Sample records for zoom lens images

  1. An all-silicone zoom lens in an optical imaging system

    NASA Astrophysics Data System (ADS)

    Zhao, Cun-Hua

    2013-09-01

    An all-silicone zoom lens is fabricated. A tunable metal ringer is fettered around the side edge of the lens. A nylon rope linking a motor is tied, encircling the notch in the metal ringer. While the motor is operating, the rope can shrink or release to change the focal length of the lens. A calculation method is developed to obtain the focal length and the zoom ratio. The testing is carried out in succession. The testing values are compared with the calculated ones, and they tally with each other well. Finally, the imaging performance of the all-silicone lens is demonstrated. The all-silicone lens has potential uses in cellphone cameras, notebook cameras, micro monitor lenses, etc.

  2. Bifocal liquid lens zoom objective for mobile phone applications

    NASA Astrophysics Data System (ADS)

    Wippermann, F. C.; Schreiber, P.; Bräuer, A.; Craen, P.

    2007-02-01

    Miniaturized camera systems are an integral part of today's mobile phones which recently possess auto focus functionality. Commercially available solutions without moving parts have been developed using the electrowetting technology. Here, the contact angle of a drop of a conductive or polar liquid placed on an insulating substrate can be influenced by an electric field. Besides the compensation of the axial image shift due to different object distances, mobile phones with zoom functionality are desired as a next evolutionary step. In classical mechanically compensated zoom lenses two independently driven actuators combined with precision guides are needed leading to a delicate, space consuming and expansive opto-mechanical setup. Liquid lens technology based on the electrowetting effect gives the opportunity to built adaptive lenses without moving parts thus simplifying the mechanical setup. However, with the recent commercially available liquid lens products a completely motionless and continuously adaptive zoom system with market relevant optical performance is not feasible. This is due to the limited change in optical power the liquid lenses can provide and the dispersion of the used materials. As an intermediate step towards a continuously adjustable and motionless zoom lens we propose a bifocal system sufficient for toggling between two effective focal lengths without any moving parts. The system has its mechanical counterpart in a bifocal zoom lens where only one lens group has to be moved. In a liquid lens bifocal zoom two groups of adaptable liquid lenses are required for adjusting the effective focal length and keeping the image location constant. In order to overcome the difficulties in achromatizing the lens we propose a sequential image acquisition algorithm. Here, the full color image is obtained from a sequence of monochrome images (red, green, blue) leading to a simplified optical setup.

  3. Research on surface free energy of electrowetting liquid zoom lens

    NASA Astrophysics Data System (ADS)

    Zhao, Cunhua; Lu, Gaoqi; Wei, Daling; Hong, Xinhua; Cui, Dongqing; Gao, Changliu

    2011-08-01

    Zoom imaging systems have the tendencies of miniaturization or complication so the traditional glass / plastic lenses can't meet the needs. Therefore, a new method, liquid lens is put forward which realizes zoom by changing the shape of liquid surface. liquid zoom lenses have many merits such as smaller volume, lighter weight, controlled zoom, faster response, higher transmission, lower energy consumption and so on. Liquid zoom lenses have wide applications in mobile phones, digital cameras and other small imaging system. The electrowetting phenomenon was reviewed firstly and then the influence of the exerted voltage to the contact angle was analysed in electrowetting effect. At last, the surface free energy of cone-type double liquid zoom lens was researched via the energy minimization principle. The research of surface free energy offers important theoretic dependence for designing liquid zoom lens.

  4. Aberration design of zoom lens systems using thick lens modules.

    PubMed

    Zhang, Jinkai; Chen, Xiaobo; Xi, Juntong; Wu, Zhuoqi

    2014-12-20

    A systematic approach for the aberration design of a zoom lens system using a thick lens module is presented. Each component is treated as a thick lens module at the beginning of the design. A thick lens module refers to a thick lens component with a real lens structure, like lens materials, lens curvatures, lens thicknesses, and lens interval distances. All nine third-order aberrations of a thick lens component are considered during the design. The relationship of component aberrations in different zoom positions can be approximated from the aberration shift. After minimizing the aberrations of the zoom lens system, the nine third-order aberrations of every lens component can be determined. Then the thick lens structure of every lens component can be determined after optimization according to their first-order properties and third-order aberration targets. After a third optimization for minimum practical third-order aberrations of a zoom lens system, the aberration design using the thick lens module is complete, which provides a practical zoom lens system with thick lens structures. A double-sided telecentric zoom lens system is designed using the thick lens module in this paper, which shows that this method is practical for zoom lens design.

  5. Photographic zoom fisheye lens design for DSLR cameras

    NASA Astrophysics Data System (ADS)

    Yan, Yufeng; Sasian, Jose

    2017-09-01

    Photographic fisheye lenses with fixed focal length for cameras with different sensor formats have been well developed for decades. However, photographic fisheye lenses with variable focal length are rare on the market due in part to the greater design difficulty. This paper presents a large aperture zoom fisheye lens for DSLR cameras that produces both circular and diagonal fisheye imaging for 35-mm sensors and diagonal fisheye imaging for APS-C sensors. The history and optical characteristics of fisheye lenses are briefly reviewed. Then, a 9.2- to 16.1-mm F/2.8 to F/3.5 zoom fisheye lens design is presented, including the design approach and aberration control. Image quality and tolerance performance analysis for this lens are also presented.

  6. Ultrathin zoom lens system based on liquid lenses

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liu, Chao; Wang, Qiong-Hua

    2015-07-01

    In this paper, we propose an ultrathin zoom lens system based on liquid lenses. The proposed system consists of an annular folded lens and three electrowetting liquid lenses. The annular folded lens has several concentric surfaces. The annular folded lens is used to get the main power and correct aberrations. The three liquid lenses are used to change the focal length and correct aberration. An analysis of the proposed system is presented along with the design, fabrication, and testing of a prototype. All the elements in the proposed system are very thin, so the system is an ultrathin zoom lens system, which has potential application as lightweight, thin, high-quality imagers for aerospace, consumer, and military applications.

  7. Electro-optically actuated liquid-lens zoom

    NASA Astrophysics Data System (ADS)

    Pütsch, O.; Loosen, P.

    2012-06-01

    Progressive miniaturization and mass market orientation denote a challenge to the design of dynamic optical systems such as zoom-lenses. Two working principles can be identified: mechanical actuation and application of active optical components. Mechanical actuation changes the focal length of a zoom-lens system by varying the axial positions of optical elements. These systems are limited in speed and often require complex coupled movements. However, well established optical design approaches can be applied. In contrast, active optical components change their optical properties by varying their physical structure by means of applying external electric signals. An example are liquidlenses which vary their curvatures to change the refractive power. Zoom-lenses benefit from active optical components in two ways: first, no moveable structures are required and second, fast response characteristics can be realized. The precommercial development of zoom-lenses demands simplified and cost-effective system designs. However the number of efficient optical designs for electro-optically actuated zoom-lenses is limited. In this paper, the systematic development of an electro-optically actuated zoom-lens will be discussed. The application of aberration polynomials enables a better comprehension of the primary monochromatic aberrations at the lens elements during a change in magnification. This enables an enhanced synthesis of the system behavior and leads to a simplified zoom-lens design with no moving elements. The change of focal length is achieved only by varying curvatures of targeted integrated electro-optically actuated lenses.

  8. Solutions on a high-speed wide-angle zoom lens with aspheric surfaces

    NASA Astrophysics Data System (ADS)

    Yamanashi, Takanori

    2012-10-01

    Recent development in CMOS and digital camera technology has accelerated the business and market share of digital cinematography. In terms of optical design, this technology has increased the need to carefully consider pixel pitch and characteristics of the imager. When the field angle at the wide end, zoom ratio, and F-number are specified, choosing an appropriate zoom lens type is crucial. In addition, appropriate power distributions and lens configurations are required. At points near the wide end of a zoom lens, it is known that an aspheric surface is an effective means to correct off-axis aberrations. On the other hand, optical designers have to focus on manufacturability of aspheric surfaces and perform required analysis with respect to the surface shape. Centration errors aside, it is also important to know the sensitivity to aspheric shape errors and their effect on image quality. In this paper, wide angle cine zoom lens design examples are introduced and their main characteristics are described. Moreover, technical challenges are pointed out and solutions are proposed.

  9. Design of a zoom lens without motorized optical elements

    NASA Astrophysics Data System (ADS)

    Peng, Runling; Chen, Jiabi; Zhu, Cheng; Zhuang, Songlin

    2007-05-01

    A novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two double-liquid variable-focus lenses. The liquid lenses, made out of two immiscible liquids, are based on the principle of electrowetting: an effect controlling the wetting properties of a liquid on a solid by modifying the applied voltage at the solid-liquid interface. The structure and principle of the lens system are introduced in this paper. Detailed calculations and simulation examples are presented to show that this zoom lens system appears viable as the next-generation zoom lens.

  10. Design of a zoom lens without motorized optical elements.

    PubMed

    Peng, Runling; Chen, Jiabi; Zhu, Cheng; Zhuang, Songlin

    2007-05-28

    A novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two double-liquid variable-focus lenses. The liquid lenses, made out of two immiscible liquids, are based on the principle of electrowetting: an effect controlling the wetting properties of a liquid on a solid by modifying the applied voltage at the solid-liquid interface. The structure and principle of the lens system are introduced in this paper. Detailed calculations and simulation examples are presented to show that this zoom lens system appears viable as the next-generation zoom lens.

  11. Mechanically assisted liquid lens zoom system for mobile phone cameras

    NASA Astrophysics Data System (ADS)

    Wippermann, F. C.; Schreiber, P.; Bräuer, A.; Berge, B.

    2006-08-01

    Camera systems with small form factor are an integral part of today's mobile phones which recently feature auto focus functionality. Ready to market solutions without moving parts have been developed by using the electrowetting technology. Besides virtually no deterioration, easy control electronics and simple and therefore cost-effective fabrication, this type of liquid lenses enables extremely fast settling times compared to mechanical approaches. As a next evolutionary step mobile phone cameras will be equipped with zoom functionality. We present first order considerations for the optical design of a miniaturized zoom system based on liquid-lenses and compare it to its mechanical counterpart. We propose a design of a zoom lens with a zoom factor of 2.5 considering state-of-the-art commercially available liquid lens products. The lens possesses auto focus capability and is based on liquid lenses and one additional mechanical actuator. The combination of liquid lenses and a single mechanical actuator enables extremely short settling times of about 20ms for the auto focus and a simplified mechanical system design leading to lower production cost and longer life time. The camera system has a mechanical outline of 24mm in length and 8mm in diameter. The lens with f/# 3.5 provides market relevant optical performance and is designed for an image circle of 6.25mm (1/2.8" format sensor).

  12. New long-zoom lens for 4K super 35mm digital cameras

    NASA Astrophysics Data System (ADS)

    Thorpe, Laurence J.; Usui, Fumiaki; Kamata, Ryuhei

    2015-05-01

    The world of television production is beginning to adopt 4K Super 35 mm (S35) image capture for a widening range of program genres that seek both the unique imaging properties of that large image format and the protection of their program assets in a world anticipating future 4K services. Documentary and natural history production in particular are transitioning to this form of production. The nature of their shooting demands long zoom lenses. In their traditional world of 2/3-inch digital HDTV cameras they have a broad choice in portable lenses - with zoom ranges as high as 40:1. In the world of Super 35mm the longest zoom lens is limited to 12:1 offering a telephoto of 400mm. Canon was requested to consider a significantly longer focal range lens while severely curtailing its size and weight. Extensive computer simulation explored countless combinations of optical and optomechanical systems in a quest to ensure that all operational requests and full 4K performance could be met. The final lens design is anticipated to have applications beyond entertainment production, including a variety of security systems.

  13. Chromatic correction for a VIS-SWIR zoom lens using optical glasses

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Williams, Daniel J. L.; McCarthy, Peter; Visconti, Anthony J.; Bentley, Julie L.; Moore, Duncan T.

    2015-09-01

    With the advancement in sensors, hyperspectral imaging in short wave infrared (SWIR 0.9 μm to 1.7 μm) now has wide applications, including night vision, haze-penetrating imaging, etc. Most conventional optical glasses can be material candidates for designing in the SWIR as they transmit up to 2.2 μm. However, since SWIR is in the middle of the glasses' major absorption wavebands in UV and IR, the flint glasses in SWIR are less dispersive than in the visible spectrum. As a result, the glass map in the SWIR is highly compressed, with crowns and flints all clustering together. Thus correcting for chromatic aberration is more challenging in the SWIR, since the Abbé number ratio of the same glass combination is reduced. Conventionally, fluorides, such as CaF2 and BaF2, are widely used in designing SWIR system due to their unique dispersion properties, even though they are notorious for poor manufacturability or even high toxicity. For lens elements in a zoom system, the ray bundle samples different sections of the each lens aperture as the lens zooms. This creates extra uncertainty in correcting chromatic aberrations. This paper focuses on using only commercially available optical glasses to color-correct a 3X dual-band zoom lens system in the VIS-SWIR. The design tools and techniques are detailed in terms of material selections to minimize the chromatic aberrations in such a large spectrum band and all zoom positions. Examples are discussed for designs with different aperture stop locations, which considerably affect the material choices.

  14. The Zoom Lens: A Case Study in Geometrical Optics.

    ERIC Educational Resources Information Center

    Cheville, Alan; Scepanovic, Misa

    2002-01-01

    Introduces a case study on a motion picture company considering the purchase of a newly developed zoom lens in which students act as the engineers designing the zoom lens based on the criteria of company's specifications. Focuses on geometrical optics. Includes teaching notes and classroom management strategies. (YDS)

  15. Optical design of laser zoom projective lens with variable total track

    NASA Astrophysics Data System (ADS)

    He, Yulan; Xiao, Xiangguo; Lu, Feng; Li, Yuan; Han, Kunye; Wang, Nanxi; Qiang, Hua

    2017-02-01

    In order to project the laser command information to the proper distance , so a laser zoom projective lens with variable total track optical system is designed in the carrier-based aircraft landing system. By choosing the zoom structure, designing of initial structure with PW solution, correcting and balancing the aberration, a large variable total track with 35 × zoom is carried out. The size of image is invariable that is φ25m, the distance of projective image is variable from 100m to 3500m. Optical reverse design, the spot is less than 8μm, the MTF is near the diffraction limitation, the value of MTF is bigger than 0.4 at 50lp/mm.

  16. Expert system for generating initial layouts of zoom systems with multiple moving lens groups

    NASA Astrophysics Data System (ADS)

    Cheng, Xuemin; Wang, Yongtian; Hao, Qun; Sasián, José M.

    2005-01-01

    An expert system is developed for the automatic generation of initial layouts for the design of zoom systems with multiple moving lens groups. The Gaussian parameters of the zoom system are optimized using the damped-least-squares method to achieve smooth zoom cam curves, with the f-number of each lens group in the zoom system constrained to a rational value. Then each lens group is selected automatically from a database according to its range of f-number, field of view, and magnification ratio as it is used in the zoom system. The lens group database is established from the results of analyzing thousands of zoom lens patents. Design examples are given, which show that the scheme is a practical approach to generate starting points for zoom lens design.

  17. Design study for a 16x zoom lens system for visible surveillance camera

    NASA Astrophysics Data System (ADS)

    Vella, Anthony; Li, Heng; Zhao, Yang; Trumper, Isaac; Gandara-Montano, Gustavo A.; Xu, Di; Nikolov, Daniel K.; Chen, Changchen; Brown, Nicolas S.; Guevara-Torres, Andres; Jung, Hae Won; Reimers, Jacob; Bentley, Julie

    2015-09-01

    *avella@ur.rochester.edu Design study for a 16x zoom lens system for visible surveillance camera Anthony Vella*, Heng Li, Yang Zhao, Isaac Trumper, Gustavo A. Gandara-Montano, Di Xu, Daniel K. Nikolov, Changchen Chen, Nicolas S. Brown, Andres Guevara-Torres, Hae Won Jung, Jacob Reimers, Julie Bentley The Institute of Optics, University of Rochester, Wilmot Building, 275 Hutchison Rd, Rochester, NY, USA 14627-0186 ABSTRACT High zoom ratio zoom lenses have extensive applications in broadcasting, cinema, and surveillance. Here, we present a design study on a 16x zoom lens with 4 groups (including two internal moving groups), designed for, but not limited to, a visible spectrum surveillance camera. Fifteen different solutions were discovered with nearly diffraction limited performance, using PNPX or PNNP design forms with the stop located in either the third or fourth group. Some interesting patterns and trends in the summarized results include the following: (a) in designs with such a large zoom ratio, the potential of locating the aperture stop in the front half of the system is limited, with ray height variations through zoom necessitating a very large lens diameter; (b) in many cases, the lens zoom motion has significant freedom to vary due to near zero total power in the middle two groups; and (c) we discuss the trade-offs between zoom configuration, stop location, packaging factors, and zoom group aberration sensitivity.

  18. Electrowetting-actuated zoom lens with spherical-interface liquid lenses.

    PubMed

    Peng, Runling; Chen, Jiabi; Zhuang, Songlin

    2008-11-01

    The interface shape of two immiscible liquids in a conical chamber is discussed. The analytical solution of the differential equation describing the interface shape shows that the interface shape is completely spherical when the density difference of two liquids is zero. On the basis of the spherical-interface shape and an energy-minimization method, explicit calculations and detailed analyses of an extended Young-type equation for the conical double-liquid lens are given. Finally, a novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two conical double-liquid variable-focus lenses. The structure and principle of the lens system are introduced in this paper. Taking finite objects as example, detailed calculations and simulation examples are presented to predict how two liquid lenses are related to meet the basic requirements of zoom lenses.

  19. Coherent x-ray zoom condenser lens for diffractive and scanning microscopy.

    PubMed

    Kimura, Takashi; Matsuyama, Satoshi; Yamauchi, Kazuto; Nishino, Yoshinori

    2013-04-22

    We propose a coherent x-ray zoom condenser lens composed of two-stage deformable Kirkpatrick-Baez mirrors. The lens delivers coherent x-rays with a controllable beam size, from one micrometer to a few tens of nanometers, at a fixed focal position. The lens is suitable for diffractive and scanning microscopy. We also propose non-scanning coherent diffraction microscopy for extended objects by using an apodized focused beam produced by the lens with a spatial filter. The proposed apodized-illumination method will be useful in highly efficient imaging with ultimate storage ring sources, and will also open the way to single-shot coherent diffraction microscopy of extended objects with x-ray free-electron lasers.

  20. Holographic zoom system based on spatial light modulator and liquid device

    NASA Astrophysics Data System (ADS)

    Wang, Di; Li, Lei; Liu, Su-Juan; Wang, Qiong-Hua

    2018-02-01

    In this paper, two holographic zoom systems are proposed based on the programmability of spatial light modulator (SLM) and zoom characteristics of liquid lens. An active optical zoom system is proposed in which the zoom module is composed of a liquid lens and an SLM. By controlling the focal lengths of the liquid lens and the encoded digital lens on the SLM, we can change the magnification of an image without mechanical moving parts and keep the output plane stationary. Then a color holographic zoom system based on a liquid lens is proposed. The system processes the color separation of the original object for red, green, and blue components and generated three holograms respectively. A new hologram with specific reconstructed distance can be generated by combing the hologram of the digital lens with the hologram of the image. By controlling the focal lengths of the liquid lens and the encoded digital lens on the SLM, we can change the magnification of the reconstructed image.

  1. Optimal power distribution for minimizing pupil walk in a 7.5X afocal zoom lens

    NASA Astrophysics Data System (ADS)

    Song, Wanyue; Zhao, Yang; Berman, Rebecca; Bodell, S. Yvonne; Fennig, Eryn; Ni, Yunhui; Papa, Jonathan C.; Yang, Tianyi; Yee, Anthony J.; Moore, Duncan T.; Bentley, Julie L.

    2017-11-01

    An extensive design study was conducted to find the best optimal power distribution and stop location for a 7.5x afocal zoom lens that controls the pupil walk and pupil location through zoom. This afocal zoom lens is one of the three components in a VIS-SWIR high-resolution microscope for inspection of photonic chips. The microscope consists of an afocal zoom, a nine-element objective and a tube lens and has diffraction limited performance with zero vignetting. In this case, the required change in object (sample) size and resolution is achieved by the magnification change of the afocal component. This creates strict requirements for both the entrance and exit pupil locations of the afocal zoom to couple the two sides successfully. The first phase of the design study looked at conventional four group zoom lenses with positive groups in the front and back and the stop at a fixed location outside the lens but resulted in significant pupil walk. The second phase of the design study focused on several promising unconventional four-group power distribution designs with moving stops that minimized pupil walk and had an acceptable pupil location (as determined by the objective and tube lens).

  2. Research on the relation between the contact angle and the interface curvature radius of electrowetting liquid zoom lens

    NASA Astrophysics Data System (ADS)

    Zhao, Cunhua; Liang, Huiqin; Cui, Dongqing; Hong, Xinhua; Wei, Daling; Gao, Changliu

    2011-08-01

    In the ultralight or ultrathin applied domain of zoom lens, the traditional glass / plastic lens is limited for manufacture technology or cost. Therefore, a liquid lens was put forward to solve the problems. The liquid zoom lens has the merits of lower cost, smaller volume, quicker response, lower energy consumption, continuous zoom and higher accuracy. In liquid zoom lens the precise focal length is obtained by the contact angle changing to affect the curvature radius of interface. In our works, the relations of the exerted voltage, the contact angle, the curvature radius and the focal length were researched and accurately calculated. The calculation of the focal length provides an important theoretical basis for instructing the design of liquid zoom lens.

  3. Optical zoom lens module using MEMS deformable mirrors for portable device

    NASA Astrophysics Data System (ADS)

    Lu, Jia-Shiun; Su, Guo-Dung J.

    2012-10-01

    The thickness of the smart phones in today's market is usually below than 10 mm, and with the shrinking of the phone volume, the difficulty of its production of the camera lens has been increasing. Therefore, how to give the imaging device more functionality in the smaller space is one of the interesting research topics for today's mobile phone companies. In this paper, we proposed a thin optical zoom system which is combined of micro-electromechanical components and reflective optical architecture. By the adopting of the MEMS deformable mirrors, we can change their radius of curvature to reach the optical zoom in and zoom out. And because we used the all-reflective architecture, so this system has eliminated the considerable chromatic aberrations in the absence of lenses. In our system, the thickness of the zoom system is about 11 mm. The smallest EFL (effective focal length) is 4.61 mm at a diagonal field angle of 52° and f/# of 5.24. The longest EFL of the module is 9.22 mm at a diagonal field angle of 27.4 with f/# of 5.03.°

  4. The zoom lens of attention: Simulating shuffled versus normal text reading using the SWIFT model

    PubMed Central

    Schad, Daniel J.; Engbert, Ralf

    2012-01-01

    Assumptions on the allocation of attention during reading are crucial for theoretical models of eye guidance. The zoom lens model of attention postulates that attentional deployment can vary from a sharp focus to a broad window. The model is closely related to the foveal load hypothesis, i.e., the assumption that the perceptual span is modulated by the difficulty of the fixated word. However, these important theoretical concepts for cognitive research have not been tested quantitatively in eye movement models. Here we show that the zoom lens model, implemented in the SWIFT model of saccade generation, captures many important patterns of eye movements. We compared the model's performance to experimental data from normal and shuffled text reading. Our results demonstrate that the zoom lens of attention might be an important concept for eye movement control in reading. PMID:22754295

  5. Electrically optofluidic zoom system with a large zoom range and high-resolution image.

    PubMed

    Li, Lei; Yuan, Rong-Ying; Wang, Jin-Hui; Wang, Qiong-Hua

    2017-09-18

    We report an electrically controlled optofluidic zoom system which can achieve a large continuous zoom change and high-resolution image. The zoom system consists of an optofluidic zoom objective and a switchable light path which are controlled by two liquid optical shutters. The proposed zoom system can achieve a large tunable focal length range from 36mm to 92mm. And in this tuning range, the zoom system can correct aberrations dynamically, thus the image resolution is high. Due to large zoom range, the proposed imaging system incorporates both camera configuration and telescope configuration into one system. In addition, the whole system is electrically controlled by three electrowetting liquid lenses and two liquid optical shutters, therefore, the proposed system is very compact and free of mechanical moving parts. The proposed zoom system has potential to take place of conventional zoom systems.

  6. Ultrathin zoom telescopic objective.

    PubMed

    Li, Lei; Wang, Di; Liu, Chao; Wang, Qiong-Hua

    2016-08-08

    We report an ultrathin zoom telescopic objective that can achieve continuous zoom change and has reduced compact volume. The objective consists of an annular folded lens and three electrowetting liquid lenses. The annular folded lens undertakes the main part of the focal power of the lens system. Due to a multiple-fold design, the optical path is folded in a lens with the thickness of ~1.98mm. The electrowetting liquid lenses constitute a zoom part. Based on the proposed objective, an ultrathin zoom telescopic camera is demonstrated. We analyze the properties of the proposed objective. The aperture of the proposed objective is ~15mm. The total length of the system is ~18mm with a tunable focal length ~48mm to ~65mm. Compared with the conventional zoom telescopic objective, the total length has been largely reduced.

  7. Optical zoom system realized by lateral shift of Alvarez freeform lenses

    NASA Astrophysics Data System (ADS)

    Hou, Changlun; Xin, Qing; Zang, Yue

    2018-04-01

    We present and characterize an optical zoom system with lateral movement of an Alvarez freeform lens for imaging. Mathematical analysis for determining the required freeform surfaces is presented, and optical simulations are performed to confirm and refine the expected zooming behavior. A 3 × optical zoom system that was equivalent to a photographic objective lens with focal length ranging from 34.5 to 103.5 mm and field of view ranging from 60 deg to 22.4 deg is developed by using two pairs of Alvarez lenses and conventional aspheric lenses. The optical performances of the Alvarez zoom system are demonstrated experimentally.

  8. Bidimensional Lens Systems : A Rational Approach To Group Displacements During Focusing And/Or Zooming

    NASA Astrophysics Data System (ADS)

    Angénieux, J. P. L.

    1987-06-01

    Modern objective lenses for cinematography, television or photography, and particularly zoom lenses, are composed of several groups of lenses which are axially displaced during zooming and/or focusing. The number of these groups has increased recently as well as the complexity of their relative movements and functions. In this paper, we give a short history of zooming and focusing techniques ; we discuss the inconvenience of traditional solutions. We then introduce the concept of bidimensional law. We propose a systematic classification of possible lens-types according to the 4 possible types of group. We finally present a few types of lenses in the form of truth tables and parametered diagrams explaining which groups move and how during focusing and/or zooming.

  9. An Electrically Tunable Zoom System Using Liquid Lenses

    PubMed Central

    Li, Heng; Cheng, Xuemin; Hao, Qun

    2015-01-01

    A four-group stabilized zoom system using two liquid lenses and two fixed lens groups is proposed. We describe the design principle, realization, and the testing of a 5.06:1 zoom system. The realized effective focal length (EFL) range is 6.93 mm to 35.06 mm, and the field of view (FOV) range is 8° to 40°. The system can zoom fast when liquid lens 1’s (L1’s) optical power take the value from 0.0087 mm−1 to 0.0192 mm−1 and liquid lens 2’s (L2’s) optical power take the value from 0.0185 mm−1 to −0.01 mm−1. Response time of the realized zoom system was less than 2.5 ms, and the settling time was less than 15 ms.The analysis of elements’ parameters and the measurement of lens performance not only verify the design principle further, but also show the zooming process by the use of two liquid lenses. The system is useful for motion carriers e.g., robot, ground vehicle, and unmanned aerial vehicles considering that it is fast, reliable, and miniature. PMID:26729124

  10. Structural design of off-axis aspheric surface reflective zoom optical system

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Chang, Jun; Song, Haiping; Niu, Yajun

    2018-01-01

    Designed an off-axis aspheric reflective zoom optical system, and produced a prototype. The system consists of three aspheric reflective lens, the zoom range is 30mm { 90mm. This system gave up the traditional structure of zoom cam, the lens moved using linear guide rail driven by motor, the positioning precision of which was 0.01mm. And introduced the design of support frames of each lens. The practice tests verified the rationality of the prototype structure design.

  11. An electronic pan/tilt/zoom camera system

    NASA Technical Reports Server (NTRS)

    Zimmermann, Steve; Martin, H. Lee

    1991-01-01

    A camera system for omnidirectional image viewing applications that provides pan, tilt, zoom, and rotational orientation within a hemispherical field of view (FOV) using no moving parts was developed. The imaging device is based on the effect that from a fisheye lens, which produces a circular image of an entire hemispherical FOV, can be mathematically corrected using high speed electronic circuitry. An incoming fisheye image from any image acquisition source is captured in memory of the device, a transformation is performed for the viewing region of interest and viewing direction, and a corrected image is output as a video image signal for viewing, recording, or analysis. As a result, this device can accomplish the functions of pan, tilt, rotation, and zoom throughout a hemispherical FOV without the need for any mechanical mechanisms. A programmable transformation processor provides flexible control over viewing situations. Multiple images, each with different image magnifications and pan tilt rotation parameters, can be obtained from a single camera. The image transformation device can provide corrected images at frame rates compatible with RS-170 standard video equipment.

  12. Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate.

    PubMed

    Ee, Ho-Seok; Agarwal, Ritesh

    2016-04-13

    A mechanically reconfigurable metasurface that can continuously tune the wavefront is demonstrated in the visible frequency range by changing the lattice constant of a complex Au nanorod array fabricated on a stretchable polydimethylsiloxane substrate. It is shown that the anomalous refraction angle of visible light at 632.8 nm interacting with the tunable metasurface can be adjusted from 11.4° to 14.9° by stretching the substrate by ∼30%. An ultrathin flat 1.7× zoom lens whose focal length can continuously be changed from 150 to 250 μm is realized, which also demonstrates the potential of utilizing metasurfaces for reconfigurable flat optics.

  13. Testing the generality of the zoom-lens model: Evidence for visual-pathway specific effects of attended-region size on perception.

    PubMed

    Goodhew, Stephanie C; Lawrence, Rebecca K; Edwards, Mark

    2017-05-01

    There are volumes of information available to process in visual scenes. Visual spatial attention is a critically important selection mechanism that prevents these volumes from overwhelming our visual system's limited-capacity processing resources. We were interested in understanding the effect of the size of the attended area on visual perception. The prevailing model of attended-region size across cognition, perception, and neuroscience is the zoom-lens model. This model stipulates that the magnitude of perceptual processing enhancement is inversely related to the size of the attended region, such that a narrow attended-region facilitates greater perceptual enhancement than a wider region. Yet visual processing is subserved by two major visual pathways (magnocellular and parvocellular) that operate with a degree of independence in early visual processing and encode contrasting visual information. Historically, testing of the zoom-lens has used measures of spatial acuity ideally suited to parvocellular processing. This, therefore, raises questions about the generality of the zoom-lens model to different aspects of visual perception. We found that while a narrow attended-region facilitated spatial acuity and the perception of high spatial frequency targets, it had no impact on either temporal acuity or the perception of low spatial frequency targets. This pattern also held up when targets were not presented centrally. This supports the notion that visual attended-region size has dissociable effects on magnocellular versus parvocellular mediated visual processing.

  14. To zoom or not to zoom: do we have enough pixels?

    NASA Astrophysics Data System (ADS)

    Youngworth, Richard N.; Herman, Eric

    2015-09-01

    Common lexicon in imaging systems includes the frequently used term digital zoom. Of course this term is somewhat of a misnomer as there is no actual zooming in such systems. Instead, digital zoom describes the zoom effect that comes with an image rewriting or reprinting that perhaps can be more accurately described as cropping and enlarging an image (a pixel remapping) for viewing. If done properly, users of the overall hybrid digital-optical system do not know the methodology employed. Hence the essential question, pondered and manipulated since the advent of mature digital image science, really becomes "do we have enough pixels to avoid optical zoom." This paper discusses known imaging factors for hybrid digital-optical systems, most notably resolution considerations. The paper is fundamentally about communication, and thereby includes information useful to the greater consumer, technical, and business community who all have an interest in understanding the key technical details that have driven the amazing technology and development of zoom systems.

  15. Zoom in, zoom out.

    PubMed

    Kanter, Rosabeth Moss

    2011-03-01

    Zoom buttons on digital devices let us examine images from many viewpoints. They also provide an apt metaphor for modes of strategic thinking. Some people prefer to see things up close, others from afar. Both perspectives have virtues. But they should not be fixed positions, says Harvard Business School's Kanter. To get a complete picture, leaders need to zoom in and zoom out. A close-in perspective is often found in relationship-intensive settings. It brings details into sharp focus and makes opportunities look large and compelling. But it can have significant downsides. Leaders who prefer to zoom in tend to create policies and systems that depend too much on politics and favors. They can focus too closely on personal status and on turf protection. And they often miss the big picture. When leaders zoom out, they can see events in context and as examples of general trends. They are able to make decisions based on principles. Yet a far-out perspective also has traps. Leaders can be so high above the fray that they don't recognize emerging threats. Having zoomed out to examine all possible routes, they may fail to notice when the moment is right for action on one path. They may also seem too remote and aloof to their staffs. The best leaders can zoom in to examine problems and then zoom out to look for patterns and causes. They don't divide the world into extremes-idiosyncratic or structural, situational or strategic, emotional or contextual. The point is not to choose one over the other but to learn to move across a continuum of perspectives.

  16. The attentional 'zoom-lens' in 8-month-old infants.

    PubMed

    Ronconi, Luca; Franchin, Laura; Valenza, Eloisa; Gori, Simone; Facoetti, Andrea

    2016-01-01

    The spatial attention mechanisms of orienting and zooming cooperate to properly select visual information from the environment and plan eye movements accordingly. Despite the fact that orienting ability has been extensively studied in infancy, the zooming mechanism--namely, the ability to distribute the attentional resources to a small or large portion of the visual field--has never been tested before. The aim of the present study was to evaluate the attentional zooming abilities of 8-month-old infants. An eye-tracker device was employed to measure the saccadic latencies (SLs) at the onset of a visual target displayed at two eccentricities. The size of the more eccentric target was adjusted in order to counteract the effect of cortical magnification. Before the target display, attentional resources were automatically focused (zoom-in) or spread out (zoom-out) by using a small or large cue, respectively. Two different cue-target intervals were also employed to measure the time course of this attentional mechanism. The results showed that infants' SLs varied as a function of the cue size. Moreover, a clear time course emerged, demonstrating that infants can rapidly adjust the attentional focus size during a pre-saccadic temporal window. These findings could serve as an early marker for neurodevelopmental disorders associated with attentional zooming dysfunction such as autism and dyslexia. © 2015 John Wiley & Sons Ltd.

  17. Intraocular lens based on double-liquid variable-focus lens.

    PubMed

    Peng, Runling; Li, Yifan; Hu, Shuilan; Wei, Maowei; Chen, Jiabi

    2014-01-10

    In this work, the crystalline lens in the Gullstrand-Le Grand human eye model is replaced by a double-liquid variable-focus lens, the structure data of which are based on theoretical analysis and experimental results. When the pseudoaphakic eye is built in Zemax, aspherical surfaces are introduced to the double-liquid variable-focus lens to reduce the axial spherical aberration existent in the system. After optimization, the zoom range of the pseudoaphakic eye greatly exceeds that of normal human eyes, and the spot size on an image plane basically reaches the normal human eye's limit of resolution.

  18. Trend of digital camera and interchangeable zoom lenses with high ratio based on patent application over the past 10 years

    NASA Astrophysics Data System (ADS)

    Sensui, Takayuki

    2012-10-01

    Although digitalization has tripled consumer-class camera market scale, extreme reductions in prices of fixed-lens cameras has reduced profitability. As a result, a number of manufacturers have entered the market of the System DSC i.e. digital still camera with interchangeable lens, where large profit margins are possible, and many high ratio zoom lenses with image stabilization functions have been released. Quiet actuators are another indispensable component. Design with which there is little degradation in performance due to all types of errors is preferred for good balance in terms of size, lens performance, and the rate of quality to sub-standard products. Decentering, such as that caused by tilting, sensitivity of moving groups is especially important. In addition, image stabilization mechanisms actively shift lens groups. Development of high ratio zoom lenses with vibration reduction mechanism is confronted by the challenge of reduced performance due to decentering, making control over decentering sensitivity between lens groups everything. While there are a number of ways to align lenses (axial alignment), shock resistance and ability to stand up to environmental conditions must also be considered. Naturally, it is very difficult, if not impossible, to make lenses smaller and achieve a low decentering sensitivity at the same time. 4-group zoom construction is beneficial in making lenses smaller, but decentering sensitivity is greater. 5-group zoom configuration makes smaller lenses more difficult, but it enables lower decentering sensitivities. At Nikon, the most advantageous construction is selected for each lens based on specifications. The AF-S DX NIKKOR 18-200mm f/3.5-5.6G ED VR II and AF-S NIKKOR 28-300mm f/3.5-5.6G ED VR are excellent examples of this.

  19. Zoom system without moving element by using two liquid crystal lenses with spherical electrode

    NASA Astrophysics Data System (ADS)

    Yang, Ren-Kai; Lin, Chia-Ping; Su, Guo-Dung J.

    2017-08-01

    A traditional zoom system is composed of several elements moving relatively toward other components to achieve zooming. Unlike tradition system, an electrically control zoom system with liquid crystal (LC) lenses is demonstrated in this paper. To achieve zooming, we apply two LC lenses whose optical power is controlled by voltage to replace two moving lenses in traditional zoom system. The mechanism of zoom system is to use two LC lenses to form a simple zoom system. We found that with such spherical electrodes, we could operate LC lens at voltage range from 31V to 53 V for 3X tunability in optical power. For each LC lens, we use concave spherical electrode which provide lower operating voltage and great tunability in optical power, respectively. For such operating voltage and compact size, this zoom system with zoom ratio approximate 3:1 could be applied to mobile phone, camera and other applications.

  20. Stereoscopic 3D reconstruction using motorized zoom lenses within an embedded system

    NASA Astrophysics Data System (ADS)

    Liu, Pengcheng; Willis, Andrew; Sui, Yunfeng

    2009-02-01

    This paper describes a novel embedded system capable of estimating 3D positions of surfaces viewed by a stereoscopic rig consisting of a pair of calibrated cameras. Novel theoretical and technical aspects of the system are tied to two aspects of the design that deviate from typical stereoscopic reconstruction systems: (1) incorporation of an 10x zoom lens (Rainbow- H10x8.5) and (2) implementation of the system on an embedded system. The system components include a DSP running μClinux, an embedded version of the Linux operating system, and an FPGA. The DSP orchestrates data flow within the system and performs complex computational tasks and the FPGA provides an interface to the system devices which consist of a CMOS camera pair and a pair of servo motors which rotate (pan) each camera. Calibration of the camera pair is accomplished using a collection of stereo images that view a common chess board calibration pattern for a set of pre-defined zoom positions. Calibration settings for an arbitrary zoom setting are estimated by interpolation of the camera parameters. A low-computational cost method for dense stereo matching is used to compute depth disparities for the stereo image pairs. Surface reconstruction is accomplished by classical triangulation of the matched points from the depth disparities. This article includes our methods and results for the following problems: (1) automatic computation of the focus and exposure settings for the lens and camera sensor, (2) calibration of the system for various zoom settings and (3) stereo reconstruction results for several free form objects.

  1. Thales Angenieux: 42 years of cine 35 mm zoom leadership

    NASA Astrophysics Data System (ADS)

    Debize, Jacques

    2004-02-01

    Since the early years of zoom optics, Angenieux has been involved in cine 8 mm, 16 mm and 35 mm. Among more than twenty different zoom lenses, four of them have been milestones in this field, technical progresses being sanctified by two Oscars in 1964 and 1990. From 1960 to 2002 Angenieux has created first the 4 x 35 LA2, the first four times mechanically compensated zoom lens for cine 35 mm in the world, secondary the 10 x 25 T2, the first ten times mechanically compensated zoom lens for cine 35 mm in the world, then the 10 x 25 HR, the top level of quality for its category and finally the 12 x 24 Optimo with all characteristics and performances greatly increased. This leadership has been reached thanks to computers and in-house softwares but also thanks to new manufacturing processes.

  2. Design, fabrication, and testing of duralumin zoom mirror with variable thickness

    NASA Astrophysics Data System (ADS)

    Hui, Zhao; Xie, Xiaopeng; Xu, Liang; Ding, Jiaoteng; Shen, Le; Liu, Meiying; Gong, Jie

    2016-10-01

    Zoom mirror is a kind of active optical component that can change its curvature radius dynamically. Normally, zoom mirror is used to correct the defocus and spherical aberration caused by thermal lens effect to improve the beam quality of high power solid-state laser since that component was invented. Recently, the probable application of zoom mirror in realizing non-moving element optical zoom imaging in visible band has been paid much attention. With the help of optical leveraging effect, the slightly changed local optical power caused by curvature variation of zoom mirror could be amplified to generate a great alteration of system focal length without moving elements involved in, but in this application the shorter working wavelength and higher surface figure accuracy requirement make the design and fabrication of such a zoom mirror more difficult. Therefore, the key to realize non-moving element optical zoom imaging in visible band lies in zoom mirror which could provide a large enough saggitus variation while still maintaining a high enough surface figure. Although the annular force based actuation could deform a super-thin mirror having a constant thickness to generate curvature variation, it is quite difficult to maintain a high enough surface figure accuracy and this phenomenon becomes even worse when the diameter and the radius-thickness ratio become bigger. In this manuscript, by combing the pressurization based actuation with a variable thickness mirror design, the purpose of obtaining large saggitus variation and maintaining quite good surface figure accuracy at the same time could be achieved. A prototype zoom mirror with diameter of 120mm and central thickness of 8mm is designed, fabricated and tested. Experimental results demonstrate that the zoom mirror having an initial surface figure accuracy superior to 1/50λ could provide at least 21um saggitus variation and after finishing the curvature variation its surface figure accuracy could still be

  3. Miniaturized unified imaging system using bio-inspired fluidic lens

    NASA Astrophysics Data System (ADS)

    Tsai, Frank S.; Cho, Sung Hwan; Qiao, Wen; Kim, Nam-Hyong; Lo, Yu-Hwa

    2008-08-01

    Miniaturized imaging systems have become ubiquitous as they are found in an ever-increasing number of devices, such as cellular phones, personal digital assistants, and web cameras. Until now, the design and fabrication methodology of such systems have not been significantly different from conventional cameras. The only established method to achieve focusing is by varying the lens distance. On the other hand, the variable-shape crystalline lens found in animal eyes offers inspiration for a more natural way of achieving an optical system with high functionality. Learning from the working concepts of the optics in the animal kingdom, we developed bio-inspired fluidic lenses for a miniature universal imager with auto-focusing, macro, and super-macro capabilities. Because of the enormous dynamic range of fluidic lenses, the miniature camera can even function as a microscope. To compensate for the image quality difference between the central vision and peripheral vision and the shape difference between a solid-state image sensor and a curved retina, we adopted a hybrid design consisting of fluidic lenses for tunability and fixed lenses for aberration and color dispersion correction. A design of the world's smallest surgical camera with 3X optical zoom capabilities is also demonstrated using the approach of hybrid lenses.

  4. The analysis of the wavefront aberration caused by the gravity of the tunable-focus liquid-filled membrane lens

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Liu, Pengfei; Wei, Xiaona; Zhuang, Songlin; Yang, Bo

    2010-11-01

    Liquid lens is a novel optical device which can implement active zooming. With liquid lens, zoom camera can be designed with more miniature size and simpler structure than before. It is thought that the micro zoom system with liquid lens has a very wide potential applications in many fields, in which the volume and weight of the system are critically limited, such as endoscope, mobile, PDA and so on. There are mainly three types of tunable-focus liquid lens: liquid crystal lens, electrowetting effect based liquid lens and liquid-filled membrane lens. Comparing with the other two kinds of liquid lens, the liquid-filled membrane lens has the advantages of simple structure, flexible aperture and high zooming efficiency. But its membrane surface will have an initial shape deformation caused by the gravity when the aperture of the lens is at large size, which will lead to the wave front aberration and the imaging quality impairing. In this paper, the initial deformation of the lens caused by the gravity was simulated based on the theory of Elastic Mechanics, which was calculated by the Finite Element Analysis method. The relationship between the diameter of the lens and the wave front aberration caused by the gravity was studied. And the Optical path difference produced by different liquid density was also analyzed.

  5. Zoom Reconstruction Tool: Evaluation of Image Quality and Influence on the Diagnosis of Root Fracture.

    PubMed

    Queiroz, Polyane Mazucatto; Santaella, Gustavo Machado; Capelozza, Ana Lúcia Alvares; Rosalen, Pedro Luiz; Freitas, Deborah Queiroz; Haiter-Neto, Francisco

    2018-04-01

    This study evaluated the image quality and the diagnosis of root fractures when using the Zoom Reconstruction tool (J Morita, Kyoto, Japan). A utility wax phantom with a metal sample inside was used for objective evaluation, and a mandible with 27 single-rooted teeth (with and without obturation and with and without vertical or horizontal fractures) was used for diagnostic evaluation. The images were acquired in 3 protocols: protocol 1, field of view (FOV) of 4 × 4 cm and a voxel size of 0.08 mm; protocol 2, FOV of 10 × 10 cm and a voxel size of 0.2 mm; and protocol 3, Zoom Reconstruction of images from protocol 2 (FOV of 4 × 4 cm and a voxel size of 0.08 mm). The objective evaluation was achieved by measuring the image noise, and the diagnosis of fractures was performed by 3 evaluators. The area under the receiver operating characteristic curve was used to calculate accuracy, and analysis of variance compared the accuracy and image quality of the protocols. Regarding quality, protocol 1 was superior to protocol 2 (P < .0001) and Zoom Reconstruction (P < .0001). Additionally, images of protocol 2 presented less noise than the Zoom Reconstruction image (P < .0001); however, for diagnosis, Zoom Reconstruction was superior in relation to protocol 2 (P = .011) and did not differ from protocol 1 (P = .228) for the diagnosis of a vertical root fracture in filled teeth. The Zoom Reconstruction tool allows better accuracy for vertical root fracture detection in filled teeth, making it possible to obtain a higher-resolution image from a lower-resolution examination without having to expose the patient to more radiation. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Development of a dry actuation conducting polymer actuator for micro-optical zoom lenses

    NASA Astrophysics Data System (ADS)

    Kim, Baek-Chul; Kim, Hyunseok; Nguyen, H. C.; Cho, M. S.; Lee, Y.; Nam, Jae-Do; Choi, Hyouk Ryeol; Koo, J. C.; Jeong, H.-S.

    2008-03-01

    The objective of the present work is to demonstrate the efficiency and feasibility of NBR (Nitrile Butadiene Rubber) based conducting polymer actuator that is fabricated into a micro zoon lens driver. Unlike the traditional conducting polymer that normally operates in a liquid, the proposed actuator successfully provides fairly effective driving performance for the zoom lens system in a dry environment. And this paper is including the experiment results for an efficiency improvement. The result suggested by an experiment was efficient in micro optical zoom lens system. In addition, the developed design method of actuator was given consideration to design the system.

  7. Design of laser afocal zoom expander system

    NASA Astrophysics Data System (ADS)

    Jiang, Lian; Zeng, Chun-Mei; Hu, Tian-Tian

    2018-01-01

    Laser afocal zoom expander system due to the beam diameter variable, can be used in the light sheet illumination microscope to observe the samples of different sizes. Based on the principle of afocal zoom system, the laser collimation and beam expander system with a total length of less than 110mm, 6 pieces of spherical lens and a beam expander ratio of 10 is designed by using Zemax software. The system is focused on laser with a wavelength of 532nm, divergence angle of less than 4mrad and incident diameter of 4mm. With the combination of 6 spherical lens, the beam divergence angle is 0.4mrad at the maximum magnification ratio, and the RMS values at different rates are less than λ/4. This design is simple in structure and easy to process and adjust. It has certain practical value.

  8. Annular ring zoom system using two positive axicons

    NASA Astrophysics Data System (ADS)

    Dickey, Fred M.; Conner, Jacob D.

    2011-10-01

    The production of an annular ring of light with a variable diameter has applications in laser material processing and machining, particle manipulation, and corneal surgery. This can readily be accomplished using a positive and negative axicon pair. However, negative axicons are very expensive and difficult to obtain with small diameters. In this paper, we present a design of an annular ring zoom system using two positive axicons. One axicon is placed a distance before a primary lens that is greater than some prescribed minimum, and the second axicon is placed after the primary lens. The position of the second axicon determines the ring diameter. The ring diameter can be zoomed from some maximum design size to a zero diameter ring (spot). Experimental results from a developmental system will be presented.

  9. Design of high-performance adaptive objective lens with large optical depth scanning range for ultrabroad near infrared microscopic imaging

    PubMed Central

    Lan, Gongpu; Mauger, Thomas F.; Li, Guoqiang

    2015-01-01

    We report on the theory and design of adaptive objective lens for ultra broadband near infrared light imaging with large dynamic optical depth scanning range by using an embedded tunable lens, which can find wide applications in deep tissue biomedical imaging systems, such as confocal microscope, optical coherence tomography (OCT), two-photon microscopy, etc., both in vivo and ex vivo. This design is based on, but not limited to, a home-made prototype of liquid-filled membrane lens with a clear aperture of 8mm and the thickness of 2.55mm ~3.18mm. It is beneficial to have an adaptive objective lens which allows an extended depth scanning range larger than the focal length zoom range, since this will keep the magnification of the whole system, numerical aperture (NA), field of view (FOV), and resolution more consistent. To achieve this goal, a systematic theory is presented, for the first time to our acknowledgment, by inserting the varifocal lens in between a front and a back solid lens group. The designed objective has a compact size (10mm-diameter and 15mm-length), ultrabroad working bandwidth (760nm - 920nm), a large depth scanning range (7.36mm in air) — 1.533 times of focal length zoom range (4.8mm in air), and a FOV around 1mm × 1mm. Diffraction-limited performance can be achieved within this ultrabroad bandwidth through all the scanning depth (the resolution is 2.22 μm - 2.81 μm, calculated at the wavelength of 800nm with the NA of 0.214 - 0.171). The chromatic focal shift value is within the depth of focus (field). The chromatic difference in distortion is nearly zero and the maximum distortion is less than 0.05%. PMID:26417508

  10. MEMS-based liquid lens for capsule endoscope

    NASA Astrophysics Data System (ADS)

    Seo, S. W.; Han, S.; Seo, J. H.; Kim, Y. M.; Kang, M. S.; Min, N. G.; Choi, W. B.; Sung, M. Y.

    2008-03-01

    The capsule endoscope, a new application area of digital imaging, is growing rapidly but needs the versatile imaging capabilities such as auto-focusing and zoom-in to be an active diagnostic tool. The liquid lens based on MEMS technology can be a strong candidate because it is able to be small enough. In this paper, a cylinder-type liquid lens was designed based on Young-Lippmann model and then fabricated with MEMS technology combining the silicon thin-film process and the wafer bonding process. The focal length of the lens module including the fabricated liquid lens was changed reproducibly as a function of the applied voltage. With the change of 30V in the applied bias, the focal length of the constructed lens module could be tuned in the range of about 42cm. The fabricated liquid lens was also proven to be small enough to be adopted in the capsule endoscope, which means the liquid lens can be utilized for the imaging capability improvement of the capsule endoscope.

  11. Fast digital zooming system using directionally adaptive image interpolation and restoration.

    PubMed

    Kang, Wonseok; Jeon, Jaehwan; Yu, Soohwan; Paik, Joonki

    2014-01-01

    This paper presents a fast digital zooming system for mobile consumer cameras using directionally adaptive image interpolation and restoration methods. The proposed interpolation algorithm performs edge refinement along the initially estimated edge orientation using directionally steerable filters. Either the directionally weighted linear or adaptive cubic-spline interpolation filter is then selectively used according to the refined edge orientation for removing jagged artifacts in the slanted edge region. A novel image restoration algorithm is also presented for removing blurring artifacts caused by the linear or cubic-spline interpolation using the directionally adaptive truncated constrained least squares (TCLS) filter. Both proposed steerable filter-based interpolation and the TCLS-based restoration filters have a finite impulse response (FIR) structure for real time processing in an image signal processing (ISP) chain. Experimental results show that the proposed digital zooming system provides high-quality magnified images with FIR filter-based fast computational structure.

  12. Design and Implementation of a Video-Zoom Driven Digital Audio-Zoom System for Portable Digital Imaging Devices

    NASA Astrophysics Data System (ADS)

    Park, Nam In; Kim, Seon Man; Kim, Hong Kook; Kim, Ji Woon; Kim, Myeong Bo; Yun, Su Won

    In this paper, we propose a video-zoom driven audio-zoom algorithm in order to provide audio zooming effects in accordance with the degree of video-zoom. The proposed algorithm is designed based on a super-directive beamformer operating with a 4-channel microphone system, in conjunction with a soft masking process that considers the phase differences between microphones. Thus, the audio-zoom processed signal is obtained by multiplying an audio gain derived from a video-zoom level by the masked signal. After all, a real-time audio-zoom system is implemented on an ARM-CORETEX-A8 having a clock speed of 600 MHz after different levels of optimization are performed such as algorithmic level, C-code, and memory optimizations. To evaluate the complexity of the proposed real-time audio-zoom system, test data whose length is 21.3 seconds long is sampled at 48 kHz. As a result, it is shown from the experiments that the processing time for the proposed audio-zoom system occupies 14.6% or less of the ARM clock cycles. It is also shown from the experimental results performed in a semi-anechoic chamber that the signal with the front direction can be amplified by approximately 10 dB compared to the other directions.

  13. Variable focus photographic lens without mechanical movements

    NASA Astrophysics Data System (ADS)

    Chen, Jiabi; Peng, Runling; Zhuang, Songlin

    2007-09-01

    A novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two double-liquid variable-focus lenses. The liquid lenses, made out of two immiscible liquids, are based on the principle of electrowetting: an effect controlling the wetting properties of a liquid on a solid by modifying the applied voltage at the solid-liquid interface. The structure and principle of the lens system are introduced in this paper. And detailed calculations and simulation examples are presented to predict how two liquid lenses are related to meet the basic requirements of zoom lenses.

  14. Continuous zoom antenna for mobile visible light communication.

    PubMed

    Zhang, Xuebin; Tang, Yi; Cui, Lu; Bai, Tingzhu

    2015-11-10

    In this paper, we design a continuous zoom antenna for mobile visible light communication (VLC). In the design, a right-angle reflecting prism was adopted to fold the space optical path, thus decreasing the antenna thickness. The surface of each lens in the antenna is spherical, and the system cost is relatively low. Simulation results indicated that the designed system achieved the following performance: zoom ratio of 2.44, field of view (FOV) range of 18°-48°, system gain of 16.8, and system size of 18 mm×6  mm. Finally, we established an indoor VLC system model in a room the size of 5  m ×5  m ×3  m and compared the detection results of the zoom antenna and fixed-focus antenna obtained in a multisource communication environment, a mobile VLC environment, and a multiple-input multiple-output communication environment. The simulation results indicated that the continuous zoom antenna could realize large FOV and high gain. Moreover, the system showed improved stability, mobility, and environmental applicability.

  15. Optical design of an athermalised dual field of view step zoom optical system in MWIR

    NASA Astrophysics Data System (ADS)

    Kucukcelebi, Doruk

    2017-08-01

    In this paper, the optical design of an athermalised dual field of view step zoom optical system in MWIR (3.7μm - 4.8μm) is described. The dual field of view infrared optical system is designed based on the principle of passive athermalization method not only to achieve athermal optical system but also to keep the high image quality within the working temperature between -40°C and +60°C. The infrared optical system used in this study had a 320 pixel x 256 pixel resolution, 20μm pixel pitch size cooled MWIR focal plane array detector. In this study, the step zoom mechanism, which has the axial motion due to consisting of a lens group, is considered to simplify mechanical structure. The optical design was based on moving a single lens along the optical axis for changing the optical system's field of view not only to reduce the number of moving parts but also to athermalize for the optical system. The optical design began with an optimization process using paraxial optics when first-order optics parameters are determined. During the optimization process, in order to reduce aberrations, such as coma, astigmatism, spherical and chromatic aberrations, aspherical surfaces were used. As a result, athermalised dual field of view step zoom optical design is proposed and the performance of the design using proposed method was verified by providing the focus shifts, spot diagrams and MTF analyzes' plots.

  16. Determination of Electron Optical Properties for Aperture Zoom Lenses Using an Artificial Neural Network Method.

    PubMed

    Isik, Nimet

    2016-04-01

    Multi-element electrostatic aperture lens systems are widely used to control electron or charged particle beams in many scientific instruments. By means of applied voltages, these lens systems can be operated for different purposes. In this context, numerous methods have been performed to calculate focal properties of these lenses. In this study, an artificial neural network (ANN) classification method is utilized to determine the focused/unfocused charged particle beam in the image point as a function of lens voltages for multi-element electrostatic aperture lenses. A data set for training and testing of ANN is taken from the SIMION 8.1 simulation program, which is a well known and proven accuracy program in charged particle optics. Mean squared error results of this study indicate that the ANN classification method provides notable performance characteristics for electrostatic aperture zoom lenses.

  17. Cine-servo lens technology for 4K broadcast and cinematography

    NASA Astrophysics Data System (ADS)

    Nurishi, Ryuji; Wakazono, Tsuyoshi; Usui, Fumiaki

    2015-09-01

    Central to the rapid evolution of 4K image capture technology in the past few years, deployment of large-format cameras with Super35mm Single Sensors is increasing in TV production for diverse shows such as dramas, documentaries, wildlife, and sports. While large format image capture has been the standard in the cinema world for quite some time, the recent experiences within the broadcast industry have revealed a variety of requirement differences for large format lenses compared to those of the cinema industry. A typical requirement for a broadcast lens is a considerably higher zoom ratio in order to avoid changing lenses in the middle of a live event, which is mostly not the case for traditional cinema productions. Another example is the need for compact size, light weight, and servo operability for a single camera operator shooting in a shoulder-mount ENG style. On the other hand, there are new requirements that are common to both worlds, such as smooth and seamless change in angle of view throughout the long zoom range, which potentially offers new image expression that never existed in the past. This paper will discuss the requirements from the two industries of cinema and broadcast, while at the same time introducing the new technologies and new optical design concepts applied to our latest "CINE-SERVO" lens series which presently consists of two models, CN7x17KAS-S and CN20x50IAS-H. It will further explain how Canon has realized 4K optical performance and fast servo control while simultaneously achieving compact size, light weight and high zoom ratio, by referring to patent-pending technologies such as the optical power layout, lens construction, and glass material combinations.

  18. Optimization design of periscope type 3X zoom lens design for a five megapixel cellphone camera

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Shing; Tien, Chuen-Lin; Pan, Jui-Wen; Chao, Yu-Hao; Chu, Pu-Yi

    2016-11-01

    This paper presents a periscope type 3X zoom lenses design for a five megapixel cellphone camera. The configuration of optical system uses the right angle prism in front of the zoom lenses to change the optical path rotated by a 90° angle resulting in the zoom lenses length of 6 mm. The zoom lenses can be embedded in mobile phone with a thickness of 6 mm. The zoom lenses have three groups with six elements. The half field of view is varied from 30° to 10.89°, the effective focal length is adjusted from 3.142 mm to 9.426 mm, and the F-number is changed from 2.8 to 5.13.

  19. Dual FOV infrared lens design with the laser common aperture optics

    NASA Astrophysics Data System (ADS)

    Chang, Wei-jun; Zhang, Xuan-zhi; Luan, Ya-dong; Zhang, Bo

    2015-02-01

    With the demand of autonomous precision guidance of air defense missile, the system scheme of the IR imaging/Ladar dual-mode seeker with a common aperture was proposed, and the optical system used in was designed. The system had a common receiving aperture, and its structure was very compact, so it could meet the requirement for the miniaturization of the seeker. Besides, it also could meet the demands of a wide field of view for searching target, and the demands for accurately recognizing and tracking the target at the same time. In order to increase the narrow FOV tracking performance, the dual FOV infrared optical used the zooming mode which some components flip in or out the optical system to firm the target signal. The dual FOV optics are divided into the zooming part, with dual variable focal length, and the reimaging part which was chosen in such a way to minimize the objective lens while maintaining 100% cold shield efficiency. The final infrared optics including 4°×3°(NFOV) and 16°×12°(WFOV) was designed. The NFOV lens composed of two common IR/Ladar lens, three relay lens, a beam splitter and two reflective fold mirrors, while WFOV lens increased two lens such as Germanium and Silicon. The common IR/Ladar lens ZnS and ZnSe could refractive the IR optics and Laser optics. The beam splitter which refractived IR optics and reflected Laser optics was located in the middle of Germanium and Silicon. The designed optical system had good image quality, and fulfilled the performance requirement of seeker system.

  20. Design and experimental validation of novel 3D optical scanner with zoom lens unit

    NASA Astrophysics Data System (ADS)

    Huang, Jyun-Cheng; Liu, Chien-Sheng; Chiang, Pei-Ju; Hsu, Wei-Yan; Liu, Jian-Liang; Huang, Bai-Hao; Lin, Shao-Ru

    2017-10-01

    Optical scanners play a key role in many three-dimensional (3D) printing and CAD/CAM applications. However, existing optical scanners are generally designed to provide either a wide scanning area or a high 3D reconstruction accuracy from a lens with a fixed focal length. In the former case, the scanning area is increased at the expense of the reconstruction accuracy, while in the latter case, the reconstruction performance is improved at the expense of a more limited scanning range. In other words, existing optical scanners compromise between the scanning area and the reconstruction accuracy. Accordingly, the present study proposes a new scanning system including a zoom-lens unit, which combines both a wide scanning area and a high 3D reconstruction accuracy. In the proposed approach, the object is scanned initially under a suitable low-magnification setting for the object size (setting 1), resulting in a wide scanning area but a poor reconstruction resolution in complicated regions of the object. The complicated regions of the object are then rescanned under a high-magnification setting (setting 2) in order to improve the accuracy of the original reconstruction results. Finally, the models reconstructed after each scanning pass are combined to obtain the final reconstructed 3D shape of the object. The feasibility of the proposed method is demonstrated experimentally using a laboratory-built prototype. It is shown that the scanner has a high reconstruction accuracy over a large scanning area. In other words, the proposed optical scanner has significant potential for 3D engineering applications.

  1. Zooming in on Landing Site

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Zooming in on Landing Site

    This animation zooms in on the area on Mars where NASA's Phoenix Mars Lander will touchdown on May 25, 2008. The image was taken by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter.

    The first shot shows the spacecraft's landing ellipse in green, the area where Phoenix has a high probability of landing. It then zooms in to show the region's arctic terrain. This polar landscape is relatively free of rocks, with only about 1 to 2 rocks 1.5 meters (4.9 feet) or larger in an area about as big as two football fields.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace & Technologies Corp., Boulder, Colo.

  2. International Lens Design Conference, Monterey, CA, June 11-14, 1990, Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, G.N.

    1990-01-01

    The present conference on lens design encompasses physical and geometrical optics, diffractive optics, the optimization of optical design, software packages, ray tracing, the use of artificial intelligence, the achromatization of materials, zoom optics, microoptics and GRIN lenses, and IR lens design. Specific issues addressed include diffraction-performance calculations in lens design, the optimization of the optical transfer function, a rank-down method for automatic lens design, applications of quadric surfaces, the correction of aberrations by using HOEs in UV and visible imaging systems, and an all-refractive telescope for intersatellite communications. Also addressed are automation techniques for optics manufacturing, all-reflective phased-array imaging telescopes,more » the thermal aberration analysis of a Nd:YAG laser, the analysis of illumination systems, athermalized FLIR optics, and the design of array systems using shared symmetry.« less

  3. Miniature hybrid optical imaging lens

    DOEpatents

    Sitter, Jr., David N.; Simpson, Marc L.

    1997-01-01

    A miniature lens system that corrects for imaging and chromatic aberrations, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components.

  4. Miniature hybrid optical imaging lens

    DOEpatents

    Sitter, D.N. Jr.; Simpson, M.L.

    1997-10-21

    A miniature lens system that corrects for imaging and chromatic aberrations is disclosed, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components. 2 figs.

  5. Zooming in on Landing Site

    NASA Image and Video Library

    2008-05-24

    This animation zooms in on the area on Mars where NASA Phoenix Mars Lander will touchdown on May 25, 2008. The image was taken by the High Resolution Imaging Science Experiment HiRISE camera on NASA Mars Reconnaissance Orbiter.

  6. Active optical zoom system

    DOEpatents

    Wick, David V.

    2005-12-20

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  7. Automatic source camera identification using the intrinsic lens radial distortion

    NASA Astrophysics Data System (ADS)

    Choi, Kai San; Lam, Edmund Y.; Wong, Kenneth K. Y.

    2006-11-01

    Source camera identification refers to the task of matching digital images with the cameras that are responsible for producing these images. This is an important task in image forensics, which in turn is a critical procedure in law enforcement. Unfortunately, few digital cameras are equipped with the capability of producing watermarks for this purpose. In this paper, we demonstrate that it is possible to achieve a high rate of accuracy in the identification by noting the intrinsic lens radial distortion of each camera. To reduce manufacturing cost, the majority of digital cameras are equipped with lenses having rather spherical surfaces, whose inherent radial distortions serve as unique fingerprints in the images. We extract, for each image, parameters from aberration measurements, which are then used to train and test a support vector machine classifier. We conduct extensive experiments to evaluate the success rate of a source camera identification with five cameras. The results show that this is a viable approach with high accuracy. Additionally, we also present results on how the error rates may change with images captured using various optical zoom levels, as zooming is commonly available in digital cameras.

  8. Signal-to-noise analysis of a birefringent spectral zooming imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Li, Jie; Zhang, Xiaotong; Wu, Haiying; Qi, Chun

    2018-05-01

    Study of signal-to-noise ratio (SNR) of a novel spectral zooming imaging spectrometer (SZIS) based on two identical Wollaston prisms is conducted. According to the theory of radiometry and Fourier transform spectroscopy, we deduce the theoretical equations of SNR of SZIS in spectral domain with consideration of the incident wavelength and the adjustable spectral resolution. An example calculation of SNR of SZIS is performed over 400-1000 nm. The calculation results indicate that SNR with different spectral resolutions of SZIS can be optionally selected by changing the spacing between the two identical Wollaston prisms. This will provide theoretical basis for the design, development and engineering of the developed imaging spectrometer for broad spectrum and SNR requirements.

  9. Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens.

    PubMed

    Rosales, Patricia; Marcos, Susana

    2009-05-01

    To implement geometrical and optical distortion correction methods for anterior segment Scheimpflug images obtained with a commercially available system (Pentacam, Oculus Optikgeräte GmbH). Ray tracing algorithms were implemented to obtain corrected ocular surface geometry from the original images captured by the Pentacam's CCD camera. As details of the optical layout were not fully provided by the manufacturer, an iterative procedure (based on imaging of calibrated spheres) was developed to estimate the camera lens specifications. The correction procedure was tested on Scheimpflug images of a physical water cell model eye (with polymethylmethacrylate cornea and a commercial IOL of known dimensions) and of a normal human eye previously measured with a corrected optical and geometrical distortion Scheimpflug camera (Topcon SL-45 [Topcon Medical Systems Inc] from the Vrije University, Amsterdam, Holland). Uncorrected Scheimpflug images show flatter surfaces and thinner lenses than in reality. The application of geometrical and optical distortion correction algorithms improves the accuracy of the estimated anterior lens radii of curvature by 30% to 40% and of the estimated posterior lens by 50% to 100%. The average error in the retrieved radii was 0.37 and 0.46 mm for the anterior and posterior lens radii of curvature, respectively, and 0.048 mm for lens thickness. The Pentacam Scheimpflug system can be used to obtain quantitative information on the geometry of the crystalline lens, provided that geometrical and optical distortion correction algorithms are applied, within the accuracy of state-of-the art phakometry and biometry. The techniques could improve with exact knowledge of the technical specifications of the instrument, improved edge detection algorithms, consideration of aspheric and non-rotationally symmetrical surfaces, and introduction of a crystalline gradient index.

  10. Image watermarking against lens flare effects

    NASA Astrophysics Data System (ADS)

    Chotikawanid, Piyanart; Amornraksa, Thumrongrat

    2017-02-01

    Lens flare effects in various photo and camera software nowadays can partially or fully damage the watermark information within the watermarked image. We propose in this paper a spatial domain based image watermarking against lens flare effects. The watermark embedding is based on the modification of the saturation color component in HSV color space of a host image. For watermark extraction, a homomorphic filter is used to predict the original embedding component from the watermarked component, and the watermark is blindly recovered by differentiating both components. The watermarked image's quality is evaluated by wPSNR, while the extracted watermark's accuracy is evaluated by NC. The experimental results against various types of lens flare effects from both computer software and mobile application showed that our proposed method outperformed the previous methods.

  11. Graded zooming

    DOEpatents

    Coffland, Douglas R.

    2006-04-25

    A system for increasing the resolution in the far field resolution of video or still frame images, while maintaining full coverage in the near field. The system includes a camera connected to a computer. The computer applies a specific zooming scale factor to each of line of pixels and continuously increases the scale factor of the line of pixels from the bottom to the top to capture the scene in the near field, yet maintain resolution in the scene in the far field.

  12. Concurrent image-based visual servoing with adaptive zooming for non-cooperative rendezvous maneuvers

    NASA Astrophysics Data System (ADS)

    Pomares, Jorge; Felicetti, Leonard; Pérez, Javier; Emami, M. Reza

    2018-02-01

    An image-based servo controller for the guidance of a spacecraft during non-cooperative rendezvous is presented in this paper. The controller directly utilizes the visual features from image frames of a target spacecraft for computing both attitude and orbital maneuvers concurrently. The utilization of adaptive optics, such as zooming cameras, is also addressed through developing an invariant-image servo controller. The controller allows for performing rendezvous maneuvers independently from the adjustments of the camera focal length, improving the performance and versatility of maneuvers. The stability of the proposed control scheme is proven analytically in the invariant space, and its viability is explored through numerical simulations.

  13. Algorithm design of liquid lens inspection system

    NASA Astrophysics Data System (ADS)

    Hsieh, Lu-Lin; Wang, Chun-Chieh

    2008-08-01

    In mobile lens domain, the glass lens is often to be applied in high-resolution requirement situation; but the glass zoom lens needs to be collocated with movable machinery and voice-coil motor, which usually arises some space limits in minimum design. In high level molding component technology development, the appearance of liquid lens has become the focus of mobile phone and digital camera companies. The liquid lens sets with solid optical lens and driving circuit has replaced the original components. As a result, the volume requirement is decreased to merely 50% of the original design. Besides, with the high focus adjusting speed, low energy requirement, high durability, and low-cost manufacturing process, the liquid lens shows advantages in the competitive market. In the past, authors only need to inspect the scrape defect made by external force for the glass lens. As to the liquid lens, authors need to inspect the state of four different structural layers due to the different design and structure. In this paper, authors apply machine vision and digital image processing technology to administer inspections in the particular layer according to the needs of users. According to our experiment results, the algorithm proposed can automatically delete non-focus background, extract the region of interest, find out and analyze the defects efficiently in the particular layer. In the future, authors will combine the algorithm of the system with automatic-focus technology to implement the inside inspection based on the product inspective demands.

