resolved by microprobe. Partition coefficients for plagioclase in andesitic to rhyolitic glasses range from 2 to 7, and increase as glass %SiO2 increases. Evolved Pleistocene rhyodacites (???30-25,000 BP) and

  13. Thermohydrodynamic model: Hydrothermal system, shallowly seated magma chamber

    NASA Astrophysics Data System (ADS)

    Kiryukhin, A. V.

    1985-02-01

    The results of numerical modeling of heat exchange in the Hawaiian geothermal reservoir demonstrate the possibility of appearance of a hydrothermal system over a magma chamber. This matter was investigated in hydrothermal system. The equations for the conservation of mass and energy are discussed. Two possible variants of interaction between the magma chamber and the hydrothermal system were computated stationary dry magma chamber and dry magma chamber changing volume in dependence on the discharge of magma and taking into account heat exchange with the surrounding rocks. It is shown that the thermal supplying of the hydrothermal system can be ensured by the extraction of heat from a magma chamber which lies at a depth of 3 km and is melted out due to receipt of 40 cubic km of basalt melt with a temperature of 1,300 C. The initial data correspond with computations made with the model to the temperature values in the geothermal reservoir and a natural heat transfer comparable with the actually observed values.

  14. Magma Chambers, Thermal Energy, and the Unsuccessful Search for a Magma Chamber Thermostat

    NASA Astrophysics Data System (ADS)

    Glazner, A. F.

    2015-12-01

    Although the traditional concept that plutons are the frozen corpses of huge, highly liquid magma chambers ("big red blobs") is losing favor, the related notion that magma bodies can spend long periods of time (~106years) in a mushy, highly crystalline state is widely accepted. However, analysis of the thermal balance of magmatic systems indicates that it is difficult to maintain a significant portion in a simmering, mushy state, whether or not the system is eutectic-like. Magma bodies cool primarily by loss of heat to the Earth's surface. The balance between cooling via energy loss to the surface and heating via magma accretion can be denoted as M = ρLa/q, where ρ is magma density, L is latent heat of crystallization, a is the vertical rate of magma accretion, and q is surface heat flux. If M>1, then magma accretion outpaces cooling and a magma chamber forms. For reasonable values of ρ, L, and q, the rate of accretion amust be > ~15 mm/yr to form a persistent volume above the solidus. This rate is extremely high, an order of magnitude faster than estimated pluton-filling rates, and would produce a body 10 km thick in 700 ka, an order of magnitude faster than geochronology indicates. Regardless of the rate of magma supply, the proportion of crystals in the system must vary dramatically with depth at any given time owing to transfer of heat. Mechanical stirring (e.g., by convection) could serve to homogenize crystal content in a magma body, but this is unachievable in crystal-rich, locked-up magma. Without convection the lower part of the magma body becomes much hotter than the top—a process familiar to anyone who has scorched a pot of oatmeal. Thermal models that succeed in producing persistent, large bodies of magma rely on scenarios that are unrealistic (e.g., omitting heat loss to the planet's surface), self-fulfilling prophecies (e.g., setting unnaturally high temperatures as fixed boundary conditions), or physically unreasonable (e.g., magma is intruded

  15. Forecasting magma-chamber rupture at Santorini volcano, Greece.

    PubMed

    Browning, John; Drymoni, Kyriaki; Gudmundsson, Agust

    2015-10-28

    How much magma needs to be added to a shallow magma chamber to cause rupture, dyke injection, and a potential eruption? Models that yield reliable answers to this question are needed in order to facilitate eruption forecasting. Development of a long-lived shallow magma chamber requires periodic influx of magmas from a parental body at depth. This redistribution process does not necessarily cause an eruption but produces a net volume change that can be measured geodetically by inversion techniques. Using continuum-mechanics and fracture-mechanics principles, we calculate the amount of magma contained at shallow depth beneath Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions, and geodetic measurements of the 2011-2012 unrest period, that the measured 0.02% increase in volume of Santorini's shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano.

  16. Forecasting magma-chamber rupture at Santorini volcano, Greece

    PubMed Central

    Browning, John; Drymoni, Kyriaki; Gudmundsson, Agust

    2015-01-01

    How much magma needs to be added to a shallow magma chamber to cause rupture, dyke injection, and a potential eruption? Models that yield reliable answers to this question are needed in order to facilitate eruption forecasting. Development of a long-lived shallow magma chamber requires periodic influx of magmas from a parental body at depth. This redistribution process does not necessarily cause an eruption but produces a net volume change that can be measured geodetically by inversion techniques. Using continuum-mechanics and fracture-mechanics principles, we calculate the amount of magma contained at shallow depth beneath Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions, and geodetic measurements of the 2011–2012 unrest period, that the measured 0.02% increase in volume of Santorini’s shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano. PMID:26507183

  17. Simulation of Layered Magma Chambers.

    ERIC Educational Resources Information Center

    Cawthorn, Richard Grant

    1991-01-01

    The principles of magma addition and liquid layering in magma chambers can be demonstrated by dissolving colored crystals. The concepts of density stratification and apparent lack of mixing of miscible liquids is convincingly illustrated with hydrous solutions at room temperature. The behavior of interstitial liquids in "cumulus" piles…

  18. The influence of magma viscosity on convection within a magma chamber

    NASA Astrophysics Data System (ADS)

    Schubert, M.; Driesner, T.; Ulmer, P.

    2012-12-01

    Magmatic-hydrothermal ore deposits are the most important sources of metals like Cu, Mo, W and Sn and a major resource for Au. It is well accepted that they are formed by the release of magmatic fluids from a batholith-sized magma body. Traditionally, it has been assumed that crystallization-induced volatile saturation (called "second boiling") is the main mechanism for fluid release, typically operating over thousands to tens of thousands of years (Candela, 1991). From an analysis of alteration halo geometries caused by magmatic fluids, Cathles and Shannon (2007) suggested much shorter timescales in the order of hundreds of years. Such rapid release of fluids cannot be explained by second boiling as the rate of solidification scales with the slow conduction of heat away from the system. However, rapid fluid release is possible if convection is assumed within the magma chamber. The magma would degas in the upper part of the magma chamber and volatile poor magma would sink down again. Such, the rates of degassing can be much higher than due to cooling only. We developed a convection model using Navier-Stokes equations provided by the computational fluid dynamics platform OpenFOAM that gives the possibility to use externally derived meshes with complex (natural) geometries. We implemented a temperature, pressure, composition and crystal fraction dependent viscosity (Ardia et al., 2008; Giordano et al., 2008; Moore et al., 1998) and a temperature, pressure, composition dependent density (Lange1994). We found that the new viscosity and density models strongly affect convection within the magma chamber. The dependence of viscosity on crystal fraction has a particularly strong effect as the steep viscosity increase at the critical crystal fraction leads to steep decrease of convection velocity. As the magma chamber is cooling from outside to inside a purely conductive layer is developing along the edges of the magma chamber. Convection continues in the inner part of the

  19. Factors controlling the structures of magma chambers in basaltic volcanoes

    NASA Technical Reports Server (NTRS)

    Wilson, L.; Head, James W.

    1991-01-01

    The depths, vertical extents, and lateral extents of magma chambers and their formation are discussed. The depth to the center of a magma chamber is most probably determined by the density structure of the lithosphere; this process is explained. It is commonly assumed that magma chambers grow until the stress on the roof, floor, and side-wall boundaries exceed the strength of the wall rocks. Attempts to grow further lead to dike propagation events which reduce the stresses below the critical values of rock failure. The tensile or compressive failure of the walls is discussed with respect to magma migration. The later growth of magma chambers is accomplished by lateral dike injection into the country rocks. The factors controlling the patterns of growth and cooling of such dikes are briefly mentioned.

  20. Recycling and recharge processes at the Hasandağ Stratovolcano, Central Anatolia: Insights on magma chamber systematics from plagioclase textures and zoning patterns

    NASA Astrophysics Data System (ADS)

    Gall, H. D.; Cipar, J. H.; Crispin, K. L.; Kürkçüoğlu, B.; Furman, T.

    2017-12-01

    We elucidate crystal recycling and magma recharge processes at Hasandağ by investigating compositional zoning patterns and textural variation in plagioclase crystals from Quaternary basaltic andesite through dacite lavas. Previous work on Hasandağ intermediate compositions identified thermochemical disequilibrium features and showed abundant evidence for magma mixing1,2. We expand on this work through detailed micro-texture and mineral diffusion analysis to explore the mechanisms and timescales of crystal transport and mixing processes. Thermobarometric calculations constrain the plumbing system to 1.2-2 kbar and 850-950°C, corresponding to a felsic magma chamber at 4.5 km. Electron microprobe results reveal plagioclase phenocrysts from all lava types have common core (An33-46) and rim (An36-64) compositions, with groundmass laths (An57-67) resembling the phenocryst rims. Low An cores are ubiquitous, regardless of bulk rock chemistry, and suggest a consistent composition within the magma reservoir prior to high An rim growth. High An rims are regularly enriched in Mg, Fe, Ti and Sr, which we attribute to mafic recharge and magma mixing. We assess mixing timescales by inverse diffusion modeling of Mg profiles across the core-rim boundaries. Initial results suggest mixing to eruption processes occur on the order of days to months. Heterogeneous calculated timescales within thin sections indicate crystal populations with different growth histories. Crystals often display prominent sieve-textured zones just inside the rim, as well as other disequilibrium features such as oscillatory zoning or resorbed and patchy-zoned cores. We interpret these textures to indicate mobilization of a homogeneous dacitic reservoir with abundant An35 plagioclase crystals by frequent injection of mafic magma. Variability in observed textures and calculated timescales manifests during defrosting of a highly crystalline felsic mush, through different degrees of magma mixing. This process

  1. On the Interaction of a Vigorous Hydrothermal System with an Active Magma Chamber: The Puna Magma Chamber, Kilauea East Rift, Hawaii

    NASA Astrophysics Data System (ADS)

    Gregory, R. T.; Marsh, B. D.; Teplow, W.; Fournelle, J.

    2009-12-01

    The extent of the interaction between hydrothermal systems and active magma chambers has long been of fundamental interest to the development of ore deposits, cooling of magma chambers, and dehydration of the subducting lithosphere. As volatiles build up in the residual magma in the trailing edge of magmatic solidification fronts, is it possible that volatiles are transferred from the active magma to the hydrothermal system and vice versa? Does the external fracture front associated with vigorous hydrothermal systems sometimes propagate into the solidification front, facilitating volatile exchange? Or is the magma always sealed at temperatures above some critical level related to rock strength and overpressure? The degree of hydrothermal interaction in igneous systems is generally gauged in post mortem studies of δ18O and δD, where it has been assumed that a fracture front develops about the magma collapsing inward with cooling. H.P. Taylor and D. Norton's (1979; J. Petrol.)seminal work inferred that rocks are sealed with approach to the solidus and there is little to no direct interaction with external volatiles in the active magma. In active lava lakes a fracture front develops in response to thermal contraction of the newly formed rock once the temperature drops to ~950°C (Peck and Kinoshita,1976;USGS PP935A); rainfall driven hydrothermal systems flash to steam near the 100 °C isotherm in the solidified lake and have little effect on the cooling history (Peck et al., 1977; AJS). Lava lakes are fully degassed magmas and until the recent discovery of the Puna Magma Chamber (Teplow et al., 2008; AGU) no active magma was known at sufficiently great pressure to contain original volatiles. During the course of routine drilling of an injection well at the Puna Geothermal Venture (PGV) well-field, Big Island, Hawaii, a 75-meter interval of diorite containing brown glass inclusions was penetrated at a depth of 2415 m, continued drilling to 2488 m encountered a melt

  2. The role of volatiles in magma chamber dynamics.

    PubMed

    Huppert, Herbert E; Woods, Andrew W

    2002-12-05

    Many andesitic volcanoes exhibit effusive eruption activity, with magma volumes as large as 10(7)-10(9) m(3) erupted at rates of 1-10 m(3) x s(-1) over periods of years or decades. During such eruptions, many complex cycles in eruption rates have been observed, with periods ranging from hours to years. Longer-term trends have also been observed, and are thought to be associated with the continuing recharge of magma from deep in the crust and with waning of overpressure in the magma reservoir. Here we present a model which incorporates effects due to compressibility of gas in magma. We show that the eruption duration and volume of erupted magma may increase by up to two orders of magnitude if the stored internal energy associated with dissolved volatiles can be released into the magma chamber. This mechanism would be favoured in shallow chambers or volatile-rich magmas and the cooling of magma by country rock may enhance this release of energy, leading to substantial increases in eruption rate and duration.

  3. Mush Column Magma Chambers

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  4. Geophysical Evidence for the Locations, Shapes and Sizes, and Internal Structures of Magma Chambers beneath Regions of Quaternary Volcanism

    NASA Astrophysics Data System (ADS)

    Iyer, H. M.

    1984-04-01

    This paper is a review of seismic, gravity, magnetic and electromagnetic techniques to detect and delineate magma chambers of a few cubic kilometres to several thousand cubic kilometres volume. A dramatic decrease in density and seismic velocity, and an increase in seismic attenuation and electrical conductivity occurs at the onset of partial melting in rocks. The geophysical techniques are based on detecting these differences in physical properties between solid and partially molten rock. Although seismic refraction techniques, with sophisticated instrumentation and analytical procedures, are routinely used for detailed studies of crustal structure in volcanic regions, their application for magma detection has been quite limited. In one study, in Yellowstone National Park, U.S.A., fan-shooting and time-term techniques have been used to detect an upper-crustal magma chamber. Attenuation and velocity changes in seismic waves from explosions and earthquakes diffracted around magma chambers are observed near some volcanoes in Kamchatka. Strong attenuation of shear waves from regional earthquakes, interpreted as a diffraction effect, has been used to model magma chambers in Alaska, Kamchatka, Iceland, and New Zealand. One of the most powerful techniques in modern seismology, the seismic reflection technique with vibrators, was used to confirm the existence of a strong reflector in the crust near Socorro, New Mexico, in the Rio Grande Rift. This reflector, discovered earlier from data from local earthquakes, is interpreted as a sill-like magma body. In the Kilauea volcano, Hawaii, mapping seismicity patterns in the upper crust has enabled the modelling of the complex magma conduits in the crust and upper mantle. On the other hand, in the Usu volcano, Japan, the magma conduits are delineated by zones of seismic quiescence. Three-dimensional modelling of laterally varying structures using teleseismic residuals is proving to be a very promising technique for detecting and

  5. Building a large magma chamber at Mount Mazama, Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Wright, H. M.; Karlstrom, L.; Bacon, C. R.

    2012-12-01

    locations, and volumes reveal spatiotemporal patterns that suggest either that melt flux into the system has varied, or that stress-induced focusing of rising magma by a Mazama-centered magma accumulation zone has occurred (cf. Karlstrom et al. 2009), or both. Combined with a non-monotonic increase in the maximum SiO2 content of erupted magma, these patterns suggest cyclic differentiation in a magmatic system that is increasingly affected by a centralized storage zone through time. Finally, we develop approximate melt fraction vs. temperature curves appropriate for Mazama melt evolution from MELTS simulations (at 300 MPa). These model results are combined with a thermomechanical model (Karlstrom et al. 2010) to examine the effect of crustal 'pre-warming' on chamber stability and the degree to which departure from a normal conductive geotherm is necessary to promote large-scale, shallow storage. Bacon, 2008, USGS, Scientific Investigations Map 2932. Bacon and Lanphere, 2006, GSA Bulletin 118: 1331-1359. Ghiorso and Sack, 1995, Contrib Mineral Petrol 119:197-212. Hildreth, 2007, USGS, Professional Paper 1744. Karlstrom et al., 2009, J Geophys Res 114: B10204. Karlstrom et al., 2010, J Volcanol Geotherm Res 190:249-270.

  6. Extremely Rapid Crystal Fractionation During Episodes 30-31 of the Pu`u O`o Eruption: Implications for Magma Chamber Processes

    NASA Astrophysics Data System (ADS)

    Garcia, M. O.; Rhodes, J. M.; Pietruszka, A. J.; Rose, W. I.

    2002-12-01

    The Pu`u O`o eruption offers excellent opportunities to examine petrologic and geochemical processes in shallow, basaltic magma chamber due to the intense, multi-disciplinary monitoring of its activity, frequent sampling and repeated eruptions at the same vent. Strong compositional variations were observed during some of the high fire-fountaining (400 m) episodes in 1985. Following a 20-30 day hiatus in eruptive activity, the shallow magma chamber was largely evacuated during brief (1-2 day) eruptions. Samples collected during these episodes, especially at the beginning and end, document the compositional variation between and during eruptive episodes. Lavas and tephra from episodes 30 and 31 showed a remarkable and systematic variation (2 wt% increase in MgO; 7% decrease in incompatible elements like Ba) during and between these episodes. Most of the intra-episode lava compositional variation was observed during a brief period (<2 hours) with little variation before or after. Olivines in these weakly prophyritic Pu`u O`o lavas are in equilibrium with the host rock composition indicating that compositional variation is not related to magma mixing or accumulation of olivine. We interpret the variation to reflect crystal fractionation within the shallow (tens to hundreds of meter deep) Pu`u O`o magma chamber. This extremely high rate of crystallization (up to 0.3%/day) and cooling (2°C/day), compared to estimates of 1°C/year for the rift zone interior, must reflect the high surface area of the dike-shaped and open topped magma chamber. These features may represent the tapping of a diffusive interface separating well mixed zones of hotter and more primitive magma in the lower part of the chamber from cooler, somewhat evolved magma above.

  7. Efficiency of differentiation in the Skaergaard magma chamber

    NASA Astrophysics Data System (ADS)

    Tegner, C.; Lesher, C. E.; Holness, M. B.; Jakobsen, J. K.; Salmonsen, L.; Humphreys, M.; Thy, P.

    2011-12-01

    Although it is largely agreed that crystallization occurs inwardly in crystal mushes along the margins of magma chambers, the efficiency and mechanisms of differentiation are not well constrained. The fractionation paradigm hinges on mass exchange between the crystal mush and the main magma reservoir resulting in coarse-grained, refractory (cumulate) rocks of primary crystals, and complementary enrichment of incompatible elements in the main reservoir of magma. Diffusion, convection, liquid immiscibility and compaction have been proposed as mechanisms driving this mass exchange. Here we examine the efficiency of differentiation in basaltic crystal mushes in different regions of the Skaergaard magma chamber. The contents of incompatible elements such as phosphorus and calculated residual porosities are high in the lowermost cumulate rocks of the floor (47-30%) and decrease upsection, persisting at low values in the uppermost two-thirds of the floor rock stratigraphy (~5% residual porosity). The residual porosity is intermediate at the walls (~15%) and highest and more variable at the roof (10-100%). This is best explained by compaction and expulsion of interstitial liquid from the accumulating crystal mush at the floor and the inefficiency of these processes elsewhere in the intrusion. In addition, the roof data imply upwards infiltration of interstitial liquid. Remarkably uniform residual porosity of ~15% for cumulates formed along the walls suggest that their preservation is related to the rheological properties of the mush, i.e. at ≤ 15% porosity the mush is rigid enough to adhere to the wall, while at higher porosity it is easily swept away. We conclude that the efficiency of compaction and differentiation can be extremely variable along the margins of magma chambers. This should be taken into account in models of magma chamber evolution.

  8. Magma differentiation rates from ( 226Ra / 230Th) and the size and power output of magma chambers

    NASA Astrophysics Data System (ADS)

    Blake, Stephen; Rogers, Nick

    2005-08-01

    We present a mathematical model for the evolution of the ( 226Ra / 230Th) activity ratio during simultaneous fractional crystallization and ageing of magma. The model is applied to published data for four volcanic suites that are independently known to have evolved by fractional crystallization. These are tholeiitic basalt from Ardoukoba, Djibouti, MORB from the East Pacific Rise, alkali basalt to mugearite from Vestmannaeyjar, Iceland, and basaltic andesites from Miyakejima, Izu-Bonin arc. In all cases ( 226Ra / 230Th) correlates with indices of fractional crystallization, such as Th, and the data fall close to model curves of constant fractional crystallization rate. The best fit rates vary from 2 to 6 × 10 - 4 yr - 1 . Consequently, the time required to generate moderately evolved magmas ( F ≤ 0.7) is of the order of 500 to 1500 yrs and closed magma chambers will have lifetimes of 1700 to 5000 yrs. These rates and timescales are argued to depend principally on the specific power output (i.e., power output per unit volume) of the magma chambers that are the sites of fractional crystallization. Equating the heat flux at the EPR to the heat flux from the sub-axial magma chamber that evolves at a rate of ca. 3 × 10 - 4 yr - 1 implies that the magma body is a sill of ca. 100 m thickness, a value which coincides with independent estimates from seismology. The similarity of the four inferred differentiation rates suggests that the specific power output of shallow magma chambers in a range of tectonic settings covers a similarly narrow range of ca. 10 to 50 MW km - 3 . Their differentiation rates are some two orders of magnitude slower than that of the basaltic Makaopuhi lava lake, Hawaii, that cooled to the atmosphere. This is consistent with the two orders of magnitude difference in heat flux between Makaopuhi and the East Pacific Rise. ( 226Ra / 230Th) data for magma suites related by fractional crystallization allow the magma differentiation rate to be estimated

  9. The effect of pressurized magma chamber growth on melt migration and pre-caldera vent locations through time at Mount Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Karlstrom, Leif; Wright, Heather M.; Bacon, Charles R.

    2015-01-01

    The pattern of eruptions at long-lived volcanic centers provides a window into the co-evolution of crustal magma transport, tectonic stresses, and unsteady magma generation at depth. Mount Mazama in the Oregon Cascades has seen variable activity over the last 400 ky, including the 50 km3 climactic eruption at ca. 7.7 ka that produced Crater Lake caldera. The physical mechanisms responsible for the assembly of silicic magma reservoirs that are the precursors to caldera-forming eruptions are poorly understood. Here we argue that the spatial and temporal distribution of geographically clustered volcanic vents near Mazama reflects the development of a centralized magma chamber that fed the climactic eruption. Time-averaged eruption rates at Mount Mazama imply an order of magnitude increase in deep magma influx prior to the caldera-forming event, suggesting that unsteady mantle melting triggered a chamber growth episode that culminated in caldera formation. We model magma chamber–dike interactions over ∼50 ky preceding the climactic eruption to fit the observed distribution of surface eruptive vents in space and time, as well as petrologically estimated deep influx rates. Best fitting models predict an expanding zone of dike capture caused by a growing, oblate spheroidal magma chamber with 10–30 MPa of overpressure. This growing zone of chamber influence causes closest approaching regional mafic vent locations as well as more compositionally evolved Mazama eruptions to migrate away from the climactic eruptive center, returning as observed to the center after the chamber drains during the caldera-forming eruption.

  10. Intrusion of basaltic magma into a crystallizing granitic magma chamber: The Cordillera del Paine pluton in southern Chile

    NASA Astrophysics Data System (ADS)

    Michael, Peter J.

    1991-10-01

    The Cordillera del Paine pluton in the southernmost Andes of Chile represents a deeply dissected magma chamber where mafic magma intruded into crystallizing granitic magma. Throughout much of the 10x15 km pluton, there is a sharp and continuous boundary at a remarkably constant elevation of 1,100 m that separates granitic rocks (Cordillera del Paine or CP granite: 69 77% SiO2) which make up the upper levels of the pluton from mafic and comingled rocks (Paine Mafic Complex or PMC: 45 60% SiO2) which dominate the lower exposures of the pluton. Chilled, crenulate, disrupted contacts of mafic rock against granite demonstrate that partly crystallized granite was intruded by mafic magma which solidified prior to complete crystallization of the granitic magma. The boundary at 1,100 m was a large and stable density contrast between the denser, hotter mafic magma and cooler granitic magma. The granitic magma was more solidified near the margins of the chamber when mafic intrusion occurred, and the PMC is less disrupted by granites there. Near the pluton margins, the PMC grades upward irregularly from cumulate gabbros to monzodiorites. Mafic magma differentiated largely by fractional crystallization as indicated by the presence of cumulate rocks and by the low levels of compatible elements in most PMC rocks. The compositional gap between the PMC and CP granite indicates that mixing (blending) of granitic magma into the mafic magma was less important, although it is apparent from mineral assemblages in mafic rocks. Granitic magma may have incorporated small amounts of mafic liquid that had evolved to >60% SiO2 by crystallization. Mixing was inhibited by the extent of crystallization of the granite, and by the thermal contrast and the stable density contrast between the magmas. PMC gabbros display disequilibrium mineral assemblages including early formed zoned olivine (with orthopyroxene coronas), clinopyroxene, calcic plagioclase and paragasite and later-formed amphibole

  11. Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field.

    PubMed

    Singh, Satish C; Crawford, Wayne C; Carton, Hélène; Seher, Tim; Combier, Violaine; Cannat, Mathilde; Pablo Canales, Juan; Düsünür, Doga; Escartin, Javier; Miranda, J Miguel

    2006-08-31

    Crust at slow-spreading ridges is formed by a combination of magmatic and tectonic processes, with magmatic accretion possibly involving short-lived crustal magma chambers. The reflections of seismic waves from crustal magma chambers have been observed beneath intermediate and fast-spreading centres, but it has been difficult to image such magma chambers beneath slow-spreading centres, owing to rough seafloor topography and associated seafloor scattering. In the absence of any images of magma chambers or of subsurface near-axis faults, it has been difficult to characterize the interplay of magmatic and tectonic processes in crustal accretion and hydrothermal circulation at slow-spreading ridges. Here we report the presence of a crustal magma chamber beneath the slow-spreading Lucky Strike segment of the Mid-Atlantic Ridge. The reflection from the top of the magma chamber, centred beneath the Lucky Strike volcano and hydrothermal field, is approximately 3 km beneath the sea floor, 3-4 km wide and extends up to 7 km along-axis. We suggest that this magma chamber provides the heat for the active hydrothermal vent field above it. We also observe axial valley bounding faults that seem to penetrate down to the magma chamber depth as well as a set of inward-dipping faults cutting through the volcanic edifice, suggesting continuous interactions between tectonic and magmatic processes.

  12. The dynamics of magma chamber refilling at the Campi Flegrei caldera.

    NASA Astrophysics Data System (ADS)

    Montagna, Chiara Paola; Vassalli, Melissa; Longo, Antonella; Papale, Paolo; Giudice, Salvatore; Saccorotti, Gilberto

    2010-05-01

    The volcanologic and petrologic reconstructions of several eruptions during the last tens of thousand years of volcanism at the Campi Flegrei caldera show that in most cases a small, chemically evolved, partially degassed magma chamber was refilled by magma of deeper origin shortly before the eruption. New magma input in a shallow chamber is revealed from a variety of indicators, well described in the literature, that include major-trace element and isotope heterogeneities, and crystal-liquid disequilibria (e.g., Arienzo et al., Bull. Volcanol., 2009). In the case of the 4100 BP Agnano Monte Spina eruption, representing the highest intensity and magnitude event of the last epoch of activity, it has been suggested that the refilling occurred within a few tens of hours from the start of the eruption. Notably, in such a case the two end-member magmas that mixed shortly before eruption onset are not recognized as individual members in the deposits, rather, their composition and characteristics are reconstructed from small scale disequilibria, revealing that a relatively short time was sufficient for efficient mixing of the liquid components. In order to investigate the dynamics of magma chamber refilling and mixing at Campi Flegrei we have applied the GALES code (Longo et al., Geophys. Res. Lett., 2006) in a series of numerical simulations. The initial and boundary conditions have been defined in the frame of two subsequent projects coordinated by INGV and funded by the Italian Civil Protection Department, that gather a large number of experts on Campi Flegrei, and are consistent with the bulk of knowledge on the deep magmatic system. In all cases an initial compositional interface is placed at a certain depth, with non-degassed, buoyant magma placed below. The simulations investigate both the dynamics in a very large, 8 km deep reservoir revealed by seismic tomography (Zollo et al., Geophys. Res. Lett., 2008), and those in shallower and smaller chamber systems

  13. Ephemeral magma chambers in the Trinity peridotite, northern California

    NASA Astrophysics Data System (ADS)

    Cannat, Mathilde; Lécuyer, Christophe

    1991-02-01

    The Trinity Massif comprises the major lithologies of an ophiolite, as defined at the 1972 Penrose conference. Previous studies have shown, however, that it differs from the Semail (Oman) or Table Mountain (Newfoundland) ophiolitic massifs, particularly because its crustal section is thin, and because its mantle section has vertical plastic flow planes. These features have led to an interpretation of the Trinity Massif as a fragment of slow-spreading oceanic lithosphere (Le Sueur et al., 1984; Boudier and Nicolas, 1985). In this paper, we show that the Trinity gabbros occur in discontinuous, kilometre-sized pockets, intrusive into the mantle peridotites. The internal stratigraphy and the petrological characteristics of these gabbros suggest that they formed in short-lived magma chambers. These ephemeral magma chambers developed after the end of the plastic deformation in the surrounding mantle, when it had cooled down to lithospheric temperatures. We discuss the possibility that these small and ephemeral magma chambers formed at a slow-spreading oceanic ridge.

  14. Potential Magma Chambers beneath the Tatun Volcanic Area, Taiwan: Results from Magnetotelluric Survey and Monitoring

    NASA Astrophysics Data System (ADS)

    Chen, C.

    2013-12-01

    Previous earthquakes analysis indicated existing seismicity anomaly beneath Tatun volcano, Taiwan, possibly caused by the fluid activity of the volcano. Helium isotope studies also indicated that over 60% of the fumarolic gases and vapors originated from deep mantle in the Tatun volcano area. The chemistry of the fumarolic gases and vapors and seismicity anomaly are important issues in view of possible magma chamber in the Tatun volcano, where is in the vicinity of metropolitan Taipei, only 15 km north of the capital city. In this study magnetotelluric (MT) soundings and monitoring were deployed to understand the geoelectric structures in the Tatun volcano as Electromagnetic methods are sensitive to conductivity contrasts and can be used as a supplementary tool to delineate reservoir boundaries. An anticline extending more than 10 km beneath the Chih-Shin-Shan and Da-You-Kan areas was recognized. Low resistivity at a shallow and highly porous layer 500m thick might indicate circulation of heated water. However, a high resistivity layer at depth between 2 and 6 km was detected. This layer could be associated with high micro-earthquakes zone. The characteristics of this layer produced by either the magma chamber or other geothermal activity were similar to that of some other active volcanic areas in the world. At 6 km underground was a dome structure of medium resistivity. This structure could be interpreted as a magma chamber in which the magma is possibly cooling down, as judged by its relatively high resistivity. The exact attributes of the magma chamber were not precisely determined from the limited MT soundings. At present, a joint monitors including seismic activity, ground deformation, volcanic gases, and changes in water levels and chemistry are conducted by universities and government agencies. When unusual activity is detected, a response team may do more ground surveys to better determine if an eruption is likely.

  15. Geophysical study of a magma chamber near Mussau Island, Papua New Guinea

    USGS Publications Warehouse

    Dadisman, Shawn V.; Marlow, M. S.

    1988-01-01

    Analysis of a 24-channel seismic-reflection data collected near Mussau Island, Papua New Guinea, shows a high-amplitude, negative-polarity reflection that we believe is from the top of a magma chamber.  The reflecting horizon lies at a depth of about 4.4 s subbottom and can be traced laterally for 2.6 km.  On shot gathers, the reflection demonstrates normal moveout appropriate for an in-place event.  The frequency spectrum of the reflection shows a decrease in high-frequency content when compared to the sea floor reflection, as would be expected for a deep subsurface event.  The polarity of the reflection event is negative, suggesting that the reflection horizon is the top of a low-velocity zone.  Magnetic data indicate that the ridge containing the reflecting horizon is magnetic, and the geology of Massau Island suggests that the ridge is volcanic in its origin.  We speculate that the high-amplitude reflection is from the top of a magma chamber some 7-11 km deep.

  16. Finite-element modeling of magma chamber-host rock interactions prior to caldera collapse

    NASA Astrophysics Data System (ADS)

    Kabele, Petr; Žák, Jiří; Somr, Michael

    2017-06-01

    Gravity-driven failure of shallow magma chamber roofs and formation of collapse calderas are commonly accompanied by ejection of large volumes of pyroclastic material to the Earth's atmosphere and thus represent severe volcanic hazards. In this respect, numerical analysis has proven as a key tool in understanding the mechanical conditions of caldera collapse. The main objective of this paper is to find a suitable approach to finite-element simulation of roof fracturing and caldera collapse during inflation and subsequent deflation of shallow magma chambers. Such a model should capture the dominant mechanical phenomena, for example, interaction of the host rock with magma and progressive deformation of the chamber roof. To this end, a comparative study, which involves various representations of magma (inviscid fluid, nearly incompressible elastic, or plastic solid) and constitutive models of the host rock (fracture and plasticity), was carried out. In particular, the quasi-brittle fracture model of host rock reproduced well the formation of tension-induced radial and circumferential fractures during magma injection into the chamber (inflation stage), especially at shallow crustal levels. Conversely, the Mohr-Coulomb shear criterion has shown to be more appropriate for greater depths. Subsequent magma withdrawal from the chamber (deflation stage) results in further damage or even collapse of the chamber roof. While most of the previous studies of caldera collapse rely on the elastic stress analysis, the proposed approach advances modeling of the process by incorporating non-linear failure phenomena and nearly incompressible behaviour of magma. This leads to a perhaps more realistic representation of the fracture processes preceding roof collapse and caldera formation.

  17. Making mushy magma chambers in the lower continental crust: Cold storage and compositional bimodality

    NASA Astrophysics Data System (ADS)

    Jackson, Matthew; Blundy, Jon; Sparks, Steve

    2017-04-01

    Increasing geological and geophysical evidence suggests that crustal magma reservoirs are normally low melt fraction 'mushes' rather than high melt fraction 'magma chambers'. Yet high melt fractions must form within these mush reservoirs to explain the observed flow and eruption of low crystallinity magmas. In many models, crystallinity is linked directly to temperature, with higher temperature corresponding to lower crystallinity (higher melt fraction). However, increasing temperature yields less evolved (silicic) melt composition for a given starting material. If mobile, low crystallinity magmas require high temperature, it is difficult to explain how they can have evolved composition. Here we use numerical modelling to show that reactive melt flow in a porous and permeable mush reservoir formed by the intrusion of numerous basaltic sills into the lower continental crust produces magma in high melt fraction (> 0.5) layers akin to conventional magma chambers. These magma-chamber-like layers contain evolved (silicic) melt compositions and form at low (close to solidus) temperatures near the top of the mush reservoir. Evolved magma is therefore kept in 'cold storage' at low temperature, but also at low crystallinity so the magma is mobile and can leave the mush reservoir. Buoyancy-driven reactive flow and accumulation of melt in the mush reservoir controls the temperature and composition of magma that can leave the reservoir. The modelling also shows that processes in lower crustal mush reservoirs produce mobile magmas that contain melt of either silicic or mafic composition. Intermediate melt compositions are present but are not within mobile magmas. Silicic melt compositions are found at high melt fraction within the magma-chamber like layers near the top of the mush reservoir. Mafic melt compositions are found at high melt fraction within the cooling sills. Melt elsewhere in the reservoir has intermediate composition, but remains trapped in the reservoir because

  18. Deep magma body beneath the summit and rift zones of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Delaney, P.T.; Fiske, R.S.; Miklius, Asta; Okamura, A.T.; Sako, M.K.

    1990-01-01

    A magnitude 7.2 earthquake in 1975 caused the south flank of Kilauea Volcano, Hawaii, to move seaward in response to slippage along a deep fault. Since then, a large part of the volcano's edifice has been adjusting to this perturbation. The summit of Kilauea extended at a rate of 0.26 meter per year until 1983, the south flank uplifted more than 0.5 meter, and the axes of both the volcano's rift zones extended and subsided; the summit continues to subside. These ground-surface motions have been remarkably steady and much more widespread than those caused by either recurrent inflation and deflation of the summit magma chamber or the episodic propagation of dikes into the rift zones. Kilauea's magmatic system is, therefore, probably deeper and more extensive than previously thought; the summit and both rift zones may be underlain by a thick, near vertical dike-like magma system at a depth of 3 to 9 kilometers.

  19. Deep magma body beneath the summit and rift zones of kilauea volcano, hawaii.

    PubMed

    Delaney, P T; Fiske, R S; Miklius, A; Okamura, A T; Sako, M K

    1990-03-16

    A magnitude 7.2 earthquake in 1975 caused the south flank of Kilauea Volcano, Hawaii, to move seaward in response to slippage along a deep fault. Since then, a large part of the volcano's edifice has been adjusting to this perturbation. The summit of Kilauea extended at a rate of 0.26 meter per year until 1983, the south flank uplifted more than 0.5 meter, and the axes of both the volcano's rift zones extended and subsided; the summit continues to subside. These ground-surface motions have been remarkably steady and much more widespread than those caused by either recurrent inflation and deflation of the summit magma chamber or the episodic propagation of dikes into the rift zones. Kilauea's magmatic system is, therefore, probably deeper and more extensive than previously thought; the summit and both rift zones may be underlain by a thick, near vertical dike-like magma system at a depth of 3 to 9 kilometers.

  20. Growing magma chambers control the distribution of small-scale flood basalts.

    PubMed

    Yu, Xun; Chen, Li-Hui; Zeng, Gang

    2015-11-19

    Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar-Ar and K-Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 > 47.5 wt.%) from Xinchang-Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4-3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40-0.66; TiO2/MgO = 0.23-0.35) during about 6 Myr (9.4-3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3-3.0 Ma) through a broad range of compositions ((Na2O + K2O)/MgO = 0.60-1.28; TiO2/MgO = 0.30-0.57). The distribution and two-stage compositional evolution of the migrating flood basalts record continuous magma replenishment that buffered against magmatic evolution and induced magma chamber growth. Our results demonstrate that the magma replenishment-magma chamber growth model explains the spatio-temporal distribution of small-scale flood basalts.

  1. Crystal zoning in a large-volume ignimbrite: constraints on the thermal history of a supervolcano magma system

    NASA Astrophysics Data System (ADS)

    Matthews, N. E.; Pyle, D. M.; Wilson, C. J.

    2009-12-01

    Chemical zoning of crystals provides an important archive of information that allows for the reconstruction of complex thermal histories and changes in melt composition of the magma reservoir during crystallization. Here we investigate cathodoluminescence (CL) and Ti zonation in quartz crystals extracted from pumices from the Whakamaru and Rangitaiki ignimbrite units (part of the large-volume Whakamaru Group Ignimbrites), New Zealand, to reconstruct the thermal history of the parent magma chamber(s). CL intensity images are taken as a proxy for Ti content and temperature variation during crystal growth, and direct estimates of temperature are made using the TitaniQ geothermometer (Wark & Watson 2006 Cont. Min. Pet.) based on Ti concentration in quartz. These results are reviewed in comparison with temperatures from Fe-Ti oxide geothermometry. Quartz zoning is also compared to zonation in feldspars (using BSE imaging) from the same pumice clasts in order to establish the degree to which different crystal species record similar or contrasting magmatic histories. Quartz crystals in Whakamaru pumice display a variety of CL zoning patterns and resorption boundaries. Overgrowths typically appear to truncate CL growth zoning within the crystal core, indicating periods of resorption and subsequent re-growth - consistent with magma recharge causing a marked change in conditions (temperature and/or volatile saturation) and multi-stage crystallisation. Crystals typically display a dark (lower Ti) resorbed core, with an abrupt change to a CL-bright rim, although irregular textures and complex variations between crystals are observed. Core-to-rim profiles of Ti concentration in analysed quartz crystals show Ti variations within the range 50-225 ppm, corresponding to crystallisation temperatures of 733-935°C (assuming TiO2 activity in the melt of 0.6), with the lowest values recorded in the crystal core, increasing in a step-wise pattern towards the rim. These values are

  2. Growing magma chambers control the distribution of small-scale flood basalts

    PubMed Central

    Yu, Xun; Chen, Li-Hui; Zeng, Gang

    2015-01-01

    Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar–Ar and K–Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 > 47.5 wt.%) from Xinchang–Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4–3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40–0.66; TiO2/MgO = 0.23–0.35) during about 6 Myr (9.4–3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3–3.0 Ma) through a broad range of compositions ((Na2O + K2O)/MgO = 0.60–1.28; TiO2/MgO = 0.30–0.57). The distribution and two-stage compositional evolution of the migrating flood basalts record continuous magma replenishment that buffered against magmatic evolution and induced magma chamber growth. Our results demonstrate that the magma replenishment–magma chamber growth model explains the spatio-temporal distribution of small-scale flood basalts. PMID:26581905

  3. The crustal magma storage system of Volcán Quizapu, Chile, and the effects of magma mixing on magma diversity

    USGS Publications Warehouse

    Bergantz, George W.; Cooper, Kari M.; Hildreth, Edward; Ruprecht, Phillipp

    2012-01-01

    Crystal zoning as well as temperature and pressure estimates from phenocryst phase equilibria are used to constrain the architecture of the intermediate-sized magmatic system (some tens of km3) of Volcán Quizapu, Chile, and to document the textural and compositional effects of magma mixing. In contrast to most arc magma systems, where multiple episodes of open-system behavior obscure the evidence of major magma chamber events (e.g. melt extraction, magma mixing), the Quizapu magma system shows limited petrographic complexity in two large historical eruptions (1846–1847 and 1932) that have contrasting eruptive styles. Quizapu magmas and peripheral mafic magmas exhibit a simple binary mixing relationship. At the mafic end, basaltic andesite to andesite recharge magmas complement the record from peripheral cones and show the same limited range of compositions. The silicic end-member composition is almost identical in both eruptions of Quizapu. The effusive 1846–1847 eruption records significant mixing between the mafic and silicic end-members, resulting in hybridized andesites and mingled dacites. These two compositionally simple eruptions at Volcán Quizapu present a rare opportunity to isolate particular aspects of magma evolution—formation of homogeneous dacite magma and late-stage magma mixing—from other magma chamber processes. Crystal zoning, trace element compositions, and crystal-size distributions provide evidence for spatial separation of the mafic and silicic magmas. Dacite-derived plagioclase phenocrysts (i.e. An25–40) show a narrow range in composition and limited zonation, suggesting growth from a compositionally restricted melt. Dacite-derived amphibole phenocrysts show similar restricted compositions and furthermore constrain, together with more mafic amphibole phenocrysts, the architecture of the magmatic system at Volcán Quizapu to be compositionally and thermally zoned, in which an andesitic mush is overlain by a homogeneous dacitic

  4. Inflation of a magma chamber surrounded by poroelastic mush shell

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Soule, S. A.; Jones, M.

    2017-12-01

    Recent studies have highlighted the importance of crystal-rich mush in crustal magmatic system [Cashman et. al. 2017]. This potential paradigm shift from isolated melt bodies in elastic crust poses new challenges to our previous understanding of igneous processes. Existing models describing the physical processes in a conventional magma plumbing system may require modification to account for the properties of mush. In this study, we demonstrate that the abundance of very crystalline mush between magma lenses and the crustal rocks influences the mechanical coupling between pressurized magma lenses and their surroundings with regard to deformation and melt transport. We develop a conceptual model invoking a simplified geometry and presumed rheological properties of liquid magma, mush and country rock. In our preliminary study, a magma chamber is modeled as a spherical liquid core enveloped by a shell of poroelastic, magma-(and/or)-gas-bearing mush in an infinite domain of elastic country rock. We interrogate the effect of varying physical properties of the system (e.g., geometry) and mush material (e.g., elastic moduli) on the deformation in the liquid core, mush shell and host rock, as well as pressure built-up in the chamber, upon injection of magma into the liquid core. When we allow the pore spaces to be connected in the mush shell, melt can migrate within the permeable matrix, thereby promoting melt segregation or `leaking' from the core to the shell. These initial results highlight the importance of constraining the physical properties of crystal mush in order for us to properly evaluate the mechanics of magmatic system.

  5. Linking Plagioclase Zoning Patterns to Active Magma Processes

    NASA Astrophysics Data System (ADS)

    Izbekov, P. E.; Nicolaysen, K. P.; Neill, O. K.; Shcherbakov, V.; Eichelberger, J. C.; Plechov, P.

    2016-12-01

    Plagioclase, one of the most common and abundant mineral phases in volcanic products, will vary in composition in response to changes in temperature, pressure, composition of the ambient silicate melt, and melt H2O concentration. Changes in these parameters may cause dissolution or growth of plagioclase crystals, forming characteristic textural and compositional variations (zoning patterns), the complete core-to-rim sequence of which describes events experienced by an individual crystal from its nucleation to the last moments of its growth. Plagioclase crystals in a typical volcanic rock may look drastically dissimilar despite their spatial proximity and the fact that they have erupted together. Although they shared last moments of their growth during magma ascent and eruption, their prior experiences could be very different, as plagioclase crystals often come from different domains of the same magma system. Distinguishing similar zoning patterns, correlating them across the entire population of plagioclase crystals, and linking these patterns to specific perturbations in the magmatic system may provide additional perspective on the variety, extent, and timing of magma processes at active volcanic systems. Examples of magma processes, which may be distinguished based on plagioclase zoning patterns, include (1) cooling due to heat loss, (2) heating and/or pressure build up due to an input of new magmatic material, (3) pressure drop in response to magma system depressurization, and (4) crystal transfer between different magma domains/bodies. This review will include contrasting examples of zoning patters from recent eruptions of Augustine and Cleveland Volcanoes in Alaska, Sakurajima Volcano in Japan, Karymsky, Bezymianny, and Tolbachik Volcanoes in Kamchatka, as well as from the drilling into an active magma body at Krafla, Iceland.

  6. Linking Plagioclase Zoning Patterns to Active Magma Processes

    NASA Astrophysics Data System (ADS)

    Izbekov, P. E.; Nicolaysen, K. P.; Neill, O. K.; Shcherbakov, V.; Plechov, P.; Eichelberger, J. C.

    2015-12-01

    Plagioclase, one of the most common and abundant mineral phases in volcanic products, will vary in composition in response to changes in temperature, pressure, composition of the ambient silicate melt, and melt H2O concentration. Changes in these parameters may cause dissolution or growth of plagioclase crystals, forming characteristic textural and compositional variations (zoning patterns), the complete core-to-rim sequence of which describes events experienced by an individual crystal from its nucleation to the last moments of its growth. Plagioclase crystals in a typical volcanic rock may look drastically dissimilar despite their spatial proximity and the fact that they have erupted together. Although they shared last moments of their growth during magma ascent and eruption, their prior experiences could be very different, as plagioclase crystals often come from different domains of the same magma system. Distinguishing similar zoning patterns, correlating them across the entire population of plagioclase crystals, and linking these patterns to specific perturbations in the magmatic system may provide additional perspective on the variety, extent, and timing of magma processes at active volcanic systems. Examples of magma processes, which may be distinguished based on plagioclase zoning patterns, include (1) cooling due to heat loss, (2) heating and/or pressure build up due to an input of new magmatic material, (3) pressure drop in response to magma system depressurization, and (4) crystal transfer between different magma domains/bodies. This review will include contrasting examples of zoning patters from recent eruptions of Karymsky, Bezymianny, and Tolbachik Volcanoes in Kamchatka, Augustine and Cleveland Volcanoes in Alaska, as well as from the drilling into an active magma body at Krafla, Iceland.

  7. The change of magma chamber depth in and around the Baekdu Volcanic area from late Cenozoic

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Oh, C. W.; Lee, Y. S.; Lee, S. G.; Liu, J.

    2016-12-01

    The Baekdu Volcano is a 2750m high stratovolcanic cone resting on a basaltic shield and plateau and locates on the North Korea-China border. Its volcanic history can be divided into four stages (from the oldest to the youngest): (i) preshield plateau-forming eruptions, (ii) basalt shield formation, (iii) construction of a trachytic composite cone, and (iv) explosive ignimbrite forming eruptions. In the First stage, a fissure eruption produced basalts from the Oligocene to the Miocene (28-13 Ma) forming preshield plateau. Fissure and central eruptions occurred together during the shield-forming eruptions (4.21-1.70 Ma). In the third stage, the trachytic composite volcano formed during the Pleistocene (0.61-0.09 Ma). In this stage, magma changed to an acidic melt. The latest stage has been characterized by explosive ignimbrite-forming eruptions during the Holocene. The composite volcanic part consists of the Xiaobaishan, Lower, Middle and Upper Trachytes with rhyolites. The whole rock and clinopyroxene in basalts, trachytic and rhyolite, are analyzed to study the depth of magma chambers under the Baekdu Volcano. From the rhyolite, 9.8-12.7kbar is obtained for the depth of magma chamber. 3.7-4.1, 8.9-10.5 and 8.7 kbar are obtained from the middle, lower and Xiaobaishan trachytes. From the first and second stage basalts, 16.9-17.0 kbar and 14-14.4kbar are obtained respectively. The first stage basalt give extrusive age of 11.98 Ma whereas 1.12 and 1.09 Ma are obtained from the feldspar and groundmass in the second stage basalt. The Xiaobaishan trachyte and rhyolite give 0.25 and 0.21 Ma whereas the Middle trachyte gives 0.07-0.06 Ma. These data indicate that the magma chambers of the first and second stage basalts were located in the mantle and the magma chamber for the second stage basalt may have been underplated below continental crust. The Xiaobisan trachyte and rhyolite originated from the magma chamber in the depth of ca. 30-40 km and the Middle trachyte

  8. Taxonomy of Magma Mixing II: Thermochemistry of Mixed Crystal-Bearing Magmas Using the Magma Chamber Simulator

    NASA Astrophysics Data System (ADS)

    Bohrson, W. A.; Spera, F. J.; Neilson, R.; Ghiorso, M. S.

    2013-12-01

    Magma recharge and magma mixing contribute to the diversity of melt and crystal populations, the abundance and phase state of volatiles, and thermal and mass characteristics of crustal magma systems. The literature is replete with studies documenting mixing end-members and associated products, from mingled to hybridized, and a catalytic link between recharge/mixing and eruption is likely. Given its importance and the investment represented by thousands of detailed magma mixing studies, a multicomponent, multiphase magma mixing taxonomy is necessary to systematize the array of governing parameters (e.g., pressure (P), temperature (T), composition (X)) and attendant outcomes. While documenting the blending of two melts to form a third melt is straightforward, quantification of the mixing of two magmas and the subsequent evolution of hybrid magma requires application of an open-system thermodynamic model. The Magma Chamber Simulator (MCS) is a thermodynamic, energy, and mass constrained code that defines thermal, mass and compositional (major, trace element and isotope) characteristics of melt×minerals×fluid phase in a composite magma body-recharge magma-crustal wallrock system undergoing recharge (magma mixing), assimilation, and crystallization. In order to explore fully hybridized products, in MCS, energy and mass of recharge magma (R) are instantaneously delivered to resident magma (M), and M and R are chemically homogenized and thermally equilibrated. The hybrid product achieves a new equilibrium state, which may include crystal resorption or precipitation and/or evolution of a fluid phase. Hundreds of simulations systematize the roles that PTX (and hence mineral identity and abundance) and the mixing ratio (mass of M/mass of R) have in producing mixed products. Combinations of these parameters define regime diagrams that illustrate possible outcomes, including: (1) Mixed melt composition is not necessarily a mass weighted mixture of M and R magmas because

  9. Caldera subsidence and magma chamber depth of the Olympus Mons volcano, Mars

    NASA Technical Reports Server (NTRS)

    Zuber, M. T.; Mouginis-Mark, P. J.

    1992-01-01

    An axisymmetric finite element model is constructed to calculate elastic stresses in a volcanic edifice to examine the relationship between surface tectonism, caldera subsidence, and the physical characteristics of Olympus Mons' magmatic reservoir. Model results indicate that the surface stress state is not strongly sensitive to the aspect ratio or pressure distribution of the magma chamber, or to the contrast in stiffness between the magma chamber and surroundings, but is strongly dependent on the depth and width of the chamber. A gross similarity is suggested between the configurations of the magmatic plumbing systems of Olympus Mons and several well-studied terrestrial volcanoes such as the Hawaiian shields.

  10. Fine crustal and uppermost mantle S-wave velocity structure beneath the Tengchong volcanic area inferred from receiver function and surface-wave dispersion: constraints on magma chamber distribution

    NASA Astrophysics Data System (ADS)

    Li, Mengkui; Zhang, Shuangxi; Wu, Tengfei; Hua, Yujin; Zhang, Bo

    2018-03-01

    The Tengchong volcanic area is located in the southeastern margin of the collision zone between the Indian and Eurasian Plates. It is one of the youngest intraplate volcano groups in mainland China. Imaging the S-wave velocity structure of the crustal and uppermost mantle beneath the Tengchong volcanic area is an important means of improving our understanding of its volcanic activity and seismicity. In this study, we analyze teleseismic data from nine broadband seismic stations in the Tengchong Earthquake Monitoring Network. We then image the crustal and uppermost mantle S-wave velocity structure by joint analysis of receiver functions and surface-wave dispersion. The results reveal widely distributed low-velocity zones. We find four possible magma chambers in the upper-to-middle crust and one in the uppermost mantle. The chamber in the uppermost mantle locates in the depth range from 55 to 70 km. The four magma chambers in the crust occur at different depths, ranging from the depth of 7 to 25 km in general. They may be the heat sources for the high geothermal activity at the surface. Based on the fine crustal and uppermost mantle S-wave velocity structure, we propose a model for the distribution of the magma chambers.

  11. On precisely modelling surface deformation due to interacting magma chambers and dykes

    NASA Astrophysics Data System (ADS)

    Pascal, Karen; Neuberg, Jurgen; Rivalta, Eleonora

    2014-01-01

    Combined data sets of InSAR and GPS allow us to observe surface deformation in volcanic settings. However, at the vast majority of volcanoes, a detailed 3-D structure that could guide the modelling of deformation sources is not available, due to the lack of tomography studies, for example. Therefore, volcano ground deformation due to magma movement in the subsurface is commonly modelled using simple point (Mogi) or dislocation (Okada) sources, embedded in a homogeneous, isotropic and elastic half-space. When data sets are too complex to be explained by a single deformation source, the magmatic system is often represented by a combination of these sources and their displacements fields are simply summed. By doing so, the assumption of homogeneity in the half-space is violated and the resulting interaction between sources is neglected. We have quantified the errors of such a simplification and investigated the limits in which the combination of analytical sources is justified. We have calculated the vertical and horizontal displacements for analytical models with adjacent deformation sources and have tested them against the solutions of corresponding 3-D finite element models, which account for the interaction between sources. We have tested various double-source configurations with either two spherical sources representing magma chambers, or a magma chamber and an adjacent dyke, modelled by a rectangular tensile dislocation or pressurized crack. For a tensile Okada source (representing an opening dyke) aligned or superposed to a Mogi source (magma chamber), we find the discrepancies with the numerical models to be insignificant (<5 per cent) independently of the source separation. However, if a Mogi source is placed side by side to an Okada source (in the strike-perpendicular direction), we find the discrepancies to become significant for a source separation less than four times the radius of the magma chamber. For horizontally or vertically aligned pressurized

  12. From a long-lived upper-crustal magma chamber to rapid porphyry copper emplacement: Reading the geochemistry of zircon crystals at Bajo de la Alumbrera (NW Argentina)

    NASA Astrophysics Data System (ADS)

    Buret, Yannick; von Quadt, Albrecht; Heinrich, Christoph; Selby, David; Wälle, Markus; Peytcheva, Irena

    2016-09-01

    The formation of world class porphyry copper deposits reflect magmatic processes that take place in a deeper and much larger underlying magmatic system, which provides the source of porphyry magmas, as well as metal and sulphur-charged mineralising fluids. Reading the geochemical record of this large magmatic source region, as well as constraining the time-scales for creating a much smaller porphyry copper deposit, are critical in order to fully understand and quantify the processes that lead to metal concentration within these valuable mineral deposits. This study focuses on the Bajo de la Alumbrera porphyry copper deposit in Northwest Argentina. The deposit is centred on a dacitic porphyry intrusive stock that was mineralised by several pulses of porphyry magma emplacement and hydrothermal fluid injections. To constrain the duration of ore formation, we dated zircons from four porphyry intrusions, including pre-, syn- and post-mineralisation porphyries based on intersection relations between successive intrusion and vein generations, using high precision CA-ID-TIMS. Based on the youngest assemblages of zircon grains, which overlap within analytical error, all four intrusions were emplaced within 29 ka, which places an upper limit on the total duration of hydrothermal mineralisation. Re/Os dating of hydrothermal molybdenite fully overlaps with this high-precision age bracket. However, all four porphyries contain zircon antecrysts which record protracted zircon crystallisation during the ∼200 ka preceding the emplacement of the porphyries. Zircon trace element variations, Ti-in-zircon temperatures, and Hf isotopic compositions indicate that the four porphyry magmas record a common geochemical and thermal history, and that the four intrusions were derived from the same upper-crustal magma chamber. Trace element zoning within single zircon crystals confirms a fractional crystallisation trend dominated by titanite and apatite crystallisation. However, zircon

  13. Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise

    USGS Publications Warehouse

    Detrick, R. S.; Buhl, P.; Vera, E.; Mutter, J.; Orcutt, J.; Madsen, J.; Brocher, T.

    1987-01-01

    A reflection observed on multi-channel seismic profiles along and across the East Pacific Rise between 8??50??? N and 13??30??? N is interpreted to arise from the top of a crustal magma chamber located 1.2-2.4 km below the sea floor. The magma chamber is quite narrow (<4 - 6 km wide), but can be traced as a nearly continuous feature for tens of kilometres along the rise axis. ?? 1987 Nature Publishing Group.

  14. Location of Sinabung volcano magma chamber on 2013 using lavenberg-marquardt inversion scheme

    NASA Astrophysics Data System (ADS)

    Kumalasari, R.; Srigutomo, W.; Djamal, M.; Meilano, I.; Gunawan, H.

    2018-05-01

    Sinabung Volcano has been monitoring using GPS after his eruption on August 2010. We Applied Levenberg-Marquardt Inversion Scheme to GPS data on 2013 because deformation of Sinabung Volcano in this year show an inflation and deflation, first we applied Levenberg-Marquardt to velocity data on 23 January 2013 then we applied Levenberg-Marquardt Inversion Scheme to data on 31 December 2013. From our analysis we got the depth of the pressure source modeling results that indicate some possibilities that Sinabung has a deep magma chamber about 15km and also shallow magma chamber about 1km from the surface.

  15. Imaging shallow magma chambers at Alaskan volcanoes with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Haney, M. M.; Prejean, S. G.

    2009-05-01

    Ambient noise tomography/inversion (ANT) is an emerging technique in seismology with the ability to provide 3D images of subsurface volcanic structure using relatively sparse seismic networks. The method relies on the principle that the cross-correlation of noise recordings at two different seismic stations reproduces an experiment in which one of the stations acts as an active source. Ambient seismic noise in the frequency band from 0.1 to 1 Hz is mostly composed of fundamental mode surface waves, of both Love and Rayleigh type. As a result, noise cross-correlations are sensitive to shear-wave structure and complement compressional-wave images computed from phase arrivals of local earthquakes. At Okmok volcano in the Aleutian islands, a 3D image constructed from 40 days of noise recordings in 2005 on a 12 station network clearly shows two low velocity zones (LVZs) centered about the 10-km-wide caldera: a shallow zone in the upper 1-2 km and a deeper zone between 4-4.5 km. The shallow LVZ is interpreted to be weak, poorly-consolidated material within the caldera; the deeper LVZ is indicative of the shallow magma chamber at Okmok. That the chamber is imaged as an LVZ in 2005 points to it remaining in a molten state throughout the time period between the 1997 and 2008 eruptions. The existence of a shallow chamber at Okmok is consistent with independent studies based on GPS, InSAR, and petrologic data. A 3D image has also been determined for the Katmai group of volcanoes along the Alaska peninsula from 60 days of continuous recordings in 2005 and 2006. An LVZ at Katmai Pass, previously known from local earthquake tomography (LET), is evident in the 3D shear-wave velocity model at depths down to 2 km BSL. That the LVZ exists in compressional-wave velocity models suggests it is a shallow magma storage area for Trident volcano. In contrast, low shear-wave velocity under Martin volcano is likely fluid-related, given the lack of low compressional-wave velocities in images

  16. Improving Student Understanding of Magmatic Differentiation Using an M&M Magma Chamber

    NASA Astrophysics Data System (ADS)

    Wirth, K. R.

    2003-12-01

    Many students, especially those in introductory geology courses, have difficulty developing a deep understanding of the processes of magmatic differentiation. In particular, students often struggle to understand Bowen's reaction series and fractional crystallization. The process of fractional crystallization by gravity settling can be illustrated using a model magma chamber consisting of M&M's. In this model, each major cation (e.g., Si, Ti, Al, Fe, Mg, Ca, Na, K) is represented by a different color M&M; other kinds of differently colored or shaped pieces could also be used. Appropriate numbers of each color M&M are combined to approximate the cation proportions of a basaltic magma. Students then fractionate the magma by moving M&M's to the bottom of the magma chamber forming a series of cumulus layers; the M&M's are removed in the stoichiometric proportions of cations in the crystallizing minerals (e.g., olivine, pyroxene, feldspars, quartz, magnetite, ilmenite). Students observe the changing cation composition (proportions of colors of M&M's) in the cumulus layers and in the magma chamber and graph the results using spreadsheet software. More advanced students (e.g., petrology course) can classify the cumulates and resulting liquid after each crystallization step, and they can compare the model system with natural magmatic systems (e.g., absence of important fractionating phases, volatiles). Students who have completed this exercise generally indicate a positive experience and demonstrate increased understanding of Bowen's reaction series and fractionation processes. They also exhibit greater familiarity with mineral stoichiometry, classification, solid-solution in minerals, element behavior (e.g., incompatibility), and chemical variation diagrams. Other models (e.g., paths of equilibrium and fractional crystallization on phase diagrams) can also be used to illustrate differentiation processes in upper level courses (e.g., mineralogy and petrology).

  17. Mechanisms of differentiation in the Skaergaard magma chamber

    NASA Astrophysics Data System (ADS)

    Tegner, C.; Lesher, C. E.; Holness, M. B.; Jakobsen, J. K.; Salmonsen, L. P.; Humphreys, M. C. S.; Thy, P.

    2012-04-01

    The Skaergaard intrusion is a superb natural laboratory for studying mechanisms of magma chamber differentiation. The magnificent exposures and new systematic sample sets of rocks that solidified inwards from the roof, walls and floor of the chamber provide means to test the relative roles of crystal settling, diffusion, convection, liquid immiscibility and compaction in different regions of the chamber and in opposite positions relative to gravity. Examination of the melt inclusions and interstitial pockets has demonstrated that a large portion of intrusion crystallized from an emulsified magma chamber composed of immiscible silica- and iron-rich melts. The similarity of ratios of elements with opposite partitioning between the immiscible melts (e.g. P and Rb) in wall, floor and roof rocks, however, indicate that large-scale separation did not occur. Yet, on a smaller scale of metres to hundred of metres and close to the interface between the roof and floor rocks (the Sandwich Horizon), irregular layers and pods of granophyre hosted by extremely iron-rich cumulates point to some separation of the two liquid phases. Similar proportions of the primocryst (cumulus) minerals in roof, wall and floor rocks indicate that crystal settling was not an important mechanism. Likewise, the lack of fractionation of elements with different behavior indicate that diffusion and fluid-driven metasomatism played relatively minor roles. Compositional convection and/or compaction within the solidifying crystal mush boundary layer are likely the most important mechanisms. A correlation of low trapped liquid fractions (calculated from strongly incompatible elements) in floor rocks with high fractionation density (the density difference between the crystal framework and the liquid) indicate that compaction is the dominating process in expelling evolved liquid from the crystal mush layer. This is supported by high and variable trapped liquid contents in the roof rocks, where gravity

  18. Intrusion of granitic magma into the continental crust facilitated by magma pulsing and dike-diapir interactions: Numerical simulations

    NASA Astrophysics Data System (ADS)

    Cao, Wenrong; Kaus, Boris J. P.; Paterson, Scott

    2016-06-01

    We conducted a 2-D thermomechanical modeling study of intrusion of granitic magma into the continental crust to explore the roles of multiple pulsing and dike-diapir interactions in the presence of visco-elasto-plastic rheology. Multiple pulsing is simulated by replenishing source regions with new pulses of magma at a certain temporal frequency. Parameterized "pseudo-dike zones" above magma pulses are included. Simulation results show that both diking and pulsing are crucial factors facilitating the magma ascent and emplacement. Multiple pulses keep the magmatic system from freezing and facilitate the initiation of pseudo-dike zones, which in turn heat the host rock roof, lower its viscosity, and create pathways for later ascending pulses of magma. Without diking, magma cannot penetrate the highly viscous upper crust. Without multiple pulsing, a single magma body solidifies quickly and it cannot ascent over a long distance. Our results shed light on the incremental growth of magma chambers, recycling of continental crust, and evolution of a continental arc such as the Sierra Nevada arc in California.

  19. Magma mixing in the 1100 AD Montaña Reventada composite lava flow, Tenerife, Canary Islands: interaction between rift zone and central volcano plumbing systems

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Deegan, F. M.; Troll, V. R.; Carracedo, J. C.; Chadwick, J. P.; Chew, D. M.

    2011-09-01

    Zoned eruption deposits commonly show a lower felsic and an upper mafic member, thought to reflect eruption from large, stratified magma chambers. In contrast, the Montaña Reventada composite flow (Tenerife) consists of a lower basanite and a much thicker upper phonolite. A sharp interface separates basanite and phonolite, and chilled margins at this contact indicate the basanite was still hot upon emplacement of the phonolite, i.e. the two magmas erupted in quick succession. Four types of mafic to intermediate inclusions are found in the phonolite. Inclusion textures comprise foamy quenched ones, others with chilled margins and yet others that are physically mingled, reflecting progressive mixing with a decreasing temperature contrast between the end-members. Analysis of basanite, phonolite and inclusions for majors, traces and Sr, Nd and Pb isotopes show the inclusions to be derived from binary mixing of basanite and phonolite end-members in ratios of 2:1 to 4:1. Although, basanite and phonolite magmas were in direct contact, contrasting 206Pb/204Pb ratios show that they are genetically distinct (19.7193(21)-19.7418(31) vs. 19.7671(18)-19.7807(23), respectively). We argue that the Montaña Reventada basanite and phonolite first met just prior to eruption and had limited interaction time only. Montaña Reventada erupted from the transition zone between two plumbing systems, the phonolitic Teide-Pico Viejo complex and the basanitic Northwest rift zone. A rift zone basanite dyke most likely intersected the previously emplaced phonolite magma chamber. This led to eruption of geochemically and texturally unaffected basanite, with the inclusion-rich phonolite subsequently following into the established conduit.

  20. The Dovyren Intrusive Complex (Southern Siberia, Russia): Insights into dynamics of an open magma chamber with implications for parental magma origin, composition, and Cu-Ni-PGE fertility

    NASA Astrophysics Data System (ADS)

    Ariskin, Alexey; Danyushevsky, Leonid; Nikolaev, Georgy; Kislov, Evgeny; Fiorentini, Marco; McNeill, Andrew; Kostitsyn, Yuri; Goemann, Karsten; Feig, Sandrin T.; Malyshev, Alexey

    2018-03-01

    -mineralised PGE-rich anorthosite in the Main Reef. The geochemical structure of the YDM demonstrates C-shaped distributions of TiO2, K2O, P2O5, and incompatible trace elements, which are 3-5 fold depleted in the cumulate rocks from the inner horizons of the intrusion with respect to the relatively thin lower and upper contact zones. In addition, a marked misbalance between estimates of the average composition of the YDM and that of the proposed olivine-laden parental magmas is established. This misbalance reflects a significant deficit of the YDM in incompatible elements, which argues that 60-70% of basaltic melts had to have been expelled from the Dovyren magma chamber during its consolidation. A possible scenario of the evolution of the open magma chamber is proposed.

  1. Magma mixing and degassing processes in the magma chamber of Gorely volcano (Kamchatka): evidence from whole-rock and olivine chemistry.

    NASA Astrophysics Data System (ADS)

    Gavrilenko, M.; Ozerov, A.; Kyle, P. R.; Carr, M. J.; Nikulin, A.

    2015-12-01

    Gorely is a shield-type volcano in southern Kamchatka currently in an eruptive phase [1] with prior eruptions recorded in 1980 and 1984 [4]. It is comprised of three main structural units: ancient (middle Pleistocene) edifice called 'Old-Gorely' volcano; thick ignimbrite complex, associated with a caldera forming eruption (40 ka); modern edifice named 'Young Gorely' growing inside the caldera [6]. Gorely lavas consist of a suite of compositions ranging from basalt to rhyolite (calk-alkaline series).In this study we describe the mixing processes in magma chamber [2] based on analysis of whole-rock and mineralogical data in an attempt to compare the magma evolution pathways for 'Old Gorely' and Young Gorely volcanoes. Our results indicate that fractional crystallization (FC) is the dominant process for 'Old Gorely' magmas, while 'Young Gorely' magmas are the result of mixing of primitive and evolved magmas in Gorely magma chamber], which is located at depth range from 2 to 10 km below the volcano edifice [6]. We present results of olivine high-precision electron microprobe data analysis (20kV, 300 nA) [7], alongside traditional methods (WR diagrams, mineral zonation) to demonstrate the difference between 'Old' (FC) and 'Young' (mixing) Gorely magmas. We estimated magma H2O (~3 wt.%) content for Gorely magma using independent methods: 1) using THI [8]; 2) using ΔT Ol-Pl [3]; 3) using Ol-Sp temperatures [9]. Additionally, calculations of [4] and analysis of olivine chemistry allow us to describe water content changes during magma evolution. We show that degassing (H2O removal) is necessary for strong plagioclase fractionation, which is observed in Gorely evolved lavas (less than 5 wt.% of MgO). [1] Aiuppa et al. (2012), GRL. 39(6): p.L06307. [2] Gorbach & Portnyagin (2011) Petrology, 19(2): p.134-166. [3] Danyushevsky (2001) JVGR, 110(3-4): p.265-280. [4] Kirsanov & Melekescev (1991) Active volcanoes of Kamchatka, v.2: p.294-317. [5] Mironov & Portnyagin (2011

  2. Volcanoes Behave as Composite Materials: Implications for Modeling Magma Chambers, Dikes, and Surface Deformation

    NASA Astrophysics Data System (ADS)

    Leiss, B.; Gudmundsson, A.; Philipp, S. L.

    2005-12-01

    By definition, composite volcanoes are composed of numerous alternating material units or layers such as lavas, sediments, and pyroclastics. Commonly, these layers have widely different mechanical properties. In particular, some lava flows and welded pyroclastic flows may be stiff (with a high Young's modulus), whereas others, such as non-welded pyroclastic units and sediments, may be soft (with a low Young's modulus). As a consequence, even if the loading (tectonic stress, magmatic pressure, or displacement) is uniform, the stresses within the composite volcano will vary widely. In this sense, the behavior of composite volcanoes is similar to that of general composite materials. The deformation of the surface of a volcano during an unrest period results from stresses generated by processes and parameters such as fluid pressure in a geothermal field or a magma chamber, a regional tectonic event, and a dike injection. Here we present new numerical models on mechanics of magma chambers and dikes, and the associated surface deformation of composite volcanoes. The models show that the surface deformation during magma-chamber inflation and deflation depends much on the chamber geometry, the loading conditions, and the mechanical properties of the rock units that constitute the volcano. The models also indicate that the surface deformation induced by a propagating dike depends much on the mechanical properties of the layers between the dike tip and the surface. In particular, the numerical results show that soft layers and weak contacts between layers may suppress the dike-induced tensile stresses and the associated surface deformation. Many dikes may therefore become injected and arrested at shallow depths in a volcano while giving rise to little or no surface deformation. Traditional analytical surface-deformation models such as a point source (Mogi model) for a magma-chamber pressure change and a dislocation for a dike normally assume the volcano to behave as a

  3. Monogenetic scoria cones, proxies of an evolutive magma chamber. Llaima volcano, Chile

    NASA Astrophysics Data System (ADS)

    Schonwalder, D. A.; Cortes, J. A.; Calder, E. S.; Ruth, D. C.

    2013-12-01

    Stratovolcanoes are often associated with monogenetic scoria cones (MSC) around their flanks, which can show compositional variations compared to a main volcanic edifice (ME). Such variations are the representation of the state of the magma chamber at the time the MSC were formed. Using textural analysis, whole-rock and mineral chemistry, we investigate the relationship between the products of the ME and MSC at Llaima volcano, Chile; to make inferences about the plumbing system and determine the evolutionary changes of the magma chamber. Thirty MSC and their associated lava flows have been recognized, occurring on the NE, NW and SW flanks of the ME. They do not show clear stratigraphic relationships. Only three lava flows had been dated by C14, ages ranging from 3340 to 320 × 50 yr B.P1, the ages of the other cones have been inferred based in their morphologic state and degree of vegetation. Whole-rock XRF analyses show relevant compositional variations: SiO2 from 50-61 wt%, Na2O+K2O from 2.5-6 wt%, MgO from 2-6 wt% and CaO from 5-12 wt%. At the NE flank, such variations seem to be related to the distance from the ME, where the distal cones have a relatively more primitive composition. The petrography shows that plagioclase is the main mineral phase, with variable contents of olivine and clinopyroxene. At the NE, the olivine-clinopyroxene ratio varies from 3:1 to 1:10, from the closest to the farthest cones. The compositional range of plagioclase (Andesine-Bytownite) and olivine (Fo60-80) is the average, with a few cones to the NE displaying an intermediate olivine composition (Fo40-60). The pyroxene is mainly Augite, with presence of Diopside at the ME. Crystal Size Distribution (CSD) measurements of the mineral phases have also been undertaken. The CSDs of Plagioclase show linear yet slightly curved trends with similar slopes, which is typical of open magmatic systems2. For Olivine, the CSDs are generally convex, but lavas from the ME and the younger MSC display

  4. Magma Mingling of Multiple Mush Magmas

    NASA Astrophysics Data System (ADS)

    Graham, B.; Leitch, A.; Dunning, G.

    2016-12-01

    This field, petrographic, and geochemical study catalogues complicated magma mingling at the field to thin section scale, and models the emplacement of multiple crystal-rich pulses into a growing magma chamber. Modern theories present magma chambers as short-lived reservoirs that are continuously fed by intermittent magma pulses and suggest processes that occur within them can be highly dynamic. Differences in the rheology of two mingling magmas, largely affected by crystallinity, can result in varied textural features that can be preserved in igneous rocks. Field evidence of complex magma mingling is observed at Wild Cove, located along the northeast shoreline of Fogo Island, Newfoundland, an area interpreted to represent the roof/wall region of the Devonian Fogo Batholith. Fine-grained intermediate enclaves are contained in host rocks of similar composition and occur in round to amoeboid shapes. Dykes of similar composition are also observed near enclaves suggesting they were broken up into globules in localized areas. These provide evidence for a possible mechanism by which enclaves were formed as dykes passed through a more liquid-rich region of the magma chamber. The irregular but sharp nature of the boundaries between units suggest that all co-existed as "mushy" magmas with variable crystallinities reflecting a wide range in temperature between their respective liquidus and solidus. Textural evidence of complex mingling between mush units includes the intrusion of tonalite dykes into quartz diorite and granite mushes. The dykes were later pulled apart and subsequently back-intruded by liquid from the host mush (Figure). Observed magmatic tubes of intermediate magma cross-cutting through magma of near identical composition likely reflect compaction of the underlying mush after intrusion of new pulses of magma into the system. Petrographic examination of contacts between units reveals that few are chilled and medium to coarse grained boundaries are the norm.

  5. A fully coupled petrological geodynamical model to investigate the evolution of crustal magma chambers

    NASA Astrophysics Data System (ADS)

    Rummel, Lisa; Kaus, Boris J. P.; White, Richard W.

    2017-04-01

    The evolution of crustal magma chambers can be considered from a range of different physical and chemical perspectives. Most previous studies focus either on the petrological side (assuming only thermal effects and ignoring mechanics), or on the mechanical evolution (assuming a fixed melt chemistry). Here, we develop a method that fully couples petrological with geodynamic modelling, by combining a finite element code, MVEP2, with a thermodynamic modelling approach (Perple_X) that takes the evolving chemistry into account. The evolution of melt chemistry in a crustal magma chamber is analyzed by focusing on the effects of depth and temperature as well as size and shape of the magma chamber(s). The models show that each of these factors influences the melting behavior of rocks, the magma composition and their effects on the mechanics in the upper lithosphere. Interactions with country rocks (assimilation), ongoing rock depletion (fractional melting) and a possible open system behavior (fractional crystallization) and their effects on magma chemistry are taken into account. The chemical and mineralogical evolution of the melt source, composition (10 oxide component system) of intrusive and extrusive rocks as well as melt fraction and density are tracked on particles using a marker-in-cell-method in the geodynamic code. After each melt extraction event, the employed phase diagram is updated or recalculated based on the residuum chemistry that shifts the solidus to higher temperatures with sequential melt extraction. The resulting wide range in chemical compositions and the volume of intrusive and extrusive rocks are tracked in time and space over the melting region. The newly generated crust employs phase diagrams which are directly computed from the chemistry of extracted melts. Plutons are able to melt again as long as the local temperature is higher in the model than the solidus temperature in the employed phase diagram. As a result, our models make testable

  6. Water contents, temperatures and diversity of the magmas of the catastrophic eruption of Nevado del Ruiz, Colombia, November 13, 1985

    NASA Astrophysics Data System (ADS)

    Melson, William G.; Allan, James F.; Jerez, Deborah Reid; Nelen, Joseph; Calvache, Marta Lucia; Williams, Stanley N.; Fournelle, John; Perfit, Mike

    1990-07-01

    The petrology of the highly phyric two-pyroxene andesitic to dacitic pyroclastic rocks of the November 13, 1985 eruption of Nevado del Ruiz, Colombia, reveals evidence of: (1) increasingly fractionated bulk compositions with time; (2) tapping of a small magma chamber marginally zoned in regard to H 2O contents (1 to 4%), temperature (960-1090°C), and amount of residual melt (35 to 65%); (3) partial melting and assimilation of degassed zones in the hotter less dense interior of the magma chamber; (4) probable heating, thermal disruption and mineralogic and compositional contamination of the magma body by basaltic magma "underplating"; and (5) crustal contamination of the magmas during ascent and within the magma chamber. Near-crater fall-back or "spill-over" emitted in the middle of the eruptive sequence produced a small pyroclastic flow that became welded in its central and basal portions because of ponding and thus heat conservation on the flat glaciated summit near the Arenas crater. The heterogeneity of Ruiz magmas may be related to the comparatively small volume (0.03 km 3) of the eruption, nearly ten times less than the 0.2 km 3 of the Plinian phase of Mount St. Helens, and probable steep thermal and PH 2O gradients of a small source magma chamber, estimated at 300 m long and 100 m wide for an assumed ellipsoidal shape.

  7. Processes active in mafic magma chambers: The example of Kilauea Iki Lava Lake, Hawaii

    USGS Publications Warehouse

    Helz, R.T.

    2009-01-01

    Kilauea Iki lava lake formed in 1959 as a closed chamber of 40??million m3 of picritic magma. Repeated drilling and sampling of the lake allows recognition of processes of magmatic differentiation, and places time restrictions on the periods when they operated. This paper focuses on evidence for the occurrence of lateral convection in the olivine-depleted layer, and constraints on the timing of this process, as documented by chemical, petrographic and thermal data on drill core from the lake. Lateral convection appears to have occurred in two distinct layers within the most olivine-poor part of the lake, created a slightly olivine-enriched septum in the center of the olivine-depleted section. A critical marker for this process is the occurrence of loose clusters of augite microphenocrysts, which are confined to the upper half of the olivine-poor zone. This process, which took place between late 1962 and mid-1964, is inferred to be double-diffusive convection. Both this convection and a process of buoyant upwelling of minimum-density liquid from deep within the lake (Helz, R.T., Kirschenbaum H. and Marinenko, J.W., 1989. Diapiric melt transfer: a quick, efficient process of igneous differentiation: Geological Society of America Bulletin, v. 101, 578-594) result from the fact that melt density in Kilauea Iki compositions decreases as olivine and augite crystallize, above the incoming of plagioclase. The resulting density vs. depth profile creates (1) a region of gravitationally stable melt at the top of the chamber (the locus of double-diffusive convection) and (2) a region of gravitationally unstable melt at the base of the melt column (the source of upwelling minimum-density melt, Helz, R.T., Kirschenbaum H. and Marinenko, J.W., 1989. Diapiric melt transfer: a quick, efficient process of igneous differentiation: Geological Society of America Bulletin, v. 101, 578-594). By contrast the variation of melt density with temperature for the 1965 Makaopuhi lava lake does

  8. Magma Reservoir Processes Revealed by Geochemistry of the Ongoing East Rift Zone Eruption, Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Thornber, C. R.

    2002-12-01

    limits of repeated MgO and temperature variation imply end-member magma conditions that are regulated by open-system recharge of the shallow magmatic plumbing system. The low-end of MgO variation (7 wt%) approaches the low-pressure multiphase cotectic, which is maintained by open-system replenishment of a persistent magma reservoir. The high-temperature end-member (10 wt% MgO) is probably regulated by olivine fractionation in a zone of turbulent mixing between primitive recharge magma (15 wt% MgO) and resident cotectic magma. The highest temperature magmas are associated with eruption pulses that occur in response to intrusive events at the summit and initiate short-term increases of HINCE/MINCE. Subsequent changes toward lower magmatic temperatures are associated with periods of overall summit deflation, relatively low-level effusion, and frequent eruptive pauses. The long-term trends can be explained by episodic mixing of chemically uniform recharge melt with diminishing proportions of pre-1983 summit magma (maintained at cotectic conditions). Decreasing HINCE/MINCE may signify that a greater proportion of recharge magma is being diverted directly to Pu`u `O`o with minimal summit interaction or that the mass ratio of those mixing end-members has changed due to a depleted summit chamber (or both). The coincidence of long-term summit deflation since the 1982 summit eruption suggests that shallow processes related to summit reservoir depletion may be responsible for decreasing HINCE/MINCE and Pb isotopes in post-1982 steady-state eruption products. Magma derived from a uniform mantle-source, after having flushed out older resident magma, may now completely occupy the shallow magmatic plumbing system.

  9. Conditions of deep magma chamber beneath Fuji volcano estimated from high- P experiments

    NASA Astrophysics Data System (ADS)

    Asano, K.; Takahashi, E.; Hamada, M.; Ushioda, M.; Suzuki, T.

    2012-12-01

    Fuji volcano, the largest in volume and eruption rate in Japan, is located at the center of Honshu, where North America, Eurasia and Philippine Sea plates meets. Because of the significance of Fuji volcano both in tectonic settings and potential volcanic hazard (particularly after the M9 earthquake in 2011), precise knowledge on its magma feeding system is essentially important. Composition of magma erupted from Fuji volcano in the last 100ky is predominantly basalt (SiO2=50-52wt%, FeO/MgO=1.5-3.0). Total lack of silica-rich magma (basaltic andesite and andesite) which are always present in other nearby volcanoes (e.g., Hakone, Izu-Oshima, see Fig.1) is an important petrologic feature of Fuji volcano. Purpose of this study is to constrain the depth of magma chamber of Fuji volcano and explain its silica-nonenrichment trend. High pressure melting experiments were carried out using two IHPVs at the Magma Factory, Tokyo Institute of Technology (SMC-5000 and SMC-8600, Tomiya et al., 2010). Basalt scoria Tr-1 which represents the final ejecta of Hoei eruption in AD1707, was adopted as a starting material. At 4kbar, temperature conditions were 1050, 1100 and 1150C, and H2O contents were 1.3, 2.7 and 4.7 wt.%, respectively. At 7kbar, temperature conditions were 1075, 1100 and 1125C, and H2O contents were 1.0, 1.1, 3.6 and 6.3wt.%, respectively. The fO2 was controlled at NNO buffer. At 4kbar, crystallization sequence at 3 wt% H2O is magnetite, plagioclase, clinopyroxene and finally orthopyroxene. At 7 kbar, and ~3 wt% H2O, the three minerals (opx, cpx, pl) appears simultaneously near the liquidus. Compositional trend of melt at 4 kbar and 7 kbar are shown with arrows in Fig.1. Because of the dominant crystallization of silica-rich opx at 7 kbar, composition of melt stays in the range SiO2=50-52wt% as predicted by Fujii (2007). Absence of silica-rich rocks in Fuji volcano may be explained by the tectonic setting of the volcano. Because Fuji volcano locates on the plate

  10. Why Is There an Abrupt Transition from Solid Rock to Low Crystallinity Magma in Drilled Magma Bodies?

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Carrigan, C. R.; Sun, Y.; Lavallée, Y.

    2017-12-01

    We report on a preliminary evaluation, from basic principles of heat and mass transfer, on the unexpectedly abrupt transition from cuttings of solid rock to fragments of crystal poor glass during drilling into magma bodies. Our analysis is based on conditions determined and inferred for the 2009 IDDP-1 well in Krafla Caldera, which entered apparently liquidus rhyolite magma at about 900oC at a depth of 2104 m. Simple conduction would predict some 30 m of crystallization and partial crystallization since the latest time the magma could have been intruded, approximately 30 years prior to discovery by drilling. Option 1: The expected crystallization of magma has occurred but interstitial melt remains. The pressure difference between lithostatic load of about 50 MPa on the mush and 20 MPa hydrostatic pressure in the well causes pore melt to flow from the permeable mush into the borehole, where it becomes the source of the quenched melt chips. To be viable, this mechanism must work over the time frame of a day. Option 2: The expected crystallization is occurring, but high Rayleigh number thermal convection in the magma chamber continuously displaces crystallizing roof magma by liquidus magma from the interior of the body. To be viable, this mechanism must result in overturning magma in the chamber on a time scale that is much shorter than that of crystallization. Option 3: Flow-induced crystal migration away from zones of high shear created during drilling into magma may preferentially produce low-crystal-content melt at the boundary of the borehole, which is then sampled.

  11. Zinc isotope systematics of subduction-zone magmas

    NASA Astrophysics Data System (ADS)

    Huang, J.; Zhang, X. C.; Huang, F.; Yu, H.

    2016-12-01

    Subduction-zone magmas are generated by partial melting of mantle wedge triggered by addition of fluids derived from subducted hydrothermally altered oceanic lithosphere. Source of the fluids may be sediment, altered oceanic crust and serpentinized peridotite/serpentinite. Knowledge of the exact fluid source can facilitate our better understanding of the mechanism of fluid flux, element cycling and crust-mantle interaction in subduction zones. Zinc isotopes have the potential to place a constraint on this issue, because (1) Zn has an intermediate mobility during fluid-rock interaction and is enriched in subduction-zone fluids (e.g., Li et al., 2013); (2) sediment, altered oceanic crust and serpentinite have distinct Zn isotopic compositions (Pons et al., 2011); and (3) the mantle has a homogeneous Zn isotope composition (δ66Zn = 0.28 ± 0.05‰, Chen et al., 2013). Thus, the Zn isotopic composition of subduction-zone magmas reflects the characteristics of slab-derived fluids of different sources. Here, high-precision Zn isotope analyses were conducted on igneous rocks from arcs of Central America, Kamchatka, South Lesser Antilles, and Aleutian. One rhyolite with 75.1 wt.% SiO2 and 0.2 wt.% FeOT displays the heaviest δ66Zn value of 0.394‰ (relative to JMC Lyon) that probably results from the crystallization of Fe-Ti oxides during the late-stage differentiation. The rest of rocks have Zn isotopic compositions (0.161 to 0.339‰) similar to or lighter than those of the mantle. In an individual arc, the δ66Zn values of rocks show broad negative correlations with Ba/Th and 87Sr/86Sr ratios, suggesting that the slab-derived fluids should have lighter δ66Zn as well as higher Ba/Th and 87Sr/86Sr ratios relative to the mantle. These features are in accordance with those of serpentinites. Thus, addition of serpentinite-derived 66Zn-depleted fluids into the mantle wedge can explain the declined δ66Zn of subduction-zone magmas. ReferenceChen et al. (2013) EPSL 369

  12. Shallow Chamber & Conduit Behavior of Silicic Magma: A Thermo- and Fluid- Dynamic Parameterization Model of Physical Deformation as Constrained by Geodetic Observations: Case Study; Soufriere Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Gunn de Rosas, C. L.

    2013-12-01

    The Soufrière Hills Volcano, Montserrat (SHV) is an active, mainly andesitic and well-studied stratovolcano situated at the northern end of the Lesser Antilles Arc subduction zone in the Caribbean Sea. The goal of our research is to create a high resolution 3D subsurface model of the shallow and deeper aspects of the magma storage and plumbing system at SHV. Our model will integrate inversions using continuous and campaign geodetic observations at SHV from 1995 to the present as well as local seismic records taken at various unrest intervals to construct a best-fit geometry, pressure point source and inflation rate and magnitude. We will also incorporate a heterogeneous media in the crust and use the most contemporary understanding of deep crustal- or even mantle-depth 'hot-zone' genesis and chemical evolution of silicic and intermediate magmas to inform the character of the deep edifice influx. Our heat transfer model will be constructed with a modified 'thin shell' enveloping the magma chamber to simulate the insulating or conducting influence of heat-altered chamber boundary conditions. The final forward model should elucidate observational data preceding and proceeding unrest events, the behavioral suite of magma transport in the subsurface environment and the feedback mechanisms that may contribute to eruption triggering. Preliminary hypotheses suggest wet, low-viscosity residual melts derived from 'hot zones' will ascend rapidly to shallower stall-points and that their products (eventually erupted lavas as well as stalled plutonic masses) will experience and display two discrete periods of shallow evolution; a rapid depressurization crystallization event followed by a slower conduction-controlled heat transfer and cooling crystallization. These events have particular implications for shallow magma behaviors, notably inflation, compressibility and pressure values. Visualization of the model with its inversion constraints will be affected with Com

  13. Magma Chamber of the 26.5 ka Oruanui Eruption, Taupo Volcano, New Zealand

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Anderson, A. T.; Wilson, C. J.; Davis, A. M.

    2004-12-01

    We have investigated melt inclusions and their host quartz crystals from the Bishop-Tuff-sized 26.5 ka Oruanui eruption at Taupo volcano, New Zealand. Compositions (major and trace elements, H2O and CO2) of melt inclusions and cathodoluminescence (CL) images of quartz were obtained for eight individual pumices from early, middle and late depositional units. All melt inclusions are high-silica weakly peraluminous rhyolites. Melt inclusions for different eruptive phases have similar ranges of H2O contents (3.8-5.2 wt %), but late-erupted samples have higher CO2 contents (mostly > 140 ppm). A positive correlation between CO2 and compatible trace elements such as Sr suggests that crystallization and melt entrapment occurred under gas-saturated conditions. Trace elements variations in melt inclusions are consistent with fractionation of 30-40 wt % crystals (plagioclase+quartz+pyroxene+amphibole). Crystal contents in pumices, trace-element contents in melt inclusions, and CL zoning patterns of quartz show no correlation with eruptive phases, suggesting that the Oruanui magma was well mixed before eruption. Some Oruanui quartz crystals contain distinctive CL zonings with a jagged ('restitic') core mantled by a black CL zone. Trace element variations in melt inclusions in the 'restitic' cores are consistent with fractionation of Ba-bearing minerals such as sanidine and/or biotite, both of which are rare or absent in rocks erupted from Taupo volcanic center. The above evidence suggests that Oruanui rhyolite is generated by assimilation of previous intruded rocks or country rocks, differentiated by crystal fractionation, and then mixed prior to eruption. Despite the differences in trace element and volatile contents, and crystal assemblages, both Bishop Tuff and Oruanui magmas involve crystal fractionation as one of the main differentiation mechanisms during their evolution. However, there are pronounced differences in the pre-eruptive stratification of the two chambers

  14. The fluid dynamics of a basaltic magma chamber replenished by influx of hot, dense ultrabasic magma

    NASA Astrophysics Data System (ADS)

    Huppert, Herbert E.; Sparks, R. Stephen J.

    1981-09-01

    This paper describes a fluid dynamical investigation of the influx of hot, dense ultrabasic magma into a reservoir containing lighter, fractionated basaltic magma. This situation is compared with that which develops when hot salty water is introduced under cold fresh water. Theoretical and empirical models for salt/water systems are adapted to develop a model for magmatic systems. A feature of the model is that the ultrabasic melt does not immediately mix with the basalt, but spreads out over the floor of the chamber, forming an independent layer. A non-turbulent interface forms between this layer and the overlying magma layer across which heat and mass are transferred by the process of molecular diffusion. Both layers convect vigorously as heat is transferred to the upper layer at a rate which greatly exceeds the heat lost to the surrounding country rock. The convection continues until the two layers have almost the same temperature. The compositions of the layers remain distinct due to the low diffusivity of mass compared to heat. The temperatures of the layers as functions of time and their cooling rate depend on their viscosities, their thermal properties, the density difference between the layers and their thicknesses. For a layer of ultrabasic melt (18% MgO) a few tens of metres thick at the base of a basaltic (10% MgO) magma chamber a few kilometres thick, the temperature of the layers will become nearly identical over a period of between a few months and a few years. During this time the turbulent convective velocities in the ultrabasic layer are far larger than the settling velocity of olivines which crystallise within the layer during cooling. Olivines only settle after the two layers have nearly reached thermal equilibrium. At this stage residual basaltic melt segregates as the olivines sediment in the lower layer. Depending on its density, the released basalt can either mix convectively with the overlying basalt layer, or can continue as a separate

  15. Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber.

    PubMed

    Burchardt, Steffi; Troll, Valentin R; Mathieu, Lucie; Emeleus, Henry C; Donaldson, Colin H

    2013-10-08

    The Palaeogene Ardnamurchan central igneous complex, NW Scotland, was a defining place for the development of the classic concepts of cone-sheet and ring-dyke emplacement and has thus fundamentally influenced our thinking on subvolcanic structures. We have used the available structural information on Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. Here we show that a single elongate magma chamber likely acted as the source of the cone-sheet swarm(s) instead of the traditionally accepted model of three successive centres. This proposal is supported by the ridge-like morphology of the Ardnamurchan volcano and is consistent with the depth and elongation of the gravity anomaly underlying the peninsula. Our model challenges the traditional model of cone-sheet emplacement at Ardnamurchan that involves successive but independent centres in favour of a more dynamical one that involves a single, but elongate and progressively evolving magma chamber system.

  16. Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber

    PubMed Central

    Burchardt, Steffi; Troll, Valentin R.; Mathieu, Lucie; Emeleus, Henry C.; Donaldson, Colin H.

