Science.gov

Sample records for zoonotic babesia naturally

  1. Diversity of Babesia and Rickettsia species in questing Ixodes ricinus: a longitudinal study in urban, pasture, and natural habitats.

    PubMed

    Overzier, Evelyn; Pfister, Kurt; Thiel, Claudia; Herb, Ingrid; Mahling, Monia; Silaghi, Cornelia

    2013-08-01

    In a previous study, our group investigated the Babesia spp. prevalence in questing Ixodes ricinus ticks from nine city parks in South Germany in the years 2009 and 2010. We showed predominant prevalence of B. venatorum (in previous literature also known as Babesia sp. EU1), especially in those parks in a more natural condition and with occurrence of large wild animals, such as roe deer. To obtain longitudinal data and to broaden the knowledge about this pathogen, further investigations were carried out in 2011 and 2012 in four of those city parks. Two additional habitat types were chosen for comparison of prevalence data and species analysis focusing on occurrence of potential reservoir hosts. A total of 10,303 questing I. ricinus were collected in four city parks, a pasture, and a natural area in Bavaria, and a representative number of samples were investigated for prevalence of DNA of Babesia spp. (n=4381) and Rickettsia spp. (n=2186) by PCR. In the natural and pasture area, a significantly higher Babesia spp. prevalence compared to the urban area was detected. The natural area revealed sequences of B. microti, B. venatorum, and B. capreoli. In the pasture and urban habitat, predominantly B. venatorum was found, whereas B. capreoli was less frequent and only one B. microti-infected tick was found. All B. microti sequences were 100% identical to the zoonotic Jena/Germany strain. For Rickettsia spp., the significantly highest prevalence was also detected in the natural and pasture areas, whereas lower prevalence was found in the urban area. Sequence analysis revealed R. helvetica (98%) and R. monacensis (2%). Prevalence rates and occurrence of Babesia spp. and Rickettsia spp. differed in urban, pasture and natural sites, most likely depending on the habitat structure (natural or cultivated) and therefore on the appearance and availability of reservoir hosts like roe deer or small mammals.

  2. Diversity of Babesia and Rickettsia Species in Questing Ixodes ricinus: A Longitudinal Study in Urban, Pasture, and Natural Habitats

    PubMed Central

    Pfister, Kurt; Thiel, Claudia; Herb, Ingrid; Mahling, Monia; Silaghi, Cornelia

    2013-01-01

    Abstract In a previous study, our group investigated the Babesia spp. prevalence in questing Ixodes ricinus ticks from nine city parks in South Germany in the years 2009 and 2010. We showed predominant prevalence of B. venatorum (in previous literature also known as Babesia sp. EU1), especially in those parks in a more natural condition and with occurrence of large wild animals, such as roe deer. To obtain longitudinal data and to broaden the knowledge about this pathogen, further investigations were carried out in 2011 and 2012 in four of those city parks. Two additional habitat types were chosen for comparison of prevalence data and species analysis focusing on occurrence of potential reservoir hosts. A total of 10,303 questing I. ricinus were collected in four city parks, a pasture, and a natural area in Bavaria, and a representative number of samples were investigated for prevalence of DNA of Babesia spp. (n=4381) and Rickettsia spp. (n=2186) by PCR. In the natural and pasture area, a significantly higher Babesia spp. prevalence compared to the urban area was detected. The natural area revealed sequences of B. microti, B. venatorum, and B. capreoli. In the pasture and urban habitat, predominantly B. venatorum was found, whereas B. capreoli was less frequent and only one B. microti–infected tick was found. All B. microti sequences were 100% identical to the zoonotic Jena/Germany strain. For Rickettsia spp., the significantly highest prevalence was also detected in the natural and pasture areas, whereas lower prevalence was found in the urban area. Sequence analysis revealed R. helvetica (98%) and R. monacensis (2%). Prevalence rates and occurrence of Babesia spp. and Rickettsia spp. differed in urban, pasture and natural sites, most likely depending on the habitat structure (natural or cultivated) and therefore on the appearance and availability of reservoir hosts like roe deer or small mammals. PMID:23697771

  3. Molecular Characterization of a Non–Babesia divergens Organism Causing Zoonotic Babesiosis in Europe

    PubMed Central

    Cacciò, Simone; Gherlinzoni, Filippo; Aspöck, Horst; Slemenda, Susan B.; Piccaluga, PierPaolo; Martinelli, Giovanni; Edelhofer, Renate; Hollenstein, Ursula; Poletti, Giovanni; Pampiglione, Silvio; Löschenberger, Karin; Tura, Sante; Pieniazek, Norman J.

    2003-01-01

    In Europe, most reported human cases of babesiosis have been attributed, without strong molecular evidence, to infection with the bovine parasite Babesia divergens. We investigated the first known human cases of babesiosis in Italy and Austria, which occurred in two asplenic men. The complete 18S ribosomal RNA (18S rRNA) gene was amplified from specimens of their whole blood by polymerase chain reaction (PCR). With phylogenetic analysis, we compared the DNA sequences of the PCR products with those for other Babesia spp. The DNA sequences were identical for the organism from the two patients. In phylogenetic analysis, the organism clusters with B. odocoilei, a parasite of white-tailed deer; these two organisms form a sister group with B. divergens. This evidence indicates the patients were not infected with B. divergens but with an organism with previously unreported molecular characteristics for the 18S rRNA gene. PMID:12967491

  4. Entomologic and serologic evidence of zoonotic transmission of Babesia microti, eastern Switzerland.

    PubMed

    Foppa, Ivo M; Krause, Peter J; Spielman, Andrew; Goethert, Heidi; Gern, Lise; Brand, Brigit; Telford, Sam R

    2002-07-01

    We evaluated human risk for infection with Babesia microti at a site in eastern Switzerland where several B. microti-infected nymphal Ixodes ricinus ticks had been found. DNA from pooled nymphal ticks amplified by polymerase chain reaction was highly homologous to published B. microti sequences. More ticks carried babesial infection in the lower portion of the rectangular 0.7-ha grid than in the upper (11% vs. 0.8%). In addition, we measured seroprevalence of immunoglobulin (Ig) G antibodies against B. microti antigen in nearby residents. Serum from 1.5% of the 396 human residents of the region reacted to B. microti antigen (>1:64), as determined by indirect immunofluorescence assay (IgG). These observations constitute the first report demonstrating B. microti in a human-biting vector, associated with evidence of human exposure to this agent in a European site.

  5. Morphology, epidemiology, and phylogeny of Babesia: An overview

    PubMed Central

    Laha, Ramgopal; Das, M; Sen, A

    2015-01-01

    Babesiosis is a tick-borne hemoprotozoan disease of domestic and wild animals. The disease is caused by various species of Babesia and some species of Babesia have also zoonotic significance. The parasite in vertebrate hosts’ remains in erythrocytes and the morphology of Babesia spp. is not uniform in all vertebrate hosts. With the advancement of science, particularly the use of molecular techniques made it easy to study the evolution of parasites and thereby reclassifying Babesia spp. as per their phylogeny and to establish the relation of one isolate of Babesia spp. with isolates throughout the world. An attempt also made in this communication to enlighten the readers regarding relationship of one isolate of Babesia spp. of a particular area to another isolate of Babesia spp. of that area or other parts of the world and phylogenetic classification of Babesia spp. was also discussed. It has been concluded that as the study on Babesia is complex in nature so monitoring of the infection with the use of modern techniques is very much needed to control the infection. Second, more research work on phylogenetic relationship of Babesia spp. isolated from different hosts is needed, particularly in India to know the evolution of Babesia spp. of a particular area, as it has great importance to study the trans boundary diseases of animals. PMID:26629451

  6. Detection of tick-borne bacteria and babesia with zoonotic potential in Argas (Carios) vespertilionis (Latreille, 1802) ticks from British bats.

    PubMed

    Lv, Jizhou; Fernández de Marco, Maria Del Mar; Goharriz, Hooman; Phipps, L Paul; McElhinney, Lorraine M; Hernández-Triana, Luis M; Wu, Shaoqiang; Lin, Xiangmei; Fooks, Anthony R; Johnson, Nicholas

    2018-01-30

    Ticks host a wide range of zoonotic pathogens and are a significant source of diseases that affect humans and livestock. However, little is known about the pathogens associated with bat ticks. We have collected ectoparasites from bat carcasses over a seven year period. Nucleic acids (DNA and RNA) were extracted from 296 ticks removed from bats and the species designation was confirmed in all ticks as Argas (Carios) vespertilionis. A subset of these samples (n = 120) were tested for the presence of zoonotic pathogens by molecular methods. Babesia species, Rickettsia spp., within the spotted fever group (SFG), and Ehrlichia spp. were detected in ticks removed from 26 bats submitted from 14 counties across England. The prevalence of Rickettsia spp. was found to be highest in Pipistrellus pipistrellus from southern England. This study suggests that the tick species that host B. venatorum may include the genus Argas in addition to the genus Ixodes. As A. vespertilionis has been reported to feed on humans, detection of B. venatorum and SFG Rickettsia spp. could present a risk of disease transmission in England. No evidence for the presence of flaviviruses or Issyk-Kul virus (nairovirus) was found in these tick samples.

  7. Detection of Two Zoonotic Babesia microti Lineages, the Hobetsu and U.S. Lineages, in Two Sympatric Tick Species, Ixodes ovatus and Ixodes persulcatus, Respectively, in Japan

    PubMed Central

    Tsuji, Masayoshi; Qiang, Wei; Nakao, Minoru; Hirata, Haruyuki; Ishihara, Chiaki

    2012-01-01

    The species Babesia microti, commonly found in rodents, demonstrates a high degree of genetic diversity. Three lineages, U.S., Kobe, and Hobetsu, are known to have zoonotic potential, but their tick vector(s) in Japan remains to be elucidated. We conducted a field investigation at Nemuro on Hokkaido Island and at Sumoto on Awaji Island, where up to two of the three lineages occur with similar frequencies in reservoirs. By flagging vegetation at these spots and surrounding areas, 4,010 ticks, comprising six species, were collected. A nested PCR that detects the 18S rRNA gene of Babesia species revealed that Ixodes ovatus and I. persulcatus alone were positive. Lineage-specific PCR for rRNA-positive samples demonstrated that I. ovatus and I. persulcatus carried, respectively, the Hobetsu and U.S. parasites. No Kobe-specific DNA was detected. Infected I. ovatus ticks were found at multiple sites, including Nemuro and Sumoto, with minimum infection rates (MIR) of ∼12.3%. However, all I. persulcatus ticks collected within the same regions, a total of 535, were negative for the Hobetsu lineage, indicating that I. ovatus, but not I. persulcatus, was the vector for the lineage. At Nemuro, U.S. lineage was detected in 2 of 139 adult I. persulcatus ticks (MIR, 1.4%), for the first time, while 48 of I. ovatus ticks were negative for that lineage. Laboratory experiments confirmed the transmission of Hobetsu and U.S. parasites to hamsters via I. ovatus and I. persulcatus, respectively. Differences in vector capacity shown by MIRs at Nemuro, where the two species were equally likely to acquire either lineage of parasite, may explain the difference in distribution of Hobetsu throughout Japan and U.S. taxa in Nemuro. These findings are of importance in the assessment of the regional risk for babesiosis in humans. PMID:22389378

  8. The duration of latent infection and functional immunity in droughtmaster and hereford cattle following natural infection with Babesia argentina and Babesia bigemina.

    PubMed

    Johnston, L A; Leatch, G; Jones, P N

    1978-01-01

    Tne Droughtmaster and 9 Hereford cattle were born in an enzootic babesiasis area and became naturally infected with Babesia argentina and B.bigemina during a 3 year period. They were then kept free of cattle ticks (Boophilus microplus) for the remainder of the experiment. Annually for the next 3 years their individual infection status with Babesia was determined by sub-inoculation of blood into splenectomised calves. At the end of this period the functional immunity of all cattle was challenged by blood inoculation of heterologous strains of B. argentina and B. bigemina. Infection with B. argentina persisted in all Herefords for 2 years and in 7 for 3 years after they had been freed of B. microplus. The number of Droughtmasters with detectable B. argentina infection progressively declined, and at the end of 3 years only 2 of 10 were still infected. No Herefords were shown to be infected with B. bigemina following 1 year's freedom from B. microplus but latent B. bigemina infection of at least 2 year's duration was demonstrated in one of the Droughtmasters. A marked degree of resistance was apparent in all cattle when they were challenged with an heterologous strain of B. argentina. There were no differences between the response to challenge of the Herefords and Droughtmasters nor between the reactions of cattle which had apparently naturally sterilised B. argentina infection and those which were still infected. The heterologous strain of B. bigemina produced parasitaemia in the majority of animals but only minimal fever and anaemia resulted with no significant differences between the breeds.

  9. Identification of serum biomarkers in dogs naturally infected with Babesia canis canis using a proteomic approach

    PubMed Central

    2014-01-01

    Background Canine babesiosis is a tick-borne disease that is caused by the haemoprotozoan parasites of the genus Babesia. There are limited data on serum proteomics in dogs, and none of the effect of babesiosis on the serum proteome. The aim of this study was to identify the potential serum biomarkers of babesiosis using proteomic techniques in order to increase our understanding about disease pathogenesis. Results Serum samples were collected from 25 dogs of various breeds and sex with naturally occurring babesiosis caused by B. canis canis. Blood was collected on the day of admission (day 0), and subsequently on the 1st and 6th day of treatment. Two-dimensional electrophoresis (2DE) of pooled serum samples of dogs with naturally occurring babesiosis (day 0, day 1 and day 6) and healthy dogs were run in triplicate. 2DE image analysis showed 64 differentially expressed spots with p ≤ 0.05 and 49 spots with fold change ≥2. Six selected spots were excised manually and subjected to trypsin digest prior to identification by electrospray ionisation mass spectrometry on an Amazon ion trap tandem mass spectrometry (MS/MS). Mass spectrometry data was processed using Data Analysis software and the automated Matrix Science Mascot Daemon server. Protein identifications were assigned using the Mascot search engine to interrogate protein sequences in the NCBI Genbank database. A number of differentially expressed serum proteins involved in inflammation mediated acute phase response, complement and coagulation cascades, apolipoproteins and vitamin D metabolism pathway were identified in dogs with babesiosis. Conclusions Our findings confirmed two dominant pathogenic mechanisms of babesiosis, haemolysis and acute phase response. These results may provide possible serum biomarker candidates for clinical monitoring of babesiosis and this study could serve as the basis for further proteomic investigations in canine babesiosis. PMID:24885808

  10. Use of a doxycycline-enrofloxacin-metronidazole combination with/without diminazene diaceturate to treat naturally occurring canine babesiosis caused by Babesia gibsoni

    PubMed Central

    2010-01-01

    Canine babesiosis is an important worldwide, tick-borne disease caused by hemoprotozoan parasites of the genus Babesia. Babesia gibsoni is the predominant species that causes canine babesiosis in Taipei, Taiwan. It is a small pleomorphic intraerythrocytic parasite that can cause erythrocyte destruction and hemolytic anemia. Efficacy of oral administration of a doxycycline-enrofloxacin-metronidazole combination with and without injections of diminazene diaceturate in the management of naturally occurring canine babesiosis caused by B. gibsoni was evaluated retrospectively. The overall efficacy of this combination of doxycycline-enrofloxacin-metronidazole in conjunction with and without administration of diminazene diaceturate was 85.7% and 83.3%, respectively; with a mean recovery time of 24.2 and 23.5 days, respectively. Concomitant use of intramuscular diminazene diaceturate may not improve the efficacy of a doxycycline-enrofloxacin-metronidazole combination in management of canine babesiosis caused by B. gibsoni. PMID:20416095

  11. Relation of antioxidant status at admission and disease severity and outcome in dogs naturally infected with Babesia canis canis.

    PubMed

    Crnogaj, Martina; Cerón, José Joaquin; Šmit, Iva; Kiš, Ivana; Gotić, Jelena; Brkljačić, Mirna; Matijatko, Vesna; Rubio, Camila Peres; Kučer, Nada; Mrljak, Vladimir

    2017-04-24

    Canine babesiosis is caused by species of the Babesia genus and has become an emerging disease worldwide. To the authors' knowledge there are no reports in which antioxidants have been analyzed in different presentations of canine babesiosis or in which the prognostic value of antioxidants has been studied. The aim of this study was to evaluate whether oxidative stress could be related to the severity and outcome of canine babesiosis. For this purpose a profile consisting of four antioxidant biomarkers (superoxide dismutase - SOD, glutathione peroxidase - GPx, catalase, total antioxidant status - TAS) and malondialdehyde - MDA as an oxidant biomarker (previously evaluated, here studied for comparative purposes) were evaluated in dogs with canine babesiosis of different clinical severity and outcomes. The study was conducted with a sample of 40 dogs suffering from babesiosis (further divided into uncomplicated, one complication and multiple organ dysfunction syndrome - MODS group) and 30 healthy dogs (control group). Additionally, the babesiosis group was divided according to the anaemia into non-anaemic, mildly anaemic, moderately anaemic and severely anaemic dogs. The results of our study showed significantly decreased SOD, catalase and TAS values in diseased dogs compared to controls, while there were no significant differences in GPx between these groups. Dogs that developed MODS showed lower activities of SOD and GPx and higher MDA values compared to dogs with uncomplicated babesiosis as well as with dogs that developed one complication. Superoxide dismutase, catalase and GPx were negatively correlated whereas MDA was positively correlated with the lethal outcome of the disease. Furthermore, this study detected more pronounced decrease in antioxidant biomarkers (SOD, GPx and catalase) in dogs with moderate anaemia compared to those with mild anaemia. The results of this study showed changes in biomarkers related to the antioxidant status of dogs naturally

  12. Facts, myths and hypotheses on the zoonotic nature of Mycobacterium avium subspecies paratuberculosis.

    PubMed

    Atreya, Raja; Bülte, Michael; Gerlach, Gerald-F; Goethe, Ralph; Hornef, Mathias W; Köhler, Heike; Meens, Jochen; Möbius, Petra; Roeb, Elke; Weiss, Siegfried

    2014-10-01

    Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of paratuberculosis (Johne's disease [JD]), a chronic granulomatous enteritis in ruminants. JD is one of the most widespread bacterial diseases of domestic animals with significant economic impact. The histopathological picture of JD resembles that of Crohn's disease (CD), a human chronic inflammatory bowel disease of still unresolved aetiology. An aetiological relevance of MAP for CD has been proposed. This and the ambiguity of other published epidemiological findings raise the question whether MAP represents a zoonotic agent. In this review, we will discuss evidence that MAP has zoonotic capacity. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Hemoparasites in a wild primate: Infection patterns suggest interaction of Plasmodium and Babesia in a lemur species☆

    PubMed Central

    Springer, Andrea; Fichtel, Claudia; Calvignac-Spencer, Sébastien; Leendertz, Fabian H.; Kappeler, Peter M.

    2015-01-01

    Hemoparasites can cause serious morbidity in humans and animals and often involve wildlife reservoirs. Understanding patterns of hemoparasite infections in natural populations can therefore inform about emerging disease risks, especially in the light of climate change and human disruption of natural ecosystems. We investigated the effects of host age, sex, host group size and season on infection patterns of Plasmodium sp., Babesia sp. and filarial nematodes in a population of wild Malagasy primates, Verreaux's sifakas (Propithecus verreauxi), as well as the effects of these infections on hematological variables. We tested 45 blood samples from 36 individuals and identified two species of Plasmodium, one species of Babesia and two species of filarial nematodes. Plasmodium spp. and Babesia sp. infections showed opposite patterns of age-dependency, with babesiosis being prevalent among young animals, while older animals were infected with Plasmodium sp. In addition, Babesia sp. infection was a statistically significant negative predictor of Plasmodium sp. infection. These results suggest that Plasmodium and Babesia parasites may interact within the host, either through cross-immunity or via resource competition, so that Plasmodium infections can only establish after babesiosis has resolved. We found no effects of host sex, host group size and season on hemoparasite infections. Infections showed high prevalences and did not influence hematological variables. This preliminary evidence supports the impression that the hosts and parasites considered in this study appear to be well-adapted to each other, resulting in persistent infections with low pathogenic and probably low zoonotic potential. Our results illustrate the crucial role of biodiversity in host-parasite relationships, specifically how within-host pathogen diversity may regulate the abundance of parasites. PMID:26767166

  14. Hemoparasites in a wild primate: Infection patterns suggest interaction of Plasmodium and Babesia in a lemur species.