  14. Wide-aperture aspherical lens for high-resolution terahertz imaging

    NASA Astrophysics Data System (ADS)

    Chernomyrdin, Nikita V.; Frolov, Maxim E.; Lebedev, Sergey P.; Reshetov, Igor V.; Spektor, Igor E.; Tolstoguzov, Viktor L.; Karasik, Valeriy E.; Khorokhorov, Alexei M.; Koshelev, Kirill I.; Schadko, Aleksander O.; Yurchenko, Stanislav O.; Zaytsev, Kirill I.

    2017-01-01

    In this paper, we introduce wide-aperture aspherical lens for high-resolution terahertz (THz) imaging. The lens has been designed and analyzed by numerical methods of geometrical optics and electrodynamics. It has been made of high-density polyethylene by shaping at computer-controlled lathe and characterized using a continuous-wave THz imaging setup based on a backward-wave oscillator and Golay detector. The concept of image contrast has been implemented to estimate image quality. According to the experimental data, the lens allows resolving two points spaced at 0.95λ distance with a contrast of 15%. To highlight high resolution in the THz images, the wide-aperture lens has been employed for studying printed electronic circuit board containing sub-wavelength-scale elements. The observed results justify the high efficiency of the proposed lens design.

  15. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, Natale M.; Hawryluk, Andrew M.; London, Richard A.; Seppala, Lynn G.

    1993-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described.

  16. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, Natale M.; Hawryluk, Andrew M.; London, Richard A.; Seppala, Lynn G.

    1991-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed.

  17. CFRP variable curvature mirror used for realizing non-moving-element optical zoom imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Fan, Xuewu; Pang, Zhihai; Ren, Guorui; Wang, Wei; Xie, Yongjie; Ma, Zhen; Du, Yunfei; Su, Yu; Wei, Jingxuan

    2014-12-01

    In recent years, how to eliminate moving elements while realizing optical zoom imaging has been paid much attention. Compared with the conventional optical zooming techniques, removing moving elements would bring in many benefits such as reduction in weight, volume and power cost and so on. The key to implement non-moving-element optical zooming lies in the design of variable curvature mirror (VCM). In order to obtain big enough optical magnification, the VCM should be capable of generating a large variation of saggitus. Hence, the mirror material should not be brittle, in other words the corresponding ultimate strength should be high enough to ensure that mirror surface would not be broken during large curvature variation. Besides that, the material should have a not too big Young's modulus because in this case less force is required to generate a deformation. Among all available materials, for instance SiC, Zerodur and et.al, CFRP (carbon fiber reinforced polymer) satisfies all these requirements and many related research have proven this. In this paper, a CFRP VCM is designed, fabricated and tested. With a diameter of 100mm, a thickness of 2mm and an initial curvature radius of 1740mm, this component could change its curvature radius from 1705mm to 1760mm, which correspond to a saggitus variation of nearly 23μm. The work reported further proves the suitability of CFRP in constructing variable curvature mirror which could generate a large variation of saggitus.

  18. Characterization of lens based photoacoustic imaging system.

    PubMed

    Francis, Kalloor Joseph; Chinni, Bhargava; Channappayya, Sumohana S; Pachamuthu, Rajalakshmi; Dogra, Vikram S; Rao, Navalgund

    2017-12-01

    Some of the challenges in translating photoacoustic (PA) imaging to clinical applications includes limited view of the target tissue, low signal to noise ratio and the high cost of developing real-time systems. Acoustic lens based PA imaging systems, also known as PA cameras are a potential alternative to conventional imaging systems in these scenarios. The 3D focusing action of lens enables real-time C-scan imaging with a 2D transducer array. In this paper, we model the underlying physics in a PA camera in the mathematical framework of an imaging system and derive a closed form expression for the point spread function (PSF). Experimental verification follows including the details on how to design and fabricate the lens inexpensively. The system PSF is evaluated over a 3D volume that can be imaged by this PA camera. Its utility is demonstrated by imaging phantom and an ex vivo human prostate tissue sample.

  19. A reflection polarizations zoom metasurfaces

    NASA Astrophysics Data System (ADS)

    Yang, Fulong; Wang, Xiaoyan

    2017-02-01

    Based on generalized Snell's law, we propose a dual-polarity zoom metasurfaces operating electromagnetic wave in the reflection geometry. The metasurfaces is constructed by two identical ultrathin metal-backed dielectric slabs with metallic Jerusalem cross patterns on the other sides to form a triangular region. The normally incident waves are totally reflected, but the reflection phases of both x- and y-polarized waves are controlled independently. According to the classical theory of optical imaging, the reflection electromagnetic wave phases were obtained in the different polarizations and focus. Each subwavelength units size were determined with the reflection coefficient of the basic unit, the polarizations zoom metasurfaces was designed in the way. The full-wave simulations are in good agreement with theoretical analysis in microwave lengths.

  20. Polydimethylsiloxane as dielectric and hydrophobic material in electro-wetting liquid lens

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Duan, Junping; Zhang, Binzhen; Wang, Wanjun

    2016-10-01

    An electro-wetting-based variable-focus liquid lens with a spin coated polydimethylsiloxane (PDMS) layer is presented. The PDMS layer acts as both insulation and hydrophobic material of the liquid lens. By changing the applied voltage between the two electrodes, the radius of the water-oil contact curved surface is adjusted to realize the zoom function. In preparation process, at first, the liquid lens is divided into two parts, the PDMS substrate and the cavity, and then two parts of liquid lens are bonding together after surface treatment. After liquid injection and sealing cavity, the whole process was accomplished. The zooming performance of lens is tested, and COMSOL is used to analyze the shape of the water-oil contact curved surface at different voltages, the results shows that with the applied voltage changing from 0V to 120V, the height of meniscus vertex reduced from 2.41mm to 1.67mm, and the focal length changes from -14.3mm to infinity first, and then to 27.1mm.

  1. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, N.M.; Hawryluk, A.M.; London, R.A.; Seppala, L.G.

    1993-10-26

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described. 21 figures.

  2. Image registration reveals central lens thickness minimally increases during accommodation

    PubMed Central

    Schachar, Ronald A; Mani, Majid; Schachar, Ira H

    2017-01-01

    Purpose To evaluate anterior chamber depth, central crystalline lens thickness and lens curvature during accommodation. Setting California Retina Associates, El Centro, CA, USA. Design Healthy volunteer, prospective, clinical research swept-source optical coherence biometric image registration study of accommodation. Methods Ten subjects (4 females and 6 males) with an average age of 22.5 years (range: 20–26 years) participated in the study. A 45° beam splitter attached to a Zeiss IOLMaster 700 (Carl Zeiss Meditec Inc., Jena, Germany) biometer enabled simultaneous imaging of the cornea, anterior chamber, entire central crystalline lens and fovea in the dilated right eyes of subjects before, and during focus on a target 11 cm from the cornea. Images with superimposable foveal images, obtained before and during accommodation, that met all of the predetermined alignment criteria were selected for comparison. This registration requirement assured that changes in anterior chamber depth and central lens thickness could be accurately and reliably measured. The lens radii of curvatures were measured with a pixel stick circle. Results Images from only 3 of 10 subjects met the predetermined criteria for registration. Mean anterior chamber depth decreased, −67 μm (range: −0.40 to −110 μm), and mean central lens thickness increased, 117 μm (range: 100–130 μm). The lens surfaces steepened, anterior greater than posterior, while the lens, itself, did not move or shift its position as appeared from the lack of movement of the lens nucleus, during 7.8 diopters of accommodation, (range: 6.6–9.7 diopters). Conclusion Image registration, with stable invariant references for image correspondence, reveals that during accommodation a large increase in lens surface curvatures is associated with only a small increase in central lens thickness and no change in lens position. PMID:28979092

  3. Effect of contact lens on optical coherence tomography imaging of rodent retina.

    PubMed

    Liu, Xiaojing; Wang, Chia-Hao; Dai, Cuixia; Camesa, Adam; Zhang, Hao F; Jiao, Shuliang

    2013-12-01

    To evaluate the effect of powerless contact lens on improving the quality of optical coherence tomography imaging of rodent retina. A spectral-domain optical coherence tomography (SD-OCT) system was built for in vivo imaging of rodent retina. The calibrated depth resolution of the system was 3 µm in tissue. A commercial powerless contact lens for rat eye was tested in the experiments. For each rat eye, the retina was imaged in vivo sequentially first without wearing contact lens and then with wearing contact lens. The lateral resolution and signal-to-noise ratio of the OCT images with and without contact lens were compared to evaluate the improvement of image quality. The fundus images generated from the measured 3D OCT datasets with contact lens showed sharper retinal blood vessels than those without contact lens. The contrast of the retinal blood vessels was also significantly enhanced in the OCT fundus images with contact lens. As high as 10 dB improvements in SNR was observed for OCT images with contact lens compared to the images of the same retinal area without contact lens. We have demonstrated that the use of powerless contact lens on rat eye can significantly improve OCT image quality of rodent retina, which is a benefit in addition to preventing cataract formation. We believe the improvement in image quality is the result of partial compensation of the optical aberrations of the rodent eye by the contact lens.

  4. Flat dielectric metasurface lens array for three dimensional integral imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Jianlei; Wang, Xiaorui; Yang, Yi; Yuan, Ying; Wu, Xiongxiong

    2018-05-01

    In conventional integral imaging, the singlet refractive lens array limits the imaging performance due to its prominent aberrations. Different from the refractive lens array relying on phase modulation via phase change accumulated along the optical paths, metasurfaces composed of nano-scatters can produce phase abrupt over the scale of wavelength. In this letter, we propose a novel lens array consisting of two neighboring flat dielectric metasurfaces for integral imaging system. The aspherical phase profiles of the metasurfaces are optimized to improve imaging performance. The simulation results show that our designed 5 × 5 metasurface-based lens array exhibits high image quality at designed wavelength 865 nm.

  5. LWIR hyperspectral imager based on a diffractive optics lens

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam

    2009-05-01

    A diffractive optics lens based longwave infrared hyperspectral imager has been used to collect laboratory and outdoor field test data. The imager uses a specially designed diffractive optics Ge lens with a 320×256 HgCdTe focal plane array (FPA) cooled with a Sterling-cooler. The imager operates in 8-10.5 μm (long wave IR, LWIR) spectral region and an image cube with 50 to 200 bands can be acquired rapidly. Spectral images at different wavelengths are obtained by moving the lens along its optical axis. An f/2.38 diffractive lens is used with a focal length of 70 mm at 8 μm. The IFOV is 0.57 mrad which corresponds to an FOV of 10.48°. The spectral resolution of the imager is 0.034 μm at 9 μm. The pixel size is 40×40 μm2 in the FPA. In post processing of image cube data contributions due to wavelengths other than the focused one are removed and a correction to account for the change in magnification due to the motion of the lens is applied to each spectral image. A brief description of the imager, data collection and analysis to characterize the performance of the imager will be presented in this paper.

  6. Developing Students' Ideas about Lens Imaging: Teaching Experiments with an Image-Based Approach

    ERIC Educational Resources Information Center

    Grusche, Sascha

    2017-01-01

    Lens imaging is a classic topic in physics education. To guide students from their holistic viewpoint to the scientists' analytic viewpoint, an image-based approach to lens imaging has recently been proposed. To study the effect of the image-based approach on undergraduate students' ideas, teaching experiments are performed and evaluated using…

  7. Nonintrusive iris image acquisition system based on a pan-tilt-zoom camera and light stripe projection

    NASA Astrophysics Data System (ADS)

    Yoon, Soweon; Jung, Ho Gi; Park, Kang Ryoung; Kim, Jaihie

    2009-03-01

    Although iris recognition is one of the most accurate biometric technologies, it has not yet been widely used in practical applications. This is mainly due to user inconvenience during the image acquisition phase. Specifically, users try to adjust their eye position within small capture volume at a close distance from the system. To overcome these problems, we propose a novel iris image acquisition system that provides users with unconstrained environments: a large operating range, enabling movement from standing posture, and capturing good-quality iris images in an acceptable time. The proposed system has the following three contributions compared with previous works: (1) the capture volume is significantly increased by using a pan-tilt-zoom (PTZ) camera guided by a light stripe projection, (2) the iris location in the large capture volume is found fast due to 1-D vertical face searching from the user's horizontal position obtained by the light stripe projection, and (3) zooming and focusing on the user's irises at a distance are accurate and fast using the estimated 3-D position of a face by the light stripe projection and the PTZ camera. Experimental results show that the proposed system can capture good-quality iris images in 2.479 s on average at a distance of 1.5 to 3 m, while allowing a limited amount of movement by the user.

  8. Developing students’ ideas about lens imaging: teaching experiments with an image-based approach

    NASA Astrophysics Data System (ADS)

    Grusche, Sascha

    2017-07-01

    Lens imaging is a classic topic in physics education. To guide students from their holistic viewpoint to the scientists’ analytic viewpoint, an image-based approach to lens imaging has recently been proposed. To study the effect of the image-based approach on undergraduate students’ ideas, teaching experiments are performed and evaluated using qualitative content analysis. Some of the students’ ideas have not been reported before, namely those related to blurry lens images, and those developed by the proposed teaching approach. To describe learning pathways systematically, a conception-versus-time coordinate system is introduced, specifying how teaching actions help students advance toward a scientific understanding.

  9. Advances in lenticular lens arrays for visual display

    NASA Astrophysics Data System (ADS)

    Johnson, R. Barry; Jacobsen, Gary A.

    2005-08-01

    Lenticular lens arrays are widely used in the printed display industry and in specialized applications of electronic displays. In general, lenticular arrays can create from interlaced printed images such visual effects as 3-D, animation, flips, morph, zoom, or various combinations. The use of these typically cylindrical lens arrays for this purpose began in the late 1920's. The lenses comprise a front surface having a spherical crosssection and a flat rear surface upon where the material to be displayed is proximately located. The principal limitation to the resultant image quality for current technology lenticular lenses is spherical aberration. This limitation causes the lenticular lens arrays to be generally thick (0.5 mm) and not easily wrapped around such items as cans or bottles. The objectives of this research effort were to develop a realistic analytical model, to significantly improve the image quality, to develop the tooling necessary to fabricate lenticular lens array extrusion cylinders, and to develop enhanced fabrication technology for the extrusion cylinder. It was determined that the most viable cross-sectional shape for the lenticular lenses is elliptical. This shape dramatically improves the image quality. The relationship between the lens radius, conic constant, material refractive index, and thickness will be discussed. A significant challenge was to fabricate a diamond-cutting tool having the proper elliptical shape. Both true elliptical and pseudo-elliptical diamond tools were designed and fabricated. The plastic sheets extruded can be quite thin (< 0.25 mm) and, consequently, can be wrapped around cans and the like. Fabrication of the lenticular engraved extrusion cylinder required remarkable development considering the large physical size and weight of the cylinder, and the tight mechanical tolerances associated with the lenticular lens molds cut into the cylinder's surface. The development of the cutting tool and the lenticular engraved

  10. Fast T1 and T2 mapping methods: the zoomed U-FLARE sequence compared with EPI and snapshot-FLASH for abdominal imaging at 11.7 Tesla.

    PubMed

    Pastor, Géraldine; Jiménez-González, María; Plaza-García, Sandra; Beraza, Marta; Reese, Torsten

    2017-06-01

    A newly adapted zoomed ultrafast low-angle RARE (U-FLARE) sequence is described for abdominal imaging applications at 11.7 Tesla and compared with the standard echo-plannar imaging (EPI) and snapshot fast low angle shot (FLASH) methods. Ultrafast EPI and snapshot-FLASH protocols were evaluated to determine relaxation times in phantoms and in the mouse kidney in vivo. Owing to their apparent shortcomings, imaging artefacts, signal-to-noise ratio (SNR), and variability in the determination of relaxation times, these methods are compared with the newly implemented zoomed U-FLARE sequence. Snapshot-FLASH has a lower SNR when compared with the zoomed U-FLARE sequence and EPI. The variability in the measurement of relaxation times is higher in the Look-Locker sequences than in inversion recovery experiments. Respectively, the average T1 and T2 values at 11.7 Tesla are as follows: kidney cortex, 1810 and 29 ms; kidney medulla, 2100 and 25 ms; subcutaneous tumour, 2365 and 28 ms. This study demonstrates that the zoomed U-FLARE sequence yields single-shot single-slice images with good anatomical resolution and high SNR at 11.7 Tesla. Thus, it offers a viable alternative to standard protocols for mapping very fast parameters, such as T1 and T2, or dynamic processes in vivo at high field.

  11. Tunable-focus liquid lens controlled using a servo motor

    NASA Astrophysics Data System (ADS)

    Ren, Hongwen; Fox, David; Anderson, P. Andrew; Wu, Benjamin; Wu, Shin-Tson

    2006-09-01

    We demonstrated a liquid lens whose focal length can be controlled by an actuator. The lens cell is composed of elastic membrane, planar glass plate, a periphery sealing ring, and a liquid with a fixed volume in the lens chamber. Part of the periphery sealing ring is excavated to form a hollow chamber which functions as a reservoir. This hollowed periphery is surrounded by an exterior rubber membrane. The shaft of an actuator is used to deform the elastic rubber. Squeezing the liquid contained in the reservoir into the lens chamber. Excess liquid in the lens chamber will push the lens membrane to outward, resulting in a lens shape change. Due to the compact structure and easy operation, this liquid lens has potential applications in zoom lenses, auto beam steering, and eyeglasses.

  12. Joint demosaicking and zooming using moderate spectral correlation and consistent edge map

    NASA Astrophysics Data System (ADS)

    Zhou, Dengwen; Dong, Weiming; Chen, Wengang

    2014-07-01

    The recently published joint demosaicking and zooming algorithms for single-sensor digital cameras all overfit the popular Kodak test images, which have been found to have higher spectral correlation than typical color images. Their performance perhaps significantly degrades on other datasets, such as the McMaster test images, which have weak spectral correlation. A new joint demosaicking and zooming algorithm is proposed for the Bayer color filter array (CFA) pattern, in which the edge direction information (edge map) extracted from the raw CFA data is consistently used in demosaicking and zooming. It also moderately utilizes the spectral correlation between color planes. The experimental results confirm that the proposed algorithm produces an excellent performance on both the Kodak and McMaster datasets in terms of both subjective and objective measures. Our algorithm also has high computational efficiency. It provides a better tradeoff among adaptability, performance, and computational cost compared to the existing algorithms.

  13. Introduction to the development of intraocular lens

    NASA Astrophysics Data System (ADS)

    Li, Yifan; Peng, Runling; Hu, Shuilan; Wei, Maowei; Chen, Jiabi

    2013-08-01

    In order to cure the cataract disease or injuries in eyes, intraocular lens(IOL) has been studied all the time to replace the crystalline lens in human eyes. Researches on IOL are started early from 19th century, and it develops greatly in the hundreds years after. This article introduces several main kinds of IOLs that appear in the development history of IOL, and raises the double-liquid zoom IOL based on electrowetting, which will be the trend of IOL study.

  14. Qualification of a Null Lens Using Image-Based Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Aronstein, David L.; Hill, Peter C.; Smith, J. Scott; Zielinski, Thomas P.

    2012-01-01

    In measuring the figure error of an aspheric optic using a null lens, the wavefront contribution from the null lens must be independently and accurately characterized in order to isolate the optical performance of the aspheric optic alone. Various techniques can be used to characterize such a null lens, including interferometry, profilometry and image-based methods. Only image-based methods, such as phase retrieval, can measure the null-lens wavefront in situ - in single-pass, and at the same conjugates and in the same alignment state in which the null lens will ultimately be used - with no additional optical components. Due to the intended purpose of a Dull lens (e.g., to null a large aspheric wavefront with a near-equal-but-opposite spherical wavefront), characterizing a null-lens wavefront presents several challenges to image-based phase retrieval: Large wavefront slopes and high-dynamic-range data decrease the capture range of phase-retrieval algorithms, increase the requirements on the fidelity of the forward model of the optical system, and make it difficult to extract diagnostic information (e.g., the system F/#) from the image data. In this paper, we present a study of these effects on phase-retrieval algorithms in the context of a null lens used in component development for the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. Approaches for mitigation are also discussed.

  15. Realization of integral 3-dimensional image using fabricated tunable liquid lens array

    NASA Astrophysics Data System (ADS)

    Lee, Muyoung; Kim, Junoh; Kim, Cheol Joong; Lee, Jin Su; Won, Yong Hyub

    2015-03-01

    Electrowetting has been widely studied for various optical applications such as optical switch, sensor, prism, and display. In this study, vari-focal liquid lens array is developed using electrowetting principle to construct integral 3-dimensional imaging. The electrowetting principle that changes the surface tension by applying voltage has several advantages to realize active optical device such as fast response time, low electrical consumption, and no mechanical moving parts. Two immiscible liquids that are water and oil are used for forming lens. By applying a voltage to the water, the focal length of the lens could be tuned as changing contact angle of water. The fabricated electrowetting vari-focal liquid lens array has 1mm diameter spherical lens shape that has 1.6mm distance between each lens. The number of lenses on the panel is 23x23 and the focal length of the lens array is simultaneously tuned from -125 to 110 diopters depending on the applied voltage. The fabricated lens array is implemented to integral 3-dimensional imaging. A 3D object is reconstructed by fabricated liquid lens array with 23x23 elemental images that are generated by 3D max tools. When liquid lens array is tuned as convex state. From vari-focal liquid lens array implemented integral imaging system, we expect that depth enhanced integral imaging can be realized in the near future.

  16. Multiocular image sensor with on-chip beam-splitter and inner meta-micro-lens for single-main-lens stereo camera.

    PubMed

    Koyama, Shinzo; Onozawa, Kazutoshi; Tanaka, Keisuke; Saito, Shigeru; Kourkouss, Sahim Mohamed; Kato, Yoshihisa

    2016-08-08

    We developed multiocular 1/3-inch 2.75-μm-pixel-size 2.1M- pixel image sensors by co-design of both on-chip beam-splitter and 100-nm-width 800-nm-depth patterned inner meta-micro-lens for single-main-lens stereo camera systems. A camera with the multiocular image sensor can capture horizontally one-dimensional light filed by both the on-chip beam-splitter horizontally dividing ray according to incident angle, and the inner meta-micro-lens collecting the divided ray into pixel with small optical loss. Cross-talks between adjacent light field images of a fabricated binocular image sensor and of a quad-ocular image sensor are as low as 6% and 7% respectively. With the selection of two images from one-dimensional light filed images, a selective baseline for stereo vision is realized to view close objects with single-main-lens. In addition, by adding multiple light field images with different ratios, baseline distance can be tuned within an aperture of a main lens. We suggest the electrically selective or tunable baseline stereo vision to reduce 3D fatigue of viewers.

  17. Entropic Imaging of Cataract Lens: An In Vitro Study

    PubMed Central

    Shung, K. Kirk; Tsui, Po-Hsiang; Fang, Jui; Ma, Hsiang-Yang; Wu, Shuicai; Lin, Chung-Chih

    2014-01-01

    Phacoemulsification is a common surgical method for treating advanced cataracts. Determining the optimal phacoemulsification energy depends on the hardness of the lens involved. Previous studies have shown that it is possible to evaluate lens hardness via ultrasound parametric imaging based on statistical models that require data to follow a specific distribution. To make the method more system-adaptive, nonmodel-based imaging approach may be necessary in the visualization of lens hardness. This study investigated the feasibility of applying an information theory derived parameter – Shannon entropy from ultrasound backscatter to quantify lens hardness. To determine the physical significance of entropy, we performed computer simulations to investigate the relationship between the signal-to-noise ratio (SNR) based on the Rayleigh distribution and Shannon entropy. Young's modulus was measured in porcine lenses, in which cataracts had been artificially induced by the immersion in formalin solution in vitro. A 35-MHz ultrasound transducer was used to scan the cataract lenses for entropy imaging. The results showed that the entropy is 4.8 when the backscatter data form a Rayleigh distribution corresponding to an SNR of 1.91. The Young's modulus of the lens increased from approximately 8 to 100 kPa when we increased the immersion time from 40 to 160 min (correlation coefficient r = 0.99). Furthermore, the results indicated that entropy imaging seemed to facilitate visualizing different degrees of lens hardening. The mean entropy value increased from 2.7 to 4.0 as the Young's modulus increased from 8 to 100 kPa (r = 0.85), suggesting that entropy imaging may have greater potential than that of conventional statistical parametric imaging in determining the optimal energy to apply during phacoemulsification. PMID:24760103

  18. HST image of Gravitational Lens G2237 + 305 or 'Einstein Cross'

    NASA Technical Reports Server (NTRS)

    1990-01-01

    European Space Agency (ESA) Faint Object Camera (FOC) science image was taken from the Hubble Space Telescope (HST) of Gravitational Lens G2237 + 305 or 'Einstein Cross'. The gravitational lens G2237 + 305 or 'Einstein Cross' shows four images of a very distant quasar which has been multiple-imaged by a relatively nearby galaxy acting as a gravitational lens. The angular separation between the upper and lower images is 1.6 arc seconds. Photo was released from Goddard Space Flight Center (GSFC) 09-12-90.

  19. Complete description of the optical path difference of a novel spectral zooming imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Li, Jie; Wu, Haiying; Qi, Chun

    2018-03-01

    A complete description of the optical path difference of a novel spectral zooming imaging spectrometer (SZIS) is presented. SZIS is designed based on two identical Wollaston prisms with an adjustable air gap. Thus, interferogram with arbitrary spectral resolution and great reduction of spectral image size can be conveniently formed to adapt to different application requirements. Ray tracing modeling in arbitrary incidence with a quasi-parallel-plate approximation scheme is proposed to analyze the optical path difference of SZIS. In order to know the characteristics of the apparatus, exact calculations of the corresponding spectral resolution and field of view are both derived and analyzed in detail. We also present a comparison of calculation and experiment to prove the validity of the theory.

  20. Coherent diffraction imaging by moving a lens.

    PubMed

    Shen, Cheng; Tan, Jiubin; Wei, Ce; Liu, Zhengjun

    2016-07-25

    A moveable lens is used for determining amplitude and phase on the object plane. The extended fractional Fourier transform is introduced to address the single lens imaging. We put forward a fast algorithm for the transform by convolution. Combined with parallel iterative phase retrieval algorithm, it is applied to reconstruct the complex amplitude of the object. Compared with inline holography, the implementation of our method is simple and easy. Without the oversampling operation, the computational load is less. Also the proposed method has a superiority of accuracy over the direct focusing measurement for the imaging of small size objects.

  1. Imaging objects behind small obstacles using axicon lens

    NASA Astrophysics Data System (ADS)

    Perinchery, Sandeep M.; Shinde, Anant; Murukeshan, V. M.

    2017-06-01

    Axicon lenses are conical prisms, which are known to focus a light source to a line comprising of multiple points along the optical axis. In this study, we analyze the potential of axicon lenses to view, image and record the object behind opaque obstacles in free space. The advantage of an axicon lens over a regular lens is demonstrated experimentally. Parameters such as obstacle size, object and the obstacle position in the context of imaging behind obstacles are tested using Zemax optical simulation. This proposed concept can be easily adapted to most of the optical imaging methods and microscopy modalities.

  2. Optical phase conjugation assisted scattering lens: variable focusing and 3D patterning

    PubMed Central

    Ryu, Jihee; Jang, Mooseok; Eom, Tae Joong; Yang, Changhuei; Chung, Euiheon

    2016-01-01

    Variable light focusing is the ability to flexibly select the focal distance of a lens. This feature presents technical challenges, but is significant for optical interrogation of three-dimensional objects. Numerous lens designs have been proposed to provide flexible light focusing, including zoom, fluid, and liquid-crystal lenses. Although these lenses are useful for macroscale applications, they have limited utility in micron-scale applications due to restricted modulation range and exacting requirements for fabrication and control. Here, we present a holographic focusing method that enables variable light focusing without any physical modification to the lens element. In this method, a scattering layer couples low-angle (transverse wave vector) components into a full angular spectrum, and a digital optical phase conjugation (DOPC) system characterizes and plays back the wavefront that focuses through the scattering layer. We demonstrate micron-scale light focusing and patterning over a wide range of focal distances of 22–51 mm. The interferometric nature of the focusing scheme also enables an aberration-free scattering lens. The proposed method provides a unique variable focusing capability for imaging thick specimens or selective photoactivation of neuronal networks. PMID:27049442

  3. Objective Lens Optimized for Wavefront Delivery, Pupil Imaging, and Pupil Ghosting

    NASA Technical Reports Server (NTRS)

    Olzcak, Gene

    2009-01-01

    An interferometer objective lens (or diverger) may be used to transform a collimated beam into a diverging or converging beam. This innovation provides an objective lens that has diffraction-limited optical performance that is optimized at two sets of conjugates: imaging to the objective focus and imaging to the pupil. The lens thus provides for simultaneous delivery of a high-quality beam and excellent pupil resolution properties.

  4. Astronomers Discover Six-Image Gravitational Lens

    NASA Astrophysics Data System (ADS)

    2001-08-01

    An international team of astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope and NASA's Hubble Space Telescope (HST) to discover the first gravitational lens in which the single image of a very distant galaxy has been split into six different images. The unique configuration is produced by the gravitational effect of three galaxies along the line of sight between the more-distant galaxy and Earth. Optical and Radio Images of Gravitational Lens "This is the first gravitational lens with more than four images of the background object that is produced by a small group of galaxies rather than a large cluster of galaxies," said David Rusin, who just received his Ph.D. from the University of Pennsylvania. "Such systems are expected to be extremely rare, so this discovery is an important stepping stone. Because this is an intermediate case between gravitational lenses produced by single galaxies and lenses produced by large clusters of galaxies, it will give us insights we can't get from other types of lenses," Rusin added. The gravitational lens, called CLASS B1359+154, consists of a galaxy more than 11 billion light-years away in the constellation Bootes, with a trio of galaxies more than 7 billion light-years away along the same line of sight. The more-distant galaxy shows signs that it contains a massive black hole at its core and also has regions in which new stars are forming. The gravitational effect of the intervening galaxies has caused the light and radio waves from the single, more-distant galaxy to be "bent" to form six images as seen from Earth. Four of these images appear outside the triangle formed by the three intermediate galaxies and two appear inside that triangle. "This lens system is a very interesting case to study because it is more complicated than lenses produced by single galaxies, and yet simpler than lenses produced by clusters of numerous galaxies," said Chris Kochanek of the Harvard

  5. Implementation of focal zooming on the Nike KrF laser

    NASA Astrophysics Data System (ADS)

    Kehne, D. M.; Karasik, M.; Aglitsky, Y.; Smyth, Z.; Terrell, S.; Weaver, J. L.; Chan, Y.; Lehmberg, R. H.; Obenschain, S. P.

    2013-01-01

    In direct drive inertial confinement laser fusion, a pellet containing D-T fuel is imploded by ablation arising from absorption of laser energy at its outer surface. For optimal coupling, the focal spot of the laser would continuously decrease to match the reduction in the pellet's diameter, thereby minimizing wasted energy. A krypton-fluoride laser (λ = 248 nm) that incorporates beam smoothing by induced spatial incoherence has the ability to produce a high quality focal profile whose diameter varies with time, a property known as focal zooming. A two-stage focal zoom has been demonstrated on the Nike laser at the Naval Research Laboratory. In the experiment, a 4.4 ns laser pulse was created in which the on-target focal spot diameter was 1.3 mm (full width at half maximum) for the first 2.4 ns and 0.28 mm for the final 2 ns. These two diameters appear in time-integrated focal plane equivalent images taken at several locations in the amplification chain. Eight of the zoomed output beams were overlapped on a 60 μm thick planar polystyrene target. Time resolved images of self-emission from the rear of the target show the separate shocks launched by the two corresponding laser focal diameters.

  6. Implementation of focal zooming on the Nike KrF laser.

    PubMed

    Kehne, D M; Karasik, M; Aglitsky, Y; Smyth, Z; Terrell, S; Weaver, J L; Chan, Y; Lehmberg, R H; Obenschain, S P

    2013-01-01

    In direct drive inertial confinement laser fusion, a pellet containing D-T fuel is imploded by ablation arising from absorption of laser energy at its outer surface. For optimal coupling, the focal spot of the laser would continuously decrease to match the reduction in the pellet's diameter, thereby minimizing wasted energy. A krypton-fluoride laser (λ = 248 nm) that incorporates beam smoothing by induced spatial incoherence has the ability to produce a high quality focal profile whose diameter varies with time, a property known as focal zooming. A two-stage focal zoom has been demonstrated on the Nike laser at the Naval Research Laboratory. In the experiment, a 4.4 ns laser pulse was created in which the on-target focal spot diameter was 1.3 mm (full width at half maximum) for the first 2.4 ns and 0.28 mm for the final 2 ns. These two diameters appear in time-integrated focal plane equivalent images taken at several locations in the amplification chain. Eight of the zoomed output beams were overlapped on a 60 μm thick planar polystyrene target. Time resolved images of self-emission from the rear of the target show the separate shocks launched by the two corresponding laser focal diameters.

  7. Automated Micro-Object Detection for Mobile Diagnostics Using Lens-Free Imaging Technology

    PubMed Central

    Roy, Mohendra; Seo, Dongmin; Oh, Sangwoo; Chae, Yeonghun; Nam, Myung-Hyun; Seo, Sungkyu

    2016-01-01

    Lens-free imaging technology has been extensively used recently for microparticle and biological cell analysis because of its high throughput, low cost, and simple and compact arrangement. However, this technology still lacks a dedicated and automated detection system. In this paper, we describe a custom-developed automated micro-object detection method for a lens-free imaging system. In our previous work (Roy et al.), we developed a lens-free imaging system using low-cost components. This system was used to generate and capture the diffraction patterns of micro-objects and a global threshold was used to locate the diffraction patterns. In this work we used the same setup to develop an improved automated detection and analysis algorithm based on adaptive threshold and clustering of signals. For this purpose images from the lens-free system were then used to understand the features and characteristics of the diffraction patterns of several types of samples. On the basis of this information, we custom-developed an automated algorithm for the lens-free imaging system. Next, all the lens-free images were processed using this custom-developed automated algorithm. The performance of this approach was evaluated by comparing the counting results with standard optical microscope results. We evaluated the counting results for polystyrene microbeads, red blood cells, HepG2, HeLa, and MCF7 cells lines. The comparison shows good agreement between the systems, with a correlation coefficient of 0.91 and linearity slope of 0.877. We also evaluated the automated size profiles of the microparticle samples. This Wi-Fi-enabled lens-free imaging system, along with the dedicated software, possesses great potential for telemedicine applications in resource-limited settings. PMID:27164146

  8. Recent technology and usage of plastic lenses in image taking objectives

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Susumu; Sato, Hiroshi; Mori, Nobuyoshi; Kiriki, Toshihiko

    2005-09-01

    Recently, plastic lenses produced by injection molding are widely used in image taking objectives for digital cameras, camcorders, and mobile phone cameras, because of their suitability for volume production and ease of obtaining an advantage of aspherical surfaces. For digital camera and camcorder objectives, it is desirable that there is no image point variation with the temperature change in spite of employing several plastic lenses. At the same time, due to the shrinking pixel size of solid-state image sensor, there is now a requirement to assemble lenses with high accuracy. In order to satisfy these requirements, we have developed 16 times compact zoom objective for camcorder and 3 times class folded zoom objectives for digital camera, incorporating cemented plastic doublet consisting of a positive lens and a negative lens. Over the last few years, production volumes of camera-equipped mobile phones have increased substantially. Therefore, for mobile phone cameras, the consideration of productivity is more important than ever. For this application, we have developed a 1.3-mega pixels compact camera module with macro function utilizing the advantage of a plastic lens that can be given mechanically functional shape to outer flange part. Its objective consists of three plastic lenses and all critical dimensions related to optical performance can be determined by high precise optical elements. Therefore this camera module is manufactured without optical adjustment in automatic assembling line, and achieves both high productivity and high performance. Reported here are the constructions and the technical topics of image taking objectives described above.

  9. Photonic Doppler velocimetry lens array probe incorporating stereo imaging

    DOEpatents

    Malone, Robert M.; Kaufman, Morris I.

    2015-09-01

    A probe including a multiple lens array is disclosed to measure velocity distribution of a moving surface along many lines of sight. Laser light, directed to the moving surface is reflected back from the surface and is Doppler shifted, collected into the array, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to the multiple lens array. Numerous fibers in a fiber array project numerous rays to establish many measurement points at numerous different locations. One or more lens groups may be replaced with imaging lenses so a stereo image of the moving surface can be recorded. Imaging a portion of the surface during initial travel can determine whether the surface is breaking up.

  10. Correction of a liquid lens for 3D imaging systems

    NASA Astrophysics Data System (ADS)

    Bower, Andrew J.; Bunch, Robert M.; Leisher, Paul O.; Li, Weixu; Christopher, Lauren A.

    2012-06-01

    3D imaging systems are currently being developed using liquid lens technology for use in medical devices as well as in consumer electronics. Liquid lenses operate on the principle of electrowetting to control the curvature of a buried surface, allowing for a voltage-controlled change in focal length. Imaging systems which utilize a liquid lens allow extraction of depth information from the object field through a controlled introduction of defocus into the system. The design of such a system must be carefully considered in order to simultaneously deliver good image quality and meet the depth of field requirements for image processing. In this work a corrective model has been designed for use with the Varioptic Arctic 316 liquid lens. The design is able to be optimized for depth of field while minimizing aberrations for a 3D imaging application. The modeled performance is compared to the measured performance of the corrected system over a large range of focal lengths.

  11. Lens-free imaging of magnetic particles in DNA assays.

    PubMed

    Colle, Frederik; Vercruysse, Dries; Peeters, Sara; Liu, Chengxun; Stakenborg, Tim; Lagae, Liesbet; Del-Favero, Jurgen

    2013-11-07

    We present a novel opto-magnetic system for the fast and sensitive detection of nucleic acids. The system is based on a lens-free imaging approach resulting in a compact and cheap optical readout of surface hybridized DNA fragments. In our system magnetic particles are attracted towards the detection surface thereby completing the labeling step in less than 1 min. An optimized surface functionalization combined with magnetic manipulation was used to remove all nonspecifically bound magnetic particles from the detection surface. A lens-free image of the specifically bound magnetic particles on the detection surface was recorded by a CMOS imager. This recorded interference pattern was reconstructed in software, to represent the particle image at the focal distance, using little computational power. As a result we were able to detect DNA concentrations down to 10 pM with single particle sensitivity. The possibility of integrated sample preparation by manipulation of magnetic particles, combined with the cheap and highly compact lens-free detection makes our system an ideal candidate for point-of-care diagnostic applications.

  12. Design of large zoom for visible and infrared optical system in hemisphere space

    NASA Astrophysics Data System (ADS)

    Xing, Yang-guang; Li, Lin; Zhang, Juan

    2018-01-01

    In the field of space optical, the application of advanced optical instruments for related target detection and identification has become an advanced technology in modern optics. In order to complete the task of search in wide field of view and detailed investigation in small field of view, it is inevitable to use the structure of the zoom system to achieve a better observation for important targets. The innovation of this paper lies in using the zoom optical system in space detection, which achieve firstly military needs of searched target in the large field of view and recognized target in the small field of view. At the same time, this paper also completes firstly the design of variable focus optical detection system in the range of hemisphere space, the zoom optical system is working in the range of visible and infrared wavelengths, the perspective angle reaches 360 ° and the zoom ratio of the visible system is up to 15. The visible system has a zoom range of 60-900 mm, a detection band of 0.48-0.70μm, and a F-number of 2.0 to 5.0. The infrared system has a zoom range of 150 900mm, a detection band of 8-12μm, and a F-number of 1.2 to 3.0. The MTF of the visible zoom system is above 0.4 at spatial frequency of 45 lp / mm, and the infrared zoom system is above 0.4 at spatial frequency of 11 lp / mm. The design results show that the system has a good image quality.

  13. MCNP estimate of ZLS lens sensitivity in an x-ray field

    NASA Astrophysics Data System (ADS)

    Mitchell, Stephen E.; Baker, Stuart A.; Howe, Russell A.; Malone, Robert M.

    2016-09-01

    The telecentric zoom lens system (ZLS) has proven to be invaluable in flash x-ray field operations and recent successful experiments pertaining to stockpile stewardship. The ZLS contains 11 custom-manufactured lenses, a turning mirror (pellicle), and an x-ray-to-visible-light converting scintillator. Images are recorded on a fully characterized CCD. All hardware is supported by computerized, programmable, electro-mechanical mounts and alignment apparatus. Seven different glass material types varying in chemical stoichiometry comprise the 11 ZLS lenses. All lenses within the ZLS are out of the path of direct x-ray radiation during normal operation. However, any unshielded scattered x-ray radiation can result in energy deposition into the lenses, which may generate some scintillating light that can couple into the CCD. This extra light may contribute to a decrease in signal-to-noise ratio (SNR) and lower the overall fidelity of the radiograph images. An estimate of the scintillation generation and sensitivities for each of the seven types of glass used as lenses in the ZLS is presented. This report also includes estimates of the total observed background decoupling that each of the lens material types contribute.

  14. Contourlet domain multiband deblurring based on color correlation for fluid lens cameras.

    PubMed

    Tzeng, Jack; Liu, Chun-Chen; Nguyen, Truong Q

    2010-10-01

    Due to the novel fluid optics, unique image processing challenges are presented by the fluidic lens camera system. Developed for surgical applications, unique properties, such as no moving parts while zooming and better miniaturization than traditional glass optics, are advantages of the fluid lens. Despite these abilities, sharp color planes and blurred color planes are created by the nonuniform reaction of the liquid lens to different color wavelengths. Severe axial color aberrations are caused by this reaction. In order to deblur color images without estimating a point spread function, a contourlet filter bank system is proposed. Information from sharp color planes is used by this multiband deblurring method to improve blurred color planes. Compared to traditional Lucy-Richardson and Wiener deconvolution algorithms, significantly improved sharpness and reduced ghosting artifacts are produced by a previous wavelet-based method. Directional filtering is used by the proposed contourlet-based system to adjust to the contours of the image. An image is produced by the proposed method which has a similar level of sharpness to the previous wavelet-based method and has fewer ghosting artifacts. Conditions for when this algorithm will reduce the mean squared error are analyzed. While improving the blue color plane by using information from the green color plane is the primary focus of this paper, these methods could be adjusted to improve the red color plane. Many multiband systems such as global mapping, infrared imaging, and computer assisted surgery are natural extensions of this work. This information sharing algorithm is beneficial to any image set with high edge correlation. Improved results in the areas of deblurring, noise reduction, and resolution enhancement can be produced by the proposed algorithm.

  15. An Exploration into Diffusion Tensor Imaging in the Bovine Ocular Lens

    PubMed Central

    Vaghefi, Ehsan; Donaldson, Paul J.

    2013-01-01

    We describe our development of the diffusion tensor imaging modality for the bovine ocular lens. Diffusion gradients were added to a spin-echo pulse sequence and the relevant parameters of the sequence were refined to achieve good diffusion weighting in the lens tissue, which demonstrated heterogeneous regions of diffusive signal attenuation. Decay curves for b-value (loosely summarizes the strength of diffusion weighting) and TE (determines the amount of magnetic resonance imaging-obtained signal) were used to estimate apparent diffusion coefficients (ADC) and T2 in different lens regions. The ADCs varied by over an order of magnitude and revealed diffusive anisotropy in the lens. Up to 30 diffusion gradient directions, and 8 signal acquisition averages, were applied to lenses in culture in order to improve maps of diffusion tensor eigenvalues, equivalent to ADC, across the lens. From these maps, fractional anisotropy maps were calculated and compared to known spatial distributions of anisotropic molecular fluxes in the lens. This comparison suggested new hypotheses and experiments to quantitatively assess models of circulation in the avascular lens. PMID:23459990

  16. Distortion Correction of OCT Images of the Crystalline Lens: GRIN Approach

    PubMed Central

    Siedlecki, Damian; de Castro, Alberto; Gambra, Enrique; Ortiz, Sergio; Borja, David; Uhlhorn, Stephen; Manns, Fabrice; Marcos, Susana; Parel, Jean-Marie

    2012-01-01

    Purpose To propose a method to correct Optical Coherence Tomography (OCT) images of posterior surface of the crystalline lens incorporating its gradient index (GRIN) distribution and explore its possibilities for posterior surface shape reconstruction in comparison to existing methods of correction. Methods 2-D images of 9 human lenses were obtained with a time-domain OCT system. The shape of the posterior lens surface was corrected using the proposed iterative correction method. The parameters defining the GRIN distribution used for the correction were taken from a previous publication. The results of correction were evaluated relative to the nominal surface shape (accessible in vitro) and compared to the performance of two other existing methods (simple division, refraction correction: assuming a homogeneous index). Comparisons were made in terms of posterior surface radius, conic constant, root mean square, peak to valley and lens thickness shifts from the nominal data. Results Differences in the retrieved radius and conic constant were not statistically significant across methods. However, GRIN distortion correction with optimal shape GRIN parameters provided more accurate estimates of the posterior lens surface, in terms of RMS and peak values, with errors less than 6μm and 13μm respectively, on average. Thickness was also more accurately estimated with the new method, with a mean discrepancy of 8μm. Conclusions The posterior surface of the crystalline lens and lens thickness can be accurately reconstructed from OCT images, with the accuracy improving with an accurate model of the GRIN distribution. The algorithm can be used to improve quantitative knowledge of the crystalline lens from OCT imaging in vivo. Although the improvements over other methods are modest in 2-D, it is expected that 3-D imaging will fully exploit the potential of the technique. The method will also benefit from increasing experimental data of GRIN distribution in the lens of larger

  17. Markov Dynamics as a Zooming Lens for Multiscale Community Detection: Non Clique-Like Communities and the Field-of-View Limit

    PubMed Central

    Schaub, Michael T.; Delvenne, Jean-Charles; Yaliraki, Sophia N.; Barahona, Mauricio

    2012-01-01

    In recent years, there has been a surge of interest in community detection algorithms for complex networks. A variety of computational heuristics, some with a long history, have been proposed for the identification of communities or, alternatively, of good graph partitions. In most cases, the algorithms maximize a particular objective function, thereby finding the ‘right’ split into communities. Although a thorough comparison of algorithms is still lacking, there has been an effort to design benchmarks, i.e., random graph models with known community structure against which algorithms can be evaluated. However, popular community detection methods and benchmarks normally assume an implicit notion of community based on clique-like subgraphs, a form of community structure that is not always characteristic of real networks. Specifically, networks that emerge from geometric constraints can have natural non clique-like substructures with large effective diameters, which can be interpreted as long-range communities. In this work, we show that long-range communities escape detection by popular methods, which are blinded by a restricted ‘field-of-view’ limit, an intrinsic upper scale on the communities they can detect. The field-of-view limit means that long-range communities tend to be overpartitioned. We show how by adopting a dynamical perspective towards community detection [1], [2], in which the evolution of a Markov process on the graph is used as a zooming lens over the structure of the network at all scales, one can detect both clique- or non clique-like communities without imposing an upper scale to the detection. Consequently, the performance of algorithms on inherently low-diameter, clique-like benchmarks may not always be indicative of equally good results in real networks with local, sparser connectivity. We illustrate our ideas with constructive examples and through the analysis of real-world networks from imaging, protein structures and the power grid

  18. Lens implementation on the GATE Monte Carlo toolkit for optical imaging simulation

    NASA Astrophysics Data System (ADS)

    Kang, Han Gyu; Song, Seong Hyun; Han, Young Been; Kim, Kyeong Min; Hong, Seong Jong

    2018-02-01

    Optical imaging techniques are widely used for in vivo preclinical studies, and it is well known that the Geant4 Application for Emission Tomography (GATE) can be employed for the Monte Carlo (MC) modeling of light transport inside heterogeneous tissues. However, the GATE MC toolkit is limited in that it does not yet include optical lens implementation, even though this is required for a more realistic optical imaging simulation. We describe our implementation of a biconvex lens into the GATE MC toolkit to improve both the sensitivity and spatial resolution for optical imaging simulation. The lens implemented into the GATE was validated against the ZEMAX optical simulation using an US air force 1951 resolution target. The ray diagrams and the charge-coupled device images of the GATE optical simulation agreed with the ZEMAX optical simulation results. In conclusion, the use of a lens on the GATE optical simulation could improve the image quality of bioluminescence and fluorescence significantly as compared with pinhole optics.

  19. Symmetrical optical imaging system with bionic variable-focus lens for off-axis aberration correction

    NASA Astrophysics Data System (ADS)

    Wang, Xuan-Yin; Du, Jia-Wei; Zhu, Shi-Qiang

    2017-09-01

    A bionic variable-focus lens with symmetrical layered structure was designed to mimic the crystalline lens. An optical imaging system based on this lens and with a symmetrical structure that mimics the human eye structure was proposed. The refractive index of the bionic variable-focus lens increases from outside to inside. The two PDMS lenses with a certain thickness were designed to improve the optical performance of the optical imaging system and minimise the gravity effect of liquid. The paper presents the overall structure of the optical imaging system and the detailed description of the bionic variable-focus lens. By pumping liquid in or out of the cavity, the surface curvatures of the rear PDMS lens were varied, resulting in a change in the focal length. The focal length range of the optical imaging system was 20.71-24.87 mm. The optical performance of the optical imaging system was evaluated by imaging experiments and analysed by ray tracing simulations. On the basis of test and simulation results, the optical performance of the system was quite satisfactory. Off-axis aberrations were well corrected, and the image quality was greatly improved.

  20. The Extragalactic Lens VLBI Imaging Survey (ELVIS): Investigating galaxy cores and black holes with gravitational lens central images

    NASA Astrophysics Data System (ADS)

    Boyce, Edward R.

    This thesis describes the Extragalactic Lens VLBI Imaging Survey (ELVIS), a search for central images in gravitational lenses. We present the first four ELVIS targets, for which we have radio VLBI observations with resolutions of a few milli-arcseconds and sensitivities of 15 - 38mJy. For PMN J1838-3427, CLASS B0739+366 and CLASS B0445+123 we have not detected any central images, but have set stringent upper limits on their flux densities. For CLASS B2319+051 we have made a tentative detection of a third radio source, which may be either a central image or radio emission from the lens galaxy. Using the upper limits on the central image flux densities, we gain new information about the matter distributions in the lens galaxies of these systems. We fit a broken power law model for the matter profile, and constrain the allowed break radii and inner index of this model. To demagnify the central images to the observed level the matter profiles must be slightly shallower than or steeper than isothermal, which is consistent with previous studies of early type galaxy profiles. The presence of a super-massive black hole weakens the constraints somewhat, but the profiles are still close to isothermal. Relative to previous work, we reduce the maximum sizes of shallow cores by factors of 2 to 3, and raise the indices of r 0( r -g central cusps by g = 0.05 - 0.35. If we take the source in B2319+051 to be a central image, then we select a narrow band of allowed break radii and inner indices, finding that a constant density core has size 150--380 pc, and a pure power law has index g = 1.5 - 1.67. Our constraints still allow sufficiently shallow profiles that some super-massive black holes may form central image pairs rather than eliminating the central image, and these image pairs may be detected with future instruments. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  1. Curiosity's Mars Hand Lens Imager (MAHLI): Inital Observations and Activities

    NASA Technical Reports Server (NTRS)

    Edgett, K. S.; Yingst, R. A.; Minitti, M. E.; Robinson, M. L.; Kennedy, M. R.; Lipkaman, L. J.; Jensen, E. H.; Anderson, R. C.; Bean, K. M.; Beegle, L. W.; hide

    2013-01-01

    MAHLI (Mars Hand Lens Imager) is a 2-megapixel focusable macro lens color camera on the turret on Curiosity's robotic arm. The investigation centers on stratigraphy, grain-scale texture, structure, mineralogy, and morphology of geologic materials at Curiosity's Gale robotic field site. MAHLI acquires focused images at working distances of 2.1 cm to infinity; for reference, at 2.1 cm the scale is 14 microns/pixel; at 6.9 cm it is 31 microns/pixel, like the Spirit and Opportunity Microscopic Imager (MI) cameras.

  2. Robust feedback zoom tracking for digital video surveillance.

    PubMed

    Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong

    2012-01-01

    Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called "trace curve", which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance.

  3. Robust Feedback Zoom Tracking for Digital Video Surveillance

    PubMed Central

    Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong

    2012-01-01

    Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called “trace curve”, which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance. PMID:22969388

  4. Lens-free shadow image based high-throughput continuous cell monitoring technique.

    PubMed

    Jin, Geonsoo; Yoo, In-Hwa; Pack, Seung Pil; Yang, Ji-Woon; Ha, Un-Hwan; Paek, Se-Hwan; Seo, Sungkyu

    2012-01-01

    A high-throughput continuous cell monitoring technique which does not require any labeling reagents or destruction of the specimen is demonstrated. More than 6000 human alveolar epithelial A549 cells are monitored for up to 72 h simultaneously and continuously with a single digital image within a cost and space effective lens-free shadow imaging platform. In an experiment performed within a custom built incubator integrated with the lens-free shadow imaging platform, the cell nucleus division process could be successfully characterized by calculating the signal-to-noise ratios (SNRs) and the shadow diameters (SDs) of the cell shadow patterns. The versatile nature of this platform also enabled a single cell viability test followed by live cell counting. This study firstly shows that the lens-free shadow imaging technique can provide a continuous cell monitoring without any staining/labeling reagent and destruction of the specimen. This high-throughput continuous cell monitoring technique based on lens-free shadow imaging may be widely utilized as a compact, low-cost, and high-throughput cell monitoring tool in the fields of drug and food screening or cell proliferation and viability testing. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Three-Dimensional Cataract Crystalline Lens Imaging With Swept-Source Optical Coherence Tomography.

    PubMed

    de Castro, Alberto; Benito, Antonio; Manzanera, Silvestre; Mompeán, Juan; Cañizares, Belén; Martínez, David; Marín, Jose María; Grulkowski, Ireneusz; Artal, Pablo

    2018-02-01

    To image, describe, and characterize different features visible in the crystalline lens of older adults with and without cataract when imaged three-dimensionally with a swept-source optical coherence tomography (SS-OCT) system. We used a new SS-OCT laboratory prototype designed to enhance the visualization of the crystalline lens and imaged the entire anterior segment of both eyes in two groups of participants: patients scheduled to undergo cataract surgery, n = 17, age range 36 to 91 years old, and volunteers without visual complains, n = 14, age range 20 to 81 years old. Pre-cataract surgery patients were also clinically graded according to the Lens Opacification Classification System III. The three-dimensional location and shape of the visible opacities were compared with the clinical grading. Hypo- and hyperreflective features were visible in the lens of all pre-cataract surgery patients and in some of the older adults in the volunteer group. When the clinical examination revealed cortical or subcapsular cataracts, hyperreflective features were visible either in the cortex parallel to the surfaces of the lens or in the posterior pole. Other type of opacities that appeared as hyporeflective localized features were identified in the cortex of the lens. The OCT signal in the nucleus of the crystalline lens correlated with the nuclear cataract clinical grade. A dedicated OCT is a useful tool to study in vivo the subtle opacities in the cataractous crystalline lens, revealing its position and size three-dimensionally. The use of these images allows obtaining more detailed information on the age-related changes leading to cataract.

  6. Distortion correction of OCT images of the crystalline lens: gradient index approach.

    PubMed

    Siedlecki, Damian; de Castro, Alberto; Gambra, Enrique; Ortiz, Sergio; Borja, David; Uhlhorn, Stephen; Manns, Fabrice; Marcos, Susana; Parel, Jean-Marie

    2012-05-01

    To propose a method to correct optical coherence tomography (OCT) images of posterior surface of the crystalline lens incorporating its gradient index (GRIN) distribution and explore its possibilities for posterior surface shape reconstruction in comparison to existing methods of correction. Two-dimensional images of nine human lenses were obtained with a time-domain OCT system. The shape of the posterior lens surface was corrected using the proposed iterative correction method. The parameters defining the GRIN distribution used for the correction were taken from a previous publication. The results of correction were evaluated relative to the nominal surface shape (accessible in vitro) and compared with the performance of two other existing methods (simple division, refraction correction: assuming a homogeneous index). Comparisons were made in terms of posterior surface radius, conic constant, root mean square, peak to valley, and lens thickness shifts from the nominal data. Differences in the retrieved radius and conic constant were not statistically significant across methods. However, GRIN distortion correction with optimal shape GRIN parameters provided more accurate estimates of the posterior lens surface in terms of root mean square and peak values, with errors <6 and 13 μm, respectively, on average. Thickness was also more accurately estimated with the new method, with a mean discrepancy of 8 μm. The posterior surface of the crystalline lens and lens thickness can be accurately reconstructed from OCT images, with the accuracy improving with an accurate model of the GRIN distribution. The algorithm can be used to improve quantitative knowledge of the crystalline lens from OCT imaging in vivo. Although the improvements over other methods are modest in two dimension, it is expected that three-dimensional imaging will fully exploit the potential of the technique. The method will also benefit from increasing experimental data of GRIN distribution in the lens of

  7. Zoomed EPI-DWI of the pancreas using two-dimensional spatially-selective radiofrequency excitation pulses.

    PubMed

    Riffel, Philipp; Michaely, Henrik J; Morelli, John N; Pfeuffer, Josef; Attenberger, Ulrike I; Schoenberg, Stefan O; Haneder, Stefan

    2014-01-01

    Implementation of DWI in the abdomen is challenging due to artifacts, particularly those arising from differences in tissue susceptibility. Two-dimensional, spatially-selective radiofrequency (RF) excitation pulses for single-shot echo-planar imaging (EPI) combined with a reduction in the FOV in the phase-encoding direction (i.e. zooming) leads to a decreased number of k-space acquisition lines, significantly shortening the EPI echo train and potentially susceptibility artifacts. To assess the feasibility and image quality of a zoomed diffusion-weighted EPI (z-EPI) sequence in MR imaging of the pancreas. The approach is compared to conventional single-shot EPI (c-EPI). 23 patients who had undergone an MRI study of the abdomen were included in this retrospective study. Examinations were performed on a 3T whole-body MR system (Magnetom Skyra, Siemens) equipped with a two-channel fully dynamic parallel transmit array (TimTX TrueShape, Siemens). The acquired sequences consisted of a conventional EPI DWI of the abdomen and a zoomed EPI DWI of the pancreas. For z-EPI, the standard sinc excitation was replaced with a two-dimensional spatially-selective RF pulse using an echo-planar transmit trajectory. Images were evaluated with regard to image blur, respiratory motion artifacts, diagnostic confidence, delineation of the pancreas, and overall scan preference. Additionally ADC values of the pancreatic head, body, and tail were calculated and compared between sequences. The pancreas was better delineated in every case (23/23) with z-EPI versus c-EPI. In every case (23/23), both readers preferred z-EPI overall to c-EPI. With z-EPI there was statistically significantly less image blur (p<0.0001) and respiratory motion artifact compared to c-EPI (p<0.0001). Diagnostic confidence was statistically significantly better with z-EPI (p<0.0001). No statistically significant differences in calculated ADC values were observed between the two sequences. Zoomed diffusion-weighted EPI

  8. Experimental far-field imaging properties of a ~5-μm diameter spherical lens.

    PubMed

    Ye, Ran; Ye, Yong-Hong; Ma, Hui Feng; Ma, Jun; Wang, Bin; Yao, Jie; Liu, Shuai; Cao, Lingling; Xu, Huanhuan; Zhang, Jia-Yu

    2013-06-01

    Microscale lenses are mostly used as near-sighted lenses. The far-field imaging properties of a microscale spherical lens, where the lens is spatially separated from the object, are experimentally studied. Our experimental results show that, for a blu-ray disc (an object) whose spacing is 300 nm, the lens can magnify the stripe patterns of the disc when the lens is spatially separated from the object. In the experimentally tested range (0-14 μm), all the magnified images are virtual images. When the distance is increased from 0 to 14 μm the magnification decreases from 1.47× to 1.20× and the field of view increases from 3.8 to 12.2 μm. The image magnification cannot be described by standard geometrical optics.

  9. Fusion of lens-free microscopy and mobile-phone microscopy images for high-color-accuracy and high-resolution pathology imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2017-03-01

    Digital pathology and telepathology require imaging tools with high-throughput, high-resolution and accurate color reproduction. Lens-free on-chip microscopy based on digital in-line holography is a promising technique towards these needs, as it offers a wide field of view (FOV >20 mm2) and high resolution with a compact, low-cost and portable setup. Color imaging has been previously demonstrated by combining reconstructed images at three discrete wavelengths in the red, green and blue parts of the visible spectrum, i.e., the RGB combination method. However, this RGB combination method is subject to color distortions. To improve the color performance of lens-free microscopy for pathology imaging, here we present a wavelet-based color fusion imaging framework, termed "digital color fusion microscopy" (DCFM), which digitally fuses together a grayscale lens-free microscope image taken at a single wavelength and a low-resolution and low-magnification color-calibrated image taken by a lens-based microscope, which can simply be a mobile phone based cost-effective microscope. We show that the imaging results of an H&E stained breast cancer tissue slide with the DCFM technique come very close to a color-calibrated microscope using a 40x objective lens with 0.75 NA. Quantitative comparison showed 2-fold reduction in the mean color distance using the DCFM method compared to the RGB combination method, while also preserving the high-resolution features of the lens-free microscope. Due to the cost-effective and field-portable nature of both lens-free and mobile-phone microscopy techniques, their combination through the DCFM framework could be useful for digital pathology and telepathology applications, in low-resource and point-of-care settings.

  10. Lens implementation on the GATE Monte Carlo toolkit for optical imaging simulation.

    PubMed

    Kang, Han Gyu; Song, Seong Hyun; Han, Young Been; Kim, Kyeong Min; Hong, Seong Jong

    2018-02-01

    Optical imaging techniques are widely used for in vivo preclinical studies, and it is well known that the Geant4 Application for Emission Tomography (GATE) can be employed for the Monte Carlo (MC) modeling of light transport inside heterogeneous tissues. However, the GATE MC toolkit is limited in that it does not yet include optical lens implementation, even though this is required for a more realistic optical imaging simulation. We describe our implementation of a biconvex lens into the GATE MC toolkit to improve both the sensitivity and spatial resolution for optical imaging simulation. The lens implemented into the GATE was validated against the ZEMAX optical simulation using an US air force 1951 resolution target. The ray diagrams and the charge-coupled device images of the GATE optical simulation agreed with the ZEMAX optical simulation results. In conclusion, the use of a lens on the GATE optical simulation could improve the image quality of bioluminescence and fluorescence significantly as compared with pinhole optics. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  11. Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation

    PubMed Central

    Kim, Eon; Ehrmann, Klaus; Uhlhorn, Stephen; Borja, David; Arrieta-Quintero, Esdras; Parel, Jean-Marie

    2011-01-01

    Presbyopia is an age related, gradual loss of accommodation, mainly due to changes in the crystalline lens. As part of research efforts to understand and cure this condition, ex vivo, cross-sectional optical coherence tomography images of crystalline lenses were obtained by using the Ex-Vivo Accommodation Simulator (EVAS II) instrument and analyzed to extract their physical and optical properties. Various filters and edge detection methods were applied to isolate the edge contour. An ellipse is fitted to the lens outline to obtain central reference point for transforming the pixel data into the analysis coordinate system. This allows for the fitting of a high order equation to obtain a mathematical description of the edge contour, which obeys constraints of continuity as well as zero to infinite surface slopes from apex to equator. Geometrical parameters of the lens were determined for the lens images captured at different accommodative states. Various curve fitting functions were developed to mathematically describe the anterior and posterior surfaces of the lens. Their differences were evaluated and their suitability for extracting optical performance of the lens was assessed. The robustness of these algorithms was tested by analyzing the same images repeated times. PMID:21639571

  12. Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation.

    PubMed

    Kim, Eon; Ehrmann, Klaus; Uhlhorn, Stephen; Borja, David; Arrieta-Quintero, Esdras; Parel, Jean-Marie

    2011-05-01

    Presbyopia is an age related, gradual loss of accommodation, mainly due to changes in the crystalline lens. As part of research efforts to understand and cure this condition, ex vivo, cross-sectional optical coherence tomography images of crystalline lenses were obtained by using the Ex-Vivo Accommodation Simulator (EVAS II) instrument and analyzed to extract their physical and optical properties. Various filters and edge detection methods were applied to isolate the edge contour. An ellipse is fitted to the lens outline to obtain central reference point for transforming the pixel data into the analysis coordinate system. This allows for the fitting of a high order equation to obtain a mathematical description of the edge contour, which obeys constraints of continuity as well as zero to infinite surface slopes from apex to equator. Geometrical parameters of the lens were determined for the lens images captured at different accommodative states. Various curve fitting functions were developed to mathematically describe the anterior and posterior surfaces of the lens. Their differences were evaluated and their suitability for extracting optical performance of the lens was assessed. The robustness of these algorithms was tested by analyzing the same images repeated times.

  13. Copper crystal lens for medical imaging: first results

    NASA Astrophysics Data System (ADS)

    Roa, Dante E.; Smither, Robert K.

    2001-06-01

    A copper crystal lens designed to focus gamma ray energies of 100 to 200 keV has been assembled at Argonne National Laboratory. In particular, the lens has been optimized to focus the 140.6 keV gamma rays from technetium-99 m typically used in radioactive tracers. This new approach to medical imaging relies on crystal diffraction to focus incoming gamma rays in a manner similar to a simple convex lens focusing visible light. The lens is envisioned to be part of an array of lenses that can be used as a complementary technique to gamma cameras for localized scans of suspected tumor regions in the body. In addition, a 2- lens array can be used to scan a woman's breast in search of tumors with no discomfort to the patient. The incoming gamma rays are diffracted by a set of 828 copper crystal cubes arranged in 13 concentric rings, which focus the gamma rays into a very small area on a well-shielded NaI detector. Experiments performance with technetium-99 m and cobalt 57 radioactive sources indicate that a 6-lens array should be capable of detecting sources with (mu) Ci strength.

  14. Novel fabrication technique of hybrid structure lens array for 3D images

    NASA Astrophysics Data System (ADS)

    Lee, Junsik; Kim, Junoh; Kim, Cheoljoong; Shin, Dooseub; Koo, Gyohyun; Won, Yong Hyub

    2016-03-01

    Tunable liquid lens arrays can produce three dimensional images by using electrowetting principle that alters surface tensions by applying voltage. This method has advantages of fast response time and low power consumption. However, it is challenging to fabricate a high fill factor liquid lens array and operate three dimensional images which demand high diopter. This study describes a hybrid structure lens array which has not only a liquid lens array but a solid lens array. A concave-shape lens array is unavoidable when using only the liquid lens array and some voltages are needed to make the lens flat. By placing the solid lens array on the liquid lens array, initial diopter can be positive. To fabricate the hybrid structure lens array, a conventional lithographic process in semiconductor manufacturing is needed. A negative photoresist SU-8 was used as chamber master molds. PDMS and UV adhesive replica molding are done sequentially. Two immiscible liquids, DI water and dodecane, are injected in the fabricated chamber, followed by sealing. The fabricated structure has a 20 by 20 pattern of cylindrical shaped circle array and the aperture size of each lens is 1mm. The thickness of the overall hybrid structure is about 2.8mm. Hybrid structure lens array has many advantages. Solid lens array has almost 100% fill factor and allow high efficiency. Diopter can be increased by more than 200 and negative diopter can be shifted to the positive region. This experiment showed several properties of the hybrid structure and demonstrated its superiority.

  15. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy.

    PubMed

    Greenbaum, Alon; Zhang, Yibo; Feizi, Alborz; Chung, Ping-Luen; Luo, Wei; Kandukuri, Shivani R; Ozcan, Aydogan

    2014-12-17

    Optical examination of microscale features in pathology slides is one of the gold standards to diagnose disease. However, the use of conventional light microscopes is partially limited owing to their relatively high cost, bulkiness of lens-based optics, small field of view (FOV), and requirements for lateral scanning and three-dimensional (3D) focus adjustment. We illustrate the performance of a computational lens-free, holographic on-chip microscope that uses the transport-of-intensity equation, multi-height iterative phase retrieval, and rotational field transformations to perform wide-FOV imaging of pathology samples with comparable image quality to a traditional transmission lens-based microscope. The holographically reconstructed image can be digitally focused at any depth within the object FOV (after image capture) without the need for mechanical focus adjustment and is also digitally corrected for artifacts arising from uncontrolled tilting and height variations between the sample and sensor planes. Using this lens-free on-chip microscope, we successfully imaged invasive carcinoma cells within human breast sections, Papanicolaou smears revealing a high-grade squamous intraepithelial lesion, and sickle cell anemia blood smears over a FOV of 20.5 mm(2). The resulting wide-field lens-free images had sufficient image resolution and contrast for clinical evaluation, as demonstrated by a pathologist's blinded diagnosis of breast cancer tissue samples, achieving an overall accuracy of ~99%. By providing high-resolution images of large-area pathology samples with 3D digital focus adjustment, lens-free on-chip microscopy can be useful in resource-limited and point-of-care settings. Copyright © 2014, American Association for the Advancement of Science.

  16. Calibration Target as Seen by Mars Hand Lens Imager

    NASA Image and Video Library

    2012-02-07

    During pre-flight testing, the Mars Hand Lens Imager MAHLI camera on NASA Mars rover Curiosity took this image of the MAHLI calibration target from a distance of 3.94 inches 10 centimeters away from the target.

  17. Curiosity's Mars Hand Lens Imager (MAHLI) Investigation

    USGS Publications Warehouse

    Edgett, Kenneth S.; Yingst, R. Aileen; Ravine, Michael A.; Caplinger, Michael A.; Maki, Justin N.; Ghaemi, F. Tony; Schaffner, Jacob A.; Bell, James F.; Edwards, Laurence J.; Herkenhoff, Kenneth E.; Heydari, Ezat; Kah, Linda C.; Lemmon, Mark T.; Minitti, Michelle E.; Olson, Timothy S.; Parker, Timothy J.; Rowland, Scott K.; Schieber, Juergen; Sullivan, Robert J.; Sumner, Dawn Y.; Thomas, Peter C.; Jensen, Elsa H.; Simmonds, John J.; Sengstacken, Aaron J.; Wilson, Reg G.; Goetz, Walter

    2012-01-01

    The Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) investigation will use a 2-megapixel color camera with a focusable macro lens aboard the rover, Curiosity, to investigate the stratigraphy and grain-scale texture, structure, mineralogy, and morphology of geologic materials in northwestern Gale crater. Of particular interest is the stratigraphic record of a ?5 km thick layered rock sequence exposed on the slopes of Aeolis Mons (also known as Mount Sharp). The instrument consists of three parts, a camera head mounted on the turret at the end of a robotic arm, an electronics and data storage assembly located inside the rover body, and a calibration target mounted on the robotic arm shoulder azimuth actuator housing. MAHLI can acquire in-focus images at working distances from ?2.1 cm to infinity. At the minimum working distance, image pixel scale is ?14 μm per pixel and very coarse silt grains can be resolved. At the working distance of the Mars Exploration Rover Microscopic Imager cameras aboard Spirit and Opportunity, MAHLI?s resolution is comparable at ?30 μm per pixel. Onboard capabilities include autofocus, auto-exposure, sub-framing, video imaging, Bayer pattern color interpolation, lossy and lossless compression, focus merging of up to 8 focus stack images, white light and longwave ultraviolet (365 nm) illumination of nearby subjects, and 8 gigabytes of non-volatile memory data storage.