    2013-01-01

    The Palaeogene Ardnamurchan central igneous complex, NW Scotland, was a defining place for the development of the classic concepts of cone-sheet and ring-dyke emplacement and has thus fundamentally influenced our thinking on subvolcanic structures. We have used the available structural information on Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. Here we show that a single elongate magma chamber likely acted as the source of the cone-sheet swarm(s) instead of the traditionally accepted model of three successive centres. This proposal is supported by the ridge-like morphology of the Ardnamurchan volcano and is consistent with the depth and elongation of the gravity anomaly underlying the peninsula. Our model challenges the traditional model of cone-sheet emplacement at Ardnamurchan that involves successive but independent centres in favour of a more dynamical one that involves a single, but elongate and progressively evolving magma chamber system. PMID:24100542

  17. Mafic microgranular enclave swarms in the Chenar granitoid stock, NW of Kerman, Iran: evidence for magma mingling

    NASA Astrophysics Data System (ADS)

    Arvin, M.; Dargahi, S.; Babaei, A. A.

    2004-10-01

    Mafic microgranular enclaves (MME) are common in the Early to Middle Miocene Chenar granitoid stock, northwest of Kerman, which is a part of Central Iranian Eocene volcanic belt. They occur individually and in homogeneous or heterogeneous swarms. The MME form a number of two-dimensional structural arrangements, such as dykes, small rafts, vortices, folded lens-shapes and late swarms. The enclaves are elongated, rounded to non-elongated and subrounded in shape and often show some size-sorting parallel to direction of flow. Variation in the elongation of enclaves could reflect variations in the viscosity of the enclave, the time available for enclave deformation and differential strain during flow of the host granitoid magma. The most effective mechanism in the formation of enclave swarms in the Chenar granitoid stock was velocity gradient-related convection currents in the granitoid magma chamber. Gravitational sorting and the break-up of heterogeneous dykes also form MME swarms. The MME (mainly diorite to diorite gabbro) have igneous mineralogy and texture, and are marked by sharp contacts next to their host granitoid rocks. The contact is often marked by a chilled margin with no sign of solid state deformation. Evidence of disequilibrium is manifested in feldspars by oscillatory zoning, resorbed rims, mantling and punctuated growth, together with overgrowth of clinopyroxene/amphibole on quartz crystals, the acicular habit of apatites and the development of Fe-Ti oxides along clinopyroxene cleavages. These observations suggest that the MMEs are derived from a hybrid-magma formed as a result of the intrusion of a mafic magma into the base of a felsic magma chamber. The density contrast between hybrid-magma and the overlying felsic magma was reduced by the release of dissolved fluids and the ascent of exsolved gas bubbles from the mafic magma into the hybrid zone. Further convection in the magma chamber dispersed the hybridized magma as globules in the upper parts of

  18. Creep, dike intrusion, and magma chamber deflation model for the 2000 Miyake eruption and the Izu islands earthquakes

    NASA Astrophysics Data System (ADS)

    Ozawa, S.; Miyazaki, S.; Nishimura, T.; Murakami, M.; Kaidzu, M.; Imakiire, T.; Ji, X.

    2004-02-01

    Analysis of Global Positioning System data shows shrinkage of Miyake Island and the widening between Nijima and Kozu Islands during the period of the Miyake island volcanic activity and the ensuing Izu islands earthquakes in 2000. The estimated time evolution of a model consisting of a dike, creeping faults, and a Mogi source suggests that a crack opening on Miyake Island occurred immediately after the start of the seismic activities on 26 June and ended within several days at the west coast of Miyake Island. After the seabed eruption on 27 June, magma migrated from Miyake Island to Kozu and Nijima Islands within several days. The estimated volume of intruded magma totals around 1.2 × 109 m3. Associated with the magma intrusion between Miyake and Kozu Islands, left-lateral and right-lateral creep motions occurred in regions off the west coast of Miyake Island and near Kozu Island. The accumulated moment energy is equivalent to an earthquake of Mw 6.6 and 6.6 for right-lateral and left-lateral creeping faults, respectively. The estimated magma chamber continued deflation beneath the southwestern part of Miyake Island from 26 June, totaling around 0.12 × 109 m3 in volume change, in addition to the collapse volume of 0.6 × 109 m3 at the summit of Mount Oyama on Miyake Island. The volume change on Miyake Island can be compensated by the migrated magma toward Kozu Island from the deflation source beneath Miyake Island. The deflation speed of the magma chamber beneath Miyake Island decreased and increased before and after the eruption of 14-15 July and 18 August, suggesting a change in balance of mass influx and draining out rate of the magma chamber.

  19. Conductive heat transfer from an isothermal magma chamber and its application to the measured heat flow distribution from mount hood, Oregon

    USGS Publications Warehouse

    Nathenson, Menuel; Tilling, Robert I.; ,

    1993-01-01

    A steady-state solution for heat transfer from an isothermal, spherical magma chamber, with an imposed regional geothermal gradient far from the chamber, is developed. The extensive published heat-flow data set for Mount Hood, Oregon, is dominated by conductive heat transfer in the deeper parts of most drill holes and provides an ideal application of such a model. Magma-chamber volumes or depths needed to match the distribution of heat-flow data are larger or shallower than those inferred from geologic evidence.

  20. On the detectability of Teide volcano magma chambers (Tenerife, Canary Islands) with magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Piña-Varas, Perla; Ledo, Juanjo; Queralt, Pilar; Marcuello, Alex; Perez, Nemesio

    2018-01-01

    Tenerife has been the subject of numerous studies covering a wide range of fields. Many studies have been focused on characterising the magmatic plumbing system. Even so, a controversy still exists regarding the location and size of the current magma chambers. Several magnetotelluric (MT) surveys have been carried out in the island, but no conductivity anomalies associated with the chambers have been detected. We report the results of a set of tests conducted against the 3-D resistivity model of the island, to determine the characteristics of the detectable chambers with the MT data. The most remarkable results indicate that the MT dataset is incompatible with a large-scale mafic reservoir located at shallower depths than 8 km b.s.l. However, shallower phonolitic chambers smaller than 3 × 3 × 1 km3 could be undetected by the existing MT sites and new data should be acquired to confirm or not their existence. This new information is essential in volcanic islands like Tenerife, since many volcanic hazards are related to the size and depth of the sources of magma. Additionally, a joint interpretation of the obtained results together with other information is summarised in a hypothetical model, allowing us to better understand the internal structure of the island.[Figure not available: see fulltext.

  1. Pyroclastic deposits of the Mount Edgecumbe volcanic field, southeast Alaska: eruptions of a stratified magma chamber

    USGS Publications Warehouse

    Riehle, J.R.; Champion, D.E.; Brew, D.A.; Lanphere, M.A.

    1992-01-01

    The Mount Edgecumbe volcanic field in southeastern Alaska consists of 5-6 km3 (DRE) of postglacial pyroclasts that overlie Pleistocene lavas. All eleven pyroclast vents align with the long axis of the field, implying that the pyroclast magma conduits followed a crustal fissure. Most of these vents had previously erupted lavas that are compositionally similar to the pyroclasts, so a persistent magma system (chamber) had likely evolved by the onset of the pyroclastic eruptions. The pyroclastic sequence was deposited in about a millennium and is remarkable for a wide range of upward-increasing silica contents (51-72% SiO2), which is consistent with rise of coexisting magmas at different rates governed by their viscosity. Basaltic and andesitic lava flows have erupted throughout the lifetime of the field. Rhyolite erupted late; we infer that it formed early but was hindered from rising by its high viscosity. Most of the magmas-and all siliceous ones-erupted from vents on the central fissure. Basalt has not erupted from the center of the field during at least the latter part of its lifetime. Thus the field may illustrate basalt underplating: heat and mass flux are concentrated at the center of a stratified magma chamber in which a cap of siliceous melt blocks the rise of basalt. Major-element, strontium isotope, and mineral compositions of unaltered pyroclasts are broadly similar to those of older lavas of similar SiO2 content. Slightly fewer phenocrysts, inherited grains, and trace amphibole in pyroclastic magmas may be due simply to faster rise and less undercooling and degassing before eruption relative to the lavas. Dacite occurs only in the youngest deposits; the magma formed by mixing of andesitic and rhyolitic magmas erupted shortly before by the dacitic vents. ?? 1992.

  2. Gabbroic xenoliths from the northern Gorda Ridge: implications for magma chamber processes under slow spreading centers

    USGS Publications Warehouse

    Davis, A.S.; Clague, D.A.

    1990-01-01

    Abundant gabbroic xenoliths in porphyritic pillow basalt were dredged from the northern Gorda Ridge. The host lava is a moderately fractionated, normal mid-ocean ridge basalt with a heterogeneous glass rind (Mg numbers 56-60). Other lavas in the vicinity range from near primary (Mg number 69) to fractionated (Mg number 56). On the basis of textures and mineral compositions, the xenoliths are divided into five types. The xenoliths are not cognate to the host lava, but they are genetically related. Chemistry of mineral phases in conjunction with textural features suggests that the xenoliths formed in different parts of a convecting magma chamber that underwent a period of closed system fractionation. The chamber was filled with a large proportion of crystalline mush when new, more primitive, and less dense magma was injected and mixed incompletely with the contents in the chamber, forming the hybrid host lava. -from Authors

  3. Gravity Anomalies in the Northern Hawaiian Islands: Evidence for an Alternative Magma Chamber on Kauai and a Conjoined Niihau-Kauai Island

    NASA Astrophysics Data System (ADS)

    Flinders, A. F.; Ito, G.; Garcia, M.; Kim, S.; Appelgate, B.

    2008-12-01

    The shield stage evolution of the islands of Kauai and Niihau are poorly understood. Previous land-based gravity surveys provide only a coarse constraint on the observed gravitational field. Questions as to whether the island of Kauai was formed by a single or multiple shields and the developmental relationship between these neighboring islands are still debated. Our new land-based gravity survey of Kauai and ship-board gravity surveys around both islands identified large complete Bouguer gravitational anomalies under Kauai's Lihue Basin and offshore in the Kaulakahi Channel, a 30-km-long bathymetric ridge connecting the two islands. These gravitational highs are consistent in size and magnitude with those of other Hawaiian islands and imply local zones of high density crust, most likely attributed to magmatic intrusions; e.g. former magma chambers, or rift zones. The Lihue Basin anomaly observed is offset 20 km east from the geologically mapped caldera region. This offset implies either the unlikely case that the shield stage plumbing system connecting the magma chamber and caldera could have been inclined by up to 75 degrees from the vertical, or that the currently mapped caldera is a late feature, unrelated to shield volcanism. The location of the gravitational anomaly, in the Kaulakahi Channel, 20 km east of Niihau is consistent with geologic mapping, which indicates that Niihau is a remnant of an ancient shield volcano centered east of the island. The proximity of the Niihau gravitational anomaly 10 km from the western edge of Kauai supports the hypothesis that the two volcanoes were part of the same island.

  4. The thickness of the crystal mush on the floor of the Bushveld magma chamber

    NASA Astrophysics Data System (ADS)

    Holness, Marian B.; Cawthorn, R. Grant; Roberts, James

    2017-12-01

    The thickness of the crystal mush on magma chamber floors can be constrained using the offset between the step-change in the median value of dihedral angles formed at the junctions between two grains of plagioclase and a grain of another phase (typically clinopyroxene, but also orthopyroxene and olivine) and the first appearance or disappearance of the liquidus phase associated with the step-change in median dihedral angle. We determined the mush thickness in the Rustenburg Layered Suite of the Bushveld Complex at clinopyroxene-in (in Lower Main Zone) and magnetite-in (in Upper Zone). We also examined an intermittent appearance of cumulus apatite in Upper Zone, using both the appearance and disappearance of cumulus apatite. In all cases, the mush thickness does not exceed 4 m. These values are consistent with field observations of a mechanically rigid mush at the bases of both magnetitite and chromitite layers overlying anorthosite. Mush thickness of the order of a few metres suggests that neither gravitationally-driven compaction nor compositional convection within the mush layer is likely to have been important processes during solidification: adcumulates in the Bushveld are most likely to have formed at the top of the mush during primary crystallisation. Similarly, it is unlikely either that migration of reactive liquids occurs through large stretches of stratigraphy, or that layering is formed by mechanisms other than primary accumulation.

  5. Upward migration of Vesuvius magma chamber over the past 20,000 years.

    PubMed

    Scaillet, B; Pichavant, M; Cioni, R

    2008-09-11

    Forecasting future eruptions of Vesuvius is an important challenge for volcanologists, as its reawakening could threaten the lives of 700,000 people living near the volcano. Critical to the evaluation of hazards associated with the next eruption is the estimation of the depth of the magma reservoir, one of the main parameters controlling magma properties and eruptive style. Petrological studies have indicated that during past activity, magma chambers were at depths between 3 and 16 km (refs 3-7). Geophysical surveys have imaged some levels of seismic attenuation, the shallowest of which lies at 8-9 km depth, and these have been tentatively interpreted as levels of preferential magma accumulation. By using experimental phase equilibria, carried out on material from four main explosive events at Vesuvius, we show here that the reservoirs that fed the eruptive activity migrated from 7-8 km to 3-4 km depth between the ad 79 (Pompeii) and ad 472 (Pollena) events. If data from the Pomici di Base event 18.5 kyr ago and the 1944 Vesuvius eruption are included, the total upward migration of the reservoir amounts to 9-11 km. The change of preferential magma ponding levels in the upper crust can be attributed to differences in the volatile content and buoyancy of ascending magmas, as well as to changes in local stress field following either caldera formation or volcano spreading. Reservoir migration, and the possible influence on feeding rates, should be integrated into the parameters used for defining expected eruptive scenarios at Vesuvius.

  6. Origin of Aphyric Phonolitic Magmas: Natural Evidences and Experimental Constraints

    NASA Astrophysics Data System (ADS)

    Masotta, M.; Freda, C.; Gaeta, M.

    2010-12-01

    Large explosive phonolitic eruptions are commonly characterised by aphyric juvenile eruptive products. Taking into account the low density contrast among phonolitic composition and settling phases (i.e., feldspar and leucite), the almost complete lack of crystals in these differentiated compositions rises the question of which process could produce such an efficient crystal-melt separation. Seeking for an answer, we have investigated crystallization in presence of a thermal gradient as a possible mechanism for crystal-melt separation, considering both chemical and physical effects acting on a variably crystallized system. Using a natural tephri-phonolitic composition as starting material (M.te Aguzzo scoria cone, Sabatini Volcanic District, Central Italy), we have reproduced thermal gradient-driven crystallization in order to simulate the crystallization process in a thermally zoned magma chamber. Crystallization degree (paragenesis made of clinopyroxene±feldspars±leucite) as well as melt composition varies along the thermal gradient. In particular, melt composition ranges from the tephri-phonolitic starting composition at the bottom of the charge (hottest and aphyric zone) to phonolitic at the top (cooler and heterogeneously-crystallised zone). Backscattered images of experimental products clearly evidence: i) the aphyric tephri-phonolitic melt region at the bottom of the charge; ii) a drop-shaped crystal clustering in the middle zone; and iii) large aphyric belt and pockets (up to 100 µm wide) of phonolitic melt, with large deformed-shaped sanidine occurring at their margin, at the charge top region. The latter two features, resulting from solid-melt displacements, suggest that the segregation of phonolitic melt can be related to crystal sinking and compaction. On the other hand, the compositional variability of the melt along the thermal gradient is directly related to the crystallization degree, indicating that chemical diffusion and thermal migration have

  7. Magma batches in the Timber Mountain magmatic system, Southwestern Nevada Volcanic Field, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Mills, James G.; Saltoun, Benjamin W.; Vogel, Thomas A.

    1997-09-01

    The common occurrence of compositionally and mineralogically zoned ash flow sheets, such as those of the Timber Mountain Group, provides evidence that the source magma bodies were chemically and thermally zoned. The Rainier Mesa and Ammonia Tanks tuffs of the Timber Mountain Group are both large volume (1200 and 900 km 3, respectively) chemically zoned (57-78 wt.% SiO 2) ash flow sheets. Evidence of distinct magma batches in the Timber Mountain system are based on: (1) major- and trace-element variations of whole pumice fragments; (2) major-element variations in phenocrysts; (3) major-element variations in glass matrix; and (4) emplacement temperatures calculated from Fe-Ti oxides and feldspars. There are three distinct groups of pumice fragments in the Rainier Mesa Tuff: a low-silica group and two high-silica groups (a low-Th and a high-Th group). These groups cannot be related by crystal fractionation. The low-silica portion of the Rainier Mesa Tuff is distinct from the low-silica portion of the overlying Ammonia Tanks Tuff, even though the age difference is less than 200,000 years. Three distinct groups occur in the Ammonia Tanks Tuff: a low-silica, intermediate-silica and a high-silica group. Part of the high-silica group may be due to mixing of the two high-silica Rainier Mesa groups. The intermediate-silica group may be due to mixing of the low- and high-silica Ammonia Tanks groups. Three distinct emplacement temperatures occur in the Rainier Mesa Tuff (869, 804, 723 °C) that correspond to the low-silica, high-Th and low-Th magma batches, respectively. These temperature differences could not have been maintained for any length of time in the magma chamber (cf. Turner, J.S., Campbell, I.H., 1986. Convection and mixing in magma chambers. Earth-Sci. Rev. 23, 255-352; Martin, D., Griffiths, R.W., Campbell, I.H., 1987. Compositional and thermal convection in magma chambers. Contrib. Mineral. Petrol. 96, 465-475) and therefore eruption must have occurred soon

  8. Oxygen isotope study of the Long Valley magma system, California: isotope thermometry and convection in large silicic magma bodies

    NASA Astrophysics Data System (ADS)

    Bindeman, Ilya; Valley, John

    2002-07-01

    of their longevity (>105 years) and convection. However, remaining isotopic zoning in some quartz phenocrysts, trace element gradients in feldspars, and quartz and zircon crystal size distributions are more consistent with far shorter timescales (102-104 years). We propose a sidewall-crystallization model that promotes convective homogenization, roofward accumulation of more evolved and stagnant, volatile-rich liquid, and develops compositional and temperature gradients in pre-climactic magma chamber. Crystal + melt + gas bubbles mush near chamber walls of variable δ18O gets periodically remobilized in response to chamber refill by new hotter magmas. One such episode of chamber refill by high-Ti, Sr, Ba, Zr, and volatile-richer magma happened 103-104 years prior to the 0.76-Ma caldera collapse that caused magma mixing at the base, mush thawing near the roof and walls, and downward settling of phenocrysts into this hybrid melt.

  9. Magma ascent and emplacement in a continental rift setting: lessons from alkaline complexes in active and ancient rift zones

    NASA Astrophysics Data System (ADS)

    Hutchison, William; Lloyd, Ryan; Birhanu, Yelebe; Biggs, Juliet; Mather, Tamsin; Pyle, David; Lewi, Elias; Yirgu, Gezahgen; Finch, Adrian

    2017-04-01

    A key feature of continental rift evolution is the development of large chemically-evolved alkaline magmatic systems in the shallow crust. At active alkaline systems, for example in the East African Rift, the volcanic complexes pose significant hazards to local populations but can also sustain major geothermal resources. In ancient rifts, for example the Gardar province in Southern Greenland, these alkaline magma bodies can host some of the world's largest rare element deposits in resources such as rare earths, niobium and tantalum. Despite their significance, there are major uncertainties about how such magmas are emplaced, the mechanisms that trigger eruptions and the magmatic and hydrothermal processes that generate geothermal and mineral resources. Here we compare observations from active caldera volcanoes in the Ethiopian Rift with compositionally equivalent ancient (1300-1100 Ma) plutonic systems in the Gardar Rift province (Greenland). In the Ethiopian Rift Valley we use InSAR and GPS data to evaluate the temporal and spatial evolution of ground deformation at Aluto and Corbetti calderas. We show that unrest at Aluto is characterized by short (3-6 month) accelerating uplift pulses likely caused by magmatic fluid intrusion at 5 km. At Corbetti, uplift is steady ( 6.6 cm/yr) and sustained over many years with analytical source models suggesting deformation is linked to sill intrusion at depths of 7 km. To evaluate the validity of these contrasting deformation mechanisms (i.e. magmatic fluid intrusion and sill emplacement) we carried out extensive field, structural and geochemical analysis in the roof zones of two alkaline plutons (Ilímaussaq and Motzfeldt) in Greenland. Our results show that the volatile contents (F, Cl, OH and S) of these magmas were exceptionally high and that there is evidence for ponding of magmatic fluids in the roof zone of the magma reservoir. We also identified extensive sill networks at the contact between the magma reservoir and the

  10. Compositional zoning of the bishop tuff

    USGS Publications Warehouse

    Hildreth, W.; Wilson, C.J.N.

    2007-01-01

    Compositional data for >400 pumice clasts, organized according to eruptive sequence, crystal content, and texture, provide new perspectives on eruption and pre-eruptive evolution of the >4600 km3 of zoned rhyolitic magma ejected as the BishopTuff during formation of Long Valley caldera. Proportions and compositions of different pumice types are given for each ignimbrite package and for the intercalated plinian pumice-fall layers that erupted synchronously. Although withdrawal of the zoned magma was less systematic than previously realized, the overall sequence displays trends toward greater proportions of less evolved pumice, more crystals (0-5 24 wt %), and higher FeTi-oxide temperatures (714-818??C). No significant hiatus took place during the 6 day eruption of the BishopTuff, nearly all of which issued from an integrated, zoned, unitary reservoir. Shortly before eruption, however, the zoned melt-dominant portion of the chamber was invaded by batches of disparate lower-silica rhyolite magma, poorer in crystals than most of the resident magma but slightly hotter and richer in Ba, Sr, andTi. Interaction with resident magma at the deepest levels tapped promoted growth ofTi-rich rims on quartz, Ba-rich rims on sanidine, and entrapment of near-rim melt inclusions relatively enriched in Ba and CO2.Varied amounts of mingling, even in higher parts of the chamber, led to the dark gray and swirly crystal-poor pumices sparsely present in all ashflow packages. As shown by FeTi-oxide geothermometry, the zoned rhyolitic chamber was hottest where crystal-richest, rendering any model of solidification fronts at the walls or roof unlikely.The main compositional gradient (75-195 ppm Rb; 0.8-2.2 ppm Ta; 71-154 ppm Zr; 0.40-1.73% FeO*) existed in the melt, prior to crystallization of the phenocryst suite observed, which included zircon as much as 100 kyr older than the eruption.The compositions of crystals, though themselves largely unzoned, generally reflect magma temperature and

  11. Oman Drilling Project GT3 site survey: dynamics at the roof of an oceanic magma chamber

    NASA Astrophysics Data System (ADS)

    France, L.; Nicollet, C.; Debret, B.; Lombard, M.; Berthod, C.; Ildefonse, B.; Koepke, J.

    2017-12-01

    Oman Drilling Project (OmanDP) aims at bringing new constraints on oceanic crust accretion and evolution by drilling Holes in the whole ophiolite section (mantle and crust). Among those, operations at GT3 in the Sumail massif drilled 400 m to sample the dike - gabbro transition that corresponds to the top (gabbros) and roof (dikes) of the axial magma chamber, an interface where hydrothermal and magmatic system interacts. Previous studies based on oceanic crust formed at present day fast-spreading ridges and preserved in ophiolites have highlighted that this interface is a dynamic horizon where the axial melt lens that top the main magma chamber can intrude, reheat, and partially assimilate previously hydrothermally altered roof rocks. Here we present the preliminary results obtained in GT3 area that have allowed the community to choose the drilling site. We provide a geological and structural map of the area, together with new petrographic and chemical constraints on the dynamics of the dike - gabbro transition. Our new results allow us to quantify the dynamic processes, and to propose that 1/ the intrusive contact of the varitextured gabbro within the dikes highlights the intrusion of the melt lens top in the dike rooting zone, 2/ both dikes and previously crystallized gabbros are reheated, and recrystallized by underlying melt lens dynamics (up to 1050°C, largely above the hydrous solidus temperature of altered dikes and gabbros), 3/ the reheating range can be > 200°C, 4/ the melt lens depth variations for a given ridge position is > 200m, 5/ the reheating stage and associated recrystallization within the dikes occurred under hydrous conditions, 6/ the reheating stage is recorded at the root zone of the sheeted dike complex by one of the highest stable conductive thermal gradient ever recorded on Earth ( 3°C/m), 7/ local chemical variations in recrystallized dikes and gabbros are highlighted and used to quantify crystallization and anatectic processes, and the

  12. Magma storage constrains by compositional zoning of plagioclase from dacites of the caldera forming eruptions of Vetrovoy Isthmus and Lvinaya Past’ Bay (Iturup Island, Kurile Islands)

    NASA Astrophysics Data System (ADS)

    Maksimovich, I. A.; Smirnov, S. Z.; Kotov, A. A.; Timina, T. Yu; Shevko, A. V.

    2017-12-01

    The Vetrovoy Isthmus and the Lvinaya Past’ Bay on the Iturup island (Kuril island arc) are the results of large Plinian eruptions of compositionally similar dacitic magmas. This study is devoted to a comparative analysis of the storage and crystallization conditions for magma reservoirs, which were a source of large-scale explosive eruptions. The plagioclase is most informative mineral in studying of the melt evolution. The studied plagioclases possess a complex zoning patterns, which are not typical for silicic rocks in island-arc systems. It was shown that increase of Ca in the plagioclase up to unusually high An95 is related to increase of H2O pressure in both volcanic magma chambers. The study revealed that minerals of the Vetrovoy Isthmus and Lvinaya Past’ crystallized from compositionally similar melts. Despite the compositional similarity of the melts, the phenocryst assemblage of the Lvinaya Past’ differs from the Vetrovoy Isthmus by the presence of the amphibole, which indicates that the pressure in the magmatic chamber exceeded 1-2 kbar at a 4-6 wt. % of H2O in the melt. The rocks of the Vetrovoy Isthmus do not contain amphibole phenocrysts, but melt and fluid inclusions assemblages in plagioclase demonstrate that the magma degassed in the course of evolution. This is an indication that the pressure did not exceed significantly 1-2 kbar.

  13. Deducing the magma chamber processes of middle Eocene volcanics, Sivas and Tokat regions; NE Turkey: Insights from clinopyroxene chemistry

    NASA Astrophysics Data System (ADS)

    Göçmengil, Gönenç; Karacık, Zekiye; Genç, Ş. Can; Prelevic, Dejan

    2016-04-01

    Middle Eocene Tokat and Sivas volcanic successions occur within the İzmir-Ankara-Erzincan suture zone. Different models are suggested for the development of the middle Eocene volcanism such as post-collisional, delamination and slab-breakoff models as well as the arc magmatism. In both areas, volcanic units cover all the basement units with a regional disconformity and comprise lavas spanning a compositional range from mainly basalt-basaltic andesite to a lesser amount trachyte. Here, we report mineral chemistry of different basaltic lavas through transect from northern continent (Tokat region, Pontides) to southern continent (Sivas region, Kırşehir block) to deduce the characteristics of the magma chamber processes which are active during the middle Eocene. Basaltic lavas include olivine bearing basalts (Ol-basalt: ± olivine + clinopyroxene + plagioclase); amphibole bearing basaltic andesite (Amp-basaltic andesite: amphibole + clinopyroxene + plagioclase ± biotite) and pyroxene bearing basaltic andesite (Px-basaltic andesite: clinopyroxene + plagioclase). Microlitic, glomeroporphyric and pilotaxitic texture are common. Clinopyroxene phenocrystals (macro ≥ 750 μm and micro ≤300 μm) are common in all three lava series which are investigated by transecting core to rim compositional profiles. They are generally augite and diopside; euhedral to subhedral in shape with oscillatory, normal and reverse zoning patterns. Also, all clinopyroxene phenocrystals are marked by moderately high Mg# (for Ol-basalt: 67-91; avg. 80; Amp-basaltic andesite: 76-83, avg: 80; Px -basaltic andesite 68-95, avg: 81). In Ol-basalt, clinopyroxene phenocrystals show normal zonation (high Mg# cores and low Mg# rims). In Amp-basaltic andesite, clinopyroxenes are generally homogenous in composition with minor variation of Mg# towards the rims. On the contrary, in Px-basaltic andesite, clinopyroxene macro phenocrystals show reverse zonation with the core with low Mg# and the rims with

  14. Field and Experimental Constraints on the Dynamics of Replenished Silicic Magma Chambers

    NASA Astrophysics Data System (ADS)

    Bain, A. A.; Jellinek, M.

    2008-12-01

    The underlying causes of catastrophic caldera-forming volcanic eruptions remain poorly understood. However, the occurrence of magma mixing within bimodal systems has become increasingly linked with such eruptions. In particular, buoyancy effects related to unstable density contrasts arising as a result of silicic- basaltic magma interactions may play an important role in the growth, differentiation and catastrophic eruption of silicic magma chambers. Evidence of such magmatic interactions can be found in layered intrusions from the Coastal Maine Magmatic Province (USA), where well-exposed cross-sections reveal hundreds of laterally-extensive basaltic sheets, apparently injected as intrusive lava flows onto the growing floors of silicic magma chambers. Interfaces between mafic and silicic layers are commonly sharply defined and exhibit deformation parallel to the inferred direction of palaeo-gravity. Our field observations suggest that the cooling, settling and buckling of gravitationally-unstable mafic replenishments may have driven large-scale (basalt layer depth) and small- scale (crystal diameter) upwelling and/or overturning of underlying buoyant silicic cumulate material. In order to characterize the full range of buoyancy effects, we carried out extensive spectral analysis of high- resolution digital field measurements from the Pleasant Bay and Mount Desert Island intrusions. In many cases, Rayleigh-Taylor theory and the longest measured wavelength of deformation indicate that a large and potentially-quantifiable fraction of the original, pre-replenishment silicic cumulate thickness may be missing, implying that vertical mass transfer has occurred. In addition, the shortest wavelengths of deformation are generally consistent with observed length-scales of crystals and clumps of crystals at these localities. With the aim of understanding the initial conditions that gave rise to these field observations, we conduct a series of laboratory experiments in which we

  15. Disequilibrium growth of olivine in mafic magmas revealed by phosphorus zoning patterns of olivine from mafic-ultramafic intrusions

    NASA Astrophysics Data System (ADS)

    Xing, Chang-Ming; Wang, Christina Yan; Tan, Wei

    2017-12-01

    Olivine from mafic-ultramafic intrusions rarely displays growth zoning in major and some minor elements, such as Fe, Mg and Ni, due to fast diffusion of these elements at high temperatures. These elements in olivine are thus not useful in deciphering magma chamber processes, such as magma convection, multiple injection and mixing. High-resolution X-ray elemental intensity mapping reveals distinct P zoning patterns of olivine from two mafic-ultramafic intrusions in SW China. Polyhedral olivine grains from lherzolite and dunite of the Abulangdang intrusion show P-rich dendrites similar to those observed in volcanic rocks. Rounded olivine grains from net-textured Fe-Ti oxide ores of the Baima layered intrusion have irregular P-rich patches/bands crosscut and interlocked by P-poor olivine domains. P-rich patches/bands contain 250 to 612 ppm P, much higher than P-poor olivine domains with 123 to 230 ppm P. In electron backscattered diffraction (EBSD) maps, P-rich patches/bands within a single olivine grain have the same crystallographic orientation, indicating that they were remnants of the same crystal. Thus, both P-rich patches/bands and P-poor olivine domains in the same grain show a disequilibrium texture and clearly record two-stage growth. The P-rich patches/bands are likely the remnants of a polyhedral olivine crystal that formed in the first stage, whereas the P-poor olivine domains containing rounded Ti-rich magnetite and Fe-rich melt inclusions may have formed from an Fe-rich ambient melt in the second stage. The complex P zoning of olivine can be attributed to the dissolution of early polyhedral olivine and re-precipitation from the Fe-rich ambient melt. The early polyhedral olivine was in chemical disequilibrium with the ambient melt that may have been developed by silicate liquid immiscibility in a crystal mush. Our study implies that olivine crystals in igneous cumulates with an equilibrium appearance may have experienced disequilibrium growth processes

  16. Drilling Magma for Science, Volcano Monitoring, and Energy

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Lavallée, Y.; Blankenship, D.

    2017-12-01

    Magma chambers are central to understanding magma evolution, formation of continental crust, volcanism, and renewal of hydrothermal systems. Information from geology, petrology, laboratory experiments, and geophysical imagery has led to little consensus except a trend to see magma systems as being crystal-dominant (mush) rather than melt dominant. At high melt viscosities, crystal-liquid fractionation may be achieved by separation of melt from mush rather than crystals from liquid suspension. That the dominant volume has properties more akin to solid than liquid might explain the difficulty in detecting magma geophysically. Recently, geothermal drilling has intersected silicic magma at the following depths and SiO2 contents are: Puna, Hawaii, 2.5 km, 67 wt%; Menengai, Kenya 2.1 km, 67 wt%; Krafla, Iceland, 2.1 km, 75 wt%. Some similarities are: 1) Drillers encountered a "soft", sticky formation; 2) Cuttings or chips of clear quenched glass were recovered; 3) The source of the glass flowed up the well; 4) Transition from solid rock to recovering crystal-poor glass occurred in tens of meters, apparently without an intervening mush zone. Near-liquidus magma at the roof despite rapid heat loss there presents a paradox that may be explained by very recent intrusion of magma, rise of liquidus magma to the roof replacing partially crystallized magma, or extremely skewed representation of melt over mush in cuttings (Carrigan et al, this session). The latter is known to occur by filter pressing of ooze into lava lake coreholes (Helz, this session), but cannot be verified in actual magma without coring. Coring to reveal gradients in phase composition and proportions is required for testing any magma chamber model. Success in drilling into and controlling magma at all three locations, in coring lava lakes to over 1100 C, and in numerical modeling of coring at Krafla conditions (Su, this session) show this to be feasible. Other unprecedented experiments are using the known

  17. Magma reservoirs and neutral buoyancy zones on Venus - Implications for the formation and evolution of volcanic landforms

    NASA Technical Reports Server (NTRS)

    Head, James W.; Wilson, Lionel

    1992-01-01

    The production of magma reservoirs and neutral buoyancy zones (NBZs) on Venus and the implications of their development for the formation and evolution of volcanic landforms are examined. The high atmospheric pressure on Venus reduces volatile exsolution and generally serves to inhibit the formation of NBZs and shallow magma reservoirs. For a range of common terrestrial magma-volatile contents, magma ascending and erupting near or below mean planetary radius (MPR) should not stall at shallow magma reservoirs; such eruptions are characterized by relatively high total volumes and effusion rates. For the same range of volatile contents at 2 km above MPR, about half of the cases result in the direct ascent of magma to the surface and half in the production of neutral buoyancy zones. NBZs and shallow magma reservoirs begin to appear as gas content increases and are nominally shallower on Venus than on earth. For a fixed volatile content, NBZs become deeper with increasing elevation: over the range of elevations treated in this study (-1 km to +4.4 km) depths differ by a factor of 2-4. Factors that may account for the low height of volcanoes on Venus are discussed.

  18. Reaction of Rhyolitic Magma to its Interception by the IDDP-1 Well, Krafla, 2009

    NASA Astrophysics Data System (ADS)

    Saubin, É.; Kennedy, B.; Tuffen, H.; Villeneuve, M.; Watson, T.; Nichols, A. R.; Schipper, I.; Cole, J. W.; Mortensen, A. K.; Zierenberg, R. A.

    2017-12-01

    The unexpected encounter of rhyolitic magma during IDDP-1 geothermal borehole drilling at Krafla, Iceland in 2009, temporarily created the world's hottest geothermal well. This allowed new questions to be addressed. i) How does magma react to drilling? ii) Are the margins of a magma chamber suitable for long-term extraction of supercritical fluids? To investigate these questions, we aim to reconstruct the degassing and deformation behaviour of the enigmatic magma by looking for correlations between textures in rhyolitic material retrieved from the borehole and the recorded drilling data. During drilling, difficulties were encountered in two zones, at 2070 m and below 2093 m depth. Drilling parameters are consistent with the drill bit encountering a high permeability zone and the contact zone of a magma chamber, respectively. Magma was intercepted three times between 2101-2104.4 m depth, which culminated in an increase in standpipe pressure followed by a decrease in weight on bit interpreted as representing the ascent of magma within the borehole. Circulation returned one hour after the last interception, carrying cuttings of glassy particles, felsite with granophyre and contaminant clasts from drilling, which were sampled as a time-series for the following 9 hours. The nature of glassy particles in this time-series varied through time, with a decrease in the proportion of vesicular clasts and a commensurate increase in dense glassy clasts, transitioning from initially colourless to brown glass. Componentry data show a sporadic decrease in felsite (from 34 wt. %), an increase in glassy particles during the first two hours (from 63 wt. % to 94 wt. %) and an increase in contaminant clasts towards the end of the cutting retrieval period. These temporal variations are probably related to the magma body architecture and interactions with the borehole. Transition from vesicular to dense clasts suggests a change in the degassing process that could be related to an early

  19. Chemical Evidence for Vertical Transport from Magma Chambers to the Surface During Mid-Ocean Ridge Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Sinton, J. M.; Rubin, K. H.

    2009-12-01

    Many mid-ocean ridge eruptions show significant internal chemical heterogeneity; in general, the amount of chemical heterogeneity within eruptions scales with erupted volume. These variations reflect magmatic processes occurring in magma reservoirs prior to or possibly during eruption. For example, systematic variations in Mg# with along-axis distance in the early 90’s Aldo-Kihi (S. EPR near 17.5°S), 1996 N. Gorda, 1993 Co-Axial (Juan de Fuca Ridge), and 1991-2 and 2005-6 9°50’N EPR eruptions is unlikely to be related to fractionation during emplacement, and rather reflects variations in sub-axial magma reservoirs prior to eruption. Such variations are inconsistent with well-mixed sub-axial reservoirs and, in some cases, require relatively long-lived, systematic variations in reservoir temperatures along axis. Chemical heterogeneity within the Aldo-Kihi eruption preserves spatial variations in mantle-derived isotopic and trace element ratios with implications for the temporal and spatial scales of magma injections to the crust and along-axis mixing within shallow reservoirs. These spatial variations are difficult to reconcile with significant (> ~1 km) along-axis magma transport, as are striking correlations of chemical compositions with surface geological discontinuities or seismically imaged sub-axial magma chamber reflectors in the S. Hump (S. EPR), 9°50’N EPR, N. Gorda and 1975-1984 Krafla (N. Iceland) eruptive units. Rather, spatial correlations between surface lava compositions and sub-axial magma chamber properties or long-lived axial morphology suggest that most of the erupted magma was transported nearly vertically from the underlying reservoirs to the surface during these eruptions. In the case of the Krafla eruption, coincident deformation suggests a component of lateral melt migration at depth, despite chemical evidence for vertical transport of erupted lava from more than one chemical reservoir. In addition, along-ridge movement of earthquake

  20. Extreme-UV lithography vacuum chamber zone seal

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe; Klebanoff, Leonard E.; Replogle, William C.

    2001-01-01

    Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.

  1. Extreme-UV lithography vacuum chamber zone seal

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe; Klebanoff, Leonard E.; Replogle, William C.

    2003-04-08

    Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.

  2. Extreme-UV lithography vacuum chamber zone seal

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe; Klebanoff, Leonard E.; Replogle, William C.

    2003-04-15

    Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.

  3. Progress Towards a Thermo-Mechanical Magma Chamber Forward Model for Eruption Cycles, Applied to the Columbia River Flood Basalts

    NASA Astrophysics Data System (ADS)

    Karlstrom, L.; Ozimek, C.

    2016-12-01

    Magma chamber modeling has advanced to the stage where it is now possible to develop self-consistent, predictive models that consider mechanical, thermal, and compositional magma time evolution through multiple eruptive cycles. We have developed such a thermo-mechanical-chemical model for a laterally extensive sill-like chamber beneath free surface, to understand physical controls on eruptive products through time at long-lived magmatic centers. This model predicts the relative importance of recharge, eruption, assimilation and fractional crystallization (REAFC, Lee et al., 2013) on evolving chemical composition as a function of mechanical magma chamber stability regimes. We solve for the time evolution of chamber pressure, temperature, gas volume fraction, volume, elemental concentration in the melt and crustal temperature field that accounts for moving boundary conditions associated with chamber inflation (and the possibility of coupled chambers at different depths). The density, volume fractions of melt and crystals, crustal assimilation and the changing viscosity and crustal properties of the wall rock are also tracked, along with joint solubility of water and CO2. The eventual goal is to develop an efficient forward model to invert for eruptive records at long-lived eruptive centers, where multiple types of data for eruptions are available. As a first step, we apply this model to a new compilation of eruptive data from the Columbia River Flood Basalts (CRFB), which erupted 210,000 km3 from feeder dikes in Washington, Oregon and Idaho between 16.9-6Ma. Data include volumes, timing and geochemical composition of eruptive units, along with seismic surveys and clinopyroxene geobarometry that constrain depth of storage through time. We are in the process of performing a suite of simulations varying model input parameters such as mantle melt rate, emplacement depth, wall rock compositions and rheology, and volatile content to explain volume, eruption timescales, and

  4. The chemical and isotopic differentiation of an epizonal magma body: Organ Needle pluton, New Mexico

    USGS Publications Warehouse

    Verplanck, P.L.; Farmer, G.L.; McCurry, M.; Mertzman, S.A.

    1999-01-01

    Major and trace element, and Nd and Sr isotopic compositions of whole rocks and mineral separates from the Oligocene, alkaline Organ Needle pluton (ONP), southern New Mexico, constrain models for the differentiation of the magma body parental to this compositionally zoned and layered epizonal intrusive body. The data reveal that the pluton is rimmed by lower ??(Nd) (~-5) and higher 87Sr/86Sr (~0.7085) syenitic rocks than those in its interior (??(Nd) ~ 2, 87Sr/86Sr ~0.7060) and that the bulk compositions of the marginal rocks become more felsic with decreasing structural depth. At the deepest exposed levels of the pluton, the ??(Nd)~-5 lithology is a compositionally heterogeneous inequigranular syenite. Modal, compositional and isotopic data from separates of rare earth element (REE)-bearing major and accesory mineral phases (hornblende, titanite, apatite, zircon) demonstrate that this decoupling of trace and major elements in the inequigranular syenite results from accumulation of light REE (LREE)-bearing minerals that were evidently separated from silicic magmas as the latter rose along the sides of the magma chamber. Chemical and isotopic data for microgranular mafic enclaves, as well as for restite xenoliths of Precambrian granite wall rock, indicate that the isotopic distinction between the marginal and interior facies of the ONP probably reflects assimilation of the wall rock by ??(Nd) ~-2 mafic magmas near the base of the magma system. Fractional crystallization and crystal liquid separation of the crystally contaminated magma at the base and along the margins of the chamber generated the highly silicic magmas that ultimately pooled at the chamber top.

  5. Large-scale magmatic layering in the Main Zone of the Bushveld Complex and episodic downward magma infiltration

    NASA Astrophysics Data System (ADS)

    Hayes, Ben; Ashwal, Lewis D.; Webb, Susan J.; Bybee, Grant M.

    2017-03-01

    The Bellevue drillcore intersects 3 km of Main and Upper Zone cumulates in the Northern Limb of the Bushveld Complex. Main Zone cumulates are predominately gabbronorites, with localized layers of pyroxenite and anorthosite. Some previous workers, using bulk rock major, trace and isotopic compositions, have suggested that the Main Zone crystallized predominantly from a single pulse of magma. However, density measurements throughout the Bellevue drillcore reveal intervals that show up-section increases in bulk rock density, which are difficult to explain by crystallization from a single batch of magma. Wavelet analysis of the density data suggests that these intervals occur on length-scales of 40 to 170 m, thus defining a scale of layering not previously described in the Bushveld Complex. Upward increases in density in the Main Zone correspond to upward increases in modal pyroxene, producing intervals that grade from a basal anorthosite (with 5% pyroxene) to gabbronorite (with 30-40% pyroxene). We examined the textures and mineral compositions of a 40 m thick interval showing upwardly increasing density to establish how this type of layering formed. Plagioclase generally forms euhedral laths, while orthopyroxene is interstitial in texture and commonly envelops finer-grained and embayed plagioclase grains. Minor interstitial clinopyroxene was the final phase to crystallize from the magma. Plagioclase compositions show negligible change up-section (average An62), with local reverse zoning at the rims of cumulus laths (average increase of 2 mol%). In contrast, interstitial orthopyroxene compositions become more primitive up-section, from Mg# 57 to Mg# 63. Clinopyroxene similarly shows an up-section increase in Mg#. Pyroxene compositions record the primary magmatic signature of the melt at the time of crystallization and are not an artefact of the trapped liquid shift effect. Combined, the textures and decoupled mineral compositions indicate that the upward density

  6. Depth of origin of magma in eruptions.

    PubMed

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-09-26

    Many volcanic hazard factors--such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses--relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11-15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011-2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide.

  7. Magmatic structures in the Krkonoše Jizera Plutonic Complex, Bohemian Massif: evidence for localized multiphase flow and small-scale thermal mechanical instabilities in a granitic magma chamber

    NASA Astrophysics Data System (ADS)

    Žák, Jiří; Klomínský, Josef

    2007-08-01

    The present paper examines magmatic structures in the Jizera and Liberec granites of the Krkonoše-Jizera Plutonic Complex, Bohemian Massif. The magmatic structures are here interpreted to preserve direct field evidence for highly localized magma flow and other processes in crystal-rich mushes, and to capture the evolution of physical processes in an ancient granitic magma chamber. We propose that after chamber-wide mixing and hybridization, as suggested by recent petrological studies, laminar magma flow became highly localized to weaker channel-like domains within the higher-strength crystal framework. Mafic schlieren formed at flow rims, and their formation presumably involved gravitational settling and velocity gradient flow sorting coupled with interstitial melt escape. Local thermal or compositional convection may have resulted in the formation of vertical schlieren tubes and ladder dikes whereas subhorizontal tubes or channels formed during flow driven by lateral gradients in magma pressure. After the cessation or deceleration of channel flow, gravity-driven processes (settling of crystals and enclaves, gravitational differentiation, development of downward dripping instabilities), accompanied by compaction, filter pressing and melt segregation, dominated in the crystal mush within the flow channels. Subsequently, magmatic folds developed in schlieren layers and the magma chamber recorded complex, late magmatic strains at high magma crystallinities. Late-stage magma pulsing into localized submagmatic cracks represents the latest events of magmatic history of the chamber prior to its final crystallization. We emphasize that the most favorable environments for the formation and preservation of magmatic structures, such as those hosted in the Jizera and Liberec granites, are slowly cooling crystal-rich mushes. Therefore, where preserved in plutons, these structures may lend strong support for a "mush model" of magmatic systems.

  8. Convective melting in a magma chamber: theory and numerical experiment.

    NASA Astrophysics Data System (ADS)

    Simakin, A.

    2012-04-01

    We present results of the numerical modeling of convective melting in a magma chamber in 2D. Model was pointed on the silicic system approximated with Qz-Fsp binary undersaturated with water. Viscosity was calculated as a function of the melt composition, temperature and crystal content and comprises for the pure melt 104.5-105.5 Pas. Lower boundary was taken thermally insulated in majority of the runs. Size of FEM (bilinear elements) grid for velocity is 25x25 cm and for the integration of the density term 8x8 cm. Melting of the chamber roof proceeds with the heat supply due to the chaotic thermo-compositional convection and conductive heat loose into melted substrate. We compare our numerical data with existing semi-analytical models. Theoretical studies of the assimilation rates in the magma chambers usually use theoretical semi-analytical model by Huppert and Sparks (1988) (e.g., Snyder, 2000). We find that this model has strong points: 1) Independence of the melting rate on the sill thickness (Ra>>Rac) 2) Independence of the convective heat transfer on the roof temperature 3) Determination of the exponential thermal boundary layer ahead of the melting front and weak points: 1) Ignoring the possibility of the crystallization without melting regime for narrow sills and dykes. 2)Neglecting of two-phase character of convection. 3)Ignoring of the strong viscosity variation near the melting front. Independence of convective flux from the sill size (at Ra>>Rac) allows reducing of computational domain to the geologically small size (10-15 m). Concept of exponential thermal boundary layer is also rather important. Length scale (L0) of this layer is related to the melting rate and thermal diffusivity coefficient kT as L0=kT/um and at the melting rate 10 m/yr becomes about 2 m. Such small scale implies that convective melting is very effective (small conductive heat loss) and part of the numerical domain filled with roof rocks can be taken small. In the H&S model

  9. Anomalously high b-values in the South Flank of Kilauea volcano, Hawaii: Evidence for the distribution of magma below Kilauea's East rift zone

    USGS Publications Warehouse

    Wyss, M.; Klein, F.; Nagamine, K.; Wiemer, S.

    2001-01-01

    The pattern of b-value of the frequency-magnitude relation, or mean magnitude, varies little in the Kaoiki-Hilea area of Hawaii, and the b-values are normal, with b = 0.8 in the top 10 km and somewhat lower values below that depth. We interpret the Kaoiki-Hilea area as relatively stable, normal Hawaiian crust. In contrast, the b-values beneath Kilauea's South Flank are anomalously high (b = 1.3-1.7) at depths between 4 and 8 km, with the highest values near the East Rift zone, but extending 5-8 km away from the rift. Also, the anomalously high b-values vary along strike, parallel to the rift zone. The highest b-values are observed near Hiiaka and Pauahi craters at the bend in the rift, the next highest are near Makaopuhi and also near Puu Kaliu. The mildest anomalies occur adjacent to the central section of the rift. The locations of the three major and two minor b-value anomalies correspond to places where shallow magma reservoirs have been proposed based on analyses of seismicity, geodetic data and differentiated lava chemistry. The existence of the magma reservoirs is also supported by magnetic anomalies, which may be areas of dike concentration, and self-potential anomalies, which are areas of thermal upwelling above a hot source. The simplest explanation of these anomalously high b-values is that they are due to the presence of active magma bodies beneath the East Rift zone at depths down to 8 km. In other volcanoes, anomalously high b-values correlate with volumes adjacent to active magma chambers. This supports a model of a magma body beneath the East Rift zone, which may widen and thin along strike, and which may reach 8 km depth and extend from Kilauea's summit to a distance of at least 40 km down rift. The anomalously high b-values at the center of the South Flank, several kilometers away from the rift, may be explained by unusually high pore pressure throughout the South Flank, or by anomalously strong heterogeneity due to extensive cracking, or by both

  10. Transfer of volatiles and metals from mafic to felsic magmas in composite magma chambers: An experimental study

    NASA Astrophysics Data System (ADS)

    Guo, Haihao; Audétat, Andreas

    2017-02-01

    In order to determine the behavior of metals and volatiles during intrusion of mafic magma into the base of silicic, upper crustal magma chambers, fluid-rock partition coefficients (Dfluid/rock) of Li, B, Na, S, Cl, K, Mn, Fe, Rb, Sr, Ba, Ce, Cu, Zn, Ag, Cd, Mo, As, Se, Sb, Te, W, Tl, Pb and Bi were determined experimentally at 2 kbar and 850 °C close to the solidus of mafic magma. In a first step, volatile-bearing mafic glasses were prepared by melting a natural basaltic trachyandesite in the presence of volatile-bearing fluids at 1200 °C/10 kbar in piston cylinder presses. The hydrous glasses were then equilibrated in subsequent experiments at 850 °C/2 kbar in cold-seal pressure vessels, which caused 80-90% of the melt to crystallize. After 0.5-2.0 days of equilibration, the exsolved fluid was trapped by means of in-situ fracturing in the form of synthetic fluid inclusions in quartz. Both the mafic rock residue and the fluid inclusions were subsequently analyzed by laser-ablation ICP-MS for major and trace elements. Reverse experiments were conducted by equilibrating metal-bearing aqueous solutions with rock powder and then trapping the fluid. In two additional experiments, information on relative element mobilities were obtained by reacting fluids that exsolved from crystallizing mafic magma with overlying silicic melts. The combined results suggest that under the studied conditions S, Cl, Cu, Se, Br, Cd and Te are most volatile (Dfluid/rock >10), followed by Li, B, Zn, As, Ag, Sb, Cs, W, Tl, Pb and Bi (Dfluid/rock = 1-10). Less volatile are Na, Mg, K, Ca, Mn, Fe, Rb, Sr, Mo and Rb (Dfluid/rock 0.1-1), and the least fluid-mobile elements are Al, Si, Ti, Zr, Ba and Ce (Dfluid/rock <0.1). This trend is broadly consistent with relative element volatilities determined on natural high-temperature fumarole gases, although some differences exist. Based on the volatility data and measured mineral-melt and sulfide-melt partition coefficients, volatile fluxing in

  11. Primitive andesites from the Taupo Volcanic Zone formed by magma mixing

    NASA Astrophysics Data System (ADS)

    Beier, Christoph; Haase, Karsten M.; Brandl, Philipp A.; Krumm, Stefan H.

    2017-05-01

    Andesites with Mg# >45 erupted at subduction zones form either by partial melting of metasomatized mantle or by mixing and assimilation processes during melt ascent. Primitive whole rock basaltic andesites from the Pukeonake vent in the Tongariro Volcanic Centre in New Zealand's Taupo Volcanic Zone contain olivine, clino- and orthopyroxene, and plagioclase xeno- and antecrysts in a partly glassy matrix. Glass pools interstitial between minerals and glass inclusions in clinopyroxene, orthopyroxene and plagioclase as well as matrix glasses are rhyolitic to dacitic indicating that the melts were more evolved than their andesitic bulk host rock analyses indicate. Olivine xenocrysts have high Fo contents up to 94%, δ18O(SMOW) of +5.1‰, and contain Cr-spinel inclusions, all of which imply an origin in equilibrium with primitive mantle-derived melts. Mineral zoning in olivine, clinopyroxene and plagioclase suggest that fractional crystallization occurred. Elevated O isotope ratios in clinopyroxene and glass indicate that the lavas assimilated sedimentary rocks during stagnation in the crust. Thus, the Pukeonake andesites formed by a combination of fractional crystallization, assimilation of crustal rocks, and mixing of dacite liquid with mantle-derived minerals in a complex crustal magma system. The disequilibrium textures and O isotope compositions of the minerals indicate mixing processes on timescales of less than a year prior to eruption. Similar processes may occur in other subduction zones and require careful study of the lavas to determine the origin of andesite magmas in arc volcanoes situated on continental crust.

  12. Depth of origin of magma in eruptions

    PubMed Central

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-01-01

    Many volcanic hazard factors - such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses - relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11–15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011–2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide. PMID:24067336

  13. An experimental tool to look in a magma chamber

    NASA Astrophysics Data System (ADS)

    Gonde, C.; Massare, D.; Bureau, H.; Martel, C.; Pichavant, M.; Clocchiatti, R.

    2005-12-01

    Understanding the physical and geochemical processes occurring in the volcanoes roots is one of the fundamental tasks of research in the experimental petrology community. This requires experimental tools able to create confining conditions appropriate for magma chambers and conduits. However, the characterization of some natural magmatic processes requires more than a blink experimental approach, to be rigorously studied. In some cases, the in situ approach is the only one issue, because it permits the observation of processes (crystallization of mineral phases, bubble growth.) and their kinetic studies. Here we present a powerful tool, a transparent internally heated autoclave. With this apparatus, pressures (up to 0.3 GPa) and temperatures (up to 900°C) appropriate for subvolcanic magma reservoirs can be obtained. Because it is equipped with transparent sapphire windows, either images or movies can be recorded during an experiment. The pressure medium is Argon, and heating is achieved by a W winding placed into the pressure vessel. Pressure and temperature are calibrated using both well known melting points (eg. salts, metals) and phase transitions (AgI), either at room temperature or at medium and high temperatures. During an experiment, the experimental charge is held between two thick windows of diamond, placed in the furnace cylinder. The experimental volume is about 1 mm3. The observation and numeric record are made along the horizontal axis, through the windows. This apparatus is currently used for studies of nucleation and growth of gas bubbles in a silicate melt. The first results will be presented at the meeting.

  14. Magma differentiation in volcanic conduits - the clinopyroxenite body of Fuerteventura (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Tornare, Evelyne; Bussy, François

    2014-05-01

    Fractionation processes and magma differentiation/mixing occur at various levels during magma transportation through the crust. These processes are usually thought to occur in magmatic chambers or reservoirs into which magma stagnates before continuing to ascent and/or erupt. Here we discuss dynamic fractionation and magma differentiation processes in the plumbing system of an ocean island volcano. Fuerteventura, Canary Island, allows insight into the root-zone of an alkaline ocean island volcano. The PX1 pluton is a 22 Ma-old vertically layered mafic intrusion emplaced at ca. 0.1 GPa. This body shows large- and small-scale alternations of cumulate assemblages evolving from ol-rich wehrlite to clinopyroxenite to gabbro. These cumulates are intruded by numerous dykes of various compositions and veins of more evolved melt. Dykes, veins, and the large scale lithological variations define a general NNE-SSW vertical layering within the pluton. In some areas free of layering, numerous wehrlitic and clinopyroxenitic enclaves appear in a slightly more evolved matrix revealing clear mixing features of crystal mushes. Neither horizontal layering nor marginal facies are observed within PX1. Thus, clinopyroxenites do not represent accumulation of crystals through gravitational settling in a magma chamber. Compositions of cpx define a clear differentiation trend among all lithologies, from sp-bearing dunite (average cpx mg#: 85.99) to plg-ol- or kst-clinopyroxenites (mg#: 75.4). Chemically zoned cpx are present in all coarse-grained lithologies. They are characterised by a rather primitive resorbed core (higher Cr and Mg content), surrounded by a more evolved rim (higher Ti, Al and REE contents, similar to cpx in the matrix). Rims sometimes preserve clear oscillatory zoning and resorbtion features. Cores are interpreted as inherited crystals from deeper levels, whereas rims are considered to have crystallized at the final emplacement level in the root zone of the volcano. We

  15. Magma chamber cooling by episodic volatile expulsion as constrained by mineral vein distributions in the Butte, Montana Cu-Mo porphyry deposit

    NASA Astrophysics Data System (ADS)

    Daly, K.; Karlstrom, L.; Reed, M. H.

    2016-12-01

    The role of hydrothermal systems in the thermal evolution of magma chambers is poorly constrained yet likely significant. We analyze trends in mineral composition, vein thickness and overall volumetric fluid flux of the Butte, Montana porphyry Cu-Mo deposit to constrain the role of episodic volatile discharge in the crystallization of the source magma chamber ( 300 km3of silicic magma). An aqueous fluid sourced from injection of porphyritic dikes formed the Butte porphyry Cu network of veins. At least three separate pulses of fluid through the system are defined by alteration envelopes of [1] gray sericite (GS); [2] early-dark micaceous (EDM), pale-green sericite (PGS), and dark-green sericite (DGS); and [3] quartz-molybdenite (Qmb) and barren-quartz. Previous research using geothermometers and geobarometers has found that vein mineral composition, inferred temperatures and inferred pressures vary systematically with depth. Later fluid pulses are characterized by lower temperatures, consistent with progressive cooling of the source. We have digitized previously unused structural data from Butte area drill cores, and applied thermomechanical modeling of fluid release from the source magma chamber through time. Vein number density and vein thickness increase with depth as a clear function of mineralogy and thus primary temperature and pressure. We identify structural trends in the three fluid pulses which seem to imply time evolution of average vein characteristics. Pulses of Qmb-barren quartz and EDM-PGS-DGS (1st and 2nd in time) exhibit increasing vein number density (157 & 95 veins/50m, respectively) and thickness (300mm & 120mm, respectively) as a function of depth. EDM-PGS-DGS has a shallower peak in vein density (800m) than Qmb-barren quartz (>1600m). These data provide the basis for idealized mechanical models of hydrofractures, to predict driving pressures and to compare with existing source temperatures and total fluid volumes in order to estimate the total

  16. Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers.

    PubMed

    Couch, S; Sparks, R S; Carroll, M R

    2001-06-28

    Characteristic features of many porphyritic andesite and dacite lavas are that they are rich in crystals and display a range of disequilibrium features, including reversely zoned crystals, resorption surfaces, wide ranges of mineral compositions and minerals which are not in equilibrium with the surrounding rock matrix. These features are often interpreted as evidence of the mixing of magmas of contrasting composition, temperature and origin. Here, however, we propose that such features can also be caused by convection within a magma body with a single composition, that is heated from below and cooled from above. We describe petrological observations of andesite lava erupted at the Soufrière Hills volcano, Montserrat, which indicate a heating event and the intermingling of crystals that have very different thermal histories. We present experimental data on a representative groundmass composition of this lava, which indicate that it is difficult to explain the calcic compositions of plagioclase overgrowth rims and microphenocrysts unless parts of the magma were at temperatures much higher than the inferred average temperature. The concept of convective self-mixing allows us to explain the occurrence of compositions of minerals that apparently cannot coexist under equilibrium conditions.

  17. The chemically zoned 1949 eruption on La Palma (Canary Islands): Petrologic evolution and magma supply dynamics of a rift zone eruption

    NASA Astrophysics Data System (ADS)

    Klügel, Andreas; Hoernle, Kaj A.; Schmincke, Hans-Ulrich; White, James D. L.

    2000-03-01

    The 1949 rift zone eruption along the Cumbre Vieja ridge on La Palma involved three eruptive centers, 3 km spaced apart, and was chemically and mineralogically zoned. Duraznero crater erupted tephrite for 14 days and shut down upon the opening of Llano del Banco, a fissure that issued first tephrite and, after 3 days, basanite. Hoyo Negro crater opened 4 days later and erupted basanite, tephrite, and phonotephrite, while Llano del Banco continued to issue basanite. The eruption ended with Duraznero erupting basanite with abundant crustal and mantle xenoliths. The tephrites and basanites from Duraznero and Llano del Banco show narrow compositional ranges and define a bimodal suite. Each batch ascended and evolved separately without significant intermixing, as did the Hoyo Negro basanite, which formed at lower degrees of melting. The magmas fractionated clinopyroxene +olivine±kaersutite±Ti-magnetite at 600-800 MPa and possibly 800-1100 MPa. Abundant reversely zoned phenocrysts reflect mixing with evolved melts at mantle depths. Probably as early as 1936, Hoyo Negro basanite entered the deep rift system at 200-350 MPa. Some shallower pockets of this basanite evolved to phonotephrite through differentiation and assimilation of wall rock. A few months prior to eruption, a mixing event in the mantle may have triggered the final ascent of the magmas. Most of the erupted tephrite and basanite ascended from mantle depths within hours to days without prolonged storage in crustal reservoirs. The Cumbre Vieja rift zone differs from the rift zones of Kilauea volcano (Hawaii) in lacking a summit caldera or a summit reservoir feeding the rift system and in being smaller and less active with most of the rift magma solidifying between eruptions.

  18. Using CO2 and He Concentrations in Hydrothermal Fluids to Constrain Along-Axis Magma Chamber Dimensions at 9°N, EPR

    NASA Astrophysics Data System (ADS)

    Lilley, M. D.; Lupton, J. E.; Olson, E. J.

    2002-12-01

    Magmatic degassing is a common occurrence in subaerial volcanoes and has been reported in shallow submarine volcanoes. It has been speculated that mid-ocean ridge magma chambers may exhibit degassing behavior but to date there has been no direct documentation of its occurrence. Based on very high CO2 and He concentrations, we believe that we now have evidence for a degassing magma chamber at 9°N, East Pacific Rise. M Vent, in the immediate vicinity of the 1991 eruption, exhibited high and relatively stable CO2 concentrations in excess of 150 mmol/kg for at least eight years post-eruption. Such high values are many times the value that can be extracted from basalt by hydrothermal fluid and have previously been seen only at Axial and Loihi Seamounts. Two vents about one km south (Bio 9 and P Vents) had CO2 concentrations around 50 mmol/kg in 1991 which increased to maxima near 200 mmol/kg in 1993. We believe this represents a southward movement of the magma body in this area. He concentrations were also elevated at all the vents but showed different temporal trends from CO2 and reached maximum values in 1994. 3He/heat ratios are significantly different between M and Bio 9 and P Vents implying that separate magma bodies with differing degrees of degassing underlie the two areas. We have seen similarly high concentrations of CO2 and He at 31.8°S on the East Pacific Rise (Lupton et al., 1999) and suggest that magmatic degassing into the hydrothermal convection cell is occurring there as well. This work indicates that the concentrations of magmatic gases in hydrothermal fluids may provide fine scale data bearing on the locations and along-axis dimensions of magma chambers. Reference: Lupton, J., D. Butterfield, M. Lilley, J. Ishibashi, D. Hey and L. Evans, Gas chemistry of hydrothermal fluids along the East Pacific Rise, 5°S to 32°S, EOS, 80, F1099, 1999.

  19. New insights into the magma chamber activity under Mauna Loa inferred from SBAS-InSAR and geodetic inversion modelling

    NASA Astrophysics Data System (ADS)

    Varugu, B. K.; Amelung, F.

    2017-12-01

    Mauna Loa volcano, located on the Big Island, Hawaii, is the largest volcano on the earth and historically been one of the most active volcanoes on the earth. Since its last eruption in 1984, there was a decrease in the magmatic activity, yet episodic inflations with increased seismicity sparks interests in the scientific community and there is strong need to monitor the volcano with growing infrastructure close to the flanks of the volcano. Geodetic modelling of the previous inflations illustrate that the magma activity is due to inflation of hydraulically connected dike and magma chamber located from 4-8km beneath the summit (Amelung et al. 2007). Most of the seismicity observed on Mauna Loa is due to the movement along a decollement fault situated at the base of the volcano. Magma inflation under Mauna Loa has started again during the last quarter of 2013 and is continuing still with an increased seismicity. In this study, we used 140 images form COSMO SkyMED between 2013-2017 to derive and model the ground deformation. We carried out time series InSAR analysis using Small Baseline (SB) approach. While the deformation pattern seems similar in many ways to the previous inflation periods, geodetic modelling for inversion of source parameters indicate a significant propagation of the dike ( 1 km) into the South West Rift Zone(SWRZ) and a decreased depth of the dike top from summit, compared to the previous inflations. Such propagation needs to be studied further in view of the steep slope of SWRZ. In understanding the dynamics of this propagating dike, we also observed an increased seismic activity since 2014 in the vicinity of the modelled dike. Here in this study we attempt to characterize the stresses induced by the propagating dike and seaward slipping movement along the basal decollement, to explain the increased seismicity using a finite element model.

  20. Calderas and magma reservoirs

    NASA Astrophysics Data System (ADS)

    Cashman, Katharine V.; Giordano, Guido

    2014-11-01

    Large caldera-forming eruptions have long been a focus of both petrological and volcanological studies; petrologists have used the eruptive products to probe conditions of magma storage (and thus processes that drive magma evolution), while volcanologists have used them to study the conditions under which large volumes of magma are transported to, and emplaced on, the Earth's surface. Traditionally, both groups have worked on the assumption that eruptible magma is stored within a single long-lived melt body. Over the past decade, however, advances in analytical techniques have provided new views of magma storage regions, many of which provide evidence of multiple melt lenses feeding a single eruption, and/or rapid pre-eruptive assembly of large volumes of melt. These new petrological views of magmatic systems have not yet been fully integrated into volcanological perspectives of caldera-forming eruptions. Here we explore the implications of complex magma reservoir configurations for eruption dynamics and caldera formation. We first examine mafic systems, where stacked-sill models have long been invoked but which rarely produce explosive eruptions. An exception is the 2010 eruption of Eyjafjallajökull volcano, Iceland, where seismic and petrologic data show that multiple sills at different depths fed a multi-phase (explosive and effusive) eruption. Extension of this concept to larger mafic caldera-forming systems suggests a mechanism to explain many of their unusual features, including their protracted explosivity, spatially variable compositions and pronounced intra-eruptive pauses. We then review studies of more common intermediate and silicic caldera-forming systems to examine inferred conditions of magma storage, time scales of melt accumulation, eruption triggers, eruption dynamics and caldera collapse. By compiling data from large and small, and crystal-rich and crystal-poor, events, we compare eruptions that are well explained by simple evacuation of a zoned

  1. The effects of topography on magma chamber deformation models: Application to Mt. Etna and radar interferometry

    NASA Astrophysics Data System (ADS)

    Williams, Charles A.; Wadge, Geoff

    We have used a three-dimensional elastic finite element model to examine the effects of topography on the surface deformation predicted by models of magma chamber deflation. We used the topography of Mt. Etna to control the geometry of our model, and compared the finite element results to those predicted by an analytical solution for a pressurized sphere in an elastic half-space. Topography has a significant effect on the predicted surface deformation for both displacement profiles and synthetic interferograms. Not only are the predicted displacement magnitudes significantly different, but also the map-view patterns of displacement. It is possible to match the predicted displacement magnitudes fairly well by adjusting the elevation of a reference surface; however, the horizontal pattern of deformation is still significantly different. Thus, inversions based on constant-elevation reference surfaces may not properly estimate the horizontal position of a magma chamber. We have investigated an approach where the elevation of the reference surface varies for each computation point, corresponding to topography. For vertical displacements and tilts this method provides a good fit to the finite element results, and thus may form the basis for an inversion scheme. For radial displacements, a constant reference elevation provides a better fit to the numerical results.

  2. Pre-eruption recharge of the Bishop magma system

    USGS Publications Warehouse

    Wark, D.A.; Hildreth, W.; Spear, F.S.; Cherniak, D.J.; Watson, E.B.

    2007-01-01

    The 650 km3 rhyolitic Bishop Tuff (eastern California, USA), which is stratigraphically zoned with respect to temperatures of mineral equilibration, reflects a corresponding thermal gradient in the source magma chamber. Consistent with previous work, application of the new TitaniQ (Ti-in-quartz) thermometer to quartz phenocryst rims documents an ???100 ??C temperature increase with chamber depth at the time of eruption. Application of TitaniQ to quartz phenocryst cores, however, reveals lower temperatures and an earlier gradient that was less steep, with temperature increasing with depth by only ???30 ??C. In many late-erupted crystals, sharp boundaries that separate low-temperature cores from high-temperature rims cut internal cathodoluminescent growth zoning, indicating partial phenocryst dissolution prior to crystallization of the high-temperature rims. Rimward jumps in Ti concentration across these boundaries are too abrupt (e.g., 40 ppm across a distance of <10 ??m) to have survived magmatic temperatures for more than ???100 yr. We interpret these observations to indicate heating-induced partial dissolution of quartz, followed by growth of high-temperature rims (made possible by lowering of water activity due to addition of CO2) within 100 yr of the climactic 760 ka eruption. Hot mafic melts injected into deeper parts of the magma system were the likely source of heat and CO2, raising the possibility that eruption and caldera collapse owe their origin to a recharge event. ?? 2007 Geological Society of America.

  3. Differentiation and magma mixing on Kilauea's east rift zone: A further look at the eruptions of 1955 and 1960. Part II. The 1960 lavas

    USGS Publications Warehouse

    Wright, T.L.; Helz, R.T.

    1996-01-01

    New and detailed petrographic observations, mineral compositional data, and whole-rock vs glass compositional trends document magma mixing in lavas erupted from Kilauea's lower east rift zone in 1960. Evidence includes the occurrence of heterogeneous phenocryst assemblages, including resorbed and reversely zoned minerals in the lavas inferred to be hybrids. Calculations suggest that this mixing, which is shown to have taken place within magma reservoirs recharged at the end of the 1955 eruption, involved introduction of four different magmas. These magmas originated beneath Kilauea's summit and moved into the rift reservoirs beginning 10 days after the eruption began. We used microprobe analyses of glass to calculate temperatures of liquids erupted in 1955 and 1960. We then used the calculated proportions of stored and recharge components to estimate the temperature of the recharge components, and found those temperatures to be consistent with the temperature of the same magmas as they appeared at Kilauea's summit. Our studies reinforce conclusions reached in previous studies of Kilauea's magmatic plumbing. We infer that magma enters shallow storage beneath Kilauea's summit and also moves laterally into the fluid core of the East rift zone. During this process, if magmas of distinctive chemistry are present, they retain their chemical identity and the amount of cooling is comparable for magma transported either upward or laterally to eruption sites. Intrusions within a few kilometers of the surface cool and crystallize to produce fractionated magma. Magma mixing occurs both within bodies of previously fractionated magma and when new magma intersects a preexisting reservoir. Magma is otherwise prevented from mixing, either by wall-rock septa or by differing thermal and density characteristics of the successive magma batches.

  4. A refined model for Kilauea's magma plumbing system

    NASA Astrophysics Data System (ADS)

    Poland, M. P.; Miklius, A.; Montgomery-Brown, E. D.

    2011-12-01

    Studies of the magma plumbing system of Kilauea have benefitted from the volcano's frequent eruptive activity, ease of access, and particularly the century-long observational record made possible by the Hawaiian Volcano Observatory. The explosion of geophysical data, especially seismic and geodetic, collected since the first model of Kilauea's magmatic system was published in 1960 allows for a detailed characterization of Kilauea's magma storage areas and transport pathways. Using geological, geochemical, and geophysical observations, we propose a detailed model of Kilauea's magma plumbing that we hope will provide a refined framework for studies of Kilauea's eruptive and intrusive activity. Kilauea's summit region is underlain by two persistently active, hydraulically linked magma storage areas. The larger reservoir is centered at ~3 km depth beneath the south caldera and is connected to Kilauea's two rift zones, which radiate from the summit to the east and southwest. All magma that enters the Kilauea edifice passes through this primary storage area before intrusion or eruption. During periods of increased magma storage at the summit, as was the case during 2003-2007, uplift may occur above temporary magma storage volumes, for instance, at the intersection of the summit and east rift zone at ~3 km depth, and within the southwest rift zone at ~2 km depth. The east rift zone is the longer and more active of Kilauea's two rift zones and apparently receives more magma from the summit. Small, isolated pods of magma exist within both rift zones, as indicated by deformation measurements, seismicity, petrologic data, and geothermal drilling results. These magma bodies are probably relicts of past intrusions and eruptions and can be highly differentiated. Within the deeper part of the rift zones, between about 3 km and 9 km depth, magma accumulation is hypothesized based on surface deformation indicative of deep rift opening. There is no direct evidence for magma within

  5. Magma-derived CO2 emissions in the Tengchong volcanic field, SE Tibet: Implications for deep carbon cycle at intra-continent subduction zone

    NASA Astrophysics Data System (ADS)

    Zhang, Maoliang; Guo, Zhengfu; Sano, Yuji; Zhang, Lihong; Sun, Yutao; Cheng, Zhihui; Yang, Tsanyao Frank

    2016-09-01

    Active volcanoes at oceanic subduction zone have long been regard as important pathways for deep carbon degassed from Earth's interior, whereas those at continental subduction zone remain poorly constrained. Large-scale active volcanoes, together with significant modern hydrothermal activities, are widely distributed in the Tengchong volcanic field (TVF) on convergent boundary between the Indian and Eurasian plates. They provide an important opportunity for studying deep carbon cycle at the ongoing intra-continent subduction zone. Soil microseepage survey based on accumulation chamber method reveals an average soil CO2 flux of ca. 280 g m-2 d-1 in wet season for the Rehai geothermal park (RGP). Combined with average soil CO2 flux in dry season (ca. 875 g m-2 d-1), total soil CO2 output of the RGP and adjacent region (ca. 3 km2) would be about 6.30 × 105 t a-1. Additionally, we conclude that total flux of outgassing CO2 from the TVF would range in (4.48-7.05) × 106 t a-1, if CO2 fluxes from hot springs and soil in literature are taken into account. Both hot spring and soil gases from the TVF exhibit enrichment in CO2 (>85%) and remarkable contribution from mantle components, as indicated by their elevated 3He/4He ratios (1.85-5.30 RA) and δ13C-CO2 values (-9.00‰ to -2.07‰). He-C isotope coupling model suggests involvement of recycled organic metasediments and limestones from subducted Indian continental lithosphere in formation of the enriched mantle wedge (EMW), which has been recognized as source region of the TVF parental magmas. Contamination by crustal limestone is the first-order control on variations in He-CO2 systematics of volatiles released by the EMW-derived melts. Depleted mantle and recycled crustal materials from subducted Indian continental lithosphere contribute about 45-85% of the total carbon inventory, while the rest carbon (about 15-55%) is accounted by limestones in continental crust. As indicated by origin and evolution of the TVF

  6. Cenozoic Ignimbrites, Source Calderas, Relict Magma Chambers, and Tectonic Settings: Perspectives from Cordilleran North America (Invited)

    NASA Astrophysics Data System (ADS)

    Lipman, P. W.

    2009-12-01

    identified at many ignimbrite calderas, building on the pioneering observations of van Bemmelen at Lake Toba, Indonesia. Still many Tertiary caldera systems remain poorly understood where buried beneath younger rocks, others completely eroded to levels of subvolcanic granitic plutons. Links between silicic volcanism and batholith formation in continental crust continue a major research focus; improved petrologic, isotopic, and geophysical techniques are helping evaluate compositional and age relations between extrusive and intrusive components, as well as present-day intrusion geometry relative to times of peak volcanism. Ignimbrites that preserve quenched compositional gradients, commonly from rhyolite upward into crystal-rich dacite, were early recognized as special opportunities for magma-chamber studies, especially as analytical methods improved (XRF and INAA rock chemistry, microprobe mineral compositions, radiogenic and stable isotope geochemistry). These demonstrated the importance of mafic magma from the mantle, melting/assimilation in the lower crust, and mixing of diverse magmas during rise and eruption, even as recent studies by electron and/or ion probe documented complex crystal cargos (mixed phenocrysts, xenocrysts, and antecrysts).

  7. Using rocks to reveal the inner workings of magma chambers below volcanoes in Alaska’s National Parks

    USGS Publications Warehouse

    Coombs, Michelle L.; Bacon, Charles R.

    2012-01-01

    Alaska is one of the most vigorously volcanic regions on the planet, and Alaska’s national parks are home to many of the state’s most active volcanoes. These pose both local and more distant hazards in the form of lava and pyroclastic flows, lahars (mudflows), ash clouds, and ash fall. Alaska’s volcanoes lie along the arc of the Aleutian-Alaskan subduction zone, caused as the oceanic Pacific plate moves northward and dips below the North American plate. These volcanoes form as water-rich fluid from the down-going Pacific plate is released, lowering the melting temperature of rock in the overlying mantle and enabling it to partially melt. The melted rock (magma) migrates upward, collecting at the base of the approximately 25 mile (40 km) thick crust, occasionally ascending into the shallow crust, and sometimes erupting at the earth’s surface.During volcanic unrest, scientists use geophysical signals to remotely visualize volcanic processes, such as movement of magma in the upper crust. In addition, erupted volcanic rocks, which are quenched samples of magmas, can tell us about subsurface magma characteris-tics, history, and the processes that drive eruptions. The chemical compositions of and the minerals present in the erupted magmas can reveal conditions under which these magmas were stored in crustal “chambers”. Studies of the products of recent eruptions of Novarupta (1912), Aniakchak (1931), Trident (1953-74), and Redoubt (2009) volcanoes reveal the depths and temperatures of magma storage, and tell of complex interactions between magmas of different compositions. One goal of volcanology is to determine the processes that drive or trigger eruptions. Information recorded in the rocks tells us about these processes. Here, we demonstrate how geologists gain these insights through case studies from four recent eruptions of volcanoes in Alaska national parks.

  8. Voluminous eruption from a zoned magma body after an increase in supply rate at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Paduan, J. B.; Clague, D. A.; Dreyer, B. M.; Merle, S. G.; Bobbitt, A. M.; Caress, D. W.; Philip, B. T.; Kelley, D. S.; Nooner, S. L.

    2016-12-01

    Axial Seamount is the best monitored submarine volcano in the world, providing an exceptional window into the dynamic interactions between magma storage, transport, and eruption processes in a mid-ocean ridge setting. An eruption in April 2015 produced the largest volume of erupted lava since monitoring and mapping began in the mid-1980s after the shortest repose time, due to a recent increase in magma supply. The higher rate of magma replenishment since 2011 resulted in the eruption of the most mafic lava in the last 500-600 years. Eruptive fissures at the volcano summit produced pyroclastic ash that was deposited over an area of at least 8 km2. A systematic spatial distribution of compositions is consistent with a single dike tapping different parts of a thermally and chemically zoned magma reservoir that can be directly related to previous multichannel seismic-imaging results.

  9. Is Eruption Style Linked to Magma Residence Time at Kilauea Volcano? Results from Chemical Zoning in Olivine

    NASA Astrophysics Data System (ADS)

    Lynn, K. J.; Costa Rodriguez, F.; Shea, T.; Garcia, M. O.

    2015-12-01

    Kilauea is generally characterized by its modern effusive activity, but the past 2500 years were dominated by cycles of explosive and effusive eruptions lasting 100's of years (Swanson et al. 2012). These different eruption styles may reflect variable volatile contents in the source that control magma ascent rate and storage durations (e.g., Sides et al. 2014). A detailed petrological study of the dominantly explosive Keanakako'i tephras (1500-1820 CE) was undertaken to better understand the storage and transport conditions preceding high-energy eruptions. Here, we focus on preliminary results for olivine from the 1500 CE Basal Reticulite (>600 m fountain; May et al. 2015). Olivine major (Fe, Mg), minor (Mn, Ca, Ni) and trace (Li, Na, Al, P, Sc, Ti, V, Cr, Co, Zn) element traverses and 2D maps were collected for 10 crystals and reveal two major populations. The dominant population has homogeneous Fo89 and Fo87 cores with thin (3-12 μm) rims of intermediate composition (Fo87.5-88.5). Normal, reverse, and complex trace element zoning (Al, P, Ti, Cr) is prominent in these otherwise homogenous (Fo, Ni, Ca, Mn) crystals. 2D maps reveal early skeletal growth and the progressive decrease of Cr from core to rim suggests olivine and Cr-spinel crystallization, which should produce significant Fo zoning. Absence of Fo zoning could imply significant storage time in a reservoir allowing homogenization. The majority of rim compositions are out of equilibrium with adhering glass, and Fe-Mg modeling indicates that their residence within the carrier melt was of a few days. A second population consists of strongly zoned (normal and reverse) crystals with a wide range of core Fo (78 to 89) and Fo82-84 rims. Timescales from Fe-Mg zoning are up to 1 year, and may record storage histories before interaction with the carrier melt. The diversity in olivine zoning suggests at least two stages of magma mixing, and a more complex evolution for the magmas that fed the reticulite eruptions

  10. The timing of compositionally-zoned magma reservoirs and mafic 'priming' weeks before the 1912 Novarupta-Katmai rhyolite eruption

    USGS Publications Warehouse

    Singer, Brad S.; Costa, Fidel; Herrin, Jason S.; Hildreth, Wes; Fierstein, Judith

    2016-01-01

    The June 6, 1912 eruption of more than 13 km3 of dense rock equivalent (DRE) magma at Novarupta vent, Alaska was the largest of the 20th century. It ejected >7 km3 of rhyolite, ~1.3 km3 of andesite and ~4.6 km3 of dacite. Early ideas about the origin of pyroclastic flows and magmatic differentiation (e.g., compositional zonation of reservoirs) were shaped by this eruption. Despite being well studied, the timing of events that led to the chemically and mineralogically zoned magma reservoir remain poorly known. Here we provide new insights using the textures and chemical compositions of plagioclase and orthopyroxene crystals and by reevaluating previous U-Th isotope data. Compositional zoning of the magma reservoir likely developed a few thousand years before the eruption by several additions of mafic magma below an extant silicic reservoir. Melt compositions calculated from Sr contents in plagioclase fill the compositional gap between 68 and 76% SiO2 in whole pumice clasts, consistent with uninterrupted crystal growth from a continuum of liquids. Thus, our findings support a general model in which large volumes of crystal-poor rhyolite are related to intermediate magmas through gradual separation of melt from crystal-rich mush. The rhyolite is incubated by, but not mixed with, episodic recharge pulses of mafic magma that interact thermochemically with the mush and intermediate magmas. Hot, Mg-, Ca-, and Al-rich mafic magma intruded into, and mixed with, deeper parts of the reservoir (andesite and dacite) multiple times. Modeling the relaxation of the Fe-Mg concentrations in orthopyroxene and Mg in plagioclase rims indicates that the final recharge event occurred just weeks prior to the eruption. Rapid addition of mass, volatiles, and heat from the recharge magma, perhaps aided by partial melting of cumulate mush below the andesite and dacite, pressurized the reservoir and likely propelled a ~10 km lateral dike that allowed the overlying rhyolite to reach the surface.

  11. Non-traditional stable isotope behaviors in immiscible silica-melts in a mafic magma chamber.

    PubMed

    Zhu, Dan; Bao, Huiming; Liu, Yun

    2015-12-01

    Non-traditional stable isotopes have increasingly been applied to studies of igneous processes including planetary differentiation. Equilibrium isotope fractionation of these elements in silicates is expected to be negligible at magmatic temperatures (δ(57)Fe difference often less than 0.2 per mil). However, an increasing number of data has revealed a puzzling observation, e.g., the δ(57)Fe for silicic magmas ranges from 0‰ up to 0.6‰, with the most positive δ(57)Fe almost exclusively found in A-type granitoids. Several interpretations have been proposed by different research groups, but these have so far failed to explain some aspects of the observations. Here we propose a dynamic, diffusion-induced isotope fractionation model that assumes Si-melts are growing and ascending immiscibly in a Fe-rich bulk magma chamber. Our model offers predictions on the behavior of non-traditional stable isotope such as Fe, Mg, Si, and Li that are consistent with observations from many A-type granitoids, especially those associated with layered intrusions. Diffusion-induced isotope fractionation may be more commonly preserved in magmatic rocks than was originally predicted.

  12. Non-traditional stable isotope behaviors in immiscible silica-melts in a mafic magma chamber

    PubMed Central

    Zhu, Dan; Bao, Huiming; Liu, Yun

    2015-01-01

    Non-traditional stable isotopes have increasingly been applied to studies of igneous processes including planetary differentiation. Equilibrium isotope fractionation of these elements in silicates is expected to be negligible at magmatic temperatures (δ57Fe difference often less than 0.2 per mil). However, an increasing number of data has revealed a puzzling observation, e.g., the δ57Fe for silicic magmas ranges from 0‰ up to 0.6‰, with the most positive δ57Fe almost exclusively found in A-type granitoids. Several interpretations have been proposed by different research groups, but these have so far failed to explain some aspects of the observations. Here we propose a dynamic, diffusion-induced isotope fractionation model that assumes Si-melts are growing and ascending immiscibly in a Fe-rich bulk magma chamber. Our model offers predictions on the behavior of non-traditional stable isotope such as Fe, Mg, Si, and Li that are consistent with observations from many A-type granitoids, especially those associated with layered intrusions. Diffusion-induced isotope fractionation may be more commonly preserved in magmatic rocks than was originally predicted. PMID:26620121

  13. Variations in magma supply rate at Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Dvorak, John J.; Dzurisin, Daniel

    1993-01-01

    When an eruption of Kilauea lasts more than 4 months, so that a well-defined conduit has time to develop, magma moves freely through the volcano from a deep source to the eruptive site at a constant rate of 0.09 km3/yr. At other times, the magma supply rate to Kilauea, estimated from geodetic measurements of surface displacements, may be different. For example, after a large withdrawal of magma from the summit reservoir, such as during a rift zone eruption, the magma supply rate is high initially but then lessens and exponentially decays as the reservoir refills. Different episodes of refilling may have different average rates of magma supply. During four year-long episodes in the 1960s, the annual rate of refilling varied from 0.02 to 0.18 km3/yr, bracketing the sustained eruptive rate of 0.09 km3/yr. For decade-long or longer periods, our estimate of magma supply rate is based on long-term changes in eruptive rate. We use eruptive rate because after a few dozen eruptions the volume of magma that passes through the summit reservoir is much larger than the net change of volume of magma stored within Kilauea. The low eruptive rate of 0.009 km3/yr between 1840 and 1950, compared to an average eruptive rate of 0.05 km3/yr since 1950, suggests that the magma supply rate was lower between 1840 and 1950 than it has been since 1950. An obvious difference in activity before and since 1950 was the frequency of rift zone eruptions: eight rift zone eruptions occurred between 1840 and 1950, but more than 20 rift zone eruptions have occurred since 1950. The frequency of rift zone eruptions influences magma supply rate by suddenly lowering pressure of the summit magma reservoir, which feeds magma to rift zone eruptions. A temporary drop of reservoir pressure means a larger-than-normal pressure difference between the reservoir and a deeper source, so magma is forced to move upward into Kilauea at a faster rate.

  14. Mushy magma processes in the Tuolumne intrusive complex, Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Memeti, V.; Paterson, S. R.

    2012-12-01

    whole rock data. 4) Single mineral geochemistry suggests that this increased heterogeneity in the interior of the complex is likely caused by the presence of mixed mineral populations that acquired their compositional zoning in magmas different than the one they most recently crystallized in. 5) Mixed mineral populations have also been found in places of local magma mixing (e.g., tubes and troughs), and 6) oscillatory trace element zoning in K-feldspar phenocrysts most likely represents magma replenishment. All of these phenomena suggest a fairly dynamic environment of magma replenishment, magmatic erosion and extensive mixing at the locus of chamber growth. Magma replenishment subsided after episodic flare-ups and the magma mush dominantly underwent fractional crystallization and magmatic fabric formation during waning stages, when it was capable of preserving the evidence at map to crystal scale, lacking any later overprint by mixing. Fractionation related evidence is apparent in the presence of 1) map to outcrop scale leucogranite lenses and dikes in all major Tuolumne units (including the Johnson Peak granite itself), 2) the concentric compositional zonation of magmatic lobes (e.g., southern Half Dome lobe), 3) local crystal accumulations and widespread schlieren, and 4) fractionation related single mineral element zoning.

  15. Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil

    NASA Astrophysics Data System (ADS)

    Tommasi, AndréA.; Vauchez, Alain; Femandes, Luis A. D.; Porcher, Carla C.

    1994-04-01

    In a lithospheric-scale, orogen-parallel transcurrent shear zone of the Pan-African Dom Feliciano belt of southern Brazil, two successive generations of magmas, an early calc-alkaline and a late peraluminous, have been emplaced during deformation. Microstructures show that these granitoids experienced a progressive deformation from magmatic to solid state under decreasing temperature conditions. Magmatic deformation is indicated by the coexistence of aligned K-feldspar, plagioclase, micas, and/or tourmaline with undeformed quartz. Submagmatic deformation is characterized by strain features, such as fractures, lattice bending, or replacement reactions affecting only the early crystallized phases. High-temperature solid-state deformation is characterized by extensive grain boundary migration in quartz, myrmekitic K-feldspar replacement, and dynamic recrystallization of both K-feldspar and plagioclase. Decreasing temperature during solid-state deformation is inferred from changes in quartz crystallographic fabrics, decrease in grain size of recrystallized feldspars, and lower Ti amount in recrystallized biotites. Final low-temperature deformation is characterized by feldspar replacement by micas. The geochemical evolution of the synkinematic magmatism, from calc-alkaline metaluminous granodiorites with intermediate 87Sr/86Sr initial ratio to peraluminous granites with very high 87Sr/86Sr initial ratio, suggests an early lower crustal source or a mixed mantle/crustal source, followed by a middle to upper crustal source for the melts. Shearing in lithospheric faults may induce partial melting in the lower crust by shear heating in the upper mantle, but, whatever the process initiating partial melting, lithospheric transcurrent shear zones may collect melt at different depths. Because they enhance the vertical permeability of the crust, these zones may then act as heat conductors (by advection), promoting an upward propagation of partial melting in the crust

  16. Distribution of differentiated tholeiitic basalts on the lower east rift zone of Kilauea Volcano, Hawaii: a possible guide to geothermal exploration.

    USGS Publications Warehouse

    Moore, R.B.

    1983-01-01

    Geological mapping of the lower east rift zone indicates that >100 eruptions have extruded an estimated 10 km3 of basalt during the past 2000 yr; six eruptions in the past 200 yr have extruded approx 1 km3. The eruptive recurrence interval has ranged 1-115 yr since the middle of the 18th century and has averaged 20 yr or less over the past 2000 yr. New chemical analyses (100) indicate that the tholeiites erupted commonly differentiated beyond olivine control or are hybrid mixtures of differentiates with more mafic (olivine-controlled) summit magmas. The distribution of vents for differentiated lavas suggests that several large magma chambers underlie the lower east rift zone. Several workers have recognized that a chamber underlies the area near a producing geothermal well, HGP-A; petrological and 14C data indicate that it has existed for at least 1300 yr. Stratigraphy, petrology and surface-deformation patterns suggest that two other areas, Heiheiahulu and Kaliu, also overlie magma chambers and show favourable geothermal prospects.-A.P.

  17. Megacrystals track magma convection between reservoir and surface

    NASA Astrophysics Data System (ADS)

    Moussallam, Yves; Oppenheimer, Clive; Scaillet, Bruno; Buisman, Iris; Kimball, Christine; Dunbar, Nelia; Burgisser, Alain; Ian Schipper, C.; Andújar, Joan; Kyle, Philip

    2015-03-01

    Active volcanoes are typically fed by magmatic reservoirs situated within the upper crust. The development of thermal and/or compositional gradients in such magma chambers may lead to vigorous convection as inferred from theoretical models and evidence for magma mixing recorded in volcanic rocks. Bi-directional flow is also inferred to prevail in the conduits of numerous persistently-active volcanoes based on observed gas and thermal emissions at the surface, as well as experiments with analogue models. However, more direct evidence for such exchange flows has hitherto been lacking. Here, we analyse the remarkable oscillatory zoning of anorthoclase feldspar megacrystals erupted from the lava lake of Erebus volcano, Antarctica. A comprehensive approach, combining phase equilibria, solubility experiments and melt inclusion and textural analyses shows that the chemical profiles are best explained as a result of multiple episodes of magma transport between a deeper reservoir and the lava lake at the surface. Individual crystals have repeatedly travelled up-and-down the plumbing system, over distances of up to several kilometers, presumably as a consequence of entrainment in the bulk magma flow. Our findings thus corroborate the model of bi-directional flow in magmatic conduits. They also imply contrasting flow regimes in reservoir and conduit, with vigorous convection in the former (regular convective cycles of ∼150 days at a speed of ∼0.5 mm s-1) and more complex cycles of exchange flow and re-entrainment in the latter. We estimate that typical, 1-cm-wide crystals should be at least 14 years old, and can record several (from 1 to 3) complete cycles between the reservoir and the lava lake via the conduit. This persistent recycling of phonolitic magma is likely sustained by CO2 fluxing, suggesting that accumulation of mafic magma in the lower crust is volumetrically more significant than that of evolved magma within the edifice.

  18. Where do arc magmas differentiate? A seismic and geochemical search for active, deep crustal MASH zones

    NASA Astrophysics Data System (ADS)

    Pu, X.; Delph, J. R.; Shimizu, K.; Rasmussen, D. J.; Ratschbacher, B. C.