    PubMed

    Springer, Andrea; Fichtel, Claudia; Calvignac-Spencer, Sébastien; Leendertz, Fabian H; Kappeler, Peter M

    2015-12-01

    Hemoparasites can cause serious morbidity in humans and animals and often involve wildlife reservoirs. Understanding patterns of hemoparasite infections in natural populations can therefore inform about emerging disease risks, especially in the light of climate change and human disruption of natural ecosystems. We investigated the effects of host age, sex, host group size and season on infection patterns of Plasmodium sp., Babesia sp. and filarial nematodes in a population of wild Malagasy primates, Verreaux's sifakas (Propithecus verreauxi), as well as the effects of these infections on hematological variables. We tested 45 blood samples from 36 individuals and identified two species of Plasmodium, one species of Babesia and two species of filarial nematodes. Plasmodium spp. and Babesia sp. infections showed opposite patterns of age-dependency, with babesiosis being prevalent among young animals, while older animals were infected with Plasmodium sp. In addition, Babesia sp. infection was a statistically significant negative predictor of Plasmodium sp. infection. These results suggest that Plasmodium and Babesia parasites may interact within the host, either through cross-immunity or via resource competition, so that Plasmodium infections can only establish after babesiosis has resolved. We found no effects of host sex, host group size and season on hemoparasite infections. Infections showed high prevalences and did not influence hematological variables. This preliminary evidence supports the impression that the hosts and parasites considered in this study appear to be well-adapted to each other, resulting in persistent infections with low pathogenic and probably low zoonotic potential. Our results illustrate the crucial role of biodiversity in host-parasite relationships, specifically how within-host pathogen diversity may regulate the abundance of parasites.

  15. Emerging zoonotic viral diseases.

    PubMed

    Wang, L-F; Crameri, G

    2014-08-01

    Zoonotic diseases are infectious diseases that are naturally transmitted from vertebrate animals to humans and vice versa. They are caused by all types of pathogenic agents, including bacteria, parasites, fungi, viruses and prions. Although they have been recognised for many centuries, their impact on public health has increased in the last few decades due to a combination of the success in reducing the spread of human infectious diseases through vaccination and effective therapies and the emergence of novel zoonotic diseases. It is being increasingly recognised that a One Health approach at the human-animal-ecosystem interface is needed for effective investigation, prevention and control of any emerging zoonotic disease. Here, the authors will review the drivers for emergence, highlight some of the high-impact emerging zoonotic diseases of the last two decades and provide examples of novel One Health approaches for disease investigation, prevention and control. Although this review focuses on emerging zoonotic viral diseases, the authors consider that the discussions presented in this paper will be equally applicable to emerging zoonotic diseases of other pathogen types.

  16. Longitudinal evaluation of humoral immune response and merozoite surface antigen diversity in calves naturally infected with Babesia bovis, in São Paulo, Brazil.

    PubMed

    Matos, Carlos António; Gonçalves, Luiz Ricardo; Alvarez, Dasiel Obregón; Freschi, Carla Roberta; Silva, Jenevaldo Barbosa da; Val-Moraes, Silvana Pompeia; Mendes, Natalia Serra; André, Marcos Rogério; Machado, Rosangela Zacarias

    2017-01-01

    Babesiosis is an economically important infectious disease affecting cattle worldwide. In order to longitudinally evaluate the humoral immune response against Babesia bovis and the merozoite surface antigen diversity of B. bovis among naturally infected calves in Taiaçu, Brazil, serum and DNA samples from 15 calves were obtained quarterly, from their birth to 12 months of age. Anti-B. bovis IgG antibodies were detected by means of the indirect fluorescent antibody test (IFAT) and enzyme-linked immunosorbent assay (ELISA). The polymerase chain reaction (PCR) was used to investigate the genetic diversity of B. bovis, based on the genes that encode merozoite surface antigens (MSA-1, MSA-2b and MSA-2c). The serological results demonstrated that up to six months of age, all the calves developed active immunity against B. bovis. Among the 75 DNA samples evaluated, 2, 4 and 5 sequences of the genes msa-1, msa-2b and msa-2c were obtained. The present study demonstrated that the msa-1 and msa-2b genes sequences amplified from blood DNA of calves positive to B. bovis from Taiaçu were genetically distinct, and that msa-2c was conserved. All animals were serologically positive to ELISA and IFAT, which used full repertoire of parasite antigens in despite of the genetic diversity of MSAs.

  17. Babesia spp. identified by PCR in ticks collected from domestic and wild ruminants in southern Switzerland.

    PubMed

    Hilpertshauser, Heidi; Deplazes, Peter; Schnyder, Manuela; Gern, Lise; Mathis, Alexander

    2006-10-01

    Concurrent infections with vector-borne pathogens affected a cattle herd in Switzerland, and one of the pathogens was identified as Babesia bigemina, which had never been observed in this country before. Therefore, a survey of the occurrence of ruminant Babesia spp. and their tick vectors in Switzerland was conducted. A total of 2,017 ticks were collected from sheep, goats, cattle, and wild ruminants (deer, roe deer, and chamois) in southern parts of Switzerland and identified morphologically. The vast majority of the ticks (99.2%) were Ixodes ricinus, but 14 ticks from sheep and goats were identified as Dermacentor marginatus and two ticks from wild ruminants were identified as Hemaphysalis punctata. PCR analyses of 700 ticks revealed the presence of Babesia divergens (n = 6), Babesia sp. genotype EU1 (n = 14), and B. major (n = 2), whose suggested occurrence was confirmed in this study by molecular analysis, and the presence of novel Babesia sp. genotype CH1 (n = 4), which is closely related to B. odocoilei and to Babesia sp. genotype RD61 reported from North America. The identification of B. divergens and B. major in ticks collected from wild ruminants cast doubt on the postulated strict host specificity of these bovine Babesia species. Furthermore, the zoonotic Babesia sp. genotype EU1 was detected in ticks collected from domestic animals but was obtained predominantly from ticks collected from wild ruminants. More than one tick containing DNA of different Babesia spp. were collected from two red deer. Hence, the role of these game animals as reservoir hosts of Babesia spp. seems to be important but requires further investigation.

  18. Genetic diversity among Babesia rossi detected in naturally infected dogs in Abeokuta, Nigeria, based on 18S rRNA gene sequences.

    PubMed

    Takeet, Michael I; Oyewusi, Adeoye J; Abakpa, Simon A V; Daramola, Olukayode O; Peters, Sunday O

    2017-03-01

    Adequate knowledge of the genetic diversity among Babesia species infecting dogs is necessary for a better understanding of the epidemiology and control of canine babesiosis. Hence, this study determined the genetic diversity among the Babesia rossi detected in dogs presented for routine examination in Veterinary Hospitals in Abeokuta, Nigeria. Blood were randomly collected from 209 dogs. Field-stained thin smears were made and DNA extracted from the blood. Partial region of the 18S small subunit ribosomal RNA (rRNA) gene was amplified, sequenced and analysed. Babesia species was detected in 16 (7.7%) of the dogs by microscopy. Electrophoresed PCR products from 39 (18.66%) dogs revealed band size of 450 bp and 2 (0.95%) dogs had band size of 430 bp. The sequences obtained from 450 bp amplicon displayed homology of 99.74% (387/388) with partial sequences of 18S rRNA gene of Babesia rossi in the GeneBank. Of the two sequences that had 430 bp amplicon, one was identified as T. annulata and second as T. ovis. A significantly (p<0.05) higher prevalence of B. rossi was detected by PCR compared to microscopy. The mean PCV of Babesia infected dogs was significantly (p<0.05) lower than non-infected dogs. Phylogenetic analysis revealed minimal diversity among B. rossi with the exception of one sequence that was greatly divergent from the others. This study suggests that more than one genotype of B. rossi may be in circulation among the dog population in the study area and this may have potential implication on clinical outcome of canine babesiosis.

  19. Efficacy, safety and tolerance of imidocarb dipropionate versus atovaquone or buparvaquone plus azithromycin used to treat sick dogs naturally infected with the Babesia microti-like piroplasm.

    PubMed

    Checa, Rocío; Montoya, Ana; Ortega, Nieves; González-Fraga, José Luis; Bartolomé, Adrián; Gálvez, Rosa; Marino, Valentina; Miró, Guadalupe

    2017-03-13

    Piroplasmosis caused by the Babesia microti-like piroplasm (Bml) is increasingly being detected in dogs in Europe. Sick dogs show acute disease with severe anaemia associated with thrombocytopenia with a poor response to current available drugs. This study assesses the safety and tolerance of three treatments and compares their efficacy over a full year of follow up in dogs naturally infected with Bml. Fifty-nine dogs naturally infected with Bml were randomly assigned to a treatment group: imidocarb dipropionate (5 mg/kg SC, 2 doses 14 d apart) (IMI); atovaquone (13.3 mg/kg PO q 8 h, 10 d)/azithromycin (10 mg/kg PO q 24 h, 10 d) (ATO); or buparvaquone (5 mg/kg IM, 2 d apart)/azithromycin (same dosage) (BUP). Before and after treatment (days 15, 45, 90 and 360), all dogs underwent a physical exam, blood tests and parasite detection (blood cytology and PCR). Clinical efficacy was assessed by grading 24 clinical and 8 clinicopathological signs from low to high severity. Before treatment, most dogs had severe regenerative anaemia (88.13%) and thrombocytopenia (71.4%). On treatment Day 45, clinical signs were mostly reduced in all dogs, and by Day 90, practically all dogs under the ATO or BUP regimen were clinically healthy (76.4 and 88%, respectively). Highest percentage reductions in laboratory abnormalities (82.04%) were detected in animals treated with ATO. Over the year, clinical relapse of Bml was observed in 8 dogs (8/17) treated with IMI. However, on Day 360, these animals had recovered clinically, though clinicopathological abnormalities were still present in some of them. Parasitaemia was PCR-confirmed on Days 90 and 360 in 47.05 and 50% of dogs treated with ATO, 68 and 60.08% with BUP, and 94.1 and 73.3% with IMI, respectively. Even after 360 days, 13.3% of the dogs treated with IMI returned a positive blood cytology result. IMI showed the worse clinical and parasitological, efficacy such that its use to treat Bml infection in dogs is not recommended

  20. Interdisciplinary approaches to zoonotic disease

    PubMed Central

    Goodwin, Robin; Schley, David; Lai, Ka-Man; Ceddia, Graziano M.; Barnett, Julie; Cook, Nigel

    2012-01-01

    Zoonotic infections are on the increase worldwide, but most research into the biological, environmental and life science aspects of these infections has been conducted in separation. In this review we bring together contemporary research in these areas to suggest a new, symbiotic framework which recognises the interaction of biological, economic, psychological, and natural and built environmental drivers in zoonotic infection and transmission. In doing so, we propose that some contemporary debates in zoonotic research could be resolved using an expanded framework which explicitly takes into account the combination of motivated and habitual human behaviour, environmental and biological constraints, and their interactions. PMID:24470951

  1. High-resolution melting PCR assay, applicable for diagnostics and screening studies, allowing detection and differentiation of several Babesia spp. infecting humans and animals.

    PubMed

    Rozej-Bielicka, Wioletta; Masny, Aleksander; Golab, Elzbieta

    2017-10-01

    The goal of the study was to design a single tube PCR test for detection and differentiation of Babesia species in DNA samples obtained from diverse biological materials. A multiplex, single tube PCR test was designed for amplification of approximately 400 bp region of the Babesia 18S rRNA gene. Universal primers were designed to match DNA of multiple Babesia spp. and to have low levels of similarity to DNA sequences of other intracellular protozoa and Babesia hosts. The PCR products amplified from Babesia DNA isolated from human, dog, rodent, deer, and tick samples were subjected to high-resolution melting analysis for Babesia species identification. The designed test allowed detection and differentiation of four Babesia species, three zoonotic (B. microti, B. divergens, B. venatorum) and one that is generally not considered zoonotic-Babesia canis. Both detection and identification of all four species were possible based on the HRM curves of the PCR products in samples obtained from the following: humans, dogs, rodents, and ticks. No cross-reactivity with DNA of Babesia hosts or Plasmodium falciparum and Toxoplasma gondii was observed. The lack of cross-reactivity with P. falciparum DNA might allow using the assay in endemic malaria areas. The designed assay is the first PCR-based test for detection and differentiation of several Babesia spp. of medical and veterinary importance, in a single tube reaction. The results of the study show that the designed assay for Babesia detection and identification could be a practical and inexpensive tool for diagnostics and screening studies of diverse biological materials.

  2. Deciphering Babesia-Vector Interactions.

    PubMed

    Antunes, Sandra; Rosa, Catarina; Couto, Joana; Ferrolho, Joana; Domingos, Ana

    2017-01-01

    Understanding host-pathogen-tick interactions remains a vitally important issue that might be better understood by basic research focused on each of the dyad interplays. Pathogens gain access to either the vector or host during tick feeding when ticks are confronted with strong hemostatic, inflammatory and immune responses. A prominent example of this is the Babesia spp.-tick-vertebrate host relationship. Babesia spp. are intraerythrocytic apicomplexan organisms spread worldwide, with a complex life cycle. The presence of transovarial transmission in almost all the Babesia species is the main difference between their life cycle and that of other piroplasmida. With more than 100 species described so far, Babesia are the second most commonly found blood parasite of mammals after trypanosomes. The prevalence of Babesia spp. infection is increasing worldwide and is currently classified as an emerging zoonosis. Babesia microti and Babesia divergens are the most frequent etiological agents associated with human babesiosis in North America and Europe, respectively. Although the Babesia -tick system has been extensively researched, the currently available prophylactic and control methods are not efficient, and chemotherapeutic treatment is limited. Studying the molecular changes induced by the presence of Babesia in the vector will not only elucidate the strategies used by the protozoa to overcome mechanical and immune barriers, but will also contribute toward the discovery of important tick molecules that have a role in vector capacity. This review provides an overview of the identified molecules involved in Babesia -tick interactions, with an emphasis on the fundamentally important ones for pathogen acquisition and transmission.

  3. Deciphering Babesia-Vector Interactions

    PubMed Central

    Antunes, Sandra; Rosa, Catarina; Couto, Joana; Ferrolho, Joana; Domingos, Ana

    2017-01-01

    Understanding host-pathogen-tick interactions remains a vitally important issue that might be better understood by basic research focused on each of the dyad interplays. Pathogens gain access to either the vector or host during tick feeding when ticks are confronted with strong hemostatic, inflammatory and immune responses. A prominent example of this is the Babesia spp.—tick—vertebrate host relationship. Babesia spp. are intraerythrocytic apicomplexan organisms spread worldwide, with a complex life cycle. The presence of transovarial transmission in almost all the Babesia species is the main difference between their life cycle and that of other piroplasmida. With more than 100 species described so far, Babesia are the second most commonly found blood parasite of mammals after trypanosomes. The prevalence of Babesia spp. infection is increasing worldwide and is currently classified as an emerging zoonosis. Babesia microti and Babesia divergens are the most frequent etiological agents associated with human babesiosis in North America and Europe, respectively. Although the Babesia-tick system has been extensively researched, the currently available prophylactic and control methods are not efficient, and chemotherapeutic treatment is limited. Studying the molecular changes induced by the presence of Babesia in the vector will not only elucidate the strategies used by the protozoa to overcome mechanical and immune barriers, but will also contribute toward the discovery of important tick molecules that have a role in vector capacity. This review provides an overview of the identified molecules involved in Babesia-tick interactions, with an emphasis on the fundamentally important ones for pathogen acquisition and transmission. PMID:29034218

  4. A new PCR assay for the detection and differentiation of Babesia canis and Babesia vogeli.

    PubMed

    Annoscia, Giada; Latrofa, Maria Stefania; Cantacessi, Cinzia; Olivieri, Emanuela; Manfredi, Maria Teresa; Dantas-Torres, Filipe; Otranto, Domenico

    2017-10-01

    Babesia spp. are globally distributed tick-borne protozoan parasites that infect the red blood cells of a wide range of vertebrate hosts, including humans. Diagnosis of babesiosis is often impeded by the transient presence of the parasites in peripheral blood, as well as by their pleomorphic nature. Given the reports of an expanding and, in some cases, sympatric geographical distribution of Babesia canis and Babesia vogeli in dogs and associated vectors, in Europe, the development of time-efficient and cost-effective diagnostic tools to detect and differentiate these two species is warranted. In this study, we designed and developed a novel polymerase chain reaction (PCR) assay targeting the parasite cytochrome c oxidase subunit 1 (cox1) gene, for the simultaneous detection and differentiation of B. canis and B. vogeli. The analytical sensitivity of the PCR was evaluated using serial dilutions of genomic DNA extracted from individual and artificially mixed canine blood samples infected by B. canis (3×10 2 infected erythrocytes/ml, ie/ml) and B. vogeli (2.1×10 1 ie/ml). The analytical specificity of the assay was assessed using blood samples positive for Hepatozoon canis, Ehrlichia canis, Anaplasma platys, Babesia microti, Babesia rossi and Theileria annae (syn. Babesia vulpes). The clinical specificity of the PCR assay was evaluated on 147 blood samples from dogs and 128 tick specimens (Dermacentor reticulatus and Rhipicephalus sanguineus sensu lato). Species-specific bands of the expected sizes (i.e., 750bp for B. canis and 450bp for B. vogeli), and two bands in the mixed blood samples were obtained. The PCR assay developed herein detected a low number of infected erythrocytes (i.e., 3×10 -2 B. canis, 2.1×10 -2 B. vogeli ie/ml). Of the 147 blood samples, nine (6.1%) were positive for B. canis and six (4.1%) for B. vogeli, whereas only one tick (D. reticulatus) was positive for B. canis. This PCR assay represents a rapid and reliable tool for the diagnosis of B

  5. Piroplasmosis in wildlife: Babesia and Theileria affecting free-ranging ungulates and carnivores in the Italian Alps

    PubMed Central

    2014-01-01

    Background Piroplasmosis are among the most relevant diseases of domestic animals. Babesia is emerging as cause of tick-borne zoonosis worldwide and free-living animals are reservoir hosts of several zoonotic Babesia species. We investigated the epidemiology of Babesia spp. and Theileria spp. in wild ungulates and carnivores from Northern Italy to determine which of these apicomplexan species circulate in wildlife and their prevalence of infection. Methods PCR amplification of the V4 hyper-variable region of the 18S rDNA of Babesia sp./Theileria sp was carried out on spleen samples of 1036 wild animals: Roe deer Capreolus capreolus (n = 462), Red deer Cervus elaphus (n = 52), Alpine Chamois Rupicapra rupicapra (n = 36), Fallow deer Dama dama (n = 17), Wild boar Sus scrofa (n = 257), Red fox Vulpes vulpes (n = 205) and Wolf Canis lupus (n = 7). Selected positive samples were sequenced to determine the species of amplified Babesia/Theileria DNA. Results Babesia/Theileria DNA was found with a mean prevalence of 9.94% (IC95% 8.27-11.91). The only piroplasms found in carnivores was Theileria annae, which was detected in two foxes (0.98%; IC95% 0.27-3.49). Red deer showed the highest prevalence of infection (44.23%; IC95% 31.6-57.66), followed by Alpine chamois (22.22%; IC95% 11.71-38.08), Roe deer (12.55%; IC95% 9.84-15.89), and Wild boar (4.67%; IC95% 2.69-7.98). Genetic analysis identified Babesia capreoli as the most prevalent piroplasmid found in Alpine chamois, Roe deer and Red deer, followed by Babesia bigemina (found in Roe deer, Red deer and Wild boar), and the zoonotic Babesia venatorum (formerly Babesia sp. EU1) isolated from 2 Roe deer. Piroplasmids of the genus Theileria were identified in Wild boar and Red deer. Conclusions The present study offers novel insights into the role of wildlife in Babesia/Theileria epidemiology, as well as relevant information on genetic variability of piroplasmids infecting wild ungulates and