  18. HST Imaging of the Eye of Horus, a Double Source Plane Gravitational Lens

    NASA Astrophysics Data System (ADS)

    Wong, Kenneth

    2017-08-01

    Double source plane (DSP) gravitational lenses are extremely rare alignments of a massive lens galaxy with two background sources at distinct redshifts. The presence of two source planes provides important constraints on cosmology and galaxy structure beyond that of typical lens systems by breaking degeneracies between parameters that vary with source redshift. While these systems are extremely valuable, only a handful are known. We have discovered the first DSP lens, the Eye of Horus, in the Hyper Suprime-Cam survey and have confirmed both source redshifts with follow-up spectroscopy, making this the only known DSP lens with both source redshifts measured. Furthermore, the brightest image of the most distant source (S2) is split into a pair of images by a mass component that is undetected in our ground-based data, suggesting the presence of a satellite or line-of-sight galaxy causing this splitting. In order to better understand this system and use it for cosmology and galaxy studies, we must construct an accurate lens model, accounting for the lensing effects of both the main lens galaxy and the intermediate source. Only with deep, high-resolution imaging from HST/ACS can we accurately model this system. Our proposed multiband imaging will clearly separate out the two sources by their distinct colors, allowing us to use their extended surface brightness distributions as constraints on our lens model. These data may also reveal the satellite galaxy responsible for the splitting of the brightest image of S2. With these observations, we will be able to take full advantage of the wealth of information provided by this system.

  19. Zoom microscope objective using electrowetting lenses.

    PubMed

    Li, Lei; Wang, Di; Liu, Chao; Wang, Qiong-Hua

    2016-02-08

    We report a zoom microscope objective which can achieve continuous zoom change and correct the aberrations dynamically. The objective consists of three electrowetting liquid lenses and two glass lenses. The magnification is changed by applying voltages on the three electrowetting lenses. Besides, the three electrowetting liquid lenses can play a role to correct the aberrations. A digital microscope based on the proposed objective is demonstrated. We analyzed the properties of the proposed objective. In contrast to the conventional objectives, the proposed objective can be tuned from ~7.8 × to ~13.2 × continuously. For our objective, the working distance is fixed, which means no movement parts are needed to refocus or change its magnification. Moreover, the zoom objective can be dynamically optimized for a wide range of wavelength. Using such an objective, the fabrication tolerance of the optical system is larger than that of a conventional system, which can decrease the fabrication cost. The proposed zoom microscope objective cannot only take place of the conventional objective, but also has potential application in the 3D microscopy.

  20. Eye-gaze control of the computer interface: Discrimination of zoom intent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, J.H.; Schryver, J.C.

    1993-10-01

    An analysis methodology and associated experiment were developed to assess whether definable and repeatable signatures of eye-gaze characteristics are evident, preceding a decision to zoom-in, zoom-out, or not to zoom at a computer interface. This user intent discrimination procedure can have broad application in disability aids and telerobotic control. Eye-gaze was collected from 10 subjects in a controlled experiment, requiring zoom decisions. The eye-gaze data were clustered, then fed into a multiple discriminant analysis (MDA) for optimal definition of heuristics separating the zoom-in, zoom-out, and no-zoom conditions. Confusion matrix analyses showed that a number of variable combinations classified at amore » statistically significant level, but practical significance was more difficult to establish. Composite contour plots demonstrated the regions in parameter space consistently assigned by the MDA to unique zoom conditions. Peak classification occurred at about 1200--1600 msec. Improvements in the methodology to achieve practical real-time zoom control are considered.« less

  1. Zooming to the centre of the Milky Way - GigaGalaxy Zoom phase 2

    NASA Astrophysics Data System (ADS)

    2009-09-01

    The second of three images of ESO's GigaGalaxy Zoom project has just been released online. It is a new and wonderful 340-million-pixel vista of the central parts of our home galaxy as seen from ESO's Paranal Observatory with an amateur telescope. This 34 by 20-degree wide image provides us with a view as experienced by amateur astronomers around the world. However, its incredible beauty and appeal owe much to the quality of the observing site and the skills of Stéphane Guisard, the world-renowned astrophotographer, who is also an ESO engineer. This second image directly benefits from the quality of Paranal's sky, one of the best on the planet, where ESO's Very Large Telescope is located. In addition, Guisard has drawn on his professional expertise as an optical engineer specialising in telescopes, a rare combination in the world of astrophotographers. Guisard, as head of the optical engineering team at Paranal, is responsible for ensuring that the Very Large Telescope has the best optical performance possible. To create this stunning, true-colour mosaic of the Galactic Centre region, Guisard assembled about 1200 individual images, totalling more than 200 hours of exposure time, collected over 29 nights, during Guisard's free time, while working during the day at Paranal [1]. The image shows the region spanning the sky from the constellation of Sagittarius (the Archer) to Scorpius (the Scorpion). The very colourful Rho Ophiuchi and Antares region is a prominent feature to the right, although much darker areas, such as the Pipe and Snake nebulae also stand out. The dusty lane of our Milky Way runs obliquely through the image, dotted with remarkable bright, reddish nebulae, such as the Lagoon and the Trifid Nebulae, as well as NGC 6357 and NGC 6334. This dark lane also hosts the very centre of our Galaxy, where a supermassive black hole is lurking. "The area I have depicted in this image is an incredibly rich region of the sky, and the one I find most beautiful

  2. Projection model for flame chemiluminescence tomography based on lens imaging

    NASA Astrophysics Data System (ADS)

    Wan, Minggang; Zhuang, Jihui

    2018-04-01

    For flame chemiluminescence tomography (FCT) based on lens imaging, the projection model is essential because it formulates the mathematical relation between the flame projections captured by cameras and the chemiluminescence field, and, through this relation, the field is reconstructed. This work proposed the blurry-spot (BS) model, which takes more universal assumptions and has higher accuracy than the widely applied line-of-sight model. By combining the geometrical camera model and the thin-lens equation, the BS model takes into account perspective effect of the camera lens; by combining ray-tracing technique and Monte Carlo simulation, it also considers inhomogeneous distribution of captured radiance on the image plane. Performance of these two models in FCT was numerically compared, and results showed that using the BS model could lead to better reconstruction quality in wider application ranges.

  3. Multi-acoustic lens design methodology for a low cost C-scan photoacoustic imaging camera

    NASA Astrophysics Data System (ADS)

    Chinni, Bhargava; Han, Zichao; Brown, Nicholas; Vallejo, Pedro; Jacobs, Tess; Knox, Wayne; Dogra, Vikram; Rao, Navalgund

    2016-03-01

    We have designed and implemented a novel acoustic lens based focusing technology into a prototype photoacoustic imaging camera. All photoacoustically generated waves from laser exposed absorbers within a small volume get focused simultaneously by the lens onto an image plane. We use a multi-element ultrasound transducer array to capture the focused photoacoustic signals. Acoustic lens eliminates the need for expensive data acquisition hardware systems, is faster compared to electronic focusing and enables real-time image reconstruction. Using this photoacoustic imaging camera, we have imaged more than 150 several centimeter size ex-vivo human prostate, kidney and thyroid specimens with a millimeter resolution for cancer detection. In this paper, we share our lens design strategy and how we evaluate the resulting quality metrics (on and off axis point spread function, depth of field and modulation transfer function) through simulation. An advanced toolbox in MATLAB was adapted and used for simulating a two-dimensional gridded model that incorporates realistic photoacoustic signal generation and acoustic wave propagation through the lens with medium properties defined on each grid point. Two dimensional point spread functions have been generated and compared with experiments to demonstrate the utility of our design strategy. Finally we present results from work in progress on the use of two lens system aimed at further improving some of the quality metrics of our system.

  4. ASI aurora search: an attempt of intelligent image processing for circular fisheye lens.

    PubMed

    Yang, Xi; Gao, Xinbo; Song, Bin; Wang, Nannan; Yang, Dong

    2018-04-02

    The circular fisheye lens exhibits an approximately 180° angular field-of-view (FOV), which is much larger than that of an ordinary lens. Thus, images captured with a circular fisheye lens are distributed non-uniformly with spherical deformation. Along with the fast development of deep neural networks for normal images, how to apply it to achieve intelligent image processing for a circular fisheye lens is a new task of significant importance. In this paper, we take the aurora images captured with all-sky-imagers (ASI) as a typical example. By analyzing the imaging principle of ASI and the magnetic characteristics of the aurora, a deformed region division (DRD) scheme is proposed to replace the region proposals network (RPN) in the advanced mask regional convolutional neural network (Mask R-CNN) framework. Thus, each image can be regarded as a "bag" of deformed regions represented with CNN features. After clustering all CNN features to generate a vocabulary, each deformed region is quantified to its nearest center for indexing. On the stage of an online search, a similarity score is computed by measuring the distances between regions in the query image and all regions in the data set, and the image with the highest value is outputted as the top rank search result. Experimental results show that the proposed method greatly improves the search accuracy and efficiency, demonstrating that it is a valuable attempt of intelligent image processing for circular fisheye lenses.

  5. Zoom-in on Epimetheus

    NASA Image and Video Library

    2017-07-03

    This zoomed-in view of Epimetheus, one of the highest resolution ever taken, shows a surface covered in craters, vivid reminders of the hazards of space. Epimetheus (70 miles or 113 kilometers across) is too small for its gravity to hold onto an atmosphere. It is also too small to be geologically active. There is therefore no way to erase the scars from meteor impacts, except for the generation of new impact craters on top of old ones. This view looks toward anti-Saturn side of Epimetheus. North on Epimetheus is up and rotated 32 degrees to the right. The image was taken with the Cassini spacecraft narrow-angle camera on Feb. 21, 2017 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 939 nanometers. The view was acquired at a distance of approximately 9,300 miles (15,000 kilometers) from Epimetheus and at a Sun-Epimetheus-spacecraft, or phase, angle of 71 degrees. Image scale is 290 feet (89 meters) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21335

  6. A Novel Variable-Focus Lens for HFGW

    NASA Astrophysics Data System (ADS)

    Woods, R. Clive

    2006-01-01

    Li and Torr published calculations claiming to show that gravitational waves (GWs) propagate inside superconductors with a phase velocity reduction (compared to free space) by a factor n ~ 300× and a wavenumber increase by a factor n. This gives major opportunities for designing future GW components able to focus, refract, reflect, and otherwise manipulate gravitational waves for efficient coupling to detectors, transmitters, generators, resonant chambers, and other sensors. To exploit this result, a novel type of HFGW lens design is proposed here using a magnetic field to adjust the focal length in an infinitely-variable manner. Type-II superconductors do not always completely expel large magnetic fields; above their lower critical field they allow vortices of magnetic flux to channel the magnetic field through the material. Within these vortices, the superconductor is magnetically quenched and so behaves as a non-superconductor. Varying the applied magnetic field varies the proportion of material that is quenched. This subsequently affects GW propagation behavior through a type II superconductor. Therefore, using a suitable non-uniform magnetic field, the GW optical path length may be arranged to vary in a technologically useful manner. A GW lens may be designed with focal length dependent upon the applied magnetic field. Such a lens would be invaluable in the design of advanced GW optics since focusing will be achieved electrically with no moving parts; for this reason it would be unparalleled in conventional optics. Since, therefore, variations in n (due to calculation error limits) can be compensated electrically, successful demonstration of this device would confirm the Li and Torr prediction much more easily than directly using a fixed lens structure. The device would also enable fast auto-focusing, zooming, and imaging tomography using electronic servos following development of the necessary HFGW detectors.

  7. Measurement of eye lens dose for Varian On-Board Imaging with different cone-beam computed tomography acquisition techniques

    PubMed Central

    Deshpande, Sudesh; Dhote, Deepak; Thakur, Kalpna; Pawar, Amol; Kumar, Rajesh; Kumar, Munish; Kulkarni, M. S.; Sharma, S. D.; Kannan, V.

    2016-01-01

    The objective of this work was to measure patient eye lens dose for different cone-beam computed tomography (CBCT) acquisition protocols of Varian's On-Board Imaging (OBI) system using optically stimulated luminescence dosimeter (OSLD) and to study the variation in eye lens dose with patient geometry and distance of isocenter to the eye lens. During the experimental measurements, OSLD was placed on the patient between the eyebrows of both eyes in line of nose during CBCT image acquisition to measure eye lens doses. The eye lens dose measurements were carried out for three different cone-beam acquisition protocols (standard dose head, low-dose head [LDH], and high-quality head [HQH]) of Varian OBI. Measured doses were correlated with patient geometry and distance between isocenter and eye lens. Measured eye lens doses for standard head and HQH protocols were in the range of 1.8–3.2 mGy and 4.5–9.9 mGy, respectively. However, the measured eye lens dose for the LDH protocol was in the range of 0.3–0.7 mGy. The measured data indicate that eye lens dose to patient depends on the selected imaging protocol. It was also observed that eye lens dose does not depend on patient geometry but strongly depends on distance between eye lens and treatment field isocenter. However, undoubted advantages of imaging system should not be counterbalanced by inappropriate selection of imaging protocol, especially for very intense imaging protocol. PMID:27651564

  8. Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging

    PubMed Central

    Ruggeri, Marco; de Freitas, Carolina; Williams, Siobhan; Hernandez, Victor M.; Cabot, Florence; Yesilirmak, Nilufer; Alawa, Karam; Chang, Yu-Cherng; Yoo, Sonia H.; Gregori, Giovanni; Parel, Jean-Marie; Manns, Fabrice

    2016-01-01

    Abstract: Two SD-OCT systems and a dual channel accommodation target were combined and precisely synchronized to simultaneously image the anterior segment and the ciliary muscle during dynamic accommodation. The imaging system simultaneously generates two synchronized OCT image sequences of the anterior segment and ciliary muscle with an imaging speed of 13 frames per second. The system was used to acquire OCT image sequences of a non-presbyopic and a pre-presbyopic subject accommodating in response to step changes in vergence. The image sequences were processed to extract dynamic morphological data from the crystalline lens and the ciliary muscle. The synchronization between the OCT systems allowed the precise correlation of anatomical changes occurring in the crystalline lens and ciliary muscle at identical time points during accommodation. To describe the dynamic interaction between the crystalline lens and ciliary muscle, we introduce accommodation state diagrams that display the relation between anatomical changes occurring in the accommodating crystalline lens and ciliary muscle. PMID:27446660

  9. Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging.

    PubMed

    Ruggeri, Marco; de Freitas, Carolina; Williams, Siobhan; Hernandez, Victor M; Cabot, Florence; Yesilirmak, Nilufer; Alawa, Karam; Chang, Yu-Cherng; Yoo, Sonia H; Gregori, Giovanni; Parel, Jean-Marie; Manns, Fabrice

    2016-04-01

    Two SD-OCT systems and a dual channel accommodation target were combined and precisely synchronized to simultaneously image the anterior segment and the ciliary muscle during dynamic accommodation. The imaging system simultaneously generates two synchronized OCT image sequences of the anterior segment and ciliary muscle with an imaging speed of 13 frames per second. The system was used to acquire OCT image sequences of a non-presbyopic and a pre-presbyopic subject accommodating in response to step changes in vergence. The image sequences were processed to extract dynamic morphological data from the crystalline lens and the ciliary muscle. The synchronization between the OCT systems allowed the precise correlation of anatomical changes occurring in the crystalline lens and ciliary muscle at identical time points during accommodation. To describe the dynamic interaction between the crystalline lens and ciliary muscle, we introduce accommodation state diagrams that display the relation between anatomical changes occurring in the accommodating crystalline lens and ciliary muscle.

  10. Ultra-widefield retinal imaging through a black intraocular lens.

    PubMed

    Yusuf, Imran H; Fung, Timothy H M; Patel, Chetan K

    2015-09-01

    To evaluate the feasibility of ultra-widefield retinal imaging in patients with near infrared (IR)-transmitting black intraocular lenses (IOLs). Oxford Eye Hospital, Oxford, United Kingdom. Laboratory evaluation of a diagnostic technology with interventional case report. The field of retinal imaging through a Morcher poly(methyl methacrylate) (PMMA) black IOL was determined in a purpose-built adult schematic model eye with the HRA2 Spectralis confocal scanning laser ophthalmoscope using standard imaging, Staurenghi retina lens-assisted imaging, and ultra-widefield noncontact imaging. Retinal imaging using each modality was then performed on a patient implanted with another Morcher PMMA black IOL model. Ultra-widefield noncontact imaging and lens-assisted imaging captured up to 150 degrees of field (versus 40 degrees with a standard confocal scanning laser ophthalmoscope). Ultra-widefield retinal images were successfully acquired in a patient eye with a black IOL. This study has identified the first ultra-widefield retinal imaging modalities for patients with near IR-transmitting black IOLs. Should larger studies confirm this finding, noncontact ultra-widefield confocal scanning laser ophthalmoscopy might be considered the gold standard imaging technique for retinal surveillance in patients with near IR-transmitting black IOLs. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  11. Magnetic quadrupoles lens for hot spot proton imaging in inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Teng, J.; Gu, Y. Q.; Chen, J.; Zhu, B.; Zhang, B.; Zhang, T. K.; Tan, F.; Hong, W.; Zhang, B. H.; Wang, X. Q.

    2016-08-01

    Imaging of DD-produced protons from an implosion hot spot region by miniature permanent magnetic quadrupole (PMQ) lens is proposed. Corresponding object-image relation is deduced and an adjust method for this imaging system is discussed. Ideal point-to-point imaging demands a monoenergetic proton source; nevertheless, we proved that the blur of image induced by proton energy spread is a second order effect therefore controllable. A proton imaging system based on miniature PMQ lens is designed for 2.8 MeV DD-protons and the adjust method in case of proton energy shift is proposed. The spatial resolution of this system is better than 10 μm when proton yield is above 109 and the spectra width is within 10%.

  12. Direct view zoom scope with single focal plane and adaptable reticle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagwell, Brett

    A direct view telescopic sight includes objective lens, eyepiece, and prism erector assemblies. The objective lens assembly is mounted to receive light of an image from an object direction and direct the light along an optical path. The eyepiece assembly is mounted to receive the light along the optical path and to emit the light of the image along an eye-ward direction. The prism erector assembly is positioned between the objective lens and eyepiece assemblies and includes first and second prism elements through which the optical path passes. The first and second prism elements invert the image. A reticle elementmore » is disposed on or adjacent to a surface of one of the first or second prism elements to combine a reticle on the image. The image is brought into focus at only a single focal plane between the objective lens and eyepiece assemblies at a given time.« less

  13. Electrowetting liquid lens array on curved substrates for wide field of view image sensor

    NASA Astrophysics Data System (ADS)

    Bang, Yousung; Lee, Muyoung; Won, Yong Hyub

    2016-03-01

    In this research, electrowetting liquid lens array on curved substrates is developed for wide field of view image sensor. In the conventional image sensing system, this lens array is usually in the form of solid state. However, in this state, the lens array which is similar to insect-like compound eyes in nature has several limitations such as degradation of image quality and narrow field of view because it cannot adjust focal length of lens. For implementation of the more enhanced system, the curved array of lenses based on electrowetting effect is developed in this paper, which can adjust focal length of lens. The fabrication of curved lens array is conducted upon the several steps, including chamber fabrication, electrode & dielectric layer deposition, liquid injection, and encapsulation. As constituent materials, IZO coated convex glass, UV epoxy (NOA 68), DI water, and dodecane are used. The number of lenses on the fabricated panel is 23 by 23 and each lens has 1mm aperture with 1.6mm pitch between adjacent lenses. When the voltage is applied on the device, it is observed that each lens is changed from concave state to convex state. From the unique optical characteristics of curved array of liquid lenses such as controllable focal length and wide field of view, we can expect that it has potential applications in various fields such as medical diagnostics, surveillance systems, and light field photography.

  14. High quality adaptive optics zoom with adaptive lenses

    NASA Astrophysics Data System (ADS)

    Quintavalla, M.; Santiago, F.; Bonora, S.; Restaino, S.

    2018-02-01

    We present the combined use of large aperture adaptive lens with large optical power modulation with a multi actuator adaptive lens. The Multi-actuator Adaptive Lens (M-AL) can correct up to the 4th radial order of Zernike polynomials, without any obstructions (electrodes and actuators) placed inside its clear aperture. We demonstrated that the use of both lenses together can lead to better image quality and to the correction of aberrations of adaptive optics optical systems.

  15. Two sided residual refocusing for acoustic lens based photoacoustic imaging system.

    PubMed

    Kalloor Joseph, Francis; Chinni, Bhargava; Channappayya, Sumohana S; Pachamuthu, Rajalakshmi; Dogra, Vikram S; Rao, Navalgund

    2018-05-30

    In photoacoustic (PA) imaging, an acoustic lens-based system can form a focused image of an object plane. A real-time C-scan PA image can be formed by simply time gating the transducer response. While most of the focusing action is done by the lens, residual refocusing is needed to image multiple depths with high resolution simultaneously. However, a refocusing algorithm for PA camera has not been studied so far in the literature. In this work, we reformulate this residual refocusing problem for a PA camera into a two-sided wave propagation from a planar sensor array. One part of the problem deals with forward wave propagation while the other deals with time reversal. We have chosen a Fast Fourier Transform (FFT) based wave propagation model for the refocusing to maintain the real-time nature of the system. We have conducted Point Spread Function (PSF) measurement experiments at multiple depths and refocused the signal using the proposed method. Full Width at Half Maximum (FWHM), peak value and Signal to Noise Ratio (SNR) of the refocused PSF is analyzed to quantify the effect of refocusing. We believe that using a two-dimensional transducer array combined with the proposed refocusing, can lead to real-time volumetric imaging using a lens based PA imaging system. © 2018 Institute of Physics and Engineering in Medicine.

  16. Light field measurement based on the single-lens coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Shen, Cheng; Tan, Jiubin; Liu, Zhengjun

    2018-01-01

    Plenoptic camera and holography are popular light field measurement techniques. However, the low resolution or the complex apparatus hinders their widespread application. In this paper, we put forward a new light field measurement scheme. The lens is introduced into coherent diffraction imaging to operate an optical transform, extended fractional Fourier transform. Combined with the multi-image phase retrieval algorithm, the scheme is proved to hold several advantages. It gets rid of the support requirement and is much easier to implement while keeping a high resolution by making full use of the detector plane. Also, it is verified that our scheme has a superiority over the direct lens focusing imaging in amplitude measurement accuracy and phase retrieval ability.

  17. Ex vivo magnetic resonance imaging of crystalline lens dimensions in chicken.

    PubMed

    Tattersall, Rebecca J; Prashar, Ankush; Singh, Krish D; Tokarczuk, Pawel F; Erichsen, Jonathan T; Hocking, Paul M; Guggenheim, Jeremy A

    2010-02-02

    A reduction in the power of the crystalline lens during childhood is thought to be important in the emmetropization of the maturing eye. However, in humans and model organisms, little is known about the factors that determine the dimensions of the crystalline lens and in particular whether these different parameters (axial thickness, surface curvatures, equatorial diameter, and volume) are under a common source of control or regulated independently of other aspects of eye size and shape. Using chickens from a broiler-layer experimental cross as a model system, three-dimensional magnetic resonance imaging (MRI) scans were obtained at 115-microm isotropic resolution for one eye of 501 individuals aged 3-weeks old. After fixation with paraformaldehyde, the excised eyes were scanned overnight (16 h) in groups of 16 arranged in a 2x2x4 array. Lens dimensions were calculated from each image by fitting a three-dimensional mesh model to the lens, using the semi-automated analysis program mri3dX. The lens dimensions were compared to measures of eye and body size obtained in vivo using techniques that included keratometry and A-scan ultrasonography. A striking finding was that axial lens thickness measured using ex vivo MRI was only weakly correlated with lens thickness measured in vivo by ultrasonography (r=0.19, p<0.001). In addition, the MRI lens thickness estimates had a lower mean value and much higher variance. Indeed, about one-third of crystalline lenses showed a kidney-shaped appearance instead of the typical biconvex shape. Since repeat MRI scans of the same eye showed a high degree of reproducibility for the scanning and mri3dX analysis steps (the correlation in repeat lens thickness measurements was r=0.95, p<0.001) and a recent report has shown that paraformaldehyde fixation induces a loss of water from the human crystalline lens, it is likely that the tissue fixation step caused a variable degree of shrinkage and a change in shape to the lenses examined here

  18. Ex vivo magnetic resonance imaging of crystalline lens dimensions in chicken

    PubMed Central

    Tattersall, Rebecca J.; Prashar, Ankush; Singh, Krish D.; Tokarczuk, Pawel F.; Erichsen, Jonathan T.; Hocking, Paul M.

    2010-01-01

    Purpose A reduction in the power of the crystalline lens during childhood is thought to be important in the emmetropization of the maturing eye. However, in humans and model organisms, little is known about the factors that determine the dimensions of the crystalline lens and in particular whether these different parameters (axial thickness, surface curvatures, equatorial diameter, and volume) are under a common source of control or regulated independently of other aspects of eye size and shape. Methods Using chickens from a broiler-layer experimental cross as a model system, three-dimensional magnetic resonance imaging (MRI) scans were obtained at 115-µm isotropic resolution for one eye of 501 individuals aged 3-weeks old. After fixation with paraformaldehyde, the excised eyes were scanned overnight (16 h) in groups of 16 arranged in a 2×2×4 array. Lens dimensions were calculated from each image by fitting a three-dimensional mesh model to the lens, using the semi-automated analysis program mri3dX. The lens dimensions were compared to measures of eye and body size obtained in vivo using techniques that included keratometry and A-scan ultrasonography. Results A striking finding was that axial lens thickness measured using ex vivo MRI was only weakly correlated with lens thickness measured in vivo by ultrasonography (r=0.19, p<0.001). In addition, the MRI lens thickness estimates had a lower mean value and much higher variance. Indeed, about one-third of crystalline lenses showed a kidney-shaped appearance instead of the typical biconvex shape. Since repeat MRI scans of the same eye showed a high degree of reproducibility for the scanning and mri3dX analysis steps (the correlation in repeat lens thickness measurements was r=0.95, p<0.001) and a recent report has shown that paraformaldehyde fixation induces a loss of water from the human crystalline lens, it is likely that the tissue fixation step caused a variable degree of shrinkage and a change in shape to the

  19. Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging.

    PubMed

    de Castro, Alberto; Ortiz, Sergio; Gambra, Enrique; Siedlecki, Damian; Marcos, Susana

    2010-10-11

    We present an optimization method to retrieve the gradient index (GRIN) distribution of the in-vitro crystalline lens from optical path difference data extracted from OCT images. Three-dimensional OCT images of the crystalline lens are obtained in two orientations (with the anterior surface up and posterior surface up), allowing to obtain the lens geometry. The GRIN reconstruction method is based on a genetic algorithm that searches for the parameters of a 4-variable GRIN model that best fits the distorted posterior surface of the lens. Computer simulations showed that, for noise of 5 μm in the surface elevations, the GRIN is recovered with an accuracy of 0.003 and 0.010 in the refractive indices of the nucleus and surface of the lens, respectively. The method was applied to retrieve three-dimensionally the GRIN of a porcine crystalline lens in vitro. We found a refractive index ranging from 1.362 in the surface to 1.443 in the nucleus of the lens, an axial exponential decay of the GRIN profile of 2.62 and a meridional exponential decay ranging from 3.56 to 5.18. The effect of GRIN on the aberrations of the lens also studied. The estimated spherical aberration of the measured porcine lens was 2.87 μm assuming a homogenous equivalent refractive index, and the presence of GRIN shifted the spherical aberration toward negative values (-0.97 μm), for a 6-mm pupil.

  20. Mars Hand Lens Imager Sends Ultra High-Res Photo from Mars

    NASA Image and Video Library

    2013-10-17

    This image of a U.S. penny on a calibration target was taken by the Mars Hand Lens Imager MAHLI aboard NASA Curiosity rover in Gale Crater on Mars. At 14 micrometers per pixel, this is the highest-resolution image that MAHLI can acquire.

  1. Optimized computational imaging methods for small-target sensing in lens-free holographic microscopy

    NASA Astrophysics Data System (ADS)

    Xiong, Zhen; Engle, Isaiah; Garan, Jacob; Melzer, Jeffrey E.; McLeod, Euan

    2018-02-01

    Lens-free holographic microscopy is a promising diagnostic approach because it is cost-effective, compact, and suitable for point-of-care applications, while providing high resolution together with an ultra-large field-of-view. It has been applied to biomedical sensing, where larger targets like eukaryotic cells, bacteria, or viruses can be directly imaged without labels, and smaller targets like proteins or DNA strands can be detected via scattering labels like micro- or nano-spheres. Automated image processing routines can count objects and infer target concentrations. In these sensing applications, sensitivity and specificity are critically affected by image resolution and signal-to-noise ratio (SNR). Pixel super-resolution approaches have been shown to boost resolution and SNR by synthesizing a high-resolution image from multiple, partially redundant, low-resolution images. However, there are several computational methods that can be used to synthesize the high-resolution image, and previously, it has been unclear which methods work best for the particular case of small-particle sensing. Here, we quantify the SNR achieved in small-particle sensing using regularized gradient-descent optimization method, where the regularization is based on cardinal-neighbor differences, Bayer-pattern noise reduction, or sparsity in the image. In particular, we find that gradient-descent with sparsity-based regularization works best for small-particle sensing. These computational approaches were evaluated on images acquired using a lens-free microscope that we assembled from an off-the-shelf LED array and color image sensor. Compared to other lens-free imaging systems, our hardware integration, calibration, and sample preparation are particularly simple. We believe our results will help to enable the best performance in lens-free holographic sensing.

  2. High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens.

    PubMed

    Mermillod-Blondin, Alexandre; McLeod, Euan; Arnold, Craig B

    2008-09-15

    Fluidic lenses allow for varifocal optical elements, but current approaches are limited by the speed at which focal length can be changed. Here we demonstrate the use of a tunable acoustic gradient (TAG) index of refraction lens as a fast varifocal element. The optical power of the TAG lens varies continuously, allowing for rapid selection and modification of the effective focal length at time scales of 1 mus and shorter. The wavefront curvature applied to the incident light is experimentally quantified as a function of time, and single-frame imaging is demonstrated. Results indicate that the TAG lens can successfully be employed to perform high-rate imaging at multiple locations.

  3. High-contrast 3D image acquisition using HiLo microscopy with an electrically tunable lens

    NASA Astrophysics Data System (ADS)

    Philipp, Katrin; Smolarski, André; Fischer, Andreas; Koukourakis, Nektarios; Stürmer, Moritz; Wallrabe, Ulricke; Czarske, Jürgen

    2016-04-01

    We present a HiLo microscope with an electrically tunable lens for high-contrast three-dimensional image acquisition. HiLo microscopy combines wide field and speckled illumination images to create optically sectioned images. Additionally, the depth-of-field is not fixed, but can be adjusted between wide field and confocal-like axial resolution. We incorporate an electrically tunable lens in the HiLo microscope for axial scanning, to obtain three-dimensional data without the need of moving neither the sample nor the objective. The used adaptive lens consists of a transparent polydimethylsiloxane (PDMS) membrane into which an annular piezo bending actuator is embedded. A transparent fluid is filled between the membrane and the glass substrate. When actuated, the piezo generates a pressure in the lens which deflects the membrane and thus changes the refractive power. This technique enables a large tuning range of the refractive power between 1/f = (-24 . . . 25) 1/m. As the NA of the adaptive lens is only about 0.05, a fixed high-NA lens is included in the setup to provide high resolution. In this contribution, the scan properties and capabilities of the tunable lens in the HiLo microscope are analyzed. Eventually, exemplary measurements are presented and discussed.

  4. Sharing of secondary electrons by in-lens and out-lens detector in low-voltage scanning electron microscope equipped with immersion lens.

    PubMed

    Kumagai, Kazuhiro; Sekiguchi, Takashi

    2009-03-01

    To understand secondary electron (SE) image formation with in-lens and out-lens detector in low-voltage scanning electron microscopy (LV-SEM), we have evaluated SE signals of an in-lens and an out-lens detector in LV-SEM. From the energy distribution spectra of SEs with various boosting voltages of the immersion lens system, we revealed that the electrostatic field of the immersion lens mainly collects electrons with energy lower than 40eV, acting as a low-pass filter. This effect is also observed as a contrast change in LV-SEM images taken by in-lens and out-lens detectors.

  5. [Magnetic resonance imaging study of effects of accommodation on human lens morphological characters].

    PubMed

    Zheng, Sui-lian; Zhang, Ai; Shi, Jian-jing; Zhou, Yun-xin

    2013-11-05

    To evaluate the effects of accommodation on lens morphological characters. From January 2011 to June 2011, magnetic resonance images of eyes were acquired from 30 subjects aged 20 to 24 years during accommodation and at rest. The optimal images were analyzed by Autocad 2010 to obtain the total lens cross-sectional area (CSA) and CSA of anterior and posterior portions of lens, anterior chamber depth, lens thickness, lens diameter, vitreous chamber depth and axial length during accommodation and at rest. Paired-t test was performed. The anterior curvature radius (mm), posterior curvature radius (mm), CSA of anterior portion (mm(2)), CSA of posterior portion (mm(2)), total lens CSA (mm(2)) was (8.7 ± 0.8), (6.2 ± 0.5), (7.5 ± 2.1), (12.0 ± 2.6), (20 ± 4) during relaxed accommodation; anterior curvature radius (mm), posterior curvature radius (mm), CSA of anterior portion (mm(2)), CSA of posterior portion (mm(2)), total lens CSA (mm(2)) was (7.1 ± 1.3), (5.6 ± 0.5), (14.7 ± 2.9), (12.2 ± 2.1) and (27 ± 4) during accommodation. The total lens CSA (t = -11.556, P < 0.01) and CSA of anterior portion (t = -15.653, P < 0.01) both increased in accommodative states. The CSA of posterior portion of lens (t = -0.437, P > 0.05) under a statistically independent accommodative state. There was significant difference in the anterior chamber depth (t = 4.366, P < 0.01), lens thickness (t = -5.456, P < 0.01) and lens diameter (t = 4.597, P < 0.01) in accommodative states. There were insignificant differences both in vitreous chamber depth (t = 0.428, P > 0.05) and axial length (t = 0.418, P > 0.05) under accommodative states. During accommodation, the anterior chamber depth decreases, lens thickness increases and diameter of lens decreases while anterior portions and total lens CSA increase. There are insignificant changes in posterior portions of lens CSA, vitreous chamber depth and axial length. The accommodative changes in CSA indicate that the anterior portion of lens

  6. Design of microcamera for field curvature and distortion correction in monocentric multiscale foveated imaging system

    NASA Astrophysics Data System (ADS)

    Wu, Xiongxiong; Wang, Xiaorui; Zhang, Jianlei; Yuan, Ying; Chen, Xiaoxiang

    2017-04-01

    To realize large field of view (FOV) and high-resolution dynamic gaze of the moving target, this paper proposes the monocentric multiscale foveated (MMF) imaging system based on monocentric multiscale design and foveated imaging. First we present the MMF imaging system concept. Then we analyze large field curvature and distortion of the secondary image when the spherical intermediate image produced by the primary monocentric objective lens is relayed by the microcameras. Further a type of zoom endoscope objective lens is selected as the initial structure and optimized to minimize the field curvature and distortion with ZEMAX optical design software. The simulation results show that the maximum field curvature in full field of view is below 0.25 mm and the maximum distortion in full field of view is below 0.6%, which can meet the requirements of the microcamera in the proposed MMF imaging system. In addition, a simple doublet is used to design the foveated imaging system. Results of the microcamera together with the foveated imager compose the results of the whole MMF imaging system.

  7. Lens-free imaging-based low-cost microsensor for in-line wear debris detection in lube oils

    NASA Astrophysics Data System (ADS)

    Mabe, Jon; Zubia, Joseba; Gorritxategi, Eneko

    2017-02-01

    The current paper describes the application of lens-free imaging principles for the detection and classification of wear debris in lubricant oils. The potential benefits brought by the lens-free microscopy techniques in terms of resolution, deep of field and active areas have been tailored to develop a micro sensor for the in-line monitoring of wear debris in oils used in lubricated or hydraulic machines as gearboxes, actuators, engines, etc. The current work presents a laboratory test-bench used for evaluating the optical performance of the lens-free approach applied to the wear particle detection in oil samples. Additionally, the current prototype sensor is presented, which integrates a LED light source, CMOS imager, embedded CPU, the measurement cell and the appropriate optical components for setting up the lens-free system. The imaging performance is quantified using micro structured samples, as well as by imaging real used lubricant oils. Probing a large volume with a decent 2D spatial resolution, this lens-free micro sensor can provide a powerful tool at very low cost for inline wear debris monitoring.

  8. Influence of the refractive index and dispersion of spectacle lens on its imaging properties

    NASA Astrophysics Data System (ADS)

    Miks, Antonin; Novak, Jiri; Novak, Pavel

    2007-12-01

    The paper shows an influence of the refractive index and dispersion of the spectacle lens on its imaging properties. Relations are presented for calculation of radii of curvature of anastigmatic spectacle lenses and their chromatic aberration. Moreover, the formulas are derived for calculation of the change of astigmatism of spectacle lens due to dispersion of spectacle lens material.

  9. Reflections From a Fresnel Lens

    ERIC Educational Resources Information Center

    Keeports, David

    2005-01-01

    Reflection of light by a convex Fresnel lens gives rise to two distinct images. A highly convex inverted real reflective image forms on the object side of the lens, while an upright virtual reflective image forms on the opposite side of the lens. I describe here a set of laser experiments performed upon a Fresnel lens. These experiments provide…

  10. A panoramic imaging system based on fish-eye lens

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Hao, Chenyang

    2017-10-01

    Panoramic imaging has been closely watched as one of the major technologies of AR and VR. Mainstream panoramic imaging techniques lenses include fish-eye lenses, image splicing, and catadioptric imaging system. Meanwhile, fish-eyes are widely used in the big picture video surveillance. The advantage of fish-eye lenses is that they are easy to operate and cost less, but how to solve the image distortion of fish-eye lenses has always been a very important topic. In this paper, the image calibration algorithm of fish-eye lens is studied by comparing the method of interpolation, bilinear interpolation and double three interpolation, which are used to optimize the images.

  11. SU-E-J-11: Measurement of Eye Lens Dose for Varian On-Board Imaging with Different CBCT Acquisition Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshpande, S; Dhote, D; Kumar, R

    Purpose: To measure actual patient eye lens dose for different cone beam computed tomography (CBCT) acquisition protocol of Varian’s On Board Imagining (OBI) system using Optically Stimulated Luminescence (OSL) dosimeter and study the eye lens dose with patient geometry and distance of isocenter to the eye lens Methods: OSL dosimeter was used to measure eye lens dose of patient. OSL dosimeter was placed on patient forehead center during CBCT image acquisition to measure eye lens dose. For three different cone beam acquisition protocol (standard dose head, low dose head and high quality head) of Varian On-Board Imaging, eye lens dosesmore » were measured. Measured doses were correlated with patient geometry and distance between isocenter to eye lens. Results: Measured eye lens dose for standard dose head was in the range of 1.8 mGy to 3.2 mGy, for high quality head protocol dose was in range of 4.5mGy to 9.9 mGy whereas for low dose head was in the range of 0.3mGy to 0.7mGy. Dose to eye lens is depends upon position of isocenter. For posterioraly located tumor eye lens dose is less. Conclusion: From measured doses it can be concluded that by proper selection of imagining protocol and frequency of imaging, it is possible to restrict the eye lens dose below the new limit set by ICRP. However, undoubted advantages of imaging system should be counter balanced by careful consideration of imaging protocol especially for very intense imaging sequences for Adoptive Radiotherapy or IMRT.« less

  12. Negative refraction imaging of acoustic metamaterial lens in the supersonic range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jianning; Wen, Tingdun; Key Laboratory of Electronic Testing Technology, North University of China, Taiyuan 030051

    2014-05-15

    Acoustic metamaterials with negative refraction index is the most promising method to overcome the diffraction limit of acoustic imaging to achieve ultrahigh resolution. In this paper, we use localized resonant phononic crystal as the unit cell to construct the acoustic negative refraction lens. Based on the vibration model of the phononic crystal, negative quality parameters of the lens are obtained while excited near the system resonance frequency. Simulation results show that negative refraction of the acoustic lens can be achieved when a sound wave transmiting through the phononic crystal plate. The patterns of the imaging field agree well with thatmore » of the incident wave, while the dispersion is very weak. The unit cell size in the simulation is 0.0005 m and the wavelength of the sound source is 0.02 m, from which we show that acoustic signal can be manipulated through structures with dimensions much smaller than the wavelength of incident wave.« less

  13. Synchronous imaging of the pulse response of the ciliary muscle and lens with SD-OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Cherng; Pham, Alex; Williams, Siobhan; Alawa, Karam A.; de Freitas, Carolina; Ruggeri, Marco; Parel, Jean-Marie A.; Manns, Fabrice

    2017-02-01

    Purpose: To determine the dynamic interaction between ciliary muscle and lens during accommodation and disaccommodation through synchronous imaging of ciliary muscle and lens response to pulse stimulus Methods: The ciliary muscle and lens were imaged simultaneously in a 33 year old subject responding to a 4D pulse stimulus (accommodative stimulus at 1.7 s, disaccommodative stimulus at 7.7 s) using an existing imaging system (Ruggeri et al, 2016) consisting of an Anterior Segment Optical Coherence Tomography system, Ciliary Muscle Optical Coherence Tomography system, and custom-built accommodation module. OCT images were recorded at an effective frame rate of 13.0 frames per second for a total scan time of 11.5 s. An automated segmentation algorithm was applied to images of the anterior segment to detect the boundaries of the cornea and lens, from which lens thickness was extracted. Segmentation of the ciliary muscle was performed manually and then corrected for distortion due to refraction of the beam to obtain measurements of thicknesses at the apex and fixed distances from the scleral spur. Results: The dynamic biometric response to a pulse stimulus at 4D was determined for both the ciliary muscle and lens, suggesting the ciliary muscle and lens interact differently in accommodation and disaccommodation. Conclusions: The study introduces new data and analyses of the ciliary muscle and lens interaction during a complete accommodative response from the relaxed to the accommodated state and back, providing insight into the interplay between individual elements in the accommodative system and how their relationships may change with age.

  14. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens

    PubMed Central

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.

    2015-01-01

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images. PMID:26368169

  15. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.

    PubMed

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N; Zawadzki, Robert J; Sarunic, Marinko V

    2015-08-24

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images.

  16. Gradient Index Optics at DARPA

    DTIC Science & Technology

    2013-11-01

    four efforts were selected for further development and demonstration: fluidic adaptive zoom lenses, foveated imaging, photon sieves, and nanolayer...2-4 1. Fluidic Adaptive Zoom Lenses... gastropod mollusks. In simple optical systems such as the fish lens, the focal length is a function of the wavelength of light. This distortion is called

  17. Designing Computer-Based Learning Contents: Influence of Digital Zoom on Attention

    ERIC Educational Resources Information Center

    Glaser, Manuela; Lengyel, Dominik; Toulouse, Catherine; Schwan, Stephan

    2017-01-01

    In the present study, we investigated the role of digital zoom as a tool for directing attention while looking at visual learning material. In particular, we analyzed whether minimal digital zoom functions similarly to a rhetorical device by cueing mental zooming of attention accordingly. Participants were presented either static film clips, film…

  18. GRAVITATIONAL LENS CAPTURES IMAGE OF PRIMEVAL GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Hubble Space Telescope image shows several blue, loop-shaped objects that actually are multiple images of the same galaxy. They have been duplicated by the gravitational lens of the cluster of yellow, elliptical and spiral galaxies - called 0024+1654 - near the photograph's center. The gravitational lens is produced by the cluster's tremendous gravitational field that bends light to magnify, brighten and distort the image of a more distant object. How distorted the image becomes and how many copies are made depends on the alignment between the foreground cluster and the more distant galaxy, which is behind the cluster. In this photograph, light from the distant galaxy bends as it passes through the cluster, dividing the galaxy into five separate images. One image is near the center of the photograph; the others are at 6, 7, 8, and 2 o'clock. The light also has distorted the galaxy's image from a normal spiral shape into a more arc-shaped object. Astronomers are certain the blue-shaped objects are copies of the same galaxy because the shapes are similar. The cluster is 5 billion light-years away in the constellation Pisces, and the blue-shaped galaxy is about 2 times farther away. Though the gravitational light-bending process is not new, Hubble's high resolution image reveals structures within the blue-shaped galaxy that astronomers have never seen before. Some of the structures are as small as 300 light-years across. The bits of white imbedded in the blue galaxy represent young stars; the dark core inside the ring is dust, the material used to make stars. This information, together with the blue color and unusual 'lumpy' appearance, suggests a young, star-making galaxy. The picture was taken October 14, 1994 with the Wide Field Planetary Camera-2. Separate exposures in blue and red wavelengths were taken to construct this color picture. CREDIT: W.N. Colley and E. Turner (Princeton University), J.A. Tyson (Bell Labs, Lucent Technologies) and NASA Image files

  19. The Trilogy is Complete - GigaGalaxy Zoom Phase 3

    NASA Astrophysics Data System (ADS)

    2009-09-01

    The third image of ESO's GigaGalaxy Zoom project has just been released online, completing this eye-opening dive into our galactic home in outstanding fashion. The latest image follows on from views, released over the last two weeks, of the sky as seen with the unaided eye and through an amateur telescope. This third instalment provides another breathtaking vista of an astronomical object, this time a 370-million-pixel view of the Lagoon Nebula of the quality and depth needed by professional astronomers in their quest to understand our Universe. The newly released image extends across a field of view of more than one and a half square degree - an area eight times larger than that of the full Moon - and was obtained with the Wide Field Imager attached to the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. This 67-million-pixel camera has already created several of ESO's iconic pictures. The intriguing object depicted here - the Lagoon Nebula - is located four to five thousand light-years away towards the constellation of Sagittarius (the Archer). The nebula is a giant interstellar cloud, 100 light-years across, where stars are forming. The scattered dark patches seen all over the nebula are huge clouds of gas and dust that are collapsing under their own weight and which will soon give birth to clusters of young, glowing stars. Some of the smallest clouds are known as "globules" and the most prominent ones have been catalogued by the astronomer Edward Emerson Barnard. The Lagoon Nebula hosts the young open stellar cluster known as NGC 6530. This is home for 50 to 100 stars and twinkles in the lower left portion of the nebula. Observations suggest that the cluster is slightly in front of the nebula itself, though still enshrouded by dust, as revealed by reddening of the starlight, an effect that occurs when small dust particles scatter light. The name of the Lagoon Nebula derives from the wide lagoon-shaped dark lane located in the middle of the

  20. Robust design study on the wide angle lens with free distortion for mobile lens

    NASA Astrophysics Data System (ADS)

    Kim, Taeyoung; Yong, Liu; Xu, Qing

    2017-10-01

    Recently new trend applying wide angle in mobile imaging lens is attracting. Specially, customer requirements for capturing wider scene result that a field of view of lens be wider than 100deg. Introduction of retro-focus type lens in mobile imaging lens is required. However, imaging lens in mobile phone always face to many constraints such as lower total length, low F/# and higher performance. The sensitivity for fabrication may become more severe because of wide angle FOV. In this paper, we investigate an optical lens design satisfy all requirements for mobile imaging lens. In order to accomplish Low cost and small depth of optical system, we used plastic materials for all element and the productivity is considered for realization. The lateral color is minimized less than 2 pixels and optical distortion is less than 5%. Also, we divided optical system into 2 part for robust design. The compensation between 2 groups can help us to increase yield in practice. The 2 group alignment for high yield may be a promising solution for wide angle lens.

  1. Near-infrared images of MG 1131+0456 with the W. M. Keck telescope: Another dusty gravitational lens?

    NASA Technical Reports Server (NTRS)

    Larkin, J. E.; Matthews, K.; Lawrence, C. R.; Graham, J. R.; Harrison, W.; Jernigan, G.; Lin, S.; Nelson, J.; Neugebauer, G.; Smith, G.

    1994-01-01

    Images of the gravitational lens system MG 1131+0456 taken with the near-infrared camera on the W. M. Keck telescope in the J and K(sub s) bands show that the infrared counterparts of the compact radio structure are exceedingly red, with J - K greater than 4.2 mag. The J image reveals only the lensing galaxy, while the K(sub s) image shows both the lens and the infrared counterparts of the compact radio components. After subtracting the lensing galaxy from the K(sub s) image, the position and orientation of the compact components agree with their radio counterparts. The broad-band spectrum and observed brightness of the lens suggest a giant galaxy at a redshift of approximately 0.75, while the color of the quasar images suggests significant extinction by dust in the lens. There is a significant excess of faint objects within 20 sec of MG 1131+0456. Depending on their mass and redshifts, these objects could complicate the lensing potential considerably.

  2. HUBBLE VIEWS DISTANT GALAXIES THROUGH A COSMIC LENS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image of the rich galaxy cluster, Abell 2218, is a spectacular example of gravitational lensing. The arc-like pattern spread across the picture like a spider web is an illusion caused by the gravitational field of the cluster. The cluster is so massive and compact that light rays passing through it are deflected by its enormous gravitational field, much as an optical lens bends light to form an image. The process magnifies, brightens and distorts images of objects that lie far beyond the cluster. This provides a powerful 'zoom lens' for viewing galaxies that are so far away they could not normally be observed with the largest available telescopes. Hubble's high resolution reveals numerous arcs which are difficult to detect with ground-based telescopes because they appear to be so thin. The arcs are the distorted images of a very distant galaxy population extending 5-10 times farther than the lensing cluster. This population existed when the universe was just one quarter of its present age. The arcs provide a direct glimpse of how star forming regions are distributed in remote galaxies, and other clues to the early evoution of galaxies. Hubble also reveals multiple imaging, a rarer lensing event that happens when the distortion is large enough to produce more than one image of the same galaxy. Abell 2218 has an unprecedented total of seven multiple systems. The abundance of lensing features in Abell 2218 has been used to make a detailed map of the distribution of matter in the cluster's center. From this, distances can be calculated for a sample of 120 faint arclets found on the Hubble image. These arclets represent galaxies that are 50 times fainter than objects that can be seen with ground-based telescopes. Studies of remote galaxies viewed through well-studied lenses like Abell 2218 promise to reveal the nature of normal galaxies at much earlier epochs than was previously possible. The technique is a powerful combination of Hubble

  3. A 2D/3D hybrid integral imaging display by using fast switchable hexagonal liquid crystal lens array

    NASA Astrophysics Data System (ADS)

    Lee, Hsin-Hsueh; Huang, Ping-Ju; Wu, Jui-Yi; Hsieh, Po-Yuan; Huang, Yi-Pai

    2017-05-01

    The paper proposes a new display which could switch 2D and 3D images on a monitor, and we call it as Hybrid Display. In 3D display technologies, the reduction of image resolution is still an important issue. The more angle information offer to the observer, the less spatial resolution would offer to image resolution because of the fixed panel resolution. Take it for example, in the integral photography system, the part of image without depth, like background, will reduce its resolution by transform from 2D to 3D image. Therefore, we proposed a method by using liquid crystal component to quickly switch the 2D image and 3D image. Meanwhile, the 2D image is set as a background to compensate the resolution.. In the experiment, hexagonal liquid crystal lens array would be used to take the place of fixed lens array. Moreover, in order to increase lens power of the hexagonal LC lens array, we applied high resistance (Hi-R) layer structure on the electrode. Hi-R layer would make the gradient electric field and affect the lens profile. Also, we use panel with 801 PPI to display the integral image in our system. Hence, the consequence of full resolution 2D background with the 3D depth object forms the Hybrid Display.

  4. CMU DeepLens: deep learning for automatic image-based galaxy-galaxy strong lens finding

    NASA Astrophysics Data System (ADS)

    Lanusse, François; Ma, Quanbin; Li, Nan; Collett, Thomas E.; Li, Chun-Liang; Ravanbakhsh, Siamak; Mandelbaum, Rachel; Póczos, Barnabás

    2018-01-01

    Galaxy-scale strong gravitational lensing can not only provide a valuable probe of the dark matter distribution of massive galaxies, but also provide valuable cosmological constraints, either by studying the population of strong lenses or by measuring time delays in lensed quasars. Due to the rarity of galaxy-scale strongly lensed systems, fast and reliable automated lens finding methods will be essential in the era of large surveys such as Large Synoptic Survey Telescope, Euclid and Wide-Field Infrared Survey Telescope. To tackle this challenge, we introduce CMU DeepLens, a new fully automated galaxy-galaxy lens finding method based on deep learning. This supervised machine learning approach does not require any tuning after the training step which only requires realistic image simulations of strongly lensed systems. We train and validate our model on a set of 20 000 LSST-like mock observations including a range of lensed systems of various sizes and signal-to-noise ratios (S/N). We find on our simulated data set that for a rejection rate of non-lenses of 99 per cent, a completeness of 90 per cent can be achieved for lenses with Einstein radii larger than 1.4 arcsec and S/N larger than 20 on individual g-band LSST exposures. Finally, we emphasize the importance of realistically complex simulations for training such machine learning methods by demonstrating that the performance of models of significantly different complexities cannot be distinguished on simpler simulations. We make our code publicly available at https://github.com/McWilliamsCenter/CMUDeepLens.

  5. All plastic ultra-small size imaging lens unit fabrication and evaluation for endoscope

    NASA Astrophysics Data System (ADS)

    Ishii, Kenta; Okamoto, Dai; Ushio, Makoto; Tai, Hidetoshi; Nishihara, Atsuhiko; Tokuda, Kimio; Kawai, Shinsuke; Kitagawa, Seiichiro

    2017-02-01

    There is demand for small-size lens units for endoscope and industrial applications. Polished glass lenses with a diameter of 1 - 2mm exist, however plastic lenses similar in size are not commonplace. For low-cost, light-weight, and mass production, plastic lens fabrication is extremely beneficial. Especially, in the medical field, there is strong demand for disposable lens unit for endoscopes which prevent contamination due to reuse of the lens. Therefore, high mass producible and low cost becomes increasingly important. This paper reports our findings on injection-molded ultra-small size plastic lens units with a diameter of 1.3mm and total thickness of 1.4mm. We performed optical design, injection molding, and lens unit assembly for injection moldable, high imaging performance ultra-small sized lens units. We prioritize a robust product design, considering injection molding properties and lens unit assembly, with feedback from molding simulations reflected into the optical design. A mold capable of high precision lens positioning is used to fabricate the lenses and decrease the variability of the assembly. The geometric dimensions of the resulting lenses, are measured and used in the optical simulation to validate the optical performance, and a high agreement is reported. The injection molding of the lens and the assembly of the lens unit is performed with high precision, and results in high optical performance.

  6. Who's Zooming Whom? Attunement to Animation in the Interface.

    ERIC Educational Resources Information Center

    Chui, Michael; Dillon, Andrew

    1997-01-01

    Two controlled experiments examined whether the animated zooming effect accompanying the opening or closing of a folder in the Apple Macintosh graphical user interface aids in the user's perception of which window corresponds to which folder. Results suggest users may become attuned to the informational content of the zooming effect with…

  7. Imaging of the gravitational lens system PG 1115+080 with the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Kristian, Jerome; Groth, Edward J.; Shaya, Edward J.; Schneider, Donald P.; Holtzman, Jon A.; Baum, William A.; Campbell, Bel; Code, Arthur; Currie, Douglas G.; Danielson, G. E.

    1993-01-01

    This paper is the first of a series presenting observations of gravitational lenses and lens candidates, taken with the Wide Field/Planetary Camera of the HST. We have resolved the gravitational lens system PG 1115+080 into four point sources and a red, extended object that is presumably the lens galaxy; we present accurate relative intensities, colors, and positions of the four images, and lower accuracy intensity and position of the lens galaxy, all at the epoch 1991.2. Comparison with earlier data shows no compelling evidence for relative intensity variations between the QSO components having so far been observed. The new data agree with earlier conclusions that the system is rather simple, and can be produced by the single observed galaxy. The absence of asymmetry in the HST images implies that the emitting region of the quasar itself has an angular radius smaller than about 10 milliarcsec (100 pc for H0 = 50, q0 = 0.5).

  8. The Mars Hand Lens Imager (MAHLI) aboard the Mars rover, Curiosity

    NASA Astrophysics Data System (ADS)

    Edgett, K. S.; Ravine, M. A.; Caplinger, M. A.; Ghaemi, F. T.; Schaffner, J. A.; Malin, M. C.; Baker, J. M.; Dibiase, D. R.; Laramee, J.; Maki, J. N.; Willson, R. G.; Bell, J. F., III; Cameron, J. F.; Dietrich, W. E.; Edwards, L. J.; Hallet, B.; Herkenhoff, K. E.; Heydari, E.; Kah, L. C.; Lemmon, M. T.; Minitti, M. E.; Olson, T. S.; Parker, T. J.; Rowland, S. K.; Schieber, J.; Sullivan, R. J.; Sumner, D. Y.; Thomas, P. C.; Yingst, R. A.

    2009-08-01

    The Mars Science Laboratory (MSL) rover, Curiosity, is expected to land on Mars in 2012. The Mars Hand Lens Imager (MAHLI) will be used to document martian rocks and regolith with a 2-megapixel RGB color CCD camera with a focusable macro lens mounted on an instrument-bearing turret on the end of Curiosity's robotic arm. The flight MAHLI can focus on targets at working distances of 20.4 mm to infinity. At 20.4 mm, images have a pixel scale of 13.9 μm/pixel. The pixel scale at 66 mm working distance is about the same (31 μm/pixel) as that of the Mars Exploration Rover (MER) Microscopic Imager (MI). MAHLI camera head placement is dependent on the capabilities of the MSL robotic arm, the design for which presently has a placement uncertainty of ~20 mm in 3 dimensions; hence, acquisition of images at the minimum working distance may be challenging. The MAHLI consists of 3 parts: a camera head, a Digital Electronics Assembly (DEA), and a calibration target. The camera head and DEA are connected by a JPL-provided cable which transmits data, commands, and power. JPL is also providing a contact sensor. The camera head will be mounted on the rover's robotic arm turret, the DEA will be inside the rover body, and the calibration target will be mounted on the robotic arm azimuth motor housing. Camera Head. MAHLI uses a Kodak KAI-2020CM interline transfer CCD (1600 x 1200 active 7.4 μm square pixels with RGB filtered microlenses arranged in a Bayer pattern). The optics consist of a group of 6 fixed lens elements, a movable group of 3 elements, and a fixed sapphire window front element. Undesired near-infrared radiation is blocked using a coating deposited on the inside surface of the sapphire window. The lens is protected by a dust cover with a Lexan window through which imaging can be ac-complished if necessary, and targets can be illuminated by sunlight or two banks of two white light LEDs. Two 365 nm UV LEDs are included to search for fluores-cent materials at night. DEA

  9. Zooming in on Science

    ERIC Educational Resources Information Center

    Thorn, Courtney; Rye, James; Walls, Holly

    2017-01-01

    Photography is a creative art that continues to advance through technological innovations. Smart phones have made photography a nearly daily occurance, and people have become quite accustomed to zooming in and taking photos. This article explains how elementary teachers can harness a much "bigger" technology application--GigaPan--to help…

  10. Effect of a contact lens on mouse retinal in vivo imaging: Effective focal length changes and monochromatic aberrations.

    PubMed

    Zhang, Pengfei; Mocci, Jacopo; Wahl, Daniel J; Meleppat, Ratheesh Kumar; Manna, Suman K; Quintavalla, Martino; Muradore, Riccardo; Sarunic, Marinko V; Bonora, Stefano; Pugh, Edward N; Zawadzki, Robert J

    2018-03-28

    For in vivo mouse retinal imaging, especially with Adaptive Optics instruments, application of a contact lens is desirable, as it allows maintenance of cornea hydration and helps to prevent cataract formation during lengthy imaging sessions. However, since the refractive elements of the eye (cornea and lens) serve as the objective for most in vivo retinal imaging systems, the use of a contact lens, even with 0 Dpt. refractive power, can alter the system's optical properties. In this investigation we examined the effective focal length change and the aberrations that arise from use of a contact lens. First, focal length changes were simulated with a Zemax mouse eye model. Then ocular aberrations with and without a 0 Dpt. contact lens were measured with a Shack-Hartmann wavefront sensor (SHWS) in a customized AO-SLO system. Total RMS wavefront errors were measured for two groups of mice (14-month, and 2.5-month-old), decomposed into 66 Zernike aberration terms, and compared. These data revealed that vertical coma and spherical aberrations were increased with use of a contact lens in our system. Based on the ocular wavefront data we evaluated the effect of the contact lens on the imaging system performance as a function of the pupil size. Both RMS error and Strehl ratios were quantified for the two groups of mice, with and without contact lenses, and for different input beam sizes. These results provide information for determining optimum pupil size for retinal imaging without adaptive optics, and raise critical issues for design of mouse optical imaging systems that incorporate contact lenses. Copyright © 2018. Published by Elsevier Ltd.

  11. Eyeglasses Lens Contour Extraction from Facial Images Using an Efficient Shape Description

    PubMed Central

    Borza, Diana; Darabant, Adrian Sergiu; Danescu, Radu

    2013-01-01

    This paper presents a system that automatically extracts the position of the eyeglasses and the accurate shape and size of the frame lenses in facial images. The novelty brought by this paper consists in three key contributions. The first one is an original model for representing the shape of the eyeglasses lens, using Fourier descriptors. The second one is a method for generating the search space starting from a finite, relatively small number of representative lens shapes based on Fourier morphing. Finally, we propose an accurate lens contour extraction algorithm using a multi-stage Monte Carlo sampling technique. Multiple experiments demonstrate the effectiveness of our approach. PMID:24152926

  12. Imaging of blood antigen distribution on blood cells by thermal lens microscopy

    NASA Astrophysics Data System (ADS)

    Kimura, Hiroko; Sekiguchi, Kazuya; Nagao, Fumiko; Mukaida, Masahiro; Kitamori, Takehiko; Sawada, Tsuguo

    2000-05-01

    Blood group antigens on a cell were measured by a new microscopic method, i.e. thermal lens microscopy which involves spectrometry using a laser-induced thermal-lens effect. The blood group antigen was immunologically stained using antibody labeled with colloidal gold. Human leukocyte antigens (HLA) on lymphocytes and mononuclear leukocytes were observed by the thermal lens microscope, and Lewis blood group antigens on erythrocytes and polymorphonuclear leukocytes were also observed. The antigen distribution on each cell-surface was imaged using this technique. In spite of convex surface of living cells, colloidal gold was correctly quantified by adjusting the deviation of the focal point of the probe laser by the phase of the signal. In the measurement of leukocyte antigens, antigens of HLA-A, -B, -C loci on the lymphocytes were identified and quantitated by using a single cell. The image of HLA-A, -B, -C antigen distribution on a mononuclear leukocyte was obtained. In the measurement of erythrocyte antigens, a small quantity of Lewis antigens was detected on the cord erythrocytes. Localized small quantities of membrane antigens are better quantitated without extraction or cytolysis. Our thermal lens microscope is a powerful and highly sensitive analytical tool for detecting and quantitating localized antigens in single cells and/or cell-surface-associated molecules.

  13. AutoLens: Automated Modeling of a Strong Lens's Light, Mass and Source

    NASA Astrophysics Data System (ADS)

    Nightingale, J. W.; Dye, S.; Massey, Richard J.

    2018-05-01

    This work presents AutoLens, the first entirely automated modeling suite for the analysis of galaxy-scale strong gravitational lenses. AutoLens simultaneously models the lens galaxy's light and mass whilst reconstructing the extended source galaxy on an adaptive pixel-grid. The method's approach to source-plane discretization is amorphous, adapting its clustering and regularization to the intrinsic properties of the lensed source. The lens's light is fitted using a superposition of Sersic functions, allowing AutoLens to cleanly deblend its light from the source. Single component mass models representing the lens's total mass density profile are demonstrated, which in conjunction with light modeling can detect central images using a centrally cored profile. Decomposed mass modeling is also shown, which can fully decouple a lens's light and dark matter and determine whether the two component are geometrically aligned. The complexity of the light and mass models are automatically chosen via Bayesian model comparison. These steps form AutoLens's automated analysis pipeline, such that all results in this work are generated without any user-intervention. This is rigorously tested on a large suite of simulated images, assessing its performance on a broad range of lens profiles, source morphologies and lensing geometries. The method's performance is excellent, with accurate light, mass and source profiles inferred for data sets representative of both existing Hubble imaging and future Euclid wide-field observations.

  14. Space imaging measurement system based on fixed lens and moving detector

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Doshida, Minoru; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2006-08-01

    We have developed the Space Imaging Measurement System based on the fixed lens and fast moving detector to the control of the autonomous ground vehicle. The space measurement is the most important task in the development of the autonomous ground vehicle. In this study we move the detector back and forth along the optical axis at the fast rate to measure the three-dimensional image data. This system is just appropriate to the autonomous ground vehicle because this system does not send out any optical energy to measure the distance and keep the safety. And we use the digital camera of the visible ray range. Therefore it gives us the cost reduction of the three-dimensional image data acquisition with respect to the imaging laser system. We can combine many pieces of the narrow space imaging measurement data to construct the wide range three-dimensional data. This gives us the improvement of the image recognition with respect to the object space. To develop the fast movement of the detector, we build the counter mass balance in the mechanical crank system of the Space Imaging Measurement System. And then we set up the duct to prevent the optical noise due to the ray not coming through lens. The object distance is derived from the focus distance which related to the best focused image data. The best focused image data is selected from the image of the maximum standard deviation in the standard deviations of series images.

  15. Objective lens simultaneously optimized for pupil ghosting, wavefront delivery and pupil imaging

    NASA Technical Reports Server (NTRS)

    Olczak, Eugene G (Inventor)

    2011-01-01

    An objective lens includes multiple optical elements disposed between a first end and a second end, each optical element oriented along an optical axis. Each optical surface of the multiple optical elements provides an angle of incidence to a marginal ray that is above a minimum threshold angle. This threshold angle minimizes pupil ghosts that may enter an interferometer. The objective lens also optimizes wavefront delivery and pupil imaging onto an optical surface under test.

  16. Rectification of elemental image set and extraction of lens lattice by projective image transformation in integral imaging.

    PubMed

    Hong, Keehoon; Hong, Jisoo; Jung, Jae-Hyun; Park, Jae-Hyeung; Lee, Byoungho

    2010-05-24

    We propose a new method for rectifying a geometrical distortion in the elemental image set and extracting an accurate lens lattice lines by projective image transformation. The information of distortion in the acquired elemental image set is found by Hough transform algorithm. With this initial information of distortions, the acquired elemental image set is rectified automatically without the prior knowledge on the characteristics of pickup system by stratified image transformation procedure. Computer-generated elemental image sets with distortion on purpose are used for verifying the proposed rectification method. Experimentally-captured elemental image sets are optically reconstructed before and after the rectification by the proposed method. The experimental results support the validity of the proposed method with high accuracy of image rectification and lattice extraction.

  17. Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation.

    PubMed

    Sheppard, Amy L; Evans, C John; Singh, Krish D; Wolffsohn, James S; Dunne, Mark C M; Davies, Leon N

    2011-06-01

    To quantify changes in crystalline lens curvature, thickness, equatorial diameter, surface area, and volume during accommodation using a novel two-dimensional magnetic resonance imaging (MRI) paradigm to generate a complete three-dimensional crystalline lens surface model. Nineteen volunteers, aged 19 to 30 years, were recruited. T(2)-weighted MRIs, optimized to show fluid-filled chambers of the eye, were acquired using an eight-channel radio frequency head coil. Twenty-four oblique-axial slices of 0.8 mm thickness, with no interslice gaps, were acquired to visualize the crystalline lens. Three Maltese cross-type accommodative stimuli (at 0.17, 4.0, and 8.0 D) were presented randomly to the subjects in the MRI to examine lenticular changes with accommodation. MRIs were analyzed to generate a three-dimensional surface model. During accommodation, mean crystalline lens thickness increased (F = 33.39, P < 0.001), whereas lens equatorial diameter (F = 24.00, P < 0.001) and surface radii both decreased (anterior surface, F = 21.78, P < 0.001; posterior surface, F = 13.81, P < 0.001). Over the same stimulus range, mean crystalline lens surface area decreased (F = 7.04, P < 0.005) with a corresponding increase in lens volume (F = 6.06, P = 0.005). These biometric changes represent a 1.82% decrease and 2.30% increase in crystalline lens surface area and volume, respectively. CONCLUSIONS; The results indicate that the capsular bag undergoes elastic deformation during accommodation, causing reduced surface area, and the observed volumetric changes oppose the theory that the lens is incompressible.

  18. Robust and adaptive band-to-band image transform of UAS miniature multi-lens multispectral camera

    NASA Astrophysics Data System (ADS)

    Jhan, Jyun-Ping; Rau, Jiann-Yeou; Haala, Norbert

    2018-03-01

    Utilizing miniature multispectral (MS) or hyperspectral (HS) cameras by mounting them on an Unmanned Aerial System (UAS) has the benefits of convenience and flexibility to collect remote sensing imagery for precision agriculture, vegetation monitoring, and environment investigation applications. Most miniature MS cameras adopt a multi-lens structure to record discrete MS bands of visible and invisible information. The differences in lens distortion, mounting positions, and viewing angles among lenses mean that the acquired original MS images have significant band misregistration errors. We have developed a Robust and Adaptive Band-to-Band Image Transform (RABBIT) method for dealing with the band co-registration of various types of miniature multi-lens multispectral cameras (Mini-MSCs) to obtain band co-registered MS imagery for remote sensing applications. The RABBIT utilizes modified projective transformation (MPT) to transfer the multiple image geometry of a multi-lens imaging system to one sensor geometry, and combines this with a robust and adaptive correction (RAC) procedure to correct several systematic errors and to obtain sub-pixel accuracy. This study applies three state-of-the-art Mini-MSCs to evaluate the RABBIT method's performance, specifically the Tetracam Miniature Multiple Camera Array (MiniMCA), Micasense RedEdge, and Parrot Sequoia. Six MS datasets acquired at different target distances and dates, and locations are also applied to prove its reliability and applicability. Results prove that RABBIT is feasible for different types of Mini-MSCs with accurate, robust, and rapid image processing efficiency.

