Sample records for zoonotic agent causing

  1. (Highly pathogenic) avian influenza as a zoonotic agent.

    PubMed

    Kalthoff, Donata; Globig, Anja; Beer, Martin

    2010-01-27

    Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence by mutation after transmission and adaptation to susceptible gallinaceous poultry. Those so-called highly pathogenic avian influenza viruses (HPAIV) then cause mass die-offs in susceptible birds and lead to tremendous economical losses when poultry is affected. Besides a number of avian influenza virus subtypes that have sporadically infected mammals, the HPAIV H5N1 Asia shows strong zoonotic characteristics and it was transmitted from birds to different mammalian species including humans. Theoretically, pandemic viruses might derive directly from avian influenza viruses or arise after genetic reassortment between viruses of avian and mammalian origin. So far, HPAIV H5N1 already meets two conditions for a pandemic virus: as a new subtype it has been hitherto unseen in the human population and it has infected at least 438 people, and caused severe illness and high lethality in 262 humans to date (August 2009). The acquisition of efficient human-to-human transmission would complete the emergence of a new pandemic virus. Therefore, fighting H5N1 at its source is the prerequisite to reduce pandemic risks posed by this virus. Other influenza viruses regarded as pandemic candidates derive from subtypes H2, H7, and H9 all of which have infected humans in the past. Here, we will give a comprehensive overview on avian influenza viruses in concern to their zoonotic potential. Copyright 2009 Elsevier B.V. All rights reserved.

  2. Zoonotic encephalitides caused by arboviruses: transmission and epidemiology of alphaviruses and flaviviruses

    PubMed Central

    Balasuriya, Udeni B. R.; Lee, Chong-kyo

    2014-01-01

    In this review, we mainly focus on zoonotic encephalitides caused by arthropod-borne viruses (arboviruses) of the families Flaviviridae (genus Flavivirus) and Togaviridae (genus Alphavirus) that are important in both humans and domestic animals. Specifically, we will focus on alphaviruses (Eastern equine encephalitis virus, Western equine encephalitis virus, Venezuelan equine encephalitis virus) and flaviviruses (Japanese encephalitis virus and West Nile virus). Most of these viruses were originally found in tropical regions such as Africa and South America or in some regions in Asia. However, they have dispersed widely and currently cause diseases around the world. Global warming, increasing urbanization and population size in tropical regions, faster transportation and rapid spread of arthropod vectors contribute in continuous spreading of arboviruses into new geographic areas causing reemerging or resurging diseases. Most of the reemerging arboviruses also have emerged as zoonotic disease agents and created major public health issues and disease epidemics. PMID:24427764

  3. Zoonotic encephalitides caused by arboviruses: transmission and epidemiology of alphaviruses and flaviviruses.

    PubMed

    Go, Yun Young; Balasuriya, Udeni B R; Lee, Chong-Kyo

    2014-01-01

    In this review, we mainly focus on zoonotic encephalitides caused by arthropod-borne viruses (arboviruses) of the families Flaviviridae (genus Flavivirus) and Togaviridae (genus Alphavirus) that are important in both humans and domestic animals. Specifically, we will focus on alphaviruses (Eastern equine encephalitis virus, Western equine encephalitis virus, Venezuelan equine encephalitis virus) and flaviviruses (Japanese encephalitis virus and West Nile virus). Most of these viruses were originally found in tropical regions such as Africa and South America or in some regions in Asia. However, they have dispersed widely and currently cause diseases around the world. Global warming, increasing urbanization and population size in tropical regions, faster transportation and rapid spread of arthropod vectors contribute in continuous spreading of arboviruses into new geographic areas causing reemerging or resurging diseases. Most of the reemerging arboviruses also have emerged as zoonotic disease agents and created major public health issues and disease epidemics.

  4. The common zoonotic protozoal diseases causing abortion.

    PubMed

    Shaapan, Raafat Mohamed

    2016-12-01

    Toxoplasmosis, neosporosis, sarcosporidiosis (sarcocystosis) and trypanosomiasis are the common zoonotic protozoal diseases causing abortion which caused by single-celled protozoan parasites; Toxoplasma gondii, Neospora caninum , Sarcocystis spp and Trypanosoma evansi, respectively. Toxoplasmosis is generally considered the most important disease that causing abortion of both pregnant women and different female animals throughout the world, about third of human being population had antibodies against T. gondii . The infection can pass via placenta, causing encephalitis, chorio-retinitis, mental retardation and loss of vision in congenitally-infected children and stillbirth or mummification of the aborted fetuses of livestock. Neosporosis is recognized as a major cause of serious abortion in varieties of wild and domestic animals around the world particularly cattle, the disease cause serious economic losses among dairy and beef cattle due to decrease in milk and meat production. While unlike toxoplasmosis, neosporosis is not recognized as a human pathogen and evidence to date shows that neosporosis is only detected by serology in the human population. Sarcosporidiosis also can cause abortion in animals particularly cattle, buffaloes and sheep with acute infection through high dose of infection with sarcocysts. On the other hand, humans have been reported as final and intermediate host for sarcosporidiosis but not represent a serious health problem. Trypanosomiasis by T. evansi cause dangerous infection among domestic animals in tropical and subtropical areas. Several cases of abortion had been recorded in cattle and buffaloes infected with T. evansi while, a single case of human infection was reported in India. Trichomoniasis and babesiosis abortion occurs with non-zoonotic Trichomonas and Babesia species while the zoonotic species had not been incriminated in induction of abortion in both animals and man. The current review article concluded that there is still

  5. Public farms: hygiene and zoonotic agents.

    PubMed

    Heuvelink, A E; Valkenburgh, S M; Tilburg, J J H C; Van Heerwaarden, C; Zwartkruis-Nahuis, J T M; De Boer, E

    2007-10-01

    In three successive years, we visited petting farms (n=132), care farms (n=91), and farmyard campsites (n=84), respectively, and completed a standard questionnaire with the objective of determining the hygienic status of these farms and describing hygiene measures implemented to reduce the risk of transmission of zoonotic agents from the animals to humans. For at least 85% of the farms, the overall impression of hygiene was recorded as good. However, more attention must be paid to: informing visitors on hygiene and handwashing, provision of handwashing facilities, and a footwear cleaning facility. Examination of samples of freshly voided faeces resulted in the detection of Shiga toxin-producing Escherichia coli O157 and/or Salmonella spp. and/or Campylobacter spp. at almost two-thirds (64.9%) of the petting farms, and around half of the care farms (56.0%) and farmyard campsites (45.2%). These data reinforce the need for control measures for both public and private farms to reduce human exposure to livestock faeces and thus the risk of transmission of zoonotic diseases. Public awareness of the risk associated with handling animals or faecal material should be increased.

  6. Emerging zoonotic viral diseases.

    PubMed

    Wang, L-F; Crameri, G

    2014-08-01

    Zoonotic diseases are infectious diseases that are naturally transmitted from vertebrate animals to humans and vice versa. They are caused by all types of pathogenic agents, including bacteria, parasites, fungi, viruses and prions. Although they have been recognised for many centuries, their impact on public health has increased in the last few decades due to a combination of the success in reducing the spread of human infectious diseases through vaccination and effective therapies and the emergence of novel zoonotic diseases. It is being increasingly recognised that a One Health approach at the human-animal-ecosystem interface is needed for effective investigation, prevention and control of any emerging zoonotic disease. Here, the authors will review the drivers for emergence, highlight some of the high-impact emerging zoonotic diseases of the last two decades and provide examples of novel One Health approaches for disease investigation, prevention and control. Although this review focuses on emerging zoonotic viral diseases, the authors consider that the discussions presented in this paper will be equally applicable to emerging zoonotic diseases of other pathogen types.

  7. Zoonotic Agents in Small Ruminants Kept on City Farms in Southern Germany

    PubMed Central

    Schilling, Anna-Katarina; Hotzel, Helmut; Methner, Ulrich; Sprague, Lisa D.; Schmoock, Gernot; El-Adawy, Hosny; Ehricht, Ralf; Wöhr, Anna-Caroline; Erhard, Michael

    2012-01-01

    Sheep and goats are popular examples of livestock kept on city farms. In these settings, close contacts between humans and animals frequently occur. Although it is widely accepted that small ruminants can carry numerous zoonotic agents, it is unknown which of these agents actually occur in sheep and goats on city farms in Germany. We sampled feces and nasal liquid of 48 animals (28 goats, 20 sheep) distributed in 7 city farms and on one activity playground in southern Germany. We found that 100% of the sampled sheep and 89.3% of the goats carried Shiga toxin-producing Escherichia coli (STEC). The presence of Staphylococcus spp. in 75% of both sheep and goats could be demonstrated. Campylobacter spp. were detected in 25% and 14.3% of the sheep and goats, respectively. Neither Salmonella spp. nor Coxiella burnetii was found. On the basis of these data, we propose a reasonable hygiene scheme to prevent transmission of zoonotic agents during city farm visits. PMID:22447607

  8. Chlamydia gallinacea: a widespread emerging Chlamydia agent with zoonotic potential in backyard poultry.

    PubMed

    Li, L; Luther, M; Macklin, K; Pugh, D; Li, J; Zhang, J; Roberts, J; Kaltenboeck, B; Wang, C

    2017-10-01

    Chlamydia gallinacea, a new chlamydial agent, has been reported in four European countries as well as Argentina and China. Experimentally infected chickens with C. gallinacea in previous study showed no clinical signs but had significantly reduced gains in body weight (6·5-11·4%). Slaughterhouse workers exposed to infected chickens have developed atypical pneumonia, indicating C. gallinacea is likely a zoonotic agent. In this study, FRET-PCR confirmed that C. gallinacea was present in 12·4% (66/531) of oral-pharyngeal samples from Alabama backyard poultry. Phylogenetic comparisons based on ompA variable domain showed that 16 sequenced samples represented 14 biotypes. We report for the first time the presence of C. gallinacea in North America, and this warrants further research on the organism's pathogenicity, hosts, transmission, and zoonotic potential.

  9. Review of Nonfoodborne Zoonotic and Potentially Zoonotic Poultry Diseases.

    PubMed

    Agunos, Agnes; Pierson, F William; Lungu, Bwalya; Dunn, Patricia A; Tablante, Nathaniel

    2016-09-01

    Emerging and re-emerging diseases are continuously diagnosed in poultry species. A few of these diseases are known to cross the species barrier, thus posing a public health risk and an economic burden. We identified and synthesized global evidence for poultry nonfoodborne zoonoses to better understand these diseases in people who were exposed to different poultry-related characteristics (e.g., occupational or nonoccupational, operational types, poultry species, outbreak conditions, health status of flocks). This review builds on current knowledge on poultry zoonoses/potentially zoonotic agents transmitted via the nonfoodborne route. It also identifies research gaps and potential intervention points within the poultry industry to reduce zoonotic transmission by using various knowledge synthesis tools such as systematic review (SR) and qualitative (descriptive) and quantitative synthesis methods (i.e., meta-analysis). Overall, 1663 abstracts were screened and 156 relevant articles were selected for further review. Full articles (in English) were retrieved and critically appraised using routine SR methods. In total, eight known zoonotic diseases were reviewed: avian influenza (AI) virus (n = 85 articles), Newcastle disease virus (n = 8), West Nile virus (WNV, n = 2), avian Chlamydia (n = 24), Erysipelothrix rhusiopathiae (n = 3), methicillin-resistant Staphylococcus aureus (MRSA, n = 15), Ornithonyssus sylvarium (n = 4), and Microsporum gallinae (n = 3). In addition, articles on other viral poultry pathogens (n = 5) and poultry respiratory allergens derived from mites and fungi (n = 7) were reviewed. The level of investigations (e.g., exposure history, risk factor, clinical disease in epidemiologically linked poultry, molecular studies) to establish zoonotic linkages varied across disease agents and across studies. Based on the multiple outcome measures captured in this review, AI virus seems to be the poultry zoonotic pathogen that may have considerable and

  10. Zoonotic diseases associated with free-roaming cats.

    PubMed

    Gerhold, R W; Jessup, D A

    2013-05-01

    Free-roaming cat populations have been identified as a significant public health threat and are a source for several zoonotic diseases including rabies, toxoplasmosis, cutaneous larval migrans because of various nematode parasites, plague, tularemia and murine typhus. Several of these diseases are reported to cause mortality in humans and can cause other important health issues including abortion, blindness, pruritic skin rashes and other various symptoms. A recent case of rabies in a young girl from California that likely was transmitted by a free-roaming cat underscores that free-roaming cats can be a source of zoonotic diseases. Increased attention has been placed on trap-neuter-release (TNR) programmes as a viable tool to manage cat populations. However, some studies have shown that TNR leads to increased immigration of unneutered cats into neutered populations as well as increased kitten survival in neutered groups. These compensatory mechanisms in neutered groups leading to increased kitten survival and immigration would confound rabies vaccination campaigns and produce naïve populations of cats that can serve as source of zoonotic disease agents owing to lack of immunity. This manuscript is a review of the various diseases of free-roaming cats and the public health implications associated with the cat populations. © 2012 Blackwell Verlag GmbH.

  11. Zoonotic bacterial meningitis in human adults.

    PubMed

    van Samkar, Anusha; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2016-09-13

    To describe the epidemiology, etiology, clinical characteristics, treatment, outcome, and prevention of zoonotic bacterial meningitis in human adults. We identified 16 zoonotic bacteria causing meningitis in adults. Zoonotic bacterial meningitis is uncommon compared to bacterial meningitis caused by human pathogens, and the incidence has a strong regional distribution. Zoonotic bacterial meningitis is mainly associated with animal contact, consumption of animal products, and an immunocompromised state of the patient. In a high proportion of zoonotic bacterial meningitis cases, CSF analysis showed only a mildly elevated leukocyte count. The recommended antibiotic therapy differs per pathogen, and the overall mortality is low. Zoonotic bacterial meningitis is uncommon but is associated with specific complications. The suspicion should be raised in patients with bacterial meningitis who have recreational or professional contact with animals and in patients living in regions endemic for specific zoonotic pathogens. An immunocompromised state is associated with a worse prognosis. Identification of risk factors and underlying disease is necessary to improve treatment. © 2016 American Academy of Neurology.

  12. Molecular Survey of Bacterial Zoonotic Agents in Bats from the Country of Georgia (Caucasus).

    PubMed

    Bai, Ying; Urushadze, Lela; Osikowicz, Lynn; McKee, Clifton; Kuzmin, Ivan; Kandaurov, Andrei; Babuadze, Giorgi; Natradze, Ioseb; Imnadze, Paata; Kosoy, Michael

    2017-01-01

    Bats are important reservoirs for many zoonotic pathogens. However, no surveys of bacterial pathogens in bats have been performed in the Caucasus region. To understand the occurrence and distribution of bacterial infections in these mammals, 218 bats belonging to eight species collected from four regions of Georgia were examined for Bartonella, Brucella, Leptospira, and Yersinia using molecular approaches. Bartonella DNA was detected in 77 (35%) bats from all eight species and was distributed in all four regions. The prevalence ranged 6-50% per bat species. The Bartonella DNA represented 25 unique genetic variants that clustered into 21 lineages. Brucella DNA was detected in two Miniopterus schreibersii bats and in two Myotis blythii bats, all of which were from Imereti (west-central region). Leptospira DNA was detected in 25 (13%) bats that included four M. schreibersii bats and 21 M. blythii bats collected from two regions. The Leptospira sequences represented five genetic variants with one of them being closely related to the zoonotic pathogen L. interrogans (98.6% genetic identity). No Yersinia DNA was detected in the bats. Mixed infections were observed in several cases. One M. blythii bat and one M. schreibersii bat were co-infected with Bartonella, Brucella, and Leptospira; one M. blythii bat and one M. schreibersii bat were co-infected with Bartonella and Brucella; 15 M. blythii bats and three M. schreibersii bats were co-infected with Bartonella and Leptospira. Our results suggest that bats in Georgia are exposed to multiple bacterial infections. Further studies are needed to evaluate pathogenicity of these agents to bats and their zoonotic potential.

  13. Bushmeat Hunting, Deforestation, and Prediction of Zoonotic Disease

    PubMed Central

    Daszak, Peter; Kilpatrick, A. Marm; Burke, Donald S.

    2005-01-01

    Understanding the emergence of new zoonotic agents requires knowledge of pathogen biodiversity in wildlife, human-wildlife interactions, anthropogenic pressures on wildlife populations, and changes in society and human behavior. We discuss an interdisciplinary approach combining virology, wildlife biology, disease ecology, and anthropology that enables better understanding of how deforestation and associated hunting leads to the emergence of novel zoonotic pathogens. PMID:16485465

  14. Molecular Survey of Bacterial Zoonotic Agents in Bats from the Country of Georgia (Caucasus)

    PubMed Central

    Osikowicz, Lynn; McKee, Clifton; Kuzmin, Ivan; Kandaurov, Andrei; Babuadze, Giorgi; Natradze, Ioseb; Imnadze, Paata; Kosoy, Michael

    2017-01-01

    Bats are important reservoirs for many zoonotic pathogens. However, no surveys of bacterial pathogens in bats have been performed in the Caucasus region. To understand the occurrence and distribution of bacterial infections in these mammals, 218 bats belonging to eight species collected from four regions of Georgia were examined for Bartonella, Brucella, Leptospira, and Yersinia using molecular approaches. Bartonella DNA was detected in 77 (35%) bats from all eight species and was distributed in all four regions. The prevalence ranged 6–50% per bat species. The Bartonella DNA represented 25 unique genetic variants that clustered into 21 lineages. Brucella DNA was detected in two Miniopterus schreibersii bats and in two Myotis blythii bats, all of which were from Imereti (west-central region). Leptospira DNA was detected in 25 (13%) bats that included four M. schreibersii bats and 21 M. blythii bats collected from two regions. The Leptospira sequences represented five genetic variants with one of them being closely related to the zoonotic pathogen L. interrogans (98.6% genetic identity). No Yersinia DNA was detected in the bats. Mixed infections were observed in several cases. One M. blythii bat and one M. schreibersii bat were co-infected with Bartonella, Brucella, and Leptospira; one M. blythii bat and one M. schreibersii bat were co-infected with Bartonella and Brucella; 15 M. blythii bats and three M. schreibersii bats were co-infected with Bartonella and Leptospira. Our results suggest that bats in Georgia are exposed to multiple bacterial infections. Further studies are needed to evaluate pathogenicity of these agents to bats and their zoonotic potential. PMID:28129398

  15. Zoonotic risks from small ruminants.

    PubMed

    Ganter, M

    2015-12-14

    Zoonoses are infections that spread naturally between species (sometimes by a vector) from animals to other animal species or to humans or from humans to animals. Most of the zoonoses diagnosed in sheep and goats are transmitted by close contact of man with these animals and are, more often, occupational diseases that principally affect breeders, veterinarians and/or slaughterhouse workers. Some other diseases have an airborne transmission and affect the population in the vicinity of sheep/goat farms. Due to the fact that small ruminants are almost the only remaining animals which are migrating in industrialised countries, there is a severe risk for transmitting the diseases. Some other zoonotic diseases are foodborne diseases, which are mainly transmitted from animals to humans and to other animal species by contaminated food and water. Within the last decade central Europe was threatened by some new infections, e.g., bluetongue disease and schmallenberg disease, which although not of zoonotic interest, are caused by pathogens transmitted by vectors. Causal agents of both diseases have found highly effective indigenous vectors. In the future, climate change may possibly modify conditions for the vectors and influence their distribution and competence. By this, other vector-borne zoonotic infections may propagate into former disease free countries. Changes in human behaviour in consummation and processing of food, in animal housing and management may also influence future risks for zoonosis. Monitoring, prevention and control measures are proposed to limit further epidemics and to enable the containment of outbreaks. Measures depend mainly on the damage evoked or anticipated by the disease, the local situation, and the epidemiology of the zoonoses, the presence of the infective agent in wild and other animals, as well as the resistance of the causal microorganisms in the environment and the possibility to breed sheep and goats which are resistant to specific

  16. Bovine origin Staphylococcus aureus: A new zoonotic agent?

    PubMed

    Rao, Relangi Tulasi; Jayakumar, Kannan; Kumar, Pavitra

    2017-10-01

    The study aimed to assess the nature of animal origin Staphylococcus aureus strains. The study has zoonotic importance and aimed to compare virulence between two different hosts, i.e., bovine and ovine origin. Conventional polymerase chain reaction-based methods used for the characterization of S. aureus strains and chick embryo model employed for the assessment of virulence capacity of strains. All statistical tests carried on R program, version 3.0.4. After initial screening and molecular characterization of the prevalence of S. aureus found to be 42.62% in bovine origin samples and 28.35% among ovine origin samples. Meanwhile, the methicillin-resistant S. aureus prevalence is found to be meager in both the hosts. Among the samples, only 6.8% isolates tested positive for methicillin resistance. The biofilm formation quantified and the variation compared among the host. A Welch two-sample t -test found to be statistically significant, t=2.3179, df=28.103, and p=0.02795. Chicken embryo model found effective to test the pathogenicity of the strains. The study helped to conclude healthy bovines can act as S. aureus reservoirs. Bovine origin S. aureus strains are more virulent than ovine origin strains. Bovine origin strains have high probability to become zoonotic pathogen. Further, gene knock out studies may be conducted to conclude zoonocity of the bovine origin strains.

  17. Bovine origin Staphylococcus aureus: A new zoonotic agent?

    PubMed Central

    Rao, Relangi Tulasi; Jayakumar, Kannan; Kumar, Pavitra

    2017-01-01

    Aim: The study aimed to assess the nature of animal origin Staphylococcus aureus strains. The study has zoonotic importance and aimed to compare virulence between two different hosts, i.e., bovine and ovine origin. Materials and Methods: Conventional polymerase chain reaction-based methods used for the characterization of S. aureus strains and chick embryo model employed for the assessment of virulence capacity of strains. All statistical tests carried on R program, version 3.0.4. Results: After initial screening and molecular characterization of the prevalence of S. aureus found to be 42.62% in bovine origin samples and 28.35% among ovine origin samples. Meanwhile, the methicillin-resistant S. aureus prevalence is found to be meager in both the hosts. Among the samples, only 6.8% isolates tested positive for methicillin resistance. The biofilm formation quantified and the variation compared among the host. A Welch two-sample t-test found to be statistically significant, t=2.3179, df=28.103, and p=0.02795. Chicken embryo model found effective to test the pathogenicity of the strains. Conclusion: The study helped to conclude healthy bovines can act as S. aureus reservoirs. Bovine origin S. aureus strains are more virulent than ovine origin strains. Bovine origin strains have high probability to become zoonotic pathogen. Further, gene knock out studies may be conducted to conclude zoonocity of the bovine origin strains. PMID:29184376

  18. Investigation of zoonotic infections among Auckland Zoo staff: 1991-2010.

    PubMed

    Forsyth, M B; Morris, A J; Sinclair, D A; Pritchard, C P

    2012-12-01

    Investigation was undertaken to assess the occurrence of zoonotic infection among staff at Auckland Zoological Park, New Zealand, in 1991, 2002 and 2010. Serial cross-sectional health surveys in 1991, 2002 and 2010 comprising a health questionnaire, and serological, immunological and microbiological analysis for a range of potential zoonotic infections were performed. Laboratory results for zoo animals were also reviewed for 2004-2010 to assess the occurrence of potential zoonotic infections. Veterinary clinic, animal handler, grounds, maintenance and administrative staff participated in the surveys, with 49, 42 and 46 participants in the 1991, 2002 and 2010 surveys, respectively (29% of total zoo staff in 2010). A small number of staff reported work-related infections, including erysipelas (1), giardiasis (1) and campylobacteriosis (1). The seroprevalence of antibodies to hepatitis A virus and Toxoplasma gondii closely reflected those in the Auckland community. No carriage of hepatitis B virus (HBV) was detected, and most of those with anti-HBV antibodies had been vaccinated. Few staff had serological evidence of past leptospiral infection. Three veterinary clinic staff had raised Chlamydophila psittaci antibodies, all < 1 : 160 indicating past exposure. Two staff (in 1991) had asymptomatic carriage of Giardia lamblia and one person (in 2010) had a dermatophyte infection. After 1991, positive tests indicating exposure to Mycobacterium tuberculosis were < 10%, comparable to the general New Zealand population. Zoo animals had infections with potential zoonotic agents, including G. lamblia, Salmonella spp., Campylobacter spp. and T. gondii, although the occurrence was low. Zoonotic agents pose an occupational risk to zoo workers. While there was evidence of some zoonotic transmission at Auckland Zoo, this was uncommon and risks appear to be adequately managed under current policies and procedures. Nevertheless, ongoing assessment of risk factors is needed as

  19. Zoonotic Agents in Feral Pigeons (Columba livia) from Costa Rica: Possible Improvements to Diminish Contagion Risks.

    PubMed

    Torres-Mejía, Ana María; Blanco-Peña, Kinndle; Rodríguez, César; Duarte, Francisco; Jiménez-Soto, Mauricio; Esperón, Fernando

    2018-01-01

    Most studies on zoonotic agents in pigeons have been conducted in the Palearctic region, but the scarcity of data is notorious in the Neotropical region, where these birds can breed all year around and are in close contact with humans. In this study, we used a combination of culture-dependent and culture-independent methods to identify infectious agents in 141 fecal samples from pigeons collected at four urban parks from Costa Rica. Of these we identified 34 positive samples for Salmonella enterica subsp. enterica serovar Braenderup (24.1%), 13 for Chlamydophila psittaci (9.2%), 9 for enteropathogenic Escherichia coli (6.4% eaeA, 0% stx-1 and 0% stx-2), and 2 for Campylobacter jejuni (1.4%). These populations of pigeons pose low risk for healthy adult humans, however, they may pose a health risk to immunocompromised patients or children. This study provides scientific data, which can be incorporated into educational programs aiming to reverse the public attitude toward pigeon feeding and to rationally justify population control efforts.

  20. Vaccine Development against Zoonotic Hepatitis E Virus: Open Questions and Remaining Challenges

    PubMed Central

    Nan, Yuchen; Wu, Chunyan; Zhao, Qin; Sun, Yani; Zhang, Yan-Jin; Zhou, En-Min

    2018-01-01

    Hepatitis E virus (HEV) is a fecal-orally transmitted foodborne viral pathogen that causes acute hepatitis in humans and is responsible for hepatitis E outbreaks worldwide. Since the discovery of HEV as a zoonotic agent, this virus has been isolated from a variety of hosts with an ever-expanding host range. Recently, a subunit HEV vaccine developed for the prevention of human disease was approved in China, but is not yet available to the rest of the world. Meanwhile, notable progress and knowledge has been made and revealed in recent years to better understand HEV biology and infection, including discoveries of quasi-enveloped HEV virions and of a new function of the HEV-ORF3 product. However, the impact of these new findings on the development of a protective vaccine against zoonotic HEV infection requires further discussion. In this review, hallmark characteristics of HEV zoonosis, the history of HEV vaccine development, and recent discoveries in HEV virology are described. Moreover, special attention is focused on quasi-enveloped HEV virions and the potential role of the HEV-ORF3 product as antibody-neutralization target on the surface of quasi-enveloped HEV virions to provide new insights for the future development of improved vaccines against zoonotic HEV infection. PMID:29520257

  1. Vaccine Development against Zoonotic Hepatitis E Virus: Open Questions and Remaining Challenges.

    PubMed

    Nan, Yuchen; Wu, Chunyan; Zhao, Qin; Sun, Yani; Zhang, Yan-Jin; Zhou, En-Min

    2018-01-01

    Hepatitis E virus (HEV) is a fecal-orally transmitted foodborne viral pathogen that causes acute hepatitis in humans and is responsible for hepatitis E outbreaks worldwide. Since the discovery of HEV as a zoonotic agent, this virus has been isolated from a variety of hosts with an ever-expanding host range. Recently, a subunit HEV vaccine developed for the prevention of human disease was approved in China, but is not yet available to the rest of the world. Meanwhile, notable progress and knowledge has been made and revealed in recent years to better understand HEV biology and infection, including discoveries of quasi-enveloped HEV virions and of a new function of the HEV-ORF3 product. However, the impact of these new findings on the development of a protective vaccine against zoonotic HEV infection requires further discussion. In this review, hallmark characteristics of HEV zoonosis, the history of HEV vaccine development, and recent discoveries in HEV virology are described. Moreover, special attention is focused on quasi-enveloped HEV virions and the potential role of the HEV-ORF3 product as antibody-neutralization target on the surface of quasi-enveloped HEV virions to provide new insights for the future development of improved vaccines against zoonotic HEV infection.

  2. Facts, myths and hypotheses on the zoonotic nature of Mycobacterium avium subspecies paratuberculosis.

    PubMed

    Atreya, Raja; Bülte, Michael; Gerlach, Gerald-F; Goethe, Ralph; Hornef, Mathias W; Köhler, Heike; Meens, Jochen; Möbius, Petra; Roeb, Elke; Weiss, Siegfried

    2014-10-01

    Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of paratuberculosis (Johne's disease [JD]), a chronic granulomatous enteritis in ruminants. JD is one of the most widespread bacterial diseases of domestic animals with significant economic impact. The histopathological picture of JD resembles that of Crohn's disease (CD), a human chronic inflammatory bowel disease of still unresolved aetiology. An aetiological relevance of MAP for CD has been proposed. This and the ambiguity of other published epidemiological findings raise the question whether MAP represents a zoonotic agent. In this review, we will discuss evidence that MAP has zoonotic capacity. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. [Parasitic zoonotic disease agents in human and animal drinking water].

    PubMed

    Karanis, P

    2000-08-01

    Human- and veterinary important parasites of the subkingdom of protozoans and helminths infect humans and animals by ingestion of parasites in contaminated water. The parasites are excreted from the body of infected humans, livestock, zoo animals, companion animals or wild animals in the feces. Recreational waters, agricultural practices and wild animals serve as vehicles of transmission of the parasites in the water supplies. The following topics are addressed: a) the life cycles of parasitic diseases-causing agents with proven or potential transmission via water b) the development and the current research status of the analytical techniques for the detection of parasitic diseases-causing agents from water c) the occurrence of Cryptosporidium and Giardia in surface water supplies and in treated water d) the possible water sources and transmission ways of the parasites into the water supplies e) the behaviour and the possibilities for the removal or elimination of the parasites by water treatment.

  4. Predicting Zoonotic Risk of Influenza A Viruses from Host Tropism Protein Signature Using Random Forest.

    PubMed

    Eng, Christine L P; Tong, Joo Chuan; Tan, Tin Wee

    2017-05-25

    Influenza A viruses remain a significant health problem, especially when a novel subtype emerges from the avian population to cause severe outbreaks in humans. Zoonotic viruses arise from the animal population as a result of mutations and reassortments, giving rise to novel strains with the capability to evade the host species barrier and cause human infections. Despite progress in understanding interspecies transmission of influenza viruses, we are no closer to predicting zoonotic strains that can lead to an outbreak. We have previously discovered distinct host tropism protein signatures of avian, human and zoonotic influenza strains obtained from host tropism predictions on individual protein sequences. Here, we apply machine learning approaches on the signatures to build a computational model capable of predicting zoonotic strains. The zoonotic strain prediction model can classify avian, human or zoonotic strains with high accuracy, as well as providing an estimated zoonotic risk. This would therefore allow us to quickly determine if an influenza virus strain has the potential to be zoonotic using only protein sequences. The swift identification of potential zoonotic strains in the animal population using the zoonotic strain prediction model could provide us with an early indication of an imminent influenza outbreak.

  5. Latest developments on Streptococcus suis: an emerging zoonotic pathogen: part 2.

    PubMed

    Segura, Mariela; Zheng, Han; de Greeff, Astrid; Gao, George F; Grenier, Daniel; Jiang, Yongqiang; Lu, Chengping; Maskell, Duncan; Oishi, Kazunori; Okura, Masatoshi; Osawa, Ro; Schultsz, Constance; Schwerk, Christian; Sekizaki, Tsutomu; Smith, Hilde; Srimanote, Potjanee; Takamatsu, Daisuke; Tang, Jiaqi; Tenenbaum, Tobias; Tharavichitkul, Prasit; Hoa, Ngo Thi; Valentin-Weigand, Peter; Wells, Jerry M; Wertheim, Heiman; Zhu, Baoli; Xu, Jianguo; Gottschalk, Marcelo

    2014-01-01

    First International Workshop on Streptococcus suis, Beijing, China, 12-13 August 2013. This second and final chapter of the report on the First International Workshop on Streptococcus suis follows on from Part 1, published in the April 2014, volume 9, issue 4 of Future Microbiology. S. suis is a swine pathogen and a zoonotic agent afflicting people in close contact with infected pigs or pork meat. Although sporadic cases of human infections had been reported worldwide, deadly S. suis outbreaks emerged in Asia. The severity of the disease underscores the lack of knowledge on the virulence and zoonotic evolution of this human-infecting agent. The pathogenesis of the infection, interactions with host cells and new avenues for treatments were among the topics discussed during the First International Workshop on S. suis (China 2013).

  6. Prioritization of Zoonotic Diseases in Kenya, 2015

    PubMed Central

    Bitek, Austine; Osoro, Eric; Pieracci, Emily G.; Muema, Josephat; Mwatondo, Athman; Kungu, Mathew; Nanyingi, Mark; Gharpure, Radhika; Njenga, Kariuki; Thumbi, Samuel M.

    2016-01-01

    Introduction Zoonotic diseases have varying public health burden and socio-economic impact across time and geographical settings making their prioritization for prevention and control important at the national level. We conducted systematic prioritization of zoonotic diseases and developed a ranked list of these diseases that would guide allocation of resources to enhance their surveillance, prevention, and control. Methods A group of 36 medical, veterinary, and wildlife experts in zoonoses from government, research institutions and universities in Kenya prioritized 36 diseases using a semi-quantitative One Health Zoonotic Disease Prioritization tool developed by Centers for Disease Control and Prevention with slight adaptations. The tool comprises five steps: listing of zoonotic diseases to be prioritized, development of ranking criteria, weighting criteria by pairwise comparison through analytical hierarchical process, scoring each zoonotic disease based on the criteria, and aggregation of scores. Results In order of importance, the participants identified severity of illness in humans, epidemic/pandemic potential in humans, socio-economic burden, prevalence/incidence and availability of interventions (weighted scores assigned to each criteria were 0.23, 0.22, 0.21, 0.17 and 0.17 respectively), as the criteria to define the relative importance of the diseases. The top five priority diseases in descending order of ranking were anthrax, trypanosomiasis, rabies, brucellosis and Rift Valley fever. Conclusion Although less prominently mentioned, neglected zoonotic diseases ranked highly compared to those with epidemic potential suggesting these endemic diseases cause substantial public health burden. The list of priority zoonotic disease is crucial for the targeted allocation of resources and informing disease prevention and control programs for zoonoses in Kenya. PMID:27557120

  7. Do Low Molecular Weight Agents Cause More Severe Asthma than High Molecular Weight Agents?

    PubMed

    Meca, Olga; Cruz, María-Jesús; Sánchez-Ortiz, Mónica; González-Barcala, Francisco-Javier; Ojanguren, Iñigo; Munoz, Xavier

    2016-01-01

    The aim of this study was to analyse whether patients with occupational asthma (OA) caused by low molecular weight (LMW) agents differed from patients with OA caused by high molecular weight (HMW) with regard to risk factors, asthma presentation and severity, and response to various diagnostic tests. Seventy-eight patients with OA diagnosed by positive specific inhalation challenge (SIC) were included. Anthropometric characteristics, atopic status, occupation, latency periods, asthma severity according to the Global Initiative for Asthma (GINA) control classification, lung function tests and SIC results were analysed. OA was induced by an HMW agent in 23 patients (29%) and by an LMW agent in 55 (71%). A logistic regression analysis confirmed that patients with OA caused by LMW agents had a significantly higher risk of severity according to the GINA classification after adjusting for potential confounders (OR = 3.579, 95% CI 1.136-11.280; p = 0.029). During the SIC, most patients with OA caused by HMW agents presented an early reaction (82%), while in patients with OA caused by LMW agents the response was mainly late (73%) (p = 0.0001). Similarly, patients with OA caused by LMW agents experienced a greater degree of bronchial hyperresponsiveness, measured as the difference in the methacholine dose-response ratio (DRR) before and after SIC (1.77, range 0-16), compared with patients with OA caused by HMW agents (0.87, range 0-72), (p = 0.024). OA caused by LMW agents may be more severe than that caused by HMW agents. The severity of the condition may be determined by the different mechanisms of action of these agents.

  8. Predicting Zoonotic Risk of Influenza A Viruses from Host Tropism Protein Signature Using Random Forest

    PubMed Central

    Eng, Christine L. P.; Tong, Joo Chuan; Tan, Tin Wee

    2017-01-01

    Influenza A viruses remain a significant health problem, especially when a novel subtype emerges from the avian population to cause severe outbreaks in humans. Zoonotic viruses arise from the animal population as a result of mutations and reassortments, giving rise to novel strains with the capability to evade the host species barrier and cause human infections. Despite progress in understanding interspecies transmission of influenza viruses, we are no closer to predicting zoonotic strains that can lead to an outbreak. We have previously discovered distinct host tropism protein signatures of avian, human and zoonotic influenza strains obtained from host tropism predictions on individual protein sequences. Here, we apply machine learning approaches on the signatures to build a computational model capable of predicting zoonotic strains. The zoonotic strain prediction model can classify avian, human or zoonotic strains with high accuracy, as well as providing an estimated zoonotic risk. This would therefore allow us to quickly determine if an influenza virus strain has the potential to be zoonotic using only protein sequences. The swift identification of potential zoonotic strains in the animal population using the zoonotic strain prediction model could provide us with an early indication of an imminent influenza outbreak. PMID:28587080

  9. Tracking zoonotic pathogens using blood-sucking flies as 'flying syringes'

    PubMed Central

    Bitome-Essono, Paul-Yannick; Ollomo, Benjamin; Arnathau, Céline; Durand, Patrick; Mokoudoum, Nancy Diamella; Yacka-Mouele, Lauriane; Okouga, Alain-Prince; Boundenga, Larson; Mve-Ondo, Bertrand; Obame-Nkoghe, Judicaël; Mbehang-Nguema, Philippe; Njiokou, Flobert; Makanga, Boris; Wattier, Rémi; Ayala, Diego; Ayala, Francisco J; Renaud, Francois; Rougeron, Virginie; Bretagnolle, Francois; Prugnolle, Franck; Paupy, Christophe

    2017-01-01

    About 60% of emerging infectious diseases in humans are of zoonotic origin. Their increasing number requires the development of new methods for early detection and monitoring of infectious agents in wildlife. Here, we investigated whether blood meals from hematophagous flies could be used to identify the infectious agents circulating in wild vertebrates. To this aim, 1230 blood-engorged flies were caught in the forests of Gabon. Identified blood meals (30%) were from 20 vertebrate species including mammals, birds and reptiles. Among them, 9% were infected by different extant malaria parasites among which some belonged to known parasite species, others to new parasite species or to parasite lineages for which only the vector was known. This study demonstrates that using hematophagous flies as ‘flying syringes’ constitutes an interesting approach to investigate blood-borne pathogen diversity in wild vertebrates and could be used as an early detection tool of zoonotic pathogens. DOI: http://dx.doi.org/10.7554/eLife.22069.001 PMID:28347401

  10. The Vietnam Initiative on Zoonotic Infections (VIZIONS): A Strategic Approach to Studying Emerging Zoonotic Infectious Diseases.

    PubMed

    Rabaa, Maia A; Tue, Ngo Tri; Phuc, Tran My; Carrique-Mas, Juan; Saylors, Karen; Cotten, Matthew; Bryant, Juliet E; Nghia, Ho Dang Trung; Cuong, Nguyen Van; Pham, Hong Anh; Berto, Alessandra; Phat, Voong Vinh; Dung, Tran Thi Ngoc; Bao, Long Hoang; Hoa, Ngo Thi; Wertheim, Heiman; Nadjm, Behzad; Monagin, Corina; van Doorn, H Rogier; Rahman, Motiur; Tra, My Phan Vu; Campbell, James I; Boni, Maciej F; Tam, Pham Thi Thanh; van der Hoek, Lia; Simmonds, Peter; Rambaut, Andrew; Toan, Tran Khanh; Van Vinh Chau, Nguyen; Hien, Tran Tinh; Wolfe, Nathan; Farrar, Jeremy J; Thwaites, Guy; Kellam, Paul; Woolhouse, Mark E J; Baker, Stephen

    2015-12-01

    The effect of newly emerging or re-emerging infectious diseases of zoonotic origin in human populations can be potentially catastrophic, and large-scale investigations of such diseases are highly challenging. The monitoring of emergence events is subject to ascertainment bias, whether at the level of species discovery, emerging disease events, or disease outbreaks in human populations. Disease surveillance is generally performed post hoc, driven by a response to recent events and by the availability of detection and identification technologies. Additionally, the inventory of pathogens that exist in mammalian and other reservoirs is incomplete, and identifying those with the potential to cause disease in humans is rarely possible in advance. A major step in understanding the burden and diversity of zoonotic infections, the local behavioral and demographic risks of infection, and the risk of emergence of these pathogens in human populations is to establish surveillance networks in populations that maintain regular contact with diverse animal populations, and to simultaneously characterize pathogen diversity in human and animal populations. Vietnam has been an epicenter of disease emergence over the last decade, and practices at the human/animal interface may facilitate the likelihood of spillover of zoonotic pathogens into humans. To tackle the scientific issues surrounding the origins and emergence of zoonotic infections in Vietnam, we have established The Vietnam Initiative on Zoonotic Infections (VIZIONS). This countrywide project, in which several international institutions collaborate with Vietnamese organizations, is combining clinical data, epidemiology, high-throughput sequencing, and social sciences to address relevant one-health questions. Here, we describe the primary aims of the project, the infrastructure established to address our scientific questions, and the current status of the project. Our principal objective is to develop an integrated approach to

  11. Overview of zoonotic infections from fish and shellfish

    USDA-ARS?s Scientific Manuscript database

    Zoonosis refers to diseases that can be transferred from animals, whether wild or domesticated, to humans. Zoonotic infections can be divided into: 1) topically acquired infection caused by contact with aquatic animals or their products and 2) food borne infection caused by eating raw or undercooked...

  12. Prevalence of selected zoonotic and vector-borne agents in dogs and cats in Costa Rica.

    PubMed

    Scorza, Andrea V; Duncan, Colleen; Miles, Laura; Lappin, Michael R

    2011-12-29

    To estimate the prevalence of enteric parasites and selected vector-borne agents of dogs and cats in San Isidro de El General, Costa Rica, fecal and serum samples were collected from animals voluntarily undergoing sterilization. Each fecal sample was examined for parasites by microscopic examination after fecal flotation and for Giardia and Cryptosporidium using an immunofluorescence assay (IFA). Giardia and Cryptosporidium IFA positive samples were genotyped after PCR amplification of specific DNA if possible. The seroprevalence rates for the vector-borne agents (Dirofilaria immitis, Borrelia burgdorferi, Ehrlichia canis, and Anaplasma phagocytophilum) were estimated based on results from a commercially available ELISA. Enteric parasites were detected in samples from 75% of the dogs; Ancylostoma caninum, Trichuris vulpis, Giardia, and Toxocara canis were detected. Of the cats, 67.5% harbored Giardia spp., Cryptosporidium spp., Ancylostoma tubaeforme, or Toxocara cati. Both Cryptosporidium spp. isolates that could be sequenced were Cryptosporidium parvum (one dog isolate and one cat isolate). Of the Giardia spp. isolates that were successfully sequenced, the 2 cat isolates were assemblage A and the 2 dog isolates were assemblage D. D. immitis antigen and E. canis antibodies were identified in 2.3% and 3.5% of the serum samples, respectively. The prevalence of enteric zoonotic parasites in San Isidro de El General in Costa Rica is high in companion animals and this information should be used to mitigate public health risks. Copyright © 2011. Published by Elsevier B.V.

  13. Information to prevent human exposure to disease agents associated with wildlife—U.S. Geological Survey circulars on zoonotic disease

    USGS Publications Warehouse

    Meteyer, Carol U.; Moede Rogall, Gail

    2018-03-05

    The U.S. Geological Survey in collaboration with the U.S. Fish and Wildlife Service and others have published reports with information about geographic distribution, specific pathogens, disease ecology, and strategies to avoid exposure and infection for a selection of zoonotic diseases. Zoonotic diseases are diseases that can be passed from animals to humans, such as rabies and plague. This summary factsheet highlights the reports on plague, bat rabies, and raccoon roundworm with links to all seven zoonotic diseases covered in this series.

  14. Distinct Host Tropism Protein Signatures to Identify Possible Zoonotic Influenza A Viruses.

    PubMed

    Eng, Christine L P; Tong, Joo Chuan; Tan, Tin Wee

    2016-01-01

    Zoonotic influenza A viruses constantly pose a health threat to humans as novel strains occasionally emerge from the avian population to cause human infections. Many past epidemic as well as pandemic strains have originated from avian species. While most viruses are restricted to their primary hosts, zoonotic strains can sometimes arise from mutations or reassortment, leading them to acquire the capability to escape host species barrier and successfully infect a new host. Phylogenetic analyses and genetic markers are useful in tracing the origins of zoonotic infections, but there are still no effective means to identify high risk strains prior to an outbreak. Here we show that distinct host tropism protein signatures can be used to identify possible zoonotic strains in avian species which have the potential to cause human infections. We have discovered that influenza A viruses can now be classified into avian, human, or zoonotic strains based on their host tropism protein signatures. Analysis of all influenza A viruses with complete proteome using the host tropism prediction system, based on machine learning classifications of avian and human viral proteins has uncovered distinct signatures of zoonotic strains as mosaics of avian and human viral proteins. This is in contrast with typical avian or human strains where they show mostly avian or human viral proteins in their signatures respectively. Moreover, we have found that zoonotic strains from the same influenza outbreaks carry similar host tropism protein signatures characteristic of a common ancestry. Our results demonstrate that the distinct host tropism protein signature in zoonotic strains may prove useful in influenza surveillance to rapidly identify potential high risk strains circulating in avian species, which may grant us the foresight in anticipating an impending influenza outbreak.

  15. Wildlife reservoirs for vector-borne canine, feline and zoonotic infections in Austria

    PubMed Central

    Duscher, Georg G.; Leschnik, Michael; Fuehrer, Hans-Peter; Joachim, Anja

    2014-01-01

    Austria's mammalian wildlife comprises a large variety of species, acting and interacting in different ways as reservoir and intermediate and definitive hosts for different pathogens that can be transmitted to pets and/or humans. Foxes and other wild canids are responsible for maintaining zoonotic agents, e.g. Echinococcus multilocularis, as well as pet-relevant pathogens, e.g. Hepatozoon canis. Together with the canids, and less commonly felids, rodents play a major role as intermediate and paratenic hosts. They carry viruses such as tick-borne encephalitis virus (TBEV), bacteria including Borrelia spp., protozoa such as Toxoplasma gondii, and helminths such as Toxocara canis. The role of wild ungulates, especially ruminants, as reservoirs for zoonotic disease on the other hand seems to be negligible, although the deer filaroid Onchocerca jakutensis has been described to infect humans. Deer may also harbour certain Anaplasma phagocytophilum strains with so far unclear potential to infect humans. The major role of deer as reservoirs is for ticks, mainly adults, thus maintaining the life cycle of these vectors and their distribution. Wild boar seem to be an exception among the ungulates as, in their interaction with the fox, they can introduce food-borne zoonotic agents such as Trichinella britovi and Alaria alata into the human food chain. PMID:25830102

  16. Infectious causes of reproductive disorders in cattle.

    PubMed

    Yoo, Han Sang

    2010-01-01

    The incidences of reproductive disorders in bovine are increasing over years. This scenario is further aggravating due to more emphasis on selection and rearing of animal for specific commercial purposes which compromises livestock reproduction. Reproductive disorders like infertility and abortions in cattle are major problems in the bovine industry. The reproductive disorders might be caused by several different agents such as physical agents, chemical agents, biological agents, etc. Also, the causative agent and pathogenesis of reproductive disorders are influenced by various factors including environmental factor. The exact causes may not be evident and are often complicated with multiple causative agents. Thus, there is a need for multi-faceted approach to understand correlation of various factors with reproductive performance. Of the agents, infectious biological agents are significant cause of reproductive disorder and are of high priority in the bovine industry. These factors are not only related to the prosperity of bovine industry but are also important from public health point of view because of their zoonotic potentials. Several infectious agents like bacterial, viral, protozoon, chlamydial and fungal agents are known to have direct impact on reproductive health of cattle. These diseases can be arranged and discussed in different groups based on the causative agents.

  17. [Zoonotic diseases caused by bacteria of the genus Bartonella genus: new reservoirs ? New vectors?].

    PubMed

    Chomel, Bruno B; Boulouis, Henri-Jean

    2005-03-01

    Domestic animals and wildlife represent a large reservoir for bartonellae, at least eight species or subspecies of which have been reported to cause zoonotic infections. In addition, numerous orphan clinical syndromes are now being attributed to Bartonella henselae infection. Many mammalian species, including cats, dogs, rodents and ruminants are the main bartonellae reservoirs. Cats are the main reservoir for B. henselae. It appears that domestic dogs, at least in non tropical regions, are more likely to be accidental hosts than reservoirs, and constitute excellent sentinels for human infections. Bartonellae are vector-borne bacteria. The mode of B. henselae transmission by cat fleas is now better understood, but new potential vectors have recently been identified, including ticks and biting flies. This articles summarizes current knowledge of the etiology, new clinical features and epidemiological characteristics of these emerging zoonoses.

  18. [Current situation of endemic status, prevention and control of neglected zoonotic diseases in China].

    PubMed

    Liu, Lu; Zhu, Hong-Run; Yang, Guo-Jing

    2013-06-01

    Neglected zoonotic diseases not only threaten the health of human, especially to the livestock keepers in poverty-stricken areas but also cause great economic losses to the animal husbandry. This paper reviews the current situation of the endemic status, prevention and control of neglected zoonotic diseases existing in China including rabies, bovine tuberculosis, brucellosis, anthrax, leptospirosis, echinococcosis, cysticercosis, leishmaniasis and fascioliasis, so as to provide the basic information for better controlling, even eliminating, the neglected zoonotic diseases in China.

  19. Plant-based oral vaccines against zoonotic and non-zoonotic diseases.

    PubMed

    Shahid, Naila; Daniell, Henry

    2016-11-01

    The shared diseases between animals and humans are known as zoonotic diseases and spread infectious diseases among humans. Zoonotic diseases are not only a major burden to livestock industry but also threaten humans accounting for >60% cases of human illness. About 75% of emerging infectious diseases in humans have been reported to originate from zoonotic pathogens. Because antibiotics are frequently used to protect livestock from bacterial diseases, the development of antibiotic-resistant strains of epidemic and zoonotic pathogens is now a major concern. Live attenuated and killed vaccines are the only option to control these infectious diseases and this approach has been used since 1890. However, major problems with this approach include high cost and injectable vaccines is impractical for >20 billion poultry animals or fish in aquaculture. Plants offer an attractive and affordable platform for vaccines against animal diseases because of their low cost, and they are free of attenuated pathogens and cold chain requirement. Therefore, several plant-based vaccines against human and animals diseases have been developed recently that undergo clinical and regulatory approval. Plant-based vaccines serve as ideal booster vaccines that could eliminate multiple boosters of attenuated bacteria or viruses, but requirement of injectable priming with adjuvant is a current limitation. So, new approaches like oral vaccines are needed to overcome this challenge. In this review, we discuss the progress made in plant-based vaccines against zoonotic or other animal diseases and future challenges in advancing this field. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Multisectoral prioritization of zoonotic diseases in Uganda, 2017: A One Health perspective

    PubMed Central

    Bulage, Lilian; Kihembo, Christine; Nantima, Noelina; Monje, Fred; Ndumu, Deo; Sentumbwe, Juliet; Mbolanyi, Betty; Aruho, Robert; Kaboyo, Winyi; Mutonga, David; Basler, Colin; Paige, Sarah; Barton Behravesh, Casey

    2018-01-01

    Background Zoonotic diseases continue to be a public health burden globally. Uganda is especially vulnerable due to its location, biodiversity, and population. Given these concerns, the Ugandan government in collaboration with the Global Health Security Agenda conducted a One Health Zoonotic Disease Prioritization Workshop to identify zoonotic diseases of greatest national concern to the Ugandan government. Materials and methods The One Health Zoonotic Disease Prioritization tool, a semi-quantitative tool developed by the U.S. Centers for Disease Control and Prevention, was used for the prioritization of zoonoses. Workshop participants included voting members and observers representing multiple government and non-governmental sectors. During the workshop, criteria for prioritization were selected, and questions and weights relevant to each criterion were determined. We used a decision tree to provide a ranked list of zoonoses. Participants then established next steps for multisectoral engagement for the prioritized zoonoses. A sensitivity analysis demonstrated how criteria weights impacted disease prioritization. Results Forty-eight zoonoses were considered during the workshop. Criteria selected to prioritize zoonotic diseases were (1) severity of disease in humans in Uganda, (2) availability of effective control strategies, (3) potential to cause an epidemic or pandemic in humans or animals, (4) social and economic impacts, and (5) bioterrorism potential. Seven zoonotic diseases were identified as priorities for Uganda: anthrax, zoonotic influenza viruses, viral hemorrhagic fevers, brucellosis, African trypanosomiasis, plague, and rabies. Sensitivity analysis did not indicate significant changes in zoonotic disease prioritization based on criteria weights. Discussion One Health approaches and multisectoral collaborations are crucial to the surveillance, prevention, and control strategies for zoonotic diseases. Uganda used such an approach to identify zoonoses of

  1. One Health in Practice: A Pilot Project for Integrated Care of Zoonotic Infections in Immunocompromised Children and Their Pets in Chile.

    PubMed

    Peña, A; Abarca, K; Weitzel, T; Gallegos, J; Cerda, J; García, P; López, J

    2016-08-01

    Although pets provide physiological and psychological benefits to their owners, they are a potential source of zoonotic infections, especially for vulnerable individuals such as immunocompromised patients. During 1 year, we therefore performed a pilot project, which included 32 immunocompromised Chilean children and their family pets (35 dogs and 9 cats) with the aim of detecting, treating and preventing zoonotic infections. Children were examined by Infectious Diseases paediatricians and demographical and clinical information related to zoonotic infections were recorded. Pets were examined and sampled by veterinarians, who also administered missing routine vaccines and anti-parasitics. During family visits, all members were informed and educated about zoonoses and a satisfaction survey was performed. Visits also included vector control and indoor residual spraying with pyrethroids. Children were re-examined and re-tested according to the findings of their pets, and all detected zoonotic infections were treated both in children and pets. Physical examination revealed abnormalities in 18 dogs (51.4%) and three cats (33.3%). Twenty-eight (63.6%) of the pets were diagnosed with a zoonotic pathogen, and seven (15.9%) with a facultative pathogen. Most zoonotic agents were isolated from the pet's external ear and intestine. Bacteria with the highest pathogenic potential were Campylobacter jejuni and Brucella canis. In two children and their respective pets, the same zoonotic diseases were diagnosed (toxocariasis and giardiasis). Arthropods serving as potential vectors of zoonotic infections were found in 49% of dogs and 44% of cats. The pilot project was positively evaluated by the participating families. Our pilot project confirmed that pets are reservoir for various zoonotic agents in Chile and that the implementation of an integrated multidisciplinary programme was a valuable tool to prevent, diagnose and treat such zoonotic infections in vulnerable patients such as

  2. Occupational health and safety in small animal veterinary practice: Part I--nonparasitic zoonotic diseases.

    PubMed

    Weese, J S; Peregrine, A S; Armstrong, J

    2002-08-01

    Zoonotic diseases are an ever-present concern in small animal veterinary practice and are often overlooked. A variety of nonparasitic zoonotic diseases may be encountered in small animal practice, including cat scratch disease (bartonellosis), cat bite abscesses, rabies, leptospirosis, methicillin-resistant Staphylococcus aureus, Clostridium difficile-associated diarrhea, salmonellosis, avian chlamydiosis, campylobacteriosis, dermatophytosis, and blastomycosis. These may cause human disease ranging from mild and self-limiting to fatal. The risk of development of a zoonotic disease can be lessened by early recognition of infected animals, proper animal handling, basic biosecurity precautions, and, most importantly, personal hygiene.

  3. Evidence Supporting Zoonotic Transmission of Cryptosporidium spp. in Wisconsin▿

    PubMed Central

    Feltus, Dawn C.; Giddings, Catherine W.; Schneck, Brianna L.; Monson, Timothy; Warshauer, David; McEvoy, John M.

    2006-01-01

    Cryptosporidium hominis and Cryptosporidium parvum are the primary species of Cryptosporidium that infect humans. C. hominis has an anthroponotic transmission cycle, while C. parvum is zoonotic, infecting cattle and other ruminants, in addition to humans. Most cryptosporidiosis outbreaks in the United States have been caused by C. hominis, and this species is often reported as the primary cause of cryptosporidiosis in this country. However, outbreaks account for only 10% of the overall cryptosporidiosis cases, and there are few data on the species that cause sporadic cases. The present study identified the species/genotypes and subgenotypes of Cryptosporidium in 49 cases of sporadic cryptosporidiosis in Wisconsin during the period from 2003 to 2005. The species/genotype of isolates was determined by PCR restriction fragment length polymorphism analysis of the 18S rRNA and Cryptosporidium oocyst wall protein genes. The C. parvum and C. hominis isolates were subgenotyped by sequence analysis of the GP60 gene. Forty-four of 49 isolates were identified as C. parvum, and 1 was identified as C. hominis. Of the remaining isolates, one was identified as being of the cervine genotype, one was identified as being a cervine genotype variant, and two were identified as being of a novel human genotype, previously reported as W17. Nine different subgenotypes were identified within the C. parvum species, and two of these were responsible for 60% of the cases. In this study we found that most sporadic cases of cryptosporidiosis in Wisconsin are caused by zoonotic Cryptosporidium species, indicating that zoonotic transmission could be more frequently associated with sporadic cases in the United States. PMID:17005736

  4. Evidence supporting zoonotic transmission of Cryptosporidium spp. in Wisconsin.

    PubMed

    Feltus, Dawn C; Giddings, Catherine W; Schneck, Brianna L; Monson, Timothy; Warshauer, David; McEvoy, John M

    2006-12-01

    Cryptosporidium hominis and Cryptosporidium parvum are the primary species of Cryptosporidium that infect humans. C. hominis has an anthroponotic transmission cycle, while C. parvum is zoonotic, infecting cattle and other ruminants, in addition to humans. Most cryptosporidiosis outbreaks in the United States have been caused by C. hominis, and this species is often reported as the primary cause of cryptosporidiosis in this country. However, outbreaks account for only 10% of the overall cryptosporidiosis cases, and there are few data on the species that cause sporadic cases. The present study identified the species/genotypes and subgenotypes of Cryptosporidium in 49 cases of sporadic cryptosporidiosis in Wisconsin during the period from 2003 to 2005. The species/genotype of isolates was determined by PCR restriction fragment length polymorphism analysis of the 18S rRNA and Cryptosporidium oocyst wall protein genes. The C. parvum and C. hominis isolates were subgenotyped by sequence analysis of the GP60 gene. Forty-four of 49 isolates were identified as C. parvum, and 1 was identified as C. hominis. Of the remaining isolates, one was identified as being of the cervine genotype, one was identified as being a cervine genotype variant, and two were identified as being of a novel human genotype, previously reported as W17. Nine different subgenotypes were identified within the C. parvum species, and two of these were responsible for 60% of the cases. In this study we found that most sporadic cases of cryptosporidiosis in Wisconsin are caused by zoonotic Cryptosporidium species, indicating that zoonotic transmission could be more frequently associated with sporadic cases in the United States.

  5. Rodent reservoirs of future zoonotic diseases

    PubMed Central

    Han, Barbara A.; Schmidt, John Paul; Bowden, Sarah E.; Drake, John M.

    2015-01-01

    The increasing frequency of zoonotic disease events underscores a need to develop forecasting tools toward a more preemptive approach to outbreak investigation. We apply machine learning to data describing the traits and zoonotic pathogen diversity of the most speciose group of mammals, the rodents, which also comprise a disproportionate number of zoonotic disease reservoirs. Our models predict reservoir status in this group with over 90% accuracy, identifying species with high probabilities of harboring undiscovered zoonotic pathogens based on trait profiles that may serve as rules of thumb to distinguish reservoirs from nonreservoir species. Key predictors of zoonotic reservoirs include biogeographical properties, such as range size, as well as intrinsic host traits associated with lifetime reproductive output. Predicted hotspots of novel rodent reservoir diversity occur in the Middle East and Central Asia and the Midwestern United States. PMID:26038558

  6. Ectoparasites and other epifaunistic arthropods of sympatric cotton mice and golden mice: comparisons and implications for vector-borne zoonotic diseases.

    PubMed

    Durden, Lance A; Polur, Ram N; Nims, Todd; Banks, Craig W; Oliver, James H

    2004-12-01

    Ectoparasite and epifaunistic arthropod biodiversity and infestation parameters were compared between 2 sympatric small rodent species, the cotton mouse (Peromyscus gossypinus (Le Conte)) and golden mouse (Ochrotomys nuttalli (Harlan)), in southern Georgia from 1992 to 2003. Because the cotton mouse is known to be a reservoir of more vector-borne zoonotic pathogens than the golden mouse, we hypothesized that it would be parasitized by more ectoparasites that are known to be vectors of these pathogens. Cotton mice (n = 202) were parasitized by 19 species of arthropods, whereas golden mice (n = 46) were parasitized by 12 species. Eleven species of arthropods were recovered from both host species, whereas 7 were recorded only from cotton mice, and 1 species only from golden mice. Infestation prevalences (percent of mice parasitized) were significantly higher for 1 species of arthropod (the tropical rat mite Ornithonyssus bacoti (Hirst)) infesting cotton mice and for 4 species (the flea Peromyscopsylla scotti Fox and the mites Glycyphagus hypudaei Koch, Androlaelaps casalis (Berlese), and Androlaelaps fahrenholzi (Berlese)) infesting golden mice. Mean intensities (mean per infested mouse) were significantly higher for 2 species (the flea Orchopeas leucopus (Baker) and the blacklegged tick Ixodes scapularis Say) infesting cotton mice and for 2 species (G. hypudaei and A. fahrenholzi) infesting golden mice. Ectoparasites that are known to be vectors of zoonotic pathogens were significantly more common on cotton mice than on golden mice. These ectoparasites included the rhopalopsyllid flea Polygenis gwyni (Fox), a vector of the agent of murine typhus; I. scapularis, the principal vector of the agents of Lyme borreliosis, human granulocytic ehrlichiosis, and human babesiosis; and O. bacoti, a laboratory vector of several zoonotic pathogens. However, 2 species of ixodid ticks that can transmit zoonotic pathogens were recovered from both host species. These were the American

  7. Interdisciplinary approaches to zoonotic disease

    PubMed Central

    Goodwin, Robin; Schley, David; Lai, Ka-Man; Ceddia, Graziano M.; Barnett, Julie; Cook, Nigel

    2012-01-01

    Zoonotic infections are on the increase worldwide, but most research into the biological, environmental and life science aspects of these infections has been conducted in separation. In this review we bring together contemporary research in these areas to suggest a new, symbiotic framework which recognises the interaction of biological, economic, psychological, and natural and built environmental drivers in zoonotic infection and transmission. In doing so, we propose that some contemporary debates in zoonotic research could be resolved using an expanded framework which explicitly takes into account the combination of motivated and habitual human behaviour, environmental and biological constraints, and their interactions. PMID:24470951

  8. Zoonotic infections among employees from Great Smoky Mountains and Rocky Mountain National Parks, 2008-2009.

    PubMed

    Adjemian, Jennifer; Weber, Ingrid B; McQuiston, Jennifer; Griffith, Kevin S; Mead, Paul S; Nicholson, William; Roche, Aubree; Schriefer, Martin; Fischer, Marc; Kosoy, Olga; Laven, Janeen J; Stoddard, Robyn A; Hoffmaster, Alex R; Smith, Theresa; Bui, Duy; Wilkins, Patricia P; Jones, Jeffery L; Gupton, Paige N; Quinn, Conrad P; Messonnier, Nancy; Higgins, Charles; Wong, David

    2012-11-01

    U.S. National Park Service employees may have prolonged exposure to wildlife and arthropods, placing them at increased risk of infection with endemic zoonoses. To evaluate possible zoonotic risks present at both Great Smoky Mountains (GRSM) and Rocky Mountain (ROMO) National Parks, we assessed park employees for baseline seroprevalence to specific zoonotic pathogens, followed by evaluation of incident infections over a 1-year study period. Park personnel showed evidence of prior infection with a variety of zoonotic agents, including California serogroup bunyaviruses (31.9%), Bartonella henselae (26.7%), spotted fever group rickettsiae (22.2%), Toxoplasma gondii (11.1%), Anaplasma phagocytophilum (8.1%), Brucella spp. (8.9%), flaviviruses (2.2%), and Bacillus anthracis (1.5%). Over a 1-year study period, we detected incident infections with leptospirosis (5.7%), B. henselae (5.7%), spotted fever group rickettsiae (1.5%), T. gondii (1.5%), B. anthracis (1.5%), and La Crosse virus (1.5%) in staff members at GRSM, and with spotted fever group rickettsiae (8.5%) and B. henselae (4.3%) in staff at ROMO. The risk of any incident infection was greater for employees who worked as resource managers (OR 7.4; 95% CI 1.4,37.5; p=0.02), and as law enforcement rangers/rescue crew (OR 6.5; 95% CI 1.1,36.5; p=0.03), relative to those who worked primarily in administration or management. The results of this study increase our understanding of the pathogens circulating within both parks, and can be used to inform the development of effective guidelines and interventions to increase visitor and staff awareness and help prevent exposure to zoonotic agents.

  9. Zoonotic Diseases--Fostering Awareness in Critical Audiences

    ERIC Educational Resources Information Center

    Van Metre, David C.; Morley, Paul S.

    2015-01-01

    Zoonotic diseases are infectious diseases that are shared between humans and other vertebrate animals. Extension professionals often serve as consultants and educators to individuals at high risk of zoonotic diseases, such as participants in 4-H livestock projects. Effective education about zoonotic diseases begins with an awareness of the…

  10. Streptococcus suis, an important pig pathogen and emerging zoonotic agent—an update on the worldwide distribution based on serotyping and sequence typing

    PubMed Central

    Goyette-Desjardins, Guillaume; Auger, Jean-Philippe; Xu, Jianguo; Segura, Mariela; Gottschalk, Marcelo

    2014-01-01

    Streptococcus suis is an important pathogen causing economic problems in the pig industry. Moreover, it is a zoonotic agent causing severe infections to people in close contact with infected pigs or pork-derived products. Although considered sporadic in the past, human S. suis infections have been reported during the last 45 years, with two large outbreaks recorded in China. In fact, the number of reported human cases has significantly increased in recent years. In this review, we present the worldwide distribution of serotypes and sequence types (STs), as determined by multilocus sequence typing, for pigs (between 2002 and 2013) and humans (between 1968 and 2013). The methods employed for S. suis identification and typing, the current epidemiological knowledge regarding serotypes and STs and the zoonotic potential of S. suis are discussed. Increased awareness of S. suis in both human and veterinary diagnostic laboratories and further establishment of typing methods will contribute to our knowledge of this pathogen, especially in regions where complete and/or recent data is lacking. More research is required to understand differences in virulence that occur among S. suis strains and if these differences can be associated with specific serotypes or STs. PMID:26038745

  11. Molecular survey on zoonotic tick-borne bacteria and chlamydiae in feral pigeons (Columba livia domestica).

    PubMed

    Ebani, Valentina Virginia; Bertelloni, Fabrizio; Mani, Paolo

    2016-04-01

    To determine the presence of zoonotic tick-borne bacteria in feral pigeons (Columba livia domestica) from urban areas. Spleen samples from 84 feral pigeons, found dead with traumatic injuries in urban areas, were examined by PCR to detect DNA of Anaplasma phagocytophilum, Bartonella spp., Borrelia burgdorferi sensu lato, Coxiella burnetii, Rickettsia spp., and Chlamydophila spp. Twenty (23.8%) pigeons were infected by tick-borne agents, in particular 2 (2.38%) animals resulted positive for Bartonella spp., 5 (5.95%) for C. burnetii, 5 (5.95%) for Rickettsia spp., 13 (15.47%) for B. burgdorferi sensu lato. All birds scored negative for A. phagocytophilum. Moreover, 17 (20.23%) pigeons were positive for Chlamydophila spp. and among them 10 (11.9%) for Chlamydophila psittaci. Mixed infections by two or three agents were detected in 8 (9.52%) animals. Feral pigeons living in urban and periurban areas are a hazard for the human health as source of several pathogens. The obtained results confirm pigeons as reservoirs of chlamydial agents and suggest that they may be involved in the epidemiology of zoonotic tick-borne infections too. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  12. Non-malignant disease mortality in meat workers: a model for studying the role of zoonotic transmissible agents in non-malignant chronic diseases in humans.

    PubMed

    Johnson, E S; Zhou, Y; Sall, M; Faramawi, M El; Shah, N; Christopher, A; Lewis, N

    2007-12-01

    Current research efforts have mainly concentrated on evaluating the role of substances present in animal food in the aetiology of chronic diseases in humans, with relatively little attention given to evaluating the role of transmissible agents that are also present. Meat workers are exposed to a variety of transmissible agents present in food animals and their products. This study investigates mortality from non-malignant diseases in workers with these exposures. A cohort mortality study was conducted between 1949 and 1989, of 8520 meat workers in a union in Baltimore, Maryland, who worked in manufacturing plants where animals were killed or processed, and who had high exposures to transmissible agents. Mortality in meat workers was compared with that in a control group of 6081 workers in the same union, and also with the US general population. Risk was estimated by proportional mortality and standardised mortality ratios (SMRs) and relative SMR. A clear excess of mortality from septicaemia, subarachnoid haemorrhage, chronic nephritis, acute and subacute endocarditis, functional diseases of the heart, and decreased risk of mortality from pre-cerebral, cerebral artery stenosis were observed in meat workers when compared to the control group or to the US general population. The authors hypothesise that zoonotic transmissible agents present in food animals and their products may be responsible for the occurrence of some cases of circulatory, neurological and other diseases in meat workers, and possibly in the general population exposed to these agents.

  13. Non-malignant disease mortality in meat workers: a model for studying the role of zoonotic transmissible agents in non-malignant chronic diseases in humans

    PubMed Central

    Johnson, E S; Zhou, Y; Sall, M; Faramawi, M El; Shah, N; Christopher, A; Lewis, N

    2007-01-01

    Background Current research efforts have mainly concentrated on evaluating the role of substances present in animal food in the aetiology of chronic diseases in humans, with relatively little attention given to evaluating the role of transmissible agents that are also present. Meat workers are exposed to a variety of transmissible agents present in food animals and their products. This study investigates mortality from non-malignant diseases in workers with these exposures. Methods A cohort mortality study was conducted between 1949 and 1989, of 8520 meat workers in a union in Baltimore, Maryland, who worked in manufacturing plants where animals were killed or processed, and who had high exposures to transmissible agents. Mortality in meat workers was compared with that in a control group of 6081 workers in the same union, and also with the US general population. Risk was estimated by proportional mortality and standardised mortality ratios (SMRs) and relative SMR. Results A clear excess of mortality from septicaemia, subarachnoid haemorrhage, chronic nephritis, acute and subacute endocarditis, functional diseases of the heart, and decreased risk of mortality from pre-cerebral, cerebral artery stenosis were observed in meat workers when compared to the control group or to the US general population. Conclusions The authors hypothesise that zoonotic transmissible agents present in food animals and their products may be responsible for the occurrence of some cases of circulatory, neurological and other diseases in meat workers, and possibly in the general population exposed to these agents. PMID:17604337

  14. Hantavirus infection: a global zoonotic challenge.

    PubMed

    Jiang, Hong; Zheng, Xuyang; Wang, Limei; Du, Hong; Wang, Pingzhong; Bai, Xuefan

    2017-02-01

    Hantaviruses are comprised of tri-segmented negative sense single-stranded RNA, and are members of the Bunyaviridae family. Hantaviruses are distributed worldwide and are important zoonotic pathogens that can have severe adverse effects in humans. They are naturally maintained in specific reservoir hosts without inducing symptomatic infection. In humans, however, hantaviruses often cause two acute febrile diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). In this paper, we review the epidemiology and epizootiology of hantavirus infections worldwide.

  15. Waterborne zoonotic helminthiases.

    PubMed

    Nithiuthai, Suwannee; Anantaphruti, Malinee T; Waikagul, Jitra; Gajadhar, Alvin

    2004-12-09

    This review deals with waterborne zoonotic helminths, many of which are opportunistic parasites spreading directly from animals to man or man to animals through water that is either ingested or that contains forms capable of skin penetration. Disease severity ranges from being rapidly fatal to low-grade chronic infections that may be asymptomatic for many years. The most significant zoonotic waterborne helminthic diseases are either snail-mediated, copepod-mediated or transmitted by faecal-contaminated water. Snail-mediated helminthiases described here are caused by digenetic trematodes that undergo complex life cycles involving various species of aquatic snails. These diseases include schistosomiasis, cercarial dermatitis, fascioliasis and fasciolopsiasis. The primary copepod-mediated helminthiases are sparganosis, gnathostomiasis and dracunculiasis, and the major faecal-contaminated water helminthiases are cysticercosis, hydatid disease and larva migrans. Generally, only parasites whose infective stages can be transmitted directly by water are discussed in this article. Although many do not require a water environment in which to complete their life cycle, their infective stages can certainly be distributed and acquired directly through water. Transmission via the external environment is necessary for many helminth parasites, with water and faecal contamination being important considerations. Human behaviour, particularly poor hygiene, is a major factor in the re-emergence, and spread of parasitic infections. Also important in assessing the risk of infection by water transmission are human habits and population density, the prevalence of infection in them and in alternate animal hosts, methods of treating sewage and drinking water, and climate. Disease prevention methods, including disease surveillance, education and improved drinking water treatment are described.

  16. Disease ecology and the global emergence of zoonotic pathogens.

    PubMed

    Wilcox, Bruce A; Gubler, Duane J

    2005-09-01

    The incidence and frequency of epidemic transmission of zoonotic diseases, both known and newly recognized, has increased dramatically in the past 30 years. It is thought that this dramatic disease emergence is primarily the result of the social, demographic, and environmental transformation that has occurred globally since World War II. However, the causal linkages have not been elucidated. Investigating emerging zoonotic pathogens as an ecological phenomenon can provide significant insights as to why some of these pathogens have jumped species and caused major epidemics in humans. A review of concepts and theory from biological ecology and of causal factors in disease emergence previously described suggests a general model of global zoonotic disease emergence. The model links demographic and societal factors to land use and land cover change whose associated ecological factors help explain disease emergence. The scale and magnitude of these changes are more significant than those associated with climate change, the effects of which are largely not yet understood. Unfortunately, the complex character and non-linear behavior of the human-natural systems in which host-pathogen systems are embedded makes specific incidences of disease emergence or epidemics inherently difficult to predict. Employing a complex systems analytical approach, however, may show how a few key ecological variables and system properties, including the adaptive capacity of institutions, explains the emergence of infectious diseases and how an integrated, multi-level approach to zoonotic disease control can reduce risk.

  17. Prion Diseases as Transmissible Zoonotic Diseases

    PubMed Central

    Lee, Jeongmin; Kim, Su Yeon; Hwang, Kyu Jam; Ju, Young Ran; Woo, Hee-Jong

    2013-01-01

    Prion diseases, also called transmissible spongiform encephalopathies (TSEs), lead to neurological dysfunction in animals and are fatal. Infectious prion proteins are causative agents of many mammalian TSEs, including scrapie (in sheep), chronic wasting disease (in deer and elk), bovine spongiform encephalopathy (BSE; in cattle), and Creutzfeldt–Jakob disease (CJD; in humans). BSE, better known as mad cow disease, is among the many recently discovered zoonotic diseases. BSE cases were first reported in the United Kingdom in 1986. Variant CJD (vCJD) is a disease that was first detected in 1996, which affects humans and is linked to the BSE epidemic in cattle. vCJD is presumed to be caused by consumption of contaminated meat and other food products derived from affected cattle. The BSE epidemic peaked in 1992 and decreased thereafter; this decline is continuing sharply owing to intensive surveillance and screening programs in the Western world. However, there are still new outbreaks and/or progression of prion diseases, including atypical BSE, and iatrogenic CJD and vCJD via organ transplantation and blood transfusion. This paper summarizes studies on prions, particularly on prion molecular mechanisms, BSE, vCJD, and diagnostic procedures. Risk perception and communication policies of the European Union for the prevention of prion diseases are also addressed to provide recommendations for appropriate government policies in Korea. PMID:24159531

  18. Zoonotic Infections Among Employees from Great Smoky Mountains and Rocky Mountain National Parks, 2008–2009

    PubMed Central

    Weber, Ingrid B.; McQuiston, Jennifer; Griffith, Kevin S.; Mead, Paul S.; Nicholson, William; Roche, Aubree; Schriefer, Martin; Fischer, Marc; Kosoy, Olga; Laven, Janeen J.; Stoddard, Robyn A.; Hoffmaster, Alex R.; Smith, Theresa; Bui, Duy; Wilkins, Patricia P.; Jones, Jeffery L.; Gupton, Paige N.; Quinn, Conrad P.; Messonnier, Nancy; Higgins, Charles; Wong, David

    2012-01-01

    Abstract U.S. National Park Service employees may have prolonged exposure to wildlife and arthropods, placing them at increased risk of infection with endemic zoonoses. To evaluate possible zoonotic risks present at both Great Smoky Mountains (GRSM) and Rocky Mountain (ROMO) National Parks, we assessed park employees for baseline seroprevalence to specific zoonotic pathogens, followed by evaluation of incident infections over a 1-year study period. Park personnel showed evidence of prior infection with a variety of zoonotic agents, including California serogroup bunyaviruses (31.9%), Bartonella henselae (26.7%), spotted fever group rickettsiae (22.2%), Toxoplasma gondii (11.1%), Anaplasma phagocytophilum (8.1%), Brucella spp. (8.9%), flaviviruses (2.2%), and Bacillus anthracis (1.5%). Over a 1-year study period, we detected incident infections with leptospirosis (5.7%), B. henselae (5.7%), spotted fever group rickettsiae (1.5%), T. gondii (1.5%), B. anthracis (1.5%), and La Crosse virus (1.5%) in staff members at GRSM, and with spotted fever group rickettsiae (8.5%) and B. henselae (4.3%) in staff at ROMO. The risk of any incident infection was greater for employees who worked as resource managers (OR 7.4; 95% CI 1.4,37.5; p=0.02), and as law enforcement rangers/rescue crew (OR 6.5; 95% CI 1.1,36.5; p=0.03), relative to those who worked primarily in administration or management. The results of this study increase our understanding of the pathogens circulating within both parks, and can be used to inform the development of effective guidelines and interventions to increase visitor and staff awareness and help prevent exposure to zoonotic agents. PMID:22835153

  19. Interventions to reduce zoonotic and pandemic risks from avian influenza in Asia

    PubMed Central

    Peiris, Malik; Cowling, Benjamin J.; Wu, Joseph T.; Feng, Luzhao; Guan, Yi; Yu, Hongjie; Leung, Gabriel M.

    2017-01-01

    Summary Novel influenza viruses continue to emerge posing zoonotic and potentially pandemic threats, avian influenza A/H7N9 being the most recent example. While closure of live poultry markets in mainland China was effective at aborting A/H7N9 outbreaks temporarily, they are difficult to sustain, given the current poultry production and marketing systems in China. We summarise interventions taken in mainland China to date. We provide evidence for other more sustainable but effective interventions in the live poultry market (LPM) systems that reduce risk of zoonotic influenza including “rest days” in LPM and banning live poultry in markets overnight. On the longer term, separation of live ducks and geese from terrestrial poultry in LPM systems can reduce the risk of emergence of zoonotic, epizootic (and potentially pandemic) viruses at source. Given evidence that A/H7N9 is now endemic in over half of the provinces in mainland China, and will continue to cause recurrent zoonotic disease in the winter months, such interventions should receive high priority in China as well as other Asian countries which are at risk of introduction of A/H7N9 through cross-border poultry movements. Such generic measures are likely to reduce current as well as future threats from zoonotic influenza. PMID:26654122

  20. Zoonotic helminth infections with particular emphasis on fasciolosis and other trematodiases

    PubMed Central

    Robinson, Mark W.; Dalton, John P.

    2009-01-01

    Zoonotic infections are among the most common on earth and are responsible for >60 per cent of all human infectious diseases. Some of the most important and well-known human zoonoses are caused by worm or helminth parasites, including species of nematodes (trichinellosis), cestodes (cysticercosis, echinococcosis) and trematodes (schistosomiasis). However, along with social, epidemiological and environmental changes, together with improvements in our ability to diagnose helminth infections, several neglected parasite species are now fast-becoming recognized as important zoonotic diseases of humans, e.g. anasakiasis, several fish-borne trematodiasis and fasciolosis. In the present review, we discuss the current disease status of these primary helminth zoonotic infections with particular emphasis on their diagnosis and control. Advances in molecular biology, proteomics and the release of helminth genome-sequencing project data are revolutionizing parasitology research. The use of these powerful experimental approaches, and their potential benefits to helminth biology are also discussed in relation to the future control of helminth infections of animals and humans. PMID:19687044

  1. Zoonotic ocular onchocercosis caused by Onchocerca lupi in dogs in Romania.

    PubMed

    Tudor, Poliana; Turcitu, Mihai; Mateescu, Cosmin; Dantas-Torres, Filipe; Tudor, Niculae; Bărbuceanu, Florica; Ciuca, Lavinia; Burcoveanu, Ioana; Acatrinei, Dumitru; Rinaldi, Laura; Mateescu, Romanița; Bădicu, Adina; Ionașcu, Iuliana; Otranto, Domenico

    2016-02-01

    Onchocerca lupi is a filarial nematode, which infects the scleral conjunctival tissue of dogs, wolves and cats. Whilst adult nematodes localize in the conjunctive tissue of sclera or in the retrobulbar, microfilariae are found in the skin, and they are rarely diagnosed in asymptomatic animals. Since the first report of human ocular infection 5 years ago, up to 10 zoonotic cases have been identified in patients worldwide. We report, for the first time in Romania, three cases of canine ocular onchocercosis in dogs. Fragments of the harvested worms were characterized morphologically and molecularly. This article expands knowledge on the distribution of this parasite in Eastern Europe and sounds an alarm bell for ophthalmologists about the possible occurrence of human cases of O. lupi infection.

  2. Zoonotic Poxviruses Associated with Companion Animals

    PubMed Central

    Tack, Danielle M.; Reynolds, Mary G.

    2011-01-01

    Simple Summary Contemporary enthusiasm for the ownership of exotic animals and hobby livestock has created an opportunity for the movement of poxviruses—such as monkeypox, cowpox, and orf—outside their traditional geographic range bringing them into contact with atypical animal hosts and groups of people not normally considered at risk. It is important that pet owners and practitioners of human and animal medicine develop a heightened awareness for poxvirus infections and understand the risks that can be associated with companion animals and livestock. This article reviews the epidemiology and clinical features of zoonotic poxviruses that are most likely to affect companion animals. Abstract Understanding the zoonotic risk posed by poxviruses in companion animals is important for protecting both human and animal health. The outbreak of monkeypox in the United States, as well as current reports of cowpox in Europe, point to the fact that companion animals are increasingly serving as sources of poxvirus transmission to people. In addition, the trend among hobbyists to keep livestock (such as goats) in urban and semi-urban areas has contributed to increased parapoxvirus exposures among people not traditionally considered at high risk. Despite the historic notoriety of poxviruses and the diseases they cause, poxvirus infections are often missed. Delays in diagnosing poxvirus-associated infections in companion animals can lead to inadvertent human exposures. Delays in confirming human infections can result in inappropriate treatment or prolonged recovery. Early recognition of poxvirus-associated infections and application of appropriate preventive measures can reduce the spread of virus between companion animals and their owners. This review will discuss the epidemiology and clinical features associated with the zoonotic poxvirus infections most commonly associated with companion animals. PMID:26486622

  3. A short history of fires and explosions caused by anaesthetic agents.

    PubMed

    MacDonald, A G

    1994-06-01

    The first recorded fire resulting from the use of an anaesthetic agent occurred in 1850, when ether caught fire during a facial operation. Many subsequent fires and explosions have been reported, caused by ether, acetylene, ethylene and cyclopropane, and there has been one reported explosion involving halothane. Although some of the earlier incidents caused more consternation than injury, many of the later ones caused much death and destruction, particularly after the practice of administering oxygen, instead of air, became established. Many incidents have never been reported and many of those which have reached publication do not record essential details. The use of flammable agents has decreased significantly in recent years and although fires and explosions from nonanaesthetic causes, for example gastrointestinal gases, skin sterilizing agents and laser surgery, may continue to occur, those from gaseous and volatile anaesthetic agents may now be of historical interest only. This article reviews some of the more relevant and enlightening reports of the past 150 yr.

  4. A zoonotic human infection with simian malaria, Plasmodium knowlesi, in Central Kalimantan, Indonesia.

    PubMed

    Setiadi, Wuryantari; Sudoyo, Herawati; Trimarsanto, Hidayat; Sihite, Boy Adventus; Saragih, Riahdo Juliarman; Juliawaty, Rita; Wangsamuda, Suradi; Asih, Puji Budi Setia; Syafruddin, Din

    2016-04-16

    The Indonesian archipelago is endemic for malaria. Although Plasmodium falciparum and P. vivax are the most common causes for malaria cases, P. malariae and P. ovale are also present in certain regions. Zoonotic case of malaria had just became the attention of public health communities after the Serawak study in 2004. However, zoonotic case in Indonesia is still under reported; only one published report of knowlesi malaria in South Kalimantan in 2010. A case of Plasmodium knowlesi infection in a worker from a charcoal mining company in Central Kalimantan, Indonesia was described. The worker suffered from fever following his visit to a lowland forest being cut and converted into a new mining location. This study confirmed a zoonotic infection using polymerase chain reaction amplification and Sanger sequencing of plasmodial DNA encoding the mitochondrial cytochrome c oxidase subunit I (mtCOI).