    2017-12-01

    Deep zones of mixing, assimilation, storage, and homogenization (MASH) are thought to be one of the primary locations where primitive arc magmas stall, interact with crustal material, and differentiate. Support for deep crustal MASH zones is found in exposed crustal sections, where mafic-ultramafic lithologies occur in the lower crust. However, geophysical observations of active deep MASH zones are rare, and their ubiquity is difficult to assess solely based on geochemistry. Using a multidisciplinary approach, we investigate the role of deep crustal processing by investigating two contrasting arcs: the Central Volcanic Zone (CVZ) of the Andes, characterized by thick crust ( 60 km) and large volume silicic eruptions that extend into the back arc, and the Cascadia arc, characterized by thinner crust ( 40 km) and less evolved eruptions. In the southern Puna region of the CVZ, shear-wave velocities in the uppermost mantle are slow ( 3.9 km/s) compared to the minimum expected shear velocity for melt-free mantle lithosphere ( 4.2 km/s). This is consistent with the presence of a melt-bearing MASH zone near the crust-mantle transition. Sr isotopes indicate the magmas interacted with continental crust, and elevated Dy/Yb ratios suggest this process occurred in the garnet stability field (> 1 GPa). Major element signatures (e.g., ASI vs. SiO2) also suggest contribution from partial melting of the lower crust. The signature of lower crustal differentiation (high Dy/Yb) is also observed in the nearby ignimbrites from Cerro Galan, despite the presence of a large slow velocity body at depths too shallow for garnet stability, suggesting that the geochemical signatures of deep MASH zones may be retained regardless of whether magmas stall at shallower depths. Similarly elevated Dy/Yb ratios and slow shear-wave velocities in the upper mantle are common in the CVZ, implying deep MASH zones are pervasive there. A similar approach is applied to Cascadia, where seismic and geochemical

  19. Fault-Magma Interactions during Early Continental Rifting: Seismicity of the Magadi-Natron-Manyara basins, Africa

    NASA Astrophysics Data System (ADS)

    Weinstein, A.; Oliva, S. J.; Ebinger, C.; Aman, M.; Lambert, C.; Roecker, S. W.; Tiberi, C.; Muirhead, J.

    2017-12-01

    Although magmatism may occur during the earliest stages of continental rifting, its role in strain accommodation remains weakly constrained by largely 2D studies. We analyze seismicity data from a 13-month, 39-station broadband seismic array to determine the role of magma intrusion on state-of-stress and strain localization, and their along-strike variations. Precise earthquake locations using cluster analyses and a new 3D velocity model reveal lower crustal earthquakes along projections of steep border faults that degas CO2. Seismicity forms several disks interpreted as sills at 6-10 km below a monogenetic cone field. The sills overlie a lower crustal magma chamber that may feed eruptions at Oldoinyo Lengai volcano. After determining a new ML scaling relation, we determine a b-value of 0.87 ± 0.03. Focal mechanisms for 66 earthquakes, and a longer time period of relocated earthquakes from global arrays reveal an along-axis stress rotation of 50 o ( N150 oE) in the magmatically active zone. Using Kostrov summation of local and teleseismic mechanisms, we find opening directions of N122ºE and N92ºE north and south of the magmatically active zone. The stress rotation facilitates strain transfer from border fault systems, the locus of early stage deformation, to the zone of magma intrusion in the central rift. Our seismic, structural, and geochemistry results indicate that frequent lower crustal earthquakes are promoted by elevated pore pressures from volatile degassing along border faults, and hydraulic fracture around the margins of magma bodies. Earthquakes are largely driven by stress state around inflating magma bodies, and more dike intrusions with surface faulting, eruptions, and earthquakes are expected.

  20. Barium isotope geochemistry of subduction-zone magmas

    NASA Astrophysics Data System (ADS)

    Yu, H.; Nan, X.; Huang, J.; Wörner, G.; Huang, F.

    2017-12-01

    Subduction zones are crucial tectonic setting to study material exchange between crust and mantle, mantle partial melting with fluid addition, and formation of ore-deposits1-3. The geochemical characteristics of arc lavas from subduction zones are different from magmas erupted at mid-ocean ridges4, because there are addition of fluids/melts from subducted AOC and its overlying sediments into their source regions in the sub-arc mantle4. Ba is highly incompatible during mantle melting5, and it is enriched in crust (456 ppm)6 relative to the mantle (7.0 ppm)7. The subducted sediments are also enriched in Ba (776 ppm of GLOSS)8. Moreover, because Ba is fluid soluble during subduction, it has been used to track contributions of subduction-related fluids to arc magmas9 or recycled sediments to the mantle10-11. To study the Ba isotope fractionation behavior during subduction process, we analyzed well-characterized, chemically-diverse arc lavas from Central American, Kamchatka, Central-Eastern Aleutian, and Southern Lesser Antilles. The δ137/134Ba of Central American arc lavas range from -0.13 to 0.24‰, and have larger variation than the arc samples from other locations. Except one sample from Central-Eastern Aleutian arc with obviously heavy δ137/134Ba values (0.27‰), all other samples from Kamchatka, Central-Eastern Aleutian, Southern Lesser Antilles arcs are within the range of OIB. The δ137/134Ba is not correlated with the distance to trench, partial melting degrees (Mg#), or subducting slab-derived components. The samples enriched with heavy Ba isotopes have low Ba contents, indicating that Ba isotopes can be fractionated at the beginning of dehydration process with small amount of Ba releasing to the mantle wedge. With the dehydration degree increasing, more Ba of the subducted slab can be added to the source of arc lavas, likely homogenizing the Ba isotope signatures. 1. Rudnick, R., 1995 Nature; 2. Tatsumi, Y. & Kogiso, T., 2003; 3. Sun, W., et al., 2015 Ore

  1. Determination of crystal residence timescales in magma reservoirs by diffusion modeling of dendritic phosphorus zoning patterns in olivine

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Potrafke, A.

    2016-12-01

    Deciphering the early stages of crystallization and the chronological evolution of phenocrysts in magma reservoirs is one of the main goals in volcanology. Established approaches that model the concentration evolution of fast diffusing elements like Fe/Mg carry limited information on timescales once the concentration gradients are homogenized. Elements that diffuse more slowly, such as P and Al, become useful in these cases. We present a novel modeling tool that combines high-resolution EMP mapping of slow diffusing phosphorus in olivine with 2D kinetic modeling of the diffusive relaxation of initial chemical zoning pattern of P as well as Fe/Mg. The modeling approach offers a new possibility for determining crystal residence times in magma reservoirs. P diffusion coefficients from the experimental determination of [1] and Fe/Mg diffusion coefficients from [2] were used. The method yields a time-bracket between the minimum time required to homogenize the zoning of fast-diffusing Fe/Mg and the maximum time period for which details of chemical zoning of slow-diffusing P may be retained. To illustrate the approach we have studied the compositional zoning patterns of 7 olivine crystals from Piton de la Fournaise volcano, La Réunion. All crystals show a narrow range of forsterite contents (=Fo82-84) with fully homogenized Fe/Mg distribution, whereas P-mapping reveals oscillatory to dendritic zoning patterns [3]. P concentrations scatter in the range of 0.4 wt-% to below detection limit. Revealed phosphorus zoning patterns were considered to display the initial crystal architecture, whereas Fe and Mg zoning has been wiped out due to faster diffusion. For La Réunion magmas at 1453 K, timescales between few days to weeks were determined to be the time brackets for growth and residence of the olivine crystals in the magmas. These short residence times combined with knowledge of very fast developing dendritic crystals that have recently been revealed worldwide [e.g. 3

  2. Modeling the three-dimensional structure of macroscopic magma transport systems: Application to Kilauea volcano, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, M.P.; Koyanagi, R.Y.; Fiske, R.S.

    1981-08-10

    We report the results of modeling the three-dimensional internal structure of Kilauea's magmatic passageways. The approach uses a clear plexiglass model containing equally-spaced levels upon which well-located seismic hypocenters are plotted. Application of constraining geologic and geophysical criteria to this distributed volume of earthquakes permits the interpretation of seismic structures produced by fracturing in response to locally high fluid pressures. Four magma transport and storage structures produce have been identified within and beneath Kilauea: (1) Primary conduit. The conduit transporting magma into Kilauea's summit storage reservoir rises from the model base (14.6 km) to 6.5 km depth level. It ismore » a zone of intense fracturing and inferred intrusion, whose horizontal sections are elliptical in planform. Over its height, the average major axis of component horizontal section is 3.3 km, with an average minor axis of 1.7 km. This yields an aspect ratio of xi = 0.52. At the 14.6 km level, the strike of the major axis is N67 /sup 0/E. During passage from the upper mantle through the oceanic crust, this axis rotates in a right-handed sense, until the strike is N41 /sup 0/W at the 6.5 km level. (2) Magma chamber complex floor. The interval from 6.5 to 5.7 km, immediately over the primary conduit, is aseismic. This suggests differentially high fluid-to-rock ratios, and relatively weak pathways for further vertical transport into higher levels of the storage complex, as well as lateral leakage eastward into the Mauna Ulu staging area: for later vertical ascent beneath the upper east rift zone. Seismicity within the immediately subjacent rocks that form the top of the primary conduit (at 6.5 km) suggests that this inferred magma-rich horizon forms the effective floor of the summit storage complex. (3) Magma chamber crown. Intense seismicity over the 1.1--1.9 km depth interval defines an elliptical region in plan view.« less

  3. The origin of alkaline magmas in an intraplate setting near a subduction zone: the Ngatutura Basalts, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Briggs, R. M.; Utting, A. J.; Gibson, I. L.

    1990-01-01

    The Ngatutura Basalts are one of a series of Pliocene-Quaternary alkalic basalt volcanic fields in North Island, New Zealand. They are situated in an intraplate tectonic setting behind the currently active Taupo Volcanic Zone, and 300 km above the subducting slab. The volcanic field consists of 16 small-volume monogenetic volcanic centres composed mainly of eroded scoria cones and lava flows, that occupy an extensional tectonic environment characterized by NE-striking block faulting. In some cases the faults have controlled the localization of volcanic vents. The lavas have restricted compositions, ranging from hawaiites to nepheline hawaiites, and are characterized by enriched LILE, LREE, and HFS elements, with particularly high Nb and Ta, low Ba/Nb, and high Zr/Y and Ce N/Yb N ratios. Nepheline hawaiites are slightly more differentiated than hawaiites and have higher Ce N/Yb N ratios. Petrogenetic modelling suggests that the range in composition was mainly controlled by fractional crystallization of olivine, clinopyroxene, and minor plagioclase and titanomagnetite, which is consistent with the modal phenocryst abundances. Fractionation is explained by side-wall crystallization and flowage differentiation during rapid ascent, rather than gravitative settling in a magma chamber. Ngatutura magmas were probably derived from an enriched garnet lherzolite source within the low-velocity mantle. The process of source enrichment is speculative but our preferred model calls on metasomatizing fluids in the low-velocity zone. There is no geochemical evidence for any influence of the subducted slab on their composition, even though they overlie the Pacific plate subduction zone. This implies that the extent of subduction-related contamination in the mantle wedge is not pervasive, but is confined to a limited region overlying the subducted slab. Also, the "deep mantle plume" responsible for alkalic magmatism must have originated above the slab, because it seems unlikely that

  4. Magma volumes and storage in the middle crust

    NASA Astrophysics Data System (ADS)

    Memeti, V.; Barnes, C. G.; Paterson, S. R.

    2015-12-01

    Quantifying magma volumes in magma plumbing systems is mostly done through geophysical means or based on volcanic eruptions. Detailed studies of plutons, however, are useful in revealing depths and evolving volumes of stored magmas over variable lifetimes of magma systems. Knowledge of the location, volume, and longevity of stored magma is critical for understanding where in the crust magmas attain their chemical signature, how these systems physically behave and how source, storage levels, and volcanoes are connected. Detailed field mapping, combined with single mineral geochemistry and geochronology of plutons, allow estimates of size and longevity of melt-interconnected magma batches that existed during the construction of magma storage sites. The Tuolumne intrusive complex (TIC) recorded a 10 myr magmatic history. Detailed maps of the major units in different parts of the TIC indicate overall smaller scale (cm- to <1 km) compositional variation in the oldest, outer Kuna Crest unit and mainly larger scale (>10 km) changes in the younger Half Dome and Cathedral Peak units. Mineral-scale trace element data from hornblende of granodiorites to gabbros from the Kuna Crest lobe show distinct hornblende compositions and zoning patterns. Mixed hornblende populations occur only at the transition to the main TIC. This compositional heterogeneity in the first 1-2 myr points to low volume magmatism resulting in smaller, discrete and not chemically interacting magma bodies. Trace element and Sr- and Pb-isotope data from growth zones of K-feldspar phenocrysts from the two younger granodiorites indicate complex mineral zoning, but general isotopic overlap, suggesting in-situ, inter-unit mixing and fractionation. This is supported by hybrid zones between units, mixing of zircon, hornblende, and K-feldspar populations and late leucogranites. Thus, magma body sizes increased later resulting in overall more homogeneous, but complexly mixing magma mushes that fractionated locally.

  5. Geophysical observations of Kilauea Volcano, Hawaii, 2. Constraints on the magma supply during November 1975-September 1977

    USGS Publications Warehouse

    Dzurisin, D.; Anderson, L.A.; Eaton, G.P.; Koyanagi, R.Y.; Lipman, P.W.; Lockwood, J.P.; Okamura, R.T.; Puniwai, G.S.; Sako, M.K.; Yamashita, K.M.

    1980-01-01

    Following a 22-month hiatus in eruptive activity, Kilauea volcano extruded roughly 35 ?? 106 m3 of tholeiitic basalt from vents along its middle east rift zone during 13 September-1 October, 1977. The lengthy prelude to this eruption began with a magnitude 7.2 earthquake on 29 November, 1975, and included rapid summit deflation episodes in June, July, and August 1976 and February 1977. Synthesis of seismic, geodetic, gravimetric, and electrical self-potential observations suggests the following model for this atypical Kilauea eruptive cycle. Rapid summit deflation initiated by the November 1975 earthquake reflected substantial migration of magma from beneath the summit region of Kilauea into the east and southwest rift zones. Simultaneous leveling and microgravity observations suggest that 40-90 ?? 106 m3 of void space was created within the summit magma chamber as a result of the earthquake. If this volume was filled by magma from depth before the east rift zone intrusive event of June 1976, the average rate of supply was 6-13 ?? 106 m3/month, a rate that is consistent with the value of 9 ?? 106 m3/month suggested from observations of long-duration Kilauea eruptions. Essentially zero net vertical change was recorded at the summit during the 15-month period beginning with the June 1976 intrusion and ending with the September 1977 eruption. This fact suggests that most magma supplied from depth during this interval was eventually delivered to the east rift zone, at least in part during four rapid summit deflation episodes. Microearthquake epicenters migrated downrift to the middle east rift zone for the first time during the later stages of the February 1977 intrusion, an occurrence presumably reflecting movement of magma into the eventual eruptive zone. This observation was confirmed by tilt surveys in May 1977 that revealed a major inflation center roughly 30 km east of the summit in an area of anomalous steaming and forest kill first noted in March 1976. ?? 1980.

  6. A Chill Sequence to the Bushveld Complex - Insight into the First Stages of Emplacement and the Parental Magmas to the World's Largest Layered Intrusion

    NASA Astrophysics Data System (ADS)

    Wilson, A.

    2012-04-01

    Evidence of the initial stages of magma emplacement in large mafic chambers is commonly lacking because of resorption of early-formed chills and complicated by the fact that the first magmas that entered the chamber were usually more evolved than the true parental magma. Deep drilling has revealed a rare occurrence of a chill sequence from the eastern Bushveld Complex at the base of a previously unrecognized thick succession of ultramafic rocks that forms part of the Lower Zone. The chill sequence (1.8 m thick) includes a true chill against quartzite floor rock, crystalline quench textured and orthopyroxene spinifex textured rocks. Importantly the chill composition represents a relatively evolved magma formed by the separation of high-Mg olivines prior to its emplacement, probably in a conduit or a pre-chamber. An overlying pyroxene dunite represents the extract that gave rise to the chill and was emplaced either as a crystal slurry derived from the feeder conduit or as the crystallization product from a slightly later influx of primitive magma of komatiitic composition. This highly-Mg rich pyroxene dunite most likely acted as a barrier to the thermal erosion of the chill sequence as the chamber filled. The olivine in the pyroxene dunite layer is the most primitive yet recorded for the Bushveld Complex at Mg# 0.915, and the cores of associated orthopyroxene are Mg# 0.93. Compositions of the orthopyroxene in the quench and spinifex textured units range from Mg# 0.91 to 0.72 and preserve cores close to the original liquidus as well as tracking the complete in-situ solidification process. Olivine contains abundant dendritic exsolution structures of Cr-spinel and Al-rich clinopyroxene indicating that they formed at high temperature from incorporation of Ca, Al and Cr into olivine, with little time to equilibrate before emplacement. Chromite in the section is the most primitive yet recorded for the Bushveld Complex. The komatiite magma that was initially emplaced into

  7. Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma

    NASA Astrophysics Data System (ADS)

    Wiebe, R. A.; Collins, W. J.

    1998-09-01

    Many granitic plutons contain sheet-like masses of dioritic to gabbroic rocks or swarms of mafic to intermediate enclaves which represent the input of higher temperature, more mafic magma during crystallization of the granitic plutons. Small-scale structures associated with these bodies (e.g. load-cast and compaction features, silicic pipes extending from granitic layers into adjacent gabbroic sheets) indicate that the sheets and enclave swarms were deposited on a floor of the magma chamber (on granitic crystal mush and beneath crystal-poor magma) while the mafic magma was incompletely crystallized. These structures indicate 'way up', typically toward the interior of the intrusions, and appear to indicate that packages of mafic sheets and enclave concentrations in these plutons are a record of sequential deposition. Hence, these plutons preserve a stratigraphic history of events involved in the construction (filling, replenishment) and crystallization of the magma chamber. The distinctive features of these depositional portions of plutons allow them to be distinguished from sheeted intrusions, which usually preserve mutual intrusive contacts and 'dike-sill' relations of different magma types. The considerable thickness of material that can be interpreted as depositional, and the evidence for replenishment, suggest that magma chamber volumes at any one time were probably much less than the final size of the pluton. Thus, magma chambers may be constructed much more slowly than presently envisaged. The present steep attitudes of these structures in many plutons may have developed gradually as the floor of the chamber (along with the underlying solidified granite and country rock) sank during continuing episodes of magma chamber replenishment. These internal magmatic structures support recent suggestions that the room problem for granites could be largely accommodated by downward movement of country rock beneath the magma chamber.

  8. Evaluation of magma mixing in the subvolcanic rocks of Ghansura Felsic Dome of Chotanagpur Granite Gneiss Complex, eastern India

    NASA Astrophysics Data System (ADS)

    Gogoi, Bibhuti; Saikia, Ashima; Ahmad, Mansoor; Ahmad, Talat

    2018-06-01

    The subvolcanic rocks exposed in the Ghansura Felsic Dome (GFD) of the Bathani volcano-sedimentary sequence at the northern fringe of the Rajgir fold belt in the Proterozoic Chotanagpur Granite Gneiss Complex preserves evidence of magma mixing and mingling in mafic (dolerite), felsic (microgranite) and intermediate (hybrid) rocks. Structures like crenulated margins of mafic enclaves, felsic microgranular enclaves and ocelli with reaction surfaces in mafic rocks, hybrid zones at mafic-felsic contacts, back-veining and mafic flows in the granitic host imply magma mingling phenomena. Textural features like quartz and titanite ocelli, acicular apatite, rapakivi and anti-rapakivi feldspar intergrowths, oscillatory zoned plagioclase, plagioclase with resorbed core and intact rim, resorbed crystals, mafic clots and mineral transporting veins are interpreted as evidence of magma mixing. Three distinct hybridized rocks have formed due to varied interactions of the intruding mafic magma with the felsic host, which include porphyritic diorite, mingled rocks and intermediate rocks containing felsic ocelli. Geochemical signatures confirm that the hybrid rocks present in the study area are mixing products formed due to the interaction of mafic and felsic magmas. Physical parameters like temperature, viscosity, glass transition temperature and fragility calculated for different rock types have been used to model the relative contributions of mafic and felsic end-member magmas in forming the porphyritic diorite. From textural and geochemical investigations it appears that the GFD was a partly solidified magma chamber when mafic magma intruded it leading to the formation of a variety of hybrid rock types.

  9. Volatile content of Hawaiian magmas and volcanic vigor

    NASA Astrophysics Data System (ADS)

    Blaser, A. P.; Gonnermann, H. M.; Ferguson, D. J.; Plank, T. A.; Hauri, E. H.; Houghton, B. F.; Swanson, D. A.

    2014-12-01

    We test the hypothesis that magma supply to Kīlauea volcano, Hawai'i may be affected by magma volatile content. We find that volatile content and magma flow from deep source to Kīlauea's summit reservoirs are non-linearly related. For example, a 25-30% change in volatiles leads to a near two-fold increase in magma supply. Hawaiian volcanism provides an opportunity to develop and test hypotheses concerning dynamic and geochemical behavior of hot spot volcanism on different time scales. The Pu'u 'Ō'ō-Kupaianaha eruption (1983-present) is thought to be fed by essentially unfettered magma flow from the asthenosphere into a network of magma reservoirs at approximately 1-4 km below Kīlauea's summit, and from there into Kīlauea's east rift zone, where it erupts. Because Kīlauea's magma becomes saturated in CO2 at about 40 km depth, most CO2 is thought to escape buoyantly from the magma, before entering the east rift zone, and instead is emitted at the summit. Between 2003 and 2006 Kīlauea's summit inflated at unusually high rates and concurrently CO2emissions doubled. This may reflect a change in the balance between magma supply to the summit and outflow to the east rift zone. It remains unknown what caused this surge in magma supply or what controls magma supply to Hawaiian volcanoes in general. We have modeled two-phase magma flow, coupled with H2O-CO2 solubility, to investigate the effect of changes in volatile content on the flow of magma through Kīlauea's magmatic plumbing system. We assume an invariant magma transport capacity from source to vent over the time period of interest. Therefore, changes in magma flow rate are a consequence of changes in magma-static and dynamic pressure throughout Kīlauea's plumbing system. We use measured summit deformation and CO2 emissions as observational constraints, and find from a systematic parameter analysis that even modest increases in volatiles reduce magma-static pressures sufficiently to generate a 'surge' in

  10. Constraining the timescale of magma stagnation beneath Mauna Kea volcano, Hawaii,using diffusion profiles in olivine phenocrysts

    NASA Astrophysics Data System (ADS)

    Bloch, E. M.; Ganguly, J.

    2009-12-01

    Fe-Mg diffusion profiles have been measured in olivine xenocrysts within alkalic basalts in order to constrain the timescales of magma stagnation beneath Mauna Kea volcano, Hawaii. It has been suggested that during the main tholeiitic shield-building stage, and postshield eruptive stages of Mauna Kea, magmas were stalled and stagnated near the Moho, at a depth of ~15 km. Evidence in support of this hypothesis comes from cumulates formed by gravity-settling and in situ crystallization within magma chambers (Fodor and Galar, 1997), and from clinopyroxene-wholerock thermobarometry on Hamakua basalts (Putirka, in press). The cumulates represent a ‘fossil’ magma chamber which formed primarily from tholeiitic basalts; during the later capping-lava stage of Mauna Kea, alkalic basalts tore off chunks of these cumulates during ascent to the surface. We have measured several diffusion profiles in olivine xenocrysts from a single basalt sample. Because these xenocrysts have homogenous core compositions identical to a neighboring dunite cumulate, and because they are much larger and texturally distinct from compositionally dissimilar olivine phenocrysts, they are interpreted to be cumulate olivines which were dislodged during magma recharge/mixing in the stagnation zone. Although the orientations of the phenocrysts are not yet known, the diffusion profiles have been fit using diffusion coefficients parallel to the c and a crystallographic axes (i.e. minimum and maximum values). Modeling diffusion profiles yields ∫Ddt ≤4.5 x 10-5 cm2. Assuming that the xenocrysts were broken off from the cumulate immediately when the magma chamber was recharged, it is possible to calculate the maximum stagnation time of the basalts. Thus, the retrieved ∫Ddt value yields a maximum stagnation time of ~0.7 years. References: Fodor RV, Galar, PA (1997). A View into the Subsurface of Mauna Kea Volcano, Hawaii: Crystallization Processes Interpreted through the Petrology and Petrography of

  11. Zircon crytallization and recycling in the magma chamber of the rhyolitic Kos Plateau Tuff (Aegean arc)

    USGS Publications Warehouse

    Bachman, O.; Charlier, B.L.A.; Lowenstern, J. B.

    2007-01-01

    In contrast to most large-volume silicic magmas in continental arcs, which are thought to evolve as open systems with significant assimilation of preexisting crust, the Kos Plateau Miff magma formed dominantly by crystal fractionation of mafic parents. Deposits from this ??? 60 km3 pyroclastic eruption (the largest known in the Aegean arc) lack xenocrystic zircons [secondary ion mass spectrometry (SIMS) U-Pb ages on zircon cores never older than 500 ka] and display Sr-Nd whole-rock isotopic ratios within the range of European mantle in an area with exposed Paleozoic and Tertiary continental crust; this evidence implies a nearly closed-system chemical differentiation. Consequently, the age range provided by zircon SIMS U-Th-Pb dating is a reliable indicator of the duration of assembly and longevity of the silicic magma body above its solidus. The age distribution from 160 ka (age of eruption by sanidine 40Ar/39Ar dating; Smith et al., 1996) to ca. 500 ka combined with textural characteristics (high crystal content, corrosion of most anhydrous phenocrysts, but stability of hydrous phases) suggest (1) a protracted residence in the crust as a crystal mush and (2) rejuvenation (reduced crystallization and even partial resorption of minerals) prior to eruption probably induced by new influx of heat (and volatiles). This extended evolution chemically isolated from the surrounding crust is a likely consequence of the regional geodynamics because the thinned Aegean microplate acts as a refractory container for magmas in the dying Aegean subduction zone (continent-continent subduction). ?? 2007 Geological Society of America.

  12. Zircon crystallization and recycling in the magma chamber of the rhyolitic Kos Plateau Tuff (Aegean arc)

    USGS Publications Warehouse

    Bachman, O.; Charlier, B.L.A.; Lowenstern, J. B.

    2007-01-01

    In contrast to most large-volume silicic magmas in continental arcs, which are thought to evolve as open systems with significant assimilation of preexisting crust, the Kos Plateau Tuff magma formed dominantly by crystal fractionation of mafic parents. Deposits from this ~60 km3 pyroclastic eruption (the largest known in the Aegean arc) lack xenocrystic zircons [secondary ion mass spectrometry (SIMS) U-Pb ages on zircon cores never older than 500 ka] and display Sr-Nd whole-rock isotopic ratios within the range of European mantle in an area with exposed Paleozoic and Tertiary continental crust; this evidence implies a nearly closed-system chemical differentiation. Consequently, the age range provided by zircon SIMS U-Th-Pb dating is a reliable indicator of the duration of assembly and longevity of the silicic magma body above its solidus. The age distribution from 160 ka (age of eruption by sanidine 40Ar/39Ar dating; Smith et al., 1996) to ca. 500 ka combined with textural characteristics (high crystal content, corrosion of most anhydrous phenocrysts, but stability of hydrous phases) suggest (1) a protracted residence in the crust as a crystal mush and (2) rejuvenation (reduced crystallization and even partial resorption of minerals) prior to eruption probably induced by new influx of heat (and volatiles). This extended evolution chemically isolated from the surrounding crust is a likely consequence of the regional geodynamics because the thinned Aegean microplate acts as a refractory container for magmas in the dying Aegean subduction zone (continent-continent subduction).

  13. Petrogenesis of the Elephant Moraine A79001 meteorite Multiple magma pulses on the shergottite parent body

    NASA Technical Reports Server (NTRS)

    Mcsween, H. Y., Jr.; Jarosewich, E.

    1983-01-01

    The EETA 79001 achondrite consists of two distinct igneous lithologies joined along a planar, non-brecciated contact. Both are basaltic rocks composed primarily of pigeonite, augite, and maskelynite, but one contains zoned megacrysts of olivine, orthopyroxene, and chromite that represent disaggregated xenoliths of harzburzite. Both lithologies probably formed from successive volcanic flows or multiple injections of magma into a small, shallow chamber. Many similarities between the two virtually synchronous magmas suggest that they are related. Possible mechanisms to explain their differences involve varying degrees of assimilation, fractionation from similar parental magmas, or partial melting of a similar source peridotite; of these, assimilation of the observed megacryst assemblage seems most plausible. However, some isotopic contamination may be required in any of these petrogenetic models. The meteorite has suffered extensive shock metamorphism and localized melting during a large impact event that probably excavated and liberated it from its parent body.

  14. 77 FR 38488 - Safety Zone; Alexandria Bay Chamber of Commerce, St. Lawrence River, Alexandria Bay, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... 1625-AA00 Safety Zone; Alexandria Bay Chamber of Commerce, St. Lawrence River, Alexandria Bay, NY... temporary safety zone on the St. Lawrence River, Alexandria Bay, New York. This safety zone is intended to restrict vessels from a portion of the St. Lawrence River during the Alexandria Bay Chamber of Commerce...

  15. Shallow system rejuvenation and magma discharge trends at Piton de la Fournaise volcano (La Réunion Island)

    NASA Astrophysics Data System (ADS)

    Coppola, D.; Di Muro, A.; Peltier, A.; Villeneuve, N.; Ferrazzini, V.; Favalli, M.; Bachèlery, P.; Gurioli, L.; Harris, A. J. L.; Moune, S.; Vlastélic, I.; Galle, B.; Arellano, S.; Aiuppa, A.

    2017-04-01

    Basaltic magma chambers are often characterized by emptying and refilling cycles that influence their evolution in space and time, and the associated eruptive activity. During April 2007, the largest historical eruption of Piton de la Fournaise (Île de La Réunion, France) drained the shallow plumbing system (> 240 ×106 m3) and resulted in collapse of the 1-km-wide summit crater. Following these major events, Piton de la Fournaise entered a seven-year long period of near-continuous deflation interrupted, in June 2014, by a new phase of significant inflation. By integrating multiple datasets (lava discharge rates, deformation, seismicity, gas flux, gas composition, and lava chemistry), we here show that the progressive migration of magma from a deeper (below sea level) storage zone gradually rejuvenated and pressurized the above-sea-level portion of the magmatic system consisting of a vertically-zoned network of relatively small-volume magma pockets. Continuous inflation provoked four small (< 5 ×106 m3) eruptions from vents located close to the summit cone and culminated, during August-October 2015, with a chemically zoned eruption that erupted 45 ± 15 ×106 m3 of lava. This two-month-long eruption evolved through (i) an initial phase of waning discharge, associated to the withdrawal of differentiated magma from the shallow system, into (ii) a month-long phase of increasing lava and SO2 fluxes at the effusive vent, coupled with CO2 enrichment of summit fumaroles, and involving emission of less differentiated lavas, to end with, (iii) three short-lived (∼2 day-long) pulses in lava and gas flux, coupled with arrival of cumulative olivine at the surface and deflation. The activity observed at Piton de la Fournaise in 2014 and 2015 points to a new model of shallow system rejuvenation and discharge, whereby continuous magma supply causes eruptions from increasingly deeper and larger magma storage zones. Downward depressurization continues until unloading of the

  16. Multiple plagioclase crystal populations identified by crystal size distribution and in situ chemical data: Implications for timescales of magma chamber processes associated with the 1915 eruption of Lassen Peak, CA

    USGS Publications Warehouse

    Salisbury, M.J.; Bohrson, W.A.; Clynne, M.A.; Ramos, F.C.; Hoskin, P.

    2008-01-01

    Products of the 1915 Lassen Peak eruption reveal evidence for a magma recharge-magma mixing event that may have catalyzed the eruption and from which four compositional members were identified: light dacite, black dacite, andesitic inclusion, and dark andesite. Crystal size distribution, textural, and in situ chemical (major and trace element and Sr isotope) data for plagioclase from these compositional products define three crystal populations that have distinct origins: phenocrysts (long axis > 0??5 mm) that typically have core An contents between 34 and 36 mol %, microphenocrysts (long axis between 0??1 and 0??5 mm) that have core An contents of 66-69, and microlites (long axis < 0??1 mm) with variable An core contents from 64 to 52. Phenocrysts are interpreted to form in an isolated dacitic magma chamber that experienced slow cooling. Based on textural, compositional, and isotopic data for the magma represented by the dacitic component, magma recharge was not an important process until just prior to the 1915 eruption. Average residence times for phenocrysts are in the range of centuries to millennia. Microphenocrysts formed in a hybrid layer that resulted from mixing between end-member reservoir dacite and recharge magma of basaltic andesite composition. High thermal contrast between the two end-member magmas led to relatively high degrees of undercooling, which resulted in faster crystal growth rates and acicular and swallowtail crystal habits. Some plagioclase phenocrysts from the dacitic chamber were incorporated into the hybrid layer and underwent dissolution-precipitation, seen in both crystal textures and rim compositions. Average microphenocryst residence times are of the order of months. Microlites may have formed in response to decompression and/ or syn-eruptive degassing as magma ascended from the chamber through the volcanic conduit. Chemical distinctions in plagioclase microlite An contents reveal that melt of the dark andesite was more mafic than

  17. Modelling the petrogenesis of high Rb/Sr silicic magmas

    USGS Publications Warehouse

    Halliday, A.N.; Davidson, J.P.; Hildreth, W.; Holden, P.

    1991-01-01

    Rhyolites can be highly evolved with Sr contents as low as 0.1 ppm and Rb Sr > 2,000. In contrast, granite batholiths are commonly comprised of rocks with Rb Sr 100. Mass-balance modelling of source compositions, differentiation and contamination using the trace-element geochemistry of granites are therefore commonly in error because of the failure to account for evolved differentiates that may have been erupted from the system. Rhyolitic magmas with very low Sr concentrations (???1 ppm) cannot be explained by any partial melting models involving typical crustal source compositions. The only plausible mechanism for the production of such rhyolites is Rayleigh fractional crystallization involving substantial volumes of cumulates. A variety of methods for modelling the differentiation of magmas with extremely high Rb/Sr is discussed. In each case it is concluded that the bulk partition coefficients for Sr have to be large. In the simplest models, the bulk DSr of the most evolved types is modelled as > 50. Evidence from phenocryst/glass/whole-rock concentrations supports high Sr partition coefficients in feldspars from high silica rhyolites. However, the low modal abundance of plagioclase commonly observed in such rocks is difficult to reconcile with such simple fractionation models of the observed trace-element trends. In certain cases, this may be because the apparent trace-element trend defined by the suite of cognetic rhyolites is the product of different batches of magma with separate differentiation histories accumulating in the magma chamber roof zone. ?? 1991.

  18. From rock to magma and back again: The evolution of temperature and deformation mechanism in conduit margin zones

    NASA Astrophysics Data System (ADS)

    Heap, Michael J.; Violay, Marie; Wadsworth, Fabian B.; Vasseur, Jérémie

    2017-04-01

    Explosive silicic volcanism is driven by gas overpressure in systems that are inefficient at outgassing. The zone at the margin of a volcanic conduit-thought to play an important role in the outgassing of magma and therefore pore pressure changes and explosivity-is the boundary through which heat is exchanged from the hot magma to the colder country rock. Using a simple heat transfer model, we first show that the isotherm for the glass transition temperature (whereat the glass within the groundmass transitions from a glass to an undercooled liquid) moves into the country rock when the magma within the conduit can stay hot, or into the conduit when the magma is quasi-stagnant and cools (on the centimetric scale over days to months). We then explore the influence of a migrating viscous boundary on compactive deformation micromechanisms in the conduit margin zone using high-pressure (effective pressure of 40 MPa), high-temperature (up to 800 °C) triaxial deformation experiments on porous andesite. Our experiments show that the micromechanism facilitating compaction in andesite is localised cataclastic pore collapse at all temperatures below the glass transition of the amorphous groundmass glass Tg (i.e., rock). In this regime, porosity is only reduced within the bands of crushed pores; the porosity outside the bands remains unchanged. Further, the strength of andesite is a positive function of temperature below the threshold Tg due to thermal expansion driven microcrack closure. The micromechanism driving compaction above Tg (i.e., magma) is the distributed viscous flow of the melt phase. In this regime, porosity loss is distributed and is accommodated by the widespread flattening and closure of pores. We find that viscous flow is much more efficient at reducing porosity than cataclastic pore collapse, and that it requires stresses much lower than those required to form bands of crushed pores. Our study therefore highlights that temperature excursions can result in a

  19. Magma transport and olivine crystallization depths in Kīlauea's east rift zone inferred from experimentally rehomogenized melt inclusions

    NASA Astrophysics Data System (ADS)

    Tuohy, Robin M.; Wallace, Paul J.; Loewen, Matthew W.; Swanson, Donald A.; Kent, Adam J. R.

    2016-07-01

    Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2 concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai'i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n = 10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n = 38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at <6 km depth, with the majority of olivine in the 1-3 km depth range. These depths are consistent with the interpretation that the Kīlauea Iki magma was supplied from Kīlauea's summit magma reservoir (∼2-5 km depth). In contrast, olivine from Kapoho, which was the rift zone extension of the Kīlauea Iki eruption, crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the summit

  20. Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: Evidence from the Panzhihua intrusion, SW China

    NASA Astrophysics Data System (ADS)

    Song, Xie-Yan; Qi, Hua-Wen; Hu, Rui-Zhong; Chen, Lie-Meng; Yu, Song-Yue; Zhang, Jia-Fei

    2013-03-01

    Panzhihua intrusion is one of the largest layered intrusions that hosts huge stratiform Fe-Ti oxide layers in the central part of the Emeishan large igneous province, SW China. Up to 60 m thick stratiform massive Fe-Ti oxide layers containing 85 modal% of magnetite and ilmenite and overlying magnetite gabbro compose cyclic units of the Lower Zone of the intrusion. The cyclic units of the Middle Zone consist of magnetite gabbro and overlying gabbro. In these cyclic units, contents of Fe2O3(t), TiO2 and Cr and Fe3+/Ti4+ ratio of the rocks decrease upward, Cr content of magnetite and forsterite percentage of olivine decrease as well. The Upper Zone consists of apatite gabbro characterized by enrichment of incompatible elements (e.g., 12-18 ppm La, 20-28 ppm Y) and increasing of Fe3+/Ti4+ ratio (from 1.3 to 2.3) upward. These features indicate that the Panzhihua intrusion was repeatedly recharged by more primitive magma and evolved magmas had been extracted. Calculations using MELTS indicate that extensive fractionation of olivine and clinopyroxene in deep level resulted in increasing Fe and Ti contents in the magma. When these Fe-Ti-enriched magmas were emplaced along the base of the Panzhihua intrusion, Fe-Ti oxides became an early crystallization phase, leading to a residual magma of lower density. We propose that the unusually thick stratiform Fe-Ti oxide layers resulted from coupling of gravity settling and sorting of the crystallized Fe-Ti oxides from Fe-Ti-enriched magmas and frequent magma replenishment along the floor of the magma chamber.

  1. Modeling Mantle Shear Zones, Melt Focusing and Stagnation - Are Non Volcanic Margins Really Magma Poor?

    NASA Astrophysics Data System (ADS)

    Lavier, L. L.; Muntener, O.

    2011-12-01

    Mantle peridotites from ocean-continent transition zones (OCT's) and ultraslow spreading ridges question the commonly held assumption of a simple link between mantle melting and MORB. 'Ancient' and partly refertilized mantle in rifts and ridges illustrates the distribution of the scale of upper mantle heterogeneity even on a local scale. Upwelling of partial melts that enter the conductive lithospheric mantle inevitably leads to freezing of the melt and metasomatized lithosphere. Field data and petrology demonstrates that ancient, thermally undisturbed, pyroxenite-veined subcontinental mantle blobs formed parts of the ocean floor next to thinned continental crust. Similar heterogeneity might be created in the oceanic lithosphere where the thermal boundary layer (TBM) is thick and veined with metasomatic assemblages. This cold, ancient, 'subcontinental domain' is separated by ductile shear zones (or some other form of permeability barriers) from an infiltrated ('hot') domain dominated by refertilized spinel and/or plagioclase peridotite. The footwall of these mantle shear zones display complex refertilization processes and high-temperature deformation. We present numerical models that illustrate the complex interplay of km-scale refertilization with active deformation and melt focusing on top of the mantle. Melt lubricated shear zones focus melt flow in shear fractures (melt bands) occurring along grain boundaries. Continuous uplift and cooling leads to crystallization, and crystal plastic deformation prevails in the subsolidus state. Below 800oC if water is present deformation by shearing of phyllosilicates may become prevalent. We develop physical boundary conditions for which stagnant melt beneath a permeability barrier remains trapped rather than being extracted to the surface via melt-filled fractures. We explore the parameter space for fracturing and drainage and development of anastomozing impermeable shear zones. Our models might be useful to constrain the

  2. Hydrogen, Oxygen and Silicon Isotope Systematics of Groundwater-Magma Interaction in Icelandic Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Kleine, B. I.; Stefansson, A.; Halldorsson, S. A.; Martin, W.; Barnes, J.; Jónasson, K.; Franzson, H.

    2016-12-01

    Magma often encounters groundwater (meteoric or seawater derived) when intruded into the crust. Magma-groundwater interactions result in the formation of hydrothermal fluids which can lead to contact metamorphism and elemental transport in the country rock. In fact, magma-hydrothermal fluid interaction (rather than magma-magmatic fluid interaction) may lead to classic contact metamorphic reactions. In order to explore the importance of hydrothermal fluid during contact metamorphism we use stable isotopes (δD, δ18O, δ30Si) from both active and extinct magma chambers and hydrothermal systems from across Iceland. Quartz grains from various hydrothermal systems, from crustal xenoliths from the Askja central volcano and from the Hafnarfjall pluton, as well as quartz grains associated with low-T zeolites were analysed for δ18O and δ30Si in-situ using SIMS. Whole rock material of these samples was analysed for δD values using a TCEA coupled to an IRMS. Our results indicate that low-T quartz (<150°C) are dominated by negative δ30Si values whereas positive δ30Si values prevail in quartz precipitated at higher T (>300°C). Combining the results from the analyses of δ18O and δD allows further division of samples into (i) seawater and/or rock dominated and (ii) meteoric water dominated hydrothermal systems. In order to isolate the effects of fluid-rock interaction, fluid source and formation temperature at the magma-groundwater contact, δD, δ18O and δ30Si values of rocks and fluids were modeled using the PHREEQC software. Comparison of analytical and model results shows that the isotopic compositions are influenced by multiple processes. In some cases, groundwater penetrates the contact zone and causes alteration at >400°C by groundwater-magma heat interaction. Other cases document "baked" contact zones without groundwater. Our analyses and modeling demonstrates that groundwater flow and permeability are crucial in setting the style of contact metamorphism

  3. Magma feeding system of Kutcharo and Mashu calderas, Hokkaido, Japan: Evidence of a common basaltic magma evolving into two distinct rock series

    NASA Astrophysics Data System (ADS)

    Miyagi, I.; Itoh, J.; Nguyen, H.

    2009-12-01

    Kutcharo and its adjacent Mashu volcanoes are located in NE Hokkaido, about 150 km west of the Kurile trench. The latest major activity of Kutcharo was 35 thousand years ago (termed KP I) produced about 50 km3 D.R.E, Mashu meanwhile became active after KP I. To understand the magma feeding system of adjoining but distinct Kutcharo (medium-K) and Mashu (low-K) volcanoes, we examined major and trace element, and Sr, Nd, and Pb isotopic compositions of whole rocks. We also studied phenocryst chemical zoning and chemical compositions of melt inclusions in phenocryst. The chemical results of melt inclusions show no distinction between medium- and low-K as being recognized in bulk rock chemistry of the volcanoes. Instead, the results form a smooth trend between low-K rock series and high-K rhyolitic melt end-member (as high as 5 wt. % K2O). There is no significant difference Sr, Nd and Pb isotopes between basalt and rhyolite suggesting genetic relationship. Moreover, the trace element distribution patterns show enrichment increasing gradually from the basalt to rhyolite via andesite indicating fractional crystallization evolution. Chemical zoning in plagioclase phenocryst in KP I (An 80-40) suggest that basaltic magma injected repeatedly into a voluminous felsic magma chamber of Kutcharo volcano. Chemical compositions of olivine phenocryst show that Kutcharo (Fo 86) was hotter as compared to Mashu (Fo 75). Application of MELTS program (Ghiorso and Sack, 1995) on composition of the basaltic melt end-member suggests that crystallization or subsequent re-melting of the basalt may produce medium- to high-K rhyolite melt, and mixing of the rhyolite with basalt may form the observed medium-K Kutcharo and low-K Mashu rock series. It is estimated that total volume of the basaltic magma supplied intermittently beneath the volcanoes was several folds to 10 times larger than the erupted rhyolite magma. And that the basalt injection may be more intensive beneath Kutcharo, leading to

  4. Timing magma migration through the Icelandic Crust: from the Moho to the surface

    NASA Astrophysics Data System (ADS)

    Mutch, E. J. F.; Maclennan, J.; Edmonds, M.

    2017-12-01

    The rate of magma transfer throughout the crust, particularly the amount of time it takes for melt to travel from the upper mantle to the surface, is largely unknown. Only one previous study has investigated the timescales of transport of crystals that were in equilibrium with mantle melts [1]. Despite estimating timescales on the order of months to years, the depths from which these crystals were entrained is poorly constrained. Borgarhraun is an exceptionally well-characterised picrite lava flow in the Theistareykir Volcanic System of Northern Iceland. The crystal-cargo of this lava includes macrocrysts of olivine (Fo86-90), plagioclase (An84-90), clinopyroxene and spinel with much rarer wehrlitic nodules. Crystallisation has been estimated to have taken place in deep sub-Moho magma chambers ( 24 km). Melt inclusions in primitive olivine macrocrysts (Fo88-90) are the result of mixing a suite of geochemically distinct mantle melts that were CO2 undersaturated [2-3]. Zoning in the macrocrysts holds a record of concurrent crystallisation and mixing of these variable mantle melts, as well as ascent through the crust prior to eruption [4]. We have conducted a multi-phase, multi-element approach by applying finite-element diffusion models to wehrlite olivines and plagioclase macrocrysts to constrain the timescales of crystal residence and magma ascent prior to eruption. Model results suggest that at 1250 °C the timescale of final ascent was on the order of 20-50 days, whilst longer-term crystal residence times can exceed 700 years. This analysis shows that magma can ascend from the base of the crust to the surface in under a couple of months, suggesting picrites such as Borgarhraun are the result of high speed conduits to sub-Moho magma chambers. These rapid ascent timescales have important implications for the physical modelling of primitive magmas as well as for understanding the architecture of magma-plumbing systems in the temporal domain. References [1] Ruprecht

  5. Geochemical Evolution of Pre-caldera Magmas at Caviahue Caldera, Neuquen Province, Argentina

    NASA Astrophysics Data System (ADS)

    Todd, E.; Ort, M.

    2004-12-01

    Caldera subsidence and glacial erosion at Caviahue, an upper Miocene to Pliocene volcanic center located in the Andean Southern Volcanic Zone (SVZ) at 37°50'S, has exposed a detailed cross-section of pre-caldera volcanic activity from the upper Miocene to the Pliocene. Caldera walls expose 500 to 800 m of ignimbrites, cinder cones, volcanic breccias, and lava flows, which range from 1 to nearly 100 m in thickness. Lavas erupted from the monogenetic pre-caldera volcanic field have compositions ranging from evolved basaltic andesites (4% MgO, 10% FeO) to trachytes. Strong Ni-depletion signatures and high Fe/Mg ratios indicate extensive geochemical modification of Caviahue lavas. Petrologic and geochemical analyses of major and trace element abundances in Caviahue lavas indicate cyclic fractionation and recharge in an upper-crustal magma chamber during pre-caldera volcanism. Compatible and incompatible element abundances (especially Ni, MgO, K, and Zr), plotted in stratigraphic succession, show at least six distinct fractionation trends occurred between emplacement of the oldest exposed lava flows and the eruption of the ignimbrite associated with caldera formation. Each fractionation trend is punctuated by the infusion of a volume of new, more primitive magma. Modeling of recharge events indicates that these introduced from less than half to several times the volume of the existing magma body of new, more primitive (but still evolved) magma to the chamber. Geochemical analyses of lavas deposited between intermittent periods of magma residence and volcanic eruptions show strong patterns of plagioclase, olivine, clinopyroxene, and oxide fractionation. Deposits recognized on the caldera floor thought to be associated with caldera collapse are correlated with extra-caldera trachytic ignimbrite deposits dated at 2.02 Ma, providing a late Pliocene age for caldera collapse. Post-caldera volcanism has been active until present, but has shifted to smaller polygenetic

  6. 77 FR 30443 - Safety Zone; Alexandria Bay Chamber of Commerce, St. Lawrence River, Alexandria Bay, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ...-AA00 Safety Zone; Alexandria Bay Chamber of Commerce, St. Lawrence River, Alexandria Bay, NY AGENCY... Commerce fireworks display. The safety zone established by this proposed rule is necessary to protect... spectators and vessels during the Alexandria Bay Chamber of Commerce fireworks display. Regulatory Analyses...

  7. Decoding magma plumbing and geochemical evolution beneath the Lastarria volcanic complex (Northern Chile)-Evidence for multiple magma storage regions

    NASA Astrophysics Data System (ADS)

    Stechern, André; Just, Tobias; Holtz, François; Blume-Oeste, Magdalena; Namur, Olivier

    2017-05-01

    The petrology of quaternary andesites and dacites from Lastarria volcano was investigated to reconstruct the magma plumbing and storage conditions beneath the volcano. The mineral phase compositions and whole-rock major and trace element compositions were used to constrain temperature, pressure and possible mechanisms for magma differentiation. The applied thermobarometric models include two-pyroxene thermobarometry, plagioclase-melt thermometry, amphibole composition thermobarometry, and Fe-Ti oxide thermo-oxybarometry. The overall temperature estimation is in the range 840 °C to 1060 °C. Calculated oxygen fugacity ranges between NNO to NNO + 1. Results of the geo-barometric calculations reveal multiple magma storage regions, with a distinct storage level in the uppermost crust ( 6.5-8 km depth), a broad zone at mid-crustal levels ( 10-18 km depth), and a likely deeper zone at intermediate to lower crustal levels (> 20 km depth). The highest temperatures in the range 940-1040 °C are recorded in minerals stored in the mid-crustal levels ( 10-18 km depth). The whole-rock compositions clearly indicate that magma mixing is the main parameter controlling the general differentiation trends. Complex zoning patterns and textures in the plagioclase phenocrysts confirm reheating and remobilization processes due to magma replenishment.

  8. Pressurized magma reservoir within the east rift zone of Kīlauea Volcano, Hawai`i: Evidence for relaxed stress changes from the 1975 Kalapana earthquake

    NASA Astrophysics Data System (ADS)

    Baker, Scott; Amelung, Falk

    2015-03-01

    We use 2000-2012 InSAR data from multiple satellites to investigate magma storage in Kīlauea's east rift zone (ERZ). The study period includes a surge in magma supply rate and intrusion-eruptions in 2007 and 2011. The Kupaianaha area inflated by ~5 cm prior to the 2007 intrusion and the Nāpau Crater area by ~10 cm following the 2011 intrusion. For the Nāpau Crater area, elastic modeling suggests an inflation source at 5 ± 2 km depth or more below sea level. The reservoir is located in the deeper section of the rift zone for which secular magma intrusion was inferred for the period following the 1975 Mw7.7 décollement earthquake. Reservoir pressurization suggests that in this section of the ERZ, extensional stress changes due to the earthquake have largely been compensated for and that this section is approaching its pre-1975 state. Reservoir pressurization also puts the molten core model into question for this section of Kīlauea's rift zone.

  9. Oxygen isotopes reveal crustal contamination and a large, still partially molten magma chamber in Chaîne des Puys (French Massif Central)

    NASA Astrophysics Data System (ADS)

    France, Lydéric; Demacon, Mickael; Gurenko, Andrey A.; Briot, Danielle

    2016-09-01

    The two main magmatic properties associated with explosive eruptions are high viscosity of silica-rich magmas and/or high volatile contents. Magmatic processes responsible for the genesis of such magmas are differentiation through crystallization, and crustal contamination (or assimilation) as this process has the potential to enhance crystallization and add volatiles to the initial budget. In the Chaîne des Puy series (French Massif Central), silica- and H2O-rich magmas were only emitted during the most recent eruptions (ca. 6-15 ka). Here, we use in situ measurements of oxygen isotopes in zircons from two of the main trachytic eruptions from the Chaîne des Puys to track the crustal contamination component in a sequence that was previously presented as an archetypal fractional crystallization series. Zircons from Sarcoui volcano and Puy de Dôme display homogeneous oxygen isotope compositions with δ18O = 5.6 ± 0.25‰ and 5.6 ± 0.3‰, respectively, and have therefore crystallized from homogeneous melts with δ18Omelt = 7.1 ± 0.3‰. Compared to mantle derived melts resulting from pure fractional crystallization (δ18Odif.mant. = 6.4 ± 0.4‰), those δ18Omelt values are enriched in 18O and support a significant role of crustal contamination in the genesis of silica-rich melts in the Chaîne des Puys. Assimilation-fractional-crystallization models highlight that the degree of contamination was probably restricted to 5.5-9.5% with Rcrystallization/Rassimilation varying between 8 and 14. The very strong intra-site homogeneity of the isotopic data highlights that magmas were well homogenized before eruption, and consequently that crustal contamination was not the trigger of silica-rich eruptions in the Chaîne des Puys. The exceptionally strong inter-site homogeneity of the isotopic data brings to light that Sarcoui volcano and Puy de Dôme were fed by a single large magma chamber. Our results, together with recent thermo-kinetic models and an experimental

  10. Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 1. Intereruption deformation, 1997–2008

    USGS Publications Warehouse

    Lu, Zhong; Dzurisin, Daniel; Biggs, Juliet; Wicks, Charles; McNutt, Steve

    2010-01-01

    Starting soon after the 1997 eruption at Okmok volcano and continuing until the start of the 2008 eruption, magma accumulated in a storage zone centered ~3.5 km beneath the caldera floor at a rate that varied with time. A Mogi-type point pressure source or finite sphere with a radius of 1 km provides an adequate fit to the deformation field portrayed in time-sequential interferometric synthetic aperture radar images. From the end of the 1997 eruption through summer 2004, magma storage increased by 3.2–4.5 × 107 m3, which corresponds to 75–85% of the magma volume erupted in 1997. Thereafter, the average magma supply rate decreased such that by 10 July 2008, 2 days before the start of the 2008 eruption, magma storage had increased by 3.7–5.2 × 107 m3 or 85–100% of the 1997 eruption volume. We propose that the supply rate decreased in response to the diminishing pressure gradient between the shallow storage zone and a deeper magma source region. Eventually the effects of continuing magma supply and vesiculation of stored magma caused a critical pressure threshold to be exceeded, triggering the 2008 eruption. A similar pattern of initially rapid inflation followed by oscillatory but generally slowing inflation was observed prior to the 1997 eruption. In both cases, withdrawal of magma during the eruptions depressurized the shallow storage zone, causing significant volcano-wide subsidence and initiating a new intereruption deformation cycle.

  11. Fast Spreading Mid Ocean Ridge Magma Chamber Processes: New Constraints from Hess Deep

    NASA Astrophysics Data System (ADS)

    MacLeod, C. J.; Lissenberg, J. C.; Howard, K. A.; Ildefonse, B.; Morris, A.; JC21 Scientific Party

    2011-12-01

    Hess Deep, on the northern edge of the Galapagos Microplate, is a rift valley located at the tip of the Cocos Nazca spreading centre. It is actively propagating westwards into young lithosphere formed at the East Pacific Rise (EPR). Previous studies have shown that the centre of Hess Deep, in the vicinity of a horst block termed the intra-rift ridge (IRR), is characterised by outcrops of gabbro and (minor) peridotite that form the most extensive and complete exposure yet known of lower crust and shallow mantle from a fast spreading mid-ocean ridge. In the absence of a total crustal penetration borehole, the tectonic window of Hess Deep provides our best opportunity to study fast-spreading magma chamber processes and lower crustal accretion by direct observation. Using the Isis ROV we collected high-resolution bathymetry and video data from an 11 sq km area of seafloor, from the nadir of Hess Deep (5400 mbsl) up to the IRR, and sampled outcrops from the region in detail. Of 145 samples in total 94 were gabbro (s.l.). Accounting as much as possible for the complex tectonic disruption of the region we have reassembled these gabbros into a stratigraphic section through an EPR lower crust that we estimate to have been originally about 4350 m thick. The upper half of this plutonic section, which includes a dyke to gabbro transition at the top, is more or less intact on the IRR; however the lower half has been tectonically thinned by active gravity driven faulting and is incomplete. Within this lower section we nevertheless believe we have representative samples from the entire interval. At its base, in addition to primitive olivine gabbro we also recovered dunite, troctolite and residual mantle harzburgite. We here present a synthesis of the petrography and whole rock and mineral compositions of the gabbros from the reconstructed lower crustal section, coupled with a quantitative (electron backscatter diffraction and magnetic) study of their petrofabrics. From this, in

  12. Constraints on the depth and geometry of the magma chamber of the Olympus Mons Volcano, Mars

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T.; Mouginis-Mark, Peter J.

    1990-01-01

    The summit caldera of the Olympus Mons volcano exhibits one of the clearest examples of tectonic processes associated with shield volcanism on Mars. The radial distance from the center of the transition from concentric ridges to concentric graben within the oldest crater provides a constraint on the geometry and depth of the subsurface magmatic reservoir at the time of subsidence. Here, researchers use this constraint to investigate the size, shape, and depth of the reservoir. Their approach consists of calculating radial surface stresses corresponding to the range of subsurface pressure distributions representing an evacuating magma chamber. They then compare stress patterns to the observed radial positions of concentric ridges and graben. The problem is solved by employing the finite element approach using the program TECTON.

  13. Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz

    PubMed Central

    Budd, David A.; Troll, Valentin R.; Deegan, Frances M.; Jolis, Ester M.; Smith, Victoria C.; Whitehouse, Martin J.; Harris, Chris; Freda, Carmela; Hilton, David R.; Halldórsson, Sæmundur A.; Bindeman, Ilya N.

    2017-01-01

    Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic δ18O values. Overall, Toba quartz crystals exhibit comparatively high δ18O values, up to 10.2‰, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in δ18O values in outermost growth zones compared to their cores, with values as low as 6.7‰ (maximum ∆core−rim = 1.8‰). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-δ18O component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-δ18O component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems. PMID:28120860

  14. Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz

    NASA Astrophysics Data System (ADS)

    Budd, David A.; Troll, Valentin R.; Deegan, Frances M.; Jolis, Ester M.; Smith, Victoria C.; Whitehouse, Martin J.; Harris, Chris; Freda, Carmela; Hilton, David R.; Halldórsson, Sæmundur A.; Bindeman, Ilya N.

    2017-01-01

    Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic δ18O values. Overall, Toba quartz crystals exhibit comparatively high δ18O values, up to 10.2‰, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in δ18O values in outermost growth zones compared to their cores, with values as low as 6.7‰ (maximum Δcore-rim = 1.8‰). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-δ18O component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-δ18O component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems.

  15. Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz.

    PubMed

    Budd, David A; Troll, Valentin R; Deegan, Frances M; Jolis, Ester M; Smith, Victoria C; Whitehouse, Martin J; Harris, Chris; Freda, Carmela; Hilton, David R; Halldórsson, Sæmundur A; Bindeman, Ilya N

    2017-01-25

    Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic δ 18 O values. Overall, Toba quartz crystals exhibit comparatively high δ 18 O values, up to 10.2‰, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in δ 18 O values in outermost growth zones compared to their cores, with values as low as 6.7‰ (maximum ∆ core-rim  = 1.8‰). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-δ 18 O component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-δ 18 O component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems.

  16. Crustal Structure of Active Deformation Zones in Africa: Implications for Global Crustal Processes

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Keir, D.; Bastow, I. D.; Whaler, K.; Hammond, J. O. S.; Ayele, A.; Miller, M. S.; Tiberi, C.; Hautot, S.

    2017-12-01

    The Cenozoic East African rift (EAR), Cameroon Volcanic Line (CVL), and Atlas Mountains formed on the slow-moving African continent, which last experienced orogeny during the Pan-African. We synthesize primarily geophysical data to evaluate the role of magmatism in shaping Africa's crust. In young magmatic rift zones, melt and volatiles migrate from the asthenosphere to gas-rich magma reservoirs at the Moho, altering crustal composition and reducing strength. Within the southernmost Eastern rift, the crust comprises 20% new magmatic material ponded in the lower crust and intruded as sills and dikes at shallower depths. In the Main Ethiopian Rift, intrusions comprise 30% of the crust below axial zones of dike-dominated extension. In the incipient rupture zones of the Afar rift, magma intrusions fed from crustal magma chambers beneath segment centers create new columns of mafic crust, as along slow-spreading ridges. Our comparisons suggest that transitional crust, including seaward dipping sequences, is created as progressively smaller screens of continental crust are heated and weakened by magma intrusion into 15-20 km thick crust. In the 30 Ma Recent CVL, which lacks a hot spot age progression, extensional forces are small, inhibiting the creation and rise of magma into the crust. In the Atlas orogen, localized magmatism follows the strike of the Atlas Mountains from the Canary Islands hot spot toward the Alboran Sea. CVL and Atlas magmatism has had minimal impact on crustal structure. Our syntheses show that magma and volatiles are migrating from the asthenosphere through the plates, modifying rheology, and contributing significantly to global carbon and water fluxes.

  17. Magma Mixing: Magmatic Enclaves in Morne Micotrin, Dominica

    NASA Astrophysics Data System (ADS)

    Hickernell, S.; Frey, H. M.; Manon, M. R. F.; Waters, L. E.

    2017-12-01

    Magmatic enclaves in volcanic rocks provide direct evidence of magma mingling/mixing within a magma reservoir and may reinvigorate the system and trigger eruption, as documented at the Soufriere Hills in Montserrat. Lava domes on the neighboring island of Dominica also contain multiple enclave populations and may be evidence for similar magma chamber processes. The central dome of Micotrin is at the head of the Roseau Valley, which was filled with 3 km3 of pyroclastic deposits from eruptions spanning 65 - 25 ka. There appear to be two distinct types of enclaves in the crystal-rich Micotrin andesites (60 wt% SiO2), fine-grained and coarse-grained. Fine-grained mafic enclaves (52 wt% SiO2) vary in size from 1 to 15 cm in diameter, whereas the coarse-grained enclaves are generally larger and range from 3-20 cm. Fine-grained enclaves are saturated in plag (35%) + opx (35%) + cpx (20%) + oxides (10%). Average pyroxenes are 0.01 to 0.02 cm in size, whereas plagioclase averages 0.05 cm and up to 0.1 cm. The texture of the fine-grained enclaves is cumulate-like, devoid of microlites and matrix glass. Coarse-grained enclaves lack cpx and have different modal abundances and textures: plag (75%) + opx (10%) + oxides (5%) + plag microlites (10%). Plagioclase are 0.1 cm in size and orthopyroxenes average 0.05 cm. The coarse-grained enclaves are highly vesicular, a notable difference from the host as well as the fine-grained enclaves. The boundaries of both the fine- and coarse-grained enclaves are quite sharp and distinct and there do not appear to be enclave minerals disaggregated in the host rock. Temperatures were determined by two oxides. The fine-grained enclaves had two populations of magnetite, yielding 847 + 21° and 920 + 17°C. The coarse-grained enclave was 890 + 42 °C, but the oxides were extensively exsolved. Plagioclase composition in both coarse and fine-grained samples was comparable, ranging from An50 to An80. Despite compositional similarity the textures of

  18. Geological Model of Supercritical Geothermal Reservoir on the Top of the Magma Chamber

    NASA Astrophysics Data System (ADS)

    Tsuchiya, N.

    2017-12-01

    model for "Beyond Brittle" and "Supercritical" geothermal reservoir, which is located at the top of magma chamber of granite-porphyry system, will be revealed.

  19. Along-strike variability of primitive magmas (major and volatile elements) inferred from olivine-hosted melt inclusions, southernmost Andean Southern Volcanic Zone, Chile

    NASA Astrophysics Data System (ADS)

    Weller, D. J.; Stern, C. R.

    2018-01-01

    Glass compositions of melt inclusions in olivine phenocrysts found in tephras derived from explosive eruptions of the four volcanoes along the volcanic front of the southernmost Andean Southern Volcanic Zone (SSVZ) are used to constrain primitive magma compositions and melt generation parameters. Primitive magmas from Hudson, Macá, and Melimoyu have similar compositions and are formed by low degrees (8-18%) of partial melting. Compared to these other three centers, primitive magmas from Mentolat have higher Al2O3 and lower MgO, TiO2 and other incompatible minor elements, and are generated by somewhat higher degrees (12-20%) of partial melting. The differences in the estimated primitive parental magma compositions between Mentolat and the other three volcanic centers are consistent with difference in the more evolved magmas erupted from these centers, Mentolat magmas having higher Al2O3 and lower MgO, TiO2 and other incompatible minor element contents, suggesting that these differences are controlled by melting processes in the mantle source region above the subducted oceanic plate. Parental magma S = 1430-594 and Cl = 777-125 (μg/g) contents of Hudson, Macá, and Melimoyu are similar to other volcanoes further north in the SVZ. However, Mentolat primitive magmas have notably higher concentrations of S = 2656-1227 and Cl = 1078-704 (μg/g). The observed along-arc changes in parental magma chemistry may be due to the close proximity below Mentolat of the subducted Guamblin Fracture Zone that could efficiently transport hydrous mineral phases, seawater, and sediment into the mantle, driving enhanced volatile fluxed melting beneath this center compared to the others. Table S2. Olivine-hosted melt inclusion compositions, host-olivine compositions, and the post-entrapment crystallization corrected melt inclusion compositions. Table S3. Olivine-hosted melt inclusion modeling information. Table S4. Major element compositions of the fractionation corrected melt inclusion

  20. Magma transport and olivine crystallization depths in Kīlauea’s East Rift Zone inferred from experimentally rehomogenized melt inclusions

    USGS Publications Warehouse

    Tuohy, Robin M; Wallace, Paul J.; Loewen, Matthew W; Swanson, Don; Kent, Adam J R

    2016-01-01

    Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai‘i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n=10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n=38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at <6 km depth, with the majority of olivine in the 1-3 km depth range. These depths are consistent with the interpretation that the Kīlauea Iki magma was supplied from Kīlauea’s summit magma reservoir (∼2-5 km depth). In contrast, olivine from Kapoho, which was the rift zone extension of the Kīlauea Iki eruption, crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the

  1. Complexities in Shallow Magma Transport at Kilauea (Invited)

    NASA Astrophysics Data System (ADS)

    Swanson, D. A.

    2013-12-01

    The standard model of Kilauea's shallow plumbing system includes magma storage under the caldera and conduits in the southwest rift zone (SWRZ) and the east rift zone (ERZ). As a field geologist, I find that seemingly aberrant locations and trends of some eruptive vents indicate complexities in shallow magma transport not addressed by the standard model. This model is not wrong but instead incomplete, because it does not account for the development of offshoots from the main plumbing. These offshoots supply magma to the surface at places that tell us much about the complicated stress system within the volcano. Perhaps most readily grasped are fissures peripheral to the north and south sides of the caldera. Somehow magma can apparently be injected into caldera-bounding faults from the summit reservoir complex, but the process and pathways are unclear. Of more importance is the presence of fissures with ENE trends on the east side of the caldera, including Kilauea Iki. Is this a rift zone that forms an acute angle with the ERZ? I think there is another explanation: the main part of the ERZ has migrated ~5 km SSE during the past few tens of thousands of years owing to seaward movement of the south flank, but older parts of the rift zone can be reactivated. The fissures east of the caldera have the ERZ trend and may record such reactivation; this interpretation includes the location of the largest eruption (15th century) known from Kilauea. Whether or not this interpretation has validity, the question remains: what changes in the plumbing system allow magma to erupt east of the caldera? The SWRZ can be divided into two sections, the SWRZ proper and the seismically active part (SASWRZ) southeast of the SWRZ. The total width of both sections is ~4 km. The SWRZ might be migrating SSE, as is the ERZ. Fissures in the SWRZ proper trend SW. Fissures in the SASWRZ, however, have ENE trends like that of the ERZ, although, because of en echelon offsets, the fissure zone itself

  2. Volcanology: Look up for magma insights

    USGS Publications Warehouse

    Segall, Paul; Anderson, Kyle

    2014-01-01

    Volcanic plumes can be hazardous to aircraft. A correlation between plume height and ground deformation during an eruption of Grímsvötn Volcano, Iceland, allows us to peer into the properties of the magma chamber and may improve eruption forecasts.

  3. Interaction of coeval felsic and mafic magmas from the Kanker granite, Pithora region, Bastar Craton, Central India

    NASA Astrophysics Data System (ADS)

    Elangovan, R.; Krishna, Kumar; Vishwakarma, Neeraj; Hari, K. R.; Ram Mohan, M.

    2017-10-01

    Field and petrographic studies are carried out to characterize the interactions of mafic and felsic magmas from Pithora region of the northeastern part of the Bastar Craton. The MMEs, syn-plutonic mafic dykes, cuspate contacts, magmatic flow textures, mingling and hybridization suggest the coeval emplacement of end member magmas. Petrographic evidences such as disequilibrium assemblages, resorption textures, quartz ocelli, rapakivi and poikilitic textures suggest magma mingling and mixing phenomena. Such features of mingling and mixing of the felsic and mafic magma manifest the magma chamber processes. Introduction of mafic magmas into the felsic magmas before initiation of crystallization of the latter, results in hybrid magmas under the influence of thermal and chemical exchange. The mechanical exchange occurs between the coexisting magmas due to viscosity contrast, if the mafic magma enters slightly later into the magma chamber, then the felsic magma starts to crystallize. Blobs of mafic magma form as MMEs in the felsic magma and they scatter throughout the pluton due to convection. At a later stage, if mafic magma enters the system after partial crystallization of felsic phase, mechanical interaction between the magmas leads to the formation of fragmented dyke or syn-plutonic mafic dyke. All these features are well-documented in the study area. Field and petrographic evidences suggest that the textural variations from Pithora region of Bastar Craton are the outcome of magma mingling, mixing and hybridization processes.

  4. Caldera resurgence driven by magma viscosity contrasts.

    PubMed

    Galetto, Federico; Acocella, Valerio; Caricchi, Luca

    2017-11-24

    Calderas are impressive volcanic depressions commonly produced by major eruptions. Equally impressive is the uplift of the caldera floor that may follow, dubbed caldera resurgence, resulting from magma accumulation and accompanied by minor eruptions. Why magma accumulates, driving resurgence instead of feeding large eruptions, is one of the least understood processes in volcanology. Here we use thermal and experimental models to define the conditions promoting resurgence. Thermal modelling suggests that a magma reservoir develops a growing transition zone with relatively low viscosity contrast with respect to any newly injected magma. Experiments show that this viscosity contrast provides a rheological barrier, impeding the propagation through dikes of the new injected magma, which stagnates and promotes resurgence. In explaining resurgence and its related features, we provide the theoretical background to account for the transition from magma eruption to accumulation, which is essential not only to develop resurgence, but also large magma reservoirs.

  5. Anatexis at the roof of an oceanic magma chamber at IODP Site 1256 (equatorial Pacific): an experimental study

    NASA Astrophysics Data System (ADS)

    Erdmann, Martin; Fischer, Lennart A.; France, Lydéric; Zhang, Chao; Godard, Marguerite; Koepke, Jürgen

    2015-04-01

    Replenished axial melt lenses at fast-spreading mid-oceanic ridges may move upward and intrude into the overlying hydrothermally altered sheeted dikes, resulting in high-grade contact metamorphism with the potential to trigger anatexis in the roof rocks. Assumed products of this process are anatectic melts of felsic composition and granoblastic, two-pyroxene hornfels, representing the residue after partial melting. Integrated Ocean Drilling Program Expeditions 309, 312, and 335 at Site 1256 (eastern equatorial Pacific) sampled such a fossilized oceanic magma chamber. In this study, we simulated magma chamber roof rock anatectic processes by performing partial melting experiments using six different protoliths from the Site 1256 sheeted dike complex, spanning a lithological range from poorly to strongly altered basalts to partially or fully recrystallized granoblastic hornfels. Results show that extensively altered starting material lacking primary magmatic minerals cannot reproduce the chemistry of natural felsic rocks recovered in ridge environments, especially elements sensitive to hydrothermal alteration (e.g., K, Cl). Natural geochemical trends are reproduced through partial melting of moderately altered basalts from the lower sheeted dikes. Two-pyroxene hornfels, the assumed residue, were reproduced only at low melting degrees (<20 vol%). The overall amphibole absence in the experiments confirms the natural observation that amphibole is not produced during peak metamorphism. Comparing experimental products with the natural equivalents reveals that water activity ( aH2O) was significantly reduced during anatectic processes, mainly based on lower melt aluminum oxide and lower plagioclase anorthite content at lower aH2O. High silica melt at the expected temperature (1000-1050 °C; peak thermal overprint of two-pyroxene hornfels) could only be reproduced in the experimental series performed at aH2O = 0.1.

  6. Numerical simulation of plagioclase rim growth during magma ascent at Bezymianny Volcano, Kamchatka

    NASA Astrophysics Data System (ADS)

    Gorokhova, N. V.; Melnik, O. E.; Plechov, P. Yu.; Shcherbakov, V. D.

    2013-08-01

    Slow CaAl-NaSi interdiffusion in plagioclase crystals preserves chemical zoning of plagioclase in detail, which, along with strong dependence of anorthite content in plagioclase on melt composition, pressure, and temperature, make this mineral an important source of information on magma processes. A numerical model of zoned crystal growth is developed in the paper. The model is based on equations of multicomponent diffusion with diagonal cross-component diffusion terms and accounts for mass conservation on the melt-crystal interface and growth rate controlled by undercooling. The model is applied to the data of plagioclase rim zoning from several recent Bezymianny Volcano (Kamchatka) eruptions. We show that an equilibrium growth model cannot explain crystallization of naturally observed plagioclase during magma ascent. The developed non-equilibrium model reproduced natural plagioclase zoning and allowed magma ascent rates to be constrained. Matching of natural and simulated zoning suggests ascent from 100 to 50 MPa during 15-20 days. Magma ascent rate from 50 MPa to the surface varies from eruption to eruption: plagioclase zoning from the December 2006 eruption suggests ascent to the surface in less than 1 day, whereas plagioclase zoning from March 2000 and May 2007 eruptions are better explained by magma ascent over periods of more than 30 days). Based on comparison of diffusion coefficients for individual elements a mechanism of atomic diffusion during plagioclase crystallization is proposed.

  7. Influence of stretching and density contrasts on the chemical evolution of continental magmas: An example from the Ivrea-Verbano Zone

    USGS Publications Warehouse

    Sinigoi, S.; Quick, J.E.; Mayer, A.; Budahn, J.

    1996-01-01

    The southern Ivrea-Verbano Zone of the Italian Western Alps contains a huge mafic complex that intruded high-grade metamorphic rocks while they were resident in the lower crust. Geologic mapping and chemical variations of the igneous body were used to study the evolution of underplated crust. Slivers of crustal rocks (septa) interlayered with igneous mafic rocks are concentrated in a narrow zone deep in the complex (Paragneiss-bearing Belt) and show evidence of advanced degrees of partial melting. Variations of rare-earth-element patterns and Sr isotope composition of the igneous rocks across the sequence are consistent with increasing crustal contamination approaching the septa. Therefore, the Paragneiss-bearing Belt is considered representative of an "assimilation region" where in-situ interaction between mantle- and crust-derived magmas resulted in production of hybrid melts. Buoyancy caused upwards migration of the hybrid melts that incorporated the last septa and were stored at higher levels, feeding the Upper Mafic Complex. Synmagmatic stretching of the assimilation region facilitated mixing and homogenization of melts. Chemical variations of granitoids extracted from the septa show that deep septa are more depleted than shallow ones. This suggests that the first incorporated septa were denser than the later ones, as required by the high density of the first-injected mafic magmas. It is inferred that density contrasts between mafic melts and crustal rocks play a crucial role for the processes of contamination of continental magmas. In thick under- plated crust, the extraction of early felsic/hybrid melts from the lower crust may be required to increase the density of the lower crust and to allow the later mafic magmas to penetrate higher crustal levels.

  8. The magma plumbing system in the Mariana Trough back-arc basin at 18° N

    NASA Astrophysics Data System (ADS)

    Lai, Zhiqing; Zhao, Guangtao; Han, Zongzhu; Huang, Bo; Li, Min; Tian, Liyan; Liu, Bo; Bu, Xuejiao

    2018-04-01

    Mafic magmas are common in back-arc basin, once stalled in the crust, these magmas may undergo different evolution. In this paper, compositional and textural variations of plagioclase as well as mineral-melt geothermobarometry are presented for basalts erupted from the central Mariana Trough (CMT). These data reveal crystallization conditions and we attempt a reconstruction of the magma plumbing system of the CMT. Plagioclase megacrysts, phenocrysts, microphenocrysts, microlites, olivine, spinel, and clinopyroxene have been recognized in basalt samples, using BSE images and compositional features. The last three minerals are homogeneous as microphenocrysts. Mineral-melt barometry indicates that plagioclase crystals crystallized and eventually grew into phenocrysts and megacrysts in mush zone with depth of 5-9 km, in which the normal zoning plagioclases crystallized in the interval of various batches of basic magma recharging. Plagioclase megacrysts and phenocrysts were dissolved and/or resorbed, when new basic magmas injected into the mush zone near Moho depth. It is inferred that magma extracted from the mush zone, and adiabatically ascended via different pathways. Some basaltic magmas underwent plagioclase and clinopyroxene microphenocrysts crystallization in low-pressure before eruption. Plagioclase microlites and outermost rims probably crystallized after eruption.

  9. Successive mixing and mingling of magmas in a plutonic complex of Northeast Brazil

    NASA Astrophysics Data System (ADS)

    Neves, S. P.; Vauchez, A.

    1995-02-01

    Field and petrographic evidence together with major element geochemistry suggest that mixing and mingling of magmas of contrasting compositions were important petrogenetic processes in the Fazenda Nova/Serra da Japeganga plutonic complex of Northeast Brazil. The complex was emplaced at pressures of 300-500 MPa in amphibolite facies metamorphic rocks of Neoproterozoic age and consists of three main rock types: (1) coarse-grained granite; (2) porphyritic granite and (3) diorite to quartz-monzodiorite. The latter two make up the Fazenda Nova batholith which is located on the northwestern side of the sinistral, NE-trending, Fazenda Nova strike-slip shear zone. NE-plunging stretching lineations in the shear zone suggest that this batholith represents an uplifted, and therefore deeper, portion of the complex. The structure of the complex reflects the stratigraphy in a magma chamber, with the porphyritic granite above the diorite and below the coarse-grained granite. The porphyritic granite has a uniform composition, intermediate in mafic mineral content, quartz, and majorelements between the coarse-grained granite and the diorite. It is free of disequilibrium mineral assemblages, and locally displays gradational contacts with the overlain coarse-grained granite. Most elements display linear correlation with SiO 2 in Harker diagrams. These features are interpreted as resulting from mixing of almost crystal-free felsic and intermediate magmas. Fluid dynamic calculations using the coarse-grained granite and the silica-poorest diorite as end-members in the mixing process show that mechanical mixing was possible, and thermal modelling suggests that the formation of an homogeneous hybrid may have been achieved in less than 50,000 yr. The diorites contain corroded K-feldspar megacrysts, and range in composition from low to relatively high silica contents, partly overlapping with the porphyritic granite. This suggests that a new mixing event occurred during the crystallisation

  10. Sphene-centered ocellar texture as a petrological tool to unveil the mechanism facilitating magma mixing

    NASA Astrophysics Data System (ADS)

    Gogoi, Bibhuti; Saikia, Ashima; Ahmad, Mansoor

    2015-04-01

    The sphene-centered ocellar texture is a unique magma mixing feature characterized by leucocratic ocelli of sphene enclosed in a biotite/hornblende-rich matrix (Hibbard, 1991). The ocelli usually consist of plagioclase, K-feldspar and quartz with sphene crystals at its centre. Although geochemical and isotopic data provide concrete evidence for the interaction between two compositionally distinct magmas, the exact processes by which mixing takes place is yet uncertain. So, textural analysis can be used to decipher the behaviour of two disparate magmas during mixing. Presented work is being carried out on the sphene ocelli, occurring in hybrid rocks of the Nimchak Granite Pluton (NGP), to understand its formation while two compositionally different magmas come in contact and try to equilibrate. The NGP is ca. 1 km2in extent which has been extensively intruded by number of mafic dykes exhibiting well preserved magma mixing and mingling structures and textures in the Bathani Volcano-Sedimentary Sequence (BVSS) located on the northern fringe of the Proterozoic Chotanagpur Granite Gneiss Complex (CGGC) of eastern Indian Shield. From petrographic and mineral chemical studies we infer that when basaltic magma intruded the crystallizing granite magma chamber, initially the two compositionally different magmas existed as separate entities. The first interaction that took place between the two phases is diffusion of heat from the relatively hotter mafic magma to the colder felsic one followed by diffusion of elemental components like K and incompatible elements from the felsic to the mafic domain. Once thermal equilibrium was attained between the mafic and felsic melts, the rheological contrasts between the two phases were greatly reduced. This allowed the felsic magma to back-vein into the mafic magma. The influx of back-veined felsic melt into the mafic system disrupted the equilibrium conditions in the mafic domain wherein minerals like amphibole, plagioclase and biotite

  11. Magma Mixing, Mingling and Its Accompanying Isotopic and Elemental Partitioning: Records from Titanites in Guojialing-type Granodiorites and Dioritic Enclaves, Jiaodong, North China

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Yang, K. F.; Fan, H. R.; Liu, X.

    2016-12-01

    The grain-scale textural and in-situ compositional analyses on accessory minerals (such as titanite, rutile, apatite, monazite, etc.) have recently been a hot topic for geologists, through which a detailed information on magmatic, metamorphic or hydrothermal process can be extracted. As an attempt to unravel the petrogenesis of Early Cretaceous Guojialing-type granodiorites and their bearing dioritic enclaves, we accomplished an integrated geochronological and geochemical study on titanites within these rocks. Three types of titanites, with distinguishable textural and geochemical features, are identified. G-type titanites (from granodiorites) and E-type-I titanites (from plagioclase-rich dioritic enclaves) yield identical U-Pb age of 130 Ma, but reveal distinct back-scattered electron (BSE) zonings. G-type titanites are characterized by oscillatory zonings whereas E-type-I titanites are marked by core-mantle-rim zonings, exhibiting drastic but contrary variation trends for several key elements (such as LREEs, Zr, Hf and F) among their transition BSE zones. These two types of titanites are interpreted to crystallize coevally, and record a notable temperature and compositional change of two corresponding melts, as a response to magma mixing. E-type-II titanites (from plagioclase-poor dioritic enclaves) yield a relatively younger U-Pb age at 128 Ma, and show typical interstitial growth with narrower and lower range of Zr, total REEs contents, but higher F content and Nb/Ta ratios. Such titanites are perceived to record late-stage mingling, during which F-rich and REE-poor hybrid granodioritic magma squeezed into the incompletely consolidated dioritic enclaves with accompanying fluid-rock interaction. Unlike the dramatic elemental changes in these differentiated titanites, in-situ Nd isotopic compositions are relatively homogeneous, which in our view is a good sign of showing that isotopic equilibrium among two magma systems was more easily reached compared to

  12. Why does the Size of the Laacher See Magma Chamber and its Caldera Size not go together? - New Findings with regard to Active Tectonics in the East Eifel Volcanic Field

    NASA Astrophysics Data System (ADS)

    Schreiber, Ulrich; Berberich, Gabriele

    2013-04-01

    The East Eifel's early Cenozoic tectonic development is characterized by a main stress field trending in NW-SE direction, causing a re-organisation of postvariscan dextral strike-slip faults in approximately 105° direction, the formation of the tectonic depression of the Neuwieder Basin and small-scale transtension zones. The 105° trending strike-slip faults are staggered in equidistant intervals of several kilometers. This system continues from the Eifel to the North into the Ruhr Carboniferous, where it has been recognized due to the extensive underground coal mining first (Loos et al. 1999). Our recent research on analyses of tectonics in quarries, quartz/ore-dykes, mapping of minerals springs and gas analyses, has revealed a prominent 105° trending strike-slip fault cutting the South of Laacher See ("Laacher See Strike-slip Fault"). Within the Laacher See caldera, the "Laacher See Strike-slip Fault" can be tracked by a wide mofette zone that was mapped with a self-propelled submarine. At present, the "Laacher See Strike-slip Fault" can be tracked from Holzmühlheim in the West, Spessart, Wehrer Kessel, Laacher See, Plaidt to Bad Ems and furthermore to the South-East. Along this direction five intersections points of the "Laacher See Strike-slip Fault" with the Lahn River are documented, creating small-scale mofette fields in the Lahn River. In the Neuwied Basin, near Plaidt, the "Laacher See Strike-slip Fault" is intersected by the NW-SE-trending Ochtendung Fault. Regional strike-slip faults in combination with block rotation and uplift could have provided the voids for the magma chambers of the Wehrer Kessel and the Laacher See Caldera. Holohan et al. (2005) showed in analogue models that regional strike-slip regimes (including Riedel shears, chamber-localised graben fault, and a partial Y-shear) play a decisive role for caldera formation. In the East Eifel tectonic movement rates of active faults are approx. 1 mm/year (Meyer & Stets 2002, Cambell et al

  13. Rapid Crystallization of the Bishop Magma

    NASA Astrophysics Data System (ADS)

    Gualda, G. A.; Anderson, A. T.; Sutton, S. R.

    2007-12-01

    Substantial effort has been made to understand the longevity of rhyolitic magmas, and particular attention has been paid to the systems in the Long Valley area (California). Recent geochronological data suggest discrete magma bodies that existed for hundreds of thousands of years. Zircon crystallization ages for the Bishop Tuff span 100-200 ka, and were interpreted to reflect slow crystallization of a liquid-rich magma. Here we use the diffusional relaxation of Ti zoning in quartz to investigate the longevity of the Bishop magma. We have used such an approach to show the short timescales of crystallization of Ti-rich rims on quartz from early- erupted Bishop Tuff. We have now recognized Ti-rich cores in quartz that can be used to derive the timescales of their crystallization. We studied four samples of the early-erupted Bishop. Hand-picked crystals were mounted on glass slides and polished. Cathodoluminescence (CL) images were obtained using the electron microprobe at the University of Chicago. Ti zoning was documented using the GeoSoilEnviroCARS x-ray microprobe at the Advanced Photon Source (Argonne National Lab). Quartz crystals in all 4 samples include up to 3 Ti-bearing zones: a central core (50-100 μm in diameter, ca. 50 ppm Ti), a volumetrically predominant interior (~40 ppm Ti), and in some crystals a 50-100 μm thick rim (50 ppm Ti). Maximum estimates of core residence times were calculated using a 1D diffusion model, as the time needed to smooth an infinitely steep profile to fit the observed profile. Surprisingly, even for the largest crystals studied - ca. 2 mm in diameter - core residence times are less than 1 ka. Calculated growth rates imply that even cm-sized crystals crystallized in less than 10 ka. Crystal size distribution data show that crystals larger than 3 mm are exceedingly rare, such that the important inference is that the bulk of the crystallization of the early-erupted Bishop magma occurred in only a few thousand years. This timescale

  14. Magma-tectonic interactions in Kīlauea's Southwest Rift Zone in 2006 through coupled geodetic/seismological analysis

    NASA Astrophysics Data System (ADS)

    Wauthier, C.; Roman, D. C.; Poland, M. P.

    2015-12-01

    For much of the first 20 years of Kīlauea's 1983-present Pu'u 'Ō'ō eruption, deformation was characterized by subsidence at the volcano's summit and along both the East Rift Zone (ERZ) and Southwest Rift Zone (SWRZ). At the end of 2003, however, Kīlauea's summit began a 4-year period of inflation due to a surge in magma supply to the volcano. In 2006, the SWRZ also experienced atypical inflation, which was last observed in 1981-82 during a series of dike intrusions. To investigate the active magma sources and their interactions with faulting in the SWRZ during 2006, we integrate contemporary geodetic data from InSAR and GPS with double-couple fault-plane solutions for volcano-tectonic earthquakes and Coulomb stress modeling. According to the rate of deformation measured in daily GPS data, two distinct periods can be defined, spanning January to 15 March 2006 (period 1) and 16 March to 30 September 2006 (period 2). Geodetic models suggest that, during period 1, deformation, due to pressurization of magma in a vertical prolate-spheroidal conduit, in the south caldera area. In addition, a major seismic swarm occurred in both the SWRZ and ERZ. Our preliminary results also suggest that, during period 2, magma was still overpressurizing the same prolate-spheroid but a subhorizontal sill also intruded further to the southwest in the seismic SWRZ (SSWRZ). The beginning of period 2 also corresponds to a switch from subsidence to inflation of the SWRZ. Faulting in the upper ERZ is primarily strike-slip, with no obvious change in FPS orientation between periods 1 and 2. In contrast, faulting in the upper SSWRZ occurs as dip-slip motion on near-vertical faults. SSWRZ FPS show a mix of orientations including NW- and NE-striking faults, which along with relative earthquake locations, suggest a series of right-stepping fault segments, particularly during period 2. Calculated Coulomb stress changes indicate that faulting in the upper SSWRZ may result from stresses produced by

  15. Buffered and unbuffered dike emplacement on Earth and Venus - Implications for magma reservoir size, depth, and rate of magma replenishment

    NASA Technical Reports Server (NTRS)

    Parfitt, E. A.; Head, J. W., III

    1993-01-01

    Models of the emplacement of lateral dikes from magma chambers under constant (buffered) driving pressure conditions and declining (unbuffered) driving pressure conditions indicate that the two pressure scenarios lead to distinctly different styles of dike emplacement. In the unbuffered case, the lengths and widths of laterally emplaced dikes will be severely limited and the dike lengths will be highly dependent on chamber size; this dependence suggests that average dike length can be used to infer the dimensions of the source magma reservoir. On Earth, the characteristics of many mafic-dike swarms suggest that they were emplaced in buffered conditions (e.g., the Mackenzie dike swarm in Canada and some dikes within the Scottish Tertiary). On Venus, the distinctive radial fractures and graben surrounding circular to oval features and edifices on many size scales and extending for hundreds to over a thousand km are candidates for dike emplacement in buffered conditions.

  16. Extremely High Magma Emplacement Rates Recorded in the Golden Horn Batholith, WA

    NASA Astrophysics Data System (ADS)

    Eddy, M. P.; Bowring, S. A.; Tepper, J. H.; Miller, R. B.

    2015-12-01

    High SiO2 rhyolites emplaced during 'super-eruptions' demonstrate that large volumes of eruptible magma can exist in the upper crust. However, the timescale over which the magma reservoirs that source these eruptions are built remains controversial. Thermal models suggest that magma emplacement rates need to be > 0.005-0.01 km3/yr in order to accumulate enough eruptible magma to source a 'super-eruption'. Yet, these rates are higher than the time-averaged rates (< 0.001 km3/yr) for nearly all well-studied granitoid plutonic complexes. This disparity contradicts geologic evidence suggesting that the high SiO2 rhyolites emplaced during 'super-eruptions' are extracted from crystal rich magma chambers that should be preserved in the geologic record as granodioritic and granitic plutons. We quantify time-averaged magma emplacement rates for the upper crustal Golden Horn batholith, WA based on new geologic mapping and U-Pb zircon CA-IDTIMS geochronology. The batholith is exposed over 310 km3 and can be separated in the field into five intrusive units. High topography allows the 3D geometry of each phase to be constrained and their volumes range from < 100 km3 to > 400 km3. U-Pb zircon geochronology reveals that four of the five phases were assembled incrementally and distinct zircon populations from samples within these phases suggest that individual magmatic pulses had fully crystallized before the next arrived. However, six nearly identical U-Pb zircon dates from a > 400 km3 rapakivi granite show that this phase was built in ca. 50 kyr and that large portions may have been emplaced nearly simultaneously. The implied emplacement rate for this phase (≥ 0.008 km3/yr) is in agreement with those predicted for assembly of the upper crustal magma chambers that source 'super-eruptions', and it may provide a rare and unprecedented opportunity to study the processes that occur in such chambers.

  17. Numerical Simulation of Magma Effects on Hydrothermal Venting at Ultra-Slow Spreading Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Zang, Hong; Niu, Xiongwei; Ruan, Aiguo; Li, Jiabiao; Meng, Lin

    2017-04-01

    Finite element method is used to numerically simulate oceanic crust thermal dynamics in order to understand the hydrothermal venting mechanism at ultra-slow spreading ridge, whether is the ancient magma chamber still living and supplying hot magma for vents or have surrounding hotspots been affecting on the ridge continually with melting and hot magma. Two models are simulated, one is a horizontal layered oceanic crust model and the other is a model derived from wide angle seismic experiment of OBS at the ultra-slow spreading Southwest Indian Ridge (50°E, Zhao et al., 2013; Li et al., 2015; Niu et al., 2015). For the former two cases are simulated: without magma from upper mantel or with continuous magma supply, and for the latter supposing magma supply occurs only once in short period. The main conclusions are as follows: (1) Without melt magma supply at the oceanic crust bottom, a magma chamber can live only thousands ten thousand years. According to the simulated results in this case, the magma chamber revealed by seismic data at the mid-east shallow section of the Southwest Indian Ridge could only last 0.8Ma, the present hydrothermal venting is impossible to be the caused by the magma activity occurred during 8-11Ma (Sauter et al., 2009). (2) The magma chamber can live long time with continuous hot magma supply beneath the oceanic crust due to the melting effects of surrounding ridge hotspots, and would result hydrothermal venting with some tectonic structures condition such as detachment faults. We suggest that the present hydrothermal activities at the mid-east shallow section of the Southwest Indian Ridge are the results of melting effects or magma supply from surrounding hotspots. This research was granted by the National Basic Research program of China (grant 2012CB417301) and the National Natural Science Foundation of China (grants 41176046, 91228205). References Zhao, M., Qiu, X., Li, J., et al., 2013. Three-dimensional seismic structure of the Dragon

  18. Magma Mixing: Why Picrites are Not So Hot

    NASA Astrophysics Data System (ADS)

    Natland, J. H.