  19. Zooming in: high resolution 3D reconstruction of differently stained histological whole slide images

    NASA Astrophysics Data System (ADS)

    Lotz, Johannes; Berger, Judith; Müller, Benedikt; Breuhahn, Kai; Grabe, Niels; Heldmann, Stefan; Homeyer, André; Lahrmann, Bernd; Laue, Hendrik; Olesch, Janine; Schwier, Michael; Sedlaczek, Oliver; Warth, Arne

    2014-03-01

    Much insight into metabolic interactions, tissue growth, and tissue organization can be gained by analyzing differently stained histological serial sections. One opportunity unavailable to classic histology is three-dimensional (3D) examination and computer aided analysis of tissue samples. In this case, registration is needed to reestablish spatial correspondence between adjacent slides that is lost during the sectioning process. Furthermore, the sectioning introduces various distortions like cuts, folding, tearing, and local deformations to the tissue, which need to be corrected in order to exploit the additional information arising from the analysis of neighboring slide images. In this paper we present a novel image registration based method for reconstructing a 3D tissue block implementing a zooming strategy around a user-defined point of interest. We efficiently align consecutive slides at increasingly fine resolution up to cell level. We use a two-step approach, where after a macroscopic, coarse alignment of the slides as preprocessing, a nonlinear, elastic registration is performed to correct local, non-uniform deformations. Being driven by the optimization of the normalized gradient field (NGF) distance measure, our method is suitable for differently stained and thus multi-modal slides. We applied our method to ultra thin serial sections (2 μm) of a human lung tumor. In total 170 slides, stained alternately with four different stains, have been registered. Thorough visual inspection of virtual cuts through the reconstructed block perpendicular to the cutting plane shows accurate alignment of vessels and other tissue structures. This observation is confirmed by a quantitative analysis. Using nonlinear image registration, our method is able to correct locally varying deformations in tissue structures and exceeds the limitations of globally linear transformations.

  20. System and Method for Null-Lens Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Hill, Peter C. (Inventor); Thompson, Patrick L. (Inventor); Aronstein, David L. (Inventor); Bolcar, Matthew R. (Inventor); Smith, Jeffrey S. (Inventor)

    2015-01-01

    A method of measuring aberrations in a null-lens including assembly and alignment aberrations. The null-lens may be used for measuring aberrations in an aspheric optic with the null-lens. Light propagates from the aspheric optic location through the null-lens, while sweeping a detector through the null-lens focal plane. Image data being is collected at locations about said focal plane. Light is simulated propagating to the collection locations for each collected image. Null-lens aberrations may extracted, e.g., applying image-based wavefront-sensing to collected images and simulation results. The null-lens aberrations improve accuracy in measuring aspheric optic aberrations.

  1. Anterior segment and retinal OCT imaging with simplified sample arm using focus tunable lens technology (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Grulkowski, Ireneusz; Karnowski, Karol; Ruminski, Daniel; Wojtkowski, Maciej

    2016-03-01

    Availability of the long-depth-range OCT systems enables comprehensive structural imaging of the eye and extraction of biometric parameters characterizing the entire eye. Several approaches have been developed to perform OCT imaging with extended depth ranges. In particular, current SS-OCT technology seems to be suited to visualize both anterior and posterior eye in a single measurement. The aim of this study is to demonstrate integrated anterior segment and retinal SS-OCT imaging using a single instrument, in which the sample arm is equipped with the electrically tunable lens (ETL). ETL is composed of the optical liquid confined in the space by an elastic polymer membrane. The shape of the membrane, electrically controlled by a specific ring, defines the radius of curvature of the lens surface, thus it regulates the power of the lens. ETL can be also equipped with additional offset lens to adjust the tuning range of the optical power. We characterize the operation of the tunable lens using wavefront sensing. We develop the optimized optical set-up with two adaptive operational states of the ETL in order to focus the light either on the retina or on the anterior segment of the eye. We test the performance of the set-up by utilizing whole eye phantom as the object. Finally, we perform human eye in vivo imaging using the SS-OCT instrument with versatile imaging functionality that accounts for the optics of the eye and enables dynamic control of the optical beam focus.

  2. Design of a novel Hyper-spectral riflescope system

    NASA Astrophysics Data System (ADS)

    Huang, YunHan; Fu, YueGang

    2016-10-01

    Hyper-spectral imaging involves many research areas, such as optics, spectroscopy, mechanical, microelectronics, and computers, etc. Hyper-spectral imaging system has an irreplaceable role in the detection field. At present, due to the improvement of camouflage technology, characteristic of target in battlefield becomes more complex and the targets became more and more difficult to be detected, According to this phenomenon the author designed a novel hyper-spectral riflescope optical system. In general, the riflescope optical system is composed of two parts front object lens and zoom relay system. Firstly, dispersion characteristics of the typical optical glasses varies during band 400nm 1 000nm, the author derived apochromatic theory that suitable to the front system and relay system without using special glass, and make a example to testify its correctness. In general, the zoom mode of relay system lens is different from the objective lens system, so we should take consideration of them separately. Secondly, based on the above theory, the articles designed a hyper-spectral riflescope system, which has a continuous zoom curve, zoom ratio is 4 times and the F number of the system is 4.8;Full field of view varies during 1.8° 7.2°.Structure of the system is relatively compact, and has not used special glass, eventually the article give the schematic of system MTF and zoom curves of relay movable parts. the curve is smooth and can be applied to practical engineering. The author adopt ZEMAX design software to analyses the results .Design result shows that, in the visible and near-infrared wavelengths, the MTF of imaging system at 60lp / mm during all bands are greater than 0.3, which prove the correctness of the design theory and good performance of system.

  3. Three-dimensional microscopic tomographic imagings of the cataract in a human lens in vivo

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.

    1998-10-01

    The problem of three-dimensional visualization of a human lens in vivo has been solved by a technique of volume rendering a transformed series of 60 rotated Scheimpflug (a dual slit reflected light microscope) digital images. The data set was obtained by rotating the Scheimpflug camera about the optic axis of the lens in 3 degree increments. The transformed set of optical sections were first aligned to correct for small eye movements, and then rendered into a volume reconstruction with volume rendering computer graphics techniques. To help visualize the distribution of lens opacities (cataracts) in the living, human lens the intensity of light scattering was pseudocolor coded and the cataract opacities were displayed as a movie.

  4. Lens-free computational imaging of capillary morphogenesis within three-dimensional substrates

    NASA Astrophysics Data System (ADS)

    Weidling, John; Isikman, Serhan O.; Greenbaum, Alon; Ozcan, Aydogan; Botvinick, Elliot

    2012-12-01

    Endothelial cells cultured in three-dimensional (3-D) extracellular matrices spontaneously form microvessels in response to soluble and matrix-bound factors. Such cultures are common for the study of angiogenesis and may find widespread use in drug discovery. Vascular networks are imaged over weeks to measure the distribution of vessel morphogenic parameters. Measurements require micron-scale spatial resolution, which for light microscopy comes at the cost of limited field-of-view (FOV) and shallow depth-of-focus (DOF). Small FOVs and DOFs necessitate lateral and axial mechanical scanning, thus limiting imaging throughput. We present a lens-free holographic on-chip microscopy technique to rapidly image microvessels within a Petri dish over a large volume without any mechanical scanning. This on-chip method uses partially coherent illumination and a CMOS sensor to record in-line holographic images of the sample. For digital reconstruction of the measured holograms, we implement a multiheight phase recovery method to obtain phase images of capillary morphogenesis over a large FOV (24 mm2) with ˜1.5 μm spatial resolution. On average, measured capillary length in our method was within approximately 2% of lengths measured using a 10× microscope objective. These results suggest lens-free on-chip imaging is a useful toolset for high-throughput monitoring and quantitative analysis of microvascular 3-D networks.

  5. Evolutionary optimization of compact dielectric lens for farfield sub-wavelength imaging

    PubMed Central

    Zhang, Jingjing

    2015-01-01

    The resolution of conventional optical lenses is limited by diffraction. For decades researchers have made various attempts to beat the diffraction limit and realize subwavelength imaging. Here we present the approach to design modified solid immersion lenses that deliver the subwavelength information of objects into the far field, yielding magnified images. The lens is composed of an isotropic dielectric core and anisotropic or isotropic dielectric matching layers. It is designed by combining a transformation optics forward design with an inverse design scheme, where an evolutionary optimization procedure is applied to find the material parameters for the matching layers. Notably, the total radius of the lens is only 2.5 wavelengths and the resolution can reach λ/6. Compared to previous approaches based on the simple discretized approximation of a coordinate transformation design, our method allows for much more precise recovery of the information of objects, especially for those with asymmetric shapes. It allows for the far-field subwavelength imaging at optical frequencies with compact dielectric devices. PMID:26017657

  6. Aspheric glass lens modeling and machining

    NASA Astrophysics Data System (ADS)

    Johnson, R. Barry; Mandina, Michael

    2005-08-01

    The incorporation of aspheric lenses in complex lens system can provide significant image quality improvement, reduction of the number of lens elements, smaller size, and lower weight. Recently, it has become practical to manufacture aspheric glass lenses using diamond-grinding methods. The evolution of the manufacturing technology is discussed for a specific aspheric glass lens. When a prototype all-glass lens system (80 mm efl, F/2.5) was fabricated and tested, it was observed that the image quality was significantly less than was predicted by the optical design software. The cause of the degradation was identified as the large aspheric element in the lens. Identification was possible by precision mapping of the spatial coordinates of the lens surface and then transforming this data into an appropriate optical surface defined by derived grid sag data. The resulting optical analysis yielded a modeled image consistent with that observed when testing the prototype lens system in the laboratory. This insight into a localized slope-error problem allowed improvements in the fabrication process to be implemented. The second fabrication attempt, the resulting aspheric lens provided remarkable improvement in the observed image quality, although still falling somewhat short of the desired image quality goal. In parallel with the fabrication enhancement effort, optical modeling of the surface was undertaken to determine how much surface error and error types were allowable to achieve the desired image quality goal. With this knowledge, final improvements were made to the fabrication process. The third prototype lens achieved the goal of optical performance. Rapid development of the aspheric glass lens was made possible by the interactive relationship between the optical designer, diamond-grinding personnel, and the metrology personnel. With rare exceptions, the subsequent production lenses were optical acceptable and afforded reasonable manufacturing costs.

  7. X-ray bubble lens and x-ray hollow plastic ball lens

    NASA Astrophysics Data System (ADS)

    Kohmura, Yoshiki; Awaji, Mitsuhiro; Suzuki, Yoshio; Ishikawa, Tetsuya

    1998-11-01

    Recent development of anew refractive x-ray lens at SPring-8 is reported. This is the first refractive x-ray lens with a string of spherical lens in-spite of the string of cylindrical holes. Two types of the lends were developed which consists of a string of bubbles formed in a viscous liquid and a string of hollow plastic balls on pure water. They are sealed inside a container made from an acrylic resin. The x-ray focusing properties were investigated with the monochromated beam at an undulator beam line BL47 in SPring-8. Demagnified images of the source for these tow types of lens were observed at the energy of 19.0-24.5 keV with the focal length of approximately 5m. For the bubble lens, a gain of about 12 was observed. The observed vertical image size, 48 micrometers , was 6 times larger than the expected size. The method to improve the focusing capability is discussed.

  8. Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher

    PubMed Central

    Marussich, Lauren; Manns, Fabrice; Nankivil, Derek; Maceo Heilman, Bianca; Yao, Yue; Arrieta-Quintero, Esdras; Ho, Arthur; Augusteyn, Robert; Parel, Jean-Marie

    2015-01-01

    Purpose To determine if the lens volume changes during accommodation. Methods The study used data acquired on 36 cynomolgus monkey lenses that were stretched in a stepwise fashion to simulate disaccommodation. At each step, stretching force and dioptric power were measured and a cross-sectional image of the lens was acquired using an optical coherence tomography system. Images were corrected for refractive distortions and lens volume was calculated assuming rotational symmetry. The average change in lens volume was calculated and the relation between volume change and power change, and between volume change and stretching force, were quantified. Linear regressions of volume-power and volume-force plots were calculated. Results The mean (±SD) volume in the unstretched (accommodated) state was 97 ± 8 mm3. On average, there was a small but statistically significant (P = 0.002) increase in measured lens volume with stretching. The mean change in lens volume was +0.8 ± 1.3 mm3. The mean volume-power and volume-load slopes were −0.018 ± 0.058 mm3/D and +0.16 ± 0.40 mm3/g. Conclusions Lens volume remains effectively constant during accommodation, with changes that are less than 1% on average. This result supports a hypothesis that the change in lens shape with accommodation is accompanied by a redistribution of tissue within the capsular bag without significant compression of the lens contents or fluid exchange through the capsule. PMID:26161985

  9. Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher.

    PubMed

    Marussich, Lauren; Manns, Fabrice; Nankivil, Derek; Maceo Heilman, Bianca; Yao, Yue; Arrieta-Quintero, Esdras; Ho, Arthur; Augusteyn, Robert; Parel, Jean-Marie

    2015-07-01

    To determine if the lens volume changes during accommodation. The study used data acquired on 36 cynomolgus monkey lenses that were stretched in a stepwise fashion to simulate disaccommodation. At each step, stretching force and dioptric power were measured and a cross-sectional image of the lens was acquired using an optical coherence tomography system. Images were corrected for refractive distortions and lens volume was calculated assuming rotational symmetry. The average change in lens volume was calculated and the relation between volume change and power change, and between volume change and stretching force, were quantified. Linear regressions of volume-power and volume-force plots were calculated. The mean (± SD) volume in the unstretched (accommodated) state was 97 ± 8 mm3. On average, there was a small but statistically significant (P = 0.002) increase in measured lens volume with stretching. The mean change in lens volume was +0.8 ± 1.3 mm3. The mean volume-power and volume-load slopes were -0.018 ± 0.058 mm3/D and +0.16 ± 0.40 mm3/g. Lens volume remains effectively constant during accommodation, with changes that are less than 1% on average. This result supports a hypothesis that the change in lens shape with accommodation is accompanied by a redistribution of tissue within the capsular bag without significant compression of the lens contents or fluid exchange through the capsule.

  10. A passive autofocus system by using standard deviation of the image on a liquid lens

    NASA Astrophysics Data System (ADS)

    Rasti, Pejman; Kesküla, Arko; Haus, Henry; Schlaak, Helmut F.; Anbarjafari, Gholamreza; Aabloo, Alvo; Kiefer, Rudolf

    2015-04-01

    Today most of applications have a small camera such as cell phones, tablets and medical devices. A micro lens is required in order to reduce the size of the devices. In this paper an auto focus system is used in order to find the best position of a liquid lens without any active components such as ultrasonic or infrared. In fact a passive auto focus system by using standard deviation of the images on a liquid lens which consist of a Dielectric Elastomer Actuator (DEA) membrane between oil and water is proposed.

  11. Single-lens computed tomography imaging spectrometer and method of capturing spatial and spectral information

    NASA Technical Reports Server (NTRS)

    Wilson, Daniel W. (Inventor); Johnson, William R. (Inventor); Bearman, Gregory H. (Inventor)

    2011-01-01

    Computed tomography imaging spectrometers ("CTISs") employing a single lens are provided. The CTISs may be either transmissive or reflective, and the single lens is either configured to transmit and receive uncollimated light (in transmissive systems), or is configured to reflect and receive uncollimated light (in reflective systems). An exemplary transmissive CTIS includes a focal plane array detector, a single lens configured to transmit and receive uncollimated light, a two-dimensional grating, and a field stop aperture. An exemplary reflective CTIS includes a focal plane array detector, a single mirror configured to reflect and receive uncollimated light, a two-dimensional grating, and a field stop aperture.

  12. Adaptive zooming in X-ray computed tomography.

    PubMed

    Dabravolski, Andrei; Batenburg, Kees Joost; Sijbers, Jan

    2014-01-01

    In computed tomography (CT), the source-detector system commonly rotates around the object in a circular trajectory. Such a trajectory does not allow to exploit a detector fully when scanning elongated objects. Increase the spatial resolution of the reconstructed image by optimal zooming during scanning. A new approach is proposed, in which the full width of the detector is exploited for every projection angle. This approach is based on the use of prior information about the object's convex hull to move the source as close as possible to the object, while avoiding truncation of the projections. Experiments show that the proposed approach can significantly improve reconstruction quality, producing reconstructions with smaller errors and revealing more details in the object. The proposed approach can lead to more accurate reconstructions and increased spatial resolution in the object compared to the conventional circular trajectory.

  13. Teaching Shakespeare in the Digital Age: The eZoomBook Approach

    ERIC Educational Resources Information Center

    Evain, Christine; De Marco, Chris

    2016-01-01

    What collaborative process can teachers offer in order to stimulate their students' reading of and writing on Shakespeare's plays? How can new technologies contribute to facilitating the classroom experience? The eZoomBook (eZB) template was designed for teachers to create and share multi-level digital books called "eZoomBooks" that…

  14. Identifying Anomalies in Gravitational Lens Time Delays

    NASA Astrophysics Data System (ADS)

    Congdon, Arthur B.; Keeton, Charles R.; Nordgren, C. Erik

    2010-02-01

    We examine the ability of gravitational lens time delays to reveal complex structure in lens potentials. In a previous paper, we predicted how the time delay between the bright pair of images in a "fold" lens scales with the image separation, for smooth lens potentials. Here we show that the proportionality constant increases with the quadrupole moment of the lens potential, and depends only weakly on the position of the source along the caustic. We use Monte Carlo simulations to determine the range of time delays that can be produced by realistic smooth lens models consisting of isothermal ellipsoid galaxies with tidal shear. We can then identify outliers as "time delay anomalies." We find evidence for anomalies in close image pairs in the cusp lenses RX J1131 - 1231 and B1422+231. The anomalies in RX J1131 - 1231 provide strong evidence for substructure in the lens potential, while at this point the apparent anomalies in B1422+231 mainly indicate that the time delay measurements need to be improved. We also find evidence for time delay anomalies in larger-separation image pairs in the fold lenses, B1608+656 and WFI 2033 - 4723, and the cusp lens RX J0911+0551. We suggest that these anomalies are caused by some combination of substructure and a complex lens environment. Finally, to assist future monitoring campaigns we use our smooth models with shear to predict the time delays for all known four-image lenses.

  15. Functional slit lamp biomicroscopy for imaging bulbar conjunctival microvasculature in contact lens wearers

    PubMed Central

    Jiang, Hong; Zhong, Jianguang; DeBuc, Delia Cabrera; Tao, Aizhu; Xu, Zhe; Lam, Byron L.; Liu, Che; Wang, Jianhua

    2014-01-01

    Purpose To develop, test and validate functional slit lamp biomicroscopy (FSLB) for generating non-invasive bulbar conjunctival microvascular perfusion maps (nMPMs) and assessing morphometry and hemodyanmics. Methods FSLB was adapted from a traditional slit-lamp microscope by attaching a digital camera to image the bulbar conjunctiva to create nMPMs and measure venular blood flow hemodyanmics. High definition images with a large field of view were obtained on the temporal bulbar conjunctiva for creating nMPMs. A high imaging rate of 60 frame per second and a ~210× high magnification were achieved using the camera inherited high speed setting and movie crop function, for imaging hemodyanmics. Custom software was developed to segment bulbar conjunctival nMPMs for further fractal analysis and quantitatively measure blood vessel diameter, blood flow velocity and flow rate. Six human subjects were imaged before and after 6 hours of wearing contact lenses. Monofractal and multifractal analyses were performed to quantify fractality of the nMPMs. Results The mean bulbar conjunctival vessel diameter was 18.8 ± 2.7 μm at baseline and increased to 19.6 ± 2.4 μm after 6 hours of lens wear (P = 0.020). The blood flow velocity was increased from 0.60 ± 0.12 mm/s to 0.88 ± 0.21 mm/s (P = 0.001). The blood flow rate was also increased from 129.8 ± 59.9 pl/s to 207.2 ± 81.3 pl/s (P = 0.001). Bulbar conjunctival nMPMs showed the intricate details of the bulbar conjunctival microvascular network. At baseline, fractal dimension was 1.63 ± 0.05 and 1.71 ± 0.03 analyzed by monofractal and multifractal analysis, respectively. Significant increases in fractal dimensions were found after 6 hours of lens wear (P < 0.05). Conclusions Microvascular network’s fractality, morphometry and hemodyanmics of the human bulbar conjunctiva can be measured easily and reliably using FSLB. The alternations of the fractal dimensions, morphometry and hemodyanmics during contact lens wear may

  16. Change in human lens dimensions, lens refractive index distribution and ciliary body ring diameter with accommodation.

    PubMed

    Khan, Adnan; Pope, James M; Verkicharla, Pavan K; Suheimat, Marwan; Atchison, David A

    2018-03-01

    We investigated changes in ciliary body ring diameter, lens dimensions and lens refractive index distributions with accommodation in young adults. A 3T clinical magnetic resonance imaging scanner imaged right eyes of 38 18-29 year old participants using a multiple spin echo sequence to determine accommodation-induced changes along lens axial and equatorial directions. Accommodation stimuli were approximately 1 D and 5 D. With accommodation, ciliary body ring diameter, and equatorial lens diameter decreased (-0.43 ± 0.31 mm and -0.30 ± 0.23 mm, respectively), and axial lens thickness increased ( + 0.34 ± 0.16 mm). Lens shape changes cause redistribution of the lens internal structure, leading to change in refractive index distribution profiles. With accommodation, in the axial direction refractive index profiles became flatter in the center and steeper near the periphery of the lens, while in the equatorial direction they became steeper in the center and flatter in the periphery. The results suggest that the anatomical accuracy of lens optical models can be improved by accounting for changes in the refractive index profile during accommodation.

  17. ZOOM Lite: next-generation sequencing data mapping and visualization software

    PubMed Central

    Zhang, Zefeng; Lin, Hao; Ma, Bin

    2010-01-01

    High-throughput next-generation sequencing technologies pose increasing demands on the efficiency, accuracy and usability of data analysis software. In this article, we present ZOOM Lite, a software for efficient reads mapping and result visualization. With a kernel capable of mapping tens of millions of Illumina or AB SOLiD sequencing reads efficiently and accurately, and an intuitive graphical user interface, ZOOM Lite integrates reads mapping and result visualization into a easy to use pipeline on desktop PC. The software handles both single-end and paired-end reads, and can output both the unique mapping result or the top N mapping results for each read. Additionally, the software takes a variety of input file formats and outputs to several commonly used result formats. The software is freely available at http://bioinfor.com/zoom/lite/. PMID:20530531

  18. Circuit design for the retina-like image sensor based on space-variant lens array

    NASA Astrophysics Data System (ADS)

    Gao, Hongxun; Hao, Qun; Jin, Xuefeng; Cao, Jie; Liu, Yue; Song, Yong; Fan, Fan

    2013-12-01

    Retina-like image sensor is based on the non-uniformity of the human eyes and the log-polar coordinate theory. It has advantages of high-quality data compression and redundant information elimination. However, retina-like image sensors based on the CMOS craft have drawbacks such as high cost, low sensitivity and signal outputting efficiency and updating inconvenience. Therefore, this paper proposes a retina-like image sensor based on space-variant lens array, focusing on the circuit design to provide circuit support to the whole system. The circuit includes the following parts: (1) A photo-detector array with a lens array to convert optical signals to electrical signals; (2) a strobe circuit for time-gating of the pixels and parallel paths for high-speed transmission of the data; (3) a high-precision digital potentiometer for the I-V conversion, ratio normalization and sensitivity adjustment, a programmable gain amplifier for automatic generation control(AGC), and a A/D converter for the A/D conversion in every path; (4) the digital data is displayed on LCD and stored temporarily in DDR2 SDRAM; (5) a USB port to transfer the data to PC; (6) the whole system is controlled by FPGA. This circuit has advantages as lower cost, larger pixels, updating convenience and higher signal outputting efficiency. Experiments have proved that the grayscale output of every pixel basically matches the target and a non-uniform image of the target is ideally achieved in real time. The circuit can provide adequate technical support to retina-like image sensors based on space-variant lens array.

  19. IDENTIFYING ANOMALIES IN GRAVITATIONAL LENS TIME DELAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, Arthur B.; Keeton, Charles R.; Nordgren, C. Erik, E-mail: acongdon@jpl.nasa.go, E-mail: keeton@physics.rutgers.ed, E-mail: nordgren@sas.upenn.ed

    2010-02-01

    We examine the ability of gravitational lens time delays to reveal complex structure in lens potentials. In a previous paper, we predicted how the time delay between the bright pair of images in a 'fold' lens scales with the image separation, for smooth lens potentials. Here we show that the proportionality constant increases with the quadrupole moment of the lens potential, and depends only weakly on the position of the source along the caustic. We use Monte Carlo simulations to determine the range of time delays that can be produced by realistic smooth lens models consisting of isothermal ellipsoid galaxiesmore » with tidal shear. We can then identify outliers as 'time delay anomalies'. We find evidence for anomalies in close image pairs in the cusp lenses RX J1131 - 1231 and B1422+231. The anomalies in RX J1131 - 1231 provide strong evidence for substructure in the lens potential, while at this point the apparent anomalies in B1422+231 mainly indicate that the time delay measurements need to be improved. We also find evidence for time delay anomalies in larger-separation image pairs in the fold lenses, B1608+656 and WFI 2033 - 4723, and the cusp lens RX J0911+0551. We suggest that these anomalies are caused by some combination of substructure and a complex lens environment. Finally, to assist future monitoring campaigns we use our smooth models with shear to predict the time delays for all known four-image lenses.« less

  20. Tethered capsule OCT endomicroscopy for upper gastrointestinal tract imaging by using ball lens probe (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dong, Jing; Gora, Michalina J.; Reddy, Rohith; Trasischker, Wolfgang; Poupart, Oriane; Lu, Weina; Carruth, Robert W.; Grant, Catriona N.; Soomro, Amna R.; Tiernan, Aubrey R.; Rosenberg, Mireille; Nishioka, Norman S.; Tearney, Guillermo J.

    2016-03-01

    While endoscopy is the most commonly used modality for diagnosing upper GI tract disease, this procedure usually requires patient sedation that increases cost and mandates its operation in specialized settings. In addition, endoscopy only visualizes tissue superfically at the macroscopic scale, which is problematic for many diseases that manifest below the surface at a microscopic scale. Our lab has previously developed technology termed tethered capsule OCT endomicroscopy (TCE) to overcome these diagnostic limitations of endoscopy. The TCE device is a swallowable capsule that contains optomechanical components that circumferentially scan the OCT beam inside the body as the pill traverses the organ via peristalsis. While we have successfully imaged ~100 patients with the TCE device, the optics of our current device have many elements and are complex, comprising a glass ferrule, optical fiber, glass spacer, GRIN lens and prism. As we scale up manufacturing of this device for clinical translation, we must decrease the cost and improve the manufacturability of the capsule's optical configuration. In this abstract, we report on the design and development of simplificed TCE optics that replace the GRIN lens-based configuration with an angle-polished ball lens design. The new optics include a single mode optical fiber, a glass spacer and an angle polished ball lens, that are all fusion spliced together. The ball lens capsule has resolutions that are comparable with those of our previous GRIN lens configuration (30µm (lateral) × 7 µm (axial)). Results in human subjects show that OCT-based TCE using the ball lens not only provides rapid, high quality microstructural images of upper GI tract, but also makes it possible to implement this technology inexpensively and on a larger scale.

  1. Integration and binding in rehabilitative sensory substitution: Increasing resolution using a new Zooming-in approach

    PubMed Central

    Buchs, Galit; Maidenbaum, Shachar; Levy-Tzedek, Shelly; Amedi, Amir

    2015-01-01

    Purpose: To visually perceive our surroundings we constantly move our eyes and focus on particular details, and then integrate them into a combined whole. Current visual rehabilitation methods, both invasive, like bionic-eyes and non-invasive, like Sensory Substitution Devices (SSDs), down-sample visual stimuli into low-resolution images. Zooming-in to sub-parts of the scene could potentially improve detail perception. Can congenitally blind individuals integrate a ‘visual’ scene when offered this information via different sensory modalities, such as audition? Can they integrate visual information –perceived in parts - into larger percepts despite never having had any visual experience? Methods: We explored these questions using a zooming-in functionality embedded in the EyeMusic visual-to-auditory SSD. Eight blind participants were tasked with identifying cartoon faces by integrating their individual components recognized via the EyeMusic’s zooming mechanism. Results: After specialized training of just 6–10 hours, blind participants successfully and actively integrated facial features into cartooned identities in 79±18% of the trials in a highly significant manner, (chance level 10% ; rank-sum P <  1.55E-04). Conclusions: These findings show that even users who lacked any previous visual experience whatsoever can indeed integrate this visual information with increased resolution. This potentially has important practical visual rehabilitation implications for both invasive and non-invasive methods. PMID:26518671

  2. Photovoltaic generator with a spherical imaging lens for use with a paraboloidal solar reflector

    DOEpatents

    Angel, Roger P

    2013-01-08

    The invention is a generator for photovoltaic conversion of concentrated sunlight into electricity. A generator according to the invention incorporates a plurality of photovoltaic cells and is intended for operation near the focus of a large paraboloidal reflector pointed at the sun. Within the generator, the entering concentrated light is relayed by secondary optics to the cells arranged in a compact, concave array. The light is delivered to the cells at high concentration, consistent with high photovoltaic conversion efficiency and low cell cost per unit power output. Light enters the generator, preferably first through a sealing window, and passes through a field lens, preferably in the form of a full sphere or ball lens centered on the paraboloid focus. This lens forms a concentric, concave and wide-angle image of the primary reflector, where the intensity of the concentrated light is stabilized against changes in the position of concentrated light entering the generator. Receiving the stabilized light are flat photovoltaic cells made in different shapes and sizes and configured in a concave array corresponding to the concave image of a given primary reflector. Photovoltaic cells in a generator are also sized and interconnected so as to provide a single electrical output that remains high and stable, despite aberrations in the light delivered to the generator caused by, for example, mispointing or bending of the primary reflector. In some embodiments, the cells are set back from the image formed by the ball lens, and part of the light is reflected onto each cell small secondary reflectors in the form of mirrors set around its perimeter.

  3. ZebraZoom: an automated program for high-throughput behavioral analysis and categorization

    PubMed Central

    Mirat, Olivier; Sternberg, Jenna R.; Severi, Kristen E.; Wyart, Claire

    2013-01-01

    The zebrafish larva stands out as an emergent model organism for translational studies involving gene or drug screening thanks to its size, genetics, and permeability. At the larval stage, locomotion occurs in short episodes punctuated by periods of rest. Although phenotyping behavior is a key component of large-scale screens, it has not yet been automated in this model system. We developed ZebraZoom, a program to automatically track larvae and identify maneuvers for many animals performing discrete movements. Our program detects each episodic movement and extracts large-scale statistics on motor patterns to produce a quantification of the locomotor repertoire. We used ZebraZoom to identify motor defects induced by a glycinergic receptor antagonist. The analysis of the blind mutant atoh7 revealed small locomotor defects associated with the mutation. Using multiclass supervised machine learning, ZebraZoom categorized all episodes of movement for each larva into one of three possible maneuvers: slow forward swim, routine turn, and escape. ZebraZoom reached 91% accuracy for categorization of stereotypical maneuvers that four independent experimenters unanimously identified. For all maneuvers in the data set, ZebraZoom agreed with four experimenters in 73.2–82.5% of cases. We modeled the series of maneuvers performed by larvae as Markov chains and observed that larvae often repeated the same maneuvers within a group. When analyzing subsequent maneuvers performed by different larvae, we found that larva–larva interactions occurred as series of escapes. Overall, ZebraZoom reached the level of precision found in manual analysis but accomplished tasks in a high-throughput format necessary for large screens. PMID:23781175

  4. A portable confocal hyperspectral microscope without any scan or tube lens and its application in fluorescence and Raman spectral imaging

    NASA Astrophysics Data System (ADS)

    Li, Jingwei; Cai, Fuhong; Dong, Yongjiang; Zhu, Zhenfeng; Sun, Xianhe; Zhang, Hequn; He, Sailing

    2017-06-01

    In this study, a portable confocal hyperspectral microscope is developed. In traditional confocal laser scanning microscopes, scan lens and tube lens are utilized to achieve a conjugate relationship between the galvanometer and the back focal plane of the objective, in order to achieve a better resolution. However, these lenses make it difficult to scale down the volume of the system. In our portable confocal hyperspectral microscope (PCHM), the objective is placed directly next to the galvomirror. Thus, scan lens and tube lens are not included in our system and the size of this system is greatly reduced. Furthermore, the resolution is also acceptable in many biomedical and food-safety applications. Through reducing the optical length of the system, the signal detection efficiency is enhanced. This is conducive to realizing both the fluorescence and Raman hyperspectral imaging. With a multimode fiber as a pinhole, an improved image contrast is also achieved. Fluorescent spectral images for HeLa cells/fingers and Raman spectral images of kumquat pericarp are present. The spectral resolution and spatial resolutions are about 0.4 nm and 2.19 μm, respectively. These results demonstrate that this portable hyperspectral microscope can be used in in-vivo fluorescence imaging and in situ Raman spectral imaging.

  5. Intuitive tactile zooming for graphics accessed by individuals who are blind and visually impaired.

    PubMed

    Rastogi, Ravi; Pawluk, T V Dianne; Ketchum, Jessica

    2013-07-01

    One possibility of providing access to visual graphics for those who are visually impaired is to present them tactually: unfortunately, details easily available to vision need to be magnified to be accessible through touch. For this, we propose an "intuitive" zooming algorithm to solve potential problems with directly applying visual zooming techniques to haptic displays that sense the current location of a user on a virtual diagram with a position sensor and, then, provide the appropriate local information either through force or tactile feedback. Our technique works by determining and then traversing the levels of an object tree hierarchy of a diagram. In this manner, the zoom steps adjust to the content to be viewed, avoid clipping and do not zoom when no object is present. The algorithm was tested using a small, "mouse-like" display with tactile feedback on pictures representing houses in a community and boats on a lake. We asked the users to answer questions related to details in the pictures. Comparing our technique to linear and logarithmic step zooming, we found a significant increase in the correctness of the responses (odds ratios of 2.64:1 and 2.31:1, respectively) and usability (differences of 36% and 19%, respectively) using our "intuitive" zooming technique.

  6. Moon illusion and spiral aftereffect: illusions due to the loom-zoom system?

    PubMed

    Hershenson, M

    1982-12-01

    The moon illusion and the spiral aftereffect are illusions in which apparent size and apparent distance vary inversely. Because this relationship is exactly opposite to that predicted by the static size--distance invariance hypothesis, the illusions have been called "paradoxical." The illusions may be understood as products of a loom-zoom system, a hypothetical visual subsystem that, in its normal operation, acts according to its structural constraint, the constancy axiom, to produce perceptions that satisfy the constraints of stimulation, the kinetic size--distance invariance hypothesis. When stimulated by its characteristic stimulus of symmetrical expansion or contraction, the loom-zoom system produces the perception of a rigid object moving in depth. If this system is stimulated by a rotating spiral, a negative motion-aftereffect is produced when rotation ceases. If fixation is then shifted to a fixed-sized disc, the aftereffect process alters perceived distance and the loom-zoom system alters perceived size such that the disc appears to expand and approach or to contract and recede, depending on the direction of rotation of the spiral. If the loom-zoom system is stimulated by a moon-terrain configuration, the equidistance tendency produces a foreshortened perceived distance for the moon as an inverse function of elevation and acts in conjunction with the loom-zoom system to produce the increased perceived size of the moon.

  7. Change in human lens dimensions, lens refractive index distribution and ciliary body ring diameter with accommodation

    PubMed Central

    Khan, Adnan; Pope, James M.; Verkicharla, Pavan K.; Suheimat, Marwan; Atchison, David A.

    2018-01-01

    We investigated changes in ciliary body ring diameter, lens dimensions and lens refractive index distributions with accommodation in young adults. A 3T clinical magnetic resonance imaging scanner imaged right eyes of 38 18-29 year old participants using a multiple spin echo sequence to determine accommodation-induced changes along lens axial and equatorial directions. Accommodation stimuli were approximately 1 D and 5 D. With accommodation, ciliary body ring diameter, and equatorial lens diameter decreased (–0.43 ± 0.31 mm and –0.30 ± 0.23 mm, respectively), and axial lens thickness increased ( + 0.34 ± 0.16 mm). Lens shape changes cause redistribution of the lens internal structure, leading to change in refractive index distribution profiles. With accommodation, in the axial direction refractive index profiles became flatter in the center and steeper near the periphery of the lens, while in the equatorial direction they became steeper in the center and flatter in the periphery. The results suggest that the anatomical accuracy of lens optical models can be improved by accounting for changes in the refractive index profile during accommodation. PMID:29541520

  8. The Effect of a Pre-Lens Aperture on the Temperature Range and Image Uniformity of Microbolometer Infrared Cameras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinwiddie, Ralph Barton; Parris, Larkin S.; Lindal, John M.

    This paper explores the temperature range extension of long-wavelength infrared (LWIR) cameras by placing an aperture in front of the lens. An aperture smaller than the lens will reduce the radiance to the sensor, allowing the camera to image targets much hotter than typically allowable. These higher temperatures were accurately determined after developing a correction factor which was applied to the built-in temperature calibration. The relationship between aperture diameter and temperature range is linear. The effect of pre-lens apertures on the image uniformity is a form of anti-vignetting, meaning the corners appear brighter (hotter) than the rest of the image.more » An example of using this technique to measure temperatures of high melting point polymers during 3D printing provide valuable information of the time required for the weld-line temperature to fall below the glass transition temperature.« less

  9. Thermal diffusivity imaging with the thermal lens microscope.

    PubMed

    Dada, Oluwatosin O; Feist, Peter E; Dovichi, Norman J

    2011-12-01

    A coaxial thermal lens microscope was used to generate images based on both the absorbance and thermal diffusivity of histological samples. A pump beam was modulated at frequencies ranging from 50 kHz to 5 MHz using an acousto-optic modulator. The pump and a CW probe beam were combined with a dichroic mirror, directed into an inverted microscope, and focused onto the specimen. The change in the transmitted probe beam's center intensity was detected with a photodiode. The photodiode's signal and a reference signal from the modulator were sent to a high-speed lock-in amplifier. The in-phase and quadrature signals were recorded as a sample was translated through the focused beams and used to generate images based on the amplitude and phase of the lock-in amplifier's signal. The amplitude is related to the absorbance and the phase is related to the thermal diffusivity of the sample. Thin sections of stained liver and bone tissues were imaged; the contrast and signal-to-noise ratio of the phase image was highest at frequencies from 0.1-1 MHz and dropped at higher frequencies. The spatial resolution was 2.5 μm for both amplitude and phase images, limited by the pump beam spot size. © 2011 Optical Society of America

  10. Multiband super-resolution imaging of graded-index photonic crystal flat lens

    NASA Astrophysics Data System (ADS)

    Xie, Jianlan; Wang, Junzhong; Ge, Rui; Yan, Bei; Liu, Exian; Tan, Wei; Liu, Jianjun

    2018-05-01

    Multiband super-resolution imaging of point source is achieved by a graded-index photonic crystal flat lens. With the calculations of six bands in common photonic crystal (CPC) constructed with scatterers of different refractive indices, it can be found that the super-resolution imaging of point source can be realized by different physical mechanisms in three different bands. In the first band, the imaging of point source is based on far-field condition of spherical wave while in the second band, it is based on the negative effective refractive index and exhibiting higher imaging quality than that of the CPC. However, in the fifth band, the imaging of point source is mainly based on negative refraction of anisotropic equi-frequency surfaces. The novel method of employing different physical mechanisms to achieve multiband super-resolution imaging of point source is highly meaningful for the field of imaging.

  11. In vivo human crystalline lens topography.

    PubMed

    Ortiz, Sergio; Pérez-Merino, Pablo; Gambra, Enrique; de Castro, Alberto; Marcos, Susana

    2012-10-01

    Custom high-resolution high-speed anterior segment spectral domain optical coherence tomography (OCT) was used to characterize three-dimensionally (3-D) the human crystalline lens in vivo. The system was provided with custom algorithms for denoising and segmentation of the images, as well as for fan (scanning) and optical (refraction) distortion correction, to provide fully quantitative images of the anterior and posterior crystalline lens surfaces. The method was tested on an artificial eye with known surfaces geometry and on a human lens in vitro, and demonstrated on three human lenses in vivo. Not correcting for distortion overestimated the anterior lens radius by 25% and the posterior lens radius by more than 65%. In vivo lens surfaces were fitted by biconicoids and Zernike polynomials after distortion correction. The anterior lens radii of curvature ranged from 10.27 to 14.14 mm, and the posterior lens radii of curvature ranged from 6.12 to 7.54 mm. Surface asphericities ranged from -0.04 to -1.96. The lens surfaces were well fitted by quadrics (with variation smaller than 2%, for 5-mm pupils), with low amounts of high order terms. Surface lens astigmatism was significant, with the anterior lens typically showing horizontal astigmatism ([Formula: see text] ranging from -11 to -1 µm) and the posterior lens showing vertical astigmatism ([Formula: see text] ranging from 6 to 10 µm).

  12. In vivo human crystalline lens topography

    PubMed Central

    Ortiz, Sergio; Pérez-Merino, Pablo; Gambra, Enrique; de Castro, Alberto; Marcos, Susana

    2012-01-01

    Custom high-resolution high-speed anterior segment spectral domain optical coherence tomography (OCT) was used to characterize three-dimensionally (3-D) the human crystalline lens in vivo. The system was provided with custom algorithms for denoising and segmentation of the images, as well as for fan (scanning) and optical (refraction) distortion correction, to provide fully quantitative images of the anterior and posterior crystalline lens surfaces. The method was tested on an artificial eye with known surfaces geometry and on a human lens in vitro, and demonstrated on three human lenses in vivo. Not correcting for distortion overestimated the anterior lens radius by 25% and the posterior lens radius by more than 65%. In vivo lens surfaces were fitted by biconicoids and Zernike polynomials after distortion correction. The anterior lens radii of curvature ranged from 10.27 to 14.14 mm, and the posterior lens radii of curvature ranged from 6.12 to 7.54 mm. Surface asphericities ranged from −0.04 to −1.96. The lens surfaces were well fitted by quadrics (with variation smaller than 2%, for 5-mm pupils), with low amounts of high order terms. Surface lens astigmatism was significant, with the anterior lens typically showing horizontal astigmatism (Z22 ranging from −11 to −1 µm) and the posterior lens showing vertical astigmatism (Z22 ranging from 6 to 10 µm). PMID:23082289

  13. Varo-achro-phobia: the fear of broad spectrum zoom optics

    NASA Astrophysics Data System (ADS)

    Vogel, Steven; Pollica, Naomi

    2015-05-01

    Today's battlefield is evolving at light speed. Our war fighters are being tasked with highly complex missions requiring the very best technology our industry can offer. The demand for advanced ISR platforms is challenging designers and engineers in the optics industry to push the envelope and develop wider band solutions to support multiple and broadband sensor platforms. Recently, significant attention has been directed towards the development of optical systems that enable simultaneous operation in the visible and shortwave infrared spectral wavebands. This paper will present a review of the evolution of StingRay Optics' GhostSight™ continuous zoom optics that offer broad chromatic imaging capabilities from the visible through the shortwave infrared spectrum.

  14. Microoptical compound lens

    DOEpatents

    Sweatt, William C.; Gill, David D.

    2007-10-23

    An apposition microoptical compound lens comprises a plurality of lenslets arrayed around a segment of a hollow, three-dimensional optical shell. The lenslets collect light from an object and focus the light rays onto the concentric, curved front surface of a coherent fiber bundle. The fiber bundle transports the light rays to a planar detector, forming a plurality of sub-images that can be reconstructed as a full image. The microoptical compound lens can have a small size (millimeters), wide field of view (up to 180.degree.), and adequate resolution for object recognition and tracking.

  15. Luneburg lens in silicon photonics.

    PubMed

    Di Falco, Andrea; Kehr, Susanne C; Leonhardt, Ulf

    2011-03-14

    The Luneburg lens is an aberration-free lens that focuses light from all directions equally well. We fabricated and tested a Luneburg lens in silicon photonics. Such fully-integrated lenses may become the building blocks of compact Fourier optics on chips. Furthermore, our fabrication technique is sufficiently versatile for making perfect imaging devices on silicon platforms.

  16. Image Viewer using Digital Imaging and Communications in Medicine (DICOM)

    NASA Astrophysics Data System (ADS)

    Baraskar, Trupti N.

    2010-11-01

    Digital Imaging and Communications in Medicine is a standard for handling, storing, printing, and transmitting information in medical imaging. The National Electrical Manufacturers Association holds the copyright to this standard. It was developed by the DICOM Standards committee. The other image viewers cannot collectively store the image details as well as the patient's information. So the image may get separated from the details, but DICOM file format stores the patient's information and the image details. Main objective is to develop a DICOM image viewer. The image viewer will open .dcm i.e. DICOM image file and also will have additional features such as zoom in, zoom out, black and white inverter, magnifier, blur, B/W inverter, horizontal and vertical flipping, sharpening, contrast, brightness and .gif converter are incorporated.

  17. Detection of a Compact Radio Source near the Center of a Gravitational Lens: Quasar Image or Galactic Core?

    PubMed

    Gorenstein, M V; Shapiro, I I; Cohen, N L; Corey, B E; Falco, E E; Marcaide, J M; Rogers, A E; Whitney, A R; Porcas, R W; Preston, R A; Rius, A

    1983-01-07

    By use of a new, very sensitive interferometric system, a faint, compact radio source has been detected near the center of the galaxy that acts as the main part of a gravitational lens. This lens forms two previously discovered images of the quasar Q09S7+561, which lies in the direction of the constellation Ursa Major. The newly detected source has a core smaller than 0.002 arc second in diameter with a flux density of 0.6 +/- 0.1 millijansky at the 13-centimeter wavelength of the radio observations. This source could be the predicted third image of the transparent gravitational lens, the central core of the galaxy, or some combination of the two. It is not yet possible to choose reliably between these alternatives.

  18. Dynamic calibration of pan-tilt-zoom cameras for traffic monitoring.

    PubMed

    Song, Kai-Tai; Tai, Jen-Chao

    2006-10-01

    Pan-tilt-zoom (PTZ) cameras have been widely used in recent years for monitoring and surveillance applications. These cameras provide flexible view selection as well as a wider observation range. This makes them suitable for vision-based traffic monitoring and enforcement systems. To employ PTZ cameras for image measurement applications, one first needs to calibrate the camera to obtain meaningful results. For instance, the accuracy of estimating vehicle speed depends on the accuracy of camera calibration and that of vehicle tracking results. This paper presents a novel calibration method for a PTZ camera overlooking a traffic scene. The proposed approach requires no manual operation to select the positions of special features. It automatically uses a set of parallel lane markings and the lane width to compute the camera parameters, namely, focal length, tilt angle, and pan angle. Image processing procedures have been developed for automatically finding parallel lane markings. Interesting experimental results are presented to validate the robustness and accuracy of the proposed method.

  19. Development of an imaging system for single droplet characterization using a droplet generator.

    PubMed

    Minov, S Vulgarakis; Cointault, F; Vangeyte, J; Pieters, J G; Hijazi, B; Nuyttens, D

    2012-01-01

    The spray droplets generated by agricultural nozzles play an important role in the application accuracy and efficiency of plant protection products. The limitations of the non-imaging techniques and the recent improvements in digital image acquisition and processing increased the interest in using high speed imaging techniques in pesticide spray characterisation. The goal of this study was to develop an imaging technique to evaluate the characteristics of a single spray droplet using a piezoelectric single droplet generator and a high speed imaging technique. Tests were done with different camera settings, lenses, diffusers and light sources. The experiments have shown the necessity for having a good image acquisition and processing system. Image analysis results contributed in selecting the optimal set-up for measuring droplet size and velocity which consisted of a high speed camera with a 6 micros exposure time, a microscope lens at a working distance of 43 cm resulting in a field of view of 1.0 cm x 0.8 cm and a Xenon light source without diffuser used as a backlight. For measuring macro-spray characteristics as the droplet trajectory, the spray angle and the spray shape, a Macro Video Zoom lens at a working distance of 14.3 cm with a bigger field of view of 7.5 cm x 9.5 cm in combination with a halogen spotlight with a diffuser and the high speed camera can be used.

  20. Synthetic aperture radar correlator phase histories

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This report supplements the design of the following subsystems: (1) zoom azimuth telescope, zooming range from 3X to 6X. (2) range curvature correcting lenses. (3) Sphero-cylindrical shift lens. (4) Auxiliary lenses (tilted cylinder and matching lens).

  1. Infrared observations of the dark matter lens candidate Q2345+007

    NASA Technical Reports Server (NTRS)

    Mcleod, Brian; Rieke, Marcia; Weedman, Daniel

    1994-01-01

    Deep K-band observations are presented of the double image quasar Q2345+007. This has the largest separation (7.1 sec) of any quasar image pair considered as gravitationally lensed, so the required lens is massive (10(exp 13) solar masses). No lens has been detected in previous deep images at visible wavelengths, and we find no lens to limiting K magnitude 20.0 in the infrared image. This constrains any lens to being much less luminous than brightest cluster galaxies, while the lens must be much more massive than such galaxies to produce the observed separation. Because spectral data indicate exceptional intrinsic similarity in the quasar image components, this pair remains as the most intriguing example of an observed configuration requiring the presence of massive, concentrated dark matter acting as a gravitational lens.

  2. Can We Trace "Arbitrary" Rays to Locate an Image Formed by a Thin Lens?

    ERIC Educational Resources Information Center

    Suppapittayaporn, Decha; Panijpan, Bhinyo; Emarat, Narumon

    2010-01-01

    After learning how to trace the principal rays [Fig. 1(i)] through a thin lens in order to form the image in the conventional way, students sometimes ask whether it is possible to use other rays emanating from the object to form exactly the same image--for example, the two arbitrary rays shown in Fig. 1(ii). The answer is a definite yes, and this…

  3. Topogram-based tube current modulation of head computed tomography for optimizing image quality while protecting the eye lens with shielding.

    PubMed

    Lin, Ming-Fang; Chen, Chia-Yuen; Lee, Yuan-Hao; Li, Chia-Wei; Gerweck, Leo E; Wang, Hao; Chan, Wing P

    2018-01-01

    Background Multiple rounds of head computed tomography (CT) scans increase the risk of radiation-induced lens opacification. Purpose To investigate the effects of CT eye shielding and topogram-based tube current modulation (TCM) on the radiation dose received by the lens and the image quality of nasal and periorbital imaging. Material and Methods An anthropomorphic phantom was CT-scanned using either automatic tube current modulation or a fixed tube current. The lens radiation dose was estimated using cropped Gafchromic films irradiated with or without a shield over the orbit. Image quality, assessed using regions of interest drawn on the bilateral extraorbital areas and the nasal bone with a water-based marker, was evaluated using both a signal-to-noise ratio (SNR) and contrast-noise ratio (CNR). Two CT specialists independently assessed image artifacts using a three-point Likert scale. Results The estimated radiation dose received by the lens was significantly lower when barium sulfate or bismuth-antimony shields were used in conjunction with a fixed tube current (22.0% and 35.6% reduction, respectively). Topogram-based TCM mitigated the beam hardening-associated artifacts of bismuth-antimony and barium sulfate shields. This increased the SNR by 21.6% in the extraorbital region and the CNR by 7.2% between the nasal bones and extraorbital regions. The combination of topogram-based TCM and barium sulfate or bismuth-antimony shields reduced lens doses by 12.2% and 27.2%, respectively. Conclusion Image artifacts induced by the bismuth-antimony shield at a fixed tube current for lenticular radioprotection were significantly reduced by topogram-based TCM, which increased the SNR of the anthropomorphic nasal bones and periorbital tissues.

  4. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction

    NASA Astrophysics Data System (ADS)

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2016-06-01

    Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed “digital color fusion microscopy” (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available.

  5. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction

    PubMed Central

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2016-01-01

    Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed “digital color fusion microscopy” (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available. PMID:27283459

  6. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction.

    PubMed

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2016-06-10

    Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed "digital color fusion microscopy" (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available.

  7. Pitch variable liquid lens array using electrowetting

    NASA Astrophysics Data System (ADS)

    Kim, YooKwang; Lee, Jin Su; Kim, Junoh; Won, Yong Hyub

    2017-02-01

    These days micro lens array is used in various fields such as fiber coupling, laser collimation, imaging and sensor system and beam homogenizer, etc. One of important thing in using micro lens array is, choice of its pitch. Especially imaging systems like integral imaging or light-field camera, pitch of micro lens array defines the system property and thus it could limit the variability of the system. There are already researches about lens array using liquid, and droplet control by electrowetting. This paper reports the result of combining them, the liquid lens array that could vary its pitch by electrowetting. Since lens array is a repeated system, realization of a small part of lens array is enough to show its property. The lens array is composed of nine (3 by 3) liquid droplets on flat surface. On substrate, 11 line electrodes are patterned along vertical and horizontal direction respectively. The width of line electrodes is 300um and interval is 200um. Each droplet is positioned to contain three electrode lines for both of vertical and horizontal direction. So there is one remaining electrode line in each of outermost side for both direction. In original state the voltage is applied to inner electrodes. When voltage of outermost electrodes are turned on, eight outermost droplets move to outer side, thereby increasing pitch of lens array. The original pitch was 1.5mm and it increased to 2.5mm after electrodes of voltage applied is changed.

  8. A study of the method of the video image presentation for the manipulation of forceps.

    PubMed

    Kono, Soichi; Sekioka, Toshiharu; Matsunaga, Katsuya; Shidoji, Kazunori; Matsuki, Yuji

    2005-01-01

    Recently, surgical operations have sometimes been tried under laparoscopic video images using teleoperation robots or forceps manipulators. Therefore, in this paper, forceps manipulation efficiencies were evaluated when images for manipulation had some transmission delay (Experiment 1), and when the convergence point of the stereoscopic video cameras was either fixed and variable (Experiment 2). The operators' tasks in these experiments were sewing tasks which simulated telesurgery under 3-dimensional scenography. As a result of experiment 1, the operation at a 200+/-100 ms delay was kept at almost the same accuracy as that without delay. As a result of experiment 2, work accuracy was improved by using the zooming lens function; however the working time became longer. These results seemed to show the relation of a trade-off between working time and working accuracy.

  9. Ultrasound liquid crystal lens

    NASA Astrophysics Data System (ADS)

    Shimizu, Yuki; Koyama, Daisuke; Fukui, Marina; Emoto, Akira; Nakamura, Kentaro; Matsukawa, Mami

    2018-04-01

    A variable-focus lens using a combination of liquid crystals and ultrasound is discussed. The lens uses a technique based on ultrasound vibration to control the molecular orientation of the liquid crystal. The lens structure is simple, with no mechanical moving parts and no transparent electrodes, which is helpful for device downsizing; the structure consists of a liquid crystal layer sandwiched between two glass substrates with a piezoelectric ring. The tens-of-kHz ultrasonic resonance flexural vibration used to excite the lens generates an acoustic radiation force on the liquid crystal layer to induce changes in the molecular orientation of the liquid crystal. The orientations of the liquid crystal molecules and the optical characteristics of the lens were investigated under ultrasound excitation. Clear optical images were observed through the lens, and the focal point could be controlled using the input voltage to the piezoelectric ring to give the lens its variable-focus action.

  10. High performance gel imaging with a commercial single lens reflex camera

    NASA Astrophysics Data System (ADS)

    Slobodan, J.; Corbett, R.; Wye, N.; Schein, J. E.; Marra, M. A.; Coope, R. J. N.

    2011-03-01

    A high performance gel imaging system was constructed using a digital single lens reflex camera with epi-illumination to image 19 × 23 cm agarose gels with up to 10,000 DNA bands each. It was found to give equivalent performance to a laser scanner in this high throughput DNA fingerprinting application using the fluorophore SYBR Green®. The specificity and sensitivity of the imager and scanner were within 1% using the same band identification software. Low and high cost color filters were also compared and it was found that with care, good results could be obtained with inexpensive dyed acrylic filters in combination with more costly dielectric interference filters, but that very poor combinations were also possible. Methods for determining resolution, dynamic range, and optical efficiency for imagers are also proposed to facilitate comparison between systems.

  11. Creating Catch 22: Zooming in and Zooming out on the Discursive Constructions of Teachers in a News Article

    ERIC Educational Resources Information Center

    Keogh, Jayne; Garrick, Barbara

    2011-01-01

    The media regularly present negative news articles about teachers and teaching. This paper focuses particularly on one such news article. Using reflective analytic practices, first we zoom in to conduct a detailed analysis of the text. We find that complex and contradictory moral categories of teachers are assembled within and through the text. We…

  12. Applying image quality in cell phone cameras: lens distortion

    NASA Astrophysics Data System (ADS)

    Baxter, Donald; Goma, Sergio R.; Aleksic, Milivoje

    2009-01-01

    This paper describes the framework used in one of the pilot studies run under the I3A CPIQ initiative to quantify overall image quality in cell-phone cameras. The framework is based on a multivariate formalism which tries to predict overall image quality from individual image quality attributes and was validated in a CPIQ pilot program. The pilot study focuses on image quality distortions introduced in the optical path of a cell-phone camera, which may or may not be corrected in the image processing path. The assumption is that the captured image used is JPEG compressed and the cellphone camera is set to 'auto' mode. As the used framework requires that the individual attributes to be relatively perceptually orthogonal, in the pilot study, the attributes used are lens geometric distortion (LGD) and lateral chromatic aberrations (LCA). The goal of this paper is to present the framework of this pilot project starting with the definition of the individual attributes, up to their quantification in JNDs of quality, a requirement of the multivariate formalism, therefore both objective and subjective evaluations were used. A major distinction in the objective part from the 'DSC imaging world' is that the LCA/LGD distortions found in cell-phone cameras, rarely exhibit radial behavior, therefore a radial mapping/modeling cannot be used in this case.

  13. A technique of experimental and numerical analysis of influence of defects in the intraocular lens on the retinal image quality

    NASA Astrophysics Data System (ADS)

    Geniusz, Malwina; ZajÄ c, Marek

    2016-09-01

    Intraocular lens (IOL) is an artificial lens implanted into the eye in order to restore correct vision after the removal of natural lens cloudy due to cataract. The IOL prolonged stay in the eyeball causes the creation of different changes on the surface and inside the implant mainly in form of small-size local defects such as vacuoles and calcium deposites. Their presence worsens the imaging properties of the eye mainly due to occurence of scattered light thus deteriorating the vision quality of patients after cataract surgery. It is very difficult to study influence the effects of these changes on image quality in real patients. To avoid these difficulties two other possibilities were chosen: the analysis of the image obtained in an optomechanical eye model with artificially aged IOL as well as numerical calculation of the image characteristics while the eye lens is burdened with adequately modeled defects. In experiments the optomechanical model of an eye consisting of a glass "cornea", chamber filled with liquid where the IOL under investigation was inserted and a high resulution CCC detector serving as a "retina" was used. The Modulation Transfer Function (MTF) of such "eye" was evaluated on the basis of image of an edge. Experiments show that there is significant connection between ageing defects and decrease in MTF parameters. Numerical part was performed with a computer programme for optical imaging analysis (OpticStudio Professional, Zemax Professional from Radiant Zemax, LLC). On the basis of Atchison eye model with lens burdened with defects Modulation Transfer Functio was calculated. Particular parameters of defects used in a numerical model were based on own measurements. Numerical simulation also show significant connection between ageing defects and decrease of MTF parameters. With this technique the influence of types, density and distribution of local defect in the IOL on the retinal image quality can be evaluated quickly without the need of

  14. Animated Optical Microscope Zoom in from Phoenix Launch to Martian Surface

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This animated camera view zooms in from NASA's Phoenix Mars Lander launch site all the way to Phoenix's Microscopy and Electrochemistry and C Eonductivity Analyzer (MECA) aboard the spacecraft on the Martian surface. The final frame shows the soil sample delivered to MECA as viewed through the Optical Microscope (OM) on Sol 17 (June 11, 2008), or the 17th Martian day.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Calculation of lens alignment errors using the ray transfer matrices for the lens assembly system with an autocollimator and a rotation stage

    NASA Astrophysics Data System (ADS)

    Chu, Jiyoung; Cho, Sungwhi; Joo, Won Don; Jang, Sangdon

    2017-08-01

    One of the most popular methods for high precision lens assembly of an optical system is using an autocollimator and a rotation stage. Some companies provide software for calculating the state of the lens along with their lens assembly systems, but the calculation algorithms used by the software are unknown. In this paper, we suggest a calculation method for lens alignment errors using ray transfer matrices. Alignment errors resulting from tilting and decentering of a lens element can be calculated from the tilts of the front and back surfaces of the lens. The tilt of each surface can be obtained from the position of the reticle image on the CCD camera of the autocollimator. Rays from a reticle of the autocollimator are reflected from the target surface of the lens, which rotates with the rotation stage, and are imaged on the CCD camera. To obtain a clear image, the distance between the autocollimator and the first lens surface should be adjusted according to the focusing lens of the autocollimator and the lens surfaces from the first to the target surface. Ray propagations for the autocollimator and the tilted lens surfaces can be expressed effectively by using ray transfer matrices and lens alignment errors can be derived from them. This method was compared with Zemax simulation for various lenses with spherical or flat surfaces and the error was less than a few percent.

  16. Azimuthally anisotropic hydride lens structures in Zircaloy 4 nuclear fuel cladding: High-resolution neutron radiography imaging and BISON finite element analysis

    NASA Astrophysics Data System (ADS)

    Lin, Jun-Li; Zhong, Weicheng; Bilheux, Hassina Z.; Heuser, Brent J.

    2017-12-01

    High-resolution neutron radiography has been used to image bulk circumferential hydride lens particles in unirradiated Zircaloy 4 tubing cross section specimens. Zircaloy 4 is a common light water nuclear reactor (LWR) fuel cladding; hydrogen pickup, hydride formation, and the concomitant effect on the mechanical response are important for LWR applications. Ring cross section specimens with three hydrogen concentrations (460, 950, and 2830 parts per million by weight) and an as-received reference specimen were imaged. Azimuthally anisotropic hydride lens particles were observed at 950 and 2830 wppm. The BISON finite element analysis nuclear fuel performance code was used to model the system elastic response induced by hydride volumetric dilatation. The compressive hoop stress within the lens structure becomes azimuthally anisotropic at high hydrogen concentrations or high hydride phase fraction. This compressive stress anisotropy matches the observed lens anisotropy, implicating the effect of stress on hydride formation as the cause of the observed lens azimuthal asymmetry. The cause and effect relation between compressive stress and hydride lens anisotropy represents an indirect validation of a key BISON output, the evolved hoop stress associated with hydride formation.

  17. New trends in intraocular lens imaging

    NASA Astrophysics Data System (ADS)

    Millán, María S.; Alba-Bueno, Francisco; Vega, Fidel

    2011-08-01

    As a result of modern technological advances, cataract surgery can be seen as not only a rehabilitative operation, but a customized procedure to compensate for important sources of image degradation in the visual system of a patient, such as defocus and some aberrations. With the development of new materials, instruments and surgical techniques in ophthalmology, great progress has been achieved in the imaging capability of a pseudophakic eye implanted with an intraocular lens (IOL). From the very beginning, optical design has played an essential role in this progress. New IOL designs need, on the one hand, theoretical eye models able to predict optical imaging performance and on the other hand, testing methods, verification through in vitro and in vivo measurements, and clinical validation. The implant of an IOL requires a precise biometry of the eye, a prior calculation from physiological data, and an accurate position inside the eye. Otherwise, the effects of IOL calculation errors or misplacements degrade the image very quickly. The incorporation of wavefront aberrometry into clinical ophthalmology practice has motivated new designs of IOLs to compensate for high order aberrations in some extent. Thus, for instance, IOLs with an aspheric design have the potential to improve optical performance and contrast sensitivity by reducing the positive spherical aberration of human cornea. Monofocal IOLs cause a complete loss of accommodation that requires further correction for either distance or near vision. Multifocal IOLs address this limitation using the principle of simultaneous vision. Some multifocal IOLs include a diffractive zone that covers the aperture in part or totally. Reduced image contrast and undesired visual phenomena, such as halos and glare, have been associated to the performance of multifocal IOLs. Based on a different principle, accommodating IOLs rely on the effort of the ciliary body to increase the effective power of the optical system of the

  18. ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu Zhe; Lin, W. P.; Yang Xiaofeng, E-mail: chuzhe@shao.ac.cn, E-mail: linwp@shao.ac.cn

    Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. Wemore » find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.« less

  19. Lens Systems for Sky Surveys and Space Surveillance

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; McGraw, J.; Zimmer, P.

    2013-09-01

    Since the early days of astrophotography, lens systems have played a key role in capturing images of the night sky. The first images were attempted with visual-refractors. These were soon followed with color-corrected refractors and finally specially designed photo-refractors. Being telescopes, these instruments were of long-focus and imaged narrow fields of view. Simple photographic lenses were soon put into service to capture wide-field images. These lenses also had the advantage of requiring shorter exposure times than possible using large refractors. Eventually, lenses were specifically designed for astrophotography. With the introduction of the Schmidt-camera and related catadioptric systems, the popularity of astrograph lenses declined, but surprisingly, a few remained in use. Over the last 30 years, as small CCDs have displaced large photographic plates, lens systems have again found favor for their ability to image great swaths of sky in a relatively small and simple package. In this paper, we follow the development of lens-based astrograph systems from their beginnings through the current use of both commercial and custom lens systems for sky surveys and space surveillance. Some of the optical milestones discussed include the early Petzval-type portrait lenses, the Ross astrographic lens and the current generation of optics such as the commercial 200mm camera lens by Canon, and the Russian VT-53e in service with ISON.

  20. Lens capsule structure assessed with atomic force microscopy

    PubMed Central

    Sueiras, Vivian M.; Moy, Vincent T.

    2015-01-01

    Purpose To image the ultrastructure of the anterior lens capsule at the nanoscale level using atomic force microscopy (AFM). Methods Experiments were performed on anterior lens capsules maintained in their in situ location surrounding the lens from six human cadavers (donor age range: 44–88 years), four cynomolgus monkeys (Macaca fascicularis age range: 4.83–8.92 years), and seven pigs (<6 months). Hydration of all samples was maintained using Dulbecco’s Modified Eagle Medium (DMEM). Whole lenses were removed from the eye and placed anterior side up in agarose gel before gel hardening where only the posterior half of the lens was contained within the gel. After the gel hardened, the Petri dish was filled with DMEM until the point where the intact lens was fully submerged. AFM was used to image the anterior lens surface in contact mode. An integrated analysis program was used to calculate the interfibrillar spacing, fiber diameter, and surface roughness of the samples. Results The AFM images depict a highly ordered fibrous structure at the surface of the lens capsule in all three species. The interfibrillar spacing for the porcine, cynomolgus monkey, and human lens capsules was 0.68±0.25, 1.80±0.39, and 1.08±0.25 μm, respectively. In the primate, interfibrillar spacing significantly decreased linearly as a function of age. The fiber diameters ranged from 50 to 950 nm. Comparison of the root mean square (RMS) and average deviation demonstrate that the surface of the porcine lens capsule is the smoothest, and that the human and cynomolgus monkey capsules are significantly rougher. Conclusions AFM was successful in providing high-resolution images of the nanostructure of the lens capsule samples. Species-dependent differences were observed in the overall structure and surface roughness. PMID:25814829

  1. Adaptive Optics Imaging of the CLASS Gravitational Lens System B1359+154 with the Canada-France-Hawaii Telescope.

    PubMed

    Rusin; Hall; Nichol; Marlow; Richards; Myers

    2000-04-20

    We present adaptive optics imaging of the CLASS gravitational lens system B1359+154 obtained with the Canada-France-Hawaii Telescope (CFHT) in the infrared K band. The observations show at least three brightness peaks within the ring of lensed images, which we identify as emission from multiple lensing galaxies. The results confirm the suspected compound nature of the lens, as deduced from preliminary mass modeling. The detection of several additional nearby galaxies suggests that B1359+154 is lensed by the compact core of a small galaxy group. We attempted to produce an updated lens model based on the CFHT observations and new 5 GHz radio data obtained with the MERLIN array, but there are too few constraints to construct a realistic model at this time. The uncertainties inherent with modeling compound lenses make B1359+154 a challenging target for Hubble constant determination through the measurement of differential time delays. However, time delays will offer additional constraints to help pin down the mass model. This lens system therefore presents a unique opportunity to directly measure the mass distribution of a galaxy group at intermediate redshift.

  2. Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens.

    PubMed

    Shen, Xin; Javidi, Bahram

    2018-03-01

    We have developed a three-dimensional (3D) dynamic integral-imaging (InIm)-system-based optical see-through augmented reality display with enhanced depth range of a 3D augmented image. A focus-tunable lens is adopted in the 3D display unit to relay the elemental images with various positions to the micro lens array. Based on resolution priority integral imaging, multiple lenslet image planes are generated to enhance the depth range of the 3D image. The depth range is further increased by utilizing both the real and virtual 3D imaging fields. The 3D reconstructed image and the real-world scene are overlaid using an optical see-through display for augmented reality. The proposed system can significantly enhance the depth range of a 3D reconstructed image with high image quality in the micro InIm unit. This approach provides enhanced functionality for augmented information and adjusts the vergence-accommodation conflict of a traditional augmented reality display.

  3. Reduction of effective dose and organ dose to the eye lens in head MDCT using iterative image reconstruction and automatic tube current modulation.

    PubMed

    Ryska, Pavel; Kvasnicka, Tomas; Jandura, Jiri; Klzo, Ludovit; Grepl, Jakub; Zizka, Jan

    2014-06-01

    To compare the effective and eye lens radiation dose in helical MDCT brain examinations using automatic tube current modulation in conjunction with either standard filtered back projection (FBP) technique or iterative reconstruction in image space (IRIS). Of 400 adult brain MDCT examinations, 200 were performed using FBP and 200 using IRIS with the following parameters: tube voltage 120 kV, rotation period 1 second, pitch factor 0.55, automatic tube current modulation in both transverse and longitudinal planes with reference mAs 300 (FBP) and 200 (IRIS). Doses were calculated from CT dose index and dose length product values utilising ImPACT software; the organ dose to the lens was derived from the actual tube current-time product value applied to the lens. Image quality was assessed by two independent readers blinded to the type of image reconstruction technique. The average effective scan dose was 1.47±0.26 mSv (FBP) and 0.98±0.15 mSv (IRIS), respectively (33.3% decrease). The average organ dose to the eye lens decreased from 40.0±3.3 mGy (FBP) to 26.6±2.0 mGy (IRIS, 33.5% decrease). No significant change in diagnostic image quality was noted between IRIS and FBP scans (P=0.17). Iterative reconstruction of cerebral MDCT examinations enables reduction of both effective and organ eye lens dose by one third without signficant loss of image quality.

  4. Single Lens Dual-Aperture 3D Imaging System: Color Modeling

    NASA Technical Reports Server (NTRS)

    Bae, Sam Y.; Korniski, Ronald; Ream, Allen; Fritz, Eric; Shearn, Michael

    2012-01-01

    In an effort to miniaturize a 3D imaging system, we created two viewpoints in a single objective lens camera. This was accomplished by placing a pair of Complementary Multi-band Bandpass Filters (CMBFs) in the aperture area. Two key characteristics about the CMBFs are that the passbands are staggered so only one viewpoint is opened at a time when a light band matched to that passband is illuminated, and the passbands are positioned throughout the visible spectrum, so each viewpoint can render color by taking RGB spectral images. Each viewpoint takes a different spectral image from the other viewpoint hence yielding a different color image relative to the other. This color mismatch in the two viewpoints could lead to color rivalry, where the human vision system fails to resolve two different colors. The difference will be closer if the number of passbands in a CMBF increases. (However, the number of passbands is constrained by cost and fabrication technique.) In this paper, simulation predicting the color mismatch is reported.