  5. Lobomycosis: risk of zoonotic transmission from dolphins to humans.

    PubMed

    Reif, John S; Schaefer, Adam M; Bossart, Gregory D

    2013-10-01

    Lobomycosis, a fungal disease of the skin and subcutaneous tissues caused by Lacazia loboi, is sometimes referred to as a zoonotic disease because it affects only specific delphinidae and humans; however, the evidence that it can be transferred directly to humans from dolphins is weak. Dolphins have also been postulated to be responsible for an apparent geographic expansion of the disease in humans. Morphological and molecular differences between the human and dolphin organisms, differences in geographic distribution of the diseases between dolphins and humans, the existence of only a single documented case of presumed zoonotic transmission, and anecdotal evidence of lack of transmission to humans following accidental inoculation of tissue from infected dolphins do not support the hypothesis that dolphins infected with L. loboi represent a zoonotic hazard for humans. In addition, the lack of human cases in communities adjacent to coastal estuaries with a high prevalence of lobomycosis in dolphins, such as the Indian River Lagoon in Florida (IRL), suggests that direct or indirect transmission of L. loboi from dolphins to humans occurs rarely, if at all. Nonetheless, attention to personal hygiene and general principals of infection control are always appropriate when handling tissues from an animal with a presumptive diagnosis of a mycotic or fungal disease.

  6. The zoonotic implications of pentastomiasis in the royal python (python regius).

    PubMed

    Ayinmode, Ab; Adedokun, Ao; Aina, A; Taiwo, V

    2010-09-01

    Pentastomes are worm-like endoparasites of the phylum Pentastomida found principally in the respiratory tract of reptiles, birds, and mammals. They cause a zoonotic disease known as pentastomiasis in humans and other mammals. The autopsy of a Nigerian royal python (Python regius) revealed two yellowish-white parasites in the lungs, tissue necrosis and inflammatory lesions. The parasite was confirmed to be Armillifer spp (Pentastomid); this is the first recorded case of pentastomiasis in the royal python (Python regius) in Nigeria. This report may be an alert of the possibility of on-going zoonotic transmission of pentastomiasis from snake to man, especially in the sub-urban/rural areas of Nigeria and other West African countries where people consume snake meat.

  7. Gastrointestinal parasites of cats in Brazil: frequency and zoonotic risk.

    PubMed

    Monteiro, Maria Fernanda Melo; Ramos, Rafael Antonio Nascimento; Calado, Andréa Maria Campos; Lima, Victor Fernando Santana; Ramos, Ingrid Carla do Nascimento; Tenório, Rodrigo Ferreira Lima; Faustino, Maria Aparecida da Glória; Alves, Leucio Câmara

    2016-04-12

    Gastrointestinal helminths are considered to be the most common parasites affecting cats worldwide. Correct diagnosis of these parasites in animals living in urban areas is pivotal, especially considering the zoonotic potential of some species (e.g. Ancylostoma sp. and Toxocara sp.). In this study, a copromicroscopic survey was conducted using fecal samples (n = 173) from domestic cats living in the northeastern region of Brazil. Samples were examined through the FLOTAC technique and the overall results showed positivity of 65.31% (113/173) among the samples analyzed. Coinfections were observed in 46.01% (52/113) of the positive samples. The most common parasites detected were Ancylostoma sp., Toxocara cati, Strongyloides stercoralis, Trichuris sp., Dipylidium caninum and Cystoisospora sp. From an epidemiological point of view, these findings are important, especially considering that zoonotic parasites (e.g. Ancylostoma sp. and Toxocara sp.) were the nematodes most frequently diagnosed in this study. Therefore, the human population living in close contact with cats is at risk of infection caused by the zoonotic helminths of these animals. In addition, for the first time the FLOTAC has been used to diagnosing gastrointestinal parasites of cats in Brazil.

  8. Decontamination of High-risk Animal and Zoonotic Pathogens

    PubMed Central

    Menrath, Andrea; Tomuzia, Katharina; Braeunig, Juliane; Appel, Bernd

    2013-01-01

    Preparedness for the decontamination of affected environments, premises, facilities, and products is one prerequisite for an immediate response to an animal disease outbreak. Various information sources provide recommendations on how to proceed in an outbreak situation to eliminate biological contaminants and to stop the spread of the disease. In order to facilitate the identification of the right decontamination strategy, we present an overview of relevant references for a collection of pathogenic agents. The choice of pathogens is based on a survey of lists containing highly pathogenic agents and/or biological agents considered to be potential vehicles for deliberate contamination of food, feed, or farm animals. European legislation and guidelines from national and international institutions were screened to find decontamination protocols for each of the agents. Identified recommendations were evaluated with regard to their area of application, which could be facilities and equipment, wastes, food, and other animal products. The requirements of a disinfectant for large-scale incidents were gathered, and important characteristics (eg, inactivating spectrum, temperature range, toxicity to environment) of the main recommended disinfectants were summarized to assist in the choice of a suitable and efficient approach in a crisis situation induced by a specific high-risk animal or zoonotic pathogen. The literature search revealed numerous relevant recommendations but also legal gaps for certain diseases, such as Q fever or brucellosis, and legal difficulties for the use of recommended disinfectants. A lack of information about effective disinfectants was identified for some agents. PMID:23971795

  9. Decontamination of high-risk animal and zoonotic pathogens.

    PubMed

    Frentzel, Hendrik; Menrath, Andrea; Tomuzia, Katharina; Braeunig, Juliane; Appel, Bernd

    2013-09-01

    Preparedness for the decontamination of affected environments, premises, facilities, and products is one prerequisite for an immediate response to an animal disease outbreak. Various information sources provide recommendations on how to proceed in an outbreak situation to eliminate biological contaminants and to stop the spread of the disease. In order to facilitate the identification of the right decontamination strategy, we present an overview of relevant references for a collection of pathogenic agents. The choice of pathogens is based on a survey of lists containing highly pathogenic agents and/or biological agents considered to be potential vehicles for deliberate contamination of food, feed, or farm animals. European legislation and guidelines from national and international institutions were screened to find decontamination protocols for each of the agents. Identified recommendations were evaluated with regard to their area of application, which could be facilities and equipment, wastes, food, and other animal products. The requirements of a disinfectant for large-scale incidents were gathered, and important characteristics (eg, inactivating spectrum, temperature range, toxicity to environment) of the main recommended disinfectants were summarized to assist in the choice of a suitable and efficient approach in a crisis situation induced by a specific high-risk animal or zoonotic pathogen. The literature search revealed numerous relevant recommendations but also legal gaps for certain diseases, such as Q fever or brucellosis, and legal difficulties for the use of recommended disinfectants. A lack of information about effective disinfectants was identified for some agents.

  10. Multiple infections of rodents with zoonotic pathogens in Austria.

    PubMed

    Schmidt, Sabrina; Essbauer, Sandra S; Mayer-Scholl, Anne; Poppert, Sven; Schmidt-Chanasit, Jonas; Klempa, Boris; Henning, Klaus; Schares, Gereon; Groschup, Martin H; Spitzenberger, Friederike; Richter, Dania; Heckel, Gerald; Ulrich, Rainer G

    2014-07-01

    Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host-pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans.

  11. Multiple Infections of Rodents with Zoonotic Pathogens in Austria

    PubMed Central

    Schmidt, Sabrina; Essbauer, Sandra S.; Mayer-Scholl, Anne; Poppert, Sven; Schmidt-Chanasit, Jonas; Klempa, Boris; Henning, Klaus; Schares, Gereon; Groschup, Martin H.; Spitzenberger, Friederike; Richter, Dania; Heckel, Gerald

    2014-01-01

    Abstract Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host–pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans. PMID

  12. Coarse-resolution Ecology of Etiological Agent, Vector, and Reservoirs of Zoonotic Cutaneous Leishmaniasis in Libya.

    PubMed

    Samy, Abdallah M; Annajar, Badereddin B; Dokhan, Mostafa Ramadhan; Boussaa, Samia; Peterson, A Townsend

    2016-02-01

    Cutaneous leishmaniasis ranks among the tropical diseases least known and most neglected in Libya. World Health Organization reports recognized associations of Phlebotomus papatasi, Psammomys obesus, and Meriones spp., with transmission of zoonotic cutaneous leishmaniasis (ZCL; caused by Leishmania major) across Libya. Here, we map risk of ZCL infection based on occurrence records of L. major, P. papatasi, and four potential animal reservoirs (Meriones libycus, Meriones shawi, Psammomys obesus, and Gerbillus gerbillus). Ecological niche models identified limited risk areas for ZCL across the northern coast of the country; most species associated with ZCL transmission were confined to this same region, but some had ranges extending to central Libya. All ENM predictions were significant based on partial ROC tests. As a further evaluation of L. major ENM predictions, we compared predictions with 98 additional independent records provided by the Libyan National Centre for Disease Control (NCDC); all of these records fell inside the belt predicted as suitable for ZCL. We tested ecological niche similarity among vector, parasite, and reservoir species and could not reject any null hypotheses of niche similarity. Finally, we tested among possible combinations of vector and reservoir that could predict all recent human ZCL cases reported by NCDC; only three combinations could anticipate the distribution of human cases across the country.

  13. Coarse-resolution Ecology of Etiological Agent, Vector, and Reservoirs of Zoonotic Cutaneous Leishmaniasis in Libya

    PubMed Central

    Samy, Abdallah M.; Annajar, Badereddin B.; Dokhan, Mostafa Ramadhan; Boussaa, Samia; Peterson, A. Townsend

    2016-01-01

    Abstract Cutaneous leishmaniasis ranks among the tropical diseases least known and most neglected in Libya. World Health Organization reports recognized associations of Phlebotomus papatasi, Psammomys obesus, and Meriones spp., with transmission of zoonotic cutaneous leishmaniasis (ZCL; caused by Leishmania major) across Libya. Here, we map risk of ZCL infection based on occurrence records of L. major, P. papatasi, and four potential animal reservoirs (Meriones libycus, Meriones shawi, Psammomys obesus, and Gerbillus gerbillus). Ecological niche models identified limited risk areas for ZCL across the northern coast of the country; most species associated with ZCL transmission were confined to this same region, but some had ranges extending to central Libya. All ENM predictions were significant based on partial ROC tests. As a further evaluation of L. major ENM predictions, we compared predictions with 98 additional independent records provided by the Libyan National Centre for Disease Control (NCDC); all of these records fell inside the belt predicted as suitable for ZCL. We tested ecological niche similarity among vector, parasite, and reservoir species and could not reject any null hypotheses of niche similarity. Finally, we tested among possible combinations of vector and reservoir that could predict all recent human ZCL cases reported by NCDC; only three combinations could anticipate the distribution of human cases across the country. PMID:26863317

  14. [New insight into bacterial zoonotic pathogens posing health hazards to humans].

    PubMed

    Ciszewski, Marcin; Czekaj, Tomasz; Szewczyk, Eligia Maria

    2014-01-01

    This article presents the problem of evolutionary changes of zoonotic pathogens responsible for human diseases. Everyone is exposed to the risk of zoonotic infection, particularly employees having direct contact with animals, i.e. veterinarians, breeders, butchers and workers of animal products' processing industry. The article focuses on pathogens monitored by the European Centre for Disease Prevention and Control (ECDC), which has been collecting statistical data on zoonoses from all European Union countries for 19 years and publishing collected data in annual epidemiological reports. Currently, the most important 11 pathogens responsible for causing human zoonotic diseases are being monitored, of which seven are bacteria: Salmonella spp., Campylobacter spp., Listeria monocytogenes, Mycobacterium bovis, Brucella spp., Coxiella burnetti and Verotoxin-producing E. coli (VTEC)/Shiga-like toxin producing E. coli (STEC). As particularly important are considered foodborne pathogens. The article also includes new emerging zoonotic bacteria, which are not currently monitored by ECDC but might pose a serious epidemiological problem in a foreseeable future: Streptococcus iniae, S. suis, S. dysgalactiae and staphylococci: Staphylococcus intermedius, S. pseudintermedius. Those species have just crossed the animal-human interspecies barrier. The exact mechanism of this phenomenon remains unknown, it is connected, however, with genetic variability, capability to survive in changing environment. These abilities derive from DNA rearrangement and horizontal gene transfer between bacterial cells. Substantial increase in the number of scientific publications on this subject, observed over the last few years, illustrates the importance of the problem.

  15. Zoonotic Transmission of Waterborne Disease: A Mathematical Model.

    PubMed

    Waters, Edward K; Hamilton, Andrew J; Sidhu, Harvinder S; Sidhu, Leesa A; Dunbar, Michelle

    2016-01-01

    Waterborne parasites that infect both humans and animals are common causes of diarrhoeal illness, but the relative importance of transmission between humans and animals and vice versa remains poorly understood. Transmission of infection from animals to humans via environmental reservoirs, such as water sources, has attracted attention as a potential source of endemic and epidemic infections, but existing mathematical models of waterborne disease transmission have limitations for studying this phenomenon, as they only consider contamination of environmental reservoirs by humans. This paper develops a mathematical model that represents the transmission of waterborne parasites within and between both animal and human populations. It also improves upon existing models by including animal contamination of water sources explicitly. Linear stability analysis and simulation results, using realistic parameter values to describe Giardia transmission in rural Australia, show that endemic infection of an animal host with zoonotic protozoa can result in endemic infection in human hosts, even in the absence of person-to-person transmission. These results imply that zoonotic transmission via environmental reservoirs is important.

  16. Kyasanur Forest Disease (KFD): Rare Disease of Zoonotic Origin.

    PubMed

    Muraleedharan, M

    2016-09-01

    Kyasanur forest disease (KFD) is a rare tick borne zoonotic disease that causes acute febrile hemorrhagic illness in humans and monkeys especially in southern part of India. The disease is caused by highly pathogenic KFD virus (KFDV) which belongs to member of the genus Flavivirus and family Flaviviridae. The disease is transmitted to monkeys and humans by infective tick Haemaphysalisspinigera. Seasonal outbreaks are expected to occur during the months of January to June. The aim of this paper is to briefly summarize the epidemiology, mode of transmission of KFD virus, clinical findings, diagnosis, treatment, control and prevention of the disease..

  17. Zoonotic Hookworm FAQs

    MedlinePlus

    ... when exposed skin comes in contact with contaminated soil or sand. The larvae in the contaminated soil or sand will burrow into the skin and ... measures to avoid skin contact with sand or soil will prevent infection with zoonotic hookworms. Travelers to ...

  18. High prevalence of intestinal zoonotic parasites in dogs from Belgrade, Serbia--short communication.

    PubMed

    Nikolić, Aleksandra; Dimitrijević, Sanda; Katić-Radivojević, Sofija; Klun, Ivana; Bobrć, Branko; Djurković-Djaković, Olgica

    2008-09-01

    To identify areas of risk for canine-related zoonoses in Serbia, the aim of this study was to provide baseline knowledge about intestinal parasites in 151 dogs (65 household pets, 75 stray and 11 military working dogs) from Belgrade. The following parasites, with their respective prevalences, were detected: Giardia duodenalis (14.6%), Ancylostomatidae (24.5%), Toxocara canis (30.5%), Trichuris vulpis (47.0%) and Taenia-type helminths (6.6%). Of all examined dogs, 75.5% (114/151) were found to harbour at least one parasite species. Of these, mixed infections with up to four species per dog occurred in 44.7% (51/114). Infections with all detected species were significantly higher (p < 0.05) in military working (100%) and stray dogs (93.3%) versus household pets (50.8%). Among all parasites, agents with zoonotic potential including Giardia, Ancylostomatidae and Toxocara were detected in 58.3% (88/151) of all examined dogs with a significant difference (p < 0.05) among the subgroups (100%, 62.7% and 46.2% for military working dogs, stray dogs and household pets, respectively). The high prevalence of zoonotic parasites registered in the dog population from a highly urban area in south-eastern Europe indicates a potential risk to human health. Thus, veterinarians should play an important role in helping to prevent or minimise zoonotic transmission.

  19. Human Mycobacterium bovis infection in the United Kingdom: Incidence, risks, control measures and review of the zoonotic aspects of bovine tuberculosis.

    PubMed

    de la Rua-Domenech, Ricardo

    2006-03-01

    Amongst the members of the Mycobacterium tuberculosis complex (MTBC), M. tuberculosis is mainly a human pathogen, whereas M. bovis has a broad host range and is the principal agent responsible for tuberculosis (TB) in domestic and wild mammals. M. bovis also infects humans, causing zoonotic TB through ingestion, inhalation and, less frequently, by contact with mucous membranes and broken skin. Zoonotic TB is indistinguishable clinically or pathologically from TB caused by M. tuberculosis. Differentiation between the causative organisms may only be achieved by sophisticated laboratory methods involving bacteriological culture of clinical specimens, followed by typing of isolates according to growth characteristics, biochemical properties, routine resistance to pyrazinamide (PZA) and specific non-commercial nucleic acid techniques. All this makes it difficult to accurately estimate the proportion of human TB cases caused by M. bovis infection, particularly in developing countries. Distinguishing between the various members of the MTBC is essential for epidemiological investigation of human cases and, to a lesser degree, for adequate chemotherapy of the human TB patient. Zoonotic TB was formerly an endemic disease in the UK population, usually transmitted to man by consumption of raw cows' milk. Human infection with M. bovis in the UK has been largely controlled through pasteurization of cows' milk and systematic culling of cattle reacting to compulsory tuberculin tests. Nowadays the majority of the 7000 cases of human TB annually reported in the UK are due to M. tuberculosis acquired directly from an infectious person. In the period 1990-2003, between 17 and 50 new cases of human M. bovis infection were confirmed every year in the UK. This represented between 0.5% and 1.5% of all the culture-confirmed TB cases, a proportion similar to that of other industrialized countries. Most cases of zoonotic TB diagnosed in the UK are attributed to (i) reactivation of long

  20. Surveillance and diagnosis of zoonotic foodborne parasites.

    PubMed

    Zolfaghari Emameh, Reza; Purmonen, Sami; Sukura, Antti; Parkkila, Seppo

    2018-01-01

    Foodborne parasites are a source of human parasitic infection. Zoonotic infections of humans arise from a variety of domestic and wild animals, including sheep, goats, cattle, camels, horses, pigs, boars, bears, felines, canids, amphibians, reptiles, poultry, and aquatic animals such as fishes and shrimp. Therefore, the implementation of efficient, accessible, and controllable inspection policies for livestock, fisheries, slaughterhouses, and meat processing and packaging companies is highly recommended. In addition, more attention should be paid to the education of auditors from the quality control (QC) and assurance sectors, livestock breeders, the fishery sector, and meat inspection veterinarians in developing countries with high incidence of zoonotic parasitic infections. Furthermore, both the diagnosis of zoonotic parasitic infections by inexpensive, accessible, and reliable identification methods and the organization of effective control systems with sufficient supervision of product quality are other areas to which more attention should be paid. In this review, we present some examples of successful inspection policies and recent updates on present conventional, serologic, and molecular diagnostic methods for zoonotic foodborne parasites from both human infection and animal-derived foods.

  1. Toxocara malaysiensis infection in domestic cats in Vietnam--An emerging zoonotic issue?

    PubMed

    Le, Thanh Hoa; Anh, Nguyen Thi Lan; Nguyen, Khue Thi; Nguyen, Nga Thi Bich; Thuy, Do Thi Thu; Gasser, Robin B

    2016-01-01

    Toxocara canis of canids is a parasitic nematode (ascaridoid) that infects humans and other hosts, causing different forms of toxocariasis. This species of Toxocara appears to be the most important cause of human disease, likely followed by Toxocara cati from felids. Although some studies from Malaysia and China have shown that cats can harbor another congener, T. malaysiensis, no information is available about this parasite for other countries. Moreover, the zoonotic potential of this parasite is unknown at this point. In the present study, we conducted the first investigation of domestic dogs and cats for Toxocara in Vietnam using molecular tools. Toxocara malaysiensis was identified as a common ascaridoid of domestic cats (in the absence of T. cati), and T. canis was commonly found in dogs. Together with findings from previous studies, the present results emphasize the need to explore the significance and zoonotic potential of T. malaysiensis in Vietnam and other countries where this parasite is endemic and prevalent in cats. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Prioritization of zoonotic diseases of public health significance in Vietnam.

    PubMed

    Trang, Do Thuy; Siembieda, Jennifer; Huong, Nguyen Thi; Hung, Pham; Ky, Van Dang; Bandyopahyay, Santanu; Olowokure, Babatunde

    2015-12-30

    Prioritization of zoonotic diseases is critical as it facilitates optimization of resources, greater understanding of zoonotic diseases and implementation of policies promoting multisectoral collaboration. This study aimed to establish strategic priorities for zoonotic diseases in Vietnam taking a key stakeholder approach. Two weeks prior to a workshop on zoonotic diseases a questionnaire was developed and posted to key professionals involved in different areas of zoonotic disease management in Vietnam. Respondents were asked to assess the relative priority of 12 zoonotic diseases using a number of evidence-based criteria, and to provide suggestions to strengthen multisectoral collaboration. A response rate of 69% (51/74) was obtained, and 75% (38/51) respondents worked in non-international Vietnamese organizations. Respondents identified the top five diseases for prioritization in Vietnam as: avian influenza, rabies, Streptococcus suis infection, pandemic influenza and foodborne bacterial diseases. The three criteria most used to rank diseases were severity of disease, outbreak potential and public attention. Avian influenza was ranked as the number one priority zoonotic disease in Vietnam by 57% of the respondents, followed by rabies (18%). Respondents identified coordination mechanisms, information sharing and capacity building as the most important areas for strengthening to enhance multisectoral collaboration. This study is the first systematic and broad-based attempt to prioritize zoonotic diseases of public health significance in Vietnam using key stakeholders, and a comparative and transparent method. There is limited literature for policy makers and planners on this topic and the results of this study can be used to guide decision-making.

  3. [Pet ownership and health status of pets from immunocompromised children, with emphasis in zoonotic diseases].

    PubMed

    Abarca V, Katia; López Del P, Javier; Peña D, Anamaría; López G, J Carlos

    2011-06-01

    To characterize pet ownership and pet health status in families of immunocompromised (IS) children, with emphasis in zoonotic diseases. Families of IS children from two hospitals in Santiago, Chile, were interviewed and their pets were evaluated by veterinary examination, coproparasitologic and skin dermatophytes test. In specific cases, other laboratory tests were performed in IS children or their relatives. 47 out of 70 contacted families had pets, 42 participated in the study. Several risk factors for IS children were observed, as having a turtle as a pet and to clean cat or turtle faeces. Lack of adequate veterinary control, immunizations and deparasitation of pets were observed. Some animals showed zoonotic diseases or agents, as Brucella canis, Cryptosporidium sp, Giardia intestinalis, Toxocara canis and scabies. 44% of dogs had ticks and 37% had fleas, both potential vectors of infections. Our results suggest that policies to provide safer pet contact in IS children are needed.

  4. Spatiotemporal trends in the discovery of new swine infectious agents.

    PubMed

    Fournié, Guillaume; Kearsley-Fleet, Lianne; Otte, Joachim; Pfeiffer, Dirk Udo

    2015-09-28

    A literature review was conducted to assess the spatiotemporal trend and diversity of infectious agents that were newly found in pigs between 1985 and 2010. We identified 173 new variants from 91 species, of which 73 species had not been previously described in pigs. These new species, of which one third was zoonotic, were taxonomically diverse. They were identified throughout the study period, predominantly in the main pork producing countries, with the rate of discovery of new virus variants doubling within the last 10 years of the study period. Whilst infectious agent species newly detected in high-income countries were more likely to be associated with higher virulence, zoonotic agents prevailed in low- and middle-income countries. Although this trend is influenced by factors conditioning infectious agent detection - diagnostic methods, surveillance efforts, research interests -, it may suggest that different scales and types of production systems promote emergence of certain types of infectious agents. Considering the rapid transformation of the swine industry, concerted efforts are needed for improving our understanding of the factors influencing the emergence of infectious agents. This information then needs to inform the design of risk-based surveillance systems and strategies directly mitigating the risk associated with these factors.

  5. Human Pulmonary Infection by the Zoonotic Metastrongylus salmi Nematode. The First Reported Case in the Americas

    PubMed Central

    Calvopina, Manuel; Caballero, Henry; Morita, Tatsushi; Korenaga, Masataka

    2016-01-01

    Pulmonary metastrongylosis, a zoonotic disease found primarily in pigs, is caused by eight different species of the cosmopolitan nematode Metastrongylus genus. To date, only four human cases have been reported, all from Europe. Herein, a severe case of pulmonary infection caused by Metastrongylus salmi in an Ecuadorian man, with successful treatment with ivermectin, is described. PMID:27382078

  6. Zoonotic helminths affecting the human eye

    PubMed Central

    2011-01-01

    Nowaday, zoonoses are an important cause of human parasitic diseases worldwide and a major threat to the socio-economic development, mainly in developing countries. Importantly, zoonotic helminths that affect human eyes (HIE) may cause blindness with severe socio-economic consequences to human communities. These infections include nematodes, cestodes and trematodes, which may be transmitted by vectors (dirofilariasis, onchocerciasis, thelaziasis), food consumption (sparganosis, trichinellosis) and those acquired indirectly from the environment (ascariasis, echinococcosis, fascioliasis). Adult and/or larval stages of HIE may localize into human ocular tissues externally (i.e., lachrymal glands, eyelids, conjunctival sacs) or into the ocular globe (i.e., intravitreous retina, anterior and or posterior chamber) causing symptoms due to the parasitic localization in the eyes or to the immune reaction they elicit in the host. Unfortunately, data on HIE are scant and mostly limited to case reports from different countries. The biology and epidemiology of the most frequently reported HIE are discussed as well as clinical description of the diseases, diagnostic considerations and video clips on their presentation and surgical treatment. Homines amplius oculis, quam auribus credunt Seneca Ep 6,5 Men believe their eyes more than their ears PMID:21429191

  7. A survey for potentially zoonotic gastrointestinal parasites in domestic cavies in Cameroon (Central Africa).

    PubMed

    Meutchieye, Felix; Kouam, Marc K; Miegoué, Emile; Nguafack, Terence T; Tchoumboué, Joseph; Téguia, Alexis; Théodoropoulos, Georgios

    2017-06-26

    Farm animals are usually suspected to transmit infections to humans. Domestic cavies (Cavia porcellus) are hosts to a variety of pathogens, some of which are zoonotic. Several parasites including the protozoa Giardia spp. and Cryptosporidium spp. may be causative agents of gastrointestinal disorders in domestic cavies and humans. The aim of the study was to investigate the occurrence of potentially zoonotic protozoa as well as any potential zoonotic gastrointestinal parasite in domestic cavies raised under a semi extensive system in the rural areas of Cameroon. Giardia/Cryptosporidium antigens were detected in 12.90% of cavies. Helminthe eggs were found in 1.52% of animals. The prevalence of Paraspidodera uncinata, Heligmosomoides polygyrus (also known as Nematospiroides dubius) and Trichuris sp. was 1% (4/397), 0.3% (1/397), and 0.3% (1/397), respectively. Presence of Giardia/Cryptosporidium was unrelated to the occurrence of diarrhea, as none of the positive samples was from a diarrheic individual. Domestic cavies are hosts of Giardia/Cryptosporidium and appear as potential source of human giardiasis, cryptosporidiosis and infection with H. polygyrus in Cameroon. In keeping with the One Health Initiative, veterinarians and medical doctors should collaborate to address the problem of Giardia and Cryptosporidium infection in cavies and cavy breeders both in Cameroon and other countries with a similar cavy breeding system. Follow-up studies are required to further taxonomically characterize these cavy parasites and to determine their routes of transmission to humans.

  8. Starting from the bench--prevention and control of foodborne and zoonotic diseases.

    PubMed

    Vongkamjan, Kitiya; Wiedmann, Martin

    2015-02-01

    Foodborne diseases are estimated to cause around 50 million disease cases and 3000 deaths a year in the US. Worldwide, food and waterborne diseases are estimated to cause more than 2 million deaths per year. Lab-based research is a key component of efforts to prevent and control foodborne diseases. Over the last two decades, molecular characterization of pathogen isolates has emerged as a key component of foodborne and zoonotic disease prevention and control. Characterization methods have evolved from banding pattern-based subtyping methods to sequenced-based approaches, including full genome sequencing. Molecular subtyping methods not only play a key role for characterizing pathogen transmission and detection of disease outbreaks, but also allow for identification of clonal pathogen groups that show distinct transmission characteristics. Importantly, the data generated from molecular characterization of foodborne pathogens also represent critical inputs for epidemiological and modeling studies. Continued and enhanced collaborations between infectious disease related laboratory sciences and epidemiologists, modelers, and other quantitative scientists will be critical to a One-Health approach that delivers societal benefits, including improved surveillance systems and prevention approaches for zoonotic and foodborne pathogens. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Zoonotic diseases associated with reptiles and amphibians: an update.

    PubMed

    Mitchell, Mark A

    2011-09-01

    Reptiles and amphibians are popular as pets. There are increased concerns among public health officials because of the zoonotic potential associated with these animals. Encounters with reptiles and amphibians are also on the rise in the laboratory setting and with wild animals; in both of these practices, there is also an increased likelihood for exposure to zoonotic pathogens. It is important that veterinarians remain current with the literature as it relates to emerging and reemerging zoonotic diseases attributed to reptiles and amphibians so that they can protect themselves, their staff, and their clients from potential problems.

  10. Influenza surveillance in animals: what is our capacity to detect emerging influenza viruses with zoonotic potential?

    PubMed

    VON Dobschuetz, S; DE Nardi, M; Harris, K A; Munoz, O; Breed, A C; Wieland, B; Dauphin, G; Lubroth, J; Stärk, K D C

    2015-07-01

    A survey of national animal influenza surveillance programmes was conducted to assess the current capacity to detect influenza viruses with zoonotic potential in animals (i.e. those influenza viruses that can be naturally transmitted between animals and humans) at regional and global levels. Information on 587 animal influenza surveillance system components was collected for 99 countries from Chief Veterinary Officers (CVOs) (n = 94) and published literature. Less than 1% (n = 4) of these components were specifically aimed at detecting influenza viruses with pandemic potential in animals (i.e. those influenza viruses that are capable of causing epidemic spread in human populations over large geographical regions or worldwide), which would have zoonotic potential as a prerequisite. Those countries that sought to detect influenza viruses with pandemic potential searched for such viruses exclusively in domestic pigs. This work shows the global need for increasing surveillance that targets potentially zoonotic influenza viruses in relevant animal species.

  11. Zoonotic diseases: health aspects of Canadian geese.

    PubMed

    Dieter, R A; Dieter, R S; Dieter, R A; Gulliver, G

    2001-11-01

    Review zoonotic diseases associated with Canadian geese. Review article: A review of the multiple physical, microbiologic and safety concerns, and methods used in controlling this potential problem. Over the last decade the Canadian goose population (protected by international treaties and protection acts) has increased rapidly such that in many cities they have become a pest rather than an admired wild bird. Their increasing numbers have caused a number of potential healthcare concerns including: physical, bacterial, parasitic, allergic and viral potential problems. The Canadian goose fecal droppings of one per minute have caused falls and the flying geese have caused air traffic accidents. Bacterial concerns, including botulism, salmonella and E. coli have all been reviewed and presented concerns. The viral Newcastle disease may be detected with hemagglutination studies and the Giardia psittaci parasites have been repeatedly found in their droppings. The Cryptosporidium parvum oocytes have been present on stool study. Definite links to human infectious diseases have been difficult to prove. Revision of the current laws and new control programs must be developed.

  12. Biosecurity reference : CFR-listed agent and toxin summaries.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, Natalie Beth

    This reference document provides summary information on the animal, plant, zoonotic, and human pathogens and toxins regulated and categorized by 9 CFR 331 and 7 CFR 121, 'Agricultural Bioterrorism Protection Act of 2002; Possession, Use and Transfer of Biological Agents and Toxins,' and 42 CFR 73, 'Possession, Use, and Transfer of Select Agents and Toxins.' Summary information includes, at a minimum, a description of the agent and its associated symptoms; often additional information is provided on the diagnosis, treatment, geographic distribution, transmission, control and eradication, and impacts on public health.

  13. Zoonotic viruses associated with illegally imported wildlife products

    USGS Publications Warehouse

    Smith, Kristine M.; Anthony, Simon J.; Switzer, William M.; Epstein, Jonathan H.; Seimon, Tracie; Jia, Hongwei; Sanchez, Maria D.; Huynh, Thanh Thao; Galland, G. Gale; Shapiro, Sheryl E.; Sleeman, Jonathan M.; McAloose, Denise; Stuchin, Margot; Amato, George; Kolokotronis, Sergios-Orestis; Lipkin, W. Ian; Karesh, William B.; Daszak, Peter; Marano, Nina

    2012-01-01

    The global trade in wildlife has historically contributed to the emergence and spread of infectious diseases. The United States is the world's largest importer of wildlife and wildlife products, yet minimal pathogen surveillance has precluded assessment of the health risks posed by this practice. This report details the findings of a pilot project to establish surveillance methodology for zoonotic agents in confiscated wildlife products. Initial findings from samples collected at several international airports identified parts originating from nonhuman primate (NHP) and rodent species, including baboon, chimpanzee, mangabey, guenon, green monkey, cane rat and rat. Pathogen screening identified retroviruses (simian foamy virus) and/or herpesviruses (cytomegalovirus and lymphocryptovirus) in the NHP samples. These results are the first demonstration that illegal bushmeat importation into the United States could act as a conduit for pathogen spread, and suggest that implementation of disease surveillance of the wildlife trade will help facilitate prevention of disease emergence.

  14. Genomic Dissection of an Icelandic Epidemic of Respiratory Disease in Horses and Associated Zoonotic Cases

    PubMed Central

    Björnsdóttir, Sigríður; Harris, Simon R.; Svansson, Vilhjálmur; Gunnarsson, Eggert; Sigurðardóttir, Ólöf G.; Gammeljord, Kristina; Steward, Karen F.; Newton, J. Richard; Robinson, Carl; Charbonneau, Amelia R. L.

    2017-01-01

    ABSTRACT Iceland is free of the major infectious diseases of horses. However, in 2010 an epidemic of respiratory disease of unknown cause spread through the country’s native horse population of 77,000. Microbiological investigations ruled out known viral agents but identified the opportunistic pathogen Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) in diseased animals. We sequenced the genomes of 257 isolates of S. zooepidemicus to differentiate epidemic from endemic strains. We found that although multiple endemic clones of S. zooepidemicus were present, one particular clone, sequence type 209 (ST209), was likely to have been responsible for the epidemic. Concurrent with the epidemic, ST209 was also recovered from a human case of septicemia, highlighting the pathogenic potential of this strain. Epidemiological investigation revealed that the incursion of this strain into one training yard during February 2010 provided a nidus for the infection of multiple horses that then transmitted the strain to farms throughout Iceland. This study represents the first time that whole-genome sequencing has been used to investigate an epidemic on a national scale to identify the likely causative agent and the link to an associated zoonotic infection. Our data highlight the importance of national biosecurity to protect vulnerable populations of animals and also demonstrate the potential impact of S. zooepidemicus transmission to other animals, including humans. PMID:28765219

  15. Evaluation of oxfendazole in the treatment of zoonotic Onchocerca lupi infection in dogs

    PubMed Central

    Colella, Vito; Maia, Carla; Pereira, André; Gonçalves, Nuno; Caruso, Marta; Martin, Coralie; Cardoso, Luís; Campino, Lenea; Scandale, Ivan

    2018-01-01

    The genus Onchocerca encompasses parasitic nematodes including Onchocerca volvulus, causative agent of river blindness in humans, and the zoonotic Onchocerca lupi infecting dogs and cats. In dogs, O. lupi adult worms cause ocular lesions of various degrees while humans may bear the brunt of zoonotic onchocercosis with patients requiring neurosurgical intervention because of central nervous system localization of nematodes. Though the zoonotic potential of O. lupi has been well recognized from human cases in Europe, the United States and the Middle East, a proper therapy for curing this parasitic infection in dogs is lacking. To evaluate the efficacy of oxfendazole, 11 out of the 21 client-owned dogs (21/123; 17.1%) positive for skin-dwelling O. lupi microfilariae (mfs), were enrolled in the efficacy study and were treated with oxfendazole (50 mg/kg) per OS once a day for 5 (G2) or 10 (G3) consecutive days or were left untreated (G1). The efficacy of oxfendazole in the reduction of O. lupi mfs was evaluated by microfilarial count and by assessing the percentage of mfs reduction and mean microfilaricidal efficacy, whereas the efficacy in the reduction of ocular lesions was evaluated by ultrasound imaging. All dogs where subjected to follow-ups at 30 (D30), 90 (D90) and 180 (D180) days post-treatment. The percentage of reduction of mfs was 78% for G2 and 12.5% for G3 at D180. The mean microfilaricidal efficacy of oxfendazole in the treatment of canine onchocercosis by O. lupi at D30, D90 and D180 was 41%, 81% and 90%, in G2 and 40%, 65% and 70%, in G3, respectively. Retrobulbar lesions did not reduce from D0 to D180 in control group (dogs in G1), whereas all treated dogs (in G2 and G3) had slightly decreased ocular lesions. Percentage of reduction of ocular lesions by ultrasound examination was 50% and 47.5% in G2 and G3 at D180, respectively. Despite the decrease in ocular lesions in all treated dogs (G2 and G3), oxfendazole was ineffective in reducing ocular lesions

  16. Zoonotic aspects of vector-borne infections.

    PubMed

    Failloux, A-B; Moutailler, S

    2015-04-01

    Vector-borne diseases are principally zoonotic diseases transmitted to humans by animals. Pathogens such as bacteria, parasites and viruses are primarily maintained within an enzootic cycle between populations of non-human primates or other mammals and largely non-anthropophilic vectors. This 'wild' cycle sometimes spills over in the form of occasional infections of humans and domestic animals. Lifestyle changes, incursions by humans into natural habitats and changes in agropastoral practices create opportunities that make the borders between wildlife and humans more permeable. Some vector-borne diseases have dispensed with the need for amplification in wild or domestic animals and they can now be directly transmitted to humans. This applies to some viruses (dengue and chikungunya) that have caused major epidemics. Bacteria of the genus Bartonella have reduced their transmission cycle to the minimum, with humans acting as reservoir, amplifier and disseminator. The design of control strategies for vector-borne diseases should be guided by research into emergence mechanisms in order to understand how a wild cycle can produce a pathogen that goes on to cause devastating urban epidemics.

  17. Fascioliasis: An Ongoing Zoonotic Trematode Infection.

    PubMed

    Nyindo, Mramba; Lukambagire, Abdul-Hamid

    2015-01-01

    Zoonotic trematode infections are an area of the neglected tropical diseases that have become of major interest to global and public health due to their associated morbidity. Human fascioliasis is a trematode zoonosis of interest in public health. It affects approximately 50 million people worldwide and over 180 million are at risk of infection in both developed and underdeveloped countries. The one health paradigm is an area that seeks to address the problem of zoonotic infections through a comprehensive and sustainable approach. This review attempts to address the major challenges in managing human and animal fascioliasis with valuable insights gained from the one health paradigm to global health and multidisciplinary integration.

  18. Zoonotic Chlamydiaceae Species Associated with Trachoma, Nepal

    PubMed Central

    Rothschild, James; Ruettger, Anke; Kandel, Ram Prasad; Sachse, Konrad

    2013-01-01

    Trachoma is the leading cause of preventable blindness. Commercial assays do not discriminate among all Chlamydiaceae species that might be involved in trachoma. We investigated whether a commercial Micro-ArrayTube could discriminate Chlamydiaceae species in DNA extracted directly from conjunctival samples from 101 trachoma patients in Nepal. To evaluate organism viability, we extracted RNA, reverse transcribed it, and subjected it to quantitative real-time PCR. We found that 71 (70.3%) villagers were infected. ArrayTube sensitivity was 91.7% and specificity was 100% compared with that of real-time PCR. Concordance between genotypes detected by microarray and ompA genotyping was 100%. Species distribution included 54 (76%) single infections with Chlamydia trachomatis, C. psittaci, C. suis, or C. pecorum, and 17 (24%) mixed infections that includied C. pneumoniae. Ocular infections were caused by 5 Chlamydiaceae species. Additional studies of trachoma pathogenesis involving Chlamydiaceae species other than C. trachomatis and their zoonotic origins are needed. PMID:24274654

  19. Host and viral traits predict zoonotic spillover from mammals.

    PubMed

    Olival, Kevin J; Hosseini, Parviez R; Zambrana-Torrelio, Carlos; Ross, Noam; Bogich, Tiffany L; Daszak, Peter

    2017-06-29

    The majority of human emerging infectious diseases are zoonotic, with viruses that originate in wild mammals of particular concern (for example, HIV, Ebola and SARS). Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs. However, few analytical tools exist to identify which host species are likely to harbour the next human virus, or which viruses can cross species boundaries. Here we conduct a comprehensive analysis of mammalian host-virus relationships and show that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy and human population within a species range-which may reflect human-wildlife contact. We demonstrate that bats harbour a significantly higher proportion of zoonotic viruses than all other mammalian orders. We also identify the taxa and geographic regions with the largest estimated number of 'missing viruses' and 'missing zoonoses' and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people.

  20. Beyond bushmeat: Animal contact, injury, and zoonotic disease risk in western Uganda

    PubMed Central

    Paige, Sarah B.; Frost, Simon D.W.; Gibson, Mhairi A.; Holland, James; Shankar, Anupama; Switzer, William M.; Ting, Nelson

    2014-01-01

    Zoonotic pathogens cause an estimated 70% of emerging and re-emerging infectious diseases in humans. In sub-Saharan Africa, bushmeat hunting and butchering is considered the primary risk factor for human-wildlife contact and zoonotic disease transmission, particularly for the transmission of simian retroviruses. However, hunting is only one of many activities in sub-Saharan Africa that bring people and wildlife into contact. Here, we examine human-animal interaction in western Uganda, identifying patterns of injuries from animals and contact with nonhuman primates. Additionally, we identify individual-level risk factors associated with contact. Nearly 20% (246/ 1,240) of participants reported either being injured by an animal or having contact with a primate over their lifetimes. The majority (51.7%) of injuries were dog bites that healed with no long term medical consequences. The majority (76.8%) of 125 total primate contacts involved touching a carcass; however, butchering (20%), hunting (10%), and touching a live primate (10%) were also reported. Red colobus (Piliocolobus rufomitratus tephrosceles) accounted for most primate contact events. Multivariate logistic regression indicated that men who live adjacent to forest fragments are at elevated risk of animal contact and specifically primate contact. Our results provide a useful comparison to West and Central Africa where “bushmeat hunting” is the predominant paradigm for human-wildlife contact and zoonotic disease transmission. PMID:24845574

  1. Beyond bushmeat: animal contact, injury, and zoonotic disease risk in Western Uganda.

    PubMed

    Paige, Sarah B; Frost, Simon D W; Gibson, Mhairi A; Jones, James Holland; Shankar, Anupama; Switzer, William M; Ting, Nelson; Goldberg, Tony L

    2014-12-01

    Zoonotic pathogens cause an estimated 70% of emerging and re-emerging infectious diseases in humans. In sub-Saharan Africa, bushmeat hunting and butchering is considered the primary risk factor for human-wildlife contact and zoonotic disease transmission, particularly for the transmission of simian retroviruses. However, hunting is only one of many activities in sub-Saharan Africa that bring people and wildlife into contact. Here, we examine human-animal interaction in western Uganda, identifying patterns of injuries from animals and contact with nonhuman primates. Additionally, we identify individual-level risk factors associated with contact. Nearly 20% (246/1,240) of participants reported either being injured by an animal or having contact with a primate over their lifetimes. The majority (51.7%) of injuries were dog bites that healed with no long-term medical consequences. The majority (76.8%) of 125 total primate contacts involved touching a carcass; however, butchering (20%), hunting (10%), and touching a live primate (10%) were also reported. Red colobus (Piliocolobus rufomitratus tephrosceles) accounted for most primate contact events. Multivariate logistic regression indicated that men who live adjacent to forest fragments are at elevated risk of animal contact and specifically primate contact. Our results provide a useful comparison to West and Central Africa where "bushmeat hunting" is the predominant paradigm for human-wildlife contact and zoonotic disease transmission.

  2. Human Pulmonary Infection by the Zoonotic Metastrongylus salmi Nematode. The First Reported Case in the Americas.

    PubMed

    Calvopina, Manuel; Caballero, Henry; Morita, Tatsushi; Korenaga, Masataka

    2016-10-05

    Pulmonary metastrongylosis, a zoonotic disease found primarily in pigs, is caused by eight different species of the cosmopolitan nematode Metastrongylus genus. To date, only four human cases have been reported, all from Europe. Herein, a severe case of pulmonary infection caused by Metastrongylus salmi in an Ecuadorian man, with successful treatment with ivermectin, is described. © The American Society of Tropical Medicine and Hygiene.

  3. Bat flight and zoonotic viruses

    USGS Publications Warehouse

    O'Shea, Thomas J.; Cryan, Paul M.; Cunningham, Andrew A.; Fooks, Anthony R.; Hayman, David T.S.; Luis, Angela D.; Peel, Alison J.; Plowright, Raina K.; Wood, James L.N.

    2014-01-01

    Bats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. We hypothesize that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals. On an evolutionary scale, this host–virus interaction might have resulted in the large diversity of zoonotic viruses in bats, possibly through bat viruses adapting to be more tolerant of the fever response and less virulent to their natural hosts.

  4. Seroprevalence of major bovine-associated zoonotic infectious diseases in the Lao People's Democratic Republic.

    PubMed

    Vongxay, Khamphouth; Conlan, James V; Khounsy, Syseng; Dorny, Pierre; Fenwick, Stanley; Thompson, R C Andrew; Blacksell, Stuart D

    2012-10-01

    Bovine-associated zoonotic infectious diseases pose a significant threat to human health in the Lao People's Democratic Republic (Lao PDR). In all, 905 cattle and buffalo serum samples collected in northern Lao PDR in 2006 were used to determine seroprevalence of five major bovine zoonotic infectious diseases that included Taenia saginata cysticercosis, bovine tuberculosis, Q-fever, bovine brucellosis, and bovine leptospirosis. Five enzyme-linked immunosorbent assays (ELISAs) were used to test for the presence of antibodies to the diseases, except Taenia saginata, for which we tested for the presence of Taenia metacestode circulating antigens. The overall highest prevalence was for T. saginata (46.4%), with lower prevalence for Q-fever (4%), leptospirosis (3%), tuberculosis (1%), and brucellosis (0.2%). Although there were no significant differences in the proportion of seroprevalence between sex and age of the animals sampled, there were significant differences between the provincial distributions. Further studies are required to determine the seroprevalence of these infections in other locations in Lao PDR, as well as other animal species including humans, in order to develop effective prevention and control strategies. This is the first study to investigate the prevalence of bovine zoonotic infectious agents in the Lao PDR. Positivity was demonstrated for all diseases investigated, with the highest prevalence for T. saginata antigen and Coxiella burnetti antibodies. For T. saginata, there were significant differences in the provincial distribution. Approximately 16% seroprevalence of Coxiella burnetti was noted in Xayabuly Province; however, there are no clear reasons why this was the case, and further studies are required to determine risk factors associated with this observation.

  5. Fascioliasis: An Ongoing Zoonotic Trematode Infection

    PubMed Central

    Nyindo, Mramba; Lukambagire, Abdul-Hamid

    2015-01-01

    Zoonotic trematode infections are an area of the neglected tropical diseases that have become of major interest to global and public health due to their associated morbidity. Human fascioliasis is a trematode zoonosis of interest in public health. It affects approximately 50 million people worldwide and over 180 million are at risk of infection in both developed and underdeveloped countries. The one health paradigm is an area that seeks to address the problem of zoonotic infections through a comprehensive and sustainable approach. This review attempts to address the major challenges in managing human and animal fascioliasis with valuable insights gained from the one health paradigm to global health and multidisciplinary integration. PMID:26417603

  6. Zoonotic Viruses Associated with Illegally Imported Wildlife Products

    PubMed Central

    Switzer, William M.; Epstein, Jonathan H.; Seimon, Tracie; Jia, Hongwei; Sanchez, Maria D.; Huynh, Thanh Thao; Galland, G. Gale; Shapiro, Sheryl E.; Sleeman, Jonathan M.; McAloose, Denise; Stuchin, Margot; Amato, George; Kolokotronis, Sergios-Orestis; Lipkin, W. Ian; Karesh, William B.; Daszak, Peter; Marano, Nina

    2012-01-01

    The global trade in wildlife has historically contributed to the emergence and spread of infectious diseases. The United States is the world's largest importer of wildlife and wildlife products, yet minimal pathogen surveillance has precluded assessment of the health risks posed by this practice. This report details the findings of a pilot project to establish surveillance methodology for zoonotic agents in confiscated wildlife products. Initial findings from samples collected at several international airports identified parts originating from nonhuman primate (NHP) and rodent species, including baboon, chimpanzee, mangabey, guenon, green monkey, cane rat and rat. Pathogen screening identified retroviruses (simian foamy virus) and/or herpesviruses (cytomegalovirus and lymphocryptovirus) in the NHP samples. These results are the first demonstration that illegal bushmeat importation into the United States could act as a conduit for pathogen spread, and suggest that implementation of disease surveillance of the wildlife trade will help facilitate prevention of disease emergence. PMID:22253731

  7. Host and viral traits predict zoonotic spillover from mammals

    PubMed Central

    Olival, Kevin J.; Hosseini, Parviez R.; Zambrana-Torrelio, Carlos; Ross, Noam; Bogich, Tiffany L.; Daszak, Peter

    2017-01-01

    The majority of human emerging infectious diseases (EIDs) are zoonotic, with viruses originating in wild mammals of particular concern (e.g. HIV, Ebola, SARS)1–3. Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs4. However, few analytical tools exist to identify which host species likely harbor the next human virus, or which viruses can cross species boundaries5–7. Here we conduct the most comprehensive analysis yet of mammalian host-virus relationships and show that both the total number of viruses that infect a given species, and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy, and human population within a species range – which may reflect human-wildlife contact. We demonstrate for the first time that bats harbor a significantly higher proportion of zoonotic viruses than all other mammalian orders. We identify the taxa and geographic regions with the largest estimated number of ‘missing viruses’ and ‘missing zoonoses’ and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people. PMID:28636590

  8. Bat Predation by Cercopithecus Monkeys: Implications for Zoonotic Disease Transmission.

    PubMed

    Tapanes, Elizabeth; Detwiler, Kate M; Cords, Marina

    2016-06-01

    The relationship between bats and primates, which may contribute to zoonotic disease transmission, is poorly documented. We provide the first behavioral accounts of predation on bats by Cercopithecus monkeys, both of which are known to harbor zoonotic disease. We witnessed 13 bat predation events over 6.5 years in two forests in Kenya and Tanzania. Monkeys sometimes had prolonged contact with the bat carcass, consuming it entirely. All predation events occurred in forest-edge or plantation habitat. Predator-prey relations between bats and primates are little considered by disease ecologists, but may contribute to transmission of zoonotic disease, including Ebolavirus.

  9. Bat Flight and Zoonotic Viruses

    PubMed Central

    Cryan, Paul M.; Cunningham, Andrew A.; Fooks, Anthony R.; Hayman, David T.S.; Luis, Angela D.; Peel, Alison J.; Plowright, Raina K.; Wood, James L.N.

    2014-01-01

    Bats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. We hypothesize that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals. On an evolutionary scale, this host–virus interaction might have resulted in the large diversity of zoonotic viruses in bats, possibly through bat viruses adapting to be more tolerant of the fever response and less virulent to their natural hosts. PMID:24750692

  10. Overview of Zoonotic Diseases in Turkey: The One Health Concept and Future Threats.

    PubMed

    İnci, Abdullah; Doğanay, Mehmet; Özdarendeli, Aykut; Düzlü, Önder; Yıldırım, Alparslan

    2018-03-01

    Zoonotic infections are globally important diseases and lead to huge economic losses in both low- and middle-income and high-income countries. Global warming, environmental and ecological changes, illegal movement of animals and humans, regional civil wars, and poverty are predisposing factors for the emergence of zoonotic infections and their distribution worldwide; they are also a big threat for the future. In addition, environmental pollution and antimicrobial resistance are immense serious threats and dangers to prevent and control zoonotic infections. The natural location of Turkey allows many emerged or re-emerged infections with zoonotic characteristics by animal movements, such as bird immigrations, and by human movements due to civil wars as seen with regional refugees. Numerous zoonotic diseases, including 37 bacterial, 13 fungal, 29 viral, 28 parasitic (3 trematodes, 7 cestodes, 10 nematodes, and 8 protozoan), and totally 107 infections, have been reported from Turkey to date. Additionally, many ectoparasitic zoonoses within 15 different arthropod groups and one leech infestation have been reported from Turkey to date. The "One Health" initiative is particularly relevant for developing strategies to combat zoonotic diseases. In this article, we review the occurrence of zoonotic diseases in man and animals in Turkey in the light of the "One Health" perspective.

  11. Host-Nonspecific Iron Acquisition Systems and Virulence in the Zoonotic Serovar of Vibrio vulnificus

    PubMed Central

    Pajuelo, David; Lee, Chung-Te; Roig, Francisco J.; Lemos, Manuel L.; Hor, Lien-I

    2014-01-01

    The zoonotic serovar of Vibrio vulnificus (known as biotype 2 serovar E) is the etiological agent of human and fish vibriosis. The aim of the present work was to discover the role of the vulnibactin- and hemin-dependent iron acquisition systems in the pathogenicity of this zoonotic serovar under the hypothesis that both are host-nonspecific virulence factors. To this end, we selected three genes for three outer membrane receptors (vuuA, a receptor for ferric vulnibactin, and hupA and hutR, two hemin receptors), obtained single and multiple mutants as well as complemented strains, and tested them in a series of in vitro and in vivo assays, using eels and mice as animal models. The overall results confirm that hupA and vuuA, but not hutR, are host-nonspecific virulence genes and suggest that a third undescribed host-specific plasmid-encoded system could also be used by the zoonotic serovar in fish. hupA and vuuA were expressed in the internal organs of the animals in the first 24 h of infection, suggesting that they may be needed to achieve the population size required to trigger fatal septicemia. vuuA and hupA were sequenced in strains representative of the genetic diversity of this species, and their phylogenies were reconstructed by multilocus sequence analysis of selected housekeeping and virulence genes as a reference. Given the overall results, we suggest that both genes might form part of the core genes essential not only for disease development but also for the survival of this species in its natural reservoir, the aquatic environment. PMID:24478087

  12. Human and Avian Extraintestinal Pathogenic Escherichia coli: Infections, Zoonotic Risks, and Antibiotic Resistance Trends

    PubMed Central

    2013-01-01

    Abstract Extraintestinal pathogenic Escherichia coli (ExPEC) constitutes ongoing health concerns for women, newborns, elderly, and immunocompromised individuals due to increased numbers of urinary tract infections (UTIs), newborn meningitis, abdominal sepsis, and septicemia. E. coli remains the leading cause of UTIs, with recent investigations reporting the emergence of E. coli as the predominant cause of nosocomial and neonatal sepsis infections. This shift from the traditional Gram-positive bacterial causes of nosocomial and neonatal sepsis infections could be attributed to the use of intrapartum chemoprophylaxis against Gram-positive bacteria and the appearance of antibiotic (ATB) resistance in E. coli. While ExPEC strains cause significant healthcare concerns, these bacteria also infect chickens and cause the poultry industry economic losses due to costs of containment, mortality, and disposal of carcasses. To circumvent ExPEC-related costs, ATBs are commonly used in the poultry industry to prevent/treat microbial infections and promote growth and performance. In an unfortunate linkage, chicken products are suspected to be a source of foodborne ExPEC infections and ATB resistance in humans. Therefore, the emergence of multidrug resistance (MDR) (resistance to three or more classes of antimicrobial agents) among avian E. coli has created major economic and health concerns, affecting both human healthcare and poultry industries. Increased numbers of immunocompromised individuals, including the elderly, coupled with MDR among ExPEC strains, will continue to challenge the treatment of ExPEC infections and likely lead to increased treatment costs. With ongoing complications due to emerging ATB resistance, novel treatment strategies are necessary to control ExPEC infections. Recognizing and treating the zoonotic risk posed by ExPEC would greatly enhance food safety and positively impact human health. PMID:23962019

  13. Zoonotic Malaria – Global Overview and Research and Policy Needs

    PubMed Central

    Ramasamy, Ranjan

    2014-01-01

    The four main Plasmodium species that cause human malaria, Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale, are transmitted between humans by mosquito vectors belonging to the genus Anopheles. It has recently become evident that Plasmodium knowlesi, a parasite that typically infects forest macaque monkeys, can be transmitted by anophelines to cause malaria in humans in Southeast Asia. Plasmodium knowlesi infections are frequently misdiagnosed microscopically as P. malariae. Direct human to human transmission of P. knowlesi by anophelines has not yet been established to occur in nature. Knowlesi malaria must therefore be presently considered a zoonotic disease. Polymerase chain reaction is now the definitive method for differentiating P. knowlesi from P. malariae and other human malaria parasites. The origin of P. falciparum and P. vivax in African apes are examples of ancient zoonoses that may be continuing at the present time with at least P. vivax, and possibly P. malariae and P. ovale. Other non-human primate malaria species, e.g., Plasmodium cynomolgi in Southeast Asia and Plasmodium brasilianum and Plasmodium simium in South America, can be transmitted to humans by mosquito vectors further emphasizing the potential for continuing zoonoses. The potential for zoonosis is influenced by human habitation and behavior as well as the adaptive capabilities of parasites and vectors. There is insufficient knowledge of the bionomics of Anopheles vector populations relevant to the cross-species transfer of malaria parasites and the real extent of malaria zoonoses. Appropriate strategies, based on more research, need to be developed for the prevention, diagnosis, and treatment of zoonotic malaria. PMID:25184118

  14. Zoonotic Focus of Plague, Algeria

    PubMed Central

    Bitam, Idir; Baziz, Belkacem; Rolain, Jean-Marc; Belkaid, Miloud

    2006-01-01

    After an outbreak of human plague, 95 Xenopsylla cheopis fleas from Algeria were tested for Yersinia pestis with PCR methods. Nine fleas were definitively confirmed to be infected with Y. pestis biovar orientalis. Our results demonstrate the persistence of a zoonotic focus of Y. pestis in Algeria. PMID:17326957

  15. Early detection of emerging zoonotic diseases with animal morbidity and mortality monitoring.

    PubMed

    Bisson, Isabelle-Anne; Ssebide, Benard J; Marra, Peter P

    2015-03-01

    Diseases transmitted between animals and people have made up more than 50% of emerging infectious diseases in humans over the last 60 years and have continued to arise in recent months. Yet, public health and animal disease surveillance programs continue to operate independently. Here, we assessed whether recent emerging zoonotic pathogens (n = 143) are known to cause morbidity or mortality in their animal host and if so, whether they were first detected with an animal morbidity/mortality event. We show that although sick or dead animals are often associated with these pathogens (52%), only 9% were first detected from an animal morbidity or mortality event prior to or concurrent with signs of illness in humans. We propose that an animal morbidity and mortality reporting program will improve detection and should be an essential component of early warning systems for zoonotic diseases. With the use of widespread low-cost technology, such a program could engage both the public and professionals and be easily tested and further incorporated as part of surveillance efforts by public health officials.

  16. MARTX Toxin in the Zoonotic Serovar of Vibrio vulnificus Triggers an Early Cytokine Storm in Mice

    PubMed Central

    Murciano, Celia; Lee, Chung-Te; Fernández-Bravo, Ana; Hsieh, Tsung-Han; Fouz, Belén; Hor, Lien-I; Amaro, Carmen

    2017-01-01

    Vibrio vulnificus biotype 2-serovar E is a zoonotic clonal complex that can cause death by sepsis in humans and fish. Unlike other biotypes, Bt2 produces a unique type of MARTXVv (Multifunctional-Autoprocessive-Repeats-in-Toxin; RtxA13), which is encoded by a gene duplicated in the pVvBt2 plasmid and chromosome II. In this work, we analyzed the activity of this toxin and its role in human sepsis by performing in vitro, ex vivo, and in vivo assays. First, we demonstrated that the ACD domain, present exclusively in this toxin variant, effectively has an actin-cross-linking activity. Second, we determined that the whole toxin caused death of human endotheliocytes and monocytes by lysis and apoptosis, respectively. Finally, we tested the hypothesis that RtxA13 contributes to human death caused by this zoonotic serovar by triggering an early cytokine storm in blood. To this end, we used a Bt2-SerE strain (R99) together with its rtxA13 deficient mutant, and a Bt1 strain (YJ016) producing RtxA11 (the most studied MARTXVv) together with its rtxA11 deficient mutant, as controls. Our results showed that RtxA13 was essential for virulence, as R99ΔΔrtxA13 was completely avirulent in our murine model of infection, and that R99, but not strain YJ016, induced an early, strong and dysregulated immune response involving the up-regulation of a high number of genes. This dysregulated immune response was directly linked to RtxA13. Based on these results and those obtained ex vivo (human blood), we propose a model of infection for the zoonotic serovar of V. vulnificus, in which RtxA13 would act as a sepsis-inducing toxin. PMID:28775962

  17. Senna leaf extracts induced Ca(+2) homeostasis in a zoonotic tapeworm Hymenolepis diminuta.

    PubMed

    Roy, Saptarshi; Kundu, Suman; Lyndem, Larisha M

    2016-10-01

    Context Plants and plant products have been used in traditional medicine as anthelmintic agents in human and veterinary medicine. Three species of Senna plant, S. alata (L), S. alexandrina (M) and S. occidentalis (L.) Link (Fabaceae) have been shown to have a vermicidal/vermifugal effect on a zoonotic tapeworm Hymenolepis diminuta (Rudolphi) (Cyclophyllidean). Objective The present study validates the mode of action of these Senna plants on the parasite. The alcoholic leaf extract was determined to obtain information on the intracellular free calcium concentration level. Materials and methods Hymenolepis diminuta was maintained in Sprague-Dawley rat model for 2 months. Live parasites collected from infected rat intestine were exposed to 40 mg/mL concentration of each plant extracts prepared in phosphate buffer saline at 37 °C, till parasite gets paralyzed. The rate of efflux of calcium from the parasite tissue to the medium and the level of intracellular Ca(2+ )concentration were determined by an atomic absorption spectroscopy. Results This study revealed that exposure of the worms to the plant extract leads to disruption in intracellular calcium homeostasis. A significant increase (44.6% and 25%) of efflux in Ca(2+ )from the tissue to the incubated medium was observed. Senna alata showed high rate of efflux (5.32 mg/g) followed by S. alexandria and S. occidentalis (both 4.6 mg/g) compared with control (3.68 mg/g). Discussion and conclusion These results suggest that leaf extracts caused membrane permeability to Ca(2+ )after vacuolization of the tegument under stress and the extracts may contain compound that can be used as a chemotherapeutic agent.

  18. Genotype-dependent Molecular Evolution of Sheep Bovine Spongiform Encephalopathy (BSE) Prions in Vitro Affects Their Zoonotic Potential*

    PubMed Central

    Krejciova, Zuzana; Barria, Marcelo A.; Jones, Michael; Ironside, James W.; Jeffrey, Martin; González, Lorenzo; Head, Mark W.

    2014-01-01

    Prion diseases are rare fatal neurological conditions of humans and animals, one of which (variant Creutzfeldt-Jakob disease) is known to be a zoonotic form of the cattle disease bovine spongiform encephalopathy (BSE). What makes one animal prion disease zoonotic and others not is poorly understood, but it appears to involve compatibility between the prion strain and the host prion protein sequence. Concerns have been raised that the United Kingdom sheep flock may have been exposed to BSE early in the cattle BSE epidemic and that serial BSE transmission in sheep might have resulted in adaptation of the agent, which may have come to phenotypically resemble scrapie while maintaining its pathogenicity for humans. We have modeled this scenario in vitro. Extrapolation from our results suggests that if BSE were to infect sheep in the field it may, with time and in some sheep genotypes, become scrapie-like at the molecular level. However, the results also suggest that if BSE in sheep were to come to resemble scrapie it would lose its ability to affect humans. PMID:25100723

  19. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special?

    PubMed Central

    Luis, Angela D.; Hayman, David T. S.; O'Shea, Thomas J.; Cryan, Paul M.; Gilbert, Amy T.; Pulliam, Juliet R. C.; Mills, James N.; Timonin, Mary E.; Willis, Craig K. R.; Cunningham, Andrew A.; Fooks, Anthony R.; Rupprecht, Charles E.; Wood, James L. N.; Webb, Colleen T.

    2013-01-01

    Bats are the natural reservoirs of a number of high-impact viral zoonoses. We present a quantitative analysis to address the hypothesis that bats are unique in their propensity to host zoonotic viruses based on a comparison with rodents, another important host order. We found that bats indeed host more zoonotic viruses per species than rodents, and we identified life-history and ecological factors that promote zoonotic viral richness. More zoonotic viruses are hosted by species whose distributions overlap with a greater number of other species in the same taxonomic order (sympatry). Specifically in bats, there was evidence for increased zoonotic viral richness in species with smaller litters (one young), greater longevity and more litters per year. Furthermore, our results point to a new hypothesis to explain in part why bats host more zoonotic viruses per species: the stronger effect of sympatry in bats and more viruses shared between bat species suggests that interspecific transmission is more prevalent among bats than among rodents. Although bats host more zoonotic viruses per species, the total number of zoonotic viruses identified in bats (61) was lower than in rodents (68), a result of there being approximately twice the number of rodent species as bat species. Therefore, rodents should still be a serious concern as reservoirs of emerging viruses. These findings shed light on disease emergence and perpetuation mechanisms and may help lead to a predictive framework for identifying future emerging infectious virus reservoirs. PMID:23378666

  20. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special?

    USGS Publications Warehouse

    Luis, Angela D.; Hayman, David T.S.; O'Shea, Thomas J.; Cryan, Paul M.; Gilbert, Amy T.; Pulliam, Juliet R.C.; Mills, James N.; Timonin, Mary E.; Willis, Craig K.R.; Cunningham, Andrew A.; Fooks, Anthony R.; Rupprecht, Charles E.; Wood, James L.N.; Webb, Colleen T.

    2013-01-01

    Bats are the natural reservoirs of a number of high-impact viral zoonoses. We present a quantitative analysis to address the hypothesis that bats are unique in their propensity to host zoonotic viruses based on a comparison with rodents, another important host order. We found that bats indeed host more zoonotic viruses per species than rodents, and we identified life-history and ecological factors that promote zoonotic viral richness. More zoonotic viruses are hosted by species whose distributions overlap with a greater number of other species in the same taxonomic order (sympatry). Specifically in bats, there was evidence for increased zoonotic viral richness in species with smaller litters (one young), greater longevity and more litters per year. Furthermore, our results point to a new hypothesis to explain in part why bats host more zoonotic viruses per species: the stronger effect of sympatry in bats and more viruses shared between bat species suggests that interspecific transmission is more prevalent among bats than among rodents. Although bats host more zoonotic viruses per species, the total number of zoonotic viruses identified in bats (61) was lower than in rodents (68), a result of there being approximately twice the number of rodent species as bat species. Therefore, rodents should still be a serious concern as reservoirs of emerging viruses. These findings shed light on disease emergence and perpetuation mechanisms and may help lead to a predictive framework for identifying future emerging infectious virus reservoirs.

  1. Detection of Zoonotic Pathogens and Characterization of Novel Viruses Carried by Commensal Rattus norvegicus in New York City

    PubMed Central

    Bhat, Meera; Firth, Matthew A.; Williams, Simon H.; Frye, Matthew J.; Simmonds, Peter; Conte, Juliette M.; Ng, James; Garcia, Joel; Bhuva, Nishit P.; Lee, Bohyun; Che, Xiaoyu; Quan, Phenix-Lan; Lipkin, W. Ian

    2014-01-01

    ABSTRACT Norway rats (Rattus norvegicus) are globally distributed and concentrate in urban environments, where they live and feed in closer proximity to human populations than most other mammals. Despite the potential role of rats as reservoirs of zoonotic diseases, the microbial diversity present in urban rat populations remains unexplored. In this study, we used targeted molecular assays to detect known bacterial, viral, and protozoan human pathogens and unbiased high-throughput sequencing to identify novel viruses related to agents of human disease in commensal Norway rats in New York City. We found that these rats are infected with bacterial pathogens known to cause acute or mild gastroenteritis in people, including atypical enteropathogenic Escherichia coli, Clostridium difficile, and Salmonella enterica, as well as infectious agents that have been associated with undifferentiated febrile illnesses, including Bartonella spp., Streptobacillus moniliformis, Leptospira interrogans, and Seoul hantavirus. We also identified a wide range of known and novel viruses from groups that contain important human pathogens, including sapoviruses, cardioviruses, kobuviruses, parechoviruses, rotaviruses, and hepaciviruses. The two novel hepaciviruses discovered in this study replicate in the liver of Norway rats and may have utility in establishing a small animal model of human hepatitis C virus infection. The results of this study demonstrate the diversity of microbes carried by commensal rodent species and highlight the need for improved pathogen surveillance and disease monitoring in urban environments. PMID:25316698

  2. Molecular Identification of Zoonotic Tissue-Invasive Tapeworm Larvae Other than Taenia solium in Suspected Human Cysticercosis Cases.

    PubMed

    Tappe, Dennis; Berkholz, Jörg; Mahlke, Uwe; Lobeck, Hartmut; Nagel, Thomas; Haeupler, Alexandra; Muntau, Birgit; Racz, Paul; Poppert, Sven

    2016-01-01

    Rarely, zoonotic Taenia species other than Taenia solium cause human cysticercosis. The larval stages are morphologically often indistinguishable. We therefore investigated 12 samples of suspected human cysticercosis cases at the molecular level and surprisingly identified one Taenia crassiceps and one Taenia serialis (coenurosis) infection, which were caused by tapeworm larvae normally infecting rodents and sheep via eggs released from foxes and dogs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. ZOONOTIC PARASITES, OUR ENVIROMENT AND CHANGE

    USDA-ARS?s Scientific Manuscript database

    Environmental changes arising from nature and human activity are affecting patterns for the occurrence and significance of many infectious diseases, including zoonotic parasites, which are those naturally transmitted between domestic animals or wildlife and people. As these changes continue, and pe...

  4. Prevention and control of fish-borne zoonotic trematodes in fish nurseries, Vietnam.

    PubMed

    Hedegaard Clausen, Jesper; Madsen, Henry; Murrell, K Darwin; Van, Phan Thi; Thu, Ha Nguyen Thi; Do, Dung Trung; Nguyen Thi, Lan Anh; Nguyen Manh, Hung; Dalsgaard, Anders

    2012-09-01

    Worldwide, >18 million persons were infected with fish-borne zoonotic trematodes in 2002. To evaluate the effectiveness of interventions for reducing prevalence and intensity of fish-borne zoonotic trematode infections in juvenile fish, we compared transmission rates at nurseries in the Red River Delta, northern Vietnam. Rates were significantly lower for nurseries that reduced snail populations and trematode egg contamination in ponds than for nurseries that did not. These interventions can be used in the development of programs for sustained control of zoonotic trematodes in farmed fish.

  5. Zoonotic viral diseases and the frontier of early diagnosis, control and prevention.

    PubMed

    Heeney, J L

    2006-11-01

    Public awareness of the human health risks of zoonotic infections has grown in recent years. Currently, concern of H5N1 flu transmission from migratory bird populations has increased with foci of fatal human cases. This comes on the heels of other major zoonotic viral epidemics in the last decade. These include other acute emerging or re-emerging viral diseases such as severe acute respiratory syndrome (SARS), West-Nile virus, Ebola virus, monkeypox, as well as the more inapparent insidious slow viral and prion diseases. Virus infections with zoonotic potential can become serious killers once they are able to establish the necessary adaptations for efficient human-to-human transmission under circumstances sufficient to reach epidemic proportions. The monitoring and early diagnosis of these potential risks are overlapping frontiers of human and veterinary medicine. Here, current viral zoonotics and evolving threats are reviewed.

  6. Enteric protozoa of cats and their zoonotic potential-a field study from Austria.

    PubMed

    Hinney, Barbara; Ederer, Christina; Stengl, Carina; Wilding, Katrin; Štrkolcová, Gabriela; Harl, Josef; Flechl, Eva; Fuehrer, Hans-Peter; Joachim, Anja

    2015-05-01

    Domestic cats can be infected with a variety of enteric protozoa. Genotyping of protozoan species, especially Giardia as the most common, can improve assessment of their relevance as zoonotic agents. For an overview on the occurrence of feline enteric protozoa, 298 faecal samples of cats from private households, catteries and animal shelters in Austria were collected. All samples were examined by flotation and using a rapid test for Giardia (FASTest). For the detection of Tritrichomonas blagburni, freshly voided faeces (n = 40) were processed using a commercial culturing system (InPouch TF-Feline). Genotyping was done at the β-giardin gene loci (each sample) and triosephosphate isomerase gene loci (positive samples) for Giardia and at the 18S rRNA gene (positive samples) for Cryptosporidium. Thirty-seven samples (12.4%) were positive for Giardia by flotation and/or using a rapid test. Cryptosporidium was present in 1.7%, Cystoisospora in 4.0%, Sarcocystis in 0.3% and T. blagburni in 2.5% of the samples. Genotyping revealed Giardia cati, the potentially zoonotic Giardia duodenalis and Cryptosporidium felis. Most of the infected cats had no diarrhoea. Cats from shelters were significantly more often infected than owned cats (p = 0.01). When comparing Giardia detection methods, the rapid test had a higher sensitivity than flotation. Polymerase chain reaction (PCR) results were mostly independent from the other two tests.

  7. Prevention and Control of Fish-borne Zoonotic Trematodes in Fish Nurseries, Vietnam

    PubMed Central

    Madsen, Henry; Murrell, K. Darwin; Van, Phan Thi; Thu, Ha Nguyen Thi; Do, Dung Trung; Thi, Lan Anh Nguyen; Manh, Hung Nguyen; Dalsgaard, Anders

    2012-01-01

    Worldwide, >18 million persons were infected with fish-borne zoonotic trematodes in 2002. To evaluate the effectiveness of interventions for reducing prevalence and intensity of fish-borne zoonotic trematode infections in juvenile fish, we compared transmission rates at nurseries in the Red River Delta, northern Vietnam. Rates were significantly lower for nurseries that reduced snail populations and trematode egg contamination in ponds than for nurseries that did not. These interventions can be used in the development of programs for sustained control of zoonotic trematodes in farmed fish. PMID:22932069

  8. Public health significance of zoonotic tapeworms in Korea.

    PubMed

    Moon, J R

    1976-06-01

    Through an epidemiological review on the zoonotic tapeworms in Korea, the frequency and severity of the zoonoses have been recognized. Taeniasis and human cysticercosis are of importance to the public health in Korea. The frequency of taeniasis is 0.3% to 12.7% discovered by stool examination and 4.5% to 38.0% discovered by questionaire survey. Taeniasis occurs more frequently in males than in females and, especially, in both sexes in the age-group of 20 to 49. T. saginata is more common that T. solium. No case of human cysticercosis caused by T.saginata has been reported in Korea. To the contrary, human cysticercosis caused by T. solium has been reported frequently during the 1960's. The severity of human cysticercosis is a significant problem of public health in Korea. Old data on bovine cysticercosis in the 1920's and 1930's are not useful for present control measures. Systematic surveys on bovine and swine cysticercosis as well as taeniasis and human cysticercosis are needed in Korea. Cases of sparganosis have been reported frequently during the past 15 years. Most of the 34 cases of sparganosis reported involved the eating of raw snakes and frogs. Most of the cases occurred in older males. Sparganosis in snakes, frogs, chickens, and swine has been reported in Korea. Human infection of Hymenolepis nana ranged from 0.2% to 1.4% discovered by stool examination. A few cases of adult worm collections of Diphyllobothrium latum and Hymenolepis diminuta have been reported in Korea. Two cases of human hydatid disease have been reported in Korea. No study on the disease in domestic animals is available. No case of human infection with dog tapeworm has been reported, even though it is highly prevalent in the indigenous dogs in Korea. I recommend that further study on the zoonotic tapeworms be conducted epidemiologically in Korea to get basic data for the public health programming.

  9. Rodents as potential couriers for bioterrorism agents.

    PubMed

    Lõhmus, Mare; Janse, Ingmar; van de Goot, Frank; van Rotterdam, Bart J

    2013-09-01

    Many pathogens that can cause major public health, economic, and social damage are relatively easily accessible and could be used as biological weapons. Wildlife is a natural reservoir for many potential bioterrorism agents, and, as history has shown, eliminating a pathogen that has dispersed among wild fauna can be extremely challenging. Since a number of wild rodent species live close to humans, rodents constitute a vector for pathogens to circulate among wildlife, domestic animals, and humans. This article reviews the possible consequences of a deliberate spread of rodentborne pathogens. It is relatively easy to infect wild rodents with certain pathogens or to release infected rodents, and the action would be difficult to trace. Rodents can also function as reservoirs for diseases that have been spread during a bioterrorism attack and cause recurring disease outbreaks. As rats and mice are common in both urban and rural settlements, deliberately released rodentborne infections have the capacity to spread very rapidly. The majority of pathogens that are listed as potential agents of bioterrorism by the Centers for Disease Control and Prevention and the National Institute of Allergy and Infectious Diseases exploit rodents as vectors or reservoirs. In addition to zoonotic diseases, deliberately released rodentborne epizootics can have serious economic consequences for society, for example, in the area of international trade restrictions. The ability to rapidly detect introduced diseases and effectively communicate with the public in crisis situations enables a quick response and is essential for successful and cost-effective disease control.

  10. Neglected zoonotic helminths: Hymenolepis nana, Echinococcus canadensis and Ancylostoma ceylanicum.

    PubMed

    Thompson, R C A

    2015-05-01

    The majority of helminth parasites that are considered by WHO to be the cause of 'neglected diseases' are zoonotic. In terms of their impact on human health, the role of animal reservoirs and polyparasitism are both emerging issues in understanding the epidemiology of a number of these zoonoses. As such, Hymenolepis (Rodentolepis) nana, Echinococcus canadensis and Ancylostoma ceylanicum all qualify for consideration. They have been neglected and there is increasing evidence that all three parasite infections deserve more attention in terms of their impact on public health as well as their control. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  11. Nipah virus: transmission of a zoonotic paramyxovirus.

    PubMed

    Clayton, Bronwyn Anne

    2017-02-01

    Nipah virus is a recently-recognised, zoonotic paramyxovirus that causes severe disease and high fatality rates in people. Outbreaks have occurred in Malaysia, Singapore, India and Bangladesh, and a putative Nipah virus was also recently associated with human disease in the Philippines. Worryingly, human-to-human transmission is common in Bangladesh, where outbreaks occur with near-annual frequency. Onward human transmission of Nipah virus in Bangladesh is associated with close contact with clinically-unwell patients or their infectious secretions. While Nipah virus isolates associated with outbreaks of human infection have not resulted in sustained transmission to date, specific exposures carry a high risk of person-to-person transmission, an observation which is supported by recent findings in animal models. Novel paramyxoviruses continue to emerge from wildlife hosts, and represent an ongoing threat to human health globally. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  12. Environmental Factors and Zoonotic Pathogen Ecology in Urban Exploiter Species.

    PubMed

    Rothenburger, Jamie L; Himsworth, Chelsea H; Nemeth, Nicole M; Pearl, David L; Jardine, Claire M

    2017-09-01

    Knowledge of pathogen ecology, including the impacts of environmental factors on pathogen and host dynamics, is essential for determining the risk that zoonotic pathogens pose to people. This review synthesizes the scientific literature on environmental factors that influence the ecology and epidemiology of zoonotic microparasites (bacteria, viruses and protozoa) in globally invasive urban exploiter wildlife species (i.e., rock doves [Columba livia domestica], European starlings [Sturnus vulgaris], house sparrows [Passer domesticus], Norway rats [Rattus norvegicus], black rats [R. rattus] and house mice [Mus musculus]). Pathogen ecology, including prevalence and pathogen characteristics, is influenced by geographical location, habitat, season and weather. The prevalence of zoonotic pathogens in mice and rats varies markedly over short geographical distances, but tends to be highest in ports, disadvantaged (e.g., low income) and residential areas. Future research should use epidemiological approaches, including random sampling and robust statistical analyses, to evaluate a range of biotic and abiotic environmental factors at spatial scales suitable for host home range sizes. Moving beyond descriptive studies to uncover the causal factors contributing to uneven pathogen distribution among wildlife hosts in urban environments may lead to targeted surveillance and intervention strategies. Application of this knowledge to urban maintenance and planning may reduce the potential impacts of urban wildlife-associated zoonotic diseases on people.

  13. Experimental Evidence for Reduced Rodent Diversity Causing Increased Hantavirus Prevalence

    PubMed Central

    Suzán, Gerardo; Marcé, Erika; Giermakowski, J. Tomasz; Mills, James N.; Ceballos, Gerardo; Ostfeld, Richard S.; Armién, Blas; Pascale, Juan M.; Yates, Terry L.

    2009-01-01

    Emerging and re-emerging infectious diseases have become a major global environmental problem with important public health, economic, and political consequences. The etiologic agents of most emerging infectious diseases are zoonotic, and anthropogenic environmental changes that affect wildlife communities are increasingly implicated in disease emergence and spread. Although increased disease incidence has been correlated with biodiversity loss for several zoonoses, experimental tests in these systems are lacking. We manipulated small-mammal biodiversity by removing non-reservoir species in replicated field plots in Panama, where zoonotic hantaviruses are endemic. Both infection prevalence of hantaviruses in wild reservoir (rodent) populations and reservoir population density increased where small-mammal species diversity was reduced. Regardless of other variables that affect the prevalence of directly transmitted infections in natural communities, high biodiversity is important in reducing transmission of zoonotic pathogens among wildlife hosts. Our results have wide applications in both conservation biology and infectious disease management. PMID:19421313

  14. [New exploration on clinical treatment of injuries caused by uncommon agents or in extraordinary regions].

    PubMed

    Liu, Y

    2018-05-20

    Burns caused by uncommon agents means those caused by other agents except heating power, with special characteristics existing in traumatogenesis, pathophysiology, and clinical manifestation. With the development of social economy, various new techniques and new equipments are springing up. In the practical use, improper operations would become traumatogenic agents and cause various special types of trauma. In addition, some special injuries emerged with the changes in people's lifestyle. For battle injury, some new war wounds, which are different from fire-arm injuries in the past, appeared with the emergence of acoustic wave, light wave, electrical and magnetic weapons. Extraordinary regions are those located on body surface with anatomic and physiological particularity. Injuries caused by uncommon traumatogenic agent or in extraordinary region are different from those ordinary burns and trauma, and their clinical treatments have special characteristics. Clinical treatments were studied aiming at these special characteristics, and some achievements in treatment of high-voltage electrical burn, hydrofluoric acid burn, wounds on special regions, and new types of burns and trauma have been made. However, a doctor's duty is not only to cure the diseases and save the patients' lives, but also to prevent the diseases. The suitable treatment and precautionary measures for the new types of burns and trauma that differ from ordinary burns and trauma in the past remain to be explored.

  15. Transmission and epidemiology of zoonotic protozoal diseases of companion animals.

    PubMed

    Esch, Kevin J; Petersen, Christine A

    2013-01-01

    Over 77 million dogs and 93 million cats share our households in the United States. Multiple studies have demonstrated the importance of pets in their owners' physical and mental health. Given the large number of companion animals in the United States and the proximity and bond of these animals with their owners, understanding and preventing the diseases that these companions bring with them are of paramount importance. Zoonotic protozoal parasites, including toxoplasmosis, Chagas' disease, babesiosis, giardiasis, and leishmaniasis, can cause insidious infections, with asymptomatic animals being capable of transmitting disease. Giardia and Toxoplasma gondii, endemic to the United States, have high prevalences in companion animals. Leishmania and Trypanosoma cruzi are found regionally within the United States. These diseases have lower prevalences but are significant sources of human disease globally and are expanding their companion animal distribution. Thankfully, healthy individuals in the United States are protected by intact immune systems and bolstered by good nutrition, sanitation, and hygiene. Immunocompromised individuals, including the growing number of obese and/or diabetic people, are at a much higher risk of developing zoonoses. Awareness of these often neglected diseases in all health communities is important for protecting pets and owners. To provide this awareness, this review is focused on zoonotic protozoal mechanisms of virulence, epidemiology, and the transmission of pathogens of consequence to pet owners in the United States.

  16. Transmission and Epidemiology of Zoonotic Protozoal Diseases of Companion Animals

    PubMed Central

    Esch, Kevin J.

    2013-01-01

    Over 77 million dogs and 93 million cats share our households in the United States. Multiple studies have demonstrated the importance of pets in their owners' physical and mental health. Given the large number of companion animals in the United States and the proximity and bond of these animals with their owners, understanding and preventing the diseases that these companions bring with them are of paramount importance. Zoonotic protozoal parasites, including toxoplasmosis, Chagas' disease, babesiosis, giardiasis, and leishmaniasis, can cause insidious infections, with asymptomatic animals being capable of transmitting disease. Giardia and Toxoplasma gondii, endemic to the United States, have high prevalences in companion animals. Leishmania and Trypanosoma cruzi are found regionally within the United States. These diseases have lower prevalences but are significant sources of human disease globally and are expanding their companion animal distribution. Thankfully, healthy individuals in the United States are protected by intact immune systems and bolstered by good nutrition, sanitation, and hygiene. Immunocompromised individuals, including the growing number of obese and/or diabetic people, are at a much higher risk of developing zoonoses. Awareness of these often neglected diseases in all health communities is important for protecting pets and owners. To provide this awareness, this review is focused on zoonotic protozoal mechanisms of virulence, epidemiology, and the transmission of pathogens of consequence to pet owners in the United States. PMID:23297259

  17. Multilocus Sequence Typing of Bartonella henselae in the United Kingdom Indicates that Only a Few, Uncommon Sequence Types Are Associated with Zoonotic Disease▿†

    PubMed Central

    Chaloner, Gemma L.; Harrison, Timothy G.; Coyne, Karen P.; Aanensen, David M.; Birtles, Richard J.