    2010-12-01

    porosity in regions where crustal-level magma chambers and flanking rift zones do not have a chance to form. Low-magma supply is favored. In the ocean basins, such upper mantle mainlining occurs only at certain fracture zones, deep propagating rifts at microplates, or ultra-slow spreading ridges, but no liquids (glasses) with >10% MgO occur at any of these places. On continents, rift structures through cratons might allow this, but so far no picrite, ferropicrite, or meimichite that has been adequately described from these places lacks evidence for end-member mixing. Low-temperature iron-rich magmas can accumulate in the deep lower crust and later rise to form substantial intrusions (e.g. Skaergaard) or erupt as flood basalts (Columbia River). Some komatiites might represent high-temperature liquids, but many are so altered that original liquid compositions cannot be deduced (e.g., Gorgona). The hottest intraplate volcano is Kilauea, Hawaii, where rare picrite glass with 15% MgO has an estimated eruptive temperature (1) of ~1350C and a potential temperature at 1 GPa of ~1420C. Lavas at all other linear island chains, Iceland and even west Greenland where picrites are abundant, are cooler than this. (1) Beattie, P., 1993. CMP 115: 103-111.

  19. Melt production constrained by the topographic signature of the Altiplano-Puna Magma Body

    NASA Astrophysics Data System (ADS)

    Perkins, J. P.; Ward, K. M.; de Silva, S. L.; Zandt, G.; Beck, S. L.; Finnegan, N. J.

    2015-12-01

    The Altiplano-Puna Magma Body (APMB) is a ~200 km diameter, ~10 km thick elliptical zone of low seismic shear velocity interpreted as partial melt within the mid crust of the Central Andes (Ward et al., 2014). It is thought to be the crustal magmatic source for a flare-up of large-volume ignimbrites since 10 Ma (e.g. de Silva et al., 1989), and recent rapid uplift events such as those at Uturuncu volcano appear to be associated with magmatism from the APMB at depth (e.g., Fialko and Pearse, 2011). Hence, the APMB is a first-order geologic feature on par with the Sierra Nevada batholith in CA. Here we use the topographic signature of the low-density APMB in order to quantitatively constrain the melt production necessary to generate a magmatic zone of this size. A long-wavelength, ~1 km high topographic dome spatially coincides with the seismically measured extent of the APMB. The peak of the long wavelength dome acts as a regional drainage divide, and exposed basement rock elevations show that doming is a structural feature and does not reflect solely the accumulation of volcanic deposits on the plateau. Additionally, the minimal free-air gravity anomaly above the APMB and the dome's length scale suggest that the uplift is isostatically compensated. Based on a buried load isostatic model (e.g., Forsyth, 1985), the dome above the APMB implies that 5.6-5.8 km of crustal thickening occurred during the emplacement of the magma body. Our estimate compares well with calculations of crustal addition using magma chamber volume and a standard melt mixing model (Ward et al., 2014), and suggests that the magma production rate for the APMB may be within the range of 70-117 km3/km/yr, similar to rates of the Late Cretaceous magmatic episode in the Sierra Nevada Batholith (e.g., Ducea, 2001). Surface topography may therefore be able to provide quantitative constraints on the magnitude of pluton-scale melt fluxes.

  20. Evolution of rhyolitic magmas in the crustal magmatic system beneath the Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Johnson, E. R.; Kamenetsky, V.; McPhie, J.; Wallace, P. J.

    2009-12-01

    The Taupo Volcanic Zone (TVZ) produces the most frequent rhyolitic eruptions on Earth. This volcanic arc is also characterized by bimodal volcanism, with eruptions of andesite (primarily in the NE and SW of the zone) and minor basalt. Here we use melt inclusions (MI) to investigate the magmatic evolution of rhyolites in the TVZ and their link to TVZ basalts. Our study focuses on recent (<50 ka) explosive rhyolitic eruptions, as well as several small-volume explosive basaltic eruptions, from the Okataina Volcanic Centre in the northern part of the TVZ. The rhyolitic melts of the TVZ are thought to be formed via fractionation of a basaltic parent plus assimilation of metasedimentary crust. Trace element data from our TVZ melt inclusions lend support to this idea, with constant ratios of incompatible trace elements (e.g., U/Th) in the TVZ basalts and rhyolites. Assuming that these elements are completely incompatible, we have calculated that the TVZ rhyolites can be produced by ~80% fractional crystallization of a basaltic parent. We have also used MI volatile contents to assess the pressures (and thus depths) in the crust of magma emplacement and differentiation. Both the TVZ rhyolites and basalts are volatile-rich. Quartz-hosted MI in the rhyolites typically contain 5.5- 7.6 wt% H2O and up to 2500 ppm Cl, and olivine-hosted MI in the basalts contain up to 4.5 wt% H2O and 1250 ppm Cl. The H2O concentrations imply crystallization pressures of at least 200-440 MPa for the rhyolites, which correspond to depths of ~8-16 km. However, the presence of rhyolitic MI with lower H2O (3.5-5 wt%) suggests that crystallization may have occurred over a wide range of pressures. Additionally, the basalts erupted in the TVZ likely crystallized at minimum pressures of 100-200 MPa. Together, this suggests that basaltic and rhyolitic melt zones occur over a wide range of depths (~4-16 km). Furthermore, the emplacement of the basaltic parent and the AFC process to create the rhyolites had

  1. Seismic structure beneath Mt Vesuvius from receiver function analysis and local earthquakes tomography: evidences for location and geometry of the magma chamber

    NASA Astrophysics Data System (ADS)

    Agostinetti, N. Piana; Chiarabba, C.

    2008-12-01

    The recognition and localization of magmatic fluids are pre-requisites for evaluating the volcano hazard of the highly urbanized area of Mt Vesuvius. Here we show evidence and constraints for the volumetric estimation of magmatic fluids underneath this sleeping volcano. We use Receiver Functions for teleseismic data recorded at a temporary broad-band station installed on the volcano to constrain the S-wave velocity structure in the crust. Receiver Functions are analysed and inverted using the Neighbourhood Algorithm approach. The 1-D S-velocity profile is jointly interpreted and discussed with a new Vp and Vp/Vs image obtained by applying double difference tomographic techniques to local earthquakes. Seismologic data define the geometry of an axial, cylindrical high Vp, high Vs body consisting of a shallow solidified materials, probably the remnants of the caldera, and ultramafic rocks paving the crustal magma chamber. Between these two anomalies, we find a small region where the shear wave velocity drops, revealing the presence of magma at relatively shallow depths. The volume of fluids (30 km3) is sufficient to contribute future explosive eruptions.

  2. Crystal residence times from trace element zoning in plagioclase reveal changes in magma transfer dynamics at Mt. Etna during the last 400 years

    NASA Astrophysics Data System (ADS)

    Viccaro, Marco; Barca, Donatella; Bohrson, Wendy A.; D'Oriano, Claudia; Giuffrida, Marisa; Nicotra, Eugenio; Pitcher, Bradley W.

    2016-04-01

    Trace element zoning in plagioclase of selected alkaline lavas from the historic (1607-1892 AD) and recent (1983-2013 AD) activity of Mt. Etna volcano has been used to explore the possible role that volcano-tectonics exert on magma transfer dynamics. The observed textural characteristics of crystals include near-equilibrium textures (i.e., oscillatory zoning) and textures with variable extent of disequilibrium (patchy zoning, coarse sieve textures and dissolved cores). Historic crystals exhibit lower K concentrations at lower anorthite contents, a feature in agreement with the general more potassic character of the recent lavas if compared to the historic products. Historic plagioclases have statistically higher Ba and lower Sr concentrations than the recent crystals, which result in different Sr/Ba ratios for the two suites of plagioclase. Variations in the anorthite content along core-to-rim profiles obtained on crystals with different types of textures for both the historic and recent eruptive periods were evaluated particularly versus Sr/Ba. At comparable average An contents, crystals characterized by oscillatory zoning, which are representative of near-equilibrium crystallization from the magma, display distinct Sr/Ba ratios. We suggest that these features are primarily related to recharge of a new, geochemically-distinct magma into the storage and transport system of the volcano. In addition to distinct trace element and textural characteristics of plagioclase, Sr diffusion modeling for plagioclase suggests that residence times are generally shorter for crystals found in recently erupted lavas (25-77 years, average 43 years) compared to those of the historic products (43-163 years, average 99 years). Shorter residences times correlate with gradual increases in eruption volume and eruption frequency rates through time. We attribute these features to an increasing influence, since the 17th century, of extensional tectonic structures within the upper 10 km of

  3. Evidence for seismogenic fracture of silicic magma.

    PubMed

    Tuffen, Hugh; Smith, Rosanna; Sammonds, Peter R

    2008-05-22

    It has long been assumed that seismogenic faulting is confined to cool, brittle rocks, with a temperature upper limit of approximately 600 degrees C (ref. 1). This thinking underpins our understanding of volcanic earthquakes, which are assumed to occur in cold rocks surrounding moving magma. However, the recent discovery of abundant brittle-ductile fault textures in silicic lavas has led to the counter-intuitive hypothesis that seismic events may be triggered by fracture and faulting within the erupting magma itself. This hypothesis is supported by recent observations of growing lava domes, where microearthquake swarms have coincided with the emplacement of gouge-covered lava spines, leading to models of seismogenic stick-slip along shallow shear zones in the magma. But can fracturing or faulting in high-temperature, eruptible magma really generate measurable seismic events? Here we deform high-temperature silica-rich magmas under simulated volcanic conditions in order to test the hypothesis that high-temperature magma fracture is seismogenic. The acoustic emissions recorded during experiments show that seismogenic rupture may occur in both crystal-rich and crystal-free silicic magmas at eruptive temperatures, extending the range of known conditions for seismogenic faulting.

  4. Storage, migration, and eruption of magma at Kilauea volcano, Hawaii, 1971-1972

    USGS Publications Warehouse

    Duffield, W.A.; Christiansen, R.L.; Koyanagi, R.Y.; Peterson, D.W.

    1982-01-01

    The magmatic plumbing system of Kilauea Volcano consists of a broad region of magma generation in the upper mantle, a steeply inclined zone through which magma rises to an intravolcano reservoir located about 2 to 6 km beneath the summit of the volcano, and a network of conduits that carry magma from this reservoir to sites of eruption within the caldera and along east and southwest rift zones. The functioning of most parts of this system was illustrated by activity during 1971 and 1972. When a 29-month-long eruption at Mauna Ulu on the east rift zone began to wane in 1971, the summit region of the volcano began to inflate rapidly; apparently, blockage of the feeder conduit to Mauna Ulu diverted a continuing supply of mantle-derived magma to prolonged storage in the summit reservoir. Rapid inflation of the summit area persisted at a nearly constant rate from June 1971 to February 1972, when a conduit to Mauna Ulu was reopened. The cadence of inflation was twice interrupted briefly, first by a 10-hour eruption in Kilauea Caldera on 14 August, and later by an eruption that began in the caldera and migrated 12 km down the southwest rift zone between 24 and 29 September. The 14 August and 24-29 September eruptions added about 107 m3 and 8 ?? 106 m3, respectively, of new lava to the surface of Kilauea. These volumes, combined with the volume increase represented by inflation of the volcanic edifice itself, account for an approximately 6 ?? 106 m3/month rate of growth between June 1971 and January 1972, essentially the same rate at which mantle-derived magma was supplied to Kilauea between 1952 and the end of the Mauna Ulu eruption in 1971. The August and September 1971 lavas are tholeiitic basalts of similar major-element chemical composition. The compositions can be reproduced by mixing various proportions of chemically distinct variants of lava that erupted during the preceding activity at Mauna Ulu. Thus, part of the magma rising from the mantle to feed the Mauna Ulu

  5. The Fish Canyon magma body, San Juan volcanic field, Colorado: Rejuvenation and eruption of an upper-crustal batholith

    USGS Publications Warehouse

    Bachmann, Olivier; Dungan, M.A.; Lipman, P.W.

    2002-01-01

    More than 5000 km3 of nearly compositionally homogeneous crystalrich dacite (~68 wt % SiO2: ~45% Pl + Kfs + Qtz + Hbl + Bt + Spn + Mag + Ilm + Ap + Zrn + Po) erupted from the Fish Canyon magma body during three phases: (1) the pre-caldera Pagosa Peak Dacite (an unusual poorly fragmented pyroclastic deposit, ~ 200 km3); (2) the syn-collapse Fish Canyon Tuff (one of the largest known ignimbrites, ~ 5000 km3); (3) the post-collapse Nutras Creek Dacite (a volumetrically minor lava). The late evolution of the Fish Canyon magma is characterized by rejuvenation of a near-solidus upper-crustal intrusive body (mainly crystal mush) of batholithic dimensions. The necessary thermal input was supplied by a shallow intrusion of more mafic magma represented at the surface by sparse andesitic enclaves in late-erupted Fish Canyon Tuff and by the post-caldera Huerto Andesite. The solidified margins of this intrusion are represented by holocrystalline xenoliths with Fish Canyon mineralogy and mineral chemistry and widely dispersed partially remelted polymineralic aggregates, but dehydration melting was not an important mechanism in the rejuvenation of the Fish Canyon magma. Underlying mafic magma may have evolved H2O-F-S-Cl-rich fluids that fluxed melting in the overlying crystal mush. Manifestations of the late up-temperature magma evolution are: (1) resorbed quartz, as well as feldspars displaying a wide spectrum of textures indicative of both resorption and growth, including Rapakivi textures and reverse growth zoning (An27-28 to An32-33) at the margins of many plagioclase phenocrysts; (2) high Sr, Ba, and Eu contents in the high-SiO2 rhyolite matrix glass, which are inconsistent with extreme fractional crystallization of feldspar; (3) oscillatory and reverse growth zoning toward the margins of many euhedral hornblende phenocrysts (rimward increases from ~5??5-6 to 7??7-8??5 wt % Al2O3). Homogeneity in magma composition at the chamber-wide scale, contrasting with extreme textural

  6. Magma Dynamics at Mid-Ocean Ridges by Noble Gas Kinetic Fractionation: Assessment of Magmatic Ascent Rates and Mantle Composition

    NASA Astrophysics Data System (ADS)

    Paonita, A.; Martelli, M.

    2007-12-01

    in products coming from the Mid-Atlantic Ridge 24°N segment and the Rodriguez Triple Junction, require magma storage and degassing processes occurring at high-pressure conditions. In contrast, the simultaneous increase in both He/CO2 and He/Ar of the East Pacific Rise and South-East Indian Ridge data sets suggests the dominance of low-pressure fractionation, implying that the shallow magma chambers are at a lower depth than those of the Mid-Atlantic Ridge 24°N and Rodriguez Triple Junction. Our conclusions support the presence of a relationship between spreading rate and depth of high-temperature zones below ridges, and are consistent with the depth of magma chambers as suggested from seismic studies. Finally, the non-equilibrium degassing model provides striking constraints on the compositions of noble gases and carbon in mantle-derived magmas. Our results dispense in fact with the supposed need for He-Ar-CO2 heterogeneities in the upper mantle, because the degassing of a single, popping-rock-like primary magma is able to explain all the available data.

  7. Nested granites in question: Contrasted emplacement kinematics of independent magmas in the Zaër pluton, Morocco

    NASA Astrophysics Data System (ADS)

    Bouchez, Jean Luc; Diot, Herve

    1990-10-01

    The concentrically zoned Zaër pluton (Variscan Meseta of Morocco), previously modeled as the nesting of two magmas forming a ballooning pluton, is here subjected to a study of its internal magmatic and solid-state structures. The magmatic flow patterns, derived mainly from anisotropy of magnetic susceptibility measurements, together with structural observations down to thin-section scale, indicate that these two magmas have undergone totally independent kinematics of emplacement. This supports recent isotope geochemistry and geochronology data indicating independent origin of the magmas and diachronism of emplacement, respectively. Thus, we propose that a magma diapir, probably emplaced within a crustal fracture zone, cooled down to brittle conditions, before a likely flat-lying fracture was opened within the fracture zone and was filled with a new and compositionally different pulse of magma.

  8. Characteristics and Significance of Magma Emplacement Horizons, Black Sturgeon Sill, Nipigon, Ontario

    NASA Astrophysics Data System (ADS)

    Zieg, M. J.; Hone, S. V.

    2017-12-01

    Spatial scales strongly control the timescales of processes in igneous intrusions, particularly through the thermal evolution of the magma, which in turn governs the evolution of crystallinity, viscosity, and other important physical and chemical properties of the system. In this study, we have collected a highly detailed data set comprising geochemical (bulk rock composition), textural (size and alignment of plagioclase crystals), and mineralogical (modal abundance) profiles through the central portion of the 250 m thick Black Sturgeon diabase sill. In this data, we have identified characteristic signals in texture (soft and somewhat diffuse chills), composition (reversals in differentiation trends), and mineralogy (olivine accumulations), all coinciding and recurring at roughly 10 meter intervals. Based on these signatures, we are able to map out multiple zones representing discrete pulses of magma that were emplaced sequentially as the intrusion was inflated. Simple thermal calculations suggest that each 10 meters of new crystallization would require repose times on the order of 10-100 years. To build up 250 meters of magma at this rate would only require approximately 250-2500 years, significantly less than the thermal lifetime of the entire sill. The soft chills we observe in the Black Sturgeon sill are therefore consistent with a system that remained warm throughout the emplacement process. Successive pulses were injected into partially crystalline mush, rather than pure liquid (which would result in hybridization) or solid (which would produce sharp hard chills). Episodic emplacement is by now widely recognized as a fundamental process in the formation of large felsic magma chambers; our results suggest that this also may be an important consideration in understanding the evolution of smaller mafic intrusions.

  9. Experimental constraints on the deformation and breakup of injected magma

    NASA Astrophysics Data System (ADS)

    Hodge, Kirsten F.; Carazzo, Guillaume; Jellinek, A. Mark

    2012-04-01

    The injection, breakup and stirring of dikes entering convecting silicic magma chambers can govern how they grow and differentiate, as well as influence their potential for eruption at the surface. Enclaves observed in plutons may preserve a record of this process and, thus, identifying and understanding the physical processes underlying their formation is a crucial issue in volcanology. We use laboratory experiments and scaling theory to investigate the mechanical and rheological conditions leading to the deformation and breakup of analog crystal-rich dikes injected as discrete plumes that descend into an underlying imposed shear flow. To scale the experiments and map the results across a wide range of natural conditions we define the ratio S of the timescale for the growth of a gravitational Rayleigh-Taylor (R-T) instability of the sheared, injected material to the timescale for settling through the fluid layer and the ratio Y of the timescales for shearing and lateral disaggregation of the particle-fluid mixture (yielding). At low S (< 3) and high Y (> 40), descending plumes are stretched and tilted before undergoing R-T instability, forming drips with a wavelength that is comparable to the initial diameter of the injection. At low Y (< 40) and S values that increase from ∼ 3 as Y → 0, an injection yields in tension before a R-T instability can grow, forming discrete particle-fluid blobs that are much smaller than the initial injection diameter and separated by thin filaments of the original mixture. At high S (> 3) and high Y (> 40), injections remain intact as they settle through the layer and pond at the floor. Applied to magma chambers, our results do not support the production of a continuum of enclave sizes. Indeed, from scaling analyses we expect the two breakup regimes to form distinct size populations: Whereas enclaves formed in the R-T regime will be comparable to the injection size, those formed in the tension regime will be much smaller. We show

  10. Electron microprobe study of lunar and planetary zoned plagioclase feldspars: An analytical and experimental study of zoning in plagioclase

    NASA Technical Reports Server (NTRS)

    Smith, R. K.; Lofgren, G. E.

    1982-01-01

    Natural and experimentally grown zoned plagioclase feldspars were examined by electron microprobe. The analyses revealed discontinuous, sector, and oscillary chemical zoning superimposed on continuous normal or reverse zoning trends. Postulated mechanisms for the origin of zoning are based on either physical changes external to the magma (P, T, H2O saturation) or kinetic changes internal to the magma (diffusion, supersaturation, growth rate). Comparison of microprobe data on natural zoned plagioclase with zoned plagioclase grown in controlled experiments show that it may be possible to distinguish zonal development resulting from physio-chemical changes to the bulk magma from local kinetic control on the growth of individual crystals.

  11. Abrupt transition from fractional crystallization to magma mixing at Gorely volcano (Kamchatka) after caldera collapse

    NASA Astrophysics Data System (ADS)

    Gavrilenko, Maxim; Ozerov, Alexey; Kyle, Philip R.; Carr, Michael J.; Nikulin, Alex; Vidito, Christopher; Danyushevsky, Leonid

    2016-07-01

    A series of large caldera-forming eruptions (361-38 ka) transformed Gorely volcano, southern Kamchatka Peninsula, from a shield-type system dominated by fractional crystallization processes to a composite volcanic center, exhibiting geochemical evidence of magma mixing. Old Gorely, an early shield volcano (700-361 ka), was followed by Young Gorely eruptions. Calc-alkaline high magnesium basalt to rhyolite lavas have been erupted from Gorely volcano since the Pleistocene. Fractional crystallization dominated evolution of the Old Gorely magmas, whereas magma mixing is more prominent in the Young Gorely eruptive products. The role of recharge-evacuation processes in Gorely magma evolution is negligible (a closed magmatic system); however, crustal rock assimilation plays a significant role for the evolved magmas. Most Gorely magmas differentiate in a shallow magmatic system at pressures up to 300 MPa, ˜3 wt% H2O, and oxygen fugacity of ˜QFM + 1.5 log units. Magma temperatures of 1123-1218 °C were measured using aluminum distribution between olivine and spinel in Old and Young Gorely basalts. The crystallization sequence of major minerals for Old Gorely was as follows: olivine and spinel (Ol + Sp) for mafic compositions (more than 5 wt% of MgO); clinopyroxene and plagioclase crystallized at ˜5 wt% of MgO (Ol + Cpx + Plag) and magnetite at ˜3.5 wt% of MgO (Ol + Cpx + Plag + Mt). We show that the shallow magma chamber evolution of Old Gorely occurs under conditions of decompression and degassing. We find that the caldera-forming eruption(s) modified the magma plumbing geometry. This led to a change in the dominant magma evolution process from fractional crystallization to magma mixing. We further suggest that disruption of the magma chamber and accompanying change in differentiation process have the potential to transform a shield volcanic system to that of composite cone on a global scale.

  12. Tiny crystals give away the where and when of magma ascent

    NASA Astrophysics Data System (ADS)

    Ruth, D. C. S.; Costa Rodriguez, F.; Bouvet de Maisonneuve, C.; Franco, L.; Cortes, J. A.; Calder, E.

    2016-12-01

    Open vent volcanoes exhibit passive degassing and can transition to explosive behavior, with limited or no warning. Melt inclusion chemistry and volatile contents have been used to infer the inner dynamics of magma storage, recharge, degassing, and eruption triggering mechanisms. However, the interpretation of melt inclusion chemistry is ambiguous because it cannot constrain the residence times of the host crystals, which could have various sources and growth histories. To resolve this issue we combine diffusion chronometry and melt inclusion entrapment pressures from olivine crystals sourced from the 2008 eruption of Llaima volcano (Chile). Olivine crystals (core Fo70-84, rim Fo77-84) are dominantly reverse zoned, although normal zoned and complex zoned crystals are observed. These data reflect mixing between the mafic injecting magma and the crystal-rich resident magma. Fe/Mg diffusion timescales range between 16 and 1375 days. The diffusion data show a non-uniform distribution with no discernible peaks, indicating that magma injection is likely progressive, rather than punctuated. Entrapment pressures range between 8 and 151 MPa, overlapping with an inferred crystal-rich region. Longer timescales correspond to higher pressures, strongly suggesting a link between magma residence time and ascent from depth. To our knowledge, this relationship has not been previously demonstrated. We infer that mafic magma intruded at depths of 5 km below the edifice and mingled with a pre-existing crystal-mush 3 yr before the eruption. Magma migration and mingling continued and stalled at 2.5 km depth about a year prior to the eruption. Precursory activity such as volcano-tectonic and long period seismicity, and a series of minor explosions overlap with the diffusion times 6 months before the eruption. Similar diffusion timescales have been reported for eruptions at other open vent volcanoes. Our study provides the first temporal and spatial constraints on magma storage and ascent

  13. Layered intrusion formation by top down thermal migration zone refining (Invited)

    NASA Astrophysics Data System (ADS)

    Lundstrom, C.

    2009-12-01

    The formation of layered mafic intrusions by crystallization from cooling magmas represents the textbook example of igneous differentiation, often attributed to fractional crystallization through gravitational settling. Yet in detail, such interpretations have significant problems such that it remains unclear how these important features form. Put in the Earth perspective that no km scale blob of >50% melt has ever been imaged geophysically and that geochronological studies repeatedly indicate age inconsistencies with “big tank” magma chambers, it may be questioned if km scale magma chambers have ever existed. I will present the case for forming layered intrusions by a top down process whereby arriving basaltic magma reaches a permeability barrier, begins to underplate and forms the intrusion incrementally by sill injection with the body growing downward at ~1 mm/yr rate or less. A temperature gradient zone occurs in the overlying previously emplaced sills, leading to chemical components migrating by diffusion. As long as the rate of diffusion can keep up with rate of sill addition, the body will differentiate along a path similar to a liquid line of descent. In this talk, I will integrate data from 3 areas: 1) laboratory experiments examining the behavior of partially molten silicates in a temperature gradient (thermal migration); 2) numerical modeling of the moving temperature gradient zone process using IRIDIUM (Boudreau, 2003); 3) measurements of Fe isotope ratios and geochronology from the Sonju Lake Intrusion in the Duluth Complex. This model provides the ability to form km scale intrusions by a seismically invisible means, can explain million year offsets in chronology, and has implications for reef development and PGE concentration. Most importantly, this model of top down layered intrusion formation, following a similar recent proposal for granitoid formation (Lundstrom, 2009), represents a testable hypothesis: because temperature gradient driven

  14. The relationship between the height of a volcano and the depth to its magma source zone - A critical reexamination

    NASA Technical Reports Server (NTRS)

    Wilson, Lionel; Head, James W., III; Parfitt, Elisabeth A.

    1992-01-01

    The relationship between the maximum height to which a volcanic edifice is able to grow and the depth at which the partial melts providing its magma supply are formed is used to infer various aspects of the thermal and stress state of the lithosphere beneath volcanic constructs on earth, Mars, Io, and Venus. The assumptions behind this relationship are examined, and it is shown that many of them require geologically unreasonable conditions. The evidence cited in the literature for the relationship is assessed critically, and it is found that there are other factors that may explain the observations. It is concluded that volcano heights on the terrestrial planets cannot be related in any simple way to lithospheric thickness or depth to the magma source zone, and the range of other vectors controlling volcano height are reviewed.

  15. Indications for a CO2-rich fluid cap in the uppermost part of the Laacher See Magma Chamber

    NASA Astrophysics Data System (ADS)

    Aßbichler, Donjá; Heuss-Aßbichler, Soraya; Kunzmann, Thomas

    2017-04-01

    the content of Ca and SO4 decreases. Clinopyroxene observed in the haüyne-sanidinite has diospidic to hedenbergitic composition while in the nosean-sanidinites it is enriched in Mn (ferroan johannsenite with up to 0.55 apfu Mn; 15.5 wt.-% MnO). Several features indicate the presence of an aggressive fluid phase during formation of the nosean-sanidinites: all silicates expose etching structures such as jagged or rounded mineral surfaces, and/or holes and channels within the mineral grains. To a lesser extent these structures are also observed in the silicates of the bright haüyne-sanidinites. In nosean-sanidinites the etching holes are often filled by calcite. Occasionally these fillings are bounded by a calcite filled fluid vain. All these observations indicate the presence of a CO2-rich fluid phase. The sanidinites are suggested to be formed at late magmatic conditions from a phonolitic melt. The systematics in the textures indicates, that the minerals within the miarolithic cavities of the haüyne-sanidinites crystallized from an evolved, volatile rich phonolitic melt. In contrast the crystallization within the miarolithic pore space of the nosean-sanidinites took place in the rigid zone of the uppermost part of the magma chamber where the mineral forming processes are induced by CO2-rich fluid.

  16. Deep magma transport at Kilauea volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Wright, Thomas L.; Klein, Fred W.

    2006-03-01

    The shallow part of Kilauea's magma system is conceptually well-understood. Long-period and short-period (brittle-failure) earthquake swarms outline a near-vertical magma transport path beneath Kilauea's summit to 20 km depth. A gravity high centered above the magma transport path demonstrates that Kilauea's shallow magma system, established early in the volcano's history, has remained fixed in place. Low seismicity at 4-7 km outlines a storage region from which magma is supplied for eruptions and intrusions. Brittle-failure earthquake swarms shallower than 5 km beneath the rift zones accompany dike emplacement. Sparse earthquakes extend to a decollement at 10-12 km along which the south flank of Kilauea is sliding seaward. This zone below 5 km can sustain aseismic magma transport, consistent with recent tomographic studies. Long-period earthquake clusters deeper than 40 km occur parallel to and offshore of Kilauea's south coast, defining the deepest seismic response to magma transport from the Hawaiian hot spot. A path connecting the shallow and deep long-period earthquakes is defined by mainshock-aftershock locations of brittle-failure earthquakes unique to Kilauea whose hypocenters are deeper than 25 km with magnitudes from 4.4 to 5.2. Separation of deep and shallow long-period clusters occurs as the shallow plumbing moves with the volcanic edifice, while the deep plumbing is centered over the hotspot. Recent GPS data agrees with the volcano-propagation vector from Kauai to Maui, suggesting that Pacific plate motion, azimuth 293.5° and rate of 7.4 cm/yr, has been constant over Kilauea's lifetime. However, volcano propagation on the island of Hawaii, azimuth 325°, rate 13 cm/yr, requires southwesterly migration of the locus of melting within the broad hotspot. Deep, long-period earthquakes lie west of the extrapolated position of Kilauea backward in time along a plate-motion vector, requiring southwesterly migration of Kilauea's magma source. Assumed ages of 0

  17. Deep magma transport at Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Wright, T.L.; Klein, F.W.

    2006-01-01

    The shallow part of Kilauea's magma system is conceptually well-understood. Long-period and short-period (brittle-failure) earthquake swarms outline a near-vertical magma transport path beneath Kilauea's summit to 20 km depth. A gravity high centered above the magma transport path demonstrates that Kilauea's shallow magma system, established early in the volcano's history, has remained fixed in place. Low seismicity at 4-7 km outlines a storage region from which magma is supplied for eruptions and intrusions. Brittle-failure earthquake swarms shallower than 5 km beneath the rift zones accompany dike emplacement. Sparse earthquakes extend to a decollement at 10-12 km along which the south flank of Kilauea is sliding seaward. This zone below 5 km can sustain aseismic magma transport, consistent with recent tomographic studies. Long-period earthquake clusters deeper than 40 km occur parallel to and offshore of Kilauea's south coast, defining the deepest seismic response to magma transport from the Hawaiian hot spot. A path connecting the shallow and deep long-period earthquakes is defined by mainshock-aftershock locations of brittle-failure earthquakes unique to Kilauea whose hypocenters are deeper than 25 km with magnitudes from 4.4 to 5.2. Separation of deep and shallow long-period clusters occurs as the shallow plumbing moves with the volcanic edifice, while the deep plumbing is centered over the hotspot. Recent GPS data agrees with the volcano-propagation vector from Kauai to Maui, suggesting that Pacific plate motion, azimuth 293.5?? and rate of 7.4 cm/yr, has been constant over Kilauea's lifetime. However, volcano propagation on the island of Hawaii, azimuth 325??, rate 13 cm/yr, requires southwesterly migration of the locus of melting within the broad hotspot. Deep, long-period earthquakes lie west of the extrapolated position of Kilauea backward in time along a plate-motion vector, requiring southwesterly migration of Kilauea's magma source. Assumed ages of 0

  18. Combined magnetotelluric and petrologic constrains for the nature of the magma storage system beneath the Ciomadul volcano (SE Carpathians)

    NASA Astrophysics Data System (ADS)

    Novák, A.; Harangi, Sz.; Kiss, B.; Szarka, L.; Molnár, Cs.

    2012-04-01

    The Ciomadul volcano is the youngest in the Carpathian-Pannonian region (eastern-central Europe) and there are indications that magma could still reside at the depth. Therefore, we performed a magnetotelluric investigation with the aim to detect a still hot magma reservoir. The results were compared with those coming from the petrological investigations. The Ciomadul volcanic complex contains a central amalgamated set of lava domes and a few peripheral domes with two explosion craters in the central zone. Geologically the domes were built by effusion of high viscosity dacite magma. Lava dome collapses resulted in volcanoclastic deposits (block-and ash flow deposits). The magmatic activity could have been connected to the seismically powerful region of the nearby Vrancea zone. Twelve long period magnetotelluric (MT) soundings were carried out to aim of define to electric resistivity distribution of the volcanic system and find correlation with the petrologic model to confirm the hot magma chamber beneath the region. At each MT site, the horizontal components of the magnetic and the electric fields were observed between the 0.00006-4 Hz frequency range. The vertical component of the magnetic field was also recorded to analyze the lateral conductivity inhomogenities under the subsurface. Soundings were located in non systematic grid and we selected several profiles which may represent the resistivity distribution of subsurface and cross-sections were applied as well. At started by dimensionality analysis and decomposition parameters the most part of the measuring are multi-dimensional. Traditional MT interpretation - 1D, 2D inversion and modeling - was carried out taking into account the decomposition results. 3D interpretation is not realized because of weak resolution of the data and large memory requirement. Both the local 1D inversion and the 2D inversion along the profiles defined a low resistivity zones at about 2 km depth which in continuation at depth with a

  19. Gravity fluctuations induced by magma convection at Kilauea Volcano, Hawai'i

    USGS Publications Warehouse

    Carbone, Daniele; Poland, Michael P.

    2012-01-01

    Convection in magma chambers is thought to play a key role in the activity of persistently active volcanoes, but has only been inferred indirectly from geochemical observations or simulated numerically. Continuous microgravity measurements, which track changes in subsurface mass distribution over time, provide a potential method for characterizing convection in magma reservoirs. We recorded gravity oscillations with a period of ~150 s at two continuous gravity stations at the summit of Kīlauea Volcano, Hawai‘i. The oscillations are not related to inertial accelerations caused by seismic activity, but instead indicate variations in subsurface mass. Source modeling suggests that the oscillations are caused by density inversions in a magma reservoir located ~1 km beneath the east margin of Halema‘uma‘u Crater in Kīlauea Caldera—a location of known magma storage.

  20. Silicic magma differentiation in ascent conduits. Experimental constraints

    NASA Astrophysics Data System (ADS)

    Rodríguez, Carmen; Castro, Antonio

    2017-02-01

    Crystallization of water-bearing silicic magmas in a dynamic thermal boundary layer is reproduced experimentally by using the intrinsic thermal gradient of piston-cylinder assemblies. The standard AGV2 andesite under water-undersaturated conditions is set to crystallize in a dynamic thermal gradient of about 35 °C/mm in 10 mm length capsules. In the hotter area of the capsule, the temperature is initially set at 1200 °C and decreases by programmed cooling at two distinct rates of 0.6 and 9.6 °C/h. Experiments are conducted in horizontally arranged assemblies in a piston cylinder apparatus to avoid any effect of gravity settling and compaction of crystals in long duration runs. The results are conclusive about the effect of water-rich fluids that are expelled out the crystal-rich zone (mush), where water saturation is reached by second boiling in the interstitial liquid. Expelled fluids migrate to the magma ahead of the solidification front contributing to a progressive enrichment in the fluxed components SiO2, K2O and H2O. The composition of water-rich fluids is modelled by mass balance using the chemical composition of glasses (quenched melt). The results are the basis for a model of granite magma differentiation in thermally-zoned conduits with application of in-situ crystallization equations. The intriguing textural and compositional features of the typical autoliths, accompanying granodiorite-tonalite batholiths, can be explained following the results of this study, by critical phenomena leading to splitting of an initially homogeneous magma into two magma systems with sharp boundaries. Magma splitting in thermal boundary layers, formed at the margins of ascent conduits, may operate for several km distances during magma transport from deep sources at the lower crust or upper mantle. Accordingly, conduits may work as chromatographic columns contributing to increase the silica content of ascending magmas and, at the same time, leave behind residual mushes that

  1. Examining shear processes during magma ascent

    NASA Astrophysics Data System (ADS)

    Kendrick, J. E.; Wallace, P. A.; Coats, R.; Lamur, A.; Lavallée, Y.

    2017-12-01

    Lava dome eruptions are prone to rapid shifts from effusive to explosive behaviour which reflects the rheology of magma. Magma rheology is governed by composition, porosity and crystal content, which during ascent evolves to yield a rock-like, viscous suspension in the upper conduit. Geophysical monitoring, laboratory experiments and detailed field studies offer the opportunity to explore the complexities associated with the ascent and eruption of such magmas, which rest at a pivotal position with regard to the glass transition, allowing them to either flow or fracture. Crystal interaction during flow results in strain-partitioning and shear-thinning behaviour of the suspension. In a conduit, such characteristics favour the formation of localised shear zones as strain is concentrated along conduit margins, where magma can rupture and heal in repetitive cycles. Sheared magmas often record a history of deformation in the form of: grain size reduction; anisotropic permeable fluid pathways; mineral reactions; injection features; recrystallisation; and magnetic anomalies, providing a signature of the repetitive earthquakes often observed during lava dome eruptions. The repetitive fracture of magma at ( fixed) depth in the conduit and the fault-like products exhumed at spine surfaces indicate that the last hundreds of meters of ascent may be controlled by frictional slip. Experiments on a low-to-high velocity rotary shear apparatus indicate that shear stress on a slip plane is highly velocity dependent, and here we examine how this influences magma ascent and its characteristic geophysical signals.

  2. Modelling the seismic properties of fast-spreading ridge crustal Low-Velocity Zones: insights from Oman gabbro textures

    NASA Astrophysics Data System (ADS)

    Lamoureux, Gwenaëlle; Ildefonse, Benoı̂t; Mainprice, David

    1999-11-01

    Although considerable progress has been made in the study of fast-spreading, mid-ocean ridge magma chambers over the past fifteen years, the fraction of melt present in the chamber remains poorly constrained and controversial. We present new constraints obtained by modelling the seismic properties of partially molten gabbros at the ridge axis. P-wave velocities at low frequencies are calculated in the foliation/lineation reference frame using a differential effective medium technique. The model takes into account the lattice preferred orientation of the crystalline phase and the average shape of the melt phase. The structural parameters are obtained from the Oman ophiolite. The structural reference frame is given by the general trend of the gabbro foliation and the melt fraction and shape are estimated using the textures of nine upper gabbro samples. The estimated melt fraction and shape depend on the assumptions regarding which part of the observed textures represent the melt in the gabbroic mush of the magma chamber. However, we can put limits on the reasonable values for the melt fraction and shape. Our results are consistent with a melt fraction of the order of 10 to 20% in the Low-Velocity Zone (i.e. the magma chamber), which is anisotropically distributed with the melt pockets preferentially aligned parallel to the foliation and approximated by oblate ellipsoids with approximate dimensions of 4 : 4 : 1. These results are also consistent with the seismic structure of the East Pacific rise at 9°30'. The anisotropic melt distribution can, at least partially, explain the vertical velocity gradient described in the LVZ.

  3. Self Sealing Magmas

    NASA Astrophysics Data System (ADS)

    von Aulock, Felix W.; Wadsworth, Fabian B.; Kennedy, Ben M.; Lavallee, Yan

    2015-04-01

    During ascent of magma, pressure decreases and bubbles form. If the volume increases more rapidly than the relaxation timescale, the magma fragments catastrophically. If a permeable network forms, the magma degasses non-violently. This process is generally assumed to be unidirectional, however, recent studies have shown how shear and compaction can drive self sealing. Here, we additionally constrain skin formation during degassing and sintering. We heated natural samples of obsidian in a dry atmosphere and monitored foaming and impermeable skin formation. We suggest a model for skin formation that is controlled by diffusional loss of water and bubble collapse at free surfaces. We heated synthetic glass beads in a hydrous atmosphere to measure the timescale of viscous sintering. The beads sinter at drastically shorter timescales as water vapour rehydrates an otherwise degassed melt, reducing viscosity and glass transition temperatures. Both processes can produce dense inhomogeneities within the timescales of magma ascent and effectively disturb permeabilities and form barriers, particularly at the margins of the conduit, where strain localisation takes place. Localised ash in failure zones (i.e. Tuffisite) then becomes associated with water vapour fluxes and alow rapid rehydration and sintering. When measuring permeabilities in laboratory and field, and when discussing shallow degassing in volcanoes, local barriers for degassing should be taken into account. Highlighting the processes that lead to the formation of such dense skins and sintered infills of cavities can help understanding the bulk permeabilities of volcanic systems.

  4. Biot number and thermos bottle effect: implications for magma-chamber convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrigan, C.R.

    1988-09-01

    Thermal boundary conditions model the coupling between a convecting magmatic body and its host. Such conditions need to be considered in models of igneous systems that involve thermal histories, crystallization and fractionation of melt, formation of aureoles by contact metamorphism, and any other processes in which transport of heat plays a role. Usually, investigations of magmatic systems have tended to emphasize modeling the interior convective regime relative to treatment of the thermal coupling. Yet it is found that the thermal nature of an intrusion is likely to be influenced more by coupling to its host than by the details ofmore » internal convective flows. Evaluation of a parameter having the form of a Biot number (Bi) provides a basis for estimating which boundary conditions are most appropriate. It is found that Bi less than or equal to 0.1 (constant heat-flux limit) for models of several caldera systems. For such values of the Biot number, the host regime behaves somewhat like a thermos bottle by limiting the flow of heat through the magma-host system so that convective stirring of magma has little effect on the cooling rate of the intrusion. Because of this insulating effect, boundary temperatures assumed in convection models should approach magmatic values even if an active hydrothermal system is present. However, high boundary temperatures do not imply that melting and assimilation of host rock by magma must occur. Despite the thermos bottle effect, magmatic convection can still be quite vigorous.« less

  5. Implications of magma transfer between multiple reservoirs on eruption cycling.

    PubMed

    Elsworth, Derek; Mattioli, Glen; Taron, Joshua; Voight, Barry; Herd, Richard

    2008-10-10

    Volcanic eruptions are episodic despite being supplied by melt at a nearly constant rate. We used histories of magma efflux and surface deformation to geodetically image magma transfer within the deep crustal plumbing of the Soufrière Hills volcano on Montserrat, West Indies. For three cycles of effusion followed by discrete pauses, supply of the system from the deep crust and mantle was continuous. During periods of reinitiated high surface efflux, magma rose quickly and synchronously from a deflating mid-crustal reservoir (at about 12 kilometers) augmented from depth. During repose, the lower reservoir refilled from the deep supply, with only minor discharge transiting the upper chamber to surface. These observations are consistent with a model involving the continuous supply of magma from the deep crust and mantle into a voluminous and compliant mid-crustal reservoir, episodically valved below a shallow reservoir (at about 6 kilometers).

  6. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions.

    PubMed

    Wotzlaw, Jörn-Frederik; Bindeman, Ilya N; Stern, Richard A; D'Abzac, Francois-Xavier; Schaltegger, Urs

    2015-09-10

    Large-volume caldera-forming eruptions of silicic magmas are an important feature of continental volcanism. The timescales and mechanisms of assembly of the magma reservoirs that feed such eruptions as well as the durations and physical conditions of upper-crustal storage remain highly debated topics in volcanology. Here we explore a comprehensive data set of isotopic (O, Hf) and chemical proxies in precisely U-Pb dated zircon crystals from all caldera-forming eruptions of Yellowstone supervolcano. Analysed zircons record rapid assembly of multiple magma reservoirs by repeated injections of isotopically heterogeneous magma batches and short pre-eruption storage times of 10(3) to 10(4) years. Decoupled oxygen-hafnium isotope systematics suggest a complex source for these magmas involving variable amounts of differentiated mantle-derived melt, Archean crust and hydrothermally altered shallow-crustal rocks. These data demonstrate that complex magma reservoirs with multiple sub-chambers are a common feature of rift- and hotspot related supervolcanoes. The short duration of reservoir assembly documents rapid crustal remelting and two to three orders of magnitude higher magma production rates beneath Yellowstone compared to continental arc volcanoes. The short pre-eruption storage times further suggest that the detection of voluminous reservoirs of eruptible magma beneath active supervolcanoes may only be possible prior to an impending eruption.

  7. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions

    PubMed Central

    Wotzlaw, Jörn-Frederik; Bindeman, Ilya N.; Stern, Richard A.; D’Abzac, Francois-Xavier; Schaltegger, Urs

    2015-01-01

    Large-volume caldera-forming eruptions of silicic magmas are an important feature of continental volcanism. The timescales and mechanisms of assembly of the magma reservoirs that feed such eruptions as well as the durations and physical conditions of upper-crustal storage remain highly debated topics in volcanology. Here we explore a comprehensive data set of isotopic (O, Hf) and chemical proxies in precisely U-Pb dated zircon crystals from all caldera-forming eruptions of Yellowstone supervolcano. Analysed zircons record rapid assembly of multiple magma reservoirs by repeated injections of isotopically heterogeneous magma batches and short pre-eruption storage times of 103 to 104 years. Decoupled oxygen-hafnium isotope systematics suggest a complex source for these magmas involving variable amounts of differentiated mantle-derived melt, Archean crust and hydrothermally altered shallow-crustal rocks. These data demonstrate that complex magma reservoirs with multiple sub-chambers are a common feature of rift- and hotspot related supervolcanoes. The short duration of reservoir assembly documents rapid crustal remelting and two to three orders of magnitude higher magma production rates beneath Yellowstone compared to continental arc volcanoes. The short pre-eruption storage times further suggest that the detection of voluminous reservoirs of eruptible magma beneath active supervolcanoes may only be possible prior to an impending eruption. PMID:26356304

  8. Magma plumbing in the Grímsvötn volcanic system, Iceland: an overview

    NASA Astrophysics Data System (ADS)

    Thordarson, T.

    2016-12-01

    The basaltic Grímsvötn volcanic system (GVS) consists of Grímsvötn central volcano (GCV) and an immature fissure swarm extending 70 km to the southwest from GCV. The GCV has the highest eruption frequency of all central volcanos in Iceland, or 7 events per 100 years. In contrast, the GVS fissure swarm has only featured two events in postglacial times, the 1783-4 Laki and the prehistoric Lambavatnsgígar fissure eruptions. These two events account for 25% of the total Holocene magma output from the GVS and 80% of the output in historic time (i.e. last 1100 years). Although GVS magma plumbing has been a topic of research for four decades, its general structure, extent and geometry is still deliberated. Is mantle-derived magma delivered straight up beneath the GCV to an upper crustal magma chamber and then vertically to eruptions at the GCV and laterally to eruption on the GVS fissure swarm? Or does the system feature two levels of crustal storage, one in the upper crust beneath GCV and another at mid-crustal depth? Or is the structure of the GVS plumbing more complex? The data that we have so far and is pertinent to GVS magma plumbing is summarised below: Geophysical measurements imply that shallowest magma storage beneath GCV is at 3-4 km. The Zr and Nb concentrations in the tephra from the 1998 and 2004 GCV plus Laki eruptions show that the parent magmas for each was produced by different degrees of partial melting of a similar mantle source. It also demonstrates transport to the surface via separate pathways and that neither magma can be derived by fractional crystallization from a Laki-like magma. Detailed petrological studies on the Laki tephra and lava indicate polybaric magma evolution within the mid-crust (at 6 to 15 km depth), with further evolution at shallower depths induced either by disequilibrium crystal growth during ascent of magma from the mid-crust storage or a brief residence at 3-6 km depths. The Laki magma contains significant abundances of

  9. Magma mixing during caldera forming eruptions

    NASA Astrophysics Data System (ADS)

    Kennedy, B.; Jellinek, M.; Stix, J.

    2006-12-01

    During explosive caldera-forming eruptions magma erupts through a ring dyke. Flow is driven, in part, by foundering of a magma chamber roof into underlying buoyant magma. One intriguing and poorly understood characteristic of deposits from calderas is that bulk ignimbrite, pumices, and crystals can show complex stratigraphic zonation. We propose that zonation patterns can be explained by different, and temporally evolving subsidence styles, and that the geometry imposed by subsidence can affect flow and cause mixing in the chamber and ring dyke. We use two series of laboratory experiments to investigate aspects of the mixing properties of flow in the chamber and ring dike during caldera collapse. In the first series, cylindrical blocks of height, h, and diameter, d, are released into circular analog magma chambers of diameter D and height H, containing buoyant fluids with viscosities that we vary. Subsidence occurs as a result of flow through the annular gap (ring dike) between the block and the wall of the surrounding tank of width, w = D-d. Three dimensionless parameters characterize the nature and evolution of the subsidence, and the resulting flow: A Reynolds number, Re, a tilt number, T = w/h and a subsidence number, S = w/H. Whereas Re indicates the importance of inertia for flow and mixing, T and S are geometric parameters that govern the extent of roof tilting, the spatial variation in w during collapse and the wavelength and structure of fluid motions. On the basis of field observations and theoretical arguments we fix T ≍ 0.14 and characterize subsidence and the corresponding flow over a wide range of Re - S parameter space appropriate to silicic caldera systems. Where S < 2 and Re < 103 the roof can rotate or tilt as it sinks and a spectrum of fluid mechanical behavior within the ring dike are observed. The combination of roof rotation and tilting drives unsteady, 3D overturning motions within the ring dike that are inferred to cause extensive mixing

  10. Numerical modeling of continental lithospheric weak zone over plume

    NASA Astrophysics Data System (ADS)

    Perepechko, Y. V.; Sorokin, K. E.

    2011-12-01

    The work is devoted to the development of magmatic systems in the continental lithosphere over diffluent mantle plumes. The areas of tension originating over them are accompanied by appearance of fault zones, and the formation of permeable channels, which are distributed magmatic melts. The numerical simulation of the dynamics of deformation fields in the lithosphere due to convection currents in the upper mantle, and the formation of weakened zones that extend up to the upper crust and create the necessary conditions for the formation of intermediate magma chambers has been carried out. Thermodynamically consistent non-isothermal model simulates the processes of heat and mass transfer of a wide class of magmatic systems, as well as the process of strain localization in the lithosphere and their influence on the formation of high permeability zones in the lower crust. The substance of the lithosphere is a rheologic heterophase medium, which is described by a two-velocity hydrodynamics. This makes it possible to take into account the process of penetration of the melt from the asthenosphere into the weakened zone. The energy dissipation occurs mainly due to interfacial friction and inelastic relaxation of shear stresses. The results of calculation reveal a nonlinear process of the formation of porous channels and demonstrate the diversity of emerging dissipative structures which are determined by properties of both heterogeneous lithosphere and overlying crust. Mutual effect of a permeable channel and the corresponding filtration process of the melt on the mantle convection and the dynamics of the asthenosphere have been studied. The formation of dissipative structures in heterogeneous lithosphere above mantle plumes occurs in accordance with the following scenario: initially, the elastic behavior of heterophase lithosphere leads to the formation of the narrow weakened zone, though sufficiently extensive, with higher porosity. Further, the increase in the width of

  11. Magma supply, storage, and transport at shield-stage Hawaiian volcanoes: Chapter 5 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Poland, Michael P.; Miklius, Asta; Montgomery-Brown, Emily K.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Magma supply to Hawaiian volcanoes has varied over millions of years but is presently at a high level. Supply to Kīlauea’s shallow magmatic system averages about 0.1 km3/yr and fluctuates on timescales of months to years due to changes in pressure within the summit reservoir system, as well as in the volume of melt supplied by the source hot spot. Magma plumbing systems beneath Kīlauea and Mauna Loa are complex and are best constrained at Kīlauea. Multiple regions of magma storage characterize Kīlauea’s summit, and two pairs of rift zones, one providing a shallow magma pathway and the other forming a structural boundary within the volcano, radiate from the summit to carry magma to intrusion/eruption sites located nearby or tens of kilometers from the caldera. Whether or not magma is present within the deep rift zone, which extends beneath the structural rift zones at ~3-km depth to the base of the volcano at ~9-km depth, remains an open question, but we suggest that most magma entering Kīlauea must pass through the summit reservoir system before entering the rift zones. Mauna Loa’s summit magma storage system includes at least two interconnected reservoirs, with one centered beneath the south margin of the caldera and the other elongated along the axis of the caldera. Transport of magma within shield-stage Hawaiian volcanoes occurs through dikes that can evolve into long-lived pipe-like pathways. The ratio of eruptive to noneruptive dikes is large in Hawai‘i, compared to other basaltic volcanoes (in Iceland, for example), because Hawaiian dikes tend to be intruded with high driving pressures. Passive dike intrusions also occur, motivated at Kīlauea by rift opening in response to seaward slip of the volcano’s south flank.

  12. Compaction and Crystallisation in Magma Chambers: Towards a Model of the Skaergaard Intrusion

    NASA Astrophysics Data System (ADS)

    McKenzie, D. P.

    2010-12-01

    The equations governing the conservation of mass, momentum and energy are first simplified by using the extended Boussinesq approximation, and then solved numerically to study the time dependent behaviour of a compacting solidifying layer at the base of a magma chamber when variations in the horizontal plane can be neglected. The most important result is that the concept of a trapped liquid fraction, which has been widely used to model the bulk composition of layered intrusions, is a useful concept to describe the steady state behaviour of compacting layers. The result is at first sight surprising, because there is relative movement between the melt and crystals during compaction, and the system is therefore open. The reason why it is correct is because both the melt and the crystals are moving downwards in a frame fixed to the upper surface of the compacting layer. Since the mass of all elements must be conserved, what goes into the top of the layer as melt and solid must come out of its bottom as a solid when the behaviour is not time dependent. However, when time dependent behaviour occurs the concept of a trapped liquid fraction ceases to be useful. The governing equations are then used to model the concentration of phosphorous in the lower part of the Skaergaard intrusion, where it behaves incompatibly. The observed behaviour requires the viscosity of the solid part of the compacting layer to have a viscosity of about 10^18 Pa s.

  13. Compositional Variation in Magmas Supplied to the Southern East Pacific Rise, 17°-19° S: Implications for Magma Reservoir Dynamics

    NASA Astrophysics Data System (ADS)

    Bergmanis, E. C.; Sinton, J. M.; Rubin, K. H.; Gregg, T. K.; Cormier, M.

    2002-12-01

    Fine-scale observation and sampling of lavas from the southern EPR 17°-19° S reveal both short- and long-term compositional heterogeneity of flows produced in single eruptive episodes. Located between 17° 24' and 17° 36'S, the 140 x 106 m2 Aldo-Kihi flow reaches a maximum width of 2.2 km between 17° 26' and 17° 28'S; the presence of sheet flows, lava channels, and summit collapse troughs imply that the eruption was centered in this area of broad axial morphology. Some lava channels and collapsed lava tubes extend beyond the margins of the recently erupted Aldo-Kihi flow, indicating that lava distribution systems can persist over at least several hundreds of years and multiple separate eruptions were apparently centered in this region. Extensive glass analyses of the Aldo-Kihi flow show that MgO contents range from 7.7-8.4 wt %; all the samples with greater than 8.0 wt % MgO occur south of 17° 30'S. This result is hard to reconcile with along-axis propagation of a single dike, and suggests vertical eruption from a magma chamber that is compositionally zoned along-axis. Twenty-three other samples older than Aldo-Kihi contain > 8.0 wt % MgO; all but two occur south of 17° 28.4'S suggesting that the displacement of eruptive centers from the location of hottest subaxial magma is a long-lived feature of this region. Lack of compositional variation across some contacts indicates that this length of ridge has erupted compositionally similar lavas in separate volcanic episodes. Elsewhere distinctly different lava compositions include the several-hundred-year-old Rehu-Marka Fe-Ti basalt, and local occurrences of incompatible element-enriched T-MORB. The distribution of rock types in this area requires a complex history of mantle melting, recharge, cooling, and eruption that has been spatially systematic over time scales encompassing several eruptive episodes. Between 18° 31.5' and 18° 34.5'S the South Hump lava is distinctly bimodal with highly evolved ferrobasalts

  14. Magma-maintained rift segmentation at continental rupture in the 2005 Afar dyking episode.

    PubMed

    Wright, Tim J; Ebinger, Cindy; Biggs, Juliet; Ayele, Atalay; Yirgu, Gezahegn; Keir, Derek; Stork, Anna

    2006-07-20

    Seafloor spreading centres show a regular along-axis segmentation thought to be produced by a segmented magma supply in the passively upwelling mantle. On the other hand, continental rifts are segmented by large offset normal faults, and many lack magmatism. It is unclear how, when and where the ubiquitous segmented melt zones are emplaced during the continental rupture process. Between 14 September and 4 October 2005, 163 earthquakes (magnitudes greater than 3.9) and a volcanic eruption occurred within the approximately 60-km-long Dabbahu magmatic segment of the Afar rift, a nascent seafloor spreading centre in stretched continental lithosphere. Here we present a three-dimensional deformation field for the Dabbahu rifting episode derived from satellite radar data, which shows that the entire segment ruptured, making it the largest to have occurred on land in the era of satellite geodesy. Simple elastic modelling shows that the magmatic segment opened by up to 8 m, yet seismic rupture can account for only 8 per cent of the observed deformation. Magma was injected along a dyke between depths of 2 and 9 km, corresponding to a total intrusion volume of approximately 2.5 km3. Much of the magma appears to have originated from shallow chambers beneath Dabbahu and Gabho volcanoes at the northern end of the segment, where an explosive fissural eruption occurred on 26 September 2005. Although comparable in magnitude to the ten year (1975-84) Krafla events in Iceland, seismic data suggest that most of the Dabbahu dyke intrusion occurred in less than a week. Thus, magma intrusion via dyking, rather than segmented normal faulting, maintains and probably initiated the along-axis segmentation along this sector of the Nubia-Arabia plate boundary.

  15. Evidences of Multiple Magma Injections in Quaternary Balerang and Rajabasa Volcanoes, Indonesia

    NASA Astrophysics Data System (ADS)

    Hasibuan, R. F.; Ohba, T.; Abdurrachman, M.

    2016-12-01

    Quaternary Balerang and Rajabasa volcanoes are situated along the nearly north-south lineament with a most explosive Krakatau volcanic complex in the south and effusive Sukadana basalt plateau in the north. Some studies have elucidated that Krakatau volcano has multiple magma storage regions beneath together with evidences of magma mixing process. By considering these circumstances, it is necessary to know lateral variations of magmas and to characterize volcanic rocks from Rajabasa volcanic complex which is located between these distinct magmatic systems, in terms of magmatic processes and evolution. Methodologies we used are X-ray fluorescence to determine the whole rock chemistry, K-Ar isotope dating to determine the lifespan of the volcano, as well as EPMA analysis to obtain the chemical composition of minerals. The rock chemistry or TAS plot shows a linear trend, ranging from basaltic (51 wt.%) to rhyolitic (75 wt.%), indicating a chemical heterogeneity of magma. When SiO2 contents are correlated with the relative ages, we found a broad tendency that SiO2 contents progressively decrease with age. The Rajabasa volcano lifespan is known formed at 0.31 Ma while one of the youngest lava is identified erupted at 0.12 Ma. Some plagioclase crystals exhibit disequilibrium textures, like highly sieved core and clear rim regions, also overgrowth rim on the plagioclase and pyroxene crystals whose composition more primitive than the core's composition, indicating magmatic recharge events. Reverse zoning and resorption textures associated with compositional step zoning or progressive zoning are quite common as well in clinopyroxene and plagioclase crystals. By considering these evidences, we conclude that injection of a hotter basaltic magma into colder and more felsic magma occurred beneath the volcanoes.

  16. The Atlantis Bank gabbro-suite was not a "normal" magma-chamber that produced basalts

    NASA Astrophysics Data System (ADS)

    Kvassnes, A. J.; Dick, H. J. B.; Grove, T. L.

    2003-04-01

    The differentiation of the basalts sampled at Atlantis II Fracture Zone, South-West Indian Ridge, is not the result of simple fractionation of gabbroic mineral-assemblages like those recovered from the adjacent Atlantis Bank and ODP Hole 735B. Large mineral data sets for the gabbros (Dick, et al 2002) are now available for analysis and comparison to spatially associated basalts. We have used Melts and pMelts (Ghiorso and Sack, 1995) to estimate the fractional crystallization trend gabbros from a primitive mantle melt or of the AII F.Z. MORB. Thermodynamic models (Grove et al (1992), Putirka (1999)) were also used to model the glasses hypothetical mafic and felsic mineral equilibrium-compositions. Our results show that while the basalts suggest 30-50% crystallization, the gabbros indicate 35-90% crystallization of a primary melt. It is therefore unlikely that the gabbros sampled from Atlantis Bank are the fossil magma-chambers that expelled melts that formed the spatially associated basalts. The models also show that the most primitive gabbros have elevated clinopyroxene Mg#s (Mg/(Mg+Fe)) relative to the coexisting plagioclase An%. This was unexpected, as the clinopyroxene frequently occurs as oikocrysts surrounding the plagioclase and encloses rounded olivine chadacrysts, indicating that the clinopyroxene precipitated late. Elthon (1992) noted the same problem for Cayman Trough gabbros; suggesting that this was the result of intermediate pressure fractionation. In our models, pressure does have some effect up to 5kbar, but is not enough to explain the discrepancy. We propose a model where melts are modified in a porous network or mush. Plagioclase-olivine networks form by accumulation of buoyant glomerocrysts and then work as filters as new melts pass through. Dissolution of the minerals would make the new melt appear to be more primitive with regards to increased Mg#s, as the dissolution happens fast without complete internal re-equilibration with the gabbro

  17. Dynamics of differentiation in magma reservoirs

    NASA Astrophysics Data System (ADS)

    Jaupart, Claude; Tait, Stephen

    1995-09-01

    In large magma chambers, gradients of temperature and composition develop due to cooling and to fractional crystallization. Unstable density differences lead to differential motions between melt and crystals, and a major goal is to explain how this might result in chemical differentiation of magma. Arriving at a full description of the physics of crystallizing magma chambers is a challenge because of the large number of processes potentially involved, the many coupled variables, and the different geometrical shapes. Furthermore, perturbations are caused by the reinjection of melt from a deep source, eruption to the Earth's surface, and the assimilation of country rock. Physical models of increasing complexity have been developed with emphasis on three fundamental approaches. One is, given that large gradients in temperature and composition may occur, to specify how to apply thermodynamic constraints so that coexisting liquid and solid compositions may be calculated. The second is to leave the differentiation trend as the solution to be found, i.e., to specify how cooling occurs and to predict the evolution of the composition of the residual liquid and of the solid forming. The third is to simplify the physics so that the effects of coupled heat and mass transfer may be studied with a reduced set of variables. The complex shapes of magma chambers imply that boundary layers develop with density gradients at various angles to gravity, leading to various convective flows and profiles qf liquid stratification. Early studies were mainly concerned with describing fluid flow in the liquid interior of large reservoirs, due to gradients developed at the margins. More recent work has focused on the internal structure and flow field of boundary layers and in particular on the gradients of solid fraction and interstitial melt composition which develop within them. Crystal settling may occur in a surprisingly diverse range of regimes and may lead to intermittent deposition

  18. Checking the validity of superimposing analytical deformation models and implications for numerical modelling of dikes and magma chambers

    NASA Astrophysics Data System (ADS)

    Pascal, K.; Neuberg, J. W.; Rivalta, E.

    2011-12-01

    fundamental issues related to the numerical method chosen to model a dike or a magma chamber. It clearly demonstrates that, while the magma compressibility can be neglected to model the deformation due to one source or distant sources, it is necessary to take it into account in models combining close sources.

  19. Linking magma transport structures at Kīlauea volcano

    USGS Publications Warehouse

    Wech, Aaron G.; Thelen, Weston A.

    2015-01-01

    Identifying magma pathways is important for understanding and interpreting volcanic signals. At Kīlauea volcano, seismicity illuminates subsurface plumbing, but the broad spectrum of seismic phenomena hampers event identification. Discrete, long-period events (LPs) dominate the shallow (5-10 km) plumbing, and deep (40+ km) tremor has been observed offshore. However, our inability to routinely identify these events limits their utility in tracking ascending magma. Using envelope cross-correlation, we systematically catalog non-earthquake seismicity between 2008-2014. We find the LPs and deep tremor are spatially distinct, separated by the 15-25 km deep, horizontal mantle fault zone (MFZ). Our search corroborates previous observations, but we find broader-band (0.5-20 Hz) tremor comprising collocated earthquakes and reinterpret the deep tremor as earthquake swarms in a volume surrounding and responding to magma intruding from the mantle plume beneath the MFZ. We propose the overlying MFZ promotes lateral magma transport, linking this deep intrusion with Kīlauea’s shallow magma plumbing.

  20. Constraints of texture and composition of clinopyroxene phenocrysts of Holocene volcanic rocks on a magmatic plumbing system beneath Tengchong, SW China

    NASA Astrophysics Data System (ADS)

    Hu, Jun-Hao; Song, Xie-Yan; He, Hai-Long; Zheng, Wen-Qin; Yu, Song-Yue; Chen, Lie-Meng; Lai, Chun-Kit

    2018-04-01

    Understanding processes of magma replenishment in a magma plumbing system is essential to predict eruption potential of a dormant volcano. In this study, we present new petrologic and thermobarometric data for youngest lava flows from the Holocene Heikongshan volcano in the Tengchong area, SW China. Clinopyroxene phenocrysts from the trachytic lava flows display various textural/compositional zoning styles (i.e., normal, reverse and oscillatory). Such zoning patterns are indicative of an open magmatic plumbing system with multiphase magma replenishment and mixing, which were likely a key drive of the volcanic eruptions. Thermobarometric calculations of these zoned clinopyroxene phenocrysts yield crystallization pressures of 3.8-7.1 kbar (peak at 4.5-7.0 kbar), corresponding to a magma chamber at depths of 14-21 km. The calculated depths are consistent with the large low-resistivity body at 12-30 km beneath the Heikongshan volcano, implying that the magmatic plumbing system may still be active. Recent earthquakes in the Tengchong area suggest that the regional strike-slip faulting are still active, and may trigger future volcanic eruptions if the magma chamber(s) beneath the Tengchong volcanic field is disturbed, in spite of the volcanic quiescence since 1609 CE.

  1. Ground Tilt Time Delays between Kilauea Volcano's Summit and East Rift Zone Caused by Magma Reservoir Buffering

    NASA Astrophysics Data System (ADS)

    Haney, M. M.; Patrick, M. R.; Anderson, K. R.

    2016-12-01

    A cyclic pattern of ground deformation, called a deflation-inflation (DI) cycle, is commonly observed at Kilauea Volcano, Hawai`i. These cycles are an important part of Kilauea's eruptive activity because they directly influence the level of the summit lava lake as well as the effusion rate (and resulting lava flow hazard) at the East Rift Zone eruption site at Pu`u `O`o. DI events normally span several days, and are measured both at the summit and at Pu`u `O`o cone (20 km distance). Signals appear first at the summit and are then observed at Pu`u `O`o after an apparent delay of between 0.5 and 10 hours, which has been previously interpreted as reflecting magma transport time. We propose an alternate explanation, in which the apparent delay is an artifact of buffering by the small magma reservoir thought to exist at Pu`u `O`o. Simple Poiseuille flow modeling demonstrates that this apparent delay can be reproduced by the changing balance of inflow (from the summit) and outflow (to surface lava flows) at the Pu`u `O`o magma reservoir. The apparent delay is sensitive to the geometry of the conduit leaving Pu`u `O`o, feeding surface lava flows. We demonstrate how the reservoir buffering is quantitatively equivalent to a causal low-pass filter, which explains both the apparent delay as well as the smoothed, skewed nature of the signal at Pu`u `O`o relative to the summit. By comparing summit and Pu`u `O`o ground tilt signals over an extended time period, it may be possible to constrain the changing geometry of the shallow magmatic system through time.

  2. Magma Supply Rate Controls Vigor (And Longevity) of Kīlauea's Ongoing East Rift Zone Eruption

    NASA Astrophysics Data System (ADS)

    Poland, M. P.; Anderson, K. R.

    2015-12-01

    Since 1983, Kīlauea Volcano, Hawai'i, has erupted almost continuously from vents on the East Rift Zone—at 32 years and counting, this is the longest-duration eruption in the past 500 years. Although forecasting the onset of eruptive activity using geophysical, geochemical, and geological monitoring has been demonstrated repeatedly at Kīlauea and elsewhere, little progress has been made in forecasting an eruption's waning or end, particularly in the case of long-lived eruptions. This is especially important at Kīlauea for at least two reasons: (1) caldera formation at the end of another decades-long eruption, in the 15th century, raises the possibility of a link between eruption duration and caldera formation; and (2) long-lived eruptions can have an enduring effect on local population and infrastructure, as demonstrated by the repeated destruction of property by Kīlauea's ongoing rift zone eruption. Data from the past 15 years indicate that the magma supply rate to Kīlauea is an important control on eruptive activity. Joint inversions of geophysical, geochemical, and geological observations demonstrate that in 2006 the supply rate was nearly double that of 2000-2001, resulting in an increase in lava discharge, summit inflation, and the formation of new eruptive vents. In contrast, the magma supply during 2012, and likely through 2014, was less than that of 2000-2001. This lower supply rate was associated with a lower lava discharge and may have played a role in the stalling of lava flows above population centers in the Puna District during 2014-2015. Heightened eruptive vigor may be expected if magma supply increases in the future; however, a further decrease in supply rate—which is likely already below the long-term average—may result in cessation of the eruption. Multidisciplinary monitoring, and particularly tracking of CO2 emissions and surface deformation, should be able to detect changes in supply rate before they are strongly manifested at the

  3. CO2 Degassing at Kilauea Volcano: Implications for Primary Magma, Summit Reservoir Dynamics, and Magma Supply Monitoring

    NASA Astrophysics Data System (ADS)

    Gerlach, T. M.; McGee, K. A.; Elias, T.; Sutton, A. J.; Doukas, M. P.

    2001-12-01

    We report a new CO2 emission rate of 8,500 tons/day (t/d) for the summit of Kilauea Volcano, a result several times larger than previous estimates. It is based on 12 experiments on three occasions over four years constraining the SO2 emission rate and the average CO2/SO2 of emissions along the 5.4-km summit COSPEC traverse (by COSPEC, NDIR CO2 analyzer, and CP-FTIR). The core of the summit plume is at ground level along the traverse and gives average CO2/SO2 values that are representative of the overall summit emission, even though CO2 and SO2 variations are commonly uncorrelated. CO2 and SO2 concentrations exceed background by 200-1,000 ppm and 1-7 ppm respectively. Nighttime measurements exclude Park auto exhaust as a source of CO2. The summit CO2 emission rate is nearly constant (95% confidence interval = 300 t/d), despite variable summit SO2 emission rates (62-240 t/d) and CO2/SO2 (54-183). Including other known CO2 emissions on the volcano (mainly from the Pu`u `O`o eruption) gives a total emission rate of about 8,800 t/d. Thus summit CO2 emissions comprise 97% of the total known CO2 output, consistent with the hypothesis that all primary magma supplied to Kilauea arrives under the summit caldera and is thoroughly degassed of excess CO2. A persistent large CO2 anomaly of 200-1,000 ppm indicates the entry to the summit reservoir is beneath a km2-area east of Halemaumau. The bulk CO2 content of primary magma is about 0.70 wt%, inferred from the CO2 emission rate and Kilauea's magma supply rate (0.18 km3/y [Cayol et al., Science, 288, 2343, 2000]). Most of the CO2 is present as exsolved vapor (3.6-11.7 vol%) at summit reservoir depths (2-7 km), making the primary magma strongly buoyant. Magma chamber replenishment models show that robust turbulent mixing of primary and reservoir magma prevents frequent eruption of buoyant primary magma in the summit region. The escape of 90-95% of the CO2 from the summit reservoir provides a potential proxy for monitoring the

  4. Evidence for a Dying Magma Chamber at Rábida Island, Galápagos

    NASA Astrophysics Data System (ADS)

    Bercovici, H.; Geist, D.; Harpp, K. S.; Almeida, M.

    2015-12-01

    Rábida Island in the Galapagos has experienced both explosive and effusive volcanism. It is located to the east of the most active volcanoes of the Galapagos, and previously determined ages range from 0.9 to 1.1 Ma. An unusually curved escarpment cuts the western sector of the island, which might be part of a caldera wall, although its radius of curvature is much greater than that of the island. Lavas range from basalt to rhyolite, and there are also several intermediate compositions, which are unique in the archipelago. A welded ignimbrite crops out in northeast sector, the only such deposit known in the entire region. The volumetric proportion of evolved rocks is unusually high; 25% of the rocks in our comprehensive sample set are intermediate to felsic. The siliceous rocks occur in two clusters in the southern and southwestern sections of the island, suggesting two separate sources. The intermediate rocks are concentrated in the center and northwestern parts of the island. Despite these foci of more siliceous lavas, basalt is the most widespread rock type across the island. It is notable that Rabida is immediately east of Volcan Alcedo, which is the only active Galápagos volcano that has also erupted rhyolite, and south of Santiago Island, which erupted the trachyte dome observed by Charles Darwin in 1835. These observations, in conjunction with the cumulate xenoliths observed in Rábida explosive deposits, are consistent with the evolved rocks resulting from fractional crystallization of a dying magma chamber, as the volcano is carried away from the hotspot.

  5. Mushy Magma beneath Yellowstone

    NASA Astrophysics Data System (ADS)

    Chu, R.; Helmberger, D. V.; Sun, D.; Jackson, J. M.; Zhu, L.

    2009-12-01

    A recent prospective on the Yellowstone Caldera discounts its explosive potential based on inferences from tomographic studies on regional earthquake data which suggests a high degree of crystallization of the underlying magma body. In this study, we analyzed P-wave receiver functions recorded by broadband stations above the caldera from 100 teleseismic earthquakes between January and November 2008. After applying a number of waveform modeling tools, we obtained much lower seismic velocities than previous estimates, 2.3 km/sec (Vp) and 1.1 km/sec (Vs), with a thickness of 3.6 km in the upper crust. This shallow low velocity zone is severe enough to cause difficulties with seismic tool applications. In particular, seismologists expect teleseismic P-waves to arrive with motions up and away or down and back. Many of the observations recorded by the Yellowstone Intermountain Seismic Array, however, violate this assumption. We show that many of the first P-wave arrivals observed at seismic stations on the edge of the caldera do not travel through the magma body but have taken longer but faster paths around the edge or wrap-around phases. Three stations near the trailing edge have reversal radial-component motions, while stations near the leading edge do not. Adding our constraints on geometry, we conclude that this relatively shallow magma body has a volume of over 4,300 km3. We estimate the magma body by assuming a fluid-saturated porous material consisting of granite and a mixture of rhyolite melt and supercritical water and CO2 at temperatures of 800 oC and pressure at 5 km (0.1 GPa).Theoretical calculations of seismic wave speed suggests that the magma body beneath the Yellowstone Caldera has a porosity of 32% filled with 92% rhyolite melt and 8% water-CO2 by volume.

  6. A plutonic view of explosive volcanism: the shatter zone of the Cadillac Mountain granite, Maine

    NASA Astrophysics Data System (ADS)

    Wiebe, R.

    2013-12-01

    of clast size distribution of CR fragments in SZA and SZB suggests an extremely high-energy environment consistent with a pyroclastic eruption from the CMG magma chamber (Roy et al. 2012). If such an eruption did occur, one expected effect would be episodic, sudden drops in pressure during degassing and eruptive events. Since the lower part of the chamber was apparently relatively dry (hypersolvus alkali feldspar with ternary feldspar occurs in CMG immediately above the GD), the drop in pressure would lower H2O activity so that the Ab-rich loop of the alkali feldspar phase diagram would shift to higher T, causing the melt to fall below the liquidus and shift the equilibrium solid feldspar to higher Or values. This matches the initial oscillatory zone to higher Or on the homogeneous cores. Because the SZ terminates at the top of the GD, it is likely that mafic input contributed to the eruption. The large inward increase in the crystallization T of the matrix from SZA to SZC probably records initial escape of a cooler felsic cap and upwelling of deep, hot hypersolvus magma along with partial collapse of the chamber roof.

  7. Generation, ascent and eruption of magma on the Moon: New insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 1: Theory)

    NASA Astrophysics Data System (ADS)

    Wilson, Lionel; Head, James W.

    2017-02-01

    We model the ascent and eruption of lunar mare basalt magmas with new data on crustal thickness and density (GRAIL), magma properties, and surface topography, morphology and structure (Lunar Reconnaissance Orbiter). GRAIL recently measured the broad spatial variation of the bulk density structure of the crust of the Moon. Comparing this with the densities of lunar basaltic and picritic magmas shows that essentially all lunar magmas were negatively buoyant everywhere within the lunar crust. Thus positive excess pressures must have been present in melts at or below the crust-mantle interface to enable them to erupt. The source of such excess pressures is clear: melt in any region experiencing partial melting or containing accumulated melt, behaves as though an excess pressure is present at the top of the melt column if the melt is positively buoyant relative to the host rocks and forms a continuously interconnected network. The latter means that, in partial melt regions, probably at least a few percent melting must have taken place. Petrologic evidence suggests that both mare basalts and picritic glasses may have been derived from polybaric melting of source rocks in regions extending vertically for at least a few tens of km. This is not surprising: the vertical extent of a region containing inter-connected partial melt produced by pressure-release melting is approximately inversely proportional to the acceleration due to gravity. Translating the ∼25 km vertical extent of melting in a rising mantle diapir on Earth to the Moon then implies that melting could have taken place over a vertical extent of up to 150 km. If convection were absent, melting could have occurred throughout any region in which heat from radioisotope decay was accumulating; in the extreme this could have been most of the mantle. The maximum excess pressure that can be reached in a magma body depends on its environment. If melt percolates upward from a partial melt zone and accumulates as a magma

  8. High magma storage rates before the 1983 eruption of Kilauea, Hawaii

    USGS Publications Warehouse

    Cayol, V.; Dieterich, J.H.; Okamura, A.T.; Miklius, Asta

    2000-01-01

    After a magnitude 7.2 earthquake in 1975 and before the start of the ongoing eruption in 1983, deformation of Kilauea volcano was the most rapid ever recorded. Three-dimensional numerical modeling shows that this deformation is consistent with the dilation of a dike within Kilauea's rift zones coupled with creep over a narrow area of a low-angle fault beneath the south flank. Magma supply is estimated to be 0.18 cubic kilometers per year, twice that of previous estimates. The 1983 eruption may be a direct consequence of the high rates of magma storage within the rift zone that followed the 1975 earthquake.

  9. High magma storage rates before the 1983 eruption of kilauea, hawaii

    PubMed

    Cayol; Dieterich; Okamura; Miklius

    2000-06-30

    After a magnitude 7.2 earthquake in 1975 and before the start of the ongoing eruption in 1983, deformation of Kilauea volcano was the most rapid ever recorded. Three-dimensional numerical modeling shows that this deformation is consistent with the dilation of a dike within Kilauea's rift zones coupled with creep over a narrow area of a low-angle fault beneath the south flank. Magma supply is estimated to be 0.18 cubic kilometers per year, twice that of previous estimates. The 1983 eruption may be a direct consequence of the high rates of magma storage within the rift zone that followed the 1975 earthquake.

  10. Degassing-induced crystallization of basaltic magma and effects on lava rheology

    USGS Publications Warehouse

    Lipman, P.W.; Banks, N.G.; Rhodes, J.M.

    1985-01-01

    During the north-east rift eruption of Mauna Loa volcano, Hawaii, on 25 March-14 April 1984 (Fig. 1), microphenocryst contents of erupted lava increased from 0.5 to 30% without concurrent change in either bulk magma composition or eruption temperature (1,140 ?? 3 ??C). The crystallization of the microphenocrysts is interpreted here as being due to undercooling of the magma 20-30 ??C below its liquidas; the undercooling probably resulted from separation and release of volatiles as the magma migrated 12 km from the primary summit reservoir to the eruption site on the north-east rift zone. Such crystallization of magma during an eruption has not been documented previously. The undercooling and crystallization increased the effective viscosity of the magma, leading to decreased eruption rates and stagnation of the lava flow. ?? 1985 Nature Publishing Group.

  11. Structural control on volcanoes and magma paths from local- to orogen-scale: The central Andes case

    NASA Astrophysics Data System (ADS)

    Tibaldi, A.; Bonali, F. L.; Corazzato, C.

    2017-03-01

    Assessing the parameters that control the location and geometry of magma paths is of paramount importance for the comprehension of volcanic plumbing systems and geo-hazards. We analyse the distribution of 1518 monogenic and polygenic volcanoes of Miocene-Quaternary age of the Central Volcanic Zone of the Andes (Chile-Bolivia-Argentina), and reconstruct the magma paths at 315 edifices by analysing the morphostructural characteristics of craters and cones. Then we compare these data with outcropping dykes, tectonic structures and state of stress. Most magma paths trend N-S, NW-SE, and NE-SW, in decreasing order of frequency. The N-S and NW-SE paths coexist in the northern and southern part of the study area, whereas N-S paths dominate east of the Salar de Atacama. Outcropping dykes show the same trends. The regional Holocene stress state is given by an E-W greatest horizontal principal stress. N-S and NNE-SSW reverse faults and folds affect deposits of 4.8, 3.2 and 1.3 Ma BP, especially in the central and southern study areas. A few NW-SE left-lateral strike-slip faults are present in the interior of the volcanic arc, part of which belong to the Calama-Olacapato-El Toro fault. The volcanic chain is also affected by several N-S- and NW-SE-striking normal faults that offset Pliocene and Quaternary deposits. The results indicate different scenarios of magma-tectonic interaction, given by N-S normal and reverse faults and N-S fold hinges that guide volcano emplacement and magma paths. Magma paths are also guided by strike-slip and normal NW-SE faults, especially in the northern part of the study area. Zones with verticalized strata, with bedding striking NE-SW, also acted as preferential magma paths. These data suggest that at convergence zones with continental crust, shallow magma paths can be more sensitive to the presence and geometry of upper crustal weakness zones than to the regional state of stress.

  12. A two dimensional finite difference time domain analysis of the quiet zone fields of an anechoic chamber

    NASA Technical Reports Server (NTRS)

    Ryan, Deirdre A.; Luebbers, Raymond J.; Nguyen, Truong X.; Kunz, Karl S.; Steich, David J.

    1992-01-01

    Prediction of anechoic chamber performance is a difficult problem. Electromagnetic anechoic chambers exist for a wide range of frequencies but are typically very large when measured in wavelengths. Three dimensional finite difference time domain (FDTD) modeling of anechoic chambers is possible with current computers but at frequencies lower than most chamber design frequencies. However, two dimensional FDTD (2D-FTD) modeling enables much greater detail at higher frequencies and offers significant insight into compact anechoic chamber design and performance. A major subsystem of an anechoic chamber for which computational electromagnetic analyses exist is the reflector. First, an analysis of the quiet zone fields of a low frequency anechoic chamber produced by a uniform source and a reflector in two dimensions using the FDTD method is presented. The 2D-FDTD results are compared with results from a three dimensional corrected physical optics calculation and show good agreement. Next, a directional source is substituted for the uniform radiator. Finally, a two dimensional anechoic chamber geometry, including absorbing materials, is considered, and the 2D-FDTD results for these geometries appear reasonable.

  13. The 2006-2009 activity of the Ubinas volcano (Peru): Petrology of the 2006 eruptive products and insights into genesis of andesite magmas, magma recharge and plumbing system

    NASA Astrophysics Data System (ADS)

    Rivera, Marco; Thouret, Jean-Claude; Samaniego, Pablo; Le Pennec, Jean-Luc

    2014-01-01

    Following a fumarolic episode that started six months earlier, the most recent eruptive activity of the Ubinas volcano (south Peru) began on 27 March 2006, intensified between April and October 2006 and slowly declined until December 2009. The chronology of the explosive episode and the extent and composition of the erupted material are documented with an emphasis on ballistic ejecta. A petrological study of the juvenile products allows us to infer the magmatic processes related to the 2006-2009 eruptions of the andesitic Ubinas volcano. The juvenile magma erupted during the 2006 activity shows a homogeneous bulk-rock andesitic composition (56.7-57.6 wt.% SiO2), which belongs to a medium- to high-K calc-alkaline series. The mineral assemblage of the ballistic blocks and tephra consists of plagioclase > two-pyroxenes > Fe-Ti oxide and rare olivine and amphibole set in a groundmass of the same minerals with a dacitic composition (66-67 wt.% SiO2). Thermo-barometric data, based on two-pyroxene and amphibole stability, records a magma temperature of 998 ± 14 °C and a pressure of 476 ± 36 MPa. Widespread mineralogical and textural features point to a disequilibrium process in the erupted andesite magma. These features include inversely zoned "sieve textures" in plagioclase, inversely zoned clinopyroxene, and olivine crystals with reaction and thin overgrowth rims. They indicate that the pre-eruptive magmatic processes were dominated by recharge of a hotter mafic magma into a shallow reservoir, where magma mingling occurred and triggered the eruption. Prior to 2006, a probable recharge of a mafic magma produced strong convection and partial homogenization in the reservoir, as well as a pressure increase and higher magma ascent rate after four years of fumarolic activity. Mafic magmas do not prevail in the Ubinas pre-historical lavas and tephras. However, mafic andesites have been erupted during historical times (e.g. AD 1667 and 2006-2009 vulcanian eruptions). Hence

  14. Constraint on the magma sources in Luzon Island Philippines by using P and S wave local seismic tomography

    NASA Astrophysics Data System (ADS)

    Nghia, N. C.; Huang, B. S.; Chen, P. F.

    2017-12-01

    The subduction of South China Sea beneath the Luzon Island has caused a complex setting of seismicity and magmatism because of the proposed ridge subduction and slab tearing. To constrain the validity of slab tearing induced by ridge subduction and their effect, we performed a P and S wave seismic tomography travel time inversion using LOTOS code. The dataset has been retrieved from International Seismological Centre from 1960 to 2008. A 1D velocity inverted by using VELEST with a Vp/Vs ratio of 1.74 is used as the starting input velocity for tomographic inversion. Total of 20905 P readings and 8126 S readings from 2355 earthquakes events were used to invert for velocity structure beneath Luzon Island. The horizontal tomographic results show low-velocity, high Vp/Vs regions at the shallow depth less than 50 km which are interpreted as the magmatic chambers of the volcanic system in Luzon. At the suspected region of slab tearing at 16oN to 18oN, two sources of magma have been indentified: slab window magma at shallow depth (< 50 km) and magma induced by mantle wedge partial melting from higher depth. This slab melting may have changed the composition of magmatic to become more silicic with high viscosity, which explains the volcanic gap in this region. At the region of 14oN to 15oN, large magma chambers under active volcanos are identified which explain the active volcanism in this region. Contrast to the region of slab tearing, in this region, the magma chambers are fed by only magma from partial melting of mantle wedge from the depth higher than 100 km. These observations are consistent with previous work on the slab tearing of South China Sea and the activities of volcanism in the Luzon Island.

  15. Thermal evolution of magma reservoirs in the shallow crust and incidence on magma differentiation: the St-Jean-du-Doigt layered intrusion (Brittany, France)

    NASA Astrophysics Data System (ADS)

    Barboni, M.; Bussy, F.; Ovtcharova, M.; Schoene, B.

    2009-12-01

    .5m/y. Extraction of differentiated residual liquids might eventually take place and mix with newly injected magma as documented in active syn-emplacement shear-zones. These low-pressure differentiated liquids can potentially contribute to subaerial volcanic activity along the major shear-zones.

  16. Resonance oscillations of the Soufrière Hills Volcano (Montserrat, W.I.) magmatic system induced by forced magma flow from the reservoir into the upper plumbing dike

    NASA Astrophysics Data System (ADS)

    Chen, Chin-Wu; Huang, Hsin-Fu; Hautmann, Stefanie; Sacks, I. Selwyn; Linde, Alan T.; Taira, Taka'aki

    2018-01-01

    Short-period deformation cycles are a common phenomenon at active volcanoes and are often attributed to the instability of magma flow in the upper plumbing system caused by fluctuations in magma viscosity related to cooling, degassing, and crystallization. Here we present 20-min periodic oscillations in ground deformation based on high-precision continuous borehole strain data that were associated with the 2003 massive dome-collapse at the Soufrière Hills Volcano, Montserrat (West Indies). These high-frequency oscillations lasted 80 min and were preceded by a 4-hour episode of rapid expansion of the shallow magma reservoir. Strain amplitude ratios indicate that the deformational changes were generated by pressure variations in the shallow magma reservoir and - with reversed polarity - the adjacent plumbing dike. The unusually short period of the oscillations cannot be explained with thermally induced variations in magma properties. We investigate the underlying mechanism of the oscillations via a numerical model of forced magma flow through a reservoir-dike system accounting for time-dependent dilation/contraction of the dike due to a viscous response in the surrounding host rock. Our results suggest that the cyclic pressure variations are modulated by the dynamical interplay between rapid expansion of the magma chamber and the incapacity of the narrow dike to take up fast enough the magma volumes supplied by the reservoir. Our results allow us to place first order constraints on the viscosity of crustal host rocks and consequently its fractional melt content. Hence, we present for the first time crustal-scale in situ measurements of rheological properties of mush zones surrounding magmatic systems.

  17. The Surtsey Magma Series

    PubMed Central

    Ian Schipper, C.; Jakobsson, Sveinn P.; White, James D.L.; Michael Palin, J.; Bush-Marcinowski, Tim

    2015-01-01

    The volcanic island of Surtsey (Vestmannaeyjar, Iceland) is the product of a 3.5-year-long eruption that began in November 1963. Observations of magma-water interaction during pyroclastic episodes made Surtsey the type example of shallow-to-emergent phreatomagmatic eruptions. Here, in part to mark the 50th anniversary of this canonical eruption, we present previously unpublished major-element whole-rock compositions, and new major and trace-element compositions of sideromelane glasses in tephra collected by observers and retrieved from the 1979 drill core. Compositions became progressively more primitive as the eruption progressed, with abrupt changes corresponding to shifts between the eruption’s four edifices. Trace-element ratios indicate that the chemical variation is best explained by mixing of different proportions of depleted ridge-like basalt, with ponded, enriched alkalic basalt similar to that of Iceland’s Eastern Volcanic Zone; however, the systematic offset of Surtsey compositions to lower Nb/Zr than other Vestmannaeyjar lavas indicates that these mixing end members are as-yet poorly contained by compositions in the literature. As the southwestern-most volcano in the Vestmannaeyjar, the geochemistry of the Surtsey Magma Series exemplifies processes occurring within ephemeral magma bodies on the extreme leading edge of a propagating off-axis rift in the vicinity of the Iceland plume. PMID:26112644

  18. The Surtsey Magma Series.

    PubMed

    Schipper, C Ian; Jakobsson, Sveinn P; White, James D L; Michael Palin, J; Bush-Marcinowski, Tim

    2015-06-26

    The volcanic island of Surtsey (Vestmannaeyjar, Iceland) is the product of a 3.5-year-long eruption that began in November 1963. Observations of magma-water interaction during pyroclastic episodes made Surtsey the type example of shallow-to-emergent phreatomagmatic eruptions. Here, in part to mark the 50(th) anniversary of this canonical eruption, we present previously unpublished major-element whole-rock compositions, and new major and trace-element compositions of sideromelane glasses in tephra collected by observers and retrieved from the 1979 drill core. Compositions became progressively more primitive as the eruption progressed, with abrupt changes corresponding to shifts between the eruption's four edifices. Trace-element ratios indicate that the chemical variation is best explained by mixing of different proportions of depleted ridge-like basalt, with ponded, enriched alkalic basalt similar to that of Iceland's Eastern Volcanic Zone; however, the systematic offset of Surtsey compositions to lower Nb/Zr than other Vestmannaeyjar lavas indicates that these mixing end members are as-yet poorly contained by compositions in the literature. As the southwestern-most volcano in the Vestmannaeyjar, the geochemistry of the Surtsey Magma Series exemplifies processes occurring within ephemeral magma bodies on the extreme leading edge of a propagating off-axis rift in the vicinity of the Iceland plume.

  19. Magma genesis of the acidic volcanism in the intra-arc rift zone of the Izu volcanic arc, Japan

    NASA Astrophysics Data System (ADS)

    Haraguchi, S.; Tokuyama, H.; Ishii, T.

    2010-12-01

    The Izu volcanic arc extends over 550 km from the Izu Peninsula, Japan, to the Nishinoshima Trough or Sofugan tectonic line. It is the northernmost segment of the Izu-Bonin-Mariana arc system, which is located at the eastern side of the Philippine Sea Plate. The recent magmatism of the Izu arc is bimodal and characterized by basalt and rhyolite (e.g. Tamura and Tatsumi 2002). In the southern Izu arc, volcanic front from the Aogashima to the Torishima islands is characterized by submarine calderas and acidic volcanisms. The intra-arc rifting, characterized by back-arc depressions, small volcanic knolls and ridges, is active in this region. Volcanic rocks were obtained in 1995 during a research cruise of the R/V MOANA WAVE (Hawaii University, cruise MW9507). Geochemical variation of volcanic rocks and magma genesis was studied by Hochstaedter et al. (2000, 2001), Machida et al (2008), etc. These studies focused magma and mantle dynamics of basaltic volcanism in the wedge mantle. Acidic volcanic rocks were also dredged during the curies MW9507. However, studies of these acidic volcanics were rare. Herein, we present petrographical and chemical analyses of these acidic rocks, and compare these results with those of other acidic rocks in the Izu arc and lab experiments, and propose a model of magma genesis in a context of acidic volcanism. Dredge sites by the cruise MW9507 are 120, and about 50 sites are in the rift zone. Recovered rocks are dominated by the bimodal assemblage of basalt-basaltic andesite and dacite-rhyolite. The most abundant phase is olivine basalt, less than 50 wt% SiO2. Andesites are minor in volume and compositional gap from 56 to 65 wt% SiO2 exists. The across-arc variation of the HFSE contents and ratios, such as Zr/Y and Nb/Zr of rhyolites exhibit depleted in the volcanic front side and enriched in reararc side. This characteristic is similar to basaltic volcanism pointed out by Hochstaedter et al (2000). The petrographical features of rhyolites

  20. Magma deformation and emplacement in rhyolitic dykes

    NASA Astrophysics Data System (ADS)

    McGowan, Ellen; Tuffen, Hugh; James, Mike; Wynn, Peter

    2016-04-01

    Silicic eruption mechanisms are determined by the rheological and degassing behaviour of highly-viscous magma ascending within shallow dykes and conduits. However, we have little knowledge of how magmatic behaviour shifts during eruptions as dykes and conduits evolve. To address this we have analysed the micro- to macro-scale textures in shallow, dissected rhyolitic dykes at the Tertiary Húsafell central volcano in west Iceland. Dyke intrusion at ~3 Ma was associated with the emplacement of subaerial rhyolitic pyroclastic deposits following caldera formation[1]. The dykes are dissected to ~500 m depth, 2-3 m wide, and crop out in two stream valleys with 5-30 m-long exposures. Dykes intrude diverse country rock types, including a welded ignimbrite, basaltic lavas, and glacial conglomerate. Each of the six studied dykes is broadly similar, exhibiting obsidian margins and microcrystalline cores. Dykes within pre-fractured lava are surrounded by external tuffisite vein networks, which are absent from dykes within conglomerate, whereas dykes failed to penetrate the ignimbrite. Obsidian at dyke margins comprises layers of discrete colour. These display dramatic thickness variations and collapsed bubble structures, and are locally separated by zones of welded, brecciated and flow-banded obsidian. We use textural associations to present a detailed model of dyke emplacement and evolution. Dykes initially propagated with the passage of fragmented, gas-charged magma and generation of external tuffisite veins, whose distribution was strongly influenced by pre-existing fractures in the country rock. External tuffisites retained permeability throughout dyke emplacement due to their high lithic content. The geochemically homogenous dykes then evolved via incremental magma emplacement, with shear deformation localised along emplacement boundary layers. Shear zones migrated between different boundary layers, and bubble deformation promoted magma mobility. Brittle

  1. Understanding which parameters control shallow ascent of silicic effusive magma

    NASA Astrophysics Data System (ADS)

    Thomas, Mark E.; Neuberg, Jurgen W.