  5. Efficient flat metasurface lens for terahertz imaging.

    PubMed

    Yang, Quanlong; Gu, Jianqiang; Wang, Dongyang; Zhang, Xueqian; Tian, Zhen; Ouyang, Chunmei; Singh, Ranjan; Han, Jiaguang; Zhang, Weili

    2014-10-20

    Metamaterials offer exciting opportunities that enable precise control of amplitude, polarization and phase of the light beam at a subwavelength scale. A gradient metasurface consists of a class of anisotropic subwavelength metamaterial resonators that offer abrupt amplitude and phase changes, thus enabling new applications in optical device design such as ultrathin flat lenses. We propose a highly efficient gradient metasurface lens based on a metal-dielectric-metal structure that operates in the terahertz regime. The proposed structure consists of slotted metallic resonator arrays on two sides of a thin dielectric spacer. By varying the geometrical parameters, the metasurface lens efficiently manipulates the spatial distribution of the terahertz field and focuses the beam to a spot size on the order of a wavelength. The proposed flat metasurface lens design is polarization insensitive and works efficiently even at wide angles of incidence.

  6. Multistage Polymeric Lens Structures Integrated into Silica Waveguides

    NASA Astrophysics Data System (ADS)

    Tate, Atsushi; Suzuki, Takanori; Tsuda, Hiroyuki

    2006-08-01

    A waveguide lens, composed of multistage polymer-filled thin grooves in a silica planar lightwave circuit (PLC) is proposed and a low-loss structure has been designed. A waveguide lens in a silica slab waveguide has been fabricated using reactive ion etching (RIE) and formed by filling with polymer. Both an imagding optical system and a Fourier-transform optical system can be configured in a PLC using a waveguide lens. It renders the PLC functional and its design flexible. To obtain a shorter focal length with a low insertion loss, it is more effective to use a multistage lens structure. An imaging optical system and a Fourier-transform optical system with a focal length of less than 1000 μm were fabricated in silica waveguides using a multistage lens structure. The lens imaging waveguides incorporate a 16-24-stage lens, with insertion losses of 4-7 dB. A 4 × 4 optical coupler, using a Fourier-transform optical system, utilizes a 6-stage lens with losses of 2-4 dB.

  7. Design of two-DMD based zoom MW and LW dual-band IRSP using pixel fusion

    NASA Astrophysics Data System (ADS)

    Pan, Yue; Xu, Xiping; Qiao, Yang

    2018-06-01

    In order to test the anti-jamming ability of mid-wave infrared (MWIR) and long-wave infrared (LWIR) dual-band imaging system, a zoom mid-wave (MW) and long-wave (LW) dual-band infrared scene projector (IRSP) based on two-digital micro-mirror device (DMD) was designed by using a projection method of pixel fusion. Two illumination systems, which illuminate the two DMDs directly with Kohler telecentric beam respectively, were combined with projection system by a spatial layout way. The distances of projection entrance pupil and illumination exit pupil were also analyzed separately. MWIR and LWIR virtual scenes were generated respectively by two DMDs and fused by a dichroic beam combiner (DBC), resulting in two radiation distributions in projected image. The optical performance of each component was evaluated by ray tracing simulations. Apparent temperature and image contrast were demonstrated by imaging experiments. On the basis of test and simulation results, the aberrations of optical system were well corrected, and the quality of projected image meets test requirements.

  8. The optical lens coupled X-ray in-line phase contrast imaging system for the characterization of low Z materials

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Lin, Wei; Dai, Fei; Li, Jun; Qi, Xiaobo; Lei, Haile; Liu, Yuanqiong

    2018-05-01

    Due to the high spatial resolution and contrast, the optical lens coupled X-ray in-line phase contrast imaging system with the secondary optical magnification is more suitable for the characterization of the low Z materials. The influence of the source to object distance and the object to scintillator distance on the image resolution and contrast is studied experimentally. A phase correlation algorithm is used for the image mosaic of a serial of X-ray phase contrast images acquired with high resolution, the resulting resolution is less than 1.0 μm, and the whole field of view is larger than 1.4 mm. Finally, the geometric morphology and the inner structure of various weakly absorbing samples and the evaporation of water in the plastic micro-shell are in situ characterized by the optical lens coupled X-ray in-line phase contrast imaging system.

  9. Toward an improved haptic zooming algorithm for graphical information accessed by individuals who are blind and visually impaired.

    PubMed

    Rastogi, Ravi; Pawluk, Dianne T V

    2013-01-01

    An increasing amount of information content used in school, work, and everyday living is presented in graphical form. Unfortunately, it is difficult for people who are blind or visually impaired to access this information, especially when many diagrams are needed. One problem is that details, even in relatively simple visual diagrams, can be very difficult to perceive using touch. With manually created tactile diagrams, these details are often presented in separate diagrams which must be selected from among others. Being able to actively zoom in on an area of a single diagram so that the details can be presented at a reasonable size for exploration purposes seems a simpler approach for the user. However, directly using visual zooming methods have some limitations when used haptically. Therefore, a new zooming method is proposed to avoid these pitfalls. A preliminary experiment was performed to examine the usefulness of the algorithm compared to not using zooming. The results showed that the number of correct responses improved with the developed zooming algorithm and participants found it to be more usable than not using zooming for exploration of a floor map.

  10. Laboratory Demonstration of Axicon-Lens Coronagraph

    NASA Astrophysics Data System (ADS)

    Choi, Jaeho; Jea, Geonho

    2018-01-01

    The results of laboratory based experiments of the proposed coronagraph using axicon-lenses that is conjunction with a method of noninterferometric quantitative phase imaging for direct imaging of exoplanets is will present. The light source is passing through tiny holes drilled on the thin metal plate is used as the simulated stellar and its companions. Those diffracted light at the edge of the holes bears a similarity to the light from the bright stellar. Those images are evaginated about the optical axis after the maximum focal length of the first axicon lens. Then the evaginated images of have cut off using the motorized iris which means the suppressed the central stellar light preferentially. Various length between the holes which represent the angular distance are examined. The laboratory experimental results are shown that the axicon-lens coronagraph has feature of ability to achieve the smaller IWA than l/D and high-contrast direct imaging. The laboratory based axicon-lens coronagraph imaging support the symbolic computation results which has potential in direct imaging for finding exoplanet and various astrophysical activities. The setup of the coronagraph is simple to build and is durable to operate. Moreover it can be transported the planets images to a broadband spectrometric instrument that able to investigate the constituent of the planetary system.

  11. Optical Assessment of Soft Contact Lens Edge-Thickness.

    PubMed

    Tankam, Patrice; Won, Jungeun; Canavesi, Cristina; Cox, Ian; Rolland, Jannick P

    2016-08-01

    To assess the edge shape of soft contact lenses using Gabor-Domain Optical Coherence Microscopy (GD-OCM) with a 2-μm imaging resolution in three dimensions and to generate edge-thickness profiles at different distances from the edge tip of soft contact lenses. A high-speed custom-designed GD-OCM system was used to produce 3D images of the edge of an experimental soft contact lens (Bausch + Lomb, Rochester, NY) in four different configurations: in air, submerged into water, submerged into saline with contrast agent, and placed onto the cornea of a porcine eyeball. An algorithm to compute the edge-thickness was developed and applied to cross-sectional images. The proposed algorithm includes the accurate detection of the interfaces between the lens and the environment, and the correction of the refraction error. The sharply defined edge tip of a soft contact lens was visualized in 3D. Results showed precise thickness measurement of the contact lens edge profile. Fifty cross-sectional image frames for each configuration were used to test the robustness of the algorithm in evaluating the edge-thickness at any distance from the edge tip. The precision of the measurements was less than 0.2 μm. The results confirmed the ability of GD-OCM to provide high-definition images of soft contact lens edges. As a nondestructive, precise, and fast metrology tool for soft contact lens measurement, the integration of GD-OCM in the design and manufacturing of contact lenses will be beneficial for further improvement in edge design and quality control. In the clinical perspective, the in vivo evaluation of the lens fitted onto the cornea will advance our understanding of how the edge interacts with the ocular surface. The latter will provide insights into the impact of long-term use of contact lenses on the visual performance.

  12. Optical Assessment of Soft Contact Lens Edge-Thickness

    PubMed Central

    Tankam, Patrice; Won, Jungeun; Canavesi, Cristina; Cox, Ian; Rolland, Jannick P.

    2016-01-01

    Purpose To assess the edge shape of soft contact lenses using Gabor-Domain Optical Coherence Microscopy (GD-OCM) with a 2 μm imaging resolution in three dimensions, and to generate edge-thickness profiles at different distances from the edge tip of soft contact lenses. Methods A high-speed custom-designed GD-OCM system was used to produce 3D images of the edge of an experimental soft contact lens (Bausch + Lomb, Rochester NY) in four different configurations: in air, submerged into water, submerged into saline with contrast agent, and placed onto the cornea of a porcine eyeball. An algorithm to compute the edge-thickness was developed and applied to cross-sectional images. The proposed algorithm includes the accurate detection of the interfaces between the lens and the environment, and the correction of the refraction error. Results The sharply defined edge tip of a soft contact lens was visualized in 3D. Results showed precise thickness measurement of the contact lens edge profile. 50 cross-sectional image frames for each configuration were used to test the robustness of the algorithm in evaluating the edge-thickness at any distance from the edge tip. The precision of the measurements was less than 0.2 μm. Conclusions The results confirmed the ability of GD-OCM to provide high definition images of soft contact lens edges. As a non-destructive, precise, and fast metrology tool for soft contact lens measurement, the integration of GD-OCM in the design and manufacturing of contact lenses will be beneficial for further improvement in edge design and quality control. In the clinical perspective, the in-vivo evaluation of the lens fitted onto the cornea will advance our understanding of how the edge interacts with the ocular surface. The latter will provide insights into the impact of long-term use of contact lenses on the visual performance. PMID:27232902

  13. Magnetic resonance and confocal imaging of solute penetration into the lens reveals a zone of restricted extracellular space diffusion.

    PubMed

    Vaghefi, Ehsan; Walker, Kerry; Pontre, Beau P; Jacobs, Marc D; Donaldson, Paul J

    2012-06-01

    It has been proposed that in the absence of blood supply, the ocular lens operates an internal microcirculation system that delivers nutrients to internalized fiber cells faster and more efficiently than would occur by passive diffusion alone. To visualize the extracellular space solute fluxes potentially generated by this system, bovine lenses were organ cultured in artificial aqueous humor (AAH) for 4 h in the presence or absence of two gadolinium-based contrast agents, ionic Gd(3+), or a chelated form of Gd(3+), Gd-diethylenetriamine penta-acetic acid (Gd-DTPA; mol mass = 590 Da). Contrast reagent penetration into the lens core was monitored in real time using inversion recovery-spin echo (IR-SE) magnetic resonance imaging (MRI), while steady-state accumulation of [Gd-DTPA](-2) was also determined by calculating T1 values. After incubation, lenses were fixed and cryosectioned, and sections were labeled with the membrane marker wheat germ agglutinin (WGA). Sections were imaged by confocal microscopy using standard and reflectance imaging modalities to visualize the fluorescent WGA label and gadolinium reagents, respectively. Real-time IR-SE MRI showed rapid penetration of Gd(3+) into the outer cortex of the lens and a subsequent bloom of signal in the core. These two areas of signal were separated by an area in the inner cortex that limited entry of Gd(3+). Similar results were obtained for Gd-DTPA, but the penetration of the larger negatively charged molecule into the core could only be detected by calculating T1 values. The presence of Gd-DTPA in the extracellular space of the outer cortex and core, but its apparent absence from the inner cortex was confirmed using reflectance imaging of equatorial sections. In axial sections, Gd-DTPA was associated with the sutures, suggesting these structures provide a pathway from the surface, across the inner cortex barrier to the lens core. Our studies have revealed inner and outer boundaries of a zone within which a

  14. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-06-01

    Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings.

  15. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis

    PubMed Central

    Zhang, Yibo; Lee, Seung Yoon Celine; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-01-01

    Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy, and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm2), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs, and can be deployed even at the point-of-care and in resource-limited clinical settings. PMID:27356625

  16. The Mars Hand Lens Imager (MAHLI) for the 209 Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Edgett, K. S.; Bell, J. F., III; Herkenhoff, K. E.; Heydari, E.; Kah, L. C.; Minitti, M. E.; Olson, T. S.; Rowland, S. K.; Schieber, J.; Sullivan, R. J.

    2005-01-01

    The MArs Hand Lens Imager (MAHLI) is a small, RGB-color camera designed to examine geologic material at 12.5-75 microns/pixel resolution at the Mars Science Laboratory (MSL) landing site. MAHLI is a PI-led investigation competitively selected by NASA in December 2004 as part of the science payload for the MSL rover launching in 2009. The instrument is being fabricated by, and will be operated by, Malin Space Science Systems of San Diego, California.

  17. Improving Light Distribution by Zoom Lens for Electricity Savings in a Plant Factory with Light-Emitting Diodes.

    PubMed

    Li, Kun; Li, Zhipeng; Yang, Qichang

    2016-01-01

    The high energy consumption of a plant factory is the biggest issue in its rapid expansion, especially for lighting electricity, which has been solved to a large extent by light-emitting diodes (LED). However, the remarkable potential for further energy savings remains to be further investigated. In this study, an optical system applied just below the LED was designed. The effects of the system on the growth and photosynthesis of butterhead lettuce (Lactuca sativa var. capitata) were examined, and the performance of the optical improvement in energy savings was evaluated by comparison with the traditional LED illumination mode. The irradiation patterns used were LED with zoom lenses (Z-LED) and conventional non-lenses LED (C-LED). The seedlings in both treatments were exposed to the same light environment over the entire growth period. The improvement saved over half of the light source electricity, while prominently lowering the temperature. Influenced by this, the rate of photosynthesis sharply decreased, causing reductions in plant yield and nitrate content, while having no negative effects on morphological parameters and photosynthetic pigment contents. Nevertheless, the much higher light use efficiency of Z-LEDs makes this system a better approach to illumination in a plant factory with artificial lighting.

  18. Improving Light Distribution by Zoom Lens for Electricity Savings in a Plant Factory with Light-Emitting Diodes

    PubMed Central

    Li, Kun; Li, Zhipeng; Yang, Qichang

    2016-01-01

    The high energy consumption of a plant factory is the biggest issue in its rapid expansion, especially for lighting electricity, which has been solved to a large extent by light-emitting diodes (LED). However, the remarkable potential for further energy savings remains to be further investigated. In this study, an optical system applied just below the LED was designed. The effects of the system on the growth and photosynthesis of butterhead lettuce (Lactuca sativa var. capitata) were examined, and the performance of the optical improvement in energy savings was evaluated by comparison with the traditional LED illumination mode. The irradiation patterns used were LED with zoom lenses (Z-LED) and conventional non-lenses LED (C-LED). The seedlings in both treatments were exposed to the same light environment over the entire growth period. The improvement saved over half of the light source electricity, while prominently lowering the temperature. Influenced by this, the rate of photosynthesis sharply decreased, causing reductions in plant yield and nitrate content, while having no negative effects on morphological parameters and photosynthetic pigment contents. Nevertheless, the much higher light use efficiency of Z-LEDs makes this system a better approach to illumination in a plant factory with artificial lighting. PMID:26904062

  19. Wide-field synovial fluid imaging using polarized lens-free on-chip microscopy for point-of-care diagnostics of gout (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Yibo; Lee, Seung Yoon; Zhang, Yun; Furst, Daniel; Fitzgerald, John; Ozcan, Aydogan

    2016-03-01

    Gout and pseudogout are forms of crystal arthropathy caused by monosodium urate (MSU) and calcium pyrophosphate dehydrate (CPPD) crystals in the joint, respectively, that can result in painful joints. Detecting the unique-shaped, birefringent MSU/CPPD crystals in a synovial fluid sample using a compensated polarizing microscope has been the gold-standard for diagnosis since the 1960's. However, this can be time-consuming and inaccurate, especially if there are only few crystals in the fluid. The high-cost and bulkiness of conventional microscopes can also be limiting for point-of-care diagnosis. Lens-free on-chip microscopy based on digital holography routinely achieves high-throughput and high-resolution imaging in a cost-effective and field-portable design. Here we demonstrate, for the first time, polarized lens-free on-chip imaging of MSU and CPPD crystals over a wide field-of-view (FOV ~ 20.5 mm2, i.e., <20-fold larger compared a typical 20X objective-lens FOV) for point-of-care diagnostics of gout and pseudogout. Circularly polarizer partially-coherent light is used to illuminate the synovial fluid sample on a glass slide, after which a quarter-wave-plate and an angle-mismatched linear polarizer are used to analyze the transmitted light. Two lens-free holograms of the MSU/CPPD sample are taken, with the sample rotated by 90°, to rule out any non-birefringent objects within the specimen. A phase-recovery algorithm is also used to improve the reconstruction quality, and digital pseudo-coloring is utilized to match the color and contrast of the lens-free image to that of a gold-standard microscope image to ease the examination by a rheumatologist or a laboratory technician, and to facilitate computerized analysis.

  20. Cartographic analyses of geographic information available on Google Earth Images

    NASA Astrophysics Data System (ADS)

    Oliveira, J. C.; Ramos, J. R.; Epiphanio, J. C.

    2011-12-01

    The propose was to evaluate planimetric accuracy of satellite images available on database of Google Earth. These images are referents to the vicinities of the Federal Univertisity of Viçosa, Minas Gerais - Brazil. The methodology developed evaluated the geographical information of three groups of images which were in accordance to the level of detail presented in the screen images (zoom). These groups of images were labeled to Zoom 1000 (a single image for the entire study area), Zoom 100 (formed by a mosaic of 73 images) and Zoom 100 with geometric correction (this mosaic is like before, however, it was applied a geometric correction through control points). In each group of image was measured the Cartographic Accuracy based on statistical analyses and brazilian's law parameters about planimetric mapping. For this evaluation were identified 22 points in each group of image, where the coordinates of each point were compared to the coordinates of the field obtained by GPS (Global Positioning System). The Table 1 show results related to accuracy (based on a threshold equal to 0.5 mm * mapping scale) and tendency (abscissa and ordinate) between the coordinates of the image and the coordinates of field. Table 1 The geometric correction applied to the Group Zoom 100 reduced the trends identified earlier, and the statistical tests pointed a usefulness of the data for a mapping at a scale of 1/5000 with error minor than 0.5 mm * scale. The analyses proved the quality of cartographic data provided by Google, as well as the possibility of reduce the divergences of positioning present on the data. It can be concluded that it is possible to obtain geographic information database available on Google Earth, however, the level of detail (zoom) used at the time of viewing and capturing information on the screen influences the quality cartographic of the mapping. Although cartographic and thematic potential present in the database, it is important to note that both the software

  1. Mitigation of cross-beam energy transfer: Implication of two-state focal zooming on OMEGA

    NASA Astrophysics Data System (ADS)

    Froula, D. H.; Kessler, T. J.; Igumenshchev, I. V.; Betti, R.; Goncharov, V. N.; Huang, H.; Hu, S. X.; Hill, E.; Kelly, J. H.; Meyerhofer, D. D.; Shvydky, A.; Zuegel, J. D.

    2013-08-01

    Cross-beam energy transfer (CBET) during OMEGA low-adiabat cryogenic experiments reduces the hydrodynamic efficiency by ˜35%, which lowers the calculated one-dimensional (1-D) yield by a factor of 7. CBET can be mitigated by reducing the diameter of the laser beams relative to the target diameter. Reducing the diameter of the laser beams by 30%, after a sufficient conduction zone has been generated (two-state zooming), is predicted to maintain low-mode uniformity while recovering 90% of the kinetic energy lost to CBET. A radially varying phase plate is proposed to implement two-state zooming on OMEGA. A beam propagating through the central half-diameter of the phase plate will produce a large spot, while a beam propagating through the outer annular region of the phase plate will produce a narrower spot. To generate the required two-state near-field laser-beam profile, a picket driver with smoothing by spectral dispersion (SSD) would pass through an apodizer, forming a beam of half the standard diameter. A second main-pulse driver would co-propagate without SSD through its own apodizer, forming a full-diameter annular beam. Hydrodynamic simulations, using the designed laser spots produced by the proposed zooming scheme on OMEGA, show that implementing zooming will increase the implosion velocity by 25% resulting in a 4.5× increase in the 1-D neutron yield. Demonstrating zooming on OMEGA would validate a viable direct-drive CBET mitigation scheme and help establish a pathway to hydrodynamically equivalent direct-drive-ignition implosions by increasing the ablation pressure (1.6×), which will allow for more stable implosions at ignition-relevant velocities.

  2. Time delay of critical images in the vicinity of cusp point of gravitational-lens systems

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Zhdanov, V.

    2016-12-01

    We consider approximate analytical formulas for time-delays of critical images of a point source in the neighborhood of a cusp-caustic. We discuss zero, first and second approximations in powers of a parameter that defines the proximity of the source to the cusp. These formulas link the time delay with characteristics of the lens potential. The formula of zero approximation was obtained by Congdon, Keeton & Nordgren (MNRAS, 2008). In case of a general lens potential we derived first order correction thereto. If the potential is symmetric with respect to the cusp axis, then this correction is identically equal to zero. For this case, we obtained second order correction. The relations found are illustrated by a simple model example.

  3. Curiosity’s robotic arm-mounted Mars Hand Lens Imager (MAHLI): Characterization and calibration status

    USGS Publications Warehouse

    Edgett, Kenneth S.; Caplinger, Michael A.; Maki, Justin N.; Ravine, Michael A.; Ghaemi, F. Tony; McNair, Sean; Herkenhoff, Kenneth E.; Duston, Brian M.; Wilson, Reg G.; Yingst, R. Aileen; Kennedy, Megan R.; Minitti, Michelle E.; Sengstacken, Aaron J.; Supulver, Kimberley D.; Lipkaman, Leslie J.; Krezoski, Gillian M.; McBride, Marie J.; Jones, Tessa L.; Nixon, Brian E.; Van Beek, Jason K.; Krysak, Daniel J.; Kirk, Randolph L.

    2015-01-01

    MAHLI (Mars Hand Lens Imager) is a 2-megapixel, Bayer pattern color CCD camera with a macro lens mounted on a rotatable turret at the end of the 2-meters-long robotic arm aboard the Mars Science Laboratory rover, Curiosity. The camera includes white and longwave ultraviolet LEDs to illuminate targets at night. Onboard data processing services include focus stack merging and data compression. Here we report on the results and status of MAHLI characterization and calibration, covering the pre-launch period from August 2008 through the early months of the extended surface mission through February 2015. Since landing in Gale crater in August 2012, MAHLI has been used for a wide range of science and engineering applications, including distinction among a variety of mafic, siliciclastic sedimentary rocks; investigation of grain-scale rock, regolith, and eolian sediment textures and structures; imaging of the landscape; inspection and monitoring of rover and science instrument hardware concerns; and supporting geologic sample selection, extraction, analysis, delivery, and documentation. The camera has a dust cover and focus mechanism actuated by a single stepper motor. The transparent cover was coated with a thin film of dust during landing, thus MAHLI is usually operated with the cover open. The camera focuses over a range from a working distance of 2.04 cm to infinity; the highest resolution images are at 13.9 µm per pixel; images acquired from 6.9 cm show features at the same scale as the Mars Exploration Rover Microscopic Imagers at 31 µm/pixel; and 100 µm/pixel is achieved at a working distance of ~26.5 cm. The very highest resolution images returned from Mars permit distinction of high contrast silt grains in the 30–40 µm size range. MAHLI has performed well; the images need no calibration in order to achieve most of the investigation’s science and engineering goals. The positioning and repeatability of robotic arm placement of the MAHLI camera head have

  4. Head-motion-controlled video goggles: preliminary concept for an interactive laparoscopic image display (i-LID).

    PubMed

    Aidlen, Jeremy T; Glick, Sara; Silverman, Kenneth; Silverman, Harvey F; Luks, Francois I

    2009-08-01

    Light-weight, low-profile, and high-resolution head-mounted displays (HMDs) now allow personalized viewing, of a laparoscopic image. The advantages include unobstructed viewing, regardless of position at the operating table, and the possibility to customize the image (i.e., enhanced reality, picture-in-picture, etc.). The bright image display allows use in daylight surroundings and the low profile of the HMD provides adequate peripheral vision. Theoretic disadvantages include reliance for all on the same image capture and anticues (i.e., reality disconnect) when the projected image remains static, despite changes in head position. This can lead to discomfort and even nausea. We have developed a prototype of interactive laparoscopic image display that allows hands-free control of the displayed image by changes in spatial orientation of the operator's head. The prototype consists of an HMD, a spatial orientation device, and computer software to enable hands-free panning and zooming of a video-endoscopic image display. The spatial orientation device uses magnetic fields created by a transmitter and receiver, each containing three orthogonal coils. The transmitter coils are efficiently driven, using USB power only, by a newly developed circuit, each at a unique frequency. The HMD-mounted receiver system links to a commercially available PC-interface PCI-bus sound card (M-Audiocard Delta 44; Avid Technology, Tewksbury, MA). Analog signals at the receiver are filtered, amplified, and converted to digital signals, which are processed to control the image display. The prototype uses a proprietary static fish-eye lens and software for the distortion-free reconstitution of any portion of the captured image. Left-right and up-down motions of the head (and HMD) produce real-time panning of the displayed image. Motion of the head toward, or away from, the transmitter causes real-time zooming in or out, respectively, of the displayed image. This prototype of the interactive HMD

  5. Fresnel Lens Solar Concentrator Design Based on Geometric Optics and Blackbody Radiation Equations

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Jayroe, Robert, Jr.

    1999-01-01

    Fresnel lenses have been used for years as solar concentrators in a variety of applications. Several variables effect the final design of these lenses including: lens diameter, image spot distance from the lens, and bandwidth focused in the image spot. Defining the image spot as the geometrical optics circle of least confusion and applying blackbody radiation equations the spot energy distribution can be determined. These equations are used to design a fresnel lens to produce maximum flux for a given spot size, lens diameter, and image distance. This approach results in significant increases in solar efficiency over traditional single wavelength designs.

  6. Miniature Wide-Angle Lens for Small-Pixel Electronic Camera

    NASA Technical Reports Server (NTRS)

    Mouroulils, Pantazis; Blazejewski, Edward

    2009-01-01

    A proposed wideangle lens is shown that would be especially well suited for an electronic camera in which the focal plane is occupied by an image sensor that has small pixels. The design of the lens is intended to satisfy requirements for compactness, high image quality, and reasonably low cost, while addressing issues peculiar to the operation of small-pixel image sensors. Hence, this design is expected to enable the development of a new generation of compact, high-performance electronic cameras. The lens example shown has a 60 degree field of view and a relative aperture (f-number) of 3.2. The main issues affecting the design are also shown.

  7. LC-lens array with light field algorithm for 3D biomedical applications

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Pai; Hsieh, Po-Yuan; Hassanfiroozi, Amir; Martinez, Manuel; Javidi, Bahram; Chu, Chao-Yu; Hsuan, Yun; Chu, Wen-Chun

    2016-03-01

    In this paper, liquid crystal lens (LC-lens) array was utilized in 3D bio-medical applications including 3D endoscope and light field microscope. Comparing with conventional plastic lens array, which was usually placed in 3D endoscope or light field microscope system to record image disparity, our LC-lens array has higher flexibility of electrically changing its focal length. By using LC-lens array, the working distance and image quality of 3D endoscope and microscope could be enhanced. Furthermore, the 2D/3D switching ability could be achieved if we turn off/on the electrical power on LClens array. In 3D endoscope case, a hexagonal micro LC-lens array with 350um diameter was placed at the front end of a 1mm diameter endoscope. With applying electric field on LC-lens array, the 3D specimen would be recorded as from seven micro-cameras with different disparity. We could calculate 3D construction of specimen with those micro images. In the other hand, if we turn off the electric field on LC-lens array, the conventional high resolution 2D endoscope image would be recorded. In light field microscope case, the LC-lens array was placed in front of the CMOS sensor. The main purpose of LC-lens array is to extend the refocusing distance of light field microscope, which is usually very narrow in focused light field microscope system, by montaging many light field images sequentially focusing on different depth. With adjusting focal length of LC-lens array from 2.4mm to 2.9mm, the refocusing distance was extended from 1mm to 11.3mm. Moreover, we could use a LC wedge to electrically shift the optics axis and increase the resolution of light field.

  8. Liquid lens: advances in adaptive optics

    NASA Astrophysics Data System (ADS)

    Casey, Shawn Patrick

    2010-12-01

    'Liquid lens' technologies promise significant advancements in machine vision and optical communications systems. Adaptations for machine vision, human vision correction, and optical communications are used to exemplify the versatile nature of this technology. Utilization of liquid lens elements allows the cost effective implementation of optical velocity measurement. The project consists of a custom image processor, camera, and interface. The images are passed into customized pattern recognition and optical character recognition algorithms. A single camera would be used for both speed detection and object recognition.

  9. Adaptive mechanical-wetting lens actuated by ferrofluids

    NASA Astrophysics Data System (ADS)

    Cheng, Hui-Chuan; Xu, Su; Liu, Yifan; Levi, Shoshana; Wu, Shin-Tson

    2011-04-01

    We report an adaptive mechanical-wetting lens actuated by ferrofluids. The ferrofluids works like a piston to pump liquids in and out from the lens chamber, which in turn reshapes the lens curvature and changes the focal length. Both positive and negative lenses are demonstrated experimentally. The ferrofluid-actuated mechanical-wetting lens exhibits some attractive features, such as high resolution, fast response time, low power consumption, simple structure and electronic control, weak gravity effect, and low cost. Its potential applications in medical imaging, surveillance, and commercial electronics are foreseeable.

  10. Integrated Lens Antennas for Multi-Pixel Receivers

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Chattopadhyay, Goutam

    2011-01-01

    Future astrophysics and planetary experiments are expected to require large focal plane arrays with thousands of detectors. Feedhorns have excellent performance, but their mass, size, fabrication challenges, and expense become prohibitive for very large focal plane arrays. Most planar antenna designs produce broad beam patterns, and therefore require additional elements for efficient coupling to the telescope optics, such as substrate lenses or micromachined horns. An antenna array with integrated silicon microlenses that can be fabricated photolithographically effectively addresses these issues. This approach eliminates manual assembly of arrays of lenses and reduces assembly errors and tolerances. Moreover, an antenna array without metallic horns will reduce mass of any planetary instrument significantly. The design has a monolithic array of lens-coupled, leaky-wave antennas operating in the millimeter- and submillimeter-wave frequencies. Electromagnetic simulations show that the electromagnetic fields in such lens-coupled antennas are mostly confined in approximately 12 15 . This means that one needs to design a small-angle sector lens that is much easier to fabricate using standard lithographic techniques, instead of a full hyper-hemispherical lens. Moreover, this small-angle sector lens can be easily integrated with the antennas in an array for multi-pixel imager and receiver implementation. The leaky antenna is designed using double-slot irises and fed with TE10 waveguide mode. The lens implementation starts with a silicon substrate. Photoresist with appropriate thickness (optimized for the lens size) is spun on the substrate and then reflowed to get the desired lens structure. An antenna array integrated with individual lenses for higher directivity and excellent beam profile will go a long way in realizing multi-pixel arrays and imagers. This technology will enable a new generation of compact, low-mass, and highly efficient antenna arrays for use in multi

  11. Evaluation of lens distortion errors in video-based motion analysis

    NASA Technical Reports Server (NTRS)

    Poliner, Jeffrey; Wilmington, Robert; Klute, Glenn K.; Micocci, Angelo

    1993-01-01

    In an effort to study lens distortion errors, a grid of points of known dimensions was constructed and videotaped using a standard and a wide-angle lens. Recorded images were played back on a VCR and stored on a personal computer. Using these stored images, two experiments were conducted. Errors were calculated as the difference in distance from the known coordinates of the points to the calculated coordinates. The purposes of this project were as follows: (1) to develop the methodology to evaluate errors introduced by lens distortion; (2) to quantify and compare errors introduced by use of both a 'standard' and a wide-angle lens; (3) to investigate techniques to minimize lens-induced errors; and (4) to determine the most effective use of calibration points when using a wide-angle lens with a significant amount of distortion. It was seen that when using a wide-angle lens, errors from lens distortion could be as high as 10 percent of the size of the entire field of view. Even with a standard lens, there was a small amount of lens distortion. It was also found that the choice of calibration points influenced the lens distortion error. By properly selecting the calibration points and avoidance of the outermost regions of a wide-angle lens, the error from lens distortion can be kept below approximately 0.5 percent with a standard lens and 1.5 percent with a wide-angle lens.

  12. Cell Fate and Differentiation of the Developing Ocular Lens

    PubMed Central

    Greiling, Teri M. S.; Aose, Masamoto

    2010-01-01

    Purpose. Even though zebrafish development does not include the formation of a lens vesicle, the authors' hypothesis is that the processes of cell differentiation are similar in zebrafish and mammals and determine cell fates in the lens. Methods. Two-photon live embryo imaging was used to follow individual fluorescently labeled cells in real-time from the placode stage at 16 hours postfertilization (hpf) until obvious morphologic differentiation into epithelium or fiber cells had occurred at approximately 28 hpf. Immunohistochemistry was used to label proliferating, differentiating, and apoptotic cells. Results. Similar to the mammal, cells in the teleost peripheral lens placode migrated to the anterior lens mass and differentiated into an anterior epithelium. Cells in the central lens placode migrated to the posterior lens mass and differentiated into primary fiber cells. Anterior and posterior polarization in the zebrafish lens mass was similar to mammalian lens vesicle polarization. Primary fiber cell differentiation was apparent at approximately 21 hpf, before separation of the lens from the surface ectoderm, as evidenced by cell elongation, exit from the cell cycle, and expression of Zl-1, a marker for fiber differentiation. TUNEL labeling demonstrated that apoptosis was not a primary mechanism for lens separation from the surface ectoderm. Conclusions. Despite the absence of a lens vesicle in the zebrafish embryo, lens organogenesis appears to be well conserved among vertebrates. Results using three-dimensional live embryo imaging of zebrafish development showed minimal differences and strong similarities in the fate of cells in the zebrafish and mammalian lens placode. PMID:19834024

  13. Three-dimensional confocal microscopy of the living cornea and ocular lens

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.

    1991-07-01

    The three-dimensional reconstruction of the optic zone of the cornea and the ocular crystalline lens has been accomplished using confocal microscopy and volume rendering computer techniques. A laser scanning confocal microscope was used in the reflected light mode to obtain the two-dimensional images from the cornea and the ocular lens of a freshly enucleated rabbit eye. The light source was an argon ion laser with a 488 nm wavelength. The microscope objective was a Leitz X25, NA 0.6 water immersion lens. The 400 micron thick cornea was optically sectioned into 133 three micron sections. The semi-transparent cornea and the in-situ ocular lens was visualized as high resolution, high contrast two-dimensional images. The structures observed in the cornea include: superficial epithelial cells and their nuclei, basal epithelial cells and their 'beaded' cell borders, basal lamina, nerve plexus, nerve fibers, nuclei of stromal keratocytes, and endothelial cells. The structures observed in the in- situ ocular lens include: lens capsule, lens epithelial cells, and individual lens fibers. The three-dimensional data sets of the cornea and the ocular lens were reconstructed in the computer using volume rendering techniques. Stereo pairs were also created of the two- dimensional ocular images for visualization. The stack of two-dimensional images was reconstructed into a three-dimensional object using volume rendering techniques. This demonstration of the three-dimensional visualization of the intact, enucleated eye provides an important step toward quantitative three-dimensional morphometry of the eye. The important aspects of three-dimensional reconstruction are discussed.

  14. Picturing neuroscience research through a human rights lens: Imaging first-episode schizophrenic treatment-naive individuals

    PubMed Central

    Eijkholt, Marleen; Anderson, James A.; Illes, Judy

    2012-01-01

    In this paper we examine imaging research involving first-episode schizophrenic treatment-naive individuals (FESTNIs) through a legal human rights lens; in particular, the lens of the Additional Protocol to the Convention on Human Rights and Biomedicine Concerning Biomedical Research. We identify a number of ethical and legal hot spots highlighted by the Protocol, and offer a series of recommendations designed to ensure the human rights compatibility of this research. Subsequently, we argue that the lack of reporting on design elements related to ethical concerns frustrates commitments at the heart of the human rights approach, namely, transparency and openness to international scrutiny. To redress this problem, we introduce two norms for the first time: ethical transparency, and ethical reproducibility. When concluding, we offer a set of reporting guidelines designed to operationalize these norms in the context of imaging research involving FESTNIs. Though we will not make this case here, we believe that parallel reporting guidelines should be incorporated into other areas of research involving human subjects. PMID:22304987

  15. Gamma-ray lens development status for a European gamma-ray imager

    NASA Astrophysics Data System (ADS)

    Frontera, F.; Pisa, A.; Carassiti, V.; Evangelisti, F.; Loffredo, G.; Pellicciotta, D.; Andersen, K. H.; Courtois, P.; Amati, L.; Caroli, E.; Franceschini, T.; Landini, G.; Silvestri, S.; Stephen, J. B.

    2006-06-01

    A breakthrough in the sensitivity level of the hard X-/gamma-ray telescopes, which today are based on detectors that view the sky through (or not) coded masks, is expected when focusing optics will be available also in this energy range. Focusing techniques are now in an advanced stage of development. To date the most efficient technique to focus hard X-rays with energies above 100 keV appears to be the Bragg diffraction from crystals in transmission configuration (Laue lenses). Crystals with mosaic structure appear to be the most suitable to build a Laue lens with a broad passband, even though other alternative structures are being investigated. The goal of our project is the development of a broad band focusing telescope based on gamma-ray lenses for the study of the continuum emission of celestial sources from 60 keV up to >600 keV. We will report details of our project, its development status and results of our assessment study of a lens configuration for the European Gamma Ray Imager (GRI) mission now under study for the ESA plan Cosmic Vision 2015-2025.

  16. Fresnel Lens Solar Concentrator Design Based on Geometric Optics and Blackbody Radiation Equations

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Jayroe, Robert

    1998-01-01

    Fresnel lenses have been used for years as solar concentrators in a variety of applications. Several variables effect the final design of these lenses including: lens diameter, image spot distance from the lens, and bandwidth focused in the image spot. Defining the image spot as the geometrical optics circle of least confusion, a set of design equations has been derived to define the groove angles for each groove on the lens. These equations allow the distribution of light by wavelength within the image spot to be calculated. Combining these equations with the blackbody radiation equations, energy distribution, power, and flux within the image spot can be calculated. In addition, equations have been derived to design a lens to produce maximum flux in a given spot size. Using these equations, a lens may be designed to optimize the spot energy concentration for given energy source.

  17. The nature of ultra-massive lens galaxies

    NASA Astrophysics Data System (ADS)

    Canameras, Raoul

    2017-08-01

    During the past decade, strong gravitational lensing analyses have contributed tremendously to the characterization of the inner properties of massive early-type galaxies, beyond the local Universe. Here we intend to extend studies of this kind to the most massive lens galaxies known to date, well outside the mass limits investigated by previous lensing surveys. This will allow us to probe the physics of the likely descendants of the most violent episodes of star formation and of the compact massive galaxies at high redshift. We propose WFC3 imaging (F438W and F160W) of four extremely massive early-type lens galaxies at z 0.5, in order to put them into context with the evolutionary trends of ellipticals as a function of mass and redshift. These systems were discovered in the SDSS and show one single main lens galaxy with a stellar mass above 1.5x10^12 Msun and large Einstein radii. Our high-resolution spectroscopic follow-up with VLT/X-shooter provides secure lens and source redshifts, between 0.3 and 0.7 and between 1.5 and 2.5, respectively, and confirm extreme stellar velocity dispersions > 400 km/s for the lenses. The excellent angular resolution of the proposed WFC3 imaging - not achievable from the ground - is the remaining indispensable piece of information to :(1) Resolve the lens structural parameters and obtain robust measurements of their stellar mass distributions,(2) Model the amount and distribution of the lens total masses and measure their M/L ratios and stellar IMF with joint strong lensing and stellar dynamics analyses,(3) Enhance our on-going lens models through the most accurate positions and morphologies of the blue multiply-imaged sources.

  18. The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies

    NASA Technical Reports Server (NTRS)

    Bolton, Adam S.; Burles, Scott; Koopmans, Leon V. E.; Treu, Tommaso; Moustakas, Leonidas A.

    2006-01-01

    The Sloan Lens ACS (SLACS) Survey is an efficient Hubble Space Telescope (HST) Snapshot imaging survey for new galaxy-scale strong gravitational lenses. The targeted lens candidates are selected spectroscopically from the Sloan Digital Sky Survey (SDSS) database of galaxy spectra for having multiple nebular emission lines at a redshift significantly higher than that of the SDSS target galaxy. The SLACS survey is optimized to detect bright early-type lens galaxies with faint lensed sources in order to increase the sample of known gravitational lenses suitable for detailed lensing, photometric, and dynamical modeling. In this paper, the first in a series on the current results of our HST Cycle 13 imaging survey, we present a catalog of 19 newly discovered gravitational lenses, along with nine other observed candidate systems that are either possible lenses, nonlenses, or nondetections. The survey efficiency is thus >=68%. We also present Gemini 8 m and Magellan 6.5 m integral-field spectroscopic data for nine of the SLACS targets, which further support the lensing interpretation. A new method for the effective subtraction of foreground galaxy images to reveal faint background features is presented. We show that the SLACS lens galaxies have colors and ellipticities typical of the spectroscopic parent sample from which they are drawn (SDSS luminous red galaxies and quiescent MAIN sample galaxies), but are somewhat brighter and more centrally concentrated. Several explanations for the latter bias are suggested. The SLACS survey provides the first statistically significant and homogeneously selected sample of bright early-type lens galaxies, furnishing a powerful probe of the structure of early-type galaxies within the half-light radius. The high confirmation rate of lenses in the SLACS survey suggests consideration of spectroscopic lens discovery as an explicit science goal of future spectroscopic galaxy surveys.

  19. FPscope: a field-portable high-resolution microscope using a cellphone lens.

    PubMed

    Dong, Siyuan; Guo, Kaikai; Nanda, Pariksheet; Shiradkar, Radhika; Zheng, Guoan

    2014-10-01

    The large consumer market has made cellphone lens modules available at low-cost and in high-quality. In a conventional cellphone camera, the lens module is used to demagnify the scene onto the image plane of the camera, where image sensor is located. In this work, we report a 3D-printed high-resolution Fourier ptychographic microscope, termed FPscope, which uses a cellphone lens in a reverse manner. In our platform, we replace the image sensor with sample specimens, and use the cellphone lens to project the magnified image to the detector. To supersede the diffraction limit of the lens module, we use an LED array to illuminate the sample from different incident angles and synthesize the acquired images using the Fourier ptychographic algorithm. As a demonstration, we use the reported platform to acquire high-resolution images of resolution target and biological specimens, with a maximum synthetic numerical aperture (NA) of 0.5. We also show that, the depth-of-focus of the reported platform is about 0.1 mm, orders of magnitude longer than that of a conventional microscope objective with a similar NA. The reported platform may enable healthcare accesses in low-resource settings. It can also be used to demonstrate the concept of computational optics for educational purposes.

  20. The interactive sky: a browsable allsky image

    NASA Astrophysics Data System (ADS)

    Tancredi, Gonzalo; Da Rosa, Fernando; Roland, Santiago; Almenares, Luciano; Gomez, Fernando

    2015-08-01

    We are conducting a project to make available panoramas of the night sky of the southern hemisphere, based on a mosaic of hundred of photographs. Each allsky panorama is a giant image composed by hundreds of high-resolution photos taken in the course of one night. The panoramas are accessible with a web-browser and the public is able to zoom on them and to see the sky with better quality than the naked eye. We are preparing 4 sets of panoramas corresponding to the four seasons.The individual images are taken with a 16 Mpixels DLSR camera with a 50 mm lens mounted on a Gigapan EPIC robotic camera mounts. These devices and a autoguiding telescope are mounted in a equatorial telescope mount, which allows us to have exposure of several tens seconds. The images are then processed and stitched to create the gigantic panorama, with typical weight of several GBytes.The limiting magnitude is V~8. The panoramas include more than 50 times more stars those detected with the naked eye.In addition to the allsky panoramas, we embedded higher resolution images of specific regions of interest such as: emission nebulae and dark, open and globular clusters and galaxies; which can be zoomed.The photographs have been acquiring since December 2014 in a dark place with low light pollution in the countryside of Uruguay; which allows us to achieve deep sky objects.These panoramas will be available on a website and can be accessed with any browser.This tool will be available for teaching purposes, astronomy popularization or introductory research. Teacher guides will be developed for educational activities at different educational levels.While there are similar projects like Google Sky, the methodology used to generate the giant panoramas allows a much more realistic view, with a background of continuous sky without sharp edges. Furthermore, while the planetarium software is based on drawings of the stars, our panoramas are based on real images.This is the first project with these

  1. A lazy way to design infrared lens

    NASA Astrophysics Data System (ADS)

    Qiu, RongSheng; Wu, JianDong; Chen, LongJiang; Yu, Kun; Pang, HaoJun; Hu, BaiZhen

    2017-08-01

    We designed a compact middle-wave infrared (MWIR) lens with a large focal length ratio (about 1.5:1), used in the 3.7 to 4.8 μm range. The lens is consisted of a compact front group and a re-imaging group. Thanks to the compact front group configuration, it is possible to install a filter wheel mechanism in such a tight space. The total track length of the lens is about 50mm, which includes a 2mm thick protective window and a cold shield of 12mm. The full field of view of the lens is about 3.6°, and F number is less than 1.6, the image circle is about 4.6mm in diameter. The design performance of the lens reaches diffraction limitation, and doesn't change a lot during a temperature range of -40°C +60°C. This essay proposed a stepwise design method of infrared optical system guided by the qualitative approach. The method fully utilize the powerful global optimization ability, with a little effort to write code snippet in optical design software, frees optical engineer from tedious calculation of the original structure.

  2. Augmented Reality Technology Using Microsoft HoloLens in Anatomic Pathology.

    PubMed

    Hanna, Matthew G; Ahmed, Ishtiaque; Nine, Jeffrey; Prajapati, Shyam; Pantanowitz, Liron

    2018-05-01

    Context Augmented reality (AR) devices such as the Microsoft HoloLens have not been well used in the medical field. Objective To test the HoloLens for clinical and nonclinical applications in pathology. Design A Microsoft HoloLens was tested for virtual annotation during autopsy, viewing 3D gross and microscopic pathology specimens, navigating whole slide images, telepathology, as well as real-time pathology-radiology correlation. Results Pathology residents performing an autopsy wearing the HoloLens were remotely instructed with real-time diagrams, annotations, and voice instruction. 3D-scanned gross pathology specimens could be viewed as holograms and easily manipulated. Telepathology was supported during gross examination and at the time of intraoperative consultation, allowing users to remotely access a pathologist for guidance and to virtually annotate areas of interest on specimens in real-time. The HoloLens permitted radiographs to be coregistered on gross specimens and thereby enhanced locating important pathologic findings. The HoloLens also allowed easy viewing and navigation of whole slide images, using an AR workstation, including multiple coregistered tissue sections facilitating volumetric pathology evaluation. Conclusions The HoloLens is a novel AR tool with multiple clinical and nonclinical applications in pathology. The device was comfortable to wear, easy to use, provided sufficient computing power, and supported high-resolution imaging. It was useful for autopsy, gross and microscopic examination, and ideally suited for digital pathology. Unique applications include remote supervision and annotation, 3D image viewing and manipulation, telepathology in a mixed-reality environment, and real-time pathology-radiology correlation.

  3. THE BOSS EMISSION-LINE LENS SURVEY. IV. SMOOTH LENS MODELS FOR THE BELLS GALLERY SAMPLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Yiping; Bolton, Adam S.; Montero-Dorta, Antonio D.

    We present Hubble Space Telescope F606W-band imaging observations of 21 galaxy-Ly α emitter lens candidates in the Baryon Oscillation Spectroscopic Survey Emission-Line Lens Survey (BELLS) for the GALaxy-Ly α EmitteR sYstems (BELLS GALLERY) survey. Seventeen systems are confirmed to be definite lenses with unambiguous evidence of multiple imaging. The lenses are primarily massive early-type galaxies (ETGs) at redshifts of approximately 0.55, while the lensed sources are Ly α emitters (LAEs) at redshifts from two to three. Although most of the lens systems are well fit by smooth lens models consisting of singular isothermal ellipsoids in an external shear field, a thoroughmore » exploration of dark substructures in the lens galaxies is required. The Einstein radii of the BELLS GALLERY lenses are, on average, 60% larger than those of the BELLS lenses because of the much higher source redshifts. This will allow for a detailed investigation of the radius evolution of the mass profile in ETGs. With the aid of the average ∼13× lensing magnification, the LAEs are frequently resolved into individual star-forming knots with a wide range of properties. They have characteristic sizes from less than 100 pc to several kiloparsecs, rest-frame far-UV apparent AB magnitudes from 29.6 to 24.2, and typical projected separations of 500 pc to 2 kpc.« less

  4. Accelerated aortic imaging using small field of view imaging and electrocardiogram-triggered quadruple inversion recovery magnetization preparation.

    PubMed

    Peel, Sarah A; Hussain, Tarique; Cecelja, Marina; Abbas, Abeera; Greil, Gerald F; Chowienczyk, Philip; Spector, Tim; Smith, Alberto; Waltham, Matthew; Botnar, Rene M

    2011-11-01

    To accelerate and optimize black blood properties of the quadruple inversion recovery (QIR) technique for imaging the abdominal aortic wall. QIR inversion delays were optimized for different heart rates in simulations and phantom studies by minimizing the steady state magnetization of blood for T(1) = 100-1400 ms. To accelerate and improve black blood properties of aortic vessel wall imaging, the QIR prepulse was combined with zoom imaging and (a) "traditional" and (b) "trailing" electrocardiogram (ECG) triggering. Ten volunteers were imaged pre- and post-contrast administration using a conventional ECG-triggered double inversion recovery (DIR) and the two QIR implementations in combination with a zoom-TSE readout. The QIR implemented with "trailing" ECG-triggering resulted in consistently good blood suppression as the second inversion delay was timed during maximum systolic flow in the aorta. The blood signal-to-noise ratio and vessel wall to blood contrast-to-noise ratio, vessel wall sharpness, and image quality scores showed a statistically significant improvement compared with the traditional QIR implementation with and without ECG-triggering. We demonstrate that aortic vessel wall imaging can be accelerated with zoom imaging and that "trailing" ECG-triggering improves black blood properties of the aorta which is subject to motion and variable blood flow during the cardiac cycle. Copyright © 2011 Wiley Periodicals, Inc.

  5. Revised Lens Model and Predictions of Time Delay for the Multiply Imaged Lensed Supernova, “SN Refsdal”, in the FF cluster MACS J1149+2223

    NASA Astrophysics Data System (ADS)

    Sharon, Keren; Johnson, Traci Lin

    2015-08-01

    We present a revised lens model of MACS J1149+2223, in which the first resolved multiply imaged lensed supernova (SN) was discovered. The lens model is based on the model of Johnson et al. with some modifications. We include more lensing constraints from the host galaxy of the newly discovered SN, and increase the flexibility of the model in order to better reproduce the lensing signal in the vicinity of this galaxy. The revised model accurately reconstructs the positions of the lensed SN, provides magnifications, predicts the time delay between the instances of the SN, and derive their uncertainties. We find that the time delays between the four observed images are a few days: t(S2) = 2 +10/-6 days, t(S3)=-5 +13/-7 days, t(S4)=7 +16/-3 days. At the positions of the other images of the same host galaxy, an image of the SN had appeared on the opposite side of the cluster some 11-13 years ago, and another is predicted to appear approximately 180-280 days after S1, i.e., in a 3-month window around July 2015. This image will be less magnified than the ones already detected, with magnification of mu=5 (compared to mu~10-20 of the four images that were observed in 2014, making it about three times fainter). Finally, we reconstruct the source image of the host galaxy, and position the SN on one of its spiral arms. New lensing constraints from the full depth FF imaging will improve the accuracy of future lens models. Products of this lens model are available to the community through MAST.

  6. Image-Based Focusing

    NASA Astrophysics Data System (ADS)

    Selker, Ted

    1983-05-01

    Lens focusing using a hardware model of a retina (Reticon RL256 light sensitive array) with a low cost processor (8085 with 512 bytes of ROM and 512 bytes of RAM) was built. This system was developed and tested on a variety of visual stimuli to demonstrate that: a)an algorithm which moves a lens to maximize the sum of the difference of light level on adjacent light sensors will converge to best focus in all but contrived situations. This is a simpler algorithm than any previously suggested; b) it is feasible to use unmodified video sensor arrays with in-expensive processors to aid video camera use. In the future, software could be developed to extend the processor's usefulness, possibly to track an actor by panning and zooming to give a earners operator increased ease of framing; c) lateral inhibition is an adequate basis for determining best focus. This supports a simple anatomically motivated model of how our brain focuses our eyes.

  7. Hyperchromatic lens for recording time-resolved phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frayer, Daniel K.

    A method and apparatus for the capture of a high number of quasi-continuous effective frames of 2-D data from an event at very short time scales (from less than 10.sup.-12 to more than 10.sup.-8 seconds) is disclosed which allows for short recording windows and effective number of frames. Active illumination, from a chirped laser pulse directed to the event creates a reflection where wavelength is dependent upon time and spatial position is utilized to encode temporal phenomena onto wavelength. A hyperchromatic lens system receives the reflection and maps wavelength onto axial position. An image capture device, such as holography ormore » plenoptic imaging device, captures the resultant focal stack from the hyperchromatic lens system in both spatial (imaging) and longitudinal (temporal) axes. The hyperchromatic lens system incorporates a combination of diffractive and refractive components to maximally separate focal position as a function of wavelength.« less

  8. The Acoustic Lens Design and in Vivo Use of a Multifunctional Catheter Combining Intracardiac Ultrasound Imaging and Electrophysiology Sensing

    PubMed Central

    Stephens, Douglas N.; Cannata, Jonathan; Liu, Ruibin; Zhao, Jian Zhong; Shung, K. Kirk; Nguyen, Hien; Chia, Raymond; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai E.; Mahajan, Aman; Shivkumar, Kalyanam; Kim, Kang; O’Donnell, Matthew; Sahn, David

    2009-01-01

    A multifunctional 9F intracardiac imaging and electrophysiology mapping catheter was developed and tested to help guide diagnostic and therapeutic intracardiac electrophysiology (EP) procedures. The catheter tip includes a 7.25-MHz, 64-element, side-looking phased array for high resolution sector scanning. Multiple electrophysiology mapping sensors were mounted as ring electrodes near the array for electrocardiographic synchronization of ultrasound images. The catheter array elevation beam performance in particular was investigated. An acoustic lens for the distal tip array designed with a round cross section can produce an acceptable elevation beam shape; however, the velocity of sound in the lens material should be approximately 155 m/s slower than in tissue for the best beam shape and wide bandwidth performance. To help establish the catheter’s unique ability for integration with electrophysiology interventional procedures, it was used in vivo in a porcine animal model, and demonstrated both useful intracardiac echocardiographic visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheter also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. PMID:18407850

  9. Escherichia coli counting using lens-free imaging for sepsis diagnosis

    NASA Astrophysics Data System (ADS)

    Moon, Sangjun; Manzur, Fahim; Manzur, Tariq; Klapperich, Catherine; Demirci, Utkan

    2009-09-01

    Sepsis causes 9.3% of overall deaths in United States. To diagnose sepsis, cell/bacteria capture and culturing methods have been widely investigated in the medical field. Escherichia Coli (E. Coli) is used as a model organism for sepsis in blood stream since wide variety of antibodies are established and the genetic modification process is well documented for fluorescent tagging. In point-of-care testing applications, the sepsis diagnostics require fast monitoring, inexpensive testing, and reliable results at resource limited settings, i.e. battle field, home care for dialysis. However, the cell/E.coli are hard to directly capture and see at the POCT because of the small size, 2 μm long and 0.5 μm in diameter, and the bacteria are rare in the blood stream in sepsis. Here, we propose a novel POCT platform to image and enumerate cell/E.coli on a microfluidic surface to diagnose sepsis at resource limited conditions. We demonstrate that target cells are captured from 5 μl of whole blood using specific antibodies and E.coli are imaged using a lens-free imaging platform, 2.2 μm pixel CMOS based imaging sensor. This POCT cell/bacteria capture and enumeration approach can further be used for medical diagnostics of sepsis. We also show approaches to rapidly quantify white blood cell counts from blood which can be used to monitor immune response.

  10. DotLens smartphone microscopy for biological and biomedical applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sung, Yu-Lung; Zhao, Fusheng; Shih, Wei-Chuan

    2017-02-01

    Recent advances in inkjet-printed optics have created a new class of lens fabrication technique. Lenses with a tunable geometry, magnification, and focal length can be fabricated by dispensing controlled amounts of liquid polymer onto a heated surface. This fabrication technique is highly cost-effective, and can achieve optically smooth surface finish. Dubbed DotLens, a single of which weighs less than 50 mg and occupies a volume less than 50 μL. DotLens can be attached onto any smartphone camera akin to a contact lens, and enable smartphones to obtain image resolution as fine as 1 µm. The surface curvature modifies the optical path of light to the image sensor, and enables the camera to focus as close as 2 mm. This enables microscopic imaging on a smartphone without any additional attachments, and has shown great potential in mobile point-of-care diagnostic systems, particularly for histology of tissue sections and cytology of blood cells. DotLens Smartphone Microscopy represents an innovative approach fundamentally different from other smartphone microscopes. In this paper, we describe the application and performance of DotLens smartphone microscopy in biological and biomedical research. In particular, we show recent results from images collected from pathology tissue slides with cancer features. In addition, we show performance in cytological analysis of blood smear. This tool has empowered Citizen Science investigators to collect microscopic images from various interesting objects.

  11. Relationship between changes in crystalline lens shape and axial elongation in young children.

    PubMed

    Ishii, Kotaro; Yamanari, Masahiro; Iwata, Hiroyoshi; Yasuno, Yoshiaki; Oshika, Tetsuro

    2013-01-28

    To evaluate the relationship between changes in crystalline lens shape and axial elongation during growth in young children. Twenty-five patients (age: 1 month to 6 years) who underwent head magnetic resonance imaging (MRI) were included in the analysis. Refractive error was measured with an autorefractor in 22 patients. Crystalline lens dimensions and axial length (AL) were obtained from the MR images. The radius of curvature and asphericity of the crystalline lens were measured using reconstructed MR images. Crystalline lens shape and eyeball shape were numerically expressed by elliptic Fourier descriptors (EFDs) on the basis of MR images. The contours of the crystalline lens and eyeball were evaluated by principal component analysis of the EFDs. The average anterior and posterior radii of curvature were 6.21 mm (range across ages from 3.89-7.26 mm) and -4.81 mm (range across ages from -2.93 to -5.67 mm). These were closely correlated with age by logarithmic analysis. The first principal component (PC1) of the crystalline lens explained 89.15% of the total variance in lens shape, and it was also significantly correlated with age (Pearson's r = 0.648, P < 0.001) and AL (r = 0.847, P < 0.001). In the multiple linear regression analysis in which AL was a dependent variable, only the PC1 of the crystalline lens was associated with AL. Axial elongation is related to the entire contour of the crystalline lens. This result shows that axial elongation progresses in parallel to change in the crystalline lens shape.

  12. 3D imaging with a single-aperture 3-mm objective lens: concept, fabrication, and test

    NASA Astrophysics Data System (ADS)

    Korniski, Ronald; Bae, Sam Y.; Shearn, Michael; Manohara, Harish; Shahinian, Hrayr

    2011-10-01

    There are many advantages to minimally invasive surgery (MIS). An endoscope is the optical system of choice by the surgeon for MIS. The smaller the incision or opening made to perform the surgery, the smaller the optical system needed. For minimally invasive neurological and skull base surgeries the openings are typically 10-mm in diameter (dime sized) or less. The largest outside diameter (OD) endoscope used is 4mm. A significant drawback to endoscopic MIS is that it only provides a monocular view of the surgical site thereby lacking depth information for the surgeon. A stereo view would provide the surgeon instantaneous depth information of the surroundings within the field of view, a significant advantage especially during brain surgery. Providing 3D imaging in an endoscopic objective lens system presents significant challenges because of the tight packaging constraints. This paper presents a promising new technique for endoscopic 3D imaging that uses a single lens system with complementary multi-bandpass filters (CMBFs), and describes the proof-of-concept demonstrations performed to date validating the technique. These demonstrations of the technique have utilized many commercial off-the- shelf (COTS) components including the ones used in the endoscope objective.

  13. 3D Imaging with a Single-Aperture 3-mm Objective Lens: Concept, Fabrication and Test

    NASA Technical Reports Server (NTRS)

    Korniski, Ron; Bae, Sam Y.; Shearn, Mike; Manohara, Harish; Shahinian, Hrayr

    2011-01-01

    There are many advantages to minimally invasive surgery (MIS). An endoscope is the optical system of choice by the surgeon for MIS. The smaller the incision or opening made to perform the surgery, the smaller the optical system needed. For minimally invasive neurological and skull base surgeries the openings are typically 10-mm in diameter (dime sized) or less. The largest outside diameter (OD) endoscope used is 4mm. A significant drawback to endoscopic MIS is that it only provides a monocular view of the surgical site thereby lacking depth information for the surgeon. A stereo view would provide the surgeon instantaneous depth information of the surroundings within the field of view, a significant advantage especially during brain surgery. Providing 3D imaging in an endoscopic objective lens system presents significant challenges because of the tight packaging constraints. This paper presents a promising new technique for endoscopic 3D imaging that uses a single lens system with complementary multi-bandpass filters (CMBFs), and describes the proof-of-concept demonstrations performed to date validating the technique. These demonstrations of the technique have utilized many commercial off-the-shelf (COTS) components including the ones used in the endoscope objective.

  14. Echelle grating multi-order imaging spectrometer utilizing a catadioptric lens

    DOEpatents

    Chrisp, Michael P; Bowers, Joel M

    2014-05-27

    A cryogenically cooled imaging spectrometer that includes a spectrometer housing having a first side and a second side opposite the first side. An entrance slit is on the first side of the spectrometer housing and directs light to a cross-disperser grating. An echelle immersions grating and a catadioptric lens are positioned in the housing to receive the light. A cryogenically cooled detector is located in the housing on the second side of the spectrometer housing. Light from the entrance slit is directed to the cross-disperser grating. The light is directed from the cross-disperser grating to the echelle immersions grating. The light is directed from the echelle immersions grating to the cryogenically cooled detector on the second side of the spectrometer housing.

  15. Phase contrast microscopy of living cells within the whole lens: spatial correlations and morphological dynamics

    PubMed Central

    Kong, Zhiying; Zhu, Xiangjia; Zhang, Shenghai; Wu, Jihong

    2012-01-01

    Purpose Images from cultured lens cells do not convey enough spatial information, and imaging of fixed lens specimens cannot reveal dynamic changes in the cells. As such, a real-time, convenient approach for monitoring label-free imaging of dynamic processes of living cells within the whole lens is urgently needed. Methods Female Wistar rat lenses were kept in organ culture. Insulin-like growth factor-I was added to the culture medium to induce cell mitosis. A novel method of ultraviolet (UV) irradiation was used to induce cell apoptosis and fiber damage. The cellular morphological dynamics within the whole lens were monitored by inverted phase contrast microscopy. Apoptosis was assessed using a commercial kit with Hoechst 33342/YO-PRO®-1/propidium iodide (PI). Results The intrinsic transparency and low-light scattering property of the rat lens permitted direct imaging of the lens epithelial cells (LECs) and the superficial fiber cells. We visualized the processes of mitosis and apoptosis of the LECs, and we obtained dynamic images of posterior fiber cells following UVA irradiation. Conclusions This method opens a new window for observing lens cells in their physiologic location, and it can be readily applied in studies on lens physiology and pathology. PMID:22879736

  16. Athermal design and analysis of glass-plastic hybrid lens

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Cen, Zhaofeng; Li, Xiaotong

    2018-01-01

    With the rapid development of security market, the glass-plastic hybrid lens has gradually become a choice for the special requirements like high imaging quality in a wide temperature range and low cost. The reduction of spherical aberration is achieved by using aspherical surface instead of increasing the number of lenses. Obviously, plastic aspherical lens plays a great role in the cost reduction. However, the hybrid lens has a priority issue, which is the large thermal coefficient of expansion of plastic, causing focus shift and seriously affecting the imaging quality, so the hybrid lens is highly sensitive to the change of temperature. To ensure the system operates normally in a wide temperature range, it is necessary to eliminate the influence of temperature on the hybrid lens system. A practical design method named the Athermal Material Map is summarized and verified by an athermal design example according to the design index. It includes the distribution of optical power and selection of glass or plastic. The design result shows that the optical system has excellent imaging quality at a wide temperature range from -20 ° to 70 °. The method of athermal design in this paper has generality which could apply to optical system with plastic aspherical surface.

  17. A micro-optical system for endoscopy based on mechanical compensation paradigm using miniature piezo-actuation.

    PubMed

    Cerveri, Pietro; Zazzarini, Cynthia Corinna; Patete, Paolo; Baroni, Guido

    2014-06-01

    The goal of the study was to investigate the feasibility of a novel miniaturized optical system for endoscopy. Fostering the mechanical compensation paradigm, the modeled optical system, composed by 14 lenses, separated in 4 different sets, had a total length of 15.55mm, an effective focal length ranging from 1.5 to 4.5mm with a zoom factor of about 2.8×, and an angular field of view up to 56°. Predicted maximum lens travel was less than 3.5mm. The consistency of the image plane height across the magnification range testified the zoom capability. The maximum predicted achromatic astigmatism, transverse spherical aberration, longitudinal spherical aberration and relative distortion were less than or equal to 25μm, 15μm, 35μm and 12%, respectively. Tests on tolerances showed that the manufacturing and opto-mechanics mounting are critical as little deviations from design dramatically decrease the optical performances. However, recent micro-fabrication technology can guarantee tolerances close to nominal design. A closed-loop actuation unit, devoted to move the zoom and the focus lens sets, was implemented adopting miniaturized squiggle piezo-motors and magnetic position encoders based on Hall effect. Performance results, using a prototypical test board, showed a positioning accuracy of less than 5μm along a lens travel path of 4.0mm, which was in agreement with the lens set motion features predicted by the analysis. In conclusion, this study demonstrated the feasibility of the optical design and the viability of the actuation approach while tolerances must be carefully taken into account. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  18. Magnifying lens for 800 MeV proton radiography.

    PubMed

    Merrill, F E; Campos, E; Espinoza, C; Hogan, G; Hollander, B; Lopez, J; Mariam, F G; Morley, D; Morris, C L; Murray, M; Saunders, A; Schwartz, C; Thompson, T N

    2011-10-01

    This article describes the design and performance of a magnifying magnetic-lens system designed, built, and commissioned at the Los Alamos National Laboratory (LANL) for 800 MeV flash proton radiography. The technique of flash proton radiography has been developed at LANL to study material properties under dynamic loading conditions through the analysis of time sequences of proton radiographs. The requirements of this growing experimental program have resulted in the need for improvements in spatial radiographic resolution. To meet these needs, a new magnetic lens system, consisting of four permanent magnet quadrupoles, has been developed. This new lens system was designed to reduce the second order chromatic aberrations, the dominant source of image blur in 800 MeV proton radiography, as well as magnifying the image to reduce the blur contribution from the detector and camera systems. The recently commissioned lens system performed as designed, providing nearly a factor of three improvement in radiographic resolution.

  19. Magnifying lens for 800 MeV proton radiography

    NASA Astrophysics Data System (ADS)

    Merrill, F. E.; Campos, E.; Espinoza, C.; Hogan, G.; Hollander, B.; Lopez, J.; Mariam, F. G.; Morley, D.; Morris, C. L.; Murray, M.; Saunders, A.; Schwartz, C.; Thompson, T. N.

    2011-10-01

    This article describes the design and performance of a magnifying magnetic-lens system designed, built, and commissioned at the Los Alamos National Laboratory (LANL) for 800 MeV flash proton radiography. The technique of flash proton radiography has been developed at LANL to study material properties under dynamic loading conditions through the analysis of time sequences of proton radiographs. The requirements of this growing experimental program have resulted in the need for improvements in spatial radiographic resolution. To meet these needs, a new magnetic lens system, consisting of four permanent magnet quadrupoles, has been developed. This new lens system was designed to reduce the second order chromatic aberrations, the dominant source of image blur in 800 MeV proton radiography, as well as magnifying the image to reduce the blur contribution from the detector and camera systems. The recently commissioned lens system performed as designed, providing nearly a factor of three improvement in radiographic resolution.

  20. A Method to Prevent Protein Delocalization in Imaging Mass Spectrometry of Non-Adherent Tissues: Application to Small Vertebrate Lens Imaging

    PubMed Central

    Anderson, David M. G.; Floyd, Kyle A.; Barnes, Stephen; Clark, Judy M.; Clark, John I.; Mchaourab, Hassane; Schey, Kevin L.

    2015-01-01

    MALDI imaging requires careful sample preparation to obtain reliable, high quality images of small molecules, peptides, lipids, and proteins across tissue sections. Poor crystal formation, delocalization of analytes, and inadequate tissue adherence can affect the quality, reliability, and spatial resolution of MALDI images. We report a comparison of tissue mounting and washing methods that resulted in an optimized method using conductive carbon substrates that avoids thaw mounting or washing steps, minimizes protein delocalization, and prevents tissue detachment from the target surface. Application of this method to image ocular lens proteins of small vertebrate eyes demonstrates the improved methodology for imaging abundant crystallin protein products. This method was demonstrated for tissue sections from rat, mouse, and zebrafish lenses resulting in good quality MALDI images with little to no delocalization. The images indicate, for the first time in mouse and zebrafish, discrete localization of crystallin protein degradation products resulting in concentric rings of distinct protein contents that may be responsible for the refractive index gradient of vertebrate lenses. PMID:25665708

  1. Subpixel edge estimation with lens aberrations compensation based on the iterative image approximation for high-precision thermal expansion measurements of solids

    NASA Astrophysics Data System (ADS)

    Inochkin, F. M.; Kruglov, S. K.; Bronshtein, I. G.; Kompan, T. A.; Kondratjev, S. V.; Korenev, A. S.; Pukhov, N. F.

    2017-06-01

    A new method for precise subpixel edge estimation is presented. The principle of the method is the iterative image approximation in 2D with subpixel accuracy until the appropriate simulated is found, matching the simulated and acquired images. A numerical image model is presented consisting of three parts: an edge model, object and background brightness distribution model, lens aberrations model including diffraction. The optimal values of model parameters are determined by means of conjugate-gradient numerical optimization of a merit function corresponding to the L2 distance between acquired and simulated images. Computationally-effective procedure for the merit function calculation along with sufficient gradient approximation is described. Subpixel-accuracy image simulation is performed in a Fourier domain with theoretically unlimited precision of edge points location. The method is capable of compensating lens aberrations and obtaining the edge information with increased resolution. Experimental method verification with digital micromirror device applied to physically simulate an object with known edge geometry is shown. Experimental results for various high-temperature materials within the temperature range of 1000°C..2400°C are presented.