  6. Piroplasmosis in wildlife: Babesia and Theileria affecting free-ranging ungulates and carnivores in the Italian Alps.

    PubMed

    Zanet, Stefania; Trisciuoglio, Anna; Bottero, Elisa; de Mera, Isabel Garcia Fernández; Gortazar, Christian; Carpignano, Maria Grazia; Ferroglio, Ezio

    2014-02-17

    Piroplasmosis are among the most relevant diseases of domestic animals. Babesia is emerging as cause of tick-borne zoonosis worldwide and free-living animals are reservoir hosts of several zoonotic Babesia species. We investigated the epidemiology of Babesia spp. and Theileria spp. in wild ungulates and carnivores from Northern Italy to determine which of these apicomplexan species circulate in wildlife and their prevalence of infection. PCR amplification of the V4 hyper-variable region of the 18S rDNA of Babesia sp./Theileria sp was carried out on spleen samples of 1036 wild animals: Roe deer Capreolus capreolus (n = 462), Red deer Cervus elaphus (n = 52), Alpine Chamois Rupicapra rupicapra (n = 36), Fallow deer Dama dama (n = 17), Wild boar Sus scrofa (n = 257), Red fox Vulpes vulpes (n = 205) and Wolf Canis lupus (n = 7). Selected positive samples were sequenced to determine the species of amplified Babesia/Theileria DNA. Babesia/Theileria DNA was found with a mean prevalence of 9.94% (IC95% 8.27-11.91). The only piroplasms found in carnivores was Theileria annae, which was detected in two foxes (0.98%; IC95% 0.27-3.49). Red deer showed the highest prevalence of infection (44.23%; IC95% 31.6-57.66), followed by Alpine chamois (22.22%; IC95% 11.71-38.08), Roe deer (12.55%; IC95% 9.84-15.89), and Wild boar (4.67%; IC95% 2.69-7.98). Genetic analysis identified Babesia capreoli as the most prevalent piroplasmid found in Alpine chamois, Roe deer and Red deer, followed by Babesia bigemina (found in Roe deer, Red deer and Wild boar), and the zoonotic Babesia venatorum (formerly Babesia sp. EU1) isolated from 2 Roe deer. Piroplasmids of the genus Theileria were identified in Wild boar and Red deer. The present study offers novel insights into the role of wildlife in Babesia/Theileria epidemiology, as well as relevant information on genetic variability of piroplasmids infecting wild ungulates and carnivores.

  7. First record of locally acquired human babesiosis in Canada caused by Babesia duncani: a case report.

    PubMed

    Scott, John D

    2017-01-01

    The aim of this clinical assessment was to ascertain whether a 70-year-old Canadian patient, who had no history of out-of-country travel, had contracted a Babesia infection. The adult human male developed constitutional symptoms, which included sweats, chills, and immobilizing fatigue, and was screened for human babesiosis. Subsequent testing included a complete Babesia panel that consisted of B. microti immunoflourescent antibody IgM and IgG, B. duncani immunofluorescent antibody IgM and IgG, Babesia PCR, and Babesia fluorescent in situ hybridization (FISH) test. Both the IgM serology and the molecular FISH RNA probe were positive for B. duncani ; all tests for B. microti were negative. Based on clinical symptoms and laboratory tests, the patient was diagnosed with human babesiosis. Interestingly, the patient's wife also was confirmed positive using serological and molecular testing. This is the first report of a locally acquired case of human babesiosis in Canada caused by Babesia duncani . The geographical distribution of B. duncani in North America is much greater than previously anticipated, especially north of the Canada-United States border. Since the patient was bitten by a blacklegged tick, Ixodes scapularis , a carrier of multiple zoonotic pathogens, the author suggests that this tick species is a vector of B. duncani . Health-care providers must be aware that B. duncani is present in Canada, and poses a public health risk.

  8. First record of Babesia sp. in Antarctic penguins.

    PubMed

    Montero, Estrella; González, Luis Miguel; Chaparro, Alberto; Benzal, Jesús; Bertellotti, Marcelo; Masero, José A; Colominas-Ciuró, Roger; Vidal, Virginia; Barbosa, Andrés

    2016-04-01

    This is the first reported case of Babesia sp. in Antarctic penguins, specifically a population of Chinstrap penguins (Pygoscelis antarctica) in the Vapour Col penguin rookery in Deception Island, South Shetlands, Antarctica. We collected peripheral blood from 50 adult and 30 chick Chinstrap penguins. Examination of the samples by microscopy showed intraerythrocytic forms morphologically similar to other avian Babesia species in 12 Chinstrap penguin adults and seven chicks. The estimated parasitaemias ranged from 0.25×10(-2)% to 0.75×10(-2)%. Despite the low number of parasites found in blood smears, semi-nested PCR assays yielded a 274 bp fragment in 12 of the 19 positive blood samples found by microscopy. Sequencing revealed that the fragment was 97% similar to Babesia sp. 18S rRNA from Australian Little Penguins (Eudyptula minor) confirming presence of the parasite. Parasite prevalence estimated by microscopy in adults and chicks was higher (24% vs. 23.3%, respectively) than found by semi-nested PCR (16% vs. 13.3% respectively). Although sampled penguins were apparently healthy, the effect of Babesia infection in these penguins is unknown. The identification of Babesia sp. in Antarctic penguins is an important finding. Ixodes uriae, as the only tick species present in the Antarctic Peninsula, is the key to understanding the natural history of this parasite. Future work should address the transmission dynamics and pathogenicity of Babesia sp. in Chinstrap penguin as well as in other penguin species, such as Gentoo penguin (Pygoscelis papua) and Adélie penguin (Pygoscelis adeliae), present within the tick distribution range in the Antarctic Peninsula. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. The common zoonotic protozoal diseases causing abortion.

    PubMed

    Shaapan, Raafat Mohamed

    2016-12-01

    Toxoplasmosis, neosporosis, sarcosporidiosis (sarcocystosis) and trypanosomiasis are the common zoonotic protozoal diseases causing abortion which caused by single-celled protozoan parasites; Toxoplasma gondii, Neospora caninum , Sarcocystis spp and Trypanosoma evansi, respectively. Toxoplasmosis is generally considered the most important disease that causing abortion of both pregnant women and different female animals throughout the world, about third of human being population had antibodies against T. gondii . The infection can pass via placenta, causing encephalitis, chorio-retinitis, mental retardation and loss of vision in congenitally-infected children and stillbirth or mummification of the aborted fetuses of livestock. Neosporosis is recognized as a major cause of serious abortion in varieties of wild and domestic animals around the world particularly cattle, the disease cause serious economic losses among dairy and beef cattle due to decrease in milk and meat production. While unlike toxoplasmosis, neosporosis is not recognized as a human pathogen and evidence to date shows that neosporosis is only detected by serology in the human population. Sarcosporidiosis also can cause abortion in animals particularly cattle, buffaloes and sheep with acute infection through high dose of infection with sarcocysts. On the other hand, humans have been reported as final and intermediate host for sarcosporidiosis but not represent a serious health problem. Trypanosomiasis by T. evansi cause dangerous infection among domestic animals in tropical and subtropical areas. Several cases of abortion had been recorded in cattle and buffaloes infected with T. evansi while, a single case of human infection was reported in India. Trichomoniasis and babesiosis abortion occurs with non-zoonotic Trichomonas and Babesia species while the zoonotic species had not been incriminated in induction of abortion in both animals and man. The current review article concluded that there is still

  10. Reclassification of Theileria annae as Babesia vulpes sp. nov.

    PubMed

    Baneth, Gad; Florin-Christensen, Monica; Cardoso, Luís; Schnittger, Leonhard

    2015-04-08

    Theileria annae is a tick-transmitted small piroplasmid that infects dogs and foxes in North America and Europe. Due to disagreement on its placement in the Theileria or Babesia genera, several synonyms have been used for this parasite, including Babesia Spanish dog isolate, Babesia microti-like, Babesia (Theileria) annae, and Babesia cf. microti. Infections by this parasite cause anemia, thrombocytopenia, and azotemia in dogs but are mostly subclinical in red foxes (Vulpes vulpes). Furthermore, high infection rates have been detected among red fox populations in distant regions strongly suggesting that these canines act as the parasite's natural host. This study aims to reassess and harmonize the phylogenetic placement and binomen of T. annae within the order Piroplasmida. Four molecular phylogenetic trees were constructed using a maximum likelihood algorithm based on DNA alignments of: (i) near-complete 18S rRNA gene sequences (n = 76 and n = 93), (ii) near-complete and incomplete 18S rRNA gene sequences (n = 92), and (iii) tubulin-beta gene sequences (n = 32) from B. microti and B. microti-related parasites including those detected in dogs and foxes. All phylogenetic trees demonstrate that T. annae and its synonyms are not Theileria parasites but are most closely related with B. microti. The phylogenetic tree based on the 18S rRNA gene forms two separate branches with high bootstrap value, of which one branch corresponds to Babesia species infecting rodents, humans, and macaques, while the other corresponds to species exclusively infecting carnivores. Within the carnivore group, T. annae and its synonyms from distant regions segregate into a single clade with a highly significant bootstrap value corroborating their separate species identity. Phylogenetic analysis clearly shows that T. annae and its synonyms do not pertain to Theileria and can be clearly defined as a separate species. Based on the facts that T. annae and its synonyms have not been

  11. The white-nosed coati (Nasua narica) is a naturally susceptible definitive host for the zoonotic nematode Angiostrongylus costaricensis in Costa Rica.

    PubMed

    Santoro, Mario; Alfaro-Alarcón, Alejandro; Veneziano, Vincenzo; Cerrone, Anna; Latrofa, Maria Stefania; Otranto, Domenico; Hagnauer, Isabel; Jiménez, Mauricio; Galiero, Giorgio

    2016-09-15

    Angiostrongylus costaricensis (Strongylida, Angiostrongylidae) is a roundworm of rodents, which may cause a severe or fatal zoonosis in several countries of the Americas. A single report indicated that the white-nosed coati (Nasua narica), acts as a potential free-ranging wildlife reservoir. Here we investigated the prevalence and features of A. costaricensis infection in two procyonid species, the white-nosed coati and the raccoon (Procyon lotor) from Costa Rica to better understand their possible role in the epidemiology of this zoonotic infection. Eighteen of 32 (56.2%) white-nosed coatis collected between July 2010 and March 2016 were infected with A. costaricensis but none of 97 raccoons from the same localities were diagnosed with this infection. First-stage larvae of A. costaricensis were obtained from feces of 17 fresh white-nosed coati carcasses by Baermann technique. Parasite identity was confirmed by morphology, histology and molecular characterization of target genes. These data demonstrate that the white-nosed coati is a naturally susceptible definitive host for A. costaricensis in Costa Rica contrary to findings in the raccoon. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Bat Flight and Zoonotic Viruses

    PubMed Central

    Cryan, Paul M.; Cunningham, Andrew A.; Fooks, Anthony R.; Hayman, David T.S.; Luis, Angela D.; Peel, Alison J.; Plowright, Raina K.; Wood, James L.N.

    2014-01-01

    Bats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. We hypothesize that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals. On an evolutionary scale, this host–virus interaction might have resulted in the large diversity of zoonotic viruses in bats, possibly through bat viruses adapting to be more tolerant of the fever response and less virulent to their natural hosts. PMID:24750692

  13. Bat flight and zoonotic viruses

    USGS Publications Warehouse

    O'Shea, Thomas J.; Cryan, Paul M.; Cunningham, Andrew A.; Fooks, Anthony R.; Hayman, David T.S.; Luis, Angela D.; Peel, Alison J.; Plowright, Raina K.; Wood, James L.N.

    2014-01-01

    Bats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. We hypothesize that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals. On an evolutionary scale, this host–virus interaction might have resulted in the large diversity of zoonotic viruses in bats, possibly through bat viruses adapting to be more tolerant of the fever response and less virulent to their natural hosts.

  14. Transmission of Babesia microti Parasites by Solid Organ Transplantation

    PubMed Central

    Herwaldt, Barbara L.; Kazmierczak, James J.; Weiss, John W.; Klein, Christina L.; Leith, Catherine P.; He, Rong; Oberley, Matthew J.; Tonnetti, Laura; Wilkins, Patricia P.; Gauthier, Gregory M.

    2016-01-01

    Babesia microti, an intraerythrocytic parasite, is tickborne in nature. In contrast to transmission by blood transfusion, which has been well documented, transmission associated with solid organ transplantation has not been reported. We describe parasitologically confirmed cases of babesiosis diagnosed ≈8 weeks posttransplantation in 2 recipients of renal allografts from an organ donor who was multiply transfused on the day he died from traumatic injuries. The organ donor and recipients had no identified risk factors for tickborne infection. Antibodies against B. microti parasites were not detected by serologic testing of archived pretransplant specimens. However, 1 of the organ donor’s blood donors was seropositive when tested postdonation and had risk factors for tick exposure. The organ donor probably served as a conduit of Babesia parasites from the seropositive blood donor to both kidney recipients. Babesiosis should be included in the differential diagnosis of unexplained fever and hemolytic anemia after blood transfusion or organ transplantation. PMID:27767010

  15. ZOONOTIC PARASITES, OUR ENVIROMENT AND CHANGE

    USDA-ARS?s Scientific Manuscript database

    Environmental changes arising from nature and human activity are affecting patterns for the occurrence and significance of many infectious diseases, including zoonotic parasites, which are those naturally transmitted between domestic animals or wildlife and people. As these changes continue, and pe...

  16. Zoonotic Hookworm FAQs

    MedlinePlus

    ... when exposed skin comes in contact with contaminated soil or sand. The larvae in the contaminated soil or sand will burrow into the skin and ... measures to avoid skin contact with sand or soil will prevent infection with zoonotic hookworms. Travelers to ...

  17. Morphological and Molecular Descriptors of the Developmental Cycle of Babesia divergens Parasites in Human Erythrocytes.

    PubMed

    Rossouw, Ingrid; Maritz-Olivier, Christine; Niemand, Jandeli; van Biljon, Riette; Smit, Annel; Olivier, Nicholas A; Birkholtz, Lyn-Marie

    2015-05-01

    Human babesiosis, especially caused by the cattle derived Babesia divergens parasite, is on the increase, resulting in renewed attentiveness to this potentially life threatening emerging zoonotic disease. The molecular mechanisms underlying the pathophysiology and intra-erythrocytic development of these parasites are poorly understood. This impedes concerted efforts aimed at the discovery of novel anti-babesiacidal agents. By applying sensitive cell biological and molecular functional genomics tools, we describe the intra-erythrocytic development cycle of B. divergens parasites from immature, mono-nucleated ring forms to bi-nucleated paired piriforms and ultimately multi-nucleated tetrads that characterizes zoonotic Babesia spp. This is further correlated for the first time to nuclear content increases during intra-erythrocytic development progression, providing insight into the part of the life cycle that occurs during human infection. High-content temporal evaluation elucidated the contribution of the different stages to life cycle progression. Moreover, molecular descriptors indicate that B. divergens parasites employ physiological adaptation to in vitro cultivation. Additionally, differential expression is observed as the parasite equilibrates its developmental stages during its life cycle. Together, this information provides the first temporal evaluation of the functional transcriptome of B. divergens parasites, information that could be useful in identifying biological processes essential to parasite survival for future anti-babesiacidal discoveries.

  18. Zoonotic risks from small ruminants.

    PubMed

    Ganter, M

    2015-12-14

    Zoonoses are infections that spread naturally between species (sometimes by a vector) from animals to other animal species or to humans or from humans to animals. Most of the zoonoses diagnosed in sheep and goats are transmitted by close contact of man with these animals and are, more often, occupational diseases that principally affect breeders, veterinarians and/or slaughterhouse workers. Some other diseases have an airborne transmission and affect the population in the vicinity of sheep/goat farms. Due to the fact that small ruminants are almost the only remaining animals which are migrating in industrialised countries, there is a severe risk for transmitting the diseases. Some other zoonotic diseases are foodborne diseases, which are mainly transmitted from animals to humans and to other animal species by contaminated food and water. Within the last decade central Europe was threatened by some new infections, e.g., bluetongue disease and schmallenberg disease, which although not of zoonotic interest, are caused by pathogens transmitted by vectors. Causal agents of both diseases have found highly effective indigenous vectors. In the future, climate change may possibly modify conditions for the vectors and influence their distribution and competence. By this, other vector-borne zoonotic infections may propagate into former disease free countries. Changes in human behaviour in consummation and processing of food, in animal housing and management may also influence future risks for zoonosis. Monitoring, prevention and control measures are proposed to limit further epidemics and to enable the containment of outbreaks. Measures depend mainly on the damage evoked or anticipated by the disease, the local situation, and the epidemiology of the zoonoses, the presence of the infective agent in wild and other animals, as well as the resistance of the causal microorganisms in the environment and the possibility to breed sheep and goats which are resistant to specific

  19. Inhibitor-bound complexes of dihydrofolate reductase-thymidylate synthase from Babesia bovis

    PubMed Central

    Begley, Darren W.; Edwards, Thomas E.; Raymond, Amy C.; Smith, Eric R.; Hartley, Robert C.; Abendroth, Jan; Sankaran, Banumathi; Lorimer, Donald D.; Myler, Peter J.; Staker, Bart L.; Stewart, Lance J.

    2011-01-01

    Babesiosis is a tick-borne disease caused by eukaryotic Babesia parasites which are morphologically similar to Plasmodium falciparum, the causative agent of malaria in humans. Like Plasmodium, different species of Babesia are tuned to infect different mammalian hosts, including rats, dogs, horses and cattle. Most species of Plasmodium and Babesia possess an essential bifunctional enzyme for nucleotide synthesis and folate metabolism: dihydrofolate reductase-thymidylate synthase. Although thymidylate synthase is highly conserved across organisms, the bifunctional form of this enzyme is relatively uncommon in nature. The structural characterization of dihydrofolate reductase-thymidylate synthase in Babesia bovis, the causative agent of babesiosis in livestock cattle, is reported here. The apo state is compared with structures that contain dUMP, NADP and two different antifolate inhibitors: pemetrexed and raltitrexed. The complexes reveal modes of binding similar to that seen in drug-resistant malaria strains and point to the utility of applying structural studies with proven cancer chemotherapies towards infectious disease research. PMID:21904052

  20. Babesia microti Infection, Eastern Pennsylvania, USA

    PubMed Central

    Ender, Peter T.; Smith, Erin M.; Jahre, Jeffrey A.