    2011-01-01

    Bartonella henselae is one of the most common zoonotic agents acquired from companion animals (cats) in industrialized countries. Nonetheless, although the prevalence of infections in cats is high, the number of human cases reported is relatively low. One hypothesis for this discrepancy is that B. henselae strains vary in their zoonotic potential. To test this hypothesis, we employed structured sampling to explore the population structure of B. henselae in the United Kingdom and to determine the distribution of strains associated with zoonotic disease within this structure. A total of 118 B. henselae strains were delineated into 12 sequence types (STs) using multilocus sequence typing. We observed that most (85%) of the zoonosis-associated strains belonged to only three genotypes, i.e., ST2, ST5, and ST8. Conversely, most (74%) of the feline isolates belonged to ST4, ST6, and ST7. The difference in host association of ST2, ST5, and ST8 (zoonosis associated) and ST6 (feline) was statistically significant (P < 0.05), indicating that a few, uncommon STs were responsible for the majority of symptomatic human infections. PMID:21471345

  18. Modeling risk of occupational zoonotic influenza infection in swine workers.

    PubMed

    Paccha, Blanca; Jones, Rachael M; Gibbs, Shawn; Kane, Michael J; Torremorell, Montserrat; Neira-Ramirez, Victor; Rabinowitz, Peter M

    2016-08-01

    Zoonotic transmission of influenza A virus (IAV) between swine and workers in swine production facilities may play a role in the emergence of novel influenza strains with pandemic potential. Guidelines to prevent transmission of influenza to swine workers have been developed but there is a need for evidence-based decision-making about protective measures such as respiratory protection. A mathematical model was applied to estimate the risk of occupational IAV exposure to swine workers by contact and airborne transmission, and to evaluate the use of respirators to reduce transmission.  The Markov model was used to simulate the transport and exposure of workers to IAV in a swine facility. A dose-response function was used to estimate the risk of infection. This approach is similar to methods previously used to estimate the risk of infection in human health care settings. This study uses concentration of virus in air from field measurements collected during outbreaks of influenza in commercial swine facilities, and analyzed by polymerase chain reaction.  It was found that spending 25 min working in a barn during an influenza outbreak in a swine herd could be sufficient to cause zoonotic infection in a worker. However, this risk estimate was sensitive to estimates of viral infectivity to humans. Wearing an excellent fitting N95 respirator reduced this risk, but with high aerosol levels the predicted risk of infection remained high under certain assumptions.  The results of this analysis indicate that under the conditions studied, swine workers are at risk of zoonotic influenza infection. The use of an N95 respirator could reduce such risk. These findings have implications for risk assessment and preventive programs targeting swine workers. The exact level of risk remains uncertain, since our model may have overestimated the viability or infectivity of IAV. Additionally, the potential for partial immunity in swine workers associated with repeated low

  19. Parasitic, fungal and prion zoonoses: an expanding universe of candidates for human disease.

    PubMed

    Akritidis, N

    2011-03-01

    Zoonotic infections have emerged as a burden for millions of people in recent years, owing to re-emerging or novel pathogens often causing outbreaks in the developing world in the presence of inadequate public health infrastructure. Among zoonotic infections, those caused by parasitic pathogens are the ones that affect millions of humans worldwide, who are also at risk of developing chronic disease. The present review discusses the global effect of protozoan pathogens such as Leishmania sp., Trypanosoma sp., and Toxoplasma sp., as well as helminthic pathogens such as Echinococcus sp., Fasciola sp., and Trichinella sp. The zoonotic aspects of agents that are not essentially zoonotic are also discussed. The review further focuses on the zoonotic dynamics of fungal pathogens and prion diseases as observed in recent years, in an evolving environment in which novel patient target groups have developed for agents that were previously considered to be obscure or of minimal significance. © 2011 The Author. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  20. Update on Baylisascariasis, a Highly Pathogenic Zoonotic Infection

    PubMed Central

    Morassutti, Alessandra Loureiro; Kazacos, Kevin R.

    2016-01-01

    SUMMARY Baylisascaris procyonis, the raccoon roundworm, infects a wide range of vertebrate animals, including humans, in which it causes a particularly severe type of larva migrans. It is an important cause of severe neurologic disease (neural larva migrans [NLM]) but also causes ocular disease (OLM; diffuse unilateral subacute neuroretinitis [DUSN]), visceral larva migrans (VLM), and covert/asymptomatic infections. B. procyonis is common and widespread in raccoons, and there is increasing recognition of human disease, making a clinical consideration of baylisascariasis important. This review provides an update for this disease, especially its clinical relevance and diagnosis, and summarizes the clinical cases of human NLM and VLM known to date. Most diagnosed patients have been young children less than 2 years of age, although the number of older patients diagnosed in recent years has been increasing. The recent development of recombinant antigen-based serodiagnostic assays has aided greatly in the early diagnosis of this infection. Patients recovering with fewer severe sequelae have been reported in recent years, reinforcing the current recommendation that early treatment with albendazole and corticosteroids should be initiated at the earliest suspicion of baylisascariasis. Considering the seriousness of this zoonotic infection, greater public and medical awareness is critical for the prevention and early treatment of human cases. PMID:26960940

  1. Zoonotic potential of Enterocytozoon genotypes in humans and pigs in Thailand.

    PubMed

    Prasertbun, Rapeepun; Mori, Hirotake; Pintong, Ai-Rada; Sanyanusin, Suparut; Popruk, Supaluk; Komalamisra, Chalit; Changbunjong, Tanasak; Buddhirongawatr, Ruangrat; Sukthana, Yaowalark; Mahittikorn, Aongart

    2017-01-15

    Enterocytozoon bieneusi is an opportunistic intestinal pathogen infecting humans and a variety of animals. Its mode of transmission and zoonotic potential are not completely understood. E. bieneusi has been frequently identified in pigs. The objective of our study was to investigate E. bieneusi in pigs and humans in Western and Central Thailand to determine its presence, genetic diversity, and zoonotic potential. A total of 277 human and 210 pig faecal samples were collected and analysed. E. bieneusi was found in 5.4% and 28.1% of human and pig samples, respectively, by nested PCR. Genotyping based on the internal transcribed spacer regions of the small subunit ribosomal RNA demonstrated three known genotypes (D, H, PigEb10) and eight novel genotypes (TMH1-8) in humans, and five known genotypes (D, EbpA, EbpC, H, O) and 11 novel genotypes (TMP1-11) in pigs. All known genotypes identified in humans and pigs had zoonotic potential. Further studies are needed to evaluate zoonotic risk of novel genotypes, as pigs may play an important role in the transmission of E. bieneusi. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Molecular epidemiology and multilocus sequence analysis of potentially zoonotic Giardia spp. from humans and dogs in Jamaica.

    PubMed

    Lee, Mellesia F; Cadogan, Paul; Eytle, Sarah; Copeland, Sonia; Walochnik, Julia; Lindo, John F

    2017-01-01

    Giardia spp. are the causative agents of intestinal infections in a wide variety of mammals including humans and companion animals. Dogs may be reservoirs of zoonotic Giardia spp.; however, the potential for transmission between dogs and humans in Jamaica has not been studied. Conventional PCR was used to screen 285 human and 225 dog stool samples for Giardia targeting the SSU rDNA gene followed by multilocus sequencing of the triosephosphate isomerase (tpi), glutamate dehydrogenase (gdh), and β-giardin (bg) genes. Prevalence of human infections based on PCR was 6.7 % (19/285) and canine infections 19.6 % (44/225). Nested PCR conducted on all 63 positive samples revealed the exclusive presence of assemblage A in both humans and dogs. Sub-assemblage A-II was responsible for 79.0 % (15/19) and 70.5 % (31/44) of the infections in humans and dogs, respectively, while sub-assemblage A-I was identified at a rate of 15.8 % (3/19) and 29.5 % (13/44) in humans and dogs, respectively. The predominance of a single circulating assemblage among both humans and dogs in Jamaica suggests possible zoonotic transmission of Giardia infections.

  3. E. coli mismatch repair enhances AT-to-GC mutagenesis caused by alkylating agents.

    PubMed

    Nakano, Kota; Yamada, Yoko; Takahashi, Eizo; Arimoto, Sakae; Okamoto, Keinosuke; Negishi, Kazuo; Negishi, Tomoe

    2017-03-01

    Alkylating agents are known to induce the formation of O 6 -alkylguanine (O 6 -alkG) and O 4 -alkylthymine (O 4 -alkT) in DNA. These lesions have been widely investigated as major sources of mutations. We previously showed that mismatch repair (MMR) facilitates the suppression of GC-to-AT mutations caused by O 6 -methylguanine more efficiently than the suppression of GC-to-AT mutations caused by O 6 -ethylguanine. However, the manner by which O 4 -alkyT lesions are repaired remains unclear. In the present study, we investigated the repair pathway involved in the repair of O 4 -alkT. The E. coli CC106 strain, which harbors Δprolac in its genomic DNA and carries the F'CC106 episome, can be used to detect AT-to-GC reverse-mutation of the gene encoding β-galactosidase. Such AT-to-GC mutations should be induced through the formation of O 4 -alkT at AT base pairs. As expected, an O 6 -alkylguanine-DNA alkyltransferase (AGT) -deficient CC106 strain, which is defective in both ada and agt genes, exhibited elevated mutant frequencies in the presence of methylating agents and ethylating agents. However, in the UvrA-deficient strain, the methylating agents were less mutagenic than in wild-type, while ethylating agents were more mutagenic than in wild-type, as observed with agents that induce O 6 -alkylguanine modifications. Unexpectedly, the mutant frequencies decreased in a MutS-deficient strain, and a similar tendency was observed in MutL- or MutH-deficient strains. Thus, MMR appears to promote mutation at AT base pairs. Similar results were obtained in experiments employing double-mutant strains harboring defects in both MMR and AGT, or MMR and NER. E. coli MMR enhances AT-to-GC mutagenesis, such as that caused by O 4 -alkylthymine. We hypothesize that the MutS protein recognizes the O 4 -alkT:A base pair more efficiently than O 4 -alkT:G. Such a distinction would result in misincorporation of G at the O 4 -alkT site, followed by higher mutation frequencies in wild

  4. Natural Ferrihydrite as an Agent for Reducing Turbidity Caused by Suspended Clays

    USDA-ARS?s Scientific Manuscript database

    The turbidity of water can be reduced by the addition of positively charged compounds which coagulate negatively charged clay particles in suspension causing them to flocculate. This research was conducted to determine the effectiveness of the Fe oxide mineral ferrihydrite as a flocculating agent fo...

  5. Molecular characterization of Giardia intestinalis haplotypes in marine animals: variation and zoonotic potential.

    PubMed

    Lasek-Nesselquist, Erica; Bogomolni, Andrea L; Gast, Rebecca J; Welch, David Mark; Ellis, Julie C; Sogin, Mitchell L; Moore, Michael J

    2008-08-19

    Giardia intestinalis is a microbial eukaryotic parasite that causes diarrheal disease in humans and other vertebrates worldwide. The negative effect on quality of life and economics caused by G. intestinalis may be increased by its potential status as a zoonosis, or a disease that can be transmitted from animals to humans. The zoonotic potential of G. intestinalis has been implied for over 2 decades, with human-infecting genotypes (belonging to the 2 major subgroups, Assemblages A and B) occurring in wildlife and domesticated animals. There are recent reports of G. intestinalis in shellfish, seals, sea lions and whales, suggesting that marine animals are also potential reservoirs of human disease. However, the prevalence, genetic diversity and effect of G. intestinalis in marine environments and the role that marine animals play in transmission of this parasite to humans are relatively unexplored. Here, we provide the first thorough molecular characterization of G. intestinalis in marine vertebrates. Using a multi-locus sequencing approach, we identify human-infecting G. intestinalis haplotypes of both Assemblages A and B in the fecal material of dolphins, porpoises, seals, herring gulls Larus argentatus, common eiders Somateria mollissima and a thresher shark Alopias vulpinus. Our results indicate that G. intestinalis is prevalent in marine ecosystems, and a wide range of marine hosts capable of harboring zoonotic forms of this parasite exist. The presence of G. intestinalis in marine ecosystems raises concerns about how this disease might be transmitted among different host species.

  6. ERAIZDA: a model for holistic annotation of animal infectious and zoonotic diseases.

    PubMed

    Buza, Teresia M; Jack, Sherman W; Kirunda, Halid; Khaitsa, Margaret L; Lawrence, Mark L; Pruett, Stephen; Peterson, Daniel G

    2015-01-01

    There is an urgent need for a unified resource that integrates trans-disciplinary annotations of emerging and reemerging animal infectious and zoonotic diseases. Such data integration will provide wonderful opportunity for epidemiologists, researchers and health policy makers to make data-driven decisions designed to improve animal health. Integrating emerging and reemerging animal infectious and zoonotic disease data from a large variety of sources into a unified open-access resource provides more plausible arguments to achieve better understanding of infectious and zoonotic diseases. We have developed a model for interlinking annotations of these diseases. These diseases are of particular interest because of the threats they pose to animal health, human health and global health security. We demonstrated the application of this model using brucellosis, an infectious and zoonotic disease. Preliminary annotations were deposited into VetBioBase database (http://vetbiobase.igbb.msstate.edu). This database is associated with user-friendly tools to facilitate searching, retrieving and downloading of disease-related information. Database URL: http://vetbiobase.igbb.msstate.edu. © The Author(s) 2015. Published by Oxford University Press.

  7. ERAIZDA: a model for holistic annotation of animal infectious and zoonotic diseases

    PubMed Central

    Buza, Teresia M.; Jack, Sherman W.; Kirunda, Halid; Khaitsa, Margaret L.; Lawrence, Mark L.; Pruett, Stephen; Peterson, Daniel G.

    2015-01-01

    There is an urgent need for a unified resource that integrates trans-disciplinary annotations of emerging and reemerging animal infectious and zoonotic diseases. Such data integration will provide wonderful opportunity for epidemiologists, researchers and health policy makers to make data-driven decisions designed to improve animal health. Integrating emerging and reemerging animal infectious and zoonotic disease data from a large variety of sources into a unified open-access resource provides more plausible arguments to achieve better understanding of infectious and zoonotic diseases. We have developed a model for interlinking annotations of these diseases. These diseases are of particular interest because of the threats they pose to animal health, human health and global health security. We demonstrated the application of this model using brucellosis, an infectious and zoonotic disease. Preliminary annotations were deposited into VetBioBase database (http://vetbiobase.igbb.msstate.edu). This database is associated with user-friendly tools to facilitate searching, retrieving and downloading of disease-related information. Database URL: http://vetbiobase.igbb.msstate.edu PMID:26581408

  8. Francisella tularensis Molecular Typing Using Differential Insertion Sequence Amplification

    DTIC Science & Technology

    2011-08-01

    16 May 2011 Tularemia is a potentially fatal disease that is caused by the highly infectious and zoonotic pathogen Francisella tularensis. Despite...and characterizations of tularemia source outbreaks. Francisella tularensis is a facultative intracellular bacterium and the causative agent of the...zoonotic disease tularemia ( 10). This Gram-negative microbe is highly infectious, with as few as 10 organisms being capable of causing disease in

  9. Public health significance of zoonotic Cryptosporidium species in wildlife: Critical insights into better drinking water management.

    PubMed

    Zahedi, Alireza; Paparini, Andrea; Jian, Fuchun; Robertson, Ian; Ryan, Una

    2016-04-01

    Cryptosporidium is an enteric parasite that is transmitted via the faecal-oral route, water and food. Humans, wildlife and domestic livestock all potentially contribute Cryptosporidium to surface waters. Human encroachment into natural ecosystems has led to an increase in interactions between humans, domestic animals and wildlife populations. Increasing numbers of zoonotic diseases and spill over/back of zoonotic pathogens is a consequence of this anthropogenic disturbance. Drinking water catchments and water reservoir areas have been at the front line of this conflict as they can be easily contaminated by zoonotic waterborne pathogens. Therefore, the epidemiology of zoonotic species of Cryptosporidium in free-ranging and captive wildlife is of increasing importance. This review focuses on zoonotic Cryptosporidium species reported in global wildlife populations to date, and highlights their significance for public health and the water industry.

  10. Immune Escape Variants of H9N2 Influenza Viruses Containing Deletions at the Hemagglutinin Receptor Binding Site Retain Fitness In Vivo and Display Enhanced Zoonotic Characteristics.

    PubMed

    Peacock, Thomas P; Benton, Donald J; James, Joe; Sadeyen, Jean-Remy; Chang, Pengxiang; Sealy, Joshua E; Bryant, Juliet E; Martin, Stephen R; Shelton, Holly; Barclay, Wendy S; Iqbal, Munir

    2017-07-15

    H9N2 avian influenza viruses are enzootic in poultry across Asia and North Africa, where they pose a threat to human health as both zoonotic agents and potential pandemic candidates. Poultry vaccination against H9N2 viruses has been employed in many regions; however, vaccine effectiveness is frequently compromised due to antigenic drift arising from amino acid substitutions in the major influenza virus antigen hemagglutinin (HA). Using selection with HA-specific monoclonal antibodies, we previously identified H9N2 antibody escape mutants that contained deletions of amino acids in the 220 loop of the HA receptor binding sites (RBSs). Here we analyzed the impact of these deletions on virus zoonotic infection characteristics and fitness. We demonstrated that mutant viruses with RBS deletions are able to escape polyclonal antiserum binding and are able to infect and be transmitted between chickens. We showed that the deletion mutants have increased binding to human-like receptors and greater replication in primary human airway cells; however, the mutant HAs also displayed reduced pH and thermal stability. In summary, we infer that variant influenza viruses with deletions in the 220 loop could arise in the field due to immune selection pressure; however, due to reduced HA stability, we conclude that these viruses are unlikely to be transmitted from human to human by the airborne route, a prerequisite for pandemic emergence. Our findings underscore the complex interplay between antigenic drift and viral fitness for avian influenza viruses as well as the challenges of predicting which viral variants may pose the greatest threats for zoonotic and pandemic emergence. IMPORTANCE Avian influenza viruses, such as H9N2, cause disease in poultry as well as occasionally infecting humans and are therefore considered viruses with pandemic potential. Many countries have introduced vaccination of poultry to try to control the disease burden; however, influenza viruses are able to

  11. Duck egg-drop syndrome caused by BYD virus, a new Tembusu-related flavivirus.

    PubMed

    Su, Jingliang; Li, Shuang; Hu, Xudong; Yu, Xiuling; Wang, Yongyue; Liu, Peipei; Lu, Xishan; Zhang, Guozhong; Hu, Xueying; Liu, Di; Li, Xiaoxia; Su, Wenliang; Lu, Hao; Mok, Ngai Shing; Wang, Peiyi; Wang, Ming; Tian, Kegong; Gao, George F

    2011-03-24

    Since April 2010, a severe outbreak of duck viral infection, with egg drop, feed uptake decline and ovary-oviduct disease, has spread around the major duck-producing regions in China. A new virus, named BYD virus, was isolated in different areas, and a similar disease was reproduced in healthy egg-producing ducks, infecting with the isolated virus. The virus was re-isolated from the affected ducks and replicated well in primary duck embryo fibroblasts and Vero cells, causing the cytopathic effect. The virus was identified as an enveloped positive-stranded RNA virus with a size of approximately 55 nm in diameter. Genomic sequencing of the isolated virus revealed that it is closely related to Tembusu virus (a mosquito-borne Ntaya group flavivirus), with 87-91% nucleotide identity of the partial E (envelope) proteins to that of Tembusu virus and 72% of the entire genome coding sequence with Bagaza virus, the most closely related flavivirus with an entirely sequenced genome. Collectively our systematic studies fulfill Koch's postulates, and therefore, the causative agent of the duck egg drop syndrome occurring in China is a new flavivirus. Flavivirus is an emerging and re-emerging zoonotic pathogen and BYD virus that causes severe egg-drop, could be disastrous for the duck industry. More importantly its public health concerns should also be evaluated, and its epidemiology should be closely watched due to the zoonotic nature of flaviviruses.

  12. [Bartonella henselae, an ubiquitous agent of proteiform zoonotic disease].

    PubMed

    Edouard, S; Raoult, D

    2010-06-01

    Bartonella henselae is the causative agent of cat scratch disease, a human infection usually characterized by persistent regional lymphadenopathy. It is transmitted to humans by cat scratches or bites. Cats are the major reservoir for this bacterium thus B. henselae has a worldwide distribution. The bacterial pathogenicity may bay emphasized by the immune status of the infected host. Angiomatosis or hepatic peliosis are the most frequent clinical manifestations in immunocompromised patients. B. henselae is also responsible for endocarditis in patients with valvular diseases, and may induce various clinical presentations such as: bacteriemia, retinitis, musculoskeletal disorders, hepatic or splenic diseases, encephalitis, or myocarditis. Several diagnostic tools are available; they may be combined and adapted to every clinical setting. B. henselae is a fastidious bacterium; its diagnosis is mainly made by PCR and blood tests. No treatment is required for the benign form of cat scratch disease. For more severe clinical presentations, the treatment must be adapted to every clinical presentation.

  13. Zoonotic Potential and Molecular Epidemiology of Giardia Species and Giardiasis†

    PubMed Central

    Feng, Yaoyu; Xiao, Lihua

    2011-01-01

    Summary: Molecular diagnostic tools have been used recently in assessing the taxonomy, zoonotic potential, and transmission of Giardia species and giardiasis in humans and animals. The results of these studies have firmly established giardiasis as a zoonotic disease, although host adaptation at the genotype and subtype levels has reduced the likelihood of zoonotic transmission. These studies have also identified variations in the distribution of Giardia duodenalis genotypes among geographic areas and between domestic and wild ruminants and differences in clinical manifestations and outbreak potentials of assemblages A and B. Nevertheless, our efforts in characterizing the molecular epidemiology of giardiasis and the roles of various animals in the transmission of human giardiasis are compromised by the lack of case-control and longitudinal cohort studies and the sampling and testing of humans and animals living in the same community, the frequent occurrence of infections with mixed genotypes and subtypes, and the apparent heterozygosity at some genetic loci for some G. duodenalis genotypes. With the increased usage of multilocus genotyping tools, the development of next-generation subtyping tools, the integration of molecular analysis in epidemiological studies, and an improved understanding of the population genetics of G. duodenalis in humans and animals, we should soon have a better appreciation of the molecular epidemiology of giardiasis, the disease burden of zoonotic transmission, the taxonomy status and virulences of various G. duodenalis genotypes, and the ecology of environmental contamination. PMID:21233509

  14. A survey for potentially zoonotic gastrointestinal parasites of dogs and pigs in Cambodia.

    PubMed

    Inpankaew, Tawin; Murrell, K Darwin; Pinyopanuwat, Nongnuch; Chhoun, Chamnan; Khov, Kuong; Sem, Tharin; Sorn, San; Muth, Sinuon; Dalsgaard, Anders

    2015-12-01

    There is little information available on parasites of zoonotic significance in Cambodia. In 2011, in an effort to obtain data on potentially zoonotic gastrointestinal parasites in domestic animals, 50 dogs and 30 pigs residing in 38 households located in Ang Svay Check village, Takeo province, Cambodia were examined for parasites from faecal samples. The samples were processed using the formalin-ethyl acetate concentration technique (FECT). Hookworms were the most common zoonotic parasite found in dogs (80.0%) followed by Echinostomes (18.0%). While, in pigs, Fasciolopsis buski was the most common zoonotic parasite (30.0%) followed by Ascaris suum (13.3%). This study provides baseline data on gastrointestinal parasites in dogs and pigs from Cambodia and underscores the importance of domestic animals as reservoir hosts for human parasites for Cambodian veterinary and public health agencies. Follow-up studies are required to further taxonomically characterize these dog and pig parasites and to determine their role in human parasites in this community.

  15. A Review of Zoonotic Infection Risks Associated with the Wild Meat Trade in Malaysia.

    PubMed

    Cantlay, Jennifer Caroline; Ingram, Daniel J; Meredith, Anna L

    2017-06-01

    The overhunting of wildlife for food and commercial gain presents a major threat to biodiversity in tropical forests and poses health risks to humans from contact with wild animals. Using a recent survey of wildlife offered at wild meat markets in Malaysia as a basis, we review the literature to determine the potential zoonotic infection risks from hunting, butchering and consuming the species offered. We also determine which taxa potentially host the highest number of pathogens and discuss the significant disease risks from traded wildlife, considering how cultural practices influence zoonotic transmission. We identify 51 zoonotic pathogens (16 viruses, 19 bacteria and 16 parasites) potentially hosted by wildlife and describe the human health risks. The Suidae and the Cervidae families potentially host the highest number of pathogens. We conclude that there are substantial gaps in our knowledge of zoonotic pathogens and recommend performing microbial food safety risk assessments to assess the hazards of wild meat consumption. Overall, there may be considerable zoonotic risks to people involved in the hunting, butchering or consumption of wild meat in Southeast Asia, and these should be considered in public health strategies.

  16. West Nile virus lineage 2 as a cause of zoonotic neurological disease in humans and horses in southern Africa.

    PubMed

    Venter, Marietjie; Swanepoel, Robert

    2010-10-01

    West Nile virus (WNV) is widely distributed in South Africa, but since a few cases of neurological disease have been reported from this region, endemic lineage 2 strains were postulated to be of low virulence. Several cases of nonfatal encephalitis in humans as well as fatal cases in a foal, dog, and ostrich chicks have, however, been associated with lineage 2 WNV in South Africa. The pathogenesis of lineage 2 WNV strains was investigated using mouse neuroinvasive experiments, gene expression experiments, and genome sequence comparisons which indicated that lineage 2 strains that are highly pathogenic exist. To determine whether cases of WNV were being missed in South Africa, horses with fever and neurological disease were investigated. Several cases of WNV were identified, all associated with severe neurological disease, 85% of which had to be euthanized or died. All cases positive by RT-PCR were shown to belong to lineage 2 WNV by DNA sequencing and phylogenetic analysis. Two cases of occupational infection were investigated, including a case of zoonotic transmission to a veterinarian who performed an autopsy on one of the horses as well as a laboratory infection after a needle stick injury with a neuroinvasive lineage 2 strain. Both resulted in neurological disease. Cytokine expression was investigated in the second case to assess the immunopathogenesis of WNV. Collectively, these studies suggest that lineage 2 WNV may be significantly under estimated as a cause of neurological disease in South Africa.

  17. Antimicrobial resistance in zoonotic nontyphoidal Salmonella: an alarming trend?

    PubMed

    Michael, G B; Schwarz, S

    2016-12-01

    Zoonotic bacteria of the genus Salmonella have acquired various antimicrobial resistance properties over the years. The corresponding resistance genes are commonly located on plasmids, transposons, gene cassettes, or variants of the Salmonella Genomic Islands SGI1 and SGI2. Human infections by nontyphoidal Salmonella isolates mainly result from ingestion of contaminated food. The two predominantly found Salmonella enterica subsp. enterica serovars in the USA and in Europe are S. Enteritidis and S. Typhimurium. Many other nontyphoidal Salmonella serovars have been implicated in foodborne Salmonella outbreaks. Summary reports of the antimicrobial susceptibility patterns of nontyphoidal Salmonella isolates over time suggest a moderate to low level of antimicrobial resistance and multidrug-resistance. However, serovar-specific analyses showed in part a steady state, a continuous decline, or a recent increase in resistance to certain antimicrobial agents. Resistance to critically important antimicrobial agents, e.g. third-generation cephalosporins and (fluoro)quinolones is part of many monitoring programmes and the corresponding results confirm that extended-spectrum β-lactamases are still rarely found in nontyphoidal Salmonella serovars, whereas resistance to (fluoro)quinolones is prevalent at variable frequencies among different serovars from humans and animals in different countries. Although it is likely that nontyphoidal Salmonella isolates from animals represent a reservoir for resistance determinants, it is mostly unknown where and when Salmonella isolates acquired resistance properties and which exchange processes have happened since then. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  18. Awareness, knowledge, and risks of zoonotic diseases among livestock farmers in Punjab.

    PubMed

    Hundal, Jaspal Singh; Sodhi, Simrinder Singh; Gupta, Aparna; Singh, Jaswinder; Chahal, Udeybir Singh

    2016-02-01

    The present study was conducted to assess the awareness, knowledge, and risks of zoonotic diseases among livestock farmers in Punjab. 250 livestock farmers were selected randomly and interviewed with a pretested questionnaire, which contained both open and close ended questions on different aspects of zoonotic diseases, i.e., awareness, knowledge, risks, etc. Knowledge scorecard was developed, and each correct answer was awarded one mark, and each incorrect answer was given zero mark. Respondents were categorized into low (mean - ½ standard deviation [SD]), moderate (mean ± ½ SD), and high knowledge (Mean + ½ SD) category based on the mean and SD. The information about independent variables viz., age, education, and herd size were collected with the help of structured schedule and scales. The data were analyzed by ANOVA, and results were prepared to assess awareness, knowledge, and risks of zoonotic diseases and its relation with independent variables. Majority of the respondents had age up to 40 years (70%), had their qualification from primary to higher secondary level (77.6%), and had their herd size up to 10 animals (79.6%). About 51.2% and 54.0% respondents had the history of abortion and retained placenta, respectively, at their farms. The respondents not only disposed off the infected placenta (35.6%), aborted fetus (39.6%), or feces (56.4%) from a diarrheic animal but also gave intrauterine medication (23.2%) bare-handedly. About 3.6-69.6% respondents consumed uncooked or unpasteurized animal products. About 84.8%, 46.0%, 32.8%, 4.61%, and 92.4% of livestock farmers were aware of zoonotic nature of rabies, brucellosis, tuberculosis, anthrax, and bird flu, respectively. The 55.6%, 67.2%, 52.0%, 64.0%, and 51.2% respondents were aware of the transmission of zoonotic diseases to human being through contaminated milk, meat, air, feed, or through contact with infected animals, respectively. The transmission of rabies through dog bite (98.4%), need of post

  19. A Unified Framework for the Infection Dynamics of Zoonotic Spillover and Spread.

    PubMed

    Lo Iacono, Giovanni; Cunningham, Andrew A; Fichet-Calvet, Elisabeth; Garry, Robert F; Grant, Donald S; Leach, Melissa; Moses, Lina M; Nichols, Gordon; Schieffelin, John S; Shaffer, Jeffrey G; Webb, Colleen T; Wood, James L N

    2016-09-01

    A considerable amount of disease is transmitted from animals to humans and many of these zoonoses are neglected tropical diseases. As outbreaks of SARS, avian influenza and Ebola have demonstrated, however, zoonotic diseases are serious threats to global public health and are not just problems confined to remote regions. There are two fundamental, and poorly studied, stages of zoonotic disease emergence: 'spillover', i.e. transmission of pathogens from animals to humans, and 'stuttering transmission', i.e. when limited human-to-human infections occur, leading to self-limiting chains of transmission. We developed a transparent, theoretical framework, based on a generalization of Poisson processes with memory of past human infections, that unifies these stages. Once we have quantified pathogen dynamics in the reservoir, with some knowledge of the mechanism of contact, the approach provides a tool to estimate the likelihood of spillover events. Comparisons with independent agent-based models demonstrates the ability of the framework to correctly estimate the relative contributions of human-to-human vs animal transmission. As an illustrative example, we applied our model to Lassa fever, a rodent-borne, viral haemorrhagic disease common in West Africa, for which data on human outbreaks were available. The approach developed here is general and applicable to a range of zoonoses. This kind of methodology is of crucial importance for the scientific, medical and public health communities working at the interface between animal and human diseases to assess the risk associated with the disease and to plan intervention and appropriate control measures. The Lassa case study revealed important knowledge gaps, and opportunities, arising from limited knowledge of the temporal patterns in reporting, abundance of and infection prevalence in, the host reservoir.

  20. A Quantitative and Novel Approach to the Prioritization of Zoonotic Diseases in North America: A Public Perspective

    PubMed Central

    Ng, Victoria; Sargeant, Jan M.

    2012-01-01

    Background Zoonoses account for over half of all communicable diseases causing illness in humans. As there are limited resources available for the control and prevention of zoonotic diseases, a framework for their prioritization is necessary to ensure resources are directed into those of highest importance. Although zoonotic outbreaks are a significant burden of disease in North America, the systematic prioritization of zoonoses in this region has not been previously evaluated. Methodology/Principal Findings This study describes the novel use of a well-established quantitative method, conjoint analysis (CA), to identify the relative importance of 21 key characteristics of zoonotic diseases that can be used for their prioritization in Canada and the US. Relative importance weights from the CA were used to develop a point-scoring system to derive a recommended list of zoonoses for prioritization in Canada and the US. Over 1,500 participants from the general public were recruited to complete the online survey (761 from Canada and 778 from the US). Hierarchical Bayes models were fitted to the survey data to derive CA-weighted scores. Scores were applied to 62 zoonotic diseases of public health importance in Canada and the US to rank diseases in order of priority. Conclusions/Significance This was the first study to describe a systematic and quantitative approach to the prioritization of zoonoses in North America involving public participants. We found individuals with no prior knowledge or experience in prioritizing zoonoses were capable of producing meaningful results using CA as a novel quantitative approach to prioritization. More similarities than differences were observed between countries suggesting general agreement in disease prioritization between Canadians and Americans. We demonstrate CA as a potential tool for the prioritization of zoonoses; other prioritization exercises may also consider this approach. PMID:23133639

  1. Capacity building efforts and perceptions for wildlife surveillance to detect zoonotic pathogens: comparing stakeholder perspectives.

    PubMed

    Schwind, Jessica S; Goldstein, Tracey; Thomas, Kate; Mazet, Jonna A K; Smith, Woutrina A

    2014-07-04

    The capacity to conduct zoonotic pathogen surveillance in wildlife is critical for the recognition and identification of emerging health threats. The PREDICT project, a component of United States Agency for International Development's Emerging Pandemic Threats program, has introduced capacity building efforts to increase zoonotic pathogen surveillance in wildlife in global 'hot spot' regions where zoonotic disease emergence is likely to occur. Understanding priorities, challenges, and opportunities from the perspectives of the stakeholders is a key component of any successful capacity building program. A survey was administered to wildlife officials and to PREDICT-implementing in-country project scientists in 16 participating countries in order to identify similarities and differences in perspectives between the groups regarding capacity needs for zoonotic pathogen surveillance in wildlife. Both stakeholder groups identified some human-animal interfaces (i.e. areas of high contact between wildlife and humans with the potential risk for disease transmission), such as hunting and markets, as important for ongoing targeting of wildlife surveillance. Similarly, findings regarding challenges across stakeholder groups showed some agreement in that a lack of sustainable funding across regions was the greatest challenge for conducting wildlife surveillance for zoonotic pathogens (wildlife officials: 96% and project scientists: 81%). However, the opportunity for improving zoonotic pathogen surveillance capacity identified most frequently by wildlife officials as important was increasing communication or coordination among agencies, sectors, or regions (100% of wildlife officials), whereas the most frequent opportunities identified as important by project scientists were increasing human capacity, increasing laboratory capacity, and the growing interest or awareness regarding wildlife disease or surveillance programs (all identified by 69% of project scientists). A One

  2. Hepatitis E Virus: Foodborne, Waterborne and Zoonotic Transmission

    PubMed Central

    Yugo, Danielle M.; Meng, Xiang-Jin

    2013-01-01

    Hepatitis E virus (HEV) is responsible for epidemics and endemics of acute hepatitis in humans, mainly through waterborne, foodborne, and zoonotic transmission routes. HEV is a single-stranded, positive-sense RNA virus classified in the family Hepeviridae and encompasses four known Genotypes (1–4), at least two new putative genotypes of mammalian HEV, and one floating genus of avian HEV. Genotypes 1 and 2 HEVs only affect humans, while Genotypes 3 and 4 are zoonotic and responsible for sporadic and autochthonous infections in both humans and several other animal species worldwide. HEV has an ever-expanding host range and has been identified in numerous animal species. Swine serve as a reservoir species for HEV transmission to humans; however, it is likely that other animal species may also act as reservoirs. HEV poses an important public health concern with cases of the disease definitively linked to handling of infected pigs, consumption of raw and undercooked animal meats, and animal manure contamination of drinking or irrigation water. Infectious HEV has been identified in numerous sources of concern including animal feces, sewage water, inadequately-treated water, contaminated shellfish and produce, as well as animal meats. Many aspects of HEV pathogenesis, replication, and immunological responses remain unknown, as HEV is an extremely understudied but important human pathogen. This article reviews the current understanding of HEV transmission routes with emphasis on food and environmental sources and the prevalence of HEV in animal species with zoonotic potential in humans. PMID:24071919

  3. Distribution and decline of human pathogenic bacteria in soil after application in irrigation water and the potential for soil-splash-mediated dispersal onto fresh produce.

    PubMed

    Monaghan, J M; Hutchison, M L

    2012-05-01

    To improve our understanding of the survival and splash-mediated transfer of zoonotic agents and faecal indicator bacteria introduced into soils used for crop cultivation via contaminated irrigation waters. Zoonotic agents and an Escherichia coli marker bacterium were inoculated into borehole water, which was applied to two different soil types in early-, mid- and late summer. Decline of the zoonotic agents was influenced by soil type. Marker bacteria applied to columns of two soil types in irrigation water did not concentrate at the surface of the soils. Decline of zoonotic agents at the surface was influenced by soil type and environmental conditions. Typically, declines were rapid and bacteria were not detectable after 5 weeks. Selective agar strips were used to determine that the impact of water drops 24-87 μl could splash marker bacteria from soil surfaces horizontal distances of at least 25 cm and heights of 20 cm. Soil splash created by rain-sized water droplets can transfer enteric bacteria from soil to ready-to-eat crops. Persistence of zoonotic agents was reduced at the hottest part of the growing season when irrigation is most likely. Soil splash can cause crop contamination. We report the penetration depths and seasonally influenced declines of bacteria applied in irrigation water into two soil types. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  4. Genetic blueprint of the zoonotic pathogen Toxocara canis

    PubMed Central

    Zhu, Xing-Quan; Korhonen, Pasi K.; Cai, Huimin; Young, Neil D.; Nejsum, Peter; von Samson-Himmelstjerna, Georg; Boag, Peter R.; Tan, Patrick; Li, Qiye; Min, Jiumeng; Yang, Yulan; Wang, Xiuhua; Fang, Xiaodong; Hall, Ross S.; Hofmann, Andreas; Sternberg, Paul W.; Jex, Aaron R.; Gasser, Robin B.

    2015-01-01

    Toxocara canis is a zoonotic parasite of major socioeconomic importance worldwide. In humans, this nematode causes disease (toxocariasis) mainly in the under-privileged communities in developed and developing countries. Although relatively well studied from clinical and epidemiological perspectives, to date, there has been no global investigation of the molecular biology of this parasite. Here we use next-generation sequencing to produce a draft genome and transcriptome of T. canis to support future biological and biotechnological investigations. This genome is 317 Mb in size, has a repeat content of 13.5% and encodes at least 18,596 protein-coding genes. We study transcription in a larval, as well as adult female and male stages, characterize the parasite’s gene-silencing machinery, explore molecules involved in development or host–parasite interactions and predict intervention targets. The draft genome of T. canis should provide a useful resource for future molecular studies of this and other, related parasites. PMID:25649139

  5. Dynamics of a Global Zoonotic Research Network Over 33 Years (1980-2012).

    PubMed

    Hossain, Liaquat; Karimi, Faezeh; Wigand, Rolf T

    2015-10-01

    The increasing rate of outbreaks in humans of zoonotic diseases requires detailed examination of the education, research, and practice of animal health and its connection to human health. This study investigated the collaboration network of different fields engaged in conducting zoonotic research from a transdisciplinary perspective. Examination of the dynamics of this network for a 33-year period from 1980 to 2012 is presented through the development of a large scientometric database from Scopus. In our analyses we compared several properties of these networks, including density, clustering coefficient, giant component, and centrality measures over time. We also elicited patterns in different fields of study collaborating with various other fields for zoonotic research. We discovered that the strongest collaborations across disciplines are formed among the fields of medicine; biochemistry, genetics, and molecular biology; immunology and microbiology; veterinary; agricultural and biological sciences; and social sciences. Furthermore, the affiliation network is growing overall in terms of collaborative research among different fields of study such that more than two-thirds of all possible collaboration links among disciplines have already been formed. Our findings indicate that zoonotic research scientists in different fields (human or animal health, social science, earth and environmental sciences, engineering) have been actively collaborating with each other over the past 11 years.

  6. Adaptive pathways of zoonotic influenza viruses: from exposure to establishment in humans.

    PubMed

    Reperant, Leslie A; Kuiken, Thijs; Osterhaus, Albert D M E

    2012-06-22

    Human influenza viruses have their ultimate origin in avian reservoirs and may adapt, either directly or after passage through another mammalian species, to circulate independently in the human population. Three sets of barriers must be crossed by a zoonotic influenza virus before it can become a human virus: animal-to-human transmission barriers; virus-cell interaction barriers; and human-to-human transmission barriers. Adaptive changes allowing zoonotic influenza viruses to cross these barriers have been studied extensively, generating key knowledge for improved pandemic preparedness. Most of these adaptive changes link acquired genetic alterations of the virus to specific adaptation mechanisms that can be screened for, both genetically and phenotypically, as part of zoonotic influenza virus surveillance programs. Human-to-human transmission barriers are only sporadically crossed by zoonotic influenza viruses, eventually triggering a worldwide influenza outbreak or pandemic. This is the most devastating consequence of influenza virus cross-species transmission. Progress has been made in identifying some of the determinants of influenza virus transmissibility. However, interdisciplinary research is needed to further characterize these ultimate barriers to the development of influenza pandemics, at both the level of the individual host and that of the population. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Zoonotic potential of Escherichia coli isolates from retail chicken meat products and eggs.

    PubMed

    Mitchell, Natalie M; Johnson, James R; Johnston, Brian; Curtiss, Roy; Mellata, Melha

    2015-02-01

    Chicken products are suspected as a source of extraintestinal pathogenic Escherichia coli (ExPEC), which causes diseases in humans. The zoonotic risk to humans from chicken-source E. coli is not fully elucidated. To clarify the zoonotic risk posed by ExPEC in chicken products and to fill existing knowledge gaps regarding ExPEC zoonosis, we evaluated the prevalence of ExPEC on shell eggs and compared virulence-associated phenotypes between ExPEC and non-ExPEC isolates from both chicken meat and eggs. The prevalence of ExPEC among egg-source isolates was low, i.e., 5/108 (4.7%). Based on combined genotypic and phenotypic screening results, multiple human and avian pathotypes were represented among the chicken-source ExPEC isolates, including avian-pathogenic E. coli (APEC), uropathogenic E. coli (UPEC), neonatal meningitis E. coli (NMEC), and sepsis-associated E. coli (SEPEC), as well as an undefined ExPEC group, which included isolates with fewer virulence factors than the APEC, UPEC, and NMEC isolates. These findings document a substantial prevalence of human-pathogenic ExPEC-associated genes and phenotypes among E. coli isolates from retail chicken products and identify key virulence traits that could be used for screening. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Zoonotic Potential of Escherichia coli Isolates from Retail Chicken Meat Products and Eggs

    PubMed Central

    Mitchell, Natalie M.; Johnson, James R.; Johnston, Brian; Curtiss, Roy

    2014-01-01

    Chicken products are suspected as a source of extraintestinal pathogenic Escherichia coli (ExPEC), which causes diseases in humans. The zoonotic risk to humans from chicken-source E. coli is not fully elucidated. To clarify the zoonotic risk posed by ExPEC in chicken products and to fill existing knowledge gaps regarding ExPEC zoonosis, we evaluated the prevalence of ExPEC on shell eggs and compared virulence-associated phenotypes between ExPEC and non-ExPEC isolates from both chicken meat and eggs. The prevalence of ExPEC among egg-source isolates was low, i.e., 5/108 (4.7%). Based on combined genotypic and phenotypic screening results, multiple human and avian pathotypes were represented among the chicken-source ExPEC isolates, including avian-pathogenic E. coli (APEC), uropathogenic E. coli (UPEC), neonatal meningitis E. coli (NMEC), and sepsis-associated E. coli (SEPEC), as well as an undefined ExPEC group, which included isolates with fewer virulence factors than the APEC, UPEC, and NMEC isolates. These findings document a substantial prevalence of human-pathogenic ExPEC-associated genes and phenotypes among E. coli isolates from retail chicken products and identify key virulence traits that could be used for screening. PMID:25480753

  9. Zoonotic importance of canine scabies and dermatophytosis in relation to knowledge level of dog owners.

    PubMed

    Raval, Heli S; Nayak, J B; Patel, B M; Bhadesiya, C M

    2015-06-01

    The present study was undertaken to understand the zoonotic importance of canine scabies and dermatophytosis with special reference to the knowledge level of dog owners in urban areas of Gujarat. The study was carried out in randomly selected 120 dog owners of 3 urban cities (viz., Ahmedabad, Anand and Vadodara) of Gujarat state, India. Dog owners (i.e., respondents) were subjected to a detailed interview regarding the zoonotic importance of canine scabies and dermatophytosis in dogs. Ex-post-facto research design was selected because of the independent variables of the selected respondent population for the study. The crucial method used in collecting data was a field survey to generate null hypothesis (Ho1). Available data was subjected to statistical analysis. The three independent variables, viz., extension contact (r=0.522**), mass-media exposure (r=0.205*) and management orientation (r=0.264**) had significant relationship with knowledge of dog owners about zoonotic diseases. Other independent variables, viz., education, experience in dog keeping and housing space were observed to have negative and non-significant relationship with knowledge of dog owners about zoonotic diseases. Extension contact, exposure to extension mass-media, management orientation and innovation proneness among dog owners of 3 urban cities of Gujarat state had significant relationship with knowledge of dog owners on zoonotic aspects of canine scabies and dermatophytosis. Data provided new insights on the present status of zoonotic disease-awareness, which would be an aid to plan preventive measures.

  10. Zoonotic Leprosy in the Southeastern United States

    PubMed Central

    Sharma, Rahul; Singh, Pushpendra; Loughry, W.J.; Lockhart, J. Mitchell; Inman, W. Barry; Duthie, Malcolm S.; Pena, Maria T.; Marcos, Luis A.; Scollard, David M.; Cole, Stewart T.

    2015-01-01

    Nine-banded armadillos (Dasypus novemcinctus) are naturally infected with Mycobacterium leprae and have been implicated in zoonotic transmission of leprosy. Early studies found this disease mainly in Texas and Louisiana, but armadillos in the southeastern United States appeared to be free of infection. We screened 645 armadillos from 8 locations in the southeastern United States not known to harbor enzootic leprosy for M. leprae DNA and antibodies. We found M. leprae–infected armadillos at each location, and 106 (16.4%) animals had serologic/PCR evidence of infection. Using single-nucleotide polymorphism variable number tandem repeat genotyping/genome sequencing, we detected M. leprae genotype 3I-2-v1 among 35 armadillos. Seven armadillos harbored a newly identified genotype (3I-2-v15). In comparison, 52 human patients from the same region were infected with 31 M. leprae types. However, 42.3% (22/52) of patients were infected with 1 of the 2 M. leprae genotype strains associated with armadillos. The geographic range and complexity of zoonotic leprosy is expanding. PMID:26583204

  11. Mapping the zoonotic niche of Lassa fever in Africa

    PubMed Central

    Mylne, Adrian Q. N.; Pigott, David M.; Longbottom, Joshua; Shearer, Freya; Duda, Kirsten A.; Messina, Jane P.; Weiss, Daniel J.; Moyes, Catherine L.; Golding, Nick; Hay, Simon I.

    2015-01-01

    Background Lassa fever is a viral haemorrhagic illness responsible for disease outbreaks across West Africa. It is a zoonosis, with the primary reservoir species identified as the Natal multimammate mouse, Mastomys natalensis. The host is distributed across sub-Saharan Africa while the virus' range appears to be restricted to West Africa. The majority of infections result from interactions between the animal reservoir and human populations, although secondary transmission between humans can occur, particularly in hospital settings. Methods Using a species distribution model, the locations of confirmed human and animal infections with Lassa virus (LASV) were used to generate a probabilistic surface of zoonotic transmission potential across sub-Saharan Africa. Results Our results predict that 37.7 million people in 14 countries, across much of West Africa, live in areas where conditions are suitable for zoonotic transmission of LASV. Four of these countries, where at-risk populations are predicted, have yet to report any cases of Lassa fever. Conclusions These maps act as a spatial guide for future surveillance activities to better characterise the geographical distribution of the disease and understand the anthropological, virological and zoological interactions necessary for viral transmission. Combining this zoonotic niche map with detailed patient travel histories can aid differential diagnoses of febrile illnesses, enabling a more rapid response in providing care and reducing the risk of onward transmission. PMID:26085474

  12. Brucellosis caused by the wood rat pathogen Brucella neotomae: two case reports.

    PubMed

    Villalobos-Vindas, Juan M; Amuy, Ernesto; Barquero-Calvo, Elías; Rojas, Norman; Chacón-Díaz, Carlos; Chaves-Olarte, Esteban; Guzman-Verri, Caterina; Moreno, Edgardo

    2017-12-19

    Brucellosis is a chronic bacterial disease caused by members of the genus Brucella. Among the classical species stands Brucella neotomae, until now, a pathogen limited to wood rats. However, we have identified two brucellosis human cases caused by B. neotomae, demonstrating that this species has zoonotic potential. Within almost 4 years of each other, a 64-year-old Costa Rican white Hispanic man and a 51-year-old Costa Rican white Hispanic man required medical care at public hospitals of Costa Rica. Their hematological and biochemical parameters were within normal limits. No adenopathies or visceral abnormalities were found. Both patients showed intermittent fever, disorientation, and general malaise and a positive Rose Bengal test compatible with Brucella infection. Blood and cerebrospinal fluid cultures rendered Gram-negative coccobacilli identified by genomic analysis as B. neotomae. After antibiotic treatment, the patients recovered with normal mental activities. This is the first report describing in detail the clinical disease caused by B. neotomae in two unrelated patients. In spite of previous claims, this bacterium keeps zoonotic potential. Proposals to generate vaccines by using B. neotomae as an immunogen must be reexamined and countries housing the natural reservoir must consider the zoonotic risk.

  13. A systematic review of zoonotic enteric parasitic diseases among nomadic and pastoral people

    PubMed Central

    Davaasuren, Anu; Baasandagva, Uyanga; Gray, Gregory C.

    2017-01-01

    Introduction Zoonotic enteric parasites are ubiquitous and remain a public health threat to humans due to our close relationship with domestic animals and wildlife, inadequate water, sanitation, and hygiene practices and diet. While most communities are now sedentary, nomadic and pastoral populations still exist and experience unique exposure risks for acquiring zoonotic enteric parasites. Through this systematic review we sought to summarize published research regarding pathogens present in nomadic populations and to identify the risk factors for their infection. Methods Using systematic review guidelines set forth by PRISMA, research articles were identified, screened and summarized based on exclusion criteria for the documented presence of zoonotic enteric parasites within nomadic or pastoral human populations. A total of 54 articles published between 1956 and 2016 were reviewed to determine the pathogens and exposure risks associated with the global transhumance lifestyle. Results The included articles reported more than twenty different zoonotic enteric parasite species and illustrated several risk factors for nomadic and pastoralist populations to acquire infection including; a) animal contact, b) food preparation and diet, and c) household characteristics. The most common parasite studied was Echinococcosis spp. and contact with dogs was recognized as a leading risk factor for zoonotic enteric parasites followed by contact with livestock and/or wildlife, water, sanitation, and hygiene barriers, home slaughter of animals, environmental water exposures, household member age and sex, and consumption of unwashed produce or raw, unprocessed, or undercooked milk or meat. Conclusion Nomadic and pastoral communities are at risk of infection with a variety of zoonotic enteric parasites due to their living environment, cultural and dietary traditions, and close relationship to animals. Global health efforts aimed at reducing the transmission of these animal

  14. A systematic review of zoonotic enteric parasitic diseases among nomadic and pastoral people.

    PubMed

    Barnes, Amber N; Davaasuren, Anu; Baasandagva, Uyanga; Gray, Gregory C

    2017-01-01

    Zoonotic enteric parasites are ubiquitous and remain a public health threat to humans due to our close relationship with domestic animals and wildlife, inadequate water, sanitation, and hygiene practices and diet. While most communities are now sedentary, nomadic and pastoral populations still exist and experience unique exposure risks for acquiring zoonotic enteric parasites. Through this systematic review we sought to summarize published research regarding pathogens present in nomadic populations and to identify the risk factors for their infection. Using systematic review guidelines set forth by PRISMA, research articles were identified, screened and summarized based on exclusion criteria for the documented presence of zoonotic enteric parasites within nomadic or pastoral human populations. A total of 54 articles published between 1956 and 2016 were reviewed to determine the pathogens and exposure risks associated with the global transhumance lifestyle. The included articles reported more than twenty different zoonotic enteric parasite species and illustrated several risk factors for nomadic and pastoralist populations to acquire infection including; a) animal contact, b) food preparation and diet, and c) household characteristics. The most common parasite studied was Echinococcosis spp. and contact with dogs was recognized as a leading risk factor for zoonotic enteric parasites followed by contact with livestock and/or wildlife, water, sanitation, and hygiene barriers, home slaughter of animals, environmental water exposures, household member age and sex, and consumption of unwashed produce or raw, unprocessed, or undercooked milk or meat. Nomadic and pastoral communities are at risk of infection with a variety of zoonotic enteric parasites due to their living environment, cultural and dietary traditions, and close relationship to animals. Global health efforts aimed at reducing the transmission of these animal-to-human pathogens must incorporate a One Health

  15. Zoonotic importance of canine scabies and dermatophytosis in relation to knowledge level of dog owners

    PubMed Central

    Raval, Heli S.; Nayak, J. B.; Patel, B. M.; Bhadesiya, C. M.

    2015-01-01

    Aim: The present study was undertaken to understand the zoonotic importance of canine scabies and dermatophytosis with special reference to the knowledge level of dog owners in urban areas of Gujarat. Materials and Methods: The study was carried out in randomly selected 120 dog owners of 3 urban cities (viz., Ahmedabad, Anand and Vadodara) of Gujarat state, India. Dog owners (i.e., respondents) were subjected to a detailed interview regarding the zoonotic importance of canine scabies and dermatophytosis in dogs. Ex-post-facto research design was selected because of the independent variables of the selected respondent population for the study. The crucial method used in collecting data was a field survey to generate null hypothesis (Ho1). Available data was subjected to statistical analysis. Results: The three independent variables, viz., extension contact (r=0.522**), mass-media exposure (r=0.205*) and management orientation (r=0.264**) had significant relationship with knowledge of dog owners about zoonotic diseases. Other independent variables, viz., education, experience in dog keeping and housing space were observed to have negative and non-significant relationship with knowledge of dog owners about zoonotic diseases. Conclusion: Extension contact, exposure to extension mass-media, management orientation and innovation proneness among dog owners of 3 urban cities of Gujarat state had significant relationship with knowledge of dog owners on zoonotic aspects of canine scabies and dermatophytosis. Data provided new insights on the present status of zoonotic disease-awareness, which would be an aid to plan preventive measures. PMID:27065644

  16. Slaughterhouse pigs are a major reservoir of Streptococcus suis serotype 2 capable of causing human infection in southern Vietnam.

    PubMed

    Ngo, Thi Hoa; Tran, Thi Bich Chieu; Tran, Thi Thu Nga; Nguyen, Van Dung; Campbell, James; Pham, Hong Anh; Huynh, Huu Tho; Nguyen, Van Vinh Chau; Bryant, Juliet E; Tran, Tinh Hien; Farrar, Jeremy; Schultsz, Constance

    2011-03-28

    Streptococcus suis is a pathogen of major economic significance to the swine industry and is increasingly recognized as an emerging zoonotic agent in Asia. In Vietnam, S. suis is the leading cause of bacterial meningitis in adult humans. Zoonotic transmission is most frequently associated with serotype 2 strains and occupational exposure to pigs or consumption of infected pork. To gain insight into the role of pigs for human consumption as a reservoir for zoonotic infection in southern Vietnam, we determined the prevalence and diversity of S. suis carriage in healthy slaughterhouse pigs. Nasopharyngeal tonsils were sampled from pigs at slaughterhouses serving six provinces in southern Vietnam and Ho Chi Minh City area from September 2006 to November 2007. Samples were screened by bacterial culture. Isolates of S. suis were serotyped and characterized by multi locus sequence typing (MLST) and pulse field gel electrophoresis (PFGE). Antibiotic susceptibility profiles and associated genetic resistance determinants, and the presence of putative virulence factors were determined. 41% (222/542) of pigs carried S. suis of one or multiple serotypes. 8% (45/542) carried S. suis serotype 2 which was the most common serotype found (45/317 strains, 14%). 80% of serotype 2 strains belonged to the MLST clonal complex 1,which was previously associated with meningitis cases in Vietnam and outbreaks of severe disease in China in 1998 and 2005. These strains clustered with representative strains isolated from patients with meningitis in PFGE analysis, and showed similar antimicrobial resistance and virulence factor profiles. Slaughterhouse pigs are a major reservoir of S. suis serotype 2 capable of causing human infection in southern Vietnam. Strict hygiene at processing facilities, and health education programs addressing food safety and proper handling of pork should be encouraged.

  17. A Unified Framework for the Infection Dynamics of Zoonotic Spillover and Spread

    PubMed Central

    Cunningham, Andrew A.; Fichet-Calvet, Elisabeth; Garry, Robert F.; Grant, Donald S.; Leach, Melissa; Moses, Lina M.; Nichols, Gordon; Schieffelin, John S.; Shaffer, Jeffrey G.; Webb, Colleen T.; Wood, James L. N.

    2016-01-01

    A considerable amount of disease is transmitted from animals to humans and many of these zoonoses are neglected tropical diseases. As outbreaks of SARS, avian influenza and Ebola have demonstrated, however, zoonotic diseases are serious threats to global public health and are not just problems confined to remote regions. There are two fundamental, and poorly studied, stages of zoonotic disease emergence: ‘spillover’, i.e. transmission of pathogens from animals to humans, and ‘stuttering transmission’, i.e. when limited human-to-human infections occur, leading to self-limiting chains of transmission. We developed a transparent, theoretical framework, based on a generalization of Poisson processes with memory of past human infections, that unifies these stages. Once we have quantified pathogen dynamics in the reservoir, with some knowledge of the mechanism of contact, the approach provides a tool to estimate the likelihood of spillover events. Comparisons with independent agent-based models demonstrates the ability of the framework to correctly estimate the relative contributions of human-to-human vs animal transmission. As an illustrative example, we applied our model to Lassa fever, a rodent-borne, viral haemorrhagic disease common in West Africa, for which data on human outbreaks were available. The approach developed here is general and applicable to a range of zoonoses. This kind of methodology is of crucial importance for the scientific, medical and public health communities working at the interface between animal and human diseases to assess the risk associated with the disease and to plan intervention and appropriate control measures. The Lassa case study revealed important knowledge gaps, and opportunities, arising from limited knowledge of the temporal patterns in reporting, abundance of and infection prevalence in, the host reservoir. PMID:27588425

  18. Prevalence of zoonotic intestinal parasites in domestic and stray dogs in a rural area of Iran.

    PubMed

    Beiromvand, Molouk; Akhlaghi, Lame; Fattahi Massom, Seyed Hossein; Meamar, Ahmad Reza; Motevalian, Abbas; Oormazdi, Hormozd; Razmjou, Elham

    2013-04-01

    Certain zoonotic parasites are enteropathogens in dogs that cause serious human disease such as cystic echinococcosis, human alveolar echinococcosis, visceral larva migrans, and ocular larva migrans. This study investigated the prevalence of intestinal parasites in dogs in the Chenaran County, Razavi Khorasan Province, Iran. Sampling was carried out randomly in 17 villages from November 2009 to January 2010. Seventy-seven fecal samples from 28 domestic and 49 stray dogs were examined using sieving/flotation and modified Ziehl-Neelsen staining. Intestinal parasites were found in 51 of the 77 (66%) dogs most common being Toxascaris leonina (29%, 22/77), Toxocara spp. (25%, 19/77), Eimeria spp. (19%, 15/77), Taenia/Echinococcus spp. (18%, 14/77), Sarcocystis spp. (17%, 13/77), and Dicrocoelium dendriticum (14%, 11/77). Lower infection rates of parasites were observed for Trichuris vulpis (6%, 5/77), Cryptosporidium spp. (5%, 4/77), and Physaloptera spp. (3%, 2/77). Prevalence of infection by Dipylidium caninum, Capillaria spp., Cystoisospora spp., and hookworms was similar (1%, 1/77). This study is the first report of the prevalence of intestinal parasites of domestic and stray dogs in Chenaran County, Northeast Iran. The higher prevalence of zoonotic intestinal parasites such as Toxascaris leonina, Toxocara spp. and Taenia/Echinococcus spp. compared to other parasites indicates the need for control programs to minimize the risk of transmission of zoonotic disease, particularly cystic echinococcosis, alveolar echinococcosis, visceral larva migrans, and ocular larva migrans to people living in these areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Awareness and practices regarding zoonotic influenza prevention in Romanian swine workers.

    PubMed

    Rabinowitz, Peter M; Huang, Eileen; Paccha, Blanca; Vegso, Sally; Gurzau, Anca

    2013-12-01

    Swine workers may play a key role in transmission of zoonotic influenza viruses. At the same time, little is known about the extent and effectiveness of influenza prevention programs for these at-risk workers. To characterize practices and attitudes regarding zoonotic influenza transmission among swine workers in Romania. We conducted a convenience survey of swine workers in Romania. The confidential survey included questions about awareness of zoonotic influenza risk, work tasks performed, flu vaccination status, and reported influenza-like illness. A total of 103 workers at seven farms completed the survey. The percentage of workers reporting concern about either contracting influenza from pigs or giving influenza to pigs was 78% and 70%, respectively. Although 60% of workers reported having a sick-leave policy at work, only 7% of workers reported receiving seasonal influenza vaccination during the past flu season. Only 5% of the workers reported flu-like illness during the past year while 3% of workers reported that pigs appeared sick with influenza over the same time period. The majority of workers reported using protective overalls and rubber boots during swine work, with lower rates of use of gloves. Reported use of respiratory protection was rare, and use of any personal protective equipment did not differ when pigs appeared ill. Despite awareness and concern regarding zoonotic influenza, Romanian swine workers report low rates of influenza vaccine or respiratory protection. As part of global pandemic influenza preparedness, enhanced prevention programs for swine workers should address such gaps. © 2013 Blackwell publishing Ltd.

  20. [The raccoon roundworm (Baylisascaris procyonis)--no zoonotic risk for Brandenburg?].

    PubMed

    Schwarz, Sabine; Sutor, Astrid; Mattis, Roswitha; Conraths, Franz Josef

    2015-01-01

    The aim of the present study was to investigate the presence of the raccoon roundworm (Baylisascaris [B.] procyonis), a dangerous zoonotic pathogen for humans, in raccoons living in the federal state of Brandenburg, Germany. In the years 2008 to 2013, a total of 762 raccoons, dating from hunting bags, were examined for intestinal helminths. No raccoon roundworm specimen was detected, but 27 samples were positive for Mesocestoides spp. Earlier studies had proved the presence of B. procyonis in Hesse and since 2005 the parasite has also been found in the western part of Saxony-Anhalt. The migration ability of raccoons may promote a further distribution of this parasite and could increase the risk for zoonotic infections in humans.

  1. Initial Identification and Characterization of an Emerging Zoonotic Influenza Prior to Pandemic Spread

    DTIC Science & Technology

    2010-11-01

    equally closely strains of both H1N2 influenza A virus of swine origin and H3N2 influenza A virus of avian origin. The expected matches for each of...Naval Health Research Center Initial Identification and Characterization of an Emerging Zoonotic Influenza Virus Prior to Pandemic Spread...10.1128/JCM.01336-10 PMCID: PMC3020883 Initial Identification and Characterization of an Emerging Zoonotic Influenza Virus Prior to Pandemic

  2. Kinetics of micronucleus induction and cytotoxicity caused by distinct antineoplastics and alkylating agents in vivo.

    PubMed

    Morales-Ramírez, Pedro; Vallarino-Kelly, Teresita; Cruz-Vallejo, Virginia

    2014-01-30

    This mini-review aims to compare the differences in the kinetics of the induction of micronucleated polychromatic erythrocytes (MN-PCE) and cytotoxicity by distinct antineoplastic and genotoxic agents in murine peripheral blood in vivo and to correlate these kinetics with the underlying processes. Comparisons were carried out using our previously obtained data with nominal doses causing similar levels of cytotoxicity, as measured in terms reduction of PCE. The aneuploidogens caused the most rapid induction of MN-PCEs and had the highest rates of cytotoxicity and genotoxicity. The promutagens cyclophosphamide and dimethylnitrosamine showed the most delayed responses and had the lowest genotoxic and cytotoxic efficiencies. DNA crosslinking agents had a similar delay of 4-5 h, greater than those of aneuploidogens, but differed in their cytotoxic and genotoxic efficiencies. Methylnitrosourea and 5-aza-cytidine caused greater delays than crosslinking agents. These delays can be due to the methylnitrosourea-mediated induction of formation of mono alkyl adducts which are interpreted as mismatches during DNA duplication, whereas 5-aza-cytidine requires incorporation into the DNA to induce breakage. This review allows us to conclude that the requirement for metabolic activation and the mechanisms of DNA breakage and of micronucleus induction are the main factors that affect the time of maximal MN-PCE induction. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Species loss on spatial patterns and composition of zoonotic parasites

    PubMed Central

    Harris, Nyeema C.; Dunn, Robert R.

    2013-01-01

    Species loss can result in the subsequent loss of affiliate species. Though largely ignored to date, these coextinctions can pose threats to human health by altering the composition, quantity and distribution of zoonotic parasites. We simulated host extinctions from more than 1300 host–parasite associations for 29 North American carnivores to investigate changes in parasite composition and species richness. We also explored the geography of zoonotic parasite richness under three carnivore composition scenarios and examined corresponding levels of human exposure. We found that changes in parasite assemblages differed among parasite groups. Because viruses tend to be generalists, the proportion of parasites that are viruses increased as more carnivores went extinct. Coextinction of carnivore parasites is unlikely to be common, given that few specialist parasites exploit hosts of conservation concern. However, local extirpations of widespread carnivore hosts can reduce overall zoonotic richness and shift distributions of parasite-rich areas. How biodiversity influences disease risks remains the subject of debate. Our results make clear that hosts vary in their contribution to human health risks. As a consequence, so too does the loss (or gain) of particular hosts. Anticipating changes in host composition in future environments may help inform parasite conservation and disease mitigation efforts. PMID:24068356

  4. Vaccine Efficacy in Senescent Mice Challenged with Recombinant SARS-CoV Bearing Epidemic and Zoonotic Spike Variants

    PubMed Central

    Deming, Damon; Sheahan, Timothy; Heise, Mark; Yount, Boyd; Davis, Nancy; Sims, Amy; Suthar, Mehul; Harkema, Jack; Whitmore, Alan; Pickles, Raymond; West, Ande; Donaldson, Eric; Curtis, Kristopher; Johnston, Robert; Baric, Ralph

    2006-01-01

    Background In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) was identified as the etiological agent of severe acute respiratory syndrome, a disease characterized by severe pneumonia that sometimes results in death. SARS-CoV is a zoonotic virus that crossed the species barrier, most likely originating from bats or from other species including civets, raccoon dogs, domestic cats, swine, and rodents. A SARS-CoV vaccine should confer long-term protection, especially in vulnerable senescent populations, against both the 2003 epidemic strains and zoonotic strains that may yet emerge from animal reservoirs. We report the comprehensive investigation of SARS vaccine efficacy in young and senescent mice following homologous and heterologous challenge. Methods and Findings Using Venezuelan equine encephalitis virus replicon particles (VRP) expressing the 2003 epidemic Urbani SARS-CoV strain spike (S) glycoprotein (VRP-S) or the nucleocapsid (N) protein from the same strain (VRP-N), we demonstrate that VRP-S, but not VRP-N vaccines provide complete short- and long-term protection against homologous strain challenge in young and senescent mice. To test VRP vaccine efficacy against a heterologous SARS-CoV, we used phylogenetic analyses, synthetic biology, and reverse genetics to construct a chimeric virus (icGDO3-S) encoding a synthetic S glycoprotein gene of the most genetically divergent human strain, GDO3, which clusters among the zoonotic SARS-CoV. icGD03-S replicated efficiently in human airway epithelial cells and in the lungs of young and senescent mice, and was highly resistant to neutralization with antisera directed against the Urbani strain. Although VRP-S vaccines provided complete short-term protection against heterologous icGD03-S challenge in young mice, only limited protection was seen in vaccinated senescent animals. VRP-N vaccines not only failed to protect from homologous or heterologous challenge, but resulted in enhanced immunopathology with

  5. Mapping the zoonotic niche of Lassa fever in Africa.

    PubMed

    Mylne, Adrian Q N; Pigott, David M; Longbottom, Joshua; Shearer, Freya; Duda, Kirsten A; Messina, Jane P; Weiss, Daniel J; Moyes, Catherine L; Golding, Nick; Hay, Simon I

    2015-08-01

    Lassa fever is a viral haemorrhagic illness responsible for disease outbreaks across West Africa. It is a zoonosis, with the primary reservoir species identified as the Natal multimammate mouse, Mastomys natalensis. The host is distributed across sub-Saharan Africa while the virus' range appears to be restricted to West Africa. The majority of infections result from interactions between the animal reservoir and human populations, although secondary transmission between humans can occur, particularly in hospital settings. Using a species distribution model, the locations of confirmed human and animal infections with Lassa virus (LASV) were used to generate a probabilistic surface of zoonotic transmission potential across sub-Saharan Africa. Our results predict that 37.7 million people in 14 countries, across much of West Africa, live in areas where conditions are suitable for zoonotic transmission of LASV. Four of these countries, where at-risk populations are predicted, have yet to report any cases of Lassa fever. These maps act as a spatial guide for future surveillance activities to better characterise the geographical distribution of the disease and understand the anthropological, virological and zoological interactions necessary for viral transmission. Combining this zoonotic niche map with detailed patient travel histories can aid differential diagnoses of febrile illnesses, enabling a more rapid response in providing care and reducing the risk of onward transmission. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  6. Viral hemorrhagic fevers of animals caused by positive-stranded RNA viruses

    USDA-ARS?s Scientific Manuscript database

    Here we outline serious diseases of wildlife, food and fiber animals, and non-human primates that cause damaging economic effects on producers all over the world. While some zoonotic viruses that occasionally cause serious disease and death in humans are mentioned, the positive sense RNA viruses ge...

  7. Ecology and genetic structure of zoonotic Anisakis spp. from adriatic commercial fish species.

    PubMed

    Mladineo, Ivona; Poljak, Vedran

    2014-02-01

    Consumption of raw or thermally inadequately treated fishery products represents a public health risk, with the possibility of propagation of live Anisakis larvae, the causative agent of the zoonotic disease anisakidosis, or anisakiasis. We investigated the population dynamics of Anisakis spp. in commercially important fish-anchovies (Anisakis), sardines (Sardina pilchardus), European hake (Merluccius merluccius), whiting (Merlangius merlangus), chub mackerel (Scomber japonicus), and Atlantic bluefin tuna (Thunnus thynnus)-captured in the main Adriatic Sea fishing ground. We observed a significant difference in the numbers of parasite larvae (1 to 32) in individual hosts and between species, with most fish showing high or very high Anisakis population indices. Phylogenetic analysis confirmed that commercial fish in the Adriatic Sea are parasitized by Anisakis pegreffii (95.95%) and Anisakis simplex sensu stricto (4.05%). The genetic structure of A. pegreffii in demersal, pelagic, and top predator hosts was unstructured, and the highest frequency of haplotype sharing (n = 10) was between demersal and pelagic fish.

  8. Human ocular onchocerciasis caused by Onchocerca lupi (Spirurida, Onchocercidae) in Iran.

    PubMed

    Mowlavi, G; Farzbod, F; Kheirkhah, A; Mobedi, I; Bowman, D D; Naddaf, S R

    2014-06-01

    Cases of canine onchocerciasis caused by Onchocerca lupi are increasingly reported from Europe and the western United States of America. The zoonotic role of this parasite had already been suspected in Europe as the clinical signs and histopathology seen in two ocular cases from Albania and the Crimean region were very similar to those of canine ocular onchocerciasis. In the most recent reports of human onchocerciasis, O. lupi has been morphologically and molecularly identified as the causative agent of ocular infestation in two patients from Turkey, and one patient from Tunisia. Here, we report an additional case of nodular lesions involving two, and possibly more, immature worms in a patient from Iran. The parasite was found to belong to the genus Onchocerca based on morphological features and the species was confirmed as O. lupi from a partial sequence analysis of 12S ribosomal DNA.

  9. Survey of tick-borne zoonotic viruses in wild deer in Hokkaido, Japan.

    PubMed

    Uchida, Leo; Hayasaka, Daisuke; Ngwe Tun, Mya Myat; Morita, Kouichi; Muramatsu, Yasukazu; Hagiwara, Katsuro

    2018-04-19

    Tick-borne encephalitis (TBE) and severe fever with thrombocytopenia syndrome (SFTS) are both tick-borne zoonotic diseases caused by TBE virus (TBEV) and SFTS phlebovirus (SFTSV). In 2016, a second domestic TBE case was reported in Hokkaido, Japan, after an absence of 23 years. We conducted IgG ELISA for TBEV and SFTSV on 314 deer (Cervus nippon yesoensis) serum samples collected from 3 places in Hokkaido. There were 7 seropositive samples for TBEV but none for SFTSV by ELISA. The specificity of the 7 positive samples was confirmed by neutralization tests against TBEV, and 5 sera showed 320 to 640 of 50% focus reduction endpoint titers. Our results provide information about the infectious status of TBEV in wild deer in Hokkaido, Japan.

  10. Zoonotic Cryptosporidium Species in Animals Inhabiting Sydney Water Catchments

    PubMed Central

    Zahedi, Alireza; Monis, Paul; Aucote, Sarah; King, Brendon; Paparini, Andrea; Jian, Fuchun; Yang, Rongchang; Oskam, Charlotte; Ball, Andrew; Robertson, Ian; Ryan, Una

    2016-01-01

    Cryptosporidium is one of the most common zoonotic waterborne parasitic diseases worldwide and represents a major public health concern of water utilities in developed nations. As animals in catchments can shed human-infectious Cryptosporidium oocysts, determining the potential role of animals in dissemination of zoonotic Cryptosporidium to drinking water sources is crucial. In the present study, a total of 952 animal faecal samples from four dominant species (kangaroos, rabbits, cattle and sheep) inhabiting Sydney’s drinking water catchments were screened for the presence of Cryptosporidium using a quantitative PCR (qPCR) and positives sequenced at multiple loci. Cryptosporidium species were detected in 3.6% (21/576) of kangaroos, 7.0% (10/142) of cattle, 2.3% (3/128) of sheep and 13.2% (14/106) of rabbit samples screened. Sequence analysis of a region of the 18S rRNA locus identified C. macropodum and C. hominis in 4 and 17 isolates from kangaroos respectively, C. hominis and C. parvum in 6 and 4 isolates respectively each from cattle, C. ubiquitum in 3 isolates from sheep and C. cuniculus in 14 isolates from rabbits. All the Cryptosporidium species identified were zoonotic species with the exception of C. macropodum. Subtyping using the 5’ half of gp60 identified C. hominis IbA10G2 (n = 12) and IdA15G1 (n = 2) in kangaroo faecal samples; C. hominis IbA10G2 (n = 4) and C. parvum IIaA18G3R1 (n = 4) in cattle faecal samples, C. ubiquitum subtype XIIa (n = 1) in sheep and C. cuniculus VbA23 (n = 9) in rabbits. Additional analysis of a subset of samples using primers targeting conserved regions of the MIC1 gene and the 3’ end of gp60 suggests that the C. hominis detected in these animals represent substantial variants that failed to amplify as expected. The significance of this finding requires further investigation but might be reflective of the ability of this C. hominis variant to infect animals. The finding of zoonotic Cryptosporidium species in these

  11. Zoonotic intestinal parasites of carnivores: A systematic review in Iran

    PubMed Central

    Sarvi, Shahabeddin; Daryani, Ahmad; Sharif, Mehdi; Rahimi, Mohammad Taghi; Kohansal, Mohammad Hasan; Mirshafiee, Siavash; Siyadatpanah, Abolghasem; Hosseini, Seyed-Abdollah; Gholami, Shirzad

    2018-01-01

    Aim: Parasitic infections, especially of the zoonotic-parasitic type, are the most important health, economic, and social problems in developing countries, including Iran. The aim of this study was to review systematically the available data on gastrointestinal parasites of carnivores in Iran and their ability to infect humans. Materials and Methods: Studies reporting intestinal parasites of carnivores were systematically collected from nine electronic English and Persian databases and Proceedings of Iranian parasitology and veterinary congresses published between 1997 and 2015. A total of 26 studies issued from 1997 to 2015 met the eligibility criteria. Results: The pooled proportion of intestinal parasites of carnivores was estimated as 80.4% (95% confidence interval=70.2-88.8%). The overall prevalence of gastrointestinal parasites in dogs, cats, foxes, and jackals were 57.89%, 90.62%, 89.17%, and 97.32%, respectively. Dipylidium caninum (20.45%), Toxocara spp. (18.81%), Taenia hydatigena (15.28%), Mesocestoides lineatus (11.83%), Echinococcus granulosus (10%), and Toxascaris leonina (8.69%) were the most frequently observed parasites. Conclusion: High prevalence rates of zoonotic intestinal parasites of carnivores particularly Echinococcus spp. and Toxocara spp. increase the risk of acquiring zoonotic infections such as cystic hydatid, alveolar cysts, and visceral or ocular larva migrants in Iranian people. Therefore, it is essential for public health centers to develop more effective control strategies to decrease infections rates in carnivores’ populations. PMID:29479158

  12. Zoonotic intestinal parasites and vector-borne pathogens in Italian shelter and kennel dogs.

    PubMed

    Traversa, Donato; Di Cesare, Angela; Simonato, Giulia; Cassini, Rudi; Merola, Carmine; Diakou, Anastasia; Halos, Lénaïg; Beugnet, Frederic; Frangipane di Regalbono, Antonio

    2017-04-01

    This study investigated the presence of zoonotic parasites and vector-borne pathogens in dogs housed in kennels and shelters from four sites of Italy. A total of 150 adoptable dogs was examined with different microscopic, serological and molecular methods. Overall 129 dogs (86%) were positive for one or more parasites and/or pathogens transmitted by ectoparasites. Forty-eight (32%) were positive for one infection, while 81 (54%) for more than one pathogen. The most common zoonotic helminths recorded were hookworms, roundworms and Capillaria aerophila, followed by mosquito-borne Dirofilaria spp. and Dipylidium caninum. One hundred and thirteen (77.9%), 6 (4.1%) and 2 (1.4%) dogs were positive for Rickettsia spp., Leishmania infantum and Anaplasma spp., respectively. The results show that dogs living in rescue facilities from the studied areas may be infected by many zoonotic internal parasites and vector-borne pathogens, and that control measures should be implemented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A Review of the Current Status of Relevant Zoonotic Pathogens in Wild Swine (Sus scrofa) Populations: Changes Modulating the Risk of Transmission to Humans.

    PubMed

    Ruiz-Fons, F

    2017-02-01

    Many wild swine populations in different parts of the World have experienced an unprecedented demographic explosion that may result in increased exposure of humans to wild swine zoonotic pathogens. Interactions between humans and wild swine leading to pathogen transmission could come from different ways, being hunters and game professionals the most exposed to acquiring infections from wild swine. However, increasing human settlements in semi-natural areas, outdoor activities, socio-economic changes and food habits may increase the rate of exposure to wild swine zoonotic pathogens and to potentially emerging pathogens from wild swine. Frequent and increasing contact rate between humans and wild swine points to an increasing chance of zoonotic pathogens arising from wild swine to be transmitted to humans. Whether this frequent contact could lead to new zoonotic pathogens emerging from wild swine to cause human epidemics or emerging disease outbreaks is difficult to predict, and assessment should be based on thorough epidemiologic surveillance. Additionally, several gaps in knowledge on wild swine global population dynamics trends and wild swine-zoonotic pathogen interactions should be addressed to correctly assess the potential role of wild swine in the emergence of diseases in humans. In this work, viruses such as hepatitis E virus, Japanese encephalitis virus, Influenza virus and Nipah virus, and bacteria such as Salmonella spp., Shiga toxin-producing Escherichia coli, Campylobacter spp. and Leptospira spp. have been identified as the most prone to be transmitted from wild swine to humans on the basis of geographic spread in wild swine populations worldwide, pathogen circulation rates in wild swine populations, wild swine population trends in endemic areas, susceptibility of humans to infection, transmissibility from wild swine to humans and existing evidence of wild swine-human transmission events. © 2015 Blackwell Verlag GmbH.

  14. Zoonotic Parasites of Sheltered and Stray Dogs in the Era of the Global Economic and Political Crisis.

    PubMed

    Otranto, Domenico; Dantas-Torres, Filipe; Mihalca, Andrei D; Traub, Rebecca J; Lappin, Michael; Baneth, Gad

    2017-10-01

    Sheltered and stray dogs, exposed to zoonotic parasites, including protozoa, helminths, and arthropods, may represent a major threat to public health. Resources for addressing health problems in these animals are not on the priority list of veterinary and public health authorities. Thus, dogs continue to represent an important reservoir for zoonotic parasites. In this article, we review the importance of sheltered and stray dogs as reservoirs of zoonotic parasites in different parts of the world, especially in the context of the current global political and economic crisis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Endocarditis caused by Streptococcus canis: an emerging zoonosis?

    PubMed

    Lacave, Guillaume; Coutard, Aymeric; Troché, Gilles; Augusto, Sandrine; Pons, Stéphanie; Zuber, Benjamin; Laurent, Virginie; Amara, Marlène; Couzon, Brigitte; Bédos, Jean-Pierre; Pangon, Béatrice; Grimaldi, David

    2016-02-01

    We report a human case of infective endocarditis caused by Streptococcus canis. Identification was carried out from positive blood culture using mass spectrometry and SodA gene sequencing. S. canis related zoonotic invasive infections may have been previously underdiagnosed due to inadequate identification of group G Streptococcus species.

  16. European bats as carriers of viruses with zoonotic potential.

    PubMed

    Kohl, Claudia; Kurth, Andreas

    2014-08-13

    Bats are being increasingly recognized as reservoir hosts of highly pathogenic and zoonotic emerging viruses (Marburg virus, Nipah virus, Hendra virus, Rabies virus, and coronaviruses). While numerous studies have focused on the mentioned highly human-pathogenic bat viruses in tropical regions, little is known on similar human-pathogenic viruses that may be present in European bats. Although novel viruses are being detected, their zoonotic potential remains unclear unless further studies are conducted. At present, it is assumed that the risk posed by bats to the general public is rather low. In this review, selected viruses detected and isolated in Europe are discussed from our point of view in regard to their human-pathogenic potential. All European bat species and their roosts are legally protected and some European species are even endangered. Nevertheless, the increasing public fear of bats and their viruses is an obstacle to their protection. Educating the public regarding bat lyssaviruses might result in reduced threats to both the public and the bats.

  17. International network for capacity building for the control of emerging viral vector-borne zoonotic diseases: ARBO-ZOONET.

    PubMed

    Ahmed, J; Bouloy, M; Ergonul, O; Fooks, Ar; Paweska, J; Chevalier, V; Drosten, C; Moormann, R; Tordo, N; Vatansever, Z; Calistri, P; Estrada-Pena, A; Mirazimi, A; Unger, H; Yin, H; Seitzer, U

    2009-03-26

    Arboviruses are arthropod-borne viruses, which include West Nile fever virus (WNFV), a mosquito-borne virus, Rift Valley fever virus (RVFV), a mosquito-borne virus, and Crimean-Congo haemorrhagic fever virus (CCHFV), a tick-borne virus. These arthropod-borne viruses can cause disease in different domestic and wild animals and in humans, posing a threat to public health because of their epidemic and zoonotic potential. In recent decades, the geographical distribution of these diseases has expanded. Outbreaks of WNF have already occurred in Europe, especially in the Mediterranean basin. Moreover, CCHF is endemic in many European countries and serious outbreaks have occurred, particularly in the Balkans, Turkey and Southern Federal Districts of Russia. In 2000, RVF was reported for the first time outside the African continent, with cases being confirmed in Saudi Arabia and Yemen. This spread was probably caused by ruminant trade and highlights that there is a threat of expansion of the virus into other parts of Asia and Europe. In the light of global warming and globalisation of trade and travel, public interest in emerging zoonotic diseases has increased. This is especially evident regarding the geographical spread of vector-borne diseases. A multi-disciplinary approach is now imperative, and groups need to collaborate in an integrated manner that includes vector control, vaccination programmes, improved therapy strategies, diagnostic tools and surveillance, public awareness, capacity building and improvement of infrastructure in endemic regions.

  18. Pathological findings in the red fox (Vulpes vulpes), stone marten (Martes foina) and raccoon dog (Nyctereutes procyonoides), with special emphasis on infectious and zoonotic agents in Northern Germany.