    2014-11-01

    The estimation of the magma ascent rate is key to predicting volcanic activity and relies on the understanding of how strongly the ascent rate is controlled by different magmatic parameters. Linking potential changes of such parameters to monitoring data is an essential step to be able to use these data as a predictive tool. We present the results of a suite of conduit flow models Soufrière that assess the influence of individual model parameters such as the magmatic water content, temperature or bulk magma composition on the magma flow in the conduit during an extrusive dome eruption. By systematically varying these parameters we assess their relative importance to changes in ascent rate. We show that variability in the rate of low frequency seismicity, assumed to correlate directly with the rate of magma movement, can be used as an indicator for changes in ascent rate and, therefore, eruptive activity. The results indicate that conduit diameter and excess pressure in the magma chamber are amongst the dominant controlling variables, but the single most important parameter is the volatile content (assumed as only water). Modeling this parameter in the range of reported values causes changes in the calculated ascent velocities of up to 800%.

  2. Magma Fragmentation

    NASA Astrophysics Data System (ADS)

    Gonnermann, Helge M.

    2015-05-01

    Magma fragmentation is the breakup of a continuous volume of molten rock into discrete pieces, called pyroclasts. Because magma contains bubbles of compressible magmatic volatiles, decompression of low-viscosity magma leads to rapid expansion. The magma is torn into fragments, as it is stretched into hydrodynamically unstable sheets and filaments. If the magma is highly viscous, resistance to bubble growth will instead lead to excess gas pressure and the magma will deform viscoelastically by fracturing like a glassy solid, resulting in the formation of a violently expanding gas-pyroclast mixture. In either case, fragmentation represents the conversion of potential energy into the surface energy of the newly created fragments and the kinetic energy of the expanding gas-pyroclast mixture. If magma comes into contact with external water, the conversion of thermal energy will vaporize water and quench magma at the melt-water interface, thus creating dynamic stresses that cause fragmentation and the release of kinetic energy. Lastly, shear deformation of highly viscous magma may cause brittle fractures and release seismic energy.

  3. Boundary Element Method in a Self-Gravitating Elastic Half-Space and Its Application to Deformation Induced by Magma Chambers

    NASA Astrophysics Data System (ADS)

    Fang, M.; Hager, B. H.

    2014-12-01

    In geophysical applications the boundary element method (BEM) often carries the essential physics in addition to being an efficient numerical scheme. For use of the BEM in a self-gravitating uniform half-space, we made extra effort and succeeded in deriving the fundamental solution analytically in closed-form. A problem that goes deep into the heart of the classic BEM is encountered when we try to apply the new fundamental solution in BEM for deformation field induced by a magma chamber or a fluid-filled reservoir. The central issue of the BEM is the singular integral arising from determination of the boundary values. A widely employed technique is to rescale the singular boundary point into a small finite volume and then shrink it to extract the limits. This operation boils down to the calculation of the so-called C-matrix. Authors in the past take the liberty of either adding or subtracting a small volume. By subtracting a small volume, the C-matrix is (1/2)I on a smooth surface, where I is the identity matrix; by adding a small volume, we arrive at the same C-matrix in the form of I - (1/2)I. This evenness is a result of the spherical symmetry of Kelvin's fundamental solution employed. When the spherical symmetry is broken by gravity, the C-matrix is polarized. And we face the choice between right and wrong, for adding and subtracting a small volume yield different C-matrices. Close examination reveals that both derivations, addition and subtraction of a small volume, are ad hoc. To resolve the issue we revisit the Somigliana identity with a new derivation and careful step-by-step anatomy. The result proves that even though both adding and subtracting a small volume appear to twist the original boundary, only addition essentially modifies the original boundary and consequently modifies the physics of the original problem in a subtle way. The correct procedure is subtraction. We complete a new BEM theory by introducing in full analytical form what we call the

  4. Lava lake level as a gauge of magma reservoir pressure and eruptive hazard

    USGS Publications Warehouse

    Patrick, Matthew R.; Anderson, Kyle R.; Poland, Michael P.; Orr, Tim R.; Swanson, Donald A.

    2015-01-01

    Forecasting volcanic activity relies fundamentally on tracking magma pressure through the use of proxies, such as ground surface deformation and earthquake rates. Lava lakes at open-vent basaltic volcanoes provide a window into the uppermost magma system for gauging reservoir pressure changes more directly. At Kīlauea Volcano (Hawaiʻi, USA) the surface height of the summit lava lake in Halemaʻumaʻu Crater fluctuates with surface deformation over short (hours to days) and long (weeks to months) time scales. This correlation implies that the lake behaves as a simple piezometer of the subsurface magma reservoir. Changes in lava level and summit deformation scale with (and shortly precede) changes in eruption rate from Kīlauea's East Rift Zone, indicating that summit lava level can be used for short-term forecasting of rift zone activity and associated hazards at Kīlauea.

  5. Magma mixing in granitic rocks of the central Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Reid, John B.; Evans, Owen C.; Fates, Dailey G.

    1983-12-01

    The El Capitan alaskite exposed in the North American Wall, Yosemite National Park, was intruded by two sets of mafic dikes that interacted thermally and chemically with the host alaskite. Comparisons of petrographic and compositional data for these dikes and alaskite with published data for Sierra Nevada plutons lead us to suggest that mafic magmas were important in the generation of the Sierra Nevada batholith. Specifically, we conclude that: (1) intrusion of mafic magmas in the lower crust caused partial melting and generation of alaskite (rhyolitic) magmas; (2) interaction between the mafic and felsic magmas lead to the observed linear variation diagrams for major elements; (3) most mafic inclusions in Sierra Nevada plutons represent chilled pillows of mafic magmas, related by fractional crystallization and granitoid assimilation, that dissolve into their felsic host and contaminate it to intermediate (granodioritic) compositions; (4) vesiculation of hydrous mafic magma upon chilling may allow buoyant mafic inclusions and their disaggregation products to collect beneath a pluton's domed ceiling causing the zoning (mafic margins-to-felsic core) that these plutons exhibit.

  6. Magma storage in a strike-slip caldera

    PubMed Central

    Saxby, J.; Gottsmann, J.; Cashman, K.; Gutiérrez, E.

    2016-01-01

    Silicic calderas form during explosive volcanic eruptions when magma withdrawal triggers collapse along bounding faults. The nature of specific interactions between magmatism and tectonism in caldera-forming systems is, however, unclear. Regional stress patterns may control the location and geometry of magma reservoirs, which in turn may control the spatial and temporal development of faults. Here we provide new insight into strike-slip volcano-tectonic relations by analysing Bouguer gravity data from Ilopango caldera, El Salvador, which has a long history of catastrophic explosive eruptions. The observed low gravity beneath the caldera is aligned along the principal horizontal stress orientations of the El Salvador Fault Zone. Data inversion shows that the causative low-density structure extends to ca. 6 km depth, which we interpret as a shallow plumbing system comprising a fractured hydrothermal reservoir overlying a magmatic reservoir with vol% exsolved vapour. Fault-controlled localization of magma constrains potential vent locations for future eruptions. PMID:27447932

  7. Magma storage in a strike-slip caldera.

    PubMed

    Saxby, J; Gottsmann, J; Cashman, K; Gutiérrez, E

    2016-07-22

    Silicic calderas form during explosive volcanic eruptions when magma withdrawal triggers collapse along bounding faults. The nature of specific interactions between magmatism and tectonism in caldera-forming systems is, however, unclear. Regional stress patterns may control the location and geometry of magma reservoirs, which in turn may control the spatial and temporal development of faults. Here we provide new insight into strike-slip volcano-tectonic relations by analysing Bouguer gravity data from Ilopango caldera, El Salvador, which has a long history of catastrophic explosive eruptions. The observed low gravity beneath the caldera is aligned along the principal horizontal stress orientations of the El Salvador Fault Zone. Data inversion shows that the causative low-density structure extends to ca. 6 km depth, which we interpret as a shallow plumbing system comprising a fractured hydrothermal reservoir overlying a magmatic reservoir with vol% exsolved vapour. Fault-controlled localization of magma constrains potential vent locations for future eruptions.

  8. Unprecedented pressure increase in deep magma reservoir triggered by lava-dome collapse

    NASA Astrophysics Data System (ADS)

    Voight, B.; Linde, A. T.; Sacks, I. S.; Mattioli, G. S.; Sparks, R. S. J.; Elsworth, D.; Hidayat, D.; Malin, P. E.; Shalev, E.; Widiwijayanti, C.; Young, S. R.; Bass, V.; Clarke, A.; Dunkley, P.; Johnston, W.; McWhorter, N.; Neuberg, J.; Williams, P.

    2006-02-01

    The collapse of the Soufrière Hills Volcano lava dome on Montserrat in July 2003 is the largest such event worldwide in the historical record. Here we report on borehole dilatometer data recording a remarkable and unprecedented rapid (~600s) pressurisation of a magma chamber, triggered by this surface collapse. The chamber expansion is indicated by an expansive offset at the near dilatometer sites coupled with contraction at the far site. By analyzing the strain data and using added constraints from experimental petrology and long-term edifice deformation from GPS geodesy, we prefer a source centered at approximately 6 km depth below the crater for an oblate spheroid with overpressure increase of order 1 MPa and average radius ~1 km. Pressurisation is attributed to growth of 1-3% of gas bubbles in supersaturated magma, triggered by the dynamics of surface unloading. Recent simulations demonstrate that pressure recovery from bubble growth can exceed initial pressure drop by nearly an order of magnitude.

  9. Evaluating the Controls on Magma Ascent Rates Through Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Thomas, M. E.; Neuberg, J. W.

    2015-12-01

    The estimation of the magma ascent rate is a key factor in predicting styles of volcanic activity and relies on the understanding of how strongly the ascent rate is controlled by different magmatic parameters. The ability to link potential changes in such parameters to monitoring data is an essential step to be able to use these data as a predictive tool. We present the results of a suite of conduit flow models that assess the influence of individual model parameters such as the magmatic water content, temperature or bulk magma composition on the magma flow in the conduit during an extrusive dome eruption. By systematically varying these parameters we assess their relative importance to changes in ascent rate. The results indicate that potential changes to conduit geometry and excess pressure in the magma chamber are amongst the dominant controlling variables that effect ascent rate, but the single most important parameter is the volatile content (assumed in this case as only water). Modelling this parameter across a range of reported values causes changes in the calculated ascent velocities of up to 800%, triggering fluctuations in ascent rates that span the potential threshold between effusive and explosive eruptions.

  10. The Quench Control of Water Estimates in Convergent Margin Magmas

    NASA Astrophysics Data System (ADS)

    Gavrilenko, M.; Krawczynski, M.; Ruprecht, P.

    2017-12-01

    Mineral-hosted glassy melt inclusions (MIs) have been used to quantify magma volatile contents for several decades. Despite the growing number of volatile studies utilizing MIs, it has not been tested whether there is a physical limit on how much dissolved volatiles a glassy MI can contain. We explored the limits of MIs as hydrous magma recorders in an experimental study, showing that there is a limit of dissolved H2O that glassy MIs cannot exceed. These results show there is potential bias in the glassy MI data set; they can only faithfully record pre-eruptive H2O contents in the upper-most part of the Earth's crust where H2O-solubility is low. The current MI database cannot be used to robustly estimate the full range of arc magmas and therefore assess volatile budgets in primitive or evolved compositions. Such magmas may contain much larger amounts of H2O than currently recognized and the diversity of magma evolutionary pathways in subduction zones is likely being significantly underappreciated.

  11. Magma transport and storage at Kilauea volcano, Hawaii II: 1952-2008

    NASA Astrophysics Data System (ADS)

    Klein, F.; Wright, T. L.

    2011-12-01

    We trace the evolution of Kilauea between the Halemaumau eruptions of 1952 and 2008. The magma supply path from the mantle is defined by the distribution of earthquakes deeper than 20 km. We compared the accumulated moment release from deep magma supply, south flank and rift zone earthquakes. We identified every intrusion and eruption in time plots of summit tilt and seismic activity in all regions, and plotted the earthquake distribution for ~ 1 week covering the period prior to, during and following the event. The establishment and continued growth of modern seismic and geodetic networks allow us to define three types of intrusions. 'Normal' intrusions occur with or without eruption and are accompanied by sharp tilt deflation at Kilauea's summit. 'Inflationary' intrusions occur during periods of summit inflation accompanied by rift earthquake swarms in the near-summit parts of both rift zones. 'Slow' intrusions are defined by isolated swarms of south flank earthquakes distributed perpendicular to the rift zones. Magnitudes of inflation and deflation shown by the daily tilt record at Kilauea's summit are converted to volume using a factor determined by previous workers. Magma supply rates are determined by summation of the volumes in cubic kilometers of (1) net summit inflation (2) sharp summit deflation accompanying rift activity and (3) summit and long continuous rift eruptions, divided by the elapsed time in years. Eruption efficiency is calculated by comparing the volumes of rift eruption and summit deflation. In this study we have reached the following conclusions: 1) Magma supply rates have increased from the pre-1952 value of 0.062 km3/yr to 0.1 km3/yr during the Mauna Ulu eruption of 1969-74 to 0.2 km3/yr during much of the eruption that began in 1983. 2) Eruption efficiencies show cyclic increases with increased activity, culminating in an efficiency averaging 100% during episodes of high fountaining in the period 1983-86. 3) Some south flank earthquake

  12. Petrology of the 1877 eruption of Cotopaxi Volcano, Ecuador: Insight on magma evolution and storage

    NASA Astrophysics Data System (ADS)

    Saalfeld, M. A.; Panter, K. S.; Kelley, D.

    2017-12-01

    Cotopaxi is a stratovolcano in the Northern Andes Volcanic Zone, and has a history of bimodal volcanism, alternating between rhyolite and andesite. With Cotopaxi reawakening in 2015 after 100 years of quiescence, the question of what is occurring beneath the surface becomes especially poignant. To answer this question, we must look to the volcano's past. This work characterizes the mineralogy and geochemistry of the recent eruptive products of Cotopaxi, with emphasis on the two pulses of the 1877 eruption. Additionally, pressure and temperature are estimated for magmas prior to eruption. This will allow a better understanding of the magma plumbing system and its evolution over time. Over the past 500 years Cotopaxi has had five major eruptive events (VEI 3-4), which occurred in 1532, 1742, 1744, 1768, and 1877, and included pyroclastic surges, scoria flows, and lahars. After the initial pulse of the 1877 eruption and the subsequent lahars, a second pulse of magma produced a pyroclastic density current containing scoria clasts up to 1 meter in diameter. All samples are basaltic andesite to andesite (56-59 wt. % SiO2), and a mineral assemblage of pl + opx + cpx + mag ± ol. Plagioclase range from An47 to An78 and show both normal and reverse zoning. Normally zoned crystals exhibit greater compositional variation between cores and rims than reversely zoned crystals (median Ancore-Anrim 8% vs 4%, respectively), indicating that crystal fractionation is a dominant process but that mixing also played a role in magma genesis. Pyroxenes occur as augite and enstatite and do not exhibit significant zoning. The similar petrology of these eruptions suggests that they were part of a relatively long-lived system that underwent differentiation and replenishment between eruptions. Thermobarometric data indicate that magma storage occurred at temperatures of 1100-1150°C and pressures ranging from 2 kbar (during the 1877 eruption) to 4 kbar (during the 1742 eruption), which is

  13. Kilauea east rift zone magmatism: An episode 54 perspective

    USGS Publications Warehouse

    Thornber, C.R.; Heliker, C.; Sherrod, D.R.; Kauahikaua, J.P.; Miklius, Asta; Okubo, P.G.; Trusdell, F.A.; Budahn, J.R.; Ridley, W.I.; Meeker, G.P.

    2003-01-01

    On January 29 30, 1997, prolonged steady-state effusion of lava from Pu'u'O'o was briefly disrupted by shallow extension beneath Napau Crater, 1 4 km uprift of the active Kilauea vent. A 23-h-long eruption (episode 54) ensued from fissures that were overlapping or en echelon with eruptive fissures formed during episode 1 in 1983 and those of earlier rift zone eruptions in 1963 and 1968. Combined geophysical and petrologic data for the 1994 1999 eruptive interval, including episode 54, reveal a variety of shallow magmatic conditions that persist in association with prolonged rift zone eruption. Near-vent lava samples document a significant range in composition, temperature and crystallinity of pre-eruptive magma. As supported by phenocryst liquid relations and Kilauea mineral thermometers established herein, the rift zone extension that led to episode 54 resulted in mixture of near-cotectic magma with discrete magma bodies cooled to ???1100??C. Mixing models indicate that magmas isolated beneath Napau Crater since 1963 and 1968 constituted 32 65% of the hybrid mixtures erupted during episode 54. Geophysical measurements support passive displacement of open-system magma along the active east rift conduit into closed-system rift-reservoirs along a shallow zone of extension. Geophysical and petrologic data for early episode 55 document the gradual flushing of episode 54 related magma during magmatic recharge of the edifice.

  14. Seismic detection of the summit magma complex of kilauea volcano, hawaii.

    PubMed

    Thurber, C H

    1984-01-13

    Application of simultaneous inversion of seismic P-wave arrival time data to the investigation of the crust beneath Kilauea Volcano yields a detailed picture of the volcano's heterogeneous structure. Zones of anomalously high seismic velocity are found associated with the volcano's rift zones. A low-velocity zone at shallow depth directly beneath the caldera coincides with an aseismic region interpreted as being the locus of Kilauea's summit magma complex.

  15. Oxygen regime of Siberian alkaline-ultramafic magmas

    NASA Astrophysics Data System (ADS)

    Ryabchikov, Igor; Kogarko, Liya

    2017-04-01

    Regimes of S2 and O2 are decisive factors controlling behavior of chalcophile and siderophile elements in magmatic processes. These parameters play important role during magmagenesis and in the course of crystallization and fluid mass transfer in magma chamber. Alkaline-ultramafic magmatism in Maymecha-Kotuy Province (Polar Siberia) is represented by giant intrusive complexes as well as by volcanics and dyke rocks, which include a well-known variety - meimechites. The latter are considered primary magmas of alkaline-ultramafic plutons in the region like for instance Guli intrusive complex. Sulfur content in primitive magmas estimated from the analyses of melt inclusions in olivine megacrysts from meimechites is close to 0.1 %. fO2 values calculated using olivine+clinopyroxene+spinel and spinel+melt oxygen barometers (1, 2) are 2-3 log units above QFM buffer. The relatively high oxygen potential at the early magmatic stage of alkaline-ultramafic Guli pluton provide predominance of sulfates among other forms of sulfur in the melt. This leads to the almost complete absence of sulfides in highly magnesian rocks. The oxidizing conditions exert important effect on behavior of many ore metals. At the stage of magma generation absence of sulfides in mantle materialresults in the presence of siderophile elements in metallic form and saturation of primary magmas in respect of metallic phases at an early stage of injection of the melt into the magma chamber. Later, under favorable circumstances during magma crystallization nuggets of precious metals may be formed. During further evolution of magmatic system fO2 and activity of oxidized sulfur decrease due to intensive crystallization of magnetite during the formation of koswites, then oxygen fugacity becomes even lower as a result serpentinization at a postmagmatic stage. These serpentization processes are caused by the displacement of reactions in the aqueous phase due to cooling towards the formation of methane and other

  16. Seismic structure beneath the Tengchong volcanic area (southwest China) from receiver function analysis

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Li, Xuelei; Wang, Sheng

    2018-05-01

    Tengchong is a young volcanic area on the collision boundary between the Indian and Euro-Asian plates of the southeastern Tibetan margin. Holocene volcanoes are concentrated in the Tengchong basin, where they align an N-S trending string-like cluster. To study the magma activity and its relation with the volcanoes, we deployed a passive seismic observation across the volcanic area in northern Tengchong. Using tele-seismic data and receiver function technique, we determined the S-wave velocity structure beneath nine temporary stations. Results show that the Tengchong basin is underlain by prominent low-velocity zones that are associated with the magma chambers of the volcanoes. In the north, a small and less pronounced magma chamber lies beneath two crater lakes, with a depth range of 9-16 km and a lateral width of <8 km. To the south, an interconnected magma chamber is found between the Dayingshan (DYS) volcano and the Dakongshan (DKS) volcanic cluster, with a depth range of 6-15 km and a lateral width of <12 km. In the south, the Laoguipo (LGP) volcano is characterized by anomalous low velocities throughout the upper-mid crust. Combined with other studies, we infer that the DYS volcano shares the same magma chamber with the DKS volcanic cluster, whereas the heat flow beneath the LGP volcano belongs to another thermal system, probably relating to the magma activity beneath the Rehai geothermal field in the south or affected by the intersection between the Tengchong volcanic fault zone and the Dayingjiang fault zone. In addition, mantle intrusion has resulted in the Moho elevation beneath the DKS volcanic cluster, and the thick transition zones on the crust-mantle boundary imply a possible penetration of the heat flow from the uppermost mantle into the lower crust.

  17. Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption.

    PubMed

    Ripepe, Maurizio; Donne, Dario Delle; Genco, Riccardo; Maggio, Giuseppe; Pistolesi, Marco; Marchetti, Emanuele; Lacanna, Giorgio; Ulivieri, Giacomo; Poggi, Pasquale

    2015-05-18

    Effusive eruptions are explained as the mechanism by which volcanoes restore the equilibrium perturbed by magma rising in a chamber deep in the crust. Seismic, ground deformation and topographic measurements are compared with effusion rate during the 2007 Stromboli eruption, drawing an eruptive scenario that shifts our attention from the interior of the crust to the surface. The eruption is modelled as a gravity-driven drainage of magma stored in the volcanic edifice with a minor contribution of magma supplied at a steady rate from a deep reservoir. Here we show that the discharge rate can be predicted by the contraction of the volcano edifice and that the very-long-period seismicity migrates downwards, tracking the residual volume of magma in the shallow reservoir. Gravity-driven magma discharge dynamics explain the initially high discharge rates observed during eruptive crises and greatly influence our ability to predict the evolution of effusive eruptions.

  18. Carbonate-derived CO 2 purging magma at depth: Influence on the eruptive activity of Somma-Vesuvius, Italy

    NASA Astrophysics Data System (ADS)

    Dallai, Luigi; Cioni, Raffaello; Boschi, Chiara; D'Oriano, Claudia

    2011-10-01

    Mafic phenocrysts from selected products of the last 4 ka volcanic activity at Mt. Vesuvius were investigated for their chemical and O-isotope composition, as a proxy for primary magmas feeding the system. 18O/ 16O ratios of studied Mg-rich olivines suggest that near-primary shoshonitic to tephritic melts experienced a flux of sedimentary carbonate-derived CO 2, representing the early process of magma contamination in the roots of the volcanic structure. Bulk carbonate assimilation (physical digestion) mainly occurred in the shallow crust, strongly influencing magma chamber evolution. On a petrological and geochemical basis the effects of bulk sedimentary carbonate digestion on the chemical composition of the near-primary melts are resolved from those of carbonate-released CO 2 fluxed into magma. An important outcome of this process lies in the effect of external CO 2 in changing the overall volatile solubility of the magma, enhancing the ability of Vesuvius mafic magmas to rapidly rise and explosively erupt at the surface.

  19. Conditions Leading to Sudden Release of Magma Pressure

    NASA Astrophysics Data System (ADS)

    Damjanac, B.; Gaffney, E. S.

    2005-12-01

    Buildup of magmatic pressures in a volcanic system can arise from a variety of mechanisms. Numerical models of the response of volcanic structures to buildup of pressures in magma in dikes and conduits provide estimates of the pressures needed to reopen blocked volcanic vents. They also can bound the magnitude of sudden pressure drops in a dike or conduit due to such reopening. Three scenarios are considered: a dike that is sheared off by covolcanic normal faulting, a scoria cone over a conduit that is blocked by in-falling scoria and some length of solidified magma, and a lava flow whose feed has partially solidified due to an interruption of magma supply from below. For faulting, it is found that magma would be able to follow the fault to a new surface eruption. A small increase in magma pressure over that needed to maintain flow prior to faulting is required to open the new path, and the magma pressure needed to maintain flow is lower but still greater than for the original dike. The magma pressure needed to overcome the other types of blockages depends on the details of the blockage. For example, for a scoria cone, it depends on the depth of the slumped scoria and on the depth to which the magma has solidified in the conduit. In general, failure of the blockage is expected to occur by radial hydrofracture just below the blocked length of conduit at magma pressures of 10 MPa or less, resulting in radial dikes. However, this conclusion is based on the assumption that the fluid magma has direct access to the rock surrounding the conduit. If, on the other hand, there is a zone of solidified basalt, still hot enough to deform plastically, surrounding the molten magma in the conduit, this could prevent breakout of a hydrofracture and allow higher pressures to build up. In such cases, pressures could build high enough to deform the overlying strata (scoria cone or lava flow). Models of such deformations suggest the possibility of more violent eruptions resulting from

  20. The Skaergaard trough layering: sedimentation in a convecting magma chamber

    NASA Astrophysics Data System (ADS)

    Vukmanovic, Z.; Holness, M. B.; Monks, K.; Andersen, J. C. Ø.

    2018-05-01

    The upper parts of the floor cumulates of the Skaergaard Intrusion, East Greenland, contain abundant features known as troughs. The troughs are gently plunging synformal structures comprising stacks of crescentic modally graded layers with a sharply defined mafic base that grades upward into plagioclase-rich material. The origin of the troughs and layering is contentious, attributed variously to deposition of mineral grains by magmatic currents descending from the nearby walls, or to in situ development by localised recrystallisation during gravitationally-driven compaction. They are characterised by outcrop-scale features such as mineral lineations parallel to the trough axis, evidence of erosion and layer truncation associated with migration of the trough axis, and disruption of layering by syn-magmatic slumping. A detailed microstructural study of the modal trough layers, using electron backscatter diffraction together with geochemical mapping, demonstrates that these rocks do not record evidence for deformation by either dislocation creep or dissolution-reprecipitation. Instead, the troughs are characterised by the alignment of euhedral plagioclase crystals with unmodified primary igneous compositional zoning. We argue that the lineations and foliations are, therefore, a consequence of grain alignment during magmatic flow. Post-accumulation amplification of the modal layering occurred as a result of differential migration of an unmixed immiscible interstitial liquid, with upwards migration of the Si-rich conjugate into the plagioclase-rich upper part of the layers, whereas the Fe-rich immiscible conjugate remained in the mafic base. Both field and microstructure evidence support the origin of the troughs as the sites of repeated deposition from crystal-rich currents descending from the nearby chamber walls.

  1. Magma-assisted rifting in Ethiopia.

    PubMed

    Kendall, J-M; Stuart, G W; Ebinger, C J; Bastow, I D; Keir, D

    2005-01-13

    The rifting of continents and evolution of ocean basins is a fundamental component of plate tectonics, yet the process of continental break-up remains controversial. Plate driving forces have been estimated to be as much as an order of magnitude smaller than those required to rupture thick continental lithosphere. However, Buck has proposed that lithospheric heating by mantle upwelling and related magma production could promote lithospheric rupture at much lower stresses. Such models of mechanical versus magma-assisted extension can be tested, because they predict different temporal and spatial patterns of crustal and upper-mantle structure. Changes in plate deformation produce strain-enhanced crystal alignment and increased melt production within the upper mantle, both of which can cause seismic anisotropy. The Northern Ethiopian Rift is an ideal place to test break-up models because it formed in cratonic lithosphere with minor far-field plate stresses. Here we present evidence of seismic anisotropy in the upper mantle of this rift zone using observations of shear-wave splitting. Our observations, together with recent geological data, indicate a strong component of melt-induced anisotropy with only minor crustal stretching, supporting the magma-assisted rifting model in this area of initially cold, thick continental lithosphere.

  2. Timing of magma storage at the Vulcano Island during the last 1000 years

    NASA Astrophysics Data System (ADS)

    De Rosa, Rosanna; Donato, Paola; Gioncada, Anna; Giuffrida, Marisa; Nicotra, Eugenio; Viccaro, Marco

    2016-04-01

    Understanding the nature and timescales of magmatic processes is one of the primary goals of modern volcanology, and chemical zoning is an efficient tool to achieve this aim. In basic volcanic rocks, plagioclase is a common phase used for documenting magmatic processes and their timescales. This is chiefly due to its stability over a wide range of physical-chemical conditions and its sensitivity to changes in thermodynamic parameters during its growth in magma storage and transport zones. We present here textural analysis and major (SEM-EDS/WDS) and trace (LA-ICP-MS) element zoning data on plagioclase crystals from selected volcanic products of Vulcano (Aeolian Islands), emitted during the last 1000 years. The collected samples belong to the La Fossa cone (Palizzi latitic lava flow, latitic enclaves within Commenda and Pietre Cotte rhyolitic lava flows, 1888-90 spatter bombs) and Vulcanello peninsula (shoshonitic and shoshonitic-latitic lava flows at the end of Vulcanello I and Vulcanello 3 phases, respectively). Textural observations through polarizing optical microscope, high-contrast BSE images and SEM-EDS/WDS core-to-rim profiles, allowed to discriminate four different plagioclase textures, namely: 1) oscillatory-zoned crystals; 2) sieve-textured rims; 3) dissolved/resorbed cores; 4) cores with coarse sieve-textures. Plagioclase with sieve-textured rims and coarsely-sieved cores (Types 2 and 4) are the most abundant in the analyzed products. The estimates of maximum magma residence time have been obtained on crystals with exclusive oscillatory-zoned patterns (Type 1) or portions of crystals not severely affected by μm-sized glass inclusions caused by disequilibrium. We used one-step modeling of Sr diffusion considering the highest An content of each crystal and magma temperature ranging between 1075 and 1175° C. Textural observations and core-to-rim profiles on plagioclases show that dynamics of magma ascent and storage are markedly different at La Fossa and

  3. Seismic evidence for a crustal magma reservoir beneath the upper east rift zoneof Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Lin, Guoqing; Amelung, Falk; Lavallee, Yan; Okubo, Paul G.

    2014-01-01

    An anomalous body with low Vp (compressional wave velocity), low Vs (shear wave velocity), and high Vp/Vs anomalies is observed at 8–11 km depth beneath the upper east rift zone of Kilauea volcano in Hawaii by simultaneous inversion of seismic velocity structure and earthquake locations. We interpret this body to be a crustal magma reservoir beneath the volcanic pile, similar to those widely recognized beneath mid-ocean ridge volcanoes. Combined seismic velocity and petrophysical models suggest the presence of 10% melt in a cumulate magma mush. This reservoir could have supplied the magma that intruded into the deep section of the east rift zone and caused its rapid expansion following the 1975 M7.2 Kalapana earthquake.

  4. Stability of rift axis magma reservoirs: Spatial and temporal evolution of magma supply in the Dabbahu rift segment (Afar, Ethiopia) over the past 30 kyr

    NASA Astrophysics Data System (ADS)

    Medynski, S.; Pik, R.; Burnard, P.; Vye-Brown, C.; France, L.; Schimmelpfennig, I.; Whaler, K.; Johnson, N.; Benedetti, L.; Ayelew, D.; Yirgu, G.

    2015-01-01

    Unravelling the volcanic history of the Dabbahu/Manda Hararo rift segment in the Afar depression (Ethiopia) using a combination of cosmogenic (36Cl and 3He) surface exposure dating of basaltic lava-flows, field observations, geological mapping and geochemistry, we show in this paper that magmatic activity in this rift segment alternates between two distinct magma chambers. Recent activity in the Dabbahu rift (notably the 2005-2010 dyking crises) has been fed by a seismically well-identified magma reservoir within the rift axis, and we show here that this magma body has been active over the last 30 kyr. However, in addition to this axial magma reservoir, we highlight in this paper the importance of a second, distinct magma reservoir, located 15 km west of the current axis, which has been the principal focus of magma accumulation from 15 ka to the subrecent. Magma supply to the axial reservoir substantially decreased between 20 ka and the present day, while the flank reservoir appears to have been regularly supplied with magma since 15 ka ago, resulting in less variably differentiated lavas. The trace element characteristics of magmas from both reservoirs were generated by variable degrees of partial melting of a single homogeneous mantle source, but their respective magmas evolved separately in distinct crustal plumbing systems. Magmatism in the Dabbahu/Manda Hararo rift segment is not focussed within the current axial depression but instead is spread out over at least 15 km on the western flank. This is consistent with magneto-telluric observations which show that two magma bodies are present below the segment, with the main accumulation of magma currently located below the western flank, precisely where the most voluminous recent (<15 ka) flank volcanism is observed at the surface. Applying these observations to slow spreading mid-ocean ridges indicates that magma bodies likely have a lifetime of a least 20 ka, and that the continuity of magmatic activity is

  5. Imaging the crustal magma sources beneath Mauna Loa and Kilauea volcanoes, Hawaii

    USGS Publications Warehouse

    Okubo, Paul G.; Benz, Harley M.; Chouet, Bernard A.

    1997-01-01

    Three-dimensional seismic P-wave traveltime tomography is used to image the magma sources beneath Mauna Loa and Kilauea volcanoes, Hawaii. High-velocity bodies (>6.4 km/s) in the upper 9 km of the crust beneath the summits and rift zones of the volcanoes correlate with zones of high magnetic intensities and are interpreted as solidified gabbro-ultramafic cumulates from which the surface volcanism is derived. The proximity of these high-velocity features to the rift zones is consistent with a ridge-spreading model of the volcanic flank. Southeast of the Hilina fault zone, along the south flank of Kilauea, low-velocity material (<6.0 km/s) is observed extending to depths of 9–11 km, indicating that the Hilina fault may extend possibly as deep as the basal decollement. Along the southeast flank of Mauna Loa, a similar low-velocity zone associated with the Kaoiki fault zone is observed extending to depths of 6–8 km. These two upper crustal low-velocity zones suggest common stages in the evolution of the Hawaiian shield volcanoes in which these fault systems are formed as a result of upper crustal deformation in response to magma injection within the volcanic edifice.

  6. Evaluation of crustal recycling during the evolution of Archean-age Matachewan basaltic magmas

    NASA Technical Reports Server (NTRS)

    Nelson, Dennis O.

    1989-01-01

    The simplest model for the Matachewan-Hearst Dike (MHD) magmas is assimilation-fractional crystallization (AFC), presumably occurring at the base of the crust during underplating. Subduction zone enriched mantle sources are not required. Trace elements suggest that the mantle sources for the MHD were depleted, but possessed a degree of heterogeneity. Rates of assimilation were approximately 0.5 (= Ma/Mc); the contaminant mass was less than 20 percent. The contaminant was dominated by tonalites-randodiorites, similar to xenoliths and rocks in the Kapuskasing Structural Zone (KSZ). Assimilation of partial melts of light-rare earth and garnet-bearing basaltic precursors may have produced some the MHD magmas. Apparently, previous underplating-AFC processes had already produced a thick crust. The silicic granitoid assimilant for the MHD magmas was probably produced by earlier processing of underplated mafic crust (4, 5, 10, 21 and 30). Calculations suggest that the derived silicic rocks possess negative Ta and Ti anomalies even though they were not the product of subduction.

  7. A dynamic balance between magma supply and eruption rate at Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Denlinger, R.P.

    1997-01-01

    The dynamic balance between magma supply and vent output at Kilauea volcano is used to estimate both the volume of magma stored within Kilauea volcano and its magma supply rate. Throughout most of 1991 a linear decline in volume flux from the Kupaianaha vent on Kilauea's east rift zone was associated with a parabolic variation in the elevation of Kilauea's summit as vent output initially exceeded then lagged behind the magma supply to the volcano. The correspondence between summit elevation and tilt established with over 30 years of data provided daily estimates of summit elevation in terms of summit tilt. The minimum in the parabolic variation in summit tilt and elevation (or zero elevation change) occurs when the magma supply to the reservoir from below the volcano equals the magma output from the reservoir to the surface, so that the magma supply rate is given by vent flux on that day. The measurements of vent flux and tilt establish that the magma supply rate to Kilauea volcano on June 19, 1991, was 217,000 ?? 10,000 m3/d (or 0.079 ?? 0.004 km3/yr). This is close to the average eruptive rate of 0.08 km3/yr between 1958 and 1984. In addition, the predictable response of summit elevation and tilt to each east rift zone eruption near Puu Oo since 1983 shows that summit deformation is also a measure of magma reservoir pressure. Given this, the correlation between the elevation of the Puu Oo lava lake (4 km uprift of Kupaianaha and 18 km from the summit) and summit tilt provides an estimate for magma pressure changes corresponding to summit tilt changes. The ratio of the change in volume to the change in reservoir pressure (dV/dP) during vent activity may be determined by dividing the ratio of volume erupted to change in summit tilt (dV/dtilt) by the ratio of pressure change to change in summit tilt (dP/dtilt). This measure of dV/dP, when combined with laboratory measurements of the bulk modulus of tholeitic melt, provides an estimate of 240 ?? 50 km3 for the volume

  8. A dynamic balance between magma supply and eruption rate at Kilauea volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Denlinger, Roger P.

    1997-08-01

    The dynamic balance between magma supply and vent output at Kilauea volcano is used to estimate both the volume of magma stored within Kilauea volcano and its magma supply rate. Throughout most of 1991 a linear decline in volume flux from the Kupaianaha vent on Kilauea's east rift zone was associated with a parabolic variation in the elevation of Kilauea's summit as vent output initially exceeded then lagged behind the magma supply to the volcano. The correspondence between summit elevation and tilt established with over 30 years of data provided daily estimates of summit elevation in terms of summit tilt. The minimum in the parabolic variation in summit tilt and elevation (or zero elevation change) occurs when the magma supply to the reservoir from below the volcano equals the magma output from the reservoir to the surface, so that the magma supply rate is given by vent flux on that day. The measurements of vent flux and tilt establish that the magma supply rate to Kilauea volcano on June 19, 1991, was 217,000±10,000 m3/d (or 0.079±0.004 km3/yr). This is close to the average eruptive rate of 0.08 km3/yr between 1958 and 1984. In addition, the predictable response of summit elevation and tilt to each east rift zone eruption near Puu Oo since 1983 shows that summit deformation is also a measure of magma reservoir pressure. Given this, the correlation between the elevation of the Puu Oo lava lake (4 km uprift of Kupaianaha and 18 km from the summit) and summit tilt provides an estimate for magma pressure changes corresponding to summit tilt changes. The ratio of the change in volume to the change in reservoir pressure (dV/dP) during vent activity may be determined by dividing the ratio of volume erupted to change in summit tilt (dV/dtilt) by the ratio of pressure change to change in summit tilt (dP/dtilt). This measure of dV/dP, when combined with laboratory measurements of the bulk modulus of tholeitic melt, provides an estimate of 240±50 km3 for the volume of

  9. A Dual-Porosity, In Situ Crystallisation Model For Fast-Spreading Mid-Ocean Ridge Magma Chambers Based Upon Direct Observation From Hess Deep

    NASA Astrophysics Data System (ADS)

    MacLeod, C. J.; Lissenberg, C. J.

    2014-12-01

    We propose a revised magma chamber model for fast-spreading mid-ocean ridges based upon a synthesis of new data from a complete section of lower crust from the East Pacific Rise, reconstructed from samples collected from the Hess Deep rift valley during cruise JC21. Our investigation includes detailed sampling across critical transitions in the upper part of the plutonic section, including the inferred axial melt lens (AML) within the dyke-gabbro transition. We find that an overall petrological progression, from troctolite and primitive gabbro at the base up into evolved (oxide) gabbro and gabbronorite at the top of the lower crustal section, is mirrored by a progressive upward chemical fractionation as recorded in bulk rock and mineral compositions. Crystallographic preferred orientations measured using EBSD show that the downward increase in deformation of mush required in crystal subsidence models is not observed. Together these observations are consistent only with a model in which crystallisation of upward migrating evolving melts occurs in situ in the lower crust. Over-enrichment in incompatible trace element concentrations and ratios above that possible by fractional crystallisation is ubiquitous. This implies redistribution of incompatible trace elements in the lower crust by low porosity, near-pervasive reactive porous flow of interstitial melt moving continuously upward through the mush pile. Mass balance calculations reveal a significant proportion of this trace element enriched melt is trapped at mid-crustal levels. Mineral compositions in the upper third to half of the plutonic section are too evolved to represent the crystal residues of MORB. Erupted MORB therefore must be fed from melts sourced in the deeper part of the crystal mush pile, and which must ascend rapidly without significant modification in the upper plutonics or AML. From physical models of mush processes we posit that primitive melts are transported through transient, high porosity

  10. Magma Transport from Deep to Shallow Crust and Eruption

    NASA Astrophysics Data System (ADS)

    White, R. S.; Greenfield, T. S.; Green, R. G.; Brandsdottir, B.; Hudson, T.; Woods, J.; Donaldson, C.; Ágústsdóttir, T.

    2016-12-01

    We have mapped magma transport paths from the deep (20 km) to the shallow (6 km) crust and in two cases to eventual surface eruption under several Icelandic volcanoes (Askja, Bardarbunga, Eyjafjallajokull, Upptyppingar). We use microearthquakes caused by brittle fracture to map magma on the move and tomographic seismic studies of velocity perturbations beneath volcanoes to map the magma storage regions. High-frequency brittle failure earthquakes with magnitudes of typically 0-2 occur where melt is forcing its way through the country rock, or where previously frozen melt is repeatedly re-broken in conduits and dykes. The Icelandic crust on the rift zones where these earthquakes occur is ductile at depths greater than 7 km beneath the surface, so the occurrence of brittle failure seismicity at depths as great as 20 km is indicative of high strain rates, for which magma movement is the most likely explanation. We suggest that high volatile pressures caused by the exsolution of carbon dioxide in the deep crust is driving the magma movement and seismicity at depths of 15-20 km. Eruptions from shallow crustal storage areas are likewise driven by volatile exsolution, though additional volatiles, and in particular water are also involved in the shallow crust.

  11. Short-circuiting magma differentiation from basalt straight to rhyolite?

    NASA Astrophysics Data System (ADS)

    Ruprecht, P.; Winslow, H.

    2017-12-01

    Silicic magmas are the product of varying degrees of crystal fractionation and crustal assimilation/melting. Both processes lead to differentiation that is step-wise rather than continuous for example during melt separation from a crystal mush (Dufek and Bachmann, 2010). However, differentiation is rarely efficient enough to evolve directly from a basaltic to a rhyolitic magma. At Volcán Puyehue-Cordón Caulle, Chile, the magma series is dominated by crystal fractionation where mixing trends between primitive and felsic end members in the bulk rock compositions are almost absent (e.g. P, FeO, TiO2 vs. SiO2). How effective fraction is in this magmatic system is not well-known. The 2011-12 eruption at Cordón Caulle provides new constraints that rhyolitic melts may be derived directly from a basaltic mush. Minor, but ubiquitous mafic, crystal-rich enclaves co-erupted with the predominantly rhyolitic near-aphyric magma. These enclaves are among the most primitive compositions erupted at Puyehue-Cordón Caulle and geochemically resemble closely basaltic magmas that are >10 ka old (Singer et al. 2008) and that have been identified as a parental tholeiitic mantle-derived magma (Schmidt and Jagoutz, 2017) for the Southern Andean Volcanic Zone. The vesiculated nature, the presence of a microlite-rich groundmass, and a lack of a Eu anomaly in these encalves suggest that they represent recharge magma/mush rather than sub-solidus cumulates and therefore have potentially a direct petrogenetic link to the erupted rhyolites. Our results indicate that under some conditions crystal fractionation can be very effective and the presence of rhyolitic magmas does not require an extensive polybaric plumbing system. Instead, primitive mantle-derived magmas source directly evolved magmas. In the case, of the magma system beneath Puyehue-Cordón Caulle, which had three historic rhyolitic eruptions (1921-22, 1960, 2011-12) these results raise the question whether rhyolite magma extraction

  12. El Hierro's floating stones as messengers of crust-magma interaction at depth

    NASA Astrophysics Data System (ADS)

    Burchardt, S.; Troll, V. R.; Schmeling, H.; Koyi, H.; Blythe, L. S.; Longpré, M. A.; Deegan, F. M.

    2012-04-01

    During the early stages of the submarine eruption that started on October 10 2011 south of El Hierro, Canary Islands, Spain, peculiar eruption products were found floating on the sea surface. These centimetre- to decimetre-sized "bombs" have been termed "restingolites" after the nearby village La Restinga and consist of a basaltic rind and a white to light grey core that resembles pumice in texture. According to Troll et al. (2011; see also Troll et al. EGU 2012 Abstracts), this material consists of a glassy matrix hosting extensive vesicle networks, which results in extremely low densities allowing these rocks to float on sea water. Mineralogical and geochemical analyses reveal that the "restingolites" originate from the sedimentary rocks (sand-, silt-, and mudstones) that form layer 1 of the oceanic crust beneath El Hierro. During the onset and early stages of the eruption, magma ponded at the base of this sedimentary sequence, breaking its way through the sedimentary rocks to the ocean floor. The textures of the "restingolites" reveal that crust-magma interaction during fragmentation and transport of the xenoliths involved rapid partial melting and volatile exsolution. Xenoliths strikingly similar to those from El Hierro are known from eruptions on other Canary Islands (e.g. La Palma, Gran Canaria, and Lanzarote). In fact, they resemble in texture xenoliths of various protoliths from volcanic areas worldwide (e.g. Krakatao, Indonesia, Cerro Quemado, Guatemala, Laacher See, Germany). This indicates that the process of partial melting and volatile exsolution, which the "restingolites" bear witness of, is probably occurring frequently during shallow crustal magma emplacement. Thermomechanical numerical models of the effect of the density decrease associated with the formation of vesicle networks in partially molten xenoliths show that xenoliths of crustal rocks initially sink in a magma chamber, but may start to float to the chamber roof once they start to heat up

  13. Influence of conduit flow mechanics on magma rheology and the growth style of lava domes

    NASA Astrophysics Data System (ADS)

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2018-06-01

    We develop a 2-D particle-mechanics model to explore different lava-dome growth styles. These range from endogenous lava dome growth comprising expansion of a ductile dome core to the exogenous extrusion of a degassed lava plug resulting in generation of a lava spine. We couple conduit flow dynamics with surface growth of the evolving lava dome, fuelled by an open-system magma chamber undergoing continuous replenishment. The conduit flow model accounts for the variation in rheology of ascending magma that results from degassing-induced crystallization. A period of reduced effusive flow rates promote enhanced degassing-induced crystallization. A degassed lava plug extrudes exogenously for magmas with crystal contents (ϕ) of 78 per cent, yield strength >1.62 MPa, and at flow rates of <0.5 m3 s-1, while endogenous dome growth is predicted at higher flow rates (Qout > 3 m3 s-1) for magma with lower relative yield strengths (<1 MPa). At moderately high flow rates (Qout = 4 m3 s-1), the extrusion of magma with lower crystal content (62 per cent) and low interparticulate yield strength (0.6 MPa) results in the development of endogenous shear lobes. Our simulations model the periodic extrusion history at Mount St. Helens (1980-1983). Endogenous growth initiates in the simulated lava dome with the extrusion of low yield strength magma (ϕ = 0.63 and τp = 0.76 MPa) after the crystallized viscous plug (ϕ = 0.87 and τp = 3 MPa) at the conduit exit is forced out by the high discharge rate pulse (2 < Qout < 12 m3 s-1). The size of the endogenous viscous plug and the occurrence of exogenous growth depend on magma yield strength and the magma chamber volume, which control the periodicity of the effusion. Our simulations generate dome morphologies similar to those observed at Mount St Helens, and demonstrate the degree to which domes can sag and spread during and following extrusion pulses. This process, which has been observed at Mount St. Helens and other

  14. Distribution and compositions of magmatic inclusions in the Mount Helen dome, Lassen Volcanic Center, California: Insights into magma chamber processes

    NASA Astrophysics Data System (ADS)

    Feeley, T. C.; Wilson, L. F.; Underwood, S. J.

    2008-11-01

    Variations in spatial abundances, compositions, and textures of undercooled magmatic inclusions were determined in a glaciated Pleistocene lava dome (Mt. Helen; ~ 0.6 km 3) at the Lassen volcanic center (LVC), southernmost Cascades. Spatial variations were determined by point-counting at 86 locations separated by ~ 100 m on the dome. Major and trace element compositions of host rocks and inclusions at 12 locations along the flow length of the dome were obtained. Important results include the following. (1) Inclusion abundances range from 3-19 vol.%, with the highest values generally located along the little eroded northwestern margin and flow front of the dome. (2) Host rock compositions are markedly uniform across the dome (65.4 +/- 0.4 wt.% SiO 2) indicating that the degree of inclusion disaggregation was uniform, despite large spatial variations in inclusion abundances. (3) Inclusion sizes range from a maximum of ~ 1 m across to mm-sized crystal clots of phenocrysts plus adhering Ca-rich plagioclase microphenocrysts. (4) Inclusions have variable macroscopic textures indicating that partial undercooling both prior to and following entrapment in cooler dacitic host magma were important processes. (5) Inclusions are variably fractionated magmas with large variations in Ni (79-11 ppm) and Cr (87-7 ppm) contents that are lower than presumed mantle-derived melts. Furthermore, large ranges in incompatible trace elements indicate that inclusion compositions also reflect deep processes involving either melting of variable mantle source rocks or assimilation-fractional crystallization. (6) Inclusions are variably mixed magmas (56-61 wt.% SiO 2) that contain up to 50% host dacitic magma. (7) Correlations between Ni and Cr contents in hosts and inclusions from individual outcrops indicate that the effect of inclusion disaggregation and magma mingling on host dacitic magma was local (e.g., < 50 m). These features are interpreted to reflect protracted recharge of diverse

  15. The Consequences of Increased Magma Supply to Kilauea Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Poland, M.; Miklius, A.; Sutton, A. J.; Orr, T.

    2007-12-01

    The summer of 2007 was a time of intense activity at Kilauea. By mid-2007, ~4 years of summit inflation had uplifted and extended the caldera by 30 cm and 55 cm, respectively. Lava continued to erupt from the Pu`u `O`o vent on the east rift zone (ERZ) during the inflation. On May 24, 2007, two M4+ normal-faulting earthquakes occurred on caldera-bounding faults southeast of the summit. The seismicity did not affect summit inflation, which continued until June 17 when a dike intruded the upper and middle ERZ, causing a pause in the eruption, collapse of Pu`u `O`o's floor, and a small eruption 6 km uprift of Pu`u `O`o. The inflated state of the summit, relative timing of summit deflation and east rift zone extension, and abundant co-intrusive earthquake activity suggest forcible intrusion of magma. Lava returned to Pu`u `O`o by July 2, forming a lake that gradually refilled much of the collapsed crater. Early on July 21, the lake drained suddenly, the cone began to collapse, and a 2-km-long series of discontinuous eruptive fissures opened on and beyond the east flank of Pu`u `O`o. Sesimicity in Kilauea's south flank has been elevated since June and several M3+ earthquakes have occurred there, including a M5.4 on August 13. An increase in magma supply to Kilauea's shallow magmatic system is the probable cause for the events of summer 2007. Summit inflation since 2003 occurred during a period of constant or increasing magma supply to Pu`u `O`o, based on SO2 emissions from the ERZ. The rate of inflation increased markedly in early 2006, and uplift also began in the southwest rift zone. CO2 emissions at the summit, indicative of the quantity of magma degassing beneath Kilauea's caldera, more than doubled between 2003 and 2006. Also since 2003, the ERZ immediately downrift of Pu`u `O`o extended, and subsidence in the lower ERZ ceased. Together, these factors suggest that the magma supply rate to Kilauea's shallow magmatic system (the summit and rift zones above about 5 km

  16. Composition and origin of basaltic magma of the Hawaiian Islands

    USGS Publications Warehouse

    Powers, H.A.

    1955-01-01

    Silica-saturated basaltic magma is the source of the voluminous lava flows, erupted frequently and rapidly in the primitive shield-building stage of activity, that form the bulk of each Hawaiian volcano. This magma may be available in batches that differ slightly in free silica content from batch to batch both at the same and at different volcanoes; differentiation by fractionation of olivine does not occur within this primitive magma. Silica-deficient basaltic magma, enriched in alkali, is the source of commonly porphyritic lava flows erupted less frequently and in relatively negligible volume during a declining and decadent stage of activity at some Hawaiian volcanoes. Differentiation by fractionation of olivine, plagioclase and augite is evident among these lavas, but does not account for the silica deficiency or the alkali enrichment. Most of the data of Hawaiian volcanism and petrology can be explained by a hypothesis that batches of magma are melted from crystalline paridotite by a recurrent process (distortion of the equatorial bulge by forced and free nutational stresses) that accomplishes the melting only of the plagioclase and pyroxene component but not the excess olivine and more refractory components within a zone of fixed and limited depth. Eruption exhausts the supply of meltable magma under a given locality and, in the absence of more violent melting processes, leaves a stratum of crystalline refractory components. ?? 1955.

  17. Adakitic magmas: modern analogues of Archaean granitoids

    NASA Astrophysics Data System (ADS)

    Martin, Hervé

    1999-03-01

    Both geochemical and experimental petrological research indicate that Archaean continental crust was generated by partial melting of an Archaean tholeiite transformed into a garnet-bearing amphibolite or eclogite. The geodynamic context of tholeiite melting is the subject of controversy. It is assumed to be either (1) subduction (melting of a hot subducting slab), or (2) hot spot (melting of underplated basalts). These hypotheses are considered in the light of modern adakite genesis. Adakites are intermediate to felsic volcanic rocks, andesitic to rhyolitic in composition (basaltic members are lacking). They have trondhjemitic affinities (high-Na 2O contents and K 2O/Na 2O˜0.5) and their Mg no. (0.5), Ni (20-40 ppm) and Cr (30-50 ppm) contents are higher than in typical calc-alkaline magmas. Sr contents are high (>300 ppm, until 2000 ppm) and REE show strongly fractionated patterns with very low heavy REE (HREE) contents (Yb≤1.8 ppm, Y≤18 ppm). Consequently, high Sr/Y and La/Yb ratios are typical and discriminating features of adakitic magmas, indicative of melting of a mafic source where garnet and/or hornblende are residual phases. Adakitic magmas are only found in subduction zone environments, exclusively where the subduction and/or the subducted slab are young (<20 Ma). This situation is well-exemplified in Southern Chile where the Chile ridge is subducted and where the adakitic character of the lavas correlates well with the young age of the subducting oceanic lithosphere. In typical subduction zones, the subducted lithosphere is older than 20 Ma, it is cool and the geothermal gradient along the Benioff plane is low such that the oceanic crust dehydrates before it reaches the solidus temperature of hydrated tholeiite. Consequently, the basaltic slab cannot melt. The released large ion lithophile element (LILE)-rich fluids rise up into the mantle wedge, inducing both its metasomatism and partial melting. Afterwards, the residue is made up of olivine

  18. Thermal and rheological controls on magma migration in dikes: Examples from the east rift zone of Kilauea volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    Parfitt, E. A.; Wilson, L.; Pinkerton, H.

    1993-01-01

    Long-lived eruptions from basaltic volcanoes involving episodic or steady activity indicate that a delicate balance has been struck between the rate of magma cooling in the dike system feeding the vent and the rate of magma supply to the dike system from a reservoir. We describe some key factors, involving the relationships between magma temperature, magma rheology, and dike geometry that control the nature of such eruptions.

  19. Centrifuge models simulating magma emplacement during oblique rifting

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Bonini, Marco; Innocenti, Fabrizio; Manetti, Piero; Mulugeta, Genene

    2001-07-01

    A series of centrifuge analogue experiments have been performed to model the mechanics of continental oblique extension (in the range of 0° to 60°) in the presence of underplated magma at the base of the continental crust. The experiments reproduced the main characteristics of oblique rifting, such as (1) en-echelon arrangement of structures, (2) mean fault trends oblique to the extension vector, (3) strain partitioning between different sets of faults and (4) fault dips higher than in purely normal faults (e.g. Tron, V., Brun, J.-P., 1991. Experiments on oblique rifting in brittle-ductile systems. Tectonophysics 188, 71-84). The model results show that the pattern of deformation is strongly controlled by the angle of obliquity ( α), which determines the ratio between the shearing and stretching components of movement. For α⩽35°, the deformation is partitioned between oblique-slip and normal faults, whereas for α⩾45° a strain partitioning arises between oblique-slip and strike-slip faults. The experimental results show that for α⩽35°, there is a strong coupling between deformation and the underplated magma: the presence of magma determines a strain localisation and a reduced strain partitioning; deformation, in turn, focuses magma emplacement. Magmatic chambers form in the core of lower crust domes with an oblique trend to the initial magma reservoir and, in some cases, an en-echelon arrangement. Typically, intrusions show an elongated shape with a high length/width ratio. In nature, this pattern is expected to result in magmatic and volcanic belts oblique to the rift axis and arranged en-echelon, in agreement with some selected natural examples of continental rifts (i.e. Main Ethiopian Rift) and oceanic ridges (i.e. Mohns and Reykjanes Ridges).

  20. Interpretation of trace element and isotope features of basalts: relevance of field relations, petrology, major element data, phase equilibria, and magma chamber modeling in basalt petrogenesis

    NASA Astrophysics Data System (ADS)

    O'Hara, M. J.; Herzberg, C.

    2002-06-01

    explain the chemical variation between fertile and residual peridotite in natural ultramafic rock suites. The subtleties of magma chamber partial crystallization processes can produce an astounding array of "pseudospidergrams," a small selection of which have been explored here. Major modification of the trace element geochemistry and trace element ratios, even those of the highly incompatible elements, must always be entertained whenever the evidence suggests the possibility of partial crystallization. At one extreme, periodically recharged, periodically tapped magma chambers might undergo partial crystallization by ˜95% consolidation of a succession of small packets of the magma. Refluxing of the 5% residual melts from such a process into the main body of melt would lead to eventual discrimination between highly incompatible elements in that residual liquid comparable with that otherwise achieved by 0.1 to 0.3% liquid extraction in equilibrium partial melting. Great caution needs to be exercised in attempting the reconstruction of more primitive compositions by addition of troctolite, gabbro, and olivine to apparently primitive lava compositions. Special attention is focussed on the phase equilibria involving olivine, plagioclase (i.e., troctolite), and liquid because a high proportion of erupted basalts carry these two phases as phenocrysts, yet the equilibria are restricted to crustal pressures and are only encountered by wide ranges of basaltic compositions at pressures less than 0.5 GPa. The mere presence of plagioclase phenocrysts may be sufficient to disqualify candidate primitive magmas. Determination of the actual contributions of crustal processes to petrogenesis requires a return to detailed field, experimental, and forensic petrologic studies of individual erupted basalt flows; of a multitude of cumulate gabbros and their contacts; and of upper-mantle outcrops.

  1. Eruptive stratigraphy of the Tatara-San Pedro complex, 36°S, sourthern volcanic zone, Chilean Andes: reconstruction method and implications for magma evolution at long-lived arc volcanic centers

    USGS Publications Warehouse

    Dungan, M.A.; Wulff, A.; Thompson, R.

    2001-01-01

    mafic, intermediate, and silicic eruptive products. Intermediate lava compositions also record different evolution paths, both within and between sequences. No systematic long-term pattern is evident from comparisons at the level of sequences. The considerable diversity of mafic and evolved magmas of the Tatara-San Pedro complex bears on interpretations of regional geochemical trends. The variable role of open-system processes in shaping the compositions of evolved Tatara-San Pedro complex magmas, and even some basaltic magmas, leads to the conclusion that addressing problems such as are magma genesis and elemental fluxes through subduction zones on the basis of averaged or regressed reconnaissance geochemical datasets is a tenuous exercise. Such compositional indices are highly instructive for identifying broad regional trends and first-order problems, but they should be used with extreme caution in attempts to quantify processes and magma sources, including crustal components, implicated in these trends.

  2. Recent volcanic history of Irazu volcano, Costa Rica: alternation and mixing of two magma batches, and pervasive mixing

    USGS Publications Warehouse

    Alvarado, Guillermo E.; Carr, Michael J.; Turrin, Brent D.; Swisher, Carl C.; Schmincke, Hans-Ulrich; Hudnut, Kenneth W.

    2006-01-01

    40Ar/39Ar dates, field observations, and geochemical data are reported for Irazú volcano, Costa Rica. Volcanism dates back to at least 854 ka, but has been episodic with lava shield construction peaks at ca. 570 ka and 136–0 ka. The recent volcanic record on Irazú volcano comprises lava flows and a variety of Strombolian and phreatomagmatic deposits, with a long-term trend toward more hydrovolcanic deposits. Banded scorias and hybridized rocks reflect ubiquitous magma mixing and commingling. Two distinct magma batches have been identified. One magma type or batch, Haya, includes basalt with higher high field strength (HFS) and rare-earth element contents, suggesting a lower degree melt of a subduction modified mantle source. The second batch, Sapper, has greater enrichment of large ion lithophile elements (LILE) relative to HFS elements and rare-earth elements, suggesting a higher subduction signature. The recent volcanic history at Irazú records two and one half sequences of the following pattern: eruptions of the Haya batch; eruptions of the Sapper batch; and finally, an unusually clear unconformity, indicating a pause in eruptions. In the last two sequences, strongly hybridized magma erupted after the eruption of the Haya batch. The continuing presence of two distinct magma batches requires two active magma chambers. The common occurrence of hybrids is evidence for a small, nearer to the surface chamber for mixing the two batches. Estimated pre-eruptive temperatures based on two-pyroxene geothermometry range from ∼1000–1176 °C in basalts to 922 °C in hornblende andesites. Crystallization occurred mainly between 4.6 and 3 kb as measured by different geobarometers. Hybridized rocks show intermediate pressures and temperatures. High silica magma occurs in very small volumes as banded scorias but not as lava flows. Although eruptions at Irazú are not often very explosive, the pervasiveness of magma mixing presents the danger of larger, more explosive

  3. Disclosing Multiple Magma Degassing Sources Offers Unique Insights of What's Behind the Campi Flegrei Caldera Unrest

    NASA Astrophysics Data System (ADS)

    Moretti, R.; Civetta, L.; Orsi, G.; Arienzo, I.; D'Antonio, M.; Di Renzo, V.

    2013-12-01

    The definition of the structure and evolution of the magmatic system of Campi Flegrei caldera (CFc), Southern Italy, has been a fundamental tool for the assessment of the short-term volcanic hazard. The ensemble of geophysical and petrologic data show that the CFc magmatic system has been -and still is- characterized by two major reservoirs at different depths. From the deep one (around 8 km), less evolved magmas crystallize and degas, supplying fluids and magmas to the shallow (3-4 km) reservoirs. A thorough reconstruction of processes occurring in magma chamber/s prior and/or during the CFc eruptions has shown that magmas entering shallow reservoirs mixed with resident and crystallized batches. Also the 1982-85 unrest episode has been related to a magma intrusion of 2.1 x 10^7 m^3 at 3-4 km depth, on the basis of geophysical data (ground deformation, gravimetry, seismic imaging) and their interpretation. Thermodynamic evaluation of magma properties, at the time of emplacement, suggests for such an intrusion a bulk density of 2.000 kg/m^3 . Such a value testifies the high amount of exsolved volatiles within the system. The available record of geochemical and isotopic data on surface fumaroles, coupled with melt inclusion data, has already shown that dual (deep and shallow) magma degassing from such two reservoirs, as well as their interaction with the hydrothermal system, allows explaining the relevant fluctuations observed at crater fumaroles after the 1982-85 magma intrusion. An important role was played by the rapid crystallization (around 30 years) of the shallow magma, such that in the recent years gas discharges should be fuelled mostly by the deep magma. Such a process is well recorded in the fumarolic gas composition of the last ~10 years, but has to be reconciled with the unrest dynamics which took place after year 2000, characterized by a slow but continuous ground uplift. All geochemical indicators (major species and noble gases) point to three possible

  4. Formation of tectonic peperites from alkaline magmas intruded into wet sediments in the Beiya area, western Yunnan, China

    USGS Publications Warehouse

    Xu, Xing-Wang; Cai, Xin-Ping; Zhong, Jia-You; Song, Bao-Chang; Peters, Stephen G.

    2007-01-01

    Tertiary (3.78 Ma to 3.65 Ma) biotite-K-feldspar porphyritic bodies intrude Tertiary, poorly consolidated lacustrine sedimentary rocks in the Beiya mineral district in southwestern China. The intrusives are characterized by a microcrystalline and vitreous-cryptocrystalline groundmass, by replacement of some tabular K-feldspar phenocrysts with microcrystalline chlorite and calcite, and by Fe-rich rings surrounding biotite phenocrysts. Peculiar structures, such as contemporary contact faults and slickensides, ductile shear zones and flow folds, foliation and lineations, tension fractures, and banded and boudin peperites, are developed along the contact zones of the intrusives. These features are related to the forceful intrusion of the alkaline magmas into the wet Tertiary sediments. The partially consolidated magmas were deformed and flattened by continued forceful magma intrusion that produced boudinaged and banded peperites. These peperites characterized by containing oriented deformation fabrics are classified as tectonic peperites as a new type of peperite, and formation of these tectonic peperites was related to fracturing of magmas caused by forceful intrusion and shear deformation and to contemporary migration and injection of fluidized sediments along fractures that dismembered the porphyritic magma. Emplacement of the magma into the wet sediments in the Beiya area is interpreted to be related to a large pressure difference rather than to the buoyancy force.

  5. Rapid mixing and short storage timescale in the magma dynamics of a steady-state volcano

    NASA Astrophysics Data System (ADS)

    Petrone, Chiara Maria; Braschi, Eleonora; Francalanci, Lorella; Casalini, Martina; Tommasini, Simone

    2018-06-01

    Steady-state volcanic activity implies equilibrium between the rate of magma replenishment and eruption of compositionally homogeneous magmas, lasting for tens to thousands of years in an open conduit system. The Present-day activity of Stromboli volcano (Aeolian Islands, Southern Italy) has long been recognised as typical of a steady-state volcano, with a shallow magmatic reservoir (highly porphyritic or hp-magma) continuously refilled by more mafic magma (with low phenocryst content or lp-magma) at a constant rate and accompanied by mixing, crystallisation and eruption. Our aim is to clarify the timescale and dynamics of the plumbing system at the establishment of the Present-day steady-state activity (<1.2 ka) to pinpoint the onset of the steady-state regime. We investigated the Post-Pizzo (PP) pyroclastic sequence (∼1.7-1.5 ka) and one of the Early Paroxysms (EP) of the Present-day activity, focusing on the clinopyroxene population. Whole rock and clinopyroxene compositional variation among the PP and EP magmas is consistent with the time progression of the Stromboli system towards more mafic and lower 87Sr/86Sr compositions, pointing to the chemical and isotopic signature of the Present-day activity. Clinopyroxenes from both PP and EP record a complex history with compositional zoning that reflects growth in three different melt domains: a high-Mg# proto-lp recharging magma, a low-Mg# proto-hp resident magma, and a transient intermediate-Mg# magma. These are the result of complex turbulent flow fields and mixing regimes produced by repeated injections of the proto-lp magma in the shallow proto-hp magma reservoir. During the PP period the magmatic system was already able to regain the pre-input proto-hp composition, gradually changing toward a less evolved signature after the injection(s) of the more mafic proto-lp magma, owing to efficient (days to a few years) stirring and melt homogenisation (i.e., homogenisation time < residence time). Based upon Fe

  6. Magma transport and storage at Kilauea volcano, Hawaii I: 1790-1952

    NASA Astrophysics Data System (ADS)

    Wright, T. L.; Klein, F.

    2011-12-01

    We trace the evolution of Kilauea from the time of the first oral records of an explosive eruption in 1790 to the long eruption in Halemaumau crater in 1952. The establishment of modern seismic and geodetic networks in the early 1960s showed that eruptions and intrusions were fed from two magma sources beneath the summit at depths of 2-6 and ~1 km respectively (sources 1 and 2), and that seaward spreading of the south flank took place on a decollement at 10-12 km depth at the base of the Kilauea edifice. A third diffuse, pressure-transmitting magma system (source 3) between the shallow East rift zone and the decollement was also identified. We test the null hypothesis that the volcano has behaved similarly throughout its lifetime, and conclude that the null hypothesis is not met for the period preceding the 1952 summit eruption because of changes in magma supply rate and differences in ground deformation patterns. The western missionaries arriving at Kilauea in 1823 were confronted with a caldera-wide lava lake. Filling rates determined by visual observation correspond to magma supply rates that averaged more than 0.3 km3/yr prior to 1840 and declined to 1894, when lava disappeared altogether at Halemaumau crater. The Hawaiian Volcano Observatory (HVO) was established by Thomas A. Jaggar in 1912 adjacent to the Volcano House Hotel on the rim of Kilauea. Instrumental observation at HVO began using a seismometer that doubled as a tiltmeter. A 1912-1924 magma supply rate of 0.024 km3/yr agreed with the rate of filling of Kilauea caldera from 1840-1894. 1924 was a critical year. An intrusion that moved down Kilauea's East rift zone beginning in February culminated beneath the lower East rift zone in April. In May, explosive eruptions accompanied a dramatic draining of Halemaumau. Triangulation results between 1912 and 1921 showed uplift extending far beyond Kilauea caldera and an equally large regional subsidence occurred between 1921 and 1927. HVO tilt narrows the

  7. Thermal impact of magmatism in subduction zones

    NASA Astrophysics Data System (ADS)

    Rees Jones, David W.; Katz, Richard F.; Tian, Meng; Rudge, John F.

    2018-01-01

    Magmatism in subduction zones builds continental crust and causes most of Earth's subaerial volcanism. The production rate and composition of magmas are controlled by the thermal structure of subduction zones. A range of geochemical and heat flow evidence has recently converged to indicate that subduction zones are hotter at lithospheric depths beneath the arc than predicted by canonical thermomechanical models, which neglect magmatism. We show that this discrepancy can be resolved by consideration of the heat transported by magma. In our one- and two-dimensional numerical models and scaling analysis, magmatic transport of sensible and latent heat locally alters the thermal structure of canonical models by ∼300 K, increasing predicted surface heat flow and mid-lithospheric temperatures to observed values. We find the advection of sensible heat to be larger than the deposition of latent heat. Based on these results we conclude that thermal transport by magma migration affects the chemistry and the location of arc volcanoes.

  8. Experimental and numerical study on particle distribution in a two-zone chamber

    NASA Astrophysics Data System (ADS)

    Lai, Alvin C. K.; Wang, K.; Chen, F. Z.

    Better understanding of aerosol dynamics is an important step for improving personal exposure assessments in indoor environments. Although the limitation of the assumptions in a well-mixed model is well known, there has been very little research reported in the published literature on the discrepancy of exposure assessments between numerical models which take account of gravitational effects and the well-mixed model. A new Eulerian-type drift-flux model has been developed to simulate particle dispersion and personal exposure in a two-zone geometry, which accounts for the drift velocity resulting from gravitational settling and diffusion. To validate the numerical model, a small-scale chamber was fabricated. The airflow characteristics and particle concentrations were measured by a phase Doppler Anemometer. Both simulated airflow and concentration profiles agree well with the experimental results. A strong inhomogeneous concentration was observed experimentally for 10 μm aerosols. The computational model was further applied to study a simple hypothetical, yet more realistic scenario. The aim was to explore different levels of exposure predicted by the new model and the well-mixed model. Aerosols are initially uniformly distributed in one zone and subsequently transported and dispersed to an adjacent zone through an opening. Owing to the significant difference in the rates of transport and dispersion between aerosols and gases, inferred from the results, the well-mixed model tends to overpredict the concentration in the source zone, and under-predict the concentration in the exposed zone. The results are very useful to illustrate that the well-mixed assumption must be applied cautiously for exposure assessments as such an ideal condition may not be applied for coarse particles.

  9. Sombrero uplift above the Altiplano-Puna Magma Body: evidence of a ballooning mid-crustal diapir.

    PubMed

    Fialko, Yuri; Pearse, Jill

    2012-10-12

    The Altiplano-Puna ultralow-velocity zone in the central Andes, South America, is the largest active magma body in Earth's continental crust. Space geodetic observations reported an uplift in the Altiplano-Puna proper at a rate of ~10 mm/year; however, the nature of the inferred inflation source has been uncertain. We present data showing that the uplift has persisted at a nearly constant rate over the past two decades, and is surrounded by a broad zone of subsidence. We show that the ongoing uplift and peripheral subsidence may result from a large mid-crustal diapir fed by partial melt from the Altiplano-Puna Magma Body.

  10. Time-variable magma pressure at Kīlauea Volcano yields constraint on the volume and volatile content of shallow magma storage

    NASA Astrophysics Data System (ADS)

    Anderson, K. R.; Patrick, M. R.; Poland, M. P.; Miklius, A.

    2015-12-01

    Episodic depressurization-pressurization cycles of Kīlauea Volcano's shallow magma system cause variations in ground deformation, eruption rate, and surface height of the active summit lava lake. The mechanism responsible for these pressure-change cycles remains enigmatic, but associated monitoring signals often show a quasi-exponential temporal history that is consistent with a temporary reduction (or blockage) of supply to Kīlauea's shallow magma storage area. Regardless of their cause, the diverse signals produced by these deflation-inflation (DI) cycles offer an unrivaled opportunity to constrain properties of an active volcano's shallow magma reservoir and relation to its eruptive vents. We model transient behavior at Kīlauea Volcano using a simple mathematical model of an elastic reservoir that is coupled to magma flux through Kīlauea's East Rift Zone (ERZ) at a rate proportional to the difference in pressure between the summit reservoir and the ERZ eruptive vent (Newtonian flow). In this model, summit deflations and ERZ flux reductions are caused by a blockage in supply to the reservoir, while re-inflations occur as the system returns to a steady-state flux condition. The model naturally produces exponential variations in pressure and eruption rate which reasonably, albeit imperfectly, match observations during many of the transient events at Kīlauea. We constrain the model using a diverse range of observations including time-varying summit lava lake surface height and volume change, the temporal evolution of summit ground tilt, time-averaged eruption rate derived from TanDEM-X radar data, and height difference between the summit lava lake and the ERZ eruptive vent during brief eruptive pauses (Patrick et al., 2015). Formulating a Bayesian inverse and including independent prior constraint on magma density, host rock strength, and other properties of the system, we are able to place probabilistic constraints on the volume and volatile content of shallow

  11. The rheology of crystal-rich magmas (Kuno Award Lecture)

    NASA Astrophysics Data System (ADS)

    Huber, Christian; Aldin Faroughi, Salah; Degruyter, Wim

    2016-04-01

    of dispersion of the magma (change in the state variables caused by either shear localization or crystal breakage). We argue that the model we propose is a first step to go beyond fitting experimental data and towards building a predictive rheology model for crystal-bearing magmas. Cooper, K.M., and Kent, A.J.R. (2014) Rapid remobilization of magmatic crystals kept in cold storage. Nature, 506(7489), 480-483. Dufek, J., and Bachmann, O. (2010) Quantum magmatism: Magmatic compositional gaps generated by melt-crystal dynamics. Geology, 38(8), 687-690. Huber, C., Bachmann, O., and Manga, M. (2009) Homogenization processes in silicic magma chambers by stirring and mushification (latent heat buffering). Earth and Planetary Science Letters, 283(1-4), 38-47.

  12. The link between volcanism and plutonism in epizonal magma systems; high-precision U–Pb zircon geochronology from the Organ Mountains caldera and batholith, New Mexico

    USGS Publications Warehouse

    Rioux, Matthew; Farmer, Lang; Bowring, Samuel; Wooton, Kathleen M.; Amato, Jeffrey M.; Coleman, Drew S.; Verplanck, Philip L.

    2016-01-01

    The Organ Mountains caldera and batholith expose the volcanic and epizonal plutonic record of an Eocene caldera complex. The caldera and batholith are well exposed, and extensive previous mapping and geochemical analyses have suggested a clear link between the volcanic and plutonic sections, making this an ideal location to study magmatic processes associated with caldera volcanism. Here we present high-precision thermal ionization mass spectrometry U–Pb zircon dates from throughout the caldera and batholith, and use these dates to test and improve existing petrogenetic models. The new dates indicate that Eocene volcanic and plutonic rocks in the Organ Mountains formed from ~44 to 34 Ma. The three largest caldera-related tuff units yielded weighted mean 206Pb/238U dates of 36.441 ± 0.020 Ma (Cueva Tuff), 36.259 ± 0.016 Ma (Achenback Park tuff), and 36.215 ± 0.016 Ma (Squaw Mountain tuff). An alkali feldspar granite, which is chemically similar to the erupted tuffs, yielded a synchronous weighted mean 206Pb/238U date of 36.259 ± 0.021 Ma. Weighted mean 206Pb/238U dates from the larger volume syenitic phase of the underlying Organ Needle pluton range from 36.130 ± 0.031 to 36.071 ± 0.012 Ma, and the youngest sample is 144 ± 20 to 188 ± 20 ka younger than the Squaw Mountain and Achenback Park tuffs, respectively. Younger plutonism in the batholith continued through at least 34.051 ± 0.029 Ma. We propose that the Achenback Park tuff, Squaw Mountain tuff, alkali feldspar granite and Organ Needle pluton formed from a single, long-lived magma chamber/mush zone. Early silicic magmas generated by partial melting of the lower crust rose to form an epizonal magma chamber. Underplating of the resulting mush zone led to partial melting and generation of a high-silica alkali feldspar granite cap, which erupted to form the tuffs. The deeper parts of the chamber underwent continued recharge and crystallization for 144 ± 20 ka after the

  13. Lifetime and size of shallow magma bodies controlled by crustal-scale magmatism

    NASA Astrophysics Data System (ADS)

    Karakas, Ozge; Degruyter, Wim; Bachmann, Olivier; Dufek, Josef

    2017-06-01

    Magmatic processes on Earth govern the mass, energy and chemical transfer between the mantle, crust and atmosphere. To understand magma storage conditions in the crust that ultimately control volcanic activity and growth of continents, an evaluation of the mass and heat budget of the entire crustal column during magmatic episodes is essential. Here we use a numerical model to constrain the physical conditions under which both lower and upper crustal magma bodies form. We find that over long durations of intrusions (greater than 105 to 106 yr), extensive lower crustal mush zones develop, which modify the thermal budget of the upper crust and reduce the flux of magma required to sustain upper crustal magma reservoirs. Our results reconcile physical models of magma reservoir construction and field-based estimates of intrusion rates in numerous volcanic and plutonic localities. Young igneous provinces (less than a few hundred thousand years old) are unlikely to support large upper crustal reservoirs, whereas longer-lived systems (active for longer than 1 million years) can accumulate magma and build reservoirs capable of producing super-eruptions, even with intrusion rates smaller than 10-3 to 10-2 km3 yr-1. Hence, total duration of magmatism should be combined with the magma intrusion rates to assess the capability of volcanic systems to form the largest explosive eruptions on Earth.

  14. Geodesy - the key for constraining rates of magma supply, storage, and eruption

    NASA Astrophysics Data System (ADS)

    Poland, Michael; Anderson, Kyle

    2016-04-01

    Volcanology is an inherently interdisciplinary science that requires joint analysis of diverse physical and chemical datasets to infer subsurface processes from surface observations. Among the diversity of data that can be collected, however, geodetic data are critical for elucidating the main elements of a magmatic plumbing system because of their sensitivity to subsurface changes in volume and mass. In particular, geodesy plays a key role in determining rates of magma supply, storage, and eruption. For example, surface displacements are critical for estimating the volume changes and locations of subsurface magma storage zones, and remotely sensed radar data make it possible to place significant bounds on eruptive volumes. Combining these measurements with geochemical indicators of magma composition and volatile content enables modeling of magma fluxes throughout a volcano's plumbing system, from source to surface. We combined geodetic data (particularly InSAR) with prior geochemical constraints and measured gas emissions from Kīlauea Volcano, Hawai`i, to develop a probabilistic model that relates magma supply, storage, and eruption over time. We found that the magma supply rate to Kīlauea during 2006 was 35-100% greater than during 2000-2001, with coincident increased rates of subsurface magma storage and eruption at the surface. By 2012, this surge in supply had ended, and supply rates were below those of 2000-2001; magma storage and eruption rates were similarly reduced. These results demonstrate the connection between magma supply, storage, and eruption, and the overall importance of magma supply with respect to volcanic hazards at Kīlauea and similar volcanoes. Our model also confirms the importance of geodetic data in modeling these parameters - rates of storage and eruption are, in some cases, almost uniquely constrained by geodesy. Future modeling efforts along these lines should also seek to incorporate gravity data, to better determine magma

  15. Teleseismic studies indicate existence of deep magma chamber below Yellowstone National Park

    USGS Publications Warehouse

    Iyer, H.M.

    1974-01-01

    The secrets of Yellowstone National Park's spectacular geysers and other hot water and steam phenomena are being explored by the U.S Geological Survey with the aid of distant earthquakes (teleseisms). For some time geologists have known that the remarkable array of steam and hot water displays, for which the park is internationally famous, is associated with intense volcanic activity that occurred in the reigon during the last 2 million years. The most recent volcanic eruption took place about 600,000 years ago creating a large caldera, or crater, 75 kilometers long and 50 kilometers wide. This caldera occupies most of the central part of the present-day park. geologists knew from studies of the surface geology that the volcanic activity which creates the present caldera was caused the present caldera was caused by a large body of magma, a mixture composed of molten rock, hot liquids, and gases, that had forced its way from the deep interior of the Earth into the upper mantle and crust below the Yellowstone area. The dimensions and depth below the surface of this magma body were largely unknown, however, because there was no way to "see" deep below the surface. A tool was needed that would enable earth scientists to look into the curst and upper mantle of the Earth. Such a tool became availabe with the installation by the Geological Survey of a network of seismograph stations in the park. 

  16. Transfer Rates of Magma From Planetary Mantles to the Surface.

    NASA Astrophysics Data System (ADS)

    Wilson, L.; Head, J. W.; Parfitt, E. A.

    2008-12-01

    We discuss the speed at which magma can be transferred to a planetary surface from the deep interior. Current literature describes a combination of slow percolation of melt in the mantle where convection-driven pressure-release melting is occurring, concentration of melt by source region deformation, initiation and growth of magma-filled brittle fractures (dikes) providing wider pathways for melt movement, additional growth and interconnection of dikes with decreasing depth, rise of magma to storage zones (reservoirs) located at levels of neutral buoyancy at the base of or within the crust, and transfer from the storage zones in dikes to feed eruptions or intrusions. We do not take issue with these mechanisms but think that their relative importance in various circumstances is poorly appreciated. On Earth, preservation of diamonds in kimberlites implies very rapid (hours) transfer of melts from depths of 100-300 km, and there is strong geochemical evidence that magmas at mid-ocean ridges reach shallow depths faster than is possible by percolation alone. On the Moon, the petrology of pyroclasts involved in dark-mantle-forming eruptions implies rapid (again probably hours) magma transfer from depths of up to 400 km. The ureilite meteorites, samples of the mantle of a disrupted asteroid 200 km in diameter, have compositions only consistent with the rapid (months) extraction of mafic melt from the mantle. All of these examples imply that brittle fractures (dikes) can sometimes be initiated at depths where mantle rheology would normally be expected to be plastic rather than elastic, and that melt can be fed into these dikes extremely efficiently. Further evidence for this is provided by the giant radial dike swarms observed on Earth, Mars and Venus. The dikes observed (on Earth) and inferred from the presence of radiating graben systems (Mars) and radiating fracture and graben systems (Venus) are so voluminous that they can only be understood if they are fed from

  17. From Magma Fracture to a Seismic Magma Flow Meter

    NASA Astrophysics Data System (ADS)

    Neuberg, J. W.

    2007-12-01

    Seismic swarms of low-frequency events occur during periods of enhanced volcanic activity and have been related to the flow of magma at depth. Often they precede a dome collapse on volcanoes like Soufriere Hills, Montserrat, or Mt St Helens. This contribution is based on the conceptual model of magma rupture as a trigger mechanism. Several source mechanisms and radiation patterns at the focus of a single event are discussed. We investigate the accelerating event rate and seismic amplitudes during one swarm, as well as over a time period of several swarms. The seismic slip vector will be linked to magma flow parameters resulting in estimates of magma flux for a variety of flow models such as plug flow, parabolic- or friction controlled flow. In this way we try to relate conceptual models to quantitative estimations which could lead to estimations of magma flux at depth from seismic low-frequency signals.

  18. Pressure increases, the for­mation of chromite seams, and the development of the ultramafic series in the Stillwater Complex, Montana

    USGS Publications Warehouse

    Lipin, Bruce R.

    1993-01-01

    This paper explores the hypothesis that chromite seams in the Stillwater Complex formed in response to periodic increases in total pressure in the chamber. Total pressure increased because of the positive δV of nucleation of CO2 bubbles in the melt and their subsequent rise through the magma chamber, during which the bubbles increased in volume by a factor of 4–6. By analogy with the pressure changes in the summit chambers of Kilauea and Krafla volcanoes, the maximum variation was 0⋅2–0⋅25 kbar, or 5–10% of the total pressure in the Stillwater chamber. An evaluation of the likelihood of fountaining and mixing of a new, primitive liquid that entered the chamber with the somewhat more evolved liquid already in the chamber is based upon calculations using observed and inferred velocities and flow rates of basaltic magmas moving through volcanic fissures. The calculations indicate that hot, dense magma would have oozed, rather than fountained into the chamber, and early mixing of the new and residual magmas that could have resulted in chromite crystallizing alone did not take place.Mixing was an important process in the Stillwater magma chamber, however. After the new magma in the chamber underwent ˜5% fractional crystallization, its composition, temperature, and density approached those of the overlying liquid in the chamber and the liquids then mixed. If this process occurred many times over the course of the development of the Ultramafic series, a thick column of magma with orthopyroxene on its liquidus would have been the result. Thus, the sequence of multiple injections, fractionation, and mixing with previously fractionated magma could have been the mechanism that produced the thick bronzite cumulate layer (the Bronzitite zone) above the cyclic units.

  19. The role of viscous magma mush spreading in volcanic flank motion at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Plattner, C.; Amelung, F.; Baker, S.; Govers, R.; Poland, M.

    2013-01-01

    Multiple mechanisms have been suggested to explain seaward motion of the south flank of Kīlauea Volcano, Hawai‘i. The consistency of flank motion during both waxing and waning magmatic activity at Kīlauea suggests that a continuously acting force, like gravity body force, plays a substantial role. Using finite element models, we test whether gravity is the principal driver of long-term motion of Kīlauea's flank. We compare our model results to geodetic data from Global Positioning System and interferometric synthetic aperture radar during a time period with few magmatic and tectonic events (2000-2003), when deformation of Kīlauea was dominated by summit subsidence and seaward motion of the south flank. We find that gravity-only models can reproduce the horizontal surface velocities if we incorporate a regional décollement fault and a deep, low-viscosity magma mush zone. To obtain quasi steady state horizontal surface velocities that explain the long-term seaward motion of the flank, we find that an additional weak zone is needed, which is an extensional rift zone above the magma mush. The spreading rate in our model is mainly controlled by the magma mush viscosity, while its density plays a less significant role. We find that a viscosity of 2.5 × 1017–2.5 × 1019 Pa s for the magma mush provides an acceptable fit to the observed horizontal surface deformation. Using high magma mush viscosities, such as 2.5 × 1019 Pa s, the deformation rates remain more steady state over longer time scales. These models explain a significant amount of the observed subsidence at Kīlauea's summit. Some of the remaining subsidence is probably a result of magma withdrawal from subsurface reservoirs

  20. Magma chamber history related to the shield building stage of Piton des Neiges volcano, La Réunion Island

    NASA Astrophysics Data System (ADS)

    Berthod, Carole; Michon, Laurent; Famin, Vincent; Bascou, Jérôme; Bachelery, Patrick

    2016-04-01

    Piton des Neiges volcano (La Réunion hotspot) experienced a long-lasting shield building stage before entering its degenerative stage 0.4 my ago. The deep edifice incision due to the intense tropical erosion allowed the description for several decades of a layered gabbroic complex interpreted as a piece of magma chamber, which has been tectonically displaced (Chevallier & Vatin-Perignon, 1982; Upton & Wadsworth, 1972). Here, we combine field investigations, petrographic, mineralogical, geochemical and anisotropy of magnetic susceptibility (AMS) studies to constrain the spatial distribution of the plutonic complex, to identify the physical and chemical processes and to integrate this complex in the evolution of Piton des Neiges (PdN). Field investigations allowed us to discover three additional massifs of gabbro and peridotite along the Mât River. The four massifs are overlaid by a pile of basic sills and a breccia interpreted as a debris avalanche deposit. Albeit spatially disconnected, the massifs show a relatively constant dip of the magnetic foliation toward the current summit of the volcano (i.e. toward the SSE). The two massifs cropping in the upper Mât River are exclusively composed of massive dunite and wherlite units with a cumulate texture and no visible dynamic structures. The two massifs located in the lower Mât River are made of olivine-gabbro, ferrogabbro and gabbro showing numerous flow structures and synmagmatic faults that indicates instabilities which trend NNW-SSE. Minerals (olivine, clinopyroxene and oxide) present primitive compositions in the two upper massifs and slightly differentiated ones in the lower massif. Given the consistency of our dataset, we propose that the four massifs correspond to outcrops of a unique chemically stratified magma chamber, whose center would have been located about 4 km North of the current summit of PdN. The existence of an initial PdN, North of the current edifice, is supported by morphological

  1. Magma-magma interaction in the mantle beneath eastern China

    NASA Astrophysics Data System (ADS)

    Zeng, Gang; Chen, Li-Hui; Yu, Xun; Liu, Jian-Qiang; Xu, Xi-Sheng; Erdmann, Saskia

    2017-04-01

    In addition to magma-rock and rock-rock reaction, magma-magma interaction at mantle depth has recently been proposed as an alternative mechanism to produce the compositional diversity of intraplate basalts. However, up to now no compelling geochemical evidence supports this novel hypothesis. Here we present geochemistry for the Longhai basalts from Fujian Province, southeastern China, which demonstrates the interaction between two types of magma at mantle depth. At Longhai, the basalts form two groups, low-Ti basalts (TiO2/MgO < 0.25) and high-Ti basalts (TiO2/MgO > 0.25). Calculated primary compositions of the low-Ti basalts have compositions close to L + Opx + Cpx + Grt cotectic, and they also have low CaO contents (7.1-8.1 wt %), suggesting a mainly pyroxenite source. Correlations of Ti/Gd and Zr/Hf with the Sm/Yb ratios, however, record binary mixing between the pyroxenite-derived melt and a second, subordinate source-derived melt. Melts from this second source component have low Ti/Gd and high Zr/Hf and Ca/Al ratios, thus likely representing a carbonated component. The Sr, Nd, Hf, and Pb isotopic compositions of the high-Ti basalts are close to the low-Ti basalts. The Sm/Yb ratio of the high-Ti basalts, however, is markedly elevated and characterized by crossing rare earth element patterns at Ho, suggesting that they have source components comparable to the low-Ti basalts, but that they have experienced garnet and clinopyroxene fractionation. We posit that mingling of SiO2-saturated tholeiitic magma with SiO2-undersaturated alkaline magma might trigger such fractionation. Therefore, the model of magma-magma interaction and associated deep evolution of magma in the mantle is proposed to explain the formation of Longhai basalts. It may, moreover, serve as a conceptual model for the formation of tholeiitic to alkaline intraplate basalts worldwide.

  2. Comment on 'volume of magma accumulation or withdrawal estimated from surface uplift or subsidence, with application to the 1960 collapse of Kilauea volcano' by P.T. Delaney and D.F. McTigue

    USGS Publications Warehouse

    Johnson, Daniel J.; Sigmundsson, F.; Delaney, P.T.

    2000-01-01

    In volcanoes that store a significant quantity of magma within a subsurface summit reservoir, such as Kilauea, bulk compression of stored magma is an important mode of deformation. Accumulation of magma is also accompanied by crustal deformation, usually manifested at the surface as uplift. These two modes of deformation - bulk compression of resident magma and deformation of the volcanic edifice - act in concert to accommodate the volume of newly added magma. During deflation, the processes reverse and reservoir magma undergoes bulk decompression, the chamber contracts, and the ground surface subsides. Because magma compression plays a role in creating subsurface volume of accommodate magma, magma budget estimates that are derived from surface uplift observations without consideration of magma compression will underestimate actual magma volume changes.

  3. Magma degassing triggered by static decompression at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Poland, Michael P.; Jeff, Sutton A.; Gerlach, Terrence M.

    2009-01-01

    During mid-June 2007, the summit of Kīlauea Volcano, Hawai‘i, deflated rapidly as magma drained from the subsurface to feed an east rift zone intrusion and eruption. Coincident with the deflation, summit SO2 emission rates rose by a factor of four before decaying to background levels over several weeks. We propose that SO2 release was triggered by static decompression caused by magma withdrawal from Kīlauea's shallow summit reservoir. Models of the deflation suggest a pressure drop of 0.5–3 MPa, which is sufficient to trigger exsolution of the observed excess SO2 from a relatively small volume of magma at the modeled source depth beneath Kīlauea's summit. Static decompression may also explain other episodes of deflation accompanied by heightened gas emission, including the precursory phases of Kīlauea's 2008 summit eruption. Hazards associated with unexpected volcanic gas emission argue for increased awareness of magma reservoir pressure fluctuations.