    2013-01-01

    Infection with Babesia microti has not been well-described in eastern Pennsylvania, USA, despite the vector of this organism being prevalent. We report 3 cases of babesiosis in eastern Pennsylvania in persons without recent travel outside the region or history of blood transfusions, suggesting emergence of this infection. PMID:23764008

  1. Babesia microti infection, eastern Pennsylvania, USA.

    PubMed

    Acosta, Marcela E Perez; Ender, Peter T; Smith, Erin M; Jahre, Jeffrey A

    2013-07-01

    Infection with Babesia microti has not been well-described in eastern Pennsylvania, USA, despite the vector of this organism being prevalent. We report 3 cases of babesiosis in eastern Pennsylvania in persons without recent travel outside the region or history of blood transfusions, suggesting emergence of this infection.

  2. Waterborne zoonotic helminthiases.

    PubMed

    Nithiuthai, Suwannee; Anantaphruti, Malinee T; Waikagul, Jitra; Gajadhar, Alvin

    2004-12-09

    This review deals with waterborne zoonotic helminths, many of which are opportunistic parasites spreading directly from animals to man or man to animals through water that is either ingested or that contains forms capable of skin penetration. Disease severity ranges from being rapidly fatal to low-grade chronic infections that may be asymptomatic for many years. The most significant zoonotic waterborne helminthic diseases are either snail-mediated, copepod-mediated or transmitted by faecal-contaminated water. Snail-mediated helminthiases described here are caused by digenetic trematodes that undergo complex life cycles involving various species of aquatic snails. These diseases include schistosomiasis, cercarial dermatitis, fascioliasis and fasciolopsiasis. The primary copepod-mediated helminthiases are sparganosis, gnathostomiasis and dracunculiasis, and the major faecal-contaminated water helminthiases are cysticercosis, hydatid disease and larva migrans. Generally, only parasites whose infective stages can be transmitted directly by water are discussed in this article. Although many do not require a water environment in which to complete their life cycle, their infective stages can certainly be distributed and acquired directly through water. Transmission via the external environment is necessary for many helminth parasites, with water and faecal contamination being important considerations. Human behaviour, particularly poor hygiene, is a major factor in the re-emergence, and spread of parasitic infections. Also important in assessing the risk of infection by water transmission are human habits and population density, the prevalence of infection in them and in alternate animal hosts, methods of treating sewage and drinking water, and climate. Disease prevention methods, including disease surveillance, education and improved drinking water treatment are described.

  3. Hantavirus infection: a global zoonotic challenge.

    PubMed

    Jiang, Hong; Zheng, Xuyang; Wang, Limei; Du, Hong; Wang, Pingzhong; Bai, Xuefan

    2017-02-01

    Hantaviruses are comprised of tri-segmented negative sense single-stranded RNA, and are members of the Bunyaviridae family. Hantaviruses are distributed worldwide and are important zoonotic pathogens that can have severe adverse effects in humans. They are naturally maintained in specific reservoir hosts without inducing symptomatic infection. In humans, however, hantaviruses often cause two acute febrile diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). In this paper, we review the epidemiology and epizootiology of hantavirus infections worldwide.

  4. Detection of Babesia spp. in Dogs and Their Ticks From Peninsular Malaysia: Emphasis on Babesia gibsoni and Babesia vogeli Infections in Rhipicephalus sanguineus sensu lato (Acari: Ixodidae).

    PubMed

    Prakash, Batah Kunalan; Low, Van Lun; Vinnie-Siow, Wei Yin; Tan, Tiong Kai; Lim, Yvonne Ai-Lian; Morvarid, Akhavan Rezaei; AbuBakar, Sazaly; Sofian-Azirun, Mohd

    2018-05-12

    Canine babesiosis is an emerging tick-borne disease with a worldwide distribution, including Malaysia. While the prevalence of Babesia has been documented from dogs in Malaysia, occurrence of Babesia has been relatively little studied in their tick vectors. Accordingly, a total of 240 dogs and 140 Rhipicephalus sanguineus sensu lato (s.l.) (Acari: Ixodidae) ticks from Malaysia were molecularly screened for the presence of Babesia protozoa in the present study. Babesia gibsoni was only detected in ticks (1.4%), whereas Babesia vogeli was detected in both ticks (1.4%) and dogs (2.1%). This study highlights the detection of B. gibsoni and B. vogeli for the first time, in both adult and nymphal stages of R. sanguineus s.l. in Malaysia, suggesting the potential role of this tick species in transmitting canine babesiosis.

  5. Molecular detection of Rickettsia conorii and other zoonotic spotted fever group rickettsiae in ticks, Romania.

    PubMed

    Ionita, Mariana; Silaghi, Cornelia; Mitrea, Ioan Liviu; Edouard, Sophie; Parola, Philippe; Pfister, Kurt

    2016-02-01

    The diverse tick fauna as well as the abundance of tick populations in Romania represent potential risks for both human and animal health. Spotted fever group (SFG) rickettsiae are recognized as important agents of emerging human tick-borne diseases worldwide. However, the epidemiology of rickettsial diseases has been poorly investigated in Romania. In urban habitats, companion animals which are frequently exposed to tick infestation, play a role in maintenance of tick populations and as reservoirs of tick-borne pathogens. Therefore, the aim of the present study was to investigate the occurrence of SFG rickettsiae in ticks infesting dogs in a greater urban area in South-eastern Romania. Adult ixodid ticks (n=205), including Rhipicephalus sanguineus sensu lato (n=120), Dermacentor reticulatus (n=76) and Ixodes ricinus (n=9) were collected from naturally infested dogs and were screened for SFG rickettsiae using conventional PCR followed by sequencing. Additionally, ticks were screened for DNA of Babesia spp., Hepatozoon spp., Ehrlichia canis, and Anaplasma platys. Four zoonotic SFG rickettsiae were identified: Rickettsia raoultii (16%) and Rickettsia slovaca (3%) in D. reticulatus, Rickettsia monacensis (11%) in I. ricinus, and Rickettsia conorii (0.8%) in Rh. sanguineus s.l. Moreover, pathogens of veterinary importance, such as B. canis (21%) in D. reticulatus and E. canis (7.5%) in Rh. sanguineus s.l. were identified. The findings expand the knowledge on distribution of SFG rickettsiae as well as canine pathogens in Romania. Additionally, this is the first report describing the molecular detection of R. conorii in ticks from Romania. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Bovine babesiosis: Cattle protected in the field with a frozen vaccine containing Babesia bovis and Babesia bigemina cultured in vitro with a serum-free medium.

    PubMed

    Rojas-Martínez, Carmen; Rodríguez-Vivas, Roger Iván; Millán, Julio Vicente Figueroa; Bautista-Garfias, Carlos Ramón; Castañeda-Arriola, Roberto Omar; Lira-Amaya, José Juan; Urióstegui, Patricia Vargas; Carrasco, Juan José Ojeda; Martínez, Jesús Antonio Álvarez

    2018-04-01

    An attenuated live vaccine containing Babesia bovis and B. bigemina cultured in vitro with a serum-free medium was assessed for its clinical protection conferred of naïve cattle, under natural tick-challenge in a high endemicity zone to Babesia spp. Three groups of six animals were treated as follows: group I (GI) received a vaccine derived from parasites cultured with a free-serum medium; group II (GII) were immunized with the standard vaccine, with parasites cultured in a medium supplemented with 40% (v/v) bovine serum; and a control group (GIII) inoculated with non-infected bovine erythrocytes. Inocula were administered by IM route. Experimental animals were kept during 23days after vaccination in a cattle farm free of ticks and Babesia spp. Thereafter, cattle were moved to a high endemicity farm for natural exposure to Babesia spp. transmitted by Rhipicephalus microplus ticks. Protection against clinical babesiosis was observed in bovines belonging to GI (100%) and GII (83.33%), while the control animals (GIII) were not protected, and showed severe clinical signs, closely related to babesiosis, were observed for at least three consecutive days during the challenge. These were fever, anemia, which were measured simultaneously, and circulating parasites were detected by optic light microscopy. All cattle showed B. bovis and B. bigemina in stained blood films during the challenge; B. bovis antibody titers were higher than those to B. bigemina in GI and GII, and lower titers were determined in GIII. The protective capacity of the vaccine derived from B. bovis and B. bigemina cultured in vitro in a serum-free medium was demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Severe human Babesia divergens infection in Norway.

    PubMed

    Mørch, K; Holmaas, G; Frolander, P S; Kristoffersen, E K

    2015-04-01

    Human babesiosis is a rare but potentially life-threatening parasitic disease transmitted by ixodid ticks, and has not previously been reported in Norway. We report a case of severe babesiosis that occurred in Norway in 2007. The patient had previously undergone a splenectomy. He was frequently exposed to tick bites in an area endemic for bovine babesiosis in the west of Norway. The patient presented with severe haemolysis and multiorgan failure. Giemsa-stained blood smears revealed 30% parasitaemia with Babesia spp. He was treated with quinine in combination with clindamycin, apheresis, and supportive treatment with ventilatory support and haemofiltration, and made a complete recovery. This is the first case reported in Norway; however Babesia divergens seroprevalence in cattle in Norway is high, as is the risk of Ixodes ricinus tick bite in the general population. Babesiosis should be considered in the differential diagnosis of unexplained febrile haemolytic disease. Copyright © 2015. Published by Elsevier Ltd.

  8. Molecular detection and identification of Babesia bovis and Babesia bigemina in cattle in northern Thailand.

    PubMed

    Cao, Shinuo; Aboge, Gabriel Oluga; Terkawi, Mohamad Alaa; Yu, Longzheng; Kamyingkird, Ketsarin; Luo, Yuzi; Li, Yan; Goo, Youn-Kyoung; Yamagishi, Junya; Nishikawa, Yoshifumi; Yokoyama, Naoaki; Suzuki, Hiroshi; Igarashi, Ikuo; Maeda, Ryuichiro; Inpankaew, Tawin; Jittapalapong, Sathaporn; Xuan, Xuenan

    2012-09-01

    Although Babesia bovis and Babesia bigemina infections cause economic losses in the cattle industry in northern Thailand, there is inadequate information on Babesia isolates present in the area. Therefore, to determine the prevalence and genetic relationship between Babesia isolates, we screened 200 blood samples of cattle from Chiang Rai, Chiang Mai, and Lumpang provinces of northern Thailand. A nested polymerase chain reaction using primers targeting B. bovis spherical body protein 2 (BboSBP2) and B. bigemina rhoptry-associated protein 1a (BbiRAP-1a) genes revealed a prevalence of 12 and 21 % for B. bovis and B. bigemina, respectively, while that of mixed infections was 6.5 % samples. The prevalences of B. bovis in Chiang Rai, Chiang Mai, and Lumpang were 9.5, 3.7, and 25.5 %, respectively. For B. bigemina, the prevalences were 15.8, 12.9, and 39.2 % in Chiang Rai, Chiang Mai, and Lumpang, respectively. Mixed infections with B. bovis and B. bigemina were 6.3 % in Chiang Rai, 1.9 % in Chiang Mai, and 13.7 % in Lumpang. The identical sequences of either BboSBP2 gene or BbiRAP-1a gene were shared among the Babesia isolates in the three provinces of northern Thailand. Further analysis using the internal transcribed spacer gene revealed at least four genotypes for B. bovis and five genotypes for B. bigemina in northern Thailand, while the sequences present great genetic diversities in the different isolates. Overall, we have demonstrated a high prevalence and polymorphism of Babesia parasites in northern Thailand calling for the need to design effective control programs for bovine babesiosis.

  9. Nilgai antelope in northern Mexico as a possible carrier for cattle fever ticks and Babesia bovis and Babesia bigemina.

    PubMed

    Cárdenas-Canales, Elsa M; Ortega-Santos, J Alfonso; Campbell, Tyler A; García-Vázquez, Zeferino; Cantú-Covarrubias, Antonio; Figueroa-Millán, Julio V; DeYoung, Randall W; Hewitt, David G; Bryant, Fred C

    2011-07-01

    Of 20 blood samples from nilgais from México, five were polymerase chain reaction-positive for Babesia bigemina and one for Babesia bovis. Positive samples had the expected 170 (B. bigemina) and 291 (B. bovis) base pairs and were identical to Gen-Bank B. bigemina accession S45366 and B. bovis M38218.

  10. Survey of vector-borne agents in feral cats and first report of Babesia gibsoni in cats on St Kitts, West Indies.

    PubMed

    Kelly, Patrick John; Köster, Liza; Li, Jing; Zhang, Jilei; Huang, Ke; Branford, Gillian Carmichael; Marchi, Silvia; Vandenplas, Michel; Wang, Chengming

    2017-11-13

    As there is little data on vector-borne diseases of cats in the Caribbean region and even around the world, we tested feral cats from St Kitts by PCR to detect infections with Babesia, Ehrlichia and spotted fever group Rickettsia (SFGR) and surveyed them for antibodies to Rickettsia rickettsii and Ehrlichia canis. Whole blood was collected from apparently healthy feral cats during spay/ neuter campaigns on St Kitts in 2011 (N = 68) and 2014 (N = 52). Sera from the 52 cats from 2014 were used to detect antibodies to Ehrlichia canis and Rickettsia rickettsii using indirect fluorescent antibody tests and DNA extracted from whole blood of a total of 119 cats (68 from 2011, and 51 from 2014) was used for PCRs for Babesia, Ehrlichia and Rickettsia. We could not amplify DNA of SFG Rickettsia in any of the samples but found DNA of E. canis in 5% (6/119), Babesia vogeli in 13% (15/119), Babesia gibsoni in 4% (5/119), mixed infections with B. gibsoni and B. vogeli in 3% (3/119), and a poorly characterized Babesia sp. in 1% (1/119). Overall, 10% of the 52 cats we tested by IFA for E. canis were positive while 42% we tested by indirect fluorescent antibody (IFA) for R. rickettsii antigens were positive. Our study provides the first evidence that cats can be infected with B. gibsoni and also indicates that cats in the Caribbean may be commonly exposed to other vector-borne agents including SFGR, E. canis and B. vogeli. Animal health workers should be alerted to the possibility of clinical infections in their patients while public health workers should be alerted to the possibility that zoonotic SFGR are likely circulating in the region.

  11. Fate of naturally occurring Escherichia coli O157:H7 and other zoonotic pathogens during minimally managed bovine feedlot manure composting processes

    USDA-ARS?s Scientific Manuscript database

    Reducing Escherichia coli O157:H7 in livestock manures before application to cropland is critical for reducing the risk of foodborne illness associated with produce. Our objective was to determine the fate of naturally occurring E. coli O157:H7 and other pathogens during minimally managed on-farm bo...

  12. Ticks are more suitable than red foxes for monitoring zoonotic tick-borne pathogens in northeastern Italy.

    PubMed

    Da Rold, Graziana; Ravagnan, Silvia; Soppelsa, Fabio; Porcellato, Elena; Soppelsa, Mauro; Obber, Federica; Citterio, Carlo Vittorio; Carlin, Sara; Danesi, Patrizia; Montarsi, Fabrizio; Capelli, Gioia

    2018-03-20

    Northeastern Italy is a hotspot for several tick-borne pathogens, transmitted to animals and humans mainly by Ixodes ricinus. Here we compare the results of molecular monitoring of ticks and zoonotic TBPs over a six-year period, with the monitoring of red foxes (Vulpes vulpes) in an endemic area. In the period 2011-2016, 2,578 ticks were collected in 38 sites of 20 municipalities of Belluno Province. Individual adults (264), pooled larvae (n = 330) and nymphs (n = 1984) were screened for tick-borne encephalitis virus, Borrelia burgdorferi (s.l.), Rickettsia spp., Babesia spp., Anaplasma phagocytophilum and "Candidatus Neoehrlichia mikurensis" by specific SYBR green real-time PCR assays and sequencing. The spleens of 97 foxes, culled in the period 2015-2017 during sport hunting or population control programs, were also screened. Overall, nine different pathogens were found in I. ricinus nymph and adult ticks: Rickettsia helvetica (3.69%); R. monacensis (0.49%); four species of the B. burgdorferi (s.l.) complex [B. afzelii (1.51%); B. burgdorferi (s.s.) (1.25%); B. garinii (0.18%); and B. valaisiana (0.18%)]; A. phagocytophilum (3.29%); "Candidatus N. mikurensis" (1.73%); and Babesia venatorum (0.04%). Larvae were collected and screened in the first year only and two pools (0.6%) were positive for R. helvetica. Tick-borne encephalitis virus was not found in ticks although human cases do occur in the area. The rate of infection in ticks varied widely according to tick developmental stage, site and year of collection. As expected, adults were the most infected, with 27.6% harboring at least one pathogen compared to 7.3% of nymphs. Pathogens with a minimum infection rate above 1% were recorded every year. None of the pathogens found in ticks were detectable in the foxes, 52 (54%) of which were instead positive for Babesia cf. microti (also referred to as Babesia microti-like, "Theileria annae", "Babesia annae" and "Babesia vulpes"). The results show that foxes

  13. Establishment of a novel tick-Babesia experimental infection model.

    PubMed

    Maeda, Hiroki; Hatta, Takeshi; Alim, M Abdul; Tsubokawa, Daigo; Mikami, Fusako; Matsubayashi, Makoto; Miyoshi, Takeharu; Umemiya-Shirafuji, Rika; Kawazu, Shin-Ichiro; Igarashi, Ikuo; Mochizuki, Masami; Tsuji, Naotoshi; Tanaka, Tetsuya

    2016-11-14

    Ticks are potent vectors of many deadly human and animal pathogens. Tick-borne babesiosis is a well-recognized malaria-like disease that occurs worldwide and recently has attracted increased attention as an emerging zoonosis. Although the proliferation of Babesia organisms is essential in the vectors, their detailed lifecycle with time information for migration in ticks remains unknown. A novel study model for the elucidation of the migration speed of Babesia parasites in their vector tick, Haemaphysalis longicornis, has been developed using an artificial feeding system with quantitative PCR method. The detectable DNA of Babesia parasites gradually disappeared in the tick midgut at 1 day post engorgement (DPE), and in contrary increased in other organs. The results indicated that the Babesia parasite passed the H. longicornis midgut within 24 hours post engorgement, migrated to the hemolymph, and then proliferated in the organs except the midgut. This time point may be an important curfew for Babesia parasites to migrate in the tick lumen. We also visualized the Babesia parasites in the experimentally infected ticks and in their eggs using IFAT for detecting their cytoskeletal structure, which suggested the successful tick infection and transovarial transmission of the parasite. This model will shed light on the further understanding of tick-Babesia interactions.

  14. Establishment of a novel tick-Babesia experimental infection model

    PubMed Central

    Maeda, Hiroki; Hatta, Takeshi; Alim, M Abdul; Tsubokawa, Daigo; Mikami, Fusako; Matsubayashi, Makoto; Miyoshi, Takeharu; Umemiya-Shirafuji, Rika; Kawazu, Shin-ichiro; Igarashi, Ikuo; Mochizuki, Masami; Tsuji, Naotoshi; Tanaka, Tetsuya

    2016-01-01

    Ticks are potent vectors of many deadly human and animal pathogens. Tick-borne babesiosis is a well-recognized malaria-like disease that occurs worldwide and recently has attracted increased attention as an emerging zoonosis. Although the proliferation of Babesia organisms is essential in the vectors, their detailed lifecycle with time information for migration in ticks remains unknown. A novel study model for the elucidation of the migration speed of Babesia parasites in their vector tick, Haemaphysalis longicornis, has been developed using an artificial feeding system with quantitative PCR method. The detectable DNA of Babesia parasites gradually disappeared in the tick midgut at 1 day post engorgement (DPE), and in contrary increased in other organs. The results indicated that the Babesia parasite passed the H. longicornis midgut within 24 hours post engorgement, migrated to the hemolymph, and then proliferated in the organs except the midgut. This time point may be an important curfew for Babesia parasites to migrate in the tick lumen. We also visualized the Babesia parasites in the experimentally infected ticks and in their eggs using IFAT for detecting their cytoskeletal structure, which suggested the successful tick infection and transovarial transmission of the parasite. This model will shed light on the further understanding of tick-Babesia interactions. PMID:27841321

  15. Neglected intravascular pathogens, Babesia vulpes and haemotropic Mycoplasma spp. in European red fox (Vulpes vulpes) population.