  2. Microscopic Image of Martian Surface Material on a Silicone Substrate

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for larger version of Figure 1

    This image taken by the Optical Microscope on NASA's Phoenix Mars Lander shows soil sprinkled from the lander's Robot Arm scoop onto a silicone substrate. The substrate was then rotated in front of the microscope. This is the first sample collected and delivered for instrumental analysis onboard a planetary lander since NASA's Viking Mars missions of the 1970s. It is also the highest resolution image yet seen of Martian soil.

    The image is dominated by fine particles close to the resolution of the microscope. These particles have formed clumps, which may be a smaller scale version of what has been observed by Phoenix during digging of the surface material.

    The microscope took this image during Phoenix's Sol 17 (June 11), or the 17th Martian day after landing. The scale bar is 1 millimeter (0.04 inch).

    Zooming in on the Martian Soil

    In figure 1, three zoomed-in portions are shown with an image of Martian soil particles taken by the Optical Microscope on NASA's Phoenix Mars Lander.

    The left zoom box shows a composite particle. The top of the particle has a green tinge, possibly indicating olivine. The bottom of the particle has been reimaged at a different focus position in black and white (middle zoom box), showing that this is a clump of finer particles.

    The right zoom box shows a rounded, glassy particle, similar to those which have also been seen in an earlier sample of airfall dust collected on a surface exposed during landing.

    The shadows at the bottom of image are of the beams of the Atomic Force Microscope.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. The development of a multifunction lens test instrument by using computer aided variable test patterns

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Jen; Wu, Wen-Hong; Huang, Kuo-Cheng

    2009-08-01

    A multi-function lens test instrument is report in this paper. This system can evaluate the image resolution, image quality, depth of field, image distortion and light intensity distribution of the tested lens by changing the tested patterns. This system consists of a tested lens, a CCD camera, a linear motorized stage, a system fixture, an observer LCD monitor, and a notebook for pattern providing. The LCD monitor displays a serious of specified tested patterns sent by the notebook. Then each displayed pattern goes through the tested lens and images in the CCD camera sensor. Consequently, the system can evaluate the performance of the tested lens by analyzing the image of CCD camera with special designed software. The major advantage of this system is that it can complete whole test quickly without interruption due to part replacement, because the tested patterns are statically displayed on monitor and controlled by the notebook.

  4. Effect of birefringence of lens material on polarization status and optical imaging characteristics

    NASA Astrophysics Data System (ADS)

    Kim, Wan-Chin; Park, No-Cheol

    2018-04-01

    In most cases of molding with glass or optical polymers, it is expected that there will be birefringence caused by the internal mechanical stresses remaining in the molding material. The distribution of the residual stress can be annealed by slow cooling, but this approach is disadvantageous with respect to the shape accuracy and manufacturing time. In this study, we propose an analytical model to calculate the diffracted field near the focal plane by considering two primary parameters, the orientation angle of the fast axis and the path difference. In order to verify the reliability of the analytical model, we compared the measured beam spot of the F-theta lens of the laser scanning unit (LSU) with the analytical result. In addition, we analyzed the calculated result from the perspective of the polarization status in the exit pupil. The proposed analysis method can be applied to enhance the image quality for cases in which birefringence occurs in a lens material by suitably modeling the amplitude and phase of the incident light flux.

  5. Single-lens 3D digital image correlation system based on a bilateral telecentric lens and a bi-prism: Systematic error analysis and correction

    NASA Astrophysics Data System (ADS)

    Wu, Lifu; Zhu, Jianguo; Xie, Huimin; Zhou, Mengmeng

    2016-12-01

    Recently, we proposed a single-lens 3D digital image correlation (3D DIC) method and established a measurement system on the basis of a bilateral telecentric lens (BTL) and a bi-prism. This system can retrieve the 3D morphology of a target and measure its deformation using a single BTL with relatively high accuracy. Nevertheless, the system still suffers from systematic errors caused by manufacturing deficiency of the bi-prism and distortion of the BTL. In this study, in-depth evaluations of these errors and their effects on the measurement results are performed experimentally. The bi-prism deficiency and the BTL distortion are characterized by two in-plane rotation angles and several distortion coefficients, respectively. These values are obtained from a calibration process using a chessboard placed into the field of view of the system; this process is conducted after the measurement of tested specimen. A modified mathematical model is proposed, which takes these systematic errors into account and corrects them during 3D reconstruction. Experiments on retrieving the 3D positions of the chessboard grid corners and the morphology of a ceramic plate specimen are performed. The results of the experiments reveal that ignoring the bi-prism deficiency will induce attitude error to the retrieved morphology, and the BTL distortion can lead to its pseudo out-of-plane deformation. Correcting these problems can further improve the measurement accuracy of the bi-prism-based single-lens 3D DIC system.

  6. Optimization experiments with a double Gauss lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brixner, B.; Klein, M.M.

    1988-05-01

    This paper describes how a lens can be generated by starting from plane surfaces. Three different experiments, using the Los Alamos National Laboratory optimization procedure, all converged on the same stable prescriptions in the optimum minimum region. The starts were made first from an already optimized lens appearing in the literature, then from a powerless plane-surfaces configuration, and finally from a crude Super Angulon configuration. In each case the result was a double Gauss lens, which suggests that this type of lens may be the best compact six-glass solution for one imaging problem: an f/2 aperture and a moderate fieldmore » of view. The procedures and results are discussed in detail.« less

  7. Optimization Experiments With A Double Gauss Lens

    NASA Astrophysics Data System (ADS)

    Brixner, Berlyn; Klein, Morris M.

    1988-05-01

    This paper describes how a lens can be generated by starting from plane surfaces. Three different experiments, using the Los Alamos National Laboratory optimization procedure, all converged on the same stable prescriptions in the optimum minimum region. The starts were made first from an already optimized lens appearing in the literature, then from a powerless plane-surfaces configuration, and finally from a crude Super Angulon configuration. In each case the result was a double Gauss lens, which suggests that this type of lens may be the best compact six-glass solution for one imaging problem: an f/2 aperture and a moderate field of view. The procedures and results are discussed in detail.

  8. Zooming into the Paraná-Etendeka silicic volcanics, southern Brasil: a physical volcanological approach

    NASA Astrophysics Data System (ADS)

    Gualda, G. A. R.; Gravley, D. M.; Harmon, L. J.; Tramontano, S.; Luchetti, A. C. F.; Nardy, A.

    2015-12-01

    Paraná-Etendeka volcanism led to the opening of the Atlantic Ocean during the early Cretaceous. Most Paraná research has focused on the regional scale geochemistry and geochronology. Complementarily, we have taken a physical volcanological approach to elucidate the styles and locations of silicic eruptions with a focus on extrusive vs. explosive varieties, and an ultimate goal to characterise the crustal magmatic conditions. Through satellite to microscopic observations we can zoom from volcanic edifice and deposit morphologies, remarkably preserved in the Mesozoic landscape, to primary microscopic textures. Lava domes appear in clusters with high relief and are surrounded by lower flat-topped terraces comprised of multiple tabular-shaped packages with conspicuous horizontal jointing. Joint thickness coincides with layering from mm-scale laminations to larger lens-shaped blobs up to 20 cm thick and more than a metre long. These layered deposits appear to be compressed and/or stretched into the finer laminations and grade up into the fatter lens-shaped blobs. In other regions, extensive plateaus dominate the landscape with flat-lying flow packages continuous over 10's of kilometres and possibly further. Rheomorphism is evident in places with sub-parallel joints that grade up into a zone of deformation where curvilinear to overturned joint patterns reflect lateral forcing in a more ductile flow regime. Microscopically the blobs and surrounding matrix are almost indistinguishable except for subtle differences in spherulite textures, zonal alteration and distribution of crystal sizes. Although our research is relatively nascent, our observations suggest eruptions may have ranged from edifice building effusive ones to more explosive ones, albeit possibly relatively low fire fountains feeding hybridised lava/pyroclastic flows. Some of these flows are extensive, tens to possibly hundreds of kilometres long, consistent with high eruption rates of hot magma. These

  9. Contact lens assisted imaging with integrated flexible handheld probe for glaucoma diagnosis

    NASA Astrophysics Data System (ADS)

    Hong, Xun Jie Jeesmond; V. K., Shinoj; Murukeshan, V. M.; Baskaran, M.; Aung, Tin

    2017-06-01

    Angle closure glaucoma accounts for majority of the bilateral blindness in Asian countries such as Singapore, China, and India. Abnormalities in the optic nerve and aqueous outflow system are the most indicative clinical hallmarks for glaucoma of this clinical subtype. Traditional photographic imaging techniques to assess the drainage angle are contact based, and may expose patients to risk of corneal abrasion and infections. In addition, these procedures require the use of viscous ophthalmic gels as coupling medium to overcome the phenomenon of total internal reflection at the tear-air interface. In this paper, we propose an integrated flexible handheld probe consisting of a micro color CCD video camera and white light LEDs. The handheld probe is able to capture images of the fundus and opposite iridocorneal angle when placed at the central cornea or limbus respectively. Here, we propose the use of hydrogel contact lens as an index matching medium and better protective barrier, as an alternative to conventional ophthalmic gels. The proposed imaging system and methodology has been successfully tested on porcine eye samples, ex vivo. With its high repeatability, reproducibility, and a good safety profile, it is believed that the proposed imaging system and methodology will complement existing imaging modalities in the diagnosis and management of glaucoma.

  10. MG0414+0534: A Dusty Gravitational Lens

    NASA Technical Reports Server (NTRS)

    Lawrence, C.; Elston, R.; Jannuzi, B.; Turner, E.

    1996-01-01

    The gravitational lens system MG0414+0534 has an unexceptional four-image lensing geometry; however, the optical counterparts of the radio images are exceedingly red, with spectra unlike that of any previously observed active nucleus.

  11. Second generation crystals for Laue lens applications

    NASA Astrophysics Data System (ADS)

    Barrière, N.; von Ballmoos, P.; Bastie, P.; Courtois, P.; Abrosimov, N. V.; Andersen, K.; Halloin, H.; Skinner, G.; Smither, R. K.

    2006-06-01

    A Laue lens gamma-ray telescope represents an exciting concept for a future high-energy mission. The feasibility of such a lens has been demonstrated by the CLAIRE lens prototype; since then various mission concepts featuring a Laue lens are being developed. The latest, which is also the most ambitious, is the European Gamma-Ray Imager (GRI). However, advancing from the CLAIRE prototype to a scientifically exploitable Laue lens requires still substantial research and development. First and foremost, diffracting elements (crystals) that constitute the Laue lens have to be optimized to offer the best efficiency and imaging capabilities for the resulting telescope. The characteristics of selected candidate crystals were measured at the European Synchrotron Radiation Facility on the high-energy beamline ID 15A using a beam tuned at 292 keV. The studied low mosaicity copper crystals have shown absolute reflectivity reaching 30%. These crystals are promising for the realization of a Laue lens, despite the fact that they produce a diffracted beam featuring a Gaussian intensity profile, which contributes to the spread of the focal spot. A composition gradient Si 1-x-Ge x crystal has been investigated as well, which showed a diffraction efficiency reaching 50% (disregarding absorption) - half of the theoretical maximum - that represents an absolute reflectivity around 39 %, the best that we measured at this energy to date. This gradient crystal also showed a square-shaped rocking curve that is almost the best case to minimize the spread of the focal spot. We also show that bending a gradient crystal could still enhance the focusing. Thanks to the better focusing, a factor of 2 in sensitivity improvement may be achieved.

  12. Gravitational lens modelling in a citizen science context

    NASA Astrophysics Data System (ADS)

    Küng, Rafael; Saha, Prasenjit; More, Anupreeta; Baeten, Elisabeth; Coles, Jonathan; Cornen, Claude; Macmillan, Christine; Marshall, Phil; More, Surhud; Odermatt, Jonas; Verma, Aprajita; Wilcox, Julianne K.

    2015-03-01

    We develop a method to enable collaborative modelling of gravitational lenses and lens candidates, that could be used by non-professional lens enthusiasts. It uses an existing free-form modelling program (GLASS), but enables the input to this code to be provided in a novel way, via a user-generated diagram that is essentially a sketch of an arrival-time surface. We report on an implementation of this method, SpaghettiLens, which has been tested in a modelling challenge using 29 simulated lenses drawn from a larger set created for the Space Warps citizen science strong lens search. We find that volunteers from this online community asserted the image parities and time ordering consistently in some lenses, but made errors in other lenses depending on the image morphology. While errors in image parity and time ordering lead to large errors in the mass distribution, the enclosed mass was found to be more robust: the model-derived Einstein radii found by the volunteers were consistent with those produced by one of the professional team, suggesting that given the appropriate tools, gravitational lens modelling is a data analysis activity that can be crowd-sourced to good effect. Ideas for improvement are discussed; these include (a) overcoming the tendency of the models to be shallower than the correct answer in test cases, leading to systematic overestimation of the Einstein radius by 10 per cent at present, and (b) detailed modelling of arcs.

  13. Image dissector photocathode solar damage test program. [solar radiation shielding using a fast optical lens

    NASA Technical Reports Server (NTRS)

    Smith, R. A.

    1977-01-01

    Image dissector sensors of the same type which will be used in the NASA shuttle star tracker were used in a series of tests directed towards obtaining solar radiation/time damage criteria. Data were evaluated to determine the predicted level of operability of the star tracker if tube damage became a reality. During the test series a technique for reducing the solar damage effect was conceived and verified. The damage concepts are outlined and the test methods and data obtained which were used for verification of the technique's feasibility are presented. The ability to operate an image dissector sensor with the solar image focussed on the photocathode by a fast optical lens under certain conditions is feasible and the elimination of a mechanical protection device is possible.

  14. Galaxy mergers and gravitational lens statistics

    NASA Technical Reports Server (NTRS)

    Rix, Hans-Walter; Maoz, Dan; Turner, Edwin L.; Fukugita, Masataka

    1994-01-01

    We investigate the impact of hierarchical galaxy merging on the statistics of gravitational lensing of distant sources. Since no definite theoretical predictions for the merging history of luminous galaxies exist, we adopt a parameterized prescription, which allows us to adjust the expected number of pieces comprising a typical present galaxy at z approximately 0.65. The existence of global parameter relations for elliptical galaxies and constraints on the evolution of the phase space density in dissipationless mergers, allow us to limit the possible evolution of galaxy lens properties under merging. We draw two lessons from implementing this lens evolution into statistical lens calculations: (1) The total optical depth to multiple imaging (e.g., of quasars) is quite insensitive to merging. (2) Merging leads to a smaller mean separation of observed multiple images. Because merging does not reduce drastically the expected lensing frequency, it cannot make lambda-dominated cosmologies compatible with the existing lensing observations. A comparison with the data from the Hubble Space Telescope (HST) Snapshot Survey shows that models with little or no evolution of the lens population are statistically favored over strong merging scenarios. A specific merging scenario proposed to Toomre can be rejected (95% level) by such a comparison. Some versions of the scenario proposed by Broadhurst, Ellis, & Glazebrook are statistically acceptable.

  15. A new acoustic lens material for large area detectors in photoacoustic breast tomography☆

    PubMed Central

    Xia, Wenfeng; Piras, Daniele; van Hespen, Johan C.G.; Steenbergen, Wiendelt; Manohar, Srirang

    2013-01-01

    Objectives We introduce a new acoustic lens material for photoacoustic tomography (PAT) to improve lateral resolution while possessing excellent acoustic acoustic impedance matching with tissue to minimize lens induced image artifacts. Background A large surface area detector due to its high sensitivity is preferable to detect weak signals in photoacoustic mammography. The lateral resolution is then limited by the narrow acceptance angle of such detectors. Acoustic lenses made of acrylic plastic (PMMA) have been used to enlarge the acceptance angle of such detectors and improve lateral resolution. However, such PMMA lenses introduce image artifacts due to internal reflections of ultrasound within the lenses, the result of acoustic impedance mismatch with the coupling medium or tissue. Methods A new lens is proposed based on the 2-component resin Stycast 1090SI. We characterized the acoustic properties of the proposed lens material in comparison with commonly used PMMA, inspecting the speed of sound, acoustic attenuation and density. We fabricated acoustic lenses based on the new material and PMMA, and studied the effect of the acoustic lenses on detector performance comparing finite element (FEM) simulations and measurements of directional sensitivity, pulse-echo response and frequency response. We further investigated the effect of using the acoustic lenses on the image quality of a photoacoustic breast tomography system using k-Wave simulations and experiments. Results Our acoustic characterization shows that Stycast 1090SI has tissue-like acoustic impedance, high speed of sound and low acoustic attenuation. These acoustic properties ensure an excellent acoustic lens material to minimize the acoustic insertion loss. Both acoustic lenses show significant enlargement of detector acceptance angle and lateral resolution improvement from modeling and experiments. However, the image artifacts induced by the presence of an acoustic lens are reduced using the proposed

  16. Mechatronic design of a fully integrated camera for mini-invasive surgery.

    PubMed

    Zazzarini, C C; Patete, P; Baroni, G; Cerveri, P

    2013-06-01

    This paper describes the design features of an innovative fully integrated camera candidate for mini-invasive abdominal surgery with single port or transluminal access. The apparatus includes a CMOS imaging sensor, a light-emitting diode (LED)-based unit for scene illumination, a photodiode for luminance detection, an optical system designed according to the mechanical compensation paradigm, an actuation unit for enabling autofocus and optical zoom, and a control logics based on microcontroller. The bulk of the apparatus is characterized by a tubular shape with a diameter of 10 mm and a length of 35 mm. The optical system, composed of four lens groups, of which two are mobile, has a total length of 13.46 mm and an effective focal length ranging from 1.61 to 4.44 mm with a zoom factor of 2.75×, with a corresponding angular field of view ranging from 16° to 40°. The mechatronics unit, devoted to move the zoom and the focus lens groups, is implemented adopting miniature piezoelectric motors. The control logics implements a closed-loop mechanism, between the LEDs and photodiode, to attain automatic control light. Bottlenecks of the design and some potential issues of the realization are discussed. A potential clinical scenario is introduced.

  17. Lens-based wavefront sensorless adaptive optics swept source OCT

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-06-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects.

  18. Dielectric Optical-Controllable Magnifying Lens by Nonlinear Negative Refraction

    PubMed Central

    Cao, Jianjun; Shang, Ce; Zheng, Yuanlin; Feng, Yaming; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie

    2015-01-01

    A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive indices. Recent advancements in nanotechnology enable novel lenses, such as, superlens and hyperlens, with sub-wavelength resolution capabilities by specially designed materials’ refractive indices with meta-materials and transformation optics. However, these artificially nano- or micro-engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here, we experimentally demonstrate, for the first time, a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into the nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applications in microscopy and imaging science. PMID:26149952

  19. Automated exterior inspection of an aircraft with a pan-tilt-zoom camera mounted on a mobile robot

    NASA Astrophysics Data System (ADS)

    Jovančević, Igor; Larnier, Stanislas; Orteu, Jean-José; Sentenac, Thierry

    2015-11-01

    This paper deals with an automated preflight aircraft inspection using a pan-tilt-zoom camera mounted on a mobile robot moving autonomously around the aircraft. The general topic is image processing framework for detection and exterior inspection of different types of items, such as closed or unlatched door, mechanical defect on the engine, the integrity of the empennage, or damage caused by impacts or cracks. The detection step allows to focus on the regions of interest and point the camera toward the item to be checked. It is based on the detection of regular shapes, such as rounded corner rectangles, circles, and ellipses. The inspection task relies on clues, such as uniformity of isolated image regions, convexity of segmented shapes, and periodicity of the image intensity signal. The approach is applied to the inspection of four items of Airbus A320: oxygen bay handle, air-inlet vent, static ports, and fan blades. The results are promising and demonstrate the feasibility of an automated exterior inspection.

  20. Project Zoom IN, Citizen Perspectives on Climate and Water Resources

    NASA Astrophysics Data System (ADS)

    Glaser, J. P.

    2012-12-01

    Perspective on climate and water resources can come from the top, scientists sharing invaluable data and findings about how climate dynamics function or quantifications of systems in flux. However, citizens are endowed with an equally as powerful tool for insight: ground zero experience. Project Zoom In is a nascent project undertaken by Global Media Forge to empower youth, educators and scientists with tools to reach the media with locale-specific imagery and perspective of climate dynamics and evidence of anecdotal resource management of liquid gold: fresh water. Zoom In is taking root in Colorado but is designed for national/international scaling. This effort has three limbs: (1) student, scientist and educator workshops teaching invaluable video production skills (2) engaging Colorado school systems to stimulate submission of clips to full video productions to our database, and (3) embedding the findings on a taxonomic GIS interface on-line. The website will be invaluable in classrooms and link network media to individuals with firsthand viewpoints on change.; Climate and Water Resources

  1. Microelectromechanical-System-Based Variable-Focus Liquid Lens for Capsule Endoscopes

    NASA Astrophysics Data System (ADS)

    Seo, Sang Won; Han, Seungoh; Seo, Jun Ho; Kim, Young Mok; Kang, Moon Sik; Min, Nam Ki; Choi, Woo Beom; Sung, Man Young

    2009-05-01

    A liquid lens based on the electrowetting phenomenon was designed to be cylindrical to minimize dead area. The lens was fabricated with microelectromechanical-system (MEMS) technology using silicon thin film and wafer bonding processes. A multiple dielectric layer comprising Teflon, silicon nitride, and thermal oxide was formed on the cylinder wall. With a change of 11 Vrms in the applied bias, the lens module, including the fabricated liquid lens, showed a focal length change of approximately 166 mm. A capsule endoscope was assembled, including the lens module, and was successfully used to take images of a pig colon at various focal lengths.

  2. Benefit of the UltraZoom beamforming technology in noise in cochlear implant users.

    PubMed

    Mosnier, Isabelle; Mathias, Nathalie; Flament, Jonathan; Amar, Dorith; Liagre-Callies, Amelie; Borel, Stephanie; Ambert-Dahan, Emmanuèle; Sterkers, Olivier; Bernardeschi, Daniele

    2017-09-01

    The objectives of the study were to demonstrate the audiological and subjective benefits of the adaptive UltraZoom beamforming technology available in the Naída CI Q70 sound processor, in cochlear-implanted adults upgraded from a previous generation sound processor. Thirty-four adults aged between 21 and 89 years (mean 53 ± 19) were prospectively included. Nine subjects were unilaterally implanted, 11 bilaterally and 14 were bimodal users. The mean duration of cochlear implant use was 7 years (range 5-15 years). Subjects were tested in quiet with monosyllabic words and in noise with the adaptive French Matrix test in the best-aided conditions. The test setup contained a signal source in front of the subject and three noise sources at +/-90° and 180°. The noise was presented at a fixed level of 65 dB SPL and the level of speech signal was varied to obtain the speech reception threshold (SRT). During the upgrade visit, subjects were tested with the Harmony and with the Naída CI sound processors in omnidirectional microphone configuration. After a take-home phase of 2 months, tests were repeated with the Naída CI processor with and without UltraZoom. Subjective assessment of the sound quality in daily environments was recorded using the APHAB questionnaire. No difference in performance was observed in quiet between the two processors. The Matrix test in noise was possible in the 21 subjects with the better performance. No difference was observed between the two processors for performance in noise when using the omnidirectional microphone. At the follow-up session, the median SRT with the Naída CI processor with UltraZoom was -4 dB compared to -0.45 dB without UltraZoom. The use of UltraZoom improved the median SRT by 3.6 dB (p < 0.0001, Wilcoxon paired test). When looking at the APHAB outcome, improvement was observed for speech understanding in noisy environments (p < 0.01) and in aversive situations (p < 0.05) in the group of 21 subjects who were

  3. Magnetic lens apparatus for a low-voltage high-resolution electron microscope

    DOEpatents

    Crewe, Albert V.

    1996-01-01

    A lens apparatus in which a beam of charged particles of low accelerating voltage is brought to a focus by a magnetic field, the lens being situated behind the target position. The lens comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. The lens apparatus comprises the sole focusing lens for high-resolution imaging in a low-voltage scanning electron microscope.

  4. Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis.

    PubMed

    Peng, Hanchuan; Tang, Jianyong; Xiao, Hang; Bria, Alessandro; Zhou, Jianlong; Butler, Victoria; Zhou, Zhi; Gonzalez-Bellido, Paloma T; Oh, Seung W; Chen, Jichao; Mitra, Ananya; Tsien, Richard W; Zeng, Hongkui; Ascoli, Giorgio A; Iannello, Giulio; Hawrylycz, Michael; Myers, Eugene; Long, Fuhui

    2014-07-11

    Three-dimensional (3D) bioimaging, visualization and data analysis are in strong need of powerful 3D exploration techniques. We develop virtual finger (VF) to generate 3D curves, points and regions-of-interest in the 3D space of a volumetric image with a single finger operation, such as a computer mouse stroke, or click or zoom from the 2D-projection plane of an image as visualized with a computer. VF provides efficient methods for acquisition, visualization and analysis of 3D images for roundworm, fruitfly, dragonfly, mouse, rat and human. Specifically, VF enables instant 3D optical zoom-in imaging, 3D free-form optical microsurgery, and 3D visualization and annotation of terabytes of whole-brain image volumes. VF also leads to orders of magnitude better efficiency of automated 3D reconstruction of neurons and similar biostructures over our previous systems. We use VF to generate from images of 1,107 Drosophila GAL4 lines a projectome of a Drosophila brain.

  5. Active liquid-crystal deflector and lens with Fresnel structure

    NASA Astrophysics Data System (ADS)

    Shibuya, Giichi; Yamano, Shohei; Yoshida, Hiroyuki; Ozaki, Masanori

    2017-02-01

    A new type of tunable Fresnel deflector and lens composed of liquid crystal was developed. Combined structure of multiple interdigitated electrodes and the high-resistivity (HR) layer implements the saw-tooth distribution of electrical potential with only the planar surfaces of the transparent substrates. According to the numerical calculation and design, experimental devices were manufactured with the liquid crystal (LC) material sealed into the sandwiched flat glass plates of 0.7 mm thickness with rubbed alignment layers set to an anti-parallel configuration. Fabricated beam deflector with no moving parts shows the maximum tilt angle of +/-1.3 deg which can apply for optical image stabilizer (OIS) of micro camera. We also discussed and verified their lens characteristics to be extended more advanced applications. Transparent interdigitated electrodes were concentrically aligned on the lens aperture with the insulator gaps under their boundary area. The diameter of the lens aperture was 30 mm and the total number of Fresnel zone was 100. Phase retardation of the beam wavefront irradiated from the LC lens device can be evaluated by polarizing microscope images with a monochromatic filter. Radial positions of each observed fringe are plotted and fitted with 2nd degree polynomial approximation. The number of appeared fringes is over 600 in whole lens aperture area and the correlation coefficients of all approximations are over 0.993 that seems enough ideal optical wavefront. The obtained maximum lens powers from the approximations are about +/-4 m-1 which was satisfied both convex and concave lens characteristics; and their practical use for the tunable lens grade eyeglasses became more prospective.

  6. Electrowetting based infrared lens using ionic liquids

    NASA Astrophysics Data System (ADS)

    Hu, Xiaodong; Zhang, Shiguo; Liu, Yu; Qu, Chao; Lu, Liujin; Ma, Xiangyuan; Zhang, Xiaoping; Deng, Youquan

    2011-11-01

    We demonstrated an infrared variable focus ionic liquids lens using electrowetting, which could overcome the problems caused by use of water, e.g., evaporation and poor thermostability, while keeping good optical transparency in visible light and near-infrared region. Besides, the type of lens (convex or concave) could be tuned by applied voltage or refractive index of ILs used, and the transmittance was measured to exceed 90% over the spectrum of visible light and near-infrared. We believe this infrared variable focus ionic liquids lens has a great application prospect in both visible light and infrared image systems.

  7. TU-E-201-03: Eye Lens Dosimetry in Radiotherapy Using Contact Lens-Shaped Applicator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.

    , actions on awareness can lead to avoidance or even prevention. Learning Objectives: To understand recent changes in eye lens dose limits and thresholds for tissue reactions To understand different approaches to dose estimation for eye lens To learn about challenges in eye lens opacities among staff in interventional fluoroscopy Di Zhang, Toshiba America Medical Systems, Tustin, CA, USA Eye lens radiation dose from brain perfusion CT exams CT perfusion imaging requires repeatedly exposing one location of the head to monitor the uptake and washout of iodinated contrast. The accumulated radiation dose to the eye lens can be high, leading to concerns about potential radiation injury from these scans. CTDIvol assumes continuous z coverage and can overestimate eye lens dose in CT perfusion scans where the table do not increment. The radiation dose to the eye lens from clinical CT brain perfusion studies can be estimated using Monte Carlo simulation methods on voxelized patient models. MDCT scanners from four major manufacturers were simulated and the eye lens doses were estimated using the AAPM posted clinical protocols. They were also compared to CTDIvol values to evaluate the overestimation from CTDIvol. The efficacy of eye lens dose reduction techniques such as tilting the gantry and moving the scan location away from the eyelens were also investigated. Eye lens dose ranged from 81 mGy to 279 mGy, depending on the scanner and protocol used. It is between 59% and 63% of the CTDIvol values reported by the scanners. The eye lens dose is significantly reduced when the eye lenses were not directly irradiated. CTDIvol should not be interpreted as patient dose; this study has shown it to overestimate dose to the eye lens. These results may be used to provide more accurate estimates of actual dose to ensure that protocols are operated safely below thresholds. Tilting the gantry or moving the scanning region further away from the eyes are effective for reducing lens dose in clinical

  8. Note: Simple hysteresis parameter inspector for camera module with liquid lens

    NASA Astrophysics Data System (ADS)

    Chen, Po-Jui; Liao, Tai-Shan; Hwang, Chi-Hung

    2010-05-01

    A method to inspect hysteresis parameter is presented in this article. The hysteresis of whole camera module with liquid lens can be measured rather than a single lens merely. Because the variation in focal length influences image quality, we propose utilizing the sharpness of images which is captured from camera module for hysteresis evaluation. Experiments reveal that the profile of sharpness hysteresis corresponds to the characteristic of contact angle of liquid lens. Therefore, it can infer that the hysteresis of camera module is induced by the contact angle of liquid lens. An inspection process takes only 20 s to complete. Thus comparing with other instruments, this inspection method is more suitable to integrate into the mass production lines for online quality assurance.

  9. Design of a variable-focal-length optical system

    NASA Technical Reports Server (NTRS)

    Ricks, D.; Shannon, R. R.

    1984-01-01

    Requirements to place an entire optical system with a variable focal length ranging from 20 to 200 cm within a overall length somewhat less than 100 cm placed severe restrictions on the design of a zoom lens suitable for use on a comet explorer. The requirements of a wavelength range of 0.4 to 1.0 microns produced even greater limitations on the possibilities for a design that included a catadioptric (using mirrors and glass) front and followed by a zooming refractive portion. Capabilities available commercial zoom lenses as well as patents of optical systems are reviewed. Preliminary designs of the refractive optics zoom lens and the catadioptric system are presented and evaluated. Of the two, the latter probably has the best chance of success, so long as the shortest focal lengths are not really needed.

  10. OCT-based full crystalline lens shape change during accommodation in vivo.

    PubMed

    Martinez-Enriquez, Eduardo; Pérez-Merino, Pablo; Velasco-Ocana, Miriam; Marcos, Susana

    2017-02-01

    The full shape of the accommodating crystalline lens was estimated using custom three-dimensional (3-D) spectral OCT and image processing algorithms. Automatic segmentation and distortion correction were used to construct 3-D models of the lens region visible through the pupil. The lens peripheral region was estimated with a trained and validated parametric model. Nineteen young eyes were measured at 0-6 D accommodative demands in 1.5 D steps. Lens volume, surface area, diameter, and equatorial plane position were automatically quantified. Lens diameter & surface area correlated negatively and equatorial plane position positively with accommodation response. Lens volume remained constant and surface area decreased with accommodation, indicating that the lens material is incompressible and the capsular bag elastic.

  11. Dual-energy computed tomography of the head: a phantom study assessing axial dose distribution, eye lens dose, and image noise level

    NASA Astrophysics Data System (ADS)

    Matsubara, Kosuke; Kawashima, Hiroki; Hamaguchi, Takashi; Takata, Tadanori; Kobayashi, Masanao; Ichikawa, Katsuhiro; Koshida, Kichiro

    2016-03-01

    The aim of this study was to propose a calibration method for small dosimeters to measure absorbed doses during dual- source dual-energy computed tomography (DECT) and to compare the axial dose distribution, eye lens dose, and image noise level between DE and standard, single-energy (SE) head CT angiography. Three DE (100/Sn140 kVp 80/Sn140 kVp, and 140/80 kVp) and one SE (120 kVp) acquisitions were performed using a second-generation dual-source CT device and a female head phantom, with an equivalent volumetric CT dose index. The axial absorbed dose distribution at the orbital level and the absorbed doses for the eye lens were measured using radiophotoluminescent glass dosimeters. CT attenuation numbers were obtained in the DE composite images and the SE images of the phantom at the orbital level. The doses absorbed at the orbital level and in the eye lens were lower and standard deviations for the CT attenuation numbers were slightly higher in the DE acquisitions than those in the SE acquisition. The anterior surface dose was especially higher in the SE acquisition than that in the DE acquisitions. Thus, DE head CT angiography can be performed with a radiation dose lower than that required for a standard SE head CT angiography, with a slight increase in the image noise level. The 100/Sn140 kVp acquisition revealed the most balanced axial dose distribution. In addition, our proposed method was effective for calibrating small dosimeters to measure absorbed doses in DECT.

  12. Analysis of crystalline lens coloration using a black and white charge-coupled device camera.

    PubMed

    Sakamoto, Y; Sasaki, K; Kojima, M

    1994-01-01

    To analyze lens coloration in vivo, we used a new type of Scheimpflug camera that is a black and white type of charge-coupled device (CCD) camera. A new methodology was proposed. Scheimpflug images of the lens were taken three times through red (R), green (G), and blue (B) filters, respectively. Three images corresponding with the R, G, and B channels were combined into one image on the cathode-ray tube (CRT) display. The spectral transmittance of the tricolor filters and the spectral sensitivity of the CCD camera were used to correct the scattering-light intensity of each image. Coloration of the lens was expressed on a CIE standard chromaticity diagram. The lens coloration of seven eyes analyzed by this method showed values almost the same as those obtained by the previous method using color film.

  13. Parametric spectro-temporal analyzer (PASTA) for ultrafast optical performance monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Wong, Kenneth K. Y.

    2013-12-01

    Ultrafast optical spectrum monitoring is one of the most challenging tasks in observing ultrafast phenomena, such as the spectroscopy, dynamic observation of the laser cavity, and spectral encoded imaging systems. However, conventional method such as optical spectrum analyzer (OSA) spatially disperses the spectrum, but the space-to-time mapping is realized by mechanical rotation of a grating, so are incapable of operating at high speed. Besides the spatial dispersion, temporal dispersion provided by dispersive fiber can also stretches the spectrum in time domain in an ultrafast manner, but is primarily confined in measuring short pulses. In view of these constraints, here we present a real-time spectrum analyzer called parametric spectro-temporal analyzer (PASTA), which is based on the time-lens focusing mechanism. It achieves a 100-MHz frame rate and can measure arbitrary waveforms. For the first time, we observe the dynamic spectrum of an ultrafast swept-source: Fourier domain mode-locked (FDML) laser, and the spectrum evolution of a laser cavity during its stabilizing process. In addition to the basic single-lens structure, the multi-lens configurations (e.g. telescope or wide-angle scope) will provide a versatile operating condition, which can zoom in to achieve 0.05-nm resolution and zoom out to achieve 10-nm observation range, namely 17 times zoom in/out ratio. In view of the goal of achieving spectrum analysis with fine accuracy, PASTA provides a promising path to study the real-time spectrum of some dynamic phenomena and non-repetitive events, with orders of magnitude enhancement in the frame rate over conventional OSAs.

  14. Liquid Lens module with wide field-of-view and variable focal length

    NASA Astrophysics Data System (ADS)

    Seo, Sang Won; Han, Seungoh; Seo, Jun Ho; Choi, Woo Bum; Sung, Man Young

    2010-12-01

    A novel wide angle and variable-focus imaging module based on a miniaturized liquid lens is presented for capsule endoscopy applications. For these applications, it is desirable to have features such as a wide field of view (FOV), variable focus, small size, and low power consumption, thereby taking full advantage of the miniaturized liquid lens. The proposed imaging module has three aspheric plastic lenses for a wide FOV, and one liquid lens that can change the focal length by as much as 24.5 cm with a bias voltage difference of 23 Vrms for variable focusing. The assembled lens module has an overall length of 8.4 mm and a FOV of 120.5°. The realized imaging module including the proposed lenses is small enough to be inserted into a capsule endoscope, and it is expected to improve the diagnostic capability of capsule endoscopes.

  15. Numerical Zooming Between a NPSS Engine System Simulation and a One-Dimensional High Compressor Analysis Code

    NASA Technical Reports Server (NTRS)

    Follen, Gregory; auBuchon, M.

    2000-01-01

    Within NASA's High Performance Computing and Communication (HPCC) program, NASA Glenn Research Center is developing an environment for the analysis/design of aircraft engines called the Numerical Propulsion System Simulation (NPSS). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structures, and heat transfer along with the concept of numerical zooming between zero-dimensional to one-, two-, and three-dimensional component engine codes. In addition, the NPSS is refining the computing and communication technologies necessary to capture complex physical processes in a timely and cost-effective manner. The vision for NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. Of the different technology areas that contribute to the development of the NPSS Environment, the subject of this paper is a discussion on numerical zooming between a NPSS engine simulation and higher fidelity representations of the engine components (fan, compressor, burner, turbines, etc.). What follows is a description of successfully zooming one-dimensional (row-by-row) high-pressure compressor analysis results back to a zero-dimensional NPSS engine simulation and a discussion of the results illustrated using an advanced data visualization tool. This type of high fidelity system-level analysis, made possible by the zooming capability of the NPSS, will greatly improve the capability of the engine system simulation and increase the level of virtual test conducted prior to committing the design to hardware.

  16. Engineering web maps with gradual content zoom based on streaming vector data

    NASA Astrophysics Data System (ADS)

    Huang, Lina; Meijers, Martijn; Šuba, Radan; van Oosterom, Peter

    2016-04-01

    Vario-scale data structures have been designed to support gradual content zoom and the progressive transfer of vector data, for use with arbitrary map scales. The focus to date has been on the server side, especially on how to convert geographic data into the proposed vario-scale structures by means of automated generalisation. This paper contributes to the ongoing vario-scale research by focusing on the client side and communication, particularly on how this works in a web-services setting. It is claimed that these functionalities are urgently needed, as many web-based applications, both desktop and mobile, require gradual content zoom, progressive transfer and a high performance level. The web-client prototypes developed in this paper make it possible to assess the behaviour of vario-scale data and to determine how users will actually see the interactions. Several different options of web-services communication architectures are possible in a vario-scale setting. These options are analysed and tested with various web-client prototypes, with respect to functionality, ease of implementation and performance (amount of transmitted data and response times). We show that the vario-scale data structure can fit in with current web-based architectures and efforts to standardise map distribution on the internet. However, to maximise the benefits of vario-scale data, a client needs to be aware of this structure. When a client needs a map to be refined (by means of a gradual content zoom operation), only the 'missing' data will be requested. This data will be sent incrementally to the client from a server. In this way, the amount of data transferred at one time is reduced, shortening the transmission time. In addition to these conceptual architecture aspects, there are many implementation and tooling design decisions at play. These will also be elaborated on in this paper. Based on the experiments conducted, we conclude that the vario-scale approach indeed supports gradual

  17. Age-related changes in spectral transmittance of the human crystalline lens in situ.

    PubMed

    Sakanishi, Yoshihito; Awano, Masakazu; Mizota, Atsushi; Tanaka, Minoru; Murakami, Akira; Ohnuma, Kazuhiko

    2012-01-01

    It was the aim of this study to measure spectral transmission of the human crystalline lens in situ. The crystalline lens was illuminated by one of four light-emitting diodes of different colors. The relative spectral transmittance of the human crystalline lens was measured with the Purkinje-Sanson mirror images over a wide range of ages. The study evaluated 36 crystalline lenses of 28 subjects aged 21-76 years. There was a significant correlation between the age and spectral transmittance for blue light. Spectral transmittance of the crystalline lens in situ could be measured with Purkinje-Sanson mirror images. Copyright © 2012 S. Karger AG, Basel.

  18. Simulations and experiments on vibration damping for zoom-holography and nano-scanning at the GINIX

    NASA Astrophysics Data System (ADS)

    Osterhoff, Markus; Luley, Peter; Sprung, Michael; Salditt, Tim

    2017-09-01

    The Göttingen Instrument for Nano-Imaging with X-ray (GINIX) is a holography endstation located at the P10 coherence beamline at PETRA III, designed and operated by the University of Göttingen in close collaboration with DESY Photon science Hamburg [1-2]. GINIX is designed as a waveguide based holography experiment with a Kirkpatrick-Baez nanofocus. Its versatility has stimulated a great manifold of imaging modalities. Today, users choose the GINIX setup not only for its few nm coherent waveguide beams (e.g. for ptychography or holography), but also to carry out scanning SAXS measurements to probe local anisotropies with sub-micron real-space and even higher reciprocal space resolution. In addition, it is possible to combine different detectors for e.g. simultaneous SAXS/WAXS and fluorescence measurements [3]. We summarise our ongoing efforts to reduce vibrations in the setup, and present latest experimental results obtained with GINIX, focusing on the unique capabilities offered by its versatile and flexible design. The overview includes results from different imaging schemes such as waveguide based zoom-tomography and user examples in WAXS geometry. We show how to correlate complementary techniques like holography and scanning SAXS and present first results obtained using a new fast sample scanner for Multilayer Zone Plate imaging..

  19. HoloLens

    NASA Image and Video Library

    2016-02-20

    ISS046e043637 (02/20/2016) --- NASA astronaut Scott Kelly tweeted out this image to his followers Feb 20, 2016 with the tag: "This #Saturday morning checked out the @Microsoft #HoloLens aboard @Space_Station! Wow! #YearInSpace ". The device is part of NASA’s project Sidekick which is exploring the use of augmented reality to reduce crew training requirements and increase the efficiency at which astronauts can work in space.

  20. Geometric calibration of lens and filter distortions for multispectral filter-wheel cameras.

    PubMed

    Brauers, Johannes; Aach, Til

    2011-02-01

    High-fidelity color image acquisition with a multispectral camera utilizes optical filters to separate the visible electromagnetic spectrum into several passbands. This is often realized with a computer-controlled filter wheel, where each position is equipped with an optical bandpass filter. For each filter wheel position, a grayscale image is acquired and the passbands are finally combined to a multispectral image. However, the different optical properties and non-coplanar alignment of the filters cause image aberrations since the optical path is slightly different for each filter wheel position. As in a normal camera system, the lens causes additional wavelength-dependent image distortions called chromatic aberrations. When transforming the multispectral image with these aberrations into an RGB image, color fringes appear, and the image exhibits a pincushion or barrel distortion. In this paper, we address both the distortions caused by the lens and by the filters. Based on a physical model of the bandpass filters, we show that the aberrations caused by the filters can be modeled by displaced image planes. The lens distortions are modeled by an extended pinhole camera model, which results in a remaining mean calibration error of only 0.07 pixels. Using an absolute calibration target, we then geometrically calibrate each passband and compensate for both lens and filter distortions simultaneously. We show that both types of aberrations can be compensated and present detailed results on the remaining calibration errors.

  1. Magnifying image intensifier

    NASA Technical Reports Server (NTRS)

    Vine, J.

    1977-01-01

    Coil assembly for zoom operation produces axial magnetic flux density that decreases in strength from photocathode to target. This results in magnification factor greater than unity. To extend magnification range, field is reversed in direction between object and image planes.

  2. OCT-based full crystalline lens shape change during accommodation in vivo

    PubMed Central

    Martinez-Enriquez, Eduardo; Pérez-Merino, Pablo; Velasco-Ocana, Miriam; Marcos, Susana

    2017-01-01

    The full shape of the accommodating crystalline lens was estimated using custom three-dimensional (3-D) spectral OCT and image processing algorithms. Automatic segmentation and distortion correction were used to construct 3-D models of the lens region visible through the pupil. The lens peripheral region was estimated with a trained and validated parametric model. Nineteen young eyes were measured at 0-6 D accommodative demands in 1.5 D steps. Lens volume, surface area, diameter, and equatorial plane position were automatically quantified. Lens diameter & surface area correlated negatively and equatorial plane position positively with accommodation response. Lens volume remained constant and surface area decreased with accommodation, indicating that the lens material is incompressible and the capsular bag elastic. PMID:28270993

  3. Miniature objective lens with variable focus for confocal endomicroscopy

    PubMed Central

    Kim, Minkyu; Kang, DongKyun; Wu, Tao; Tabatabaei, Nima; Carruth, Robert W.; Martinez, Ramses V; Whitesides, George M.; Nakajima, Yoshikazu; Tearney, Guillermo J.

    2014-01-01

    Spectrally encoded confocal microscopy (SECM) is a reflectance confocal microscopy technology that can rapidly image large areas of luminal organs at microscopic resolution. One of the main challenges for large-area SECM imaging in vivo is maintaining the same imaging depth within the tissue when patient motion and tissue surface irregularity are present. In this paper, we report the development of a miniature vari-focal objective lens that can be used in an SECM endoscopic probe to conduct adaptive focusing and to maintain the same imaging depth during in vivo imaging. The vari-focal objective lens is composed of an aspheric singlet with an NA of 0.5, a miniature water chamber, and a thin elastic membrane. The water volume within the chamber was changed to control curvature of the elastic membrane, which subsequently altered the position of the SECM focus. The vari-focal objective lens has a diameter of 5 mm and thickness of 4 mm. A vari-focal range of 240 μm was achieved while maintaining lateral resolution better than 2.6 μm and axial resolution better than 26 μm. Volumetric SECM images of swine esophageal tissues were obtained over the vari-focal range of 260 μm. SECM images clearly visualized cellular features of the swine esophagus at all focal depths, including basal cell nuclei, papillae, and lamina propria. PMID:25574443

  4. Astrophysics. Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens.

    PubMed

    Kelly, Patrick L; Rodney, Steven A; Treu, Tommaso; Foley, Ryan J; Brammer, Gabriel; Schmidt, Kasper B; Zitrin, Adi; Sonnenfeld, Alessandro; Strolger, Louis-Gregory; Graur, Or; Filippenko, Alexei V; Jha, Saurabh W; Riess, Adam G; Bradac, Marusa; Weiner, Benjamin J; Scolnic, Daniel; Malkan, Matthew A; von der Linden, Anja; Trenti, Michele; Hjorth, Jens; Gavazzi, Raphael; Fontana, Adriano; Merten, Julian C; McCully, Curtis; Jones, Tucker; Postman, Marc; Dressler, Alan; Patel, Brandon; Cenko, S Bradley; Graham, Melissa L; Tucker, Bradley E

    2015-03-06

    In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z = 0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The cluster's gravitational potential also creates multiple images of the z = 1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses. Copyright © 2015, American Association for the Advancement of Science.

  5. Localization of low molecular weight crystallin peptides in the aging human lens using a MALDI mass spectrometry imaging approach.

    PubMed

    Su, Shih-Ping; McArthur, Jason D; Andrew Aquilina, J

    2010-07-01

    Low molecular weight (LMW) peptides, derived from the breakdown of the major eye lens proteins, the crystallins, accumulate in the human lens with age. These LMW peptides are associated with age-related lens opacity and cataract, with some shown to inhibit the chaperone activity of alpha-crystallin. However, the mechanism(s) giving rise to the production of these peptides, as well as their distribution within the lens, are not well understood. In this study, we have mapped the distribution of these crystallin-derived peptides present in human lenses of different ages using matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS). Our data showed that most of these LMW peptides emerge in the lens at early middle-age, with peptides greater than 1778 Da in mass being confined to the water insoluble fractions, and to a lesser extent the water soluble fractions of older lenses. MALDI-IMS analyses showed that four peptides, derived from alphaA-, alphaB- and gammaS-crystallins, were confined to the lens nuclear fibre cells upon emergence during early middle-age, but were present in both the cortex and nucleus of old lenses. In contrast, another major peptide, derived from the C-terminal breakdown of betaA3-crystallin, was present in the cortical and nuclear regions of both young and old lenses. A comparison between age-matched cataractous and non-cataractous lenses showed no distinct differences in LMW peptide profiles, indicating that although cataract may be a potential consequence caused by the emergence of these peptides, it does not contribute directly to the peptide-generating process. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  6. Development of new family of wide-angle anamorphic lens with controlled distortion profile

    NASA Astrophysics Data System (ADS)

    Gauvin, Jonny; Doucet, Michel; Wang, Min; Thibault, Simon; Blanc, Benjamin

    2005-08-01

    It is well known that a fish-eye lens produces a circular image of the scene with a particular distortion profile. When using a fish-eye lens with a standard sensor (e.g. 1/3", 1/4",.), only a part of the rectangular detector area is used, leaving many pixels unused. We proposed a new approach to get enhanced resolution for panoramic imaging. In this paper, various arrangements of innovative 180-degree anamorphic wide-angle lens design are considered. Their performances as well as lens manufacturability are also discussed. The concept of the design is to use anamorphic optics to produce elliptical image that maximize pixel resolution in both axis. Furthermore, a non-linear distortion profile is also introduced to enhance spatial resolution for specific field angle. Typical applications such as panoramic photography, video conferencing, and homeland/transportation security are also presented.

  7. Investigation of Parallax Issues for Multi-Lens Multispectral Camera Band Co-Registration

    NASA Astrophysics Data System (ADS)

    Jhan, J. P.; Rau, J. Y.; Haala, N.; Cramer, M.

    2017-08-01

    The multi-lens multispectral cameras (MSCs), such as Micasense Rededge and Parrot Sequoia, can record multispectral information by each separated lenses. With their lightweight and small size, which making they are more suitable for mounting on an Unmanned Aerial System (UAS) to collect high spatial images for vegetation investigation. However, due to the multi-sensor geometry of multi-lens structure induces significant band misregistration effects in original image, performing band co-registration is necessary in order to obtain accurate spectral information. A robust and adaptive band-to-band image transform (RABBIT) is proposed to perform band co-registration of multi-lens MSCs. First is to obtain the camera rig information from camera system calibration, and utilizes the calibrated results for performing image transformation and lens distortion correction. Since the calibration uncertainty leads to different amount of systematic errors, the last step is to optimize the results in order to acquire a better co-registration accuracy. Due to the potential issues of parallax that will cause significant band misregistration effects when images are closer to the targets, four datasets thus acquired from Rededge and Sequoia were applied to evaluate the performance of RABBIT, including aerial and close-range imagery. From the results of aerial images, it shows that RABBIT can achieve sub-pixel accuracy level that is suitable for the band co-registration purpose of any multi-lens MSC. In addition, the results of close-range images also has same performance, if we focus on the band co-registration on specific target for 3D modelling, or when the target has equal distance to the camera.

  8. Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens

    PubMed Central

    Grewe, Benjamin F.; Voigt, Fabian F.; van ’t Hoff, Marcel; Helmchen, Fritjof

    2011-01-01

    Functional two-photon Ca2+-imaging is a versatile tool to study the dynamics of neuronal populations in brain slices and living animals. However, population imaging is typically restricted to a single two-dimensional image plane. By introducing an electrically tunable lens into the excitation path of a two-photon microscope we were able to realize fast axial focus shifts within 15 ms. The maximum axial scan range was 0.7 mm employing a 40x NA0.8 water immersion objective, plenty for typically required ranges of 0.2–0.3 mm. By combining the axial scanning method with 2D acousto-optic frame scanning and random-access scanning, we measured neuronal population activity of about 40 neurons across two imaging planes separated by 40 μm and achieved scan rates up to 20–30 Hz. The method presented is easily applicable and allows upgrading of existing two-photon microscopes for fast 3D scanning. PMID:21750778

  9. Liquid lens enabling real-time focus and tilt compensation for optical image stabilization in camera modules

    NASA Astrophysics Data System (ADS)

    Simon, Eric; Craen, Pierre; Gaton, Hilario; Jacques-Sermet, Olivier; Laune, Frédéric; Legrand, Julien; Maillard, Mathieu; Tallaron, Nicolas; Verplanck, Nicolas; Berge, Bruno

    2010-05-01

    A new generation of liquid lenses based on electrowetting has been developed, using a multi-electrode design, enabling to induce optical tilt and focus corrections in the same component. The basic principle is to rely on a conical shape for supporting the liquid interface, the conical shape insuring a restoring force for the liquid liquid interface to come at the center position. The multi-electrode design enables to induce an average tilt of the liquid liquid interface when a bias voltage is applied to the different electrodes. This tilt is reversible, vanishing when voltage bias is cancelled. Possible application of this new lens component is the realization of miniature camera featuring auto-focus and optical image stabilization (OIS) without any mobile mechanical part. Experimental measurements of actual performances of liquid lens component will be presented : focus and tilt amplitude, residual optical wave front error and response time.

  10. Addressing challenges of modulation transfer function measurement with fisheye lens cameras

    NASA Astrophysics Data System (ADS)

    Deegan, Brian M.; Denny, Patrick E.; Zlokolica, Vladimir; Dever, Barry; Russell, Laura

    2015-03-01

    Modulation transfer function (MTF) is a well defined and accepted method of measuring image sharpness. The slanted edge test, as defined in ISO12233 is a standard method of calculating MTF, and is widely used for lens alignment and auto-focus algorithm verification. However, there are a number of challenges which should be considered when measuring MTF in cameras with fisheye lenses. Due to trade-offs related Petzval curvature, planarity of the optical plane is difficult to achieve in fisheye lenses. It is therefore critical to have the ability to accurately measure sharpness throughout the entire image, particularly for lens alignment. One challenge for fisheye lenses is that, because of the radial distortion, the slanted edges will have different angles, depending on the location within the image and on the distortion profile of the lens. Previous work in the literature indicates that MTF measurements are robust for angles between 2 and 10 degrees. Outside of this range, MTF measurements become unreliable. Also, the slanted edge itself will be curved by the lens distortion, causing further measurement problems. This study summarises the difficulties in the use of MTF for sharpness measurement in fisheye lens cameras, and proposes mitigations and alternative methods.

  11. LensFlow: A Convolutional Neural Network in Search of Strong Gravitational Lenses

    NASA Astrophysics Data System (ADS)

    Pourrahmani, Milad; Nayyeri, Hooshang; Cooray, Asantha

    2018-03-01

    In this work, we present our machine learning classification algorithm for identifying strong gravitational lenses from wide-area surveys using convolutional neural networks; LENSFLOW. We train and test the algorithm using a wide variety of strong gravitational lens configurations from simulations of lensing events. Images are processed through multiple convolutional layers that extract feature maps necessary to assign a lens probability to each image. LENSFLOW provides a ranking scheme for all sources that could be used to identify potential gravitational lens candidates by significantly reducing the number of images that have to be visually inspected. We apply our algorithm to the HST/ACS i-band observations of the COSMOS field and present our sample of identified lensing candidates. The developed machine learning algorithm is more computationally efficient and complimentary to classical lens identification algorithms and is ideal for discovering such events across wide areas from current and future surveys such as LSST and WFIRST.

  12. ZOOM: a generic personal computer-based teaching program for public health and its application in schistosomiasis control.

    PubMed Central

    Martin, G. T.; Yoon, S. S.; Mott, K. E.

    1991-01-01

    Schistosomiasis, a group of parasitic diseases caused by Schistosoma parasites, is associated with water resources development and affects more than 200 million people in 76 countries. Depending on the species of parasite involved, disease of the liver, spleen, gastrointestinal or urinary tract, or kidneys may result. A computer-assisted teaching package has been developed by WHO for use in the training of public health workers involved in schistosomiasis control. The package consists of the software, ZOOM, and a schistosomiasis information file, Dr Schisto, and uses hypermedia technology to link pictures and text. ZOOM runs on the IBM-PC and IBM-compatible computers, is user-friendly, requires a minimal hardware configuration, and can interact with the user in English, French, Spanish or Portuguese. The information files for ZOOM can be created or modified by the instructor using a word processor, and thus can be designed to suit the need of students. No programming knowledge is required to create the stacks. PMID:1786618

  13. Zoom-climb altitude maximization of the F-4C and F-15 aircraft for stratospheric sampling missions

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Merz, A. W.; Page, W. A.

    1976-01-01

    Some predictions indicate that byproducts of aerosol containers may lead to a modification of the ultraviolet-radiation shielding properties of the upper atmosphere. NASA currently monitors atmospheric properties to 70,000 feet using U-2 aircraft. Testing is needed at about 100,000 feet for adequate monitoring of possible aerosol contaminants during the next decade. To study this problem the F-4C and F-15 aircraft were analyzed to determine their maximum altitude ability in zoom-climb maneuvers. These trajectories must satisfy realistic dynamic pressure and Mach number constraints. Maximum altitudes obtained for the F4-C are above 90,000 feet, and for the F-15 above 100,000 feet. Sensitivities of the zoom-climb altitudes were found with respect to several variables including vehicle thrust, initial weight, stratospheric winds and the constraints. A final decision on aircraft selection must be based on mission modification costs and operational considerations balanced against their respective zoom altitude performance capabilities.

  14. High-NA EUV projection lens with central obscuration

    NASA Astrophysics Data System (ADS)

    Zhevlakov, A. P.; Seisyan, R. P.; Bespalov, V. G.; Elizarov, V. V.; Grishkanich, A. S.; Kascheev, S. V.; Bagdasarov, A. A.; Sidorov, I. S.

    2016-03-01

    The lenses with coaxial mirrors allow obtain NA values up to of 0.8 and demagnification β >=10. The larger β value leads to the mask cost reducing, as in this case, the elements of the IC pattern template can be made bigger and, therefore, with fewer defects. Coaxial schemes can engender a problem of the image plane shift beyond the projection lens element boundaries near the wafer. The projection lens consisting of four coaxial mirrors with NA= 0.485 and s = 12 combined with the "Vanguard" imaging subsystem have been designed. According to the computation the circuit features at 10 nm in center and 20 nm on the edge of 12.4 mm field of view can be imaged.

  15. Combined laser-ray tracing and OCT system for biometry of the crystalline lens (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ruggeri, Marco; Maceo Heilman, Bianca M.; Yao, Yue; Chang, Yu-Cherng; Gonzalez, Alex; Rowaan, Cornelis; Mohamed, Ashik; Williams, Siobhan; Durkee, Heather A.; Silgado, Juan; Bernal, Andres; Arrieta-Quintero, Esdras; Ho, Arthur; Parel, Jean-Marie A.; Manns, Fabrice

    2017-02-01

    Age-related changes in the crystalline lens shape and refractive index gradient produce changes in dioptric power and high-order aberrations that influence the optics of the whole eye and contribute to a decrease in overall visual quality. Despite their key role, the changes in lens shape and refractive index gradient with age and accommodation and their effects on high-order aberrations are still not well understood. The goal of this project was to develop a combined laser ray tracing (LRT) and optical coherence tomography (OCT) system to measure high-order aberrations, shape and refractive index gradient in non-human primate and human lenses. A miniature motorized lens stretching system was built to enable imaging and aberrometry of the lens during simulated accommodation. A positioning system was also built to enable on- and off-axis OCT imaging and aberrometry for characterization of the peripheral defocus of the lens. We demonstrated the capability of the LRT-OCT system to produce OCT images and aberration measurements of crystalline lens with age and accommodation in vitro. In future work, the information acquired with the LRT-OCT system will be used to develop an accurate age-dependent lens model to predict the role of the lens in the development of refractive error and aberrations of the whole eye.

  16. A Telescope at the Solar Gravitational Lens: Problems and Solutions

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2017-01-01

    Due to the bending of light by gravity, the gravity of sun forms a lens. In principle, a spacecraft sent to the distance of the solar gravitational focus could be used as a gravitational lens telescope. One example of such a mission would be to use the gravitational lens to image an extrasolar planet around a nearby star. The practical difficulties with this concept are discussed, and some approaches to mitigating these difficulties suggested.

  17. Expected performances of a Laue lens made with bent crystals

    NASA Astrophysics Data System (ADS)

    Virgilli, Enrico; Valsan, Vineeth; Frontera, Filippo; Caroli, Ezio; Liccardo, Vincenzo; Stephen, John Buchan

    2017-10-01

    In the context of the Laue project devoted to build a Laue lens prototype for focusing celestial hard x-/soft gamma-rays, a Laue lens made of bent crystal tiles, with 20-m focal length, is simulated. The focusing energy passband is assumed to be 90 to 600 keV. The distortion of the image produced by the lens on the focal plane, due to effects of crystal tile misalignment and radial distortion of the crystal curvature, is investigated. The corresponding effective area of the lens, its point spread function, and sensitivity are calculated and compared with those exhibited by a nominal Laue lens with no misalignment and/or distortion. Such analysis is crucial to estimate the optical properties of a real lens, in which the investigated shortcomings could be present.

  18. Fully automated laser ray tracing system to measure changes in the crystalline lens GRIN profile.

    PubMed

    Qiu, Chen; Maceo Heilman, Bianca; Kaipio, Jari; Donaldson, Paul; Vaghefi, Ehsan

    2017-11-01

    Measuring the lens gradient refractive index (GRIN) accurately and reliably has proven an extremely challenging technical problem. A fully automated laser ray tracing (LRT) system was built to address this issue. The LRT system captures images of multiple laser projections before and after traversing through an ex vivo lens. These LRT images, combined with accurate measurements of the lens geometry, are used to calculate the lens GRIN profile. Mathematically, this is an ill-conditioned problem; hence, it is essential to apply biologically relevant constraints to produce a feasible solution. The lens GRIN measurements were compared with previously published data. Our GRIN retrieval algorithm produces fast and accurate measurements of the lens GRIN profile. Experiments to study the optics of physiologically perturbed lenses are the future direction of this research.

  19. Fully automated laser ray tracing system to measure changes in the crystalline lens GRIN profile

    PubMed Central

    Qiu, Chen; Maceo Heilman, Bianca; Kaipio, Jari; Donaldson, Paul; Vaghefi, Ehsan

    2017-01-01

    Measuring the lens gradient refractive index (GRIN) accurately and reliably has proven an extremely challenging technical problem. A fully automated laser ray tracing (LRT) system was built to address this issue. The LRT system captures images of multiple laser projections before and after traversing through an ex vivo lens. These LRT images, combined with accurate measurements of the lens geometry, are used to calculate the lens GRIN profile. Mathematically, this is an ill-conditioned problem; hence, it is essential to apply biologically relevant constraints to produce a feasible solution. The lens GRIN measurements were compared with previously published data. Our GRIN retrieval algorithm produces fast and accurate measurements of the lens GRIN profile. Experiments to study the optics of physiologically perturbed lenses are the future direction of this research. PMID:29188093

  20. TU-E-201-01: Methods for Eye Lens Dosimetry and Studies On Lens Opacities with Interventionists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehani, M.

    , actions on awareness can lead to avoidance or even prevention. Learning Objectives: To understand recent changes in eye lens dose limits and thresholds for tissue reactions To understand different approaches to dose estimation for eye lens To learn about challenges in eye lens opacities among staff in interventional fluoroscopy Di Zhang, Toshiba America Medical Systems, Tustin, CA, USA Eye lens radiation dose from brain perfusion CT exams CT perfusion imaging requires repeatedly exposing one location of the head to monitor the uptake and washout of iodinated contrast. The accumulated radiation dose to the eye lens can be high, leading to concerns about potential radiation injury from these scans. CTDIvol assumes continuous z coverage and can overestimate eye lens dose in CT perfusion scans where the table do not increment. The radiation dose to the eye lens from clinical CT brain perfusion studies can be estimated using Monte Carlo simulation methods on voxelized patient models. MDCT scanners from four major manufacturers were simulated and the eye lens doses were estimated using the AAPM posted clinical protocols. They were also compared to CTDIvol values to evaluate the overestimation from CTDIvol. The efficacy of eye lens dose reduction techniques such as tilting the gantry and moving the scan location away from the eyelens were also investigated. Eye lens dose ranged from 81 mGy to 279 mGy, depending on the scanner and protocol used. It is between 59% and 63% of the CTDIvol values reported by the scanners. The eye lens dose is significantly reduced when the eye lenses were not directly irradiated. CTDIvol should not be interpreted as patient dose; this study has shown it to overestimate dose to the eye lens. These results may be used to provide more accurate estimates of actual dose to ensure that protocols are operated safely below thresholds. Tilting the gantry or moving the scanning region further away from the eyes are effective for reducing lens dose in clinical

  1. Canine and feline fundus photography and videography using a nonpatented 3D printed lens adapter for a smartphone.

    PubMed

    Espinheira Gomes, Filipe; Ledbetter, Eric

    2018-05-11

    To describe an indirect funduscopy imaging technique for dogs and cats using low cost and widely available equipment: a smartphone, a three-dimensional (3D) printed indirect lens adapter, and a 40 diopters (D) indirect ophthalmoscopy lens. Fundus videography was performed in dogs and cats using a 40D indirect ophthalmoscopy lens and a smartphone fitted with a 3D printed indirect lens adapter. All animals were pharmacologically dilated with topical tropicamide 1% solution. Eyelid opening and video recording were performed using standard binocular indirect ophthalmoscopy technique. All videos were uploaded to a computer, and still images were selected and acquired for archiving purposes. Fundic images were manipulated to represent the true anatomy of the fundus. It was possible to promptly obtain good quality images from normal and diseased retinas using the nonpatented 3D printed, lens adapter for a smartphone. Fundic imaging using a smartphone can be performed with minimal investment. This simple imaging modality can be used by veterinary ophthalmologists and general practitioners to acquire, archive, and share images of the retina. The quality of images obtained will likely improve with developments in smartphone camera software and hardware. © 2018 American College of Veterinary Ophthalmologists.

  2. Simple measurement of lenticular lens quality for autostereoscopic displays

    NASA Astrophysics Data System (ADS)

    Gray, Stuart; Boudreau, Robert A.

    2013-03-01

    Lenticular lens based autostereoscopic 3D displays are finding many applications in digital signage and consumer electronics devices. A high quality 3D viewing experience requires the lenticular lens be properly aligned with the pixels on the display device so that each eye views the correct image. This work presents a simple and novel method for rapidly assessing the quality of a lenticular lens to be used in autostereoscopic displays. Errors in lenticular alignment across the entire display are easily observed with a simple test pattern where adjacent views are programmed to display different colors.

  3. VLBI observations of the 0957 + 561 gravitational lens system

    NASA Technical Reports Server (NTRS)

    Gorenstein, M. V.; Falco, E. E.; Shapiro, I. I.; Bartel, N.; Bonometti, R. J.; Cohen, N. L.; Rogers, A. E. E.; Marcaide, J. M.; Clark, T. A.

    1988-01-01

    A series of VLBI observations of the gravitational lens system 0957 + 561 at a wavelength of 13 cm has yielded the positions of the A and B images, the relative magnification of their largest discernible radio structures, and the time variability of their smallest discernible radio structures. These observations have also allowed upper limits to be placed on the flux density of an expected third image. The positions and relative magnification of the A and B images provide new information with which to constrain models of the lens that forms the images. The detection of variations in the flux densities of the cores of A and B suggests that observations at shorter wavelengths may reveal superluminal motion, which may in turn provide a means to measure the relative time delay.

  4. Fluidic lens of floating oil using round-pot chamber based on electrowetting.

    PubMed

    Choi, Hyunhwan; Won, Yonghyub

    2013-07-01

    This study presents a liquid lens using electrowetting that employs an oil phase floating in between the conducting fluids. The lens shape has double-sided surfaces and operates with a bias of 0-60 V. The focal length of the lens, with an aperture size of 2 mm, is ~5.8 mm, and it is converted into an optical power of 172. The lens is sufficient to suppress the fluctuation of fluids due to the external vibration. An image seen through the lens clearly resolves the element better than 6.35 LP/mm on USAF 1951 1×.

  5. Identifying Anomalies in Gravitational Lens Time Delays

    NASA Astrophysics Data System (ADS)

    Congdon, Arthur B.; Keeton, C. R.; Nordgren, C. E.

    2009-05-01

    Gravitational lensing has become a powerful probe of cold dark matter substructure. Earlier work using anomalous flux ratios in four-image quasar lenses has shown that lensing is sensitive to substructure which raises the exciting prospect of constraining the mass function and spatial distribution of dark matter satellites in galaxies. We examine the ability of gravitational lens time delays to reveal complex structure in lens potentials. We use Monte Carlo simulations to determine the range of time delays that can be produced by realistic smooth lens models consisting of isothermal ellipsoid galaxies with tidal shear. We can then identify outliers as "time-delay anomalies." We find evidence for anomalies in close image pairs in the cusp lenses RX J1131-1231 and B1422+231. The anomalies in RX J1131-1231 provide strong evidence for substructure in the lens potential, while at this point the apparent anomalies in B1422+231 mainly indicate that the time delay measurements need to be improved. We also find evidence for time-delay anomalies in larger-separation image pairs in four additional lenses. We suggest that these anomalies are caused by some combination of substructure and a complex lens environment. Our work argues for a large sample of strong lenses with precisely-measured time delays. The first of these objectives will be readily achievable as the next generation of optical and radio telescopes come online, while the second will require a dedicated one-meter class space-based observatory. Meeting these goals will make it possible to examine the properties of dark matter on sub-galactic scales, which is essential for distinguishing among the various dark matter candidates from particle physics. Part of this work was funded by NSF grant AST-0747311. ABC is currently supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA.

  6. Fabricating customized hydrogel contact lens

    NASA Astrophysics Data System (ADS)

    Childs, Andre; Li, Hao; Lewittes, Daniella M.; Dong, Biqin; Liu, Wenzhong; Shu, Xiao; Sun, Cheng; Zhang, Hao F.

    2016-10-01

    Contact lenses are increasingly used in laboratories for in vivo animal retinal imaging and pre-clinical studies. The lens shapes often need modification to optimally fit corneas of individual test subjects. However, the choices from commercially available contact lenses are rather limited. Here, we report a flexible method to fabricate customized hydrogel contact lenses. We showed that the fabricated hydrogel is highly transparent, with refractive indices ranging from 1.42 to 1.45 in the spectra range from 400 nm to 800 nm. The Young’s modulus (1.47 MPa) and hydrophobicity (with a sessile drop contact angle of 40.5°) have also been characterized experimentally. Retinal imaging using optical coherence tomography in rats wearing our customized contact lenses has the quality comparable to the control case without the contact lens. Our method could significantly reduce the cost and the lead time for fabricating soft contact lenses with customized shapes, and benefit the laboratorial-used contact lenses in pre-clinical studies.

  7. Fabricating customized hydrogel contact lens

    PubMed Central

    Childs, Andre; Li, Hao; Lewittes, Daniella M.; Dong, Biqin; Liu, Wenzhong; Shu, Xiao; Sun, Cheng; Zhang, Hao F.