  4. Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 2. Coeruptive deflation, July-August 2008

    USGS Publications Warehouse

    Lu, Zhong; Dzurisin, Daniel

    2010-01-01

    A hydrovolcanic eruption near Cone D on the floor of Okmok caldera, Alaska, began on 12 July 2008 and continued until late August 2008. The eruption was preceded by inflation of a magma reservoir located beneath the center of the caldera and ∼3 km below sea level (bsl), which began immediately after Okmok's previous eruption in 1997. In this paper we use data from several radar satellites and advanced interferometric synthetic aperture radar (InSAR) techniques to produce a suite of 2008 coeruption deformation maps. Most of the surface deformation that occurred during the eruption is explained by deflation of a Mogi-type source located beneath the center of the caldera and 2–3 km bsl, i.e., essentially the same source that inflated prior to the eruption. During the eruption the reservoir deflated at a rate that decreased exponentially with time with a 1/e time constant of ∼13 days. We envision a sponge-like network of interconnected fractures and melt bodies that in aggregate constitute a complex magma storage zone beneath Okmok caldera. The rate at which the reservoir deflates during an eruption may be controlled by the diminishing pressure difference between the reservoir and surface. A similar mechanism might explain the tendency for reservoir inflation to slow as an eruption approaches until the pressure difference between a deep magma production zone and the reservoir is great enough to drive an intrusion or eruption along the caldera ring-fracture system.

  5. Compositional evolution of magma from Parícutin Volcano, Mexico: The tephra record

    NASA Astrophysics Data System (ADS)

    Erlund, E. J.; Cashman, K. V.; Wallace, P. J.; Pioli, L.; Rosi, M.; Johnson, E.; Granados, H. Delgado

    2010-11-01

    The birth of Parícutin Volcano, Mexico, in 1943 provides an unprecedented opportunity to document the development of a monogenetic cinder cone and its associated lava flows and tephra blanket. Three 'type' sections provide a complete tephra record for the eruption, which is placed in a temporal framework by comparing both bulk tephra and olivine phenocryst compositions to dated samples of lava and tephra. Our data support the hypothesis of Luhr (2001) that the first four months of activity were fed by a magma batch (Phase 1) that was distinct from the magma that supplied the subsequent eight years of activity. We further suggest that the earliest erupted (vanguard) magma records evidence of temporary residence at shallow levels prior to eruption, suggesting early development of a dike and sill complex beneath the vent. Depletion of this early batch led to diminished eruptive activity in June and July of 1943, while arrival of the second magma batch (Phase 2) reinvigorated activity in late July. Phase 2 fed explosive activity from mid-1943 through 1946, although most of the tephra was deposited by the end of 1945. Phase 3 of the eruption began in mid-1947 with rapid evolution of magma compositions from basaltic andesite to andesite and dominance of lava effusion. The combined physical and chemical characteristics of the erupted material present a new interpretation of the physical conditions that led to compositional evolution of the magma. We believe that syn-eruptive assimilation of wall rock in a shallow complex of dikes and sills is more likely than pre-eruptive assimilation within a large magma chamber, as previously assumed. We further suggest that waning rates of magma supply from the deep feeder system allowed evolved, shallowly stored magma to enter the conduit in 1947, thus triggering the rapid observed change in the erupted magma composition. This physical model predicts that assimilation should be observable in other monogenetic eruptions, particularly

  6. Magma Energy Research, 79-1. Semiannual report, October 1, 1978-March 31, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traeger, R.K.; Colp, J.L.; Neel, R.R.

    1979-07-01

    A major effort in evaluating Kilauea Iki lava lake has been completed. The physical model based on FY 76 geophysical experiments is not correct in that a low viscosity, liquid lens of appreciable thickness does not exist. Mathematical models of the cooling of the lava lake and the state of solidification of the liquid lens were verified by thermal profile and permeability measurements. New jet-augmented drilling concepts successfully penetrated the viscous, multi-phase molten rock region in some locations where conventional drilling failed. Heat transfer studies in the lake suggest injection of fluids to enhance convection may be useful to extractmore » energy from magma chamber margins. Other activities resulted in the completion and successful testing of a 800 cc simulation facility for evaluating simulated magma properties at temperatures to 1500/sup 0/C and pressures to 4 kbar. In materials compatibility studies, thermodynamic stability diagrams were developed for 15 pure metals in basaltic magma systems and compatibility tests completed. Results are being used to define simple alloy systems which may be compatible with magmas and to identify other superalloy materials candidates.« less

  7. Off-axis magmatism along a subaerial back-arc rift: Observations from the Taupo Volcanic Zone, New Zealand.

    PubMed

    Hamling, Ian J; Hreinsdóttir, Sigrun; Bannister, Stephen; Palmer, Neville

    2016-06-01

    Continental rifting and seafloor spreading play a fundamental role in the generation of new crust. However, the distribution of magma and its relationship with tectonics and volcanism remain poorly understood, particularly in back-arc settings. We show evidence for a large, long-lived, off-axis magmatic intrusion located on the margin of the Taupo Volcanic Zone, New Zealand. Geodetic data acquired since the 1950s show evidence for uplift outside of the region of active extension, consistent with the inflation of a magmatic body at a depth of ~9.5 km. Satellite radar interferometry and Global Positioning System data suggest that there was an increase in the inflation rate from 2003 to 2011, which correlates with intense earthquake activity in the region. Our results suggest that the continued growth of a large magmatic body may represent the birth of a new magma chamber on the margins of a back-arc rift system.

  8. Characterization of Magma-Driven Hydrothermal Systems at Oceanic Spreading Centers

    NASA Astrophysics Data System (ADS)

    Farough, A.; Lowell, R. P.; Corrigan, R.

    2012-12-01

    Fluid circulation in high-temperature hydrothermal systems involves complex water-rock chemical reactions and phase separation. Numerical modeling of reactive transport in multi-component, multiphase systems is required to obtain a full understanding of the characteristics and evolution of hydrothermal vent systems. We use a single-pass parameterized model of high-temperature hydrothermal circulation at oceanic spreading centers constrained by observational parameters such as vent temperature, heat output, and vent field area, together with surface area and depth of the sub-axial magma chamber, to deduce fundamental hydrothermal parameters such as mass flow rate, bulk permeability, conductive boundary layer thickness at the base of the system, magma replenishment rate, and residence time in the discharge zone. All of these key subsurface characteristics are known for fewer than 10 sites out of 300 known hydrothermal systems. The principal limitations of this approach stem from the uncertainty in heat output and vent field area. For systems where data are available on partitioning of heat and chemical output between focused and diffuse flow, we determined the fraction of high-temperature vent fluid incorporated into diffuse flow using a two-limb single pass model. For EPR 9°50` N and ASHES, the diffuse flow temperatures calculated assuming conservative mixing are nearly equal to the observed temperatures indicating that approximately 80%-90% of the hydrothermal heat output occurs as high-temperature flow derived from magmatic heat even though most of the heat output appears as low-temperature diffuse discharge. For the Main Endeavour Field and Lucky Strike, diffuse flow fluids show significant conductive cooling and heating respectively. Finally, we calculate the transport of various geochemical constituents in focused and diffuse flow at the vent field scale and compare the results with estimates of geochemical transports from the Rainbow hydrothermal field where

  9. Complex Formation History of Highly Evolved Basaltic Shergottite, Zagami

    NASA Technical Reports Server (NTRS)

    Niihara, T.; Misawa, K.; Mikouchi, T.; Nyquist, L. E.; Park, J.; Hirata, D.

    2012-01-01

    Zagami, a basaltic shergottite, contains several kinds of lithologies such as Normal Zagami consisting of Fine-grained (FG) and Coarse-grained (CG), Dark Mottled lithology (DML), and Olivine-rich late-stage melt pocket (DN). Treiman and Sutton concluded that Zagami (Normal Zagami) is a fractional crystallization product from a single magma. It has been suggested that there were two igneous stages (deep magma chamber and shallow magma chamber or surface lava flow) on the basis of chemical zoning features of pyroxenes which have homogeneous Mg-rich cores and FeO, CaO zoning at the rims. Nyquist et al. reported that FG has a different initial Sr isotopic ratio than CG and DML, and suggested the possibility of magma mixing on Mars. Here we report new results of petrology and mineralogy for DML and the Olivine-rich lithology (we do not use DN here), the most evolved lithology in this rock, to understand the relationship among lithologies and reveal Zagami s formation history

  10. Reconciling Gases With Glasses: Magma Degassing, Overturn and Mixing at Kilauea Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Edmonds, M.; Gerlach, T. M.

    2006-12-01

    Our understanding of the volatile budget at Kilauea Volcano is based on measurements of the abundance of volatile elements in volcanic glasses and gases. Observations of volcanic gases gave rise to a fundamental model describing volatile fractionation between the summit and rift zone during the current eruption [Gerlach and Graeber, 1985]. Other workers' analysis of glasses from the Puna Ridge, Kilauea Iki and Pu`u `O`o indicate that magma degassing, drain-back, mixing and assimilation are important processes at Kilauea Volcano. Volcanic gases have not illustrated these kinds of processes clearly in the past, owing to infrequent and poorly resolved data. New, detailed studies of volcanic gas emissions have refined our understanding of volatile degassing and magma budgets at Kilauea Volcano. Open Path Fourier Transform Infra-Red spectroscopy measurements carried out during 2004-2005 allow retrieval of the relative abundances of the major volatile species H2O, CO2 and SO2, which together make up >99 vol% of the magmatic vapor phase. The proportions of these gases vary over time and space and can be used to infer magma transport, ascent, degassing, overturn and mixing and gas segregation processes within the plumbing system of Kilauea Volcano. Gases from Pu`u `O`o in 2004-2005 display a range in composition. A trend relates molar C/S to the total H2O content of the gases over time and space; total H2O ranges from 60-98 mol %, while molar C/S ranges from <0.01 to >50. The range in volcanic gas composition over time and space is caused by magma degassing, overturn and mixing of partially degassed magma with fresh primary magma beneath Pu`u `O`o. Measurements of the mean rate of magma degassing (from SO2 emissions) and mean lava effusion rate (from geophysical measurements of lava tube flux) suggest that a larger volume (DRE) of magma is degassing than is being erupted, on average. This analysis suggests that magma storage in the Rift Zone might be important during

  11. Petrographic and geochemical investigation of magma chamber processes beneath small Quaternary volcanic centers between Mt. Jefferson and Mt. Hood volcanoes, Cascade Range Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Cunningham, E.; Cribb, J. W.

    2017-12-01

    The northern Oregon Cascade Range has been dominated by andesite to rhyodacite lavas at both Mt. Jefferson (Conrey, 1991) and at Mt. Hood (Cribb and Barton, 1996) during the Quaternary period. Eruptive sequences at both Mt. Hood and Mt. Jefferson have been attributed to open-system mama mixing (Kent et al., 2010) (Ferrell et al., 2015), and the narrow range of lavas erupted at both centers has been derived from repeated cycles of magma mixing-fractionation (Cribb and Barton, 1996). This research examines major and trace element geochemistry as well as the petrographic characteristics of Clear Lake Butte (CLB), Pinhead Butte (PB), and Olallie Butte (OB), all of which are located between Mt. Hood and Mt. Jefferson, and have ben active in the Quaternary period. The research investigates whether the same type of open-system magma mixing known to have occurred at Mt. Hood and Mt. Jefferson has also occurred at CLB, PB, or OB, or whether those systems were closed to mixing and dominated by fractional crystallization. One of the main goals of this project is to highlight the similarities and differences exhibited by neighboring magmatic systems of similar age, but different scale. Disequilibrium textures observed in thin sections from CLB, OB, and PB suggest open-system magma mixing is likely occurring beneath all three buttes. This petrographic evidence includes plagioclase and pyroxene zoning, embayed margins, sieving, and reaction rims. Major element oxide trends at all three buttes are consistent with fractional crystallization, but show narrow concentrations and non-overlapping compositions between PB, CLB, and OB. All three buttes are characterized by narrow ranges of incompatible and compatible trace element concentrations. CLB, PB, and OB all exhibit LREE enrichment and lack significant HFSE depletions, with PB exhibiting greatest enrichment in REE.

  12. Zoning and exsolution in cumulate alkali feldspars from the eruption (12.9 Ka) of Laacher see volcano (Western Germany) as an indicator of time-scales and dynamics of carbonate-silicate unmixing

    NASA Astrophysics Data System (ADS)

    Sourav Rout, Smruti; Wörner, Gerhard

    2017-04-01

    Time-scales extracted from the detailed analysis of chemically zoned minerals provide insights into crystal ages, magma storage and compositional evolution, including mixing and unmixing events. This allows having a better understanding of pre-eruptive history of large and potentially dangerous magma chambers. We present a comprehensive study of chemical diffusion across zoning and exsolution patterns of alkali feldspars in carbonatite-bearing cognate syenites from the 6.3 km3 (D.R.E) phonolitic Laacher See Tephra (LST) eruption 12.9 ka ago. The Laacher See volcano is located in the Quaternary East Eifel volcanic field of the Paleozoic Rhenish Massif in Western Germany and has produced a compositionally variable sequence in a single eruption from a magma chamber that was zoned from mafic phonolite at the base to highly evolved, actively degassing phonolite magma at the top. Diffusion chronometry is applied to major and trace element compositions obtained on alkali feldspars from carbonate-bearing syenitic cumulates. Methods used were laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) in combination with energy-dispersive and wavelength-dispersive electron microprobe analyses (EDS & WDS-EMPA). The grey scale values extracted from multiple accumulations of back-scattered electron images represent the K/Na ratio owing to the extremely low concentrations of Ba and Sr (<30 ppm). The numerical grey scale profiles and the quantitative compositional profiles are anatomized using three different fitting models in MATLAB®, Mathematica® and Origin® to estimate related time-scales with minimized error for a temperature range of 750 deg C to 800 deg C (on the basis of existing experimental data on phase transition and phase separation). A distinctive uphill diffusive analysis is used specifically for the phase separation in the case of exsolution features (comprising of albite- and orthoclase-rich phases) in sanidines. The error values are aggregates of

  13. Numerical Modeling of Surface Deformation due to Magma Chamber Inflation/Deflation in a Heterogeneous Viscoelastic Half-space

    NASA Astrophysics Data System (ADS)

    Dichter, M.; Roy, M.

    2015-12-01

    Interpreting surface deformation patterns in terms of deeper processes in regions of active magmatism is challenging and inherently non-unique. This study focuses on interpreting the unusual sombrero-shaped pattern of surface deformation in the Altiplano Puna region of South America, which has previously been modeled as the effect of an upwelling diapir of material in the lower crust. Our goal is to investigate other possible interpretations of the surface deformation feature using a suite of viscoelastic models with varying material heterogeneity. We use the finite-element code PyLith to study surface deformation due to a buried time-varying (periodic) overpressure source, a magma body, at depth within a viscoelastic half-space. In our models, the magma-body is a penny-shaped crack, with a cylindrical region above the crack that is weak relative to the surrounding material. We initially consider a magma body within a homogeneous viscoelastic half-space to determine the effect of the free surface upon deformation above and beneath the source region. We observe a complex depth-dependent phase relationship between stress and strain for elements that fall between the ground surface and the roof of the magma body. Next, we consider a volume of weak material (faster relaxation time relative to background) that is distributed with varying geometry around the magma body. We investigate how surface deformation is governed by the spatial distribution of the weak material and its rheologic parameters. We are able to reproduce a "sombrero" pattern of surface velocities for a range of models with material heterogeneity. The wavelength of the sombrero pattern is primarily controlled by the extent of the heterogeneous region, modulated by flexural effects. Our results also suggest an "optimum overpressure forcing frequency" where the lifetime of the sombrero pattern (a transient phenomenon due to the periodic nature of the overpressure forcing) reaches a maximum. Through further

  14. Design and laboratory testing of a chamber device to measure total flux of volatile organic compounds from the unsaturated zone under natural conditions.

    PubMed

    Tillman, Fred D; Smith, James A

    2004-11-01

    To determine if an aquifer contaminated with volatile organic compounds (VOCs) has potential for natural remediation, all natural processes affecting the fate and transport of VOCs in the subsurface must be identified and quantified. This research addresses the quantification of air-phase volatile organic compounds (VOCs) leaving the unsaturated zone soil gas and entering the atmosphere-including the additional flux provided by advective soil-gas movement induced by barometric pumping. A simple and easy-to-use device for measuring VOC flux under natural conditions is presented. The vertical flux chamber (VFC) was designed using numerical simulations and evaluated in the laboratory. Mass-balance numerical simulations based on continuously stirred tank reactor equations (CSTR) provided information on flux measurement performance of several sampling configurations with the final chamber configuration measuring greater than 96% of model-simulated fluxes. A laboratory device was constructed to evaluate the flux chamber under both diffusion-only and advection-plus-diffusion transport conditions. The flux chamber measured an average of 82% of 15 diffusion-only fluxes and an average of 95% of 15 additional advection-plus-diffusion flux experiments. The vertical flux chamber has the capability of providing reliable measurement of VOC flux from the unsaturated zone under both diffusion and advection transport conditions.

  15. Geochemistry and Temperatures Recorded by Zircon During the Final Stages of the Youngest Toba Tuff Magma Chamber, Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Gaither, T.; Reid, M. R.; Vazquez, J. A.

    2009-12-01

    The ~74 ka eruption of the Youngest Toba Tuff (YTT) in Sumatra, Indonesia, was one of the largest single volcanic eruptions in geologic history, on par with other voluminous silicic eruptions such as the Huckleberry Ridge Tuff of Yellowstone and the Bishop Tuff of Long Valley, California. We are exploring how zircon and other accessory mineral phases record compositional and thermal changes that occurred in the YTT magma, and the important clues these crystal scale records hold for magma chamber dynamics and processes that lead up to supervolcano eruptions. In this study, we report trace element (REE, U, Th, Ti, and Hf) characteristics, Ti-in-zircon crystallization temperatures, and apparent REE partition coefficients obtained for YTT zircon rims. Twenty-nine zircons from pumices with a compositional range of 70-76 wt% SiO2 were analyzed on the UCLA Cameca ims 1270 ion microprobe. The grains were mounted so that only the outermost ~1.5 microns of the crystals were analyzed. Median Zr/Hf ratios of 34 to 38 characterize zircons from the pumices; the high silica rhyolite grains have lower Zr/Hf. Chondrite-normalized REE patterns are strongly LREE-depleted. Positive Ce anomalies are large (Ce/Ce* ranges up to 88) and Eu/Eu* varies by a factor of four (0.05 to 0.21). Eu/Eu*, Nd/Yb, and Th/U decrease with decreasing Zr/Hf, showing that the variation in zircon rim compositions may be related by co-precipitation of feldspar and allanite along with zircon. Titanium contents also decrease with decreasing Zr/Hf, suggesting that the chemical differences could be related to temperature changes. REE partition coefficients calculated from zircon rim compositions and pumice glass compositions give a good fit to a lattice strain model. They are also quite similar to the partition coefficients of Sano et al. (2002) which have been shown to be successful at reproducing melt compositions in other settings. Temperatures of crystallization calculated using the Ti

  16. Why do magmas stall? Insights from petrologic and geodetic data

    NASA Astrophysics Data System (ADS)

    Zimmer, M. M.; Plank, T.; Freymueller, J.; Hauri, E. H.; Larsen, J. F.; Nye, C. J.

    2007-12-01

    with a deep magma source proposed for the 2006 eruption. Melt inclusions from Shishaldin are trapped at depths up to 4 km, coincident with the base of the conduit (Vergnoille & Caplan Auerbach, BVolc 2006). Other volcanoes record similar depths of melt inclusion entrapment and deformation, including Mt. St. Helens, Irazú, Soufriere Hills, Vesuvius, and Etna. Clearly, crystallization will occur where magmas stall, cool, and degas, so it may not be surprising that the depths of deformation correlate with the depths of melt inclusion entrapment. But the question of why magmas stall at various depths remains. In the Aleutians, maximum H2O contents of melt inclusions (from 2 wt% at Shishaldin to 7 wt% at Augustine) negatively correlate with measures of the degree of mantle melting (Ti6.0 and Y6.0), which is expected if water drives mantle melting beneath arcs (e.g. Kelley et al. JGR 2006; Portnyagin et al EPSL 2007). Thus, if magmas stall near the depths where they reach H2O-saturation, as predicted by Annen et al. and observed here, then magma chamber and pluton depths may ultimately be controlled by the primary magmatic water contents set in the mantle.

  17. Plagioclase populations and zoning in dacite of the 2004-2005 Mount St. Helens eruption: constraints for magma origin and dynamics: Chapter 34 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Streck, Martin J.; Broderick, Cindy A.; Thronber, Carl R.; Clynne, Michael A.; Pallister, John S.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    We propose that crystals with no dissolution surfaces are those that were supplied last to the shallow reservoir, whereas plagioclase with increasingly more complex zoning patterns (that is, the number of zoned bands bounded by dissolution surfaces) result from prolonged residency and evolution in the reservoir. We propose that banding and An zoning across multiple bands are primarily a response to thermally induced fluctuations in crystallinity of the magma in combination with recharge; a lesser role is ascribed to cycling crystals through pressure gradients. Crystals without dissolution surfaces, in contrast, could have grown only in response to steady(?) decompression. Some heating-cooling cycles probably postdate the final eruption in 1986. They resulted from small recharge events that supplied new crystals that then experienced resorption-growth cycles. We suggest that magmatic events shortly prior to the current eruption, recorded in the outermost zones of plagioclase phenocrysts, began with the incorporation of acicular orthopyroxene, followed by last resorption, and concluded with crystallization of euhedral rims. Finally, we propose that 2004-5 dacite is composed mostly of dacite magma that remained after 1986 and underwent subsequent magmatic evolution but, more importantly, contains a component of new dacite from deeper in the magmatic system, which may have triggered the new eruption.

  18. Magma storage prior to the 1912 eruption at Novarupta, Alaska

    USGS Publications Warehouse

    Hammer, J.E.; Rutherford, M.J.; Hildreth, W.

    2002-01-01

    New analytical and experimental data constrain the storage and equilibration conditions of the magmas erupted in 1912 from Novarupta in the 20th century's largest volcanic event. Phase relations at H2O+CO2 fluid saturation were determined for an andesite (58.7 wt% SiO2) and a dacite (67.7 wt%) from the compositional extremes of intermediate magmas erupted. The phase assemblages, matrix melt composition and modes of natural andesite were reproduced experimentally under H2O-saturated conditions (i.e., PH2O=PTOT) in a negatively sloping region in T-P space from 930 ??C/100 MPa to 960 ??C/75 MPa with fO2???N NO + 1. The H2O-saturated equilibration conditions of the dacite are constrained to a T-P region from 850 ??C/ 50 MPa to 880 ??C/25 MPa. If H2O-saturated, these magmas equilibrated at (and above) the level where coerupted rhyolite equilibrated (???100 MPa), suggesting that the andesite-dacite magma reservoir was displaced laterally rather than vertically from the rhyolite magma body. Natural mineral and melt compositions of intermediate magmas were also reproduced experimentally under saturation conditions with a mixed (H2O + CO2) fluid for the same range in PH2O. Thus, a storage model in which vertically stratified mafic to silicic intermediate magmas underlay H2O-saturated rhyolite is consistent with experimental findings only if the intermediates have XH2Ofl=0.7 and 0.9 for the extreme compositions, respectively. Disequilibrium features in natural pumice and scoria include pristine minerals existing outside their stability fields, and compositional zoning of titanomagnetite in contact with ilmenite. Variable rates of chemical equilibration which would eliminate these features constrain the apparent thermal excursion and re-distribution of minerals to the time scale of days.

  19. Storage and interaction of compositionally heterogeneous magmas from the 1986 eruption of Augustine Volcano, Alaska

    USGS Publications Warehouse

    Roman, Diana C.; Cashman, Katharine V.; Gardner, Cynthia A.; Wallace, Paul J.; Donovan, John J.

    2006-01-01

    Compositional heterogeneity (56–64 wt% SiO2 whole-rock) in samples of tephra and lava from the 1986 eruption of Augustine Volcano, Alaska, raises questions about the physical nature of magma storage and interaction beneath this young and frequently active volcano. To determine conditions of magma storage and evolutionary histories of compositionally distinct magmas, we investigate physical and chemical characteristics of andesitic and dacitic magmas feeding the 1986 eruption. We calculate equilibrium temperatures and oxygen fugacities from Fe-Ti oxide compositions and find a continuous range in temperature from 877 to 947°C and high oxygen fugacities (ΔNNO=1–2) for all magmas. Melt inclusions in pyroxene phenocrysts analyzed by Fourier-transform infrared spectroscopy and electron probe microanalysis are dacitic to rhyolitic and have water contents ranging from <1 to ∼7 wt%. Matrix glass compositions are rhyolitic and remarkably similar (∼75.9–76.6 wt% SiO2) in all samples. All samples have ∼25% phenocrysts, but lower-silica samples have much higher microlite contents than higher-silica samples. Continuous ranges in temperature and whole-rock composition, as well as linear trends in Harker diagrams and disequilibrium mineral textures, indicate that the 1986 magmas are the product of mixing between dacitic magma and a hotter, more mafic magma. The dacitic endmember is probably residual magma from the previous (1976) eruption of Augustine, and we interpret the mafic endmember to have been intruded from depth. Mixing appears to have continued as magmas ascended towards the vent. We suggest that the physical structure of the magma storage system beneath Augustine contributed to the sustained compositional heterogeneity of this eruption, which is best explained by magma storage and interaction in a vertically extensive system of interconnected dikes rather than a single coherent magma chamber and/or conduit. The typically short repose period (∼10

  20. Clinopyroxene-melt element partitioning during interaction between trachybasaltic magma and siliceous crust: Clues from quartzite enclaves at Mt. Etna volcano

    NASA Astrophysics Data System (ADS)

    Mollo, S.; Blundy, J. D.; Giacomoni, P.; Nazzari, M.; Scarlato, P.; Coltorti, M.; Langone, A.; Andronico, D.

    2017-07-01

    A peculiar characteristic of the paroxysmal sequence that occurred on March 16, 2013 at the New South East Crater of Mt. Etna volcano (eastern Sicily, Italy) was the eruption of siliceous crustal xenoliths representative of the sedimentary basement beneath the volcanic edifice. These xenoliths are quartzites that occur as subspherical bombs enclosed in a thin trachybasaltic lava envelope. At the quartzite-magma interface a reaction corona develops due to the interaction between the Etnean trachybasaltic magma and the partially melted quartzite. Three distinct domains are observed: (i) the trachybasaltic lava itself (Zone 1), including Al-rich clinopyroxene phenocrysts dispersed in a matrix glass, (ii) the hybrid melt (Zone 2), developing at the quartzite-magma interface and feeding the growth of newly-formed Al-poor clinopyroxenes, and (iii) the partially melted quartzite (Zone 3), producing abundant siliceous melt. These features makes it possible to quantify the effect of magma contamination by siliceous crust in terms of clinopyroxene-melt element partitioning. Major and trace element partition coefficients have been calculated using the compositions of clinopyroxene rims and glasses next to the crystal surface. Zone 1 and Zone 2 partition coefficients correspond to, respectively, the chemical analyses of Al-rich phenocrysts and matrix glasses, and the chemical analyses of newly-formed Al-poor crystals and hybrid glasses. For clinopyroxenes from both the hybrid layer and the lava flow expected relationships are observed between the partition coefficient, the valence of the element, and the ionic radius. However, with respect to Zone 1 partition coefficients, values of Zone 2 partition coefficients show a net decrease for transition metals (TE), high-field strength elements (HFSE) and rare earth elements including yttrium (REE + Y), and an increase for large ion lithophile elements (LILE). This variation is associated with coupled substitutions on the M1, M2 and

  1. Non-zero Δ33S preserved in rocks from the Basal Ultramafic Sequence indicate crustal contamination in the most primitive magma of the Rustenburg Layered Suite (Bushveld Complex, South Africa)

    NASA Astrophysics Data System (ADS)

    Magalhaes, N.; Wilson, A.; Penniston-Dorland, S.; Farquhar, J.

    2017-12-01

    The sulfur isotope composition of the Rustenburg Layered Suite (RLS) of the Bushveld Complex is different than expected from a magma sourced from the mantle (Δ33S=0), as measurements indicate the presence of an Archean surface-derived sulfur component. The Basal Ultramafic Sequence (BUS) is thought to be the most primitive magma of the RLS, as it is the lowest in the stratigraphy, has the highest Mg# (>0.92) for primary phases (olivine and orthopyroxene), and is in direct contact with the Magaliesberg quartzite of the Pretoria Group.We have measured the composition of sulfides in rocks from the Lower Zone, Marginal Zone, and the BUS, which were sampled in a 2300m drill core from the Clapham area, in the eastern Bushveld Complex. While the rocks of the Lower Zone have a relatively homogeneous non-zero Δ33S of 0.065‰, comparable to previous findings, there is an abrupt increase in the value of Δ33S (up to +0.301‰) in the Marginal Zone, which may be consistent with the observation in hand sample of assimilation of country rocks. The BUS also shows a surface-derived signal (average of 0.040‰), which is the lowest measured for any zone of the RLS.The non-zero Δ33S found in the Basal Ultramafic Sequence is evidence of the contamination of the magma with surface-derived material. In the upper parts of the intrusion, the Δ33S signature relates to whole-rock Sr and Nd isotopes, and their relationship suggests multiple sources of contamination. However, the relationship between sulfur and in-situ strontium isotope compositions (plagioclase) in this section of the RLS is not as clear as it is further up in the stratigraphy. This might reflect small-scale processes during the magmatic chamber stage, different compositions of local wall rock compared to deeper contaminants, or the presence of decoupled behavior between the isotope systems.These differences in the sulfur isotope composition between the different stratigraphic layers have been preserved regardless of

  2. Minerals and melt inclusions as keys to understanding magma reservoir processes during formation of volcanic and plutonic mafic-ultramafic complexes in the Maimecha Kotui Province (Polar Siberia)

    NASA Astrophysics Data System (ADS)

    Simonov, Vladimir; Vasiliev, Yurii; Kotlyarov, Alexey; Stupakov, Sergey

    2016-04-01

    Magmatic complexes in the Maimecha Kotui Province (Polar Siberia) attract attention of researchers because they contain ultramafic volcanic rocks - meimechites, being products of crystallization of the ultrabasic deep mantle melts (Sobolev et al., 1991, 2009, 2011; Ryabchikov et al., 2002; Vasiliev, Gora, 2014). Effusive meimechites together with intrusive dunites of the Guli massif form ancient (253-246 Ma) volcanic and plutonic association, in which also pyroxenites and alkaline rocks are situated. Conditions of formation of this association were established with the help of minerals and melt inclusions study. The cumulative structure of the Guli massif dunites consists of rather large (2-4 mm) olivine crystals and dividing them zones (0.5-0.7 mm), filled with fine grains of clinopyroxenes and ore minerals (magnetite, ilmenite and chromite). The extended forms of well faceted pyroxene crystals testify to their fast growth from melt between cumulative olivines. Thus, crystallization of clinopyroxenes and ore minerals leads to formation between olivines ore pyroxenites, which are presented in the Guli massif by independent bodies. Analysis of olivine, Cr-spinel and clinopyroxene compositions testify to similarity of conditions of the Guli massif dunites crystallization on the one hand with formation of platinum-bearing Uralian-Alaskan-type mafic-ultramafic complexes and with another - show participation of meimechite magma. Major element composition of melt inclusions in Cr-spinel has shown that dunites of the Guli massif were crystallized with participation of subalkaline picrite magmatic systems, that are relative to melts, responsible of formation of platinum-bearing mafic-ultramafic complexes and meimechites. Peculiarities of trace and rare-earth elements distribution in melt inclusions in Cr-spinel of dunites are actually similar to inclusions in olivine of meimechites. Overall, data on composition of inclusions directly testify to formation of considered

  3. Magma hybridization in the Western Tatra Mts. granitoid intrusion (S-Poland, Western Carpathians).

    PubMed

    Burda, Jolanta; Gawęda, Aleksandra; Klötzli, Urs

    In the Variscan Western Tatra granites hybridization phenomena such as mixing and mingling can be observed at the contact of mafic precursors of dioritic composition and more felsic granitic host rocks. The textural evidence of hybridization include: plagioclase-K-feldspar-sphene ocelli, hornblende- and biotite-rimmed quartz ocelli, plagioclase with Ca-rich spike zonation, inversely zoned K-feldspar crystals, mafic clots, poikilitic plagioclase and quartz crystals, mixed apatite morphologies, zoned K-feldspar phenocrysts. The apparent pressure range of the magma hybridization event was calculated at 6.1 kbar to 4.6 kbar, while the temperature, calculated by independent methods, is in the range of 810°C-770°C. U-Pb age data of the hybrid rocks were obtained by in-situ LA-MC-ICP-MS analysis of zircon. The oscillatory zoned zircon crystals yield a concordia age of 368 ± 8 Ma (MSWD = 1.1), interpreted as the age of magma hybridization and timing of formation of the magmatic precursors. It is the oldest Variscan magmatic event in that part of the Tatra Mountains.

  4. In-situ measurement of sulfur isotopic ratios in zoned apatite crystals via SIMS: a new tool for interpreting dynamic sulfur behavior in magmas

    NASA Astrophysics Data System (ADS)

    Economos, R. C.; Boehnke, P.; Burgisser, A.

    2017-12-01

    Sulfur is an important element in igneous systems due to its impact on magma redox, its role in the formation of economically valuable ore deposits, and the influence of catastrophic volcanogenic sulfur degassing on global climate. The mobility and geochemical behavior of sulfur in magmas is complex due to its multi-valent (from S2- to S6+) and multi-phase (solid, immiscible liquid, gaseous, dissolved ions) nature. Sulfur behavior is closely linked with the evolution of oxygen fugacity (fO2) in magmas; the record of fO2 evolution is often difficult to extract from rock records, particularly for intrusive systems that undergo cyclical magmatic processes and crystallize to the solidus. We apply a novel method of measuring S isotopic ratios via secondary ion mass spectrometry (SIMS) in zoned apatite crystals that we interpret as a record of open-system magmatic processes. We analyzed the S concentration and isotopic variations preserved in multiple apatite crystals from single hand specimens from the Cadiz Valley Batholith, CA via electron microprobe and ion microprobe at UCLA. A single, isotopically homogeneous crystal of Durango apatite was characterized for absolute isotopic ratio for this study (UCLA-D1). Isotopic variations in single apatite crystals ranged from 0 to 3.8‰ δ34S and total variation within a single hand sample was 6.1‰ δ34S. High S concentration cores yielded high isotopic ratios while low S concentration rims yielded low isotopic ratios. We favor an explanation of a combination of magma mixing and open-system, ascent-driven degassing under moderately reduced conditions: fO2 at or below NNO +1, although the synchronous crystallization of apatite and anhydrite is also a viable scenario. These findings have implications for the coupled S and fO2 evolution of granitic plutons and suggest that in-situ apatite S isotopic measurements could be a powerful new tool for evaluating redox and S systematics in magmatic systems.

  5. Incremental assembly and prolonged consolidation of Cordilleran magma chambers--Evidence from the Southern Rocky Mountain volcanic field

    USGS Publications Warehouse

    Lipman, Peter W.

    2007-01-01

    Plutons thus provide an integrated record of prolonged magmatic evolution, while volcanism offers snapshots of conditions at early stages. Growth of subvolcanic batholiths involved sustained multistage open-system processes. These commonly involved ignimbrite eruptions at times of peak power input, but assembly and consolidation processes continued at diminishing rates long after peak volcanism. Some evidence cited for early incremental pluton assembly more likely records late events during or after volcanism. Contrasts between relatively primitive arc systems dominated by andesitic compositions and small upper-crustal plutons versus more silicic volcanic fields and associated batholiths probably reflect intertwined contrasts in crustal thickness and magmatic power input. Lower power input would lead to a Cascade- or Aleutian-type arc system, where intermediate-composition magma erupts directly from middle- and lower-crustal storage without development of large shallow plutons. Andean and southern Rocky Mountain–type systems begin similarly with intermediate-composition volcanism, but increasing magma production, perhaps triggered by abrupt changes in plate boundaries, leads to development of larger upper-crustal reservoirs, more silicic compositions, large ignimbrites, and batholiths. Lack of geophysical evidence for voluminous eruptible magma beneath young calderas suggests that near-solidus plutons can be rejuvenated rapidly by high-temperature mafic recharge, potentially causing large explosive eruptions with only brief precursors.

  6. Measuring the speed of magma ascent during explosive eruptions of Kilauea, Hawaii

    NASA Astrophysics Data System (ADS)

    Ferguson, D. J.; Ruprecht, P.; Plank, T. A.; Hauri, E. H.; Gonnermann, H. M.; Houghton, B. F.; Swanson, D. A.

    2014-12-01

    the volcanic conduit. The observed decompression rates are consistent with measured discharge rates, and with models predicting greater magma chamber overpressure for larger eruptions. Ascent rates may also further modulate dynamic processes in the volcanic conduit, such as the flow regime and bubble expansion, and consequently eruptive intensity.

  7. Variations of trace element concentration of magnetite and ilmenite from the Taihe layered intrusion, Emeishan large igneous province, SW China: Implications for magmatic fractionation and origin of Fe-Ti-V oxide ore deposits

    NASA Astrophysics Data System (ADS)

    She, Yu-Wei; Song, Xie-Yan; Yu, Song-Yue; He, Hai-Long

    2015-12-01

    In situ LA-ICP-MS trace elemental analysis has been applied to magnetite and ilmenite of the Taihe layered intrusion, Emeishan large igneous province, SW China, in order to understand better fractionation processes of magma and origin of Fe-Ti-V oxide ore deposits. The periodic reversals in Mg, Ti, Mn in magnetite and Mg, Sc in ilmenite are found in the Middle Zone of the intrusion and agree with fractionation trends as recorded by olivine (Fo), plagioclase (An) and clinopyroxene (Mg#) compositions. These suggest the Taihe intrusion formed from open magma chamber processes in a magma conduit with multiple replenishments of more primitive magmas. The V and Cr of magnetite are well correlated with V and Cr of clinopyroxene indicating that they became liquidus phases almost simultaneously at an early stage of magma evolution. Ilmenite from the Middle and Upper Zones shows variable Cr, Ni, V, Mg, Nb, Ta and Sc contents indicating that ilmenite at some stratigraphic levels crystallized slightly earlier than magnetite and clinopyroxene. The early crystallization of magnetite and ilmenite is the result of the high FeOt and TiO2 contents in the parental magma. The ilmenite crystallization before magnetite in the Middle and Upper Zones can be attributed to higher TiO2 content of the magma due to the remelting of pre-existing ilmenite in a middle-level magma chamber. Compared to the coeval high-Ti basalts, the relatively low Zr, Hf, Nb and Ta contents in both magnetite and ilmenite throughout the Taihe intrusion indicate that they crystallized from Fe-Ti-(P)-rich silicate magmas. Positive correlations of Ti with Mg, Mn, Sc and Zr of magnetite, and Zr with Sc, Hf and Nb of ilmenite also suggest that magnetite and ilmenite crystallized continuously from the homogeneous silicate magma rather than an immiscible Fe-rich melt. Therefore, frequent replenishments of Fe-Ti-(P)-rich silicate magma and gravitational sorting and settling are crucial for the formation the massive and

  8. Petrologic constraints on rift-zone processes - Results from episode 1 of the Puu Oo eruption of Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Garcia, M.O.; Ho, R.A.; Rhodes, J.M.; Wolfe, E.W.

    1989-01-01

    The Puu Oo eruption in the middle of Kilauea volcano's east rift zone provides an excellent opportunity to utilize petrologic constraints to interpret rift-zone processes. Emplacement of a dike began 24 hours before the start of the eruption on 3 January 1983. Seismic and geodetic evidence indicates that the dike collided with a magma body in the rift zone. Most of the lava produced during the initial episode of the Puu Oo eruption is of hybrid composition, with petrographic and geochemical evidence of mixing magmas of highly evllved and more mafic compositions. Some olivine and plagioclase grains in the hybrid lavas show reverse zoning. Whole-rock compositional variations are linear even for normally compatible elements like Ni and Cr. Leastsquares mixing calculations yield good residuals for major and trace element analyses for magma mixing. Crystal fractionation calculations yield unsatisfactory residuals. The highly evolved magma is similar in composition to the lava from the 1977 eruption and, at one point, vents for these two eruptions are only 200 m apart. Possibly both the 1977 lava and the highly evolved component of the episode 1 Puu Oo lava were derived from a common body of rift-zone-stored magma. The more mafic mixing component may be represented by the most mafic lava from the January 1983 eruption; it shows no evidence of magma mixing. The dike that was intruded just prior to the start of the Puu Oo eruption may have acted as a hydraulic plunger causing mixing of the two rift-zone-stored magmas. ?? 1989 Springer-Verlag.

  9. Nd, Sr, and O isotopic variations in metaluminous ash-flow tuffs and related volcanic rocks at the Timber Mountain/Oasis Valley Caldera, Complex, SW Nevada: implications for the origin and evolution of large-volume silicic magma bodies

    USGS Publications Warehouse

    Farmer, G.L.; Broxton, D.E.; Warren, R.G.; Pickthorn, W.

    1991-01-01

    Nd, Sr and O isotopic data were obtained from silicic ash-flow tuffs and lavas at the Tertiary age (16-9 Ma) Timber (Mountain/Oasis Valley volcanic center (TMOV) in southern Nevada, to assess models for the origin and evolution of the large-volume silicic magma bodies generated in this region. The large-volume (>900 km3), chemically-zoned, Topopah Spring (TS) and Tiva Canyon (TC) members of the Paintbrush Tuff, and the Rainier Mesa (RM) and Ammonia Tanks (AT) members of the younger Timber Mountain Tuff all have internal Nd and Sr isotopic zonations. In each tuff, high-silica rhyolites have lower initial e{open}Nd values (???1 e{open}Nd unit), higher87Sr/86Sr, and lower Nd and Sr contents, than cocrupted trachytes. The TS, TC, and RM members have similar e{open}Nd values for high-silica rhyolites (-11.7 to -11.2) and trachytes (-10.5 to -10.7), but the younger AT member has a higher e{open}Nd for both compositional types (-10.3 and -9.4). Oxygen isotope data confirm that the TC and AT members were derived from low e{open}Nd magmas. The internal Sr and Nd isotopic variations in each tuff are interpreted to be the result of the incorporation of 20-40% (by mass) wall-rock into magmas that were injected into the upper crust. The low e{open}Nd magmas most likely formed via the incorporation of low ??18O, hydrothermally-altered, wall-rock. Small-volume rhyolite lavas and ash-flow tuffs have similar isotopic characteristics to the large-volume ash-flow tuffs, but lavas erupted from extracaldera vents may have interacted with higher ??18O crustal rocks peripheral to the main magma chamber(s). Andesitic lavas from the 13-14 Ma Wahmonie/Salyer volcanic center southeast of the TMOV have low e{open}Nd (-13.2 to -13.8) and are considered on the basis of textural evidence to be mixtures of basaltic composition magmas and large proportions (70-80%) of anatectic crustal melts. A similar process may have occurred early in the magmatic history of the TMOV. The large-volume rhyolites

  10. Emplacement model of obsidian-rhyolite magma deduced from complete internal section of the Akaishiyama lava, Shirataki, northern Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Wada, K.; Sano, K.

    2016-12-01

    Simultaneously explosive and effusive eruptions of silicic magmas has shed light on the vesiculation and outgassing history of ascending magmas in the conduit and emplacement model of obsidian-rhyolite lavas (Castro et al., 2014; Shipper et al, 2013). As well as the knowledge of newly erupted products such as 2008-2009 Chaitén and 2011-2012 Cordón Caule eruptions, field and micro-textural evidences of well-exposed internal structure of obsidian-rhyolite lava leads to reveal eruption processes of silicic magmas. The Shirataki monogenetic volcano field, 2.2 million year age, northern Hokkaido, Japan, contains many outcrops of obsidian and vesiculated rhyolite zones (SiO2=76.7-77.4 wt.%). Among their outcrops, Akaishiyama lava shows good exposures of internal sections from the top to the bottom along the Kyukasawa valley with thickness of about 190 meters, showing the symmetrical structure comprising a upper clastic zone (UCZ; 5m thick), an upper dense obsidian zone (UDO; 15m), an upper banded obsidian zone (UBO; 70-80m), a central rhyolite zone (CR; 65m), a lower banded obsidian zone (LBO; 15m), a lower dense obsidian zone (LDO; 20m), and a lower clastic zone (LCZ; 3m). The upper banded obsidian zone is characterized by existence of spherulite concentration layers with tuffisite veins and rhyolite enclaves. Spherulites consisting of albite, cristobalaite and obsidian glass, are clustered in the dense obsidian. Tuffisite veins show brecciated obsidians in tuffaceous matrix, showing an outgassing path during the emplacement of obsidian lava. Perpendicular dip of spherulite parallel rows indicates the banded zone itself was the domain of vent area. From the observation of these occurrences in the internal section and rock texture, we show the qualitative formation model of Shirataki obsidian-rhyolite lava.

  11. Thermal control of low-pressure fractionation processes. [in basaltic magma solidification

    NASA Technical Reports Server (NTRS)

    Usselman, T. M.; Hodge, D. S.

    1978-01-01

    Thermal models detailing the solidification paths for shallow basaltic magma chambers (both open and closed systems) were calculated using finite-difference techniques. The total solidification time for closed chambers are comparable to previously published calculations; however, the temperature-time paths are not. These paths are dependent on the phase relations and the crystallinity of the system, because both affect the manner in which the latent heat of crystallization is distributed. In open systems, where a chamber would be periodically replenished with additional parental liquid, calculations indicate that the possibility is strong that a steady-state temperature interval is achieved near a major phase boundary. In these cases it is straightforward to analyze fractionation models of the basaltic liquid evolution and their corresponding cumulate sequences. This steady thermal fractionating state can be invoked to explain large amounts of erupted basalts of similar composition over long time periods from the same volcanic center and some rhythmically layered basic cumulate sequences.

  12. Multi-Zone Liquid Thrust Chamber Performance Code with Domain Decomposition for Parallel Processing

    NASA Technical Reports Server (NTRS)

    Navaz, Homayun K.

    2002-01-01

    Computational Fluid Dynamics (CFD) has considerably evolved in the last decade. There are many computer programs that can perform computations on viscous internal or external flows with chemical reactions. CFD has become a commonly used tool in the design and analysis of gas turbines, ramjet combustors, turbo-machinery, inlet ducts, rocket engines, jet interaction, missile, and ramjet nozzles. One of the problems of interest to NASA has always been the performance prediction for rocket and air-breathing engines. Due to the complexity of flow in these engines it is necessary to resolve the flowfield into a fine mesh to capture quantities like turbulence and heat transfer. However, calculation on a high-resolution grid is associated with a prohibitively increasing computational time that can downgrade the value of the CFD for practical engineering calculations. The Liquid Thrust Chamber Performance (LTCP) code was developed for NASA/MSFC (Marshall Space Flight Center) to perform liquid rocket engine performance calculations. This code is a 2D/axisymmetric full Navier-Stokes (NS) solver with fully coupled finite rate chemistry and Eulerian treatment of liquid fuel and/or oxidizer droplets. One of the advantages of this code has been the resemblance of its input file to the JANNAF (Joint Army Navy NASA Air Force Interagency Propulsion Committee) standard TDK code, and its automatic grid generation for JANNAF defined combustion chamber wall geometry. These options minimize the learning effort for TDK users, and make the code a good candidate for performing engineering calculations. Although the LTCP code was developed for liquid rocket engines, it is a general-purpose code and has been used for solving many engineering problems. However, the single zone formulation of the LTCP has limited the code to be applicable to problems with complex geometry. Furthermore, the computational time becomes prohibitively large for high-resolution problems with chemistry, two

  13. Geochemical and isotopic studies of syenites from the Yamato Mountains, East Antarctica: Implications for the origin of syenitic magmas

    NASA Astrophysics Data System (ADS)

    Zhao, J.-X.; Shiraishi, K.; Ellis, D. J.; Sheraton, J. W.

    1995-04-01

    , it is proposed that the syenites were generated by fractionation and magma mixing (with a crystal melt) of a Si-undersaturated alkali basaltic magma in a lower-crust magma chamber, followed by further crystal fractionation/cumulate-melt unmixing at middle to upper crustal levels (<5 kbars). Tectonically, it is proposed that the syenites were probably formed within the hinterland of the proposed Cambrian continental collision zone, with the parental magma being derived ultimately by partial melting of the metasomatised mantle wedge above the deepest part of the subduction zone. Similar models may also apply to the origin of some post-tectonic alkaline dikes in East Antarctica, with their sources being the continental lithospheric mantle previously modified by subduction-related processes.

  14. A tale of two magmas: Petrological insights into mafic and intermediate Plinian volcanism at Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Crummy, J. M.; Savov, I. P.; Morgan, D. J.; Wilson, M.; Loughlin, S.; Navarro-Ochoa, C.

    2012-12-01

    Volcán de Colima in western Mexico explosively erupts basaltic to high-silica andesitic magmas. Detailed petrological and geochemical analyses of Holocene tephra fallout deposits reveal two distinct magma types: I. typical calc-alkaline series magmas; and II. mixed calc-alkaline - alkaline magmas. Group I magmas comprise basalt to high-silica andesite (50.7 to 60.4 wt.% SiO2) and typically contain phenocrysts of plagioclase + clinopyroxene + orthopyroxene + Fe-Ti oxides ± hornblende ± olivine. Crystallinity varies from 10-25 vol.% dominated by plagioclase in a groundmass comprising highly vesiculated glass with abundant microlites. Back-scatter electron (BSE) microscope images together with electron microprobe analyses (EPMA) reveal complex zoning patterns and compositional variations in plagioclase and pyroxene phenocrysts. Large scale resorption events with dissolution surfaces cross-cutting multiple growth zones, combined with large steps in An content of up to 20 mol.% in plagioclase, and Mg# varying from 0.74 to 0.86 in clinopyroxene and orthopyroxene, indicates destabilisation and recrystallisation in a more mafic melt: increases in Cr coincident with step increases in Mg# reveal mafic magma recharge. Many plagioclase and pyroxene phenocrysts record multiple magma recharge events; while small-scale oscillations reveal compositional fluctuations as a result of decompression and degassing. Group II magmas comprise basalt to basaltic-andesite (48.3 to 57.5 wt.% SiO2) and contain 10-15 vol.% crystals comprising clinopyroxene + olivine + phlogopite + plagioclase + Fe-Ti oxides ± hornblende ± orthopyroxene. The groundmass comprises highly vesiculated glass with abundant microlites of the same mineral phases. Clinopyroxene phenocrysts have magnesian cores (Mg# 0.88-0.89) that display strong dissolution with clear resorption and recrystallisation. EPMA analyses reveal large compositional differences with the surrounding growth zone (Mg# 0.80) indicating

  15. Modelling of a Convecting, Crystallizing, and Replenished Diopside-Anorthite Axial Magma Chamber beneath Mid Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Lowell, R. P.; Lata, C.

    2016-12-01

    The aim of this work is to model heat output from a cooling, convective, crystallizing, and replenished basaltic magma sill, representing an axial magma lens (AML) at mid oceanic ridges. As a simplified version of basaltic melt, we have assumed the melt to be a two-component eutectic system composed of diopside and anorthite. Convective vigor is expressed through the Rayleigh number and heat flux is scaled through a classical relationship between the Rayleigh number and Nusselt number, where the temperature difference driving the convective heat flux is derived from a "viscous" temperature scale reflecting the strong temperature dependent viscosity of the system. Viscosity is modeled as a function of melt composition and temperature using the Tammann-Vogel-Fulcher equation, with parameters fit to the values of observed viscosities along the diopside-anorthite liquidus. It was observed for the un-replenished case, in which crystals fall rapidly to the floor of the AML, model results show that the higher initial concentration of diopside, the more vigorous the convection and the faster the rate of crystallization and decay of heat output. Replenishment of the AML accompanied by modest thickening of the melt layer stabilizes the heat output at values similar to those observed at ridge-axis hydrothermal systems. This study is an important step forward in quantitative understanding of thermal evolution of the axial magma lens at a mid-ocean ridge and the corresponding effect on high-temperature hydrothermal systems. Future work could involve improved replenishment mechanisms, more complex melts, and direct coupling with hydrothermal circulation models.

  16. Zircon from historic eruptions in Iceland: reconstructing storage and evolution of silicic magmas

    NASA Astrophysics Data System (ADS)

    Carley, Tamara L.; Miller, Calvin F.; Wooden, Joseph L.; Bindeman, Ilya N.; Barth, Andrew P.

    2011-10-01

    Zoning patterns, U-Th disequilibria ages, and elemental compositions of zircon from eruptions of Askja (1875 AD), Hekla (1158 AD), Öræfajökull (1362 AD) and Torfajökull (1477 AD, 871 AD, 3100 BP, 7500 BP) provide insights into the complex, extended, histories of silicic magmatic systems in Iceland. Zircon compositions, which are correlated with proximity to the main axial rift, are distinct from those of mid-ocean ridge environments and fall at the low-Hf edge of the range of continental zircon. Morphology, zoning patterns, compositions, and U-Th ages all indicate growth and storage in subvolcanic silicic mushes or recently solidified rock at temperatures above the solidus but lower than that of the erupting magma. The eruptive products were likely ascending magmas that entrained a zircon "cargo" that formed thousands to tens of thousands of years prior to the eruptions.

  17. Geochemical Evidence for a Terrestrial Magma Ocean

    NASA Technical Reports Server (NTRS)

    Agee, Carl B.

    1999-01-01

    The aftermath of phase separation and crystal-liquid fractionation in a magma ocean should leave a planet geochemically differentiated. Subsequent convective and other mixing processes may operate over time to obscure geochemical evidence of magma ocean differentiation. On the other hand, core formation is probably the most permanent, irreversible part of planetary differentiation. Hence the geochemical traces of core separation should be the most distinct remnants left behind in the mantle and crust, In the case of the Earth, core formation apparently coincided with a magma ocean that extended to a depth of approximately 1000 km. Evidence for this is found in high pressure element partitioning behavior of Ni and Co between liquid silicate and liquid iron alloy, and with the Ni-Co ratio and the abundance of Ni and Co in the Earth's upper mantle. A terrestrial magma ocean with a depth of 1000 km will solidify from the bottom up and first crystallize in the perovskite stability field. The largest effect of perovskite fractionation on major element distribution is to decrease the Si-Mg ratio in the silicate liquid and increase the Si-Mg ratio in the crystalline cumulate. Therefore, if a magma ocean with perovskite fractionation existed, then one could expect to observe an upper mantle with a lower than chondritic Si-Mg ratio. This is indeed observed in modern upper mantle peridotites. Although more experimental work is needed to fully understand the high-pressure behavior of trace element partitioning, it is likely that Hf is more compatible than Lu in perovskite-silicate liquid pairs. Thus, perovskite fractionation produces a molten mantle with a higher than chondritic Lu-Hf ratio. Arndt and Blichert-Toft measured Hf isotope compositions of Barberton komatiites that seem to require a source region with a long-lived, high Lu-Hf ratio. It is plausible that that these Barberton komatiites were generated within the majorite stability field by remelting a perovskite

  18. Platinum-bearing chromite layers are caused by pressure reduction during magma ascent.

    PubMed

    Latypov, Rais; Costin, Gelu; Chistyakova, Sofya; Hunt, Emma J; Mukherjee, Ria; Naldrett, Tony

    2018-01-31

    Platinum-bearing chromitites in mafic-ultramafic intrusions such as the Bushveld Complex are key repositories of strategically important metals for human society. Basaltic melts saturated in chromite alone are crucial to their generation, but the origin of such melts is controversial. One concept holds that they are produced by processes operating within the magma chamber, whereas another argues that melts entering the chamber were already saturated in chromite. Here we address the problem by examining the pressure-related changes in the topology of a Mg 2 SiO 4 -CaAl 2 Si 2 O 8 -SiO 2 -MgCr 2 O 4 quaternary system and by thermodynamic modelling of crystallisation sequences of basaltic melts at 1-10 kbar pressures. We show that basaltic melts located adjacent to a so-called chromite topological trough in deep-seated reservoirs become saturated in chromite alone upon their ascent towards the Earth's surface and subsequent cooling in shallow-level chambers. Large volumes of these chromite-only-saturated melts replenishing these chambers are responsible for monomineralic layers of massive chromitites with associated platinum-group elements.

  19. Deformation patterns, magma supply, and magma storage at Karymsky Volcanic Center, Kamchatka, Russia, 2000-2010, revealed by InSAR

    NASA Astrophysics Data System (ADS)

    Ji, Lingyun; Izbekov, Pavel; Senyukov, Sergey; Lu, Zhong

    2018-02-01

    Under a complex geological region influenced by the subduction of the Pacific plate, Kamchatka Peninsula is one of the most active volcanic arcs in the Pacific Rim. Due to logistical difficulty in instrumentation, shallow magma plumbing systems beneath some of the Kamchatkan volcanoes are poorly understood. InSAR offers a safe and quick method for monitoring volcanic deformation with a high spatial resolution. In this study, a group of satellite radar interferograms that span the time interval from 2000 to 2010 shows eruptive and non-eruptive deformation at Karymsky Volcanic Center (KVC), Kamchatka, Russia. All the interferograms provide details of the activity around the KVC during 2000-2010, as follows: (1) from 2000 to 2004, the Karymsky-AN (Akademia Nauk) area deflated and the MS (Maly Semyachik) area inflated, (2) from 2004 to 2006, the Karymsky-AN area deflated with ongoing eruption, while the MS area subsided without eruption, (3) from 2006 to 2008, as with 2000-2004, the Karymsky-AN area deflated and the MS area inflated, (4) from 2008 to 2010, the Karymsky-AN area inflated up to 3 cm, and the MS area subsided. Point source models suggest that two magma reservoirs provide a good fit to the observed deformation. One source is located beneath the area between Karymsky and AN at a depth of approximately 7.0 km, and the other one is situated beneath MS at a depth of around 5.8 km. Synchronous deformation patterns suggest that two magma systems are fed from the same deep magma source and connected by a fracture zone. The InSAR results are consistent with GPS ground deformation measurements, seismic data, and petrological constraints.

  20. Magma-sponge hypothesis and stratovolcanoes: Case for a compressible reservoir and quasi-steady deep influx at Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Voight, Barry; Widiwijayanti, Christina; Mattioli, Glen; Elsworth, Derek; Hidayat, Dannie; Strutt, M.

    2010-02-01

    We use well-documented time histories of episodic GPS surface deformation and efflux of compressible magma to resolve apparent magma budget anomalies at Soufrière Hills volcano (SHV) on Montserrat, WI. We focus on data from 2003 to 2007, for an inflation succeeded by an episode of eruption-plus-deflation. We examine Mogi-type and vertical prolate ellipsoidal chamber geometries to accommodate both mineralogical constraints indicating a relatively shallow pre-eruption storage, and geodetic constraints inferring a deeper mean-pressure source. An exsolved phase involving several gas species greatly increases andesite magma compressibility to depths >10 km (i.e., for water content >4 wt%, crystallinity ˜40%), and this property supports the concept that much of the magma transferred into or out of the crustal reservoir could be accommodated by compression or decompression of stored reservoir magma (i.e., the “magma-sponge”). Our results suggest quasi-steady deep, mainly mafic magma influx of the order of 2 m3s-1, and we conclude that magma released in eruptive episodes is approximately balanced by cumulative deep influx during the eruptive episode and the preceding inflation. Our magma-sponge model predicts that between 2003 and 2007 there was no evident depletion of magma reservoir volume at SHV, which comprises tens of km3 with radial dimensions of order ˜1-2 km, in turn implying a long-lived eruption.

  1. Preeruption conditions and timing of dacite-andesite magma mixing in the 2.2 ka eruption at Mount Rainier

    NASA Astrophysics Data System (ADS)

    Venezky, D. Y.; Rutherford, M. J.

    1997-01-01

    Analytical, field, and experimental evidence demonstrate that the Mount Rainier tephra layer C (2.2 ka) preserves a magma mixing event between an andesitic magma (whole rock SiO2 content of 57-60 wt %) and a dacitic magma (whole rock SiO2 content of 65±1 wt %). The end-member andesite (a mix of an injected and chamber andesite) and dacite can be characterized on the basis of the homogeneity of the matrix glass and phenocryst rim compositions. Many pumices, however, contain mixtures of the end-members. The end-member dacite contains a microlite-free matrix glass with 74-77 wt % SiO2, orthopyroxene rims of Mg57-64, clinopyroxene rims of Mg66-74, and plagioclase rim anorthite contents of An45-65. The temperature and oxygen fugacity, from Fe-Ti oxide compositions, are 930±10°C and 0.5-0.75 log units above NNO. The mixed andesite contains Mg73-84 orthopyroxene rims, Mg73-78 clinopyroxene rims, An78-84 plagioclase rims, and Mg67-74 amphibole rims. The temperature from Fe-Ti oxides, hornblendeplagioclase, and two-pyroxene geothermometry is 1060±15°C, and the oxygen fugacity is approximately one log unit above NNO for the injected andesite. The chamber andesite is estimated to be a magma with a ˜64-65 wt % SiO2 melt at 980°C and a NNO oxygen fugacity. We conclude that the andesitic and dacitic magmas are from separate magma storage regions (at >7 km and ˜2.4 km) due to differences in the bimodal whole rock, matrix glass, and phenocryst compositions and the presence or absence of stable hornblende. The time involved from the mixing event through the eruption is limited to a period of 4-5 days based on Fe-Ti oxide reequilibration, phenocryst growth rates, and hornblende breakdown. The eruption sequence is interpreted as having been initiated by an injection of the 1060±15°C andesitic magma into the ˜980°C (>7 km) andesite storage region. The mixed andesitic magma then intersected a shallow, ˜2.4 km, dacitic storage system on its way toward the surface. The

  2. Magma accumulation or second boiling - Investigating the ongoing deformation field at Montserrat, West Indies

    NASA Astrophysics Data System (ADS)

    Collinson, Amy; Neuberg, Jurgen; Pascal, Karen

    2016-04-01

    For over 20 years, Soufriere Hills Volcano, Montserrat has been in a state of volcanic unrest. Intermittent periods of dome building have been punctuated by explosive eruptions and dome collapse events, endangering the lives of the inhabitants of the island. The last episode of active magma extrusion was in February 2010, and the last explosive event (ash venting) in March 2012. Despite a lack of eruptive activity recently, the volcano continues to emit significant volumes of SO2 and shows an ongoing trend of island inflation. Through the aid of three-dimensional numerical modelling, using a finite element method, we explore the potential sources of the ongoing island inflation. We consider both magmatic (dykes and chamber) and tectonic sources. Whilst a magmatic source suggests the possibility for further eruption, a tectonic source may indicate cessation of volcanic activity. We show that a magmatic source is the most likely scenario, and illustrate the effect of different sources (shapes, characters and depths) on the surface displacement. Furthermore, through the inclusion of topographic data, we investigate how the topography may affect the displacement pattern at the surface. We investigate the conflicting scenarios of magma chamber resupply versus second boiling - crystallisation-induced degassing. Based on numerical modelling results, we suggest the required pressurisation is too high for crystallisation-induced degassing to be the dominant process - thereby suggesting magma accumulation may be ongoing. However, we show that second boiling may be a contributing factor, particularly when taking into account the local tectonics and regional stretching.

  3. Timescale of Petrogenetic Processes Recorded in the Mount Perkins Magma System, Northern Colorado River Extension Corridor, Arizona

    NASA Technical Reports Server (NTRS)

    Danielson, Lisa R.; Metcalf, Rodney V.; Miller, Calvin F.; Rhodes Gregory T.; Wooden, J. L.

    2013-01-01

    The Miocene Mt. Perkins Pluton is a small composite intrusive body emplaced in the shallow crust as four separate phases during the earliest stages of crustal extension. Phase 1 (oldest) consists of isotropic hornblende gabbro and a layered cumulate sequence. Phase 2 consists of quartz monzonite to quartz monzodiorite hosting mafic microgranitoid enclaves. Phase 3 is composed of quartz monzonite and is subdivided into mafic enclave-rich zones and enclave-free zones. Phase 4 consists of aphanitic dikes of mafic, intermediate and felsic compositions hosting mafic enclaves. Phases 2-4 enclaves record significant isotopic disequilibrium with surrounding granitoid host rocks, but collectively enclaves and host rocks form a cogenetic suite exhibiting systematic variations in Nd-Sr-Pb isotopes that correlate with major and trace elements. Phases 2-4 record multiple episodes of magma mingling among cogenetic hybrid magmas that formed via magma mixing and fractional crystallization at a deeper crustal. The mafic end-member was alkali basalt similar to nearby 6-4 Ma basalt with enriched OIB-like trace elements and Nd-Sr-Pb isotopes. The felsic end-member was a subalkaline crustal-derived magma. Phase 1 isotropic gabbro exhibits elemental and isotopic compositional variations at relatively constant SiO2, suggesting generation of isotropic gabbro by an open-system process involving two mafic end-members. One end-member is similar in composition to the OIB-like mafic end-member for phases 2-4; the second is similar to nearby 11-8 Ma tholeiite basalt exhibiting low epsilon (sub Nd), and depleted incompatible trace elements. Phase 1 cumulates record in situ fractional crystallization of an OIB-like mafic magma with isotopic evidence of crustal contamination by partial melts generated in adjacent Proterozoic gneiss. The Mt Perkins pluton records a complex history in a lithospheric scale magma system involving two distinct mantle-derived mafic magmas and felsic magma sourced in the

  4. The Shir-Kuh pluton (Central Iran): Magnetic fabric evidences for the coalescence of magma batches during emplacement

    NASA Astrophysics Data System (ADS)

    Sheibi, M.; Bouchez, J. L.; Esmaeily, D.; Siqueira, R.

    2012-03-01

    The ˜136 Ma, NW-SE elongate Shir-Kuh pluton is one of the most poorly understood geological feature of Central Iran. It is composed of peraluminous rocks, corresponding to ilmenite-bearing S-type granites compositionally ranging from granodiorites to leucogranites. These rocks show a continuum in their chemistry attributed to progressive differentiation. This allows using the anisotropy of magnetic susceptibility technique to tempt establishing the relative chronology between emplacements of magma batches in the pluton. The rather low susceptibility magnitudes (Km < 400 μSI) depict a dominant paramagnetic behavior of the pluton. The magnetic fabrics data (magnetic lineation and foliation maps, K, P and T parameters), complemented by field and microstructural observations, reveal that two feeder zones at least, as characterized by areas having steep lineations ascribed to magma flow likely issued from the base of the brittle crust, served as conduits for the magmas. The early Cretaceous age of the pluton, the orientations of the feeding zones, the overall lineation directions throughout the pluton, as well as the S-type nature of the magmas call for a dextral transpressive regime which might have been active in the back-arc region located above the subducting eastern branch of the Neo-Tethys.

  5. Titanite-scale insights into multi-stage magma mixing in Early Cretaceous of NW Jiaodong terrane, North China Craton

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Yang, Kui-Feng; Fan, Hong-Rui; Liu, Xuan; Cai, Ya-Chun; Yang, Yue-Heng

    2016-08-01

    The Early Cretaceous Guojialing-type granodiorites in northwestern Jiaodong terrane carry significant records for strong mantle-crust interaction during the destruction of North China Craton (NCC); however, the definite petrogenetic mechanism and detailed magmatic process remain an enigma. Titanite in igneous rocks can serve as an effective petrogenetic indicator. Here, we present integrated geochronological and geochemical studies on titanites from Guojialing-type granodiorites and their dioritic enclaves to constrain their petrogenesis. Titanites from granodiorites (G-type) and plagioclase-rich dioritic enclaves (E-type-I) present an identical U-Pb age ( 130 Ma) and an indistinguishable wide range of Zr and total REEs contents, and Th/U ratios. However, these two types of titanites exhibit distinct micro-scale textures and geochemical compositions. G-type titanites are characterized by oscillatory zonings with two Light BSE zones (LBZ) and two or three dark BSE zones, whereas E-type-I titanites are marked by core-mantle-rim zonings. Drastic increase of LREEs, Zr, Hf, and Fe and decrease of Nb, Ta, Al, and F contents are observed in LBZ of G-type titanites, whereas remarkable reduction of LREEs, Zr, and Hf and elevation of F contents are observed from the cores to the mantles of E-type-I titanites. Based on Zr-in-titanite thermometry, G-type titanites are interpreted to have experienced twice notable temperature increase, while E-type-I titanites are inferred to have undergone a rapid cooling process. Furthermore, we suggest that the drastic chemical changes in G-type and E-type-I titanites are ascribed to early-stage magma mixing between a colder felsic magma and a Fe-, REE-rich hotter dioritic magma. Compared to G-type and E-type-I titanites, titanites from plagioclase-poor dioritic enclaves (E-type-II) are characterized by their occurrence in interstitial space and present a relatively younger U-Pb age ( 128 Ma) and much narrower and lower range of Zr, total

  6. Evolution of the magma feeding system during a Plinian eruption: The case of Pomici di Avellino eruption of Somma-Vesuvius, Italy

    NASA Astrophysics Data System (ADS)

    Massaro, S.; Costa, A.; Sulpizio, R.

    2018-01-01

    The current paradigm for volcanic eruptions is that magma erupts from a deep magma reservoir through a volcanic conduit, typically modelled with fixed rigid geometries such as cylinders. This simplistic view of a volcanic eruption does not account for the complex dynamics that usually characterise a large explosive event. Numerical simulations of magma flow in a conduit combined with volcanological and geological data, allow for the first description of a physics-based model of the feeding system evolution during a sustained phase of an explosive eruption. The method was applied to the Plinian phase of the Pomici di Avellino eruption (PdA, 3945 ±10 cal yr BP) from Somma-Vesuvius (Italy). Information available from volcanology, petrology, and lithology studies was used as input data and as constraints for the model. In particular, Mass Discharge Rates (MDRs) assessed from volcanological methods were used as target values for numerical simulations. The model solutions, which are non-unique, were constrained using geological and volcanological data, such as volume estimates and types of lithic components in the fall deposits. Three stable geometric configurations of the feeding system (described assuming elliptical cross-section of variable dimensions) were assessed for the Eruptive Units 2 and 3 (EU2, EU3), which form the magmatic Plinian phase of PdA eruption. They describe the conduit system geometry at time of deposition of EU2 base, EU2 top, and EU3. A 7-km deep dyke (length 2 a = 200-4 00 m, width 2 b = 10- 12 m), connecting the magma chamber to the surface, characterised the feeding system at the onset of the Plinian phase (EU2 base). The feeding system rapidly evolved into hybrid geometric configuration, with a deeper dyke (length 2 a = 600- 800 m, width 2 b = 50 m) and a shallower cylindrical conduit (diameter D = 50 m, dyke-to-cylinder transition depth ∼2100 m), during the eruption of the EU2 top. The deeper dyke reached the dimensions of 2 a = 2000 m and

  7. Nature of the magma storage system beneath the Damavand volcano (N. Iran): An integrated study

    NASA Astrophysics Data System (ADS)

    Eskandari, Amir; Amini, Sadraddin; De Rosa, Rosanna; Donato, Paola

    2018-02-01

    Damavand intraplate stratovolcano constructed upon a moderately thick crust (58-67 km) over the last 2 Ma. The erupted products are dominantly trachyandesite-trachyte (TT) lavas and pyroclasts, with minor mafic magmas including tephrite-basanite-trachybasalt and alkali olivine basalts emplaced as cinder cones at the base of the stratovolcano. The TT products are characterized by a mineral assemblage of clinopyroxene (diopside-augite), orthopyroxene (clinoenstatite), feldspar (An2-58, Ab6-69, Or2-56), high Ti phlogopite, F-apatite, Fesbnd Ti oxides, and minor amounts of olivine (Fo73-80), amphibole and zircon, whereas olivine (Fo78-88), high Mg# (80-89) diopside, feldspar, apatite and Fesbnd Ti oxide occur in the mafic magmas. The presence of hydrous and anhydrous minerals, normal zonings, mafic cumulates, and the composition of magmatic inclusions in the TT products suggest evolutionary processes in polybaric conditions. In the same way, disequilibrium textures - including orthopyroxene mantled with clinopyroxene, reaction rim of phlogopite and amphibole, the coexistence of olivine and orthopyroxene, reverse, oscillatory and complex zonings of pyroxene and feldspar crystals - suggest magmatic evolutions in open systems with a varying temperature, oxygen fugacity, water as well as pressure and, to a lesser extent, melt chemistry. Mineral assemblages are used to model the physicochemical conditions and assess default parameters for the thermodynamic simulation of crystallization using MELTS software to track the P-T-H2O-ƒO2 evolution of the magma plumbing system. Thermobarometry and MELTS models estimated the initial nucleation depth at 16-17 kb (56-60 km) for olivine (Fo89) and high Al diopside crystals occurring in the mafic primary magma; it then stopped and underwent fractionation between 8 and 10 kb (28-35 km), corresponding with Moho depth, and continued to differentiate in the lower crust, in agreement with the geophysical models. The mafic rocks were formed

  8. Magma Fertility is the First-Order Factor for the Formation of Porphyry Cu±Au Deposits

    NASA Astrophysics Data System (ADS)

    Park, J. W.; Campbell, I. H.; Malaviarachchi, S. P. K.; Cocker, H.; Nakamura, E.; Kay, S. M.

    2017-12-01

    Magma fertility, the metal abundance in magma, has been considered to be one of the key factors for the formation of porphyry Cu±Au deposits. In this study we provide clear evidence to support the hypothesis that the platinum group element (PGE) can be used to distinguish barren from ore-bearing Cu±Au felsic suites. We determined the PGE contents of three barren volcanic and subvolcanic suites from Argentina and Japan, and compare the results with two porphyry Cu-bearing subvolcanic suites from Chile and two porphyry Cu-Au-bearing suites from Australia. The barren suites are significantly depleted in PGE abundances by the time of fluid exsolution, which is attributed to early sulfide saturation at mid to lower crust depths or assimilation of chalcophile element-poor crustal materials. Barren magma, produced by melting continental crust, may have been initially deficient in chalcophile elements. In contrast, the Cu±Au ore-bearing suites contain at least an order of magnitude higher PGE contents than those of the barren suites by the time of fluid saturation. They are characterized by late sulfide saturation in a shallow magma chamber, which allows the chalcophile elements to concentrate in the fractionating magma from which they are sequestered by ore-forming fluids. We suggest the Pd/MgO and Pd/Pt ratios of igneous rocks can be used as magma fertility indicators, and to distinguish between barren, porphyry Cu and porphyry Cu-Au magmatic systems.

  9. Magma interaction in the root of an arc batholith

    NASA Astrophysics Data System (ADS)

    Chapman, T.; Robbins, V.; Clarke, G. L.; Daczko, N. R.; Piazolo, S.

    2016-12-01

    Fiordland, New Zealand, preserves extensive Cretaceous arc plutons, emplaced into parts of the Delamerian/Ross Orogen. Dioritic to gabbroic material emplaced at mid to lower crustal levels are exposed in the Malaspina Pluton (c. 1.2 GPa) and the Breaksea Orthogneiss (c. 1.8 GPa). Distinct magmatic pulses can be mapped in both of these plutons consistent with cycles of melt advection. Relationships are consistent with predictions from lower crustal processing zones (MASH and hot zones) considered important in the formation of Cordilleran margins. Metamorphic garnet growth is enhanced along magmatic contacts, such as where hornblende gabbronorite is cut by garnet-clinopyroxene-bearing diorite. Such features are consistent with cycles of incremental emplacement, younger magma having induced localised garnet granulite metamorphism in wall rock of older material. Temperature estimates and microstructures preserved in garnet granulite are consistent with sub-solidus, water-poor conditions in both the Malaspina and Breaksea Orthogneiss. The extent and conditions of the metamorphism implies conditions and duration was incapable of partially melting older wall rock material. The nature of interactions in intermediate to basic compositions are assessed in terms of magma genesis in the Cretaceous batholith. Most of the upper crustal felsic I-type magmatism along the margin being controlled by high-pressure garnet-clinopyroxene fractionation.

  10. Density of alkaline magmas at crustal and upper mantle conditions by X-ray absorption

    NASA Astrophysics Data System (ADS)

    Seifert, R.; Malfait, W.; Petitgirard, S.; Sanchez-Valle, C.

    2011-12-01

    Silicate melts are essential components of igneous processes and are directly involved in differentiation processes and heat transfer within the Earth. Studies of the physical properties of magmas (e.g., density, viscosity, conductivity, etc) are however challenging and experimental data at geologically relevant pressure and temperature conditions remain scarce. For example, there is virtually no data on the density at high pressure of alkaline magmas (e.g., phonolites) typically found in continental rift zone settings. We present in situ density measurements of alkaline magmas at crustal and upper mantle conditions using synchrotron X-ray absorption. Measurements were conducted on ID27 beamline at ESRF using a panoramic Paris-Edinburgh Press (PE Press). The starting material is a synthetic haplo-phonolite glass similar in composition to the Plateau flood phonolites from the Kenya rift [1]. The glass was synthesized at 1673 K and 2.0 GPa in a piston-cylinder apparatus at ETH Zurich and characterized using EPMA, FTIR and density measurements. The sample contains less than 200 ppm water and is free of CO2. Single-crystal diamond cylinders (Øin = 0.5 mm, height = 1 mm) were used as sample containers and placed in an assembly formed by hBN spacers, a graphite heater and a boron epoxy gasket [2]. The density was determined as a function of pressure (1.0 to 3.1 GPa) and temperature (1630-1860 K) from the X-ray absorption contrast at 20 keV between the sample and the diamond capsule. The molten state of the sample during the data collection was confirmed by X-ray diffraction measurements. Pressure and temperature were determined simultaneously from the equation of state of hBN and platinum using the the double isochor method [3].The results are combined with available density data at room conditions to derive the first experimental equation of state (EOS) of phonolitic liquids at crustal and upper mantle conditions. We will compare our results with recent reports of the

  11. Generation of alkaline magmas in subduction zones by melting of mélange diapirs

    NASA Astrophysics Data System (ADS)

    Cruz-Uribe, A. M.; Marschall, H.; Gaetani, G. A.; Le Roux, V.

    2016-12-01

    Alkaline lavas occur globally in subduction-related volcanic arcs. Existing explanations for the occurrence of alkaline lavas in volcanic arcs invoke at least one - and in some cases multiple - `metasomatic' events in addition to the traditional three-component mixing of altered oceanic crust (AOC), sediment melt, and depleted mantle, in order to explain the range of rock types found in a given region. These multi-stage models posit the existence of metasomatized mantle wedge peridotite containing phlogopite or amphibole-enriched veins, which partially melt when fluxed by the addition of materials from the subducted slab. The mélange diapir model is informed by observations and modeling of the subduction side of the arc system, and predicts the generation of alkaline arc magmas by advection of buoyant material from the slab-wedge interface into the mantle wedge below arcs. Here we report results from experiments in which natural mélange materials partially melted at upper mantle conditions were found to produce alkaline magmas compositionally similar to those found in arcs worldwide. The starting material for our experiments is a chlorite-omphacite fels (SY400) from the island of Syros, Greece, that is representative of a hybrid rock containing AOC, sediment, and mantle components. Melting experiments were performed using a piston cylinder apparatus at conditions relevant to the heating-decompression path of mélange diapirs (1000-1300 °C, 1.5-2.5 GPa). The compositions of experimentally produced melts range from 51-61 wt% SiO2, and fall within the trachyte and tephrite-phonolite series (7.5-12.9 wt% Na2O+K2O). Restitic phases in equilibrium with melt include clinopyroxene, garnet (at high P), phlogopite (at high P), amphibole, olivine, rutile, and ilmenite. Partial melts produced in our experiments have trace-element abundance patterns that are typical of alkaline arc lavas, such as enrichment in large ion lithophile elements (Cs, Rb, Ba, Pb, Sr) and alkalis (K

  12. Nature of local magma storage zones and geometry of conduit systems below balsatic eruption sites - Pu'u 'O'o, Kilauea East Rift, Hawaii, example

    NASA Technical Reports Server (NTRS)

    Wilson, Lionel; Head, James W., III

    1988-01-01

    The fluid dynamics of the well-documented eruptive episodes at Pu'u 'O'o, Kilauea are used to investigate quantitatively the size and shape of the shallow conduit system beneath the vent. The possible geometry of this region is considered. The dynamics of the eruptive episodes is used to place restrictions on the size and shape of the region and thermal calculations are used to show that the geometry is consistent with the region being the fluid residue of the partially cooled, major preepisode 1 dike. The Pu'u 'O'o example is used to illustrate some general properties of shallow magma storage zones.

  13. Eruptive History and Chemical Evolution of the Precaldera and Postcaldera Basalt-Dacite Sequences, Long Valley, California: Implications for Magma Sources, Current Seismic Unrest, and Future Volcanism

    USGS Publications Warehouse

    Bailey, Roy A.

    2004-01-01

    The Long Valley Volcanic Field in east-central California straddles the East Sierran frontal fault zone, overlapping the Sierra Nevada and western Basin and Range Provinces. The volcanic field overlies a mature mid-Tertiary erosional surface that truncates a basement composed mainly of Mesozoic plutons and associated roof pendants of Mesozoic metavolcanic and Paleozoic metasedimentary rocks. Long Valley volcanism began about 4 Ma during Pliocene time and has continued intermittently through the Holocene. The volcanism is separable into two basalt-rhyolite episodes: (1) an earlier, precaldera episode related to Long Valley Caldera that climaxed with eruption of the Bishop Tuff and collapse of the caldera; and (2) a later, postcaldera episode structurally related to the north-south-trending Mono-Inyo Craters fissure system, which extends from the vicinity of Mammoth Mountain northward through the west moat of the caldera to Mono Lake. Eruption of the basalt-dacite sequence of the precaldera basalt-rhyolite episode peaked volumetrically between 3.8 and 2.5 Ma; few basalts were erupted during the following 1.8 m.y. (2.5?0.7 Ma). Volcanism during this interval was dominated by eruption of the voluminous rhyolites of Glass Mountain (2.2?0.8 Ma) and formation of the Bishop Tuff magma chamber. Catastrophic rupture of the roof of this magma chamber caused eruption of the Bishop Tuff and collapse of Long Valley Caldera (760 ka), after which rhyolite eruptions resumed on the subsided caldera floor. The earliest postcaldera rhyolite flows (700?500 ka) contain quenched globular basalt enclaves (mafic magmatic inclusions), indicating that basaltic magma had reentered shallow parts of the magmatic system after a 1.8-m.y. hiatus. Later, at about 400 ka, copious basalts, as well as dacites, began erupting from vents mainly in the west moat of the caldera. These later eruptions initiated the postcaldera basalt-rhyolite episode related to the Mono-Inyo Craters fissure system, which

  14. The Meaning of "Magma"

    NASA Astrophysics Data System (ADS)

    Bartley, J. M.; Glazner, A. F.; Coleman, D. S.

    2016-12-01

    Magma is a fundamental constituent of the Earth, and its properties, origin, evolution, and significance bear on issues ranging from volcanic hazards to planetary evolution. Unfortunately, published usages indicate that the term "magma" means distinctly different things to different people and this can lead to miscommunication among Earth scientists and between scientists and the public. Erupting lava clearly is magma; the question is whether partially molten rock imaged at depth and too crystal-rich to flow should also be called magma. At crystal fractions > 50%, flow can only occur via crystal deformation and solution-reprecipitation. As the solid fraction increases to 90% or more, the material becomes a welded crystal framework with melt in dispersed pores and/or along grain boundaries. Seismic images commonly describe such volumes of a few % melt as magma, yet the rheological differences between melt-rich and melt-poor materials make it vital not to confuse a large rock volume that contains a small melt fraction with melt-rich material. To ensure this, we suggest that "magma" be reserved for melt-rich materials that undergo bulk fluid flow on timescales consonant with volcanic eruptions. Other terms should be used for more crystal-rich and largely immobile partially molten rock (e.g., "crystal mush," "rigid sponge"). The distinction is imprecise but useful. For the press, the public, and even earth scientists who do not study magmatic systems, "magma" conjures up flowing lava; reports of a large "magma" body that contains a few percent melt can engender the mistaken perception of a vast amount of eruptible magma. For researchers, physical processes like crystal settling are commonly invoked to account for features in plutonic rocks, but many such processes are only possible in melt-rich materials.

  15. Two-pyroxene syenitoids from the Moldanubian Zone of the Bohemian Massif: peculiar magmas derived from a strongly enriched lithospheric mantle source

    NASA Astrophysics Data System (ADS)

    Janoušek, Vojtěch; Holub, František; Gerdes, Axel; Verner, Kryštof

    2013-04-01

    (Ultra-)potassic plutonic rocks constitute a conspicuous association with metamorphic rocks of the high-grade, lower crustal/upper mantle Gföhl Unit (Moldanubian Zone). They can be subdivided into two contrasting suites: (1) coarse Kfs-phyric amphibole-biotite melagranite to quartz syenite (the durbachite series sensu Holub 1997), and (2) essentially even-grained biotite-two-pyroxene quartz syenites to melagranites (Tábor and Jihlava plutons). The latter, "syenitoid suite", characterized by an originally 'dry' mineral assemblage orthopyroxene + clinopyroxene + Mg-biotite, with accessoric zircon, apatite, ilmenite, monazite and/or rutile ± Cr-spinel, is a subject of the current study. Our conventional U-Pb ages for zircon (336.9 ± 0.6 Ma) and rutile (336.8 ± 0.8 Ma) from the Tábor Pluton, together with the age from the Jihlava body (U-Pb zircon: 335.1 ± 0.6 Ma; Kotková et al. 2010), provide a precise time bracket for the emplacement and rapid cooling of the syenitoids below c.600 ° C (closure temperature of U-Pb system in rutile: Cherniak 2000). This is in line with post-tectonic emplacement of hot dry melt into shallow levels of essentially consolidated orogenic crust. Comparably low temperatures obtained by zircon and rutile saturation calculations document probably a delayed onset of crystallization of the accessories in a hot, alkalis and ferromagnesian components-rich magma derived from a mantle source. Indeed, the structural relations inside and around the ultrapotassic plutons suggest that the most important regional HT/LP flat-lying fabric(s) in the Moldanubian Zone are closely related with the emplacement and crystallization of the durbachite suite at 343-338 Ma. They have formed prior to the relatively shallower emplacement of the essentially post-tectonic syenitoids dated at ~337-336 Ma (Žák et al. 2005; Verner et al. 2006, 2008). The two magmatic suites are thus essentially diachronous and not (nearly) contemporaneous (c. 335 Ma) intrusions at

  16. Direct Observation of Rhyolite Magma by Drilling: The Proposed Krafla Magma Drilling Project

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Sigmundsson, F.; Papale, P.; Markusson, S.; Loughlin, S.

    2014-12-01

    Remarkably, drilling in Landsvirkjun Co.'s geothermal field in Krafla Caldera, Iceland has encountered rhyolite magma or hypersolidus rhyolite at 2.1-2.5 km depth in 3 wells distributed over 3.5 km2, including Iceland Deep Drilling Program's IDDP-1 (Mortensen, 2012). Krafla's most recent rifting and eruption (basalt) episode was 1975-1984; deformation since that time has been simple decay. Apparently rhyolite magma was either emplaced during that episode without itself erupting or quietly evolved in situ within 2-3 decades. Analysis of drill cuttings containing quenched melt from IDDP-1 yielded unprecedented petrologic data (Zierenberg et al, 2012). But interpreting active processes of heat and mass transfer requires knowing spatial variations in physical and chemical characteristics at the margin of the magma body, and that requires retrieving core - a not-inconceivable task. Core quenched in situ in melt up to 1150oC was recovered from Kilauea Iki lava lake, Hawaii by the Magma Energy Project >30 years ago. The site from which IDDP-1 was drilled, and perhaps IDDP-1 itself, may be available to attempt the first-ever coring of rhyolite magma, now proposed as the Krafla Magma Drilling Project (KMDP). KMDP would also include geophysical and geochemical experiments to measure the response of the magma/hydrothermal system to fluid injection and flow tests. Fundamental results will reveal the behavior of magma in the upper crust and coupling between magma and the hydrothermal system. Extreme, sustained thermal power output during flow tests of IDDP-1 suggests operation of a Kilauea-Iki-like freeze-fracture-flow boundary propagating into the magma and mining its latent heat of crystallization (Carrigan et al, EGU, 2014). Such an ultra-hot Enhanced Geothermal System (EGS) might be developable beneath this and other magma-heated conventional hydrothermal systems. Additionally, intra-caldera intrusions like Krafla's are believed to produce the unrest that is so troubling in

  17. Deep magma accumulation at Nyamulagira volcano in 2011 detected by GNSS observations

    NASA Astrophysics Data System (ADS)

    Ji, Kang Hyeun; Stamps, D. Sarah; Geirsson, Halldor; Mashagiro, Niche; Syauswa, Muhindo; Kafudu, Benjamin; Subira, Josué; d'Oreye, Nicolas

    2017-10-01

    People in the area of the Virunga Mountains, along the borders of the Democratic Republic of Congo, Rwanda, and Uganda, are at very high natural risk due to active volcanism. A Global Navigation Satellite System (GNSS) network, KivuGNet (Kivu Geodetic Network), has operated since 2009 for monitoring and research of the deformation of Nyamulagira and Nyiragongo volcanoes as well as tectonic deformation in the region. We detected an inflationary signal from the position time-series observed in the network using our detection method, which is a combination of Kalman filtering and principal component analysis. The inflation event began in October 2010 and lasted for about 6 months prior to the 2011-2012 eruption at Nyamulagira volcano. The pre-eruptive inflationary signal is much weaker than the co-eruptive signal, but our method successfully detected the signal. The maximum horizontal and vertical displacements observed are ∼9 mm and ∼5 mm, respectively. A Mogi point source at a depth >10 km can explain the displacement field. This suggests that a relatively deep source for the magma chamber generated the inflationary signal. The deep reservoir that is the focus of this study may feed a shallower magma chamber, which is the likely source of the 2011-2012 eruption. Continuous monitoring of the volcanic activity is essential for understanding the eruption cycle and assessing potential volcanic hazards.

  18. Eruptive dynamics during magma decompression: a laboratory approach

    NASA Astrophysics Data System (ADS)

    Spina, L.; Cimarelli, C.; Scheu, B.; Wadsworth, F.; Dingwell, D. B.

    2013-12-01

    A variety of eruptive styles characterizes the activity of a given volcano. Indeed, eruptive styles can range from effusive phenomena to explosive eruptions, with related implications for hazard management. Rapid changes in eruptive style can occur during an ongoing eruption. These changes are, amongst other, related to variations in the magma ascent rate, a key parameter affecting the eruptive style. Ascent rate is in turn dependent on several factors such as the pressure in the magma chamber, the physical properties of the magma and the rate at which these properties change. According to the high number of involved parameters, laboratory decompression experiments are the best way to achieve quantitative information on the interplay of each of those factors and the related impact on the eruption style, i.e. by analyzing the flow and deformation behavior of the transparent volatile-bearing analogue fluid. We carried out decompression experiments following different decompression paths and using silicone oil as an analogue for the melt, with which we can simulate a range of melt viscosity values. For a set of experiments we added rigid particles to simulate the presence of crystals in the magma. The pure liquid or suspension was mounted into a transparent autoclave and pressurized to different final pressures. Then the sample was saturated with argon for a fixed amount of time. The decompression path consists of a slow decompression from the initial pressure to the atmospheric condition. Alternatively, samples were decompressed almost instantaneously, after established steps of slow decompression. The decompression path was monitored with pressure transducers and a high-speed video camera. Image analysis of the videos gives quantitative information on the bubble distribution with respect to depth in the liquid, pressure and time of nucleation and on their characteristics and behavior during the ongoing magma ascent. Furthermore, we also monitored the evolution of

  19. Short Magma Residence Times at Mt. Rainier and the Probable Absence of a Large, Integrated, and Long-lived Magma Reservoir System

    NASA Astrophysics Data System (ADS)

    Sisson, T. W.; Lanphere, M. A.

    2003-12-01

    Intensive, high-precision K-Ar and 40Ar/39Ar geochronology have proven essential for producing modern geologic maps of volcanoes and from these determining the volcanoes' time-volume histories. If sufficiently abundant, these data can also reveal aspects of the magma supply system. For Cascade volcanoes a general result has been the demonstration that edifice growth is highly episodic. Mount Rainier grew in the last 500,000 years atop the remains of an ancestral edifice that was active in the same location 1 - 2 Myr ago. The 500,000 year history of the modern edifice falls into four stages of alternating high and low magmatic output of subequal duration, but major and trace element compositions of eruptives show no correlation with volcano growth stages. Instead, the same spectrum of magmas (andesite to low-Si dacite) erupted throughout the history of the volcano with compositions in the same relative abundances. Superimposed on this seemingly null result are at least 6 brief but pronounced excursions in magma trace-element compositions. Concentrations of Zr, Ba, or Sr can double and then return to background values passing into and out of a single flow or flow-group. Some excursions are tightly bracketed by mapping and by measured ages and have durations no more than the geochronologic measurement precision of about 10,000 years. True excursion durations are potentially much shorter. The brevity and abrupt onsets and cessations of these compositional excursions are evidence against the presence of a sizeable, long-lived magma reservoir anywhere beneath the volcano, including a MASH zone in the lower crust, that would have attenuated, dampened, and homogenized compositional excursions introduced into the magmatic system. Instead, we take 10,000 years as a probable upper limit to the average residence time of magma batches transiting the crustal portion of Mount Rainier's plumbing system. A consistent scenario is that parental magmas enter the crust, differentiate

  20. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano.