    PubMed

    Lempp, Charlotte; Jungwirth, Nicole; Grilo, Miguel L; Reckendorf, Anja; Ulrich, Arlena; van Neer, Abbo; Bodewes, Rogier; Pfankuche, Vanessa M; Bauer, Christian; Osterhaus, Albert D M E; Baumgärtner, Wolfgang; Siebert, Ursula

    2017-01-01

    Anthropogenic landscape changes contributed to the reduction of availability of habitats to wild animals. Hence, the presence of wild terrestrial carnivores in urban and peri-urban sites has increased considerably over the years implying an increased risk of interspecies spillover of infectious diseases and the transmission of zoonoses. The present study provides a detailed characterisation of the health status of the red fox (Vulpes vulpes), stone marten (Martes foina) and raccoon dog (Nyctereutes procyonoides) in their natural rural and peri-urban habitats in Schleswig-Holstein, Germany between November 2013 and January 2016 with focus on zoonoses and infectious diseases that are potentially threatening to other wildlife or domestic animal species. 79 red foxes, 17 stone martens and 10 raccoon dogs were collected from traps or hunts. In order to detect morphological changes and potential infectious diseases, necropsy and pathohistological work-up was performed. Additionally, in selected animals immunohistochemistry (influenza A virus, parvovirus, feline leukemia virus, Borna disease virus, tick-borne encephalitis, canine adenovirus, Neospora caninum, Toxoplasma gondii and Listeria monocytogenes), next-generation sequencing, polymerase chain reaction (fox circovirus) and serum-neutralisation analysis (canine distemper virus) were performed. Furthermore, all animals were screened for fox rabies virus (immunofluorescence), canine distemper virus (immunohistochemistry) and Aujeszky's disease (virus cultivation). The most important findings included encephalitis (n = 16) and pneumonia (n = 20). None of the investigations revealed a specific cause for the observed morphological alterations except for one animal with an elevated serum titer of 1:160 for canine distemper. Animals displayed macroscopically and/or histopathologically detectable infections with parasites, including Taenia sp., Toxocara sp. and Alaria alata. In summary, wildlife predators carry zoonotic

  19. Pathological findings in the red fox (Vulpes vulpes), stone marten (Martes foina) and raccoon dog (Nyctereutes procyonoides), with special emphasis on infectious and zoonotic agents in Northern Germany

    PubMed Central

    Grilo, Miguel L.; Reckendorf, Anja; Ulrich, Arlena; van Neer, Abbo; Bodewes, Rogier; Pfankuche, Vanessa M.; Bauer, Christian; Osterhaus, Albert D. M. E.; Baumgärtner, Wolfgang; Siebert, Ursula

    2017-01-01

    Anthropogenic landscape changes contributed to the reduction of availability of habitats to wild animals. Hence, the presence of wild terrestrial carnivores in urban and peri-urban sites has increased considerably over the years implying an increased risk of interspecies spillover of infectious diseases and the transmission of zoonoses. The present study provides a detailed characterisation of the health status of the red fox (Vulpes vulpes), stone marten (Martes foina) and raccoon dog (Nyctereutes procyonoides) in their natural rural and peri-urban habitats in Schleswig-Holstein, Germany between November 2013 and January 2016 with focus on zoonoses and infectious diseases that are potentially threatening to other wildlife or domestic animal species. 79 red foxes, 17 stone martens and 10 raccoon dogs were collected from traps or hunts. In order to detect morphological changes and potential infectious diseases, necropsy and pathohistological work-up was performed. Additionally, in selected animals immunohistochemistry (influenza A virus, parvovirus, feline leukemia virus, Borna disease virus, tick-borne encephalitis, canine adenovirus, Neospora caninum, Toxoplasma gondii and Listeria monocytogenes), next-generation sequencing, polymerase chain reaction (fox circovirus) and serum-neutralisation analysis (canine distemper virus) were performed. Furthermore, all animals were screened for fox rabies virus (immunofluorescence), canine distemper virus (immunohistochemistry) and Aujeszky’s disease (virus cultivation). The most important findings included encephalitis (n = 16) and pneumonia (n = 20). None of the investigations revealed a specific cause for the observed morphological alterations except for one animal with an elevated serum titer of 1:160 for canine distemper. Animals displayed macroscopically and/or histopathologically detectable infections with parasites, including Taenia sp., Toxocara sp. and Alaria alata. In summary, wildlife predators carry zoonotic

  20. Socio-demographic study on extent of knowledge, awareness, attitude, and risks of zoonotic diseases among livestock owners in Puducherry region

    PubMed Central

    Rajkumar, K.; Bhattacharya, A.; David, S.; Balaji, S. Hari; Hariharan, R.; Jayakumar, M.; Balaji, N.

    2016-01-01

    Aim: This study was conducted to assess the extent of knowledge, awareness, attitude, and risks of zoonotic diseases among livestock owners in Puducherry region. Materials and Methods: A total of 250 livestock farmers were selected randomly from eight revenue villages. And each farmer was interviewed with a questionnaire containing both open- and close-ended questions on various aspects of zoonotic diseases, a total of 49 questionnaires were framed to assess the source and transmission of infection to the farmers and to test their knowledge and awareness about zoonotic diseases. The data collected were analyzed by chi-square test using software Graph pad prism, and results were used to assess the relationship between education level and zoonotic disease awareness; risk of zoonotic diseases and its relation with independent variables. Results: The present survey analysis represents that most of the respondents are belonging to the age group of 41-60 years. About 42.8% of respondents’ household having a graduate. The most of the respondent are small-scale farmers and their monthly income was less than Rs. 10,000. About 61.2% of farmers were keeping their animal shed clean. About 29.6% of the respondents were ignorant about cleaning the dog bitten wound. Only 16.4% of respondents knew that diseases in animals can be transmitted to humans. Only 4.8%, 3.6%, 6.8%, and 22.4% of respondents knew about the zoonotic potential of diseases such as brucellosis, tuberculosis (TB), anthrax, and avian flu, respectively. Only 18% of the respondents were aware about zoonotic diseases from cattle. Regarding the list of zoonotic diseases contracted, 37.7% reported respiratory infection, 31.1% digestive disturbances, 15.5% had dermatological problem, and 15.5% reported indiscrete disease such as fever, body pain, and headache joint pain. From the respondent got the zoonotic disease (n=45), 51.2% of the respondent reported chronic infection and 48.8% of the respondent reported acute

  1. Antimicrobial Use for and Resistance of Zoonotic Bacteria Recovered from Nonhuman Primates.

    PubMed

    Kim, Jeffrey; Coble, Dondrae J; Salyards, Gregory W; Bower, Julie K; Rinaldi, William J; Plauche, Gail B; Habing, Gregory G

    2017-02-01

    As a growing threat to human and animal health, antimicrobial resistance (AMR) has become a central public-health topic. Largescale surveillance systems, such as the National Antimicrobial Resistance Monitoring System (NARMS), are now established to monitor and provide guidance regarding AMR, but comprehensive literature on AMR among NHP is sparse. This study provides data regarding current antimicrobial use strategies and the prevalence of AMR in zoonotic bacteria recovered from NHP within biomedical research institutions. We focused on 4 enteric bacteria: Shigella flexneri, Yersinia enterocolitica, Y. pseudotuberculosis, and Campylobacter jejuni. Fifteen veterinarians, 7 biomedical research institutions, and 4 diagnostic laboratories participated, providing susceptibility test results from January 2012 through April 2015. Veterinarians primarily treated cases caused by S. flexneri, Y. enterocolitica, and Y. pseudotuberculosis with enrofloxacin but treated C. jejuni cases with azithromycin and tylosin. All isolates were susceptible to the associated primary antimicrobial but often showed resistance to others. Specifically, S. flexneri isolates frequently were resistant to erythromycin (87.5%), doxycycline (73.7%), and tetracycline (38.3%); Y. enterocolitica isolates to ampicillin (100%) and cefazolin (93.6%); and C. jejuni isolates to methicillin (99.5%) and cephalothin (97.5%). None of the 58 Y. pseudotuber-culosis isolates was resistant to any tested antimicrobial. Notably, resistance patterns were not shared between this study's NHP isolates and human isolates presented by NARMS. Our findings indicate that zoonotic bacteria from NHP diagnostic samples are broadly susceptible to the antimicrobials used to treat the clinical infections. These results can help veterinarians ensure effective antimicrobial therapy and protect staff by minimizing occupational risk.

  2. Antimicrobial Use for and Resistance of Zoonotic Bacteria Recovered from Nonhuman Primates

    PubMed Central

    Kim, Jeffrey; Coble, Dondrae J; Salyards, Gregory W; Bower, Julie K; Rinaldi, William J; Plauche, Gail B; Habing, Gregory G

    2017-01-01

    As a growing threat to human and animal health, antimicrobial resistance (AMR) has become a central public-health topic. Large-scale surveillance systems, such as the National Antimicrobial Resistance Monitoring System (NARMS), are now established to monitor and provide guidance regarding AMR, but comprehensive literature on AMR among NHP is sparse. This study provides data regarding current antimicrobial use strategies and the prevalence of AMR in zoonotic bacteria recovered from NHP within biomedical research institutions. We focused on 4 enteric bacteria: Shigella flexneri, Yersinia enterocolitica, Y. pseudotuberculosis, and Campylobacter jejuni. Fifteen veterinarians, 7 biomedical research institutions, and 4 diagnostic laboratories participated, providing susceptibility test results from January 2012 through April 2015. Veterinarians primarily treated cases caused by S. flexneri, Y. enterocolitica, and Y. pseudotuberculosis with enrofloxacin but treated C. jejuni cases with azithromycin and tylosin. All isolates were susceptible to the associated primary antimicrobial but often showed resistance to others. Specifically, S. flexneri isolates frequently were resistant to erythromycin (87.5%), doxycycline (73.7%), and tetracycline (38.3%); Y. enterocolitica isolates to ampicillin (100%) and cefazolin (93.6%); and C. jejuni isolates to methicillin (99.5%) and cephalothin (97.5%). None of the 58 Y. pseudotuberculosis isolates was resistant to any tested antimicrobial. Notably, resistance patterns were not shared between this study's NHP isolates and human isolates presented by NARMS. Our findings indicate that zoonotic bacteria from NHP diagnostic samples are broadly susceptible to the antimicrobials used to treat the clinical infections. These results can help veterinarians ensure effective antimicrobial therapy and protect staff by minimizing occupational risk. PMID:28222842

  3. Biosecurity practices and causes of enteritis on Ontario meat rabbit farms

    PubMed Central

    Kylie, Jennifer; Brash, Marina; Whiteman, Ashley; Tapscott, Brian; Slavic, Durda; Weese, J. Scott; Turner, Patricia V.

    2017-01-01

    Infectious enterocolitis is a significant cause of mortality in meat rabbits. Disease risk is enhanced by intensive rearing practices and poor on-farm biosecurity. This investigation was undertaken in farmed meat rabbits during an Ontario-wide outbreak of enteritis with high mortality to determine the prevalence of causative agents. A survey evaluating on-farm biosecurity practices was also conducted to identify potential means of pathogen contamination and zoonotic risks. Gross and microscopic pathology evaluations combined with microbiologic testing were conducted on 95 rabbits over spring and winter months. Escherichia coli and Clostridium spiroforme were most commonly associated with enteritis in rabbits regardless of age or season and lesions were significantly more severe in mature does (P < 0.0001). The survey results demonstrated a lack of consistent on-farm biosecurity practices. The infectious nature of enteric disease of rabbits combined with poor biosecurity practices may contribute to disease transmission within and between farms. PMID:28588327

  4. Biosecurity practices and causes of enteritis on Ontario meat rabbit farms.

    PubMed

    Kylie, Jennifer; Brash, Marina; Whiteman, Ashley; Tapscott, Brian; Slavic, Durda; Weese, J Scott; Turner, Patricia V

    2017-06-01

    Infectious enterocolitis is a significant cause of mortality in meat rabbits. Disease risk is enhanced by intensive rearing practices and poor on-farm biosecurity. This investigation was undertaken in farmed meat rabbits during an Ontario-wide outbreak of enteritis with high mortality to determine the prevalence of causative agents. A survey evaluating on-farm biosecurity practices was also conducted to identify potential means of pathogen contamination and zoonotic risks. Gross and microscopic pathology evaluations combined with microbiologic testing were conducted on 95 rabbits over spring and winter months. Escherichia coli and Clostridium spiroforme were most commonly associated with enteritis in rabbits regardless of age or season and lesions were significantly more severe in mature does ( P < 0.0001). The survey results demonstrated a lack of consistent on-farm biosecurity practices. The infectious nature of enteric disease of rabbits combined with poor biosecurity practices may contribute to disease transmission within and between farms.

  5. Pathogenic Landscape of Transboundary Zoonotic Diseases in the Mexico-US Border Along the Rio Grande.

    PubMed

    Esteve-Gassent, Maria Dolores; Pérez de León, Adalberto A; Romero-Salas, Dora; Feria-Arroyo, Teresa P; Patino, Ramiro; Castro-Arellano, Ivan; Gordillo-Pérez, Guadalupe; Auclair, Allan; Goolsby, John; Rodriguez-Vivas, Roger Ivan; Estrada-Franco, Jose Guillermo

    2014-01-01

    Transboundary zoonotic diseases, several of which are vector borne, can maintain a dynamic focus and have pathogens circulating in geographic regions encircling multiple geopolitical boundaries. Global change is intensifying transboundary problems, including the spatial variation of the risk and incidence of zoonotic diseases. The complexity of these challenges can be greater in areas where rivers delineate international boundaries and encompass transitions between ecozones. The Rio Grande serves as a natural border between the US State of Texas and the Mexican States of Chihuahua, Coahuila, Nuevo León, and Tamaulipas. Not only do millions of people live in this transboundary region, but also a substantial amount of goods and people pass through it everyday. Moreover, it occurs over a region that functions as a corridor for animal migrations, and thus links the Neotropic and Nearctic biogeographic zones, with the latter being a known foci of zoonotic diseases. However, the pathogenic landscape of important zoonotic diseases in the south Texas-Mexico transboundary region remains to be fully understood. An international perspective on the interplay between disease systems, ecosystem processes, land use, and human behaviors is applied here to analyze landscape and spatial features of Venezuelan equine encephalitis, Hantavirus disease, Lyme Borreliosis, Leptospirosis, Bartonellosis, Chagas disease, human Babesiosis, and Leishmaniasis. Surveillance systems following the One Health approach with a regional perspective will help identifying opportunities to mitigate the health burden of those diseases on human and animal populations. It is proposed that the Mexico-US border along the Rio Grande region be viewed as a continuum landscape where zoonotic pathogens circulate regardless of national borders.

  6. Intestinal protozoan parasites with zoonotic potential in birds.

    PubMed

    Marietto-Gonçalves, G A; Fernandes, T M; Silva, R J; Lopes, R S; Andreatti Filho, R L

    2008-10-01

    The aim of this study was to evaluate the occurrence of potentially zoonotic intestinal protozoan infections in exotic and wildlife Brazilian birds. Fecal samples from 207 birds of 45 species were examined. Infections by Balantidium sp., Entamoeba sp., and Blastocystis sp. were observed in 17 individuals (8.2%) of Gnorimopsar chopi, Oryzoborus angolensis, Sporophila caerulescens, Ramphastos toco, Aratinga leucophtalmus, and Pavo cristatus.

  7. High Prevalence of Enterocytozoon bieneusi in Asymptomatic Pigs and Assessment of Zoonotic Risk at the Genotype Level

    PubMed Central

    Zhao, Wei; Zhang, Weizhe; Yang, Fengkun; Cao, Jianping; Liu, Hua; Yang, Dong; Shen, Yujuan

    2014-01-01

    Enterocytozoon bieneusi is an emerging and clinically significant enteric parasite infecting humans and animals and can cause life-threatening diarrhea in immunocompromised people. Pigs are considered to be one of the main reservoir hosts of E. bieneusi based on their high prevalence rates and zoonotic genotypes in pigs. As an opportunistic pathogen, E. bieneusi infection of pigs can be inapparent, which leads to neglect in detecting this parasite in pigs and assessing the epidemiological role of pigs in the transmission of human microsporidiosis. In the present study, 95 healthy pigs aged 2 or 3 months were randomly selected from three areas in Heilongjiang Province, China. E. bieneusi isolates were identified and genotyped based on the small-subunit (SSU) rRNA and internal transcribed spacer (ITS) regions of the rRNA gene by PCR and sequencing. A high prevalence of E. bieneusi was observed, 83.2% (79/95) at the SSU rRNA locus versus 89.5% (85/95) at the ITS locus. Ten ITS genotypes were obtained, comprising six known genotypes—EbpA (n = 30), D (n = 19), H (n = 18), O (n = 11), CS-1 (n = 1), and LW1 (n = 1)—and four novel genotypes named HLJ-I to HLJ-IV; 70.6% (60/85) of E. bieneusi genotypes were zoonotic (genotypes EbpA, D, and O). The findings of a high prevalence of E. bieneusi in pigs and a large percentage of zoonotic genotypes indicate that pigs may play a role in the transmission of E. bieneusi to humans and may become an important source of water contamination in our investigated areas. PMID:24727270

  8. Role of India's wildlife in the emergence and re-emergence of zoonotic pathogens, risk factors and public health implications.

    PubMed

    Singh, B B; Gajadhar, A A

    2014-10-01

    Evolving land use practices have led to an increase in interactions at the human/wildlife interface. The presence and poor knowledge of zoonotic pathogens in India's wildlife and the occurrence of enormous human populations interfacing with, and critically linked to, forest ecosystems warrant attention. Factors such as diverse migratory bird populations, climate change, expanding human population and shrinking wildlife habitats play a significant role in the emergence and re-emergence of zoonotic pathogens from India's wildlife. The introduction of a novel Kyasanur forest disease virus (family flaviviridae) into human populations in 1957 and subsequent occurrence of seasonal outbreaks illustrate the key role that India's wild animals play in the emergence and reemergence of zoonotic pathogens. Other high priority zoonotic diseases of wildlife origin which could affect both livestock and humans include influenza, Nipah, Japanese encephalitis, rabies, plague, leptospirosis, anthrax and leishmaniasis. Continuous monitoring of India's extensively diverse and dispersed wildlife is challenging, but their use as indicators should facilitate efficient and rapid disease-outbreak response across the region and occasionally the globe. Defining and prioritizing research on zoonotic pathogens in wildlife are essential, particularly in a multidisciplinary one-world one-health approach which includes human and veterinary medical studies at the wildlife-livestock-human interfaces. This review indicates that wild animals play an important role in the emergence and re-emergence of zoonotic pathogens and provides brief summaries of the zoonotic diseases that have occurred in wild animals in India. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Current knowledge and pending challenges in zoonosis caused by Mycobacterium bovis: a review.

    PubMed

    Pérez-Lago, Laura; Navarro, Yurena; García-de-Viedma, Darío

    2014-10-01

    Mycobacterium bovis is both the causative agent of bovine tuberculosis (TB) and a zoonotic pathogen. In humans, considerably fewer cases of TB are caused by M. bovis than M. tuberculosis; nevertheless, diagnostic limitations mean that currently available data on prevalence grossly underestimate the true dimension of the problem. The routes of transmission from animals to humans are well known and include direct exposure to infected animals or consumption of contaminated animal products. Application of fingerprinting tools facilitates analysis of the molecular epidemiology of M. bovis in animal-to-human and human-to-human transmission. Apart from cattle and M. bovis, other animal species and members within the M. tuberculosis complex can contribute to the zoonosis. Improvements in diagnostic techniques, application of more advanced discriminatory genotyping tools, and collaboration between veterinary and human health care researchers are key to our understanding of this zoonosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Fatal occupational injuries in the Malaysian construction sector–causes and accidental agents

    NASA Astrophysics Data System (ADS)

    Ayob, A.; Shaari, A. A.; Zaki, M. F. M.; Munaaim, M. A. C.

    2018-04-01

    The construction sector is associated with various accidents and fatal injuries. These occupational accidents are caused by numerous factors, such as lack of supervision; lack of adherence to safe work technique; failure to wear personal protective equipment; and failure to comply with the safe use of tools, vehicles, and machines. Using 2013–2016 secondary data from the Department of Occupational Safety and Health and Social Security Organization, this study conducted a descriptive exploration survey to identify common fatal occupational injuries associated with the Malaysian construction sector, as well as their causes and accidental agents. Results indicated that construction, followed by manufacturing, agriculture, forestry, logging, and fishery, are the riskiest job sectors in Malaysia. The highest incidences of occupational casualties were reported in Sarawak, Johor, and Selangor. These states accounted for approximately 13.33% to 18.18% of all cases of fatal occupational accidents. In these states, the lack of safety and health regulations and poor execution of risk management increased the risk of occupational accidents. Falls from heights accounted for 46.28% of fatal occupational injuries. Furthermore, being crushed by objects, materials, or vehicles accounted for 9.09% to 17.36% of fatal occupational injuries. Substandard work environment and transportation and lifting equipment, such as scaffolds, are primary accidental agents. Results of this study could enhance the knowledge and awareness of construction workers and management of job-related injuries to decrease the incidence of fatal occupational accidents.

  11. Beaver Fever: Whole-Genome Characterization of Waterborne Outbreak and Sporadic Isolates To Study the Zoonotic Transmission of Giardiasis.

    PubMed

    Tsui, Clement K-M; Miller, Ruth; Uyaguari-Diaz, Miguel; Tang, Patrick; Chauve, Cedric; Hsiao, William; Isaac-Renton, Judith; Prystajecky, Natalie

    2018-04-25

    Giardia causes the diarrheal disease known as giardiasis; transmission through contaminated surface water is common. The protozoan parasite's genetic diversity has major implications for human health and epidemiology. To determine the extent of transmission from wildlife through surface water, we performed whole-genome sequencing (WGS) to characterize 89 Giardia duodenalis isolates from both outbreak and sporadic infections: 29 isolates from raw surface water, 38 from humans, and 22 from veterinary sources. Using single nucleotide variants (SNVs), combined with epidemiological data, relationships contributing to zoonotic transmission were described. Two assemblages, A and B, were identified in surface water, human, and veterinary isolates. Mixes of zoonotic assemblages A and B were seen in all the community waterborne outbreaks in British Columbia (BC), Canada, studied. Assemblage A was further subdivided into assemblages A1 and A2 based on the genetic variation observed. The A1 assemblage was highly clonal; isolates of surface water, human, and veterinary origins from Canada, United States, and New Zealand clustered together with minor variation, consistent with this being a panglobal zoonotic lineage. In contrast, assemblage B isolates were variable and consisted of several clonal lineages relating to waterborne outbreaks and geographic locations. Most human infection isolates in waterborne outbreaks clustered with isolates from surface water and beavers implicated to be outbreak sources by public health. In-depth outbreak analysis demonstrated that beavers can act as amplification hosts for human infections and can act as sources of surface water contamination. It is also known that other wild and domesticated animals, as well as humans, can be sources of waterborne giardiasis. This study demonstrates the utility of WGS in furthering our understanding of Giardia transmission dynamics at the water-human-animal interface. IMPORTANCE Giardia duodenalis causes large

  12. Culinary delights and travel? A review of zoonotic cestodiases and metacestodiases.

    PubMed

    Ito, Akira; Budke, Christine M

    2014-01-01

    Due to increased globalization, food-borne parasitic infections are becoming more prevalent worldwide, including in countries where these parasites and parasitic diseases had previously been well controlled or eradicated. Improved sanitation, health education, and establishment of appropriate food safety mechanisms can go a long way towards the control of many these infections. However, food-borne parasitic infections are still common diseases in developing countries, especially in rural areas. As many of today's travelers are looking to explore more distant locations and partake in the local cuisine, they may be at greater risk of acquiring a food-borne parasitic infection, including those caused by a number of adult and larval tapeworms. This review discusses fish and meat-borne tapeworms and zoonotic metacestodiases of public health importance to both developing and developed countries, with a focus on infection prevention in travelers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Pathogenic Landscape of Transboundary Zoonotic Diseases in the Mexico–US Border Along the Rio Grande

    PubMed Central

    Esteve-Gassent, Maria Dolores; Pérez de León, Adalberto A.; Romero-Salas, Dora; Feria-Arroyo, Teresa P.; Patino, Ramiro; Castro-Arellano, Ivan; Gordillo-Pérez, Guadalupe; Auclair, Allan; Goolsby, John; Rodriguez-Vivas, Roger Ivan; Estrada-Franco, Jose Guillermo

    2014-01-01

    Transboundary zoonotic diseases, several of which are vector borne, can maintain a dynamic focus and have pathogens circulating in geographic regions encircling multiple geopolitical boundaries. Global change is intensifying transboundary problems, including the spatial variation of the risk and incidence of zoonotic diseases. The complexity of these challenges can be greater in areas where rivers delineate international boundaries and encompass transitions between ecozones. The Rio Grande serves as a natural border between the US State of Texas and the Mexican States of Chihuahua, Coahuila, Nuevo León, and Tamaulipas. Not only do millions of people live in this transboundary region, but also a substantial amount of goods and people pass through it everyday. Moreover, it occurs over a region that functions as a corridor for animal migrations, and thus links the Neotropic and Nearctic biogeographic zones, with the latter being a known foci of zoonotic diseases. However, the pathogenic landscape of important zoonotic diseases in the south Texas–Mexico transboundary region remains to be fully understood. An international perspective on the interplay between disease systems, ecosystem processes, land use, and human behaviors is applied here to analyze landscape and spatial features of Venezuelan equine encephalitis, Hantavirus disease, Lyme Borreliosis, Leptospirosis, Bartonellosis, Chagas disease, human Babesiosis, and Leishmaniasis. Surveillance systems following the One Health approach with a regional perspective will help identifying opportunities to mitigate the health burden of those diseases on human and animal populations. It is proposed that the Mexico–US border along the Rio Grande region be viewed as a continuum landscape where zoonotic pathogens circulate regardless of national borders. PMID:25453027

  14. A Survey of Zoonotic Pathogens Carried by Non-Indigenous Rodents at the Interface of the Wet Tropics of North Queensland, Australia.

    PubMed

    Chakma, S; Picard, J; Duffy, R; Constantinoiu, C; Gummow, B

    2017-02-01

    In 1964, Brucella was isolated from rodents trapped in Wooroonooran National Park (WNP), in Northern Queensland, Australia. Genotyping of bacterial isolates in 2008 determined that they were a novel Brucella species. This study attempted to reisolate this species of Brucella from rodents living in the boundary area adjacent to WNP and to establish which endo- and ecto-parasites and bacterial agents were being carried by non-indigenous rodents at this interface. Seventy non-indigenous rodents were trapped [Mus musculus (52), Rattus rattus (17) and Rattus norvegicus (1)], euthanized and sampled on four properties adjacent to the WNP in July 2012. Organ pools were screened by culture for Salmonella, Leptospira and Brucella species, real-time PCR for Coxiella burnetii and conventional PCR for Leptospira. Collected ecto- and endo-parasites were identified using morphological criteria. The percentage of rodents carrying pathogens were Leptospira (40%), Salmonella choleraesuis ssp. arizonae (14.29%), ectoparasites (21.42%) and endoparasites (87%). Brucella and C. burnetii were not identified, and it was concluded that their prevalences were below 12%. Two rodent-specific helminthic species, namely Syphacia obvelata (2.86%) and Nippostrongylus brasiliensis (85.71%), were identified. The most prevalent ectoparasites belonged to Laelaps spp. (41.17%) followed by Polyplax spp. (23.53%), Hoplopleura spp. (17.65%), Ixodes holocyclus (17.64%) and Stephanocircus harrisoni (5.88%), respectively. These ectoparasites, except S. harrisoni, are known to transmit zoonotic pathogens such as Rickettsia spp. from rat to rat and could be transmitted to humans by other arthropods that bite humans. The high prevalence of pathogenic Leptospira species is of significant public health concern. This is the first known study of zoonotic agents carried by non-indigenous rodents living in the Australian wet-tropical forest interface. © 2015 Blackwell Verlag GmbH.

  15. Understanding and Managing Zoonotic Risk in the New Livestock Industries

    PubMed Central

    Waage, Jeff; Barnett, Tony; Pfeiffer, Dirk U.; Rushton, Jonathan; Rudge, James W.; Loevinsohn, Michael E.; Scoones, Ian; Smith, Richard D.; Cooper, Ben S.; White, Lisa J.; Goh, Shan; Horby, Peter; Wren, Brendan; Gundogdu, Ozan; Woods, Abigail; Coker, Richard J.

    2013-01-01

    Background: In many parts of the world, livestock production is undergoing a process of rapid intensification. The health implications of this development are uncertain. Intensification creates cheaper products, allowing more people to access animal-based foods. However, some practices associated with intensification may contribute to zoonotic disease emergence and spread: for example, the sustained use of antibiotics, concentration of animals in confined units, and long distances and frequent movement of livestock. Objectives: Here we present the diverse range of ecological, biological, and socioeconomic factors likely to enhance or reduce zoonotic risk, and identify ways in which a comprehensive risk analysis may be conducted by using an interdisciplinary approach. We also offer a conceptual framework to guide systematic research on this problem. Discussion: We recommend that interdisciplinary work on zoonotic risk should take into account the complexity of risk environments, rather than limiting studies to simple linear causal relations between risk drivers and disease emergence and/or spread. In addition, interdisciplinary integration is needed at different levels of analysis, from the study of risk environments to the identification of policy options for risk management. Conclusion: Given rapid changes in livestock production systems and their potential health implications at the local and global level, the problem we analyze here is of great importance for environmental health and development. Although we offer a systematic interdisciplinary approach to understand and address these implications, we recognize that further research is needed to clarify methodological and practical questions arising from the integration of the natural and social sciences. PMID:23665854

  16. Seroprevalence of seven zoonotic infections in Nunavik, Quebec (Canada).

    PubMed

    Messier, V; Lévesque, B; Proulx, J-F; Rochette, L; Serhir, B; Couillard, M; Ward, B J; Libman, M D; Dewailly, E; Déry, S

    2012-03-01

    In Nunavik, common practices and food habits such as consumption of raw meat and untreated water place the Inuit at risk for contracting zoonotic diseases. The aim of this study was to determine the seroprevalence of seven zoonotic infections among the permanent residents of Nunavik. The study was conducted in the fall 2004 as part of the Nunavik Health Survey. Blood samples from adults aged 18-74 years (n = 917) were collected and analysed for the presence of antibodies against Trichinella spp., Toxocara canis, Echinococcus granulosus, Brucella spp., Coxiella burnetii, Leptospira spp. and Francisella tularensis. Information on sociodemographic characteristics, traditional activities, drinking water supply and nutrition was gathered using english/inuktitut bilingual questionnaires. The chi-squared test was used to evaluate associations between seropositivity and other measured variables. Statistically significant variables were included in a multivariate logistic regression model to control for confounding factors. Estimated seroprevalences were 8.3% for E. granulosus, 3.9% for T. canis, 5.9% for Leptospira spp. and 18.9% for F. tularensis. Seroprevalence was ≤ 1% for Trichinella spiralis, Brucella spp. and C. burnetii. For most infections, seropositivity tended to increase with age. In multivariate analyses, seroprevalence was positively (i.e. directly) associated with age and residence in the Ungava coast area for F. tularensis; age and residence in the Hudson coast area for T. canis; female gender, lower level of schooling and frequent cleaning of water reservoirs for E. granulosus. No risk factor for Leptospira spp. infection was identified. No associations were detected with regards to food habits or environmental exposures. A small but significant portion of the Nunavik population has serologic evidence of exposure to at least one of the pathogenic microorganisms investigated. Further studies are needed to better understand the mechanisms for transmission

  17. Structural drivers of vulnerability to zoonotic disease in Africa.

    PubMed

    Dzingirai, Vupenyu; Bukachi, Salome; Leach, Melissa; Mangwanya, Lindiwe; Scoones, Ian; Wilkinson, Annie

    2017-07-19

    This paper argues that addressing the underlying structural drivers of disease vulnerability is essential for a 'One Health' approach to tackling zoonotic diseases in Africa. Through three case studies-trypanosomiasis in Zimbabwe, Ebola and Lassa fever in Sierra Leone and Rift Valley fever in Kenya-we show how political interests, commercial investments and conflict and securitization all generate patterns of vulnerability, reshaping the political ecology of disease landscapes, influencing traditional coping mechanisms and affecting health service provision and outbreak responses. A historical, political economy approach reveals patterns of 'structural violence' that reinforce inequalities and marginalization of certain groups, increasing disease risks. Addressing the politics of One Health requires analysing trade-offs and conflicts between interests and visions of the future. For all zoonotic diseases economic and political dimensions are ultimately critical and One Health approaches must engage with these factors, and not just end with an 'anti-political' focus on institutional and disciplinary collaboration.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.

  18. Structural drivers of vulnerability to zoonotic disease in Africa

    PubMed Central

    Bukachi, Salome; Mangwanya, Lindiwe; Scoones, Ian

    2017-01-01

    This paper argues that addressing the underlying structural drivers of disease vulnerability is essential for a ‘One Health’ approach to tackling zoonotic diseases in Africa. Through three case studies—trypanosomiasis in Zimbabwe, Ebola and Lassa fever in Sierra Leone and Rift Valley fever in Kenya—we show how political interests, commercial investments and conflict and securitization all generate patterns of vulnerability, reshaping the political ecology of disease landscapes, influencing traditional coping mechanisms and affecting health service provision and outbreak responses. A historical, political economy approach reveals patterns of ‘structural violence’ that reinforce inequalities and marginalization of certain groups, increasing disease risks. Addressing the politics of One Health requires analysing trade-offs and conflicts between interests and visions of the future. For all zoonotic diseases economic and political dimensions are ultimately critical and One Health approaches must engage with these factors, and not just end with an ‘anti-political’ focus on institutional and disciplinary collaboration. This article is part of the themed issue ‘One Health for a changing world: zoonoses, ecosystems and human well-being’. PMID:28584177

  19. Subacute Low Dose Nerve Agent Exposure Causes DNA Fragmentation in Guinea Pig Leukocytes

    DTIC Science & Technology

    2005-10-01

    1 SUBACUTE LOW DOSE NERVE AGENT EXPOSURE CAUSES DNA FRAGMENTATION IN GUINEA PIG LEUKOCYTES. Jitendra R. Dave1, John R. Moffett1, Sally M...DNA fragmentation in blood leukocytes from guinea pigs by ‘Comet’ assay after exposure to soman at doses ranging from 0.1LD50 to 0.4 LD50, once per...computer. Data obtained for exposure to soman demonstrated significant increases in DNA fragmentation in circulating leukocytes in CWNA treated guinea pigs as

  20. [Nematodes with zoonotic potential in parks of the city of Tunja, Colombia].

    PubMed

    Díaz-Anaya, Adriana María; Pulido-Medellín, Martín Orlando; Giraldo-Forero, Julio César

    2015-01-01

    To identify the presence of parasites with zoonotic potential in major parks in the city of Tunja, Boyacá. Twenty eight parks in the city were selected, where 124 samples of feces of dogs and soil were collected with the help of a spatula, gathering approximately 150 g per sample. They were processed by the method of concentration of Ritchie modified making the identification of parasitic forms in an optical microscope. A 60.7% of the parks were positive to nematodes in samples of canine fecal material and 100% on soil. Found nematodes were eggs and larvae of Toxocara spp., Ancylostoma spp., Trichuris vulpis and Strongiloides spp. This study demonstrated the potential risk of transmission of zoonoses caused by nematodes in canines and for the need to strengthen public health measures to reduce the risk shows the population exposed to such zoonoses.

  1. Level of awareness regarding some zoonotic diseases, among dog owners of ithaca, new york.

    PubMed

    Sandhu, Gursimrat Kaur; Singh, Devinder

    2014-01-01

    Worldwide, dogs and cats are the two most common household companion animals. Because of this, they can be direct or indirect source of many human infections. Fortunately, most of these zoonotic infections can be clinically prevented by appropriate prophylactic interventions. Present kind of cross-sectional study, for the first time, was conducted in city of Ithaca, New York. People visiting local animal hospitals, dog parks, library and shoppers at Walmart supermarket were personally interviewed and a pre-tested questionnaire was got filled from every individual. The collected data were analyzed for percentage proportions using Microsoft Excel(®) and the results had been presented in graphical as well as tabulated forms. Out of 100 participants responding to the request for participation, gender-wise, 45% of the participants were male while 55% of the participants were females. Demographically, 50% participants lived in rural, 35% in urban while 15% participants lived in suburban areas. Educational background of the participants ranged from High school pass-outs to Graduates. Participants were aware about the zoonotic potential of leptospirosis, giardiasis, rabies, hookworms, coccidiosis, lyme disease, roundworms, toxoplasma, leishmaniasis, salmonellosis and ringworm disease. Knowledge gaps in the sampled population, in terms of lack of awareness about zoonotic diseases vectored by mosquitoes, ticks and fleas; practice of not doing regular deworming and prophylactic control of fleas and ticks on pet dogs; and lack of practice among physicians to discuss zoonotic canine diseases with their clients were revealed by this study.

  2. The Surface-Exposed Protein SntA Contributes to Complement Evasion in Zoonotic Streptococcus suis.

    PubMed

    Deng, Simin; Xu, Tong; Fang, Qiong; Yu, Lei; Zhu, Jiaqi; Chen, Long; Liu, Jiahui; Zhou, Rui

    2018-01-01

    Streptococcus suis is an emerging zoonotic pathogen causing streptococcal toxic shock like syndrome (STSLS), meningitis, septicemia, and even sudden death in human and pigs. Serious septicemia indicates this bacterium can evade the host complement surveillance. In our previous study, a functionally unknown protein SntA of S. suis has been identified as a heme-binding protein, and contributes to virulence in pigs. SntA can interact with the host antioxidant protein AOP2 and consequently inhibit its antioxidant activity. In the present study, SntA is identified as a cell wall anchored protein that functions as an important player in S. suis complement evasion. The C3 deposition and membrane attack complex (MAC) formation on the surface of sntA -deleted mutant strain Δ sntA are demonstrated to be significantly higher than the parental strain SC-19 and the complementary strain CΔ sntA . The abilities of anti-phagocytosis, survival in blood, and in vivo colonization of Δ sntA are obviously reduced. SntA can interact with C1q and inhibit hemolytic activity via the classical pathway. Complement activation assays reveal that SntA can also directly activate classical and lectin pathways, resulting in complement consumption. These two complement evasion strategies may be crucial for the pathogenesis of this zoonotic pathogen. Concerning that SntA is a bifunctional 2',3'-cyclic nucleotide 2'-phosphodiesterase/3'-nucleotidase in many species of Gram-positive bacteria, these complement evasion strategies may have common biological significance.

  3. Zoonotic Potential and Antibiotic Resistance of Escherichia coli in Neonatal Calves in Uruguay.

    PubMed

    Umpiérrez, Ana; Bado, Inés; Oliver, Martín; Acquistapace, Sofía; Etcheverría, Analía; Padola, Nora Lía; Vignoli, Rafael; Zunino, Pablo

    2017-09-27

    Escherichia coli is one of the main etiological agents of neonatal calf diarrhea (NCD). The objective of this study was to assess the presence of virulence genes, genetic diversity, and antibiotic resistance mechanisms in E. coli associated with NCD in Uruguay. PCR was used to assess the presence of intimin, Shiga-like toxin, and stable and labile enterotoxin genes. Resistance to fluoroquinolones and oxyimino-cephalosporins was estimated on Müller-Hinton agar plates. Further antibiotic disc-diffusion tests were performed to assess bacterial multi-resistance. The presence of PMQR, ESBL, MCR-1, and integron genes was evaluated. Isolates were typed using ERIC-PCR, and 20 were selected for MLST, adhesion to Hep-2 cells, in vitro biofilm formation, and eukaryotic cytotoxicity. The prevalence of ETEC genes was lower than 3% in each case (estA and elt). Six isolates were EPEC (eae+) and 2 were EHEC/STEC (eae+/stx1+). The results of a diversity analysis showed high genetic heterogenicity among isolates. Additionally, different sequence types, including ST10, ST21, and ST69, were assigned to selected isolates. Thirty-six percent (96/264) of the isolates were fluoroquinolone-resistant, with 61/96 (63.5%) being multidrug-resistant. Additionally, 6 were oxyimino-cephalosporin-resistant. The qnrB, qnrS1, and bla CTX-M-14 genes were detected, whereas no isolates carried the mcr-1 gene. Isolates had the ability to adhere to Hep-2 cells and form biofilms. Only 1 isolate expressed toxins in vitro. E. coli from NCD cases in Uruguay are very diverse, potentially virulent, and may interact with eukaryotic cells. Zoonotic potential, together with resistance traits and the presence of horizontal transfer mechanisms, may play a significant role in infections caused by these microorganisms.

  4. Zoonotic Potential and Antibiotic Resistance of Escherichia coli in Neonatal Calves in Uruguay

    PubMed Central

    Umpiérrez, Ana; Bado, Inés; Oliver, Martín; Acquistapace, Sofía; Etcheverría, Analía; Padola, Nora Lía; Vignoli, Rafael; Zunino, Pablo

    2017-01-01

    Escherichia coli is one of the main etiological agents of neonatal calf diarrhea (NCD). The objective of this study was to assess the presence of virulence genes, genetic diversity, and antibiotic resistance mechanisms in E. coli associated with NCD in Uruguay. PCR was used to assess the presence of intimin, Shiga-like toxin, and stable and labile enterotoxin genes. Resistance to fluoroquinolones and oxyimino-cephalosporins was estimated on Müller-Hinton agar plates. Further antibiotic disc-diffusion tests were performed to assess bacterial multi-resistance. The presence of PMQR, ESBL, MCR-1, and integron genes was evaluated. Isolates were typed using ERIC-PCR, and 20 were selected for MLST, adhesion to Hep-2 cells, in vitro biofilm formation, and eukaryotic cytotoxicity. The prevalence of ETEC genes was lower than 3% in each case (estA and elt). Six isolates were EPEC (eae+) and 2 were EHEC/STEC (eae+/stx1+). The results of a diversity analysis showed high genetic heterogenicity among isolates. Additionally, different sequence types, including ST10, ST21, and ST69, were assigned to selected isolates. Thirty-six percent (96/264) of the isolates were fluoroquinolone-resistant, with 61/96 (63.5%) being multidrug-resistant. Additionally, 6 were oxyimino-cephalosporin-resistant. The qnrB, qnrS1, and blaCTX-M-14 genes were detected, whereas no isolates carried the mcr-1 gene. Isolates had the ability to adhere to Hep-2 cells and form biofilms. Only 1 isolate expressed toxins in vitro. E. coli from NCD cases in Uruguay are very diverse, potentially virulent, and may interact with eukaryotic cells. Zoonotic potential, together with resistance traits and the presence of horizontal transfer mechanisms, may play a significant role in infections caused by these microorganisms. PMID:28904264

  5. The landscape configuration of zoonotic transmission of Ebola virus disease in West and Central Africa: interaction between population density and vegetation cover.

    PubMed

    Walsh, Michael G; Haseeb, Ma

    2015-01-01

    Ebola virus disease (EVD) is an emerging infectious disease of zoonotic origin that has been responsible for high mortality and significant social disruption in West and Central Africa. Zoonotic transmission of EVD requires contact between susceptible human hosts and the reservoir species for Ebolaviruses, which are believed to be fruit bats. Nevertheless, features of the landscape that may facilitate such points of contact have not yet been adequately identified. Nor have spatial dependencies between zoonotic EVD transmission and landscape structures been delineated. This investigation sought to describe the spatial relationship between zoonotic EVD transmission events, or spillovers, and population density and vegetation cover. An inhomogeneous Poisson process model was fitted to all precisely geolocated zoonotic transmissions of EVD in West and Central Africa. Population density was strongly associated with spillover; however, there was significant interaction between population density and green vegetation cover. In areas of very low population density, increasing vegetation cover was associated with a decrease in risk of zoonotic transmission, but as population density increased in a given area, increasing vegetation cover was associated with increased risk of zoonotic transmission. This study showed that the spatial dependencies of Ebolavirus spillover were associated with the distribution of population density and vegetation cover in the landscape, even after controlling for climate and altitude. While this is an observational study, and thus precludes direct causal inference, the findings do highlight areas that may be at risk for zoonotic EVD transmission based on the spatial configuration of important features of the landscape.

  6. Prevalence and characterization of multidrug-resistant zoonotic Enterobacter spp. in poultry of Bangladesh.

    PubMed

    Nandi, Shuvro Prokash; Sultana, Munawar; Hossain, M Anwar

    2013-05-01

    Poultry and poultry products are major contributors of zoonotic pathogens. Limited data are available on Enterobacter spp. as a potent zoonotic pathogen in poultry. The present study is a first endeavor on the emergence of multidrug-resistant zoonotic Enterobacter spp. and its prevalence arising from poultry in Bangladesh. Cloacal swabs from poultry samples of five different farms at Savar, Dhaka, Bangladesh were collected and from 106 isolates, 18 presumptive Enterobacter spp. were obtained. Antibiogram using 19 used antibiotics belonging to 15 major groups revealed that all of the 18 isolates were completely resistant to penicillin and rifampicin, but differed in their drug resistance pattern against ampicillin (94.4%), clindamycin (94.4%), erythromycin (94.4%), vancomycin (88.9%), sulfonamides (72.2%), imipenem (66.6%), streptomycin (55.6%), nitrofurantoin (33.3%), doxycycline (33.3%), tetracyclines (33.3%), cefepime (11.1%), and gentamicin (5.6%). All Enterobacter spp. were found to be plasmid free, implying that multidrug-resistant properties are chromosomal borne. The vanA and sulI were detected by polymerase chain reaction assay in 17 and 13 isolates, respectively. Amplified ribosomal DNA restriction analysis and randomly amplified polymorphic DNA distributed the 18 multidrug-resistant Enterobacter spp. into three genotypes. Phylogenetic analysis of the representatives of the three genotypes using partial 16S rRNA gene sequence (approximately 900 bp) showed that the genotypically diverse groups belonged to Enterobacter hormaechei, E. cloacae, and E. cancerogenus, respectively. The clinical significance of the close relative Enterobacter spp. is indicative of their zoonotic potential. Therefore, urgent intervention is required to limit the emergence and spread of these bacteria in poultry feed as well as prudent use of antibiotics among poultry farmers in Bangladesh.

  7. Zoonotic parasites in fecal samples and fur from dogs and cats in The Netherlands.

    PubMed

    Overgaauw, Paul A M; van Zutphen, Linda; Hoek, Denise; Yaya, Felix O; Roelfsema, Jeroen; Pinelli, Elena; van Knapen, Frans; Kortbeek, Laetitia M

    2009-07-07

    Pets may carry zoonotic pathogens for which owners are at risk. The aim of the study is to investigate whether healthy pets harbour zoonotic parasitic infections and to make an inventory of the interactions between pet-owners and their companion animals in The Netherlands. Fecal and hair samples were collected from healthy household dogs and cats in Dutch veterinary practices. Owners were interviewed about interaction with their pets. The samples were investigated by microscopy, ELISA, and PCR. From 159 households, 152 dogs (D) and 60 cats (C), information and samples were collected and examination for several zoonotic parasites was performed. Toxocara eggs were found in 4.4% (D) and 4.6% (C) of the fecal samples and in 12.2% (D) and 3.4% (C) of the fur samples. The median epg in the fur was 17 (D) and 28 (C) and none of these eggs were viable. From 15.2% of the dog and 13.6% of the cat feces Giardia was isolated. One canine and one feline Giardia isolate was a zoonotic assemblage A (12%). Cryptosporidium sp. were present in 8.7% (D) and 4.6% (C) of the feces. Fifty percent of the owners allow the pet to lick their faces. Sixty percent of the pets visit the bedroom; 45-60% (D-C) are allowed on the bed, and 18-30% (D-C) sleep with the owner in bed. Six percent of the pets always sleep in the bedroom. Of the cats, 45% are allowed to jump onto the kitchen sink. Nearly 39% of the dog owners never clean up the feces of their dog. Fifteen percent of the dog owners and 8% of the cat owners always wash their hands after contact with the animals. Close physical contact between owners and their pets is common and poses an increased risk of transmission of zoonotic pathogens. Education of owners by the vet, specifically about hygiene and potential risks, is required.

  8. The role of domestic dogs in the transmission of zoonotic helminthes in a rural area of Mekong river basin.

    PubMed

    Otake Sato, Marcello; Sato, Megumi; Yoonuan, Tippayarat; Pongvongsa, Tiengkham; Sanguankiat, Surapol; Kounnavong, Sengchanh; Maipanich, Wanna; Chigusa, Yuichi; Moji, Kazuhiko; Waikagul, Jitra

    2017-06-01

    Dogs have been bred since ancient times for companionship, hunting, protection, shepherding and other human activities. Some canine helminth parasites can cause significant clinical diseases in humans as Opisthorchis viverrini causing cholangiocarcinoma in Southeast Asian Countries. In this study, socio-cultural questionnaire, canine parasitological analysis, necropsy, parasite molecular confirmation and dog roaming data were evaluated in Savannakhet, Lao-PDR, a typical Mekong Basin area. Dog owners comprised 48.8% of the studied population, with 61.2% owning one dog, 25.1% 2 dogs, 8.5% 3 dogs and 1.8% owning more than 4 dogs. Data from GPS logger attached to dogs showed they walked from 1.4 to 13.3 km per day, covering an area of 3356.38m2 average, with a routine of accessing water sources. Thirteen zoonotic helminth species were observed. Causative agents of visceral and cutaneous larva migrans occurred in 44.1% and 70% of the samples respectively. Spirometra erinaceieuropaei was detected in 44.1% of samples. Importantly, O. viverrini was found in 8.8% of samples. Besides the known importance of dogs in the transmission of Ancylostoma spp., Toxocara spp. and S. erinaceieuropaei, the observed roaming pattern of dogs confirmed it as an important host perpetuating O. viverrini in endemic areas; their routine access to waterbodies may spread O. viverrini eggs in a favorable environment for the fluke development, facilitating the infection of fishes, and consequently infecting humans living in the same ecosystem. Therefore, parasitic NTDs control programs in humans should be done in parallel with parasite control in animals, especially dogs, in the Mekong River basin area.

  9. Rare but evolutionarily consequential outcrossing in a highly inbred zoonotic parasite

    USDA-ARS?s Scientific Manuscript database

    Recurrent self-mating can result in nearly clonal propagation of biological lineages, but even occasional outcrossing can serve to redistribute variation in future generations, providing cohesion among regional populations. The zoonotic parasite Trichinella spiralis has been suspected to undergo fr...

  10. Level of Awareness Regarding Some Zoonotic Diseases, Among Dog Owners of Ithaca, New York

    PubMed Central

    Sandhu, Gursimrat Kaur; Singh, Devinder

    2014-01-01

    Objectives: Worldwide, dogs and cats are the two most common household companion animals. Because of this, they can be direct or indirect source of many human infections. Fortunately, most of these zoonotic infections can be clinically prevented by appropriate prophylactic interventions. Materials and Methods: Present kind of cross-sectional study, for the first time, was conducted in city of Ithaca, New York. People visiting local animal hospitals, dog parks, library and shoppers at Walmart supermarket were personally interviewed and a pre-tested questionnaire was got filled from every individual. The collected data were analyzed for percentage proportions using Microsoft Excel® and the results had been presented in graphical as well as tabulated forms. Results: Out of 100 participants responding to the request for participation, gender-wise, 45% of the participants were male while 55% of the participants were females. Demographically, 50% participants lived in rural, 35% in urban while 15% participants lived in suburban areas. Educational background of the participants ranged from High school pass-outs to Graduates. Conclusions: Participants were aware about the zoonotic potential of leptospirosis, giardiasis, rabies, hookworms, coccidiosis, lyme disease, roundworms, toxoplasma, leishmaniasis, salmonellosis and ringworm disease. Knowledge gaps in the sampled population, in terms of lack of awareness about zoonotic diseases vectored by mosquitoes, ticks and fleas; practice of not doing regular deworming and prophylactic control of fleas and ticks on pet dogs; and lack of practice among physicians to discuss zoonotic canine diseases with their clients were revealed by this study. PMID:25657956

  11. Urban stray cats infested by ectoparasites with zoonotic potential in Greece.

    PubMed

    Lefkaditis, Menelaos A; Sossidou, Anna V; Panorias, Alexandros H; Koukeri, Smaragda E; Paştiu, Anamaria I; Athanasiou, Labrini V

    2015-10-01

    A large population of stray cats is encountered in many urban areas sharing the same environment with people, usually being in a close direct contact with them. A variety of ectoparasites can infest such cats, causing mild dermatological abnormalities to more severe systemic disorders. In order to determine the extent of which stray cats carry ectoparasites, particularly those of zoonotic potential, 341 stray cats originating from the urban area of Thessaloniki, Greece, were examined between 2012 and 2014. The signalment of each cat such as gender, hair length, and roughly estimated age were recorded. From a total of 341 examined stray cats, 127 (37.24%; 95% confidence interval (CI) 32.14-42.64) were infested with at least one of the following ectoparasites: mites-Otodectes cynotis (15.8%), Notoedres cati (2.35%), Cheyletiella blakei (2.05%); fleas-Ctenocephalides felis (24.3%); ticks-Rhipicephalus sanguineus (0.88%); and lice-Felicola subrostratus (0.59%). A significantly higher prevalence of ectoparasites was observed in long-haired individuals (p < 0.00001). The above ectoparasites may either cause or transmit diseases not only in cats but also in humans Therefore, antiparasitic control should be included in stray cat neutering campaigns while public health education for taking preventive measures will decrease the risk of transmission to humans.

  12. A novel zoonotic genotype related to Echinococcus granulosus sensu stricto from southern Ethiopia.

    PubMed

    Wassermann, Marion; Woldeyes, Daniel; Gerbi, Banchwosen Mechal; Ebi, Dennis; Zeyhle, Eberhard; Mackenstedt, Ute; Petros, Beyene; Tilahun, Getachew; Kern, Peter; Romig, Thomas

    2016-09-01

    Complete mitochondrial and two nuclear gene sequences of a novel genotype (GOmo) related to Echinococcus granulosus sensu stricto are described from a metacestode isolate retrieved from a human patient in southwestern Ethiopia. Phylogenetically, the genotype is positioned within the E. granulosus sensu stricto/Echinococcus felidis cluster, but cannot easily be allocated to either species. Based on different mitochondrial DNA markers, it is closest to the haplotype cluster that currently defines the species E. granulosus sensu stricto (which includes variants showing the widely cited G1, G2 and G3 sequences), but is clearly not part of this cluster. Pairwise distances between GOmo and E. granulosus sensu stricto are in the range of those between the most distant members of the Echinococcus canadensis complex (G6-10) that were recently proposed as separate species. At this stage, we prefer to list GOmo informally as a genotype rather than giving it any taxonomic rank because our knowledge rests on a single isolate from a dead-end host (human), and its lifecycle is unknown. According to data on molecularly characterised Echinococcus isolates from this region, GOmo has never been found in the usual livestock species that carry cystic echinococcosis and the possibility of a wildlife source of this newly recognised zoonotic agent cannot be excluded. The discovery of GOmo adds complexity to the already diverse array of cystic echinococcosis agents in sub-Saharan Africa and challenges hypotheses on the biogeographical origin of the E. granulosus sensu stricto clade. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  13. High density of Leishmania major and rarity of other mammals' Leishmania in zoonotic cutaneous leishmaniasis foci, Iran.

    PubMed

    Bordbar, Ali; Parvizi, Parviz

    2014-03-01

    Only Leishmania major is well known as a causative agent of zoonotic cutaneous leishmaniasis (ZCL) in Iran. Our objective was to find Leishmania parasites circulating in reservoir hosts, sand flies and human simultaneously. Sand flies, rodents and prepared smears of humans were sampled. DNA of Leishmania parasites was extracted, and two fragments of ITS-rDNA gene amplified by PCR. RFLP and sequencing were employed to identify Leishmania parasites. Leishmania major and L. turanica were identified unequivocally by targeting and sequencing ITS-rDNA from humans, rodents and sand flies. The new Leishmania species close to gerbilli (GenBank Accession Nos. EF413076; EF413087) was discovered only in sand flies. Based on parasite detection of ITS-rDNA in main and potential reservoir hosts and vectors and humans, we conclude that at least two Leishmania species are common in the Turkmen Sahra ZCL focus. Phylogenetic analysis proved that the new Leishmania is closely related to Leishmania mammal parasites (Leishmania major, Leishmania turanica, Leishmania gerbilli). Its role as a principal agent of ZCL is unknown because it was found only in sand flies. Our findings shed new light on the transmission cycles of several Leishmania parasites in sand flies, reservoir hosts and humans. © 2014 John Wiley & Sons Ltd.

  14. Governance and One Health: Exploring the Impact of Federalism and Bureaucracy on Zoonotic Disease Detection and Reporting.

    PubMed

    Allen, Heather A

    2015-05-13

    The merits of One Health have been thoroughly described in the literature, but how One Health operates in the United States federal system of government is rarely discussed or analyzed. Through a comparative case-study approach, this research explores how federalism, bureaucratic behavior, and institutional design in the United States may influence zoonotic disease outbreak detection and reporting, a key One Health activity. Using theoretical and empirical literature, as well as a survey/interview instrument for individuals directly involved in a past zoonotic disease outbreak, the impacts of governance are discussed. As predicted in the theoretical literature, empirical findings suggest that federalism, institutional design, and bureaucracy may play a role in facilitating or impeding zoonotic disease outbreak detection and reporting. Regulatory differences across states as well as compartmentalization of information within agencies may impede disease detection. However, the impact may not always be negative: bureaucracies can also be adaptive; federalism allows states important opportunities for innovation. While acknowledging there are many other factors that also matter in zoonotic disease detection and reporting, this research is one of the first attempts to raise awareness in the literature and stimulate discussion on the intersection of governance and One Health.

  15. Governance and One Health: Exploring the Impact of Federalism and Bureaucracy on Zoonotic Disease Detection and Reporting

    PubMed Central

    Allen, Heather A.

    2015-01-01

    The merits of One Health have been thoroughly described in the literature, but how One Health operates in the United States federal system of government is rarely discussed or analyzed. Through a comparative case-study approach, this research explores how federalism, bureaucratic behavior, and institutional design in the United States may influence zoonotic disease outbreak detection and reporting, a key One Health activity. Using theoretical and empirical literature, as well as a survey/interview instrument for individuals directly involved in a past zoonotic disease outbreak, the impacts of governance are discussed. As predicted in the theoretical literature, empirical findings suggest that federalism, institutional design, and bureaucracy may play a role in facilitating or impeding zoonotic disease outbreak detection and reporting. Regulatory differences across states as well as compartmentalization of information within agencies may impede disease detection. However, the impact may not always be negative: bureaucracies can also be adaptive; federalism allows states important opportunities for innovation. While acknowledging there are many other factors that also matter in zoonotic disease detection and reporting, this research is one of the first attempts to raise awareness in the literature and stimulate discussion on the intersection of governance and One Health. PMID:29061932

  16. Zoonotic echinostome infections in free-grazing ducks in Thailand.

    PubMed

    Saijuntha, Weerachai; Duenngai, Kunyarat; Tantrawatpan, Chairat

    2013-12-01

    Free-grazing ducks play a major role in the rural economy of Eastern Asia in the form of egg and meat production. In Thailand, the geographical location, tropical climate conditions and wetland areas of the country are suitable for their husbandry. These environmental factors also favor growth, multiplication, development, survival, and spread of duck parasites. In this study, a total of 90 free-grazing ducks from northern, central, and northeastern regions of Thailand were examined for intestinal helminth parasites, with special emphasis on zoonotic echinostomes. Of these, 51 (56.7%) were infected by one or more species of zoonotic echinostomes, Echinostoma revolutum, Echinoparyphium recurvatum, and Hypoderaeum conoideum. Echinostomes found were identified using morphological criteria when possible. ITS2 sequences were used to identify juvenile and incomplete worms. The prevalence of infection was relatively high in each region, namely, north, central, and northeast region was 63.2%, 54.5%, and 55.3%, respectively. The intensity of infection ranged up to 49 worms/infected duck. Free-grazing ducks clearly play an important role in the life cycle maintenance, spread, and transmission of these medically important echinostomes in Thailand.

  17. A Multiplex PCR for Simultaneous Detection of Three Zoonotic Parasites Ancylostoma ceylanicum, A. caninum, and Giardia lamblia Assemblage A

    PubMed Central

    Hu, Wei; Wu, Sheng; Yu, Xingang; Abullahi, Auwalu Yusuf; Song, Meiran; Tan, Liping; Wang, Zhen; Jiang, Biao; Li, Guoqing

    2015-01-01

    Ancylostoma ceylanicum, A. caninum, and Giardia lamblia assemblage A are common intestinal parasites of dogs and cats; they can also infect humans, causing parasitic zoonoses. In this study, a multiplex PCR method was developed for simultaneous identification and detection of those three zoonotic parasites. Three pairs of specific primers were designed based on ITS sequence of A. ceylanicum and A. caninum and TPI gene of G. lamblia available in the GenBank. The multiplex PCR reaction system was established by optimizing the reaction condition, and a series of tests on the sensitivity, specificity, and clinical application were also conducted. Results showed that three target fragments were amplified specifically; the detection limit was 10 eggs for both A. ceylanicum and A. caninum, 72 pg DNA for G. lamblia. Of 112 clinical fecal samples, 34.8% and 17.8% samples were positive for A. caninum and A. ceylanicum, respectively, while only 2.7% samples were positive for G. lamblia assemblage A. It is concluded that the established multiplex PCR assay is a convenient, rapid, cost-effective, and high-efficiency method for molecular detection and epidemiological investigation of three zoonotic parasites. PMID:26447336

  18. Nontherapeutic Use of Antimicrobial Agents in Animal Agriculture: Implications for Pediatrics.

    PubMed

    Paulson, Jerome A; Zaoutis, Theoklis E

    2015-12-01

    Antimicrobial resistance is one of the most serious threats to public health globally and threatens our ability to treat infectious diseases. Antimicrobial-resistant infections are associated with increased morbidity, mortality, and health care costs. Infants and children are affected by transmission of susceptible and resistant food zoonotic pathogens through the food supply, direct contact with animals, and environmental pathways. The overuse and misuse of antimicrobial agents in veterinary and human medicine is, in large part, responsible for the emergence of antibiotic resistance. Approximately 80% of the overall tonnage of antimicrobial agents sold in the United States in 2012 was for animal use, and approximately 60% of those agents are considered important for human medicine. Most of the use involves the addition of low doses of antimicrobial agents to the feed of healthy animals over prolonged periods to promote growth and increase feed efficiency or at a range of doses to prevent disease. These nontherapeutic uses contribute to resistance and create new health dangers for humans. This report describes how antimicrobial agents are used in animal agriculture, reviews the mechanisms of how such use contributes to development of resistance, and discusses US and global initiatives to curb the use of antimicrobial agents in agriculture. Copyright © 2015 by the American Academy of Pediatrics.

  19. Phylogeographic Evidence for 2 Genetically Distinct Zoonotic Plasmodium knowlesi Parasites, Malaysia.

    PubMed

    Yusof, Ruhani; Ahmed, Md Atique; Jelip, Jenarun; Ngian, Hie Ung; Mustakim, Sahlawati; Hussin, Hani Mat; Fong, Mun Yik; Mahmud, Rohela; Sitam, Frankie Anak Thomas; Japning, J Rovie-Ryan; Snounou, Georges; Escalante, Ananias A; Lau, Yee Ling

    2016-08-01

    Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia.

  20. Phylogeographic Evidence for 2 Genetically Distinct Zoonotic Plasmodium knowlesi Parasites, Malaysia

    PubMed Central

    Yusof, Ruhani; Ahmed, Md Atique; Jelip, Jenarun; Ngian, Hie Ung; Mustakim, Sahlawati; Hussin, Hani Mat; Fong, Mun Yik; Mahmud, Rohela; Sitam, Frankie Anak Thomas; Japning, J. Rovie-Ryan; Snounou, Georges; Escalante, Ananias A.

    2016-01-01

    Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia. PMID:27433965

  1. Legal aspects of public health: difficulties in controlling vector-borne and zoonotic diseases in Brazil.

    PubMed

    Mendes, Marcílio S; de Moraes, Josué

    2014-11-01

    In recent years, vector-borne and zoonotic diseases have become a major challenge for public health. Dengue fever and leptospirosis are the most important communicable diseases in Brazil based on their prevalence and the healthy life years lost from disability. The primary strategy for preventing human exposure to these diseases is effective insect and rodent control in and around the home. However, health authorities have difficulties in controlling vector-borne and zoonotic diseases because residents often refuse access to their homes. This study discusses aspects related to the activities performed by Brazilian health authorities to combat vector-borne and zoonotic diseases, particularly difficulties in relation to the legal aspect, which often impede the quick and effective actions of these professionals. How might it be possible to reconcile the need to preserve public health and the rule on the inviolability of the home, especially in the case of abandoned properties or illegal residents and the refusal of residents to allow the health authority access? Do residents have the right to hinder the performance of health workers even in the face of a significant and visible focus of disease transmission? This paper argues that a comprehensive legal plan aimed at the control of invasive vector-borne and zoonotic diseases including synanthropic animals of public health importance should be considered. In addition, this paper aims to bridge the gap between lawyers and public health professionals and to facilitate communication between them. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Updates to the zoonotic niche map of Ebola virus disease in Africa

    PubMed Central

    Pigott, David M; Millear, Anoushka I; Earl, Lucas; Morozoff, Chloe; Han, Barbara A; Shearer, Freya M; Weiss, Daniel J; Brady, Oliver J; Kraemer, Moritz UG; Moyes, Catherine L; Bhatt, Samir; Gething, Peter W; Golding, Nick; Hay, Simon I

    2016-01-01

    As the outbreak of Ebola virus disease (EVD) in West Africa is now contained, attention is turning from control to future outbreak prediction and prevention. Building on a previously published zoonotic niche map (Pigott et al., 2014), this study incorporates new human and animal occurrence data and expands upon the way in which potential bat EVD reservoir species are incorporated. This update demonstrates the potential for incorporating and updating data used to generate the predicted suitability map. A new data portal for sharing such maps is discussed. This output represents the most up-to-date estimate of the extent of EVD zoonotic risk in Africa. These maps can assist in strengthening surveillance and response capacity to contain viral haemorrhagic fevers. DOI: http://dx.doi.org/10.7554/eLife.16412.001 PMID:27414263

  3. Multilocus sequence analysis of Streptococcus canis confirms the zoonotic origin of human infections and reveals genetic exchange with Streptococcus dysgalactiae subsp. equisimilis.

    PubMed

    Pinho, M D; Matos, S C; Pomba, C; Lübke-Becker, A; Wieler, L H; Preziuso, S; Melo-Cristino, J; Ramirez, M

    2013-04-01

    Streptococcus canis is an animal pathogen that occasionally causes human infections. Isolates recovered from infections of animals (n = 78, recovered from 2000 to 2010 in three European countries, mainly from house pets) and humans (n = 7, recovered from 2006 to 2010 in Portugal) were identified by phenotypic and genotypic methods and characterized by antimicrobial susceptibility testing, multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and emm typing. S. canis isolates presented considerable variability in biochemical profiles and 16S rRNA. Resistance to antimicrobial agents was low, with the most significant being tet(M)- and tet(O)-mediated tetracycline resistance. MLST analysis revealed a polyclonal structure of the S. canis population causing infections, where the same genetic lineages were found infecting house pets and humans and were disseminated in distinct geographic locations. Phylogenetic analysis indicated that S. canis was a divergent taxon of the sister species Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis and found evidence of acquisition of genetic material by S. canis from S. dysgalactiae subsp. equisimilis. PFGE confirmed the MLST findings, further strengthening the similarity between animal and human isolates. The presence of emm-like genes was restricted to a few isolates and correlated with some MLST-based genetic lineages, but none of the human isolates could be emm typed. Our data show that S. canis isolates recovered from house pets and humans constitute a single population and demonstrate that isolates belonging to the main genetic lineages identified have the ability to infect the human host, providing strong evidence for the zoonotic nature of S. canis infection.

  4. Multilocus Sequence Analysis of Streptococcus canis Confirms the Zoonotic Origin of Human Infections and Reveals Genetic Exchange with Streptococcus dysgalactiae subsp. equisimilis

    PubMed Central

    Pinho, M. D.; Matos, S. C.; Pomba, C.; Lübke-Becker, A.; Wieler, L. H.; Preziuso, S.; Melo-Cristino, J.

    2013-01-01

    Streptococcus canis is an animal pathogen that occasionally causes human infections. Isolates recovered from infections of animals (n = 78, recovered from 2000 to 2010 in three European countries, mainly from house pets) and humans (n = 7, recovered from 2006 to 2010 in Portugal) were identified by phenotypic and genotypic methods and characterized by antimicrobial susceptibility testing, multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and emm typing. S. canis isolates presented considerable variability in biochemical profiles and 16S rRNA. Resistance to antimicrobial agents was low, with the most significant being tet(M)- and tet(O)-mediated tetracycline resistance. MLST analysis revealed a polyclonal structure of the S. canis population causing infections, where the same genetic lineages were found infecting house pets and humans and were disseminated in distinct geographic locations. Phylogenetic analysis indicated that S. canis was a divergent taxon of the sister species Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis and found evidence of acquisition of genetic material by S. canis from S. dysgalactiae subsp. equisimilis. PFGE confirmed the MLST findings, further strengthening the similarity between animal and human isolates. The presence of emm-like genes was restricted to a few isolates and correlated with some MLST-based genetic lineages, but none of the human isolates could be emm typed. Our data show that S. canis isolates recovered from house pets and humans constitute a single population and demonstrate that isolates belonging to the main genetic lineages identified have the ability to infect the human host, providing strong evidence for the zoonotic nature of S. canis infection. PMID:23345291

  5. Avian Influenza A Viruses: Evolution and Zoonotic Infection.

    PubMed

    Kim, Se Mi; Kim, Young-Il; Pascua, Philippe Noriel Q; Choi, Young Ki

    2016-08-01

    Although efficient human-to-human transmission of avian influenza virus has yet to be seen, in the past two decades avian-to-human transmission of influenza A viruses has been reported. Influenza A/H5N1, in particular, has repeatedly caused human infections associated with high mortality, and since 1998 the virus has evolved into many clades of variants with significant antigenic diversity. In 2013, three (A/H7N9, A/H6N1, and A/H10N8) novel avian influenza viruses (AIVs) breached the animal-human host species barrier in Asia. In humans, roughly 35% of A/H7N9-infected patients succumbed to the zoonotic infection, and two of three A/H10N8 human infections were also lethal; however, neither of these viruses cause influenza-like symptoms in poultry. While most of these cases were associated with direct contact with infected poultry, some involved sustained human-to-human transmission. Thus, these events elicited concern regarding potential AIV pandemics. This article reviews the human incursions associated with AIV variants and the potential role of pigs as an intermediate host that may hasten AIV evolution. In addition, we discuss the known influenza A virus virulence and transmission factors and their evaluation in animal models. With the growing number of human AIV infections, constant vigilance for the emergence of novel viruses is of utmost importance. In addition, careful characterization and pathobiological assessment of these novel variants will help to identify strains of particular concern for future pandemics. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  6. Optimal sampling strategies for detecting zoonotic disease epidemics.

    PubMed

    Ferguson, Jake M; Langebrake, Jessica B; Cannataro, Vincent L; Garcia, Andres J; Hamman, Elizabeth A; Martcheva, Maia; Osenberg, Craig W

    2014-06-01

    The early detection of disease epidemics reduces the chance of successful introductions into new locales, minimizes the number of infections, and reduces the financial impact. We develop a framework to determine the optimal sampling strategy for disease detection in zoonotic host-vector epidemiological systems when a disease goes from below detectable levels to an epidemic. We find that if the time of disease introduction is known then the optimal sampling strategy can switch abruptly between sampling only from the vector population to sampling only from the host population. We also construct time-independent optimal sampling strategies when conducting periodic sampling that can involve sampling both the host and the vector populations simultaneously. Both time-dependent and -independent solutions can be useful for sampling design, depending on whether the time of introduction of the disease is known or not. We illustrate the approach with West Nile virus, a globally-spreading zoonotic arbovirus. Though our analytical results are based on a linearization of the dynamical systems, the sampling rules appear robust over a wide range of parameter space when compared to nonlinear simulation models. Our results suggest some simple rules that can be used by practitioners when developing surveillance programs. These rules require knowledge of transition rates between epidemiological compartments, which population was initially infected, and of the cost per sample for serological tests.

  7. Mapping the zoonotic niche of Ebola virus disease in Africa

    PubMed Central

    Pigott, David M; Golding, Nick; Mylne, Adrian; Huang, Zhi; Henry, Andrew J; Weiss, Daniel J; Brady, Oliver J; Kraemer, Moritz UG; Smith, David L; Moyes, Catherine L; Bhatt, Samir; Gething, Peter W; Horby, Peter W; Bogoch, Isaac I; Brownstein, John S; Mekaru, Sumiko R; Tatem, Andrew J; Khan, Kamran; Hay, Simon I

    2014-01-01

    Ebola virus disease (EVD) is a complex zoonosis that is highly virulent in humans. The largest recorded outbreak of EVD is ongoing in West Africa, outside of its previously reported and predicted niche. We assembled location data on all recorded zoonotic transmission to humans and Ebola virus infection in bats and primates (1976–2014). Using species distribution models, these occurrence data were paired with environmental covariates to predict a zoonotic transmission niche covering 22 countries across Central and West Africa. Vegetation, elevation, temperature, evapotranspiration, and suspected reservoir bat distributions define this relationship. At-risk areas are inhabited by 22 million people; however, the rarity of human outbreaks emphasises the very low probability of transmission to humans. Increasing population sizes and international connectivity by air since the first detection of EVD in 1976 suggest that the dynamics of human-to-human secondary transmission in contemporary outbreaks will be very different to those of the past. DOI: http://dx.doi.org/10.7554/eLife.04395.001 PMID:25201877

  8. The Quinone Based Antitumor Agent Sepantronium Bromide (YM155) Causes Oxygen Independent Redox Activated Oxidative DNA Damage.

    PubMed

    Wani, Tasaduq Hussain; Surendran, Sreeraj; Jana, Anal; Chakrabarty, Anindita; Chowdhury, Goutam

    2018-06-13

    Sepantronium bromide (YM155) is a small molecule antitumor agent currently in phase II clinical trials. Although developed as survivin suppressor, YM155's primary mode of action has recently been found to be DNA damage. However, the mechanism of DNA damage by YM155 is still unknown. Knowing the mechanism of action of an anticancer drug is necessary to formulate a rational drug combination and select a cancer type for achieving maximum clinical efficacy. Using cell-based assays we showed that YM155 cause extensive DNA cleavage and reactive oxygen species generation. DNA cleavage by YM155 was found to be inhibited by radical scavengers and desferal. The reducing agent DTT and the cellular reducing system xanthine/xanthine oxidase were found to reductively activate YM155 and cause DNA cleavage. Unlike quinones, DNA cleavage by YM155 occurs in the presence of catalase and under hypoxic conditions indicating that hydrogen peroxide and oxygen is not necessary. Although YM155 is a quinone, it does not follow a typical quinone mechanism. Consistent with these observations a mechanism has been proposed that suggests that YM155 can cause oxidative DNA cleavage upon two electron reductive activation.

  9. Community-based surveillance of zoonotic parasites in a 'One Health' world: A systematic review.

    PubMed

    Schurer, J M; Mosites, E; Li, C; Meschke, S; Rabinowitz, P

    2016-12-01

    The One Health (OH) concept provides an integrated framework for observing and improving health issues involving human, animal, and environmental factors, and has been applied in particular to zoonotic disease problems. We conducted a systematic review of English and Chinese language peer-reviewed and grey literature databases to identify zoonotic endoparasite research utilizing an OH approach in community-based settings. Our review identified 32 articles where specimens collected simultaneously from all three OH domains (people, animals, and the environment) were assessed for endoparasite infection or exposure. Study sites spanned 23 countries, and research teams brought together an average of seven authors from two countries. Surveillance of blood-borne and gastrointestinal protozoa were most frequently reported (19 of 32; 59%), followed by trematodes, nematodes, and cestodes. Laboratory techniques varied greatly between studies, and only 16 identified parasites using Polymerase Chain Reaction (PCR) in all three OH domains. Our review identified important gaps in parasitology research operating under an OH framework. We recommend that investigators working in the realm of zoonotic disease strive to evaluate all three OH domains by integrating modern molecular tools as well as techniques provided by economists and social scientists.

  10. Zoonotic helminths of urban brown rats (Rattus norvegicus) in the UK: neglected public health considerations?

    PubMed

    McGarry, J W; Higgins, A; White, N G; Pounder, K C; Hetzel, U

    2015-02-01

    Urban brown rats (Rattus norvegicus) carry microbial human pathogens but their role as reservoir hosts for helminths of public health importance is less well known. In this study, 42 brown rats trapped on Merseyside were subject to thorough combined helminthological and pathohistological post-mortem examination. Eggs of the rodent-borne zoonotic nematode Calodium hepaticum were initially detected in histological sections of the livers of 9.5% of rats, but overall diagnostic sensitivity increased to 16.6% when entire liver tissue was disrupted and the resulting filtrates were examined for released eggs. In their rat host, mainly trapped inside the dockland, infections with C. hepaticum were associated with a chronic multifocal pyogranulomatous hepatitis with intralesional eggs and peripheral fibrosis. Mean intensity of hepatic C. hepaticum egg infections was 1041 eggs. This is the first report of C. hepaticum in an urban brown rat population in the UK and provides original data for liver egg burdens in this abundant commensal rodent. The zoonotic cestode Rodentolepis nana had a prevalence of infection of 14.3%. Rodent-specific, non-zoonotic helminths found were the spiruroid Mastophorus muris (16.0%) in the stomach, the trichuroid Trichosomoides crassicauda in the urinary bladder (31.0%); the ascarid Heterakis spumosa was the commonest helminth of the large intestine (76.2%). Many millions of brown rats inhabit cities and rural areas of the UK, and the infective stages of the zoonotic worm species, particularly C. hepaticum, are likely to be widely distributed in the environment presenting a threat to public health. © 2014 Blackwell Verlag GmbH.

  11. Infection of Domestic Dogs in Peru by Zoonotic Bartonella Species: A Cross-Sectional Prevalence Study of 219 Asymptomatic Dogs

    PubMed Central

    Diniz, Pedro Paulo V. P.; Morton, Bridget A.; Tngrian, Maryam; Kachani, Malika; Barrón, Eduardo A.; Gavidia, Cesar M.; Gilman, Robert H.; Angulo, Noelia P.; Brenner, Elliott C.; Lerner, Richard; Chomel, Bruno B.

    2013-01-01

    Bartonella species are emerging infectious organisms transmitted by arthropods capable of causing long-lasting infection in mammalian hosts. Among over 30 species described from four continents to date, 15 are known to infect humans, with eight of these capable of infecting dogs as well. B. bacilliformis is the only species described infecting humans in Peru; however, several other Bartonella species were detected in small mammals, bats, ticks, and fleas in that country. The objective of this study was to determine the serological and/or molecular prevalence of Bartonella species in asymptomatic dogs in Peru in order to indirectly evaluate the potential for human exposure to zoonotic Bartonella species. A convenient sample of 219 healthy dogs was obtained from five cities and three villages in Peru. EDTA-blood samples were collected from 205 dogs, whereas serum samples were available from 108 dogs. The EDTA-blood samples were screened by PCR followed by nucleotide sequencing for species identification. Antibodies against B. vinsonii berkhoffii and B. rochalimae were detected by IFA (cut-off of 1∶64). Bartonella DNA was detected in 21 of the 205 dogs (10%). Fifteen dogs were infected with B. rochalimae, while six dogs were infected with B. v. berkhoffii genotype III. Seropositivity for B. rochalimae was detected in 67 dogs (62%), and for B. v. berkhoffii in 43 (40%) of the 108 dogs. Reciprocal titers ≥1∶256 for B. rochalimae were detected in 19% of dogs, and for B. v. berkhoffii in 6.5% of dogs. This study identifies for the first time a population of dogs exposed to or infected with zoonotic Bartonella species, suggesting that domestic dogs may be the natural reservoir of these zoonotic organisms. Since dogs are epidemiological sentinels, Peruvian humans may be exposed to infections with B. rochalimae or B. v. berkhoffii. PMID:24040427

  12. Tetracycline Selective Pressure and Homologous Recombination Shape the Evolution of Chlamydia suis: A Recently Identified Zoonotic Pathogen.

    PubMed

    Joseph, Sandeep J; Marti, Hanna; Didelot, Xavier; Read, Timothy D; Dean, Deborah

    2016-09-02

    Species closely related to the human pathogen Chlamydia trachomatis (Ct) have recently been found to cause zoonotic infections, posing a public health threat especially in the case of tetracycline resistant Chlamydia suis (Cs) strains. These strains acquired a tet(C)-containing cassette via horizontal gene transfer (HGT). Genomes of 11 Cs strains from various tissues were sequenced to reconstruct evolutionary pathway(s) for tet(C) HGT. Cs had the highest recombination rate of Chlamydia species studied to date. Admixture occurred among Cs strains and with Chlamydia muridarum but not with Ct Although in vitro tet(C) cassette exchange with Ct has been documented, in vivo evidence may require examining human samples from Ct and Cs co-infected sites. Molecular-clock dating indicated that ancestral clades of resistant Cs strains predated the 1947 discovery of tetracycline, which was subsequently used in animal feed. The cassette likely spread throughout Cs strains by homologous recombination after acquisition from an external source, and our analysis suggests Betaproteobacteria as the origin. Selective pressure from tetracycline may be responsible for recent bottlenecks in Cs populations. Since tetracycline is an important antibiotic for treating Ct, zoonotic infections at mutual sites of infection indicate the possibility for cassette transfer and major public health repercussions. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Risk, knowledge and preventive measures of smallholder dairy farmers in northern Malawi with regard to zoonotic brucellosis and bovine tuberculosis.

    PubMed

    Tebug, Stanly Fon; Njunga, Gilson R; Chagunda, Mizeck G G; Mapemba, Jacob P; Awah-Ndukum, Julius; Wiedemann, Steffi

    2014-02-28

    Milk production using local cattle breed-types is an age-old practice in Malawi. Although dairy farming is becoming more common as a result of the increasing population and demand for milk and milk products, there is limited knowledge of the farmers' awareness of zoonotic disease risks, their preventative practices and the disease burden in animals. This study determined dairy farmers' general knowledge of zoonoses, assessed their risks for infection with zoonotic bovine tuberculosis (bTB) and brucellosis, and evaluated farm practices to prevent disease transmission. A questionnaire was drawn up and administered by the authors. It was used to collect information about the knowledge and preventive practices of 140 out of 684 registered dairy farmers at Mzuzu Agricultural Development Division, northern Malawi. During a second visit to 60 out of the 140 farms, a total of 156 and 95 cattle were tested for brucellosis and tuberculosis, respectively. Most farmers (77.1%) knew or had heard of zoonotic diseases, whilst 75.0% correctly named at least one zoonotic disease. More survey participants named tuberculosis as a zoonotic disease compared to brucellosis (74.3% versus 2.9%). The most commonly named means of transmission were milk (67.0%) and meat (56.0%). Almost all survey participants (96.4%) practised at least one farm activity that could lead to potential transmission of brucellosis or bTB, including sale (67.0%) and consumption (34.0%) of unpasteurised milk. Antibodies against brucellosis were found in 12 cattle (7.7%), whilst one animal (1.1%) reacted to the tuberculin skin test. General knowledge about possible transmission of diseases between humans and animals was high, although most farmers practised risk behaviours that could potentially expose the public to milk-borne zoonotic diseases such as brucellosis and bTB. Furthermore, some animals had positive results for brucellosis and tuberculosis tests. Therefore, improvement of zoonotic disease prevention

  14. Production of infectious dromedary camel hepatitis E virus by a reverse genetic system: Potential for zoonotic infection.

    PubMed

    Li, Tian-Cheng; Zhou, Xianfeng; Yoshizaki, Sayaka; Ami, Yasushi; Suzaki, Yuriko; Nakamura, Tomofumi; Takeda, Naokazu; Wakita, Takaji

    2016-12-01

    The pathogenicity, epidemiology and replication mechanism of dromedary camel hepatitis E virus (DcHEV), a novel hepatitis E virus (HEV), has been unclear. Here we used a reverse genetic system to produce DcHEV and examined the possibility of zoonotic infection. Capped genomic RNA derived from a synthetic DcHEV cDNA was transfected into human hepatocarcinoma cells PLC/PRF/5. The DcHEV capsid protein and RNA were detected by an enzyme-linked immunosorbent assay (ELISA) or RT-qPCR. A neutralization test for DcHEV was carried out by using antisera against HEV-like particles. DcHEV was used to inoculate two cynomolgus monkeys to examine the potential for cross-species infection. The transfection of PLC/PRF/5 cells with capped DcHEV RNA resulted in the production of infectious DcHEV. The genome sequence analysis demonstrated that both nucleotide and amino acid changes accumulated during the passages in PLC/PRF/5 cells. The cynomolgus monkeys showed serological signs of infection when DcHEV was intravenously inoculated. DcHEV was neutralized by not only anti-DcHEV-LPs antibody, but also anti-genotype 1 (G1), G3 and G4 HEV-LPs antibodies. Moreover, the monkeys immunized with DcHEV escaped the G3 HEV challenge, indicating that the serotype of DcHEV is similar to those of other human HEVs. Infectious DcHEV was produced using a reverse genetic system and propagated in PLC/PRF/5 cells. The antigenicity and immunogenicity of DcHEV are similar to those of G1, G3 and G4 HEV. DcHEV was experimentally transmitted to primates, demonstrating the possibility of a zoonotic infection by DcHEV. Dromedary camel hepatitis E virus (DcHEV) was produced by a reverse genetic system and grows well in PLC/PRF/5 cells. Cynomolgus monkeys experimentally infected with DcHEV indicated serological signs of infection, suggesting that DcHEV has the potential to cause zoonotic HEV infection. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  15. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine.

    PubMed

    Garcia-Migura, Lourdes; Hendriksen, Rene S; Fraile, Lorenzo; Aarestrup, Frank M

    2014-05-14

    The emergence of resistance in food animals has been associated to the consumption of antimicrobials in veterinary medicine. Consequently, monitoring programs have been designed to monitor the occurrence of antimicrobial resistant bacteria. This study analyses the amount of antimicrobial agents used in nine European countries from 2005 to 2011, and compares by univariate analysis the correlations between consumptions of each of the following antimicrobial classes; tetracycline, penicillins, cephalosporins, quinolones and macrolides. An overview of resistance in zoonotic and commensal bacteria in Europe focusing on Salmonella, Escherichia coli, Campylobacter sp. and Enterococcus sp., during the same period of time based on monitoring programs is also assessed. With the exception of cephalosporins, linear regressions showed strong positive associations between the consumption of the four different antimicrobial classes. Substantial differences between countries were observed in the amount of antimicrobials used to produce 1 kg of meat. Moreover, large variations in proportions of resistant bacteria were reported by the different countries, suggesting differences in veterinary practice. Despite the withdrawn of a specific antimicrobial from "on farm" use, persistence over the years of bacteria resistant to this particular antimicrobial agent, was still observed. There were also differences in trends of resistance associated to specific animal species. In order to correlate the use of antimicrobial agents to the presence of resistance, surveillance of antimicrobial consumption by animal species should be established. Subsequently, intervention strategies could be designed to minimize the occurrence of resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The role of wild canids and felids in spreading parasites to dogs and cats in Europe. Part I: Protozoa and tick-borne agents.

    PubMed

    Otranto, Domenico; Cantacessi, Cinzia; Pfeffer, Martin; Dantas-Torres, Filipe; Brianti, Emanuele; Deplazes, Peter; Genchi, Claudio; Guberti, Vittorio; Capelli, Gioia

    2015-09-30

    Over the last few decades, the world has witnessed radical changes in climate, landscape, and ecosystems. These events, together with other factors such as increasing illegal wildlife trade and changing human behaviour towards wildlife, are resulting into thinning boundaries between wild canids and felids and their domestic counterparts. As a consequence, the epidemiology of diseases caused by a number of infectious agents is undergoing profound readjustements, as pathogens adapt to new hosts and environments. Therefore, there is a risk for diseases of wildlife to spread to domestic carnivores and vice versa, and for zoonotic agents to emerge or re-emerge in human populations. Hence, the identification of the hazards arising from the co-habitation of these species is critical in order to plan and develop adequate control strategies against these pathogens. In the first of this two-part article, we review the role that wild canids and felids may play in the transmission of protozoa and arthropod-borne agents to dogs and cats in Europe, and provide an account of how current and future progress in our understanding of the ecology and epidemiology of parasites, as well as of host-parasite interactions, can assist efforts aimed at controlling parasite transmission. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Zoonotic parapoxviruses detected in symptomatic cattle in Bangladesh.