    2016-01-01

    Contact lenses are increasingly used in laboratories for in vivo animal retinal imaging and pre-clinical studies. The lens shapes often need modification to optimally fit corneas of individual test subjects. However, the choices from commercially available contact lenses are rather limited. Here, we report a flexible method to fabricate customized hydrogel contact lenses. We showed that the fabricated hydrogel is highly transparent, with refractive indices ranging from 1.42 to 1.45 in the spectra range from 400 nm to 800 nm. The Young’s modulus (1.47 MPa) and hydrophobicity (with a sessile drop contact angle of 40.5°) have also been characterized experimentally. Retinal imaging using optical coherence tomography in rats wearing our customized contact lenses has the quality comparable to the control case without the contact lens. Our method could significantly reduce the cost and the lead time for fabricating soft contact lenses with customized shapes, and benefit the laboratorial-used contact lenses in pre-clinical studies. PMID:27748361

  8. Challenges and solutions for high performance SWIR lens design

    NASA Astrophysics Data System (ADS)

    Gardner, M. C.; Rogers, P. J.; Wilde, M. F.; Cook, T.; Shipton, A.

    2016-10-01

    Shortwave infrared (SWIR) cameras are becoming increasingly attractive due to the improving size, resolution and decreasing prices of InGaAs focal plane arrays (FPAs). The rapid development of competitively priced HD performance SWIR cameras has not been matched in SWIR imaging lenses with the result that the lens is now more likely to be the limiting factor in imaging quality than the FPA. Adapting existing lens designs from the visible region by re-coating for SWIR will improve total transmission but diminished image quality metrics such as MTF, and in particular large field angle performance such as vignetting, field curvature and distortion are serious consequences. To meet this challenge original SWIR solutions are presented including a wide field of view fixed focal length lens for commercial machine vision (CMV) and a wide angle, small, lightweight defence lens and their relevant design considerations discussed. Issues restricting suitable glass types will be examined. The index and dispersion properties at SWIR wavelengths can differ significantly from their visible values resulting in unusual glass combinations when matching doublet elements. Materials chosen simultaneously allow athermalization of the design as well as containing matched CTEs in the elements of doublets. Recently, thinned backside-illuminated InGaAs devices have made Vis.SWIR cameras viable. The SWIR band is sufficiently close to the visible that the same constituent materials can be used for AR coatings covering both bands. Keeping the lens short and mass low can easily result in high incidence angles which in turn complicates coating design, especially when extended beyond SWIR into the visible band. This paper also explores the potential performance of wideband Vis.SWIR AR coatings.

  9. Large-Scale Overlays and Trends: Visually Mining, Panning and Zooming the Observable Universe.

    PubMed

    Luciani, Timothy Basil; Cherinka, Brian; Oliphant, Daniel; Myers, Sean; Wood-Vasey, W Michael; Labrinidis, Alexandros; Marai, G Elisabeta

    2014-07-01

    We introduce a web-based computing infrastructure to assist the visual integration, mining and interactive navigation of large-scale astronomy observations. Following an analysis of the application domain, we design a client-server architecture to fetch distributed image data and to partition local data into a spatial index structure that allows prefix-matching of spatial objects. In conjunction with hardware-accelerated pixel-based overlays and an online cross-registration pipeline, this approach allows the fetching, displaying, panning and zooming of gigabit panoramas of the sky in real time. To further facilitate the integration and mining of spatial and non-spatial data, we introduce interactive trend images-compact visual representations for identifying outlier objects and for studying trends within large collections of spatial objects of a given class. In a demonstration, images from three sky surveys (SDSS, FIRST and simulated LSST results) are cross-registered and integrated as overlays, allowing cross-spectrum analysis of astronomy observations. Trend images are interactively generated from catalog data and used to visually mine astronomy observations of similar type. The front-end of the infrastructure uses the web technologies WebGL and HTML5 to enable cross-platform, web-based functionality. Our approach attains interactive rendering framerates; its power and flexibility enables it to serve the needs of the astronomy community. Evaluation on three case studies, as well as feedback from domain experts emphasize the benefits of this visual approach to the observational astronomy field; and its potential benefits to large scale geospatial visualization in general.

  10. Optics of wide-angle panoramic viewing system-assisted vitreous surgery.

    PubMed

    Chalam, Kakarla V; Shah, Vinay A

    2004-01-01

    The purpose of the article is to describe the optics of the contact wide-angle lens system with stereo-reinverter for vitreous surgery. A panoramic viewing system is made up of two components; an indirect ophthalmoscopy lens system for fundus image viewing, which is placed on the patient's cornea as a contact lens, and a separate removable prism system for reinversion of the image mounted on the microscope above the zooming system. The system provides a 104 degrees field of view in a phakic emmetropic eye with minification, which can be magnified by the operating microscope. It permits a binocular stereoptic view even through a small pupil (3 mm) or larger. In an air-filled phakic eye, field of view increases to approximately 130 degrees. The obtained image of the patient's fundus is reinverted to form true, erect, stereoscopic image by the reinversion system. In conclusion, this system permits wide-angle panoramic view of the surgical field. The contact lens neutralizes the optical irregularities of the corneal surface and allows improved visualization in eyes with irregular astigmatism induced by corneal scars. Excellent visualization is achieved in complex clinical situations such as miotic pupils, lenticular opacities, and in air-filled phakic eyes.

  11. Optical Coherence Tomography Based Estimates of Crystalline Lens Volume, Equatorial Diameter, and Plane Position.

    PubMed

    Martinez-Enriquez, Eduardo; Sun, Mengchan; Velasco-Ocana, Miriam; Birkenfeld, Judith; Pérez-Merino, Pablo; Marcos, Susana

    2016-07-01

    Measurement of crystalline lens geometry in vivo is critical to optimize performance of state-of-the-art cataract surgery. We used custom-developed quantitative anterior segment optical coherence tomography (OCT) and developed dedicated algorithms to estimate lens volume (VOL), equatorial diameter (DIA), and equatorial plane position (EPP). The method was validated ex vivo in 27 human donor (19-71 years of age) lenses, which were imaged in three-dimensions by OCT. In vivo conditions were simulated assuming that only the information within a given pupil size (PS) was available. A parametric model was used to estimate the whole lens shape from PS-limited data. The accuracy of the estimated lens VOL, DIA, and EPP was evaluated by comparing estimates from the whole lens data and PS-limited data ex vivo. The method was demonstrated in vivo using 2 young eyes during accommodation and 2 cataract eyes. Crystalline lens VOL was estimated within 96% accuracy (average estimation error across lenses ± standard deviation: 9.30 ± 7.49 mm3). Average estimation errors in EPP were below 40 ± 32 μm, and below 0.26 ± 0.22 mm in DIA. Changes in lens VOL with accommodation were not statistically significant (2-way ANOVA, P = 0.35). In young eyes, DIA decreased and EPP increased statistically significantly with accommodation (P < 0.001) by 0.14 mm and 0.13 mm, respectively, on average across subjects. In cataract eyes, VOL = 205.5 mm3, DIA = 9.57 mm, and EPP = 2.15 mm on average. Quantitative OCT with dedicated image processing algorithms allows estimation of human crystalline lens volume, diameter, and equatorial lens position, as validated from ex vivo measurements, where entire lens images are available.

  12. Fast frame rate rodent cardiac x-ray imaging using scintillator lens coupled to CMOS camera

    NASA Astrophysics Data System (ADS)

    Swathi Lakshmi, B.; Sai Varsha, M. K. N.; Kumar, N. Ashwin; Dixit, Madhulika; Krishnamurthi, Ganapathy

    2017-03-01

    Micro-Computed Tomography (MCT) systems for small animal imaging plays a critical role for monitoring disease progression and therapy evaluation. In this work, an in-house built micro-CT system equipped with a X-ray scintillator lens coupled to a commercial CMOS camera was used to test the feasibility of its application to Digital Subtraction Angiography (DSA). Literature has reported such studies being done with clinical X-ray tubes that can be pulsed rapidly or with rotating gantry systems, thus increasing the cost and infrastructural requirements.The feasibility of DSA was evaluated by injected Iodinated contrast agent (ICA) through the tail vein of a mouse. Projection images of the heart were acquired pre and post contrast using the high frame rate X-ray detector and processing done to visualize transit of ICA through the heart.

  13. LENS: μLENS Simulations, Analysis, and Results

    NASA Astrophysics Data System (ADS)

    Rasco, Charles

    2013-04-01

    Simulations of the Low-Energy Neutrino Spectrometer prototype, μLENS, have been performed in order to benchmark the first measurements of the μLENS detector at the Kimballton Underground Research Facility (KURF). μLENS is a 6x6x6 celled scintillation lattice filled with Linear Alkylbenzene based scintillator. We have performed simulations of μLENS using the GEANT4 toolkit. We have measured various radioactive sources, LEDs, and environmental background radiation measurements at KURF using up to 96 PMTs with a simplified data acquisition system of QDCs and TDCs. In this talk we will demonstrate our understanding of the light propagation and we will compare simulation results with measurements of the μLENS detector of various radioactive sources, LEDs, and the environmental background radiation.

  14. Optimal time following fluorescein instillation to evaluate rigid gas permeable contact lens fit.

    PubMed

    Wolffsohn, James S; Tharoo, Ali; Lakhlani, Nikita

    2015-04-01

    To examine the optimum time at which fluorescein patterns of gas permeable lenses (GPs) should be evaluated. Aligned, 0.2mm steep and 0.2mm flat GPs were fitted to 17 patients (aged 20.6 ± 1.1 years, 10 male). Fluorescein was applied to their upper temporal bulbar conjunctiva with a moistened fluorescein strip. Digital slit lamp images (CSO, Italy) at 10× magnification of the fluorescein pattern viewed with blue light through a yellow filter were captured every 15s. Fluorescein intensity in central, mid peripheral and edge regions of the superior, inferior, temporal and nasal quadrants of the lens were graded subjectively using a +2 to -2 scale and using ImageJ software on the simultaneously captured images. Subjectively graded and objectively image analysed fluorescein intensity changed with time (p < 0.001), lens region (centre, mid-periphery and edge: p < 0.05) and there was interaction between lens region with lens fit (p < 0.001). For edge band width, there was a significant effect of time (F = 118.503, p < 0.001) and lens fit (F = 5.1249, p = 0.012). The expected alignment, flat and steep fitting patterns could be seen from approximately after 30 to 180 s subjectively and 15 to 105 s in captured images. Although the stability of fluorescein intensity can start to decline in as little as 45 s post fluorescein instillation, the diagnostic pattern of alignment, steep or flat fit is seen in each meridian by subjective observation from about 30s to 3 min indicating this is the most appropriate time window to evaluate GP lenses in clinical practice. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  15. Lens dose in routine head CT: comparison of different optimization methods with anthropomorphic phantoms.

    PubMed

    Nikupaavo, Ulla; Kaasalainen, Touko; Reijonen, Vappu; Ahonen, Sanna-Mari; Kortesniemi, Mika

    2015-01-01

    The purpose of this study was to study different optimization methods for reducing eye lens dose in head CT. Two anthropomorphic phantoms were scanned with a routine head CT protocol for evaluation of the brain that included bismuth shielding, gantry tilting, organ-based tube current modulation, or combinations of these techniques. Highsensitivity metal oxide semiconductor field effect transistor dosimeters were used to measure local equivalent doses in the head region. The relative changes in image noise and contrast were determined by ROI analysis. The mean absorbed lens doses varied from 4.9 to 19.7 mGy and from 10.8 to 16.9 mGy in the two phantoms. The most efficient method for reducing lens dose was gantry tilting, which left the lenses outside the primary radiation beam, resulting in an approximately 75% decrease in lens dose. Image noise decreased, especially in the anterior part of the brain. The use of organ-based tube current modulation resulted in an approximately 30% decrease in lens dose. However, image noise increased as much as 30% in the posterior and central parts of the brain. With bismuth shields, it was possible to reduce lens dose as much as 25%. Our results indicate that gantry tilt, when possible, is an effective method for reducing exposure of the eye lenses in CT of the brain without compromising image quality. Measurements in two different phantoms showed how patient geometry affects the optimization. When lenses can only partially be cropped outside the primary beam, organ-based tube current modulation or bismuth shields can be useful in lens dose reduction.

  16. Nonlinear ionizing radiation-induced changes in eye lens cell proliferation, cyclin D1 expression and lens shape.

    PubMed

    Markiewicz, Ewa; Barnard, Stephen; Haines, Jackie; Coster, Margaret; van Geel, Orry; Wu, Weiju; Richards, Shane; Ainsbury, Elizabeth; Rothkamm, Kai; Bouffler, Simon; Quinlan, Roy A

    2015-04-01

    Elevated cataract risk after radiation exposure was established soon after the discovery of X-rays in 1895. Today, increased cataract incidence among medical imaging practitioners and after nuclear incidents has highlighted how little is still understood about the biological responses of the lens to low-dose ionizing radiation (IR). Here, we show for the first time that in mice, lens epithelial cells (LECs) in the peripheral region repair DNA double strand breaks (DSB) after exposure to 20 and 100 mGy more slowly compared with circulating blood lymphocytes, as demonstrated by counts of γH2AX foci in cell nuclei. LECs in the central region repaired DSBs faster than either LECs in the lens periphery or lymphocytes. Although DSB markers (γH2AX, 53BP1 and RAD51) in both lens regions showed linear dose responses at the 1 h timepoint, nonlinear responses were observed in lenses for EdU (5-ethynyl-2'-deoxy-uridine) incorporation, cyclin D1 staining and cell density after 24 h at 100 and 250 mGy. After 10 months, the lens aspect ratio was also altered, an indicator of the consequences of the altered cell proliferation and cell density changes. A best-fit model demonstrated a dose-response peak at 500 mGy. These data identify specific nonlinear biological responses to low (less than 1000 mGy) dose IR-induced DNA damage in the lens epithelium.

  17. Nonlinear ionizing radiation-induced changes in eye lens cell proliferation, cyclin D1 expression and lens shape

    PubMed Central

    Markiewicz, Ewa; Barnard, Stephen; Haines, Jackie; Coster, Margaret; van Geel, Orry; Wu, Weiju; Richards, Shane; Ainsbury, Elizabeth; Rothkamm, Kai; Bouffler, Simon; Quinlan, Roy A.

    2015-01-01

    Elevated cataract risk after radiation exposure was established soon after the discovery of X-rays in 1895. Today, increased cataract incidence among medical imaging practitioners and after nuclear incidents has highlighted how little is still understood about the biological responses of the lens to low-dose ionizing radiation (IR). Here, we show for the first time that in mice, lens epithelial cells (LECs) in the peripheral region repair DNA double strand breaks (DSB) after exposure to 20 and 100 mGy more slowly compared with circulating blood lymphocytes, as demonstrated by counts of γH2AX foci in cell nuclei. LECs in the central region repaired DSBs faster than either LECs in the lens periphery or lymphocytes. Although DSB markers (γH2AX, 53BP1 and RAD51) in both lens regions showed linear dose responses at the 1 h timepoint, nonlinear responses were observed in lenses for EdU (5-ethynyl-2′-deoxy-uridine) incorporation, cyclin D1 staining and cell density after 24 h at 100 and 250 mGy. After 10 months, the lens aspect ratio was also altered, an indicator of the consequences of the altered cell proliferation and cell density changes. A best-fit model demonstrated a dose-response peak at 500 mGy. These data identify specific nonlinear biological responses to low (less than 1000 mGy) dose IR-induced DNA damage in the lens epithelium. PMID:25924630

  18. High-efficiency chiral meta-lens.

    PubMed

    Groever, Benedikt; Rubin, Noah A; Mueller, J P Balthasar; Devlin, Robert C; Capasso, Federico

    2018-05-08

    We present here a compact metasurface lens element that enables simultaneous and spatially separated imaging of light of opposite circular polarization states. The design overcomes a limitation of previous chiral lenses reliant on the traditional geometric phase approach by allowing for independent focusing of both circular polarizations without a 50% efficiency trade-off. We demonstrate circular polarization-dependent imaging at visible wavelengths with polarization contrast greater than 20dB and efficiencies as high as 70%.

  19. Electrowetting-based adaptive vari-focal liquid lens array for 3D display

    NASA Astrophysics Data System (ADS)

    Won, Yong Hyub

    2014-10-01

    Electrowetting is a phenomenon that can control the surface tension of liquid when a voltage is applied. This paper introduces the fabrication method of liquid lens array by the electrowetting phenomenon. The fabricated 23 by 23 lens array has 1mm diameter size with 1.6 mm interval distance between adjacent lenses. The diopter of each lens was - 24~27 operated at 0V to 50V. The lens array chamber fabricated by Deep Reactive-Ion Etching (DRIE) is deposited with IZO and parylene C and tantalum oxide. To prevent water penetration and achieve high dielectric constant, parylene C and tantalum oxide (ɛ = 23 ~ 25) are used respectively. Hydrophobic surface which enables the range of contact angle from 60 to 160 degree is coated to maximize the effect of electrowetting causing wide band of dioptric power. Liquid is injected into each lens chamber by two different ways. First way was self water-oil dosing that uses cosolvent and diffusion effect, while the second way was micro-syringe by the hydrophobic surface properties. To complete the whole process of the lens array fabrication, underwater sealing was performed using UV adhesive that does not dissolve in water. The transient time for changing from concave to convex lens was measured <33ms (at frequency of 1kHz AC voltage.). The liquid lens array was tested unprecedentedly for integral imaging to achieve more advanced depth information of 3D image.

  20. Active Optical Zoom for Tracking

    DTIC Science & Technology

    2008-09-01

    optical system. 2. Current Setup Deformable Flat Two Deformable Flat Figure 1. Zemax lens design layout and experimental layout on the...optical bench. Figure 1 is a ZEMAX design and setup on the optical bench of two Deformable Mirrors (DMs) from OKO technologies. These mirrors have

  1. Fast inner-volume imaging of the lumbar spine with a spatially focused excitation using a 3D-TSE sequence.

    PubMed

    Riffel, Philipp; Michaely, Henrik J; Morelli, John N; Paul, Dominik; Kannengiesser, Stephan; Schoenberg, Stefan O; Haneder, Stefan

    2015-04-01

    The purpose of this study was to evaluate the feasibility and technical quality of a zoomed three-dimensional (3D) turbo spin-echo (TSE) sampling perfection with application optimized contrasts using different flip-angle evolutions (SPACE) sequence of the lumbar spine. In this prospective feasibility study, nine volunteers underwent a 3-T magnetic resonance examination of the lumbar spine including 1) a conventional 3D T2-weighted (T2w) SPACE sequence with generalized autocalibrating partially parallel acquisition technique acceleration factor 2 and 2) a zoomed 3D T2w SPACE sequence with a reduced field of view (reduction factor 2). Images were evaluated with regard to image sharpness, signal homogeneity, and the presence of artifacts by two experienced radiologists. For quantitative analysis, signal-to-noise ratio (SNR) values were calculated. Image sharpness of anatomic structures was statistically significantly greater with zoomed SPACE (P < .0001), whereas the signal homogeneity was statistically significantly greater with conventional SPACE (cSPACE; P = .0003). There were no statistically significant differences in extent of artifacts. Acquisition times were 8:20 minutes for cSPACE and 6:30 minutes for zoomed SPACE. Readers 1 and 2 selected zSPACE as the preferred sequence in five of nine cases. In two of nine cases, both sequences were rated as equally preferred by both the readers. SNR values were statistically significantly greater with cSPACE. In comparison to a cSPACE sequences, zoomed SPACE imaging of the lumbar spine provides sharper images in conjunction with a 25% reduction in acquisition time. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  2. Cornea and ocular lens visualized with three-dimensional confocal microscopy

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.

    1992-08-01

    This paper demonstrates the advantages of three-dimensional reconstruction of the cornea and the ocular crystalline lens by confocal microscopy and volume rendering computer techniques. The advantages of noninvasive observation of ocular structures in living, unstained, unfixed tissue include the following: the tissue is in a natural living state without the artifacts of fixation, mechanical sectioning, and staining; the three-dimensional structure can be observed from any view point and quantitatively analyzed; the dynamics of morphological changes can be studied; and the use of confocal microscopic observation results in a reduction of the number of animals required for ocular morphometric studies. The main advantage is that the dynamic morphology of ocular structures can be investigated in living ocular tissue. A laser scanning confocal microscope was used in the reflected light mode to obtain the two- dimensional images from the cornea and the ocular lens of a freshly enucleated rabbit eye. The light source was an argon ion laser with 488 nm wavelength. The microscope objective was a Leitz 25X, NA 0.6 water immersion lens. The 400 micron thick cornea was optically sectioned into 133, three micron sections. The semi-transparent cornea and the in-situ ocular lens was visualized as high resolution, high contrast two-dimensional images. The under sampling resulted in a three-dimensional visualization rendering in which the corneal thickness (z-axis) is compressed. The structures observed in the cornea include: superficial epithelial cells and their nuclei, basal epithelial cells and their `beaded' cell borders, basal lamina, nerve plexus, nerve fibers, free nerve endings in the basal epithelial cells, nuclei of stromal keratocytes, and endothelial cells. The structures observed in the in-situ ocular lens include: lens capsule, lens epithelial cells, and individual lens fibers.

  3. Manufacturing PDMS micro lens array using spin coating under a multiphase system

    NASA Astrophysics Data System (ADS)

    Sun, Rongrong; Yang, Hanry; Rock, D. Mitchell; Danaei, Roozbeh; Panat, Rahul; Kessler, Michael R.; Li, Lei

    2017-05-01

    The development of micro lens arrays has garnered much interest due to increased demand of miniaturized systems. Traditional methods for manufacturing micro lens arrays have several shortcomings. For example, they require expensive facilities and long lead time, and traditional lens materials (i.e. glass) are typically heavy, costly and difficult to manufacture. In this paper, we explore a method for manufacturing a polydimethylsiloxane (PDMS) micro lens array using a simple spin coating technique. The micro lens array, formed under an interfacial tension dominated system, and the influence of material properties and process parameters on the fabricated lens shape are examined. The lenses fabricated using this method show comparable optical properties—including surface finish and image quality—with a reduced cost and manufacturing lead time.

  4. Heterochromatic Flicker Photometry for Objective Lens Density Quantification.

    PubMed

    Najjar, Raymond P; Teikari, Petteri; Cornut, Pierre-Loïc; Knoblauch, Kenneth; Cooper, Howard M; Gronfier, Claude

    2016-03-01

    Although several methods have been proposed to evaluate lens transmittance, to date there is no consensual in vivo approach in clinical practice. The aim of this study was to compare ocular lens density and transmittance measurements obtained by an improved psychophysical scotopic heterochromatic flicker photometry (sHFP) technique to the results obtained by three other measures: a psychophysical threshold technique, a Scheimpflug imaging technique, and a clinical assessment using a validated subjective scale. Forty-three subjects (18 young, 9 middle aged, and 16 older) were included in the study. Individual lens densities were measured and transmittance curves were derived from sHFP indexes. Ocular lens densities were compared across methods by using linear regression analysis. The four approaches showed a quadratic increase in lens opacification with age. The sHFP technique revealed that transmittance decreased with age over the entire visual spectrum. This decrease was particularly pronounced between young and older participants in the short (53.03% decrease in the 400-500 nm range) wavelength regions of the light spectrum. Lens density derived from sHFP highly correlated with the values obtained with the other approaches. Compared to other objective measures, sHFP also showed the lowest variability and the best fit with a quadratic trend (r2 = 0.71) of lens density increase as a function of age. The sHFP technique offers a practical, reliable, and accurate method to measure lens density in vivo and predict lens transmittance over the visible spectrum. An accurate quantification of lens transmittance should be obtained in clinical practice, but also in research in visual and nonvisual photoreception.

  5. Inspection of aeronautical mechanical parts with a pan-tilt-zoom camera: an approach guided by the computer-aided design model

    NASA Astrophysics Data System (ADS)

    Viana, Ilisio; Orteu, Jean-José; Cornille, Nicolas; Bugarin, Florian

    2015-11-01

    We focus on quality control of mechanical parts in aeronautical context using a single pan-tilt-zoom (PTZ) camera and a computer-aided design (CAD) model of the mechanical part. We use the CAD model to create a theoretical image of the element to be checked, which is further matched with the sensed image of the element to be inspected, using a graph theory-based approach. The matching is carried out in two stages. First, the two images are used to create two attributed graphs representing the primitives (ellipses and line segments) in the images. In the second stage, the graphs are matched using a similarity function built from the primitive parameters. The similarity scores of the matching are injected in the edges of a bipartite graph. A best-match-search procedure in the bipartite graph guarantees the uniqueness of the match solution. The method achieves promising performance in tests with synthetic data including missing elements, displaced elements, size changes, and combinations of these cases. The results open good prospects for using the method with realistic data.

  6. Scleral Lens Clearance Assessment with Biomicroscopy and Anterior Segment Optical Coherence Tomography.

    PubMed

    Yeung, Debby; Sorbara, Luigina

    2018-01-01

    It is important to be able to accurately estimate the central corneal clearance when fitting scleral contact lenses. Tools available have intrinsic biases due to the angle of viewing, and therefore an idea of the amount of error in estimation will benefit the fitter. To compare the accuracy of observers' ability to estimate scleral contact lens central corneal clearance (CCC) with biomicroscopy to measurements using slit-lamp imaging and anterior segment optical coherence tomography (AS-OCT). In a Web-based survey with images of four scleral lens fits obtained with a slit-lamp video imaging system, participants were asked to estimate the CCC. Responses were compared with known values of CCC of these images determined with an image-processing program (digital CCC) and using the AS-OCT (AS-OCT CCC). Bland-Altman plots and concordance correlation coefficients were used to assess the agreement of CCC measured by the various methods. Sixty-six participants were categorized for analysis based on the amount of experience with scleral lens fitting into novice, intermediate, or advanced fitters. Comparing the estimated CCC to the digital CCC, all three groups overestimated by an average of +27.3 ± 67.3 μm. The estimated CCC was highly correlated to the digital CCC (0.79, 0.92, and 0.94 for each group, respectively). Compared with the CCC measurements using AS-OCT, the three groups of participants overestimated by +103.3 μm and had high correlations (0.79, 0.93, and 0.94 for each group). Results from this study validate the ability of contact lens practitioners to observe and estimate the CCC in scleral lens fittings through the use of biomicroscopic viewing. Increasing experience with scleral lens fitting does not improve the correlation with measured CCC from digital or the AS-OCT. However, the intermediate and advanced groups display significantly less inter-observer variability compared with the novice group.

  7. QUASAR PG1115+080 AND GRAVITATIONAL LENS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Left: The light from the single quasar PG 1115+080 is split and distorted in this infrared image. PG 1115+080 is at a distance of about 8 billion light years in the constellation Leo, and it is viewed through an elliptical galaxy lens at a distance of 3 billion light years. The NICMOS frame is taken at a wavelength of 1.6 microns and it shows the four images of the quasar (the two on the left are nearly merging) surrounding the galaxy that causes the light to be lensed. The quasar is a variable light source and the light in each image travels a different path to reach the Earth. The time delay of the variations allows the distance scale to be measured directly. The linear streaks on the image are diffraction artifacts in the NICMOS instrument (NASA/Space Telescope Science Institute). Right: In this NICMOS image, the four quasar images and the lens galaxy have been subtracted, revealing a nearly complete ring of infrared light. This ring is the stretched and amplified starlight of the galaxy that contains the quasar, some 8 billion light years away. (NASA/Space Telescope Science Institute). Credit: Christopher D. Impey (University of Arizona)

  8. Optomechanical integrated simulation of Mars medium resolution lens with large field of view

    NASA Astrophysics Data System (ADS)

    Yang, Wenqiang; Xu, Guangzhou; Yang, Jianfeng; Sun, Yi

    2017-10-01

    The lens of Mars detector is exposed to solar radiation and space temperature for long periods of time during orbit, so that the ambient temperature of the optical system is in a dynamic state. The optical and mechanical change caused by heat will lead to camera's visual axis drift and the wavefront distortion. The surface distortion of the optical lens includes the displacement of the rigid body and the distortion of the surface shape. This paper used the calculation method based on the integrated optomechanical analysis, to explore the impact of thermodynamic load on image quality. Through the analysis software, established a simulation model of the lens structure. The shape distribution and the surface characterization parameters of the lens in some temperature ranges were analyzed and compared. the PV / RMS value, deformation cloud of the lens surface and quality evaluation of imaging was achieved. This simulation has been successfully measured the lens surface shape and shape distribution under the load which is difficult to measure on the experimental conditions. The integrated simulation method of the optical machine can obtain the change of the optical parameters brought by the temperature load. It shows that the application of Integrated analysis has play an important role in guiding the designing the lens.

  9. Magnetic lens apparatus for use in high-resolution scanning electron microscopes and lithographic processes

    DOEpatents

    Crewe, Albert V.

    2000-01-01

    Disclosed are lens apparatus in which a beam of charged particlesis brought to a focus by means of a magnetic field, the lens being situated behind the target position. In illustrative embodiments, a lens apparatus is employed in a scanning electron microscopeas the sole lens for high-resolution focusing of an electron beam, and in particular, an electron beam having an accelerating voltage of from about 10 to about 30,000 V. In one embodiment, the lens apparatus comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. In other embodiments, the lens apparatus comprises a magnetic dipole or virtual magnetic monopole fabricated from a variety of materials, including permanent magnets, superconducting coils, and magnetizable spheres and needles contained within an energy-conducting coil. Multiple-array lens apparatus are also disclosed for simultaneous and/or consecutive imaging of multiple images on single or multiple specimens. The invention further provides apparatus, methods, and devices useful in focusing charged particle beams for lithographic processes.

  10. Rigorous analysis of an electric-field-driven liquid crystal lens for 3D displays

    NASA Astrophysics Data System (ADS)

    Kim, Bong-Sik; Lee, Seung-Chul; Park, Woo-Sang

    2014-08-01

    We numerically analyzed the optical performance of an electric field driven liquid crystal (ELC) lens adopted for 3-dimensional liquid crystal displays (3D-LCDs) through rigorous ray tracing. For the calculation, we first obtain the director distribution profile of the liquid crystals by using the Erickson-Leslie motional equation; then, we calculate the transmission of light through the ELC lens by using the extended Jones matrix method. The simulation was carried out for a 9view 3D-LCD with a diagonal of 17.1 inches, where the ELC lens was slanted to achieve natural stereoscopic images. The results show that each view exists separately according to the viewing position at an optimum viewing distance of 80 cm. In addition, our simulation results provide a quantitative explanation for the ghost or blurred images between views observed from a 3D-LCD with an ELC lens. The numerical simulations are also shown to be in good agreement with the experimental results. The present simulation method is expected to provide optimum design conditions for obtaining natural 3D images by rigorously analyzing the optical functionalities of an ELC lens.

  11. Smart lens: tunable liquid lens for laser tracking

    NASA Astrophysics Data System (ADS)

    Lin, Fan-Yi; Chu, Li-Yu; Juan, Yu-Shan; Pan, Sih-Ting; Fan, Shih-Kang

    2007-05-01

    A tracking system utilizing tunable liquid lens is proposed and demonstrated. Adapting the concept of EWOD (electrowetting-on-dielectric), the curvature of a droplet on a dielectric film can be controlled by varying the applied voltage. When utilizing the droplet as an optical lens, the focal length of this adaptive liquid lens can be adjusted as desired. Moreover, the light that passes through it can therefore be focused to different positions in space. In this paper, the tuning range of the curvature and focal length of the tunable liquid lens is investigated. Droplet transformation is observed and analyzed under a CCD camera. A tracking system combining the tunable liquid lens with a laser detection system is also proposed. With a feedback circuit that maximizing the returned signal by controlling the tunable lens, the laser beam can keep tracked on a distant reflected target while it is moving.

  12. Biomimetic small scale variable focal length lens unit using synthetic elastomer actuators

    NASA Astrophysics Data System (ADS)

    Kim, Baek-chul; Chung, Jinah; Lee, Y.; Nam, Jae-Do; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, J. C.

    2011-04-01

    Having a combination of a gel-like soft lens, ligaments, and the Ciliary muscles, the human eyes are effectively working for various focal lengths without a complicated group of lens. The simple and compact but effective optical system should deserve numerous attentions from various technical field especially portable information technology device industry. Noting the limited physical space of those deivces, demanding shock durability, and massive volume productivity, the present paper proposes a biomimetic optical lens unit that is organized with a circular silicone lens and an annular dielectric polymer actuator. Unlike the traditional optical lens mechanism that normally acquires a focus by changing its focal distance with moving lens or focal plane. the proposed optical system changes its lens thickness using a annulary connected polymer actuator in order to get image focuses. The proposed biomimetic lens system ensures high shock durability, compact physical dimensions, fast actuations, simple manufacturing process, and low production cost.

  13. Zooming in on the cause of the perceptual load effect in the go/no-go paradigm.

    PubMed

    Chen, Zhe; Cave, Kyle R

    2016-08-01

    Perceptual load theory (Lavie, 2005) claims that attentional capacity that is not used for the current task is allocated to irrelevant distractors. It predicts that if the attentional demands of the current task are high, distractor interference will be low. One particularly powerful demonstration of perceptual load effects on distractor processing relies on a go/no-go cue that is interpreted by either simple feature detection or feature conjunction (Lavie, 1995). However, a possible alternative interpretation of these effects is that the differential degree of distractor processing is caused by how broadly attention is allocated (attentional zoom) rather than to perceptual load. In 4 experiments, we show that when stimuli are arranged to equalize the extent of spatial attention across conditions, distractor interference varies little whether cues are defined by a simple feature or a conjunction, and that the typical perceptual load effect emerges only when attentional zoom can covary with perceptual load. These results suggest that attentional zoom can account for the differential degree of distractor processing traditionally attributed to perceptual load in the go/no-go paradigm. They also provide new insight into how different factors interact to control distractor interference. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. The Lens Capsule

    PubMed Central

    Danysh, Brian P.; Duncan, Melinda K.

    2009-01-01

    The lens capsule is a modified basement membrane that completely surrounds the ocular lens. It is known that this extracellular matrix is important for both the structure and biomechanics of the lens in addition to providing informational cues to maintain lens cell phenotype. This review covers the development and structure of the lens capsule, lens diseases associated with mutations in extracellular matrix genes and the role of the capsule in lens function including those proposed for visual accommodation, selective permeability to infectious agents, and cell signaling. PMID:18773892

  15. Vibrationally resonant sum-frequency generation microscopy with a solid immersion lens

    PubMed Central

    Lee, Eun Seong; Lee, Sang-Won; Hsu, Julie; Potma, Eric O.

    2014-01-01

    We use a hemispheric sapphire lens in combination with an off-axis parabolic mirror to demonstrate high-resolution vibrationally resonant sum-frequency generation (VR-SFG) microscopy in the mid-infrared range. With the sapphire lens as an immersed solid medium, the numerical aperture (NA) of the parabolic mirror objective is enhanced by a factor of 1.72, from 0.42 to 0.72, close to the theoretical value of 1.76 ( = nsapphire). The measured lateral resolution is as high as 0.64 μm. We show the practical utility of the sapphire immersion lens by imaging collagen-rich tissues with and without the solid immersion lens. PMID:25071953

  16. Photoacoustic imaging with an acoustic lens detects prostate cancer cells labeled with PSMA-targeting near-infrared dye-conjugates

    NASA Astrophysics Data System (ADS)

    Dogra, Vikram; Chinni, Bhargava; Singh, Shalini; Schmitthenner, Hans; Rao, Navalgund; Krolewski, John J.; Nastiuk, Kent L.

    2016-06-01

    There is an urgent need for sensitive and specific tools to accurately image early stage, organ-confined human prostate cancers to facilitate active surveillance and reduce unnecessary treatment. Recently, we developed an acoustic lens that enhances the sensitivity of photoacoustic imaging. Here, we report the use of this device in conjunction with two molecular imaging agents that specifically target the prostate-specific membrane antigen (PSMA) expressed on the tumor cell surface of most prostate cancers. We demonstrate successful imaging of phantoms containing cancer cells labeled with either of two different PSMA-targeting agents, the ribonucleic acid aptamer A10-3.2 and a urea-based peptidomimetic inhibitor, each linked to the near-infrared dye IRDye800CW. By specifically targeting cells with these agents linked to a dye chosen for optimal signal, we are able to discriminate prostate cancer cells that express PSMA.

  17. A 72 × 60 Angle-Sensitive SPAD Imaging Array for Lens-less FLIM.

    PubMed

    Lee, Changhyuk; Johnson, Ben; Jung, TaeSung; Molnar, Alyosha

    2016-09-02

    We present a 72 × 60, angle-sensitive single photon avalanche diode (A-SPAD) array for lens-less 3D fluorescence lifetime imaging. An A-SPAD pixel consists of (1) a SPAD to provide precise photon arrival time where a time-resolved operation is utilized to avoid stimulus-induced saturation, and (2) integrated diffraction gratings on top of the SPAD to extract incident angles of the incoming light. The combination enables mapping of fluorescent sources with different lifetimes in 3D space down to micrometer scale. Futhermore, the chip presented herein integrates pixel-level counters to reduce output data-rate and to enable a precise timing control. The array is implemented in standard 180 nm complementary metal-oxide-semiconductor (CMOS) technology and characterized without any post-processing.

  18. The impact of intraocular pressure on elastic wave velocity estimates in the crystalline lens.

    PubMed

    Park, Suhyun; Yoon, Heechul; Larin, Kirill V; Emelianov, Stanislav Y; Aglyamov, Salavat R

    2016-12-20

    Intraocular pressure (IOP) is believed to influence the mechanical properties of ocular tissues including cornea and sclera. The elastic properties of the crystalline lens have been mainly investigated with regard to presbyopia, the age-related loss of accommodation power of the eye. However, the relationship between the elastic properties of the lens and IOP remains to be established. The objective of this study is to measure the elastic wave velocity, which represents the mechanical properties of tissue, in the crystalline lens ex vivo in response to changes in IOP. The elastic wave velocities in the cornea and lens from seven enucleated bovine globe samples were estimated using ultrasound shear wave elasticity imaging. To generate and then image the elastic wave propagation, an ultrasound imaging system was used to transmit a 600 µs pushing pulse at 4.5 MHz center frequency and to acquire ultrasound tracking frames at 6 kHz frame rate. The pushing beams were separately applied to the cornea and lens. IOP in the eyeballs was varied from 5 to 50 mmHg. The results indicate that while the elastic wave velocity in the cornea increased from 0.96  ±  0.30 m s -1 to 6.27  ±  0.75 m s -1 as IOP was elevated from 5 to 50 mmHg, there were insignificant changes in the elastic wave velocity in the crystalline lens with the minimum and the maximum speeds of 1.44  ±  0.27 m s -1 and 2.03  ±  0.46 m s -1 , respectively. This study shows that ultrasound shear wave elasticity imaging can be used to assess the biomechanical properties of the crystalline lens noninvasively. Also, it was observed that the dependency of the crystalline lens stiffness on the IOP was significantly lower in comparison with that of cornea.

  19. Task-based lens design with application to digital mammography

    NASA Astrophysics Data System (ADS)

    Chen, Liying; Barrett, Harrison H.

    2005-01-01

    Recent advances in model observers that predict human perceptual performance now make it possible to optimize medical imaging systems for human task performance. We illustrate the procedure by considering the design of a lens for use in an optically coupled digital mammography system. The channelized Hotelling observer is used to model human performance, and the channels chosen are differences of Gaussians. The task performed by the model observer is detection of a lesion at a random but known location in a clustered lumpy background mimicking breast tissue. The entire system is simulated with a Monte Carlo application according to physics principles, and the main system component under study is the imaging lens that couples a fluorescent screen to a CCD detector. The signal-to-noise ratio (SNR) of the channelized Hotelling observer is used to quantify this detectability of the simulated lesion (signal) on the simulated mammographic background. Plots of channelized Hotelling SNR versus signal location for various lens apertures, various working distances, and various focusing places are presented. These plots thus illustrate the trade-off between coupling efficiency and blur in a task-based manner. In this way, the channelized Hotelling SNR is used as a merit function for lens design.

  20. Task-based lens design, with application to digital mammography

    NASA Astrophysics Data System (ADS)

    Chen, Liying

    Recent advances in model observers that predict human perceptual performance now make it possible to optimize medical imaging systems for human task performance. We illustrate the procedure by considering the design of a lens for use in an optically coupled digital mammography system. The channelized Hotelling observer is used to model human performance, and the channels chosen are differences of Gaussians (DOGs). The task performed by the model observer is detection of a lesion at a random but known location in a clustered lumpy background mimicking breast tissue. The entire system is simulated with a Monte Carlo application according to the physics principles, and the main system component under study is the imaging lens that couples a fluorescent screen to a CCD detector. The SNR of the channelized Hotelling observer is used to quantify the detectability of the simulated lesion (signal) upon the simulated mammographic background. In this work, plots of channelized Hotelling SNR vs. signal location for various lens apertures, various working distances, and various focusing places are shown. These plots thus illustrate the trade-off between coupling efficiency and blur in a task-based manner. In this way, the channelized Hotelling SNR is used as a merit function for lens design.

  1. Systematics errors in strong lens modeling

    NASA Astrophysics Data System (ADS)

    Johnson, Traci L.; Sharon, Keren; Bayliss, Matthew B.

    We investigate how varying the number of multiple image constraints and the available redshift information can influence the systematic errors of strong lens models, specifically, the image predictability, mass distribution, and magnifications of background sources. This work will not only inform upon Frontier Field science, but also for work on the growing collection of strong lensing galaxy clusters, most of which are less massive and are capable of lensing a handful of galaxies.

  2. The Gaussian Plasma Lens in Astrophysics: Refraction

    NASA Astrophysics Data System (ADS)

    Clegg, Andrew W.; Fey, Alan L.; Lazio, T. Joseph W.

    1998-03-01

    We present the geometrical optics for refraction of a distant background radio source by an interstellar plasma lens, with specific application to a lens with a Gaussian profile of free-electron column density. The refractive properties of the lens are specified completely by a dimensionless parameter α, which is a function of the wavelength of observation, the free-electron column density through the lens, the lens-observer distance, and the diameter of the lens transverse to the line of sight. A lens passing between the observer and a background source, due to the relative motions of the observer, lens, and source, produces modulations in the light curve of the background source. Because plasma lenses are diverging, the light curve displays a minimum in the background source's flux density, formed when the lens is on-axis, surrounded by enhancements above the nominal (unlensed) flux density. The exact form of the light curve depends only upon the parameter α and the relative angular sizes of the source and lens as seen by the observer. Other effects due to lensing include the following: (1) the formation of caustic surfaces, upon which the apparent brightness of the background source becomes very large; (2) the possible creation of multiple images of the background source; and (3) angular position wander of the background source. If caustics are formed, the separation of the outer caustics can be used to constrain α, while the separation of the inner caustics can constrain the size of the lens. We apply our analysis to two sources, which have undergone extreme scattering events: (1) 0954+658, a source for which we can identify multiple caustics in its light curve, and (2) 1741-038, for which polarization observations were obtained during and after the scattering event. We find general agreement between modeled and observed light curves at 2.25 GHz, but poor agreement at 8.1 GHz. The discrepancies between the modeled and observed light curves may result from

  3. Thermally tunable-focus lenticular lens using liquid crystal.

    PubMed

    Heo, Kyong Chan; Yu, Seung Hun; Kwon, Jin Hyuk; Gwag, Jin Seog

    2013-12-10

    A thermally tunable focusing lenticular liquid crystal (LC) lens array was fabricated using a polymer LC component, including a polarizer that produces linearly polarized light. The focal length in the proposed structure could be tuned by temperature-adjusted applied voltage to a transparent heater in a lenticular LC lens cell because it alters the birefringence of the LC and varies the difference in refractive index between the LC and the polymer. The results showed that the focal length of the E7 LC used varied continuously with temperature from 5.6 to 8.7 mm from 25°C to 54°C, respectively. The proposed lenticular LC lens has potential use in photonic devices such as biological imaging, phone cameras, and optical sensors.

  4. Perinuclear lens retrodots: a role for ascorbate in cataractogenesis.

    PubMed Central

    Bron, A J; Brown, N A

    1987-01-01

    Lens retrodots are round, oblong, or oval features in the perinuclear zone of the adult lens after the fifth decade of life and associated with cataract. Retrodots were found in 47 out of 121 eyes with cataract (39%) in the present series. They show birefringence in vivo and in vitro, and chemical studies suggest that they contain calcium oxalate. It is proposed that ascorbic acid, which is abundant in the normal human lens, is the most likely source for this oxalate. Ascorbic acid is thought to have a protective role against oxidative stress in the lens and other parts of the eye, and its level is known to be reduced in senile cataract. The presence of the retrodots may identify lenses which have been exposed to oxidative stress and are less capable of resisting oxidative damage. Images PMID:3828268

  5. Common path ball lens probe for optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh, Kanwarpal; Yamada, Daisuke; Tearney, Guillermo J.

    2016-02-01

    Background: Common path probes are highly desirable for optical coherence tomography (OCT) as they reduce system complexity and cost. In this work we report an all-fiber common path side viewing monolithic probe for coronary artery imaging. Methods: Our common path probe was designed for spectrometer based Fourier domain OCT at 1310 nm wavelength. Light from the fiber expands in the coreless fiber region and then focussed by the ball lens. Reflection from ball lens-air interface served as reference signal. The monolithic ball lens probe was assembled within a 560 µmouter diameter drive shaft which was attached to a rotary junction. The drive shaft was placed inside an outer, transparent sheath of 800 µm diameter. Results: With a source input power of 25 mW, we could achieve sensitivity of 100.5 dB. The axial resolution of the system was found to be 15.6 µm in air and the lateral resolution (full width half maximum) was approximately 49 µm. As proof of principal, images of skin acquired using this probe demonstrated clear visualization of the stratum corneum, epidermis, and papillary dermis, along with sweat ducts. Conclusion: In this work we have demonstrated a monolithic, ball lens common, path probe for OCT imaging. The designed ball lens probe is easy to fabricate using a laser splicer. Based on the features and capability of common path probes to provide a simpler solution for OCT, we believe that this development will be an important enhancement for certain types of catheters.

  6. Feedforward operation of a lens setup for large defocus and astigmatism correction

    NASA Astrophysics Data System (ADS)

    Verstraete, Hans R. G. W.; Almasian, MItra; Pozzi, Paolo; Bilderbeek, Rolf; Kalkman, Jeroen; Faber, Dirk J.; Verhaegen, Michel

    2016-04-01

    In this manuscript, we present a lens setup for large defocus and astigmatism correction. A deformable defocus lens and two rotational cylindrical lenses are used to control the defocus and astigmatism. The setup is calibrated using a simple model that allows the calculation of the lens inputs so that a desired defocus and astigmatism are actuated on the eye. The setup is tested by determining the feedforward prediction error, imaging a resolution target, and removing introduced aberrations.

  7. Particle velocity measurements with macroscopic fluorescence imaging in lymph tissue mimicking microfluidic phantoms

    NASA Astrophysics Data System (ADS)

    Hennessy, Ricky; Koo, Chiwan; Ton, Phuc; Han, Arum; Righetti, Raffaella; Maitland, Kristen C.

    2011-03-01

    Ultrasound poroelastography can quantify structural and mechanical properties of tissues such as stiffness, compressibility, and fluid flow rate. This novel ultrasound technique is being explored to detect tissue changes associated with lymphatic disease. We have constructed a macroscopic fluorescence imaging system to validate ultrasonic fluid flow measurements and to provide high resolution imaging of microfluidic phantoms. The optical imaging system is composed of a white light source, excitation and emission filters, and a camera with a zoom lens. The field of view can be adjusted from 100 mm x 75 mm to 10 mm x 7.5 mm. The microfluidic device is made of polydimethylsiloxane (PDMS) and has 9 channels, each 40 μm deep with widths ranging from 30 μm to 200 μm. A syringe pump was used to propel water containing 15 μm diameter fluorescent microspheres through the microchannels, with flow rates ranging from 0.5 μl/min to 10 μl/min. Video was captured at a rate of 25 frames/sec. The velocity of the microspheres in the microchannels was calculated using an algorithm that tracked the movement of the fluorescent microspheres. The imaging system was able to measure particle velocities ranging from 0.2 mm/sec to 10 mm/sec. The range of flow velocities of interest in lymph vessels is between 1 mm/sec to 10 mm/sec; therefore our imaging system is sufficient to measure particle velocity in phantoms modeling lymphatic flow.

  8. Improving the performance of an electrowetting lenticular lens array by using a thin polycarbonate chamber.

    PubMed

    Lee, Junsik; Kim, Junoh; Kim, Cheoljoong; Shin, Dooseub; Koo, Gyohyun; Sim, Jee Hoon; Won, Yong Hyub

    2016-12-26

    In this paper, we used a thin polycarbonate (PC) chamber to improve the performance of an electrowetting lenticular lens array. The polycarbonate chamber changed the radius of curvature (ROC) of the oil acting as a lens, which increased the dioptric power of the liquid lens to 1666.7D. The increase in dioptric power required a reduction in the distance between the optical center of the lens and the display pixels under the chamber, which was accomplished by reducing the thickness of the chamber. The optimal thickness of the chamber was determined to be 0.5mm. Using this thin PC chamber, transmittance and viewing angle were measured and compared with an electrowetting lenticular lens with a conventional 1mm poly methyl methacrylate (PMMA) chamber was done. Crosstalk which degrades clear 3D images, is an inevitable factor in lenticular lens type multi-view systems. With the 0.5mm PC chamber, the viewing zone was expanded and the ratio of the crosstalk area was reduced, which resulted in a clear 3D image. The new method of depositing the electrode layer also ensured the uniform operation of the liquid lens array.

  9. Evaluation of modified portable digital camera for screening of diabetic retinopathy.

    PubMed

    Chalam, Kakarla V; Brar, Vikram S; Keshavamurthy, Ravi

    2009-01-01

    To describe a portable wide-field noncontact digital camera for posterior segment photography. The digital camera has a compound lens consisting of two optical elements (a 90-dpt and a 20-dpt lens) attached to a 7.2-megapixel camera. White-light-emitting diodes are used to illuminate the fundus and reduce source reflection. The camera settings are set to candlelight mode, the optic zoom standardized to x2.4 and the focus is manually set to 3.0 m. The new technique provides quality wide-angle digital images of the retina (60 degrees ) in patients with dilated pupils, at a fraction of the cost of established digital fundus photography. The modified digital camera is a useful alternative technique to acquire fundus images and provides a tool for screening posterior segment conditions, including diabetic retinopathy in a variety of clinical settings.

  10. Deformable Surface Accommodating Intraocular Lens: Second Generation Prototype Design Methodology and Testing.

    PubMed

    McCafferty, Sean J; Schwiegerling, Jim T

    2015-04-01

    Present an analysis methodology for developing and evaluating accommodating intraocular lenses incorporating a deformable interface. The next generation design of extruded gel interface intraocular lens is presented. A prototype based upon similar previously in vivo proven design was tested with measurements of actuation force, lens power, interface contour, optical transfer function, and visual Strehl ratio. Prototype verified mathematical models were used to optimize optical and mechanical design parameters to maximize the image quality and minimize the required force to accommodate. The prototype lens produced adequate image quality with the available physiologic accommodating force. The iterative mathematical modeling based upon the prototype yielded maximized optical and mechanical performance through maximum allowable gel thickness to extrusion diameter ratio, maximum feasible refractive index change at the interface, and minimum gel material properties in Poisson's ratio and Young's modulus. The design prototype performed well. It operated within the physiologic constraints of the human eye including the force available for full accommodative amplitude using the eye's natural focusing feedback, while maintaining image quality in the space available. The parameters that optimized optical and mechanical performance were delineated as those, which minimize both asphericity and actuation pressure. The design parameters outlined herein can be used as a template to maximize the performance of a deformable interface intraocular lens. The article combines a multidisciplinary basic science approach from biomechanics, optical science, and ophthalmology to optimize an intraocular lens design suitable for preliminary animal trials.

  11. Temperature compensation analysis of liquid lens for variable-focus control

    NASA Astrophysics Data System (ADS)

    Chen, Shu-Jung; Tai, Tsai-Lin; Shen, Chih-Hsiung

    2006-01-01

    In this work, a fabrication and temperature compensation analysis and electrowetting for the liquid lenses is proposed. The unique capability of controlling the lens profile during the electrowetting fabrication processes is successfully demonstrated for different ambient temperature environment. For a lens fabricated on a hydrophobic Teflon layer, it is found that when the applied voltage is increased, the focal length increases, and the curvature decreases. One challenge for the liquid lens is operating temperature range. Due to the environment temperature change, the ability of controlling the lens profile is analyzed and measured. The description of change in contact angle corresponding to the variation of ambient temperature is derived. Based on this description, we firstly derive the control of voltage vs. temperature for a fixed dioptric power. The control of lens during a focusing action was studied by observation of the image formed by the light through the transparent bottom of ITO glass. Under several conditions of ambient temperature change, capability of controlling the lens profile for a fixed focus is successfully demonstrated by experiments.

  12. Role of Aquaporin 0 in lens biomechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sindhu Kumari, S.; Gupta, Neha; Shiels, Alan

    Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showedmore » the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5{sup −/−}), AQP0 KO (heterozygous KO: AQP0{sup +/−}; homozygous KO: AQP0{sup −/−}; all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0{sup +/−} lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs

  13. Contact lens complications.

    PubMed

    Suchecki, Jeanine K; Donshik, Peter; Ehlers, William H

    2003-09-01

    Complications associated with contact lenses range from mild to severe and occur with all lens modalities. Contact lens wear can cause a change in corneal physiology, which can lead to epithelial, stromal, and endothelial compromise. Other complications include lens deposition, allergic conjunctivitis, giant papillary conjunctivitis, peripheral infiltrates, microbial keratitis, and neovascularization. Pre-existing conditions can contribute to these complications, or they can occur in association with contact lens wear and care regimens. Patient-related factors, such as alteration of the recommended wearing or replacement schedules and noncompliance with recommended contact lens care regimens for economic reasons, convenience, or in error, contribute to contact lens-related complications and have led to difficulty in accurate determination of complication rates among the various lens wear modalities. Complications may require discontinuation of contact lenses, topical therapy, and changes in contact lens wearing schedules, materials, and care solutions. On initial lens fitting and follow-up evaluations, practitioners should review contact lens replacement and cleaning regimens with patients and discuss complications. To avoid serious complications, patients should be reminded to remove their contact lenses as soon as ocular irritation occurs, and to call their eye care practitioner immediately if symptoms persist.

  14. The concentration of light in the human lens.

    PubMed Central

    Merriam, J C

    1996-01-01

    PURPOSE: This thesis explores the idea that light energy, especially ultraviolet light, contributes to the unequal distribution of cataract around the world and to the development of cortical opacities. METHODS: In the first section, the thesis reviews historical concepts of the function of the lens and the nature of cataract, epidemiologic data on the global distribution of cataract, and clinical observations of the predominant location of cortical opacification. Second, computer ray tracings and geometric optics demonstrate the passage of light of varying angle of incidence within the lens. Third, two models of the human eye are used to study the refraction of light by the cornea and lens and illustrate the concentration of energy at the equatorial plane of the lens. RESULTS: Cataract prevalence increases with proximity to the earth's equator, and cortical cataract is most common in the inferior and inferonasal lens. Theoretical studies and the eye models both demonstrate that the concentration of light within the lens increases with angle of incidence, and the eye models suggest that the inferior and inferonasal lens receives significantly more energy than other sections of the lens. CONCLUSION: The prevalence of cataract and exposure to ultraviolet energy both increase with decreasing latitude. The most common location of cortical cataract in the inferonasal lens is consistent with the greater dose of light energy received by this portion of the lens. These studies suggest that the global distribution of cataract and the development of cortical cataract are at least in part dependent on the dose of ultraviolet light received by the lens. Images FIGURE 1 FIGURE 2 FIGURE 27 FIGURE 28 FIGURE 29 FIGURE 31 FIGURE 32 FIGURE 33 FIGURE 34 FIGURE 36 FIGURE 37 FIGURE 38 FIGURE 50 FIGURE 51 FIGURE 52 FIGURE 53 FIGURE 54 FIGURE 56 FIGURE 60 FIGURE 61 FIGURE 63 FIGURE 64 FIGURE 65 FIGURE 68 FIGURE 69 FIGURE 70 FIGURE 71 PMID:8981716

  15. Contact Lens Solutions and Contact Lens Discomfort: Examining the Correlations Between Solution Components, Keratitis, and Contact Lens Discomfort.

    PubMed

    Kuc, Christopher J; Lebow, Kenneth A

    2018-06-13

    This article will examine the current literature, as it relates to contact lens discomfort (CLD) secondary to contact lens solutions. The reader will better understand the characteristics of contact lenses, as they uniquely interact with each type of contact lens solution and also gain a better comprehension of the components of contact lens solution such as preservatives, surfactants, and chelating agents, which may contribute to discomfort. By investigating corneal staining theory and the mechanisms that contribute to its presence, the reader will gain insight into this clinical finding, which relates to selection of contact lens solutions. The FDA standards for testing solutions and how this relates to contact lens keratitis will also be appraised in regards to current ISO recommendations. Finally, better selection of multipurpose contact lens solution (MPS) and hydrogen peroxide-based solutions for patients should be accessible to the clinician based on this review and preexisting clinical findings or diagnoses. A review of current published literature from peer reviewed journals and online journals was conducted to gain an understanding of contact lens solution's impact on contact lens discomfort. Many studies have been conducted comparing comfort between various types of contact lens solutions. It is challenging to decipher this information and apply it clinically when selecting solutions for patients. By comparing solution components, how contact lens solutions interact with different types of lenses, keratitis related to contact lenses, and preexisting ocular conditions, this review will improve a clinician's ability to eliminate CLD.

  16. Post-lens tear turbidity and visual quality after scleral lens wear.

    PubMed

    Carracedo, Gonzalo; Serramito-Blanco, Maria; Martin-Gil, Alba; Wang, Zicheng; Rodriguez-Pomar, Candela; Pintor, Jesús

    2017-11-01

    The aim was to evaluate the turbidity and thickness of the post-lens tear layer and its effect on visual quality in patients with keratoconus after the beginning of lens wear and before lens removal at the end of eight hours. Twenty-six patients with keratoconus (aged 36.95 ± 8.95 years) participated voluntarily in the study. The sample was divided into two groups: patients with intrastromal corneal ring (ICRS group) and patients without ICRS (KC group). Distance visual acuity (VA), contrast sensitivity, pachymetry, post-lens tear layer height and post-lens tear layer turbidity (percentage area occupied and number of particles per mm 2 ) were evaluated with optical coherence tomography before and after wearing a scleral lens. A significant increase of turbidity was found in all groups assessed (p < 0.05). The number of particles per square millimetre was eight times higher after scleral lens wear than at the beginning of wearing the lens for all groups. VA decreases in all groups after scleral lens wear (p < 0.001). All patients showed a statistical diminishing of contrast sensitivity after scleral lens wear (p < 0.05). A significant correlation was found for both turbidity parameters with distance VA but no correlation between turbidity and post-lens tear layer thickness at the beginning was found (p > 0.05). A strong correlation in all groups between the post-lens tear layer at the beginning and differences of tear layer thickness between two measures was also found (p < 0.05). The VA decrease during the scleral lens wearing, filled with preserved saline solution, was due to the increasing post-lens tear layer turbidity. © 2017 Optometry Australia.

  17. Support vector machine firefly algorithm based optimization of lens system.

    PubMed

    Shamshirband, Shahaboddin; Petković, Dalibor; Pavlović, Nenad T; Ch, Sudheer; Altameem, Torki A; Gani, Abdullah

    2015-01-01

    Lens system design is an important factor in image quality. The main aspect of the lens system design methodology is the optimization procedure. Since optimization is a complex, nonlinear task, soft computing optimization algorithms can be used. There are many tools that can be employed to measure optical performance, but the spot diagram is the most useful. The spot diagram gives an indication of the image of a point object. In this paper, the spot size radius is considered an optimization criterion. Intelligent soft computing scheme support vector machines (SVMs) coupled with the firefly algorithm (FFA) are implemented. The performance of the proposed estimators is confirmed with the simulation results. The result of the proposed SVM-FFA model has been compared with support vector regression (SVR), artificial neural networks, and generic programming methods. The results show that the SVM-FFA model performs more accurately than the other methodologies. Therefore, SVM-FFA can be used as an efficient soft computing technique in the optimization of lens system designs.

  18. Pink-beam focusing with a one-dimensional compound refractive lens

    DOE PAGES

    Dufresne, Eric M.; Dunford, Robert W.; Kanter, Elliot P.; ...

    2016-07-28

    The performance of a cooled Be compound refractive lens (CRL) has been tested at the Advanced Photon Source (APS) to enable vertical focusing of the pink beam and permit the X-ray beam to spatially overlap with an 80 µm-high low-density plasma that simulates astrophysical environments. Focusing the fundamental harmonics of an insertion device white beam increases the APS power density; here, a power density as high as 500 W mm –2 was calculated. A CRL is chromatic so it does not efficiently focus X-rays whose energies are above the fundamental. Only the fundamental of the undulator focuses at the experiment.more » A two-chopper system reduces the power density on the imaging system and lens by four orders of magnitude, enabling imaging of the focal plane without any X-ray filter. As a result, a method to measure such high power density as well as the performance of the lens in focusing the pink beam is reported.« less

  19. Selenium Preferentially Accumulates in the Eye Lens Following Embryonic Exposure: A Confocal X-ray Fluorescence Imaging Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Sanjukta; Thomas, Jith; Sylvain, Nicole J.

    Maternal transfer of elevated selenium (Se) to offspring is an important route of Se exposure for fish in the natural environment. However, there is a lack of information on the tissue specific spatial distribution and speciation of Se in the early developmental stages of fish, which provide important information about Se toxicokinetics. The effect of maternal transfer of Se was studied by feeding adult zebrafish a Se-elevated or a control diet followed by collection of larvae from both groups. Novel confocal synchrotron-based techniques were used to investigate Se within intact preserved larvae. Confocal X-ray fluorescence imaging was used to comparemore » Se distributions within specific planes of an intact larva from each of the two groups. The elevated Se treatment showed substantially higher Se levels than the control; Se preferentially accumulated to highest levels in the eye lens, with lower levels in the retina, yolk and other tissues. Confocal X-ray absorption spectroscopy was used to determine that the speciation of Se within the eye lens of the intact larva was a selenomethionine-like species. Preferential accumulation of Se in the eye lens may suggest a direct cause-and-effect relationship between exposure to elevated Se and Se-induced ocular impairments reported previously. This study illustrates the effectiveness of confocal X-ray fluorescence methods for investigating trace element distribution and speciation in intact biological specimens« less

  20. Deep convolutional neural networks as strong gravitational lens detectors

    NASA Astrophysics Data System (ADS)

    Schaefer, C.; Geiger, M.; Kuntzer, T.; Kneib, J.-P.

    2018-03-01

    Context. Future large-scale surveys with high-resolution imaging will provide us with approximately 105 new strong galaxy-scale lenses. These strong-lensing systems will be contained in large data amounts, however, which are beyond the capacity of human experts to visually classify in an unbiased way. Aim. We present a new strong gravitational lens finder based on convolutional neural networks (CNNs). The method was applied to the strong-lensing challenge organized by the Bologna Lens Factory. It achieved first and third place, respectively, on the space-based data set and the ground-based data set. The goal was to find a fully automated lens finder for ground-based and space-based surveys that minimizes human inspection. Methods: We compared the results of our CNN architecture and three new variations ("invariant" "views" and "residual") on the simulated data of the challenge. Each method was trained separately five times on 17 000 simulated images, cross-validated using 3000 images, and then applied to a test set with 100 000 images. We used two different metrics for evaluation, the area under the receiver operating characteristic curve (AUC) score, and the recall with no false positive (Recall0FP). Results: For ground-based data, our best method achieved an AUC score of 0.977 and a Recall0FP of 0.50. For space-based data, our best method achieved an AUC score of 0.940 and a Recall0FP of 0.32. Adding dihedral invariance to the CNN architecture diminished the overall score on space-based data, but achieved a higher no-contamination recall. We found that using committees of five CNNs produced the best recall at zero contamination and consistently scored better AUC than a single CNN. Conclusions: We found that for every variation of our CNN lensfinder, we achieved AUC scores close to 1 within 6%. A deeper network did not outperform simpler CNN models either. This indicates that more complex networks are not needed to model the simulated lenses. To verify this, more

  1. A 72 × 60 Angle-Sensitive SPAD Imaging Array for Lens-less FLIM

    PubMed Central

    Lee, Changhyuk; Johnson, Ben; Jung, TaeSung; Molnar, Alyosha

    2016-01-01

    We present a 72 × 60, angle-sensitive single photon avalanche diode (A-SPAD) array for lens-less 3D fluorescence lifetime imaging. An A-SPAD pixel consists of (1) a SPAD to provide precise photon arrival time where a time-resolved operation is utilized to avoid stimulus-induced saturation, and (2) integrated diffraction gratings on top of the SPAD to extract incident angles of the incoming light. The combination enables mapping of fluorescent sources with different lifetimes in 3D space down to micrometer scale. Futhermore, the chip presented herein integrates pixel-level counters to reduce output data-rate and to enable a precise timing control. The array is implemented in standard 180 nm complementary metal-oxide-semiconductor (CMOS) technology and characterized without any post-processing. PMID:27598170

  2. Ultra-thin metasurface microwave flat lens for broadband applications

    PubMed Central

    Azad, Abul K.; Efimov, Anatoly V.; Ghosh, Shuprio; Singleton, John; Taylor, Antoinette J.

    2017-01-01

    We demonstrate a metasurface-based ultrathin flat lens operating at microwave frequencies. A series of subwavelength metallic split-ring resonators, which are sandwiched between two cross-polarized metallic gratings, are defined to obtain a radially symmetric parabolic phase distribution, covering relative phase differences ranging from 0 to 2.5π radians to create a lens. The tri-layer lens exhibits focusing/collimating of broadband microwaves from 7.0 to 10.0 GHz, with a gain enhancement of 17 dBi at a central wavelength 9.0 GHz while fed by a rectangular horn antenna. The measured focal length agrees reasonably well with design, achieving a 3 dB directionality <4.5° and confirming high-quality beam collimation along the propagation direction. The demonstrated metasurface flat lens enables light-weight, low-cost, and easily deployable flat transceivers for microwave communication, detection, and imaging applications. PMID:29104299

  3. Ultra-thin metasurface microwave flat lens for broadband applications.

    PubMed

    Azad, Abul K; Efimov, Anatoly V; Ghosh, Shuprio; Singleton, John; Taylor, Antoinette J; Chen, Hou-Tong

    2017-05-29

    We demonstrate a metasurface-based ultrathin flat lens operating at microwave frequencies. A series of subwavelength metallic split-ring resonators, which are sandwiched between two cross-polarized metallic gratings, are defined to obtain a radially symmetric parabolic phase distribution, covering relative phase differences ranging from 0 to 2.5π radians to create a lens. The tri-layer lens exhibits focusing/collimating of broadband microwaves from 7.0 to 10.0 GHz, with a gain enhancement of 17 dBi at a central wavelength 9.0 GHz while fed by a rectangular horn antenna. The measured focal length agrees reasonably well with design, achieving a 3 dB directionality <4.5° and confirming high-quality beam collimation along the propagation direction. The demonstrated metasurface flat lens enables light-weight, low-cost, and easily deployable flat transceivers for microwave communication, detection, and imaging applications.

  4. Dual-layer electrode-driven liquid crystal lens with electrically tunable focal length and focal plane

    NASA Astrophysics Data System (ADS)

    Zhang, Y. A.; Lin, C. F.; Lin, J. P.; Zeng, X. Y.; Yan, Q.; Zhou, X. T.; Guo, T. L.

    2018-04-01

    Electric-field-driven liquid crystal (ELC) lens with tunable focal length and their depth of field has been extensively applied in 3D display and imaging systems. In this work, a dual-layer electrode-driven liquid crystal (DELC) lens with electrically tunable focal length and controllable focal plane is demonstrated. ITO-SiO2-AZO electrodes with the dual-layer staggered structure on the top substrate are used as driven electrodes within a LC cell, which permits the establishment of an alternative controllability. The focal length of the DELC lens can be adjusted from 1.41 cm to 0.29 cm when the operating voltage changes from 15 V to 40 V. Furthermore, the focal plane of the DELC lens can selectively move by changing the driving method of the applied voltage to the next driven electrodes. This work demonstrates that the DELC lens has potential applications in imaging systems because of electrically tunable focal length and controllable focal plane.

  5. A broadband terahertz ultrathin multi-focus lens

    PubMed Central

    He, Jingwen; Ye, Jiasheng; Wang, Xinke; Kan, Qiang; Zhang, Yan

    2016-01-01

    Ultrathin transmission metasurface devices are designed on the basis of the Yang-Gu amplitude-phase retrieval algorithm for focusing the terahertz (THz) radiation into four or nine spots with focal spacing of 2 or 3 mm at a frequency of 0.8 THz. The focal properties are experimentally investigated in detail, and the results agree well with the theoretical expectations. The designed THz multi-focus lens (TMFL) demonstrates a good focusing function over a broad frequency range from 0.3 to 1.1 THz. As a transmission-type device based on metasurface, the diffraction efficiency of the TMFL can be as high as 33.92% at the designed frequency. The imaging function of the TMFL is also demonstrated experimentally and clear images are obtained. The proposed method produces an ultrathin, low-cost, and broadband multi-focus lens for THz-band application PMID:27346430

  6. LENS: Prototyping Program

    NASA Astrophysics Data System (ADS)

    Rountree, S. Derek

    2013-04-01

    The Low-Energy Neutrino Spectrometer (LENS) prototyping program is broken into two phases. The first of these is μLENS, a small prototype to study the light transmission in the as built LENS scintillation lattice--- a novel detector method of high segmentation in a large liquid scintillation detector. The μLENS prototype is currently deployed and taking data at the Kimballton Underground Research Facility (KURF) near Virginia Tech. I will discuss the Scintillation Lattice construction methods and schemes of the μLENS program for running with minimal channels instrumented to date ˜41 compared to full coverage 216). The second phase of prototyping is the miniLENS detector for which construction is under way. I will discuss the overall design from the miniLENS Scintillation Lattice to the shielding.

  7. A stereoscopic lens for digital cinema cameras

    NASA Astrophysics Data System (ADS)

    Lipton, Lenny; Rupkalvis, John

    2015-03-01

    Live-action stereoscopic feature films are, for the most part, produced using a costly post-production process to convert planar cinematography into stereo-pair images and are only occasionally shot stereoscopically using bulky dual-cameras that are adaptations of the Ramsdell rig. The stereoscopic lens design described here might very well encourage more live-action image capture because it uses standard digital cinema cameras and workflow to save time and money.

  8. Models of gravitational lens candidates from Space Warps CFHTLS

    NASA Astrophysics Data System (ADS)

    Küng, Rafael; Saha, Prasenjit; Ferreras, Ignacio; Baeten, Elisabeth; Coles, Jonathan; Cornen, Claude; Macmillan, Christine; Marshall, Phil; More, Anupreeta; Oswald, Lucy; Verma, Aprajita; Wilcox, Julianne K.