    PubMed

    Druitt, T H; Costa, F; Deloule, E; Dungan, M; Scaillet, B

    2012-02-01

    Caldera-forming volcanic eruptions are low-frequency, high-impact events capable of discharging tens to thousands of cubic kilometres of magma explosively on timescales of hours to days, with devastating effects on local and global scales. Because no such eruption has been monitored during its long build-up phase, the precursor phenomena are not well understood. Geophysical signals obtained during recent episodes of unrest at calderas such as Yellowstone, USA, and Campi Flegrei, Italy, are difficult to interpret, and the conditions necessary for large eruptions are poorly constrained. Here we present a study of pre-eruptive magmatic processes and their timescales using chemically zoned crystals from the 'Minoan' caldera-forming eruption of Santorini volcano, Greece, which occurred in the late 1600s BC. The results provide insights into how rapidly large silicic systems may pass from a quiescent state to one on the edge of eruption. Despite the large volume of erupted magma (40-60 cubic kilometres), and the 18,000-year gestation period between the Minoan eruption and the previous major eruption, most crystals in the Minoan magma record processes that occurred less than about 100 years before the eruption. Recharge of the magma reservoir by large volumes of silicic magma (and some mafic magma) occurred during the century before eruption, and mixing between different silicic magma batches was still taking place during the final months. Final assembly of large silicic magma reservoirs may occur on timescales that are geologically very short by comparison with the preceding repose period, with major growth phases immediately before eruption. These observations have implications for the monitoring of long-dormant, but potentially active, caldera systems.

  1. Structure of the southern Juan de Fuca Ridge from seismic reflection records

    USGS Publications Warehouse

    Morton, Janet L.; Sleep, Norman H.; Normark, William R.; Tompkins, Donald H.

    1987-01-01

    Twenty-four-channel seismic reflection records were obtained from the axial region of the southern Juan de Fuca Ridge. Two profiles are normal to the strike of the spreading center and intersect the ridge at latitude 44°40′N and 45°05′N; a third profile extends south along the ridge axis from latitude 45°20′N and crosses the Blanco Fracture Zone. Processing of the axial portions of the cross-strike lines resolved a weak reflection centered beneath the axis. The reflector is at a depth similar to seismically detected magma chambers on the East Pacific Rise and a Lau Basin spreading center; we suggest that the reflector represents the top of an axial magma chamber. In the migrated sections the top of the probable magma chamber is relatively flat and 1–2 km wide, and the subbottom depth of the chamber is greater where the depth to the ridge axis is greater.

  2. When Magma Meets Carbonate: Explosive Criminals of Climate Change?

    NASA Astrophysics Data System (ADS)

    Carter, L. B.

    2017-12-01

    The natural carbon cycle is a key component of global climate change. Identifying and quantifying all processes in the cycle is essential to determine the effects of human greenhouse gas contributions and make future predictions. Volcanoes are the main natural source of carbon dioxide to the atmosphere [1]. In settings where carbonate rocks underlie the edifice, they can be consumed by magma passing through, which can release extra CO2, potentially explaining the extremely high emissions at Mount Etna in Italy [2-4]. We conduct laboratory experiments, mimicking conditions in the crust, to study how different carbonate rocks interact with hot magmas at pressure, and determine the amount of CO2 generated. We find that some types of magma can raise volcanic gas output and cause more explosive and dangerous eruptions [5-6]. Others are more likely to release hot fluids to the surrounding rocks, releasing CO2 by skarnification, which leaves economically important ores like in the western US [3,7] but can weaken the subsurface, potentially leading to landslides. Gas can also be released on the flanks of a volcano or in regions lacking an active volcano, due to the breakdown of certain carbonate rocks by heat [7], seen as bubbling springs in Yellowstone [8]. Our experiments indicate that if dolostone, not limestone, surrounds a magma chamber, over half the CO2 that was locked in the crust can escape even at lower temperatures a distance away. These processes are perhaps pertinent to why the Earth's climate was warm >50 million years ago, when more magma-carbonate interaction likely occurred than today [3] and thus contributed several times the current volcanic output [4] to the atmosphere. As significant parts of the long-term carbon cycle, it is necessary to include magma-carbonate reactions when considering climate changes before taking into account human input. [1] Aiuppa et al 2017 ESciRev (168) 24-47; [2] Ganino and Arndt 2009 Geol (37) 323-326; [3] Lee et al. 2013

  3. Geochemical homogeneity of a long-lived, large silicic system; evidence from the Cerro Galán caldera, NW Argentina

    NASA Astrophysics Data System (ADS)

    Folkes, Chris B.; de Silva, Shanaka L.; Wright, Heather M.; Cas, Raymond A. F.

    2011-12-01

    place during the upper-crustal evolution of these larger volume magmas. We attribute this relationship to variations in magma chamber geometry; the younger, largest volume ignimbrites came from flat sill-like magma chambers, reducing the relative proportion of sidewall crystallization and fractionation compared to the older, smaller-volume ignimbrite eruptions. The grey pumice clasts also show evidence of silicic recharge throughout the history of the Cerro Galán system, and recharge days prior to eruption has previously been suggested based on reversely zoned (OH and Cl) apatite phenocrysts. A rare population of plagioclase phenocrysts with thin An-rich rims in juvenile clasts in many ignimbrites supports the importance of recharge in the evolution and potential triggering of eruptions. This study extends the notion that large volumes of nearly identical silicic magmas can be generated repeatedly, producing prolonged geochemical homogeneity from a long-lived magma source in a subduction zone volcanic setting. At Cerro Galán, we propose that there is a zone between mantle magma input and upper crustal chambers, where magmas are geochemically "buffered", producing the underlying geochemical and isotopic signatures. This produces the same parental magmas that are delivered repeatedly to the upper crust. A lower-crustal MASH (melting, assimilation, storage, and homogenization) zone is proposed to act as this buffer zone. Subsequent upper crustal magmatic processes serve only to slightly modify the geochemistry of the magmas.

  4. Shallow system rejuvenation and magma discharge trends at Piton de la Fournaise volcano (La Réunion Island)

    NASA Astrophysics Data System (ADS)

    Coppola, Diego; Di Muro, Andrea; Peltier, Aline; Villeneuve, Nicolas; Ferrazzini, Valerie; Favalli, Massimiliano; Bachèlery, Patrick; Gurioli, Lucia; Harris, Andrew; Moune, Séverine; Vlastélic, Ivan; Galle, Bo; Arellano, Santiago; Aiuppa, Alessandro

    2017-04-01

    During April 2007, the largest historical eruption of Piton de la Fournaise (Île de La Réunion, France) drained the shallow plumbing system and resulted in collapse of the summit crater. Following the 2007 eruption, Piton de la Fournaise entered a seven-year long period of near-continuous deflation interrupted, in June 2014, by a new phase of significant inflation. By integrating multiple datasets (lava discharge rates, deformation, seismicity, gas flux, gas composition, and lava chemistry), we here show that the progressive migration of magma from a deeper (below sea level) storage zone gradually rejuvenated and pressurized the above-sea-level portion of the magmatic system to provoke four small (<5 × 10 6 m3) eruptions from vents located close to the summit cone. Progressive increase in output rate between each eruption culminated, with the fifth, longest-lasting (August-October 2015) and largest-volume (45 ± 15 × 10 6 m3) eruption of the cycle. Activity observed in 2014 and 2015 points to a phase of shallow system rejuvenation and discharge, whereby continuous magma supply provoked eruptions from increasingly deeper and larger magma storage zones. Downward depressurization continued until unloading of the deepest, least differentiated magma triggered an "effusive paroxysm" that emptied the main shallow reservoir and terminated the cycle. Such an unloading process may characterize the evolution of shallow magmatic systems at other persistently active effusive centers.

  5. The Role of Magma During Continent-Ocean Transition

    NASA Astrophysics Data System (ADS)

    Bastow, Ian; Keir, Derek; Rooney, Tyrone; Kendall, J.-Michael

    2010-05-01

    Passive margins worldwide are often considered magmatic because they are characterised by thick sequences of extrusive and intrusive igneous rocks emplaced around the time of continental breakup. Despite the global abundance of such margins, however, it is difficult to discriminate between different models of both extension and melt generation, since most ruptured during Gondwana breakup >100Ma and the continent-ocean transition (COT) is now hidden by thick, basaltic seaward dipping reflectors (SDRs). These margins are no longer tectonically active so the roles of faulting, stretching and magma intrusion in accommodating extension, and timing of SDRs emplacement during rift evolution have to be inferred from rifting models or from the geological record preserved at the fully developed passive margin. Similarly mantle processes during COT development have long since ceased, so whether breakup was characterized by broad thermal upwelling, small-scale convection or a fertile geoscientific mantle remains ambiguous. The East African rift in Ethiopia offers a unique opportunity to address all these problems because south-to-north it exposes subaerially the transition from continental rifting and incipient sea-floor spreading within a young flood basalt province. Here we present a suite of geophysical and geochemical observations from Ethiopia that document the significance of magma intrusion and extrusion as rifting evolves from an initially broad zone of stretching and faulting to a narrower axial graben in which magma injection dominates strain.

  6. Volatile dynamics in crystal-rich magma bodies, perspectives from laboratory experiments and theory

    NASA Astrophysics Data System (ADS)

    Faroughi, S.; Parmigiani, A.; Huber, C.

    2013-12-01

    The amount of volatiles and the dynamics of bubbles play a significant role on the transition between different volcanic eruption behaviors. The transport of exsolved volatiles through zoned magma chambers is complex and remains poorly constrained. Here we focus on the different transport of volatiles under two end member regimes: crystal-poor systems (bubbles form a suspension) versus crystal-rich reservoirs (multiphase porous media flow). We present a combination of multiphase flow laboratory experiments (using silicon oil and water) and a theoretical argument based on Stokes flow streamfunctions to contrast the differences between the transport of exsolved volatiles in both regimes. The first set of experiments involves the buoyant migration of water droplets in silicon oil in the absence of glass beads. We measure the non-linear hydrodynamic interaction between bubbles and its effect on slowing down the average flux of water droplets as the water volume fraction increases. Our experimental results are compared to a theoretical argument in which a streamfunction formulation is used to estimate the effect of a suspension on bubble migration. We find a good agreement between the new theory and our experimental results. The second set of experiments focuses on the transport of water (non-wetting fluid) in porous media saturated with viscous silicon oils. Contrary to suspension dynamics, in multiphase porous media, an increase in the saturation of non-wetting fluid leads to a non-linear increase in its volumetric flux. The steady-state migration of non-wetting fluid is controlled by the formation of viscous fingering instability that greatly enhances transport. We propose that the regime of energy dissipation during the migration of bubbles in heterogeneous magma reservoirs can change, leading to bubble accumulation in crystal-poor regions as fingering becomes unstable and volatiles form a disperse bubble suspension.

  7. Drilling into Rhyolitic Magma at Shallow depth at Krafla Volcanic Complex, NE-Iceland

    NASA Astrophysics Data System (ADS)

    Mortensen, A. K.; Markússon, S. H.; Gudmundsson, Á.; Pálsson, B.

    2017-12-01

    Krafla volcanic complex in NE-Iceland is an active volcano but the latest eruption was the Krafla Fires in 1975-1984. Though recent volcanic activity has consisted of basaltic fissure eruptions, then it is rhyolitic magma that has been intercepted on at least two occasions while drilling geothermal production wells in the geothermal field suggesting a layered magma plumbing system beneath the Krafla volcanic complex. In 2008 quenched rhyolitic glass was retrieved from the bottom of well KJ-39, which is 2865 m deep ( 2571 m true vertical depth). In 2009 magma was again encountered at an even shallower depth and in more than 2,5 km distance from the bottom of well KJ-39, but in 2009 well IDDP-1 was drilled into magma three times just below 2100 m depth. Only on the last occasion was quenched glass retrieved to confirm that magma had been encountered. In well KJ-39 the quenched glass was rhyolitic in composition. The glass contained resorbed minerals of plagioclase, clinopyroxene and titanomagnetite, but the composition of the glass resembles magma that has formed by partial melting of hydrated basalt. The melt was encountered among cuttings from impermeable, coarse basaltic intrusives at a depth, where the well was anticipated to penetrate the Hólseldar volcanic fissure. In IDDP-1 the quenched glass was also rhyolitic in composition. The glass contained less than 5% of phenocrysts, but the phenocryst assemblage included andesine plagioclase, augite, pigeonite, and titanomagnetite. At IDDP-1 the melt was encountered below a permeable zone composed of fine to coarse grained felsite and granophyre. The disclosure of magma in two wells at Krafla volcanic complex verify that rhyolitic magma can be encountered at shallow depth across a larger area within the caldera. The encounter of magma at shallow depth conforms with that superheated conditions have been found at >2000 m depth in large parts of Krafla geothermal field.

  8. The role of hydrothermal fluids in the production of subduction zone magmas: Evidence from siderophile and chalcophile trace elements and boron

    NASA Astrophysics Data System (ADS)

    Noll, P. D.; Newsom, H. E.; Leeman, W. P.; Ryan, J. G.

    1996-02-01

    In order to evaluate the processes responsible for the enrichments of certain siderophile/ chalcophile trace elements during the production of subduction-related magmas, representative lavas from seven subduction zones have been analyzed for Pb, As, Sb, Sn, W, Mo, Tl, Cu, and Zn by inductively coupled plasma-mass spectrometry (ICP-MS), radiochemical epithermal neutron activation analysis (RENA), and atomic absorption (AA). The siderophile/chalcophile elements are compared to the highly fluid-mobile element B, the light rare earth elements (LREEs), U, and Th in order to place constraints on their behavior in subduction zones. Boron, As, Sb, and Pb are all enriched in arc lavas and continental crustal rocks more so than expected assuming normal magmatic processes (melting and crystallization). Tin, W, and Mo show little evidence of enrichment. Correlations of Pb/Ce, As/Ce, and Sb/Ce with B/La are statistically significant and have high correlation coefficients (and, more importantly, slopes approaching one) suggesting that Pb, As, and Sb behave similarly to B (i.e., that they are fluid-mobile). In addition, across-arc traverses show that B/La, As/Ce, Pb/Ce, and Sb/Ce ratios decrease dramatically with distance towards the back-arc basin. W/Th, Tl/La, Sn/Sm, and Mo/Ce ratios and Cu and Zn concentrations have much less systematic across-arc variations and correlations with B/La are not as strong (and in some cases, not statistically significant) and the regression lines have much lower slopes. Mixing models between upper mantle, slab-derived fluid, and sediment are consistent with a fluid-derived component in the arcs displaying extra enrichments of B, Pb, As, and Sb. These observations imply efficient mobilization of B, Pb, As, Sb, and possibly Tl into arc magma source regions by hydrothermal fluids derived from metamorphic dehydration reactions within the slab. Tin, W, and Mo show little, if any, evidence of hydrothermal mobilization. Copper appears to be slightly

  9. Crustal movements due to Iceland's shrinking ice caps mimic magma inflow signal at Katla volcano.

    PubMed

    Spaans, Karsten; Hreinsdóttir, Sigrún; Hooper, Andrew; Ófeigsson, Benedikt Gunnar

    2015-05-20

    Many volcanic systems around the world are located beneath, or in close proximity to, ice caps. Mass change of these ice caps causes surface movements, which are typically neglected when interpreting surface deformation measurements around these volcanoes. These movements can however be significant, and may closely resemble movements due to magma accumulation. Here we show such an example, from Katla volcano, Iceland. Horizontal movements observed by GPS on the flank of Katla have led to the inference of significant inflow of magma into a chamber beneath the caldera, starting in 2000, and continuing over several years. We use satellite radar interferometry and GPS data to show that between 2001 and 2010, the horizontal movements seen on the flank can be explained by the response to the long term shrinking of ice caps, and that erratic movements seen at stations within the caldera are also not likely to signify magma inflow. It is important that interpretations of geodetic measurements at volcanoes in glaciated areas consider the effect of ice mass change, and previous studies should be carefully reevaluated.

  10. Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale perspective

    PubMed Central

    Chiaradia, Massimo

    2015-01-01

    Arc magmas originate in subduction zones as partial melts of the mantle, induced by aqueous fluids/melts liberated by the subducted slab. Subsequently, they rise through and evolve within the overriding plate crust. Aside from broadly similar features that distinguish them from magmas of other geodynamic settings (e.g., mid-ocean ridges, intraplate), arc magmas display variably high Sr/Y values. Elucidating the debated origin of high Sr/Y signatures in arc magmas, whether due to mantle-source, slab melting or intracrustal processes, is instrumental for models of crustal growth and ore genesis. Here, using a statistical treatment of >23000 whole rock geochemical data, I show that average Sr/Y values and degree of maturation (MgO depletion at peak Sr/Y values) of 19 out of 22 Pliocene-Quaternary arcs correlate positively with arc thickness. This suggests that crustal thickness exerts a first order control on the Sr/Y variability of arc magmas through the stabilization or destabilization of mineral phases that fractionate Sr (plagioclase) and Y (amphibole ± garnet). In fact, the stability of these mineral phases is function of the pressure at which magma evolves, which depends on crustal thickness. The data presented show also that high Sr/Y Pliocene-Quaternary intermediate-felsic arc rocks have a distinct origin from their Archean counterparts. PMID:25631193

  11. Magma flow between summit and Pu`u `Ō`ō at K¯lauea Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Montagna, C. P.; Gonnermann, H. M.

    2013-07-01

    Volcanic eruptions are often accompanied by spatiotemporal migration of ground deformation, a consequence of pressure changes within magma reservoirs and pathways. We modeled the propagation of pressure variations through the east rift zone (ERZ) of K¯lauea Volcano, Hawai`i, caused by magma withdrawal during the early eruptive episodes (1983-1985) of the ongoing Pu`u `Ō`ō-Kupaianaha eruption. Eruptive activity at the Pu`u `Ō`ō vent was typically accompanied by abrupt deflation that lasted for several hours and was followed by a sudden onset of gradual inflation once the eruptive episode had ended. Similar patterns of deflation and inflation were recorded at K¯lauea's summit, approximately 15 km to the northwest, albeit with time delays of hours. These delay times can be reproduced by modeling the spatiotemporal changes in magma pressure and flow rate within an elastic-walled dike that traverses K¯lauea's ERZ. Key parameters that affect the behavior of the magma-dike system are the dike dimensions, the elasticity of the wall rock, the magma viscosity, and to a lesser degree the magnitude and duration of the pressure variations themselves. Combinations of these parameters define a transport efficiency and a pressure diffusivity, which vary somewhat from episode to episode, resulting in variations in delay times. The observed variations in transport efficiency are most easily explained by small, localized changes to the geometry of the magma pathway.

  12. Magma chamber deflation recorded by the Global Positioning System - The Hekla 1991 eruption

    NASA Astrophysics Data System (ADS)

    Sigmundsson, Freysteinn; Einarsson, Pall; Bilham, Roger

    1992-07-01

    Between January 17 and March 11, 1991, 0.15 cu km of lava erupted initially from several radial fissures and subsequently from a single fissure on the SE flank of Hekla volcano, Iceland. Hekla is surrounded by an array of control points measured in 1989 using GPS geodesy and re-measured after the eruption. These measurements indicate that the eruption was associated with a surface deflation volume of 0.1 + 0.08 - 0.04 centered on Hekla (63.995 deg N +4 -3 km, 19.69 deg W +1.5 -2 km). The depth to the magma reservoir is 9 +6 -7 km, poorly constrained due to the absence of GPS control points close to the volcano.

  13. Storage of Explosive versus Effusive Rhyolite Magma at the Yellowstone Volcanic Center

    NASA Astrophysics Data System (ADS)

    Gardner, J. E.

    2007-12-01

    The Yellowstone volcanic center has erupted more than 900 km3 of rhyolitic magma in the last 600,000 years (1). Most of that magma extruded as large lava flows, with only a few known explosive eruptions. Why have explosive eruptions been so rare in the recent history of the Yellowstone volcanic system? To explore that question, we focus on the Tuff of Bluff Point (TBP), about 50 km3 of magma that explosively erupted 173 ka, forming the West Thumb caldera (1). Like most other recent eruptions of Yellowstone, TBP is high silica rhyolite, with phenocrysts of quartz, sanidine, and minor ferro-pyroxenes and Fe-Ti oxides. Fe-Ti oxide and pyroxene compositions indicate that the magma had equilibrated at an oxygen fugacity equal to the QFM buffer. Rehomogenized glass inclusions (n=7) in quartz contain 2.2-3.1 wt.% water and between 400-650 ppm CO2. Those volatile contents indicate storage pressures of 90-160 MPa. Ubiquitous pyrrhotite shows that the magma was sulfur saturated, and most likely volatile saturated. The co-existing fluid would be only 42-47% water. Cathodoluminescence (CL) images of quartz phenocrysts reveal mainly concentric growth zones, with occasional dissolution boundaries present. Ti contents in quartz generally decrease from core to rim, indicating cooling of the magma, although the relative temperature changes recorded are only 10-15°, with only minor changes across dissolution boundaries. To put our observations in perspective of the recent Yellowstone magma system, we have begun examining some of the recent rhyolitic lavas, including the Pitchstone Plateau (PP), a single homogeneous lava flow of 70 km3 that erupted 79 ka (1). CL images also reveal mainly concentric quartz growth, with few dissolution boundaries obvious. Ti contents in quartz also generally decrease from core to rim, but are uniformly lower than in those in TBP, suggesting that PP magma was colder than TBP magma. Glass inclusions (n=20) in PP are generally water poor and rarely

  14. Chlorine in mid-ocean ridge magmas: Evidence for assimilation of seawater-influenced components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael, P.J.; Schilling, J.G.

    1989-12-01

    Suites of depleted MORB glasses from the fast-spreading Pacific-Nazca Ridge at 28{degree}S and 32{degree}S and the slow-spreading eastern boundary of the Juan Fernandez microplate were analyzed for chlorine by electron microprobe. The Cl concentrations in FeTi basalts exceed by a factor of 5 to 10 the amounts that can be generated by fractional crystallization of the primitive magmas. Selective melting or breakdown of amphibole and incorporation of Cl-rich brine contained in the wall rocks may be important processes. A magmatic source for the additional Cl and H{sub 2}O cannot be ruled out on geochemical grounds but is physically unrealistic becausemore » it requires that large volumes of magma have crystallized and exsolved a Cl-rich vapor phase that has somehow migrated to a small magma chamber. Excess Cl in evolved magmas is best developed in evolved MORB from propagating or overlapping spreading centers such as the Galapagos Spreading Center at 85{degree}W and 95{degree}W and the west ridge of the Juan Fernandez microplate. Cl overenrichment has not been observed on slow-spreading ridges including the eastern ridge of the Juan Fernandez microplate, the Southwest Indian Ridge, and the mid-Atlantic Ridge. The assimilation of hydrothermally altered material could influence the concentration and isotopic ratios of other elements which have low abundances in MORB relative to seawater.« less

  15. Inclusions of Sulphide Immiscible Melts in Primitive Olivine Phenocrysts from Mantle-Derived Magmas; Preliminary Results

    NASA Astrophysics Data System (ADS)

    Danyushevsky, L.; Ryan, C.; Kamenetsky, V.; Crawford, A.

    2001-12-01

    Sulphide inclusions have been identified in olivine phenocrysts (and in one case in a spinel phenocryst) in primitive volcanic rocks from mid- ocean ridges, subduction-related island arcs and backarc basins. These inclusions represent droplets of an immiscible sulphide melt and are trapped by olivine crystals growing from silicate melts. Sulphide melt is usually trapped as separate inclusions, however combined inclusions of sulphide and silicate melts have also been observed. Sulphide inclusions have rounded shapes and vary in size from several up to 100 microns in diameter. At room temperature sulphide inclusions consist of several phases. These phases are formed as a result of crystallisation of the sulphide melt after it was trapped. Crystallisation occurs due to decreasing temperature in the magma chamber after trapping and/or when magma ascents from the magma chamber during eruptions. In all studied sulphides three different phases can be identified: a high- Fe, low-Ni, low-Cu phase; a high-Fe, high-Ni, low-Cu phase; and high-Fe, low-Ni, high-Cu phase. Low-Cu phases appear to be monomineralic, whereas the high-Cu phase is usually composed of a fine intergrowth of high- and low-Cu phases, resembling the quench 'spinifex' structure. Fe, Ni and Cu are the major elements in all sulphides studied. The amount of Ni decreases with decreasing forsterite content of the host olivine phenocryst, which is an index of the degree of silicate magma fractionation. Since Ni content of the silicate magma is decreasing during fractionation, this indicates either that the immiscible sulfide melt remains in equilibrium with the silicate melt continuously changing its composition during fractionation, or that the sulfide melt is continuously separated from the silicate melt during fractionation, with later formed droplets having lower Ni content due to the lower Ni content of the evolved, stronger fractionated silicate melt. Trace element contents of the sulfide inclusions have

  16. Thermal budget of the lower east rift zone, Kilauea Volcano

    USGS Publications Warehouse

    Delaney, Paul T.; Duffield, Wendell A.; Sass, John H.; Kauahikaua, James P.; ,

    1993-01-01

    The lower east rift zone of Kilauea has been the site of repeated fissure eruptions fed by dikes that traverse the depths of interest to geothermal explorations. We find that a hot-rock-and-magma system of low permeability extending along the rift zone at depths below about 4 km and replenished with magma at a rate that is small in comparison to the modern eruption rate Kilauea can supply heat to an overlying hydrothermal aquifer sufficient to maintain temperatures of about 250??C if the characteristic permeability to 4-km depth is about 10-15m2.

  17. Chemical versus temporal controls on the evolution of tholeiitic and calc-alkaline magmas at two volcanoes in the Alaska-Aleutian arc

    USGS Publications Warehouse

    George, R.; Turner, S.; Hawkesworth, C.; Bacon, C.R.; Nye, C.; Stelling, P.; Dreher, S.

    2004-01-01

    The Alaska-Aleutian island arc is well known for erupting both tholeiitic and calc-alkaline magmas. To investigate the relative roles of chemical and temporal controls in generating these contrasting liquid lines of descent we have undertaken a detailed study of tholeiitic lavas from Akutan volcano in the oceanic A1eutian arc and calc-alkaline products from Aniakchak volcano on the continental A1askan Peninsula. The differences do not appear to be linked to parental magma composition. The Akutan lavas can be explained by closed-system magmatic evolution, whereas curvilinear trace element trends and a large range in 87 Sr/86 Sr isotope ratios in the Aniakchak data appear to require the combined effects of fractional crystallization, assimilation and magma mixing. Both magmatic suites preserve a similar range in 226 Ra-230 Th disequilibria, which suggests that the time scale of crustal residence of magmas beneath both these volcanoes was similar, and of the order of several thousand years. This is consistent with numerical estimates of the time scales for crystallization caused by cooling in convecting crustal magma chambers. During that time interval the tholeiitic Akutan magmas underwent restricted, closed-system, compositional evolution. In contrast, the calc-alkaline magmas beneath Aniakchak volcano underwent significant open-system compositional evolution. Combining these results with data from other studies we suggest that differentiation is faster in calc-alkaline and potassic magma series than in tholeiitic series, owing to a combination of greater extents of assimilation, magma mixing and cooling.

  18. Magma-poor vs. magma-rich continental rifting and breakup in the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Gouiza, M.; Paton, D.

    2017-12-01

    Magma-poor and magma-rich rifted margins show distinct structural and stratigraphic geometries during the rift to breakup period. In magma-poor margins, crustal stretching is accommodated mainly by brittle faulting and the formation of wide rift basins shaped by numerous graben and half-graben structures. Continental breakup and oceanic crust accretion are often preceded by a localised phase of (hyper-) extension where the upper mantle is embrittled, serpentinized, and exhumed to the surface. In magma-rich margins, the rift basin is narrow and extension is accompanied by a large magmatic supply. Continental breakup and oceanic crust accretion is preceded by the emplacement of a thick volcanic crust juxtaposing and underplating a moderately thinned continental crust. Both magma-poor and magma-rich rifting occur in response to lithospheric extension but the driving forces and processes are believed to be different. In the former extension is assumed to be driven by plate boundary forces, while in the latter extension is supposed to be controlled by sublithospheric mantle dynamics. However, this view fails in explaining observations from many Atlantic conjugate margins where magma-poor and magma-rich segments alternate in a relatively abrupt fashion. This is the case of the Labrador margin where the northern segment shows major magmatic supply during most of the syn-rift phase which culminate in the emplacement of a thick volcanic crust in the transitional domain along with high density bodies underplating the thinned continental crust; while the southern segment is characterized mainly by brittle extension, mantle seprentinization and exhumation prior to continental breakup. In this work, we use seismic and potential field data to describe the crustal and structural architectures of the Labrador margin, and investigate the tectonic and mechanical processes of rifting that may have controlled the magmatic supply in the different segments of the margin.

  19. Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals.

    PubMed

    Rubin, Allison E; Cooper, Kari M; Till, Christy B; Kent, Adam J R; Costa, Fidel; Bose, Maitrayee; Gravley, Darren; Deering, Chad; Cole, Jim

    2017-06-16

    Silicic volcanic eruptions pose considerable hazards, yet the processes leading to these eruptions remain poorly known. A missing link is knowledge of the thermal history of magma feeding such eruptions, which largely controls crystallinity and therefore eruptability. We have determined the thermal history of individual zircon crystals from an eruption of the Taupo Volcanic Zone, New Zealand. Results show that although zircons resided in the magmatic system for 10 3 to 10 5 years, they experienced temperatures >650° to 750°C for only years to centuries. This implies near-solidus long-term crystal storage, punctuated by rapid heating and cooling. Reconciling these data with existing models of magma storage requires considering multiple small intrusions and multiple spatial scales, and our approach can help to quantify heat input to and output from magma reservoirs. Copyright © 2017, American Association for the Advancement of Science.

  20. Constraining the Size and Depth of a Shallow Crustal Magma Body at Newberry Volcano Using P-Wave Tomography and Finite-Difference Waveform Modeling

    NASA Astrophysics Data System (ADS)

    Beachly, M. W.; Hooft, E. E.; Toomey, D. R.; Waite, G. P.

    2011-12-01

    Imaging magmatic systems improves our understanding of magma ascent and storage in the crust and contributes to hazard assessment. Seismic tomography reveals crustal magma bodies as regions of low velocity; however the ability of delay-time tomography to detect small, low-velocity bodies is limited by wavefront healing. Alternatively, crustal magma chambers have been identified from secondary phases including P and S wave reflections and conversions. We use a combination of P-wave tomography and finite-difference waveform modeling to characterize a shallow crustal magma body at Newberry Volcano, central Oregon. Newberry's eruptions are silicic within the central caldera and mafic on its periphery suggesting a central silicic magma storage system. The system may still be active with a recent eruption ~1300 years ago and a drill hole temperature of 256° C at only 932 m depth. A low-velocity anomaly previously imaged at 3-5 km beneath the caldera indicates either a magma body or a fractured pluton. With the goal of detecting secondary arrivals from a magma chamber beneath Newberry Volcano, we deployed a line of densely-spaced (~300 m), three-component seismometers that recorded a shot of opportunity from the High Lava Plains Experiment in 2008. The data record a secondary P-wave arrival originating from beneath the caldera. In addition we combine travel-time data from our 2008 experiment with data collected in the 1980's by the USGS for a P-wave tomography inversion to image velocity structure to 6 km depth. The inversion includes 16 active sources, 322 receivers and 1007 P-wave first arrivals. The tomography results reveal a high-velocity, ring-like anomaly beneath the caldera ring faults to 2 km depth that surrounds a shallow low-velocity region. Beneath 2.5 km high-velocity anomalies are concentrated east and west of the caldera. A central low-velocity body lies below 3 km depth. Tomographic inversions of synthetic data suggest that the central low-velocity body

  1. Bubble accumulation and its role in the evolution of magma reservoirs in the upper crust.

    PubMed

    Parmigiani, A; Faroughi, S; Huber, C; Bachmann, O; Su, Y

    2016-04-28

    Volcanic eruptions transfer huge amounts of gas to the atmosphere. In particular, the sulfur released during large silicic explosive eruptions can induce global cooling. A fundamental goal in volcanology, therefore, is to assess the potential for eruption of the large volumes of crystal-poor, silicic magma that are stored at shallow depths in the crust, and to obtain theoretical bounds for the amount of volatiles that can be released during these eruptions. It is puzzling that highly evolved, crystal-poor silicic magmas are more likely to generate volcanic rocks than plutonic rocks. This observation suggests that such magmas are more prone to erupting than are their crystal-rich counterparts. Moreover, well studied examples of largely crystal-poor eruptions (for example, Katmai, Taupo and Minoan) often exhibit a release of sulfur that is 10 to 20 times higher than the amount of sulfur estimated to be stored in the melt. Here we argue that these two observations rest on how the magmatic volatile phase (MVP) behaves as it rises buoyantly in zoned magma reservoirs. By investigating the fluid dynamics that controls the transport of the MVP in crystal-rich and crystal-poor magmas, we show how the interplay between capillary stresses and the viscosity contrast between the MVP and the host melt results in a counterintuitive dynamics, whereby the MVP tends to migrate efficiently in crystal-rich parts of a magma reservoir and accumulate in crystal-poor regions. The accumulation of low-density bubbles of MVP in crystal-poor magmas has implications for the eruptive potential of such magmas, and is the likely source of the excess sulfur released during explosive eruptions.

  2. Million-year melt-presence in monotonous intermediate magma for a volcanic-plutonic assemblage in the Central Andes: Contrasting histories of crystal-rich and crystal-poor super-sized silicic magmas

    NASA Astrophysics Data System (ADS)

    Kaiser, Jason F.; de Silva, Shanaka; Schmitt, Axel K.; Economos, Rita; Sunagua, Mayel

    2017-01-01

    The melt-present lifetime of super-sized monotonous intermediate magmas that feed supereruptions and end life as granodioritic plutons is investigated using zircon chronochemistry. These data add to the ongoing discussion on magma assembly rates and have implications for how continental batholiths are built. Herein, we estimate ∼1.1 Ma of continuous melt presence before and after the climactic caldera-forming 2.89 ± 0.01 Ma (2σ error) Pastos Grandes Ignimbrite (PGI) supereruption (∼1500 km3 of magma) in the Andes of southwest Bolivia. Zircon crystallization in PGI pumice and lava from the faulted Southern Postcaldera Dome span ∼0.7 Ma prior to the climactic eruption and formation of the eponymous caldera, whereas younger, unfaulted Postcaldera Dome lavas (termed Northern and Middle) and a granodioritic plutonic clast within the products of a Pleistocene eruption indicate a further ∼0.4 Ma of post-climactic zircon crystallization. Bulk-rock compositions as well as zircon thermometry and geochemistry indicate the presence of homogeneous dacitic magma before and after the climactic eruption, but a trend to zircon crystallization at higher temperatures and from less evolved melts is seen for post-climactic zircon. We propose a model in which a large volume of crystal-rich dacite magma was maintained above solidus temperatures by periodic andesitic recharge that is chemically invisible in the erupted components. The climactic caldera-forming eruption vented the upper portions of the magma system zircon was saturated. Zircon in postcaldera lavas indicate that residual magma from this system remained locally viable for eruption at least for some time after the caldera-forming event. Subsequently, deeper "remnant" dacite magma previously outside the zone of zircon saturation rose to shallower levels to re-establish hydraulic and isostatic equilibrium where zircon crystallization commenced anew, and drove more resurgent volcanism and uplift. The same magma

  3. Timescales of mixing and storage for Keanakāko`i Tephra magmas (1500-1820 C.E.), Kīlauea Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Lynn, Kendra J.; Garcia, Michael O.; Shea, Thomas; Costa, Fidel; Swanson, Donald A.

    2017-09-01

    The last 2500 years of activity at Kīlauea Volcano (Hawai`i) have been characterized by centuries-long periods dominated by either effusive or explosive eruptions. The most recent period of explosive activity produced the Keanakāko`i Tephra (KT; ca. 1500-1820 C.E.) and occurred after the collapse of the summit caldera (1470-1510 C.E.). Previous studies suggest that KT magmas may have ascended rapidly to the surface, bypassing storage in crustal reservoirs. The storage conditions and rapid ascent hypothesis are tested here using chemical zoning in olivine crystals and thermodynamic modeling. Forsterite contents (Fo; [Mg/(Mg + Fe) × 100]) of olivine core and rim populations are used to identify melt components in Kīlauea's prehistoric (i.e., pre-1823) plumbing system. Primitive (≥Fo88) cores occur throughout the 300+ years of the KT period; they originated from mantle-derived magmas that were first mixed and stored in a deep crustal reservoir. Bimodal olivine populations (≥Fo88 and Fo83-84) record repeated mixing of primitive magmas and more differentiated reservoir components shallower in the system, producing a hybrid composition (Fo85-87). Phase equilibria modeling using MELTS shows that liquidus olivine is not stable at depths >17 km. Thus, calculated timescales likely record mixing and storage within the crust. Modeling of Fe-Mg and Ni zoning patterns (normal, reverse, complex) reveal that KT magmas were mixed and stored for a few weeks to several years before eruption, illustrating a more complex storage history than direct and rapid ascent from the mantle as previously inferred for KT magmas. Complexly zoned crystals also have smoothed compositional reversals in the outer 5-20 µm rims that are out of Fe-Mg equilibrium with surrounding glasses. Diffusion models suggest that these rims formed within a few hours to a few days, indicating that at least one additional, late-stage mixing event may have occurred shortly prior to eruption. Our study

  4. Stability of volcanic conduits: insights from magma ascent modelling and possible consequences on eruptive dynamics

    NASA Astrophysics Data System (ADS)

    Aravena, Alvaro; de'Michieli Vitturi, Mattia; Cioni, Raffaello; Neri, Augusto

    2017-04-01

    . Under the assumption that magma chamber conditions during a typical volcanic eruption follow a depressurizing trend, a continuous conduit widening process is expected. This process could explain the pervasive and continuous presence of lithic fragments in most pyroclastic deposits, even with stationary properties and conditions of the magma source (e.g. water content, temperature, composition).

  5. Imaging Seismic Zones and Magma beneath Mount St. Helens with the iMUSH Broadband Array

    NASA Astrophysics Data System (ADS)

    Ulberg, C. W.; Creager, K.; Moran, S. C.; Abers, G. A.; Crosbie, K.; Crosson, R. S.; Denlinger, R. P.; Thelen, W. A.; Kiser, E.; Levander, A.; Bachmann, O.

    2017-12-01

    We deployed 70 broadband seismometers from 2014 to 2016 to image the seismic velocity structure beneath Mount St. Helens (MSH), Washington, as part of the collaborative imaging Magma Under St. Helens (iMUSH) project. The broadband array had a 100 km diameter centered on MSH with an average station spacing of 10 km, augmented by dozens of permanent stations. We picked P- and S-wave arrival times and also incorporated picks from the permanent network. More than 400 local events M>0.5 occurred during the deployment, providing over 12,000 P-wave and 6,000 S-wave arrival times. In addition, we incorporated 23 explosions that were part of the active-source component of iMUSH. We used the program struct3DP to invert travel times to obtain a 3-D seismic velocity model and relocated hypocenters, with travel times computed using a 3-D eikonal-equation solver. Principal features of our 3-D model include: (1) Low P- and S-wave velocities along the St. Helens seismic Zone (SHZ), striking NNW-SSE north of MSH from near the surface to where we lose resolution at 15-20 km depth. This anomaly corresponds to high conductivity as imaged by iMUSH magnetotelluric studies. The SHZ also coincides with a sharp boundary in continental Moho reflectivity that has been interpreted as the eastern boundary of a serpentinized mantle wedge (Hansen et al, 2016). We speculate that the SHZ and low velocities are related to fluids rising from the eastern boundary of the wedge; (2) A 4-5% negative P- and S-wave velocity anomaly beneath MSH at depths of 6-15 km with a quasi-cylindrical geometry and a diameter of 5 km, probably indicating a magma storage region. Based on resolution testing of similar-sized features, it is possible that the velocity anomaly we see underneath MSH is narrower and higher (i.e., more negative) amplitude; (3) A broad, high-amplitude, low P-wave velocity region below 10-km depth extending between Mount Adams and Mount Rainier along and to the east of the main Cascade arc

  6. Multitemperature compaction model of a magma melt in the asthenosphere: A numerical approach

    NASA Astrophysics Data System (ADS)

    Pak, V. V.

    2007-09-01

    A numerical compaction model of a fluid in a viscous skeleton is developed with regard for a phase transition. The temperatures of phases are different. The solution is found by the method of asymptotic expansion relative to the incompressible variant, which removes a number of computational problems related to the weak compressibility of the skeleton. For each approximation, the problem is solved by the finite element method. The process of 2-D compaction of a magmatic melt in the asthenosphere under a fault zone is examined for one-and two-temperature cases. The magmatic flow concentrates in this region due to a lower pore pressure. Higher temperature magma entering from lower levels causes a local heating of the skeleton and intense melting of its fusible component. In the two-temperature model, a magma concentration anomaly develops under the fault zone. The fundamental limitations substantially complicating the corresponding calculations within the framework of a one-temperature model are pointed out and the necessity of applying a multitemperature variant is substantiated.

  7. Laser-filament-induced snow formation in a subsaturated zone in a cloud chamber: experimental and theoretical study.

    PubMed

    Ju, Jingjing; Sun, Haiyi; Sridharan, Aravindan; Wang, Tie-Jun; Wang, Cheng; Liu, Jiansheng; Li, Ruxin; Xu, Zhizhan; Chin, See Leang

    2013-12-01

    1 kHz, 2 mJ, 45 fs, 800 nm laser pulses were fired into a laboratory diffusion cloud chamber through a subsaturated zone (relative humidity ∼73%, T ∼ 4.3 °C). After 60 min of laser irradiation, an oval-shaped snow pile was observed right below the filament center and weighed ∼12.0 mg. The air current velocity at the edge of the vortices was estimated to be ∼16.5 cm/s. Scattering scenes recorded from the side show that filament-induced turbulence were formed inside the cloud chamber with two vortices below the filament. Two-dimensional simulations of the air flow motion in two cross sections of the cloud chamber confirm that the turbulent vortices exist below the filament. Based upon this simulation, we deduce that the vortices indeed have a three-dimensional elliptical shape. Hence, we propose that inside vortices where the humidity was supersaturated or saturated the condensation nuclei, namely, HNO(3), N(2)(+), O(2)(+) and other aerosols and impurities, were activated and grew in size. Large-sized particles would eventually be spun out along the fast moving direction towards the cold plate and formed an oval-shaped snow pile at the end.

  8. Juvenile pumice and pyroclastic obsidian reveal the eruptive conditions necessary for the stability of Plinian eruption of rhyolitic magma

    NASA Astrophysics Data System (ADS)

    Giachetti, T.; Shea, T.; Gonnermann, H. M.; McCann, K. A.; Hoxsie, E. C.

    2016-12-01

    Significant explosive activity generally precedes or coexists with the large effusion of rhyolitic lava (e.g., Mono Craters; Medicine Lake Volcano; Newberry; Chaitén; Cordón Caulle). Such explosive-to-effusive transitions and, ultimately, cessation of activity are commonly explained by the overall waning magma chamber pressure accompanying magma withdrawal, albeit modulated by magma outgassing. The tephra deposits of such explosive-to-effusive eruptions record the character of the transition - abrupt or gradual - as well as potential changes in eruptive conditions, such as magma composition, volatiles content, mass discharge rate, conduit size, magma outgassing. Results will be presented from a detailed study of both the gas-rich (pumice) and gas-poor (obsidian) juvenile pyroclasts produced during the Plinian phase of the 1060 CE Glass Mountain eruption of Medicine Lake Volcano, California. In the proximal deposits, a multitude of pumice-rich sections separated by layers rich in dense clasts suggests a pulsatory behavior of the explosive phase. Density measurements on 2,600 pumices show that the intermediate, most voluminous deposits have a near constant median porosity of 65%. However, rapid increase in porosity to 75-80% is observed at both the bottom and the top of the fallout deposits, suggestive of rapid variations in magma degassing. In contrast, a water content of pyroclastic obsidians of approximately 0.6 wt% does remain constant throughout the eruption, suggesting that the pyroclastic obsidians degassed up to a constant pressure of a few megapascals. Numerical modeling of eruptive magma ascent and degassing is used to provide constraints on eruption conditions.

  9. Deep intrusions, lateral magma transport and related uplift at ocean island volcanoes

    NASA Astrophysics Data System (ADS)

    Klügel, Andreas; Longpré, Marc-Antoine; García-Cañada, Laura; Stix, John

    2015-12-01

    Oceanic intraplate volcanoes grow by accumulation of erupted material as well as by coeval or discrete magmatic intrusions. Dykes and other intrusive bodies within volcanic edifices are comparatively well studied, but intrusive processes deep beneath the volcanoes remain elusive. Although there is geological evidence for deep magmatic intrusions contributing to volcano growth through uplift, this has rarely been demonstrated by real-time monitoring. Here we use geophysical and petrological data from El Hierro, Canary Islands, to show that intrusions from the mantle and subhorizontal transport of magma within the oceanic crust result in rapid endogenous island growth. Seismicity and ground deformation associated with a submarine eruption in 2011-2012 reveal deep subhorizontal intrusive sheets (sills), which have caused island-scale uplift of tens of centimetres. The pre-eruptive intrusions migrated 15-20 km laterally within the lower oceanic crust, opening pathways that were subsequently used by the erupted magmas to ascend from the mantle to the surface. During six post-eruptive episodes between 2012 and 2014, further sill intrusions into the lower crust and upper mantle have caused magma to migrate up to 20 km laterally, resulting in magma accumulation exceeding that of the pre-eruptive phase. A comparison of geobarometric data for the 2011-2012 El Hierro eruption with data for other Atlantic intraplate volcanoes shows similar bimodal pressure distributions, suggesting that eruptive phases are commonly accompanied by deep intrusions of sills and lateral magma transport. These processes add significant material to the oceanic crust, cause uplift, and are thus fundamentally important for the growth and evolution of volcanic islands. We suggest that the development of such a magma accumulation zone in the lower oceanic crust begins early during volcano evolution, and is a consequence of increasing size and complexity of the mantle reservoir system, and potentially

  10. Oxygen isotopic determinations of sequentially erupted plagioclases in the 1974 magma of Fuego Volcano, Guatemala

    USGS Publications Warehouse

    Rose, W.I.; Friedman, I.; Woodruff, L.G.

    1980-01-01

    Plagioclases in the 1974 high-Al basalt from Fuego Volcano have ??O18 values of +6.0 to +8.5 per mil. Meteoric water cannot have played a significant role in Fuego's magma. Large, weakly zone clear phenocrysts had ??O18 values in the accepted mantle range, while patchyzoned and oscillatory-zoned plagioclases inferred to have formed later and shallower levels have slightly heavier oxygen isotopic ratios. ?? 1980 Intern. Association of Volcanology and Chemistry of the Earth's Interior.

  11. Magma mixing in granite petrogenesis: Insights from biotite inclusions in quartz and feldspar of Mesozoic granites from South China

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Zhao, Zi-Fu; Zheng, Yong-Fei

    2016-06-01

    Magma mixing is a common process in granite petrogenesis. The major element composition of biotites in granites is primarily controlled by the composition of magmas from which they crystallized. Biotite grains enclosed in quartz and feldspars of granites are naturally protected by their host minerals, so that their compositions are likely original and can potentially be used to track the magma mixing. This is illustrated by a combined study of matrix and inclusion biotites from Mesozoic granites in the Nanling Range, South China. Three granite samples have been used in this study: one two-mica granite and two biotite granites. The biotites of different occurrences in the two-mica granite have no compositional distinctions. Biotites in the two-mica granite have higher Al2O3 and lower MgO than those in the biotite granites. The former is consistent with biotites from typical S-type granites of metasedimentary origin. In contrast, biotites from the biotite granites can be categorized into different groups based on their paragenetic minerals and geochemical compositions. They have relatively low aluminous saturation indices but higher Mg numbers, falling in the transitional field between typical S- and I-type granites. In addition, there are two contrasting zircon populations with nearly identical U-Pb ages in the biotite granites. One shows clearly oscillatory zonings in CL images, whereas the other is totally dark and often overgrew on the former one. The zircons with oscillatory zonings have higher δ18O values than the dark ones, indicating their growth from two compositionally different magmas, respectively, with different sources. An integrated interpretation of all these data indicates that mixing of two different magmas was responsible for the petrogenesis of biotite granites. Therefore, the study of biotite inclusions provides insights into the magma mixing in granite petrogenesis.

  12. Magma mixing, recharge and eruption histories recorded in plagioclase phenocrysts from El Chichon Volcano, Mexico

    USGS Publications Warehouse

    Tepley, F. J.; Davidson, J.P.; Tilling, R.I.; Arth, Joseph G.

    2000-01-01

    Consistent core-to-rim decreases of 87Sr/86Sr ratios and coincident increases in Sr concentrations in plagioclase phenocrysts of varying size (~ 1 cm to 2 mm) are reported from samples of the 1982 and pre-1982 (~ 200 ka) eruptions of El Chichon Volcano. Maximum 87Sr/86Sr ratios of ~ 0.7054, significantly higher than the whole-rock isotopic ratios (~ 0.7040-0.7045), are found in the cores of plagioclase phenocrysts, and minimum 87Sr/86Sr ratios of ~ 0.7039 are found near some of the rims. Plagioclase phenocrysts commonly display abrupt fluctuations in An content (up to 25 mol %) that correspond to well-developed dissolution surfaces The isotopic, textural and compositional characteristics suggest that these plagioclase phenocrysts grew in a system that was periodically recharged by higher-temperature magma with a lower 87Sr/86Sr ratio and a higher Sr concentration. Rim 87Sr/86Sr ratios in plagioclase phenocrysts of rocks from the 200 ka eruption indicate that, at that time, the magma had already attained the lowest recorded 87Sr/86Sr value of the system (~ 0.7039). In contrast, cores from plagioclase phenocrysts of the 1982 eruption, inferred to have grown in the past few thousand years, have the highest recorded 87Sr/86Sr ratios of the system. Collectively, the Sr isotopic data (for plagioclase and whole rock), disequilibrium textural features of the phenocrysts, known eruption frequencies, and inferred crystal-residence times of the plagioclases are best interpreted in terms of an intermittent magma chamber model. Similar processes, including crustal contamination, magma mixing, periodic recharge by addition of more mafic magma to induce plagioclase disequilibrium (possibly triggering eruption) and subsequent re-equilibration, apparently were operative throughout the 200 ky history of the El Chichon magma system.

  13. Water content in intraplate basalt magmas from the Longgang area, NE China

    NASA Astrophysics Data System (ADS)

    Mizobuchi, F.; Kuritani, T.; Yoshida, T.; Miyamoto, T.; Nagahashi, Y.; Taniguchi, H.

    2009-12-01

    In northeastern China, intraplate magmatism has been active, and Cenozoic basalts are widely distributed. Beneath the area, the subducted Pacific slab is stagnant in the mantle transition zone, and some previous studies have inferred that the magmatism may have been affected by fluid phases released from the stagnant slab. To test this hypothesis, it is important to know the water content in the source mantle. In this context, the water content in the intraplate magma was estimated using primitive scoria samples from the Longgang area, NE China. Because of the absence of glass inclusions in phenocrysts that enables direct measurement of water content, it was estimated by thermodynamic constraints. During ascent of water-bearing magmas, the water solubility tends to decrease, and water saturation is achieved at depth. Then, crystals can grow rapidly by an increase in the liquidus temperature resulting from water exsolution. Because the microlites in our samples can be regarded as such crystals, the water content in the magma in which the microlites occured was estimated by thermodynamic analyses using the compositions of the microlites and glass. In the calculations, thermodynamic solution models of e.g. Ghiorso&Sack(1995) were used. The calculated water content and the temperature of the magma were about 0.6 wt.% and 1110 degC, respectively. The water content is slightly higher than those of primitive intraplate magmas such as from Hawaii (0.4 wt.%, Wallace & Anderson,1998) and Iceland (0.1-0.4 wt.%, Nichols et al., 2002). Assuming that the degree of melting was 1-2%, the water content of the source asthenospheric mantle was 110-170 ppm. The magma temperature at 80-120 km depth (garnet stability field) was also estimated as 1160-1180 degC, assuming adiabatic ascent. Using the constraints obtained in this study, the effect of stagnant-slab-derived fluids on the magma generation will be evaluated as a future study.

  14. Siderophile and chalcophile metals as tracers of the evolution of the Siberian Trap in the Noril'sk region, Russia

    NASA Astrophysics Data System (ADS)

    Brügmann, G. E.; Naldrett, A. J.; Asif, M.; Lightfoot, P. C.; Gorbachev, N. S.; Fedorenko, V. A.

    1993-05-01

    In this study Cu, Ni, and platinum-group elements (PGE) were determined in a sequence of basaltic and picritic lavas from the Siberian Trap in the Noril'sk area of Russia to constrain genetic relationships between the basalts and the petrogenesis of Ni-Cu-PGE sulfide deposits associated with the Talnakh and Noril'sk intrusions. In the most primitive basalts (8-19 wt% MgO) of the Tuklonsky (Tk) suite, Pt and Pd concentrations range from 4-13 ppb, increasing with decreasing MgO content; whereas Ir contents decrease with MgO from 0.8-0.05 ppb. The contrasting behavior of these elements, which all have very high sulfide-silicate partition coefficients, as well as the primitive mantle-like ratios of Cu/Y and Pd/Y, suggests that these magmas were not sulfide-saturated. The high PGE abundances imply that their parental magmas were also not sulfide saturated during partial melting in the mantle. Due to sulfide segregation, the overlying basalts of the Nadezhdinsky (Nd) series are low in Cu and Ni (52 and 38 ppm, respectively); highly depleted in all PGE; and have very low Cu/Y, Pd/Y, and Pd/Cu ratios. However, in stratigraphically higher levels, Cu, Ni, and PGE concentrations increase systematically through the Morongovsky (Mr) suite to reach a concentration plateau in the uppermost Mokulaevsky (Mk) suite (Pt 8 ppb; Pd: 9 ppb; Ir: 0.12 ppb; Rh: 0.4 ppb). At the same time, ratios such as Cu/Y increase and approach primitive mantle values. However, ratios involving PGE, such as Pd/Y, remain low, suggesting the removal of small amounts of sulfide (0.01-0.03%). The compositional variations in the basalts and the sulfide liquids can be quantitatively described by fractional segregation of a sulfide liquid in an open- or closed-system magma chamber. The latter model suggests that the basalts represent the eruption products of a zoned magma chamber in which light magma, with crustal components contaminated, overlies less contaminated, denser magma. Crustal contamination caused

  15. Magma emplacement in 3D

    NASA Astrophysics Data System (ADS)

    Gorczyk, W.; Vogt, K.

    2017-12-01

    Magma intrusion is a major material transfer process in Earth's continental crust. Yet, the mechanical behavior of the intruding magma and its host are a matter of debate. In this study, we present a series of numerical thermo-mechanical experiments on mafic magma emplacement in 3D.In our model, we place the magmatic source region (40 km diameter) at the base of the mantle lithosphere and connect it to the crust by a 3 km wide channel, which may have evolved at early stages of magmatism during rapid ascent of hot magmatic fluids/melts. Our results demonstrate continental crustal response due to magma intrusion. We observe change in intrusion geometries between dikes, cone-sheets, sills, plutons, ponds, funnels, finger-shaped and stock-like intrusions as well as injection time. The rheology and temperature of the host-rock are the main controlling factors in the transition between these different modes of intrusion. Viscous deformation in the warm and deep crust favours host rock displacement and magma pools along the crust-mantle boundary forming deep-seated plutons or magma ponds in the lower to middle-crust. Brittle deformation in the cool and shallow crust induces cone-shaped fractures in the host rock and enables emplacement of finger- or stock-like intrusions at shallow or intermediate depth. A combination of viscous and brittle deformation forms funnel-shaped intrusions in the middle-crust. Low-density source magma results in T-shaped intrusions in cross-section with magma sheets at the surface.

  16. Unscrambling the Omlette: a New Bubble and Crystal Clustering Mechanism in Chaotically Mixed Magma Flows

    NASA Astrophysics Data System (ADS)

    Robertson, J.; Metcalfe, G.; Wang, S.; Barnes, S. J.

    2014-12-01

    The concentration of bubbles, crystals or droplets into small volumes of magma is a key trigger for many interesting magmatic processes. For example, gas slugs driving Strombolian eruptions form from the coalesence of exsolved bubbles within a volcanic conduit, while Ni-Cu-PGE magmatic sulfide deposits require a concentration of dense sulfide droplets from a large volume of magma to form a massive ore body. However the physical mechanism for this clustering remains unresolved - especially since small particles in active magma flows are expected to mostly track flow streamlines rather than clustering. We have uncovered a previously unreported clustering mechanism which is applicable to magmatic flows. This mechanism involves the interaction of particles with two kinds of chaotic flow structure: (a) high-strain regions within the well-mixed chaotic zones of the flow, and (b) unmixed islands of stability within the chaotic flow, known as Kolmogorov-Arnold-Moser (KAM) regions. The first figure shows the difference between chaotic and KAM regions in a chaotic laminar pipe flow. Trapping occurs when particles are scattered from high-strain regions in the chaotic zones and become trapped in the KAM regions, leading to a rapid concentration of particles relative to their original distribution (shown in the second series of figures). Using a combination of these analogue experiments and theoretical analysis we outline the conditions under which this clustering process can occur. We examine the onset of secondary density-related instabilities and the effects of increased particle-particle interaction within the clustered particles, and highlight the impact of particle clustering on the dynamics of magma ascent and emplacement.

  17. Lower continental crust formation through focused flow in km-scale melt conduits: The zoned ultramafic bodies of the Chilas Complex in the Kohistan island arc (NW Pakistan)

    NASA Astrophysics Data System (ADS)

    Jagoutz, O.; Müntener, O.; Burg, J.-P.; Ulmer, P.; Jagoutz, E.

    2006-02-01

    Whole-rock and Sm-Nd isotopic data of the main units of the Chilas zoned ultramafic bodies (Kohistan paleo-island arc, NW Pakistan) indicate that ultramafic rocks and gabbronorite sequences stem from a common magma. However, field observations rule out formation of both ultramafic and mafic sequences in terms of gravitational crystal settling in a large magma chamber. Contacts between ultramafic and gabbronorite sequences show emplacement of the dunitic bodies into a semi-consolidated gabbronoritic crystal-mush, which in turn has intruded and reacted with the ultramafic rocks to produce concentric zoning. Field and petrological observations indicate a replacive origin of the dunite. Bulk Mg#'s of dunitic rocks range from 0.87-0.81 indicating that the dunite-forming melt underwent substantial fractionation-differentiation and that percolative fractional crystallization probably generated the dunitic core. The REE chemistry of clinopyroxene in primitive dunite samples and the Nd isotopic composition of ultramafic rocks are in equilibrium with the surrounding gabbronorite. Accordingly, liquids that formed the dunitic rocks and later the mafic sequence derived from a similar depleted source ( ɛNd˜4.8). We propose a mechanism for the comagmatic emplacement, where km-scale ultramafic bodies represent continuous channels reaching down into the upper mantle. The melt-filled porosity in these melt channels diminishes the mean-depth-integrated density difference to the surrounding rocks. Due to buoyancy forces, melt channels raise into the overlying crustal sequence. In the light of such processes, the ultramafic bodies are interpreted as melt channels through which the Chilas gabbronorite sequence was fed. The estimated basaltic-andesitic, low Mg# (˜0.53) bulk composition of the Chilas gabbronorite sequence closely matches estimates of lower crustal compositions. Since the mafic sequence originated from a primary, high Mg# (> 0.7) basaltic arc magma, differentiation of

  18. Conduit magma convection of a rhyolitic magma: Constraints from cosmic-ray muon radiography of Iwodake, Satsuma-Iwojima volcano, Japan

    NASA Astrophysics Data System (ADS)

    Shinohara, Hiroshi; Tanaka, Hiroyuki K. M.

    2012-10-01

    Quantitative re-evaluation of the muon radiography data obtained by Tanaka et al. (2009) was conducted to constrain conduit magma convection at the Iwodake rhyolitic cone of Satsuma-Iwojima volcano, Japan. Re-evaluation of the measurement error considering topography and fake muon counts confirms the existence of a low-density body of 300 m in diameter and with 0.9-1.0 g cm-3 at depths of 135-190 m from the summit crater floor. The low-density material is interpreted as rhyolitic magma with 60% vesicularity on average, and existence of this unstable highly vesiculated magma at shallow depth without any recent eruptive or intrusive activity is considered as evidence of conduit magma convection. The structure of the convecting magma column top was modeled based on density calculations of vesiculated ascending and outgassed descending magmas, compared with the observed density anomaly. The existence of the low-density anomaly was confirmed by comparison with published gravity measurements, and the predicted degassing at the shallow magma conduit top agrees with observed heat discharge anomaly distribution localized at the summit area. This study confirms that high viscosity of silicic magmas can be compensated by a large size conduit to cause the conduit magma convection phenomena. The rare occurrence of conduit magma convection in a rhyolitic magma system at Iwodake is suggested to be due to its specific magma features of low H2O content and high temperature.

  19. Magmas and reservoirs beneath the Rabaul caldera (Papua New Guinea)

    NASA Astrophysics Data System (ADS)

    Bouvet de Maisonneuve, C.; Costa Rodriguez, F.; Huber, C.

    2013-12-01

    trace element geochemistry, volatile contents, and the comparison of successive eruptions since 1400 y BP to address the question of whether another potentially caldera-forming magma is presently brewing beneath Rabaul. In addition, we apply kinetic modeling of olivine and plagioclase zoning to the recently erupted products to address the prolonged period of seismic and deformational precursory activity. We estimate that at least 20-35 wt% basalt has mixed with the resident silicic magma at time scales that coincide with the main period of unrest (1971 to 1985).

  20. Detail of interior of compressed air chamber showing top of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of interior of compressed air chamber showing top of working chamber and tie rods that strengthen the outer shell plates of the compression chamber. - Sub Marine Explorer, Located along the beach of Isla San Telmo, Pearl Islands, Isla San Telmo, Former Panama Canal Zone, CZ

  1. Geochemical models of melting and magma storage conditions for basalt lava from Santorini Volcano, Greece

    NASA Astrophysics Data System (ADS)

    Baziotis, Ioannis; Kimura, Jun-Ichi; Pantazidis, Avgoustinos; Klemme, Stephan; Berndt, Jasper; Asimow, Paul

    2017-04-01

    Santorini volcano sits ˜150 km above the Wadati-Benioff zone of the Aegean arc, where the African plate subducts northward beneath the Eurasian continent (Papazachos et al. 2000). Santorini volcano has a long history: activity started ca. 650 ka (mainly rhyolites and rhyodacites), with active pulses following ca. 550 ka (basalt to rhyodacite) and ca. 360 ka (large explosive eruptions of andesite to rhyodacite and minor basalt), culminating in the caldera-forming Bronze-age Minoan event (Druitt et al. 1999). As in many arc volcanoes, scenarios of fractional crystallization with or without mixing between felsic and mafic magmas have been proposed to explain the compositions, textures, and eruptive styles of Santorini products (e.g., Huijsmans & Barton 1989; Montazavi & Sparks 2004; Andújar et al. 2015). Here we focus on a basalt lava from the southern part of Santorini volcano (Balos cove, 36˚ 21.7'N, 25˚ 23.8'E), one of the few basaltic localities in the Aegean arc. The goals are to infer constraints on the magma chamber conditions which lead to mafic eruption at Santorini Volcano and to evaluate the slab and mantle wedge conditions via geochemical and petrological mass balance modelling. We collected and characterised 20 samples for texture (SEM), mineral chemistry (FE-EPMA) and whole-rock chemistry (XRF). The basalts contain phenocrystic olivine (Ol) and clinopyroxene (Cpx) (<600 μm diameter) in a fine groundmass (<100 μm diameter) of Ol, Cpx, plagioclase (Pl) and magnetite (Mt) with minor glass and rare xenocrystic quartz. Santorini basalts exhibit a pilotaxitic to trachytic texture defined by randomly to flow-oriented tabular Pl, respectively. The predominant minerals are calcic Pl (core An78-85 and rim An60-76; 45-50 vol.%), Cpx (En36-48Wo41-44Fs11-21; 10-15 vol.%) and Ol (Fo74-88; 10-12 vol.%). Idiomorphic to subidiomorphic Mt (<10μm diameter) with variable TiO2 contents (1.9-16.5 wt%) is a minor constituent (˜1-2 vol.%) in the less mafic samples

  2. Focused seismicity triggered by flank instability on Kīlauea's Southwest Rift Zone

    NASA Astrophysics Data System (ADS)

    Judson, Josiah; Thelen, Weston A.; Greenfield, Tim; White, Robert S.

    2018-03-01

    Swarms of earthquakes at the head of the Southwest Rift Zone on Kīlauea Volcano, Hawai´i, reveal an interaction of normal and strike-slip faulting associated with movement of Kīlauea's south flank. A relocated subset of earthquakes between January 2012 and August 2014 are highly focused in space and time at depths that are coincident with the south caldera magma reservoir beneath the southern margin of Kīlauea Caldera. Newly calculated focal mechanisms are dominantly dextral shear with a north-south preferred fault orientation. Two earthquakes within this focused area of seismicity have normal faulting mechanisms, indicating two mechanisms of failure in very close proximity (10's of meters to 100 m). We suggest a model where opening along the Southwest Rift Zone caused by seaward motion of the south flank permits injection of magma and subsequent freezing of a plug, which then fails in a right-lateral strike-slip sense, consistent with the direction of movement of the south flank. The seismicity is concentrated in an area where a constriction occurs between a normal fault and the deeper magma transport system into the Southwest Rift Zone. Although in many ways the Southwest Rift Zone appears analogous to the more active East Rift Zone, the localization of the largest seismicity (>M2.5) within the swarms to a small volume necessitates a different model than has been proposed to explain the lineament outlined by earthquakes along the East Rift Zone.

  3. Fractal hierarchies of magma transport in Hawaii and critical self-organization of tremor

    NASA Astrophysics Data System (ADS)

    Shaw, Herbert R.; Chouet, Bernard

    1991-06-01

    A hierarchical model of magma transport in Hawaii is developed from the seismic records of deep (30-60 km) and intermediate-depth (5-15 km) harmonic tremor between January 1, 1962, and December 31, 1983. We find two kinds of spatial distributions of magma fractions at depths below 5 km, defined by the fractal dimension D3, where the subscript is the embedding dimension. The first is a focused distribution with D3 = 0.28, and the second is a dispersed distribution with D3 = 1.52. The former dimension reflects conduitlike structures where the magma flow converges toward a summit magma chamber and the fractal dimension tends to zero. The latter dimension reflects multifractal clustering of dendritic fractures where hypocentral domains represent subsets of fractures within spherical domains with an average radius of about 1 km. These geometries constitute a percolation network of clustered intermittent fracture and magma transport. The magma volume of the average fracture is about 2 × 104 m3. A tremor model of magma transport is developed from mass balances of percolation that are proportional to tremor durations. It gives reasonable magma fractions and residence times for a vertical drift velocity of 4 km yr-1 and yields patterns of intermittency that are in accord with singularity analyses of the 22-year time series record. According to the model, sustained tremor is generated by the relaxation oscillations of the percolation network with a dominant frequency of about 1 Hz to obtain internally consistent values of fracture geometry, fracture opening force, and magma supply rate. Calculated tremor frequencies are higher in fracture networks of small volume in harmony with the observed relation between seismic amplitude and dominant frequency of tremor. Tectonic relaxation times of rock stresses versus magma pressures are in fair agreement with the average length of tremor episodes and average period of tremor intermittencies. These observations suggest that a high

  4. Geochemical reversals within the lower 100 m of the Palisades sill, New Jersey

    NASA Astrophysics Data System (ADS)

    Gorring, Matthew L.; Naslund, H. R.

    1995-03-01

    Transects through the lower part of the Palisades sill were made at Fort Lee and Alpine, New Jersey in order to characterize the petrologic signature of previously proposed “reversals” in the normal, tholeiitic differentiation trend. Petrographic and geochemical data include: (1) modal and grain size analyses, (2) bulk rock major and trace element concentrations by DCP-AES, and (3) augite, orthopyroxene, magnetite, and olivine compositions by electron microprobe analysis. Anomalous horizons, defined by increased bulk rock Mg?, Cr, Ni, and Co concentrations and abrupt modal and grain-size changes, occur at 10 m (the well known olivine zone), 27 m, 45 m, and 95 m above the basal contact. Thermal models coupled with estimates of the emplacement rate and total magma volume indicate that the olivine zone (OZ) is an early-stage feature, related to the emplacement of initial magma into the Palisades chamber. Stoke’s Law calculations indicate that the settling velocity of average-sized olivine crystals in a high-titanium, quartz-normative (HTQ) magma is too slow for significant gravity settling to have occurred prior to the solidification of the basal 20 m of the sill. It is suggested that the OZ resulted from the emplacement of a heterogeneous initial magma from a compositionally stratified, sub-Palisades storage chamber located within the upper crust; however, heterogeneity may have been derived directly from the mantle or during rapid ascent. Geochemical models indicate that the OZ contains accumulated olivine that is not in cotectic (or constant) proportions with the other cumulus phases, suggesting a mechanical sorting process. Magma chamber recharge is proposed to have occurred at the 27 m and 45 m levels, when a slightly more-primitive HTQ magma was injected into the Palisades sill cha- mber. Zones of elevated Mg? and Cr, 6 to 10 m thick, at these two horizons may indicate the thickness of the hybrid magma formed by the mixing of these two compositions

  5. The 2010-2011 Microearthquake Swarm in Krýsuvík, SW Iceland: Was it Triggered by Crustal Magma Injection?

    NASA Astrophysics Data System (ADS)

    Liu, J.; Michael, F.; Hager, B. H.

    2013-12-01

    Iceland, the on-land continuation of the Mid-Atlantic Ridge, is the result of the interaction between the Mid-Atlantic Ridge and the North-Atlantic mantle plume. The superposition and relative motion of the spreading plate boundary over the mantle plume are manifested by the volcanism and seismicity in Iceland. The Krýsuvík geothermal field is one of the most active geothermal fields in southwest Iceland. In 2010, Massachusetts Institute of Technology, Reykjanes University, Uppsala University, and the Iceland Geosurvey (ISOR) deployed 38 temporary seismic stations on the Reykjanes Peninsula. Using data from 18 of the temporary seismic stations and from 5 stations of the South Iceland Lowland network around Krýsuvík, we captured an earthquake swarm that occurred between November, 2010 and February, 2011. We applied double difference tomography to relocate the events and determine the velocity structure in the region. Activity is clustered around the center of the Krýsuvík volcano system. Our seismic tomography result indicates a low velocity zone at a depth of about 6 km, right under the earthquake swarm. We consider that this low velocity zone contains some crustal magma that may be the thermal source for the geothermal field. At the same time, our relocated events delineate faults above and around this magma chamber. The system is within the stress field of a combination of left-lateral shear and extension; the majority of the strike-slip faults are right-lateral and most dip-slip faults are normal faults. Published geodetic measurements for the time period between 2009 and 2012 show a few centimeters uplift and extension in the area of the seismic swarm. We modeled the observed deformation using the Coulomb 3.3 software (U.S. Geological Survey). Our result indicates that a Mogi source of about 20×10^6 m^3 at a depth of about 6 km, consistent with the location and size of the tomography result, can explain the main deformation. The normal and the right

  6. Petrogenesis of the granitic Donkerhuk batholith in the Damara Belt of Namibia: protracted, syntectonic, short-range, crustal magma transfer

    NASA Astrophysics Data System (ADS)

    Clemens, J. D.; Buick, I. S.; Kisters, A. F. M.; Frei, D.

    2017-07-01

    The areally extensive (>5000 km2), syn-tectonic, ca. 520 Ma, mainly S-type Donkerhuk batholith was constructed through injection of thousands of mainly sheet-like magma pulses over 20-25 Myr. It intruded schists of the Southern Zone accretionary prism in the Damara Belt of Namibia. Each magma pulse had at least partly crystallised prior to the arrival of the following batch. However, much of the batholith may have remained partially molten for long periods, close to the H2O-saturated granite solidus. The batholith shows extreme variation in chemistry, while having limited mineralogical variation, and seems to be the world's most heterogeneous granitic mass. The Nd model ages of 2 Ga suggest that Eburnean rocks of the former magmatic arc, structurally overlain by the accretionary wedge, are the most probable magma sources. Crustal melting was initiated by mantle heat flux, probably introduced by thermal diffusion rather than magma advection. The granitic magmas were transferred from source to sink, with minimal intermediate storage; the whole process having occurred in the middle crust, resulting in feeble crustal differentiation despite the huge volume of silicic magma generated. Source heterogeneity controlled variation in the magmas and neither mixing nor fractionation was prominent. However, due to the transpressional emplacement régime, local filter pressing formed highly silicic liquids, as well as felsic cumulate rocks. The case of the Donkerhuk batholith demonstrates that emplacement-level tectonics can significantly influence compositional evolution of very large syn-tectonic magma bodies.

  7. Concomitant skarn and syenitic magma evolution at the margins of the Zippa Mountain pluton

    NASA Astrophysics Data System (ADS)

    Coulson, I. M.; Westphal, M.; Anderson, R. G.; Kyser, T. K.

    2007-07-01

    Zippa Mountain pluton is a Mesozoic concentrically-zoned intrusion, located within the Canadian Cordillera of British Columbia. An extensive phase of K-feldspar bearing syenite grades towards its margins to mela-syenite and clinopyroxenite. This simple pattern of petrological zonation is overprinted by localised occurrences of silica-undersaturated, peralkaline rock types. High-purity wollastonite skarns occur within and peripheral to the intrusion and result from extensive interaction between intrusion-related fluids and Permian limestone/marble, at shallow crustal levels. Field, chemical and isotopic studies provide insights into interaction between a parental syenitic magma and these country rocks. To achieve this, petrological studies of four of the skarn bodies present have been combined with chemical and isotopic data from the pluton, and from drill core through the skarn into the pluton, to reconstruct the stages in the development of wollastonite skarn and progressive magma-country rock interaction. Derivation of peralkaline compositions from the syenitic magma requires either a loss of Si and Al, or addition of Na and/or K. Our studies preclude the addition of alkali elements but highlight extensive Si-infiltration into the limestone, while the conversion of marble to grossular-andradite skarn, indicates Al-infiltration. Fluid egress resulted in de-silicification/de-alumination of the Zippa Mountain magmas, and increased peralkalinity; wollastonite and garnet-bearing skarn formed as a by-product. Hence, the development of peralkaline rock compositions at Zippa Mountain required a parental syenitic magma, and reaction and/or interaction with calcareous country rocks.

  8. Magma surge from the mantle: the Father's Day Eruption, Kīlauea Volcano, Hawai'i

    NASA Astrophysics Data System (ADS)

    Salem, L. C.; Edmonds, M.; Maclennan, J.; Houghton, B. F.; Poland, M. P.

    2015-12-01

    The geometry of the shallow plumbing system of Kīlauea Volcano, Hawai'i, is constrained by both geophysical and petrologic studies, yet the loci of lower crustal magma storage and timescales of magma ascent are almost entirely unknown. The petrography and texture of erupted magmas are largely overprinted by processes in the shallow reservoir and conduit. Direct petrological evidence for lower crustal storage and transport is enigmatic but exists in the form of fine-scale crystal zoning in the cores of olivine phenocrysts, in the geochemical heterogeneity of melt inclusions and in fluid inclusion density. The 2007 Father's Day intrusion and eruption occurred at the culmination of a surge in magma supply to the summit reservoir and during a period of heightened CO2 outgassing flux. The erupted lavas provide an opportunity to analyze atypically primitive melts, with > 8.5 wt% MgO in the whole rock, which have undergone relatively little shallow crustal processing. We characterise melt inclusions and their host olivine crystals through a detailed study of olivine morphology, diffusion modelling, and melt and fluid inclusion geochemistry. We show that the melt inclusions preserve primitive geochemical heterogeneity, which we use to reconstruct fractionation, mixing and degassing processes through the crust. We infer timescales and pressures of magma ascent, storage, and CO2 degassing through the crustal plumbing system. These observations are interpreted in the context of the exceptionally detailed set of volcano monitoring data at Kīlauea Volcano.

  9. Design and evaluation of a restraint-free small animal inhalation dosing chamber.

    PubMed

    McConville, Jason T; Williams, Robert O; Carvalho, Thiago C; Iberg, Aimee N; Johnston, Keith P; Talbert, Robert L; Burgess, David; Peters, Jay I

    2005-01-01

    The aim of research was to design a small, restraint free, low stress animal dosing chamber for inhalation studies, and to investigate distribution of a model drug within the chamber. A small animal dosing chamber was designed that consisted of a polymethylmethacrylate (PMMA) airtight box (40.6 x 11.4 x 21.6 cm) with a hinged top, having a nominal wall thickness of 1.25 cm. The chamber was designed to hold up to 14 mice, each having a floor area of approximately 63 cm2, in accordance with Institutional Animal Care and Use Committee (IACUC) guidelines. A "rodent proof" distribution fan was attached to the center of the hinged closure lid. The chamber was divided into 1 inch2 zones (120 in total) to enable a profile of drug distribution within the chamber to be obtained. Small holes were drilled into the side of the chamber and sealed using Parafilm to allow access to the sampling zones. Syringes (5 mL) with appropriate length polytetrafluoroethylene (PTFE) tubing were inserted into the holes to reach the sampling zones (eight on either side of the chamber giving a total of 16 zones). An aqueous caffeine solution (2% w/v) in glycerol (25% w/v) was prepared and nebulized into the chamber using an Aeroneb Pro nebulizer. Caffeine containing droplets were circulated into the chamber at a flow rate of 1.5 L/min(-1), and the air was recirculated in a closed system for a total of 20 minutes to ensure a high concentration of caffeine droplets throughout. Following nebulization, air samples (5 mL) were withdrawn from the 16 sampling zones of the sealed chamber. The process was repeated in quadruplet until a total of 64 sampling zones had been sampled. The entire experiment was also repeated with the absence of the "rodent-proof" distribution fan. Drug concentrations were calculated from a calibration curve of caffeine using UV absorbance at 272 nm. An average mass of caffeine (Standard Deviation; S.D.) of 5.0 (4.2) mg was detected throughout the chamber when the distribution

  10. Elastostatic effects around a magma reservoir and pathway due to historic earthquakes: a case study of Mt. Fuji, Japan

    NASA Astrophysics Data System (ADS)

    Hosono, Masaki; Mitsui, Yuta; Ishibashi, Hidemi; Kataoka, Jun

    2016-12-01

    We discuss elastostatic effects on Mt. Fuji, the tallest volcano in Japan, due to historic earthquakes in Japan. The 1707 Hoei eruption, which was the most explosive historic eruption of Mt. Fuji, occurred 49 days after the Hoei earthquake (Mw 8.7) along the Nankai Trough. It was previously suggested that the Hoei earthquake induced compression of a basaltic magma reservoir and unclamping of a dike-intruded region at depth, possibly triggering magma mixing and the subsequent Plinian eruption. Here, we show that the 1707 Hoei earthquake was a special case of induced volumetric strain and normal stress changes around the magma reservoir and pathway of Mt. Fuji. The 2011 Tohoku earthquake (Mw 9), along the Japan Trench, dilated the magma reservoir. It has been proposed that dilation of a magma reservoir drives the ascent of gas bubbles with magma and further depressurization, leading to a volcanic eruption. In fact, seismicity notably increased around Mt. Fuji during the first month after the 2011 Tohoku earthquake, even when we statistically exclude aftershocks, but the small amount of strain change (< 1 μ strain) may have limited the ascent of magma. For many historic earthquakes, the magma reservoir was compressed and the magma pathway was wholly clamped. This type of interaction has little potential to mechanically trigger the deformation of a volcano. Thus, Mt. Fuji may be less susceptible to elastostatic effects because of its location relative to the sources of large tectonic earthquakes. As an exception, a possible local earthquake in the Fujikawa-kako fault zone could induce a large amount of magma reservoir dilation beneath the southern flank of Mt. Fuji.

  11. The controlling effect of viscous dissipation on magma flow in silicic conduits

    USGS Publications Warehouse

    Mastin, L.G.

    2005-01-01

    Nearly all volcanic conduit models assume that flow is Newtonian and isothermal. Such models predict that, during high-flux silicic eruptions, gradients in pressure with depth increase upward as magma accelerates and becomes more viscous, leading to extremely low pressure and fragmentation at a depth of kilometers below the surface. In this paper I show that shear heating, also known as viscous dissipation, dramatically reduces the pressure gradient required for flow and concentrates shear in narrow zones along the conduit margin. The reduction in friction may eliminate the zone of low pressure predicted by isothermal models and move the fragmentation level up to the surface.

  12. Re-appraisal of the Magma-rich versus Magma-poor Paradigm at Rifted Margins: consequences for breakup processes

    NASA Astrophysics Data System (ADS)

    Tugend, J.; Gillard, M.; Manatschal, G.; Nirrengarten, M.; Harkin, C. J.; Epin, M. E.; Sauter, D.; Autin, J.; Kusznir, N. J.; McDermott, K.

    2017-12-01

    Rifted margins are often classified based on their magmatic budget only. Magma-rich margins are commonly considered to have excess decompression melting at lithospheric breakup compared with steady state seafloor spreading while magma-poor margins have suppressed melting. New observations derived from high quality geophysical data sets and drill-hole data have revealed the diversity of rifted margin architecture and variable distribution of magmatism. Recent studies suggest, however, that rifted margins have more complex and polyphase tectono-magmatic evolutions than previously assumed and cannot be characterized based on the observed volume of magma alone. We compare the magmatic budget related to lithospheric breakup along two high-resolution long-offset deep reflection seismic profiles across the SE-Indian (magma-poor) and Uruguayan (magma-rich) rifted margins. Resolving the volume of magmatic additions is difficult. Interpretations are non-unique and several of them appear plausible for each case involving variable magmatic volumes and mechanisms to achieve lithospheric breakup. A supposedly 'magma-poor' rifted margin (SE-India) may show a 'magma-rich' lithospheric breakup whereas a 'magma-rich' rifted margin (Uruguay) does not necessarily show excess magmatism at lithospheric breakup compared with steady-state seafloor spreading. This questions the paradigm that rifted margins can be subdivided in either magma-poor or magma-rich margins. The Uruguayan and other magma-rich rifted margins appear characterized by an early onset of decompression melting relative to crustal breakup. For the converse, where the onset of decompression melting is late compared with the timing of crustal breakup, mantle exhumation can occur (e.g. SE-India). Our work highlights the difficulty in determining a magmatic budget at rifted margins based on seismic reflection data alone, showing the limitations of margin classification based solely on magmatic volumes. The timing of

  13. Empirical equations to predict the sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits

    NASA Astrophysics Data System (ADS)

    Li, Chusi; Ripley, Edward M.

    2005-03-01

    Empirical equations to predict the sulfur content of a mafic magma at the time of sulfide saturation have been developed based on several sets of published experimental data. The S content at sulfide saturation (SCSS) can be expressed as: ln X_{text S} = 1.229 - 0.74(10^4/T) - 0.021(P) - 0.311 ln X_{{text{FeO}}} - 6.166X_{{text{SiO}}_{text{2}}} - 9.153X_{{text{Na}}_{text{2}} {text{O + K}}_{text{2}} {text{O}}} - 1.914X_{{text{MgO}}} + 6.594X_{{text{FeO}}} where T is in degrees Kelvin, X is mole fraction and P is in kbar. The squared multiple correlation coefficient ( r 2) for the equation is 0.88. Application of the equation to data from sulfide-saturated mid-ocean ridge basalts (MORB) samples show that the SCSS is closely predicted for primitive MORBs, but that accuracy decreases for lower T (<1,130°C) and more evolved MORB samples. This suggests that because the calibrations are based on anhydrous experimental runs done at temperatures of 1,200°C and above, it is not possible to extrapolate them to significantly lower temperatures and hydrous conditions. Because the SCSS of a primitive MORB magma increases with decreasing P, sulfide saturation in MORB appears to be a function of the degree of en route assimilation of S from country rocks as well as the degree of fractional crystallization in shallow staging chambers. Application of the equation to the high- T impact melt sheet that produced the Sudbury Igneous Complex and associated Ni-Cu sulfide ores indicates that sulfide-saturation was reached at 1,500°C, well above the start of orthopyroxene crystallization at 1,190°C. This would permit ample time for the gravitational settling and collection of immiscible sulfide liquid that produced the high-grade ore bodies. The development of a platinum group element (PGE)-enriched layer in the Sonju Lake Intrusion of the Duluth Complex is thought to be due to the attainment of sulfide saturation in the magma after a period of fractional crystallization. Using the

  14. A cascade of magmatic events during the assembly and eruption of a super-sized magma body

    NASA Astrophysics Data System (ADS)

    Allan, Aidan. S. R.; Barker, Simon J.; Millet, Marc-Alban; Morgan, Daniel J.; Rooyakkers, Shane M.; Schipper, C. Ian; Wilson, Colin J. N.

    2017-07-01

    We use comprehensive geochemical and petrological records from whole-rock samples, crystals, matrix glasses and melt inclusions to derive an integrated picture of the generation, accumulation and evacuation of 530 km3 of crystal-poor rhyolite in the 25.4 ka Oruanui supereruption (New Zealand). New data from plagioclase, orthopyroxene, amphibole, quartz, Fe-Ti oxides, matrix glasses, and plagioclase- and quartz-hosted melt inclusions, in samples spanning different phases of the eruption, are integrated with existing data to build a history of the magma system prior to and during eruption. A thermally and compositionally zoned, parental crystal-rich (mush) body was developed during two periods of intensive crystallisation, 70 and 10-15 kyr before the eruption. The mush top was quartz-bearing and as shallow as 3.5 km deep, and the roots quartz-free and extending to >10 km depth. Less than 600 year prior to the eruption, extraction of large volumes of 840 °C low-silica rhyolite melt with some crystal cargo (between 1 and 10%), began from this mush to form a melt-dominant (eruptible) body that eventually extended from 3.5 to 6 km depth. Crystals from all levels of the mush were entrained into the eruptible magma, as seen in mineral zonation and amphibole model pressures. Rapid translation of crystals from the mush to the eruptible magma is reflected in textural and compositional diversity in crystal cores and melt inclusion compositions, versus uniformity in the outermost rims. Prior to eruption the assembled eruptible magma body was not thermally or compositionally zoned and at temperatures of 790 °C, reflecting rapid cooling from the 840 °C low-silica rhyolite feedstock magma. A subordinate but significant volume (3-5 km3) of contrasting tholeiitic and calc-alkaline mafic material was co-erupted with the dominant rhyolite. These mafic clasts host crystals with compositions which demonstrate that there was some limited pre-eruptive physical interaction of mafic

  15. Crustal Strain Patterns in Magmatic and Amagmatic Early Stage Rifts: Border Faults, Magma Intrusion, and Volatiles

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Keir, D.; Roecker, S. W.; Tiberi, C.; Aman, M.; Weinstein, A.; Lambert, C.; Drooff, C.; Oliva, S. J. C.; Peterson, K.; Bourke, J. R.; Rodzianko, A.; Gallacher, R. J.; Lavayssiere, A.; Shillington, D. J.; Khalfan, M.; Mulibo, G. D.; Ferdinand-Wambura, R.; Palardy, A.; Albaric, J.; Gautier, S.; Muirhead, J.; Lee, H.

    2015-12-01

    Rift initiation in thick, strong continental lithosphere challenges current models of continental lithospheric deformation, in part owing to gaps in our knowledge of strain patterns in the lower crust. New geophysical, geochemical, and structural data sets from youthful magmatic (Magadi-Natron, Kivu), weakly magmatic (Malawi, Manyara), and amagmatic (Tanganyika) sectors of the cratonic East African rift system provide new insights into the distribution of brittle strain, magma intrusion and storage, and time-averaged deformation. We compare and contrast time-space relations, seismogenic layer thickness variations, and fault kinematics using earthquakes recorded on local arrays and teleseisms in sectors of the Western and Eastern rifts, including the Natron-Manyara basins that developed in Archaean lithosphere. Lower crustal seismicity occurs in both the Western and Eastern rifts, including sectors on and off craton, and those with and without central rift volcanoes. In amagmatic sectors, lower crustal strain is accommodated by slip along relatively steep border faults, with oblique-slip faults linking opposing border faults that penetrate to different crustal levels. In magmatic sectors, seismicity spans surface to lower crust beneath both border faults and eruptive centers, with earthquake swarms around magma bodies. Our focal mechanisms and Global CMTs from a 2007 fault-dike episode show a local rotation from ~E-W extension to NE-SE extension in this linkage zone, consistent with time-averaged strain recorded in vent and eruptive chain alignments. These patterns suggest that strain localization via widespread magma intrusion can occur during the first 5 My of rifting in originally thick lithosphere. Lower crustal seismicity in magmatic sectors may be caused by high gas pressures and volatile migration from active metasomatism and magma degassing, consistent with high CO2 flux along fault zones, and widespread metasomatism of xenoliths. Volatile release and

  16. Compositional Zoning in Kilauea Olivine: A Geochemical Tool for Investigating Magmatic Processes at Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Lynn, Kendra J.

    Olivine compositions and zoning patterns have been widely used to investigate the evolution of magmas from their source to the Earthfs surface. Modeling the formation of compositional zoning in olivine crystals has been used to retrieve timescales of magma residence, mixing, and transit. This dissertation is composed of three projects that apply diffusion chronometry principles to investigate how zoned olivine phenocrysts record magmatic processes at Hawaiian volcanoes. Olivine phenocrysts from K.lauea, the most active and thoroughly studied volcano in Hawaiei, are used to develop a better understanding of how Hawaiian olivine crystals record magmatic histories. This work begins by examining how crustal processes such as magma mixing and diffusive reequilibration can modify olivine compositions inherited from growth in parental magmas (Chapter 2). Diffusive re-equilibration of Fe-Mg, Mn, and Ni in olivine crystals overprints the chemical relationships inherited during growth, which strongly impacts interpretations about mantle processes and source components. These issues are further complicated by sectioning effects, where small (400 ƒEm along the c-axis) olivine crystals are more susceptible to overprinting compared to large (800 ƒEm) crystals. Olivine compositions and zoning patterns are then used to show that magmas during K.laueafs explosive Keanak.koei Tephra period (1500-1823 C.E.) were mixed and stored in crustal reservoirs for weeks to months prior to eruption (Chapter 3). Fe-Mg disequilibrium between olivine rims and their surrounding glasses show that a late-stage mixing event likely occurred hours to days prior to eruption, but the exact timescale is difficult to quantify using Fe-Mg and Ni diffusion. Lithium, a rapidly diffusing trace element in olivine, is modeled for the first time in a natural volcanic system to quantify this late-stage, short-duration mixing event (Chapter 4). Lithium zoning in olivine records both growth and diffusion processes

  17. Timescales and conditions of crystallization in the Pokai and Chimpanzee Ignimbrites, Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Connor, M.; Gualda, G. A.; Gravley, D. M.

    2013-12-01

    Silicic magmas give rise to explosive eruptions that are both of scientific and societal interest. The central Taupo Volcanic Zone in New Zealand has been volcanically active for 2 Ma and represents the most active volcanic area in the world today. Particularly intense volcanic activity took place as part of a flare-up event that occurred from ~340 to ~240 ka, when 7 large ignimbrite eruptions took place, as well as many smaller eruptions, which erupted a total of at least 3000 km3 of magma. This project seeks to identify the conditions and timescales over which magma bodies that gave rise to these ignimbrite eruptions evolved. We aim to understand how much of the tens of thousands of years between successive eruptions were characterized by the presence of large bodies of silicic magma within the crust, as well the magma distribution within the crust during those times. We focus on the Chimpanzee and Pokai ignimbrites, which together erupted ~150 km3 of magma. The Pokai ignimbrite erupted at ~275 ka, while the Chimpanzee ignimbrite (undated) erupted between ~320 and 275 ka. Pumice clasts from the Chimpanzee and Pokai ignimbrite were collected in the field. Pumice bulk densities were measured using a submersion technique. Quartz and plagioclase crystals were extracted through a crushing, sieving, and winnowing procedure. Whole crystals were hand-picked under a conventional microscope, mounted on epoxy, and polished to expose grain interiors. Grain mounts were analyzed under an SEM using back-scattered electron, cathodoluminescence (CL), and energy-dispersive x-ray (EDX) imaging. Bulk-densities vary from 0.42 to 0.81 g/cm3 for Pokai and between 0.52 and 0.64 g/cm3 for Chimpanzee pumice clasts. Plagioclase is the dominant crystal phase in both units. Several plagioclase crystals have inclusions of orthopyroxene, ilmenite, magnetite, and zircon, which in some cases form clusters. Quartz is rare but is present in pumice from both deposits. Both plagioclase and quartz

  18. Are recycled carbonates essential to explain light Mg isotopes in magmatic rocks? Insights from Late Cenozoic mantle-derived magmas in Iran

    NASA Astrophysics Data System (ADS)

    Pang, K. N.; Teng, F. Z.; Sun, Y.; Chung, S. L.; Zarrinkoub, M. H.

    2016-12-01

    Mantle-derived magmas at continental collision zones represent probes into the mantle that might have been variably metasomatized prior to collision. To address how and to what extent mantle metasomatism occurred, particularly for the role of recycled carbonates, we conducted a Mg isotopic study of two suites of Late Cenozoic mantle-derived magmas in Iran, part of the Arabia-Eurasia collision zone preceded by the long-lasting Tethyan subduction. The Qal'eh Hasan Ali high-Mg ultrapotassic rocks, low-degree partial melts from the metasomatized lithospheric mantle, have mantle-like δ26Mg (-0.23 to -0.28 ‰) despite high CaO/Al2O3 and Zr/Hf, low Ti/Eu and Hf/Sm, and presence of carbonate globules in devitrified glass indicative of carbonate or carbonatite involvement in their genesis. The absence of light Mg isotopic composition of these rocks indicates that either the recycled carbonates were in the form of calcitic rather than dolomitic melts, or the amount of Mg from the carbonatite was too little to appear in these rocks. The Lut-Sistan alkali basalts, sodic magmas suggested to have derived from low-degree melting of the asthenosphere followed by variable differentiation, display a range of δ26Mg from -0.17 to -0.26 ‰ with three outlying data at -0.37‰, -0.39‰ and -0.56 ‰. The samples with light Mg isotopes do not show greater influence by carbonate or carbonatite in terms of the elemental indices noted above. Instead, they are characterized by lower light and middle REE abundances and slightly lower initial 143Nd/144Nd than the majority of samples. The covariations can be explained by minor incorporation of lower crustal garnet during magma ascent through local thickened crust in the collision zone. We propose that thickened crust where garnet pyroxenites exist is capable of imparting a light Mg isotopic signature to mantle-derived magmas, and that such signature is not unique to the involvement of carbonate or carbonatite in the mantle source.

  19. Chemical Zoning of Feldspars in Lunar Granitoids: Implications for the Origins of Lunar Silicic Magmas

    NASA Technical Reports Server (NTRS)

    Mills, R. D; Simon, J. I.; Alexander, C.M. O'D.; Wang, J.; Christoffersen, R.; Rahman, Z..