    PubMed

    Lederman, Edith; Khan, Salah Uddin; Luby, Stephen; Zhao, Hui; Braden, Zachary; Gao, JinXin; Karem, Kevin; Damon, Inger; Reynolds, Mary; Li, Yu

    2014-11-19

    Application of molecular diagnostic methods to the determination of etiology in suspected poxvirus-associated infections of bovines is important both for the diagnosis of the individual case and to form a more complete understanding of patterns of strain occurrence and spread. The objective of this study was to identify and characterize bovine-associated zoonotic poxviruses in Bangladesh which are relevant to animal and human health. Investigators from the International Center Diarrhoeal Disease Research (icddr,b), the US Centers for Disease Control and Prevention (CDC), and the Bangladesh Department of Livestock Services traveled to three districts in Bangladesh-Siranjganj, Rangpur and Bhola-to collect diagnostic specimens from dairy cattle and buffalo that had symptoms consistent with poxvirus-associated infections. Bovine papular stomatitis virus (BPSV) DNA was obtained from lesion material (teat) and an oral swab collected from an adult cow and calf (respectively) from a dairy production farm in Siranjganj. Pseudocowpox virus (PCPV) DNA signatures were obtained from a scab and oral swab collected from a second dairy cow and her calf from Rangpur. We report the first detection of zoonotic poxviruses from Bangladesh and show phylogenetic comparisons between the Bangladesh viruses and reference strains based on analyses of the B2L and J6R loci (vaccinia orthologs). Understanding the range and diversity of different species and strains of parapoxvirus will help to spotlight unusual patterns of occurrence that could signal events of significance to the agricultural and public health sectors.

  18. Neotropical Zoonotic Parasites in Bush Dogs (Speothos venaticus) from Upper Paraná Atlantic Forests in Misiones, Argentina.

    PubMed

    Vizcaychipi, Katherina A; Rinas, Miguel; Irazu, Lucia; Miyagi, Adriana; Argüelles, Carina F; DeMatteo, Karen E

    2016-10-01

    Wildlife remains an important source of zoonotic diseases for the most vulnerable groups of humans, primarily those living in rural areas or coexisting with forest. The Upper Paraná Atlantic forest of Misiones, Argentina is facing ongoing environmental and anthropogenic changes, which affect the local biodiversity, including the bush dog (Speothos venaticus), a small canid considered Near Threatened globally and Endangered locally. This project aimed to expand the knowledge of zoonotic parasites present in the bush dog and the potential implications for human health and conservation medicine. From May to August 2011, a detection dog located 34 scats that were genetically confirmed as bush dog and georeferenced to northern Misiones. Of these 34 scats, 27 had sufficient quantity that allowed processing for zoonotic parasites using morphological (sedimentation and flotation) and antigen (coproantigen technique) analyses. Within these 27 scats, we determined that the parasitic prevalence was 63.0% (n = 17) with 8 (47.1%) having mixed infections with 2-4 parasitic genera. No significant differences (p > 0.05) between sampling areas, sex, and parasite taxa were found. We were able to summarize the predominant nematodes (Ancylostoma caninum, Toxocara canis, and Lagochilascaris spp.), cestodes (Taenia spp. and Spirometra spp.), and apicomplexa (Cystoisospora caninum) found in these bush dogs. With the copro-ELISA technique, 14.8% (n = 4) of the samples were positive for Echinococcus spp. This study represents the first comprehensive study about parasitic fauna with zoonotic potential in the free-ranging bush dog. This information combined with the innovative set of techniques used to collect the samples constitute a valuable contribution that can be used in control programs, surveillance of zoonotic diseases, and wildlife conservation, both regionally and across the bush dog's broad distribution.

  19. Contact zoonosis related to aquaculture: a growing concern

    USDA-ARS?s Scientific Manuscript database

    Aquaculture develops fast worldwide, with new cultured species and increased global transport of live aquaculture products. There is a growing recognition of zoonotic disease agents causing epidemics and carrier states in cultured fish and shellfish, especially from warm water systems, transmitted t...

  20. Linking Climate to Incidence of Zoonotic Cutaneous Leishmaniasis (L. major) in Pre-Saharan North Africa

    NASA Technical Reports Server (NTRS)

    Bounoua, Lahouari; Kahime, Kholoud; Houti, Leila; Blakey, Tara; Ebi, Kristie L.; Zhang, Ping; Imhoff, Marc L.; Thome, Kurtis J.; Dudek, Claire; Sahabi, Salah A.; hide

    2013-01-01

    Shifts in surface climate may have changed the dynamic of zoonotic cutaneous leishmaniasis (ZCL) in the pre-Saharan zones of North Africa. Caused by Leishmania major, this form multiplies in the body of rodents serving as reservoirs of the disease. The parasite is then transmitted to human hosts by the bite of a Phlebotomine sand fly (Diptera: Psychodidae) that was previously fed by biting an infected reservoir. We examine the seasonal and interannual dynamics of the incidence of this ZCL as a function of surface climate indicators in two regions covering a large area of the semi-arid Pre-Saharan North Africa. Results suggest that in this area, changes in climate may have initiated a trophic cascade that resulted in an increase in ZCL incidence. We find the correlation between the rainy season precipitation and the same year Normalized Difference Vegetation Index (NDVI) to be strong for both regions while the number of cases of ZCL incidence lags the precipitation and NDVI by 2 years. The zoonotic cutaneous leishmaniasis seasonal dynamic appears to be controlled by minimum temperatures and presents a 2-month lag between the reported infection date and the presumed date when the infection actually occurred. The decadal increase in the number of ZCL occurrence in the region suggests that changes in climate increased minimum temperatures sufficiently and created conditions suitable for endemicity that did not previously exist. We also find that temperatures above a critical range suppress ZCL incidence by limiting the vector's reproductive activity.

  1. Zoonotic Cryptosporidium Species and Enterocytozoon bieneusi Genotypes in HIV-Positive Patients on Antiretroviral Therapy

    PubMed Central

    Wang, Lin; Zhang, Hongwei; Zhao, Xudong; Zhang, Longxian; Zhang, Guoqing; Guo, Meijin; Liu, Lili; Xiao, Lihua

    2013-01-01

    Molecular diagnostic tools have been used increasingly in the characterization of the transmission of cryptosporidiosis and microsporidiosis in developing countries. However, few studies have examined the distribution of Cryptosporidium species and Enterocytozoon bieneusi genotypes in AIDS patients receiving antiretroviral therapy. In the present study, 683 HIV-positive patients in the National Free Antiretroviral Therapy Program in China and 683 matched HIV-negative controls were enrolled. Cryptosporidium species and subtypes and Enterocytozoon bieneusi genotypes were detected and differentiated by PCR and DNA sequencing. The infection rates were 1.5% and 0.15% for Cryptosporidium and 5.7% and 4.2% for E. bieneusi in HIV-positive and HIV-negative participants, respectively. The majority (8/11) of Cryptosporidium cases were infections by zoonotic species, including Cryptosporidium meleagridis (5), Cryptosporidium parvum (2), and Cryptosporidium suis (1). Prevalent E. bieneusi genotypes detected, including EbpC (39), D (12), and type IV (7), were also potentially zoonotic. The common occurrence of EbpC was a feature of E. bieneusi transmission not seen in other areas. Contact with animals was a risk factor for both cryptosporidiosis and microsporidiosis. The results suggest that zoonotic transmission was significant in the epidemiology of both diseases in rural AIDS patients in China. PMID:23224097

  2. Occurrence and prevalence of selected zoonotic agents: Echinococcus multilocularis, Trichinella spiralis and hepatitis E virus (HEV) in the population of Polish hunters--results of the study conducted in 2010-2012.

    PubMed

    Sadkowska-Todys, Małgorzata; Baumann-Popczyk, Anna; Wnukowska, Natalia; Popczyk, Bartłomiej; Kucharczyk, Bożena; Gołąb, Elżbieta

    2015-01-01

    In Poland the development of the knowledge concerning zoonotic pathogens, of which free-living animals are the reservoir of is gaining in importance both in epidemiological aspect as well as in the context of prevention for improving public health. Dietary habits such as the consumption of forest undergrowth products and wild game meat, and the way of those products being prepared (in the process of barbequing) pose a risk factors of infection with the foodborne pathogens such as Echinococcus multilocularis, Trichinella spp., and HEV. The aim of this study is to estimate the prevalence of infections caused by Trichinella spp., Echinococcus multilocularis, and HEV in the population of Polish hunters, describing their geographical distribution in Poland, and to try to define basic factors, which may contribute to their occurrence. In 2010-2012 a cross-sectional study was carried out among Polish hunters. A blood samples were collected as well as a survey of 1027 participants recruited in the 16 provinces was also carried out. Serological tests were performed for the presence of specific antibodies against Echinococcus multilocularis, Trichinella spp. and HEV using commercial or "in home" ELISA tests. In case of positive result for Echinococcus, an Em2plus ELISA or/and western blot test were carried out, and for positive results for IgM for HEV a recomLine HEV IgM test was carried out. In the studied population a total number of 2 cases of Echinococcus multilocularis infection were found. Moreover in 47 (4,6%) participants presence of antibodies against Trichinella spp. were found, including 17 positive and 30 borderline results. In 206 persons (25%) IgG anti-HEV antibodies were found (by ELISA test). Geographical diversity in prevalence of both, the Trichinella spp. and HEV cases was observed. The study confirmed presence of zoonotic infections such as Echinococcus multilocularis, Trichinella spp., and hepatitis E (HEV) among Polish hunters. In the case of

  3. Linking Climate to Incidence of Zoonotic Cutaneous Leishmaniasis (L. major) in Pre-Saharan North Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bounoua, Lahouari; Kahime, Kholoud; Houti, Leila

    Shifts in surface climate may have changed the dynamic of zoonotic cutaneous leishmaniasis (ZCL) in the pre-Saharan zones of North Africa. Caused by Leishmania major, this form multiplies in the body of rodents serving as reservoirs of the disease. The parasite is then transmitted to human hosts by the bite of a Phlebotomine sand fly (Diptera: Psychodidae) that was previously fed by biting an infected reservoir. We examine the seasonal and interannual dynamics of the incidence of this ZCL as a function of surface climate indicators in two regions covering a large area of the semi-arid Pre-Saharan North Africa. Resultsmore » suggest that in this area, changes in climate may have initiated a trophic cascade that resulted in an increase in ZCL incidence.« less

  4. Prevalence of gastrointestinal helminth parasites of zoonotic significance in dogs and cats in lower Northern Thailand.

    PubMed

    Pumidonming, Wilawan; Salman, Doaa; Gronsang, Dulyatad; Abdelbaset, Abdelbaset E; Sangkaeo, Khamphon; Kawazu, Shin-Ichiro; Igarashi, Makoto

    2017-01-10

    Gastrointestinal zoonotic helminths of dogs and cats have a public health concern worldwide. We investigated the prevalence of gastrointestinal helminths of zoonotic significance in dogs and cats in lower Northern Thailand and utilized molecular tools for species identification of hookworms and Opisthorchis viverrini. Fecal samples of 197 dogs and 180 cats were collected. Overall prevalence of infection using microscopy was 40.1% in dogs and 33.9% in cats. Helminth infection found in both dogs and cats included hookworms, Spirometra spp., Taenia spp., Toxocara spp., O. viverrini, Strongyloides spp. and Trichuris spp. Hookworms were the most common helminth in dogs, while Spirometra spp. were the most prevalent in cats. Among hookworm infection in dogs and cats, Ancylostoma ceylanicum was the most prevalent hookworm, being 82.1% in hookworm infected dogs and 95.8% in hookworm infected cats. Mixed-infection due to hookworms and Spirometra spp. was the most dominant in both dogs and cats. Our finding showed that zoonotic helminth infection is highly prevalent in dogs and cats in the lower Northern area of Thailand.

  5. Zoonotic chicken toxoplasmosis in some Egyptians governorates.

    PubMed

    Barakat, Ashraf Mohamed; Salem, Lobna Mohamed Ali; El-Newishy, Adel M Abdel-Aziz; Shaapan, Raafat Mohamed; El-Mahllawy, Ehab Kotb

    2012-09-01

    Toxoplasmosis is one of the most common diseases prevalent in the world, caused by a coccidian parasite Toxoplasma gondii which infects humans, animals and birds. Poultry consider reliable human source of food in addition it is considered an intermediate host in transmission of the disease to humans. Trails of isolation of local T. gondii chicken strain through bioassay of the suspected infected chicken tissues in mice was carried out and the isolated strain was confirmed as being T. gondii using Polymerase Chain Reaction (PCR). Seroprevalence of antibodies against T. gondii in chicken sera in six Egyptian governorates were conducted by enzyme linked immune-sorbent assay (ELISA) using the isolated chicken strain antigen. Moreover, comparison between the prevalence rates in different regions of the Egyptian governorates were been estimated. Isolation of local T. gondii chicken strain was accomplished from chicken tissues and confirmed by PCR technique. The total prevalence rate was 68.8% comprised of 59.5, 82.3, 67.1, 62.2, 75 and 50% in El Sharkia, El Gharbia, Kafr El sheikh, Cairo, Quena and Sohag governorates, respectively. The prevalence rates were higher among Free Range (FR) (69.5%) than commercial farm Chickens (C) (68.5%); while, the prevalence rate was less in Upper Egypt than Lower Egypt governorates and Cairo. This study is the first was used antigen from locally isolated T. gondii chicken strain for the diagnosis of chicken toxoplasmosis. The higher seroprevalence particularly in free range chickens (house-reared) refers to the public health importance of chickens as source of zoonotic toxoplasmosis to human.

  6. Alkylating chemotherapeutic agents cyclophosphamide and melphalan cause functional injury to human bone marrow-derived mesenchymal stem cells.

    PubMed

    Kemp, Kevin; Morse, Ruth; Sanders, Kelly; Hows, Jill; Donaldson, Craig

    2011-07-01

    The adverse effects of melphalan and cyclophosphamide on hematopoietic stem cells are well-known; however, the effects on the mesenchymal stem cells (MSCs) residing in the bone marrow are less well characterised. Examining the effects of chemotherapeutic agents on patient MSCs in vivo is difficult due to variability in patients and differences in the drug combinations used, both of which could have implications on MSC function. As drugs are not commonly used as single agents during high-dose chemotherapy (HDC) regimens, there is a lack of data comparing the short- or long-term effects these drugs have on patients post treatment. To help address these problems, the effects of the alkylating chemotherapeutic agents cyclophosphamide and melphalan on human bone marrow MSCs were evaluated in vitro. Within this study, the exposure of MSCs to the chemotherapeutic agents cyclophosphamide or melphalan had strong negative effects on MSC expansion and CD44 expression. In addition, changes were seen in the ability of MSCs to support hematopoietic cell migration and repopulation. These observations therefore highlight potential disadvantages in the use of autologous MSCs in chemotherapeutically pre-treated patients for future therapeutic strategies. Furthermore, this study suggests that if the damage caused by chemotherapeutic agents to marrow MSCs is substantial, it would be logical to use cultured allogeneic MSCs therapeutically to assist or repair the marrow microenvironment after HDC.

  7. Bacterial and protozoal agents of canine vector-borne diseases in the blood of domestic and stray dogs from southern Portugal.

    PubMed

    Maia, Carla; Almeida, Bruno; Coimbra, Mónica; Fernandes, Maria Catarina; Cristóvão, José Manuel; Ramos, Cláudia; Martins, Ângela; Martinho, Filipe; Silva, Pedro; Neves, Nuno; Nunes, Mónica; Vieira, Maria Luísa; Cardoso, Luís; Campino, Lenea

    2015-03-23

    The so-called canine vector-borne diseases (CVBD) are caused by a wide range of pathogens transmitted by arthropods. In addition to their veterinary importance, many of these canine vector-borne pathogens can also affect the human population due to their zoonotic potential, a situation that requires a One Health approach. As the prevalence of vector-borne pathogens in cats from southern Portugal has been recently evaluated, the aim of the present study was to assess if the same agents were present in dogs living in the same area, and to assess positivity-associated risk factors. One thousand and ten dogs (521 domestic and 489 stray) from veterinary medical centres and animal shelters in southern Portugal were enrolled. Anaplasma spp./Ehrlichia spp., Bartonella spp., Borrelia burgdorferi sensu lato, Babesia spp., Hepatozoon spp. and Leishmania infantum infections were evaluated by polymerase chain reaction (PCR) assays in blood samples. Sixty-eight (6.7%) dogs were PCR-positive to at least one of the tested CVBD agent species, genera or complex, including one dog found positive to two different genera. Nineteen (1.9%) dogs were positive to Anaplasma spp./Ehrlichia spp., eight (0.8%) to B. burgdorferi s.l., 31 (3.1%) to Hepatozoon spp. and 11 (1.1%) to L. infantum. Anaplasma platys, Ehrlichia canis, B. burgdorferis.l. and Hepatozoon canis were identified by DNA sequencing, including one animal confirmed with both A. platys and H. canis. Furthermore, Wolbachia spp. was amplified in blood from four dogs. None of the tested dogs was positive by PCR for Bartonella spp. or Babesia spp. The molecular identification of CVBD agents in southern Portugal, some of them with zoonotic concern, reinforces the importance to alert the veterinary community, owners and public health authorities to prevent the risk of transmission of vector-borne pathogens among dogs and to other vertebrate hosts including humans. The prevalence of the selected pathogens was lower than that previously

  8. Rift Valley fever: a mosquito-borne emerging disease

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) (Bunyaviridae: Phlebovirus) is mosquito-borne zoonotic emerging infectious viral disease caused by RVF virus (RVFV) that presents significant threats to global public health and agriculture in Africa and the Middle East. RVFV is listed as a select agent with significant conce...

  9. Etiological agents causing leptospirosis in Sri Lanka: A review.

    PubMed

    Naotunna, Chamidri; Agampodi, Suneth Buddhika; Agampodi, Thilini Chanchala

    2016-04-01

    To systematically review the etiological agent causing human leptospirosis in Sri Lanka. Published articles on leptospirosis and Leptospira in Sri Lanka were all reviewed to determine serovar, strain and species level identification of Leptospira. After screening process, 74 full text articles/reports were reviewed and among of them, 12 published papers describing isolation of Leptospira from Sri Lankan patients/animals, 5 molecular epidemiology papers on newer typing methods citing Sri Lanka isolates, with a descriptions of the isolates and 6 published papers reporting PCR based species level identification were identified. Published literature showed that more than 40 strains classified under at least 20 serovars and 10 serogroups have been isolated from Sri Lanka. These isolates belong to four species, namely, Leptospira interrogans, Leptospira kirschneri, Leptospira borgpetersenii, and Leptospira santarosai. In addition, recent studies on direct patient samples without culture and isolation showed Leptospira from Leptospira weilli is also circulating in Sri Lanka. Multi locus sequence typing showed 13 genotypes of Leptospira from Sri Lankan isolates. This review shows the diversity of Leptospira in Sri Lanka, but culture isolation data has not been published in Sri Lanka during last 30 years. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  10. Epidemiological survey of zoonotic pathogens in feral pigeons (Columba livia var. domestica) and sympatric zoo species in Southern Spain.

    PubMed

    Cano-Terriza, David; Guerra, Rafael; Lecollinet, Sylvie; Cerdà-Cuéllar, Marta; Cabezón, Oscar; Almería, Sonia; García-Bocanegra, Ignacio

    2015-12-01

    A cross-sectional study was carried out to determine the prevalence of pathogenic zoonotic agents (flaviviruses, avian influenza viruses (AIVs), Salmonella spp. and Toxoplasma gondii) in feral pigeons and sympatric zoo animals from Córdoba (Southern Spain) between 2013 and 2014. Antibodies against flaviviruses were detected in 7.8% out of 142 (CI95%: 3.7-11.8) pigeons, and 8.2% of 49 (CI95%: 0.9-15.4) of zoo animals tested. Antibodies with specificity against West Nile virus (WNV) and Usutu virus (USUV) were confirmed both in pigeons and in zoo birds. Even though seropositivity to AIVs was not detected in any of the analyzed pigeons, 17.9% of 28 (CI95%: 3.7-32.0) zoo birds tested showed positive results. Salmonella spp. was not isolated in any of 152 fecal samples collected from pigeons, while 6.8% of 44 zoo animals were positive. Antibodies against T. gondii were found in 9.2% of 142 (CI95%: 4.8-13.6) feral pigeons and 26.9% of 108 (CI95%: 19.6-34.1) zoo animals. This is the first study on flaviviruses and T. gondii in feral pigeons and captive zoo species in Spain. Antibodies against WNV and USUV detected in non-migratory pigeons and captive zoo animals indicate local circulation of these emerging pathogens in the study area. T. gondii was widespread in species analyzed. This finding could be of importance for Public Health and Conservation of endangered species present in zoo parks. Pigeons and zoo animals may be included as sentinel species for monitoring zoonotic pathogens in urban areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Examining the differences in format and characteristics of zoonotic virus surveillance data on state agency websites.

    PubMed

    Scotch, Matthew; Baarson, Brittany; Beard, Rachel; Lauder, Robert; Varman, Aarthi; Halden, Rolf U

    2013-04-26

    Zoonotic viruses are infectious organisms transmittable between animals and humans. Agencies of public health, agriculture, and wildlife conduct surveillance of zoonotic viruses and often report data on their websites. However, the format and characteristics of these data are not known. To describe and compare the format and characteristics of statistics of zoonotic viruses on state public health, agriculture, and wildlife agency websites. For each state, we considered the websites of that state's public health, agriculture, and wildlife agency. For each website, we noted the presence of any statistics for zoonotic viruses from 2000-2012. We analyzed the data using numerous categories including type of statistic, temporal and geographic level of detail, and format. We prioritized our analysis within each category based on assumptions of individuals' preferences for extracting and analyzing data from websites. Thus, if two types of data (such as city and state-level) were present for a given virus in a given year, we counted the one with higher priority (city). External links from agency sites to other websites were not considered. From 2000-2012, state health departments had the most extensive virus data, followed by agriculture, and then wildlife. We focused on the seven viruses that were common across the three agencies. These included rabies, West Nile virus, eastern equine encephalitis, St. Louis encephalitis, western equine encephalitis, influenza, and dengue fever. Simple numerical totals were most often used to report the data (89% for public health, 81% for agriculture, and 82% for wildlife), and proportions were not different (chi-square P=.15). Public health data were most often presented yearly (66%), while agriculture and wildlife agencies often described cases as they occurred (Fisher's Exact test P<.001). Regarding format, public health agencies had more downloadable PDF files (68%), while agriculture (61%) and wildlife agencies (46%) presented data

  12. Pharmacodynamics of the Novel Antifungal Agent F901318 for Acute Sinopulmonary Aspergillosis Caused by Aspergillus flavus

    PubMed Central

    Negri, Clara E; Johnson, Adam; McEntee, Laura; Box, Helen; Whalley, Sarah; Schwartz, Julie A; Ramos-Martín, V; Livermore, Joanne; Kolamunnage-Dona, Ruwanthi; Colombo, Arnaldo L; Hope, William W

    2018-01-01

    Abstract Background Aspergillus flavus is one of the most common agents of invasive aspergillosis and is associated with high mortality. The orotomides are a new class of antifungal agents with a novel mechanism of action. An understanding of the pharmacodynamics (PD) of the lead compound F901318 is required to plan safe and effective regimens for clinical use. Methods The pharmacokinetics (PK) and PD of F901318 were evaluated by developing new in vitro and in vivo models of invasive fungal sinusitis. Galactomannan was used as a pharmacodynamic endpoint in all models. Mathematical PK-PD models were used to describe dose-exposure-response relationships. Results F901318 minimum inhibitory concentrations (MICs) ranged from 0.015 to 0.06 mg/L. F901318 induced a concentration-dependent decline in galactomannan. In the in vitro model, a minimum concentration:MIC of 10 resulted in suppression of galactomannan; however, values of approximately 10 and 9–19 when assessed by survival of mice or the decline in galactomannan, respectively, were equivalent or exceeded the effect induced by posaconazole. There was histological clearance of lung tissue that was consistent with the effects of F901318 on galactomannan. Conclusions F901318 is a potential new agent for the treatment of invasive infections caused by A flavus with PDs that are comparable with other first-line triazole agents. PMID:28968675

  13. Serosurvey for Zoonotic Viral and Bacterial Pathogens Among Slaughtered Livestock in Egypt

    PubMed Central

    Horton, Katherine C.; Wasfy, Momtaz; Samaha, Hamed; Abdel-Rahman, Bassem; Safwat, Sameh; Abdel Fadeel, Moustafa; Mohareb, Emad; Dueger, Erica

    2015-01-01

    Introduction Zoonotic diseases are an important cause of human morbidity and mortality. Animal populations at locations with high risk of transmission of zoonotic pathogens offer an opportunity to study viral and bacterial pathogens of veterinary and public health concern. Methods Blood samples were collected from domestic and imported livestock slaughtered at the Muneeb abattoir in central Egypt in 2009. Samples were collected from cattle (n = 161), buffalo (n = 153), sheep (n = 174), and camels (n = 10). Samples were tested for antibodies against Leptospira spp. by a microscopy agglutination test, Coxiella burnetii by enzyme immunoassay, Brucella spp. by standard tube agglutination, and Rift Valley Fever virus (RVFV), Crimean–Congo hemorrhagic fever virus (CCHFV), sandfly fever Sicilian virus (SFSV), and sandfly fever Naples virus (SFNV) by enzyme-linked immunosorbent assay. Results Antibodies against Leptospira spp. were identified in 64 (40%) cattle, 45 (29%) buffalo, 71 (41%) sheep, and five (50%) camels; antibodies against C. burnetii in six (4%) buffalo, 14 (8%) sheep, and seven (70%) camels; and antibodies against Brucella spp. in 12 (8%) cattle, one (1%) buffalo, seven (4%) sheep, and one (10%) camel. Antibodies against RVFV were detected in two (1%) cattle and five (3%) buffalo, and antibodies against CCHFV in one (1%) cow. No antibodies against SFSV or SFNV were detected in any species. Discussion Results indicate that livestock have been exposed to a number of pathogens, although care must be taken with interpretation. It is not possible to determine whether antibodies against Leptospira spp. and RVFV in cattle and buffalo are due to prior vaccination or natural exposure. Similarly, antibodies identified in animals less than 6 months of age may be maternal antibodies transferred through colostrum rather than evidence of prior exposure. Results provide baseline evidence to indicate that surveillance within animal populations may be a useful tool to

  14. Effect of lysozyme or antibiotics on fecal zoonotic pathogens in nursery pigs

    USDA-ARS?s Scientific Manuscript database

    Lysozyme is a 1,4-ß-N-acetylmuramidase that has antimicrobial properties. The objective of this study was to determine the effect of lysozyme and antibiotics on zoonotic pathogen shedding in feces in nursery pigs housed without and with an indirect disease challenge. Two replicates of 600 pigs eac...

  15. Sarcoptic mange: a zoonotic ectoparasitic skin disease.

    PubMed

    Bandi, Kiran Madhusudhan; Saikumar, Chitralekha

    2013-01-01

    A 56-year old man attended the Dermatology Outpatients Department with the complaint of a localized, extremely itchy, erythematous papular lesion of acute onset on the ventral aspect of the right thigh. The patient was referred to the Microbiology Lab for the microscopic detection of the fungal elements. The KOH mount from the skin scrapings showed no fungal elements, but it showed the mites of Sarcopetes scabiei mange. The Sarcoptic Mange is noteworthy because of the fact that it is a zoonotic disease which can easily be passed on to humans. A close contact with infested pet dogs was considered as the main predisposing factor in this case. The response to the antiscabietic treatment was dramatic.

  16. Sarcoptic Mange: A Zoonotic Ectoparasitic Skin Disease

    PubMed Central

    Bandi, Kiran Madhusudhan; Saikumar, Chitralekha

    2013-01-01

    A 56-year old man attended the Dermatology Outpatients Department with the complaint of a localized, extremely itchy, erythematous papular lesion of acute onset on the ventral aspect of the right thigh. The patient was referred to the Microbiology Lab for the microscopic detection of the fungal elements. The KOH mount from the skin scrapings showed no fungal elements, but it showed the mites of Sarcopetes scabiei mange. The Sarcoptic Mange is noteworthy because of the fact that it is a zoonotic disease which can easily be passed on to humans. A close contact with infested pet dogs was considered as the main predisposing factor in this case. The response to the antiscabietic treatment was dramatic. PMID:23450734

  17. Role of newer and re-emerging older agents in the treatment of infections caused by carbapenem-resistant Enterobacteriaceae.

    PubMed

    Thaden, Joshua T; Pogue, Jason M; Kaye, Keith S

    2017-05-19

    Antimicrobial resistance has been identified by the World Health Organization as "one of the three greatest threats to human health." Gram negative bacteria in particular drive this alarming trend. Carbapenem-resistant Enterobacteriaceae (CRE) such as Escherichia coli, Klebsiella pneumoniae, and Enterobacter species are of particular importance as they are associated with poor clinical outcomes and are common causes for a variety of infections including bacteremia, urinary tract infection, intra-abdominal infections and pneumonia. CRE are difficult to treat as carbapenem resistance is often accompanied by resistance to additional drug classes. For example, CRE may be extensively drug resistant or even pandrug resistant. Unfortunately, CRE infections have increased over the past 15 y while new and effective antibiotics have not kept pace. Recently, however, new agents have become available to help treat CRE infection, and several more are under development. This article reviews the efficacy, safety, and pharmacokinetic issues around 4 emerging agents to treat CRE - ceftazidime-avibactam, fosfomycin, tigecycline, and minocycline. In addition, an overview of agents in the antibiotic pipeline - meropenem-vaborbactam, imipenem-relebactam, plazomicin, and eravacycline is provided. More established agents, such as those in the polymyxin class and aminoglycoside class (other than the pipeline agent plazomicin), are not addressed here.

  18. Modelling H5N1 in Bangladesh across spatial scales: Model complexity and zoonotic transmission risk.

    PubMed

    Hill, Edward M; House, Thomas; Dhingra, Madhur S; Kalpravidh, Wantanee; Morzaria, Subhash; Osmani, Muzaffar G; Yamage, Mat; Xiao, Xiangming; Gilbert, Marius; Tildesley, Michael J

    2017-09-01

    Highly pathogenic avian influenza H5N1 remains a persistent public health threat, capable of causing infection in humans with a high mortality rate while simultaneously negatively impacting the livestock industry. A central question is to determine regions that are likely sources of newly emerging influenza strains with pandemic causing potential. A suitable candidate is Bangladesh, being one of the most densely populated countries in the world and having an intensifying farming system. It is therefore vital to establish the key factors, specific to Bangladesh, that enable both continued transmission within poultry and spillover across the human-animal interface. We apply a modelling framework to H5N1 epidemics in the Dhaka region of Bangladesh, occurring from 2007 onwards, that resulted in large outbreaks in the poultry sector and a limited number of confirmed human cases. This model consisted of separate poultry transmission and zoonotic transmission components. Utilising poultry farm spatial and population information a set of competing nested models of varying complexity were fitted to the observed case data, with parameter inference carried out using Bayesian methodology and goodness-of-fit verified by stochastic simulations. For the poultry transmission component, successfully identifying a model of minimal complexity, which enabled the accurate prediction of the size and spatial distribution of cases in H5N1 outbreaks, was found to be dependent on the administration level being analysed. A consistent outcome of non-optimal reporting of infected premises materialised in each poultry epidemic of interest, though across the outbreaks analysed there were substantial differences in the estimated transmission parameters. The zoonotic transmission component found the main contributor to spillover transmission of H5N1 in Bangladesh was found to differ from one poultry epidemic to another. We conclude by discussing possible explanations for these discrepancies in

  19. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses

    PubMed Central

    Sheahan, Timothy P.; Sims, Amy C.; Graham, Rachel L.; Menachery, Vineet D.; Gralinski, Lisa E.; Case, James B.; Leist, Sarah R.; Pyrc, Krzysztof; Feng, Joy Y.; Trantcheva, Iva; Bannister, Roy; Park, Yeojin; Babusis, Darius; Clarke, Michael O.; Mackman, Richard L.; Spahn, Jamie E.; Palmiotti, Christopher A.; Siegel, Dustin; Ray, Adrian S.; Cihlar, Tomas; Jordan, Robert; Denison, Mark R.; Baric, Ralph S.

    2017-01-01

    Emerging viral infections are difficult to control as heterogeneous members periodically cycle in and out of humans and zoonotic hosts, complicating the development of specific antiviral therapies and vaccines. Coronaviruses (CoVs) have a proclivity to spread rapidly into new host species causing severe disease. SARS-CoV and MERS-CoV successively emerged causing severe epidemic respiratory disease in immunologically naïve human populations throughout the globe. Broad-spectrum therapies capable of inhibiting CoV infections would address an immediate unmet medical need and could be invaluable in the treatment of emerging and endemic CoV infections. Here we show that a nucleotide prodrug GS-5734, currently in clinical development for treatment of Ebola virus disease, can inhibit SARS-CoV and MERS-CoV replication in multiple in vitro systems including primary human airway epithelial cell cultures with submicromolar IC50 values. GS-5734 was also effective against bat-CoVs, prepandemic bat-CoVs and circulating contemporary human CoV in primary human lung cells, thus demonstrating broad-spectrum anti-CoV activity. In a mouse model of SARS-CoV pathogenesis, prophylactic and early therapeutic administration of GS-5734 significantly reduced lung viral load and improved clinical signs of disease as well as respiratory functions. These data provide substantive evidence that GS-5734 may prove effective against endemic MERS-CoV in the Middle East, circulating human CoV, and possibly most importantly, emerging CoV of the future. PMID:28659436

  20. Isolation of an agent causing bilirubinemia and jaundice in raccoons

    USGS Publications Warehouse

    Kilham, L.; Herman, C.M.

    1954-01-01

    An infectious agent, which appears to be a virus (RJV) has been isolated from the liver of a wild raccoon which has led to a highly fatal type of disease characterized by conjunctivitis and an elevated serum bilirubin frequently accompanied by jaundice on inoculation of raccoons. Ferrets also appear to be susceptible to infections with this agent.

  1. Balancing repair and tolerance of DNA damage caused by alkylating agents.

    PubMed

    Fu, Dragony; Calvo, Jennifer A; Samson, Leona D

    2012-01-12

    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity.

  2. Effect of lysozyme or antibiotics on fecal zoonotic pathogens in nursery pigs

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine the effect of lysozyme and antibiotics on zoonotic pathogen shedding in feces from nursery pigs housed without and with an indirect disease challenge. Two replicates of 600 pigs each were weaned and randomly assigned to one of 24 pens in either a nursery...

  3. Tuberculosis in domestic livestock: pathogenesis, transmission, and vaccination

    USDA-ARS?s Scientific Manuscript database

    The Mycobacterium tuberculosis complex includes agents such as M. tuberculosis and M. bovis, the cause of tuberculosis in most animals and a zoonotic pathogen. Mycobacterium bovis has one of the broadest host ranges of any pathogen, infecting most mammals, including humans. Models are used to study ...

  4. Emerging viral diseases of Southeast Asia and the Western Pacific.

    PubMed Central

    Mackenzie, J. S.; Chua, K. B.; Daniels, P. W.; Eaton, B. T.; Field, H. E.; Hall, R. A.; Halpin, K.; Johansen, C. A.; Kirkland, P. D.; Lam, S. K.; McMinn, P.; Nisbet, D. J.; Paru, R.; Pyke, A. T.; Ritchie, S. A.; Siba, P.; Smith, D. W.; Smith, G. A.; van den Hurk, A. F.; Wang, L. F.; Williams, D. T.

    2001-01-01

    Over the past 6 years, a number of zoonotic and vectorborne viral diseases have emerged in Southeast Asia and the Western Pacific. Vectorborne disease agents discussed in this article include Japanese encephalitis, Barmah Forest, Ross River, and Chikungunya viruses. However, most emerging viruses have been zoonotic, with fruit bats, including flying fox species as the probable wildlife hosts, and these will be discussed as well. The first of these disease agents to emerge was Hendra virus, formerly called equine morbillivirus. This was followed by outbreaks caused by a rabies-related virus, Australian bat lyssavirus, and a virus associated with porcine stillbirths and malformations, Menangle virus. Nipah virus caused an outbreak of fatal pneumonia in pigs and encephalitis in humans in the Malay Peninsula. Most recently, Tioman virus has been isolated from flying foxes, but it has not yet been associated with animal or human disease. Of nonzoonotic viruses, the most important regionally have been enterovirus 71 and HIV. PMID:11485641

  5. MALDI-TOF MS analysis of bovine and zoonotic Trichophyton verrucosum isolates reveals a distinct peak and cluster formation of a subgroup with Trichophyton benhamiae.

    PubMed

    Bartosch, Theresa; Heydel, Tilo; Uhrlaß, Silke; Nenoff, Pietro; Müller, Hendrik; Baums, Christoph Georg; Schrödl, Wieland

    2018-07-01

    The zoophilic dermatophyte Trichophyton verrucosum is the most important causative agent of bovine dermatophytosis. Additionally, it causes profound and poorly healing skin infections in humans indicating the high zoonotic potential. The objective of this study was to establish differentiation of T. verrucosum from other dermatophytes by mass spectrometry and to identify distinct features of the mass spectra. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was successful for identification of this pathogen only after extension of the database of the manufacturer with spectra from T. verrucosum strains, which were identified as such by sequencing of the internal transcribed spacer (ITS) region. MALDI-TOF MS analysis was conducted with 46 field isolates from cattle, two live vaccine strains, and 10 isolates from humans identified as T. verrucosum by sequence analysis of the ITS region. The results suggest a very good agreement of both methods. Comparison with the mass spectra of 68 strains of other keratinophilic fungi revealed that most T. verrucosum wild-type isolates showed a characteristic peak at 7950-7954 m/z, which was missing in the spectra of other keratinophilic fungi and the live vaccine strains. The spectra of T. verrucosum were most similar to the spectra of T. benhamiae, an emerging zoophilic dermatophyte. In summary, MALDI-TOF MS is a powerful and reliable tool to identify T. verrucosum.

  6. Quantifying climate change impacts on runoff of zoonotic pathogens from land

    NASA Astrophysics Data System (ADS)

    Sterk, Ankie; de Roda Husman, Ana Maria; Stergiadi, Maria; de Nijs, Ton; Schijven, Jack

    2013-04-01

    Several studies have shown a correlation between rainfall and waterborne disease outbreaks. One of the mechanisms whereby rainfall may cause outbreaks is through an increase in runoff of animal faeces from fields to surface waters. Faeces originating from wildlife, domestic animals or manure-fertilized fields, is considered an important source of zoonotic pathogens to which people may be exposed by water recreation or drinking-water consumption. Climate changes affect runoff because of increasing winter precipitation and more extreme precipitation events, as well as changes in evaporation. Furthermore, drier summers are leading to longer periods of high soil moisture deficits, increasing the hydrophobicity of soil and consequently changing infiltration capacities. A conceptual model is designed to describe the impacts of climate changes on the terrestrial and aquatic ecosystems, which are both directly and indirectly affecting pathogen loads in the environment and subsequent public health risks. One of the major outcomes was the lack of quantitative data and limited qualitative analyses of impacts of climate changes on pathogen runoff. Quantifying the processes by which micro-organisms are transported from fields to waters is important to be able to estimate such impacts to enable targeted implementation of effective intervention measures. A quantitative model using Mathematica software will be developed to estimate concentrations of pathogens originating from overland flow during runoff events. Different input sources will be included by applying different land-use scenarios, including point source faecal pollution from dairy cows and geese and diffuse source pollution by fertilization. Zoonotic pathogens, i.e. Cryptosporidium and Campylobacter, were selected based on transport properties, faecal loads and disease burden. Transport and survival rates of these pathogens are determined including effects of changes in precipitation but also temperature induced

  7. microRNA profiling in the zoonotic parasite Echinococcus canadensis using a high-throughput approach.

    PubMed

    Macchiaroli, Natalia; Cucher, Marcela; Zarowiecki, Magdalena; Maldonado, Lucas; Kamenetzky, Laura; Rosenzvit, Mara Cecilia

    2015-02-06

    microRNAs (miRNAs), a class of small non-coding RNAs, are key regulators of gene expression at post-transcriptional level and play essential roles in fundamental biological processes such as development and metabolism. The particular developmental and metabolic characteristics of cestode parasites highlight the importance of studying miRNA gene regulation in these organisms. Here, we perform a comprehensive analysis of miRNAs in the parasitic cestode Echinococcus canadensis G7, one of the causative agents of the neglected zoonotic disease cystic echinococcosis. Small RNA libraries from protoscoleces and cyst walls of E. canadensis G7 and protoscoleces of E. granulosus sensu stricto G1 were sequenced using Illumina technology. For miRNA prediction, miRDeep2 core algorithm was used. The output list of candidate precursors was manually curated to generate a high confidence set of miRNAs. Differential expression analysis of miRNAs between stages or species was estimated with DESeq. Expression levels of selected miRNAs were validated using poly-A RT-qPCR. In this study we used a high-throughput approach and found transcriptional evidence of 37 miRNAs thus expanding the miRNA repertoire of E. canadensis G7. Differential expression analysis showed highly regulated miRNAs between life cycle stages, suggesting a role in maintaining the features of each developmental stage or in the regulation of developmental timing. In this work we characterize conserved and novel Echinococcus miRNAs which represent 30 unique miRNA families. Here we confirmed the remarkable loss of conserved miRNA families in E. canadensis, reflecting their low morphological complexity and high adaptation to parasitism. We performed the first in-depth study profiling of small RNAs in the zoonotic parasite E. canadensis G7. We found that miRNAs are the preponderant small RNA silencing molecules, suggesting that these small RNAs could be an essential mechanism of gene regulation in this species. We also

  8. Infection control practices and zoonotic disease risks among veterinarians in the United States.

    PubMed

    Wright, Jennifer G; Jung, Sherry; Holman, Robert C; Marano, Nina N; McQuiston, Jennifer H

    2008-06-15

    OBJECTIVE-To assess the knowledge and use of infection control practices (ICPs) among US veterinarians. DESIGN-Anonymous mail-out population survey. PROCEDURES-In 2005 a questionnaire was mailed to US small animal, large animal, and equine veterinarians who were randomly selected from the AVMA membership to assess precaution awareness (PA) and veterinarians' perceptions of zoonotic disease risks. Respondents were assigned a PA score (0 to 4) on the basis of their responses (higher scores representing higher stringency of ICPs); within a practice type, respondents' scores were categorized as being within the upper 25% or lower 75% of scores (high and low PA ranking, respectively). Characteristics associated with low PA rankings were assessed. RESULTS-Generally, respondents did not engage in protective behaviors or use personal protective equipment considered appropriate to protect against zoonotic disease transmission. Small animal and equine veterinarians employed in practices that had no written infection control policy were significantly more likely to have low PA ranking. Male gender was associated with low PA ranking among small animal and large animal veterinarians; equine practitioners not working in a teaching or referral hospital were more likely to have low PA ranking than equine practitioners working in such institutions. CONCLUSIONS AND CLINICAL RELEVANCE-Results indicated that most US veterinarians are not aware of appropriate personal protective equipment use and do not engage in practices that may help reduce zoonotic disease transmission. Gender differences may influence personal choices for ICPs. Provision of information and training on ICPs and establishment of written infection control policies could be effective means of improving ICPs in veterinary practices.

  9. Enterocytozoon bieneusi in sika deer (Cervus nippon) and red deer (Cervus elaphus): deer specificity and zoonotic potential of ITS genotypes.

    PubMed

    Zhao, Wei; Zhang, Weizhe; Wang, Rongjun; Liu, Weishi; Liu, Aiqin; Yang, Dong; Yang, Fengkun; Karim, Md Robiul; Zhang, Longxian

    2014-11-01

    As the most common cause of the human microsporidiosis, Enterocytozoon bieneusi has been found in a wide variety of animal hosts. Deers are the ruminant mammals living in a variety of biomes, and the distribution of deer species differ by geography. To understand the prevalence of natural infection of E. bieneusi in deer and to assess their epidemiological role in the transmission of microsporidiosis caused by E. bieneusi, 91 fecal specimens were collected from 86 sika deers and five red deers in the northeast of China. By PCR and sequencing of the internal transcribed spacer (ITS) region of the ribosomal RNA (rRNA) gene of E. bieneusi, an average infection rate of 31.9% (29/91) was observed in deer, with 32.6% (28/86) for sika deer, and 20% (1/5) for red deer. Six ITS genotypes were identified: one known genotype BEB6 (n = 20) and five novel genotypes HLJD-I to HLJD-IV (one each) and HLJD-V (n = 5). A phylogenetic analysis based on a neighbor-joining tree of the ITS gene sequences of E. bieneusi indicated that genotypes HLJD-II and HLJD-III fell into group 1 of zoonotic potential, while the other genotypes (BEB6, HLJD-I, HLJD-IV, HLJD-V) were clustered into so-called bovine-specific group 2. This is the first report of E. bieneusi in deer in China. The observation of genotype BEB6 in humans previously and in deer here and also the findings of the two novel genotypes (HLJD-II to HLJ-III) belonging to potential zoonotic group 1 suggested the possibility of deer in the transmission of E. bieneusi to humans.

  10. A review of simulation modelling approaches used for the spread of zoonotic influenza viruses in animal and human populations.

    PubMed

    Dorjee, S; Poljak, Z; Revie, C W; Bridgland, J; McNab, B; Leger, E; Sanchez, J

    2013-09-01

    Increasing incidences of emerging and re-emerging diseases that are mostly zoonotic (e.g. severe acute respiratory syndrome, avian influenza H5N1, pandemic influenza) has led to the need for a multidisciplinary approach to tackling these threats to public and animal health. Accordingly, a global movement of 'One-Health/One-Medicine' has been launched to foster collaborative efforts amongst animal and human health officials and researchers to address these problems. Historical evidence points to the fact that pandemics caused by influenza A viruses remain a major zoonotic threat to mankind. Recently, a range of mathematical and computer simulation modelling methods and tools have increasingly been applied to improve our understanding of disease transmission dynamics, contingency planning and to support policy decisions on disease outbreak management. This review provides an overview of methods, approaches and software used for modelling the spread of zoonotic influenza viruses in animals and humans, particularly those related to the animal-human interface. Modelling parameters used in these studies are summarized to provide references for future work. This review highlights the limited application of modelling research to influenza in animals and at the animal-human interface, in marked contrast to the large volume of its research in human populations. Although swine are widely recognized as a potential host for generating novel influenza viruses, and that some of these viruses, including pandemic influenza A/H1N1 2009, have been shown to be readily transmissible between humans and swine, only one study was found related to the modelling of influenza spread at the swine-human interface. Significant gaps in the knowledge of frequency of novel viral strains evolution in pigs, farm-level natural history of influenza infection, incidences of influenza transmission between farms and between swine and humans are clearly evident. Therefore, there is a need to direct

  11. Agents causing occupational asthma in Finland in 1986-2002: cow epithelium bypassed by moulds from moisture-damaged buildings.

    PubMed

    Piipari, R; Keskinen, H

    2005-12-01

    Occupational asthma is an avoidable form of asthma. In Finland, the diagnosis of occupational asthma entitles substantial compensation to the employee. The diagnostics are based on symptoms, exposure assessment, allergologic investigations, follow-up of peak expiratory flow (PEF) at work and at home and, in many cases, specific challenge tests. To study the causative agents of occupational asthma in Finland. The causative agents and the numbers of new occupational asthma cases notified to the Finnish Register of Occupational Diseases (FROD) during 1986-2002 are reported. The number of occupational asthma cases increased from 1986 until 1995, after which a downward trend, stabilizing during the last few years, has been observed. The majority of the cases (59%) in the beginning of the period (1986-1990) were associated with agriculture, but the percentage has fallen thereafter (42% of the cases in 1998-2002) along with the fall in the total number of cases. Since 1995, indoor moulds from water-damaged buildings have caused an increasing number of cases and have become the most important causative agents (0.5% cases, in 1986-1990 and 18% of the cases in 1998-2002). Chemicals have caused 10-30% of the cases, a decreasing number since 1990. The most important chemicals causing occupational asthma have been diisocyanates and welding fumes, followed by hairdressing chemicals and formaldehyde. The number of occupational asthma cases in Finland reached its height in the mid-1990s. The decrease in the number of total cases is because of the decrease in agriculture-associated cases, reflecting the number of employees in agriculture-associated occupations, which has greatly decreased since Finland joined the EU in 1995. An epidemic of mould-induced asthma, affecting mostly white-collar employees working in moisture-damaged buildings, has taken place since 1995.

  12. Etiologic agent of an epidemic of cutaneous leishmaniasis in Tolima, Colombia.

    PubMed

    Rodríguez-Barraquer, Isabel; Góngora, Rafael; Prager, Martín; Pacheco, Robinson; Montero, Luz Mery; Navas, Adriana; Ferro, Cristina; Miranda, Maria Consuelo; Saravia, Nancy G

    2008-02-01

    American cutaneous leishmaniasis (ACL) has been characterized as a zoonotic disease. However, peridomestic and domestic transmission have been recorded in at least nine countries in Central and South America. The present study was undertaken to identify the etiologic agent of a peridomestic epidemic of ACL in the Department of Tolima, Colombia. Leishmania isolates were obtained during the diagnosis of 56 patients with ACL who consulted the local leishmaniasis control program in three municipalities in Tolima. Species were identified using monoclonal antibodies and isoenzyme electrophoresis. A total of 53 (94.6%) of 56 isolates were identified as Leishmania (Viannia) guyanensis. Three isolates (5.4%) were identified as L. (V.) panamensis. Leishmania (V.) guyanensis is the probable etiologic agent of the largest epidemic of cutaneous leishmaniasis recorded in Colombia. This species has not previously been reported outside the Amazon and southeastern regions of Colombia, and has not been described in the peridomestic setting or linked with an epidemic.

  13. Retrospective and prospective perspectives on zoonotic brucellosis

    PubMed Central

    Moreno, Edgardo

    2014-01-01

    Members of the genus Brucella are pathogenic bacteria exceedingly well adapted to their hosts. The bacterium is transmitted by direct contact within the same host species or accidentally to secondary hosts, such as humans. Human brucellosis is strongly linked to the management of domesticated animals and ingestion of their products. Since the domestication of ungulates and dogs in the Fertile Crescent and Asia in 12000 and 33000 ya, respectively, a steady supply of well adapted emergent Brucella pathogens causing zoonotic disease has been provided. Likewise, anthropogenic modification of wild life may have also impacted host susceptibility and Brucella selection. Domestication and human influence on wild life animals are not neutral phenomena. Consequently, Brucella organisms have followed their hosts’ fate and have been selected under conditions that favor high transmission rate. The “arm race” between Brucella and their preferred hosts has been driven by genetic adaptation of the bacterium confronted with the evolving immune defenses of the host. Management conditions, such as clustering, selection, culling, and vaccination of Brucella preferred hosts have profound influences in the outcome of brucellosis and in the selection of Brucella organisms. Countries that have controlled brucellosis systematically used reliable smooth live vaccines, consistent immunization protocols, adequate diagnostic tests, broad vaccination coverage and sustained removal of the infected animals. To ignore and misuse tools and strategies already available for the control of brucellosis may promote the emergence of new Brucella variants. The unrestricted use of low-efficacy vaccines may promote a “false sense of security” and works towards selection of Brucella with higher virulence and transmission potential. PMID:24860561

  14. Development and evaluation of one-step rRT-PCR and immunohistochemical methods for detection of Rift Valley fever virus in biosafety level 2 diagnostic laboratories

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) is a zoonotic insect transmitted virus endemic to Africa and the Arabian Peninsula. Infection causes abortions and high mortality in newborn ruminants with an overall human infection rate of <1%. The potential of RVFV as a bioterrorism agent and/or being accidentally i...

  15. Draft genome sequences of nine Streptococcus suis strains isolated in the United States

    USDA-ARS?s Scientific Manuscript database

    Streptococcus suis is a swine pathogen responsible for economic losses to the pig industry worldwide. Additionally, it is a zoonotic agent that can cause severe infections in those in close contact with infected pigs and/or who consume uncooked or undercooked pork products. Here, we report nine draf...

  16. Multilocus genotyping of human Giardia isolates suggests limited zoonotic transmission and association between assemblage B and flatulence in children.

    PubMed

    Lebbad, Marianne; Petersson, Ingvor; Karlsson, Lillemor; Botero-Kleiven, Silvia; Andersson, Jan O; Svenungsson, Bo; Svärd, Staffan G

    2011-08-01

    Giardia intestinalis is one of the most common diarrhea-related parasites in humans, where infection ranges from asymptomatic to acute or chronic disease. G. intestinalis consists of eight genetically distinct genotypes or assemblages, designated A-H, and assemblages A and B can infect humans. Giardiasis has been classified as a possible zoonotic disease but the role of animals in human disease transmission still needs to be proven. We tried to link different assemblages and sub-assemblages of G. intestinalis isolates from Swedish human patients to clinical symptoms and zoonotic transmission. Multilocus sequence-based genotyping of 207 human Giardia isolates using three gene loci: ß-giardin, glutamate dehydrogenase (gdh), and triose phosphate isomerase (tpi) was combined with assemblage-specific tpi PCRs. This analysis identified 73 patients infected with assemblage A, 128 with assemblage B, and six with mixed assemblages A+B. Multilocus genotypes (MLGs) were easily determined for the assemblage A isolates, and most patients with this genotype had apparently been infected through anthroponotic transmission. However, we also found evidence of limited zoonotic transmission of Giardia in Sweden, since a few domestic human infections involved the same assemblage A MLGs previously reported in Swedish cats and ruminants. Assemblage B was detected more frequently than assemblage A and it was also more common in patients with suspected treatment failure. However, a large genetic variability made determination of assemblage B MLGs problematic. Correlation between symptoms and assemblages was found only for flatulence, which was significantly more common in children less than six years of age infected with assemblage B. This study shows that certain assemblage A subtypes are potentially zoonotic and that flatulence is connected to assemblage B infections in young children. Determination of MLGs from assemblages A and B can be a valuable tool in outbreak situations and to

  17. Multilocus Genotyping of Human Giardia Isolates Suggests Limited Zoonotic Transmission and Association between Assemblage B and Flatulence in Children

    PubMed Central

    Lebbad, Marianne; Petersson, Ingvor; Karlsson, Lillemor; Botero-Kleiven, Silvia; Andersson, Jan O.; Svenungsson, Bo; Svärd, Staffan G.

    2011-01-01

    Background Giardia intestinalis is one of the most common diarrhea-related parasites in humans, where infection ranges from asymptomatic to acute or chronic disease. G. intestinalis consists of eight genetically distinct genotypes or assemblages, designated A–H, and assemblages A and B can infect humans. Giardiasis has been classified as a possible zoonotic disease but the role of animals in human disease transmission still needs to be proven. We tried to link different assemblages and sub-assemblages of G. intestinalis isolates from Swedish human patients to clinical symptoms and zoonotic transmission. Methodology/Principal Findings Multilocus sequence-based genotyping of 207 human Giardia isolates using three gene loci: ß-giardin, glutamate dehydrogenase (gdh), and triose phosphate isomerase (tpi) was combined with assemblage-specific tpi PCRs. This analysis identified 73 patients infected with assemblage A, 128 with assemblage B, and six with mixed assemblages A+B. Multilocus genotypes (MLGs) were easily determined for the assemblage A isolates, and most patients with this genotype had apparently been infected through anthroponotic transmission. However, we also found evidence of limited zoonotic transmission of Giardia in Sweden, since a few domestic human infections involved the same assemblage A MLGs previously reported in Swedish cats and ruminants. Assemblage B was detected more frequently than assemblage A and it was also more common in patients with suspected treatment failure. However, a large genetic variability made determination of assemblage B MLGs problematic. Correlation between symptoms and assemblages was found only for flatulence, which was significantly more common in children less than six years of age infected with assemblage B. Conclusions/Significance This study shows that certain assemblage A subtypes are potentially zoonotic and that flatulence is connected to assemblage B infections in young children. Determination of MLGs from

  18. Modelling risk aversion to support decision-making for controlling zoonotic livestock diseases.

    PubMed

    van Asseldonk, M A P M; Bergevoet, R H M; Ge, L

    2013-12-01

    Zoonotic infectious livestock diseases are becoming a significant burden for both animal and human health and are rapidly gaining the attention of decision-makers who manage public health programmes. If control decisions have only monetary components, governments are generally regarded as being risk-neutral and the intervention strategy with the highest expected benefit (lowest expected net costs) should be preferred. However, preferences will differ and alternative intervention plans will prevail if (human) life and death outcomes are involved. A rational decision framework must therefore consider risk aversion in the decision-maker and controversial values related to public health. In the present study, risk aversion and its impact on both the utility for the monetary component and the utility for the non-monetary component is shown to be an important element when dealing with emerging zoonotic infectious livestock diseases and should not be ignored in the understanding and support of decision-making. The decision framework was applied to several control strategies for the reduction of human cases of brucellosis (Brucella melitensis) originating from sheep in Turkey.

  19. Zoonotic pathogens isolated from wild animals and environmental samples at two California wildlife hospitals.

    PubMed

    Siembieda, Jennifer L; Miller, Woutrina A; Byrne, Barbara A; Ziccardi, Michael H; Anderson, Nancy; Chouicha, Nadira; Sandrock, Christian E; Johnson, Christine K

    2011-03-15

    To determine types and estimate prevalence of potentially zoonotic enteric pathogens shed by wild animals admitted to either of 2 wildlife hospitals and to characterize distribution of these pathogens and of aerobic bacteria in a hospital environment. Cross-sectional study. Fecal samples from 338 animals in 2 wildlife hospitals and environmental samples from 1 wildlife hospital. Fecal samples were collected within 24 hours of hospital admission. Environmental samples were collected from air and surfaces. Samples were tested for zoonotic pathogens via culture techniques and biochemical analyses. Prevalence of pathogen shedding was compared among species groups, ages, sexes, and seasons. Bacterial counts were determined for environmental samples. Campylobacter spp, Vibrio spp, Salmonella spp, Giardia spp, and Cryptosporidium spp (alone or in combination) were detected in 105 of 338 (31%) fecal samples. Campylobacter spp were isolated only from birds. Juvenile passerines were more likely to shed Campylobacter spp than were adults; prevalence increased among juvenile passerines during summer. Non-O1 serotypes of Vibrio cholerae were isolated from birds; during an oil-spill response, 9 of 10 seabirds screened were shedding this pathogen, which was also detected in environmental samples. Salmonella spp and Giardia spp were isolated from birds and mammals; Cryptosporidium spp were isolated from mammals only. Floors of animal rooms had higher bacterial counts than did floors with only human traffic. Potentially zoonotic enteric pathogens were identified in samples from several species admitted to wildlife hospitals, indicating potential for transmission if prevention is not practiced.

  20. Buffalo, Bush Meat, and the Zoonotic Threat of Brucellosis in Botswana

    PubMed Central

    Alexander, Kathleen Anne; Blackburn, Jason Kenna; Vandewalle, Mark Eric; Pesapane, Risa; Baipoledi, Eddie Kekgonne; Elzer, Phil H.

    2012-01-01

    Background Brucellosis is a zoonotic disease of global importance infecting humans, domestic animals, and wildlife. Little is known about the epidemiology and persistence of brucellosis in wildlife in Southern Africa, particularly in Botswana. Methods Archived wildlife samples from Botswana (1995–2000) were screened with the Rose Bengal Test (RBT) and fluorescence polarization assay (FPA) and included the African buffalo (247), bushbuck (1), eland (5), elephant (25), gemsbok (1), giraffe (9), hartebeest (12), impala (171), kudu (27), red lechwe (10), reedbuck (1), rhino (2), springbok (5), steenbok (2), warthog (24), waterbuck (1), wildebeest (33), honey badger (1), lion (43), and zebra (21). Human case data were extracted from government annual health reports (1974–2006). Findings Only buffalo (6%, 95% CI 3.04%–8.96%) and giraffe (11%, 95% CI 0–38.43%) were confirmed seropositive on both tests. Seropositive buffalo were widely distributed across the buffalo range where cattle density was low. Human infections were reported in low numbers with most infections (46%) occurring in children (<14 years old) and no cases were reported among people working in the agricultural sector. Conclusions Low seroprevalence of brucellosis in Botswana buffalo in a previous study in 1974 and again in this survey suggests an endemic status of the disease in this species. Buffalo, a preferred source of bush meat, is utilized both legally and illegally in Botswana. Household meat processing practices can provide widespread pathogen exposure risk to family members and the community, identifying an important source of zoonotic pathogen transmission potential. Although brucellosis may be controlled in livestock populations, public health officials need to be alert to the possibility of human infections arising from the use of bush meat. This study illustrates the need for a unified approach in infectious disease research that includes consideration of both domestic and wildlife

  1. Using multitype branching processes to quantify statistics of disease outbreaks in zoonotic epidemics

    USDA-ARS?s Scientific Manuscript database

    Despite the enormous relevance of zoonotic infections to world-wide public health, and despite much effort in modeling individual zoonoses, a fundamental understanding of the disease dynamics and the nature of outbreaks emanating from such a complex system is still lacking. We introduce a simple sto...

  2. Zoonotic and Potentially Host-Adapted Enterocytozoon bieneusi Genotypes in Sheep and Cattle in Northeast China and an Increasing Concern about the Zoonotic Importance of Previously Considered Ruminant-Adapted Genotypes

    PubMed Central

    Jiang, Yanxue; Tao, Wei; Wan, Qiang; Li, Qiao; Yang, Yuqi; Lin, Yongchao; Zhang, Siwen

    2015-01-01

    This study investigated fecal specimens from 489 sheep and 537 cattle in multiple cities in northeast China for the prevalence and genetic characteristics of Enterocytozoon bieneusi by PCR and sequencing of the ribosomal internal transcribed spacer. Sixty-eight sheep specimens (13.9%) and 32 cattle specimens (6.0%) were positive for E. bieneusi. Sequence polymorphisms enabled the identification of 9 known genotypes (BEB4, BEB6, CM7, CS-4, EbpC, G, I, J, and OEB1) and 11 new genotypes (NESH1 to NESH6 and NECA1 to NECA5). The genotypes formed two genetic clusters in a phylogenetic analysis, with CS-4, EbpC, G, NESH1 to NESH3, and NECA1 to NECA5 distributed in zoonotic group 1 and BEB4, BEB6, CM7, EbpI, J, OEB1, and NESH4 to NESH6 distributed in potentially host-adapted group 2. Nearly 70% of cases of E. bieneusi infections in sheep were contributed by human-pathogenic genotypes BEB6, CS-4, and EbpC, and over 80% of those in cattle were by genotypes BEB4, CS-4, EbpC, I, and J. The cooccurrence of genotypes BEB4, CS-4, EbpC, I, and J in domestic ruminants and children in northeast China and the identification of BEB6 and EbpC in humans and water in central China imply the possibility of zoonotic transmission. This study also summarizes E. bieneusi genotypes obtained from ruminants worldwide and displays their host ranges, geographical distributions, and phylogenetic relationships. The data suggest a host range expansion in some group 2 genotypes (notably BEB4, BEB6, I, and J) that were previously considered to be adapted to ruminants. We should be concerned about the increasing zoonotic importance of group 2 genotypes with low host specificity. PMID:25746997

  3. Use of Extract of Citrus sinensis as an antimicrobial agent for foodborne zoonotic pathogens and spoilage bacteria

    USDA-ARS?s Scientific Manuscript database

    Foodborne pathogens remain global health problems despite concerted efforts to control the transmission of these microorganisms through food. The resurgence of drug resistant bacteria has renewed interest in developing and testing new sources of antimicrobial agents to control foodborne illness. Thi...

  4. Mycobacterium tuberculosis causing tuberculous lymphadenitis in Maputo, Mozambique.

    PubMed

    Viegas, Sofia Omar; Ghebremichael, Solomon; Massawo, Leguesse; Alberto, Matos; Fernandes, Fabíola Couto; Monteiro, Eliane; Couvin, David; Matavele, José Maiane; Rastogi, Nalin; Correia-Neves, Margarida; Machado, Adelina; Carrilho, Carla; Groenheit, Ramona; Källenius, Gunilla; Koivula, Tuija

    2015-11-21

    The zoonosis bovine tuberculosis (TB) is known to be responsible for a considerable proportion of extrapulmonary TB. In Mozambique, bovine TB is a recognised problem in cattle, but little has been done to evaluate how Mycobacterium bovis has contributed to human TB. We here explore the public health risk for bovine TB in Maputo, by characterizing the isolates from tuberculous lymphadenitis (TBLN) cases, a common manifestation of bovine TB in humans, in the Pathology Service of Maputo Central Hospital, in Mozambique, during one year. Among 110 patients suspected of having TBLN, 49 had a positive culture result. Of those, 48 (98%) were positive for Mycobacterium tuberculosis complex and one for nontuberculous mycobacteria. Of the 45 isolates analysed by spoligotyping and Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem Repeat (MIRU-VNTR), all were M. tuberculosis. No M. bovis was found. Cervical TBLN, corresponding to 39 (86.7%) cases, was the main cause of TBLN and 66.7% of those where from HIV positive patients. We found that TBLN in Maputo was caused by a variety of M. tuberculosis strains. The most prevalent lineage was the EAI (n = 19; 43.2%). Particular common spoligotypes were SIT 48 (EAI1_SOM sublineage), SIT 42 (LAM 9), SIT 1 (Beijing) and SIT53 (T1), similar to findings among pulmonary cases. M. tuberculosis was the main etiological agent of TBLN in Maputo. M. tuberculosis genotypes were similar to the ones causing pulmonary TB, suggesting that in Maputo, cases of TBLN arise from the same source as pulmonary TB, rather than from an external zoonotic source. Further research is needed on other forms of extrapulmonary TB and in rural areas where there is high prevalence of bovine TB in cattle, to evaluate the risk of transmission of M. bovis from cattle to humans.

  5. Giardia duodenalis assemblages and Entamoeba species infecting non-human primates in an Italian zoological garden: zoonotic potential and management traits

    PubMed Central

    2011-01-01

    Background Giardia duodenalis and Entamoeba spp. are among the most common intestinal human protozoan parasites worldwide and they are frequently reported in captive non-human primates (NHP). From a public health point of view, infected animals in zoos constitute a risk for animal caretakers and visitors. In this study we carried out the molecular identification of G. duodenalis and Entamoeba spp. from nine species of primates housed in the zoological garden of Rome, to better ascertain their occurrence and zoonotic potential. Results G. duodenalis was found only in Lemur catta (47.0%). Entamoeba spp. were detected in all species studied, with the exception of Eulemur macaco and Varecia rubra. The number of positive pools ranged from 5.9% in L. catta to 81.2% in Mandrillus sphinx; in Pan troglodytes the observed prevalence was 53.6%. A mixed Entamoeba-Giardia infection was recorded only in one sample of L. catta. All G. duodenalis isolates belonged to the zoonotic assemblage B, sub assemblage BIV. Three Entamoeba species were identified: E. hartmanni, E. coli and E. dispar. Conclusions Our results highlight the importance of regularly testing animals kept in zoos for the diagnosis of zoonotic parasites, in order to evaluate their pathogenic role in the housed animals and the zoonotic risk linked to their presence. A quick detection of the arrival of pathogens into the enclosures could also be a prerequisite to limit their spread into the structure via the introduction of specific control strategies. The need for molecular identification of some parasite species/genotype in order to better define the zoonotic risk is also highlighted. PMID:21988762

  6. DIAGNOSIS AND SUCCESSFUL TREATMENT OF A POTENTIALLY ZOONOTIC DERMATOPHYTOSIS CAUSED BY MICROSPORUM GYPSEUM IN A ZOO-HOUSED NORTH AMERICAN PORCUPINE (ERETHIZON DORSATUM).

    PubMed

    Hackworth, Christine E; Eshar, David; Nau, Melissa; Bagladi-Swanson, Mary; Andrews, Gordon A; Carpenter, James W

    2017-06-01

    A female North American porcupine ( Erethizon dorsatum ) was evaluated for a unilateral pedal crusting and alopecic dermatopathy. Fungal culture and histopathology testing revealed Microsporum gypseum dermatophytosis. Treatment with topical miconazole was initiated and then discontinued after 9 days and changed to oral terbinafine. Twenty-eight days after initial examination, clinical signs were improving, and fungal cultures of the front foot, muzzle, and noninfected area along the dorsum were negative for M. gypseum. Visual exams were conducted on a regular basis. Eighty-three days after initial evaluation, clinical signs had completely resolved and repeat fungal cultures were negative. One of the animal's keepers was suspected to have acquired a dermal fungal infection 3 days after contact with this porcupine, and lesions had resolved after treatment with topical ketoconazole. To the authors' knowledge, this is the first report of M. gypseum diagnosed and treated in a captive North American porcupine. Veterinary staff and zookeepers should be aware of this potentially zoonotic infection.

  7. Parasitic diseases of zoonotic importance in humans of northeast India, with special reference to ocular involvement.

    PubMed

    Das, Dipankar; Islam, Saidul; Bhattacharjee, Harsha; Deka, Angshuman; Yambem, Dinakumar; Tahiliani, Prerana Sushil; Deka, Panna; Bhattacharyya, Pankaj; Deka, Satyen; Das, Kalyan; Bharali, Gayatri; Deka, Apurba; Paul, Rajashree

    2014-01-01

    Parasitic zoonotic diseases are prevalent in India, including the northeastern states. Proper epidemiological data are lacking from this part of the country on zoonotic parasitic diseases, and newer diseases are emerging in the current scenario. Systemic manifestation of such diseases as cysticercosis, paragonimiasis, hydatidosis, and toxoplasmosis are fairly common. The incidence of acquired toxoplasmal infection is showing an increasing trend in association with acquired immunodeficiency syndrome. Among the ocular parasitic diseases, toxoplasmosis, cysticercosis, toxocariasis, dirofilariasis, gnathostomiasis, hydatidosis, amebiasis, giardiasis, etc, are the real problems that are seen in this subset of the population. Therefore, proper coordination between various medical specialities, including veterinary science and other governing bodies, is needed for better and more effective strategic planning to control zoonoses.

  8. Richard Bradley: a unified, living agent theory of the cause of infectious diseases of plants, animals, and humans in the first decades of the 18th century.

    PubMed

    Santer, Melvin

    2009-01-01

    During the years 1714 to 1721, Richard Bradley, who was later to become the first Professor of Botany at Cambridge University, proposed a unified, unique, living agent theory of the cause of infectious diseases of plants and animals and the plague of humans. Bradley's agents included microscopic organisms, revealed by the studies of Robert Hooke and Antony van Leeuwenhoek. His theory derived from his experimental studies of plants and their diseases and from microscopic observation of animalcules in different naturally occurring and artificial environments. He concluded that there was a microscopic world of "insects" that lived and reproduced under the appropriate conditions, and that infectious diseases of plants were caused by such "insects." Since there are structural and functional similarities between plants and animals, Bradley concluded that microscopic organisms caused human and animal infectious diseases as well. However, his living agent cause of infectious diseases was not accepted by the contemporary scientific society.

  9. Participation of women and children in hunting activities in Sierra Leone and implications for control of zoonotic infections

    PubMed Central

    Kandeh, Martin; Dawson, Michael; Ansumana, Rashid; Sahr, Foday; Kelly, Ann H.; Brown, Hannah

    2017-01-01

    The emergence of infectious diseases of zoonotic origin highlights the need to understand social practices at the animal-human interface. This study provides a qualitative account of interactions between humans and wild animals in predominantly Mende villages of southern Sierra Leone. We conducted fieldwork over 4 months including participant and direct observations, semi-structured interviews (n = 47), spontaneously occurring focus group discussions (n = 12), school essays and informal interviews to describe behaviours that may serve as pathways for zoonotic infection. In this region, hunting is the primary form of contact with wild animals. We describe how these interactions are shaped by socio-cultural contexts, including opportunities to access economic resources and by social obligations and constraints. Our research suggests that the potential for exposure to zoonotic pathogens is more widely distributed across different age, gender and social groups than previously appreciated. We highlight the role of children in hunting, an age group that has previously not been discussed in the context of hunting. The breadth of the "at risk" population forces reconsideration of how we conceptualize, trace and monitor pathogen exposure. PMID:28749933

  10. Pet husbandry and infection control practices related to zoonotic disease risks in Ontario, Canada

    PubMed Central

    2013-01-01

    Background Many human infections are transmitted through contact with animals (zoonoses), including household pets. Despite this concern, there is limited knowledge of the public’s pet husbandry and infection control practices. The objective of this study was to characterize zoonotic disease related-husbandry and infection preventive practices in pet-owning households in Ontario, Canada. Methods A self-administered questionnaire was distributed to individuals at two multi-physician clinics in Waterloo, Ontario, Canada during 2010. One adult from each household was invited to participate in the study. Results Four hundred one pet-owners completed the questionnaire. Households reported ownership of dogs (68%), cats (48%), fish (13%), exotic mammals (7%), such as hamsters, and reptiles and birds (each 6%). Across all species, individuals at higher risk of infections (i.e. < 5yrs, ≥ 65yrs, immunocompromised) were often (46-57%) present in households. Children < 16 yrs of age had close pet contact, as households reported dogs (13%) and cats (30%) usually slept in a child’s bed and dogs often licked a child’s face (24%). Household husbandry practices that increase zoonotic disease risk were frequently identified; some fed high-risk foods (i.e. raw eggs, raw meat, or raw animal product treats) to their dogs (28%) or cats (3%); 14% of reptile-owning households allowed the pet to roam through the kitchen or washed it in the kitchen sink. Reported hand washing by children was high for all species (> 76% washed hands sometimes or greater after touching the pet, its feces, or housing), although fewer reported children always washed their hands (3-57%; by species). With a few exceptions, practices were not associated with the presence of higher risk members in the household or recall of having previously received zoonotic disease education. Conclusions The results suggest there is a need for education on zoonotic disease prevention practices for pet-owning households

  11. The zoonotic potential of avian influenza viruses isolated from wild waterfowl in Zambia.

    PubMed

    Simulundu, Edgar; Nao, Naganori; Yabe, John; Muto, Nilton A; Sithebe, Thami; Sawa, Hirofumi; Manzoor, Rashid; Kajihara, Masahiro; Muramatsu, Mieko; Ishii, Akihiro; Ogawa, Hirohito; Mweene, Aaron S; Takada, Ayato

    2014-10-01

    Whilst remarkable progress in elucidating the mechanisms governing interspecies transmission and pathogenicity of highly pathogenic avian influenza viruses (AIVs) has been made, similar studies focusing on low-pathogenic AIVs isolated from the wild waterfowl reservoir are limited. We previously reported that two AIV strains (subtypes H6N2 and H3N8) isolated from wild waterfowl in Zambia harbored some amino acid residues preferentially associated with human influenza virus proteins (so-called human signatures) and replicated better in the lungs of infected mice and caused more morbidity than a strain lacking such residues. To further substantiate these observations, we infected chickens and mice intranasally with AIV strains of various subtypes (H3N6, H3N8, H4N6, H6N2, H9N1 and H11N9) isolated from wild waterfowl in Zambia. Although some strains induced seroconversion, all of the tested strains replicated poorly and were nonpathogenic for chickens. In contrast, most of the strains having human signatures replicated well in the lungs of mice, and one of these strains caused severe illness in mice and induced lung injury that was characterized by a severe accumulation of polymorphonuclear leukocytes. These results suggest that some strains tested in this study may have the potential to infect mammalian hosts directly without adaptation, which might possibly be associated with the possession of human signature residues. Close monitoring and evaluation of host-associated signatures may help to elucidate the prevalence and emergence of AIVs with potential for causing zoonotic infections.

  12. sourceR: Classification and source attribution of infectious agents among heterogeneous populations

    PubMed Central

    French, Nigel

    2017-01-01

    Zoonotic diseases are a major cause of morbidity, and productivity losses in both human and animal populations. Identifying the source of food-borne zoonoses (e.g. an animal reservoir or food product) is crucial for the identification and prioritisation of food safety interventions. For many zoonotic diseases it is difficult to attribute human cases to sources of infection because there is little epidemiological information on the cases. However, microbial strain typing allows zoonotic pathogens to be categorised, and the relative frequencies of the strain types among the sources and in human cases allows inference on the likely source of each infection. We introduce sourceR, an R package for quantitative source attribution, aimed at food-borne diseases. It implements a Bayesian model using strain-typed surveillance data from both human cases and source samples, capable of identifying important sources of infection. The model measures the force of infection from each source, allowing for varying survivability, pathogenicity and virulence of pathogen strains, and varying abilities of the sources to act as vehicles of infection. A Bayesian non-parametric (Dirichlet process) approach is used to cluster pathogen strain types by epidemiological behaviour, avoiding model overfitting and allowing detection of strain types associated with potentially high “virulence”. sourceR is demonstrated using Campylobacter jejuni isolate data collected in New Zealand between 2005 and 2008. Chicken from a particular poultry supplier was identified as the major source of campylobacteriosis, which is qualitatively similar to results of previous studies using the same dataset. Additionally, the software identifies a cluster of 9 multilocus sequence types with abnormally high ‘virulence’ in humans. sourceR enables straightforward attribution of cases of zoonotic infection to putative sources of infection. As sourceR develops, we intend it to become an important and flexible

  13. Bacterial and protozoal agents of feline vector-borne diseases in domestic and stray cats from southern Portugal

    PubMed Central

    2014-01-01

    Background Feline vector-borne diseases (FVBD) have emerged in recent years, showing a wider geographic distribution and increased global prevalence. In addition to their veterinary importance, domestic cats play a central role in the transmission cycles of some FVBD agents by acting as reservoirs and sentinels, a circumstance that requires a One Health approach. The aim of the present work was to molecularly detect feline vector-borne bacteria and protozoa with veterinary and zoonotic importance, and to assess associated risk factors in cats from southern Portugal. Methods Six hundred and forty-nine cats (320 domestic and 329 stray), from veterinary medical centres and animal shelters in southern Portugal, were studied. Anaplasma spp./Ehrlichia spp., Babesia spp., Bartonella spp., Borrelia burgdorferi sensu lato, Hepatozoon spp. and Leishmania spp. infections were evaluated by polymerase chain reaction (PCR) in blood samples. Results One hundred and ninety-four (29.9%) cats were PCR-positive to at least one of the tested genera or complex of FVBD agents. Sixty-four (9.9%) cats were positive to Leishmania spp., 56 (8.6%) to Hepatozoon spp., 43 (6.6%) to Babesia spp., 35 (5.4%) to Anaplasma spp./Ehrlichia spp., 19 (2.9%) to Bartonella spp. and 14 (2.2%) to B. burgdorferi s.l. Thirty-three (5.1%) cats were positive to two (n = 29) or three (n = 4) genera/complex. Babesia vogeli, Bartonella clarridgeiae, Bartonella henselae, Ehrlichia canis, Hepatozoon felis and Leishmania infantum were identified by DNA sequencing. Conclusions The occurrence of FVBD agents in southern Portugal, some of them with zoonotic character, emphasizes the need to alert the veterinary community, owners and public health authorities for the risk of infection. Control measures should be implemented to prevent the infection of cats, other vertebrate hosts and people. PMID:24655431

  14. The zoonotic potential of Clostridium difficile from small companion animals and their owners.

    PubMed

    Rabold, Denise; Espelage, Werner; Abu Sin, Muna; Eckmanns, Tim; Schneeberg, Alexander; Neubauer, Heinrich; Möbius, Nadine; Hille, Katja; Wieler, Lothar H; Seyboldt, Christian; Lübke-Becker, Antina

    2018-01-01

    Clostridium difficile infections (CDI) in humans range from asymptomatic carriage to life-threatening intestinal disease. Findings on C. difficile in various animal species and an overlap in ribotypes (RTs) suggest potential zoonotic transmission. However, the impact of animals for human CDI remains unclear. In a large-scale survey we collected 1,447 fecal samples to determine the occurrence of C. difficile in small companion animals (dogs and cats) and their owners and to assess potential epidemiological links within the community. The Germany-wide survey was conducted from July 2012-August 2013. PCR ribotyping, Multilocus VNTR Analysis (MLVA) and PCR detection of toxin genes were used to characterize isolated C. difficile strains. A database was defined and logistic regression used to identify putative factors associated with fecal shedding of C. difficile. In total, 1,418 samples met the inclusion criteria. The isolation rates for small companion animals and their owners within the community were similarly low with 3.0% (25/840) and 2.9% (17/578), respectively. PCR ribotyping revealed eight and twelve different RTs in animals and humans, respectively, whereas three RTs were isolated in both, humans and animals. RT 014/0, a well-known human hospital-associated lineage, was predominantly detected in animal samples. Moreover, the potentially highly pathogenic RTs 027 and 078 were isolated from dogs. Even though, C. difficile did not occur simultaneously in animals and humans sharing the same household. The results of the epidemiological analysis of factors associated with fecal shedding of C. difficile support the hypothesis of a zoonotic potential. Molecular characterization and epidemiological analysis revealed that the zoonotic risk for C. difficile associated with dogs and cats within the community is low but cannot be excluded.

  15. White Paper: Recommendations on the Conduct of Superiority and Organism-Specific Clinical Trials of Antibacterial Agents for the Treatment of Infections Caused by Drug-Resistant Bacterial Pathogens

    PubMed Central

    2012-01-01

    There is a critical need for new pathways to develop antibacterial agents to treat life-threatening infections caused by highly resistant bacteria. Traditionally, antibacterial agents have been studied in noninferiority clinical trials that focus on one site of infection (eg, pneumonia, intra-abdominal infection). Conduct of superiority trials for infections caused by highly antibiotic-resistant bacteria represents a new, and as yet, untested paradigm for antibacterial drug development. We sought to define feasible trial designs of antibacterial agents that could enable conduct of superiority and organism-specific clinical trials. These recommendations are the results of several years of active dialogue among the white paper's drafters as well as external collaborators and regulatory officials. Our goal is to facilitate conduct of new types of antibacterial clinical trials to enable development and ultimately approval of critically needed new antibacterial agents. PMID:22891041

  16. Zoonotic helminths parasites in the digestive tract of feral dogs and cats in Guangxi, China.

    PubMed

    Fang, Fang; Li, Jian; Huang, Tengfei; Guillot, Jacques; Huang, Weiyi

    2015-08-16

    In Guangxi, a province of southern China, an important number of dogs and cats roam freely in rural settings, and the presence of these animals in proximity of people may represent a risk of parasitic zoonoses. The objective of the present study was to investigate the presence and identify gastrointestinal helminths in feral carnivores in Guangxi province. Therefore, post mortem examination was performed in 40 dogs and in 39 cats. The Gastrointestinal helminths were found in all the necropsied dogs and in 37 out of 39 cats. Fifteen species were identified including 7 trematodes, 3 cestodes and 5 nematodes. Most of them may be responsible for zoonotic infections. Major zoonotic gastrointestinal helminths, including liver and intestinal flukes, Toxocara spp., and Ancylostoma spp., are present in feral dogs and cats in Guangxi, and may represent a significant risk for public health.

  17. The social and political lives of zoonotic disease models: narratives, science and policy.

    PubMed

    Leach, Melissa; Scoones, Ian

    2013-07-01

    Zoonotic diseases currently pose both major health threats and complex scientific and policy challenges, to which modelling is increasingly called to respond. In this article we argue that the challenges are best met by combining multiple models and modelling approaches that elucidate the various epidemiological, ecological and social processes at work. These models should not be understood as neutral science informing policy in a linear manner, but as having social and political lives: social, cultural and political norms and values that shape their development and which they carry and project. We develop and illustrate this argument in relation to the cases of H5N1 avian influenza and Ebola, exploring for each the range of modelling approaches deployed and the ways they have been co-constructed with a particular politics of policy. Addressing the complex, uncertain dynamics of zoonotic disease requires such social and political lives to be made explicit in approaches that aim at triangulation rather than integration, and plural and conditional rather than singular forms of policy advice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Bats and zoonotic viruses: can we confidently link bats with emerging deadly viruses?

    PubMed Central

    Moratelli, Ricardo; Calisher, Charles H

    2015-01-01

    An increasingly asked question is 'can we confidently link bats with emerging viruses?'. No, or not yet, is the qualified answer based on the evidence available. Although more than 200 viruses - some of them deadly zoonotic viruses - have been isolated from or otherwise detected in bats, the supposed connections between bats, bat viruses and human diseases have been raised more on speculation than on evidence supporting their direct or indirect roles in the epidemiology of diseases (except for rabies). However, we are convinced that the evidence points in that direction and that at some point it will be proved that bats are competent hosts for at least a few zoonotic viruses. In this review, we cover aspects of bat biology, ecology and evolution that might be relevant in medical investigations and we provide a historical synthesis of some disease outbreaks causally linked to bats. We provide evolutionary-based hypotheses to tentatively explain the viral transmission route through mammalian intermediate hosts and to explain the geographic concentration of most outbreaks, but both are no more than speculations that still require formal assessment. PMID:25742261

  19. Evaluation of the presence and zoonotic transmission of Chlamydia suis in a pig slaughterhouse.

    PubMed

    De Puysseleyr, Kristien; De Puysseleyr, Leentje; Dhondt, Hendrik; Geens, Tom; Braeckman, Lutgart; Morré, Servaas A; Cox, Eric; Vanrompay, Daisy

    2014-10-30

    A significant number of studies on pig farms and wild boars worldwide, demonstrate the endemic presence of Chlamydia suis in pigs. However, the zoonotic potential of this pathogen, phylogenetically closely related to Chlamydia trachomatis, is still uninvestigated. Therefore, this study aims to examine the zoonotic transmission in a Belgian pig abattoir. Presence of Chlamydia suis in pigs, contact surfaces, air and employees was assessed using a Chlamydia suis specific real-time PCR and culture. Furthermore, Chlamydia suis isolates were tested for the presence of the tet(C) gene. Chlamydia suis bacteria could be demonstrated in samples from pigs, the air and contact surfaces. Moreover, eye swabs of two employees were positive for Chlamydia suis by both PCR and culture. The tet(C) gene was absent in both human Chlamydia suis isolates and no clinical signs were reported. These findings suggest the need for further epidemiological and clinical research to elucidate the significance of human ocular Chlamydia suis infections.