    PubMed

    Koneval, Martina; Miterpáková, Martina; Hurníková, Zuzana; Blaňarová, Lucia; Víchová, Bronislava

    2017-08-30

    Wild animals, especially canids, are important reservoirs of vector-borne pathogens, that are transmitted by the ticks and other bloodsucking arthropods. In total, 300 red foxes (Vulpes vulpes), shot by the hunters in eastern and northern Slovakia, were screened for the presence of vector-borne pathogens by PCR-based methods Blood samples were obtained from nine red foxes and tissue samples originated from 291 animals (the liver tissue samples from 49 foxes and spleen samples from 242 red foxes). Babesia vulpes and haemotropic Mycoplasma species were identified by amplification and sequencing of 18S rRNA and 16S rRNA gene fragments, respectively. Overall, the presence of these pathogens was recorded in 12.3% of screened DNA samples. Altogether 9.7% (29/300) of investigated foxes carried DNA of Babesia spp. In total, 12 out of 29 Babesia spp. PCR - positive amplicons were further sequenced and identified as B. vulpes (41.4%; 12/29), remaining 17 samples are referred as Babesia sp. (58.6%; 17/29). Overall prevalence of B. vulpes reached 4.0% (n=300). Thirteen (4.3%) samples tested positive for distinct Mycoplasma species. To the best of our knowledge, this study brings the first information on B. vulpes infection in red foxes in Slovakia, and the first data on the prevalence and diversity of haemotropic Mycoplasma spp. in European red fox population. Moreover, co-infections with B. vulpes and Mycoplasma spp. were confirmed in 1.7% of tested DNA samples. The relatively high rates of blood pathogen' prevalence and species diversity in wild foxes indicate the role of the fox population in the maintenance of the parasites in sylvatic cycles and strengthen the assumption that foxes play an important role in spreading of infectious microorganisms within and outside the natural foci. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Zoonotic Focus of Plague, Algeria

    PubMed Central

    Bitam, Idir; Baziz, Belkacem; Rolain, Jean-Marc; Belkaid, Miloud

    2006-01-01

    After an outbreak of human plague, 95 Xenopsylla cheopis fleas from Algeria were tested for Yersinia pestis with PCR methods. Nine fleas were definitively confirmed to be infected with Y. pestis biovar orientalis. Our results demonstrate the persistence of a zoonotic focus of Y. pestis in Algeria. PMID:17326957

  17. Antibiotic Resistance Patterns of Major Zoonotic Pathogens from All-Natural, Antibiotic-Free, Pasture-Raised Broiler Flocks in the Southeastern United States.

    PubMed

    Rothrock, Michael J; Hiett, Kelli L; Guard, Jean Y; Jackson, Charlene R

    2016-03-01

    The use of antibiotics in agroecosystems has been implicated in the rise in antibiotic resistance (AR), which can affect environmental, animal, and human health. To determine the environmental impact of antibiotic use in agroecosystems, appropriate background levels of AR in agricultural environments in the absence of antibiotic application must be determined. Therefore, to determine background levels of AR in broiler production, four target microbes (, , , and ) were isolated from 15 all-natural, antibiotic-free, pasture-raised broiler flocks from six farms within the southeastern United States. The AR profiles of these isolates were characterized using the CDC National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS), and these resistance patterns were compared across target microbes and farms and throughout the life cycle of the flocks along the farm-to-fork continuum. Antibiotic resistances were most prevalent in and and least prevalent in . Although and were isolated from the same farms and characterized using the same NARMS plates, they exhibited distinct AR profiles, with demonstrating clear farm-specific resistance patterns. Multidrug resistance rates (three or more antibiotics), in order of prevalence, were (63.9%), (36.0%), (12.7%), and (1.4%). The results of this study demonstrate the variability in background AR among major food safety-related microbes, even when isolated from similar production and processing samples from the same farms, and indicate the need for the proper design of future broiler production studies to account for this highly dynamic background AR. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Fate of naturally occurring Escherichia coli O157:H7 and other zoonotic pathogens during minimally managed bovine feedlot manure composting processes.

    PubMed

    Berry, Elaine D; Millner, Patricia D; Wells, James E; Kalchayanand, Norasak; Guerini, Michael N

    2013-08-01

    Reducing Escherichia coli O157:H7 in livestock manures before application to cropland is critical for reducing the risk of foodborne illness associated with produce. Our objective was to determine the fate of naturally occurring E. coli O157:H7 and other pathogens during minimally managed on-farm bovine manure composting processes. Feedlot pen samples were screened to identify E. coli O157:H7-positive manure. Using this manure, four piles of each of three different composting formats were constructed in each of two replicate trials. Composting formats were (i) turned piles of manure plus hay and straw, (ii) static stockpiles of manure, and (iii) static piles of covered manure plus hay and straw. Temperatures in the tops, toes, and centers of the conical piles (ca. 6.0 m(3) each) were monitored. Compost piles that were turned every 2 weeks achieved higher temperatures for longer periods in the tops and centers than did piles that were left static. E. coli O157:H7 was not recovered from top samples of turned piles of manure plus hay and straw at day 28 and beyond, but top samples from static piles were positive for the pathogen up to day 42 (static manure stockpiles) and day 56 (static covered piles of manure plus hay and straw). Salmonella, Campylobacter spp., and Listeria monocytogenes were not found in top or toe samples at the end of the composting period, but E. coli O157:H7 and Listeria spp. were recovered from toe samples at day 84. Our findings indicate that some minimally managed composting processes can reduce E. coli O157:H7 and other pathogens in bovine manure but may be affected by season and/or initial levels of indigenous thermophilic bacteria. Our results also highlight the importance of adequate C:N formulation of initial mixtures for the production of high temperatures and rapid composting, and the need for periodic turning of the piles to increase the likelihood that all parts of the mass are subjected to high temperatures.

  19. Review of Nonfoodborne Zoonotic and Potentially Zoonotic Poultry Diseases.

    PubMed

    Agunos, Agnes; Pierson, F William; Lungu, Bwalya; Dunn, Patricia A; Tablante, Nathaniel

    2016-09-01

    Emerging and re-emerging diseases are continuously diagnosed in poultry species. A few of these diseases are known to cross the species barrier, thus posing a public health risk and an economic burden. We identified and synthesized global evidence for poultry nonfoodborne zoonoses to better understand these diseases in people who were exposed to different poultry-related characteristics (e.g., occupational or nonoccupational, operational types, poultry species, outbreak conditions, health status of flocks). This review builds on current knowledge on poultry zoonoses/potentially zoonotic agents transmitted via the nonfoodborne route. It also identifies research gaps and potential intervention points within the poultry industry to reduce zoonotic transmission by using various knowledge synthesis tools such as systematic review (SR) and qualitative (descriptive) and quantitative synthesis methods (i.e., meta-analysis). Overall, 1663 abstracts were screened and 156 relevant articles were selected for further review. Full articles (in English) were retrieved and critically appraised using routine SR methods. In total, eight known zoonotic diseases were reviewed: avian influenza (AI) virus (n = 85 articles), Newcastle disease virus (n = 8), West Nile virus (WNV, n = 2), avian Chlamydia (n = 24), Erysipelothrix rhusiopathiae (n = 3), methicillin-resistant Staphylococcus aureus (MRSA, n = 15), Ornithonyssus sylvarium (n = 4), and Microsporum gallinae (n = 3). In addition, articles on other viral poultry pathogens (n = 5) and poultry respiratory allergens derived from mites and fungi (n = 7) were reviewed. The level of investigations (e.g., exposure history, risk factor, clinical disease in epidemiologically linked poultry, molecular studies) to establish zoonotic linkages varied across disease agents and across studies. Based on the multiple outcome measures captured in this review, AI virus seems to be the poultry zoonotic pathogen that may have considerable and

  20. Zoonotic Leprosy in the Southeastern United States

    PubMed Central

    Sharma, Rahul; Singh, Pushpendra; Loughry, W.J.; Lockhart, J. Mitchell; Inman, W. Barry; Duthie, Malcolm S.; Pena, Maria T.; Marcos, Luis A.; Scollard, David M.; Cole, Stewart T.

    2015-01-01

    Nine-banded armadillos (Dasypus novemcinctus) are naturally infected with Mycobacterium leprae and have been implicated in zoonotic transmission of leprosy. Early studies found this disease mainly in Texas and Louisiana, but armadillos in the southeastern United States appeared to be free of infection. We screened 645 armadillos from 8 locations in the southeastern United States not known to harbor enzootic leprosy for M. leprae DNA and antibodies. We found M. leprae–infected armadillos at each location, and 106 (16.4%) animals had serologic/PCR evidence of infection. Using single-nucleotide polymorphism variable number tandem repeat genotyping/genome sequencing, we detected M. leprae genotype 3I-2-v1 among 35 armadillos. Seven armadillos harbored a newly identified genotype (3I-2-v15). In comparison, 52 human patients from the same region were infected with 31 M. leprae types. However, 42.3% (22/52) of patients were infected with 1 of the 2 M. leprae genotype strains associated with armadillos. The geographic range and complexity of zoonotic leprosy is expanding. PMID:26583204

  1. Public health significance of zoonotic Cryptosporidium species in wildlife: Critical insights into better drinking water management.

    PubMed

    Zahedi, Alireza; Paparini, Andrea; Jian, Fuchun; Robertson, Ian; Ryan, Una

    2016-04-01

    Cryptosporidium is an enteric parasite that is transmitted via the faecal-oral route, water and food. Humans, wildlife and domestic livestock all potentially contribute Cryptosporidium to surface waters. Human encroachment into natural ecosystems has led to an increase in interactions between humans, domestic animals and wildlife populations. Increasing numbers of zoonotic diseases and spill over/back of zoonotic pathogens is a consequence of this anthropogenic disturbance. Drinking water catchments and water reservoir areas have been at the front line of this conflict as they can be easily contaminated by zoonotic waterborne pathogens. Therefore, the epidemiology of zoonotic species of Cryptosporidium in free-ranging and captive wildlife is of increasing importance. This review focuses on zoonotic Cryptosporidium species reported in global wildlife populations to date, and highlights their significance for public health and the water industry.

  2. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special?

    PubMed Central

    Luis, Angela D.; Hayman, David T. S.; O'Shea, Thomas J.; Cryan, Paul M.; Gilbert, Amy T.; Pulliam, Juliet R. C.; Mills, James N.; Timonin, Mary E.; Willis, Craig K. R.; Cunningham, Andrew A.; Fooks, Anthony R.; Rupprecht, Charles E.; Wood, James L. N.; Webb, Colleen T.

    2013-01-01

    Bats are the natural reservoirs of a number of high-impact viral zoonoses. We present a quantitative analysis to address the hypothesis that bats are unique in their propensity to host zoonotic viruses based on a comparison with rodents, another important host order. We found that bats indeed host more zoonotic viruses per species than rodents, and we identified life-history and ecological factors that promote zoonotic viral richness. More zoonotic viruses are hosted by species whose distributions overlap with a greater number of other species in the same taxonomic order (sympatry). Specifically in bats, there was evidence for increased zoonotic viral richness in species with smaller litters (one young), greater longevity and more litters per year. Furthermore, our results point to a new hypothesis to explain in part why bats host more zoonotic viruses per species: the stronger effect of sympatry in bats and more viruses shared between bat species suggests that interspecific transmission is more prevalent among bats than among rodents. Although bats host more zoonotic viruses per species, the total number of zoonotic viruses identified in bats (61) was lower than in rodents (68), a result of there being approximately twice the number of rodent species as bat species. Therefore, rodents should still be a serious concern as reservoirs of emerging viruses. These findings shed light on disease emergence and perpetuation mechanisms and may help lead to a predictive framework for identifying future emerging infectious virus reservoirs. PMID:23378666

  3. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special?

    USGS Publications Warehouse

    Luis, Angela D.; Hayman, David T.S.; O'Shea, Thomas J.; Cryan, Paul M.; Gilbert, Amy T.; Pulliam, Juliet R.C.; Mills, James N.; Timonin, Mary E.; Willis, Craig K.R.; Cunningham, Andrew A.; Fooks, Anthony R.; Rupprecht, Charles E.; Wood, James L.N.; Webb, Colleen T.

    2013-01-01

    Bats are the natural reservoirs of a number of high-impact viral zoonoses. We present a quantitative analysis to address the hypothesis that bats are unique in their propensity to host zoonotic viruses based on a comparison with rodents, another important host order. We found that bats indeed host more zoonotic viruses per species than rodents, and we identified life-history and ecological factors that promote zoonotic viral richness. More zoonotic viruses are hosted by species whose distributions overlap with a greater number of other species in the same taxonomic order (sympatry). Specifically in bats, there was evidence for increased zoonotic viral richness in species with smaller litters (one young), greater longevity and more litters per year. Furthermore, our results point to a new hypothesis to explain in part why bats host more zoonotic viruses per species: the stronger effect of sympatry in bats and more viruses shared between bat species suggests that interspecific transmission is more prevalent among bats than among rodents. Although bats host more zoonotic viruses per species, the total number of zoonotic viruses identified in bats (61) was lower than in rodents (68), a result of there being approximately twice the number of rodent species as bat species. Therefore, rodents should still be a serious concern as reservoirs of emerging viruses. These findings shed light on disease emergence and perpetuation mechanisms and may help lead to a predictive framework for identifying future emerging infectious virus reservoirs.

  4. Guidelines for the Detection of Babesia and Theileria Parasites.

    PubMed

    Lempereur, Laetitia; Beck, Relja; Fonseca, Isabel; Marques, Cátia; Duarte, Ana; Santos, Marcos; Zúquete, Sara; Gomes, Jacinto; Walder, Gernot; Domingos, Ana; Antunes, Sandra; Baneth, Gad; Silaghi, Cornelia; Holman, Patricia; Zintl, Annetta

    2017-01-01

    The genera Babesia and Theileria (phylum Apicomplexa, order Piroplasmida) are mainly transmitted by Ixodid ticks in which the sexual part of their life cycle followed by sporogony takes place. They include protozoan parasites that infect erythrocytes of a variety of vertebrate hosts, including domestic and wild animals, with some Babesia spp. also infecting humans. Babesia sporozoites transmitted in the tick's saliva during the bloodmeal directly infect erythrocytes, where they asexually multiply to produce pear-shaped merozoites in the process of merogony; whereas a pre-erythrocytic schizogonic life stage in leukocytes is found in Theileria and precedes merogony in the erythrocytes. The wide spectrum of Babesia and Theileria species and their dissimilar characteristics with relation to disease severity, transmission, epidemiology, and drug susceptibility stress the importance of accurate detection of babesiosis and theileriosis and their causative agents. These guidelines review the main methods currently used for the detection of Babesia and Theileria spp. for diagnostic purposes as well as epidemiological studies involving their vertebrate hosts and arthropod vectors. Serological methods were not included once they did not indicate current infection but rather exposure.

  5. Disease ecology and the global emergence of zoonotic pathogens.

    PubMed

    Wilcox, Bruce A; Gubler, Duane J

    2005-09-01

    The incidence and frequency of epidemic transmission of zoonotic diseases, both known and newly recognized, has increased dramatically in the past 30 years. It is thought that this dramatic disease emergence is primarily the result of the social, demographic, and environmental transformation that has occurred globally since World War II. However, the causal linkages have not been elucidated. Investigating emerging zoonotic pathogens as an ecological phenomenon can provide significant insights as to why some of these pathogens have jumped species and caused major epidemics in humans. A review of concepts and theory from biological ecology and of causal factors in disease emergence previously described suggests a general model of global zoonotic disease emergence. The model links demographic and societal factors to land use and land cover change whose associated ecological factors help explain disease emergence. The scale and magnitude of these changes are more significant than those associated with climate change, the effects of which are largely not yet understood. Unfortunately, the complex character and non-linear behavior of the human-natural systems in which host-pathogen systems are embedded makes specific incidences of disease emergence or epidemics inherently difficult to predict. Employing a complex systems analytical approach, however, may show how a few key ecological variables and system properties, including the adaptive capacity of institutions, explains the emergence of infectious diseases and how an integrated, multi-level approach to zoonotic disease control can reduce risk.

  6. Clinical outbreak of babesiosis caused by Babesia capreoli in captive reindeer (Rangifer tarandus tarandus) in the Netherlands.

    PubMed

    Bos, Jan H; Klip, Fokko C; Sprong, Hein; Broens, Els M; Kik, Marja J L

    2017-08-01

    From a herd of captive reindeer (Rangifer tarandus tarandus) consisting of two males and seven females with five calves, three calves were diagnosed on post mortem examination with a Babesia capreoli infection. The diagnosis was indicated by PCR and when the other reindeer were examined two adult females and a one-year-old male were Babesia-positive. Molecular characterization of the 18S rDNA of the parasite showed complete identity with known B. capreoli sequences. Ixodes ricinus has been demonstrated to be a competent vector for B. capreoli from infected roe deer (Capreolus capreolus), the natural host of B. capreoli. The B. capreoli infection in these reindeer may have been transmitted by infected ticks (Ixodes ricinus) originating from roe deer living in the forest and meadows surrounding the enclosure. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Establishment of a stable transfection system for genetic manipulation of Babesia gibsoni.

    PubMed

    Liu, Mingming; Adjou Moumouni, Paul Franck; Asada, Masahito; Hakimi, Hassan; Masatani, Tatsunori; Vudriko, Patrick; Lee, Seung-Hun; Kawazu, Shin-Ichiro; Yamagishi, Junya; Xuan, Xuenan

    2018-04-23

    Genetic manipulation techniques, such as transfection, have been previously reported in many protozoan parasites. In Babesia, stable transfection systems have only been established for bovine Babesia parasites. We recently reported a transient transfection system and the selection of promoter candidates for Babesia gibsoni. The establishment of a stable transfection system for B. gibsoni is considered to be urgent to improve our understanding of the basic biology of canine Babesia parasites for a better control of babesiosis. GFP-expressing parasites were observed by fluorescence microscopy as early as two weeks after drug selection, and consistently expressed GFP for more than 3 months without drug pressure. Genome integration was confirmed by PCR, sequencing and Southern blot analysis. We present the first successful establishment of a stable transfection system for B. gibsoni. This finding will facilitate functional analysis of Babesia genomes using genetic manipulation and will serve as a foundation for the development of tick-Babesia and host-Babesia infection models.

  8. Fatal Babesia canis canis infection in a splenectomized Estonian dog.

    PubMed

    Tiškina, Valentina; Capligina, Valentina; Must, Külli; Berzina, Inese; Ranka, Renate; Jokelainen, Pikka

    2016-01-25

    A previously splenectomized dog from Estonia was presented with a sudden lack of appetite and discoloration of the urine. Despite supportive therapy, its condition deteriorated dramatically during 1 day. Severe thrombocytopenia and high numbers of protozoan hemoparasites were evident in blood smears, and the hematocrit dropped from 46 to 33 %. The dog was euthanized before specific antibabesial treatment was initiated. Blood samples from the dog and from two other dogs in the same household tested positive for Babesia using molecular methods, and the sequences of partial 18S rRNA gene confirmed the causative species as Babesia canis canis. The risk of severe, rapidly progressing babesiosis in splenectomized dogs merits awareness.

  9. Rodent reservoirs of future zoonotic diseases

    PubMed Central

    Han, Barbara A.; Schmidt, John Paul; Bowden, Sarah E.; Drake, John M.