    2014-01-01

    Fine-scale chemical and textural measurements of alkali and plagioclase feldspars in the Apollo granitoids (ex. Fig. 1) can be used to address their petrologic origin(s). Recent findings suggest that these granitoids may hold clues of global importance, rather than of only local significance for small-scale fractionation. Observations of morphological features that resemble silicic domes on the unsampled portion of the Moon suggest that local, sizable net-works of high-silica melt (>65 wt % SiO2) were present during crust-formation. Remote sensing data from these regions suggest high concentrations of Si and heat-producing elements (K, U, and Th). To help under-stand the role of high-silica melts in the chemical differentiation of the Moon, three questions must be answered: (1) when were these magmas generated?, (2) what was the source material?, and (3) were these magmas produced from internal differentiation. or impact melting and crystallization? Here we focus on #3. It is difficult to produce high-silica melts solely by fractional crystallization. Partial melting of preexisting crust may therefore also have been important and pos-sibly the primary mechanism that produced the silicic magmas on the Moon. Experimental studies demonstrate that partial melting of gabbroic rock under mildly hydrated conditions can produce high-silica compositions and it has been suggested by that partial melting by basaltic underplating is the mechanism by which high-silica melts were produced on the Moon. TEM and SIMS analyses, coordinated with isotopic dating and tracer studies, can help test whether the minerals in the Apollo granitoids formed in a plutonic setting or were the result of impact-induced partial melting. We analyzed granitoid clasts from 3 Apollo samples: polymict breccia 12013,141, crystalline-matrix breccia 14303,353, and breccia 15405,78

  20. Carbon isotope constraints on degassing of carbon dioxide from Kilauea Volcano

    USGS Publications Warehouse

    Gerlach, T.M.; Taylor, B.E.

    1990-01-01

    We examine models for batch-equilibrium and fractional-equilibrium degassing of CO2 from magma at Kilauea Volcano. The models are based on 1. (1) the concept of two-stage degassing of CO2 from magma supplied to the summit chamber, 2. (2) C isotope data for CO2 in eruptive and noneruptive (quiescent) gases from Kilauea and 3. (3) data for the isotopic fractionation of C between CO2 and C dissolved in tholeiitic basalt melt. The results of our study indicate that 1. (1) both eruptive and noneruptive degassing of CO2 most closely approach a batch equilibrium process, 2. (2) the ??13C of parental magma supplied to the summit chamber is in the range -4.1 to-3.4??? and 3. (3) the ??13C of melt after summit chamber degassing is in the range -7 to -8???, depending upon the depth of equilibration. We also present ??13C data for CO2 in eruptive gases from the current East Rift Zone eruption. These are the first C isotope data for CO2 in high-temperature (>900??C) eruptive gases from Kilauea; they have a mean ??13C value of -7.82 ?? 0.24??? and are similar to those predicted for the melt after summit chamber degassing. The minor role played by fractional degassing of ascending magma at Kilauea means that exsolved CO2 tends to remain entrained in and coherent with its host melt during ascent from both mantle source regions and crustal magma reservoirs. This has important implications for magma dynamics at Kilauea. ?? 1990.

  1. Temporal evolution of granitic magmas in the Luanchuan metallogenic belt, east Qinling Orogen, central China: Implications for Mo metallogenesis

    NASA Astrophysics Data System (ADS)

    Li, Dong; Han, Jiangwei; Zhang, Shouting; Yan, Changhai; Cao, Huawen; Song, Yaowu

    2015-11-01

    The Luanchuan metallogenic belt, located within the eastern part of the Qinling Orogen, central China, hosts a number of world-class Mo deposits that are closely related to small late Mesozoic granitic plutons. Zircon U-Pb dating of distinct plutons in the Luanchuan metallogenic belt has yielded ages of 153 ± 1, 154 ± 2, 152 ± 2, and 148 ± 1 Ma. Molybdenite Re-Os isotopic compositions of Yuku ore district in the southern part of Luanchuan metallogenic belt has yielded an isochron age of 146 ± 1 Ma, which is consistent with the large-scale mineralization ages in the northern part of the Luanchuan metallogenic belt. A combination of previous studies and new geochronological and isotopic data show a concordant temporal and genetic link between granitic magmatism and Mo mineralization in the Luanchuan metallogenic belt, suggesting that this mineralization episode formed the most extensive Mo mineralization belt in the east Qinling Orogen. Zircon grains from Mo-related granitic plutons show similar trace element distributions. High-precision Multi Collector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS) Pb isotope analysis of K-feldspar megacrysts from mineralization-related granites suggest that they were derived from the lower crust. Similarly, the Pb isotopic compositions of pyrite coprecipitated with molybdenite also suggest that the metals were derived form the lower crust, with probably minor mantle contribution. A continuum mineralization model that describes the sourcing of Mo from an evolving granitic magma over successive differentiation events, possibly in separate but connected magma chambers, could explain the remarkable Mo enrichment in the Luanchuan metallogenic belt. The volatile- and Mo-bearing granitic magmas ascended as diapirs from the deep crust, and were emplaced as dikes in the upper crust. Lithological differences between these Mo-bearing granites may relate to different stages in the evolution of individual magmas. Finally, ore

  2. The influence of regional extensional tectonic stress on the eruptive behaviour of subduction-zone volcanoes

    NASA Astrophysics Data System (ADS)

    Tost, M.; Cronin, S. J.

    2015-12-01

    Regional tectonic stress is considered a trigger mechanism for explosive volcanic activity, but the related mechanisms at depth are not well understood. The unique geological setting of Ruapehu, New Zealand, allows investigation on the effect of enhanced regional extensional crustal tension on the eruptive behaviour of subduction-zone volcanoes. The composite cone is located at the southwestern terminus of the Taupo Volcanic Zone, one of the most active silicic magma systems on Earth, which extends through the central part of New Zealand's North Island. Rhyolitic caldera eruptions are limited to its central part where crustal extension is highest, whereas lower extension and additional dextral shear dominate in the southwestern and northeastern segments characterized by andesitic volcanism. South of Ruapehu, the intra-arc rift zone traverses into a compressional geological setting with updoming marine sequences dissected by reverse and normal faults. The current eruptive behaviour of Ruapehu is dominated by small-scaled vulcanian eruptions, but our studies indicate that subplinian to plinian eruptions have frequently occurred since ≥340 ka and were usually preceded by major rhyolitic caldera unrest in the Taupo Volcanic Zone. Pre-existing structures related to the NNW-SSE trending subduction-zone setting are thought to extend at depth and create preferred pathways for the silicic magma bodies, which may facilitate the development of large (>100 km3) dyke-like upper-crustal storage systems prior to major caldera activity. This may cause enhanced extensional stress throughout the entire intra-arc setting, including the Ruapehu area. During periods of caldera dormancy, the thick crust underlying the volcano and the enhanced dextral share rate likely impede ascent of larger andesitic magma bodies, and storage of andesitic melts dominantly occurs within small-scaled magma bodies at middle- to lower-crustal levels. During episodes of major caldera unrest, ascent and

  3. Effects of crystallization and bubble nucleation on the elastic properties of magmas

    NASA Astrophysics Data System (ADS)

    Tripoli, B. A.; Ulmer, P.; Eric, R.; Cordonnier, B.; Burg, J.

    2012-12-01

    Seismic tomography of potentially hazardous volcanoes is a prime tool to assess the physical state of magma reservoirs. Processes occurring in the conduit or in the chamber, such as crystallization and bubble exsolution, control the magma rheology, hence the style of volcanic eruption. Elastic parameters of vapor-saturated, partially molten systems are thus providing fundamental information for the identification of such reservoirs under active and seemingly dormant volcanoes. This knowledge will potentially serve to assess their risk. We present preliminary data on compression and shear wave propagation velocities of a chemically simplified melt analogous to andesite and trachyte, in the system CaO-Na2O-Al2O3-SiO2-H2O-CO2. These ultrasonic velocities are measured simultaneously in a Paterson-type internally-heated gas pressure apparatus at confining pressures up to 300 MPa and temperatures up to 1000°C. Using the pulse transmission technique, the experiments are performed at frequencies ranging from 0.1 to 3 MHz. Variations in the elastic parameters induced by the presence of bubbles or dissolved water in glassy samples are discussed for various pressures and temperatures. As the investigated melt undergoes plagioclase crystallization, a thermal plateau is maintained over specific time duration in order to measure the changes in seismic properties of in-situ crystallizing magmas. This maintained temperature varies between 800° and 1000°C depending on the amount of dissolved water in the system.

  4. Degassing during magma ascent in the Mule Creek vent (USA)

    NASA Astrophysics Data System (ADS)

    Stasiuk, Mark V.; Barclay, Jenni; Carroll, Michael R.; Jaupart, Claude; Ratté, James C.; Sparks, R. Stephen J.; Tait, Stephen R.

    1996-09-01

    The structures and textures of the rhyolite in the Mule Creek vent (New Mexico, USA) indicate mechanisms by which volatiles escape from silicic magma during eruption. The vent outcrop is a 300-m-high canyon wall comprising a section through the top of a feeder conduit, vent and the base of an extrusive lava dome. Field relations show that eruption began with an explosive phase and ended with lava extrusion. Analyses of glass inclusions in quartz phenocrysts from the lava indicate that the magma had a pre-eruptive dissolved water content of 2.5 3.0 wt% and, during eruption, the magma would have been water-saturated over the vertical extent of the present outcrop. However, the vesicularity of the rhyolite is substantially lower than that predicted from closed-system models of vesiculation under equilibrium conditions. At a given elevation in the vent, the volume fraction of primary vesicles in the rhyolite increases from zero close to the vent margin to values of 20 40 vol.% in the central part. In the centre the vesicularity increases upward from approximately 20 vol.% at 300 m below the canyon rim to approximately 40 vol.% at 200 m, above which it shows little increase. To account for the discrepancy between observed vesicularity and measured water content, we conclude that gas escaped during ascent, probably beginning at depths greater than exposed, by flow through the vesicular magma. Gas escape was most efficient near the vent margin, and we postulate that this is due both to the slow ascent of magma there, giving the most time for gas to escape, and to shear, favouring bubble coalescence. Such shear-related permeability in erupting magma is supported by the preserved distribution of textures and vesicularity in the rhyolite: Vesicles are flattened and overlapping near the dense margins and become progressively more isolated and less deformed toward the porous centre. Local zones have textures which suggest the coalescence of bubbles to form permeable

  5. Degassing during magma ascent in the Mule Creek vent (USA)

    USGS Publications Warehouse

    Stasiuk, M.V.; Barclay, J.; Carroll, M.R.; Jaupart, Claude; Ratte, J.C.; Sparks, R.S.J.; Tait, S.R.

    1996-01-01

    The structures and textures of the rhyolite in the Mule Creek vent (New Mexico, USA) indicate mechanisms by which volatiles escape from silicic magma during eruption. The vent outcrop is a 300-m-high canyon wall comprising a section through the top of a feeder conduit, vent and the base of an extrusive lava dome. Field relations show that eruption began with an explosive phase and ended with lava extrusion. Analyses of glass inclusions in quartz phenocrysts from the lava indicate that the magma had a pre-eruptive dissolved water content of 2.5-3.0 wt% and, during eruption, the magma would have been water-saturated over the vertical extent of the present outcrop. However, the vesicularity of the rhyolite is substantially lower than that predicted from closed-system models of vesiculation under equilibrium conditions. At a given elevation in the vent, the volume fraction of primary vesicles in the rhyolite increases from zero close to the vent margin to values of 20-40 vol.% in the central part. In the centre the vesicularity increases upward from approximately 20 vol.% at 300 m below the canyon rim to approximately 40 vol.% at 200 m, above which it shows little increase. To account for the discrepancy between observed vesicularity and measured water content, we conclude that gas escaped during ascent, probably beginning at depths greater than exposed, by flow through the vesicular magma. Gas escape was most efficient near the vent margin, and we postulate that this is due both to the slow ascent of magma there, giving the most time for gas to escape, and to shear, favouring bubble coalescence. Such shear-related permeability in erupting magma is supported by the preserved distribution of textures and vesicularity in the rhyolite: Vesicles are flattened and overlapping near the dense margins and become progressively more isolated and less deformed toward the porous centre. Local zones have textures which suggest the coalescence of bubbles to form permeable

  6. The size-isotopic evolution connection among layered mafic instrusions: Clues from a Sr-Nd isotopic study of a small complex

    NASA Astrophysics Data System (ADS)

    Poitrasson, Franck; Pin, Christian; Duthou, Jean-Louis; Platevoet, Bernard

    1994-05-01

    Several theoretical and experimental works have focused on the processes occuring in continental mafic magma chambers. In contrast, systematic isotopic studies of natural remnants of these latter remain scarce, although they can give fundamental constraints for theoretical studies. This is especially true if different layered complex with contrasting characteristics (e.g., different size) are compared. For this reason, we present the results of a Sr-Nd isotopic profile across a small layered mafic intrusion of Permian age exposed near Fozzano (SW Corsica). In the main zone of the layered section, decreasing Sr-87/Sr(sub i)-86 and increasing Nd-143/Nd(sub i)-144 are observed from less evolved (bottom) to more evolved (top) rocks. This peculiar pattern precludes assimilation and fractional crystallization (AFC) as a dominant mechanism in the petrogenesis of this body. Instead, we interpret this trend as reflecting the dilution of an early stage contaminated magma by several reinjections of fresh basalt in the chamber. In agreement with mineralogical and structural data, every cyclic unit is interpreted as a new magmatic input. On the basis of rough refill and fractional crystallization (RFC) calculations, the average volume for each reinjection is estimated to have been about 0.04 cu km. The cumulative volume of these injections would amount to about 75% of the total volume of the layered complex. This implies that reinjections were accompanied by an important increase of the volume of the chamber or by magma withdrawal by surface eruptions. The RFC mechanism documented within this small layered body constrasts with the isotopic pattern observed between several intrusions at the regional scale in SW Corsica, and within large continental mafic magma chambers elsewhere. In these cases the isotopic evolution is dominated by AFC processes, and there is no clear isotopic evidence for reinjections, unless major influx of fresh magma occurred. It is suggested that there is

  7. Mare basalt magma source region and mare basalt magma genesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binder, A.B.

    1982-11-15

    Given the available data, we find that the wide range of mare basaltic material characteristics can be explained by a model in which: (1) The mare basalt magma source region lies between the crust-mantle boundary and a maximum depth of 200 km and consists of a relatively uniform peridotite containing 73--80% olivine, 11--14% pyroxene, 4--8% plagioclase, 0.2--9% ilmenite and 1--1.5% chromite. (2) The source region consists of two or more density-graded rhythmic bands, whose compositions grade from that of the very low TiO/sub 2/ magma source regions (0.2% ilmenite) to that of the very high TiO/sub 2/ magma source regionsmore » (9% ilmenite). These density-graded bands are proposed to have formed as co-crystallizing olivine, pyroxene, plagioclase, ilmenite, and chromite settled out of a convecting magma (which was also parental to the crust) in which these crystals were suspended. Since the settling rates of the different minerals were governed by Stoke's law, the heavier minerals settled out more rapidly and therefore earlier than the lighter minerals. Thus the crystal assemblages deposited nearest the descending side of each convection cell were enriched in heavy ilmenite and chromite with respect to lighter olivine and pyroxene and very much lighter plagioclase. The reverse being the case for those units deposited near the ascending sides of the convection cells.« less

  8. Consequences of magma eruption dynamics: Intraflow variations in petrography and mineral chemistry within a single eruptive unit from Whitewater Canyon, Oregon

    NASA Astrophysics Data System (ADS)

    Ustunisik, G. K.; Nielsen, R. L.

    2012-12-01

    Individual lava flows are sometimes characterized by progressive changes in petrography and mineral chemistry which have been attributed to progressive magma chamber evacuation. In the case of Whitewater Canyon flow, a glacially quenched andesite unit on the NW flank of Mt. Jefferson, significant changes have been observed in phenocryst content and mineral chemistry within a transect from the early erupted components (inferred by flow morphology to be quenched against glacial ice ~10000 ybp), to the top of the 30 m thick flow unit. With the increasing distance from the quenched interface, the matrix changes from glassy to microcrystalline. The matrix material is generally similar in composition to the glassy melt inclusions rhyolitic in composition yet relatively degassed (lower Cl, S). Based on their morphology, we have identified at least 4 populations of plagioclase phenocrysts within the single flow: (1) Relatively unzoned high An cores (>An80) with oscillatory overgrowth, (2) Lower An cores (An50-60), associated with dacitic melt inclusions, (3) Cellular low An cores (An50-60) with higher An overgrowths (~An65-75), and (4) Lath shaped, sometimes oscillatory zoned moderately high An phenocrysts (An65-75) -often associated with olivine:cpx:plagioclase glomerocrysts. Melt inclusions are present in orthopyroxene and plagioclase, but only in the earliest erupted samples (within 5-10 meters of the quenched interface). This mafic component, characterized by olivine, intermediate plagioclase (An60-75), clinopyroxene, orthopyroxene, and oxides, was present at a range of scales from glomerocrysts to 10 cm+ enclaves. Amphibole and quartz are present only in samples from the interior of the flow unit. The width of reaction rims on amphibole increase as one progress upwards towards the flow interior. Our initial conclusions are this eruptive unit represents the progressive evacuation of a shallow magma chamber where the upper parts of the chamber had already been partially

  9. Magma-tectonic interactions in an area of active extension; a review of recent observations, models and interpretations from Iceland

    NASA Astrophysics Data System (ADS)

    Pedersen, Rikke; Sigmundsson, Freysteinn; Drouin, Vincent; Rafn Heimisson, Elías; Parks, Michelle; Dumont, Stéphanie; Árnadóttir, Þóra; Masterlark, Timothy; Ófeigsson, Benedíkt G.; Jónsdóttir, Kristín; Hooper, Andrew

    2016-04-01

    The geological setting of Iceland provides rich opportunities of studying magma-tectonic interactions, as it constitutes Earth's largest part of the mid-oceanic ridge system exposed above sea level. A series of volcanic and seismic zones accommodate the ~2 cm/year spreading between the North-American and Eurasian plates, and the Icelandic hot-spot conveniently provides the means of exposing this oceanic crust-forming setting above sea-level. Both extinct and active plumbing system structures can be studied in Iceland, as the deeply eroded tertiary areas provide views into the structures of extinct volcanic systems, and active processes can be inferred on in the many active volcanic systems. A variety of volcanic and tectonic processes cause the Icelandic crust to deform continuously, and the availability of contemporaneous measurements of crustal deformation and seismicity provide a powerful data set, when trying to obtain insight into the processes working at depth, such as magma migration through the uppermost lithosphere, magma induced host rock deformation and volcanic eruption locations and styles. The inferences geodetic and seismic datasets allow on the active plate spreading processes and subsurface magma movements in Iceland will be reviewed, in particular in relation to the Northern Volcanic Zone (NVZ). There the three phases of a rifting cycle (rifting, post-rifting, inter-rifting) have been observed. The NVZ is an extensional rift segment, bounded to the south by the Icelandic mantle plume, and to the north by the Tjörnes transform zone. The NVZ has typically been divided into five partly overlapping en-echelon fissure swarms, each with a central main volcanic production area. Most recently, additional insight into controlling factors during active rifting has been provided by the Bárðarbunga activity in 2014-2015 that included a major rifting event, the largest effusive eruption in Iceland since 1783, and a gradual caldera collapse. It is evident

  10. In defense of Magnetite-Ilmenite Thermometry in the Bishop Tuff and its implication for gradients in silicic magma reservoirs

    USGS Publications Warehouse

    Evans, Bernard W; Hildreth, Edward; Bachmann, Olivier; Scaillet, Bruno

    2016-01-01

    Despite claims to the contrary, the compositions of magnetite and ilmenite in the Bishop Tuff correctly record the changing conditions of T and fO2 in the magma reservoir. In relatively reduced (∆NNO < 1) siliceous magmas (e.g., Bishop Tuff, Taupo units), Ti behaves compatibly (DTi ≈ 2-3.5), leading to a decrease in TiO2 activity in the melt with cooling and fractionation. In contrast, FeTi-oxides are poorer in TiO2 in more oxidized magmas (∆NNO > 1, e.g., Fish Canyon Tuff, Pinatubo), and the d(aTiO2)/dT slope can be negative. Biotite, FeTi-oxides, liquid, and possibly plagioclase largely maintained equilibrium in the Bishop Tuff magma (unlike the pyroxenes, and cores of quartz, sanidine, and zircon) prior ro and during a mixing event triggered by a deeper recharge, which, based on elemental diffusion profiles in minerals, took place at least several decades before eruption. Equilibrating phases and pumice compositions show evolving chemical variations that correlate well with mutually consistent temperatures based on the FeTi-oxides, sanidine-plagioclase, and ∆18O quartz-magnetite pairs. Early Bishop Tuff (EBT) temperatures are lower (700 to ~780‎°C) than temperatures (780 to >820°C) registered in Late Bishop Tuff (LBT), the latter defined here not strictly stratigraphically, but by the presence of orthopyroxene and reverse-zoned rims on quartz and sanidine. The claimed similarity in compositions, Zr-saturation temperatures and thermodynamically calculated temperatures (730-740°C) between EBT and less evolved LBT reflect the use of glass inclusions in quartz cores in LBT that were inherited from the low temperature rhyolitic part of the reservoir characteristic of the EBT. LBT temperatures as high as 820°C, the preservation of orthopyroxene, and the presence of reverse-zoned minerals (quartz, sanidine, zircons) are consistent with magma recharge at the base of the zoned reservoir, heating the cooler rhyolitic melt, partly remelting cumulate mush

  11. Oman Ophiolite Structural Constraints Complement Models of Crustal Accretion at the EAST Pacific RISE

    NASA Astrophysics Data System (ADS)

    Nicolas, A. A.; Jousselin, D.; Boudier, F. I.

    2014-12-01

    This review documents significant similarities between East Pacific Rise (EPR), especially EPR at 9°-10°N and the Oman ophiolites. Both share comparable fast spreading rates, size and their dominant source of information that is mainly geophysical in EPR and structural in Oman. In these respects, they are remarkably complementary. Mantle upwelling zones at the EPR and mantle diapirs in Oman have a similar size and spacing. They punctually introduce basaltic melt and heat in the accreting crust, thus controlling elementary segments structure and activity. A tent-shaped magma chamber fits onto the diapir head, the top of which is a Mantle Transition Zone (MTZ) that stores, modifies, and injects the modified melt into the upper Axial Melt Lens (AML) beneath the lid. This MTZ-AML connection is central in crustal accretion, as documented in Oman. Heat from the diapir is captured above the Moho by the magma chamber and escapes through its walls, into a thin thermal boundary layer that bounds the chamber. Beyond, seawater at lower temperatures feeds smokers on the seafloor.

  12. Magma storage and evolution of the most recent effusive and explosive eruptions from Yellowstone Caldera

    NASA Astrophysics Data System (ADS)

    Befus, Kenneth S.; Gardner, James E.

    2016-04-01

    Between 70 and 175 ka, over 350 km3 of high-silica rhyolite magma erupted both effusively and explosively from within the Yellowstone Caldera. Phenocrysts in all studied lavas and tuffs are remarkably homogenous at the crystal, eruption, and caldera-scale, and yield QUILF temperatures of 750 ± 25 °C. Phase equilibrium experiments replicate the observed phenocryst assemblage at those temperatures and suggest that the magmas were all stored in the upper crust. Quartz-hosted glass inclusions contain 1.0-2.5 % H2O and 50-600 ppm CO2, but some units are relatively rich in CO2 (300-600 ppm) and some are CO2-poor (50-200 ppm). The CO2-rich magmas were stored at 90-150 MPa and contained a fluid that was 60-75 mol% CO2. CO2-poor magmas were stored at 50-70 MPa, with a more H2O-rich fluid (X_{{{text{CO}}2 }} = 40-60 %). Storage pressures and volatiles do not correlate with eruption age, volume, or style. Trace-element contents in glass inclusions and host matrix glass preserve a systematic evolution produced by crystal fractionation, estimated to range from 36 ± 12 to 52 ± 12 wt%. Because the erupted products contain <10 wt% crystals, crystal-poor melts likely separated from evolving crystal-rich mushes prior to eruption. In the Tuffs of Bluff Point and Cold Mountain Creek, matrix glass is less evolved than most inclusions, which may indicate that more primitive rhyolite was injected into the reservoir just before those eruptions. The presence and dissolution of granophyre in one flow may record evidence for heating prior to eruption and also demonstrate that the Yellowstone magmatic system may undergo rapid changes. The variations in depth suggest the magmas were sourced from multiple chambers that follow similar evolutionary paths in the upper crust.

  13. Layering in peralkaline magmas, Ilímaussaq Complex, S Greenland

    NASA Astrophysics Data System (ADS)

    Hunt, Emma J.; Finch, Adrian A.; Donaldson, Colin H.

    2017-01-01

    The peralkaline to agpaitic Ilímaussaq Complex, S. Greenland, displays spectacular macrorhythmic (> 5 m) layering via the kakortokite (agpaitic nepheline syenite), which outcrops as the lowest exposed rocks in the complex. This study applies crystal size distribution (CSD) analyses and eudialyte-group mineral chemical compositions to study the marker horizon, Unit 0, and the contact to the underlying Unit - 1. Unit 0 is the best-developed unit in the kakortokites and as such is ideal for gaining insight into processes of crystal formation and growth within the layered kakortokite. The findings are consistent with a model whereby the bulk of the black and red layers developed through in situ crystallisation at the crystal mush-magma interface, whereas the white layer developed through a range of processes operating throughout the magma chamber, including density segregation (gravitational settling and flotation). Primary textures were modified through late-stage textural coarsening via grain overgrowth. An open-system model is proposed, where varying concentrations of halogens, in combination with undercooling, controlled crystal nucleation and growth to form Unit 0. Our observations suggest that the model is applicable more widely to the layering throughout the kakortokite series and potentially other layered peralkaline/agpaitic rocks around the world.

  14. Magma oceanography. I - Thermal evolution. [of lunar surface

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.; Longhi, J.

    1977-01-01

    Fractional crystallization and flotation of cumulate plagioclase in a cooling 'magma ocean' provides the simplest explanation for early emplacement of a thick feldspar-rich lunar crust. The complementary mafic cumulates resulting from the differentiation of such a magma ocean have been identified as the ultimate source of mare basalt liquids on the basis or rare-earth abundance patterns and experimental petrology studies. A study is conducted concerning the thermal evolution of the early differentiation processes. A range of models of increasing sophistication are considered. The models developed contain the essence of the energetics and the time scale for magma ocean differentiation. Attention is given to constraints on a magma ocean, modeling procedures, single-component magma oceans, fractionating magma oceans, and evolving magma oceans.

  15. Distribution of Magma and Hydrothermal Fluids Beneath the Laguna del Maule Volcanic Field, Central Chile Using Magnetotelluric Data

    NASA Astrophysics Data System (ADS)

    Unsworth, M. J.; Cordell, D. R.; Diaz, D.; Reyes, V.

    2016-12-01

    Geodetic data has shown that the surface around the Laguna del Maule volcanic field in central Chile has been moving upwards at rates in excess of 19 cm/yr since 2007 over a 200 km2 area. It has been hypothesized that this ground deformation is due to the inflation of a magma body beneath the lake. InSAR deformation modeling and gravity inversion suggest that the depth to the magma body is between 3 km b.s.l. and 0 km (at sea level). This magma body is a likely source for the large number of rhyolitic eruptions at this location over the last 25 ka. A dense broadband magnetotelluric (MT) array was collected from 2009 to 2015 and inverted using the ModEM inversion algorithm to produce a three-dimensional electrical resistivity model. The presence of a large surface conductor (<0.5 Ωm; 2.3 km a.s.l.) spatially coincident with the lake bed has the potential to attenuate signal and decrease resolution beneath the area of inflation. Additional broadband MT data were collected in 2016 and this new data suggest there is a mid-depth, weakly conductive feature (5 Ωm; 1 km b.s.l.) coincident with the area of maximum inflation which is resolvable despite the low-resistivity surface layer. There are many conductive features which lie on the perimeter of the zone of inflation including a large low-resistivity zone (<5 Ωm) at 5 km depth (3 km b.s.l.) north-west of the lake and a large low-resistivity zone (<10 Ωm) at 5 km depth (3 km b.s.l) north of the lake. The complex, three-dimensional model structure is supported by phase tensor analysis showing poorly-defined strike and high beta skew values (>3) at periods >2 s. The conductive features identified could be interpreted as either hydrothermal systems or magma and further analysis will contribute to better understanding this dynamic system.

  16. An Isotopic Perspective into the Magmatic Evolution and Architecture of the Rift Zones of Kīlauea Volcano

    NASA Astrophysics Data System (ADS)

    Pietruszka, A. J.; Marske, J. P.; Garcia, M. O.; Heaton, D. E.; Rhodes, M. M.

    2016-12-01

    We present Pb, Sr, and Nd isotope ratios for Kīlauea's historical rift zone lavas (n=50) to examine the magmatic evolution and architecture of the volcano's East Rift Zone (ERZ) and Southwest Rift Zone (SWRZ). Our results show that Kīlauea's historical eruptive period was preceded by the delivery of a major batch of magma from the summit reservoir to the ERZ. The timing of this intrusion, most likely in the late 17th century, was probably related to the 300-yr period of explosive eruptions that followed the formation of the modern caldera (Swanson et al., 2012; JVGR). This rift-stored magma was a component in lavas from lower ERZ (LERZ) eruptions in 1790(?), 1840, 1955, and 1960. The only other components in these LERZ lavas are related to summit lavas erupted (1) after the 1924 collapse of Halemáumáu and (2) during episodes of high fountaining at Kīlauea Iki in 1959. Thus, the intrusion of magma from the summit reservoir into the LERZ is a rare occurrence that is tied to major volcanological events. Intrusions from the summit reservoir in the 1960s likely flushed most older, stored magma from the upper ERZ (UERZ) and middle ERZ (MERZ), leaving large pockets of 1960s-era magma to serve as a dominant component in many subsequent rift lavas. An increase in the duration of pre-eruptive magma storage from the UERZ ( 0-7 yr) to the MERZ ( 0-19 yr) to the LERZ (up to 335 yr) is likely controlled by a decrease in the rate of magma supply to the more distal portions of the ERZ. Lavas from several UERZ eruptions in the 1960s and 1970s have a component of mantle-derived magma that bypassed the summit reservoir. There is no evidence for a summit bypass into the MERZ, LERZ, or the volcanically active portion of the SWRZ. These results support a recent model for Kīlauea's plumbing system (Poland et al., 2014; USGS Prof. Pap. 1801): the ERZ is connected to the deeper "South Caldera" magma body and the volcanic SWRZ is connected to the shallower Halemáumáu magma body.

  17. Attenuation in gas-charged magma

    NASA Astrophysics Data System (ADS)

    Collier, L.; Neuberg, J. W.; Lensky, N.; Lyakhovsky, V.; Navon, O.

    2006-05-01

    Low frequency seismic events observed on volcanoes, such as Soufriere Hills Volcano, Montserrat, are thought to be caused by a resonating system. The modelling of seismic waves in gas-charged magma is critical for the understanding of seismic resonance effects in conduits, dykes and cracks. Seismic attenuation, which depends mainly on magma viscosity, gas and crystal content, is an essential factor in such modelling attempts. So far only two-phase gas-melt systems with the assumption of no diffusion and transport of volatiles between the melt and the gas bubbles have been considered. In this study, we develop a method of quantifying attenuation within gas-charged magma, including the effects of diffusion and exsolution of gas into the bubbles. The results show that by including such bubble growth processes attenuation levels are increased within magma. The resulting complex behaviour of attenuation with pressure and frequency indicates that two factors are controlling attenuation, the first due to viscous hindrance or the melt, and the second due diffusion processes. The level of attenuation within a gas-charged magma conduit suggests an upper limit on the length of a resonating conduit section of just a few hundred meters.

  18. Combustion chamber and thermal vapor stream producing apparatus and method

    DOEpatents

    Sperry, John S.; Krajicek, Richard W.; Cradeur, Robert R.

    1978-01-01

    A new and improved method and apparatus for burning a hydrocarbon fuel for producing a high pressure thermal vapor stream comprising steam and combustion gases for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, wherein a high pressure combustion chamber having multiple refractory lined combustion zones of varying diameters is provided for burning a hydrocarbon fuel and pressurized air in predetermined ratios injected into the chamber for producing hot combustion gases essentially free of oxidizing components and solid carbonaceous particles. The combustion zones are formed by zones of increasing diameters up a final zone of decreasing diameter to provide expansion zones which cause turbulence through controlled thorough mixing of the air and fuel to facilitate complete combustion. The high pressure air and fuel is injected into the first of the multiple zones where ignition occurs with a portion of the air injected at or near the point of ignition to further provide turbulence and more complete combustion.

  19. State-of-stress in magmatic rift zones: Predicting the role of surface and subsurface topography

    NASA Astrophysics Data System (ADS)

    Oliva, S. J. C.; Ebinger, C.; Rivalta, E.; Williams, C. A.

    2017-12-01

    Continental rift zones are segmented along their length by large fault systems that form in response to extensional stresses. Volcanoes and crustal magma chambers cause fundamental changes to the density structure, load the plates, and alter the state-of-stress within the crust, which then dictates fracture orientation. In this study, we develop geodynamic models scaled to a < 7 My rift sector in the Eastern rift, East Africa where geophysical imaging provides tight constraints on subsurface structure, petrologic and thermodynamic studies constrain material densities, and seismicity and structural analyses constrain active and time-averaged kinematics. This area is an ideal test area because a 60º stress rotation is observed in time-averaged fault and magma intrusion, and in local seismicity, and because this was the site of a large volume dike intrusion and seismic sequence in 2007. We use physics-based 2D and 3D models (analytical and finite elements) constrained by data from active rift zones to quantify the effects of loading on state-of-stress. By modeling varying geometric arrangements, and density contrasts of topographic and subsurface loads, and with reasonable regional extensional forces, the resulting state-of-stress reveals the favored orientation for new intrusions. Although our models are generalized, they allow us to evaluate whether a magmatic system (surface and subsurface) can explain the observed stress rotation, and enable new intrusions, new faults, or fault reactivation with orientations oblique to the main border faults. Our results will improve our understanding of the different factors at play in these extensional regimes, as well as contribute to a better assessment of the hazards in the area.

  20. 238U sbnd 230Th sbnd 226Ra disequilibria in young Mount St. Helens rocks: time constraint for magma formation and crystallization

    NASA Astrophysics Data System (ADS)

    Volpe, Alan M.; Hammond, Paul E.

    1991-12-01

    We use 238U-series nuclides and 230Th/ 232Th ratios measured by mass spectrometry to constrain processes and time scales of calc-alkaline magma genesis at Mount St. Helens, Washington. Olivine basalt, pyroxene andesites and dacites that erupted 10-2 ka ago show 3-14% ( 230Th) sbnd ( 238U) and 6-54% 226Ra sbnd 230Th disequilibria. Mineral phases exhibit robust ( 226Ra) sbnd ( 230Th) fractionation. Plagioclase has large 65-280% ( 226Ra) excesses, and magnetite has large 65% ( 226Ra) deficits relative to ( 230Th). Calculated partition coefficients for Ba, Th, and U in mineral-groundmass pairs, except Ba in plagioclase, are low (⩽ 0.04). Correlation between ( 226Ra/ 230Th ) activity ratios and rm/BaTh element ratios in the minerals suggests that 226Ra partitions similar to Ba during crystallization. Internal ( 230Th) sbnd ( 238U) isochrons for 1982 summit and East Dome dacites and Goat Rocks and Kalama andesites show that closed Th sbnd U system fractionation occurred 2-6 ka ago. Apparent internal isochrons for Castle Creek basalt (34 ka) and andesite (27 ka) suggest longer magma chamber residence times and mixing of old crystals and young melt. Mineral ( 226Ra) sbnd ( 230Th) disequilibrium on Ba-normalized internal isochron diagrams suggests average magma chamber residence times of 500-3000 years. In addition, radioactive ( 226Ra/ 230Th ) heterogeneity between minerals and groundmass or whole rock is evidence for open-system Ra sbnd Th behavior. This heterogeneity suggests there has been recent, post-crystallization, changes in melt chemical composition that affected 226Ra more than 230Th. Clearly, magma fractionation, residence and transport of crystal-melt before eruption of chemically diverse lavas at Mount St. Helens occurs over geologically short periods.

  1. Melt inclusion shapes: Timekeepers of short-lived giant magma bodies

    DOE PAGES

    Pamukcu, Ayla S.; Gualda, Guilherme A. R.; Bégué, Florence; ...

    2015-09-24

    The longevity of giant magma bodies in the Earth’s crust prior to eruption is poorly constrained, but recognition of short time scales by multiple methods suggests that the accumulation and eruption of these giant bodies may occur rapidly. We describe a new method that uses textures of quartz-hosted melt inclusions, determined using quantitative three-dimensional propagation phase-contrast X-ray tomography, to estimate quartz crystallization times and growth rates, and we compare the results to those from Ti diffusion profiles. We investigate three large-volume, high-silica rhyolite eruptions: the 240 ka Ohakuri-Mamaku and 26.5 ka Oruanui (Taupo Volcanic Zone, New Zealand), and the 760more » ka Bishop Tuff (California, USA). Our results show that (1) longevity estimates from melt inclusion textures and Ti diffusion profiles are comparable, (2) quartz growth rates average ∼10−12 m/s, and (3) quartz melt inclusions give decadal to centennial time scales, revealing that giant magma bodies can develop over notably short historical time scales.« less

  2. Radiographic visualization of magma dynamics in an erupting volcano.

    PubMed

    Tanaka, Hiroyuki K M; Kusagaya, Taro; Shinohara, Hiroshi

    2014-03-10

    Radiographic imaging of magma dynamics in a volcanic conduit provides detailed information about ascent and descent of magma, the magma flow rate, the conduit diameter and inflation and deflation of magma due to volatile expansion and release. Here we report the first radiographic observation of the ascent and descent of magma along a conduit utilizing atmospheric (cosmic ray) muons (muography) with dynamic radiographic imaging. Time sequential radiographic images show that the top of the magma column ascends right beneath the crater floor through which the eruption column was observed. In addition to the visualization of this magma inflation, we report a sequence of images that show magma descending. We further propose that the monitoring of temporal variations in the gas volume fraction of magma as well as its position in a conduit can be used to support existing eruption prediction procedures.

  3. Radiographic visualization of magma dynamics in an erupting volcano

    PubMed Central

    Tanaka, Hiroyuki K. M.; Kusagaya, Taro; Shinohara, Hiroshi

    2014-01-01

    Radiographic imaging of magma dynamics in a volcanic conduit provides detailed information about ascent and descent of magma, the magma flow rate, the conduit diameter and inflation and deflation of magma due to volatile expansion and release. Here we report the first radiographic observation of the ascent and descent of magma along a conduit utilizing atmospheric (cosmic ray) muons (muography) with dynamic radiographic imaging. Time sequential radiographic images show that the top of the magma column ascends right beneath the crater floor through which the eruption column was observed. In addition to the visualization of this magma inflation, we report a sequence of images that show magma descending. We further propose that the monitoring of temporal variations in the gas volume fraction of magma as well as its position in a conduit can be used to support existing eruption prediction procedures. PMID:24614612

  4. Magma Intrusion at Mount St. Helens, Washington, from Temporal Gravity Variations

    NASA Astrophysics Data System (ADS)

    Battaglia, Maurizio; Lisowski, Mike; Dzursin, Dan; Poland, Mike; Schilling, Steve; Diefenbach, Angie; Wynn, Jeff

    2017-04-01

    Mount St. Helens is a stratovolcano in the Pacific Northwest region of the United States, best known for its explosive eruption in May 1980 - deadliest and most economically destructive volcanic event in US history. Volcanic activity renewed in September 2004 with a dome forming eruption that lasted until 2008. This eruption was surprising because the preceding four years had seen the fewest earthquakes and no significant deformation since the 1980-86 eruption ended. After the dome forming eruption ended in July 2008, the volcano seismic activity and deformation went back to background values. Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. A high-precision gravity monitoring network (referenced to a base station 36 km NW of the volcano) was set up at Mount St Helens in 2010. Measurements were made at 12 sites on the volcano (at altitudes between 1200 and 2350 m a.s.l.) and 4 sites far afield during the summers of 2010, 2012, and 2014. The repeated gravity measurements revealed an increase in gravity between 2010 and 2014. Positive residual gravity anomalies remained after accounting for changes in surface height, in the Crater Glacier, and in the shallow hydrothermal aquifer. The pattern of residual gravity changes, with a maximum of 57±12 μGal from 2010 to 2014, is radially symmetric and centered on the 2004-08 lava dome. Inversion of the residual gravity signal points to a source 2.5-4 km beneath the crater floor (i.e., in the magma conduit that fed eruptions in 1980-86 and 2004-08). We attribute the gravity increase to re-inflation of the magma plumbing system following the 2004-8 eruption. Recent seismic activity (e.g., the seismic swarm of March 2016) has been interpreted as a response to the slow recharging of the volcano magma chamber.

  5. Rethinking Volcanic Plumbing Systems: The Prevalence of Offset Magma Reservoirs at Holocene Volcanoes

    NASA Astrophysics Data System (ADS)

    Lerner, A. H.; Karlstrom, L.; Hurwitz, S.; Anderson, K. R.; Ebmeier, S. K.

    2016-12-01

    Mechanical models of volcanic overpressure and interpretations of volcanic deposits are generally rooted in the classic paradigm of a magma reservoir being located directly beneath the main topographic high and central conduit of a volcano. We test this framework against recent decades of research on volcanic deformation, seismic tomography, earthquake hypocenter locations, and magnetotellurics, which have provided unprecedented geophysical views of volcanic plumbing systems. In a literature survey of Holocene strato- and shield volcanoes in arc, backarc, continental rift, and intraplate settings, we find that shallow to mid-crustal (< 20 km) magma reservoirs are equally likely to be laterally offset from principle volcanic edifices (n = 20) as they are to be centrally located beneath volcanic topographic highs (n = 19). We classify offset reservoirs as having imaged or modeled centroids that are at least 2 km laterally offset from the central volcanic edifice. The scale and geometry of offset magma reservoirs range widely, with a number of systems having discrete reservoirs laterally offset up to 15 km from the main volcanic edifice, at depths of 2 to 15 km. Other systems appear to have inclined magmatic reservoirs and/or fluid transport zones that continuously extend from beneath the main edifice to lateral distances up to 20 km, at depths of 3 to 18 km. Additionally, over a third of the studied systems have small, centrally located shallow magma or fluid reservoirs at depths of 1 to 5 km. Overall, we find that offset magma reservoirs are more common than is classically perceived, and offset reservoirs are more prevalent in intermediate to evolved stratovolcanoes (19 of 28) than in basaltic shield volcanoes (2 of 7). The reason for the formation of long-lived edifices that are offset from their source magma reservoir(s) is an open question; correlation to regional principal stresses or local tectonics, edifice size, lithology, and morphology, and climate may

  6. Two-Stage Magma Mixing and Initial Phase of the 1667 Plinian Eruption of Tarumai Volcano

    NASA Astrophysics Data System (ADS)

    Tomiya, A.; Takeuchi, S.

    2009-12-01

    Plinian eruptions can eject high-viscosity low-T magma with high crystal content. Several mechanisms have been proposed, such as remobilization by addition of volatile from high-T magma (Bachmann & Bergantz, 2006) and precursory eruption of low-viscosity hybrid magma between low-T and high-T magmas (Pallister et al., 1996; Takeuchi & Nakamura, 2001). We discuss this matter by analysis on a Plinian eruption of Tarumai Volcano. Tarumai (Tarumae) is one of the most active volcanoes in Japan. The 1667 eruption is the first one in historical time after thousands of years of dormancy, and one of the largest eruptions (VEI 5) in the volcano (Soya & Sato, 1980). The major eruptive product, Ta-b pumice, is andesite, consisting of abundant phenocrysts (20-40 %) and rhyolitic glass (Soya, 1971; Furukawa, 1998; Nakagawa et al., 2006). Hiraga & Nakagawa (2000) reported that the bulk rock was homogeneous (SiO2 = 58-62 wt.%) from subunit b8 (lower) to b1 (upper). On the other hand, Takeuchi (2001) found that the bottom layer of b8 (b8-bottom) was more mafic (SiO2 = 56-58 wt.%) and interpreted it as precursory hybrid magma. We analyzed phenocrysts in b8-bottom and other subunits of Ta-b, and compared their compositions and textures. The followings are obtained. Plagioclase: the compositions and textures are similar among the subunits; some phenocrysts are calcic with a homogeneous core of An > 90, whereas most have a complex texture with An 65 to 75. Orthopyroxene/clinopyroxene: the compositions and textures are similar among the subunits; most phenocrysts have a homogeneous core of Mg* 62 to 68 for orthopyroxene and Mg* 70 to 74 for clinopyroxene; those in b8-bottom show reverse zonings. Olivine: there are few phenocrysts and they often coexist with the calcic plagioclase. Magnetite: the compositions are homogeneous (Usp 30 to 34, Mg/Mn 5 to 7; type-1) except for those in b8-bottom; there are two types of phenocrysts in b8-bottom, Usp 30 to 34, Mg/Mn 7 to 9 (type-2) and Usp 23 to

  7. Crystallisation ages in coeval silicic magma bodies: 238U-230Th disequilibrium evidence from the Rotoiti and earthquake flat eruption deposits, Taupo volcanic zone, New Zealand

    USGS Publications Warehouse

    Charlier, B.L.A.; Peate, D.W.; Wilson, C.J.N.; Lowenstern, J. B.; Storey, M.; Brown, S.J.A.

    2003-01-01

    The timescales over which moderate to large bodies of silicic magma are generated and stored are addressed here by studies of two geographically adjacent, successive eruption deposits in the Taupo Volcanic Zone, New Zealand. The earlier, caldera-forming Rotoiti eruption (>100 km3 magma) at Okataina volcano was followed, within months at most, by the Earthquake Flat eruption (??? 10 km3 magma) from nearby Kapenga volcano; both generated nonwelded ignimbrite and coeval widespread fall deposits. The Rotoiti and Earthquake Flat deposits are both crystal-rich high-silica rhyolites, with sparse glass-bearing granitoid fragments also occurring in Rotoiti lag breccias generated during caldera collapse. Here we report 238U-230Th disequilibrium data on whole rocks and mineral separates from representative Rotoiti and Earthquake Flat pumices and the co-eruptive Rotoiti granitoid fragments using TIMS and in situ zircon analyses by SIMS. Multiple-grain zircon-controlled crystallisation ages measured by TIMS from the Rotoiti pumice range from 69??3 ka ( 350 ka, with a pronounced peak at 70-90 ka. The weighted mean of isochrons is 83??14 ka, in accord with the TIMS data. One glass-bearing Rotoiti granitoid clast yielded an age of 57??8 ka by TIMS (controlled by Th-rich phases that, however, are not apparently present in the juvenile pumices). Another glass-bearing Rotoiti granitoid yielded SIMS zircon model ages peaking at 60-90 ka, having a similar age distribution to the pumice. Age data from pumices are consistent with a published 64??4 ka eruptive age (now modified to 62??2 ka), but chemical and/or mineralogical data imply that the granitoid lithics are not largely crystalline Rotoiti rhyolite, but instead represent contemporaneous partly molten intrusions reflecting different sources in their chemistries and mineralogies. Similarly, although the Earthquake Flat eruption immediately followed (and probably was triggered by) the Rotoiti event, age data from juvenile material

  8. Wall Rock Assimilation and Magma Migration in the Sierra Nevada Batholith: A Study of the Courtright Intrusive Zone, Central California

    NASA Astrophysics Data System (ADS)

    Torrez, G.; Putirka, K. D.

    2010-12-01

    The Sierra Nevada Batholith is composed of various plutons that interact with each other, and with pre- and syn-batholith metamorphic rocks. In the central part of the Sierra Nevada Batholith, at Courtright Reservoir in California, the younger Mt. Givens Pluton (87-93 Ma; McNulty et al., 2000) intrudes the Dinkey pluton (103 Ma; Bateman et al., 1964), and metasediments (a metamorphic screen) that, in places, separate the two plutons. This Courtright Reservoir Intrusive zone, as termed by Bateman et al. (1964), provides an ideal setting to examine the dynamics of intrusion and assimilation. Whole rock major and trace element compositions of the plutons, their mafic enclaves, and the metasediments, show that all such samples, from both plutons, fall on a single mixing trend. We thus infer that magmas parental to both plutons were roughly similar in composition, and assimilated significant amounts of the same, or very similar metasedimentary wall rocks. We also examined changes in whole rock compositions within the Mt. Givens pluton, as a function of distance from the two rock units with which it is now in contact (the metasediments, and the Dinkey Creek). In the vicinity of the contact between are an abundance of enclaves that are rounded, and appear to have been transported in vertical pipes. Whole rock analysis of the host granitoid material that surrounds these enclaves is clearly more mafic than the granitoid magmas from interior parts of the pluton. These whole rock compositions indicate that the pluton becomes more homogenous moving away from the contact, with a compositional decay occurring over a span of about 50-100 m. There are at least two possible interpretations. The compositional decay may represent a diffusive exchange of mass between an early crystallizing marginal phase of the pluton and the pluton interior. Another (not mutually incompatible) possibility is that the mafic margins represent pipes or tubes (Paterson, 2010), related to some convective

  9. Topography and tectonics of mid-oceanic ridge axes

    NASA Technical Reports Server (NTRS)

    Sleep, N. H.; Rosendahl, B. R.

    1979-01-01

    Numerical fluid dynamic models of mid-oceanic ridge axes were constructed using distributions of material properties constrained by seismic studies and thermal calculations. The calculations indicate that spreading is passive except for forces caused by density differences due to thermal expansion and partial melt. Except for geometric differences due to temperature distribution, one set of mechanical properties can adequately explain central rifts of slow ridges and central peaks of fast ridges. Viscous head loss in the upwelling material dominates at low spreading rates where material ascends through a narrow conduit. Thermal expansion and partial melting dominate at high spreading rates where a wide low viscosity crustal magma chamber is present. The preferred rheology is 10 to the 20th poise for the upwelling lithosphere; less than 5 x 10 to the 17th for the crustal magma chamber and axial intrusion zone at fast ridges, and a yield stress of 200 bars for the lithosphere. The calculation correctly predicts the existence of central peaks at 'hot-spot' ridges, where seismic evidence indicates a large magma chamber.

  10. Seismic Tremors and Three-Dimensional Magma Wagging

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Bercovici, D.

    2015-12-01

    Seismic tremor is a feature shared by many silicic volcanoes and is a precursor of volcanic eruption. Many of the characteristics of tremors, including their frequency band from 0.5 Hz to 7 Hz, are common for volcanoes with very different geophysical and geochemical properties. The ubiquitous characteristics of tremor imply that it results from some generation mechanism that is common to all volcanoes, instead of being unique to each volcano. Here we present new analysis on the magma-wagging mechanism that has been proposed to generate tremor. The model is based on the suggestion given by previous work (Jellinek & Bercovici 2011; Bercovici et.al. 2013) that the magma column is surrounded by a compressible, bubble-rich foam annulus while rising inside the volcanic conduit, and that the lateral oscillation of the magma inside the annulus causes observable tremor. Unlike the previous two-dimensional wagging model where the displacement of the magma column is restricted to one vertical plane, the three-dimensional model we employ allows the magma column to bend in different directions and has angular motion as well. Our preliminary results show that, without damping from viscous deformation of the magma column, the system retains angular momentum and develops elliptical motion (i.e., the horizontal displacement traces an ellipse). In this ''inviscid'' limit, the magma column can also develop instabilities with higher frequencies than what is found in the original two-dimensional model. Lateral motion can also be out of phase for various depths in the magma column leading to a coiled wagging motion. For the viscous-magma model, we predict a similar damping rate for the uncoiled magma column as in the two-dimensional model, and faster damping for the coiled magma column. The higher damping thus requires the existence of a forcing mechanism to sustain the oscillation, for example the gas-driven Bernoulli effect proposed by Bercovici et al (2013). Finally, using our new 3

  11. Deducing Water Concentrations in the Parent Magma of Cumulate Clinopyroxene and Olivine: Implications for a Hydrous Parent Melt of a Primitive Deccan Lava

    NASA Astrophysics Data System (ADS)

    Seaman, S. J.

    2017-12-01

    Water concentrations of clinopyroxene megacrysts in the Powai ankaramite flow, located near Mumbai, Deccan province, India, indicate that the parent magma of the flow hosted at least 4.3 wt.% water, an unusually high water concentration for a continental flood basalt magma. The Powai flow hosts clinopyroxene and olivine phenocrysts. Chatterjee and Sheth (2015) showed that phenocrysts in the flow were part of a cumulate layer intruded by basaltic melt at 6 kb and 1230oC, so the phenocrysts record characteristics of the cumulate parent melt. Clinopyroxene phenocrysts are oscillatorily zoned in water, Mg, Fe, and Ca concentrations, and have concentric bands 100-200 microns thick of 10-20 micron diameter melt inclusions. Olivine phenocrysts host only larger isolated melt inclusions. Zones in the cpx phenocrysts where melt inclusion-rich concentric bands occur have higher concentrations of water than inclusion-free zones. Water concentrations of cpx were used to calculate water concentrations in the melt from which the crystals formed using partition coefficients of Hauri et al. (2004). Water concentrations in the parent magma were between 4.3 and 8.2 wt. % based on water concentrations in cpx. Both Mg and Fe are relatively depleted in the water- and melt inclusion-rich zones in cpx, and Ca is enriched in these zones. Oscillatory zoning in cpx may be a result of repeated growth of cpx in water- richer and water-poorer boundary layers where water lowered melt viscosity and enhanced diffusion and crystal growth rates. Water-enhanced growth rates may have resulted in capture of melt inclusions preserved in water-rich cpx zones. Melt inclusions in olivine phenocrysts preserve lower water concentrations ( 1.2 wt. %) than those indicated by water concentration in cpx phenocrysts. This disparity may be evidence of water loss from melt inclusions in olivine (Gaetani et al., 2009) or may indicate that cpx and ol crystals did not crystallize from the same parent at the same time.

  12. Constraints on dike propagation from continuous GPS measurements

    NASA Astrophysics Data System (ADS)

    Segall, Paul; Cervelli, Peter; Owen, Susan; Lisowski, Mike; Miklius, Asta

    2001-09-01

    The January 1997 East Rift Zone eruption on Kilauea volcano, Hawaii, occurred within a network of continuous Global Positioning System (GPS) receivers. The GPS measurements reveal the temporal history of deformation during dike intrusion, beginning ˜8 hours prior to the onset of the eruption. The dike volume as a function of time, estimated from the GPS data using elastic Green's functions for a homogeneous half-space, shows that only two thirds of the final dike volume accumulated prior to the eruption and the rate of volume change decreased with time. These observations are inconsistent with simple models of dike propagation, which predict accelerating dike volume up to the time of the eruption and little or no change thereafter. Deflationary tilt changes at Kilauea summit mirror the inferred dike volume history, suggesting that the rate of dike propagation is limited by flow of magma into the dike. A simple, lumped parameter model of a coupled dike magma chamber system shows that the tendency for a dike to end in an eruption (rather than intrusion) is favored by high initial dike pressures, compressional stress states, large, compressible magma reservoirs, and highly conductive conduits linking the dike and source reservoirs. Comparison of model predictions to the observed dike volume history, the ratio of erupted to intruded magma, and the deflationary history of the summit magma chamber suggest that most of the magma supplied to the growing dike came from sources near to the eruption through highly conductive conduits. Interpretation is complicated by the presence of multiple source reservoirs, magma vesiculation and cooling, as well as spatial variations in dike-normal stress. Reinflation of the summit magma chamber following the eruption was measured by GPS and accompanied a rise in the level of the Pu'u O'o lava lake. For a spheroidal chamber these data imply a summit magma chamber volume of ˜20 km3, consistent with recent estimates from seismic

  13. Constraints on dike propagation from continuous GPS measurements

    USGS Publications Warehouse

    Segall, P.; Cervelli, Peter; Owen, S.; Lisowski, M.; Miklius, Asta

    2001-01-01

    The January 1997 East Rift Zone eruption on Kilauea volcano, Hawaii, occurred within a network of continuous Global Positioning System (GPS) receivers. The GPS measurements reveal the temporal history of deformation during dike intrusion, beginning ??? 8 hours prior to the onset of the eruption. The dike volume as a function of time, estimated from the GPS data using elastic Green's functions for a homogeneous half-space, shows that only two thirds of the final dike volume accumulated prior to the eruption and the rate of volume change decreased with time. These observations are inconsistent with simple models of dike propagation, which predict accelerating dike volume up to the time of the eruption and little or no change thereafter. Deflationary tilt changes at Kilauea summit mirror the inferred dike volume history, suggesting that the rate of dike propagation is limited by flow of magma into the dike. A simple, lumped parameter model of a coupled dike magma chamber system shows that the tendency for a dike to end in an eruption (rather than intrusion) is favored by high initial dike pressures, compressional stress states, large, compressible magma reservoirs, and highly conductive conduits linking the dike and source reservoirs. Comparison of model predictions to the observed dike volume history, the ratio of erupted to intruded magma, and the deflationary history of the summit magma chamber suggest that most of the magma supplied to the growing dike came from sources near to the eruption through highly conductive conduits. Interpretation is complicated by the presence of multiple source reservoirs, magma vesiculation and cooling, as well as spatial variations in dike-normal stress. Reinflation of the summit magma chamber following the eruption was measured by GPS and accompanied a rise in the level of the Pu'u O'o lava lake. For a spheroidal chamber these data imply a summit magma chamber volume of ??? 20 km3, consistent with recent estimates from seismic

  14. The evolution of magma during continental rifting: New constraints from the isotopic and trace element signatures of silicic magmas from Ethiopian volcanoes

    NASA Astrophysics Data System (ADS)

    Hutchison, William; Mather, Tamsin A.; Pyle, David M.; Boyce, Adrian J.; Gleeson, Matthew L. M.; Yirgu, Gezahegn; Blundy, Jon D.; Ferguson, David J.; Vye-Brown, Charlotte; Millar, Ian L.; Sims, Kenneth W. W.; Finch, Adrian A.

    2018-05-01

    Magma plays a vital role in the break-up of continental lithosphere. However, significant uncertainty remains about how magma-crust interactions and melt evolution vary during the development of a rift system. Ethiopia captures the transition from continental rifting to incipient sea-floor spreading and has witnessed the eruption of large volumes of silicic volcanic rocks across the region over ∼45 Ma. The petrogenesis of these silicic rocks sheds light on the role of magmatism in rift development, by providing information on crustal interactions, melt fluxes and magmatic differentiation. We report new trace element and Sr-Nd-O isotopic data for volcanic rocks, glasses and minerals along and across active segments of the Main Ethiopian (MER) and Afar Rifts. Most δ18 O data for mineral and glass separates from these active rift zones fall within the bounds of modelled fractional crystallization trajectories from basaltic parent magmas (i.e., 5.5-6.5‰) with scant evidence for assimilation of Pan-African Precambrian crustal material (δ18 O of 7-18‰). Radiogenic isotopes (εNd = 0.92- 6.52; 87Sr/86Sr = 0.7037-0.7072) and incompatible trace element ratios (Rb/Nb <1.5) are consistent with δ18 O data and emphasize limited interaction with Pan-African crust. However, there are important regional variations in melt evolution revealed by incompatible elements (e.g., Th and Zr) and peralkalinity (molar Na2 O +K2 O /Al2O3). The most chemically-evolved peralkaline compositions are associated with the MER volcanoes (Aluto, Gedemsa and Kone) and an off-axis volcano of the Afar Rift (Badi). On-axis silicic volcanoes of the Afar Rift (e.g., Dabbahu) generate less-evolved melts. While at Erta Ale, the most mature rift setting, peralkaline magmas are rare. We find that melt evolution is enhanced in less mature continental rifts (where parental magmas are of transitional rather than tholeiitic composition) and regions of low magma flux (due to reduced mantle melt productivity

  15. On the longevity of silicic magma based on multi-isotope investigation of zircons and modeling their survivals destinies

    NASA Astrophysics Data System (ADS)

    Bindeman, I. N.; Wotzlaw, J. F.; Melnik, O. E.

    2015-12-01

    rheology plays a more important role than magma buyoncy. The runaway batch assembly process creates temporally very high magma production rates, orders of magnitude higher than for arc volcanoes. Such views have implication for the state of the magma chamber under Yellowstone and similar supervolcanoes elsewhere.

  16. Fractionation products of basaltic komatiite magmas at lower crustal pressures: implications for genesis of silicic magmas in the Archean

    NASA Astrophysics Data System (ADS)

    Mandler, B. E.; Grove, T. L.

    2015-12-01

    Hypotheses for the origin of crustal silicic magmas include both partial melting of basalts and fractional crystallization of mantle-derived melts[1]. Both are recognized as important processes in modern environments. When it comes to Archean rocks, however, partial melting hypotheses dominate the literature. Tonalite-trondhjemite-granodiorite (TTG)-type silicic magmas, ubiquitous in the Archean, are widely thought to be produced by partial melting of subducted, delaminated or otherwise deeply buried hydrated basalts[2]. The potential for a fractional crystallization origin for TTG-type magmas remains largely unexplored. To rectify this asymmetry in approaches to modern vs. ancient rocks, we have performed experiments at high pressures and temperatures to closely simulate fractional crystallization of a basaltic komatiite magma in the lowermost crust. These represent the first experimental determinations of the fractionation products of komatiite-type magmas at elevated pressures. The aim is to test the possibility of a genetic link between basaltic komatiites and TTGs, which are both magmas found predominantly in Archean terranes and less so in modern environments. We will present the 12-kbar fractionation paths of both Al-depleted and Al-undepleted basaltic komatiite magmas, and discuss their implications for the relative importance of magmatic fractionation vs. partial melting in producing more evolved, silicic magmas in the Archean. [1] Annen et al., J. Petrol., 47, 505-539, 2006. [2] Moyen J-F. & Martin H., Lithos, 148, 312-336, 2012.

  17. Process for forming hydrogen and other fuels utilizing magma

    DOEpatents

    Galt, John K.; Gerlach, Terrence M.; Modreski, Peter J.; Northrup, Jr., Clyde J. M.

    1978-01-01

    The disclosure relates to a method for extracting hydrogen from magma and water by injecting water from above the earth's surface into a pocket of magma and extracting hydrogen produced by the water-magma reaction from the vicinity of the magma.

  18. Comparative Magma Oceanography

    NASA Technical Reports Server (NTRS)

    Jones, J. H.

    1999-01-01

    The question of whether the Earth ever passed through a magma ocean stage is of considerable interest. Geochemical evidence strongly suggests that the Moon had a magma ocean and the evidence is mounting that the same was true for Mars. Analyses of martian (SNC) meteorites have yielded insights into the differentiation history of Mars, and consequently, it is interesting to compare that planet to the Earth. Three primary features of Mars contrast strongly to those of the Earth: (i) the extremely ancient ages of the martian core, mantle, and crust (about 4.55 b.y.); (ii) the highly depleted nature of the martian mantle; and (iii) the extreme ranges of Nd isotopic compositions that arise within the crust and depleted mantle. The easiest way to explain the ages and diverse isotopic compositions of martian basalts is to postulate that Mars had an early magma ocean. Cumulates of this magma ocean were later remelted to form the SNC meteorite suite and some of these melts assimilated crustal materials enriched in incompatible elements. The REE pattern of the crust assimilated by these SNC magmas was LREE enriched. If this pattern is typical of the crust as a whole, the martian crust is probably similar in composition to melts generated by small degrees of partial melting (about 5%) of a primitive source. Higher degrees of partial melting would cause the crustal LREE pattern to be essentially flat. In the context of a magma ocean model, where large degrees of partial melting presumably prevailed, the crust would have to be dominated by late-stage, LREE-enriched residual liquids. Regardless of the exact physical setting, Nd and W isotopic evidence indicates that martian geochemical reservoirs must have formed early and that they have not been efficiently remixed since. The important point is that in both the Moon and Mars we see evidence of a magma ocean phase and that we recognize it as such. Several lines of theoretical inference point to an early Earth that was also hot

  19. Experimental Study of Lunar and SNC Magmas

    NASA Technical Reports Server (NTRS)

    Rutherford, Malcolm J.

    2004-01-01

    The research described in this progress report involved the study of petrological, geochemical, and volcanic processes that occur on the Moon and the SNC meteorite parent body, generally accepted to be Mars. The link between these studies is that they focus on two terrestrial-type parent bodies somewhat smaller than earth, and the fact that they focus on the types of magmas (magma compositions) present, the role of volatiles in magmatic processes, and on processes of magma evolution on these planets. We are also interested in how these processes and magma types varied over time.In earlier work on the A15 green and A17 orange lunar glasses, we discovered a variety of metal blebs. Some of these Fe-Ni metal blebs occur in the glass; others (in A17) were found in olivine phenocrysts that we find make up about 2 vol 96 of the orange glass magma. The importance of these metal spheres is that they fix the oxidation state of the parent magma during the eruption, and also indicate changes during the eruption . They also yield important information about the composition of the gas phase present, the gas that drove the lunar fire-fountaining. During the tenure of this grant, we have continued to work on the remaining questions regarding the origin and evolution of the gas phase in lunar basaltic magmas, what they indicate about the lunar interior, and how the gas affects volcanic eruptions. Work on Martian magmas petrogenesis questions during the tenure of this grant has resulted in advances in our methods of evaluating magmatic oxidation state variations in Mars and some new insights into the compositional variations that existed in the SNC magmas over time . Additionally, Minitti has continued to work on the problem of possible shock effects on the abundance and distribution of water in Mars minerals.

  20. Volcanic conduit failure as a trigger to magma fragmentation

    NASA Astrophysics Data System (ADS)

    Lavallée, Y.; Benson, P. M.; Heap, M. J.; Flaws, A.; Hess, K.-U.; Dingwell, D. B.

    2012-01-01

    In the assessment of volcanic risk, it is often assumed that magma ascending at a slow rate will erupt effusively, whereas magma ascending at fast rate will lead to an explosive eruption. Mechanistically viewed, this assessment is supported by the notion that the viscoelastic nature of magma (i.e., the ability of magma to relax at an applied strain rate), linked via the gradient of flow pressure (related to discharge rate), controls the eruption style. In such an analysis, the physical interactions between the magma and the conduit wall are commonly, to a first order, neglected. Yet, during ascent, magma must force its way through the volcanic edifice/structure, whose presence and form may greatly affect the stress field through which the magma is trying to ascend. Here, we demonstrate that fracturing of the conduit wall via flow pressure releases an elastic shock resulting in fracturing of the viscous magma itself. We find that magma fragmentation occurred at strain rates seven orders of magnitude slower than theoretically anticipated from the applied axial strain rate. Our conclusion, that the discharge rate cannot provide a reliable indication of ascending magma rheology without knowledge of conduit wall stability, has important ramifications for volcanic hazard assessment. New numerical simulations are now needed in order to integrate magma/conduit interaction into eruption models.

  1. Relic magma chamber structures preserved within the Mesozoic North Atlantic crust?

    USGS Publications Warehouse

    McCarthy, J.; Mutter, J.C.; Morton, J.L.; Sleep, Norman H.; Thompson, G.A.

    1988-01-01

    The North Atlantic Transect seismic reflection data, collected southwest of Bermuda, have been reinterpreted following post-stack migration and reveal two major intracrustal reflections. The shallower of these two events, located ~1 s below the igneous basement, is a subhorizontal, undulating surface that in some places is continuous for as much as 10 km. This upper crustal reflection corresponds to the intermittently sharp contact between the sheeted dikes and the underlying isotropic gabbro. A second set of lower crustal reflections, dipping ~20??-40?? eastward, is also prominent on the migrated profile and terminates downdip against the subhorizontal reflection Moho. Their presence may be ascribed to mafic-ultramafic cumulate layers frozen into the oceanic crust at the time of formation at the paleo-spreading center. The gradual thinning in the crust approaching the fracture zones is shown to be more complex than was originally inferred. An intepretation advocating crustal thickening in this narrow zone is proposed as an alternative to the crustal-thinning model of Mutter and others. -from Authors

  2. Final report - Magma Energy Research Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colp, J.L.

    1982-10-01

    Scientific feasibility was demonstrated for the concept of magma energy extraction. The US magma resource is estimated at 50,000 to 500,000 quads of energy - a 700- to 7000-yr supply at the current US total energy use rate of 75 quads per year. Existing geophysical exploration systems are believed capable of locating and defining magma bodies and were demonstrated over a known shallow buried molten-rock body. Drilling rigs that can drill to the depths required to tap magma are currently available and experimental boreholes were drilled well into buried molten rock at temperatures up to 1100/sup 0/C. Engineering materials compatiblemore » with the buried magma environment are available and their performances were demonstrated in analog laboratory experiments. Studies show that energy can be extracted at attractive rates from magma resources in all petrologic compositions and physical configurations. Downhole heat extraction equipment was designed, built, and demonstrated successfully in buried molten rock and in the very hot margins surrounding it. Two methods of generating gaseous fuels in the high-temperature magmatic environment - generation of H/sub 2/ by the interaction of water with the ferrous iron and H/sub 2/, CH/sub 4/, and CO generation by the conversion of water-biomass mixtures - have been investigated and show promise.« less

  3. Geochemical modeling of magma mixing and magma reservoir volumes during early episodes of Kīlauea Volcano's Pu`u `Ō`ō eruption

    NASA Astrophysics Data System (ADS)

    Shamberger, Patrick J.; Garcia, Michael O.

    2007-02-01

    Geochemical modeling of magma mixing allows for evaluation of volumes of magma storage reservoirs and magma plumbing configurations. A new analytical expression is derived for a simple two-component box-mixing model describing the proportions of mixing components in erupted lavas as a function of time. Four versions of this model are applied to a mixing trend spanning episodes 3 31 of Kilauea Volcano’s Puu Oo eruption, each testing different constraints on magma reservoir input and output fluxes. Unknown parameters (e.g., magma reservoir influx rate, initial reservoir volume) are optimized for each model using a non-linear least squares technique to fit model trends to geochemical time-series data. The modeled mixing trend closely reproduces the observed compositional trend. The two models that match measured lava effusion rates have constant magma input and output fluxes and suggest a large pre-mixing magma reservoir (46±2 and 49±1 million m3), with little or no volume change over time. This volume is much larger than a previous estimate for the shallow, dike-shaped magma reservoir under the Puu Oo vent, which grew from ˜3 to ˜10 12 million m3. These volumetric differences are interpreted as indicating that mixing occurred first in a larger, deeper reservoir before the magma was injected into the overlying smaller reservoir.

  4. Phase equilibrium modelling of granite magma petrogenesis: B. An evaluation of the magma compositions that result from fractional crystallization

    NASA Astrophysics Data System (ADS)

    Garcia-Arias, Marcos; Stevens, Gary

    2017-04-01

    Several fractional crystallization processes (flow segregation, gravitational settling, filter-pressing), as well as batch crystallization, have been investigated in this study using thermodynamic modelling (pseudosections) to test whether they are able to reproduce the compositional trends shown by S-type granites. Three starting compositions comprising a pure melt phase and variable amounts of entrained minerals (0, 20 and 40 wt.% of the total magma) have been used to study a wide range of likely S-type magma compositions. The evolution of these magmas was investigated from the segregation from their sources at 0.8 GPa until emplacement at 0.3 GPa in an adiabatic path, followed by isobaric cooling until the solidus was crossed, in a closed-system scenario. The modelled magmas and the fractionated mineral assemblages are compared to the S-type granites of the Peninsula pluton, Cape Granite Suite, South Africa, which have a composition very similar to most of the S-type granites. The adiabatic ascent of the magmas digests partially the entrained mineral assemblage of the magmas, but unless this entrained assemblage represents less than 1 wt.% of the original magma, part of the mineral fraction survives the ascent up to the chosen pressure of emplacement. At the level of emplacement, batch crystallization produces magmas that only plot within the composition of the granites of the Peninsula pluton if the bulk composition of the original magmas already matched that of the granites. Flow segregation of crystals during the ascent and gravitational settling fractional crystallization produce bodies that are generally more mafic than the most mafic granites of the pluton and the residual melts have an almost haplogranitic composition, producing a bimodal compositional distribution not observed in the granites. Consequently, these two processes are ruled out. Filter-pressing fractional crystallization produces bodies in an onion-layer structure that become more felsic

  5. Shallow magma diversions during explosive maar-diatreme eruptions in mafic volcanic fields

    NASA Astrophysics Data System (ADS)

    Le Corvec, N.; Muirhead, J.; White, J. D. L.

    2017-12-01

    Maar-diatremes are inverted conical structures formed by subterranean excavation and remobilization of country rocks during explosive volcanism and common in mafic volcanic fields. We focus on impacts of excavation and filling of maar-diatremes on the local state of stress, and its subsequent influence on underlying feeder dikes, which are critical for understanding the development of intrusive networks that feed surface eruptions. We address this issue using finite element models in COMSOL Multiphysics®. Inverted conical structures of varying sizes are excavated in a gravitationally loaded elastic half-space, and then progressively filled with volcaniclastic material, resulting in changes in the orientations and magnitudes of stresses generated within surrounding rocks and within the filling portion of the maar-diatreme. Our results show that rapid unloading during maar-diatreme excavation generates a horizontal compressive stress state beneath diatremes. These stresses allow magma to divert laterally as saucer-shaped sills and circumferential dikes at varying depths in the shallow feeder system, and produce intrusion geometries consistent with both field observations from exhumed volcanic fields and conceptual models of diatreme growth. Stresses generated in these models also provide an explanation for the evolving locations of fragmentation zones over the course of diatreme's filling. In particular, results from this study suggest that: (1) extensional stresses at the base of the diatreme fill favor magma ascent in the lower half of the structure, and possibly promote volatile exsolution and magma fragmentation; and (2) increased filling of diatremes creates a shallow compressive stress state that can inhibit magma ascent to the surface, promoting widespread intra-diatreme explosions, efficient mixing of host rock, and upward widening of the diatreme structure.

  6. Volatile Behavior in Lunar and Terrestrial Basalts During Shock: Implications for Martian Magmas

    NASA Technical Reports Server (NTRS)

    Chaklader, Johny; Shearer, C. K.; Hoerz, F.; Newsom, H. E.

    2004-01-01

    The amount of water in martian magmas has significant ramifications for the martian atmosphere-hydrosphere cycle. Large D-enrichments have been observed in kaersutitic amphiboles in Zagami, Chassigny and Shergotty meteorites (delta-D values up to 4400 per mil) suggesting that substantial amounts of H escaped Mars in its past. Furthermore, martian meteorites with inclusions of biotite and apatite imply possible origins in a hydrous mantle. However, whether martian magmas ever possessed considerable proportions of water remains controversial and unclear. The H-content of mica and amphibole melt inclusions has been found to be low, while bulk-rock H2O content is also low ranging from 0.013 to 0.035 wt. % in Shergotty. Hydrous martian magmas were considered responsible for light lithophile element (LLE) zoning patterns observed in Nakhlite and Shergottite pyroxenes. Since LLEs, such as Li and B, partition into aqueous fluids at temperatures greater than 350 C, workers interpreted Li-B depletions in pyroxene rims as evidence that supercritical fluid exsolution occurred during magma degassing. In that many martian basalts experienced substantial shock (15-45 GPa) it is possible that the magmatic volatile record preserved in martian basalts has been disturbed. Previous shock experiments suggest that shock processes may effect water content and H/D. To better understand the possible effects of shock on this volatile record, we are studying the redistribution of volatile elements in naturally and experimentally shocked basalts. Here, we report the initial results from shocked basalts associated with the Lonar Crater, India and an experimentally shocked lunar basalt.

  7. Status of the Magma Energy Project

    NASA Astrophysics Data System (ADS)

    Dunn, J. C.

    The current magma energy project is assessing the engineering feasibility of extracting thermal energy directly from crustal magma bodies. The estimated size of the U.S. resource (50,000 to 500,000 quads) suggests a considerable potential impact on future power generation. In a previous seven-year study, we concluded that there are no insurmountable barriers that would invalidate the magma energy concept. Several concepts for drilling, energy extraction, and materials survivability were successfully demonstrated in Kilauea Iki lava lake, Hawaii. The present program is addressing the engineering design problems associated with accessing magma bodies and extracting thermal energy for power generation. The normal stages for development of a geothermal resource are being investigated: exploration, drilling and completions, production, and surface power plant design. Current status of the engineering program and future plans are described.

  8. Influence of extrusion rate and magma rheology on the growth of lava domes: Insights from particle-dynamics modeling

    NASA Astrophysics Data System (ADS)

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2014-09-01

    possibly inducing dome collapse. Simulation results mimic development of a megaspine upon the influx of fresh magma which leads to the re-direction of magma flow, creating a new shear zone and the switching of dome growth from one side to the other. Our model shows similar dome growth dynamics as observed at Soufriere Hills Volcano, Montserrat, indicating a strong correlation between extrusion rate and its subsequent effect on mechanical properties and variations in magma rheology.

  9. Oxidized sulfur-rich mafic magma at Mount Pinatubo, Philippines

    USGS Publications Warehouse

    de Hoog, J.C.M.; Hattori, K.H.; Hoblitt, R.P.

    2004-01-01

    Basaltic fragments enclosed in andesitic dome lavas and pyroclastic flows erupted during the early stages of the 1991 eruption of Mount Pinatubo, Philippines, contain amphiboles that crystallized during the injection of mafic magma into a dacitic magma body. The amphiboles contain abundant melt inclusions, which recorded the mixing of andesitic melt in the mafic magma and rhyolitic melt in the dacitic magma. The least evolved melt inclusions have high sulfur contents (up to 1,700 ppm) mostly as SO42, which suggests an oxidized state of the magma (NNO + 1.4). The intrinsically oxidized nature of the mafic magma is confirmed by spinel-olivine oxygen barometry. The value is comparable to that of the dacitic magma (NNO + 1.6). Hence, models invoking mixing as a means of releasing sulfur from the melt are not applicable to Pinatubo. Instead, the oxidized state of the dacitic magma likely reflects that of parental mafic magma and the source region in the sub-arc mantle. Our results fit a model in which long-lived SO2 discharge from underplated mafic magma accumulated in the overlying dacitic magma and immiscible aqueous fluids. The fluids were the most likely source of sulfur that was released into the atmosphere during the cataclysmic eruption. The concurrence of highly oxidized basaltic magma and disproportionate sulfur output during the 1991 Mt. Pinatubo eruption suggests that oxidized mafic melt is an efficient medium for transferring sulfur from the mantle to shallow crustal levels and the atmosphere. As it can carry large amounts of sulfur, effectively scavenge sulfides from the source mantle and discharge SO2 during ascent, oxidized mafic magma forms arc volcanoes with high sulfur fluxes, and potentially contributes to the formation of metallic sulfide deposits. ?? Springer-Verlag 2003.

  10. Timescale of Destabilization of a Magma Ocean Cumulate

    NASA Astrophysics Data System (ADS)

    Morison, A.; Labrosse, S.; Deguen, R.; Alboussiere, T.

    2017-12-01

    A common scenario considered during the formation of terrestrial planets is the crystallization of a global magma ocean from the bottom-up. The crystallization of the surface magma ocean is expected to be rapid, on a timescale of the order of 1 Myr. This has lead several authors to assume convection in the solid part of the crystallizing mantle only sets out after the complete solidification of the surface magma ocean. Assuming fractionnal crystallization of this ocean, the magma (and resulting solid) is more and more enriched in FeO as the crystallization progresses. This leads to an unstable stratification and an overturn. After overturn, the resulting solid mantle would be strongly compositionally stratified. The present study tests the assumption that solid-state mantle overturn only occurs after complete crystallization of the surface magma ocean. We model convection in the solid part of the mantle only and parametrize the presence of a magma ocean with boundary conditions. Our model includes through these boundary conditions the possibility for matter to cross the boundary between the solid shell and the magma ocean by melting and freezing. We perfomed a linear stability analysis with respect to the temperature and compositional profiles obtained in a growing magma ocean cumulate to assess the destabilization timescale of such profiles as a function of the crystallized thickness. By comparing this timescale with a model of surface magma ocean crystallization, we deduce the time and crystallized thickness at which the convection timescale is comparable to the age of the solid crystallizing mantle. This time is found to be small ( 1 kyr) compared to the time needed to crystallize the entire surface magma ocean ( 1 Myr).

  11. Multiphase Dynamics of Magma Oceans

    NASA Astrophysics Data System (ADS)

    Boukaré, Charles-Edouard; Ricard, Yanick; Parmentier, Edgar M.

    2017-04-01

    Since the earliest study of the Apollo lunar samples, the magma ocean hypothesis has received increasing consideration for explaining the early evolution of terrestrial planets. Giant impacts seem to be able to melt significantly large planets at the end of their accretion. The evolution of the resulting magma ocean would set the initial conditions (thermal and compositionnal structure) for subsequent long-term solid-state planet dynamics. However, magma ocean dynamics remains poorly understood. The major challenge relies on understanding interactions between the physical properties of materials (e.g., viscosity (at liquid or solid state), buoyancy) and the complex dynamics of an extremely vigorously convecting system. Such complexities might be neglected in cases where liquidus/adiabat interactions and density stratification leads to stable situations. However, interesting possibilities arise when exploring magma ocean dynamics in other regime. In the case of the Earth, recent studies have shown that the liquidus might intersect the adiabat at mid-mantle depth and/or that solids might be buoyant at deep mantle conditions. These results require the consideration of more sophisticated scenarios. For instance, how does bottom-up crystallization look with buoyant crystals? To understand this complex dynamics, we develop a multiphase phase numerical code that can handle simultaneously phase change, the convection in each phase and in the slurry, as well as the compaction or decompaction of the two phases. Although our code can only run in a limited parameter range (Rayleigh number, viscosity contrast between phases, Prandlt number), it provides a rich dynamics that illustrates what could have happened. For a given liquidus/adiabat configuration and density contrast between melt and solid, we explore magma ocean scenarios by varying the relative timescales of three first order processes: solid-liquid separation, thermo-chemical convective motions and magma ocean cooling.

  12. Lithospheric magma dynamics beneath the El Hierro Volcano, Canary Islands: insights from fluid inclusions

    NASA Astrophysics Data System (ADS)

    Oglialoro, E.; Frezzotti, M. L.; Ferrando, S.; Tiraboschi, C.; Principe, C.; Groppelli, G.; Villa, I. M.

    2017-10-01

    At active volcanoes, petrological studies have been proven to be a reliable approach in defining the depth conditions of magma transport and storage in both the mantle and the crust. Based on fluid inclusion and mineral geothermobarometry in mantle xenoliths, we propose a model for the magma plumbing system of the Island of El Hierro (Canary Islands). The peridotites studied here were entrained in a lava flow exposed in the El Yulan Valley. These lavas are part of the rift volcanism that occurred on El Hierro at approximately 40-30 ka. The peridotites are spinel lherzolites, harzburgites, and dunites which equilibrated in the shallow mantle at pressures between 1.5 and 2 GPa and at temperatures between 800 and 950 °C (low-temperature peridotites; LT), as well as at higher equilibration temperatures of 900 to 1100 °C (high-temperature peridotites; HT). Microthermometry and Raman analyses of fluid inclusions reveal trapping of two distinct fluid phases: early type I metasomatic CO2-N2 fluids ( X N2 = 0.01-0.18; fluid density (d) = 1.19 g/cm3), coexisting with silicate-carbonate melts in LT peridotites, and late type II pure CO2 fluids in both LT (d = 1.11-1.00 and 0.75-0.65 g/cm3) and HT ( d = 1.04-1.11 and 0.75-0.65 g/cm3) peridotites. While type I fluids represent metasomatic phases in the deep oceanic lithosphere (at depths of 60-65 km) before the onset of magmatic activity, type II CO2 fluids testify to two fluid trapping episodes during the ascent of xenoliths in their host mafic magmas. Identification of magma accumulation zones through interpretation of type II CO2 fluid inclusions and mineral geothermobarometry indicate the presence of a vertically stacked system of interconnected small magma reservoirs in the shallow lithospheric mantle between a depth of 22 and 36 km (or 0.67 to 1 GPa). This magma accumulation region fed a short-lived magma storage region located in the lower oceanic crust at a depth of 10-12 km (or 0.26-0.34 GPa). Following our model

  13. CONTINUOUSLY SENSITIVE BUBBLE CHAMBER

    DOEpatents

    Good, R.H.

    1959-08-18

    A radiation detector of the bubble chamber class is described which is continuously sensitive and which does not require the complex pressure cycling equipment characteristic of prior forms of the chamber. The radiation sensitive element is a gas-saturated liquid and means are provided for establishing a thermal gradient across a region of the liquid. The gradient has a temperature range including both the saturation temperature of the liquid and more elevated temperatures. Thus a supersaturated zone is created in which ionizing radiations may give rise to visible gas bubbles indicative of the passage of the radiation through the liquid. Additional means are provided for replenishing the supply of gas-saturated liquid to maintaincontinuous sensitivity.

  14. Experimenting with mixing and layered convection in phono-trachytic magmas: Implications on reservoir dynamics

    NASA Astrophysics Data System (ADS)

    de Campos, C. P.; Civetta, L.; Dingwell, D. B.; Perugini, D.; Petrelli, M.; Fehr, T. K.

    2006-12-01

    Abundant geochemical and volcanological data on the Campanian Ignimbrite, (>200 km3, 39 ka) Phlegrean Fields, Italy, support the existence of a layered magmatic reservoir, which evolved via 1) replenishment of the chamber with trachytic magma and 2) short-term pre-eruptive mixing between new trachytic and phono- trachytic resident magmas. We have initiated an experimental program in order to constrain the dynamics of such mingling/mixing events. We used melted natural products from these two magmas of sub-equal but distinct composition, which are thought to have been involved in the origin of this magmatic system as end-members (phono-trachyte = end- member A and trachyte = end-member B). The two were then stirred together and sampled by experiment termination as a time series, ranging from 1-hour up to 1-week. Stirring under constant low flow velocity (0.5 rotations per minute) generated at first homogenization and mixing of the starting compositions. Then separate convection cells and compositional layering for major and minor elements emerged. Calculated density distributions along sections from the experimental glasses, after decoupling, are very similar to density distributions in aqueous systems under double-diffusive convection. In order to test double- diffusive decoupled convection in this system, we performed 87Sr/86Sr-isotopic and Sr- LA-ICP-MS- measurements, using the 25-hour experimental glasses. The effective chemical separation of different convection cells has been confirmed with clearly distinct isotopic signatures for both bottom and top cells. Comparison with natural samples from the Campanian Ignimbrite strengthens the importance of the role of a double-diffusive similar convection as a major differentiation process leading to layering in this system. Our results support the effectiveness of a DDC-driven fractionation for moderately high-silica magmas under high near-liquidus temperatures, before the onset of fractional crystallization.

  15. The magma ocean concept and lunar evolution

    NASA Technical Reports Server (NTRS)

    Warren, P. H.

    1985-01-01

    The model of lunar evolution in which the anorthositic plagioclase-rich oldest crust of the moon is formed over a period of 300 Myr or less by crystallization as it floats on a global ocean of magma tens or hundreds of km thick is examined in a review of petrological and theoretical studies. Consideration is given to the classification of lunar rocks, the evidence for primordial deep global differentiation, constraints on the depth of the molten zone, the effects of pressure on mineral stability relationships, mainly-liquid vs mainly-magmifer ocean models, and the evidence for multiple ancient differentiation episodes. A synthesis of the model of primordial differentiation and its aftereffects is presented, and the generalization of the model to the earth and to Mars, Mercury, Venus, and the asteroids is discussed.

  16. Progressive enrichment of arc magmas caused by the subduction of seamounts under Nishinoshima volcano, Izu-Bonin Arc, Japan

    NASA Astrophysics Data System (ADS)

    Sano, Takashi; Shirao, Motomaro; Tani, Kenichiro; Tsutsumi, Yukiyasu; Kiyokawa, Shoichi; Fujii, Toshitsugu

    2016-06-01

    The chemical composition of intraplate seamounts is distinct from normal seafloor material, meaning that the subduction of seamounts at a convergent margin can cause a change in the chemistry of the mantle wedge and associated arc magmas. Nishinoshima, a volcanic island in the Izu-Bonin Arc of Japan, has been erupting continuously over the past 2 years, providing an ideal opportunity to examine the effect of seamount subduction on the chemistry of arc magmas. Our research is based on the whole-rock geochemistry and the chemistry of minerals within lavas and air-fall scoria from Nishinoshima that were erupted before 1702, in 1973-1974, and in 2014. The mineral phases within the analyzed samples crystallized under hydrous conditions (H2O = 3-4 wt.%) at temperatures of 970 °C-990 °C in a shallow (3-6 km depth) magma chamber. Trace element data indicate that the recently erupted Nishinoshima volcanics are much less depleted in the high field strength elements (Nb, Ta, Zr, Hf) than other volcanics within the Izu-Bonin Arc. In addition, the level of enrichment in the Nishinoshima magmas has increased in recent years, probably due to the addition of material from HIMU-enriched (i.e., high Nb/Zr and Ta/Hf) seamounts on the Pacific Plate, which is being subducted westwards beneath the Philippine Sea Plate. This suggests that the chemistry of scoria from Nishinoshima volcano records the progressive addition of components derived from subducted seamounts.

  17. Patchy distribution of magma that fed the Bishop Tuff supereruption: Evidence from matrix glass major and trace-element compositions

    NASA Astrophysics Data System (ADS)

    Gualda, G. A. R.; Ghiorso, M. S.; Hurst, A. A.; Allen, M. C.; Bradshaw, R. W.

    2017-12-01

    For more than 40 years, the Bishop Tuff has been the archetypical example of a singular, zoned magma body that fed a supereruption. Early-erupted material is pyroxene-free and crystal poor (<20 wt. %), presumably erupted from the upper parts of the magma body; late-erupted material is orthopyroxene and clinopyroxene-bearing, commonly more crystal rich (up to 30 wt. % crystals), and presumably tapped magma from the lower portions of the magma body. Fe-Ti oxide compositions suggest higher crystallization temperatures for late-erupted magmas (as high as 820 °C) than for early-erupted magmas (as low as 700 °C). Pressures and temperatures derived from major element compositions of glass inclusions led Gualda & Ghiorso (2013, CMP) to suggest an alternative model of lateral juxtaposition of two main magma bodies - each one feeding early-erupted and late-erupted units. Chamberlain et al. (2015, JPet) and Evans et al. (2016, AmMin) recently disputed this interpretation. We present a large dataset of matrix glass compositions for 161 pumice clasts that span the stratigraphy of the deposit. We calculate crystallization pressures based on major-element glass compositions using rhyolite-MELTS geobarometry, and crystallization temperatures based on Zr in glass using zircon saturation geothermometry. We apply the same methods to 1538 major-element and 615 trace-element analyses from Chamberlain et al. The results overwhelmingly demonstrate that there is no difference in crystallization temperature or pressure between early and late-erupted magmas. Crystallization pressures and temperatures are unimodal, with modes of 150 MPa and 730 °C (calibration of Watson & Harrison). Our results strongly support lateral juxtaposition of two main magma bodies. Smaller units recognized by Chamberlain et al. crystallized at the same pressures as the main bodies - this suggests the coexistence of larger and smaller magma bodies at the time of the Bishop Tuff supereruption. We compare our

  18. Improved Back-Side Purge-Gas Chambers For Plasma Arc Welding

    NASA Technical Reports Server (NTRS)

    Ezell, Kenneth G.; Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Improved chambers for inert-gas purging of back sides of workpieces during plasma arc welding in keyhole (full-penetration) mode based on concept of directing flows of inert gases toward, and concentrating them on, hot weld zones. Tapered chamber concentrates flow of inert gas on plasma arc plume and surrounding metal.

  19. The location and timing of magma degassing during Plinian eruptions

    NASA Astrophysics Data System (ADS)

    Giachetti, T.; Gonnermann, H. M.

    2014-12-01

    Water is the most abundant volatile species in explosively erupting silicic magmas and significantly affects magma viscosity, magma fragmentation and the dynamics of the eruption column. The effect that water has on these eruption processes can be modulated by outgassing degassing from a permeable magma. The magnitude, rate and timing of outgassing during magma ascent, in particular in relation to fragmentation, remains a subject of debate. Here we constrain how much, how fast and where the erupting magma lost its water during the 1060 CE Plinian phase of the Glass Mountain eruption of Medicine Lake Volcano, California. Using thermogravimetric analysis coupled with numerical modeling, we show that the magma lost >90% of its initial water upon eruption. Textural analyses of natural pumices, together with numerical modeling of magma ascent and degassing, indicate that 65-90% of the water exsolved before fragmentation, but very little was able to outgas before fragmentation. The magma attained permeability only within about 1 to 10 seconds before fragmenting and during that time interval permeable gas flow resulted in only a modest amount of gas flux from the un-fragmented magma. Instead, most of the water is lost shortly after fragmentation, because gas can escape rapidly from lapilli-size pyroclasts. This results in an efficient rarefaction of the gas-pyroclast mixture above the fragmentation level, indicating that the development of magma permeability and ensuing permeable outgassing are a necessary condition for sustain explosive eruptions of silicic magma. Magma permeability is thus a double-edged sword, it facilitates both, the effusive and the explosive eruption of silicic magma.

  20. Seismic evidence for a possible deep crustal hot zone beneath Southwest Washington.

    PubMed

    Flinders, Ashton F; Shen, Yang

    2017-08-07

    Crustal pathways connecting deep sources of melt and the active volcanoes they supply are poorly understood. Beneath Mounts St. Helens, Adams, and Rainier these pathways connect subduction-induced ascending melts to shallow magma reservoirs. Petrogenetic modeling predicts that when these melts are emplaced as a succession of sills into the lower crust they generate deep crustal hot zones. While these zones are increasingly recognized as a primary site for silicic differentiation at a range of volcanic settings globally, imaging them remains challenging. Near Mount Rainier, ascending melt has previously been imaged ~28 km northwest of the volcano, while to the south, the volcano lies on the margin of a broad conductive region in the deep crust. Using 3D full-waveform tomography, we reveal an expansive low-velocity zone, which we interpret as a possible hot zone, linking ascending melts and shallow reservoirs. This hot zone may supply evolved magmas to Mounts St. Helens and Adams, and possibly Rainier, and could contain approximately twice the melt volume as the total eruptive products of all three volcanoes combined. Hot zones like this may be the primary reservoirs for arc volcanism, influencing compositional variations and spatial-segmentation along the entire 1100 km-long Cascades Arc.