    2018-03-01

    We report modelling follow-up of recently discovered gravitational-lens candidates in the Canada France Hawaii Telescope Legacy Survey. Lens modelling was done by a small group of specially interested volunteers from the Space Warps citizen-science community who originally found the candidate lenses. Models are categorized according to seven diagnostics indicating (a) the image morphology and how clear or indistinct it is, (b) whether the mass map and synthetic lensed image appear to be plausible, and (c) how the lens-model mass compares with the stellar mass and the abundance-matched halo mass. The lensing masses range from ˜1011 to >1013 M⊙. Preliminary estimates of the stellar masses show a smaller spread in stellar mass (except for two lenses): a factor of a few below or above ˜1011 M⊙. Therefore, we expect the stellar-to-total mass fraction to decline sharply as lensing mass increases. The most massive system with a convincing model is J1434+522 (SW 05). The two low-mass outliers are J0206-095 (SW 19) and J2217+015 (SW 42); if these two are indeed lenses, they probe an interesting regime of very low star formation efficiency. Some improvements to the modelling software (SpaghettiLens), and discussion of strategies regarding scaling to future surveys with more and frequent discoveries, are included.

  9. Binocular lens tilt and decentration measurements in healthy subjects with phakic eyes.

    PubMed

    Schaeffel, Frank

    2008-05-01

    Tilt and decentration of the natural crystalline lens affect optical quality of the foveal image. However, little is known about the distributions of these variables in healthy subjects with phakic eyes and about their correlations in both eyes. A simple, portable, easy-to-use, and partially automated device was developed to study lens tilt and decentration in both eyes of 11 healthy subjects with phakic eyes. The first, third, and fourth Purkinje images (P1, P3, P4) were visualized using a single infrared (IR) light-emitting diode (LED), a planar lens (F = 85 mm; f/number of 1.4), and an infrared sensitive analog video camera. Software was developed to mark pupil edges and positions of P1, P4, and P3 with the cursor of the computer mouse, for three different gaze positions, and an automated regression analysis determined the gaze position that superimposed the third and fourth Purkinje images, the gaze direction for which the lens was oriented perpendicularly to the axis of the IR LED. In this position, lens decentration was determined as the linear distance of the superimposed P3/P4 positions from the pupil center. Contrary to previous approaches, a short initial fixation of a green LED with known angular position calibrated the device as a gaze tracker, and no further positional information was necessary on fixation targets. Horizontal and vertical kappa, horizontal and vertical lens tilt, and vertical lens decentration were highly correlated in both eyes of the subjects, whereas horizontal decentration of the lens was not. There was a large variability of kappa (average horizontal kappa -1.63 degrees +/- 1.77 degrees [left eyes] and +2.07 degrees +/- 2.68 degrees [right eyes]; average vertical kappa +2.52 degrees +/- 1.30 degrees [left eyes] and +2.77 degrees +/- 1.65 degrees [right eyes]). Standard deviation from three repeated measurements ranged from 0.28 degrees to 0.51 degrees for kappa, 0.36 degrees to 0.91 degrees for horizontal lens tilt, and 0

  10. Object Based Numerical Zooming Between the NPSS Version 1 and a 1-Dimensional Meanline High Pressure Compressor Design Analysis Code

    NASA Technical Reports Server (NTRS)

    Follen, G.; Naiman, C.; auBuchon, M.

    2000-01-01

    Within NASA's High Performance Computing and Communication (HPCC) program, NASA Glenn Research Center is developing an environment for the analysis/design of propulsion systems for aircraft and space vehicles called the Numerical Propulsion System Simulation (NPSS). The NPSS focuses on the integration of multiple disciplines such as aerodynamics, structures, and heat transfer, along with the concept of numerical zooming between 0- Dimensional to 1-, 2-, and 3-dimensional component engine codes. The vision for NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. Current "state-of-the-art" engine simulations are 0-dimensional in that there is there is no axial, radial or circumferential resolution within a given component (e.g. a compressor or turbine has no internal station designations). In these 0-dimensional cycle simulations the individual component performance characteristics typically come from a table look-up (map) with adjustments for off-design effects such as variable geometry, Reynolds effects, and clearances. Zooming one or more of the engine components to a higher order, physics-based analysis means a higher order code is executed and the results from this analysis are used to adjust the 0-dimensional component performance characteristics within the system simulation. By drawing on the results from more predictive, physics based higher order analysis codes, "cycle" simulations are refined to closely model and predict the complex physical processes inherent to engines. As part of the overall development of the NPSS, NASA and industry began the process of defining and implementing an object class structure that enables Numerical Zooming between the NPSS Version I (0-dimension) and higher order 1-, 2- and 3-dimensional analysis codes. The NPSS Version I preserves the historical cycle engineering practices but also extends these classical practices into the area of numerical zooming for

  11. Prototyping for LENS

    NASA Astrophysics Data System (ADS)

    Rasco, B. C.

    2012-03-01

    The Low-Energy Neutrino Spectroscopy (LENS) experiment will precisely measure the energy spectrum of low-energy solar neutrinos via charged-current neutrino reactions on indium. The LENS detector concept applies indium-loaded scintillator in an optically-segmented lattice geometry to achieve precise time and spatial resolution with unprecedented sensitivity for low-energy neutrino events. The LENS collaboration is currently developing prototypes that aim to demonstrate the performance and selectivity of the technology and to benchmark Monte Carlo simulations that will guide scaling to the full LENS instrument. Currently a 120 liter prototype, microLENS, is operating with pure scintillator (no indium loading) in the Kimballton Underground Research Facility (KURF). We will present results from initial measurements with microLENS and plans for a 400 liter prototype, miniLENS, using indium loaded scintillator that will be installed this summer.

  12. Dermoscopy-guided reflectance confocal microscopy of skin using high-NA objective lens with integrated wide-field color camera

    NASA Astrophysics Data System (ADS)

    Dickensheets, David L.; Kreitinger, Seth; Peterson, Gary; Heger, Michael; Rajadhyaksha, Milind

    2016-02-01

    Reflectance Confocal Microscopy, or RCM, is being increasingly used to guide diagnosis of skin lesions. The combination of widefield dermoscopy (WFD) with RCM is highly sensitive (~90%) and specific (~ 90%) for noninvasively detecting melanocytic and non-melanocytic skin lesions. The combined WFD and RCM approach is being implemented on patients to triage lesions into benign (with no biopsy) versus suspicious (followed by biopsy and pathology). Currently, however, WFD and RCM imaging are performed with separate instruments, while using an adhesive ring attached to the skin to sequentially image the same region and co-register the images. The latest small handheld RCM instruments offer no provision yet for a co-registered wide-field image. This paper describes an innovative solution that integrates an ultra-miniature dermoscopy camera into the RCM objective lens, providing simultaneous wide-field color images of the skin surface and RCM images of the subsurface cellular structure. The objective lens (0.9 NA) includes a hyperhemisphere lens and an ultra-miniature CMOS color camera, commanding a 4 mm wide dermoscopy view of the skin surface. The camera obscures the central portion of the aperture of the objective lens, but the resulting annular aperture provides excellent RCM optical sectioning and resolution. Preliminary testing on healthy volunteers showed the feasibility of combined WFD and RCM imaging to concurrently show the skin surface in wide-field and the underlying microscopic cellular-level detail. The paper describes this unique integrated dermoscopic WFD/RCM lens, and shows representative images. The potential for dermoscopy-guided RCM for skin cancer diagnosis is discussed.

  13. Dermoscopy-guided reflectance confocal microscopy of skin using high-NA objective lens with integrated wide-field color camera.

    PubMed

    Dickensheets, David L; Kreitinger, Seth; Peterson, Gary; Heger, Michael; Rajadhyaksha, Milind

    2016-02-01

    Reflectance Confocal Microscopy, or RCM, is being increasingly used to guide diagnosis of skin lesions. The combination of widefield dermoscopy (WFD) with RCM is highly sensitive (~90%) and specific (~ 90%) for noninvasively detecting melanocytic and non-melanocytic skin lesions. The combined WFD and RCM approach is being implemented on patients to triage lesions into benign (with no biopsy) versus suspicious (followed by biopsy and pathology). Currently, however, WFD and RCM imaging are performed with separate instruments, while using an adhesive ring attached to the skin to sequentially image the same region and co-register the images. The latest small handheld RCM instruments offer no provision yet for a co-registered wide-field image. This paper describes an innovative solution that integrates an ultra-miniature dermoscopy camera into the RCM objective lens, providing simultaneous wide-field color images of the skin surface and RCM images of the subsurface cellular structure. The objective lens (0.9 NA) includes a hyperhemisphere lens and an ultra-miniature CMOS color camera, commanding a 4 mm wide dermoscopy view of the skin surface. The camera obscures the central portion of the aperture of the objective lens, but the resulting annular aperture provides excellent RCM optical sectioning and resolution. Preliminary testing on healthy volunteers showed the feasibility of combined WFD and RCM imaging to concurrently show the skin surface in wide-field and the underlying microscopic cellular-level detail. The paper describes this unique integrated dermoscopic WFD/RCM lens, and shows representative images. The potential for dermoscopy-guided RCM for skin cancer diagnosis is discussed.

  14. Role of Aquaporin 0 in lens biomechanics.

    PubMed

    Sindhu Kumari, S; Gupta, Neha; Shiels, Alan; FitzGerald, Paul G; Menon, Anil G; Mathias, Richard T; Varadaraj, Kulandaiappan

    2015-07-10

    Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showed the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5(-/-)), AQP0 KO (heterozygous KO: AQP0(+/-); homozygous KO: AQP0(-/-); all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0(+/-) lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs and together they help to confer

  15. Design of tracking and detecting lens system by diffractive optical method

    NASA Astrophysics Data System (ADS)

    Yang, Jiang; Qi, Bo; Ren, Ge; Zhou, Jianwei

    2016-10-01

    Many target-tracking applications require an optical system to acquire the target for tracking and identification. This paper describes a new detecting optical system that can provide automatic flying object detecting, tracking and measuring in visible band. The main feature of the detecting lens system is the combination of diffractive optics with traditional lens design by a technique was invented by Schupmann. Diffractive lens has great potential for developing the larger aperture and lightweight lens. First, the optical system scheme was described. Then the Schupmann achromatic principle with diffractive lens and corrective optics is introduced. According to the technical features and requirements of the optical imaging system for detecting and tracking, we designed a lens system with flat surface Fresnel lens and cancels the optical system chromatic aberration by another flat surface Fresnel lens with effective focal length of 1980mm, an F-Number of F/9.9 and a field of view of 2ωω = 14.2', spatial resolution of 46 lp/mm and a working wavelength range of 0.6 0.85um. At last, the system is compact and easy to fabricate and assembly, the diffuse spot size and MTF function and other analysis provide good performance.

  16. [Pigment dispersion and Artisan implants: crystalline lens rise as a safety criterion].

    PubMed

    Baikoff, G; Bourgeon, G; Jodai, H Jitsuo; Fontaine, A; Vieira Lellis, F; Trinquet, L

    2005-06-01

    To validate the theoretical notion of a crystalline lens rise as a safety criterion for ARTISAN implants in order to prevent the development of pigment dispersion in the implanted eye. Crystalline lens rise is defined by the distance between the crystalline lens's anterior pole and the horizontal plane joining the opposite iridocorneal recesses. We analyzed the biometric measurements of 87 eyes with an Artisan implant. A comparative analysis of the crystalline lens rise was carried out on the nine eyes having developed pigment dispersion and 78 eyes with no problems. Among the modern anterior segment imaging devices (Artemis, Scheimpflug photography, optical coherence tomography, radiology exploration, magnetic resonance imaging, TDM), an anterior chamber optical coherence tomography (AC-OCT) prototype was used. This working hypothesis was confirmed by this study: the crystalline lens rise must be considered as a new safety criterion for implanting Artisan phakic lenses. Indeed, the higher the crystalline lens's rise, the greater the risk of developing pigment dispersion in the pupil area. This complication is more frequent in hyperopes than in myopes. We can consider that there is little or no risk of pigment dispersion if the rise is below 600 microm; however, at 600 microm or greater, there is a 67% rate of pupillary pigment dispersion. In certain cases, when the implant was loosely fixed, there was no traction on the iris root. This is a complication that can be avoided or delayed. The crystalline lens rise must be part of new safety criteria to be taken into consideration when inserting an Artisan implant. This notion must also be applied to other types of phakic implants. The distance remaining between the crystalline lens rise and a 600-micromm theoretical safety level allows one to calculate a safety time interval.

  17. Losing focus: how lens position and viewing angle affect the function of multifocal lenses in fishes.

    PubMed

    Gagnon, Yakir Luc; Wilby, David; Temple, Shelby Eric

    2016-09-01

    Light rays of different wavelengths are focused at different distances when they pass through a lens (longitudinal chromatic aberration [LCA]). For animals with color vision this can pose a serious problem, because in order to perceive a sharp image the rays must be focused at the shallow plane of the photoreceptor's outer segments in the retina. A variety of fish and tetrapods have been found to possess multifocal lenses, which correct for LCA by assigning concentric zones to correctly focus specific wavelengths. Each zone receives light from a specific beam entrance position (BEP) (the lateral distance between incoming light and the center of the lens). Any occlusion of incoming light at specific BEPs changes the composition of the wavelengths that are correctly focused on the retina. Here, we calculated the effect of lens position relative to the plane of the iris and light entering the eye at oblique angles on how much of the lens was involved in focusing the image on the retina (measured as the availability of BEPs). We used rotational photography of fish eyes and mathematical modeling to quantify the degree of lens occlusion. We found that, at most lens positions and viewing angles, there was a decrease of BEP availability and in some cases complete absence of some BEPs. Given the implications of these effects on image quality, we postulate that three morphological features (aphakic spaces, curvature of the iris, and intraretinal variability in spectral sensitivity) may, in part, be adaptations to mitigate the loss of spectral image quality in the periphery of the eyes of fishes.

  18. In vivo crystalline lens measurements with novel swept-source optical coherent tomography: an investigation on variability of measurement.

    PubMed

    Shoji, Takuhei; Kato, Naoko; Ishikawa, Sho; Ibuki, Hisashi; Yamada, Norihiro; Kimura, Itaru; Shinoda, Kei

    2017-01-01

    To evaluate the reproducibility of in vivo crystalline lens measurements obtained by novel commercially available swept-source (SS) optical coherence tomography (OCT) specifically designed for anterior segment imaging. One eye from each of 30 healthy subjects was randomly selected using the CASIA2 (Tomey, Nagoya, Japan) in two separate visits within a week. Each eye was imaged twice. After image scanning, the anterior and posterior lens curvatures and lens thickness were calculated automatically by the CASIA2 built-in program at 0 dioptre (D) (static), -1 D, -3 D and -5 D accommodative stress. The intraobserver and intervisit reproducibility coefficient (RC) and intraclass correlation coefficient (ICC) were calculated. The intraobserver and intervisit RCs ranged from 0.824 to 1.254 mm and 0.789 to 0.911 mm for anterior lens curvature, from 0.276 to 0.299 mm and 0.221 to 0.270 mm for posterior lens curvature and from 0.065 to 0.094 mm and 0.054 to 0.132 mm for lens thickness, respectively. The intraobserver and intervisit ICCs ranged from 0.831 to 0.865 and 0.828 to 0.914 for anterior lens curvature, from 0.832 to 0.898 and 0.840 to 0.933 for posterior lens curvature and from 0.980 to 0.992 and 0.942 to 0.995 for lens thickness. High ICC values were observed for each measurement regardless of accommodative stress. RCs in younger subjects tended to be larger than those in older subjects. This novel anterior segment SS-OCT instrument produced reliable in vivo crystalline lens measurement with good repeatability and reproducibility regardless of accommodation stress.

  19. Ultra-thin metasurface microwave flat lens for broadband applications

    DOE PAGES

    Azad, Abul K.; Efimov, Anatoly V.; Ghosh, Shuprio; ...

    2017-05-31

    In this paper, we demonstrate a metasurface-based ultrathin flat lens operating at microwave frequencies. A series of subwavelength metallic split-ring resonators, which are sandwiched between two cross-polarized metallic gratings, are defined to obtain a radially symmetric parabolic phase distribution, covering relative phase differences ranging from 0 to 2.5π radians to create a lens. The tri-layer lens exhibits focusing/collimating of broadband microwaves from 7.0 to 10.0 GHz, with a gain enhancement of 17 dBi at a central wavelength 9.0 GHz while fed by a rectangular horn antenna. The measured focal length agrees reasonably well with design, achieving a 3 dB directionalitymore » <4.5° and confirming high-quality beam collimation along the propagation direction. Finally, the demonstrated metasurface flat lens enables light-weight, low-cost, and easily deployable flat transceivers for microwave communication, detection, and imaging applications.« less

  20. Ultra-thin metasurface microwave flat lens for broadband applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azad, Abul K.; Efimov, Anatoly V.; Ghosh, Shuprio

    In this paper, we demonstrate a metasurface-based ultrathin flat lens operating at microwave frequencies. A series of subwavelength metallic split-ring resonators, which are sandwiched between two cross-polarized metallic gratings, are defined to obtain a radially symmetric parabolic phase distribution, covering relative phase differences ranging from 0 to 2.5π radians to create a lens. The tri-layer lens exhibits focusing/collimating of broadband microwaves from 7.0 to 10.0 GHz, with a gain enhancement of 17 dBi at a central wavelength 9.0 GHz while fed by a rectangular horn antenna. The measured focal length agrees reasonably well with design, achieving a 3 dB directionalitymore » <4.5° and confirming high-quality beam collimation along the propagation direction. Finally, the demonstrated metasurface flat lens enables light-weight, low-cost, and easily deployable flat transceivers for microwave communication, detection, and imaging applications.« less

  1. Lens Ray Diagrams with a Spreadsheet

    ERIC Educational Resources Information Center

    González, Manuel I.

    2018-01-01

    Physicists create spreadsheets customarily to carry out numerical calculations and to display their results in a meaningful, nice-looking way. Spreadsheets can also be used to display a vivid geometrical model of a physical system. This statement is illustrated with an example taken from geometrical optics: images formed by a thin lens. A careful…

  2. Engineering the Ideal Gigapixel Image Viewer

    NASA Astrophysics Data System (ADS)

    Perpeet, D. Wassenberg, J.

    2011-09-01

    Despite improvements in automatic processing, analysts are still faced with the task of evaluating gigapixel-scale mosaics or images acquired by telescopes such as Pan-STARRS. Displaying such images in ‘ideal’ form is a major challenge even today, and the amount of data will only increase as sensor resolutions improve. In our opinion, the ideal viewer has several key characteristics. Lossless display - down to individual pixels - ensures all information can be extracted from the image. Support for all relevant pixel formats (integer or floating point) allows displaying data from different sensors. Smooth zooming and panning in the high-resolution data enables rapid screening and navigation in the image. High responsiveness to input commands avoids frustrating delays. Instantaneous image enhancement, e.g. contrast adjustment and image channel selection, helps with analysis tasks. Modest system requirements allow viewing on regular workstation computers or even laptops. To the best of our knowledge, no such software product is currently available. Meeting these goals requires addressing certain realities of current computer architectures. GPU hardware accelerates rendering and allows smooth zooming without high CPU load. Programmable GPU shaders enable instant channel selection and contrast adjustment without any perceptible slowdown or changes to the input data. Relatively low disk transfer speeds suggest the use of compression to decrease the amount of data to transfer. Asynchronous I/O allows decompressing while waiting for previous I/O operations to complete. The slow seek times of magnetic disks motivate optimizing the order of the data on disk. Vectorization and parallelization allow significant increases in computational capacity. Limited memory requires streaming and caching of image regions. We develop a viewer that takes the above issues into account. Its awareness of the computer architecture enables previously unattainable features such as smooth

  3. SPIDER: Next Generation Chip Scale Imaging Sensor

    NASA Astrophysics Data System (ADS)

    Duncan, Alan; Kendrick, Rick; Thurman, Sam; Wuchenich, Danielle; Scott, Ryan P.; Yoo, S. J. B.; Su, Tiehui; Yu, Runxiang; Ogden, Chad; Proiett, Roberto

    The LM Advanced Technology Center and UC Davis are developing an Electro-Optical (EO) imaging sensor called SPIDER (Segmented Planar Imaging Detector for Electro-optical Reconnaissance) that provides a 10x to 100x size, weight, and power (SWaP) reduction alternative to the traditional bulky optical telescope and focal plane detector array. The substantial reductions in SWaP would reduce cost and/or provide higher resolution by enabling a larger aperture imager in a constrained volume. The SPIDER concept consists of thousands of direct detection white-light interferometers densely packed onto Photonic Integrated Circuits (PICs) to measure the amplitude and phase of the visibility function at spatial frequencies that span the full synthetic aperture. In other words, SPIDER would sample the object being imaged in the Fourier domain (i.e., spatial frequency domain), and then digitally reconstruct an image. The conventional approach for imaging interferometers requires complex mechanical delay lines to form the interference fringes. This results in designs that are not traceable to more than a few simultaneous spatial frequency measurements. SPIDER seeks to achieve this traceability by employing micron-=scale optical waveguides and nanophotonic structures fabricated on a PIC with micron-scale packing density to form the necessary interferometers. Prior LM IRAD and DARPA/NASA CRAD-funded SPIDER risk reduction experiments, design trades, and simulations have matured the SPIDER imager concept to a TRL 3 level. Current funding under the DARPA SPIDER Zoom program is maturing the underlying PIC technology for SPIDER to the TRL 4 level. This is done by developing and fabricating a second-generation PIC that is fully traceable to the multiple layers and low-power phase modulators required for higher-dimension waveguide arrays that are needed for higher field-of-view sensors. Our project also seeks to extend the SPIDER concept to add a zoom capability that would provide

  4. VLT adaptive optics search for luminous substructures in the lens galaxy towards SDSS J0924+0219

    NASA Astrophysics Data System (ADS)

    Faure, C.; Sluse, D.; Cantale, N.; Tewes, M.; Courbin, F.; Durrer, P.; Meylan, G.

    2011-12-01

    The anomalous flux ratios between quasar images are suspected of being caused by substructures in lens galaxies. We present new deep and high-resolution H and Ks imaging of the strongly lensed quasar SDSS J0924+0219 obtained using the ESO VLT with adaptive optics and the laser guide star system. SDSS J0924+0219 is particularly interesting because the observed flux ratio between the quasar images vastly disagree with the predictions from smooth mass models. With our adaptive optics observations we find a luminous object, Object L, located ~0.3'' to the north of the lens galaxy, but we show that it cannot be responsible for the anomalous flux ratios. Object L as well as a luminous extension of the lens galaxy to the south are seen in the archival HST/ACS image in the F814W filter. This suggests that Object L is part of a bar in the lens galaxy, as also supported by the presence of a significant disk component in the light profile of the lens galaxy. Finally, we find no evidence of any other luminous substructure that may explain the quasar images flux ratios. However, owing to the persistence of the flux ratio anomaly over time (~7 years), a combination of microlensing and millilensing is the favorite explanation for the observations. Based on observations obtained with the ESO VLT at Paranal observatory (Prog ID 084.A-0762(A); PI: Meylan). Also based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with the CASTLES (Cfa-Arizona Space Telescope LEns Survey) survey (ID: 9744, PI: C. S. Kochanek).

  5. Reflectance confocal microscopy of oral epithelial tissue using an electrically tunable lens

    NASA Astrophysics Data System (ADS)

    Jabbour, Joey M.; Malik, Bilal H.; Cuenca, Rodrigo; Cheng, Shuna; Jo, Javier A.; Cheng, Yi-Shing L.; Wright, John M.; Maitland, Kristen C.

    2014-02-01

    We present the use of a commercially available electrically tunable lens to achieve axial scanning in a reflectance confocal microscope. Over a 255 μm axial scan range, the lateral and axial resolutions varied from 1-2 μm and 4-14 μm, respectively, dependent on the variable focal length of the tunable lens. Confocal imaging was performed on normal human biopsies from the oral cavity ex vivo. Sub-cellular morphologic features were seen throughout the depth of the epithelium while axially scanning using the focus tunable lens.

  6. Collimating lens for light-emitting-diode light source based on non-imaging optics.

    PubMed

    Wang, Guangzhen; Wang, Lili; Li, Fuli; Zhang, Gongjian

    2012-04-10

    A collimating lens for a light-emitting-diode (LED) light source is an essential device widely used in lighting engineering. Lens surfaces are calculated by geometrical optics and nonimaging optics. This design progress does not rely on any software optimization and any complex iterative process. This method can be used for any type of light source not only Lambertian. The theoretical model is based on point source. But the practical LED source has a certain size. So in the simulation, an LED chip whose size is 1 mm*1 mm is used to verify the feasibility of the model. The mean results show that the lenses have a very compact structure and good collimating performance. Efficiency is defined as the ratio of the flux in the illuminated plane to the flux from LED source without considering the lens material transmission. Just investigating the loss in the designed lens surfaces, the two types of lenses have high efficiencies of more than 90% and 99%, respectively. Most lighting area (possessing 80% flux) radii are no more than 5 m when the illuminated plane is 200 m away from the light source.

  7. External versus internal triggers of bar formation in cosmological zoom-in simulations

    NASA Astrophysics Data System (ADS)

    Zana, Tommaso; Dotti, Massimo; Capelo, Pedro R.; Bonoli, Silvia; Haardt, Francesco; Mayer, Lucio; Spinoso, Daniele

    2018-01-01

    The emergence of a large-scale stellar bar is one of the most striking features in disc galaxies. By means of state-of-the-art cosmological zoom-in simulations, we study the formation and evolution of bars in Milky Way-like galaxies in a fully cosmological context, including the physics of gas dissipation, star formation and supernova feedback. Our goal is to characterize the actual trigger of the non-axisymmetric perturbation that leads to the strong bar observable in the simulations at z = 0, discriminating between an internal/secular and an external/tidal origin. To this aim, we run a suite of cosmological zoom-in simulations altering the original history of galaxy-satellite interactions at a time when the main galaxy, though already bar-unstable, does not feature any non-axisymmetric structure yet. We find that the main effect of a late minor merger and of a close fly-by is to delay the time of bar formation and those two dynamical events are not directly responsible for the development of the bar and do not alter significantly its global properties (e.g. its final extension). We conclude that, once the disc has grown to a mass large enough to sustain global non-axisymmetric modes, then bar formation is inevitable.

  8. Low-cost mobile phone microscopy with a reversed mobile phone camera lens.

    PubMed

    Switz, Neil A; D'Ambrosio, Michael V; Fletcher, Daniel A

    2014-01-01

    The increasing capabilities and ubiquity of mobile phones and their associated digital cameras offer the possibility of extending low-cost, portable diagnostic microscopy to underserved and low-resource areas. However, mobile phone microscopes created by adding magnifying optics to the phone's camera module have been unable to make use of the full image sensor due to the specialized design of the embedded camera lens, exacerbating the tradeoff between resolution and field of view inherent to optical systems. This tradeoff is acutely felt for diagnostic applications, where the speed and cost of image-based diagnosis is related to the area of the sample that can be viewed at sufficient resolution. Here we present a simple and low-cost approach to mobile phone microscopy that uses a reversed mobile phone camera lens added to an intact mobile phone to enable high quality imaging over a significantly larger field of view than standard microscopy. We demonstrate use of the reversed lens mobile phone microscope to identify red and white blood cells in blood smears and soil-transmitted helminth eggs in stool samples.

  9. Low-Cost Mobile Phone Microscopy with a Reversed Mobile Phone Camera Lens

    PubMed Central

    Fletcher, Daniel A.

    2014-01-01

    The increasing capabilities and ubiquity of mobile phones and their associated digital cameras offer the possibility of extending low-cost, portable diagnostic microscopy to underserved and low-resource areas. However, mobile phone microscopes created by adding magnifying optics to the phone's camera module have been unable to make use of the full image sensor due to the specialized design of the embedded camera lens, exacerbating the tradeoff between resolution and field of view inherent to optical systems. This tradeoff is acutely felt for diagnostic applications, where the speed and cost of image-based diagnosis is related to the area of the sample that can be viewed at sufficient resolution. Here we present a simple and low-cost approach to mobile phone microscopy that uses a reversed mobile phone camera lens added to an intact mobile phone to enable high quality imaging over a significantly larger field of view than standard microscopy. We demonstrate use of the reversed lens mobile phone microscope to identify red and white blood cells in blood smears and soil-transmitted helminth eggs in stool samples. PMID:24854188

  10. High Resolution PET with 250 micrometer LSO Detectors and Adaptive Zoom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherry, Simon R.; Qi, Jinyi

    2012-01-08

    There have been impressive improvements in the performance of small-animal positron emission tomography (PET) systems since their first development in the mid 1990s, both in terms of spatial resolution and sensitivity, which have directly contributed to the increasing adoption of this technology for a wide range of biomedical applications. Nonetheless, current systems still are largely dominated by the size of the scintillator elements used in the detector. Our research predicts that developing scintillator arrays with an element size of 250 {micro}m or smaller will lead to an image resolution of 500 {micro}m when using 18F- or 64Cu-labeled radiotracers, giving amore » factor of 4-8 improvement in volumetric resolution over the highest resolution research systems currently in existence. This proposal had two main objectives: (i) To develop and evaluate much higher resolution and efficiency scintillator arrays that can be used in the future as the basis for detectors in a small-animal PET scanner where the spatial resolution is dominated by decay and interaction physics rather than detector size. (ii) To optimize one such high resolution, high sensitivity detector and adaptively integrate it into the existing microPET II small animal PET scanner as a 'zoom-in' detector that provides higher spatial resolution and sensitivity in a limited region close to the detector face. The knowledge gained from this project will provide valuable information for building future PET systems with a complete ring of very high-resolution detector arrays and also lay the foundations for utilizing high-resolution detectors in combination with existing PET systems for localized high-resolution imaging.« less

  11. Temporal integration of visual signals in lens compensation (a review)

    PubMed Central

    Zhu, Xiaoying

    2013-01-01

    Postnatal eye growth is controlled by visual signals. When wearing a positive lens that causes images to be focused in front of the retina (myopic defocus), the eye reduces its rate of ocular elongation and increases choroidal thickness to move the retina forward to meet the focal plane of the eye. When wearing a negative lens that causes images to be focused behind the retina (hyperopic defocus), the opposite happens. This review summarizes how the retina integrates the constantly changing visual signals in a non-linear fashion to guide eye growth in chicks: (1a) When myopic or hyperopic defocus is interrupted by a daily episode of normal vision, normal vision is more effective in reducing myopia caused by hyperopic defocus than in reducing hyperopia caused by myopic defocus; (1b) when the eye experiences alternating myopic and hyperopic defocus, the eye is more sensitive to myopic defocus than to hyperopic defocus and tends to develop hyperopia, even if the duration of hyperopic defocus is much longer than the duration of myopic defocus; (2) when the eye experiences brief, repeated episodes of defocus by wearing either positive or negative lenses, lens compensation depends on the frequency and duration of individual episodes of lens wear, not just the total daily duration of lens wear; and (3) further analysis of the time constants for the hypothesized internal emmetropization signals show that, while it takes approximately the same amount of time for the signals to rise and saturate during lens-wearing episodes, the decline of the signals between episodes depends strongly on the sign of defocus and the ocular component. Although most extensively studied in chicks, the nonlinear temporal integration of visual signals has been found in other animal models. These findings may help explain the complex etiology of myopia in school-aged children and suggest ways to slow down myopia progression. PMID:23470505

  12. Holographic Rovers: Augmented Reality and the Microsoft HoloLens

    NASA Technical Reports Server (NTRS)

    Toler, Laura

    2017-01-01

    Augmented Reality is an emerging field in technology, and encompasses Head Mounted Displays, smartphone apps, and even projected images. HMDs include the Meta 2, Magic Leap, Avegant Light Field, and the Microsoft HoloLens, which is evaluated specifically. The Microsoft HoloLens is designed to be used as an AR personal computer, and is being optimized with that goal in mind. Microsoft allied with the Unity3D game engine to create an SDK for interested application developers that can be used in the Unity environment.

  13. Self-compensation for trefoil aberration of symmetric dioptric microlithographic lens

    NASA Astrophysics Data System (ADS)

    Peng, Wei-Jei; Ho, Cheng-Fang; Hsu, Wei-Yao

    2017-08-01

    The i-line microlithographic lens with unity magnification can be applied for the 3D integrated circuit steppers. The configuration of the microlithographic lens can be divided into three types: the dioptric type, the catoptric type, and the mixed catoptric and dioptric type. The dioptric type with unity magnification is typically designed as symmetry about the aperture stop on both image and object sides to counterbalance aberrations effectively. The lens mounting is substantially critical for the diffraction-limit microlithographic lens, because mounting stresses and gravity degrade image quality severely. The surface deformation of the kinematic mounting is ultimately low, but the disadvantage is high cost and complicated structures. The three-point mounting belongs to the semi-kinematic mounting without over constrain to decrease the surface deformation significantly instead of the ring mounting; however, the disadvantage is the trefoil aberration caused from large-aperture lenses due to gravity. Clocking lenses is a practical method of compensating the surface figure error for optimum wavefront aberration during pre-assembly phase, and then the time and cost spent on the post-assembly for fine alignment reduce much. The self-compensation by two pairs of symmetric lenses on both sides with 60-degree angle difference is beneficial to compensate the trefoil aberration effectively, and it is a costeffective method to achieve the wavefront error close to the design value. In this study, the self-compensation method for the trefoil deformation of large-aperture lenses employed in the symmetric dioptric microlithographic lens is successfully verified in simulation.

  14. Optical system design, analysis, and production; Proceedings of the Meeting, Geneva, Switzerland, April 19-22, 1983

    NASA Astrophysics Data System (ADS)

    Rogers, P. J.; Fischer, R. E.

    1983-01-01

    Topics considered include: optical system requirements, analysis, and system engineering; optical system design using microcomputers and minicomputers; optical design theory and computer programs; optical design methods and computer programs; optical design methods and philosophy; unconventional optical design; diffractive and gradient index optical system design; optical production and system integration; and optical systems engineering. Particular attention is given to: stray light control as an integral part of optical design; current and future directions of lens design software; thin-film technology in the design and production of optical systems; aspherical lenses in optical scanning systems; the application of volume phase holograms to avionic displays; the effect of lens defects on thermal imager performance; and a wide angle zoom for the Space Shuttle.

  15. Single lens 3D-camera with extended depth-of-field

    NASA Astrophysics Data System (ADS)

    Perwaß, Christian; Wietzke, Lennart

    2012-03-01

    Placing a micro lens array in front of an image sensor transforms a normal camera into a single lens 3D camera, which also allows the user to change the focus and the point of view after a picture has been taken. While the concept of such plenoptic cameras is known since 1908, only recently the increased computing power of low-cost hardware and the advances in micro lens array production, have made the application of plenoptic cameras feasible. This text presents a detailed analysis of plenoptic cameras as well as introducing a new type of plenoptic camera with an extended depth of field and a maximal effective resolution of up to a quarter of the sensor resolution.

  16. Efficacy of Lens Protection Systems: Dependency on Different Cranial CT Scans in The Acute Stroke Setting.

    PubMed

    Guberina, Nika; Forsting, Michael; Ringelstein, Adrian

    2017-06-15

    To evaluate the dose-reduction potential with different lens protectors for patients undergoing cranial computed tomography (CT) scans. Eye lens dose was assessed in vitro (α-Al2O3:C thermoluminescence dosemeters) using an Alderson-Rando phantom® in cranial CT protocols at different CT scanners (SOMATOM-Definition-AS+®(CT1) and SOMATOM-Definition-Flash® (CT2)) using two different lens-protection systems (Somatex® (SOM) and Medical Imaging Systems® (MIS)). Summarised percentage of the transmitted photons: (1) CT1 (a) unenhanced CT (nCT) with gantry angulation: SOM = 103%, MIS = 111%; (2) CT2 (a) nCT without gantry angulation: SOM = 81%, MIS = 91%; (b) CT angiography (CTA) with automatic dose-modulation technique: SOM = 39%, MIS = 74%; (c) CTA without dose-modulation technique: SOM = 22%, MIS = 48%; (d) CT perfusion: SOM = 44%, MIS = 69%. SOM showed a higher dose-reduction potential than MIS maintaining equal image quality. Lens-protection systems are most effective in CTA protocols without dose-reduction techniques. Lens-protection systems lower the average eye lens dose during CT scans up to 1/3 (MIS) and 2/3 (SOM), respectively, if the eye lens is exposed to the direct beam of radiation. Considering both the CT protocol and the material of lens protectors, they seem to be mandatory for reducing the radiation exposure of the eye lens. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Astigmatism of the Ex Vivo Human Lens: Surface and Gradient Refractive Index Age-Dependent Contributions.

    PubMed

    Birkenfeld, Judith; de Castro, Alberto; Marcos, Susana

    2015-08-01

    We estimated the contribution of the gradient refractive index (GRIN) and lens surfaces to lens astigmatism and lens astigmatic angle as a function of age in human donor lenses. Human lenses were imaged, ex vivo, with 3D-spectral optical coherence tomography (OCT) and their back focal length was measured using laser ray tracing. The contribution of lens surfaces and GRIN to lens astigmatism were evaluated by computational ray tracing on the GRIN lens and a homogenous equivalent index lens. Astigmatism magnitude and relative astigmatic angle of and between lens surfaces, GRIN lens, and lens with homogeneous refractive index were evaluated, and all results were correlated with age. The magnitude of astigmatism in the anterior lens surface decreased with age (slope = -0.005 diopters [D]/y; r = 0.397, P = 0.018). Posterior surface astigmatism and lens astigmatism were not age-dependent. Presence of GRIN did not alter significantly the magnitude or axis of the lens astigmatism. The astigmatism of GRIN lens and lens with homogeneous refractive index correlated with anterior lens surface astigmatism (GRIN, P = 3.9E - 6, r = 0.693; equivalent refractive index lens, P = 4.1E - 4, r = 0.565). The astigmatic angle of posterior surface, GRIN lens, and homogeneous refractive index lens did not change significantly with age. The axis of lens astigmatism is close to the astigmatic axis of the anterior lens surface. Age-related changes in lens astigmatism appear to be related to changes in the anterior lens astigmatism. The influence of the GRIN on lens astigmatism and the astigmatic axis is minor.

  18. Fast-response variable focusing micromirror array lens

    NASA Astrophysics Data System (ADS)

    Boyd, James G., IV; Cho, Gyoungil

    2003-07-01

    A reflective type Fresnel lens using an array of micromirrors is designed and fabricated using the MUMPs® surface micromachining process. The focal length of the lens can be rapidly changed by controlling both the rotation and translation of electrostatically actuated micromirrors. The rotation converges rays and the translation adjusts the optical path length difference of the rays to be integer multiples of the wavelength. The suspension spring, pedestal and electrodes are located under the mirror to maximize the optical efficiency. Relations are provided for the fill-factor and the numerical aperture as functions of the lens diameter, the mirror size, and the tolerances specified by the MUMPs® design rules. The fabricated lens is 1.8mm in diameter, and each micromirror is approximately 100mm x 100mm. The lens fill-factor is 83.7%, the numerical aperture is 0.018 for a wavelength of 632.8nm, and the resolution is approximately 22mm, whereas the resolution of a perfect aberration-free lens is 21.4μm for a NA of 0.018. The focal length ranges from 11.3mm to infinity. The simulated Strehl ratio, which is the ratio of the point spread function maximum intensity to the theoretical diffraction-limited PSF maximum intensity, is 31.2%. A mechanical analysis was performed using the finite element code IDEAS. The combined maximum rotation and translation produces a maximum stress of 301MPa, below the yield strength of polysilicon, 1.21 to 1.65GPa. Potential applications include adaptive microscope lenses for scanning particle imaging velocimetry and a visually aided micro-assembly.

  19. In vivo crystalline lens measurements with novel swept-source optical coherent tomography: an investigation on variability of measurement

    PubMed Central

    Shoji, Takuhei; Kato, Naoko; Ishikawa, Sho; Ibuki, Hisashi; Yamada, Norihiro; Kimura, Itaru; Shinoda, Kei

    2017-01-01

    Objective To evaluate the reproducibility of in vivo crystalline lens measurements obtained by novel commercially available swept-source (SS) optical coherence tomography (OCT) specifically designed for anterior segment imaging. Methods and analysis One eye from each of 30 healthy subjects was randomly selected using the CASIA2 (Tomey, Nagoya, Japan) in two separate visits within a week. Each eye was imaged twice. After image scanning, the anterior and posterior lens curvatures and lens thickness were calculated automatically by the CASIA2 built-in program at 0 dioptre (D) (static), −1 D, −3 D and −5 D accommodative stress. The intraobserver and intervisit reproducibility coefficient (RC) and intraclass correlation coefficient (ICC) were calculated. Results The intraobserver and intervisit RCs ranged from 0.824 to 1.254 mm and 0.789 to 0.911 mm for anterior lens curvature, from 0.276 to 0.299 mm and 0.221 to 0.270 mm for posterior lens curvature and from 0.065 to 0.094 mm and 0.054 to 0.132 mm for lens thickness, respectively. The intraobserver and intervisit ICCs ranged from 0.831 to 0.865 and 0.828 to 0.914 for anterior lens curvature, from 0.832 to 0.898 and 0.840 to 0.933 for posterior lens curvature and from 0.980 to 0.992 and 0.942 to 0.995 for lens thickness. High ICC values were observed for each measurement regardless of accommodative stress. RCs in younger subjects tended to be larger than those in older subjects. Conclusions This novel anterior segment SS-OCT instrument produced reliable in vivo crystalline lens measurement with good repeatability and reproducibility regardless of accommodation stress. PMID:29354706

  20. Microscope using an x-ray tube and a bubble compound refractive lens

    NASA Astrophysics Data System (ADS)

    Piestrup, M. A.; Gary, C. K.; Park, H.; Harris, J. L.; Cremer, J. T.; Pantell, R. H.; Dudchik, Y. I.; Kolchevsky, N. N.; Komarov, F. F.

    2005-03-01

    We present x-ray images of grid meshes and biological material obtained using an unfiltered x-ray tube and a compound refractive lens composed of microbubbles embedded in epoxy inside a glass capillary. Images obtained using this apparatus are compared with those using a synchrotron source and the same lens. We find that the field of view is larger than that obtained using the synchrotron source, whereas the contrast and resolution are reduced. Geometrical distortion around the edges of the field of view is also reduced. The experiments demonstrate the usefulness of the apparatus in a modest laboratory setting.

  1. Crystalline lens thickness determines the perceived chromatic difference in magnification.

    PubMed

    Chen, Yun; Schaeffel, Frank

    2014-03-01

    Since the origin of the high interindividual variability of the chromatic difference in retinal image magnification (CDM) in the human eye is not well understood, optical parameters that might determine its magnitude were studied in 21 healthy subjects with ages ranging from 21 to 58 years. Two psychophysical procedures were used to quantify CDM. They produced highly correlated results. First, a red and a blue square, presented on a black screen, had to be matched in size by the subjects with their right eyes. Second, a filled red and blue square, flickering on top of each other at 2 Hz, had to be adjusted in perceived brightness and then in size to minimize the impression of flicker. CDM varied widely among subjects from 0.0% to 3.6%. Biometric ocular parameters were measured with low coherence interferometry and crystalline lens tilt and decentration with a custom-built Purkinjemeter. Correlations were studied between CDM and corneal power, anterior chamber depth, lens thickness, lens tilt and lens decentration, and vitreous chamber depths. Lens thickness was found significantly correlated with CDM and accounted for 64% of its variance. Vertical lens tilt and decentration were also significantly correlated. It was also found that CDM increased by 3.5% per year, and part of this change can be attributed to the age-related increase in lens thickness.

  2. Disinfection capacity of PuriLens contact lens cleaning unit against Acanthamoeba.

    PubMed

    Hwang, Thomas S; Hyon, Joon Young; Song, Jae Kyung; Reviglio, Victor E; Spahr, Harry T; O'Brien, Terrence P

    2004-01-01

    The PuriLens contact lens system is indicated for cleaning and disinfection of soft (hydrophilic) contact lenses by means of subsonic agitation to remove lens deposits and microorganisms, and ultraviolet irradiation of the storage solution for disinfection. The capacity of the PuriLens system to disinfect storage solutions contaminated with known concentrations of Staphylococcus aureus, Pseudomonas aeruginosa, and Acanthamoeba species was evaluated. An in vitro assessment of the antibacterial and antiparasitic efficacy of the PuriLens system was performed. Separated batches of the storage solution for the cleansing system were contaminated with stock strains of S. aureus and P. aeruginosa. A comparison of the microbiologic content was made between the solution before and after the cycle. The PuriLens system effectively eradicated S. aureus and P. aeruginosa organisms after a 15-minute cycle. However, viable cysts of acanthamoeba were recovered in the solution after the 15-minute cycle. The PuriLens system is highly efficient in protecting against contamination with common bacterial ocular pathogens. Acanthamoeba cysts, however, can survive in the solution or contact lens bath undergoing integrated subsonic debridement and indirect ultraviolet light disinfection. Use of chemical disinfecting solutions that contain agents such as chlorhexidine or other cationic antiseptics may be advisable in conjunction with use of the PuriLens device, especially in high-risk settings.

  3. Evaluate depth of field limits of fixed focus lens arrangements in thermal infrared

    NASA Astrophysics Data System (ADS)

    Schuster, Norbert

    2016-05-01

    More and more modern thermal imaging systems use uncooled detectors. High volume applications work with detectors that have a reduced pixel count (typically between 200x150 and 640x480). This reduces the usefulness of modern image treatment procedures such as wave front coding. On the other hand, uncooled detectors demand lenses with fast fnumbers, near f/1.0, which reduces the expected Depth of Field (DoF). What are the limits on resolution if the target changes distance to the camera system? The desire to implement lens arrangements without a focusing mechanism demands a deeper quantification of the DoF problem. A new approach avoids the classic "accepted image blur circle" and quantifies the expected DoF by the Through Focus MTF of the lens. This function is defined for a certain spatial frequency that provides a straightforward relation to the pixel pitch of imaging device. A certain minimum MTF-level is necessary so that the complete thermal imaging system can realize its basic functions, such as recognition or detection of specified targets. Very often, this technical tradeoff is approved with a certain lens. But what is the impact of changing the lens for one with a different focal length? Narrow field lenses, which give more details of targets in longer distances, tighten the DoF problem. A first orientation is given by the hyperfocal distance. It depends in a square relation on the focal length and in a linear relation on the through focus MTF of the lens. The analysis of these relations shows the contradicting requirements between higher thermal and spatial resolution, faster f-number and desired DoF. Furthermore, the hyperfocal distance defines the DoF-borders. Their relation between is such as the first order imaging formulas. A calculation methodology will be presented to transfer DoF-results from an approved combination lens and camera to another lens in combination with the initial camera. Necessary input for this prediction is the accepted DoF of

  4. A method to reduce patient's eye lens dose in neuro-interventional radiology procedures

    NASA Astrophysics Data System (ADS)

    Safari, M. J.; Wong, J. H. D.; Kadir, K. A. A.; Sani, F. M.; Ng, K. H.

    2016-08-01

    Complex and prolonged neuro-interventional radiology procedures using the biplane angiography system increase the patient's risk of radiation-induced cataract. Physical collimation is the most effective way of reducing the radiation dose to the patient's eye lens, but in instances where collimation is not possible, an attenuator may be useful in protecting the eyes. In this study, an eye lens protector was designed and fabricated to reduce the radiation dose to the patients' eye lens during neuro-interventional procedures. The eye protector was characterised before being tested on its effectiveness in a simulated aneurysm procedure on an anthropomorphic phantom. Effects on the automatic dose rate control (ADRC) and image quality are also evaluated. The eye protector reduced the radiation dose by up to 62.1% at the eye lens. The eye protector is faintly visible in the fluoroscopy images and increased the tube current by a maximum of 3.7%. It is completely invisible in the acquisition mode and does not interfere with the clinical procedure. The eye protector placed within the radiation field of view was able to reduce the radiation dose to the eye lens by direct radiation beam of the lateral x-ray tube with minimal effect on the ADRC system.

  5. Assessment of tilt and decentration of crystalline lens and intraocular lens relative to the corneal topographic axis using anterior segment optical coherence tomography

    PubMed Central

    Morizane, Yuki; Shiode, Yusuke; Hirano, Masayuki; Doi, Shinichiro; Toshima, Shinji; Fujiwara, Atsushi; Shiraga, Fumio

    2017-01-01

    Purpose To investigate the tilt and decentration of the crystalline lens and the intraocular lens (IOL) relative to the corneal topographic axis using anterior segment ocular coherence tomography (AS-OCT). Methods A sample set of 100 eyes from 49 subjects (41 eyes with crystalline lenses and 59 eyes with IOLs) were imaged using second generation AS-OCT (CASIA2, TOMEY) in June and July 2016 at Okayama University. Both mydriatic and non-mydriatic images were obtained, and the tilt and decentration of the crystalline lens and the IOL were quantified. The effects of pupil dilation on measurements were also assessed. Results The crystalline lens showed an average tilt of 5.15° towards the inferotemporal direction relative to the corneal topographic axis under non-mydriatic conditions and 5.25° under mydriatic conditions. Additionally, an average decentration of 0.11 mm towards the temporal direction was observed under non-mydriatic conditions and 0.08 mm under mydriatic conditions. The average tilt for the IOL was 4.31° towards the inferotemporal direction relative to the corneal topographic axis under non-mydriatic conditions and 4.65° in the same direction under mydriatic conditions. The average decentration was 0.05 mm towards the temporal direction under non-mydriatic conditions and 0.08 mm in the same direction under mydriatic conditions. A strong correlation was found between the average tilt and decentration values of the crystalline lens and the IOL under both non-mydriatic and mydriatic conditions (all Spearman correlation coefficients, r ≥ 0.800; all P < 0.001). Conclusion When measured using second generation AS-OCT, both the crystalline lens and the IOL showed an average tilt of 4–6° toward the inferotemporal direction relative to the corneal topographic axis and an average decentration of less than 0.12 mm towards the temporal direction. These results were not influenced by pupil dilation and they showed good repeatability. PMID:28863141

  6. Assessment of tilt and decentration of crystalline lens and intraocular lens relative to the corneal topographic axis using anterior segment optical coherence tomography.

    PubMed

    Kimura, Shuhei; Morizane, Yuki; Shiode, Yusuke; Hirano, Masayuki; Doi, Shinichiro; Toshima, Shinji; Fujiwara, Atsushi; Shiraga, Fumio

    2017-01-01

    To investigate the tilt and decentration of the crystalline lens and the intraocular lens (IOL) relative to the corneal topographic axis using anterior segment ocular coherence tomography (AS-OCT). A sample set of 100 eyes from 49 subjects (41 eyes with crystalline lenses and 59 eyes with IOLs) were imaged using second generation AS-OCT (CASIA2, TOMEY) in June and July 2016 at Okayama University. Both mydriatic and non-mydriatic images were obtained, and the tilt and decentration of the crystalline lens and the IOL were quantified. The effects of pupil dilation on measurements were also assessed. The crystalline lens showed an average tilt of 5.15° towards the inferotemporal direction relative to the corneal topographic axis under non-mydriatic conditions and 5.25° under mydriatic conditions. Additionally, an average decentration of 0.11 mm towards the temporal direction was observed under non-mydriatic conditions and 0.08 mm under mydriatic conditions. The average tilt for the IOL was 4.31° towards the inferotemporal direction relative to the corneal topographic axis under non-mydriatic conditions and 4.65° in the same direction under mydriatic conditions. The average decentration was 0.05 mm towards the temporal direction under non-mydriatic conditions and 0.08 mm in the same direction under mydriatic conditions. A strong correlation was found between the average tilt and decentration values of the crystalline lens and the IOL under both non-mydriatic and mydriatic conditions (all Spearman correlation coefficients, r ≥ 0.800; all P < 0.001). When measured using second generation AS-OCT, both the crystalline lens and the IOL showed an average tilt of 4-6° toward the inferotemporal direction relative to the corneal topographic axis and an average decentration of less than 0.12 mm towards the temporal direction. These results were not influenced by pupil dilation and they showed good repeatability.

  7. Comparison of eye-lens doses imparted during interventional and non-interventional neuroimaging techniques for assessment of intracranial aneurysms.

    PubMed

    Guberina, N; Dietrich, U; Forsting, M; Ringelstein, A

    2018-02-01

    A neurointerventional examination of intracranial aneurysms often involves the eye lens in the primary beam of radiation. To assess and compare eye-lens doses imparted during interventional and non-interventional imaging techniques for the examination of intracranial aneurysms. We performed a phantom study on an anthropomorphic phantom (ATOM dosimetry phantom 702-D; CIRS, Norfolk, Virginia, USA) and assessed eye-lens doses with thermoluminescent dosimeters (TLDs) type 100 (LiF:Mg, Ti) during (1) interventional (depiction of all cerebral arteries with triple 3D-rotational angiography and twice 2-plane DSA anteroposterior and lateral projections) and (2) non-interventional (CT angiography (CTA)) diagnosis of intracranial aneurysms. Eye-lens doses were calculated following recommendations of the ICRP 103. Image quality was analysed in retrospective by two experienced radiologists on the basis of non-interventional and interventional pan-angiography examinations of patients with incidental aneurysms (n=50) on a five-point Likert scale. The following eye-lens doses were assessed: (1) interventional setting (triple 3D-rotational angiography and twice 2-plane DSA anteroposterior and lateral projections) 12 mGy; (2) non-interventional setting (CTA) 4.1 mGy. Image quality for depiction of intracranial aneurysms (>3 mm) was evaluated as good by both readers for both imaging techniques. Eye-lens doses are markedly higher during the interventional than during the non-interventional diagnosis of intracranial aneurysms. For the eye-lens dose, CTA offers considerable radiation dose savings in the diagnosis of intracranial aneurysms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. Color waveguide transparent screen using lens array holographic optical element

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Sun, Peng; Wang, Chang; Zheng, Zhenrong

    2017-11-01

    A color transparent screen was designed in this paper, a planar glass was used as a waveguide structure and the lens array holographic optical element (HOE) was used as a display unit. The lens array HOE was exposed by two coherent beams. One was the reference wave which directly illuminated on the holographic material and the other was modulated by the micro lens array. The lens array HOE can display the images with see-through abilities. Unlike the conventional lens array HOE, a planar glass was adopted as the waveguide in the experiment. The projecting light was totally internal-reflected in the planar glass to eliminate the undesired zero-order diffracted light. By using waveguide, it also brings advantage of compact structure. Colorful display can be realized in our system as the holographic materials were capable for multi-wavelength display. In this paper, a color transparent screen utilizing the lens array HOE and waveguide were designed. Experiment results showed a circular display area on the transparent screen. The diameter of the area is 20 mm and it achieved the pixel resolution of 100 μm. This simple and effective method could be an alternative in the augment reality (AR) applications, such as transparent phone and television.

  9. Altered bulbar conjunctival microcirculation in response to contact lens wear

    PubMed Central

    Chen, Wan; Xu, Zhe; Jiang, Hong; Zhou, Jin; Wang, Liang; Wang, Jianhua

    2015-01-01

    Purpose This study was conducted to determine blood flow velocities and corresponding vessel diameters to characterize the response of the bulbar conjunctival microvasculature to contact lens wear. Methods A Functional Slit-lamp Biomicroscope (FSLB), an adapted traditional slit-lamp, was used to image the temporal bulbar conjunctiva of 22 healthy subjects before and after 6 hours of contact lens wear. All of the measurable venules on the conjunctiva were processed to yield vessel diameters and blood flow velocities. Results The averaged blood flow velocity increased from 0.51 ± 0.20 mm/s to 0.65 ± 0.22 mm/s (P < 0.001) after 6 hours of lens wear. The blood flow velocity distribution showed a velocity increase that correlated with the vessel diameter increase from the baseline (r = 0.826, P < 0.05). This pattern maintained a similar trend after 6 hours of lens wear (r = 0.925, P < 0.05), and increased velocities were found across all of the vessel diameter ranges (P < 0.001). Conclusions Blood flow velocity increases across all of the vessel diameter ranges in response to contact lens wear. FSLB is capable of characterizing the bulbar microvascular response to contact lens wear. PMID:27078615

  10. Accurate label-free 3-part leukocyte recognition with single cell lens-free imaging flow cytometry.

    PubMed

    Li, Yuqian; Cornelis, Bruno; Dusa, Alexandra; Vanmeerbeeck, Geert; Vercruysse, Dries; Sohn, Erik; Blaszkiewicz, Kamil; Prodanov, Dimiter; Schelkens, Peter; Lagae, Liesbet

    2018-05-01

    Three-part white blood cell differentials which are key to routine blood workups are typically performed in centralized laboratories on conventional hematology analyzers operated by highly trained staff. With the trend of developing miniaturized blood analysis tool for point-of-need in order to accelerate turnaround times and move routine blood testing away from centralized facilities on the rise, our group has developed a highly miniaturized holographic imaging system for generating lens-free images of white blood cells in suspension. Analysis and classification of its output data, constitutes the final crucial step ensuring appropriate accuracy of the system. In this work, we implement reference holographic images of single white blood cells in suspension, in order to establish an accurate ground truth to increase classification accuracy. We also automate the entire workflow for analyzing the output and demonstrate clear improvement in the accuracy of the 3-part classification. High-dimensional optical and morphological features are extracted from reconstructed digital holograms of single cells using the ground-truth images and advanced machine learning algorithms are investigated and implemented to obtain 99% classification accuracy. Representative features of the three white blood cell subtypes are selected and give comparable results, with a focus on rapid cell recognition and decreased computational cost. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. A database system to support image algorithm evaluation

    NASA Technical Reports Server (NTRS)

    Lien, Y. E.

    1977-01-01

    The design is given of an interactive image database system IMDB, which allows the user to create, retrieve, store, display, and manipulate images through the facility of a high-level, interactive image query (IQ) language. The query language IQ permits the user to define false color functions, pixel value transformations, overlay functions, zoom functions, and windows. The user manipulates the images through generic functions. The user can direct images to display devices for visual and qualitative analysis. Image histograms and pixel value distributions can also be computed to obtain a quantitative analysis of images.

  12. Initial Observations and Activities of Curiosity's Mars Hand Lens Imager (MAHLI) at the Gale Field Site

    NASA Astrophysics Data System (ADS)

    Aileen Yingst, R.; Edgett, Kenneth; MSL Science Team

    2013-04-01

    The Mars Hand Lens Imager (MAHLI) is a 2-megapixel focusable macro lens color camera on the turret on the Mars Science Laboratory rover, Curiosity's, robotic arm. The investigation centers on stratigraphy, grain-scale texture, structure, mineralogy, and morphology. MAHLI acquires focused images at working distances of 2.1 cm to infinity; at 2.1 cm the scale is 14 µm/pixel; at 6.9 cm it is 31 µm/pixel, like the Spirit and Opportunity Microscopic Imagers (MI). Most MAHLI use during the first 100 Martian days (sols) was focused on instrument, rover, and robotic arm engineering check-outs and risk reduction, including (1) interrogation of an eolian sand shadow for suitability for scooping, decontamination of the sample collection and processing system (CHIMRA, Collection and Handling for In-Situ Martian Rock Analysis), and first solid sample delivery to the Chemistry and Mineralogy (CheMin) and Sample Analysis at Mars (SAM) instruments; (2) documentation of the nature of this sand; (3) verification that samples were delivered to SAM and passed through a 150 µm mesh and a 2 mm funnel throat in the CheMin inlet; (4) development of methods for future precision robotic arm positioning of MAHLI and the Alpha Particle X-Ray Spectrometer (APXS); and (5) use of MAHLI autofocus for range-finding to determine locations to position the scoop before each scooping event. Most Sol 0-100 MAHLI images were obtained at scales of 31-110 µm/pixel; some geologic targets were imaged at 21-31 µm/pixel. No opportunities to position the camera close enough to obtain 14-20 µm/pixel images were available during this initial period. Only two rocks, named Jake Matijevic and Bathurst Inlet, were imaged at a resolution higher than MI. Both were dark gray and mantled with dust and fine/very fine sand. In both cases, the highest resolution images of these rocks show no obvious, indisputable grains, suggesting that grain sizes (as expressed at the rock surfaces) are < 80 µm. However, because of

  13. Lid wiper microvascular responses as an indicator of contact lens discomfort

    PubMed Central

    Deng, Zhihong; Wang, Jianhua; Jiang, Hong; Fadli, Zohra; Liu, Che; Tan, Jia; Zhou, Jin

    2016-01-01

    Purpose To analyze quantitatively the alterations in the microvascular network of the upper tarsal conjunctiva, lid wiper, and bulbar conjunctiva relative to ocular discomfort after contact lens wear. Design A prospective, cross-over clinical study. Methods Functional slit-lamp biomicroscopy (FSLB) was used to image the microvascular network of the upper tarsal conjunctiva, lid wiper, and bulbar conjunctiva. The microvascular network was automatically segmented, and fractal analyses were performed to yield the fractal dimension (Dbox) that represented vessel density. Sixteen healthy subjects (nine female and seven male) with an average age of 35.5 ± 6.7 years old (mean ± standard deviation) were recruited. The right eye was imaged at 9 AM and 3 PM at the first visit (Day 1) when the subject was not wearing contact lenses. During the second visit (Day 2), the right eye was fit with a contact lens for 6 h. Microvascular imaging was performed before (at 9 AM) and after lens wear (at 3 PM). Ocular comfort was rated using a 50-point visual analogue scale before and after 6 h of lens wear, and its relationships with microvascular parameters were analyzed. Results There were no significant differences in Dbox among the upper tarsal conjunctiva, lid wiper, and bulbar conjunctiva among the measurements at 9 AM (Day 1 and Day 2) and 3 PM (Day 1) when the subjects were not wearing the lenses (P > 0.05), whereas after 6 h of lens wear, the microvascular network densities were increased in all three of these locations. Dbox of the lid wiper increased from 1.411 ± 0.116 to 1.548 ± 0.079 after 6 h of contact lens wear (P < 0.01). Dbox of the tarsal conjunctiva was 1.731 ± 0.026 at baseline and increased to 1.740 ± 0.030 (P < 0.05). Dbox of the bulbar conjunctiva increased from 1.587 ± 0.059 to 1.632 ± 0.060 (P < 0.001). The decrease in ocular discomfort was strongly related to the Dbox change in the lid wiper (r = 0.61, P < 0.05). There were no correlations between the

  14. Spectroscopy and high-resolution imaging of the gravitational lens SDSS J1206+4332

    NASA Astrophysics Data System (ADS)

    Agnello, Adriano; Sonnenfeld, Alessandro; Suyu, Sherry H.; Treu, Tommaso; Fassnacht, Christopher D.; Mason, Charlotte; Bradač, Maruša; Auger, Matthew W.

    2016-06-01

    We present spectroscopy and laser guide star adaptive optics (LGSAO) images of the doubly imaged lensed quasar SDSS J1206+4332. We revise the deflector redshift proposed previously to zd = 0.745, and measure for the first time its velocity dispersion σ = (290 ± 30) km s-1. The LGSAO data show the lensed quasar host galaxy stretching over the astroid caustic thus forming an extra pair of merging images, which was previously thought to be an unrelated galaxy in seeing limited data. Owing to the peculiar geometry, the lens acts as a natural coronagraph on the broad-line region of the quasar so that only narrow C III]emission is found in the fold arc. We use the data to reconstruct the source structure and deflector potential, including nearby perturbers. We reconstruct the point-spread function (PSF) from the quasar images themselves, since no additional point source is present in the field of view. From gravitational lensing and stellar dynamics, we find the slope of the total mass density profile to be γ' = -log ρ/log r = 1.93 ± 0.09. We discuss the potential of SDSS J1206+4332 for measuring a time-delay distance (and thus H0 and other cosmological parameters), or as a standard ruler, in combination with the time-delay published by the COSMOGRAIL collaboration. We conclude that this system is very promising for cosmography. However, in order to achieve competitive precision and accuracy, an independent characterization of the PSF is needed. Spatially resolved kinematics of the deflector would reduce the uncertainties further. Both are within the reach of current observational facilities.

  15. Contact lens material characteristics associated with hydrogel lens dehydration.

    PubMed

    Ramamoorthy, Padmapriya; Sinnott, Loraine T; Nichols, Jason J

    2010-03-01

    To determine the association between material dehydration and hydrogel contact lens material characteristics, including water content and ionicity. Water content and refractive index data were derived from automated refractometry measurements of worn hydrogel contact lenses of 318 participants in the Contact Lens and Dry Eye Study (CLADES). Dehydration was determined in two ways; as the difference between nominal and measured (1) water content and (2) refractive index. Multiple regression models were used to examine the relation between dehydration and material characteristics, controlling for tear osmolality. The overall measured and nominal water content values were 52.58 +/- 7.49% and 56.88 +/- 7.81% respectively, while the measured and nominal refractive indices were 1.429 +/- 0.015 and 1.410 +/- 0.017. High water content and ionic hydrogel lens materials were associated with greater dehydration (p < 0.0001 for both) than low water content and non-ionic materials. When dehydration was assessed as the difference in refractive index, only high water content was associated with dehydration (p < 0.0001). High water content and ionic characteristics of hydrogel lens materials are associated with hydrogel lens dehydration, with the former being more strongly associated. Such dehydration changes could in turn lead to important clinical ramifications such as reduced oxygen transmissibility, greater lens adherence and reduced tear exchange.

  16. Lens lipids.

    PubMed

    Zelenka, P S

    1984-11-01

    Lens cells can synthesize, degrade, and remodel lipids. Endogenous lipid synthesis, in conjunction with uptake of exogenous cholesterol and certain fatty acids, leads to the formation of a plasma membrane that is especially rich in sphingomyelin, cholesterol, and long-chain saturated fatty acids. As a result of this unusual lipid composition, lens membranes have very low fluidity, which is restricted even further by lipid-protein interactions. The composition and metabolism of membrane lipids may affect the formation of various types of cataracts. Diets rich in vegetable oils offer some protection against the formation of osmotic cataracts and the hereditary cataract of the RCS rat, although the mechanism of this effect is not clear. Vitamin E also protects against the formation of several types of cataract in vivo and in vitro, suggesting that lipid peroxidation may play a role in cataractogenesis. Certain drugs which inhibit lipid synthesis or degradation are cataractogenic, and a deficiency in cataractogenic, and a deficiency in phosphatidylserine is associated with a loss of Na+/K+ ATPase activity in several types of cataract. Human senile cataracts show a marked loss of protein-lipid interactions, although the overall lipid composition is normal. This loss of protein-lipid interactions may be related to oxidative damage to membrane-associated proteins. Interestingly, the decrease in the fluidity of lens membranes with age would counteract the formation of aqueous pores in the membrane, which can result from the oxidative cross-linking of membrane-associated proteins. Certain pathways of lipid metabolism seem to have regulatory functions. Among these are phosphatidylinositol turnover, phosphatidylethanolamine methylation, and arachidonic acid metabolism. All of these pathways function in the lens. Phosphatidylinositol turnover is correlated with the rate of lens epithelial cell division, while phosphatidylethanolamine methylation seems to be related to the

  17. Low voltage electrowetting lenticular lens by using multilayer dielectric structure

    NASA Astrophysics Data System (ADS)

    Lee, Junsik; Kim, Junoh; Kim, Cheoljoong; Shin, Dooseub; Koo, Gyohyun; Sim, Jee Hoon; Won, Yong Hyub

    2017-02-01

    Lenticular type multi-view display is one of the most popular ways for implementing three dimensional display. This method has a simple structure and exhibits a high luminance. However, fabricating the lenticular lens is difficult because it requires optically complex calculations. 2D-3D conversion is also impossible due to the fixed shape of the lenticular lens. Electrowetting based liquid lenticular lens has a simple fabrication process compared to the solid lenticular lens and the focal length of the liquid lenticular lens can be changed by applying the voltage. 3D and 2D images can be observed with a convex and a flat lens state respectively. Despite these advantages, the electrowetting based liquid lenticular lens demands high driving voltage and low breakdown voltage with a single dielectric layer structure. A certain degree of thickness of the dielectric layer is essential for a uniform operation and a low degradation over time. This paper presents multilayer dielectric structure which results in low driving voltage and the enhanced dielectric breakdown. Aluminum oxide (Al2O3), silicon oxide (SiO2) and parylene C were selected as the multilayer insulators. The total thickness of the dielectric layer of all samples was the same. This method using the multilayer dielectric structure can achieve the lower operating voltage than when using the single dielectric layer. We compared the liquid lenticular lens with three kinds of the multilayer dielectric structure to one with the parylene C single dielectric layer in regard to operational characteristics such as the driving voltage and the dielectric breakdown.

  18. IIPImage: Large-image visualization

    NASA Astrophysics Data System (ADS)

    Pillay, Ruven

    2014-08-01

    IIPImage is an advanced high-performance feature-rich image server system that enables online access to full resolution floating point (as well as other bit depth) images at terabyte scales. Paired with the VisiOmatic (ascl:1408.010) celestial image viewer, the system can comfortably handle gigapixel size images as well as advanced image features such as both 8, 16 and 32 bit depths, CIELAB colorimetric images and scientific imagery such as multispectral images. Streaming is tile-based, which enables viewing, navigating and zooming in real-time around gigapixel size images. Source images can be in either TIFF or JPEG2000 format. Whole images or regions within images can also be rapidly and dynamically resized and exported by the server from a single source image without the need to store multiple files in various sizes.

  19. Tunable Polymer Lens

    DTIC Science & Technology

    2008-08-04

    can also be initiated mechanically to produce variable lenses [9-11]. Recent work shows lens properties of a controlled liquid drop shape, with no... liquid crystal spherical lens ," Appl. Phys. Lett. 84, 4789-4791 (2004). 3. H. W. Ren, D. W. Fox, B. Wu, and S. T. Wu, " Liquid crystal lens with large...and S. S. Lee, "Focal tunable liquid lens integrated with an electromagnetic actuator," Appl. Phys. Lett. 90, 121129 (2007). 10. H. W. Ren, D. Fox

  20. The Effect of the Crystalline Lens on Central Vault After Implantable Collamer Lens Implantation.

    PubMed

    Qi, Meng-Ying; Chen, Qian; Zeng, Qing-Yan

    2017-08-01

    To identify associations between crystalline lens-related factors and central vault after Implantable Collamer Lens (ICL) (Staar Surgical, Monrovia, CA) implantation. This retrospective clinical study included 320 eyes from 186 patients who underwent ICL implantation surgery. At 1 year after surgery, the central vault was measured using anterior segment optical coherence tomography. Preoperative anterior chamber depth, lens thickness, lens position (lens position = anterior chamber depth + 1/2 lens thickness), and vault were analyzed to investigate the effects of lens-related factors on postoperative vault. The mean vault was 513 ± 215 µm at 1 year after surgery. Vault was positively correlated with preoperative anterior chamber depth (r = 0.495, P < .001) and lens position (r = 0.371, P < .001), but negatively correlated with lens thickness (r = -0.262, P < .001). Eyes with vaults of less than 250 µm had shallower anterior chambers, thicker lenses, and smaller lens position than eyes in the other two vault groups (which had vaults ≥ 250 µm) (P < .001). Eyes with both anterior chamber depth less than 3.1 mm and lens position less than 5.1 mm had greatly reduced vaults (P < .001). The crystalline lens could have an important influence on postoperative vault. Eyes with a shallower anterior chamber and a forward lens position will have lower vaults. [J Refract Surg. 2017;33(8):519-523.]. Copyright 2017, SLACK Incorporated.