    2015-01-01

    The increasing frequency of zoonotic disease events underscores a need to develop forecasting tools toward a more preemptive approach to outbreak investigation. We apply machine learning to data describing the traits and zoonotic pathogen diversity of the most speciose group of mammals, the rodents, which also comprise a disproportionate number of zoonotic disease reservoirs. Our models predict reservoir status in this group with over 90% accuracy, identifying species with high probabilities of harboring undiscovered zoonotic pathogens based on trait profiles that may serve as rules of thumb to distinguish reservoirs from nonreservoir species. Key predictors of zoonotic reservoirs include biogeographical properties, such as range size, as well as intrinsic host traits associated with lifetime reproductive output. Predicted hotspots of novel rodent reservoir diversity occur in the Middle East and Central Asia and the Midwestern United States. PMID:26038558

  10. A molecular survey of Babesia spp. and Theileria spp. in red foxes (Vulpes vulpes) and their ticks from Thuringia, Germany.

    PubMed

    Najm, Nour-Addeen; Meyer-Kayser, Elisabeth; Hoffmann, Lothar; Herb, Ingrid; Fensterer, Veronika; Pfister, Kurt; Silaghi, Cornelia

    2014-06-01

    Wild canines which are closely related to dogs constitute a potential reservoir for haemoparasites by both hosting tick species that infest dogs and harbouring tick-transmitted canine haemoparasites. In this study, the prevalence of Babesia spp. and Theileria spp. was investigated in German red foxes (Vulpes vulpes) and their ticks. DNA extracts of 261 spleen samples and 1953 ticks included 4 tick species: Ixodes ricinus (n=870), I. canisuga (n=585), I. hexagonus (n=485), and Dermacentor reticulatus (n=13) were examined for the presence of Babesia/Theileria spp. by a conventional PCR targeting the 18S rRNA gene. One hundred twenty-one out of 261 foxes (46.4%) were PCR-positive. Out of them, 44 samples were sequenced, and all sequences had 100% similarity to Theileria annae. Similarly, sequencing was carried out for 65 out of 118 PCR-positive ticks. Theileria annae DNA was detected in 61.5% of the sequenced samples, Babesia microti DNA was found in 9.2%, and Babesia venatorum in 7.6% of the sequenced samples. The foxes were most positive in June and October, whereas the peak of tick positivity was in October. Furthermore, the positivity of the ticks was higher for I. canisuga in comparison to the other tick species and for nymphs in comparison to adults. The high prevalence of T. annae DNA in red foxes in this study suggests a reservoir function of those animals for T. annae. To our knowledge, this is the first report of T. annae in foxes from Germany as well as the first detection of T. annae and B. microti in the fox tick I. canisuga. Detection of DNA of T. annae and B. microti in three tick species collected from foxes adds new potential vectors for these two pathogens and suggests a potential role of the red fox in their natural endemic cycles. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Overview of Zoonotic Diseases in Turkey: The One Health Concept and Future Threats.

    PubMed

    İnci, Abdullah; Doğanay, Mehmet; Özdarendeli, Aykut; Düzlü, Önder; Yıldırım, Alparslan

    2018-03-01

    Zoonotic infections are globally important diseases and lead to huge economic losses in both low- and middle-income and high-income countries. Global warming, environmental and ecological changes, illegal movement of animals and humans, regional civil wars, and poverty are predisposing factors for the emergence of zoonotic infections and their distribution worldwide; they are also a big threat for the future. In addition, environmental pollution and antimicrobial resistance are immense serious threats and dangers to prevent and control zoonotic infections. The natural location of Turkey allows many emerged or re-emerged infections with zoonotic characteristics by animal movements, such as bird immigrations, and by human movements due to civil wars as seen with regional refugees. Numerous zoonotic diseases, including 37 bacterial, 13 fungal, 29 viral, 28 parasitic (3 trematodes, 7 cestodes, 10 nematodes, and 8 protozoan), and totally 107 infections, have been reported from Turkey to date. Additionally, many ectoparasitic zoonoses within 15 different arthropod groups and one leech infestation have been reported from Turkey to date. The "One Health" initiative is particularly relevant for developing strategies to combat zoonotic diseases. In this article, we review the occurrence of zoonotic diseases in man and animals in Turkey in the light of the "One Health" perspective.

  12. Zoonotic bacterial meningitis in human adults.

    PubMed

    van Samkar, Anusha; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2016-09-13

    To describe the epidemiology, etiology, clinical characteristics, treatment, outcome, and prevention of zoonotic bacterial meningitis in human adults. We identified 16 zoonotic bacteria causing meningitis in adults. Zoonotic bacterial meningitis is uncommon compared to bacterial meningitis caused by human pathogens, and the incidence has a strong regional distribution. Zoonotic bacterial meningitis is mainly associated with animal contact, consumption of animal products, and an immunocompromised state of the patient. In a high proportion of zoonotic bacterial meningitis cases, CSF analysis showed only a mildly elevated leukocyte count. The recommended antibiotic therapy differs per pathogen, and the overall mortality is low. Zoonotic bacterial meningitis is uncommon but is associated with specific complications. The suspicion should be raised in patients with bacterial meningitis who have recreational or professional contact with animals and in patients living in regions endemic for specific zoonotic pathogens. An immunocompromised state is associated with a worse prognosis. Identification of risk factors and underlying disease is necessary to improve treatment. © 2016 American Academy of Neurology.

  13. High prevalence of small Babesia species in canines of Kerala, South India.

    PubMed

    Jain, Kollannur Jose; Lakshmanan, Bindu; Syamala, Karunakaran; Praveena, Jose E; Aravindakshan, Thazhathuveetil

    2017-11-01

    Canine babesiosis is an important vector-borne hemoparasitic disease caused by Babesia canis vogeli and Babesia gibsoni , in India. The communication places on record the salient findings of the study directed to detect and characterize the pathogenic B. gibsoni isolates of Kerala state. A total of 150 dogs were examined for the presence of hemoparasites by light microscopy as well as by PCR targeting the 18S rRNA gene of B. gibsoni . Hematological parameters were also analysed. Phylogenetic tree was constructed based on Tamura kei model adopting ML method. A sensitive and specific polymerase chain reaction assay was developed with newly designed primer pair BAGI-F/BAGI-R for the amplification of 488 bp fragment of 18S rRNA gene of B. gibsoni . Out of the 150 dogs examined, molecular evidence of B. gibsoni was recorded in 47.3% animals, while light microscopy detected the infection in 26.67% cases. The phylogenetic analyses revealed that B. gibsoni , Kerala, isolate was closest and occurred together with Bareilly isolate. Anemia and thrombocytopenia were the significant hematological alterations in chronic B. gibsoni infection. A high prevalence of natural infection of B. gibsoni was detected among the study population. The affected animals showed anaemia and thrombocytopenia. Phylogenetic analysis of this pathogenic isolate from south India revealed the closest similarity with Bareilly isolates.

  14. High prevalence of small Babesia species in canines of Kerala, South India

    PubMed Central

    Jain, Kollannur Jose; Lakshmanan, Bindu; Syamala, Karunakaran; Praveena, Jose E; Aravindakshan, Thazhathuveetil

    2017-01-01

    Aim: Canine babesiosis is an important vector-borne hemoparasitic disease caused by Babesia canis vogeli and Babesia gibsoni, in India. The communication places on record the salient findings of the study directed to detect and characterize the pathogenic B. gibsoni isolates of Kerala state. Materials and Methods:: A total of 150 dogs were examined for the presence of hemoparasites by light microscopy as well as by PCR targeting the 18S rRNA gene of B. gibsoni. Hematological parameters were also analysed. Phylogenetic tree was constructed based on Tamura kei model adopting ML method. Results:: A sensitive and specific polymerase chain reaction assay was developed with newly designed primer pair BAGI-F/BAGI-R for the amplification of 488 bp fragment of 18S rRNA gene of B. gibsoni. Out of the 150 dogs examined, molecular evidence of B. gibsoni was recorded in 47.3% animals, while light microscopy detected the infection in 26.67% cases. The phylogenetic analyses revealed that B. gibsoni, Kerala, isolate was closest and occurred together with Bareilly isolate. Anemia and thrombocytopenia were the significant hematological alterations in chronic B. gibsoni infection. Conclusion:: A high prevalence of natural infection of B. gibsoni was detected among the study population. The affected animals showed anaemia and thrombocytopenia. Phylogenetic analysis of this pathogenic isolate from south India revealed the closest similarity with Bareilly isolates. PMID:29263592

  15. Inhibition of the in vitro growth of babesia bigemina, babesia caballi and theileria equi parasites by trifluralin analogues

    USDA-ARS?s Scientific Manuscript database

    Background: Bovine and equine babesiosis caused by Babesia bovis, B. bigemina and B. caballi, and equine theileriosis caused by Theileria equi are global tick borne hemoprotozoan diseases characterized by fever, anemia, weight losses and abortions. A common feature of these diseases are transition f...

  16. Natural Reassortants of Potentially Zoonotic Avian Influenza Viruses H5N1 and H9N2 from Egypt Display Distinct Pathogenic Phenotypes in Experimentally Infected Chickens and Ferrets.

    PubMed

    Naguib, Mahmoud M; Ulrich, Reiner; Kasbohm, Elisa; Eng, Christine L P; Hoffmann, Donata; Grund, Christian; Beer, Martin; Harder, Timm C

    2017-12-01

    The cocirculation of zoonotic highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 and avian influenza virus (AIV) of subtype H9N2 among poultry in Egypt for at least 6 years should render that country a hypothetical hot spot for the emergence of reassortant, phenotypically altered viruses, yet no reassortants have been detected in Egypt. The present investigations proved that reassortants of the Egyptian H5N1 clade 2.2.1.2 virus and H9N2 virus of the G1-B lineage can be generated by coamplification in embryonated chicken eggs. Reassortants were restricted to the H5N1 subtype and acquired between two and all six of the internal segments of the H9N2 virus. Five selected plaque-purified reassortant clones expressed a broad phenotypic spectrum both in vitro and in vivo Two groups of reassortants were characterized to have retarded growth characteristics in vitro compared to the H5N1 parent virus. One clone provoked reduced mortality in inoculated chickens, although the characteristics of a highly pathogenic phenotype were retained. Enhanced zoonotic properties were not predicted for any of these clones, and this prediction was confirmed by ferret inoculation experiments: neither the H5N1 parent virus nor two selected clones induced severe clinical symptoms or were transmitted to sentinel ferrets by contact. While the emergence of reassortants of Egyptian HPAIV of subtype H5N1 with internal gene segments of cocirculating H9N2 viruses is possible in principle, the spread of such viruses is expected to be governed by their fitness to outcompete the parental viruses in the field. The eventual spread of attenuated phenotypes, however, would negatively impact syndrome surveillance on poultry farms and might foster enzootic virus circulation. IMPORTANCE Despite almost 6 years of the continuous cocirculation of highly pathogenic avian influenza virus H5N1 and avian influenza virus H9N2 in poultry in Egypt, no reassortants of the two subtypes have been reported

  17. Natural Reassortants of Potentially Zoonotic Avian Influenza Viruses H5N1 and H9N2 from Egypt Display Distinct Pathogenic Phenotypes in Experimentally Infected Chickens and Ferrets

    PubMed Central

    Naguib, Mahmoud M.; Ulrich, Reiner; Kasbohm, Elisa; Eng, Christine L. P.; Hoffmann, Donata; Grund, Christian; Beer, Martin

    2017-01-01

    ABSTRACT The cocirculation of zoonotic highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 and avian influenza virus (AIV) of subtype H9N2 among poultry in Egypt for at least 6 years should render that country a hypothetical hot spot for the emergence of reassortant, phenotypically altered viruses, yet no reassortants have been detected in Egypt. The present investigations proved that reassortants of the Egyptian H5N1 clade 2.2.1.2 virus and H9N2 virus of the G1-B lineage can be generated by coamplification in embryonated chicken eggs. Reassortants were restricted to the H5N1 subtype and acquired between two and all six of the internal segments of the H9N2 virus. Five selected plaque-purified reassortant clones expressed a broad phenotypic spectrum both in vitro and in vivo. Two groups of reassortants were characterized to have retarded growth characteristics in vitro compared to the H5N1 parent virus. One clone provoked reduced mortality in inoculated chickens, although the characteristics of a highly pathogenic phenotype were retained. Enhanced zoonotic properties were not predicted for any of these clones, and this prediction was confirmed by ferret inoculation experiments: neither the H5N1 parent virus nor two selected clones induced severe clinical symptoms or were transmitted to sentinel ferrets by contact. While the emergence of reassortants of Egyptian HPAIV of subtype H5N1 with internal gene segments of cocirculating H9N2 viruses is possible in principle, the spread of such viruses is expected to be governed by their fitness to outcompete the parental viruses in the field. The eventual spread of attenuated phenotypes, however, would negatively impact syndrome surveillance on poultry farms and might foster enzootic virus circulation. IMPORTANCE Despite almost 6 years of the continuous cocirculation of highly pathogenic avian influenza virus H5N1 and avian influenza virus H9N2 in poultry in Egypt, no reassortants of the two subtypes have been

  18. Zoonotic aspects of vector-borne infections.

    PubMed

    Failloux, A-B; Moutailler, S

    2015-04-01

    Vector-borne diseases are principally zoonotic diseases transmitted to humans by animals. Pathogens such as bacteria, parasites and viruses are primarily maintained within an enzootic cycle between populations of non-human primates or other mammals and largely non-anthropophilic vectors. This 'wild' cycle sometimes spills over in the form of occasional infections of humans and domestic animals. Lifestyle changes, incursions by humans into natural habitats and changes in agropastoral practices create opportunities that make the borders between wildlife and humans more permeable. Some vector-borne diseases have dispensed with the need for amplification in wild or domestic animals and they can now be directly transmitted to humans. This applies to some viruses (dengue and chikungunya) that have caused major epidemics. Bacteria of the genus Bartonella have reduced their transmission cycle to the minimum, with humans acting as reservoir, amplifier and disseminator. The design of control strategies for vector-borne diseases should be guided by research into emergence mechanisms in order to understand how a wild cycle can produce a pathogen that goes on to cause devastating urban epidemics.

  19. Understanding and Managing Zoonotic Risk in the New Livestock Industries

    PubMed Central

    Waage, Jeff; Barnett, Tony; Pfeiffer, Dirk U.; Rushton, Jonathan; Rudge, James W.; Loevinsohn, Michael E.; Scoones, Ian; Smith, Richard D.; Cooper, Ben S.; White, Lisa J.; Goh, Shan; Horby, Peter; Wren, Brendan; Gundogdu, Ozan; Woods, Abigail; Coker, Richard J.

    2013-01-01

    Background: In many parts of the world, livestock production is undergoing a process of rapid intensification. The health implications of this development are uncertain. Intensification creates cheaper products, allowing more people to access animal-based foods. However, some practices associated with intensification may contribute to zoonotic disease emergence and spread: for example, the sustained use of antibiotics, concentration of animals in confined units, and long distances and frequent movement of livestock. Objectives: Here we present the diverse range of ecological, biological, and socioeconomic factors likely to enhance or reduce zoonotic risk, and identify ways in which a comprehensive risk analysis may be conducted by using an interdisciplinary approach. We also offer a conceptual framework to guide systematic research on this problem. Discussion: We recommend that interdisciplinary work on zoonotic risk should take into account the complexity of risk environments, rather than limiting studies to simple linear causal relations between risk drivers and disease emergence and/or spread. In addition, interdisciplinary integration is needed at different levels of analysis, from the study of risk environments to the identification of policy options for risk management. Conclusion: Given rapid changes in livestock production systems and their potential health implications at the local and global level, the problem we analyze here is of great importance for environmental health and development. Although we offer a systematic interdisciplinary approach to understand and address these implications, we recognize that further research is needed to clarify methodological and practical questions arising from the integration of the natural and social sciences. PMID:23665854

  20. Molecular Survey on Rickettsia spp., Anaplasma phagocytophilum, Borrelia burgdorferi Sensu Lato, and Babesia spp. in Ixodes ricinus Ticks Infesting Dogs in Central Italy.

    PubMed

    Morganti, Giulia; Gavaudan, Stefano; Canonico, Cristina; Ravagnan, Silvia; Olivieri, Emanuela; Diaferia, Manuela; Marenzoni, Maria Luisa; Antognoni, Maria Teresa; Capelli, Gioia; Silaghi, Cornelia; Veronesi, Fabrizia

    2017-11-01

    Dogs are a common feeding hosts for Ixodes ricinus and may act as reservoir hosts for zoonotic tick-borne pathogens (TBPs) and as carriers of infected ticks into human settings. The aim of this work was to evaluate the presence of several selected TBPs of significant public health concern by molecular methods in I. ricinus recovered from dogs living in urban and suburban settings in central Italy. A total of 212 I. ricinus specimens were collected from the coat of domestic dogs. DNA was extracted from each specimen individually and tested for Rickettsia spp., Borrelia burgdorferi sensu lato, Babesia spp., and Anaplasma phagocytophilum, using real-time and conventional PCR protocols, followed by sequencing. Sixty-one ticks (28.8%) tested positive for TBPs; 57 samples were infected by one pathogen, while four showed coinfections. Rickettsia spp. was detected in 39 specimens (18.4%), of which 32 were identified as Rickettsia monacensis and seven as Rickettsia helvetica. Twenty-two samples (10.4%) tested positive for A. phagocytophilum; Borrelia lusitaniae and Borrelia afzelii were detected in two specimens and one specimen, respectively. One tick (0.5%) was found to be positive for Babesia venatorum (EU1). Our findings reveal the significant exposure of dogs to TBPs of public health concern and provide data on the role of dogs in the circulation of I. ricinus-borne pathogens in central Italy.

  1. Prioritization of Zoonotic Diseases in Kenya, 2015

    PubMed Central

    Bitek, Austine; Osoro, Eric; Pieracci, Emily G.; Muema, Josephat; Mwatondo, Athman; Kungu, Mathew; Nanyingi, Mark; Gharpure, Radhika; Njenga, Kariuki; Thumbi, Samuel M.