  20. ISOLATION AND IDENTIFICATION OF BRUCELLA SUIS IN PIGS AS ZOONOTIC DISEASE IN ENDEMIC AREAS OF EAST JAVA, INDONESIA.

    PubMed

    S, Emy Koestanti; Misaco, Wiwik; Chusniati, Sri; Maslachah, Lilik

    2018-01-01

    Brucellosis in pigs at East Java Indonesia has not only cause great economic losses due to a decrease in productivity of livestock but also are zoonotic. Infection on free brucelosis pigs were initially begun with the infected pigs both male and female, or the use of superior male pigs together. The elimination of the disease either on a group or population is considered as the most effective way to prevent the spread of the disease in pigs. Prevention efforts mainly addressed to vaccination, sanitary maintenace and government policy. The purpose of this study was to isolated and identified Brucella suis as the causative agent. The survey area were the pig farm owned by breeder farmers in the area of East Java Indonesia, at Kediri, Malang, Blitar and Probolinggo district. Blood samples obtained were tested with RBT. Pigs are suspected of being infected with Brucella if the RBT was positive that characterized with agglutination in the test results. If RBT was positive, bacteriological examination will be performed, with samples of visceral foetus organ, ie liver, spleen, placenta and amniotic fluid. Isolation and identification of Brucella suis were used Brucella Broth and Brucella Agar, and if the bacteri growthwill be continued with biochemical test ie H2S, urease, citrate, catalase and oxidase test. The positive results of Brucella suis showed positive urease, catalase andoxidase, but negative for citrate and H2S. RBT and bacteriolgical examination showed that 1 sample was positive Brucella suis , and 19 negative. The positive results showed positive urease, catalase and oxidase, but negative for citrate and H2S. Based on RBT test and bacteriological examination, there was 1 positive sample of brucellla suis, that is sample coming from Kediri district.

  1. ISOLATION AND IDENTIFICATION OF BRUCELLA SUIS IN PIGS AS ZOONOTIC DISEASE IN ENDEMIC AREAS OF EAST JAVA, INDONESIA

    PubMed Central

    S, Emy Koestanti; Misaco, Wiwik; Chusniati, Sri; Maslachah, Lilik

    2018-01-01

    Background: Brucellosis in pigs at East Java Indonesia has not only cause great economic losses due to a decrease in productivity of livestock but also are zoonotic. Infection on free brucelosis pigs were initially begun with the infected pigs both male and female, or the use of superior male pigs together. The elimination of the disease either on a group or population is considered as the most effective way to prevent the spread of the disease in pigs. Prevention efforts mainly addressed to vaccination, sanitary maintenace and government policy. The purpose of this study was to isolated and identified Brucella suis as the causative agent. Material and Methods: The survey area were the pig farm owned by breeder farmers in the area of East Java Indonesia, at Kediri, Malang, Blitar and Probolinggo district. Blood samples obtained were tested with RBT. Pigs are suspected of being infected with Brucella if the RBT was positive that characterized with agglutination in the test results. If RBT was positive, bacteriological examination will be performed, with samples of visceral foetus organ, ie liver, spleen, placenta and amniotic fluid. Isolation and identification of Brucella suis were used Brucella Broth and Brucella Agar, and if the bacteri growthwill be continued with biochemical test ie H2S, urease, citrate, catalase and oxidase test. The positive results of Brucella suis showed positive urease, catalase andoxidase, but negative for citrate and H2S. Results: RBT and bacteriolgical examination showed that 1 sample was positive Brucella suis, and 19 negative. The positive results showed positive urease, catalase and oxidase, but negative for citrate and H2S. Conclusion: Based on RBT test and bacteriological examination, there was 1 positive sample of brucellla suis, that is sample coming from Kediri district. PMID:29619446

  2. Novel Trichoderma polysporum Strain for the Biocontrol of Pseudogymnoascus destructans, the Fungal Etiologic Agent of Bat White Nose Syndrome.

    PubMed

    Zhang, Tao; Chaturvedi, Vishnu; Chaturvedi, Sudha

    2015-01-01

    White-nose syndrome (WNS), an emerging disease of hibernating bats, has rapidly spread across eastern North America killing millions of bats. Pseudogymnoascus destructans (Pd), the sole etiologic agent of WNS, is widespread and persistent in bat hibernacula. Control of Pd in the affected sites is urgently needed to break the transmission cycle while minimizing any adverse impact on the native organisms. We isolated a novel strain of Trichoderma polysporum (Tp) from one of the caves at the epicenter of WNS zoonotic. Detailed experimental studies revealed: (1) Tp WPM 39143 was highly adapted to grow at temperatures simulating the cave environment (6°C-15°C), (2) Tp WPM 39143 restricted Pd colony growth in dual culture challenges, (3) Tp WPM 39143 caused four logs reduction of Pd colony forming units and genome copies in autoclaved soil samples from one of the WNS affected caves, (4) Tp WPM 39143 extract showed specific fungicidal activity against Pd in disk diffusion assay, but not against closely related fungus P. pannorum (Pp), (5) Tp WPM 39143 extract retained inhibitory activity after exposure to high temperatures, light and proteinase K, and (6) Inhibitory metabolites in Tp WPM 39143 extract comprised of water-soluble, high polarity compounds. These results suggest that Tp WPM 39143 is a promising candidate for further evaluation as a biocontrol agent of Pd in WNS affected sites.

  3. Novel Trichoderma polysporum Strain for the Biocontrol of Pseudogymnoascus destructans, the Fungal Etiologic Agent of Bat White Nose Syndrome

    PubMed Central

    Zhang, Tao; Chaturvedi, Vishnu; Chaturvedi, Sudha

    2015-01-01

    White-nose syndrome (WNS), an emerging disease of hibernating bats, has rapidly spread across eastern North America killing millions of bats. Pseudogymnoascus destructans (Pd), the sole etiologic agent of WNS, is widespread and persistent in bat hibernacula. Control of Pd in the affected sites is urgently needed to break the transmission cycle while minimizing any adverse impact on the native organisms. We isolated a novel strain of Trichoderma polysporum (Tp) from one of the caves at the epicenter of WNS zoonotic. Detailed experimental studies revealed: (1) Tp WPM 39143 was highly adapted to grow at temperatures simulating the cave environment (6°C-15°C), (2) Tp WPM 39143 restricted Pd colony growth in dual culture challenges, (3) Tp WPM 39143 caused four logs reduction of Pd colony forming units and genome copies in autoclaved soil samples from one of the WNS affected caves, (4) Tp WPM 39143 extract showed specific fungicidal activity against Pd in disk diffusion assay, but not against closely related fungus P. pannorum (Pp), (5) Tp WPM 39143 extract retained inhibitory activity after exposure to high temperatures, light and proteinase K, and (6) Inhibitory metabolites in Tp WPM 39143 extract comprised of water-soluble, high polarity compounds. These results suggest that Tp WPM 39143 is a promising candidate for further evaluation as a biocontrol agent of Pd in WNS affected sites. PMID:26509269

  4. [Tuberculosis caused by Mycobacterium bovis in workers of bovine tuberculosis sanitation farms in Antioquia, Boyacá and Cundinamarca].

    PubMed

    Leal-Bohórquez, Andrés F; Castro-Osorio, Claudia M; Wintaco-Martínez, Luz M; Villalobos, Rafael; Puerto-Castro, Gloria M

    2016-01-01

    To perform classic and molecular epidemiological surveillance of human tuberculosis caused by Mycobacterium bovis in bovine supply chains at farms with PPD positive bovines in the departments of Antioquia, Boyacá and Cundinamarca during a one-year period. Livestock farms with PPD positive bovines or buffalos were visited in the study departments according to information obtained in the "Programa Nacional de Tuberculosis bovina" (National program on bovine Tuberculosis) released by ICA (Colombian Agriculture and Livestock Institute). Data on socio-demographic information and tuberculosis risk factors associated to the occupation were collected through a survey applied to all workers at the visited farms. Sputum samples were obtained after informed consent. The sputa underwent microbiological and molecular testing to identify members of the M. tuberculosis complex. Thirty-three livestock farms were visited and information of 164 workers from the bovine supply chain was collected. Staying in a PPD positive farm for more than a year, ignorance about the disease and the presence of possible vectors, like dogs and cats, were identified as possible risk factors for developing tuberculosis. No cases of tuberculosis caused by M. bovis or M. tuberculosis in workers of the visited farms were found. No cases of the disease caused by this zoonotic agent were documented in the departments of Antioquia, Boyacá and Cundinamarca.

  5. Bat Hunting and Bat-Human Interactions in Bangladeshi Villages: Implications for Zoonotic Disease Transmission and Bat Conservation.

    PubMed

    Openshaw, J J; Hegde, S; Sazzad, H M S; Khan, S U; Hossain, M J; Epstein, J H; Daszak, P; Gurley, E S; Luby, S P

    2017-08-01

    Bats are an important reservoir for emerging zoonotic pathogens. Close human-bat interactions, including the sharing of living spaces and hunting and butchering of bats for food and medicines, may lead to spillover of zoonotic disease into human populations. We used bat exposure and environmental data gathered from 207 Bangladeshi villages to characterize bat exposures and hunting in Bangladesh. Eleven percent of households reported having a bat roost near their homes, 65% reported seeing bats flying over their households at dusk, and 31% reported seeing bats inside their compounds or courtyard areas. Twenty percent of households reported that members had at least daily exposure to bats. Bat hunting occurred in 49% of the villages surveyed and was more likely to occur in households that reported nearby bat roosts (adjusted prevalence ratio [aPR] 2.3, 95% CI 1.1-4.9) and villages located in north-west (aPR 7.5, 95% CI 2.5-23.0) and south-west (aPR 6.8, 95% CI 2.1-21.6) regions. Our results suggest high exposure to bats and widespread hunting throughout Bangladesh. This has implications for both zoonotic disease spillover and bat conservation. © 2016 Blackwell Verlag GmbH.

  6. Molecular evidence for zoonotic transmission of an emergent, highly pathogenic Campylobacter jejuni clone in the United States.

    PubMed

    Sahin, Orhan; Fitzgerald, Collette; Stroika, Steven; Zhao, Shaohua; Sippy, Rachel J; Kwan, Patrick; Plummer, Paul J; Han, Jing; Yaeger, Michael J; Zhang, Qijing

    2012-03-01

    Campylobacter jejuni is a major zoonotic pathogen. A highly virulent, tetracycline-resistant C. jejuni clone (clone SA) has recently emerged in ruminant reservoirs and has become the predominant cause of sheep abortion in the United States. To determine whether clone SA is associated with human disease, we compared the clinical isolates of clone SA from sheep abortions with the human isolates of the PulseNet National Campylobacter databases at the CDC and the FDA using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and serotyping. The combined SmaI and KpnI PFGE pattern designations of clone SA from sheep were indistinguishable from those of 123 (9.03%) human C. jejuni isolates (total, 1,361) in the CDC database, among which 56 were associated with sporadic infections and 67 were associated with outbreaks that occurred in multiple states from 2003 to 2010. Most of the outbreaks were attributed to raw milk, while the sources for most of the sporadic cases were unknown. All clone SA isolates examined, including PFGE-matched human isolates, belong to sequence type 8 (ST-8) by MLST and serotype HS:1,8, further indicating the clonality of the related isolates from different host species. Additionally, C. jejuni clone SA was identified in raw milk, cattle feces, the feces and bile of healthy sheep, and abortion cases of cattle and goats, indicating the broad distribution of this pathogenic clone in ruminants. These results provide strong molecular and epidemiological evidence for zoonotic transmission of this emergent clone from ruminants to humans and indicate that C. jejuni clone SA is an important threat to public health.

  7. Molecular identification of zoonotic and livestock-specific Giardia-species in faecal samples of calves in Southern Germany.

    PubMed

    Gillhuber, Julia; Pallant, Louise; Ash, Amanda; Thompson, R C Andrew; Pfister, Kurt; Scheuerle, Miriam C

    2013-12-10

    Giardia-infection in cattle is often subclinical or asymptomatic, but it can also cause diarrhoea. The livestock-specific species Giardia bovis is the most frequently observed in cattle, however, the two zoonotic species Giardia duodenalis and Giardia enterica have also been found. Therefore calves are thought to be of public health significance. The aim of this study was to obtain current data about the frequency of the different Giardia-species in calves in Southern Germany. Faecal samples of calves (diarrhoeic and healthy) in Southern Germany, diagnosed Giardia-positive by microscopy, were characterised by multi-locus PCR and sequencing.Of 152 microscopically Giardia-positive samples 110 (72.4%) were positive by PCR and successfully sequenced. G. bovis (Assemblage E) was detected in 101/110 (91.8%) PCR-positive samples, whilst G. duodenalis (Assemblage A) was detected in 8/110 (7.3%) samples and a mixed infection with G. duodenalis and G. bovis (Assemblage A+E) was identified in 1/110 (0.9%) samples. The sub-genotypes A1, E2 and E3 were identified with the β-giardin and the glutamate dehydrogenase genes. In the majority of diarrhoeic faecal samples a co-infection with Cryptosporidium spp. or Eimeria spp. was present, however, there were some in which G. bovis was the only protozoan pathogen found. The results suggest that there is potentially a risk for animal handlers as calves in Southern Germany are, at a low percentage, infected with the zoonotic species G. duodenalis. In addition, it was found that G. bovis was the only pathogen identified in some samples of diarrhoeic calves, indicating that this parasite may be a contributing factor to diarrhoea in calves.

  8. Molecular Evidence for Zoonotic Transmission of an Emergent, Highly Pathogenic Campylobacter jejuni Clone in the United States

    PubMed Central

    Sahin, Orhan; Fitzgerald, Collette; Stroika, Steven; Zhao, Shaohua; Sippy, Rachel J.; Kwan, Patrick; Plummer, Paul J.; Han, Jing; Yaeger, Michael J.

    2012-01-01

    Campylobacter jejuni is a major zoonotic pathogen. A highly virulent, tetracycline-resistant C. jejuni clone (clone SA) has recently emerged in ruminant reservoirs and has become the predominant cause of sheep abortion in the United States. To determine whether clone SA is associated with human disease, we compared the clinical isolates of clone SA from sheep abortions with the human isolates of the PulseNet National Campylobacter databases at the CDC and the FDA using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and serotyping. The combined SmaI and KpnI PFGE pattern designations of clone SA from sheep were indistinguishable from those of 123 (9.03%) human C. jejuni isolates (total, 1,361) in the CDC database, among which 56 were associated with sporadic infections and 67 were associated with outbreaks that occurred in multiple states from 2003 to 2010. Most of the outbreaks were attributed to raw milk, while the sources for most of the sporadic cases were unknown. All clone SA isolates examined, including PFGE-matched human isolates, belong to sequence type 8 (ST-8) by MLST and serotype HS:1,8, further indicating the clonality of the related isolates from different host species. Additionally, C. jejuni clone SA was identified in raw milk, cattle feces, the feces and bile of healthy sheep, and abortion cases of cattle and goats, indicating the broad distribution of this pathogenic clone in ruminants. These results provide strong molecular and epidemiological evidence for zoonotic transmission of this emergent clone from ruminants to humans and indicate that C. jejuni clone SA is an important threat to public health. PMID:22189122

  9. A Clinical and Epidemiological Investigation of the First Reported Human Infection With the Zoonotic Parasite Trypanosoma evansi in Southeast Asia

    PubMed Central

    Van Vinh Chau, Nguyen; Buu Chau, Le; Desquesnes, Marc; Herder, Stephane; Phu Huong Lan, Nguyen; Campbell, James I.; Van Cuong, Nguyen; Yimming, Benjarat; Chalermwong, Piangjai; Jittapalapong, Sathaporn; Ramon Franco, Jose; Tri Tue, Ngo; Rabaa, Maia A.; Carrique-Mas, Juan; Pham Thi Thanh, Tam; Tran Vu Thieu, Nga; Berto, Alessandra; Thi Hoa, Ngo; Van Minh Hoang, Nguyen; Canh Tu, Nguyen; Khac Chuyen, Nguyen; Wills, Bridget; Tinh Hien, Tran; Thwaites, Guy E.; Yacoub, Sophie; Baker, Stephen

    2016-01-01

    Background. Trypanosoma is a genus of unicellular parasitic flagellate protozoa. Trypanosoma brucei species and Trypanosoma cruzi are the major agents of human trypanosomiasis; other Trypanosoma species can cause human disease, but are rare. In March 2015, a 38-year-old woman presented to a healthcare facility in southern Vietnam with fever, headache, and arthralgia. Microscopic examination of blood revealed infection with Trypanosoma. Methods. Microscopic observation, polymerase chain reaction (PCR) amplification of blood samples, and serological testing were performed to identify the infecting species. The patient's blood was screened for the trypanocidal protein apolipoprotein L1 (APOL1), and a field investigation was performed to identify the zoonotic source. Results. PCR amplification and serological testing identified the infecting species as Trypanosoma evansi. Despite relapsing 6 weeks after completing amphotericin B therapy, the patient made a complete recovery after 5 weeks of suramin. The patient was found to have 2 wild-type APOL1 alleles and a normal serum APOL1 concentration. After responsive animal sampling in the presumed location of exposure, cattle and/or buffalo were determined to be the most likely source of the infection, with 14 of 30 (47%) animal blood samples testing PCR positive for T. evansi. Conclusions. We report the first laboratory-confirmed case of T. evansi in a previously healthy individual without APOL1 deficiency, potentially contracted via a wound while butchering raw beef, and successfully treated with suramin. A linked epidemiological investigation revealed widespread and previously unidentified burden of T. evansi in local cattle, highlighting the need for surveillance of this infection in animals and the possibility of further human cases. PMID:26908809

  10. Different but overlapping populations of Strongyloides stercoralis in dogs and humans-Dogs as a possible source for zoonotic strongyloidiasis.

    PubMed

    Jaleta, Tegegn G; Zhou, Siyu; Bemm, Felix M; Schär, Fabian; Khieu, Virak; Muth, Sinuon; Odermatt, Peter; Lok, James B; Streit, Adrian

    2017-08-01

    Strongyloidiasis is a much-neglected soil born helminthiasis caused by the nematode Strongyloides stercoralis. Human derived S. stercoralis can be maintained in dogs in the laboratory and this parasite has been reported to also occur in dogs in the wild. Some authors have considered strongyloidiasis a zoonotic disease while others have argued that the two hosts carry host specialized populations of S. stercoralis and that dogs play a minor role, if any, as a reservoir for zoonotic S. stercoralis infections of humans. We isolated S. stercoralis from humans and their dogs in rural villages in northern Cambodia, a region with a high incidence of strongyloidiasis, and compared the worms derived from these two host species using nuclear and mitochondrial DNA sequence polymorphisms. We found that in dogs there exist two populations of S. stercoralis, which are clearly separated from each other genetically based on the nuclear 18S rDNA, the mitochondrial cox1 locus and whole genome sequence. One population, to which the majority of the worms belong, appears to be restricted to dogs. The other population is indistinguishable from the population of S. stercoralis isolated from humans. Consistent with earlier studies, we found multiple sequence variants of the hypervariable region I of the 18 S rDNA in S. stercoralis from humans. However, comparison of mitochondrial sequences and whole genome analysis suggest that these different 18S variants do not represent multiple genetically isolated subpopulations among the worms isolated from humans. We also investigated the mode of reproduction of the free-living generations of laboratory and wild isolates of S. stercoralis. Contrary to earlier literature on S. stercoralis but similar to other species of Strongyloides, we found clear evidence of sexual reproduction. Overall, our results show that dogs carry two populations, possibly different species of Strongyloides. One population appears to be dog specific but the other one is

  11. A Quantitative Approach to the Prioritization of Zoonotic Diseases in North America: A Health Professionals’ Perspective

    PubMed Central

    Ng, Victoria; Sargeant, Jan M.

    2013-01-01

    Background Currently, zoonoses account for 58% to 61% of all communicable diseases causing illness in humans globally and up to 75% of emerging human pathogens. Although the impact of zoonoses on animal health and public health in North America is significant, there has been no published research involving health professionals on the prioritization of zoonoses in this region. Methodology/Principal Findings We used conjoint analysis (CA), a well-established quantitative method in market research, to identify the relative importance of 21 key characteristics of zoonotic diseases for their prioritization in Canada and the US. Relative importance weights from the CA were used to develop a point-scoring system to derive a recommended list of zoonoses for prioritization in Canada and the US. Study participants with a background in epidemiology, public health, medical sciences, veterinary sciences and infectious disease research were recruited to complete the online survey (707 from Canada and 764 from the US). Hierarchical Bayes models were fitted to the survey data to derive CA-weighted scores for disease criteria. Scores were applied to 62 zoonotic diseases to rank diseases in order of priority. Conclusions/Significance We present the first zoonoses prioritization exercise involving health professionals in North America. Our previous study indicated individuals with no prior knowledge in infectious diseases were capable of producing meaningful results with acceptable model fits (79.4%). This study suggests health professionals with some knowledge in infectious diseases were capable of producing meaningful results with better-fitted models than the general public (83.7% and 84.2%). Despite more similarities in demographics and model fit between the combined public and combined professional groups, there was more uniformity across priority lists between the Canadian public and Canadian professionals and between the US public and US professionals. Our study suggests that

  12. From Barnyard to Food Table: the Omnipresence of Hepatitis E virus and Risk for Zoonotic Infection and Food Safety

    PubMed Central

    Meng, Xiang-Jin

    2011-01-01

    Hepatitis E virus (HEV) is an important but extremely understudied pathogen. The mechanisms of HEV replication and pathogenesis are poorly understood, and a vaccine against HEV is not yet available. HEV is classified in the family Hepeviridae consisting of at least four recognized major genotypes. Genotypes 1 and 2 HEV are restricted to humans and associated with epidemics in developing countries, whereas genotypes 3 and 4 HEV are zoonotic and responsible for sporadic cases worldwide. The identification and characterization of a number of animal strains of HEV from pigs, chickens, rabbits, rats, mongoose, deer, and possibly cattle and sheep have significantly broadened the host range and diversity of HEV. The demonstrated ability of cross-species infection by some animal strains of HEV raises public health concerns for zoonotic HEV infection. Pigs are a recognized reservoir for HEV, and pig handlers are at increased risk of zoonotic HEV infection. Sporadic cases of hepatitis E have been definitively linked to the consumption of raw or undercooked animal meats such as pig livers, sausages, and deer meats. In addition, since large amounts of viruses excreted in feces, animal manure land application and runoffs can contaminate irrigation and drinking water with concomitant contamination of produce or shellfish. HEV RNA of swine origin has been detected in swine manure, sewage water and oysters, and consumption of contaminated shellfish has also been implicated in sporadic cases of hepatitis E. Therefore, the animal strains of HEV pose not only a zoonotic risk but also food and environmental safety concerns. PMID:21316404

  13. Taking forward a 'One Health' approach for turning the tide against the Middle East respiratory syndrome coronavirus and other zoonotic pathogens with epidemic potential.

    PubMed

    Zumla, Alimuddin; Dar, Osman; Kock, Richard; Muturi, Matthew; Ntoumi, Francine; Kaleebu, Pontiano; Eusebio, Macete; Mfinanga, Sayoki; Bates, Matthew; Mwaba, Peter; Ansumana, Rashid; Khan, Mishal; Alagaili, Abdulaziz N; Cotten, Matthew; Azhar, Esam I; Maeurer, Markus; Ippolito, Giuseppe; Petersen, Eskild

    2016-06-01

    The appearance of novel pathogens of humans with epidemic potential and high mortality rates have threatened global health security for centuries. Over the past few decades new zoonotic infectious diseases of humans caused by pathogens arising from animal reservoirs have included West Nile virus, Yellow fever virus, Ebola virus, Nipah virus, Lassa Fever virus, Hanta virus, Dengue fever virus, Rift Valley fever virus, Crimean-Congo haemorrhagic fever virus, severe acute respiratory syndrome coronavirus, highly pathogenic avian influenza viruses, Middle East Respiratory Syndrome Coronavirus, and Zika virus. The recent Ebola Virus Disease epidemic in West Africa and the ongoing Zika Virus outbreak in South America highlight the urgent need for local, regional and international public health systems to be be more coordinated and better prepared. The One Health concept focuses on the relationship and interconnectedness between Humans, Animals and the Environment, and recognizes that the health and wellbeing of humans is intimately connected to the health of animals and their environment (and vice versa). Critical to the establishment of a One Health platform is the creation of a multidisciplinary team with a range of expertise including public health officers, physicians, veterinarians, animal husbandry specialists, agriculturalists, ecologists, vector biologists, viral phylogeneticists, and researchers to co-operate, collaborate to learn more about zoonotic spread between animals, humans and the environment and to monitor, respond to and prevent major outbreaks. We discuss the unique opportunities for Middle Eastern and African stakeholders to take leadership in building equitable and effective partnerships with all stakeholders involved in human and health systems to take forward a 'One Health' approach to control such zoonotic pathogens with epidemic potential. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. Rationale and support for a One Health program for canine vaccination as the most cost-effective means of controlling zoonotic rabies in endemic settings.

    PubMed

    Lavan, Robert P; King, Alasdair I MacG; Sutton, David J; Tunceli, Kaan

    2017-03-23

    Although dog vaccination has been demonstrated to reduce and eliminate rabies in humans, during meetings there are often calls for further pilot studies. The assembled data proves that a widespread approach is now required. While zoonotic rabies has a minimal presence in developed nations, it is endemic throughout most of Asia and Africa, where it is considered to be a neglected tropical disease. In these areas, rabies causes an estimated annual mortality of at least 55,000 human deaths. Worldwide rabid dogs are the source of the vast majority of human rabies exposures. The World Health Organization (WHO), the Food and Agriculture Organization (FAO) of the United Nations and the World Organization for Animal Health (OIE) advocate a collaborative One Health approach involving human public health and veterinary agencies, with mass canine vaccination programs in endemic areas being the mainstay of strategies to eliminate dog-mediated human rabies. While post-exposure prophylaxis (PEP) is effective in preventing deaths in people exposed to rabies, it is comparatively expensive and has little impact on the canine reservoir that is the primary source of zoonotic rabies. Indiscriminate culling of the dog population is expensive and there is little evidence that it is effective in controlling rabies in non-island locations. Mass canine vaccination programs using a One Health framework that achieves a minimum 70% vaccination coverage during annual campaigns have proven to be cost-effective in controlling zoonotic rabies in endemic, resource-poor regions. Case studies, such as in Tanzania and Bhutan, illustrate how an approach based on mass canine rabies vaccination has effectively reduced both canine and human rabies to minimal levels. The multiple benefits of mass canine rabies vaccination in these cases included eliminating rabies in the domestic dog reservoirs, eliminating human rabies cases, and decreasing the rabies economic burden by reducing expenditures on PEP

  15. Climate change and zoonotic infections in the Russian Arctic

    PubMed Central

    Revich, Boris; Tokarevich, Nikolai; Parkinson, Alan J.

    2012-01-01

    Climate change in the Russian Arctic is more pronounced than in any other part of the country. Between 1955 and 2000, the annual average air temperature in the Russian North increased by 1.2°C. During the same period, the mean temperature of upper layer of permafrost increased by 3°C. Climate change in Russian Arctic increases the risks of the emergence of zoonotic infectious diseases. This review presents data on morbidity rates among people, domestic animals and wildlife in the Russian Arctic, focusing on the potential climate related emergence of such diseases as tick-borne encephalitis, tularemia, brucellosis, leptospirosis, rabies, and anthrax. PMID:22868189

  16. Detection of Zoonotic Enteropathogens in Children and Domestic Animals in a Semirural Community in Ecuador

    PubMed Central

    Vasco, Karla; Graham, Jay P.

    2016-01-01

    ABSTRACT Animals are important reservoirs of zoonotic enteropathogens, and transmission to humans occurs more frequently in low- and middle-income countries (LMICs), where small-scale livestock production is common. In this study, we investigated the presence of zoonotic enteropathogens in stool samples from 64 asymptomatic children and 203 domestic animals of 62 households in a semirural community in Ecuador between June and August 2014. Multilocus sequence typing (MLST) was used to assess zoonotic transmission of Campylobacter jejuni and atypical enteropathogenic Escherichia coli (aEPEC), which were the most prevalent bacterial pathogens in children and domestic animals (30.7% and 10.5%, respectively). Four sequence types (STs) of C. jejuni and four STs of aEPEC were identical between children and domestic animals. The apparent sources of human infection were chickens, dogs, guinea pigs, and rabbits for C. jejuni and pigs, dogs, and chickens for aEPEC. Other pathogens detected in children and domestic animals were Giardia lamblia (13.1%), Cryptosporidium parvum (1.1%), and Shiga toxin-producing E. coli (STEC) (2.6%). Salmonella enterica was detected in 5 dogs and Yersinia enterocolitica was identified in 1 pig. Even though we identified 7 enteric pathogens in children, we encountered evidence of active transmission between domestic animals and humans only for C. jejuni and aEPEC. We also found evidence that C. jejuni strains from chickens were more likely to be transmitted to humans than those coming from other domestic animals. Our findings demonstrate the complex nature of enteropathogen transmission between domestic animals and humans and stress the need for further studies. IMPORTANCE We found evidence that Campylobacter jejuni, Giardia, and aEPEC organisms were the most common zoonotic enteropathogens in children and domestic animals in a region close to Quito, the capital of Ecuador. Genetic analysis of the isolates suggests transmission of some genotypes

  17. Detection of Zoonotic Enteropathogens in Children and Domestic Animals in a Semirural Community in Ecuador.

    PubMed

    Vasco, Karla; Graham, Jay P; Trueba, Gabriel

    2016-07-15

    Animals are important reservoirs of zoonotic enteropathogens, and transmission to humans occurs more frequently in low- and middle-income countries (LMICs), where small-scale livestock production is common. In this study, we investigated the presence of zoonotic enteropathogens in stool samples from 64 asymptomatic children and 203 domestic animals of 62 households in a semirural community in Ecuador between June and August 2014. Multilocus sequence typing (MLST) was used to assess zoonotic transmission of Campylobacter jejuni and atypical enteropathogenic Escherichia coli (aEPEC), which were the most prevalent bacterial pathogens in children and domestic animals (30.7% and 10.5%, respectively). Four sequence types (STs) of C. jejuni and four STs of aEPEC were identical between children and domestic animals. The apparent sources of human infection were chickens, dogs, guinea pigs, and rabbits for C. jejuni and pigs, dogs, and chickens for aEPEC. Other pathogens detected in children and domestic animals were Giardia lamblia (13.1%), Cryptosporidium parvum (1.1%), and Shiga toxin-producing E. coli (STEC) (2.6%). Salmonella enterica was detected in 5 dogs and Yersinia enterocolitica was identified in 1 pig. Even though we identified 7 enteric pathogens in children, we encountered evidence of active transmission between domestic animals and humans only for C. jejuni and aEPEC. We also found evidence that C. jejuni strains from chickens were more likely to be transmitted to humans than those coming from other domestic animals. Our findings demonstrate the complex nature of enteropathogen transmission between domestic animals and humans and stress the need for further studies. We found evidence that Campylobacter jejuni, Giardia, and aEPEC organisms were the most common zoonotic enteropathogens in children and domestic animals in a region close to Quito, the capital of Ecuador. Genetic analysis of the isolates suggests transmission of some genotypes of C. jejuni and a

  18. Protective practices against zoonotic infections among rural and slum communities from South Central Chile.

    PubMed

    Mason, Meghan R; Gonzalez, Marcelo; Hodges, James S; Muñoz-Zanzi, Claudia

    2015-07-28

    Despite well-recognized recommendations to reduce human exposure to zoonotic pathogens, the use of personal and herd-level protective practices is inconsistent in communities where human interactions with animals are common. This study assessed household-level participation in rodent- (extermination, proper food storage, trash disposal), occupational- (preventive veterinary care, boot-wearing, glove-wearing), and garden-associated (restricting animal access, boot-wearing, glove-wearing) protective practices in farms, villages, and slums in the Los Rios region, Chile, where zoonotic pathogens are endemic. Questionnaires administered at 422 households across 12 communities recorded household-level socio-demographic characteristics and participation in nine protective practices. Household inclusion in the analysis of occupational practices required having livestock and a household member with occupational exposure to livestock (n = 127), and inclusion in analysis of garden practices required having a garden and at least one animal (n = 233). The proportion of households participating in each protective practice was compared across community types through chi-square analyses. Mixed effects logistic regression assessed household-level associations between socio-demographic characteristics and participation in each protective practice. Most households (95.3 %) reported participation in rodent control, and a positive association between the number of rodent signs in a household and rodent extermination was observed (OR: 1.75, 95 % CI: 1.41, 2.16). Occupational protective practices were reported in 61.8 % of eligible households; household size (OR: 1.63, 95 % CI: 1.17, 5.84) and having children (OR: 0.22, 95 % CI: 0.06, 0.78) were associated with preventive veterinary care. Among eligible households, 73.8 % engaged in protective practices when gardening, and species diversity was positively associated with wearing boots (OR: 1.27, 95 % CI: 1.03, 1.56). Household

  19. Animal Husbandry Practices and Perceptions of Zoonotic Infectious Disease Risks among Livestock Keepers in a Rural Parish of Quito, Ecuador

    PubMed Central

    Lowenstein, Christopher; Waters, William F.; Roess, Amira; Leibler, Jessica H.; Graham, Jay P.

    2016-01-01

    Small-scale livestock production plays an essential role as a source of income and nutrition for households in low- and middle-income countries, yet these practices can also increase risk of zoonotic infectious diseases, especially among young children. To mitigate this risk, there is a need to better understand how livestock producers perceive and manage risks of disease transmission. Twenty semistructured, in-depth interviews were conducted with small-scale livestock producers in a semirural parish of Quito, Ecuador. Interviews explored livestock-raising practices, including animal health-care practices and use of antimicrobials, family members' interactions with livestock and other animals, and perceptions of health risk associated with these practices and activities. Interviews were analyzed for common themes. Awareness of zoonotic disease transmission was widespread, yet few study participants considered raising livestock a significant health risk for themselves or their families. Several study households reported handling and consuming meat or poultry from sick or dead animals and using animal waste as a fertilizer on their crops. Households typically diagnosed and treated their sick animals, occasionally seeking treatment advice from employees of local animal feed stores where medications, including antimicrobials, are available over the counter. Despite a basic understanding of zoonotic disease risk, this study identified several factors, such as the handling and consumption of sick and dead animals and purchasing medications for sick animals over the counter, that potentially increase the risk of zoonotic disease transmission as well as the development and spread of antimicrobial resistance. PMID:27928092

  20. Francisella tularensis type A Strains Cause the Rapid Encystment of Acanthamoeba castellanii and Survive in Amoebal Cysts for Three Weeks post Infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Etr, S H; Margolis, J; Monack, D

    2009-07-28

    Francisella tularensis, the causative agent of the zoonotic disease tularemia, has recently gained increased attention due to the emergence of tularemia in geographical areas where the disease has been previously unknown, and the organism's potential as a bioterrorism agent. Although F. tularensis has an extremely broad host range, the bacterial reservoir in nature has not been conclusively identified. In this study, the ability of virulent F. tularensis strains to survive and replicate in the amoeba Acanthamoeba castellanii was explored. We observe that A. castellanii trophozoites rapidly encyst in response to F. tularensis infection and that this rapid encystment phenotype (REP)more » is caused by factor(s) secreted by amoebae and/or F. tularensis into the co-culture media. Further, our results indicate that in contrast to LVS, virulent strains of F. tularensis can survive in A. castellanii cysts for at least 3 weeks post infection and that induction of rapid amoeba encystment is essential for survival. In addition, our data indicate that pathogenic F. tularensis strains block lysosomal fusion in A. castellanii. Taken together, these data suggest that the interactions between F. tularensis strains and amoeba may play a role in the environmental persistence of F. tularensis.« less

  1. Estimating Burdens of Neglected Tropical Zoonotic Diseases on Islands with Introduced Mammals.

    PubMed

    de Wit, Luz A; Croll, Donald A; Tershy, Bernie; Newton, Kelly M; Spatz, Dena R; Holmes, Nick D; Kilpatrick, A Marm

    2017-03-01

    AbstractMany neglected tropical zoonotic pathogens are maintained by introduced mammals, and on islands the most common introduced species are rodents, cats, and dogs. Management of introduced mammals, including control or eradication of feral populations, which is frequently done for ecological restoration, could also reduce or eliminate the pathogens these animals carry. Understanding the burden of these zoonotic diseases is crucial for quantifying the potential public health benefits of introduced mammal management. However, epidemiological data are only available from a small subset of islands where these introduced mammals co-occur with people. We examined socioeconomic and climatic variables as predictors for disease burdens of angiostrongyliasis, leptospirosis, toxoplasmosis, toxocariasis, and rabies from 57 islands or island countries. We found strong correlates of disease burden for leptospirosis, Toxoplasma gondii infection, angiostrongyliasis, and toxocariasis with more than 50% of the variance explained, and an average of 57% (range = 32-95%) predictive accuracy on out-of-sample data. We used these relationships to provide estimates of leptospirosis incidence and T. gondii seroprevalence infection on islands where nonnative rodents and cats are present. These predicted estimates of disease burden could be used in an initial assessment of whether the costs of managing introduced mammal reservoirs might be less than the costs of perpetual treatment of these diseases on islands.

  2. Complete Genome Sequence of a Burkholderia mallei Isolate Originating from a Glanderous Horse from the Kingdom of Bahrain

    PubMed Central

    Thomas, Prasad; Melzer, Falk

    2016-01-01

    Burkholderia mallei is a zoonotic agent causing glanders, a notifiable disease in equines. During the past decades glanders emerged, and the Kingdom of Bahrain reported outbreaks to the World Organization of Animal Health in 2010 and 2011. This paper presents the complete genome sequence of the Burkholderia mallei strain 11RR2811 Bahrain1. PMID:27908988

  3. A fatal infection caused by sequence type 398 methicillin-resistant Staphylococcus aureus carrying the Panton-Valentine leukocidin gene: A case report in Japan.

    PubMed

    Koyama, Hiroshi; Sanui, Masamitsu; Saga, Tomoo; Harada, Sohei; Ishii, Yoshikazu; Tateda, Kazuhiro; Lefor, Alan Kawarai

    2015-07-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has now been recognized as a common pathogen in the community. Sequence type (ST) 398 MRSA is generally considered as an emerging zoonotic agent spreading among livestock and personnel who have direct contact with animals, mainly in Europe. A 37-year-old Chinese woman receiving steroid therapy for systemic lupus erythematosus with general fatigue and myalgia was brought to the emergency department in critical condition. Her condition deteriorated despite aggressive management and she died on day 7. Her blood culture revealed ST398 MRSA-SCCmec V with Panton-Valentine Leukocidin (PVL) gene. This is the first case report of a fatal infection caused by this lineage. According to the results of molecular analyses, the isolate from this particular patient's blood was genetically close to a lineage detected in China, and is less likely to be related to an animal-associated lineage. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  4. Pacific Broad Tapeworm Adenocephalus pacificus as a Causative Agent of Globally Reemerging Diphyllobothriosis.

    PubMed

    Kuchta, Roman; Serrano-Martínez, Marcus Enrique; Scholz, Tomas

    2015-10-01

    The Pacific broad tapeworm Adenocephalus pacificus (syn. Diphyllobothrium pacificum) is the causative agent of the third most common fish-borne cestodosis among humans. Although most of the nearly 1,000 cases among humans have been reported in South America (Peru, Chile, and Ecuador), cases recently imported to Europe demonstrate the potential for spread of this tapeworm throughout the world as a result of global trade of fresh or chilled marine fish and travel or migration of humans. We provide a comprehensive survey of human cases of infection with this zoonotic parasite, summarize the history of this re-emerging disease, and identify marine fish species that may serve as a source of human infection when eaten raw or undercooked.

  5. CATS-based Agents That Err

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.

    2002-01-01

    This report describes preliminary research on intelligent agents that make errors. Such agents are crucial to the development of novel agent-based techniques for assessing system safety. The agents extend an agent architecture derived from the Crew Activity Tracking System that has been used as the basis for air traffic controller agents. The report first reviews several error taxonomies. Next, it presents an overview of the air traffic controller agents, then details several mechanisms for causing the agents to err in realistic ways. The report presents a performance assessment of the error-generating agents, and identifies directions for further research. The research was supported by the System-Wide Accident Prevention element of the FAA/NASA Aviation Safety Program.

  6. Molecular Survey of Zoonotic Agents in Rodents and Other Small Mammals in Croatia

    PubMed Central

    Tadin, Ante; Tokarz, Rafal; Markotić, Alemka; Margaletić, Josip; Turk, Nenad; Habuš, Josipa; Svoboda, Petra; Vucelja, Marko; Desai, Aaloki; Jain, Komal; Ian Lipkin, W.

    2016-01-01

    Croatia is a focus for many rodent-borne zoonosis. Here, we report a survey of 242 rodents and small mammals, including 43 Myodes glareolus, 131 Apodemus flavicollis, 53 Apodemus agrarius, three Apodemus sylvaticus, six Sorex araneus, four Microtus arvalis, one Microtus agrestis, and one Muscardinus avellanarius, collected at eight sites in Croatia over an 8-year period. Multiplex MassTag polymerase chain reaction (PCR) was used for detection of Borrelia, Rickettsia, Bartonella, Babesia, Ehrlichia, Anaplasma, Francisella tularensis, and Coxiella burnetii. Individual PCR assays were used for detection of Leptospira, lymphocytic choriomeningitis virus, orthopoxviruses, flaviviruses, hantaviruses, and Toxoplasma gondii. Of the rodents, 52 (21.5%) were infected with Leptospira, 9 (3.7%) with Borrelia miyamotoi, 5 (2%) with Borrelia afzelii, 29 (12.0%) with Bartonella, 8 (3.3%) with Babesia microti, 2 (0.8%) with Ehrlichia, 4 (1.7%) with Anaplasma, 2 (0.8%) with F. tularensis, 43 (17.8%) with hantaviruses, and 1 (0.4%) with an orthopoxvirus. Other agents were not detected. Multiple infections were found in 32 rodents (13.2%): dual infections in 26 rodents (10.7%), triple infections in four rodents (2.9%), and quadruple infections in two rodents (0.8%). Our findings indicate that rodents in Croatia harbor a wide range of bacteria and viruses that are pathogenic to humans. PMID:26711522

  7. [Parasites of zoonotic importance in dog feces collected in parks and public squares of the city of Los Angeles, Bío-Bío, Chile].

    PubMed

    Luzio, Álvaro; Belmar, Pablo; Troncoso, Ignacio; Luzio, Patricia; Jara, Alexis; Fernández, Ítalo

    2015-08-01

    The contamination of public squares and parks with dog feces poses a risk to the population, since it may contain parasitic elements of zoonotic importance. To identify human pathogenic parasites in samples of dog feces collected from parks and public squares. 452 fecal dog samples collected from 65 squares and public parks were analyzed using the technique of Burrows. 60% (39/65) of the samples contained some parasitic forms with a zoonotic potential. Parasitic taxa with zoonotic risk were Toxocara sp., Ancylostoma sp., Dipylidium caninum, Giardia sp., Taenia sp., Toxascaris sp., Strongyloides sp., and Uncinaria sp. The detected parasites present a risk to human health, so it seems necessary to implement health education activities in the community, develop deworming plans, and control the canine overpopulation.

  8. Molecular detection of zoonotic tick-borne pathogens from ticks collected from ruminants in four South African provinces.

    PubMed

    Mtshali, Khethiwe; Khumalo, Zth; Nakao, Ryo; Grab, Dennis J; Sugimoto, Chihiro; Thekisoe, Omm

    2016-01-01

    Ticks carry and transmit a remarkable array of pathogens including bacteria, protozoa and viruses, which may be of veterinary and/or of medical significance. With little to no information regarding the presence of tick-borne zoonotic pathogens or their known vectors in southern Africa, the aim of our study was to screen for Anaplasma phagocytophilum, Borrelia burgdorferi, Coxiella burnetii, Rickettsia species and Ehrlichia ruminantium in ticks collected and identified from ruminants in the Eastern Cape, Free State, KwaZulu-Natal and Mpumalanga Provinces of South Africa. The most abundant tick species identified in this study were Rhipicephalus evertsi evertsi (40%), Rhipicephalus species (35%), Amblyomma hebraeum (10%) and Rhipicephalus decoloratus (14%). A total of 1634 ticks were collected. DNA was extracted, and samples were subjected to PCR amplification and sequencing. The overall infection rates of ticks with the target pathogens in the four Provinces were as follows: A. phagocytophilum, 7%; C. burnetii, 7%; E. ruminantium, 28%; and Rickettsia spp., 27%. The presence of B. burgdorferi could not be confirmed. The findings of this study show that zoonotic pathogens are present in ticks in the studied South African provinces. This information will aid in the epidemiology of tick-borne zoonotic diseases in the country as well as in raising awareness about such diseases in the veterinary, medical and tourism sectors, as they may be the most affected.

  9. Zoonotic Hepatitis E Virus: Classification, Animal Reservoirs and Transmission Routes

    PubMed Central

    Doceul, Virginie; Bagdassarian, Eugénie; Demange, Antonin; Pavio, Nicole

    2016-01-01

    During the past ten years, several new hepatitis E viruses (HEVs) have been identified in various animal species. In parallel, the number of reports of autochthonous hepatitis E in Western countries has increased as well, raising the question of what role these possible animal reservoirs play in human infections. The aim of this review is to present the recent discoveries of animal HEVs and their classification within the Hepeviridae family, their zoonotic and species barrier crossing potential, and possible use as models to study hepatitis E pathogenesis. Lastly, this review describes the transmission pathways identified from animal sources. PMID:27706110

  10. Avian-pathogenic Escherichia coli strains are similar to neonatal meningitis E. coli strains and are able to cause meningitis in the rat model of human disease.

    PubMed

    Tivendale, Kelly A; Logue, Catherine M; Kariyawasam, Subhashinie; Jordan, Dianna; Hussein, Ashraf; Li, Ganwu; Wannemuehler, Yvonne; Nolan, Lisa K

    2010-08-01

    Escherichia coli strains causing avian colibacillosis and human neonatal meningitis, urinary tract infections, and septicemia are collectively known as extraintestinal pathogenic E. coli (ExPEC). Characterization of ExPEC strains using various typing techniques has shown that they harbor many similarities, despite their isolation from different host species, leading to the hypothesis that ExPEC may have zoonotic potential. The present study examined a subset of ExPEC strains: neonatal meningitis E. coli (NMEC) strains and avian-pathogenic E. coli (APEC) strains belonging to the O18 serogroup. The study found that they were not easily differentiated on the basis of multilocus sequence typing, phylogenetic typing, or carriage of large virulence plasmids. Among the APEC strains examined, one strain was found to be an outlier, based on the results of these typing methods, and demonstrated reduced virulence in murine and avian pathogenicity models. Some of the APEC strains tested in a rat model of human neonatal meningitis were able to cause meningitis, demonstrating APEC's ability to cause disease in mammals, lending support to the hypothesis that APEC strains have zoonotic potential. In addition, some NMEC strains were able to cause avian colisepticemia, providing further support for this hypothesis. However, not all of the NMEC and APEC strains tested were able to cause disease in avian and murine hosts, despite the apparent similarities in their known virulence attributes. Thus, it appears that a subset of NMEC and APEC strains harbors zoonotic potential, while other strains do not, suggesting that unknown mechanisms underlie host specificity in some ExPEC strains.

  11. Protocol for developing a Database of Zoonotic disease Research in India (DoZooRI).

    PubMed

    Chatterjee, Pranab; Bhaumik, Soumyadeep; Chauhan, Abhimanyu Singh; Kakkar, Manish

    2017-12-10

    Zoonotic and emerging infectious diseases (EIDs) represent a public health threat that has been acknowledged only recently although they have been on the rise for the past several decades. On an average, every year since the Second World War, one pathogen has emerged or re-emerged on a global scale. Low/middle-income countries such as India bear a significant burden of zoonotic and EIDs. We propose that the creation of a database of published, peer-reviewed research will open up avenues for evidence-based policymaking for targeted prevention and control of zoonoses. A large-scale systematic mapping of the published peer-reviewed research conducted in India will be undertaken. All published research will be included in the database, without any prejudice for quality screening, to broaden the scope of included studies. Structured search strategies will be developed for priority zoonotic diseases (leptospirosis, rabies, anthrax, brucellosis, cysticercosis, salmonellosis, bovine tuberculosis, Japanese encephalitis and rickettsial infections), and multiple databases will be searched for studies conducted in India. The database will be managed and hosted on a cloud-based platform called Rayyan. Individual studies will be tagged based on key preidentified parameters (disease, study design, study type, location, randomisation status and interventions, host involvement and others, as applicable). The database will incorporate already published studies, obviating the need for additional ethical clearances. The database will be made available online, and in collaboration with multisectoral teams, domains of enquiries will be identified and subsequent research questions will be raised. The database will be queried for these and resulting evidence will be analysed and published in peer-reviewed journals. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise

  12. Zoonotic intestinal protozoan of the wild boars, Sus scrofa, in Persian Gulf's coastal area (Bushehr province), Southwestern Iran.

    PubMed

    Yaghoobi, Kambiz; Sarkari, Bahador; Mansouri, Majid; Motazedian, Mohammad Hossein

    2016-10-01

    Wild boars, Sus scrofa , are potential reservoirs of many zoonotic diseases, and there are a possibility of transmission of the zoonotic diseases from these animals to humans and also domestic animals. This study aimed to evaluate the protozoan contamination of wild boars in the Persian Gulf's coastal area (Bushehr Province), southwestern Iran. A total of 25 crossbred boars were collected during a course of vertebrate pest control in Bushehr province, in 2013. Samples were collected from the gastrointestinal tracts of each boar in 5% formalin, Bouin's solution, sodium acetate-acetic acid-formalin, and polyvinyl alcohol fixatives. Fixed stool smears examined by trichrome and Ziehl-Neelsen staining. Each of the 25 wild boars was infected with at least one of the intestinal protozoans. The rate of contamination with intestinal protozoan was 64% for Balantidium coli , 76% for Iodamoeba sp., 52% for Entamoeba polecki , 44% for Blastocystis sp. and 8% for Chilomastix sp. No intestinal coccidian was detected in studied boars when the stool samples were evaluated by Ziehl-Neelsen staining method. Findings of this study demonstrated that wild boars in the Persian Gulf coastal area are contaminated by many protozoans, including zoonotic protozoan, which poses a potential risk to locals as well as the domestic animals of the area.

  13. Infectious Agents Trigger Trophic Cascades.

    PubMed

    Buck, Julia C; Ripple, William J

    2017-09-01

    Most demonstrated trophic cascades originate with predators, but infectious agents can also cause top-down indirect effects in ecosystems. Here we synthesize the literature on trophic cascades initiated by infectious agents including parasitoids, pathogens, parasitic castrators, macroparasites, and trophically transmitted parasites. Like predators, infectious agents can cause density-mediated and trait-mediated indirect effects through their direct consumptive and nonconsumptive effects respectively. Unlike most predators, however, infectious agents are not fully and immediately lethal to their victims, so their consumptive effects can also trigger trait-mediated indirect effects. We find that the frequency of trophic cascades reported for different consumer types scales with consumer lethality. Furthermore, we emphasize the value of uniting predator-prey and parasite-host theory under a general consumer-resource framework. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Animal Husbandry Practices and Perceptions of Zoonotic Infectious Disease Risks Among Livestock Keepers in a Rural Parish of Quito, Ecuador.

    PubMed

    Lowenstein, Christopher; Waters, William F; Roess, Amira; Leibler, Jessica H; Graham, Jay P

    2016-12-07

    Small-scale livestock production plays an essential role as a source of income and nutrition for households in low- and middle-income countries, yet these practices can also increase risk of zoonotic infectious diseases, especially among young children. To mitigate this risk, there is a need to better understand how livestock producers perceive and manage risks of disease transmission. Twenty semistructured, in-depth interviews were conducted with small-scale livestock producers in a semirural parish of Quito, Ecuador. Interviews explored livestock-raising practices, including animal health-care practices and use of antimicrobials, family members' interactions with livestock and other animals, and perceptions of health risk associated with these practices and activities. Interviews were analyzed for common themes. Awareness of zoonotic disease transmission was widespread, yet few study participants considered raising livestock a significant health risk for themselves or their families. Several study households reported handling and consuming meat or poultry from sick or dead animals and using animal waste as a fertilizer on their crops. Households typically diagnosed and treated their sick animals, occasionally seeking treatment advice from employees of local animal feed stores where medications, including antimicrobials, are available over the counter. Despite a basic understanding of zoonotic disease risk, this study identified several factors, such as the handling and consumption of sick and dead animals and purchasing medications for sick animals over the counter, that potentially increase the risk of zoonotic disease transmission as well as the development and spread of antimicrobial resistance. © The American Society of Tropical Medicine and Hygiene.

  15. Pathogenic landscape of transboundary zoonotic diseases in the Mexico-U.S. border along the Rio Grande

    USDA-ARS?s Scientific Manuscript database

    Transboundary zoonotic diseases, several of which are vector borne, can maintain a dynamic focus and have pathogens circulating in geographic regions encircling multiple geopolitical boundaries. Global change is intensifying transboundary problems, including the spatial variation of the risk and inc...

  16. Prevalence of zoonotic Bartonella species among rodents and shrews in Thailand.

    PubMed

    Pangjai, Decha; Maruyama, Soichi; Boonmar, Sumalee; Kabeya, Hidenori; Sato, Shingo; Nimsuphan, Burin; Petkanchanapong, Wimol; Wootta, Wattanapong; Wangroongsarb, Piyada; Boonyareth, Maskiet; Preedakoon, Poom; Saisongkorh, Watcharee; Sawanpanyalert, Pathom

    2014-03-01

    We investigated the prevalence of Bartonella species in 10 rodent and one shrew species in Thailand. From February 2008 to May 2010, a total of 375 small animals were captured in 9 provinces in Thailand. Bartonella strains were isolated from 57 rodents (54 from Rattus species and 3 from Bandicota indica) and one shrew (Suncus murinus) in 7 of the 9 provinces, and identified to the species level. Sequence analysis of the citrate synthase and RNA polymerase β subunit genes identified the 58 isolates from each Bartonella-positive animal as B. tribocorum in 27 (46.6%) animals, B. rattimassiliensis in 17 (29.3%) animals, B. elizabethae in 10 (17.2%) animals and B. queenslandensis in 4 (6.9%) animals. R. norvegicus, R. rattus, and Suncus murinus carried B. elizabethae, which causes endocarditis in humans. The prevalence of Bartonella bacteremic animals by province was 42.9% of the animals collected in Phang Nga, 26.8% in Chiang Rai, 20.4% in Sa Kaeo, 16.7% in Nakhon Si Thammarat, 12.0% in Surat Thani, 9.1% in Mae Hong Son and Loei Provinces. These results indicate that Bartonella organisms are widely distributed in small mammals in Thailand and some animal species may serve as important reservoirs of zoonotic Bartonella species in the country. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  17. Coxiella burnetii and Rickettsia conorii: Two zoonotic pathogens in peridomestic rodents and their ectoparasites in Nigeria.

    PubMed

    Kamani, Joshua; Baneth, Gad; Gutiérrez, Ricardo; Nachum-Biala, Yaarit; Mumcuoglu, Kosta Y; Harrus, Shimon

    2018-01-01

    Rodents are hosts of numerous pathogenic agents of public health importance globally. Their ability to harbor these pathogens without showing overt clinical signs of disease has epidemiologic consequences. In some rural settings in Nigeria, humans and rodents do not only share feeds and abode, but the latter may end up on the table of the former as a source of protein, thereby increasing the risks of disease transmission. Molecular assays were used to detect and characterize two agents of zoonotic importance, Coxiella burnetii and Rickettsia spp. in 194 peridomestic rodents captured in a peri-urban setting in Nigeria, and 32 pools of ectoparasites removed from them, to determine their possible role in the epidemiology of these diseases in this country. Targeting and characterizing the insertion sequence IS1111, C. burnetii DNA was detected in 4 out of 194 (2.1%) rodents comprising 3 out of 121 (2.5%) Rattus norvegicus and 1 out of 48 (2.1%) Rattus rattus screened in this study. Rickettsia spp. DNA was detected in two Rhipicephalus sanginueus sensu lato pools (i.e. RT1 and RT4) using the citrate synthase (gltA) gene and further characterized by amplification and sequence analysis of six genes to determine their identity. The RT1 sample consistently gave 98-100% identity to Rickettsia conorii str. Malish 7 for the various genes and loci studied. However, the identity of RT4 could not be definitively determined due to variable identities to different Rickettsia spp. according to the gene or loci under consideration. Further isolation study to determine if the RT4 characterized is a new variant or a mixture of sequences of different rickettsiae within the pool will be worthwhile. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Intestinal parasites of owned dogs and cats from metropolitan and micropolitan areas: prevalence, zoonotic risks, and pet owner awareness in northern Italy.

    PubMed

    Zanzani, Sergio Aurelio; Gazzonis, Alessia Libera; Scarpa, Paola; Berrilli, Federica; Manfredi, Maria Teresa

    2014-01-01

    Intestinal parasites of dogs and cats are cosmopolitan pathogens with zoonotic potential for humans. Our investigation considered their diffusion in dogs and cats from northern Italy areas, specifically the metropolitan area of Milan and two micropolitan areas of neighboring provinces. It included the study of the level of awareness in pet owners of the zoonotic potential from these parasites. A total of 409 fresh fecal samples were collected from household dogs and cats for copromicroscopic analysis and detection of Giardia duodenalis coproantigens. The assemblages of Giardia were also identified. A questionnaire about intestinal parasites biology and zoonotic potential was submitted to 185 pet owners. The overall prevalence of intestinal parasites resulted higher in cats (47.37%-60.42%) and dogs (57.41%-43.02%) from micropolitan areas than that from the metropolis of Milan (dogs: P = 28.16%; cats: P = 32.58 %). The zoonotic parasites infecting pets under investigation were T. canis and T. cati, T. vulpis, Ancylostomatidae, and G. duodenalis assemblage A. Only 49.19% of pet owners showed to be aware of the risks for human health from canine and feline intestinal parasites. Parasitological results in pets and awareness determination in their owners clearly highlight how the role of veterinarians is important in indicating correct and widespread behaviors to reduce risks of infection for pets and humans in urban areas.

  19. [Soil contamination by eggs of soil-transmitted helminths with zoonotic potential in the town of Fernandópolis, State of São Paulo, Brazil, between 2007 and 2008].

    PubMed

    Cassenote, Alex Jones Flores; Pinto Neto, José Martins; Lima-Catelani, Alba Regina de Abreu; Ferreira, Antônio Walter

    2011-01-01

    The concentration of dogs and cats in urban areas, associated with an ever-increasing wandering population of these animals, has an important epidemiological role in the soil contamination of public spaces and the spread of infections of several types of parasites. This study aimed to determine the frequency of soil-transmitted helminths with zoonotic potential in public squares and municipal primary schools in Fernandópolis, State of São Paulo, Brazil, conducted between 2007 and 2008. All the squares (32) and schools (13) in the town were evaluated. Soil samples were tested using the Rugai method modified by Willis, Caldwell and Caldwell. A total of 225 soil samples were evaluated and 30.2% (68) were positive for helminths. In samples from public squares, 40% (64) contamination was observed; however, contamination in schools was only 6.1% (6). The parasites eggs identified were Toxocara spp. 79.3% (47), Trichuris spp. 13.8% (8) and Ancylostomatidae 6.9% (4). Variables related to the site, such as the number of dogs (OR 21.18, 10.81 - 41.51), fecal samples (OR 6.87, 3.51 - 13.47) and the use of fences (OR 0.1, 0.05 - 0.20), had an impact on soil contamination. In the contaminated samples, parasites with zoonotic potential were identified, including the etiologic agents of diseases like cutaneous and visceral larva migrans, a fact that poses a risk to health of the population that frequent such environments.

  20. [Sphingolipids, vehicle for pathogenic agents and cause of genetic diseases].

    PubMed

    Fasano, Caroline; Hiol, Abel; Miolan, Jean-Pierre; Niel, Jean-Pierre

    2006-04-01

    Sphingolipids are present in all eukaryotic cells and share a sphingoid base : sphingosine. They were first discovered in 1884 and for a long time they were thought to participate to membrane structure only. Recently it has been established that they are mainly located in particular areas of the membrane called rafts which are signalling platforms. It has also been demonstrated that sphingolipids are receptors and second messengers. They play a crucial role in cellular functioning and are necessary to maintenance and developing of living organisms. However due to their receptor properties, they are also gateway for penetration of pathogenic agents such as virus (Ebola, HIV) or toxins (botulinium, tetanus). These agents first bind to glycosphingolipids or proteins mainly located in rafts. The complex so formed is required for the crossing of the membrane by the pathogenic agent. Sphingolipids metabolism is regulated by numerous enzymes. A failure in the activity of one of them induces an accumulation of sphingolipids known as sphingolipidoses. These are genetic diseases having severe consequences for the survival of the organism. The precise mechanisms of the sphingolipidoses are still mainly unknown which explains why few therapeutic strategies are available. These particular properties of lipids rafts and sphingolipids explain why a growing number of studies in the medical and scientific fields are devoted to them.

  1. Unbiased whole-genome deep sequencing of human and porcine stool samples reveals circulation of multiple groups of rotaviruses and a putative zoonotic infection

    PubMed Central

    Phan, My V. T.; Anh, Pham Hong; Cuong, Nguyen Van; Munnink, Bas B. Oude; van der Hoek, Lia; My, Phuc Tran; Tri, Tue Ngo; Bryant, Juliet E.; Baker, Stephen; Thwaites, Guy; Woolhouse, Mark; Kellam, Paul; Rabaa, Maia A.

    2016-01-01

    Abstract Coordinated and synchronous surveillance for zoonotic viruses in both human clinical cases and animal reservoirs provides an opportunity to identify interspecies virus movement. Rotavirus (RV) is an important cause of viral gastroenteritis in humans and animals. In this study, we document the RV diversity within co-located humans and animals sampled from the Mekong delta region of Vietnam using a primer-independent, agnostic, deep sequencing approach. A total of 296 stool samples (146 from diarrhoeal human patients and 150 from pigs living in the same geographical region) were directly sequenced, generating the genomic sequences of sixty human rotaviruses (all group A) and thirty-one porcine rotaviruses (thirteen group A, seven group B, six group C, and five group H). Phylogenetic analyses showed the co-circulation of multiple distinct RV group A (RVA) genotypes/strains, many of which were divergent from the strain components of licensed RVA vaccines, as well as considerable virus diversity in pigs including full genomes of rotaviruses in groups B, C, and H, none of which have been previously reported in Vietnam. Furthermore, the detection of an atypical RVA genotype constellation (G4-P[6]-I1-R1-C1-M1-A8-N1-T7-E1-H1) in a human patient and a pig from the same region provides some evidence for a zoonotic event. PMID:28748110

  2. Adaptive Radiation within Marine Anisakid Nematodes: A Zoogeographical Modeling of Cosmopolitan, Zoonotic Parasites

    PubMed Central

    Kuhn, Thomas; García-Màrquez, Jaime; Klimpel, Sven

    2011-01-01

    Parasites of the nematode genus Anisakis are associated with aquatic organisms. They can be found in a variety of marine hosts including whales, crustaceans, fish and cephalopods and are known to be the cause of the zoonotic disease anisakiasis, a painful inflammation of the gastro-intestinal tract caused by the accidental consumptions of infectious larvae raw or semi-raw fishery products. Since the demand on fish as dietary protein source and the export rates of seafood products in general is rapidly increasing worldwide, the knowledge about the distribution of potential foodborne human pathogens in seafood is of major significance for human health. Studies have provided evidence that a few Anisakis species can cause clinical symptoms in humans. The aim of our study was to interpolate the species range for every described Anisakis species on the basis of the existing occurrence data. We used sequence data of 373 Anisakis larvae from 30 different hosts worldwide and previously published molecular data (n = 584) from 53 field-specific publications to model the species range of Anisakis spp., using a interpolation method that combines aspects of the alpha hull interpolation algorithm as well as the conditional interpolation approach. The results of our approach strongly indicate the existence of species-specific distribution patterns of Anisakis spp. within different climate zones and oceans that are in principle congruent with those of their respective final hosts. Our results support preceding studies that propose anisakid nematodes as useful biological indicators for their final host distribution and abundance as they closely follow the trophic relationships among their successive hosts. The modeling might although be helpful for predicting the likelihood of infection in order to reduce the risk of anisakiasis cases in a given area. PMID:22180787

  3. Acute abdomen caused by brucellar hepatic abscess.

    PubMed

    Ibis, Cem; Sezer, Atakan; Batman, Ali K; Baydar, Serkan; Eker, Alper; Unlu, Ercument; Kuloglu, Figen; Cakir, Bilge; Coskun, Irfan

    2007-10-01

    Brucellosis is a zoonotic infection that is transmitted from animals to humans by ingestion of infected food products, direct contact with an infected animal, or aerosol inhalation. The disease is endemic in many countries, including the Mediterranean basin, the Middle East, India, Mexico, Central and South America and, central and southwest Asia. Human brucellosis is a systemic infection with a wide clinical spectrum. Although hepatic involvement is very common during the course of chronic brucellosis, hepatic abscess is a very rare complication of Brucella infection. We present a case of hepatic abscess caused by Brucella, which resembled the clinical presentation of surgical acute abdomen.

  4. A filterable lytic agent obtained from a red tide bloom that caused lysis of Karenia brevis (Gymnodinum breve) cultures

    USGS Publications Warehouse

    2002-01-01

    A filterable lytic agent (FLA) was obtained from seawater in the southeastern Gulf of Mexico during a red tide bloom that caused lysis of Karenia brevis (formerly Gymnodinium breve) Piney Island. This agent was obtained from <0.2µ  filtrates that were concentrated by ultrafiltration using a 100 kDa filter. The FLA was propagated by passage on K. brevis cultures, and the filtered supernatants of such cultures resulted in K. brevis lysis when added to such cultures. The lytic activity was lost upon heating to 65°C or by 0.02 µm filtration. Epifluorescence and transmission electron microscopy (TEM) of supernatants of K. brevis cultures treated with the lytic agent indicated a high abundance of viral particles (4 × 109 to 7 × 109 virus-like particles [VLPs] ml–1) compared to control cultures (~107 ml–1). However, viral particles were seldom found in TEM photomicrograph thin sections of lysing K. brevis cells. Although a virus specific for K. brevis may have been the FLA, other explanations such as filterable bacteria or bacteriophages specific for bacteria associated with the K. brevis cultures cannot be discounted.

  5. Zoonotic potential of emerging paramyxoviruses: knowns and unknowns

    PubMed Central

    Thibault, Patricia A; Watkinson, Ruth E; Moreira-Soto, Andres; Drexler, Jan Felix; Lee, Benhur

    2017-01-01

    The risk of spillover of enzootic paramyxoviruses, and the susceptibility of recipient human and domestic animal populations, are defined by a broad collection of ecological and molecular factors that interact in ways that are not yet fully understood. Nipah and Hendra viruses were the first highly-lethal zoonotic paramyxoviruses discovered in modern times, but other paramyxoviruses from multiple genera are present in bats and other reservoirs that have unknown potential to spill over into humans. We outline our current understanding of paramyxovirus reservoir hosts and the ecological factors that may drive spillover, and we explore the molecular barriers to spillover that emergent paramyxoviruses may encounter. By outlining what is known about enzootic paramyxovirus receptor usage, mechanisms of innate immune evasion, and other host-specific interactions, we highlight the breadth of unexplored avenues that may be important in understanding paramyxovirus emergence. PMID:28433050

  6. High Reinfection Rate after Preventive Chemotherapy for Fishborne Zoonotic Trematodes in Vietnam

    PubMed Central

    Lier, Tore; Do, Dung Trung; Johansen, Maria Vang; Nguyen, Thi Hop; Dalsgaard, Anders; Asfeldt, Anne Mette

    2014-01-01

    Background The World Health Organization aims for complete morbidity control of fishborne zoonotic trematodes (FZT) in endemic areas by 2020. The main intervention tool for achieving this goal is regular use of preventive chemotherapy by offering praziquantel to those at risk in endemic areas. The purpose of this study was to investigate the effectiveness of preventive chemotherapy to control FZT in an endemic area in Northern Vietnam. Methodology and principle findings We followed a cohort of 396 people who fulfilled the criteria for receiving preventive chemotherapy. Stool samples were examined by Kato-Katz technique for the presence of trematode eggs before, and two, 16, 29 and 60 weeks after preventive chemotherapy. The prevalence of trematode eggs in stool was 40.2% before, 2.3% two weeks after and increased to a cumulative prevalence of 29.8% sixty weeks after preventive chemotherapy. Conclusions The effectiveness of preventive chemotherapy as a main component in control of FZT is not well documented in most endemic areas. We found a high reinfection rate within the first year after preventive chemotherapy. Since these trematodes are zoonoses, preventive chemotherapy may not have sufficient impact alone on the transmission to have a lasting effect on the prevalence. Animal reservoirs and farm management practices must be targeted to achieve sustainable control of fishborne zoonotic trematode infections, hence control programs should consider a One Health approach. PMID:24945411

  7. A real-time PCR tool for the surveillance of zoonotic Onchocerca lupi in dogs, cats and potential vectors.

    PubMed

    Latrofa, Maria Stefania; Annoscia, Giada; Colella, Vito; Cavalera, Maria Alfonsa; Maia, Carla; Martin, Coralie; Šlapeta, Jan; Otranto, Domenico

    2018-04-01

    The ocular onchocercosis is caused by the zoonotic parasite Onchocerca lupi (Spirurida: Onchocercidae). A major hindrance to scientific progress is the absence of a reliable diagnostic test in affected individuals. Microscopic examination of skin snip sediments and the identification of adults embedded in ocular nodules are seldom performed and labour-intensive. A quantitative real-time PCR (qPCR) assay was herein standardized for the detection of O. lupi DNA and the results compared with microscopic examination and conventional PCR (cPCR). The specificity of qPCR and cPCR was assessed by processing the most common filarial nematodes infecting dogs, skin samples from O. lupi infected (n = 35 dogs) or uninfected animals (n = 21 dogs; n = 152 cats) and specimens of potential insect vector (n = 93 blackflies; n = 59 mosquitoes/midges). The analytical sensitivity of both assays was assessed using 10-fold serial dilutions of DNA from adult specimen and from a pool of microfilariae. The qPCR on skin samples revealed an analytical specificity of 100% and a sensitivity up to 8 x 10-1 fg/2μl O. lupi adult-DNA and up to 3.6 x 10-1 pg/2μl of mfs-DNA (corresponding to 1 x 10-2 mfs/2μl). Only 9.5% O. lupi-infected skin samples were positive for cPCR with a sensitivity of 8 x 10-1 pg/2μl of DNA. Out of 152 blackflies and mosquitoes/midges, eight specimens experimentally infected (n = 1 S. erythrocephalum; n = 1 S. ornatum; n = 6 Simulium sp.) were positive by qPCR. The qPCR assay herein standardized represents an important step forward in the diagnosis of zoonotic onchocercosis caused by O. lupi, especially for the detection and quantification of low number of mfs. This assay provides a fundamental contribution for the establishment of surveillance strategies aiming at assessing the presence of O. lupi in carnivores and in insect species acting as potential intermediate hosts. The O. lupi qPCR assay will enable disease progress monitoring as well as the diagnosis of

  8. Sunscreening Agents

    PubMed Central

    Martis, Jacintha; Shobha, V; Sham Shinde, Rutuja; Bangera, Sudhakar; Krishnankutty, Binny; Bellary, Shantala; Varughese, Sunoj; Rao, Prabhakar; Naveen Kumar, B.R.

    2013-01-01

    The increasing incidence of skin cancers and photodamaging effects caused by ultraviolet radiation has increased the use of sunscreening agents, which have shown beneficial effects in reducing the symptoms and reoccurrence of these problems. Many sunscreen compounds are in use, but their safety and efficacy are still in question. Efficacy is measured through indices, such as sun protection factor, persistent pigment darkening protection factor, and COLIPA guidelines. The United States Food and Drug Administration and European Union have incorporated changes in their guidelines to help consumers select products based on their sun protection factor and protection against ultraviolet radiation, whereas the Indian regulatory agency has not yet issued any special guidance on sunscreening agents, as they are classified under cosmetics. In this article, the authors discuss the pharmacological actions of sunscreening agents as well as the available formulations, their benefits, possible health hazards, safety, challenges, and proper application technique. New technologies and scope for the development of sunscreening agents are also discussed as well as the role of the physician in patient education about the use of these agents. PMID:23320122

  9. High prevalence of Enterocytozoon bieneusi zoonotic genotype D in captive golden snub-nosed monkey (Rhinopithecus roxellanae) in zoos in China.

    PubMed

    Yu, Fuchang; Wu, Yayun; Li, Tongyi; Cao, Jianke; Wang, Jiantang; Hu, Suhui; Zhu, Huili; Zhang, Sumei; Wang, Rongjun; Ning, Changshen; Zhang, Longxian

    2017-06-05

    Enterocytozoon bieneusi is the dominant specie of microsporidia which can infect both anthroponotic and zoonotic species. The golden snub-nosed monkey is an endangered primate which can also infect by E. bieneusi. To date, few genetic data on E. bieneusi from golden snub-nosed monkeys has been published. Therefore, to clarify the prevalence and genotypes of E. bieneusi in captive golden snub-nosed monkeys is necessary to assess the potential for zoonotic transmission. We examined 160 golden snub-nosed monkeys from six zoos in four cities in China, using PCR and comparative sequence analysis of the ribosomal internal transcribed spacer (ITS). The overall prevalence of E. bieneusi was 46.2% (74/160); while the prevalence was 26.7%, 69.1%, 69.4% and 33.3% in Shanghai Zoo, Shanghai Wild Animal Park, Tongling Zoo, and Taiyuan Zoo respectively (P = 0.006). A total of seven E. bieneusi genotypes were found that included four known (D, J, CHG1, and CHG14) and three new (CM19-CM 21) genotypes. The most common genotype was D (54/74, 73.0%), followed by J (14/74, 18.9%); other genotypes were restricted to one or two samples. Phylogenetic analysis revealed that genotype D belonged to the previously-characterized Group 1, with zoonotic potential; whereas genotypes J, CHG1, CHG14 and CM19-CM 21 clustered in the previously-characterized Group 2, the so-called cattle host specificity group. The findings of high prevalence of zoonotic E. bieneusi genotypes D and J in golden snub-nosed monkeys suggest that golden snub-nosed monkeys may be the reservoir hosts for human microsporidiosis, and vice versa.

  10. Investigation for zoonotic disease pathogens (Aeromonas hydrophila, Pseudomonas fluorescens, Streptococcus iniae) seen in carp farms in Duhok region of Northern Iraq by molecular methods

    NASA Astrophysics Data System (ADS)

    Mohammed, Kamiran Abdulrahman; Arabacı, Muhammed; Önalan, Şükrü

    2017-04-01

    The aim of this study was to determine the zoonotic bacteria in carp farms in Duhok region of the Northern Iraq. Carp is the main fish species cultured in the Duhok region. The most common zoonotic bacteria generally seen in carp farms are Aeromonas hydrophila, Pseudomonas fluorescens and Streptococcus iniae. Samples were collected from 20 carp farms in the Duhok Region of the Northern Iraq. Six carp samples were collected from each carp farm. Head kidney tissue samples and intestine tissue samples were collected from each carp sample. Than head kidney and intestine tissue samples were pooled. The total bacterial DNA extraction from the pooled each 20 head kidney tissue samples and pooled each 20 intestinal tissue samples. Primers for pathogens were originally designed from 16S Ribosomal gene region. Zoonotic bacteria were scanned in all tissue samples by absent / present analysis in the RT-PCR. After RT-PCR, Capillary gel electrophoresis bands were used for the confirmation of the size of amplicon which was planned during primer designing stage. As a result, one sample was positive in respect to Aeromonas hydrophila, from intestine and one carp farm was positive in respect to Pseudomonas fluorescens from intestine and two carp farms were positive in respect to Streptococcus iniae. Totally 17 of 20 carp farms were negative in respect to the zoonotic bacteria. In conclusion the zoonotic bacteria were very low (15 %) in carp farms from the Duhok Region in the Northern Iraq. Only in one Carp farms, both Aeromonas hydrophila and Pseudomonas fluorescens were positive. Also Streptococcus inia were positive in two carp farms.

  11. Investigation of zoonotic disease pathogens (Aeromonas hydrophila, Pseudomonas fluorescens, Streptococcus iniae) seen in carp farms in the Northern Iraq-Erbil region by molecular methods

    NASA Astrophysics Data System (ADS)

    Ibraheem, Azad Saber; Önalan, Şükrü; Arabacı, Muhammed

    2017-04-01

    The aim of this study was to determine the zoonotic bacteria in carp farms in the Northern Iraq-Erbil region. Carp is the main fish species cultured in Erbil region. The most common zoonotic bacteria generally seen in carp farms are Aeromonas hydrophila, Pseudomonas fluorescens and Streptococcus iniae. Samples were collected from 25 carp farms in the Northern Iraq-Erbil region. Six carp samples were collected from each carp farm. Head kidney and intestine tissue samples were collected from each carp sample. Then head kidney and intestine tissue samples were pooled separately from each carp farm. Total bacterial DNA had been extracted from the 25 pooled head kidney and 25 intestinal tissue samples. The pathogen Primers were originally designed from 16S RNA gene region. Zoonotic bacteria were scanned in all tissue samples with absent/present analysis by RT-PCR. Furthermore, the capillary gel electrophoresis bands were used for confirmation of amplicon size which was planned during primer designing stage. As a result, thirteen carp farms were positive in the respect to Aeromonas hydrophila, eight carp farms were positive from head kidney and six carp farms were positive from the intestine, only one carp farm was positive from both head kidney and the intestine tissue samples. In the respect to Streptococcus iniae, four carp farms were positive from head kidney and two carp farms were positive from the intestine. Only one carp farm was positive in the respect to Pseudomonas fluorescens from the intestine. Totally, 9 of 25 carp farms were cleared (negative) the zoonotic bacteria. In conclusion, the zoonotic bacteria were high (64 %) in carp farms in the Northern Iraq-Erbil region.

  12. Emerging and exotic zoonotic disease preparedness and response in the United States - coordination of the animal health component.

    PubMed

    Levings, Randall L

    2012-09-01

    For the response to a zoonotic disease outbreak to be effective, animal health authorities and disease specialists must be involved. Animal health measures are commonly directed at known diseases that threaten the health of animals and impact owners. The measures have long been applied to zoonotic diseases, including tuberculosis and brucellosis, and can be applied to emerging diseases. One Health (veterinary, public, wildlife and environmental health) and all-hazards preparedness work have done much to aid interdisciplinary understanding and planning for zoonotic diseases, although further improvements are needed. Actions along the prevention, preparedness, response and recovery continuum should be considered. Prevention of outbreaks consists largely of import controls on animals and animal products and biosecurity. Preparedness includes situational awareness, research, tool acquisition, modelling, training and exercises, animal movement traceability and policy development. Response would include detection systems and specialized personnel, institutions, authorities, strategies, methods and tools, including movement control, depopulation and vaccination if available and appropriate. The specialized elements would be applied within a general (nationally standardized) system of response. Recovery steps begin with continuity of business measures during the response and are intended to restore pre-event conditions. The surveillance for novel influenza A viruses in swine and humans and the preparedness for and response to the recent influenza pandemic illustrate the cooperation possible between the animal and public health communities. © 2012 Blackwell Verlag GmbH.

  13. Occurrence of selected zoonotic food-borne parasites and first molecular identification of Alaria alata in wild boars (Sus scrofa) in Italy.

    PubMed

    Gazzonis, Alessia Libera; Villa, Luca; Riehn, Katharina; Hamedy, Ahmad; Minazzi, Stefano; Olivieri, Emanuela; Zanzani, Sergio Aurelio; Manfredi, Maria Teresa

    2018-05-11

    Wild boar is a source of human infections with zoonotic pathogens, including food-borne parasites. With the aim of a characterization of the human exposure risk, a survey on wild boars intended for human consumption was planned, selecting three pathogens, Toxoplasma gondii, Alaria alata, and Trichinella spp., as markers of meat infection. Diaphragm muscle samples from 100 wild boars hunted in Piedmont region (Northern Italy) in two hunting seasons (2015-2016) were collected. Concerning T. gondii, a combined approach of antibody detection and molecular techniques with genotyping was performed. For the detection of A. alata and Trichinella spp., the larva migration technique and the magnetic stirrer method were employed, respectively; in addition, molecular confirmation of the morphological identification of the recovered specimen was performed. Anti-T. gondii antibodies were found in meat juice samples (43.3%) and T. gondii DNA (type II) was detected in three animals (7.1%) out of 42 seropositive examined. In none of the sampled wild boars (0%), Trichinella spp. larvae were found, whereas one animal (1%) scored positive to A. alata mesocercariae. The molecular diagnosis proved the morphological identification of the trematode. This is the first finding of A. alata in Italian wild boar population. The present study confirmed the role of wild boars as a source of parasitic zoonotic diseases and thus the risk derived for humans posed by the consumption of game meat. Considering the zoonotic implications, the results underline the importance of monitoring and surveillance of zoonotic parasites in Italian wild boar populations.

  14. Views from many worlds: unsettling categories in interdisciplinary research on endemic zoonotic diseases

    PubMed Central

    Waldman, Linda

    2017-01-01

    Interdisciplinary research on zoonotic disease has tended to focus on ‘risk’ of disease transmission as a conceptual common denominator. With reference to endemic zoonoses at the livestock–human interface, we argue for considering a broader sweep of disciplinary insights from anthropology and other social sciences in interdisciplinary dialogue, in particular cross-cultural perspectives on human–animal engagement. We consider diverse worldviews where human–animal encounters are perceived of in terms of the kinds of social relations they generate, and the notion of culture is extended to the ‘natural’ world. This has implications for how animals are valued, treated and prioritized. Thinking differently with and about animals and about species' boundaries could enable ways of addressing zoonotic diseases which have closer integration with people's own cultural norms. If we can bring this kind of knowledge into One Health debates, we find ourselves with a multiplicity of worldviews, where bounded categories such as human:animal and nature:culture cannot be assumed. This might in turn influence our scientific ways of seeing our own disciplinary cultures, and generate novel ways of understanding zoonoses and constructing solutions. This article is part of the themed issue ‘One Health for a changing world: zoonoses, ecosystems and human well-being’. PMID:28584178

  15. Sugammadex, a Neuromuscular Blockade Reversal Agent, Causes Neuronal Apoptosis in Primary Cultures

    PubMed Central

    Palanca, José M.; Aguirre-Rueda, Diana; Granell, Manuel V.; Aldasoro, Martin; Garcia, Alma; Iradi, Antonio; Obrador, Elena; Mauricio, Maria Dolores; Vila, Jose; Gil-Bisquert, Anna; Valles, Soraya L.

    2013-01-01

    Sugammadex, a γ-cyclodextrin that encapsulates selectively steroidal neuromuscular blocking agents, such as rocuronium or vecuronium, has changed the face of clinical neuromuscular pharmacology. Sugammadex allows a rapid reversal of muscle paralysis. Sugammadex appears to be safe and well tolerated. Its blood-brain barrier penetration is poor (< 3% in rats), and thus no relevant central nervous toxicity is expected. However the blood brain barrier permeability can be altered under different conditions (i.e. neurodegenerative diseases, trauma, ischemia, infections, or immature nervous system). Using MTT, confocal microscopy, caspase-3 activity, cholesterol quantification and Western-blot we determine toxicity of Sugammadex in neurons in primary culture. Here we show that clinically relevant sugammadex concentrations cause apoptotic/necrosis neuron death in primary cultures. Studies on the underlying mechanism revealed that sugammadex-induced activation of mitochondria-dependent apoptosis associates with depletion of neuronal cholesterol levels. Furthermore SUG increase CytC, AIF, Smac/Diablo and CASP-3 protein expression in cells in culture. Potential association of SUG-induced alteration in cholesterol homeostasis with oxidative stress and apoptosis activation occurs. Furthermore, resistance/sensitivity to oxidative stress differs between neuronal cell types. PMID:23983586

  16. Organometallic compounds in the discovery of new agents against kinetoplastid-caused diseases.

    PubMed

    Ravera, Mauro; Moreno-Viguri, Elsa; Paucar, Rocio; Pérez-Silanes, Silvia; Gabano, Elisabetta

    2018-06-01

    The development of safe and affordable antiparasitic agents effective against neglected tropical diseases is a big challenge of the drug discovery. The drugs currently employed have limitations such as poor efficacy, drug resistance or side effects. Thus, the search for new promising drugs is more and more crucial. Metal complexes and, in particular, organometallic compounds may expand the list of the drug candidates due to the peculiar attributes that the presence of the metal core add to the organic fragment (e.g., redox and structural features, ability to interact with DNA or protein targets, etc.). To date, most organometallic compounds tested as anti-neglected tropical diseases are based on similarities or activity of the organic ligands against other diseases or parasites and/or consist in modification of existing drugs combining the features of the metal moiety and the organic ligands. This review focuses on recent studies (2012-2017) on organometallic compounds in treating kinetoplastid-caused diseases such as Human African trypanosomiasis, Chagas disease and leishmaniasis. This field of research, however, still lacks exhaustive studies to identify of parasitic targets and quantitative structure-activity relationships for a rational drug design. Copyright © 2018. Published by Elsevier Masson SAS.

  17. Pacific Broad Tapeworm Adenocephalus pacificus as a Causative Agent of Globally Reemerging Diphyllobothriosis

    PubMed Central

    Serrano-Martínez, Marcus Enrique; Scholz, Tomas

    2015-01-01

    The Pacific broad tapeworm Adenocephalus pacificus (syn. Diphyllobothrium pacificum) is the causative agent of the third most common fish-borne cestodosis among humans. Although most of the nearly 1,000 cases among humans have been reported in South America (Peru, Chile, and Ecuador), cases recently imported to Europe demonstrate the potential for spread of this tapeworm throughout the world as a result of global trade of fresh or chilled marine fish and travel or migration of humans. We provide a comprehensive survey of human cases of infection with this zoonotic parasite, summarize the history of this re-emerging disease, and identify marine fish species that may serve as a source of human infection when eaten raw or undercooked. PMID:26402440

  18. Strict tropism for CD71+/CD234+ human reticulocytes limits the zoonotic potential of Plasmodium cynomolgi

    PubMed Central

    Kosaisavee, Varakorn; Suwanarusk, Rossarin; Chua, Adeline C. Y.; Kyle, Dennis E.; Malleret, Benoit; Zhang, Rou; Imwong, Mallika; Imerbsin, Rawiwan; Ubalee, Ratawan; Sámano-Sánchez, Hugo; Yeung, Bryan K. S.; Ong, Jessica J. Y.; Lombardini, Eric; Nosten, François; Tan, Kevin S. W.; Bifani, Pablo; Snounou, Georges; Rénia, Laurent

    2017-01-01

    Two malaria parasites of Southeast Asian macaques, Plasmodium knowlesi and P cynomolgi, can infect humans experimentally. In Malaysia, where both species are common, zoonotic knowlesi malaria has recently become dominant, and cases are recorded throughout the region. By contrast, to date, only a single case of naturally acquired P cynomolgi has been found in humans. In this study, we show that whereas P cynomolgi merozoites invade monkey red blood cells indiscriminately in vitro, in humans, they are restricted to reticulocytes expressing both transferrin receptor 1 (Trf1 or CD71) and the Duffy antigen/chemokine receptor (DARC or CD234). This likely contributes to the paucity of detectable zoonotic cynomolgi malaria. We further describe postinvasion morphologic and rheologic alterations in P cynomolgi–infected human reticulocytes that are strikingly similar to those observed for P vivax. These observations stress the value of P cynomolgi as a model in the development of blood stage vaccines against vivax malaria. PMID:28698207

  19. Food-borne pathogens of animal origin-diagnosis, prevention, control and their zoonotic significance: a review.

    PubMed

    Dhama, K; Rajagunalan, S; Chakraborty, S; Verma, A K; Kumar, A; Tiwari, R; Kapoor, S

    2013-10-15

    The term food borne diseases or food-borne illnesses or more commonly food poisoning are used to denote gastrointestinal complications that occur following recent consumption of a particular food or drink. Millions of people suffer worldwide every year and the situation is quiet grave in developing nations creating social and economic strain. The food borne pathogens include various bacteria viz., Salmonella, Campylobacter, Escherichia coli, Listeria monocytogenes, Yersinia enterocolitica, Staphylococcus, Arcobacter, Clostridium perfringens, Cl. botulinum and Bacillus cereus and helminths viz., Taenia. They also include protozoa viz., Trichinella, Sarcocystis, Toxoplasma gondii and Cryptosporidium parvum. The zoonotic potential and the ability to elaborate toxins by many of the microbes causing fatal intoxication are sufficient to understand the seriousness of the situation. The viral agents being host specific their transmission to humans through food of animal origin is not yet confirmed although these animal viruses are similar to that of viruses infecting human. Food-borne bacteria; protozoa and helminthes have complex distribution pattern in the environment and inside the host system. This along with complexity of the maintenance chain and life cycle (of parasites) has made it difficult for epidemiologist and diagnostician to undertake any immediate safety measures against them. Serological and molecular diagnostic tests viz. ELISA, Latex agglutination test, Lateral flow assays, Immunomagnetic separation assays, molecular assays viz. Polymerase Chain Reaction (PCR), multiplex PCR, immuno-PCR, Realtime PCR, Random Amplified Polymorphic DNA (RAPD)-PCR, DNA microarrays and probes are widely used. Along with these LAMP assays, Capillary Electrophoresis-Single Strand Confirmation polymorphism (CE-SSCP); Flow cytometry, FISH, Biosensors, Direct epifluorescent filter technique, nanotechnology based methods and sophisticated tools (ultrasonography, magnetic resonance

  20. Early animal farming and zoonotic disease dynamics: modelling brucellosis transmission in Neolithic goat populations.

    PubMed

    Fournié, Guillaume; Pfeiffer, Dirk U; Bendrey, Robin

    2017-02-01

    Zoonotic pathogens are frequently hypothesized as emerging with the origins of farming, but evidence of this is elusive in the archaeological records. To explore the potential impact of animal domestication on zoonotic disease dynamics and human infection risk, we developed a model simulating the transmission of Brucella melitensis within early domestic goat populations. The model was informed by archaeological data describing goat populations in Neolithic settlements in the Fertile Crescent, and used to assess the potential of these populations to sustain the circulation of Brucella . Results show that the pathogen could have been sustained even at low levels of transmission within these domestic goat populations. This resulted from the creation of dense populations and major changes in demographic characteristics. The selective harvesting of young male goats, likely aimed at improving the efficiency of food production, modified the age and sex structure of these populations, increasing the transmission potential of the pathogen within these populations. Probable interactions between Neolithic settlements would have further promoted pathogen maintenance. By fostering conditions suitable for allowing domestic goats to become reservoirs of Brucella melitensis , the early stages of agricultural development were likely to promote the exposure of humans to this pathogen.

  1. Early animal farming and zoonotic disease dynamics: modelling brucellosis transmission in Neolithic goat populations

    PubMed Central

    Pfeiffer, Dirk U.; Bendrey, Robin

    2017-01-01

    Zoonotic pathogens are frequently hypothesized as emerging with the origins of farming, but evidence of this is elusive in the archaeological records. To explore the potential impact of animal domestication on zoonotic disease dynamics and human infection risk, we developed a model simulating the transmission of Brucella melitensis within early domestic goat populations. The model was informed by archaeological data describing goat populations in Neolithic settlements in the Fertile Crescent, and used to assess the potential of these populations to sustain the circulation of Brucella. Results show that the pathogen could have been sustained even at low levels of transmission within these domestic goat populations. This resulted from the creation of dense populations and major changes in demographic characteristics. The selective harvesting of young male goats, likely aimed at improving the efficiency of food production, modified the age and sex structure of these populations, increasing the transmission potential of the pathogen within these populations. Probable interactions between Neolithic settlements would have further promoted pathogen maintenance. By fostering conditions suitable for allowing domestic goats to become reservoirs of Brucella melitensis, the early stages of agricultural development were likely to promote the exposure of humans to this pathogen. PMID:28386446

  2. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis

    PubMed Central

    2012-01-01

    urinalis) is cause for concern, as it highlights the possibility for continued acquisition of human virulence factors for this emerging zoonotic pathogen. PMID:23244770

  3. Immunology of Bats and Their Viruses: Challenges and Opportunities

    PubMed Central

    Schountz, Tony

    2014-01-01

    Bats are reservoir hosts of several high-impact viruses that cause significant human diseases, including Nipah virus, Marburg virus and rabies virus. They also harbor many other viruses that are thought to have caused disease in humans after spillover into intermediate hosts, including SARS and MERS coronaviruses. As is usual with reservoir hosts, these viruses apparently cause little or no pathology in bats. Despite the importance of bats as reservoir hosts of zoonotic and potentially zoonotic agents, virtually nothing is known about the host/virus relationships; principally because few colonies of bats are available for experimental infections, a lack of reagents, methods and expertise for studying bat antiviral responses and immunology, and the difficulty of conducting meaningful field work. These challenges can be addressed, in part, with new technologies that are species-independent that can provide insight into the interactions of bats and viruses, which should clarify how the viruses persist in nature, and what risk factors might facilitate transmission to humans and livestock. PMID:25494448

  4. Immunology of bats and their viruses: challenges and opportunities.

    PubMed

    Schountz, Tony

    2014-12-01

    Bats are reservoir hosts of several high-impact viruses that cause significant human diseases, including Nipah virus, Marburg virus and rabies virus. They also harbor many other viruses that are thought to have caused disease in humans after spillover into intermediate hosts, including SARS and MERS coronaviruses. As is usual with reservoir hosts, these viruses apparently cause little or no pathology in bats. Despite the importance of bats as reservoir hosts of zoonotic and potentially zoonotic agents, virtually nothing is known about the host/virus relationships; principally because few colonies of bats are available for experimental infections, a lack of reagents, methods and expertise for studying bat antiviral responses and immunology, and the difficulty of conducting meaningful field work. These challenges can be addressed, in part, with new technologies that are species-independent that can provide insight into the interactions of bats and viruses, which should clarify how the viruses persist in nature, and what risk factors might facilitate transmission to humans and livestock.

  5. The zoonotic potential of Giardia intestinalis assemblage E in rural settings.

    PubMed

    Abdel-Moein, Khaled A; Saeed, Hossam

    2016-08-01

    Giardiasis is a globally re-emerging protozoan disease with veterinary and public health implications. The current study was carried out to investigate the zoonotic potential of livestock-specific assemblage E in rural settings. For this purpose, a total of 40 microscopically positive Giardia stool samples from children with gastrointestinal complaints with or without diarrhea were enrolled in the study as well as fecal samples from 46 diarrheic cattle (18 dairy cows and 28 calves). Animal samples were examined by sedimentation method to identify Giardia spp., and then, all Giardia positive samples from human and animals were processed for molecular detection of livestock-specific assemblage E through amplification of assemblage-specific triosephosphate isomerase (tpi) gene using nested polymerase chain reaction (PCR). The results of the study revealed high unexpected occurrence of assemblage E among human samples (62.5 %), whereas the distribution among patients with diarrhea and those without was 42.1 and 81 %, respectively. On the other hand, the prevalence of Giardia spp. among diarrheic dairy cattle was (8.7 %), while only calves yielded positive results (14.3 %) and all bovine Giardia spp. were genetically classified as Giardia intestinalis assemblage E. Moreover, DNA sequencing of randomly selected one positive human sample and another bovine one revealed 100 and 99 % identity with assemblage E tpi gene sequences available at GenBank after BLAST analysis. In conclusion, the current study highlights the wide dissemination of livestock-specific assemblage E among humans in rural areas, and thus, zoonotic transmission cycle should not be discounted during the control of giardiasis in such settings.

  6. The zoonotic potential of Mycobacterium avium spp. paratuberculosis: a systematic review.

    PubMed

    Waddell, Lisa A; Rajić, Andrijana; Sargeant, Jan; Harris, Janet; Amezcua, Rocio; Downey, Lindsay; Read, Susan; McEwen, Scott A

    2008-01-01

    The zoonotic potential of Mycobacterium avium ssp. paratuberculosis (MAP) has been debated for almost a century because of similarities between Johne's Disease (JD) in cattle and Crohn's disease (CD) in humans. Our objective was to evaluate scientific literature investigating the potential association between these two diseases (MAP and CD) and the presence of MAP in retail milk or dairy products using a qualitative systematic review. The search strategy included 19 bibliographic databases, 8 conference proceedings, reference lists of 15 articles and contacting 28 topic-related scientists. Two independent reviewers performed relevance screening, quality assessment and data extraction stages of the review. Seventy-five articles were included. Among 60 case-control studies that investigated the association between MAP and CD, 37 were of acceptable quality. Twenty-three studies reported significant positive associations, 23 reported non-significant associations, and 14 did not detect MAP in any sample. Different laboratory tests, test protocols, types of samples and source populations were used in these studies resulting in large variability among studies. Seven studies investigated the association between CD and JD, two challenge trials reported contradictory results, one cross-sectional study did not support the association, and four descriptive studies suggested that isolated MAP is often closely related to cattle isolates. MAP detection in raw and pasteurized milk was reported in several studies. Evidence for the zoonotic potential of MAP is not strong, but should not be ignored. Interdisciplinary collaboration among medical, veterinary and other public health officials may contribute to a better understanding of the potential routes of human exposure to MAP.

  7. An assessment of false positive rates for malaria rapid diagnostic tests caused by non-Plasmodium infectious agents and immunological factors.

    PubMed

    Gatton, Michelle L; Ciketic, Sadmir; Barnwell, John W; Cheng, Qin; Chiodini, Peter L; Incardona, Sandra; Bell, David; Cunningham, Jane; González, Iveth J

    2018-01-01

    Malaria rapid diagnostic tests (RDTs) can produce false positive (FP) results in patients with human African trypanosomiasis and rheumatoid factor (RF), but specificity against other infectious agents and immunological factors is largely unknown. Low diagnostic specificity caused by cross-reactivity may lead to over-estimates of the number of malaria cases and over-use of antimalarial drugs, at the cost of not diagnosing and treating the true underlying condition. Data from the WHO Malaria RDT Product Testing Programme was analysed to assess FP rates of 221 RDTs against four infectious agents (Chagas, dengue, Leishmaniasis and Schistosomiasis) and four immunological factors (anti-nuclear antibody, human anti-mouse antibody (HAMA), RF and rapid plasma regain). Only RDTs with a FP rate against clean negative samples less than 10% were included. Paired t-tests were used to compare product-specific FP rates on clean negative samples and samples containing non-Plasmodium infectious agents and immunological factors. Forty (18%) RDTs showed no FP results against any tested infectious agent or immunological factor. In the remaining RDTs significant and clinically relevant increases in FP rates were observed for samples containing HAMA and RF (P<0.001). There were significant correlations between product-matched FP rates for RF and HAMA on all RDT test bands (P<0.001), and FP rates for each infectious agent and immunological factor were also correlated between test bands of combination RDTs (P≤0.002). False positive results against non-Plasmodium infectious agents and immunological factors does not appear to be a universal property of malaria RDTs. However, since many malaria RDTs have elevated FP rates against HAMA and RF positive samples practitioners may need to consider the possibility of false positive results for malaria in patients with conditions that stimulate HAMA or RF.

  8. Psammomys obesus Cretzschmar, 1828 and zoonotic cutaneous leishmaniasis in Sinai Peninsula, Egypt.

    PubMed

    Morsy, T A; Sabry, A H; Rifaat, M M; Wahba, M M

    1996-08-01

    In the Middle East, the fat sand rat Psammomys obesus is the most important reservoir host of zoonotic cutaneous leishmamiasis (ZCL). It is the most incriminated host in outbreaks. Two P. obesus caught in Wadi El Gedeiret (Al Arish, North Sinai) were found naturally infected with Leishmania major as indicated by enzyme electrophoresis. In Egypt, the already known reservoir hosts are Gerbillus pyramidum I. Geoffroy St. Hilaire, 1825; Meriones crassus Sundevall, 1984 and Meriones sacramenti Thomas, 1922. The hostal role of P. obesus was discussed.

  9. Extravasation of antineoplastic agents: prevention and treatments.

    PubMed

    Boschi, Rita; Rostagno, Elena

    2012-07-31

    The extravasation of antineoplastic agents is an unwanted and distressing situation that can easily occur. It may cause severe and irreversible local injuries. Left untreated, vesicant chemotherapy extravasation can potentially cause tissue necrosis, functional impairment and permanent disfigurement. This article provides a review of current literature regarding recommendations on the prevention and treatment of extravasation of antineoplastic agents.

  10. Zoonotic Hepatitis E Virus: Classification, Animal Reservoirs and Transmission Routes.

    PubMed

    Doceul, Virginie; Bagdassarian, Eugénie; Demange, Antonin; Pavio, Nicole

    2016-10-03

    During the past ten years, several new hepatitis E viruses (HEVs) have been identified in various animal species. In parallel, the number of reports of autochthonous hepatitis E in Western countries has increased as well, raising the question of what role these possible animal reservoirs play in human infections. The aim of this review is to present the recent discoveries of animal HEVs and their classification within the Hepeviridae family, their zoonotic and species barrier crossing potential, and possible use as models to study hepatitis E pathogenesis. Lastly, this review describes the transmission pathways identified from animal sources.

  11. Research options for controlling zoonotic disease in India, 2010-2015.

    PubMed

    Sekar, Nitin; Shah, Naman K; Abbas, Syed Shahid; Kakkar, Manish

    2011-02-25

    Zoonotic infections pose a significant public health challenge for low- and middle-income countries and have traditionally been a neglected area of research. The Roadmap to Combat Zoonoses in India (RCZI) initiative conducted an exercise to systematically identify and prioritize research options needed to control zoonoses in India. Priority setting methods developed by the Child Health and Nutrition Research Initiative were adapted for the diversity of sectors, disciplines, diseases and populations relevant for zoonoses in India. A multidisciplinary group of experts identified priority zoonotic diseases and knowledge gaps and proposed research options to address key knowledge gaps within the next five years. Each option was scored using predefined criteria by another group of experts. The scores were weighted using relative ranks among the criteria based upon the feedback of a larger reference group. We categorized each research option by type of research, disease targeted, factorials, and level of collaboration required. We analysed the research options by tabulating them along these categories. Seventeen experts generated four universal research themes and 103 specific research options, the majority of which required a high to medium level of collaboration across sectors. Research options designated as pertaining to 'social, political and economic' factorials predominated and scored higher than options focussing on ecological, genetic and biological, or environmental factors. Research options related to 'health policy and systems' scored highest while those related to 'research for development of new interventions' scored the lowest. We methodically identified research themes and specific research options incorporating perspectives of a diverse group of stakeholders. These outputs reflect the diverse nature of challenges posed by zoonoses and should be acceptable across diseases, disciplines, and sectors. The identified research options capture the need for

  12. Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential.

    PubMed

    Kindler, Eveline; Jónsdóttir, Hulda R; Muth, Doreen; Hamming, Ole J; Hartmann, Rune; Rodriguez, Regulo; Geffers, Robert; Fouchier, Ron A M; Drosten, Christian; Müller, Marcel A; Dijkman, Ronald; Thiel, Volker

    2013-02-19

    The recent emergence of a novel human coronavirus (HCoV-EMC) in the Middle East raised considerable concerns, as it is associated with severe acute pneumonia, renal failure, and fatal outcome and thus resembles the clinical presentation of severe acute respiratory syndrome (SARS) observed in 2002 and 2003. Like SARS-CoV, HCoV-EMC is of zoonotic origin and closely related to bat coronaviruses. The human airway epithelium (HAE) represents the entry point and primary target tissue for respiratory viruses and is highly relevant for assessing the zoonotic potential of emerging respiratory viruses, such as HCoV-EMC. Here, we show that pseudostratified HAE cultures derived from different donors are highly permissive to HCoV-EMC infection, and by using reverse transcription (RT)-PCR and RNAseq data, we experimentally determined the identity of seven HCoV-EMC subgenomic mRNAs. Although the HAE cells were readily responsive to type I and type III interferon (IFN), we observed neither a pronounced inflammatory cytokine nor any detectable IFN responses following HCoV-EMC, SARS-CoV, or HCoV-229E infection, suggesting that innate immune evasion mechanisms and putative IFN antagonists of HCoV-EMC are operational in the new host. Importantly, however, we demonstrate that both type I and type III IFN can efficiently reduce HCoV-EMC replication in HAE cultures, providing a possible treatment option in cases of suspected HCoV-EMC infection. IMPORTANCE A novel human coronavirus, HCoV-EMC, has recently been described to be associated with severe respiratory tract infection and fatalities, similar to severe acute respiratory syndrome (SARS) observed during the 2002-2003 epidemic. Closely related coronaviruses replicate in bats, suggesting that, like SARS-CoV, HCoV-EMC is of zoonotic origin. Since the animal reservoir and circumstances of zoonotic transmission are yet elusive, it is critically important to assess potential species barriers of HCoV-EMC infection. An important first

  13. An 18S rRNA Workflow for Characterizing Protists in Sewage, with a Focus on Zoonotic Trichomonads.

    PubMed

    Maritz, Julia M; Rogers, Krysta H; Rock, Tara M; Liu, Nicole; Joseph, Susan; Land, Kirkwood M; Carlton, Jane M

    2017-11-01

    Microbial eukaryotes (protists) are important components of terrestrial and aquatic environments, as well as animal and human microbiomes. Their relationships with metazoa range from mutualistic to parasitic and zoonotic (i.e., transmissible between humans and animals). Despite their ecological importance, our knowledge of protists in urban environments lags behind that of bacteria, largely due to a lack of experimentally validated high-throughput protocols that produce accurate estimates of protist diversity while minimizing non-protist DNA representation. We optimized protocols for detecting zoonotic protists in raw sewage samples, with a focus on trichomonad taxa. First, we investigated the utility of two commonly used variable regions of the 18S rRNA marker gene, V4 and V9, by amplifying and Sanger sequencing 23 different eukaryotic species, including 16 protist species such as Cryptosporidium parvum, Giardia intestinalis, Toxoplasma gondii, and species of trichomonad. Next, we optimized wet-lab methods for sample processing and Illumina sequencing of both regions from raw sewage collected from a private apartment building in New York City. Our results show that both regions are effective at identifying several zoonotic protists that may be present in sewage. A combination of small extractions (1 mL volumes) performed on the same day as sample collection, and the incorporation of a vertebrate blocking primer, is ideal to detect protist taxa of interest and combat the effects of metazoan DNA. We expect that the robust, standardized methods presented in our workflow will be applicable to investigations of protists in other environmental samples, and will help facilitate large-scale investigations of protistan diversity.

  14. [Fascioliasis and brucellosis in same patient].

    PubMed

    Deveci, Özcan; Aslan, Emel; Tekin, Alicem; Toka Özer, Türkan; Tekin, Recep; Bozkurt, Fatma; Çetinçakmak, Mehmet Guli

    2014-01-01

    Brucellosis is a zoonotic infectious disease that can affect many organs and systems and leads to very different clinical circumstances. Brucellosis is rare in association with various infectious agents. Fascioliasis is a zoonotic disease caused by Fasciola hepatica, popularly referred to as a large leaf-shaped liver fluke. This case is a 39-year-old male patient, and his complaints began a week ago, which were chills, fever, abdominal pain, nausea, vomiting, weakness, sweating, and widespread pain. The patient was considered brucellosis in the preliminary diagnosis. Rose Bengal test and Wright test (1/640) were detected as positive. Due to patients having elevated liver enzymes, abdominal ultrasound was taken. A liver lesion was seen with abdominal ultrasound. So, abdominal computed tomography (CT) was taken. The CT result report came in the form that at the left lobe of the liver segment 2, largely necrosis that showed no contrast enhancement, approximately 61x63 mm in size (compatible with fascioliasis) is viewed. The patient's IHA test results, required for fascioliasis, were detected as 1/320 positive. Especially for zoonotic diseases in areas with high endemicity, it should be considered that more than one infectious agent can be present together in high-risk patients.

  15. Zebrafish as a useful model for zoonotic Vibrio parahaemolyticus pathogenicity in fish and human.

    PubMed

    Zhang, Qinghua; Dong, Xuehong; Chen, Biao; Zhang, Yonghua; Zu, Yao; Li, Weiming

    2016-02-01

    Vibrio parahaemolyticus is an important aquatic zoonotic pathogen worldwide that causes vibriosis in many marine fish, and sepsis, gastroenteritis and wound infection in humans. However, the pathogenesis of different sources of V. parahaemolyticus is not fully understood. Here, we examined the pathogenicity and histopathology of fish (V. parahaemolyticus 1.2164) and human (V. parahaemolyticus 17) strains in a zebrafish (Danio rerio). We found that different infection routes resulted in different mortality in zebrafish. Moreover, death due to V. parahaemolyticus 1.2164 infection occurred quicker than that caused by V. parahaemolyticus 17 infection. Hematoxylin-eosin staining of liver, kidney and intestine sections showed histological lesions in all three organs after infection with either strain. V. parahaemolyticus 1.2164 caused more severe damage than V. parahaemolyticus 17. In particular, V. parahaemolyticus 1.2164 treatment induced more serious hydropic degeneration and venous sinus necrosis in the liver than V. parahaemolyticus 17 treatment. The expression levels of three proinflammatory cytokines, interleukin 1β (il1β), interferon phi 1 (ifnϕ1) and tumor necrosis factor α (tnfα), as determined by quantitative real-time PCR, were upregulated in all examined tissues of infected fish. Notably, the peak levels of tnfα were significantly higher than those of il1β and ifnϕ1, suggesting, together with pathological results, that tnfα and il1β play an important role in acute sepsis. High amounts of tnfα may be related to acute liver necrosis, while ifnϕ1 may respond to V. parahaemolyticus and play an antibacterial role for chronically infected adult zebrafish. Taken together, our results suggest that the zebrafish model of V. parahaemolyticus infection is useful for studying strain differences in V. parahaemolyticus pathogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Ecology of zoonotic infectious diseases in bats: current knowledge and future directions

    USGS Publications Warehouse

    Hayman, D.T.; Bowen, R.A.; Cryan, P.M.; McCracken, G.F.; O'Shea, T.J.; Peel, A.J.; Gilbert, A.; Webb, C.T.; Wood, J.L.

    2013-01-01

    Bats are hosts to a range of zoonotic and potentially zoonotic pathogens. Human activities that increase exposure to bats will likely increase the opportunity for infections to spill over in the future. Ecological drivers of pathogen spillover and emergence in novel hosts, including humans, involve a complex mixture of processes, and understanding these complexities may aid in predicting spillover. In particular, only once the pathogen and host ecologies are known can the impacts of anthropogenic changes be fully appreciated. Cross-disciplinary approaches are required to understand how host and pathogen ecology interact. Bats differ from other sylvatic disease reservoirs because of their unique and diverse lifestyles, including their ability to fly, often highly gregarious social structures, long lifespans and low fecundity rates. We highlight how these traits may affect infection dynamics and how both host and pathogen traits may interact to affect infection dynamics. We identify key questions relating to the ecology of infectious diseases in bats and propose that a combination of field and laboratory studies are needed to create data-driven mechanistic models to elucidate those aspects of bat ecology that are most critical to the dynamics of emerging bat viruses. If commonalities can be found, then predicting the dynamics of newly emerging diseases may be possible. This modelling approach will be particularly important in scenarios when population surveillance data are unavailable and when it is unclear which aspects of host ecology are driving infection dynamics.

  17. Helminth Infections by Coprological Examination in Sheep-Dogs and Their Zoonotic Importance.

    PubMed

    Öge, Hatice; Öge, Semih; Özbakış, Gökben; Gürcan, I Safa

    2017-03-01

    This study was conducted to determine the prevalence of gastrointestinal helminths and diagnose the species of important zoonotic helminths in sheep dogs. Firstly, fecal samples were macroscopically examined; subsequently, formalin-ethyl acetate sedimentation and ZnSO4 centrifugal floatation techniques were applied for the examination of helminth eggs. PCR technique was utilized to determine the species of E. granulosus and T. canis in dogs found positive for Taenia spp. and Toxocara spp. Helminth infection was detected in 35.26% of sheep dogs. Taenia spp. was the most common helminth (12.05%), followed by Toxocara spp. (9.38%), Toxascaris leonina (6.25%), and Trichuris spp. (4.2%). The positive results in the E. granulosus and T. canis-specific PCR-based molecular tests were obtained in 14 of the Taenia egg-positive samples and in 5 of the Toxocara egg-positive samples from dogs. This study has suggested that coprophagy and feed raw offal and meat to dogs may be responsible for finding atypical helminth eggs in fecal samples from dogs in the absence of an actual infection. To make the diagnosis of their owned parasites of dogs, E. granulosus and T. canis which have zoonotic importance, feces must be examined by both conventional and copro-PCR techniques. In addition to dogs' feeding habits, other related factors must be taken into account in the epidemiology of helminth infection; thus, precaution and control measures will be more reliable.

  18. Ecology of Zoonotic Infectious Diseases in Bats: Current Knowledge and Future Directions

    PubMed Central

    Hayman, D T S; Bowen, R A; Cryan, P M; McCracken, G F; O’Shea, T J; Peel, A J; Gilbert, A; Webb, C T; Wood, J L N

    2013-01-01

    Bats are hosts to a range of zoonotic and potentially zoonotic pathogens. Human activities that increase exposure to bats will likely increase the opportunity for infections to spill over in the future. Ecological drivers of pathogen spillover and emergence in novel hosts, including humans, involve a complex mixture of processes, and understanding these complexities may aid in predicting spillover. In particular, only once the pathogen and host ecologies are known can the impacts of anthropogenic changes be fully appreciated. Cross-disciplinary approaches are required to understand how host and pathogen ecology interact. Bats differ from other sylvatic disease reservoirs because of their unique and diverse lifestyles, including their ability to fly, often highly gregarious social structures, long lifespans and low fecundity rates. We highlight how these traits may affect infection dynamics and how both host and pathogen traits may interact to affect infection dynamics. We identify key questions relating to the ecology of infectious diseases in bats and propose that a combination of field and laboratory studies are needed to create data-driven mechanistic models to elucidate those aspects of bat ecology that are most critical to the dynamics of emerging bat viruses. If commonalities can be found, then predicting the dynamics of newly emerging diseases may be possible. This modelling approach will be particularly important in scenarios when population surveillance data are unavailable and when it is unclear which aspects of host ecology are driving infection dynamics. PMID:22958281

  19. Prevalence and genetic diversity of the intestinal parasites Blastocystis sp. and Cryptosporidium spp. in household dogs in France and evaluation of zoonotic transmission risk.

    PubMed

    Osman, Marwan; Bories, Jessica; El Safadi, Dima; Poirel, Marie-Thérèse; Gantois, Nausicaa; Benamrouz-Vanneste, Sadia; Delhaes, Laurence; Hugonnard, Marine; Certad, Gabriela; Zenner, Lionel; Viscogliosi, Eric

    2015-11-30

    Several parasites including the protozoa Blastocystis sp. and Cryptosporidium spp. may be causative agents of gastrointestinal symptoms in domestic dogs, and there may be a potential risk of transmission to owners. While France is one of the largest European countries in terms of its canine population, little data is available about the molecular epidemiology of these two parasites. The purpose of this study was to determine the prevalence of intestinal parasites in household dogs in France, and to evaluate the zoonotic risk of Blastocystis sp. and Cryptosporidium spp. by genotyping the corresponding isolates. To this end, 116 faecal samples were collected from household dogs regardless of breed, age or gender, living in the Lyons area, France. Various intestinal protozoa and helminths were identified by light microscopy. Screening for Blastocystis sp. and Cryptosporidium spp. were subsequently performed by PCR targeting the small subunit (SSU) rDNA coding region, followed by direct sequencing of the PCR products and analysis of the sequences obtained for genotyping. The overall prevalence of dogs infected with at least one gastrointestinal parasite was 42.2% (49/116). After light microscopy examination of faecal samples, the most common parasites found were the protozoa Giardia sp. (25.0%) and Cystoisospora sp. (19.8%). Using molecular methods, four dogs (3.4%) were shown to be infected by Blastocystis sp. and carried either subtype (ST) 2, commonly identified in various animal groups, or ST10, frequently found in bovids. Three dogs (2.6%) were positive for C. canis, infecting humans episodically. The low prevalence of both parasites, combined with the identification of C. canis and Blastocystis sp. ST2 and ST10 in the canine population, strongly suggests that dogs play a negligible role as zoonotic reservoirs for both parasites and do not seem to be natural hosts of Blastocystis sp. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Black and gold howler monkeys (Alouatta caraya) as sentinels of ecosystem health: patterns of zoonotic protozoa infection relative to degree of human-primate contact.

    PubMed

    Kowalewski, Martin M; Salzer, Johanna S; Deutsch, Joseph C; Raño, Mariana; Kuhlenschmidt, Mark S; Gillespie, Thomas R

    2011-01-01

    Exponential expansion of human populations and human activities within primate habitats has resulted in high potential for pathogen exchange creating challenges for biodiversity conservation and global health. Under such conditions, resilient habitat generalists such as black and gold howler monkeys (Alouatta caraya) may act as effective sentinels to overall ecosystem health and alert us to impending epidemics in the human population. To better understand this potential, we examined noninvasively collected fecal samples from black and gold howler monkeys from remote, rural, and village populations in Northern Argentina. We examined all samples (n=90) for the zoonotic protozoa Cryptosporidium sp. and Giardia sp. via immunofluorescent antibody (IFA) detection. All samples were negative for Cryptosporidium sp. The prevalence of Giardia sp. was significantly higher at the rural site (67%) compared with the remote forest (57%) and village (40%) sites. A lack of Cryptosporidium sp. in all samples examined suggests that this pathogen is not a natural component of the howler parasite communities at these sites and that current land-use patterns and livestock contact are not exposing Argentine howler monkeys to this pathogen. High prevalence of Giardia sp. at all sites suggests that howler monkeys may serve as a viable reservoir for Giardia. Significantly higher prevalence of Giardia sp. at the rural site, where primate-livestock contact is highest, suggests the presence of multiple Giardia clades or increased exposure to Giardia through repeated zoonotic transmission among nonhuman primates, livestock, and/or people. These results highlight the need for future research into the epidemiology, cross-species transmission ecology, and clinical consequences of Giardia and other infectious agents not only in humans and livestock, but also in the wild animals that share their environments. © 2010 Wiley-Liss, Inc.

  1. Use of a modified Delphi panel to identify and weight criteria for prioritization of zoonotic diseases in Switzerland.

    PubMed

    Stebler, N; Schuepbach-Regula, G; Braam, P; Falzon, L C

    2015-09-01

    Zoonotic diseases have a significant impact on public health globally. To prevent or reduce future zoonotic outbreaks, there is a constant need to invest in research and surveillance programs while updating risk management strategies. However, given the limited resources available, disease prioritization based on the need for their control and surveillance is important. This study was performed to identify and weight disease criteria for the prioritization of zoonotic diseases in Switzerland using a semi-quantitative research method based on expert opinion. Twenty-eight criteria relevant for disease control and surveillance, classified under five domains, were selected following a thorough literature review, and these were evaluated and weighted by seven experts from the Swiss Federal Veterinary Office using a modified Delphi panel. The median scores assigned to each criterion were then used to rank 16 notifiable and/or emerging zoonoses in Switzerland. The experts weighted the majority of the criteria similarly, and the top three criteria were Severity of disease in humans, incidence and prevalence of the disease in humans and treatment in humans. Based on these weightings, the three highest ranked diseases were Avian Influenza, Bovine Spongiform Encephalitis, and Bovine Tuberculosis. Overall, this study provided a preliminary list of criteria relevant for disease prioritization in Switzerland. These were further evaluated in a companion study which involved a quantitative prioritization method and multiple stakeholders. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Health Care Providers' Knowledge and Practice Gap towards Joint Zoonotic Disease Surveillance System: Challenges and Opportunities, Gomma District, Southwest Ethiopia.

    PubMed

    Gemeda, Desta Hiko; Sime, Abiot Girma; Hajito, Kifle Woldemichael; Gelalacha, Benti Deresa; Tafese, Wubit; Gebrehiwot, Tsegaye Tewelde

    2016-01-01

    Background. Health care providers play a crucial role for realization of joint zoonotic diseases surveillance by human and animal health sectors, yet there is limited evidence. Hence, this study aimed to determine knowledge and practice gap of health care providers towards the approach for Rabies and Anthrax in Southwest Ethiopia. Methods. A cross-sectional survey was conducted from December 16, 2014, to January 14, 2015. Eligible health care providers were considered for the study. Data were entered in to Epi-data version 3.1 and analyzed using SPSS version 20. Results. A total of 323 (92.02%) health care providers participated in the study. Three hundred sixteen (97.8%) of participants reported that both human and animal health sectors can work together for zoonotic diseases while 96.9% of them replied that both sectors can jointly conduct surveillance. One hundred seventeen (36.2%) of them reported that their respective sectors had conducted joint surveillance for zoonotic diseases. Their involvement was, however, limited to joint outbreak response. Conclusion. There is good opportunity in health care providers' knowledge even though the practice was unacceptably low and did not address all surveillance components. Therefore, formal joint surveillance structure should be in place for optimal implementation of surveillance.

  3. Aerogenic Vaccination With a Burkholderia mallei Auxotroph Protects Against Aerosol-Initiated Glanders in Mice

    DTIC Science & Technology

    2005-03-14

    Vaccine 23 (2005) 1986–1992 Aerogenic vaccination with a Burkholderia mallei auxotroph protects against aerosol-initiated glanders in mice Ricky L...October 2004 Available online 11 November 2004 Abstract Burkholderia mallei is an obligate mammalian pathogen that causes the zoonotic disease glanders ... Burkholderia mallei , the causative agent of glanders , is gram-negative bacillus. It is a highly adapted parasite of quines and cannot persist in nature

  4. Alimentary Tract as Entry Route for Hantavirus Infection

    DTIC Science & Technology

    Hantaviruses are zoonotic agents that cause hemorrhagic fever with renal and/or cardiopulmonary manifestations, reaching fatality rates of up to 50...predominant endemic hantavirus in Europe, is associated with mild forms of hemorrhagic fever with renal syndrome. PUUV is transmitted to humans by exposure to...viral association with endosomal antigen EEA-1, followed by virus replication and loss of epithelial barrier function with concomitant basolateral

  5. Zoonotic and Vector-Borne Infections Among Urban Homeless and Marginalized People in the United States and Europe, 1990-2014.

    PubMed

    Leibler, Jessica H; Zakhour, Christine M; Gadhoke, Preety; Gaeta, Jessie M

    2016-07-01

    In high-income countries, homeless individuals in urban areas often live in crowded conditions with limited sanitation and personal hygiene. The environment of homelessness in high-income countries may result in intensified exposure to ectoparasites and urban wildlife, which can transmit infections. To date, there have been no systematic evaluations of the published literature to assess vector-borne and zoonotic disease risk to these populations. The primary objectives of this study were to identify diversity, prevalence, and risk factors for vector-borne and zoonotic infections among people experiencing homelessness and extreme poverty in urban areas of high-income countries. We conducted a systematic review and narrative synthesis of published epidemiologic studies of zoonotic and vector-borne infections among urban homeless and very poor people in the United States and Europe from 1990 to 2014. Thirty-one observational studies and 14 case studies were identified (n = 45). Seroprevalence to the human louse-borne pathogen Bartonella quintana (seroprevalence range: 0-37.5%) was identified most frequently, with clinical disease specifically observed among HIV-positive individuals. Seropositivity to Bartonella henselae (range: 0-10.3%) and Rickettsia akari (range: 0-16.2%) was noted in multiple studies. Serological evidence of exposure to Rickettsia typhi, Rickettsia prowazekii, Bartonella elizabethae, West Nile virus, Borellia recurrentis, lymphocytic choriomeningitis virus, Wohlfartiimonas chitiniclastica, Seoul hantavirus (SEOV), and Leptospira species was also identified in published studies, with SEOV associated with chronic renal disease later in life. HIV infection, injection drug use, and heavy drinking were noted across multiple studies as risk factors for infection with vector-borne and zoonotic pathogens. B. quintana was the most frequently reported vector-borne infection identified in our article. Delousing efforts and active surveillance among HIV

  6. Leptospira interrogans causes quantitative and morphological disturbances in adherens junctions and other biological groups of proteins in human endothelial cells

    PubMed Central

    Sato, Hiromi

    2017-01-01

    Pathogenic Leptospira transmits from animals to humans, causing the zoonotic life-threatening infection called leptospirosis. This infection is reported worldwide with higher risk in tropical regions. Symptoms of leptospirosis range from mild illness to severe illness such as liver damage, kidney failure, respiratory distress, meningitis, and fatal hemorrhagic disease. Invasive species of Leptospira rapidly disseminate to multiple tissues where this bacterium damages host endothelial cells, increasing vascular permeability. Despite the burden in humans and animals, the pathogenic mechanisms of Leptospira infection remain to be elucidated. The pathogenic leptospires adhere to endothelial cells and permeabilize endothelial barriers in vivo and in vitro. In this study, human endothelial cells were infected with the pathogenic L. interrogans serovar Copenhageni or the saprophyte L. biflexa serovar Patoc to investigate morphological changes and other distinctive phenotypes of host cell proteins by fluorescence microscopy. Among those analyzed, 17 proteins from five biological classes demonstrated distinctive phenotypes in morphology and/or signal intensity upon infection with Leptospira. The affected biological groups include: 1) extracellular matrix, 2) intercellular adhesion molecules and cell surface receptors, 3) intracellular proteins, 4) cell-cell junction proteins, and 5) a cytoskeletal protein. Infection with the pathogenic strain most profoundly disturbed the biological structures of adherens junctions (VE-cadherin and catenins) and actin filaments. Our data illuminate morphological disruptions and reduced signals of cell-cell junction proteins and filamentous actin in L. interrogans-infected endothelial cells. In addition, Leptospira infection, regardless of pathogenic status, influenced other host proteins belonging to multiple biological classes. Our data suggest that this zoonotic agent may damage endothelial cells via multiple cascades or pathways

  7. Leptospira interrogans causes quantitative and morphological disturbances in adherens junctions and other biological groups of proteins in human endothelial cells.

    PubMed

    Sato, Hiromi; Coburn, Jenifer

    2017-07-01

    Pathogenic Leptospira transmits from animals to humans, causing the zoonotic life-threatening infection called leptospirosis. This infection is reported worldwide with higher risk in tropical regions. Symptoms of leptospirosis range from mild illness to severe illness such as liver damage, kidney failure, respiratory distress, meningitis, and fatal hemorrhagic disease. Invasive species of Leptospira rapidly disseminate to multiple tissues where this bacterium damages host endothelial cells, increasing vascular permeability. Despite the burden in humans and animals, the pathogenic mechanisms of Leptospira infection remain to be elucidated. The pathogenic leptospires adhere to endothelial cells and permeabilize endothelial barriers in vivo and in vitro. In this study, human endothelial cells were infected with the pathogenic L. interrogans serovar Copenhageni or the saprophyte L. biflexa serovar Patoc to investigate morphological changes and other distinctive phenotypes of host cell proteins by fluorescence microscopy. Among those analyzed, 17 proteins from five biological classes demonstrated distinctive phenotypes in morphology and/or signal intensity upon infection with Leptospira. The affected biological groups include: 1) extracellular matrix, 2) intercellular adhesion molecules and cell surface receptors, 3) intracellular proteins, 4) cell-cell junction proteins, and 5) a cytoskeletal protein. Infection with the pathogenic strain most profoundly disturbed the biological structures of adherens junctions (VE-cadherin and catenins) and actin filaments. Our data illuminate morphological disruptions and reduced signals of cell-cell junction proteins and filamentous actin in L. interrogans-infected endothelial cells. In addition, Leptospira infection, regardless of pathogenic status, influenced other host proteins belonging to multiple biological classes. Our data suggest that this zoonotic agent may damage endothelial cells via multiple cascades or pathways

  8. Yersinia pestis--etiologic agent of plague.

    PubMed Central

    Perry, R D; Fetherston, J D

    1997-01-01

    Plague is a widespread zoonotic disease that is caused by Yersinia pestis and has had devastating effects on the human population throughout history. Disappearance of the disease is unlikely due to the wide range of mammalian hosts and their attendant fleas. The flea/rodent life cycle of Y. pestis, a gram-negative obligate pathogen, exposes it to very different environmental conditions and has resulted in some novel traits facilitating transmission and infection. Studies characterizing virulence determinants of Y. pestis have identified novel mechanisms for overcoming host defenses. Regulatory systems controlling the expression of some of these virulence factors have proven quite complex. These areas of research have provide new insights into the host-parasite relationship. This review will update our present understanding of the history, etiology, epidemiology, clinical aspects, and public health issues of plague. PMID:8993858

  9. First Molecular Characterization of Leishmania Species Causing Visceral Leishmaniasis among Children in Yemen

    PubMed Central

    Mahdy, Mohammed A. K.; Al-Mekhlafi, Abdulsalam M.; Abdul-Ghani, Rashad; Saif-Ali, Reyadh; Al-Mekhlafi, Hesham M.; Al-Eryani, Samira M.; Lim, Yvonne A. L.; Mahmud, Rohela

    2016-01-01

    Visceral leishmaniasis (VL) is a debilitating, often fatal disease caused by Leishmania donovani complex; however, it is a neglected tropical disease. L. donovani complex comprises two closely related species, L. donovani that is mostly anthroponotic and L. infantum that is zoonotic. Differentiation between these two species is critical due to the differences in their epidemiology and pathology. However, they cannot be differentiated morphologically, and their speciation using isoenzyme-based methods poses a difficult task and may be unreliable. Molecular characterization is now the most reliable method to differentiate between them and to determine their phylogenetic relationships. The present study aims to characterize Leishmania species isolated from bone marrows of Yemeni pediatric patients using sequence analysis of the ribosomal internal transcribed spacer-1 (ITS1) gene. Out of 41 isolates from Giemsa-stained bone marrow smears, 25 isolates were successfully amplified by nested polymerase chain reaction and sequenced in both directions. Phylogenetic analysis using neighbor joining method placed all study isolates in one cluster with L. donovani complex (99% bootstrap). The analysis of ITS1 for microsatellite repeat numbers identified L. infantum in 11 isolates and L. donovani in 14 isolates. These data suggest the possibility of both anthroponotic and zoonotic transmission of VL-causing Leishmania species in Yemen. Exploring the possible animal reservoir hosts is therefore needed for effective control to be achieved. PMID:26966902

  10. An Invasive Vector of Zoonotic Disease Sustained by Anthropogenic Resources: The Raccoon Dog in Northern Europe

    PubMed Central

    Süld, Karmen; Valdmann, Harri; Laurimaa, Leidi; Soe, Egle; Davison, John; Saarma, Urmas

    2014-01-01

    The raccoon dog (Nyctereutes procyonoides) is an introduced species in Europe with a continually expanding range. Since the species is capable of affecting local ecosystems and is a vector for a number of severe zoonotic diseases, it is important to understand its food habits. Raccoon dog diet was studied in Estonia by examining the contents of 223 stomach samples collected during the coldest period of the year, August to March, in 2010–2012. The most frequently consumed food categories were anthropogenic plants (e.g. cereals, fruits; FO = 56.1%) and carrion (e.g. carcasses of artiodactyls and carnivores; FO = 48.4%). Carrion was also the only food category that was consumed significantly more frequently by raccoon dogs exhibiting symptoms of sarcoptic mange than by uninfected animals. Small mammals, which represent intermediate hosts for the zoonotic tapeworm Echinococcus multilocularis, were more commonly recorded in samples also containing anthropogenic plants than expected by chance. Comparison of raccoon dog and red fox (Vulpes vulpes) diet in Estonia revealed higher overlap than found elsewhere in Europe, with ‘carrion’ and ‘anthropogenic plants’ making up the bulk of both species’ diet; however, raccoon dogs were more omnivorous than red foxes. Our results suggest that while the use of most food categories reflects the phenology of natural food sources, ‘anthropogenic plants’ and ‘carrion’ provide an essential resource for raccoon dogs during the coldest period of the year, with the latter resource especially important for individuals infected with sarcoptic mange. Since both of these food categories and small mammals are often found at supplementary feeding sites for wild boar (Sus scrofa), this game management practice may facilitate high densities of mesocarnivores and promote the spread of some severe zoonotic diseases, including alveolar echinococcosis, trichinellosis, rabies and sarcoptic mange. PMID:24852942

  11. An invasive vector of zoonotic disease sustained by anthropogenic resources: the raccoon dog in northern Europe.

    PubMed

    Süld, Karmen; Valdmann, Harri; Laurimaa, Leidi; Soe, Egle; Davison, John; Saarma, Urmas

    2014-01-01

    The raccoon dog (Nyctereutes procyonoides) is an introduced species in Europe with a continually expanding range. Since the species is capable of affecting local ecosystems and is a vector for a number of severe zoonotic diseases, it is important to understand its food habits. Raccoon dog diet was studied in Estonia by examining the contents of 223 stomach samples collected during the coldest period of the year, August to March, in 2010-2012. The most frequently consumed food categories were anthropogenic plants (e.g. cereals, fruits; FO = 56.1%) and carrion (e.g. carcasses of artiodactyls and carnivores; FO = 48.4%). Carrion was also the only food category that was consumed significantly more frequently by raccoon dogs exhibiting symptoms of sarcoptic mange than by uninfected animals. Small mammals, which represent intermediate hosts for the zoonotic tapeworm Echinococcus multilocularis, were more commonly recorded in samples also containing anthropogenic plants than expected by chance. Comparison of raccoon dog and red fox (Vulpes vulpes) diet in Estonia revealed higher overlap than found elsewhere in Europe, with 'carrion' and 'anthropogenic plants' making up the bulk of both species' diet; however, raccoon dogs were more omnivorous than red foxes. Our results suggest that while the use of most food categories reflects the phenology of natural food sources, 'anthropogenic plants' and 'carrion' provide an essential resource for raccoon dogs during the coldest period of the year, with the latter resource especially important for individuals infected with sarcoptic mange. Since both of these food categories and small mammals are often found at supplementary feeding sites for wild boar (Sus scrofa), this game management practice may facilitate high densities of mesocarnivores and promote the spread of some severe zoonotic diseases, including alveolar echinococcosis, trichinellosis, rabies and sarcoptic mange.

  12. Antibodies to Various Zoonotic Pathogens Detected in Feral Swine (Sus scrofa) at Abattoirs in Texas, USA.

    PubMed

    Pedersen, Kerri; Bauer, Nathan E; Rodgers, Sandra; Bazan, Luis R; Mesenbrink, Brian T; Gidlewski, Thomas

    2017-08-01

    The zoonotic risk posed to employees by slaughtering feral swine (Sus scrofa) at two abattoirs in Texas was assessed by testing feral swine serum samples for exposure to influenza A virus, Leptospira, Trichinella spiralis, and Toxoplasma gondii. Blood was collected from a total of 376 feral swine between the two facilities during six separate collection periods in 2015. Antibodies to one or more serovars of Leptospira were identified in 48.9% of feral swine tested, with Bratislava and Pomona as the most commonly detected serovars, and antibodies to influenza A virus were detected in 14.1% of feral swine. Antibodies to T. gondii and T. spiralis were identified in 9.0 and 3.5%, respectively, of feral swine tested. Our results suggest that abattoir employees should be aware of the potential for exposure to various zoonotic pathogens when slaughtering feral swine, wear appropriate personal protective equipment, and participate in medical monitoring programs to ensure detection and prompt treatment. In addition, consumers of feral swine should cook the meat to the appropriate temperature and wash hands and kitchen surfaces thoroughly after preparing meat.

  13. Epidemiological survey of zoonotic helminths in feral cats in Gran Canaria island (Macaronesian archipelago-Spain).

    PubMed

    Rodríguez-Ponce, Eligia; González, Jorge F; Conde de Felipe, Magnolia; Hernández, Julia N; Raduan Jaber, J

    2016-09-01

    The presence of zoonotic parasites in feral cats have been widely considered all over the world. In Gran Canaria (Macaronesian archipelago, Canary Islands, Spain) the number of feral cats has grown out of control in urban and rural areas. 48 of Felis catus captured in different Gran Canaria areas were studied. Animals were necropsied and several organs were systematically examined in order to collect and identify macroscopic parasites. In addition, coprological tests were done in 28 cats. There were no statistically significant differences in the prevalence rate among sex, age or capture area, showing an overall prevalence of helminths of 77.1%. The most common tapeworms were Dipylidium caninum (64.6%) and Taenia taeniaeformis (31.3%), followed by the nematodes Toxocara cati (20.8%), Ancylostoma tubaeforme (18.8%), Aelurostrongylusabstrusus (10.4%) and Trichuris vulpis (2.08%). We also find several eggs of Alaria alata in the small intestine of one cat (2.08%), being the first description of this trematode in cats in the Canary Islands. Aproximatelly, 40% of the studied cats harboured more than one parasite. High rates of zoonotic species found in these animals suggest the need of controling parasitic infections and preventive measures against them.

  14. Biological warfare agents

    PubMed Central

    Thavaselvam, Duraipandian; Vijayaraghavan, Rajagopalan

    2010-01-01

    The recent bioterrorist attacks using anthrax spores have emphasized the need to detect and decontaminate critical facilities in the shortest possible time. There has been a remarkable progress in the detection, protection and decontamination of biological warfare agents as many instrumentation platforms and detection methodologies are developed and commissioned. Even then the threat of biological warfare agents and their use in bioterrorist attacks still remain a leading cause of global concern. Furthermore in the past decade there have been threats due to the emerging new diseases and also the re-emergence of old diseases and development of antimicrobial resistance and spread to new geographical regions. The preparedness against these agents need complete knowledge about the disease, better research and training facilities, diagnostic facilities and improved public health system. This review on the biological warfare agents will provide information on the biological warfare agents, their mode of transmission and spread and also the detection systems available to detect them. In addition the current information on the availability of commercially available and developing technologies against biological warfare agents has also been discussed. The risk that arise due to the use of these agents in warfare or bioterrorism related scenario can be mitigated with the availability of improved detection technologies. PMID:21829313

  15. Petri Nets as Modeling Tool for Emergent Agents

    NASA Technical Reports Server (NTRS)

    Bergman, Marto

    2004-01-01

    Emergent agents, those agents whose local interactions can cause unexpected global results, require a method of modeling that is both dynamic and structured Petri Nets, a modeling tool developed for dynamic discrete event system of mainly functional agents, provide this, and have the benefit of being an established tool. We present here the details of the modeling method here and discuss how to implement its use for modeling agent-based systems. Petri Nets have been used extensively in the modeling of functional agents, those agents who have defined purposes and whose actions should result in a know outcome. However, emergent agents, those agents who have a defined structure but whose interaction causes outcomes that are unpredictable, have not yet found a modeling style that suits them. A problem with formally modeling emergent agents that any formal modeling style usually expects to show the results of a problem and the results of problems studied using emergent agents are not apparent from the initial construction. However, the study of emergent agents still requires a method to analyze the agents themselves, and have sensible conversation about the differences and similarities between types of emergent agents. We attempt to correct this problem by applying Petri Nets to the characterization of emergent agents. In doing so, the emergent properties of these agents can be highlighted, and conversation about the nature and compatibility of the differing methods of agent creation can begin.

  16. Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2.

    PubMed

    Tang, Jiaqi; Wang, Changjun; Feng, Youjun; Yang, Weizhong; Song, Huaidong; Chen, Zhihai; Yu, Hongjie; Pan, Xiuzhen; Zhou, Xiaojun; Wang, Huaru; Wu, Bo; Wang, Haili; Zhao, Huamei; Lin, Ying; Yue, Jianhua; Wu, Zhenqiang; He, Xiaowei; Gao, Feng; Khan, Abdul Hamid; Wang, Jian; Zhao, Guo-Ping; Wang, Yu; Wang, Xiaoning; Chen, Zhu; Gao, George F

    2006-05-01

    Streptococcus suis serotype 2 (S. suis 2, SS2) is a major zoonotic pathogen that causes only sporadic cases of meningitis and sepsis in humans. Most if not all cases of Streptococcal toxic shock syndrome (STSS) that have been well-documented to date were associated with the non-SS2 group A streptococcus (GAS). However, a recent large-scale outbreak of SS2 in Sichuan Province, China, appeared to be caused by more invasive deep-tissue infection with STSS, characterized by acute high fever, vascular collapse, hypotension, shock, and multiple organ failure. We investigated this outbreak of SS2 infections in both human and pigs, which took place from July to August, 2005, through clinical observation and laboratory experiments. Clinical and pathological characterization of the human patients revealed the hallmarks of typical STSS, which to date had only been associated with GAS infection. Retrospectively, we found that this outbreak was very similar to an earlier outbreak in Jiangsu Province, China, in 1998. We isolated and analyzed 37 bacterial strains from human specimens and eight from pig specimens of the recent outbreak, as well as three human isolates and two pig isolates from the 1998 outbreak we had kept in our laboratory. The bacterial isolates were examined using light microscopy observation, pig infection experiments, multiplex-PCR assay, as well as restriction fragment length polymorphisms (RFLP) and multiple sequence alignment analyses. Multiple lines of evidence confirmed that highly virulent strains of SS2 were the causative agents of both outbreaks. We report, to our knowledge for the first time, two outbreaks of STSS caused by SS2, a non-GAS streptococcus. The 2005 outbreak was associated with 38 deaths out of 204 documented human cases; the 1998 outbreak with 14 deaths out of 25 reported human cases. Most of the fatal cases were characterized by STSS; some of them by meningitis or severe septicemia. The molecular mechanisms underlying these human STSS

  17. Zoonotic disease risk perceptions and infection control practices of Australian veterinarians: call for change in work culture.

    PubMed

    Dowd, Karen; Taylor, Melanie; Toribio, Jenny-Ann L M L; Hooker, Claire; Dhand, Navneet K

    2013-08-01

    This study was conducted to determine the perceptions of zoonotic disease risk among Australian veterinarians, the infection control practices they use to protect themselves from zoonotic diseases, and the factors influencing their use of these protective practices. A questionnaire was designed and piloted prior to its administration to veterinarians at the annual Australian Veterinary Association Conference in May 2011. The questionnaire comprised 21 closed, semi-closed and open questions. Data from the questionnaire were analyzed using ordinal logistic regression analyses to determine significant factors for veterinarians' use of personal protective equipment (PPE). A total of 344 veterinarians completed the questionnaire of which 63.7% were women, 63.2% worked in small/companion animal practice, and 79.9% worked in private veterinary practice. Of the respondents, 44.9% reported contracting a zoonosis during their careers with 19.7% reporting a suspected case and 25.2% reporting a confirmed incidence. Around 40-60% of veterinarians perceived exposure to zoonosis likely or very likely in a variety of situations. With reference to current national industry guidelines, the reported use of PPE was less than "adequate" for most scenarios except for performing postmortems, surgery or dental procedures. No PPE was used by 60-70% of veterinarians for treating respiratory and neurological cases and by 40-50% when treating gastrointestinal and dermatological cases. Workplace conditions need improvement as 34.8% of workplaces did not have isolation units for infected animals, 21.1% did not have separate eating areas for staff, and 57.1% did not have complete PPE kits for use. Veterinarians were more likely to use PPE if they had undertaken postgraduate education, perceived that zoonosis exposure from animals and procedures was likely, consciously considered PPE use for every case they dealt with and believed that liability issues and risks encouraged use of PPE. In contrast

  18. The complete mitochondrial genome of the dwarf tapeworm Hymenolepis nana--a neglected zoonotic helminth.

    PubMed

    Cheng, Tian; Liu, Guo-Hua; Song, Hui-Qun; Lin, Rui-Qing; Zhu, Xing-Quan

    2016-03-01

    Hymenolepis nana, commonly known as the dwarf tapeworm, is one of the most common tapeworms of humans and rodents and can cause hymenolepiasis. Although this zoonotic tapeworm is of socio-economic significance in many countries of the world, its genetics, systematics, epidemiology, and biology are poorly understood. In the present study, we sequenced and characterized the complete mitochondrial (mt) genome of H. nana. The mt genome is 13,764 bp in size and encodes 36 genes, including 12 protein-coding genes, 2 ribosomal RNA, and 22 transfer RNA genes. All genes are transcribed in the same direction. The gene order and genome content are completely identical with their congener Hymenolepis diminuta. Phylogenetic analyses based on concatenated amino acid sequences of 12 protein-coding genes by Bayesian inference, Maximum likelihood, and Maximum parsimony showed the division of class Cestoda into two orders, supported the monophylies of both the orders Cyclophyllidea and Pseudophyllidea. Analyses of mt genome sequences also support the monophylies of the three families Taeniidae, Hymenolepididae, and Diphyllobothriidae. This novel mt genome provides a useful genetic marker for studying the molecular epidemiology, systematics, and population genetics of the dwarf tapeworm and should have implications for the diagnosis, prevention, and control of hymenolepiasis in humans.

  19. Toll-like receptor 2-independent host innate immune response against an epidemic strain of Streptococcus suis that causes a toxic shock-like syndrome in humans.

    PubMed

    Lachance, Claude; Segura, Mariela; Gerber, Pehuén Pereyra; Xu, Jianguo; Gottschalk, Marcelo

    2013-01-01

    Streptococcus suis is an emerging zoonotic agent causing meningitis and septicemia. Outbreaks in humans in China with atypical cases of streptococcal toxic shock-like syndrome have been described to be caused by a clonal epidemic S. suis strain characterized as sequence type (ST) 7 by multilocus sequence typing, different from the classical ST1 usually isolated in Europe. Previous in vitro studies showed that Toll-like receptor (TLR) 2 plays a major role in S. suis ST1 interactions with host cells. In the present study, the in vivo role of TLR2 in systemic infections caused by S. suis ST1 or ST7 strains using TLR2 deficient (TLR2(-/-)) mice was evaluated. TLR2-mediated recognition significantly contributes to the acute disease caused by the highly virulent S. suis ST1 strain, since the TLR2(-/-) mice remained unaffected when compared to wild type (WT) mice. The lack of mortality could not be associated with a lower bacterial burden; however, a significant decrease in the induction of pro-inflammatory mediators, as evaluated by microarray, real-time PCR and protein assays, was observed. On the other hand, TLR2(-/-) mice infected with the epidemic ST7 strain presented no significant differences regarding survival and expression of pro-inflammatory mediators when compared to the WT mice. Together, these results show a TLR2-independent host innate immune response to S. suis that depends on the strain.

  20. Assessment of community awareness and risk perceptions of zoonotic causes of abortion in cattle at three selected livestock-wildlife interface areas of Zimbabwe.

    PubMed

    Ndengu, M; DE Garine-Wichatitsky, M; Pfukenyi, D M; Tivapasi, M; Mukamuri, B; Matope, G

    2017-05-01

    A study was conducted to assess the awareness of cattle abortions due to brucellosis, Rift Valley fever (RVF) and leptospirosis, and to compare frequencies of reported abortions in communities living at the periphery of the Great Limpopo Transfrontier Conservation Area in southeastern Zimbabwe. Three study sites were selected based on the type of livestock-wildlife interface: porous livestock-wildlife interface (unrestricted); non-porous livestock-wildlife interface (restricted by fencing); and livestock-wildlife non-interface (totally absent or control). Respondents randomly selected from a list of potential cattle farmers (N = 379) distributed at porous (40·1%), non-interface (35·5%) and non-porous (26·4%), were interviewed using a combined close- and open-ended questionnaire. Focus group discussions were conducted with 10-12 members of each community. More abortions in the last 5 years were reported from the porous interface (52%) and a significantly higher per cent of respondents from the porous interface (P < 0·05) perceived wildlife as playing a role in livestock abortions compared with the other interface types. The odds of reporting abortions in cattle were higher in large herd sizes (odds ratio (OR) = 2·6; 95% confidence interval (CI) 1·5-4·3), porous (OR = 1·9; 95% CI 1·0-3·5) and non-porous interface (OR = 2·2; 95% CI 1·1-4·3) compared with livestock-wildlife non-interface areas. About 21·6% of the respondents knew brucellosis as a cause of abortion, compared with RVF (9·8%) and leptospirosis (3·7%). These results explain to some extent, the existence of human/wildlife conflict in the studied livestock-wildlife interface areas of Zimbabwe, which militates against biodiversity conservation efforts. The low awareness of zoonoses means the public is at risk of contracting some of these infections. Thus, further studies should focus on livestock-wildlife interface areas to assess if the increased rates of abortions reported in cattle may be

  1. Zoonotic and infectious disease surveillance in Central America: Honduran feral cats positive for toxoplasma, trypanosoma, leishmania, rickettsia, and Lyme disease.

    PubMed

    McCown, Michael; Grzeszak, Benjamin

    2010-01-01

    A recent zoonotic and infectious disease field surveillance study in Honduras resulted in the discovery of Toxoplasma, Trypanosoma, Leishmania, Rickettsia, and Lyme disease with statistically high prevalence rates in a group of feral cats. All five diseases--Toxoplasmosis, Trypanosomiasis, Leishmaniasis, Rickettsiosis, and Lyme disease--were confirmed in this group of cats having close contact to local civilians and U.S. personnel. These diseases are infectious to other animals and are known to infect humans as well. In the austere Central and South American sites that Special Operations Forces (SOF) medics are deployed, the living conditions and close quarters are prime environments for the potential spread of infectious and zoonotic disease. This study?s findings, as with previous veterinary disease surveillance studies, emphasize the critical need for continual and aggressive surveillance for zoonotic and infectious disease present within animals in specific areas of operation (AO). The importance to SOF is that a variety of animals may be sentinels, hosts, or direct transmitters of disease to civilians and service members. These studies are value-added tools to the U.S. military, specifically to a deploying or already deployed unit. The SOF medic must ensure that this value-added asset is utilized and that the findings are applied to assure Operational Detachment-Alpha (SFOD-A) health and, on a bigger scale, U.S. military force health protection and local civilian health. © 2010.

  2. Enterococcus faecalis urinary-tract infections: Do they have a zoonotic origin?

    PubMed

    Abat, Cédric; Huart, Michael; Garcia, Vincent; Dubourg, Grégory; Raoult, Didier

    2016-10-01

    Major human pathogens are frequently isolated from meat-producing animals, particularly poultry. Among them is Enterococcus faecalis, which is known to be one of the main cause of human urinary-tract infections worldwide. Early in 2015, we detected several, consecutive abnormal increases in the weekly number of human E. faecalis infections in various medical settings in the Provence-Alpes-Côte d'Azur region of France, especially including community-acquired urinary-tract infections. Speculating that this region-wide epidemiological event may have originated from animal-based food, we initiated this work to provide an overview of the epidemiology of E. faecalis, with a particular focus on the possible link between E. faecalis clones isolated from food-producing animals and those responsible for human urinary-tract infections. At that time, only one study had clearly identified strong epidemiological links between E. faecalis clones isolated from food-producing animals and human E. faecalis urinary-tract infections. This observation, coupled with our region-wide epidemiological experience, leads us to strongly believe that E. faecalis is a real zoonotic pathogen with potentially highly significant impact on human health. This is of particular concern because of its ability to acquire antibiotic-resistance genes and to infect animals and humans. Various strategies must be urgently implemented to address this public health threat, in particular through the development and implementation of large integrated automated surveillance systems based on animal and human health data to enable us to detect E. faecalis epidemiological events. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  3. Perspectives on emerging zoonotic disease research and capacity building in Canada

    PubMed Central

    Stephen, Craig; Artsob, Harvey; Bowie, William R; Drebot, Michael; Fraser, Erin; Leighton, Ted; Morshed, Muhammad; Ong, Corinne; Patrick, David

    2004-01-01

    Zoonoses are fundamental determinants of community health. Preventing, identifying and managing these infections must be a central public health focus. Most current zoonoses research focuses on the interface of the pathogen and the clinically ill person, emphasizing microbial detection, mechanisms of pathogenicity and clinical intervention strategies, rather than examining the causes of emergence, persistence and spread of new zoonoses. There are gaps in the understanding of the animal determinants of emergence and the capacity to train highly qualified individuals; these are major obstacles to preventing new disease threats. The ability to predict the emergence of zoonoses and their resulting public health and societal impacts are hindered when insufficient effort is devoted to understanding zoonotic disease epidemiology, and when zoonoses are not examined in a manner that yields fundamental insight into their origin and spread. Emerging infectious disease research should rest on four pillars: enhanced communications across disciplinary and agency boundaries; the assessment and development of surveillance and disease detection tools; the examination of linkages between animal health determinants of human health outcomes; and finally, cross-disciplinary training and research. A national strategy to predict, prevent and manage emerging diseases must have a prominent and explicit role for veterinary and biological researchers. An integrated health approach would provide decision makers with a firmer foundation from which to build evidence-based disease prevention and control plans that involve complex human/animal/environmental systems, and would serve as the foundation to train and support the new cadre of individuals ultimately needed to maintain and apply research capacity in this area. PMID:18159512

  4. Perspectives on emerging zoonotic disease research and capacity building in Canada.

    PubMed Central

    Stephen, Craig; Artsob, Harvey; Bowie, William R.; Drebot, Michael; Fraser, Erin; Leighton, Ted; Morshed, Muhammad; Ong, Corinne; Patrick, David

    2005-01-01

    Zoonoses are fundamental determinants of community health. Preventing, identifying and managing these infections must be a central public health focus. Most current zoonoses research focuses on the interface of the pathogen and the clinically ill person, emphasizing microbial detection, mechanisms of pathogenicity and clinical intervention strategies, rather than examining the causes of emergence, persistence and spread of new zoonoses. There are gaps in the understanding of the animal determinants of emergence and the capacity to train highly qualified individuals; these are major obstacles to preventing new disease threats. The ability to predict the emergence of zoonoses and their resulting public health and societal impacts are hindered when insufficient effort is devoted to understanding zoonotic disease epidemiology, and when zoonoses are not examined in a manner that yields fundamental insight into their origin and spread. Emerging infectious disease research should rest on four pillars: enhanced communications across disciplinary and agency boundaries; the assessment and development of surveillance and disease detection tools; the examination of linkages between animal health determinants of human health outcomes; and finally, cross-disciplinary training and research. A national strategy to predict, prevent and manage emerging diseases must have a prominent and explicit role for veterinary and biological researchers. An integrated health approach would provide decision makers with a firmer foundation from which to build evidence-based disease prevention and control plans that involve complex human/animal/environmental systems, and would serve as the foundation to train and support the new cadre of individuals ultimately needed to maintain and apply research capacity in this area. PMID:15759832

  5. Evolution of a zoonotic pathogen: investigating prophage diversity in enterohaemorrhagic Escherichia coli O157 by long-read sequencing

    USDA-ARS?s Scientific Manuscript database

    Enterohaemorrhagic E. coli 0157 is a zoonotic pathogen for which colonisation of cattle and virulence in humans is associated with the expression of multiple horizontally acquired genes, the majority present in active or cryptic prophages. Our understanding of the evolution and phylogeny of E. coli ...

  6. Effect of fluorescent pseudomonades and Trichoderma sp. and their combination with two chemicals on Penicillium digitatum caused agent of citrus green mold.

    PubMed

    Zamani, M; Tehrani, A Sharifi; Ahmadzadeh, M; Abadi, A Alizadeh Ali

    2006-01-01

    Citrus green mold (Penicillium digitatum) causes economic losses. Chemical fungicides such as imazalil provide the primary means for controlling green mold decay of citrus fruits. Continuous use of fungicides has faced two major obstacles- increasing public concern regarding contamination of perishables with fungicidal residues, and proliferation of resistance in the pathogen populations. The aim of this research was to determine if the attacks of green mold on orange could be reduced by usage of biocontrol agent alone or in combination with low dosage of imazalil or sodium bicarbonate. Pseudomonas fluorescens isolate PN, P. fluorescens isolate PS and Trichoderma virens isolate TE were evaluated as potential biological agents for control of green mold of oranges caused by P. digitatum. Increasing concentration of SB decreased spore germination of P. digitatum. In laboratory tests, a cell suspension (10(8) cells per ml.) of bacterial strains reduced the incidence of green mold. On fruits surface biocontrol activity of antagonistic isolates was significantly increased when combined with low dosage of imazalil (500ppm) or sodium carbonate (5%). Effect of Trichoderma virens on controlling P. digitatum was better than others with or without these chemicals.

  7. A newly emerged focus of zoonotic cutaneous leishmaniasis in South-western Iran.

    PubMed

    Askari, A; Sharifi, I; Aflatoonian, M R; Babaei, Z; Ghasemi Nejad Almani, P; Mohammadi, M A; Alizadeh, H; Hemati, S; Bamorovat, M

    2018-04-27

    Leishmaniasis is rising in many countries, including Iran, due to climate change, refugee crises, urbanization and etc. The aim of this study was to explore the epidemiology, extent and identity of Leishmania species in a newly emerged focus in Abdanan County, Ilam Province, South-western Iran. This study was performed as a descriptive cross-sectional study by a systematic house-to-house approach. The Leishmania species was identified by RFLP-PCR and sequencing. Altogether, 46799 individuals consisting 0f 22907 (48.9) female and 23892 (51.1%) male were interviewed and physically examined for the presence of skin lesions. Overall, the incidence rate was 0.34% (n = 160). All age groups were affected and the incidence rate was the highest in <10 years of age group (0.49%) and the lowest in >50 years old individuals (0.15%), although there was no significant difference regarding the sex and age. The majority of patients had one lesion (47.5%) on hands (56%) and most of the cases occurred in Abdanan city (%54) in summer. Based on the RFLP-PCR analysis, all the Leishmania isolates were L. major of single genotype. A newly emerged focus of zoonotic CL caused by L. major occurred in South-western of Iran. Multiple risk factors created this epidemic area. Further studies on the vector and reservoir are crucial needed to provide evidences to select the prophylactic and therapeutic measures for future control strategies. Copyright © 2018. Published by Elsevier Ltd.

  8. Research Options for Controlling Zoonotic Disease in India, 2010–2015

    PubMed Central

    Sekar, Nitin; Shah, Naman K.; Abbas, Syed Shahid; Kakkar, Manish

    2011-01-01

    Background Zoonotic infections pose a significant public health challenge for low- and middle-income countries and have traditionally been a neglected area of research. The Roadmap to Combat Zoonoses in India (RCZI) initiative conducted an exercise to systematically identify and prioritize research options needed to control zoonoses in India. Methods and Findings Priority setting methods developed by the Child Health and Nutrition Research Initiative were adapted for the diversity of sectors, disciplines, diseases and populations relevant for zoonoses in India. A multidisciplinary group of experts identified priority zoonotic diseases and knowledge gaps and proposed research options to address key knowledge gaps within the next five years. Each option was scored using predefined criteria by another group of experts. The scores were weighted using relative ranks among the criteria based upon the feedback of a larger reference group. We categorized each research option by type of research, disease targeted, factorials, and level of collaboration required. We analysed the research options by tabulating them along these categories. Seventeen experts generated four universal research themes and 103 specific research options, the majority of which required a high to medium level of collaboration across sectors. Research options designated as pertaining to ‘social, political and economic’ factorials predominated and scored higher than options focussing on ecological, genetic and biological, or environmental factors. Research options related to ‘health policy and systems’ scored highest while those related to ‘research for development of new interventions’ scored the lowest. Conclusions We methodically identified research themes and specific research options incorporating perspectives of a diverse group of stakeholders. These outputs reflect the diverse nature of challenges posed by zoonoses and should be acceptable across diseases, disciplines, and sectors

  9. Constructing rigorous and broad biosurveillance networks for detecting emerging zoonotic outbreaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Mac; Moore, Leslie; McMahon, Benjamin

    Determining optimal surveillance networks for an emerging pathogen is difficult since it is not known beforehand what the characteristics of a pathogen will be or where it will emerge. The resources for surveillance of infectious diseases in animals and wildlife are often limited and mathematical modeling can play a supporting role in examining a wide range of scenarios of pathogen spread. We demonstrate how a hierarchy of mathematical and statistical tools can be used in surveillance planning help guide successful surveillance and mitigation policies for a wide range of zoonotic pathogens. The model forecasts can help clarify the complexities ofmore » potential scenarios, and optimize biosurveillance programs for rapidly detecting infectious diseases. Using the highly pathogenic zoonotic H5N1 avian influenza 2006-2007 epidemic in Nigeria as an example, we determined the risk for infection for localized areas in an outbreak and designed biosurveillance stations that are effective for different pathogen strains and a range of possible outbreak locations. We created a general multi-scale, multi-host stochastic SEIR epidemiological network model, with both short and long-range movement, to simulate the spread of an infectious disease through Nigerian human, poultry, backyard duck, and wild bird populations. We chose parameter ranges specific to avian influenza (but not to a particular strain) and used a Latin hypercube sample experimental design to investigate epidemic predictions in a thousand simulations. We ranked the risk of local regions by the number of times they became infected in the ensemble of simulations. These spatial statistics were then complied into a potential risk map of infection. Finally, we validated the results with a known outbreak, using spatial analysis of all the simulation runs to show the progression matched closely with the observed location of the farms infected in the 2006-2007 epidemic.« less

  10. Constructing Rigorous and Broad Biosurveillance Networks for Detecting Emerging Zoonotic Outbreaks

    PubMed Central

    Brown, Mac; Moore, Leslie; McMahon, Benjamin; Powell, Dennis; LaBute, Montiago; Hyman, James M.; Rivas, Ariel; Jankowski, Mark; Berendzen, Joel; Loeppky, Jason; Manore, Carrie; Fair, Jeanne

    2015-01-01

    Determining optimal surveillance networks for an emerging pathogen is difficult since it is not known beforehand what the characteristics of a pathogen will be or where it will emerge. The resources for surveillance of infectious diseases in animals and wildlife are often limited and mathematical modeling can play a supporting role in examining a wide range of scenarios of pathogen spread. We demonstrate how a hierarchy of mathematical and statistical tools can be used in surveillance planning help guide successful surveillance and mitigation policies for a wide range of zoonotic pathogens. The model forecasts can help clarify the complexities of potential scenarios, and optimize biosurveillance programs for rapidly detecting infectious diseases. Using the highly pathogenic zoonotic H5N1 avian influenza 2006-2007 epidemic in Nigeria as an example, we determined the risk for infection for localized areas in an outbreak and designed biosurveillance stations that are effective for different pathogen strains and a range of possible outbreak locations. We created a general multi-scale, multi-host stochastic SEIR epidemiological network model, with both short and long-range movement, to simulate the spread of an infectious disease through Nigerian human, poultry, backyard duck, and wild bird populations. We chose parameter ranges specific to avian influenza (but not to a particular strain) and used a Latin hypercube sample experimental design to investigate epidemic predictions in a thousand simulations. We ranked the risk of local regions by the number of times they became infected in the ensemble of simulations. These spatial statistics were then complied into a potential risk map of infection. Finally, we validated the results with a known outbreak, using spatial analysis of all the simulation runs to show the progression matched closely with the observed location of the farms infected in the 2006-2007 epidemic. PMID:25946164

  11. Constructing rigorous and broad biosurveillance networks for detecting emerging zoonotic outbreaks

    DOE PAGES

    Brown, Mac; Moore, Leslie; McMahon, Benjamin; ...

    2015-05-06

    Determining optimal surveillance networks for an emerging pathogen is difficult since it is not known beforehand what the characteristics of a pathogen will be or where it will emerge. The resources for surveillance of infectious diseases in animals and wildlife are often limited and mathematical modeling can play a supporting role in examining a wide range of scenarios of pathogen spread. We demonstrate how a hierarchy of mathematical and statistical tools can be used in surveillance planning help guide successful surveillance and mitigation policies for a wide range of zoonotic pathogens. The model forecasts can help clarify the complexities ofmore » potential scenarios, and optimize biosurveillance programs for rapidly detecting infectious diseases. Using the highly pathogenic zoonotic H5N1 avian influenza 2006-2007 epidemic in Nigeria as an example, we determined the risk for infection for localized areas in an outbreak and designed biosurveillance stations that are effective for different pathogen strains and a range of possible outbreak locations. We created a general multi-scale, multi-host stochastic SEIR epidemiological network model, with both short and long-range movement, to simulate the spread of an infectious disease through Nigerian human, poultry, backyard duck, and wild bird populations. We chose parameter ranges specific to avian influenza (but not to a particular strain) and used a Latin hypercube sample experimental design to investigate epidemic predictions in a thousand simulations. We ranked the risk of local regions by the number of times they became infected in the ensemble of simulations. These spatial statistics were then complied into a potential risk map of infection. Finally, we validated the results with a known outbreak, using spatial analysis of all the simulation runs to show the progression matched closely with the observed location of the farms infected in the 2006-2007 epidemic.« less

  12. Evolution of a zoonotic pathogen: investigating prophage diversity in enterohaemorrhagic E. coli O157 by long-read sequencing

    USDA-ARS?s Scientific Manuscript database

    Enterohaemorrhagic Escherichia Coli (EHEC) is a zoonotic pathogen known to be potentially lethal in humans. Its main animal reservoir is ruminants, specifically cattle, and yearly outbreaks occur worldwide with the most prevalent serotype being EHEC O157:H7. Most virulence factors of EHEC O157, incl...

  13. Mechanisms of chemoresistance to alkylating agents in malignant glioma.

    PubMed

    Sarkaria, Jann N; Kitange, Gaspar J; James, C David; Plummer, Ruth; Calvert, Hilary; Weller, Michael; Wick, Wolfgang

    2008-05-15

    Intrinsic or acquired chemoresistance to alkylating agents is a major cause of treatment failure in patients with malignant brain tumors. Alkylating agents, the mainstay of treatment for brain tumors, damage the DNA and induce apoptosis, but the cytotoxic activity of these agents is dependent on DNA repair pathways. For example, O6-methylguanine DNA adducts can cause double-strand breaks, but this is dependent on a functional mismatch repair pathway. Thus, tumor cell lines deficient in mismatch repair are resistant to alkylating agents. Perhaps the most important mechanism of resistance to alkylating agents is the DNA repair enzyme O6-methylguanine methyltransferase, which can eliminate the cytotoxic O6-methylguanine DNA adduct before it causes harm. Another mechanism of resistance to alkylating agents is the base excision repair (BER) pathway. Consequently, efforts are ongoing to develop effective inhibitors of BER. Poly(ADP-ribose)polymerase plays a pivotal role in BER and is an important therapeutic target. Developing effective strategies to overcome chemoresistance requires the identification of reliable preclinical models that recapitulate human disease and which can be used to facilitate drug development. This article describes the diverse mechanisms of chemoresistance operating in malignant glioma and efforts to develop reliable preclinical models and novel pharmacologic approaches to overcome resistance to alkylating agents.

  14. Molecular detection of Rickettsia conorii and other zoonotic spotted fever group rickettsiae in ticks, Romania.

    PubMed

    Ionita, Mariana; Silaghi, Cornelia; Mitrea, Ioan Liviu; Edouard, Sophie; Parola, Philippe; Pfister, Kurt

    2016-02-01

    The diverse tick fauna as well as the abundance of tick populations in Romania represent potential risks for both human and animal health. Spotted fever group (SFG) rickettsiae are recognized as important agents of emerging human tick-borne diseases worldwide. However, the epidemiology of rickettsial diseases has been poorly investigated in Romania. In urban habitats, companion animals which are frequently exposed to tick infestation, play a role in maintenance of tick populations and as reservoirs of tick-borne pathogens. Therefore, the aim of the present study was to investigate the occurrence of SFG rickettsiae in ticks infesting dogs in a greater urban area in South-eastern Romania. Adult ixodid ticks (n=205), including Rhipicephalus sanguineus sensu lato (n=120), Dermacentor reticulatus (n=76) and Ixodes ricinus (n=9) were collected from naturally infested dogs and were screened for SFG rickettsiae using conventional PCR followed by sequencing. Additionally, ticks were screened for DNA of Babesia spp., Hepatozoon spp., Ehrlichia canis, and Anaplasma platys. Four zoonotic SFG rickettsiae were identified: Rickettsia raoultii (16%) and Rickettsia slovaca (3%) in D. reticulatus, Rickettsia monacensis (11%) in I. ricinus, and Rickettsia conorii (0.8%) in Rh. sanguineus s.l. Moreover, pathogens of veterinary importance, such as B. canis (21%) in D. reticulatus and E. canis (7.5%) in Rh. sanguineus s.l. were identified. The findings expand the knowledge on distribution of SFG rickettsiae as well as canine pathogens in Romania. Additionally, this is the first report describing the molecular detection of R. conorii in ticks from Romania. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. Serological evidence for a hepatitis e virus-related agent in goats in the United States.

    PubMed

    Sanford, B J; Emerson, S U; Purcell, R H; Engle, R E; Dryman, B A; Cecere, T E; Buechner-Maxwell, V; Sponenberg, D P; Meng, X J

    2013-12-01

    Hepatitis E virus (HEV) causes an important public health disease in many developing countries and is also endemic in some industrialized countries. In addition to humans, strains of HEV have been genetically identified from pig, chicken, rat, mongoose, deer, rabbit and fish. While the genotypes 1 and 2 HEV are restricted to humans, the genotypes 3 and 4 HEV are zoonotic and infect humans and other animal species. As a part of our ongoing efforts to search for potential animal reservoirs for HEV, we tested goats from Virginia for evidence of HEV infection and showed that 16% (13/80) of goat sera from Virginia herds were positive for IgG anti-HEV. Importantly, we demonstrated that neutralizing antibodies to HEV were present in selected IgG anti-HEV positive goat sera. Subsequently, in an attempt to genetically identify the HEV-related agent from goats, we conducted a prospective study in a closed goat herd with known anti-HEV seropositivity and monitored a total of 11 kids from the time of birth until 14 weeks of age for evidence of HEV infection. Seroconversion to IgG anti-HEV was detected in seven of the 11 kids, although repeated attempts to detect HEV RNA by a broad-spectrum nested RT-PCR from the faecal and serum samples of the goats that had seroconverted were unsuccessful. In addition, we also attempted to experimentally infect laboratory goats with three well-characterized mammalian strains of HEV but with no success. The results indicate that a HEV-related agent is circulating and maintained in the goat population in Virginia and that the goat HEV is likely genetically very divergent from the known HEV strains. © 2012 Blackwell Verlag GmbH.

  16. Burnout among Extension Agents in the Ohio Cooperative Extension Service.

    ERIC Educational Resources Information Center

    Igodan, O. Chris; Newcomb, L. H.

    A study examined the extent and causes of burnout among extension agents in Ohio. From the 241 extension agents working in the 88 counties of Ohio, researchers selected a random sample of 101 agents. Included in the sample were 34 agriculture agents, 33 home economics agents. Included in the sample agents were asked to complete a survey…

  17. Wildlife Trade and Human Health in Lao PDR: An Assessment of the Zoonotic Disease Risk in Markets.

    PubMed

    Greatorex, Zoe F; Olson, Sarah H; Singhalath, Sinpakone; Silithammavong, Soubanh; Khammavong, Kongsy; Fine, Amanda E; Weisman, Wendy; Douangngeun, Bounlom; Theppangna, Watthana; Keatts, Lucy; Gilbert, Martin; Karesh, William B; Hansel, Troy; Zimicki, Susan; O'Rourke, Kathleen; Joly, Damien O; Mazet, Jonna A K

    2016-01-01

    Although the majority of emerging infectious diseases can be linked to wildlife sources, most pathogen spillover events to people could likely be avoided if transmission was better understood and practices adjusted to mitigate risk. Wildlife trade can facilitate zoonotic disease transmission and represents a threat to human health and economies in Asia, highlighted by the 2003 SARS coronavirus outbreak, where a Chinese wildlife market facilitated pathogen transmission. Additionally, wildlife trade poses a serious threat to biodiversity. Therefore, the combined impacts of Asian wildlife trade, sometimes termed bush meat trade, on public health and biodiversity need assessing. From 2010 to 2013, observational data were collected in Lao PDR from markets selling wildlife, including information on volume, form, species and price of wildlife; market biosafety and visitor origin. The potential for traded wildlife to host zoonotic diseases that pose a serious threat to human health was then evaluated at seven markets identified as having high volumes of trade. At the seven markets, during 21 observational surveys, 1,937 alive or fresh dead mammals (approximately 1,009 kg) were observed for sale, including mammals from 12 taxonomic families previously documented to be capable of hosting 36 zoonotic pathogens. In these seven markets, the combination of high wildlife volumes, high risk taxa for zoonoses and poor biosafety increases the potential for pathogen presence and transmission. To examine the potential conservation impact of trade in markets, we assessed the status of 33,752 animals observed during 375 visits to 93 markets, under the Lao PDR Wildlife and Aquatic Law. We observed 6,452 animals listed by Lao PDR as near extinct or threatened with extinction. The combined risks of wildlife trade in Lao PDR to human health and biodiversity highlight the need for a multi-sector approach to effectively protect public health, economic interests and biodiversity.