    2016-01-01

    Introduction Zoonotic diseases have varying public health burden and socio-economic impact across time and geographical settings making their prioritization for prevention and control important at the national level. We conducted systematic prioritization of zoonotic diseases and developed a ranked list of these diseases that would guide allocation of resources to enhance their surveillance, prevention, and control. Methods A group of 36 medical, veterinary, and wildlife experts in zoonoses from government, research institutions and universities in Kenya prioritized 36 diseases using a semi-quantitative One Health Zoonotic Disease Prioritization tool developed by Centers for Disease Control and Prevention with slight adaptations. The tool comprises five steps: listing of zoonotic diseases to be prioritized, development of ranking criteria, weighting criteria by pairwise comparison through analytical hierarchical process, scoring each zoonotic disease based on the criteria, and aggregation of scores. Results In order of importance, the participants identified severity of illness in humans, epidemic/pandemic potential in humans, socio-economic burden, prevalence/incidence and availability of interventions (weighted scores assigned to each criteria were 0.23, 0.22, 0.21, 0.17 and 0.17 respectively), as the criteria to define the relative importance of the diseases. The top five priority diseases in descending order of ranking were anthrax, trypanosomiasis, rabies, brucellosis and Rift Valley fever. Conclusion Although less prominently mentioned, neglected zoonotic diseases ranked highly compared to those with epidemic potential suggesting these endemic diseases cause substantial public health burden. The list of priority zoonotic disease is crucial for the targeted allocation of resources and informing disease prevention and control programs for zoonoses in Kenya. PMID:27557120

  2. Zoonotic Babesia microti in the northeastern U.S.: Evidence for the expansion of a specific parasite lineage

    PubMed Central

    Molloy, Philip; Weeks, Karen

    2018-01-01

    The recent range expansion of human babesiosis in the northeastern United States, once found only in restricted coastal sites, is not well understood. This study sought to utilize a large number of samples to examine the population structure of the parasites on a fine scale to provide insights into the mode of emergence across the region. 228 B. microti samples collected in endemic northeastern U.S. sites were genotyped using published Variable number tandem repeat (VNTR) markers. The genetic diversity and population structure were analysed on a geographic scale using Phyloviz and TESS, programs that utilize two different methods to identify population membership without predefined population data. Three distinct populations were detected in northeastern US, each dominated by a single ancestral type. In contrast to the limited range of the Nantucket and Cape Cod populations, the mainland population dominated from New Jersey eastward to Boston. Ancestral populations of B. microti were sufficiently isolated to differentiate into distinct populations. Despite this, a single population was detected across a large geographic area of the northeast that historically had at least 3 distinct foci of transmission, central New Jersey, Long Island and southeastern Connecticut. We conclude that a single B. microti genotype has expanded across the northeastern U.S. The biological attributes associated with this parasite genotype that have contributed to such a selective sweep remain to be identified. PMID:29565993

  3. Prevalence of Theileria and Babesia species in Tunisian sheep.

    PubMed

    Rjeibi, Mohamed R; Darghouth, Mohamed A; Gharbi, Mohamed

    2016-05-24

    In this study, the prevalence of Theileria and Babesia species in sheep was assessed with Giemsastained blood smear examination and polymerase chain reaction to identify the different piroplasms in 270 sheep from three Tunisian bioclimatic zones (north, centre, and south). The overall infection prevalence by Babesia spp. and Theileria spp. in Giemsa-stained blood smears was 2.9% (8/270) and 4.8% (13/270) respectively. The molecular results showed that sheep were more often infected by Theileria ovis than Babesia ovis with an overall prevalence of 16.3% (44/270) and 7.8% (21/270) respectively (p = 0.01). The molecular prevalence by Babesia ovis was significantly higher in females than in males (p < 0.05). According to localities B. ovis was found exclusively in sheep from the centre of Tunisia (Kairouan) whereas Theileria ovis was found in all regions. Infections with T. ovis and B. ovis were confirmed by sequencing. The sequence of T. ovis in this study (accession numbers KM924442) falls into the same clade as T. ovis deposited in GenBank. The T. ovis amplicons (KM924442) showed 99%-100% identities with GenBank sequences. Moreover, comparison of the partial sequences of 18S rRNA gene of B. ovis described in this study (KP670199) revealed 99.4% similarity with B. ovis recently reported in northern Tunisia from sheep and goats. Three nucleotides were different at positions 73 (A/T), 417 (A/T), and 420 (G/T). It also had 99% identity with B. ovis from Spain, Turkey and Iraq. The results suggest a high T. ovis prevalence in Tunisia with a decreasing north-south gradient. This could be correlated to the vector tick distribution.

  4. Inhibition of the in vitro growth of Babesia bigemina, Babesia caballi and Theileria equi parasites by trifluralin analogues.

    PubMed

    G Silva, Marta; Knowles, Donald P; Antunes, Sandra; Domingos, Ana; Esteves, Maria A; Suarez, Carlos E

    2017-06-01

    Bovine and equine babesiosis caused by Babesia bovis, Babesia bigemina and Babesia caballi, along with equine theileriosis caused by Theileria equi are global tick-borne hemoprotozoan diseases characterized by fever, anemia, weight losses and abortions. A common feature of these diseases are transition from acute to chronic phases, in which parasites may persist in the hosts for life. Antiprotozoal drugs are important for managing infection and disease. Previous research demonstrated that trifluralin analogues, designated (TFLAs) 1-15, which specifically bind to regions of alpha-tubulin protein in plants and protozoan parasites, have the ability to inhibit the in vitro growth of B. bovis. The inhibitory activity of TFLAs 1-15 minus TFLA 5 was tested in vitro against cultured B. bigemina, B. caballi and T. equi. The four TFLAs with greatest inhibitory activity were then analyzed for hemolytic activity and toxicity against erythrocytes. All TFLAs tested in the study showed inhibitory effects against the three parasite species. TFLA 2, TFLA 11, TFLA 13 and TFLA 14 were the most effective inhibitors for the three species tested, with estimated IC 50 between 5.1 and 10.1μM at 72h. The drug's solvent (DMSO/ethanol) did not statistically affect the growth of the parasites nor cause hemolysis. Also, TFLA 2, 13 and 14 did not cause statistically significant hemolytic activity on bovine and equine erythrocytes at 15μM, and TFLA 2, 11 and 13 had no detectable toxic effects on bovine and equine erythrocytes at 15μM, suggesting that these drugs do not compromise erythrocyte viability. The demonstrated ability of the trifluralin analogues to inhibit in vitro growth of Babesia spp. and Theileria equi, and their lack of toxic effects on erythrocytes supports further in vivo testing and eventually their development as novel alternatives for the treatment of babesiosis and theileriosis. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  5. Babesia lengau sp. nov., a novel Babesia species in cheetah (Acinonyx jubatus, Schreber, 1775) populations in South Africa.

    PubMed

    Bosman, Anna-Mari; Oosthuizen, Marinda C; Peirce, Michael A; Venter, Estelle H; Penzhorn, Barend L

    2010-08-01

    In a previous paper, we reported on a large number of cheetah blood specimens that gave positive signals only for Babesia and/or Theileria genus-specific probes on the reverse line blot (RLB) assay, indicating the presence of a novel species or variant of an existing species. Some of these specimens were investigated further by microscopic, serological, sequencing, and phylogenetic analyses. The near-full-length 18S rRNA genes of 13 samples, as well as the second internal transcribed spacer (ITS2) region, were amplified, cloned, and sequenced. A species-specific RLB probe, designed to target the hypervariable V4 region of the 18S rRNA gene for detection of the novel Babesia sp., was used to screen an additional 137 cheetah blood specimens for the presence of the species. The prevalence of infection was 28.5%. Here we describe the morphology and phylogenetic relationships of the novel species, which we have named Babesia lengau sp. nov.

  6. Babesia lengau sp. nov., a Novel Babesia Species in Cheetah (Acinonyx jubatus, Schreber, 1775) Populations in South Africa ▿

    PubMed Central

    Bosman, Anna-Mari; Oosthuizen, Marinda C.; Peirce, Michael A.; Venter, Estelle H.; Penzhorn, Barend L.

    2010-01-01

    In a previous paper, we reported on a large number of cheetah blood specimens that gave positive signals only for Babesia and/or Theileria genus-specific probes on the reverse line blot (RLB) assay, indicating the presence of a novel species or variant of an existing species. Some of these specimens were investigated further by microscopic, serological, sequencing, and phylogenetic analyses. The near-full-length 18S rRNA genes of 13 samples, as well as the second internal transcribed spacer (ITS2) region, were amplified, cloned, and sequenced. A species-specific RLB probe, designed to target the hypervariable V4 region of the 18S rRNA gene for detection of the novel Babesia sp., was used to screen an additional 137 cheetah blood specimens for the presence of the species. The prevalence of infection was 28.5%. Here we describe the morphology and phylogenetic relationships of the novel species, which we have named Babesia lengau sp. nov. PMID:20519464

  7. qPCR estimates of Babesia bovis and Babesia bigemina infection levels in beef cattle and Rhipicephalus microplus larvae.

    PubMed

    Giglioti, Rodrigo; de Oliveira, Henrique Nunes; Okino, Cintia Hiromi; de Sena Oliveira, Márcia Cristina

    2018-05-04

    Babesia spp. are tick-transmitted intraerythrocytic apicomplexan parasites that infect wild and domestic animals. Babesia bovis and B. bigemina are endemic and responsible for enormous economic losses to the livestock industry in most of the Brazilian territory, wherein the tick Rhipicephalus microplus is the unique vector. Better understanding of epidemiology and parasite-host interactions may improve the tools for disease control and genetic management for selection of resistant animals. This study aimed to detect, quantify and measure the correlation between B. bigemina and B. bovis infection levels in bovine blood and into tick, by absolute quantification of hemoparasite DNA using qPCR. Blood bovine samples and larvae pools from 10 engorged R. microplus females were collected from each Canchim heifers (5/8 Charolais + 3/8 zebu, n = 36). All evaluated samples were positive for both Babesia species tested. Correlations of B. bovis and B. bigemina levels between cattle and tick host were 0.58 and 0.66, respectively. These high positive correlation coefficients indicate that parasitemia load in the bovine may be dependent on or may determine the parasitemia load in the ticks.

  8. Fascioliasis: An Ongoing Zoonotic Trematode Infection

    PubMed Central

    Nyindo, Mramba; Lukambagire, Abdul-Hamid

    2015-01-01

    Zoonotic trematode infections are an area of the neglected tropical diseases that have become of major interest to global and public health due to their associated morbidity. Human fascioliasis is a trematode zoonosis of interest in public health. It affects approximately 50 million people worldwide and over 180 million are at risk of infection in both developed and underdeveloped countries. The one health paradigm is an area that seeks to address the problem of zoonotic infections through a comprehensive and sustainable approach. This review attempts to address the major challenges in managing human and animal fascioliasis with valuable insights gained from the one health paradigm to global health and multidisciplinary integration. PMID:26417603

  9. Fascioliasis: An Ongoing Zoonotic Trematode Infection.

    PubMed

    Nyindo, Mramba; Lukambagire, Abdul-Hamid

    2015-01-01

    Zoonotic trematode infections are an area of the neglected tropical diseases that have become of major interest to global and public health due to their associated morbidity. Human fascioliasis is a trematode zoonosis of interest in public health. It affects approximately 50 million people worldwide and over 180 million are at risk of infection in both developed and underdeveloped countries. The one health paradigm is an area that seeks to address the problem of zoonotic infections through a comprehensive and sustainable approach. This review attempts to address the major challenges in managing human and animal fascioliasis with valuable insights gained from the one health paradigm to global health and multidisciplinary integration.

  10. Evaluation of the inhibitory effect of N-acetyl-L-cysteine on Babesia and Theileria parasites.

    PubMed

    Rizk, Mohamed Abdo; El-Sayed, Shimaa Abd El-Salam; AbouLaila, Mahmoud; Yokoyama, Naoaki; Igarashi, Ikuo

    2017-08-01

    N-acetyl-L-cysteine is known to have antibacterial, antiviral, antimalarial, and antioxidant activities. Therefore, the in vitro inhibitory effect of this hit was evaluated in the present study on the growth of Babesia and Theileria parasites. The in vitro growth of Babesia bovis, Babesia bigemina, Babesia divergens, Theileria equi, and Babesia caballi that were tested was significantly inhibited (P < 0.05) by micromolar concentrations of N-acetyl-L-cysteine. The inhibitory effect of N-acetyl-L-cysteine was synergistically potentiated when used in combination with diminazene aceturate on B. bovis and B. caballi cultures. These results indicate that N-acetyl-L-cysteine might be used as a drug for the treatment of babesiosis, especially when used in combination with diminazene aceturate. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. (Highly pathogenic) avian influenza as a zoonotic agent.

    PubMed

    Kalthoff, Donata; Globig, Anja; Beer, Martin

    2010-01-27

    Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence by mutation after transmission and adaptation to susceptible gallinaceous poultry. Those so-called highly pathogenic avian influenza viruses (HPAIV) then cause mass die-offs in susceptible birds and lead to tremendous economical losses when poultry is affected. Besides a number of avian influenza virus subtypes that have sporadically infected mammals, the HPAIV H5N1 Asia shows strong zoonotic characteristics and it was transmitted from birds to different mammalian species including humans. Theoretically, pandemic viruses might derive directly from avian influenza viruses or arise after genetic reassortment between viruses of avian and mammalian origin. So far, HPAIV H5N1 already meets two conditions for a pandemic virus: as a new subtype it has been hitherto unseen in the human population and it has infected at least 438 people, and caused severe illness and high lethality in 262 humans to date (August 2009). The acquisition of efficient human-to-human transmission would complete the emergence of a new pandemic virus. Therefore, fighting H5N1 at its source is the prerequisite to reduce pandemic risks posed by this virus. Other influenza viruses regarded as pandemic candidates derive from subtypes H2, H7, and H9 all of which have infected humans in the past. Here, we will give a comprehensive overview on avian influenza viruses in concern to their zoonotic potential. Copyright 2009 Elsevier B.V. All rights reserved.

  12. Molecular diagnosis and phylogenetic analysis of Babesia bigemina and Babesia bovis hemoparasites from cattle in South Africa

    PubMed Central

    2013-01-01

    Background Babesia parasites, mainly Babesia bovis and B. bigemina, are tick-borne hemoparasites inducing bovine babesiosis in cattle globally. The clinical signs of the disease include, among others, anemia, fever and hemoglobinuria. Babesiosis is known to occur in tropical and subtropical regions of the world. In this study, we aim to provide information about the occurrence and phylogenetic relationship of B. bigemina and B. bovis species in cattle from different locations in nine provinces of South Africa. A total of 430 blood samples were randomly collected from apparently healthy cattle. These samples were genetically tested for Babesia parasitic infections using nested PCR assays with species-specific primers. Results Nested PCR assays with Group I primer sets revealed that the overall prevalence of B. bigemina and B. bovis in all bovine samples tested was 64.7% (95% CI = 60.0-69.0) and 35.1% (95% CI = 30.6-39.8), respectively. Only 117/430 (27.2%) animals had a mixed infection. The highest prevalence of 87.5% (95% CI = 77.2-93.5) for B. bigemina was recorded in the Free State province collection sites (Ficksburg, Philippolis and Botshabelo), while North West collection sites had the highest number of animals infected with B. bovis (65.5%; 95% CI = 52.7-76.4). Phylograms were inferred based on B. bigemina-specific gp45 and B. bovis-specific rap-1 nucleotide sequences obtained with Group II nested PCR primers. Phylogenetic analysis of gp45 sequences revealed significant differences in the genotypes of B. bigemina isolates investigated, including those of strains published in GenBank. On the other hand, a phylogeny based on B. bovis rap-1 sequences indicated a similar trend of clustering among the sequences of B. bovis isolates investigated in this study. Conclusion This study demonstrates the occurrence of Babesia parasites in cattle from different provinces of South Africa. It was also noted that the situation of Babesia parasitic infection

  13. Molecular diagnosis and phylogenetic analysis of Babesia bigemina and Babesia bovis hemoparasites from cattle in South Africa.

    PubMed

    Mtshali, Moses Sibusiso; Mtshali, Phillip Senzo

    2013-08-08

    Babesia parasites, mainly Babesia bovis and B. bigemina, are tick-borne hemoparasites inducing bovine babesiosis in cattle globally. The clinical signs of the disease include, among others, anemia, fever and hemoglobinuria. Babesiosis is known to occur in tropical and subtropical regions of the world. In this study, we aim to provide information about the occurrence and phylogenetic relationship of B. bigemina and B. bovis species in cattle from different locations in nine provinces of South Africa. A total of 430 blood samples were randomly collected from apparently healthy cattle. These samples were genetically tested for Babesia parasitic infections using nested PCR assays with species-specific primers. Nested PCR assays with Group I primer sets revealed that the overall prevalence of B. bigemina and B. bovis in all bovine samples tested was 64.7% (95% CI = 60.0-69.0) and 35.1% (95% CI = 30.6-39.8), respectively. Only 117/430 (27.2%) animals had a mixed infection. The highest prevalence of 87.5% (95% CI = 77.2-93.5) for B. bigemina was recorded in the Free State province collection sites (Ficksburg, Philippolis and Botshabelo), while North West collection sites had the highest number of animals infected with B. bovis (65.5%; 95% CI = 52.7-76.4). Phylograms were inferred based on B. bigemina-specific gp45 and B. bovis-specific rap-1 nucleotide sequences obtained with Group II nested PCR primers. Phylogenetic analysis of gp45 sequences revealed significant differences in the genotypes of B. bigemina isolates investigated, including those of strains published in GenBank. On the other hand, a phylogeny based on B. bovis rap-1 sequences indicated a similar trend of clustering among the sequences of B. bovis isolates investigated in this study. This study demonstrates the occurrence of Babesia parasites in cattle from different provinces of South Africa. It was also noted that the situation of Babesia parasitic infection in cattle from certain areas

  14. Surveillance and diagnosis of zoonotic foodborne parasites.

    PubMed

    Zolfaghari Emameh, Reza; Purmonen, Sami; Sukura, Antti; Parkkila, Seppo

    2018-01-01

    Foodborne parasites are a source of human parasitic infection. Zoonotic infections of humans arise from a variety of domestic and wild animals, including sheep, goats, cattle, camels, horses, pigs, boars, bears, felines, canids, amphibians, reptiles, poultry, and aquatic animals such as fishes and shrimp. Therefore, the implementation of efficient, accessible, and controllable inspection policies for livestock, fisheries, slaughterhouses, and meat processing and packaging companies is highly recommended. In addition, more attention should be paid to the education of auditors from the quality control (QC) and assurance sectors, livestock breeders, the fishery sector, and meat inspection veterinarians in developing countries with high incidence of zoonotic parasitic infections. Furthermore, both the diagnosis of zoonotic parasitic infections by inexpensive, accessible, and reliable identification methods and the organization of effective control systems with sufficient supervision of product quality are other areas to which more attention should be paid. In this review, we present some examples of successful inspection policies and recent updates on present conventional, serologic, and molecular diagnostic methods for zoonotic foodborne parasites from both human infection and animal-derived foods.

  15. Zoonotic Diseases--Fostering Awareness in Critical Audiences

    ERIC Educational Resources Information Center

    Van Metre, David C.; Morley, Paul S.

    2015-01-01

    Zoonotic diseases are infectious diseases that are shared between humans and other vertebrate animals. Extension professionals often serve as consultants and educators to individuals at high risk of zoonotic diseases, such as participants in 4-H livestock projects. Effective education about zoonotic diseases begins with an awareness of the…

  16. Molecular characterization of Babesia species in wild animals and their ticks in Turkey.

    PubMed

    Orkun, Ömer; Karaer, Zafer

    2017-11-01

    To date, no study has investigated Babesia ecology in wild boars, hares or foxes in Turkey. This study aimed to determine and characterize Babesia spp. in wild animals and their ticks. We identified a novel Babesia genotype and four known Babesia species in wild animals and their ticks. We detected Babesia spp. molecularly in hares for the first time. In addition, we identified B. vulpes in foxes for the first time in Turkey. The presence of B. rossi, B. crassa and B. occultans was also revealed in ticks collected from wild boars and hares. This is only the second report of B. rossi in ticks outside of Africa and suggests that B. rossi is circulating in ticks in Turkey. Therefore B. rossi poses a significant threat to domestic dogs. Here we demonstrate the role of wild animals in the life cycle of Babesia species in Turkey and contribute to Babesia ecological and taxonomic information. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Using multitype branching processes to quantify statistics of disease outbreaks in zoonotic epidemics

    USDA-ARS?s Scientific Manuscript database

    Despite the enormous relevance of zoonotic infections to world-wide public health, and despite much effort in modeling individual zoonoses, a fundamental understanding of the disease dynamics and the nature of outbreaks emanating from such a complex system is still lacking. We introduce a simple sto...

  18. Influenza surveillance in animals: what is our capacity to detect emerging influenza viruses with zoonotic potential?