  18. Wildlife Trade and Human Health in Lao PDR: An Assessment of the Zoonotic Disease Risk in Markets

    PubMed Central

    Singhalath, Sinpakone; Silithammavong, Soubanh; Khammavong, Kongsy; Fine, Amanda E.; Weisman, Wendy; Douangngeun, Bounlom; Theppangna, Watthana; Keatts, Lucy; Gilbert, Martin; Karesh, William B.; Hansel, Troy; Zimicki, Susan; O’Rourke, Kathleen; Joly, Damien O.; Mazet, Jonna A. K.

    2016-01-01

    Although the majority of emerging infectious diseases can be linked to wildlife sources, most pathogen spillover events to people could likely be avoided if transmission was better understood and practices adjusted to mitigate risk. Wildlife trade can facilitate zoonotic disease transmission and represents a threat to human health and economies in Asia, highlighted by the 2003 SARS coronavirus outbreak, where a Chinese wildlife market facilitated pathogen transmission. Additionally, wildlife trade poses a serious threat to biodiversity. Therefore, the combined impacts of Asian wildlife trade, sometimes termed bush meat trade, on public health and biodiversity need assessing. From 2010 to 2013, observational data were collected in Lao PDR from markets selling wildlife, including information on volume, form, species and price of wildlife; market biosafety and visitor origin. The potential for traded wildlife to host zoonotic diseases that pose a serious threat to human health was then evaluated at seven markets identified as having high volumes of trade. At the seven markets, during 21 observational surveys, 1,937 alive or fresh dead mammals (approximately 1,009 kg) were observed for sale, including mammals from 12 taxonomic families previously documented to be capable of hosting 36 zoonotic pathogens. In these seven markets, the combination of high wildlife volumes, high risk taxa for zoonoses and poor biosafety increases the potential for pathogen presence and transmission. To examine the potential conservation impact of trade in markets, we assessed the status of 33,752 animals observed during 375 visits to 93 markets, under the Lao PDR Wildlife and Aquatic Law. We observed 6,452 animals listed by Lao PDR as near extinct or threatened with extinction. The combined risks of wildlife trade in Lao PDR to human health and biodiversity highlight the need for a multi-sector approach to effectively protect public health, economic interests and biodiversity. PMID:27008628

  19. First molecular detection and characterization of zoonotic Bartonella species in fleas infesting domestic animals in Tunisia.

    PubMed

    Zouari, Saba; Khrouf, Fatma; M'ghirbi, Youmna; Bouattour, Ali

    2017-09-19

    Bartonellosis is an emerging vector-borne disease caused by different intracellular bacteria of the genus Bartonella (Rhizobiales: Bartonellaceae) that is transmitted primarily by blood-sucking arthropods such as sandflies, ticks and fleas. In Tunisia, there are no data available identifying the vectors of Bartonella spp. In our research, we used molecular methods to detect and characterize Bartonella species circulating in fleas collected from domestic animals in several of the country's bioclimatic areas. A total of 2178 fleas were collected from 5 cats, 27 dogs, 34 sheep, and 41 goats at 22 sites located in Tunisia's five bioclimatic zones. The fleas were identified as: 1803 Ctenocephalides felis (83%) (Siphonaptera: Pulicidae), 266 C. canis (12%) and 109 Pulex irritans (5%) (Siphonaptera: Pulicidae). Using conventional PCR, we screened the fleas for the presence of Bartonella spp., targeting the citrate synthase gene (gltA). Bartonella DNA was detected in 14% (121/866) of the tested flea pools [estimated infection rate (EIR) per 2 specimens: 0.072, 95% confidence interval (CI): 0.060-0.086]. The Bartonella infection rate per pool was broken down as follows: 55% (65/118; EIR per 2 specimens: 0.329, 95% CI: 0.262-0.402) in C. canis; 23.5% (8/34; EIR per 2 specimens: 0.125, 95% CI: 0.055-0.233) in P. irritans and 6.7% (48/714; EIR per 2 specimens: 0.032, 95% CI: 0.025-0.045) in C. felis. Infection rates, which varied significantly by bioclimatic zone (P < 0.0001), were highest in the humid areas. By sequencing, targeting the gltA gene and the 16S-23S rRNA Intergenic Spacer Regions (ITS), we identified three Bartonella zoonotic species: B. elizabethae, B. henselae, B. clarridgeiae, as well as uncharacterized Bartonella genotypes. To the best of our knowledge, this is the first time that fleas in Tunisia have been shown to carry zoonotic species of Bartonella. The dog flea, Ctenocephalides canis, should be considered the main potential vector of Bartonella. Our

  20. The potential for zoonotic transmission of Giardia duodenalis and Cryptosporidium spp. from beef and dairy cattle in Ontario, Canada.

    PubMed

    Dixon, Brent; Parrington, Lorna; Cook, Angela; Pintar, Katarina; Pollari, Frank; Kelton, David; Farber, Jeffrey

    2011-01-10

    The objective of this study was to compare the occurrence and the genotypes and species of Giardia duodenalis and Cryptosporidium spp. in beef and dairy cattle from farms in the Regional Municipality of Waterloo, Ontario, in an effort to determine the potential for zoonotic transmission from these animals. Pooled manure samples were collected from 45 dairy cattle farms and 30 beef cattle farms. The presence of Giardia cysts and Cryptosporidium oocysts was determined by immunofluorescence microscopy, while nested-PCR and DNA sequencing were used to determine genotypes and species. The overall farm prevalence was very high for both Giardia and Cryptosporidium, and was similar for dairy cattle farms (96 and 64%, respectively) and beef cattle farms (97 and 63%, respectively). However, on dairy cattle farms, G. duodenalis and Cryptosporidium spp. were detected in 44% and 6% of total pooled pen manure samples, respectively, with the occurrence of both parasites being generally higher in calves than in older animals. Most Giardia isolates were identified as either the host-adapted genotype G. duodenalis Assemblage E or the zoonotic Assemblage B. Cryptosporidium parvum and Cryptosporidium andersoni were the most frequently identified species in dairy cattle, while the non-zoonotic species Cryptosporidium ryanae and Cryptosporidium bovis were also found. On beef cattle farms, 72% and 27% of the total pooled pen manure samples were positive for Giardia and Cryptosporidium, respectively, with no obvious correlation with age. All Giardia isolates in beef cattle were identified as G. duodenalis Assemblage E, while all Cryptosporidium isolates were identified by sequence analysis as C. andersoni, although microscopic analyses, and subsequent restriction fragment length polymorphism analyses, indicated that other Cryptosporidium species were also present. The results of this study indicate that although Giardia and Cryptosporidium were identified in a higher overall percentage of

  1. Wildlife-associated zoonotic diseases in some southern African countries in relation to game meat safety: a review.

    PubMed

    Bekker, Johan L; Hoffman, Louw C; Jooste, Piet J

    2012-12-05

    With on-going changes in land use practices from conventional livestock farming to commercial, wildlife-based activities, the interface or interaction between livestock and wildlife is increasing. As part of the wildlife-based activities of ecotourism, breeding and hunting, game farmers are also exploring the utilisation of meat from hunted or harvested game. The expanding interface or increased interaction between livestock and wildlife increases the risk of disease incidence and the emergence of new diseases or the re-emergence of previously diagnosed diseases. The risk is not only related to domestic and wild animal health, but also to the occupational hazards that it poses to animal handlers and the consumers of game meat. This review endeavours to highlight the role that game plays in the spreading of zoonotic diseases to other animals and humans. Examples of zoonotic diseases that have occurred in wild animals in the past, their relevance and risk have been summarised and should function as a quick reference guide for wildlife veterinarians, ecologists, farmers, hunters, slaughter staff, processors and public health professionals.

  2. Delta agent (Hepatitis D)

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000216.htm Hepatitis D (Delta agent) To use the sharing features on this page, please enable JavaScript. Hepatitis D is a viral infection caused by the ...

  3. Immunologic responses to therapeutic biologic agents.

    PubMed

    Purcell, R T; Lockey, R F

    2008-01-01

    Recombinant protein technology and the subsequent development of biologic agents for pharmacotherapy have greatly improved the treatment of a wide variety of diseases in humans. These products are subject to reactions not previously seen in other drug classes. Additionally, subtle alteration in the manufacture or administration of a biologic agent may cause reactions in subjects who previously tolerated it. This review highlights the unique immunologic reactions that are associated with the more commonly used biologic agents.

  4. Co-Infection Dynamics of a Major Food-Borne Zoonotic Pathogen in Chicken

    PubMed Central

    Skånseng, Beate; Trosvik, Pål; Zimonja, Monika; Johnsen, Gro; Bjerrum, Lotte; Pedersen, Karl; Wallin, Nina; Rudi, Knut

    2007-01-01

    A major bottleneck in understanding zoonotic pathogens has been the analysis of pathogen co-infection dynamics. We have addressed this challenge using a novel direct sequencing approach for pathogen quantification in mixed infections. The major zoonotic food-borne pathogen Campylobacter jejuni, with an important reservoir in the gastrointestinal (GI) tract of chickens, was used as a model. We investigated the co-colonisation dynamics of seven C. jejuni strains in a chicken GI infection trial. The seven strains were isolated from an epidemiological study showing multiple strain infections at the farm level. We analysed time-series data, following the Campylobacter colonisation, as well as the dominant background flora of chickens. Data were collected from the infection at day 16 until the last sampling point at day 36. Chickens with two different background floras were studied, mature (treated with Broilact, which is a product consisting of bacteria from the intestinal flora of healthy hens) and spontaneous. The two treatments resulted in completely different background floras, yet similar Campylobacter colonisation patterns were detected in both groups. This suggests that it is the chicken host and not the background flora that is important in determining the Campylobacter colonisation pattern. Our results showed that mainly two of the seven C. jejuni strains dominated the Campylobacter flora in the chickens, with a shift of the dominating strain during the infection period. We propose a model in which multiple C. jejuni strains can colonise a single host, with the dominant strains being replaced as a consequence of strain-specific immune responses. This model represents a new understanding of C. jejuni epidemiology, with future implications for the development of novel intervention strategies. PMID:18020703

  5. Conjunctively screening of biocontrol agents (BCAs) against fusarium root rot and fusarium head blight caused by Fusarium graminearum.

    PubMed

    Wang, Lu-Yao; Xie, Yue-Shen; Cui, Yuan-Yu; Xu, Jianjun; He, Wei; Chen, Huai-Gu; Guo, Jian-Hua

    2015-08-01

    Fusarium root-rot and fusarium head blight are plant diseases caused by Fusarium sp. in different growth periods of wheat, bring heavy losses to crop production in China. This research is aiming to screen biocontrol agents conjunctively for controlling these two diseases at the same time, as well as evaluate our previous BCAs (Biological Control Agents) screening strategies in more complex situation, considering biocontrol is well concerned as an environmental-friendly plant disease controlling method. Totally 966 bacterial isolates were screened from different parts of wheat tissues, of which potential biocontrol values were detected according to their abilities in antagonism inhibition and secreting extracellular hydrolytic enzyme. Biocontrol tests against fusarium root rot and fusarium head blight were carried out on 37 bacterial isolates with potential biocontrol capacity after pre-selection through ARDRA- and BOX-PCR analysis on strains with high assessment points. We acquired 10 BCAs with obvious biocontrol efficacy (more than 40%) in greenhouse and field tests. Pseudomonas fluorescens LY1-8 performed well in both two tests (biocontrol efficacy: 44.62% and 58.31%), respectively. Overall, correlation coefficient is 0.720 between assessment values of 37 tested BCA strains and their biocontrol efficacy in trails against fusarium root rot; correlation coefficient is 0.806 between their assessment values and biocontrol efficacy in trails against fusarium head blight. We acquired 10 well-performed potential BCAs, especially P. fluorescens LY1-8 displayed good biocontrol capacity against two different diseases on wheat. Biocontrol efficacies results in both greenhouse and field tests showed high positive correlation with assessment values (0.720 and 0.806), suggesting that the BCAs screening and assessing strategy previously developed in our lab is also adaptable for conjunctively screening BCAs for controlling both root and shoot diseases on wheat caused by same

  6. Genetic Diversity of Giardia duodenalis: Multilocus Genotyping Reveals Zoonotic Potential between Clinical and Environmental Sources in a Metropolitan Region of Brazil

    PubMed Central

    Durigan, Mauricio; Abreu, Aluana Gonçalves; Zucchi, Maria Imaculada; Franco, Regina Maura Bueno; de Souza, Anete Pereira

    2014-01-01

    Background Giardia duodenalis is a flagellate protozoan that parasitizes humans and several other mammals. Protozoan contamination has been regularly documented at important environmental sites, although most of these studies were performed at the species level. There is a lack of studies that correlate environmental contamination and clinical infections in the same region. The aim of this study is to evaluate the genetic diversity of a set of clinical and environmental samples and to use the obtained data to characterize the genetic profile of the distribution of G. duodenalis and the potential for zoonotic transmission in a metropolitan region of Brazil. Methodology/Principal Findings The genetic assemblages and subtypes of G. duodenalis isolates obtained from hospitals, a veterinary clinic, a day-care center and important environmental sites were determined via multilocus sequence-based genotyping using three unlinked gene loci. Cysts of Giardia were detected at all of the environmental sites. Mixed assemblages were detected in 25% of the total samples, and an elevated number of haplotypes was identified. The main haplotypes were shared among the groups, and new subtypes were identified at all loci. Ten multilocus genotypes were identified: 7 for assemblage A and 3 for assemblage B. Conclusions/Significance There is persistent G. duodenalis contamination at important environmental sites in the city. The identified mixed assemblages likely represent mixed infections, suggesting high endemicity of Giardia in these hosts. Most Giardia isolates obtained in this study displayed zoonotic potential. The high degree of genetic diversity in the isolates obtained from both clinical and environmental samples suggests that multiple sources of infection are likely responsible for the detected contamination events. The finding that many multilocus genotypes (MLGs) and haplotypes are shared by different groups suggests that these sources of infection may be related and

  7. Serological evidence for a hepatitis E virus (HEV)-related agent in goats in the United States

    PubMed Central

    Sanford, B.J.; Emerson, S.U.; Purcell, R.H.; Engle, R.E.; Dryman, B.A.; Cecere, T.E.; Buechner-Maxwell, V.; Sponenberg, D.P.; Meng, X.J.

    2012-01-01

    Summary Hepatitis E virus (HEV) causes an important public health disease in many developing countries and is also endemic in some industrialized countries. In addition to humans, strains of HEV have been genetically identified from pig, chicken, rat, mongoose, deer, rabbit and fish. While the genotypes 1 and 2 HEV are restricted to humans, the genotypes 3 and 4 HEV are zoonotic and infect humans and other animal species. As a part of our ongoing efforts to search for potential animal reservoirs for HEV, we tested goats from Virginia for evidence of HEV infection and showed that 16% (13/80) of goat sera from Virginia herds were positive for IgG anti-HEV. Importantly, we demonstrated that neutralizing antibodies to HEV were present in selected IgG anti-HEV positive goat sera. Subsequently, in an attempt to genetically identify the HEV-related agent from goats, we conducted a prospective study in a closed goat herd with known anti-HEV seropositivity and monitored a total of 11 kids from the time of birth until 14 weeks of age for evidence of HEV infection. Seroconversion to IgG anti-HEV was detected in 7 of the 11 kids, although repeated attempts to detect HEV RNA by a broad-spectrum nested RT-PCR from the fecal and serum samples of the goats that had seroconverted were unsuccessful. In addition, we also attempted to experimentally infect laboratory goats with three well-characterized mammalian strains of HEV but with no success. The results indicate that a HEV-related agent is circulating and maintained in the goat population in Virginia and that the goat HEV is likely genetically very divergent from the known HEV strains. PMID:22909079

  8. Zoonotic pathogens from feral swine that pose a significant threat to public health.

    PubMed

    Brown, V R; Bowen, R A; Bosco-Lauth, A M

    2018-06-01

    The natural fecundity of suids, great ability to adapt to new habitats and desire for local hunting opportunities leading to translocation of feral pigs to regions where they are not yet established have all been instrumental in the home range expansion of feral swine. Feral swine populations in the United States continue to expand, wreaking havoc on agricultural lands, further compromising threatened and endangered species, and posing a microbiological threat to humans, domestic livestock and companion animals. This manuscript thoroughly reviews zoonotic diseases of concern including brucellosis, bovine tuberculosis, leptospirosis, enteric pathogens, both Salmonella spp. and shiga toxin-producing Escherichia coli, and hepatitis E. These pathogens are not a comprehensive list of microbes that are capable of infecting both humans and feral swine, but rather have been selected as they are known to infect US feral swine, direct transmission between wild suids and humans has previously been documented, or they have been shown to be readily transmitted during processing or consumption of feral swine pork. Humans that interact directly or indirectly with feral swine are at much higher risk for the development of a number of zoonotic pathogens. Numerous case reports document transmission events from feral swine and wild boar to humans, and the resulting diseases may be mild and self-limiting, chronic or fatal. Individuals that interact with feral swine should take preventative measures to minimize the risk of disease transmission and all meat should be thoroughly cooked. Additionally, public health campaigns to increase knowledge of the risks associated with feral swine are imperative. © 2018 Blackwell Verlag GmbH.

  9. Whole genome sequencing of a rare rotavirus from archived stool sample demonstrates independent zoonotic origin of human G8P[14] strains in Hungary.

    PubMed

    Marton, Szilvia; Dóró, Renáta; Fehér, Enikő; Forró, Barbara; Ihász, Katalin; Varga-Kugler, Renáta; Farkas, Szilvia L; Bányai, Krisztián

    2017-01-02

    Genotype P[14] rotaviruses in humans are thought to be zoonotic strains originating from bovine or ovine host species. Over the past 30 years only few genotype P[14] strains were identified in Hungary totaling<0.1% of all human rotaviruses whose genotype had been determined. In this study we report the genome sequence and phylogenetic analysis of a human genotype G8P[14] strain, RVA/Human-wt/HUN/182-02/2001/G8P[14]. The whole genome constellation (G8-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3) of this strain was shared with another Hungarian zoonotic G8P[14] strain, RVA/Human-wt/HUN/BP1062/2004/G8P[14], although phylogenetic analyses revealed the two rotaviruses likely had different progenitors. Overall, our findings indicate that human G8P[14] rotavirus detected in Hungary in the past originated from independent zoonotic events. Further studies are needed to assess the public health risk associated with infections by various animal rotavirus strains. Copyright © 2016. Published by Elsevier B.V.

  10. Laboratory activities involving transmissible spongiform encephalopathy causing agents

    PubMed Central

    Leunda, Amaya; Van Vaerenbergh, Bernadette; Baldo, Aline; Roels, Stefan; Herman, Philippe

    2013-01-01

    Since the appearance in 1986 of epidemic of bovine spongiform encephalopathy (BSE), a new form of neurological disease in cattle which also affected human beings, many diagnostic and research activities have been performed to develop detection and therapeutic tools. A lot of progress was made in better identifying, understanding and controlling the spread of the disease by appropriate monitoring and control programs in European countries. This paper reviews the recent knowledge on pathogenesis, transmission and persistence outside the host of prion, the causative agent of transmissible spongiform encephalopathies (TSE) in mammals with a particular focus on risk (re)assessment and management of biosafety measures to be implemented in diagnostic and research laboratories in Belgium. Also, in response to the need of an increasing number of European diagnostic laboratories stopping TSE diagnosis due to a decreasing number of TSE cases reported in the last years, decontamination procedures and a protocol for decommissioning TSE diagnostic laboratories is proposed. PMID:24055928

  11. Prosthetic joint infection caused by Pasteurella multocida: a case series and review of literature.

    PubMed

    Honnorat, Estelle; Seng, Piseth; Savini, Hélène; Pinelli, Pierre-Olivier; Simon, Fabrice; Stein, Andreas

    2016-08-20

    Pasteurella multocida is a well-recognized zoonotic agent following dog or cat bites or scratches. Nevertheless, prosthetic joint infection caused by P. multocida are rarely reported. We report here a series of six cases of prosthetic joint infection caused by P. multocida managed at a referral centre for the treatment of bone and joint infection in southern France. We also reviewed the 26 cases reported in literature. The mean age of our cases was 74 years [±8.2, range 63-85]. In majority of our cases (5 cases) were associated with knee prostheses and one case with a hip prosthesis. Most of cases occurred after cat or dog scratches or licks or contact. Diagnoses of prosthetic joint infection caused by P. multocida were made by positive cultures of surgical biopsies or needle aspiration. Mean time delay between prosthetic joint implantation and infection onset was 7.6 years (±5.12 years, range 2-17). Local inflammation, which occurred in all six cases, was the most frequent clinical symptom, followed by pain in five cases, fever and swollen joints in four cases, and a fistula with purulent discharge inside the wound in two cases. The mean time of antibiotic therapy was 8 months. Surgical treatment with prosthesis removal was performed in three cases. Six of our cases were in remission without apparent relapse at 3 years after end of treatment. Prosthetic joint infections caused by P. multocida usually occur after animal scratches or bites, but can occasionally occur after a short animal lick. These infections are usually resulting from a contiguous infection and localized in the knee. An early antibiotic therapy after surgical debridement could avoid prosthetic withdrawal, notably in elderly patients. Patients with prosthetic joints should be warned that animals are potential sources of serious infection and urgent medical advice should be sought if they are bitten or scratched.

  12. Bacterial agents as a cause of infertility in humans.

    PubMed

    Ruggeri, Melania; Cannas, Sara; Cubeddu, Marina; Molicotti, Paola; Piras, Gennarina Laura; Dessole, Salvatore; Zanetti, Stefania

    2016-07-01

    Infertility is a problem affecting almost 15% of couples. There are many causes for this condition, among which urogenital bacterial infections seem to play an important role. Many studies have explained the mechanisms by which bacteria cause infertility both in men and women. Therefore we undertook this study to evaluate the presence of genito-urinary infections in infertile couples who sought counselling to investigate their condition. Microbiological analysis was performed on semen and vaginal/cervical samples of both partners of each couple. The percentage of individuals affected by a urogenital bacterial infection was between 14 and 20%. More significantly, most of the species isolated both in men and women have been described in the literature as potential causes of infertility.

  13. Zoonotic bacteria and parasites found in raw meat-based diets for cats and dogs.

    PubMed

    van Bree, Freek P J; Bokken, Gertie C A M; Mineur, Robin; Franssen, Frits; Opsteegh, Marieke; van der Giessen, Joke W B; Lipman, Len J A; Overgaauw, Paul A M

    2018-01-13

    Feeding raw meat-based diets (RMBDs) to companion animals has become increasingly popular. Since these diets may be contaminated with bacteria and parasites, they may pose a risk to both animal and human health. The purpose of this study was to test for the presence of zoonotic bacterial and parasitic pathogens in Dutch commercial RMBDs. We analysed 35 commercial frozen RMBDs from eight different brands. Escherichia coli serotype O157:H7 was isolated from eight products (23 per cent) and extended-spectrum beta-lactamases-producing E coli was found in 28 products (80 per cent). Listeria monocytogenes was present in 19 products (54 per cent), other Listeria species in 15 products (43 per cent) and Salmonella species in seven products (20 per cent). Concerning parasites, four products (11 per cent) contained Sarcocystis cruzi and another four (11 per cent) S tenella In two products (6 per cent) Toxoplasma gondii was found. The results of this study demonstrate the presence of potential zoonotic pathogens in frozen RMBDs that may be a possible source of bacterial infections in pet animals and if transmitted pose a risk for human beings. If non-frozen meat is fed, parasitic infections are also possible. Pet owners should therefore be informed about the risks associated with feeding their animals RMBDs. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. A revised method of examining fish for infection with zoonotic nematode larvae.

    PubMed

    Shamsi, Shokoofeh; Suthar, Jaydipbhai

    2016-06-16

    The infection of fish with zoonotic nematodes, particularly anisakid nematodes is of great interest to many researchers who study food safety, human or animal health or who use them as biological tags for stock assessment studies. Accurate examination of fish for infection with anisakid larvae is crucial in making accurate estimates of their occurrence, abundance and prevalence in their fish hosts. Here we describe a new method of examining fish for infection with these parasites. In 2015, a total of 261 fish were purchased from a fish market in New South Wales, Australia. All fish were first examined by routine visual examination for infection with zoonotic nematode larvae and all data were recorded. Subsequently all internal organs were placed in a container and filled with water and incubated in the room temperature overnight. The prevalence, mean intensity and mean abundance of anisakids were significantly higher (p<0.05) when the revised method of examination, i.e., combining visual examination and overnight incubation in room temperature, was employed (63.98, 8.23 and 5.27, respectively) compared to routine visual examination with or without the aid of a microscope (8.81, 3.78 and 0.33, respectively). The proposed method is effective and has several advantages, such as: not using UV or HCl for fish examination, allowing the examination of a larger number of fish in shorter time; larval specimens collected being suitable for both morphological and DNA sequencing; and being simple and inexpensive. The disadvantages would be the odour of the specimens after overnight incubation as well as not being suitable for use with frozen fish. We suggest that results, conclusions or recommendations made in studies that claim no anisakid/ascaridoid larvae were found in a fish should be approached carefully if it is only based on visual examination of the fish. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Sarcoptes infestation in two miniature pigs with zoonotic transmission - a case report.

    PubMed

    Grahofer, Alexander; Bannoehr, Jeanette; Nathues, Heiko; Roosje, Petra

    2018-03-13

    Scabies is a contagious skin disease rarely described in miniature pigs. To the best of the authors' knowledge, a zoonotic transfer from infected pet pigs to humans has not been reported previously. This case report describes the infestation with Sarcoptes scabiei mites in two miniature pigs presenting with unusual clinical signs, and disease transmission to a child. Two 7-month-old male castrated miniature pig siblings were examined. Both had developed skin lesions, one animal was presented for neurological signs and emaciation. They were housed together in an indoor- and outdoor enclosure. Dermatological examination revealed a dull, greasy coat with generalized hypotrichosis and multifocal erythema. Microscopic examination of skin scrapings, impression smears of affected skin and ear swabs revealed high numbers of Sarcoptes mites in both animals as well as bacterial overgrowth. A subcutaneous injection of ivermectin 0.3 mg/kg was administered to both animals and repeated after 2 weeks. Both miniature pigs received subcutaneous injections with butafosfan and cyanocobalamin, were washed with a 3% chlorhexidine shampoo and were fed on a well-balanced diet. Pig enclosures were cleaned. The infested child was examined by a physician and an antipruritic cream was prescribed. Both miniature pigs and the child went into clinical remission after treatment. Sarcoptic mange is rare or even eradicated in commercial pig farming in many countries but miniature pigs may represent a niche for Sarcoptes scabiei infections. This case report indicates that miniature pigs kept as pets can efficiently transmit zoonotic disease to humans. In addition, these animals may represent a niche for Sarcoptes scabiei infestation in countries where sarcoptic mange in commercial pig farms has been eradicated and could therefore pose, a hazard for specific pathogen free farms.

  16. Spatial distribution of canine zoonotic enteroparasites in Bahía Blanca, Argentina.

    PubMed

    La Sala, Luciano F; Leiboff, Anastasia; Burgos, Julián M; Costamagna, Sixto R

    2015-01-01

    The objectives of this research were: (1) to determine the occurrence of zoonotic enteroparasites in dog feces from Bahía Blanca, Argentina; (2) to characterize the spatial distribution of the parasites found in association with the quality of life index (QLI) in neighborhoods of Bahía Blanca; and (3) to determine if the presence of a particular parasite genus in a stool sample was facilitated or impeded by the presence of other parasite genera. Samples of dog stools (n=475) were collected between December 2012 and December 2013 in areas with varying QLI. The association between QLI values and the presence of parasites was analyzed using logistic regression. Overall enteroparasite occurrence was 36.6%. Parasitic forms found included nematode larvae, cysts of Blastocystis spp., Giardia spp., and oocysts of Cryptosporidium spp., and eggs of Ancylostoma caninum, Toxocara canis, cestodes and Trichuris spp. For certain enteroparasites, we detected significant associations between their occurrence and QLI. Feces collected in areas with medium and low QLI were 2.46 and 5.43 times more likely, respectively, to contain A. caninum than stools from the high-QLI area. Samples from areas with low QLI were 2.36 times more likely to contain Trichuris spp. than those from the high QLI area. Regarding protozoa, feces from areas with low QLI were 2.4 times more likely to be positive than those from areas with high QLI. We demonstrated that canine zoonotic parasites have a wide distribution in the study area, and that occurrence is higher in neighborhoods with lower QLI. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. SERIES: Genomic instability in cancer Balancing repair and tolerance of DNA damage caused by alkylating agents

    PubMed Central

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D

    2013-01-01

    Alkylating agents comprise a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER), and mismatch repair (MMR) respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for an organism's favorable response to alkylating agents. Furthermore, an individual's response to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity. PMID:22237395

  18. Road Killed Carnivores Illustrate the Status of Zoonotic Helminthes in Caspian Sea Littoral of Iran

    PubMed Central

    VAFAE ESLAHI, Aida; KIA, Eshrat Beigom; MOBEDI, Iraj; SHARIFDINI, Meysam; BADRI, Milad; MOWLAVI, Gholamreza

    2017-01-01

    Background: Carnivore carcasses on the roads can be regarded as study materials in parasitology and eco-epidemiology. Stray carnivores such as dogs and cats are known to harbor so many different pathogens like zoonotic helminthes. The current investigation, apparent the status of the helminthic parasites found in road killed carnivores from different parts of Guilan Province north of Iran. Methods: Fifty road killed carnivores including 27 stray dogs (Canis familiaris), 11 golden jackals (Canis aureus) and 12 stray cats (Felis catus) were collected from 21 locations of Guilan Province, during Apr to Nov 2015. Internal organs of the carcasses, including digestive tract, heart, kidneys, lungs, liver, skin, eyes as well as muscles were carefully inspected and sampled for helminthological investigation. Results: About 80% of the 50 carnivores, (stray dogs 77.77%, golden jackals 81.81%, and stray cats 91.66%) were found naturally infected with helminthic parasites. Dipylidum caninum, Toxocara cati, Toxocara canis, Toxascaris leonine, Ancylostoma caninum, Ancylostoma tubaeforme, Dirofilaria immitis, Dioctophyma renale, Dipylidum caninum, Echinococcus granulosus, Mesocestoides spp., Taenia hydatigena, Taenia hydatigera, Joyuxiella spp., Spirometra spp. are reported herein. Conclusion: The prevalent occurrence of zoonotic helminthes such as T. canis, T. cati, T. leonina, E. granulosus, D. immitis and D. renale in stray carnivores should be considered as a public health hazard, specifically within a vast tourism area like Guilan Province. PMID:28761483

  19. Road Killed Carnivores Illustrate the Status of Zoonotic Helminthes in Caspian Sea Littoral of Iran.

    PubMed

    Vafae Eslahi, Aida; Kia, Eshrat Beigom; Mobedi, Iraj; Sharifdini, Meysam; Badri, Milad; Mowlavi, Gholamreza

    2017-01-01

    Carnivore carcasses on the roads can be regarded as study materials in parasitology and eco-epidemiology. Stray carnivores such as dogs and cats are known to harbor so many different pathogens like zoonotic helminthes. The current investigation, apparent the status of the helminthic parasites found in road killed carnivores from different parts of Guilan Province north of Iran. Fifty road killed carnivores including 27 stray dogs ( Canis familiaris ), 11 golden jackals ( Canis aureus ) and 12 stray cats ( Felis catus ) were collected from 21 locations of Guilan Province, during Apr to Nov 2015. Internal organs of the carcasses, including digestive tract, heart, kidneys, lungs, liver, skin, eyes as well as muscles were carefully inspected and sampled for helminthological investigation. About 80% of the 50 carnivores, (stray dogs 77.77%, golden jackals 81.81%, and stray cats 91.66%) were found naturally infected with helminthic parasites. Dipylidum caninum , Toxocara cati , Toxocara canis , Toxascaris leonine , Ancylostoma caninum , Ancylostoma tubaeforme , Dirofilaria immitis , Dioctophyma renale , Dipylidum caninum , Echinococcus granulosus , Mesocestoides spp ., Taenia hydatigena, Taenia hydatigera , Joyuxiella spp. , Spirometra spp. are reported herein. The prevalent occurrence of zoonotic helminthes such as T. canis , T. cati , T. leonina , E. granulosus , D. immitis and D. renale in stray carnivores should be considered as a public health hazard, specifically within a vast tourism area like Guilan Province.

  20. Antibodies to Toxoplasma gondii and Leishmania spp. in domestic cats from Luanda, Angola

    USDA-ARS?s Scientific Manuscript database

    Toxoplasma gondii and Leishmania spp. are zoonotic agents of importance to public health, with domestic cats as potential reservoirs for both protozoal infections. The present study aimed at assessing for the first time the seroprevalence of these zoonotic parasites in a domestic feline population l...

  1. Individualistic values are related to an increase in the outbreaks of infectious diseases and zoonotic diseases.

    PubMed

    Morand, Serge; Walther, Bruno A

    2018-03-01

    Collectivist versus individualistic values are important attributes of intercultural variation. Collectivist values favour in-group members over out-group members and may have evolved to protect in-group members against pathogen transmission. As predicted by the pathogen stress theory of cultural values, more collectivist countries are associated with a higher historical pathogen burden. However, if lifestyles of collectivist countries indeed function as a social defence which decreases pathogen transmission, then these countries should also have experienced fewer disease outbreaks in recent times. We tested this novel hypothesis by correlating the values of collectivism-individualism for 66 countries against their historical pathogen burden, recent number of infectious disease outbreaks and zoonotic disease outbreaks and emerging infectious disease events, and four potentially confounding variables. We confirmed the previously established negative relationship between individualism and historical pathogen burden with new data. While we did not find a correlation for emerging infectious disease events, we found significant positive correlations between individualism and the number of infectious disease outbreaks and zoonotic disease outbreaks. Therefore, one possible cost for individualistic cultures may be their higher susceptibility to disease outbreaks. We support further studies into the exact protective behaviours and mechanisms of collectivist societies which may inhibit disease outbreaks.

  2. Pathogenesis, Molecular Genetics, and Genomics of Mycobacterium avium subsp. paratuberculosis, the Etiologic Agent of Johne’s Disease

    PubMed Central

    Rathnaiah, Govardhan; Zinniel, Denise K.; Bannantine, John P.; Stabel, Judith R.; Gröhn, Yrjö T.; Collins, Michael T.; Barletta, Raúl G.

    2017-01-01

    Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne’s disease in ruminants causing chronic diarrhea, malnutrition, and muscular wasting. Neonates and young animals are infected primarily by the fecal–oral route. MAP attaches to, translocates via the intestinal mucosa, and is phagocytosed by macrophages. The ensuing host cellular immune response leads to granulomatous enteritis characterized by a thick and corrugated intestinal wall. We review various tissue culture systems, ileal loops, and mice, goats, and cattle used to study MAP pathogenesis. MAP can be detected in clinical samples by microscopy, culturing, PCR, and an enzyme-linked immunosorbent assay. There are commercial vaccines that reduce clinical disease and shedding, unfortunately, their efficacies are limited and may not engender long-term protective immunity. Moreover, the potential linkage with Crohn’s disease and other human diseases makes MAP a concern as a zoonotic pathogen. Potential therapies with anti-mycobacterial agents are also discussed. The completion of the MAP K-10 genome sequence has greatly improved our understanding of MAP pathogenesis. The analysis of this sequence has identified a wide range of gene functions involved in virulence, lipid metabolism, transcriptional regulation, and main metabolic pathways. We also review the transposons utilized to generate random transposon mutant libraries and the recent advances in the post-genomic era. This includes the generation and characterization of allelic exchange mutants, transcriptomic analysis, transposon mutant banks analysis, new efforts to generate comprehensive mutant libraries, and the application of transposon site hybridization mutagenesis and transposon sequencing for global analysis of the MAP genome. Further analysis of candidate vaccine strains development is also provided with critical discussions on their benefits and shortcomings, and strategies to develop a highly efficacious live

  3. SURVEY OF HOUSE RAT INTESTINAL PARASITES FROM SURABAYA DISTRICT, EAST JAVA, INDONESIA THAT CAN CAUSE OPPORTUNISTIC INFECTIONS IN HUMANS.

    PubMed

    Prasetyo, R H

    2016-03-01

    The purpose of this study was to investigate the prevalence of house rat zoonotic intestinal parasites from Surabaya District, East Java, Indonesia that have the potential to cause opportunistic infection in humans. House rat fecal samples were collected from an area of Surabaya District with a dense rat population during May 2015. Intestinal parasites were detected microscopically using direct smear of feces stained with Lugol's iodine and modified Ziehl-Neelsen stains. The fecal samples were also cultured for Strongyloides stercoralis. Ninety-eight house rat fecal samples were examined. The potential opportunistic infection parasite densities found in those samples were Strongyloides stercoralis in 53%, Hymenolepis nana in 42%, Cryptosporidium spp in 33%, and Blastocystis spp in 6%. This is the first report of this kind in Surabaya District. Measures need to be taken to control the house rat population in the study area to reduce the risk of the public health problem. Keywords: zoonotic intestinal parasites, opportunistic infection, house rat, densely populated area, Indonesia

  4. Rare Cause of Pleuropnemonia: Tularemia Disease.

    PubMed

    Agca, Meltem; Duman, Dildar; Sulu, Ebru; Ozbaki, Fatma; Barkay, Orcun; Ozturk, Derya; Yarkin, Tulay

    2017-09-01

    Tularemia is a zoonotic infection which is caused by gram negative coccobacilli, Francisella tularensis. The disease occurs after contact with blood and body fluids of infected animals, bites and ingestion of infected food and water. Although it commonly presents with skin lesions, there may also be serious organ involvements. A55-year woman was consulted for presumptive diagnosis of tuberculosis. Multiple lymphadenopathy in right cervical area was present on physical examination. Pleural effusion on left side was detected with computed tomography. In detailed history, knowledge of a family member with the diagnosis of tularemia was obtained. Both of them had the history of contact with infected animals. Diagnosis of tularemia was confirmed with microagglutination test. With this patient who was initially presumptively diagnosed as tuberculosis, we aim to draw attention to diagnosis of tularemia in the presence of pleuropnemonia and peripheral lymphadenopathy and emphasize importance of detailed patient history.

  5. Ecological study on antimicrobial-resistant zoonotic bacteria transmitted by flies in cattle farms.

    PubMed

    Mohammed, Asmaa N; Abdel-Latef, Gihan K; Abdel-Azeem, Naglaa M; El-Dakhly, Khaled Mohamed

    2016-10-01

    Flies were qualitatively and quantitatively monitored on both livestock animals and the surrounding environment to investigate their role as a potential carrier for antimicrobial-resistant bacteria of zoonotic importance in cattle farms. This was done by the use of visual observations and animal photography; meanwhile, in the surrounding environment, flies were collected using sticky cards and then microscopically identified. Representative fly samples were cultured for bacterial isolation, biochemical identification, and then tested against common 12 antibiotics. The total average of dipterous flies in examined farms was 400.42 ± 6.2. Culicoides biting midges were the most common existing species (70.01 %) followed by house flies, stable flies, and mosquitoes (18.31, 7.74, and 3.91 %, respectively) at X (2) = 9.0, P < 0.05. The most predominant bacterial isolates were Escherichia coli (22.6 %), Staphylococcus aureus and Enterobacter (17.3 % each), coagulase-negative Staphylococci (CNS) (14.7 %), Klebsiella sp. (8 %), Salmonella spp. (6.7 %), and Shigella spp. and Proteus spp. (6.7 % each). The tested bacterial isolates were resistant to variant antibiotics used. S. aureus exhibited 100 % resistance to colistine. However, E. coli revealed 92.9 and 78.6 % resistance against tetracycline and colistine, respectively. Both Salmonella spp. and Shigella spp. were 100 % resistant to penicillin, and Klebsiella sp. had 100 % resistance to tetracycline. In conclusion, Culicoides biting midges and house flies could be considered as a potential carrier for multi-drug-resistant bacteria of zoonotic importance. Furthermore, cows' environment has an essential role in propagation and wide spread of antimicrobial-resistant bacterial pathogens.

  6. A novel ehrlichial agent detected in tick in French Polynesia.

    PubMed

    Laroche, Maureen; Marie, Jérôme; Mediannikov, Oleg; Almeras, Lionel; Berenger, Jean-Michel; Musso, Didier; Raoult, Didier; Parola, Philippe

    2016-10-01

    Ticks are hematophageous arthropods that are known to host and transmit miscellaneous pathogens including zoonotic bacteria. The aim of this study was to investigate the presence of tick-associated microorganisms in Tahiti, French Polynesia with molecular tools. A total of 658 ticks from two species including Rhipicephalus sanguineus s.l. and Rh. annulatus were collected with forceps on dogs and cattle respectively, or with a flag on pasture in several locations of Tahiti in 2013. Two Rickettsia belonging to the spotted fever group different from R. conorii and R. massiliae were detected by qPCR in two Rh. sanguineus s.l. ticks, but sequencing failed. A Rh. annulatus tick was found positive for a new ehrlichial agent characterized by amplification and sequencing of fragments of the Anaplasmataceae 23S and Ehrlichia 16S genes. Phylogenetic analyses based on the 23S and 16S sequences reveals that this bacterium is a new genotype, genetically close to Ehrlichia minasensis, a recently described Ehrlichia sp. close to Ehrlichia canis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Foodborne Salmonella-caused outbreaks in Catalonia (Spain), 1990 to 2003.

    PubMed

    Domínguez, Angela; Torner, Nuria; Ruiz, Laura; Martínez, Ana; Bartolomé, Rosa; Sulleiro, Elena; Teixidó, Angel; Plasencia, Antoni

    2007-01-01

    In most developed countries, nontyphoid Salmonella is an important cause of sporadic cases and outbreaks of foodborne gastroenteritis. The aim of this study was to investigate the trend of foodborne Salmonella-caused outbreaks and number of cases, hospitalizations, and deaths and compare them with those caused by other infectious agents. The study was carried out in Catalonia, a region in northeastern Spain with a population of 6.5 million inhabitants, in 2002. All information on reported outbreaks of foodborne disease from 1990 to 2003 was reviewed. For each outbreak, the following variables were collected: year; setting (household, restaurant, school, hospital, nursing home, and others); number of cases, hospitalizations, and deaths; causal agent; and food vehicle involved. Of 1652 reported outbreaks, 1078 had a known causal agent. Among them, 871 (80.8%) were caused by Salmonella, with 14,695 cases, 1534 hospitalizations, and 4 deaths. The rate of hospitalization was higher in outbreaks due to Salmonella than in those caused by other infectious agents (rate ratio, 2.54; 95% confidence interval, 2.20 to 2.94). Forty-eight percent of Salmonella-caused outbreaks were eggborne, compared with 5.3% of those caused by other infectious agents (rate ratio, 1.40; 95% confidence interval, 1.33 to 1.48). The annual number of cases in household outbreaks of eggborne Salmonella rose over time (R2 = 0.82), but the number of outbreaks produced in other settings did not. Eggborne outbreaks caused by Salmonella in households are a major cause of disease, and increased preventive efforts are necessary, especially consumer education and awareness of the risk of eating food containing raw or slightly cooked eggs.

  8. Chronic kidney disease of uncertain etiology in Sri Lanka: Are leptospirosis and Hantaviral infection likely causes?

    PubMed

    Gamage, Chandika Damesh; Sarathkumara, Yomani Dilukshi

    2016-06-01

    Chronic kidney disease of uncertain etiology (CKDu) has been a severe burden and a public health crisis in Sri Lanka over the past two decades. Many studies have established hypotheses to identify potential risk factors although causative agents, risk factors and etiology of this disease are still uncertain. Several studies have postulated that fungal and bacterial nephrotoxins are a possible etiological factor; however, the precise link between hypothesized risk factors and the pathogenesis of chronic kidney disease has yet to be proven in prior studies. Leptospirosis and Hantavirus infections are important zoonotic diseases that are naturally maintained and transmitted via infected rodent populations and which present similar clinical and epidemiological features. Both infections are known to be a cause of acute kidney damage that can proceed into chronic renal failure. Several studies have reported presence of both infections in Sri Lanka. Therefore, we hypothesized that pathogenic Leptospira or Hantavirus are possible causative agents of acute kidney damage which eventually progresses to chronic kidney disease in Sri Lanka. The proposed hypothesis will be evaluated by means of an observational study design. Past infection will be assessed by a cross-sectional study to detect the presence of IgG antibodies with further confirmatory testing among chronic kidney disease patients and individuals from the community in selected endemic areas compared to low prevalence areas. Identification of possible risk factors for these infections will be followed by a case-control study and causality will be further determined with a cohort study. If the current hypothesis is true, affected communities will be subjected for medical interventions related to the disease for patient management while considering supportive therapies. Furthermore and possibly enhance their preventive and control measures to improve vector control to decrease the risk of infection. Copyright © 2016

  9. Enterocytozoon bieneusi Genotypes in Children in Northeast China and Assessment of Risk of Zoonotic Transmission

    PubMed Central

    Yang, Jinping; Song, Mingxin; Wan, Qiang; Li, Yijing; Lu, Yixin; Jiang, Yanxue; Tao, Wei

    2014-01-01

    The prevalence (7.5%, 19/255) and genotypes of Enterocytozoon bieneusi in children of various age categories and clinical presentations were determined herein. The co-occurrence of the known genotypes (CS-4, EbpC, and Henan-IV) in children and pigs in the same study area, the phylogenetic characterization of novel genotypes (NEC1 to NEC5), and the assessment of potential risk factors associated with zoonotic transmission robustly suggested that pigs could be a significant source of human E. bieneusi infections in northeast China. PMID:25274994

  10. Genes indicative of zoonotic and swine pathogens are persistent in stream water and sediment following a swine manure spill

    USGS Publications Warehouse

    Haack, Sheridan K.; Duris, Joseph W.; Kolpin, Dana W.; Fogarty, Lisa R.; Johnson, Heather E.; Gibson, Kristen E.; Focazio, Michael J.; Schwab, Kellogg J.; Hubbard, Laura E.; Foreman, William T.

    2015-01-01

    Manure spills to streams are relatively frequent, but no studies have characterized stream contamination with zoonotic and veterinary pathogens, or fecal chemicals, following a spill. We tested stream water and sediment over 25 days and downstream for 7.6 km for: fecal indicator bacteria (FIB); the fecal indicator chemicals cholesterol and coprostanol; 20 genes for zoonotic and swine-specific bacterial pathogens by presence/absence polymerase chain reaction (PCR) for viable cells; one swine-specific Escherichia coli toxin gene (STII) by quantitative PCR (qPCR); and nine human and animal viruses by qPCR, or reverse-transcriptase qPCR. Twelve days post-spill, and 4.2 km downstream, water concentrations of FIB, cholesterol, and coprostanol were 1-2 orders of magnitude greater than those detected before, or above, the spill, and genes indicating viable zoonotic or swine-infectious Escherichia coli, were detected in water or sediment. STII increased from undetectable before, or above the spill, to 105 copies/100 mL water 12 days post-spill. Thirteen of 14 water (8/9 sediment) samples had viable STII-carrying cells post-spill. Eighteen days post-spill porcine adenovirus and teschovirus were detected 5.6 km downstream. Sediment FIB concentrations (per gram wet weight) were greater than in water, and sediment was a continuous reservoir of genes and chemicals post-spill. Constituent concentrations were much lower, and detections less frequent, in a runoff event (200 days post-spill) following manure application, although the swine-associated STII and stx2e genes were detected. Manure spills are an underappreciated pathway for livestock-derived contaminants to enter streams, with persistent environmental outcomes, and the potential for human and veterinary health consequences.

  11. One wouldn't expect an expert bowler to hit only two pins: Hierarchical predictive processing of agent-caused events.

    PubMed

    Heil, Lieke; Kwisthout, Johan; van Pelt, Stan; van Rooij, Iris; Bekkering, Harold

    2018-01-01

    Evidence is accumulating that our brains process incoming information using top-down predictions. If lower level representations are correctly predicted by higher level representations, this enhances processing. However, if they are incorrectly predicted, additional processing is required at higher levels to "explain away" prediction errors. Here, we explored the potential nature of the models generating such predictions. More specifically, we investigated whether a predictive processing model with a hierarchical structure and causal relations between its levels is able to account for the processing of agent-caused events. In Experiment 1, participants watched animated movies of "experienced" and "novice" bowlers. The results are in line with the idea that prediction errors at a lower level of the hierarchy (i.e., the outcome of how many pins fell down) slow down reporting of information at a higher level (i.e., which agent was throwing the ball). Experiments 2 and 3 suggest that this effect is specific to situations in which the predictor is causally related to the outcome. Overall, the study supports the idea that a hierarchical predictive processing model can account for the processing of observed action outcomes and that the predictions involved are specific to cases where action outcomes can be predicted based on causal knowledge.

  12. The Possible Role of Transplacentally-Acquired Antibodies to Infectious Agents, With Molecular Mimicry to Nervous System Sialic Acid Epitopes, as Causes of Neuromental Disorders: Prevention and Vaccine Implications

    PubMed Central

    Nahmias, André J.; Nahmias, Susanne Beckman; Danielsson, Dan

    2006-01-01

    Proof of causality of most neuromental disorders (NMD's) is largely unavailable. Lessons from four-decade investigations of the epidemiology, immunology, pathogenesis, prevention and therapy of perinatal infectious agents, which invade directly the nervous system, have led us to propose a new indirect effect hypothesis: maternal transplacentally-acquired antibodies, to agents with epitope molecular mimicry with the developing nervous system, can cross the fetus/infant's blood–nervous system barriers to cause NMD's, clinically manifest years later.Further rationale is provided by relevant evolutionary/developmental (EVO–DEVO) considerations—applicable also to some vaccines. The hypothesis is being tested in: (a) older pregnancy studies with available maternal and newborn sera, and follow-up of the progeny for NMD's; and (b) NMD registry individuals linked to their stored newborn blood spots. Preliminary results support a possible role for schizophrenia of high-tittered antibodies to some agents (toxoplasma, influenza and herpes simplex type 2 virus).A model that includes likely genetic and postnatal influences is schematized and a list of putative agents and factors, based on varying rationales, is tabulated. In case pilot studies are confirmed, the identified agent(s) and antibodies would need to be tested in new prospectively enrolled pregnant women, so as to establish further risk factors leading to possible preventive modalities. PMID:17162360

  13. Biothreat agents and pathology laboratories.

    PubMed

    Nelson, Ann; Wilson, Michael L

    2007-11-01

    Pathologists and laboratory staff are likely to be among the first health care workers to be aware that a potential bioterrorism attack has occurred. To prepare for such an event, it is necessary to be familiar with 1) the characteristics of bioterrorism attacks versus natural disease outbreaks, 2) which pathogens are potential bioterrorism agents; 3) the types of lesions that each causes; 4) the microbiological characteristics of each agent; 5) the Laboratory Response Network and reporting requirements, and 6) what resources are available.

  14. An evaluation of the wilt-causing bacterium Ralstonia solanacearum as a potential biological control agent for the alien Kahili ginger (Hedychium gardnerianum) in Hawaiian forests

    USGS Publications Warehouse

    1999-01-01

    Kahili ginger (Hedychium gardnerianum) is an invasive weed in tropical forests in Hawaii and elsewhere. Bacterial wilt caused by the ginger strain of Ralstonia(=Pseudomonas) solanacearum systemically infects edible ginger (Zingiber officinale) and ornamental gingers (Hedychium spp.), causing wilt in infected plants. The suitability of R. solanacearum as a biological control agent for kahili ginger was investigated by inoculating seedlings and rooted cuttings of native forest plants, ornamental ginger, and solanaceous species to confirm host specificity. Inoculation via stem injection or root wounding with a bacterial–water suspension was followed by observation for 8 weeks. Inoculations on H. gardnerianum were then carried out in ohia-lehua (Metrosideros polymorpha) wet forests of Hawaii Volcanoes National Park to determine the bacterium's efficacy in the field. No native forest or solanaceous species developed wilt or other symptoms during the study. The bacterium caused limited infection near the inoculation site on H. coronarium, Z. zerumbet, Heliconia latispatha, and Musa sapientum. However, infection did not become systemic in any of these species, and normal growth resumed following appearance of initial symptoms. All inoculated H. gardnerianum plants developed irreversible chlorosis and severe wilting 3–4 weeks following inoculation. Systemic infection also caused death and decay of rhizomes. Most plants were completely dead 16–20 weeks following inoculation. The destructiveness of the ginger strain of R. solanacearum to edible ginger has raised questions regarding its use for biological control. However, because locations of kahili ginger infestations are often remote, the risk of contaminating edible ginger plantings is unlikely. The ability of this bacterium to cause severe disease in H. gardnerianum in the field, together with its lack of virulence in other ginger species, contributes to its potential as a biological control agent.

  15. DETECTION OF ZOONOTIC PATHOGENS IN WILD BIRDS IN THE CROSS-BORDER REGION AUSTRIA - CZECH REPUBLIC.

    PubMed

    Konicek, Cornelia; Vodrážka, Pavel; Barták, Pavel; Knotek, Zdenek; Hess, Claudia; Račka, Karol; Hess, Michael; Troxler, Salome

    2016-10-01

    To assess the importance of wild birds as a reservoir of zoonotic pathogens in Austria and the Czech Republic, we sampled 1,325 wild birds representing 13 orders, 32 families, and 81 species. The majority belonged to orders Columbiformes (43%), Passeriformes (25%), and to birds of prey: Accipitriformes, Strigiformes, and Falconiformes (15%). We collected cloacal swabs from 1,191 birds for bacterial culture and 1,214 triple swabs (conjunctiva, choana, cloaca) for DNA and RNA isolation. The cloacal swabs were processed by classical bacteriologic methods for isolation of Escherichia coli , Salmonella spp., methicillin-resistant Staphylococcus aureus (MRSA), and thermophilic Campylobacter spp. Nucleic acids isolated from triple swabs were investigated by PCR for West Nile virus, avian influenza viruses, and Chlamydia spp. We also tested tissue samples from 110 fresh carcasses for Mycobacterium spp. by PCR and we cultured fresh droppings from 114 birds for Cryptococcus spp. The most-frequently detected zoonotic bacteria were thermophilic Campylobacter spp. (12.5%) and Chlamydia spp. (10.3%). From 79.2% of the sampled birds we isolated E. coli , while 8.7% and 0.2% of E. coli isolates possessed the virulence genes for intimin (eaeA) and Shiga toxins (stx 1 and stx 2 ), respectively. Salmonella spp. were rarely found in the sampled birds (2.2%), similar to findings of MRSA (0.3%). None of the samples were positive for Cryptococcus neoformans , Mycobacterium spp., avian influenza viruses, or West Nile virus.

  16. Tularaemia: a challenging zoonosis.

    PubMed

    Carvalho, C L; Lopes de Carvalho, I; Zé-Zé, L; Núncio, M S; Duarte, E L

    2014-03-01

    In recent years, several emerging zoonotic vector-borne infections with potential impact on human health have been identified in Europe, including tularaemia, caused by Francisella tularensis. This remarkable pathogen, one of the most virulent microorganisms currently known, has been detected in increasingly new settings and in a wide range of wild species, including lagomorphs, rodents, carnivores, fish and invertebrate arthropods. Also, a renewed concern has arisen with regard to F. tularensis: its potential use by bioterrorists. Based on the information published concerning the latest outbreaks, the aim of this paper is to review the main features of the agent, its biology, immunology and epidemiology. Moreover, special focus will be given to zoonotic aspects of the disease, as tularaemia outbreaks in human populations have been frequently associated with disease in animals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Biological agents with potential for misuse: a historical perspective and defensive measures.

    PubMed

    Bhalla, Deepak K; Warheit, David B

    2004-08-15

    Biological and chemical agents capable of producing serious illness or mortality have been used in biowarfare from ancient times. Use of these agents has progressed from crude forms in early and middle ages, when snakes and infected cadavers were used as weapons in battles, to sophisticated preparations for use during and after the second World War. Cults and terrorist organizations have attempted the use of biological agents with an aim to immobilize populations or cause serious harm. The reasons for interest in these agents by individuals and organizations include relative ease of acquisition, potential for causing mass casualty or panic, modest financing requirement, availability of technology, and relative ease of delivery. The Centers for Disease Control and Prevention has classified Critical Biological Agents into three major categories. This classification was based on several criteria, which include severity of impact on human health, potential for delivery in a weapon, capacity to cause panic and special needs for development, and stockpiling of medication. Agents that could cause the greatest harm following deliberate use were placed in category A. Category B included agents capable of producing serious harm and significant mortality but of lower magnitude than category A agents. Category C included emerging pathogens that could be developed for mass dispersion in future and their potential as a major health threat. A brief description of the category A bioagents is included and the pathophysiology of two particularly prominent agents, namely anthrax and smallpox, is discussed in detail. The potential danger from biological agents and their ever increasing threat to human populations have created a need for developing technologies for their early detection, for developing treatment strategies, and for refinement of procedures to ensure survival of affected individuals so as to attain the ultimate goal of eliminating the threat from intentional use of

  18. Causative agents of nosocomial mycoses.

    PubMed

    Tomsiková, A

    2002-01-01

    In the last few years mycoses have been caused by fungi formerly considered to be harmless for humans. They cause diseases of plants and insects; some of them are also used in the industry. They are now usually called "emerging fungi". We investigated this flora with respect to their potential to cause infections in hospitals. These fungi are present in the air, on medical objects and instrumentation, in the respiratory tract and on the hands of hospital staff; other sources have been identified in the use of iatrogenic methods. Mycotic diseases, their risk factors, their clinical pictures, and spectra of agents were analyzed in 1990-2000; the results were compared with data in the literature. Transplantations were the most frequent risk factors, fungemia and abscess the most frequent clinical picture and filamentous fungi (genera Absidia, Acremonium, Alternaria, Apophysomyces, Aspergillus, Bipolaris, Cladophialophora, Cunninghamella, Exserohilum, Fusarium, Chaetomium, Chrysosporium, Lecythophora, Ochroconis, Paecilomyces, Pythium, Rhizopus, Scedosporium, Scopulariopsis) were the most frequent agents of nosocomial infections. These filamentous fungi and also some yeasts (genera Candida, Cryptococcus, Trichosporon) bring about different clinical syndromes in both immunocompromised and immunocompetent patients.

  19. Different blocking agents cause variation in the immunologic detection of proteins transferred to nitrocellulose membranes.

    PubMed

    Spinola, S M; Cannon, J G

    1985-07-16

    We compared bovine serum albumin, commercial non-fat dry milk, and Tween 20 as blocking agents for immunologic probing of bacterial proteins transferred to nitrocellulose sheets. There were quantitative and qualitative differences in antigens detected that depended on which blocking agents were used. We suggest that several methods for blocking and washing nitrocellulose should be compared when Western blotting is used to detect immunologically reactive proteins.

  20. Stray dogs and cats as potential sources of soil contamination with zoonotic parasites.

    PubMed

    Szwabe, Katarzyna; Blaszkowska, Joanna

    2017-03-22

    The main source of many zoonoses is soil contaminated with feline and canine faeces. Thus, the aim of this study was to estimate the prevalence of intestinal parasites in stray dogs and cats adopted in Lodz shelter (Poland). In total, 163 faecal samples were collected from 95 dogs and 68 cats from 2011 to 2012. The samples were processed by sedimentation techniques using Mini Parasep®SF. Six parasite genera belonging to protozoa, cestoda, and nematoda, were found in dogs, while eight were found in cats. Out of the 163 fecal samples, 37.4% were positive for the presence at least one species of intestinal parasites. The majority of positive dog samples contained eggs from Toxocara and Trichuris genera, and the family Ancylostomatidae, while Toxocara and Taenia eggs, as well as Cystoisospora oocysts, predominated in cat faeces. A significantly higher prevalence of parasites was noted in cats (48.5%) than in dogs (29.5%) (χ2=6.15, P=0.013). The Toxocara genus was the most prevalent parasite in both populations; eggs were found in 27.9% and 16.8% of cats and dogs, respectively. Animals younger than 12 months of age showed higher infection rates with Toxocara, but differences were not statistically significant. The average numbers of Toxocara eggs/gram of faeces in positive puppy and kitten samples were over 5 and 7 times higher than in older dogs and cats, respectively. Mixed infection were found in dogs (5.3%) and cats (8.8%). Cat faeces represent a more important potential source of environmental contamination with zoonotic parasites than dog faeces. Among the detected parasites of stray dogs and cats, Toxocara present an important zoonotic risk for the local human population, especially children.

  1. The management of risk arising from the use of antimicrobial agents in veterinary medicine in EU/EEA countries - a review.

    PubMed

    Törneke, K; Torren-Edo, J; Grave, K; Mackay, D K J

    2015-12-01

    Antimicrobials are essential medicines for the treatment of many microbial infections in humans and animals. Only a small number of antimicrobial agents with new mechanisms of action have been authorized in recent years for use in either humans or animals. Antimicrobial resistance (AMR) arising from the use of antimicrobial agents in veterinary medicine is a concern for public health due to the detection of increasing levels of resistance in foodborne zoonotic bacteria, particularly gram-negative bacteria, and due to the detection of determinants of resistance such as Extended-spectrum beta-lactamases (ESBL) in bacteria from animals and in foodstuffs of animal origin. The importance and the extent of the emergence and spread of AMR from animals to humans has yet to be quantified. Likewise, the relative contribution that the use of antimicrobial agents in animals makes to the overall risk to human from AMR is currently a subject of debate that can only be resolved through further research. Nevertheless, risk managers have agreed that the impact on public health of the use of antimicrobials in animals should be minimized as far as possible and a variety of measures have been introduced by different authorities in the EU to achieve this objective. This article reviews a range of measures that have been implemented within European countries to reduce the occurrence and the risk of transmission of AMR to humans following the use of antimicrobial agents in animals and briefly describes some of the alternatives to the use of antimicrobial agents that are being developed. © 2015 John Wiley & Sons Ltd.

  2. Dyspnoea after antiplatelet agents: the AZD6140 controversy.

    PubMed

    Serebruany, V L; Stebbing, J; Atar, D

    2007-03-01

    Recent randomised studies suggest that experimental oral reversible platelet P2Y12 receptor inhibitor, AZD6140, causes dyspnoea. This also raises similar concerns about the parent compound, and another adenosine triphosphate (ATP) analogue (AR-69931MX or cangrelor), which is currently in Phase 3 trial in patients undergoing coronary interventions. We analysed package inserts, and available clinical trials safety data for antiplatelet agents with regard to the incidence of dyspnoea. We found that dyspnoea is a very rare complication of the presently approved platelet inhibitors, mostly caused by underlying disease, rather than antiplatelet therapy per se. The main reasons for respiratory distress after oral (AZD6140), and intravenous (cangrelor) agents may be the development of mild asymptomatic thrombotic thrombocytopenic purpura, fluid retention and dyspnoea because of the reversible nature of these drugs. Also, these agents are ATP analogues, which rapidly metabolise to adenosine, a well-known bronchoprovocator causing dyspnoea as well. In summary, dyspnoea is seldom considered, there are no treatment algorithms when it does occur, plausible mechanisms exist and despite these plausible mechanisms, the true cause of dyspnoea in these exposed individuals is unknown. Additional pulmonary function testing, immunological investigations and platelet receptor studies are urgently needed to determine the cause of dyspnoea after AZD6140, and to point out how such serious adverse reactions can be prevented, or at least minimised, raising potential concerns about this drug.

  3. The kuru infectious agent is a unique geographic isolate distinct from Creutzfeldt–Jakob disease and scrapie agents

    PubMed Central

    Manuelidis, Laura; Chakrabarty, Trisha; Miyazawa, Kohtaro; Nduom, Nana-Aba; Emmerling, Kaitlin

    2009-01-01

    Human sporadic Creutzfeldt–Jakob disease (sCJD), endemic sheep scrapie, and epidemic bovine spongiform encephalopathy (BSE) are caused by a related group of infectious agents. The new U.K. BSE agent spread to many species, including humans, and clarifying the origin, specificity, virulence, and diversity of these agents is critical, particularly because infected humans do not develop disease for many years. As with viruses, transmissible spongiform encephalopathy (TSE) agents can adapt to new species and become more virulent yet maintain fundamentally unique and stable identities. To make agent differences manifest, one must keep the host genotype constant. Many TSE agents have revealed their independent identities in normal mice. We transmitted primate kuru, a TSE once epidemic in New Guinea, to mice expressing normal and ≈8-fold higher levels of murine prion protein (PrP). High levels of murine PrP did not prevent infection but instead shortened incubation time, as would be expected for a viral receptor. Sporadic CJD and BSE agents and representative scrapie agents were clearly different from kuru in incubation time, brain neuropathology, and lymphoreticular involvement. Many TSE agents can infect monotypic cultured GT1 cells, and unlike sporadic CJD isolates, kuru rapidly and stably infected these cells. The geographic independence of the kuru agent provides additional reasons to explore causal environmental pathogens in these infectious neurodegenerative diseases. PMID:19633190

  4. Diseases as agents of disturbance in ponderosa pine

    Treesearch

    Gregory M. Filip

    2005-01-01

    Several diseases affect the growth and survival of ponderosa pine in the Pacific Northwest and serve as agents of disturbance. Probably the most widespread and damaging class of disease agents is dwarf mistletoe, which causes serious growth loss and mortality of ponderosa pine. Dwarf mistletoes (Arceuthobium spp.) are seed plants that can parasitize...

  5. A novel high-resolution multilocus sequence typing of Giardia intestinalis Assemblage A isolates reveals zoonotic transmission, clonal outbreaks and recombination.

    PubMed

    Ankarklev, Johan; Lebbad, Marianne; Einarsson, Elin; Franzén, Oscar; Ahola, Harri; Troell, Karin; Svärd, Staffan G

    2018-06-01

    Molecular epidemiology and genotyping studies of the parasitic protozoan Giardia intestinalis have proven difficult due to multiple factors, such as low discriminatory power in the commonly used genotyping loci, which has hampered molecular analyses of outbreak sources, zoonotic transmission and virulence types. Here we have focused on assemblage A Giardia and developed a high-resolution assemblage-specific multilocus sequence typing (MLST) method. Analyses of sequenced G. intestinalis assemblage A genomes from different sub-assemblages identified a set of six genetic loci with high genetic variability. DNA samples from both humans (n = 44) and animals (n = 18) that harbored Giardia assemblage A infections, were PCR amplified (557-700 bp products) and sequenced at the six novel genetic loci. Bioinformatic analyses showed five to ten-fold higher levels of polymorphic sites than what was previously found among assemblage A samples using the classic genotyping loci. Phylogenetically, a division of two major clusters in assemblage A became apparent, separating samples of human and animal origin. A subset of human samples (n = 9) from a documented Giardia outbreak in a Swedish day-care center, showed full complementarity at nine genetic loci (the six new and the standard BG, TPI and GDH loci), strongly suggesting one source of infection. Furthermore, three samples of human origin displayed MLST profiles that were phylogenetically more closely related to MLST profiles from animal derived samples, suggesting zoonotic transmission. These new genotyping loci enabled us to detect events of recombination between different assemblage A isolates but also between assemblage A and E isolates. In summary, we present a novel and expanded MLST strategy with significantly improved sensitivity for molecular analyses of virulence types, zoonotic potential and source tracking for assemblage A Giardia. Copyright © 2018. Published by Elsevier B.V.

  6. Molecular Screening and Genotyping of Cryptosporidium Species in Household Dogs and In-Contact Children in Egypt: Risk Factor Analysis and Zoonotic Importance.

    PubMed

    Gharieb, Rasha M A; Merwad, Abdallah M A; Saleh, Ayman A; El-Ghany, Amany M Abd

    2018-06-12

    Cryptosporidiosis is a parasitic zoonosis implicated in severe diarrhoea in pets and humans. This study aimed to determine the prevalence and genotypes of Cryptosporidium spp. in household dogs and in-contact children, and the risk factors associated with infection in children in Sharkia Province, Egypt. Fecal samples of 100 children (2-12 years old) and 50 dogs (3 months-1 year old) were randomly collected from both rural (children: n = 85, dogs: n = 40) and urban (children: n = 15, dogs: n = 10) households. Initial parasite detection was done by light microscopy, while, genotyping was based on molecular diagnostic assays. The overall prevalence of Cryptosporidium spp. infection in children was 35% using microscopy and 14% using nested polymerase chain reaction (PCR). In dogs, it was 34% using microscopy and 24% using nested PCR. Cryptosporidium spp. from children were identified as distinct genotypes, with the predominance of human genotype I (Cryptosporidium hominis) over the zoonotic genotype II (Cryptosporidium parvum). Moreover, only zoonotic genotype II (C. parvum) was identified in dog samples. The significant risk factors associated with the prevalence of Cryptosporidium infection in children were the presence of diarrheal episodes during time of survey, improper disposal of garbage, and dog feces and contact with other livestock (p ≤ 0.05). This study concluded that the existence of C. parvum in children and dogs residing the same households confirm the zoonotic transmission and its public health significance. Also, the study recommended the necessity of hygienic disposal of dog feces and preventing direct contact of dogs with other livestock.

  7. IMS software developments for the detection of chemical warfare agent

    NASA Technical Reports Server (NTRS)

    Klepel, ST.; Graefenhain, U.; Lippe, R.; Stach, J.; Starrock, V.

    1995-01-01

    Interference compounds like gasoline, diesel, burning wood or fuel, etc. are presented in common battlefield situations. These compounds can cause detectors to respond as a false positive or interfere with the detector's ability to respond to target compounds such as chemical warfare agents. To ensure proper response of the ion mobility spectrometer to chemical warfare agents, two special software packages were developed and incorporated into the Bruker RAID-1. The programs suppress interferring signals caused by car exhaust or smoke gases resulting from burning materials and correct the influence of variable sample gas humidity which is important for detection and quantification of blister agents like mustard gas or lewisite.

  8. Landscape characteristics influence helminth infestations in a peri-domestic rodent--implications for possible zoonotic disease.

    PubMed

    Froeschke, Götz; Matthee, Sonja

    2014-08-26

    Anthropogenic habitat change often results in altered landscapes that can provide new environments where hosts, parasites and pathogens can interact. The latter can have implications for human and animal health when in close proximity to developed areas. We recorded the helminth species richness and level of infestation in the peri-domestic rodent, Rhabdomys pumilio, in three different human linked landscapes. The aim was, to investigate the potential of R. pumilio to act as a reservoir host for zoonotic helminths and to compare the effect of anthropogenic habitat change on its parasite infestation patterns. Rodents (n = 518) were trapped in natural areas (nature reserves) and in three human linked landscapes (crop, livestock and urban fragments). Gastrointestinal parasite burdens were recovered and helminths identified from each animal. Generalized linear models were applied to investigate the effect of different landscape types on helminth infestation. Rhabdomys pumilio was the most abundant rodent species within each landscape type. Eight helminths species were recovered and overall helminth prevalence was 86.68%. Mean helminth species richness, prevalence and abundance were significantly higher in crop fragments compared to natural landscapes and overall lower for nematodes in livestock and urban areas. Cestode prevalence showed a tendency to be elevated at anthropogenic linked landscape types. Host parameters and parasite infestations were strongly influenced by landscape characteristics. Resource-rich landscapes (crop fragments) provide favorable conditions for helminth infestations, while landscapes that are more closely associated with humans (livestock and urban landscapes) pose a larger risk by zoonotic species.

  9. A case of transfusion-transmitted hepatitis E caused by blood from a donor infected with hepatitis E virus via zoonotic food-borne route.

    PubMed

    Matsubayashi, Keiji; Kang, Jong-Hon; Sakata, Hidekatsu; Takahashi, Kazuaki; Shindo, Motohiro; Kato, Masaru; Sato, Shinichiro; Kato, Toshiaki; Nishimori, Hiroyuki; Tsuji, Kunihiko; Maguchi, Hiroyuki; Yoshida, Jun-Ichi; Maekubo, Hiroshi; Mishiro, Shunji; Ikeda, Hisami

    2008-07-01

    Five cases of transfusion transmission of hepatitis E virus (HEV) have been reported so far. The infection routes of the causative donors remain unclear, however. Also, the progress of virus markers in the entire course of HEV infection has not been well documented. Nucleic acid testing was performed by real-time reverse transcription-polymerase chain reaction targeting the open reading frame 2 region of HEV. Full-length nucleotide sequences of HEV RNA were detected by direct sequencing. Lookback study of a HEV-positive donor revealed that the platelets (PLTs) donated from him 2 weeks previously contained HEV RNA and were transfused to a patient. Thirteen relatives including the donor were ascertained to enjoy grilled pork meats together in a barbecue restaurant 23 days before the donation. Thereafter, his father died of fulminant hepatitis E and the other 6 members showed serum markers of HEV infection. In the recipient, HEV was detected in serum on Day 22 and reached the peak of 7.2 log copies per mL on Day 44 followed by the steep increase of alanine aminotransferase. Immunoglobulin G anti-HEV emerged on Day 67; subsequently, hepatitis was resolved. HEV RNA sequences from the donor and recipient were an identical, Japan-indigenous strain of genotype 4. HEV RNA was detectable up to Day 97 in serum, Day 85 in feces, and Day 71 in saliva. A transfusion-transmitted hepatitis E case by blood from a donor infected via the zoonotic food-borne route and the progress of HEV markers in the entire course are demonstrated. Further studies are needed to clarify the epidemiology and the transfusion-related risks for HEV even in industrialized countries.

  10. Policy, practice and decision making for zoonotic disease management: water and Cryptosporidium.

    PubMed

    Austin, Zoë; Alcock, Ruth E; Christley, Robert M; Haygarth, Philip M; Heathwaite, A Louise; Latham, Sophia M; Mort, Maggie; Oliver, David M; Pickup, Roger; Wastling, Jonathan M; Wynne, Brian

    2012-04-01

    Decision making for zoonotic disease management should be based on many forms of appropriate data and sources of evidence. However, the criteria and timing for policy response and the resulting management decisions are often altered when a disease outbreak occurs and captures full media attention. In the case of waterborne disease, such as the robust protozoa, Cryptosporidium spp, exposure can cause significant human health risks and preventing exposure by maintaining high standards of biological and chemical water quality remains a priority for water companies in the UK. Little has been documented on how knowledge and information is translated between the many stakeholders involved in the management of Cryptosporidium, which is surprising given the different drivers that have shaped management decisions. Such information, coupled with the uncertainties that surround these data is essential for improving future management strategies that minimise disease outbreaks. Here, we examine the interplay between scientific information, the media, and emergent government and company policies to examine these issues using qualitative and quantitative data relating to Cryptosporidium management decisions by a water company in the North West of England. Our results show that political and media influences are powerful drivers of management decisions if fuelled by high profile outbreaks. Furthermore, the strength of the scientific evidence is often constrained by uncertainties in the data, and in the way knowledge is translated between policy levels during established risk management procedures. In particular, under or over-estimating risk during risk assessment procedures together with uncertainty regarding risk factors within the wider environment, was found to restrict the knowledge-base for decision-making in Cryptosporidium management. Our findings highlight some key current and future challenges facing the management of such diseases that are widely applicable to other

  11. Efficient Replication of the Novel Human Betacoronavirus EMC on Primary Human Epithelium Highlights Its Zoonotic Potential

    PubMed Central

    Kindler, Eveline; Jónsdóttir, Hulda R.; Muth, Doreen; Hamming, Ole J.; Hartmann, Rune; Rodriguez, Regulo; Geffers, Robert; Fouchier, Ron A. M.; Drosten, Christian; Müller, Marcel A.; Dijkman, Ronald; Thiel, Volker

    2013-01-01

    ABSTRACT The recent emergence of a novel human coronavirus (HCoV-EMC) in the Middle East raised considerable concerns, as it is associated with severe acute pneumonia, renal failure, and fatal outcome and thus resembles the clinical presentation of severe acute respiratory syndrome (SARS) observed in 2002 and 2003. Like SARS-CoV, HCoV-EMC is of zoonotic origin and closely related to bat coronaviruses. The human airway epithelium (HAE) represents the entry point and primary target tissue for respiratory viruses and is highly relevant for assessing the zoonotic potential of emerging respiratory viruses, such as HCoV-EMC. Here, we show that pseudostratified HAE cultures derived from different donors are highly permissive to HCoV-EMC infection, and by using reverse transcription (RT)-PCR and RNAseq data, we experimentally determined the identity of seven HCoV-EMC subgenomic mRNAs. Although the HAE cells were readily responsive to type I and type III interferon (IFN), we observed neither a pronounced inflammatory cytokine nor any detectable IFN responses following HCoV-EMC, SARS-CoV, or HCoV-229E infection, suggesting that innate immune evasion mechanisms and putative IFN antagonists of HCoV-EMC are operational in the new host. Importantly, however, we demonstrate that both type I and type III IFN can efficiently reduce HCoV-EMC replication in HAE cultures, providing a possible treatment option in cases of suspected HCoV-EMC infection. PMID:23422412

  12. Persistent agents in Axelrod's social dynamics model

    NASA Astrophysics Data System (ADS)

    Reia, Sandro M.; Neves, Ubiraci P. C.

    2016-01-01

    Axelrod's model of social dynamics has been studied under the effect of external media. Here we study the formation of cultural domains in the model by introducing persistent agents. These are agents whose cultural traits are not allowed to change but may be spread through local neighborhood. In the absence of persistent agents, the system is known to present a transition from a monocultural to a multicultural regime at some critical Q (number of traits). Our results reveal a dependence of critical Q on the occupation probability p of persistent agents and we obtain the phase diagram of the model in the (p,Q) -plane. The critical locus is explained by the competition of two opposite forces named here barrier and bonding effects. Such forces are verified to be caused by non-persistent agents which adhere (adherent agents) to the set of traits of persistent ones. The adherence (concentration of adherent agents) as a function of p is found to decay for constant Q. Furthermore, adherence as a function of Q is found to decay as a power law with constant p.

  13. The Increase of Exotic Zoonotic Helminth Infections: The Impact of Urbanization, Climate Change and Globalization.

    PubMed

    Gordon, Catherine A; McManus, Donald P; Jones, Malcolm K; Gray, Darren J; Gobert, Geoffrey N

    2016-01-01

    Zoonotic parasitic diseases are increasingly impacting human populations due to the effects of globalization, urbanization and climate change. Here we review the recent literature on the most important helminth zoonoses, including reports of incidence and prevalence. We discuss those helminth diseases which are increasing in endemic areas and consider their geographical spread into new regions within the framework of globalization, urbanization and climate change to determine the effect these variables are having on disease incidence, transmission and the associated challenges presented for public health initiatives, including control and elimination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Detection of Zoonotic Protozoa Toxoplasma gondii and Sarcocystis suihominis in Wild Boars from Spain.

    PubMed

    Calero-Bernal, R; Pérez-Martín, J E; Reina, D; Serrano, F J; Frontera, E; Fuentes, I; Dubey, J P

    2016-08-01

    Food safety regulations require the control of the presence of protozoa in meats destined for human consumption. Wild boar (Sus scrofa) meat may constitute a source of zoonoses. A 23.8% (688/2881) seroprevalence of anti-Toxoplasma gondii antibodies and 72.2% (662/910) Sarcocystis sarcocysts prevalence were detected among wild boars hunted in Southwestern areas of Spain. Identity of Sarcocystis spp. was performed by RFLP-PCR and sequencing, detecting S. miescheriana (7/8) and the zoonotic S. suihominis (1/8). Risk assessment studies of these coccidian in meats destined to human consumption are needed. © 2015 Blackwell Verlag GmbH.

  15. Nanoparticles as potential new generation broad spectrum antimicrobial agents.

    PubMed

    Yah, Clarence S; Simate, Geoffrey S

    2015-09-02

    The rapid emergence of antimicrobial resistant strains to conventional antimicrobial agents has complicated and prolonged infection treatment and increased mortality risk globally. Furthermore, some of the conventional antimicrobial agents are unable to cross certain cell membranes thus, restricting treatment of intracellular pathogens. Therefore, the disease-causing-organisms tend to persist in these cells. However, the emergence of nanoparticle (NP) technology has come with the promising broad spectrum NP-antimicrobial agents due to their vast physiochemical and functionalization properties. In fact, NP-antimicrobial agents are able to unlock the restrictions experienced by conventional antimicrobial agents. This review discusses the status quo of NP-antimicrobial agents as potent broad spectrum antimicrobial agents, sterilization and wound healing agents, and sustained inhibitors of intracellular pathogens. Indeed, the perspective of developing potent NP-antimicrobial agents that carry multiple-functionality will revolutionize clinical medicine and play a significant role in alleviating disease burden.

  16. Prevalence of zoonotic intestinal parasites in household and stray dogs in rural areas of Hamadan, Western Iran.

    PubMed

    Sardarian, K; Maghsood, A H; Ghiasian, S A; Zahirnia, A H

    2015-06-01

    Zoonotic parasitic infections are a major global public and veterinary health problem and widespread among dogs. The objective of this study was to assess the prevalence of intestinal parasites in stray and household dogs in the rural areas of Hamadan district. During 2012, 1,500 fresh fecal samples from 243 household and 1,257 stray dogs were examined by using direct wet mount, simple zinc sulfate flotation, and Lugol's solution staining. Of 1,500 dogs, 20.4% were positive for intestinal parasites. Helminthes eggs were more frequently found in fecal samples than protozoan cysts or trophozoites (15.9% vs. 4.5%, respectively). Toxocara canis was the most frequently detected parasite, with a prevalence of 6.3%, followed by Taenia/Echinococcus spp. (2.9%), Isospora spp. (2.7%), and Toxascaris leonina (2.6%). Helminthes and protozoa were significantly more prevalent in household dogs than in stray dogs (P<0.001). There were significant differences in the prevalence of Isospora spp., T. canis and D. caninum among three age groups (P<0.05). The wide range of isolated parasites indicated that people residing in this area are at risk of exposure to these potentially hazardous zoonotic pathogens. Mass education of the general population is highly recommended to increase awareness of the potential for horizontal transmission of these parasitic infections from dogs to humans.

  17. Notes from the field: respiratory diphtheria-like illness caused by toxigenic Corynebacterium ulcerans --- Idaho, 2010.

    PubMed

    2011-01-28

    On September 12, 2010, the Idaho Department of Health and Welfare was notified of a case of respiratory diphtheria-like illness in an Idaho man aged 80 years whose pharyngeal specimens yielded Corynebacterium ulcerans. Although C. ulcerans is zoonotic, the patient reported no animal contact or consumption of an unpasteurized dairy product. His vaccination history was unknown. Respiratory diphtheria-like illness from C. ulcerans is uncommon but has been reported in industrialized countries where respiratory diphtheria is rare. The last case of diphtheria-like illness caused by C. ulcerans in the United States was reported in 2005.

  18. Susceptibility of Salmonella Biofilm and Planktonic Bacteria to Common Disinfectant Agents Used in Poultry Processing.

    PubMed

    Chylkova, Tereza; Cadena, Myrna; Ferreiro, Aura; Pitesky, Maurice

    2017-07-01

    Poultry contaminated with Salmonella enterica subsp. enterica are a major cause of zoonotic foodborne gastroenteritis. Salmonella Heidelberg is a common serotype of Salmonella that has been implicated as a foodborne pathogen associated with the consumption of improperly prepared chicken. To better understand the effectiveness of common antimicrobial disinfectants (i.e., peroxyacetic acid [PAA], acidified hypochlorite [aCH], and cetylpyridinium chloride [CPC]), environmental isolates of nontyphoidal Salmonella were exposed to these agents under temperature, concentration, and contact time conditions consistent with poultry processing. Under simulated processing conditions (i.e., chiller tank and dipping stations), the bacteriostatic and bactericidal effects of each disinfectant were assessed against biofilm and planktonic cultures of each organism in a disinfectant challenge. Log reductions, planktonic MICs, and mean biofilm eradication concentrations were computed. The biofilms of each Salmonella isolate were more resistant to the disinfectants than were their planktonic counterparts. Although PAA was bacteriostatic and bactericidal against the biofilm and planktonic Salmonella isolates tested at concentrations up to 64 times the concentrations commonly used in a chiller tank during poultry processing, aCH was ineffective against the same isolates under identical conditions. At the simulated 8-s dipping station, CPC was bacteriostatic against all seven and bactericidal against six of the seven Salmonella isolates in their biofilm forms at concentrations within the regulatory range. These results indicate that at the current contact times and concentrations, aCH and PAA are not effective against these Salmonella isolates in their biofilm state. The use of CPC should be considered as a tool for controlling Salmonella biofilms in poultry processing environments.

  19. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases

    PubMed Central

    Kilpatrick, A. Marm; Randolph, Sarah E.

    2013-01-01

    Emerging vector-borne diseases represent an important issue for global health. Many vector-borne pathogens have appeared in new regions in the past two decades, and many endemic diseases have increased in incidence. Although introductions and local emergence are frequently considered distinct processes, many emerging endemic pathogens are in fact invading at a local scale coincident with habitat change. We highlight key differences in the dynamics and disease burden that result from increased pathogen transmission following habitat change compared with the introduction of pathogens to new regions. Truly in situ emergence is commonly driven by changes in human factors as much as by enhanced enzootic cycles whereas pathogen invasion results from anthropogenic trade and travel and suitable conditions for a pathogen, including hosts, vectors, and climate. Once established, ecological factors related to vector characteristics shape the evolutionary selective pressure on pathogens that may result in increased use of humans as transmission hosts. We describe challenges inherent in the control of vector-borne zoonotic diseases and some emerging non-traditional strategies that may be more effective in the long term. PMID:23200503

  20. A rural worker infected with a bovine-prevalent genotype of Campylobacter fetus subsp. fetus supports zoonotic transmission and inconsistency of MLST and whole-genome typing.

    PubMed

    Iraola, G; Betancor, L; Calleros, L; Gadea, P; Algorta, G; Galeano, S; Muxi, P; Greif, G; Pérez, R

    2015-08-01

    Whole-genome characterisation in clinical microbiology enables to detect trends in infection dynamics and disease transmission. Here, we report a case of bacteraemia due to Campylobacter fetus subsp. fetus in a rural worker under cancer treatment that was diagnosed with cellulitis; the patient was treated with antibiotics and recovered. The routine typing methods were not able to identify the microorganism causing the infection, so it was further analysed by molecular methods and whole-genome sequencing. The multi-locus sequence typing (MLST) revealed the presence of the bovine-associated ST-4 genotype. Whole-genome comparisons with other C. fetus strains revealed an inconsistent phylogenetic position based on the core genome, discordant with previous ST-4 strains. To the best of our knowledge, this is the first C. fetus subsp. fetus carrying the ST-4 isolated from humans and represents a probable case of zoonotic transmission from cattle.