    PubMed

    VON Dobschuetz, S; DE Nardi, M; Harris, K A; Munoz, O; Breed, A C; Wieland, B; Dauphin, G; Lubroth, J; Stärk, K D C

    2015-07-01

    A survey of national animal influenza surveillance programmes was conducted to assess the current capacity to detect influenza viruses with zoonotic potential in animals (i.e. those influenza viruses that can be naturally transmitted between animals and humans) at regional and global levels. Information on 587 animal influenza surveillance system components was collected for 99 countries from Chief Veterinary Officers (CVOs) (n = 94) and published literature. Less than 1% (n = 4) of these components were specifically aimed at detecting influenza viruses with pandemic potential in animals (i.e. those influenza viruses that are capable of causing epidemic spread in human populations over large geographical regions or worldwide), which would have zoonotic potential as a prerequisite. Those countries that sought to detect influenza viruses with pandemic potential searched for such viruses exclusively in domestic pigs. This work shows the global need for increasing surveillance that targets potentially zoonotic influenza viruses in relevant animal species.

  19. Molecular detection and characterization of Babesia bovis, Babesia bigemina, Theileria species and Anaplasma marginale isolated from cattle in Kenya.

    PubMed

    Adjou Moumouni, Paul Franck; Aboge, Gabriel Oluga; Terkawi, Mohamad Alaa; Masatani, Tatsunori; Cao, Shinuo; Kamyingkird, Ketsarin; Jirapattharasate, Charoonluk; Zhou, Mo; Wang, Guanbo; Liu, Mingming; Iguchi, Aiko; Vudriko, Patrick; Ybanez, Adrian Patalinghug; Inokuma, Hisashi; Shirafuji-Umemiya, Rika; Suzuki, Hiroshi; Xuan, Xuenan

    2015-09-30

    Infections with Babesia bovis, Babesia bigemina, Theileria species and Anaplasma marginale are endemic in Kenya yet there is a lack of adequate information on their genotypes. This study established the genetic diversities of the above tick-borne hemoparasites infecting cattle in Kenya. Nested PCR and sequencing were used to determine the prevalence and genetic diversity of the above parasites in 192 cattle blood samples collected from Ngong and Machakos farms. B. bovis spherical body protein 4, B. bigemina rhoptry-associated protein 1a, A. marginale major surface protein 5, Theileria spp. 18S rRNA, T. parva p104 and T. orientalis major piroplasm surface protein were used as the marker genes. B. bovis, B. bigemina, T. parva, T. velifera, T. taurotragi, T. mutans and A. marginale were prevalent in both farms, whereas T. ovis, Theileria sp. (buffalo) and T. orientalis were found only in Ngong farm. Co-infections were observed in more than 50 % of positive samples in both farms. Babesia parasites and A. marginale sequences were highly conserved while T. parva and T. orientalis were polymorphic. Cattle-derived T. parva was detected in Machakos farm. However, cattle and buffalo-derived Theileria were detected in Ngong farm suggesting interactions between cattle and wild buffaloes. Generally, the pathogens detected in Kenya were genetically related to the other African isolates but different from the isolates in other continents. The current findings reaffirm the endemicity and co-infection of cattle with tick-borne hemoparasites, and the role of wildlife in pathogens transmission and population genetics in Kenya.

  20. Development of a pan-Babesia FRET-qPCR and a survey of livestock from five Caribbean islands.

    PubMed

    Li, Jing; Kelly, Patrick; Zhang, Jilei; Xu, Chuanling; Wang, Chengming

    2015-09-30

    Babesia spp. are tick-borne protozoan hemoparasites and the second most common blood-borne parasites of mammals, in particular domestic animals. We used the Clustal Multiple Alignment program and 18S rRNA gene sequences of 22 Babesia species from GenBank to develop a PCR that could detect a wide variety of Babesia spp. in a single reaction. The pan-Babesia FRET-qPCR we developed reliably detected B. gibsoni, B. canis, B. vogeli, B. microti, B. bovis, and B. divergens under controlled conditions but did not react with closely related species, mainly Hepatozoon americanum, Theileria equi, and Toxoplasma gondii. When we tested the pan-Babesia FRET-qPCR on DNA of whole blood from 752 cattle, sheep, goats, donkeys and horses from five Caribbean islands, we detected Babesia spp. expected to be present in the animals, mainly B. bovis and B. bigemina in cattle and B. caballi in horses and donkeys. Further, we found that animals were not uncommonly infected with species of Babesia usually associated with other hosts, mainly B. vogeli and B. gibsoni in cattle, sheep and goats, B. rossi in goats, and B. caballi in goats and sheep. Finally, the pan-Babesia FRET-qPCR enabled us to identify unknown species of Babesia in cattle, goats, sheep and donkeys. Overall, 70 % (525/752) of the animals we tested were positive confirming earlier limited studies that infections with Babesia spp. are common in livestock in the Caribbean.

  1. Bovine origin Staphylococcus aureus: A new zoonotic agent?

    PubMed

    Rao, Relangi Tulasi; Jayakumar, Kannan; Kumar, Pavitra

    2017-10-01

    The study aimed to assess the nature of animal origin Staphylococcus aureus strains. The study has zoonotic importance and aimed to compare virulence between two different hosts, i.e., bovine and ovine origin. Conventional polymerase chain reaction-based methods used for the characterization of S. aureus strains and chick embryo model employed for the assessment of virulence capacity of strains. All statistical tests carried on R program, version 3.0.4. After initial screening and molecular characterization of the prevalence of S. aureus found to be 42.62% in bovine origin samples and 28.35% among ovine origin samples. Meanwhile, the methicillin-resistant S. aureus prevalence is found to be meager in both the hosts. Among the samples, only 6.8% isolates tested positive for methicillin resistance. The biofilm formation quantified and the variation compared among the host. A Welch two-sample t -test found to be statistically significant, t=2.3179, df=28.103, and p=0.02795. Chicken embryo model found effective to test the pathogenicity of the strains. The study helped to conclude healthy bovines can act as S. aureus reservoirs. Bovine origin S. aureus strains are more virulent than ovine origin strains. Bovine origin strains have high probability to become zoonotic pathogen. Further, gene knock out studies may be conducted to conclude zoonocity of the bovine origin strains.

  2. Bovine origin Staphylococcus aureus: A new zoonotic agent?

    PubMed Central

    Rao, Relangi Tulasi; Jayakumar, Kannan; Kumar, Pavitra

    2017-01-01

    Aim: The study aimed to assess the nature of animal origin Staphylococcus aureus strains. The study has zoonotic importance and aimed to compare virulence between two different hosts, i.e., bovine and ovine origin. Materials and Methods: Conventional polymerase chain reaction-based methods used for the characterization of S. aureus strains and chick embryo model employed for the assessment of virulence capacity of strains. All statistical tests carried on R program, version 3.0.4. Results: After initial screening and molecular characterization of the prevalence of S. aureus found to be 42.62% in bovine origin samples and 28.35% among ovine origin samples. Meanwhile, the methicillin-resistant S. aureus prevalence is found to be meager in both the hosts. Among the samples, only 6.8% isolates tested positive for methicillin resistance. The biofilm formation quantified and the variation compared among the host. A Welch two-sample t-test found to be statistically significant, t=2.3179, df=28.103, and p=0.02795. Chicken embryo model found effective to test the pathogenicity of the strains. Conclusion: The study helped to conclude healthy bovines can act as S. aureus reservoirs. Bovine origin S. aureus strains are more virulent than ovine origin strains. Bovine origin strains have high probability to become zoonotic pathogen. Further, gene knock out studies may be conducted to conclude zoonocity of the bovine origin strains. PMID:29184376

  3. Horses infected by Piroplasms different from Babesia caballi and Theileria equi: species identification and risk factors analysis in Italy.

    PubMed

    Zanet, Stefania; Bassano, Marina; Trisciuoglio, Anna; Taricco, Ivo; Ferroglio, Ezio

    2017-03-15

    Equine Piroplasmosis (EP) caused by Theileria equi and Babesia caballi is a disease affecting the health and the international movement of horses. In order to assess prevalence of Piroplasmid infection in the Northwestern part of Italy and to evaluate the associated risk factors, whole blood was collected from 135 horses from 7 different stables across the study area. PCR and sequencing were used to assess prevalence of infection and to identify detected Piroplasms to species level. A total of 23 horses (P=17.04%; CI95%: 10.70-23.38%) was found to be infected with Piroplasms and T. equi was the most prevalent species, found in 18 animals (P=13.33%; CI95%: 7.60%-19.07%). Although B. caballi was never detected, the presence of parasites belonging to the genus Babesia was confirmed by sequencing in 5 horses, 3 of which were infected with B. canis (P=2.22%; CI95% 0.76%-6.33%), and 2 with B. capreoli (P=1.48%; CI95% 0.41%-5.24%). The natural reservoir hosts of B. canis and B. capreoli are the domestic dog and roe deer Capreolus capreolus respectively. These findings pose attention to the need of considering in future epidemiological and clinical studies, other Apicomplexan species as able to infect horses. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Clinical investigation on Theileria equi and Babesia caballi infections in Italian donkeys.

    PubMed

    Laus, Fulvio; Spaterna, Andrea; Faillace, Vanessa; Veronesi, Fabrizia; Ravagnan, Silvia; Beribé, Francesca; Cerquetella, Matteo; Meligrana, Marina; Tesei, Beniamino

    2015-04-28

    Interest in the welfare and diseases of donkeys is constantly increasing in several countries. Despite this, clinical research into donkeys needs to be in continual development since they show different reactions compared to horses in many conditions, including infectious diseases, and need specific clinical and therapeutic approaches. No reports are currently available on clinical and clinical pathology data regarding donkeys with natural piroplasms infection. Venous blood samples were taken from one hundred and thirty eight donkeys and underwent indirect fluorescent antibody test (IFAT) to detect IgG antibodies against Theileria equi and Babesia caballi and real-time polimerase chain reaction (PCR) to detect Babesia spp. and Theileria spp. Clinical examinations, haematological analyses and serum bilirubin evaluation were also performed and compared with positive or negative status. A seroprevalence of 40.6% and 47.8% was found for T. equi and B. caballi, respectively; double positivity was detected in 19.6% of the animals. PCR results showed that 17.4% of the animals tested positive for T.equi and 3.6% for B. caballi with no double positivity. Twelve donkeys (8.7%) had clinical signs consistent with chronic forms of the disease and no acute forms were detected. Fifty-eight donkeys had haematological and serum bilirubin alterations and 56 (96.6%) of them were IFAT and/or PCR positive. Changes in erythrocyte number, packed cell volume, hemoglobin concentration, mean corpuscular hemoglobin, platelets number and total bilirubin were significantly associated with positive and symptomatic animals. Nonspecific clinical presentation seems to be very common in donkeys and several clinical pathology alterations persist after natural infection. Therefore, apparently healthy donkeys can have masked but severe clinical pathology alterations. Acute forms are very seldom observed in donkeys. Clinical monitoring of chronically infected donkeys is recommended since such animals

  5. Babesia (Theileria) annae in a red fox (Vulpes vulpes) from Prince Edward Island, Canada.

    PubMed

    Clancey, Noel; Horney, Barbara; Burton, Shelley; Birkenheuer, Adam; McBurney, Scott; Tefft, Karen

    2010-04-01

    A 4-6-mo-old female red fox (Vulpes vulpes) was presented to the Atlantic Veterinary College (AVC) Teaching Hospital, Prince Edward Island, Canada. On presentation, the fox was weak and had pale mucous membranes. A complete blood count and a serum biochemistry profile were performed. Blood smear examination revealed low numbers of erythrocytes containing centrally to paracentrally located, single, rarely multiple, approximately 1 x 2 microm, oval to round organisms with morphology similar to Babesia microti. Polymerase chain reaction testing and DNA sequencing of the Babesia species 18S rRNA gene were performed on DNA extracted from whole blood. Results were positive for a Babesia microti-like parasite genetically identical to Babesia (Theileria) annae. The fox was euthanized due to poor prognosis for recovery. Necropsy examination revealed multifocal to locally extensive subacute nonsuppurative meningoencephalitis, an eosinophilic broncho-pneumonia, a moderate diffuse vacuolar hepatopathy, and lesions associated with blunt trauma to the left abdominal region. This is the first reported case of a red fox in Canada infected with a piroplasm. It remains uncertain whether the presence of this hemoparasite in this fox was pathogenic or an incidental finding. The potential for competent vectors of Babesia species on Prince Edward Island, the potential for this Babesia microti-like parasite to infect other wild and domestic canids, and the significance of this parasite to the health of infected individuals are yet to be determined.

  6. Detection and molecular identification of Hepatozoon canis and Babesia vogeli from domestic dogs in Palestine.

    PubMed

    Azmi, Kifaya; Al-Jawabreh, Amer; Nasereddin, Abedelmajeed; Abdelkader, Ahmad; Zaid, Taher; Ereqat, Suheir; Sawalha, Samer S; Baneth, Gad; Abdeen, Ziad

    2017-04-01

    Dogs serve as hosts for a great number of parasites, which may affect their health and wellbeing. This study aimed to observe tick borne pathogens in dogs from Palestine including Hepatozoon canis and Babesia species. The prevalence of both H. canis and Babesia species infections in apparently healthy dogs, from ten districts of the West Bank was surveyed. DNA was extracted from blood samples obtained from dogs (n = 362) and ticks (n = 213) collected from dogs (n = 77). A primer set that amplifies a partial sequence of the Babesia and Hepatozoon 18S rRNA gene was used for PCR and the DNA sequences of the PCR products of all samples were determined. Twenty-nine (8·0%) of the dogs were found infected including 20 with H. canis (5·5%), seven with Babesia vogeli (1·9%) and two with undefined Babesia spp. (0·6%). Twelve Rhipicephalus sanguineus s.l ticks were pathogen-positive, including ten with H. canis (4·7%), one with B. vogeli (0·5%), and one with Hepatozoon felis (0·5%). The results indicated that a wide range of tick borne pathogens is circulating in the canine population in the surveyed region. This study is the first report on the prevalence of H. canis, B. vogeli and Babesia spp. in dogs in Palestine and its results will assist in the management of diseases associated with these blood parasites.

  7. Prevalence and diversity of Babesia, Hepatozoon, Ehrlichia, and Bartonella in wild and domestic carnivores from Zambia, Africa.

    PubMed

    Williams, Brianna M; Berentsen, Are; Shock, Barbara C; Teixiera, Maria; Dunbar, Michael R; Becker, Matthew S; Yabsley, Michael J

    2014-03-01

    A molecular survey was conducted for several hemoparasites of domestic dogs and three species of wild carnivores from two sites in Zambia. Three Babesia spp. were detected including Babesia felis and Babesia leo in lions (Panthera leo) and a Babesia sp. (similar to Babesia lengau) in spotted hyenas (Crocuta crocuta) and a single lion. All wild dogs (Lycaon pictus) and domestic dogs were negative for Babesia. High prevalences for Hepatozoon were noted in all three wild carnivores (38-61%) and in domestic dogs (13%). Significantly higher prevalences were noted in hyenas and wild dogs compared with domestic dogs and lions. All carnivores were PCR negative for Ehrlichia canis, Ehrlichia ewingii, and Bartonella spp. Overall, high prevalences and diversity of Babesia and Hepatozoon were noted in wild carnivores from Zambia. This study is the first molecular characterization of Babesia from any hyena species and is the first report of a Babesia sp. closely related to B. lengau, a parasite previously only reported from cheetahs (Acinonyx jubatus), in lions and hyenas. Although usually benign in wild carnivores, these hemoparasites can be pathogenic under certain circumstances. Importantly, data on vectors for these parasites are lacking, so studies are needed to identify vectors as well as determine transmission routes, infection dynamics, and host specificity of these hemoparasites in wildlife in Africa and also the risk of transmission between domestic animals and wildlife.

  8. Zoonotic Poxviruses Associated with Companion Animals

    PubMed Central

    Tack, Danielle M.; Reynolds, Mary G.

    2011-01-01

    Simple Summary Contemporary enthusiasm for the ownership of exotic animals and hobby livestock has created an opportunity for the movement of poxviruses—such as monkeypox, cowpox, and orf—outside their traditional geographic range bringing them into contact with atypical animal hosts and groups of people not normally considered at risk. It is important that pet owners and practitioners of human and animal medicine develop a heightened awareness for poxvirus infections and understand the risks that can be associated with companion animals and livestock. This article reviews the epidemiology and clinical features of zoonotic poxviruses that are most likely to affect companion animals. Abstract Understanding the zoonotic risk posed by poxviruses in companion animals is important for protecting both human and animal health. The outbreak of monkeypox in the United States, as well as current reports of cowpox in Europe, point to the fact that companion animals are increasingly serving as sources of poxvirus transmission to people. In addition, the trend among hobbyists to keep livestock (such as goats) in urban and semi-urban areas has contributed to increased parapoxvirus exposures among people not traditionally considered at high risk. Despite the historic notoriety of poxviruses and the diseases they cause, poxvirus infections are often missed. Delays in diagnosing poxvirus-associated infections in companion animals can lead to inadvertent human exposures. Delays in confirming human infections can result in inappropriate treatment or prolonged recovery. Early recognition of poxvirus-associated infections and application of appropriate preventive measures can reduce the spread of virus between companion animals and their owners. This review will discuss the epidemiology and clinical features associated with the zoonotic poxvirus infections most commonly associated with companion animals. PMID:26486622

  9. Novel foci of Dermacentor reticulatus ticks infected with Babesia canis and Babesia caballi in the Netherlands and in Belgium.

    PubMed

    Jongejan, Frans; Ringenier, Moniek; Putting, Michael; Berger, Laura; Burgers, Stefan; Kortekaas, Reinier; Lenssen, Jesse; van Roessel, Marleen; Wijnveld, Michiel; Madder, Maxime

    2015-04-17

    Autochthonous populations of Dermacentor reticulatus ticks in the Netherlands were discovered after fatal cases of babesiosis occurred in resident dogs in 2004. The presence of D. reticulatus in the Netherlands has also linked with the emergence of piroplasmosis in the resident horse population. The aim of this study was to put together results of continued surveillance of field sites and hosts for this tick in the Netherlands and also in Belgium and determine their infection status for Babesia and Theileria species. Ticks were collected from the vegetation at 11 locations between 2011 and 2013. D. reticulatus ticks were also collected from different hosts between 2007 and 2013. Ticks were screened by PCR and reverse line blot (RLB). A total of 1368 D. reticulatus ticks were collected from 4 previously known field locations and from 5 new locations in the Netherlands and from 2 sites in Belgium (one old and one new location). A total of 855 ticks collected from 8 locations in the Netherlands and 2 locations in Belgium were tested. Fourteen ticks (1,64%) collected at 4 field locations (Dintelse Gorzen, Rozenburg, Slikken van de Heen and St. Philipsland) were positive for Babesia canis, whereas two ticks were positive for Babesia caballi, one tick in the Dintelse Gorzen in the Netherlands and one tick was found positive in De Panne in Belgium. A further 1092 D. reticulatus ticks were collected between 2007 and 2013 from 40 dogs (132 ticks), two ticks from two humans, 51 ticks from 15 horses, two ticks from two cats, one tick from a roe deer, whereas most ticks (904) were collected from cattle (n = 25). Ticks were found throughout the year on dogs in nearly all provinces of the Netherlands. None of the ticks collected from these hosts were infected. D. reticulatus is continuing its spread into novel areas. The finding that some autochthonous ticks are infected with B. canis and B. caballi poses a threat to the resident dog and horse population and justifies year

  10. Plant-based oral vaccines against zoonotic and non-zoonotic diseases.

    PubMed

    Shahid, Naila; Daniell, Henry

    2016-11-01

    The shared diseases between animals and humans are known as zoonotic diseases and spread infectious diseases among humans. Zoonotic diseases are not only a major burden to livestock industry but also threaten humans accounting for >60% cases of human illness. About 75% of emerging infectious diseases in humans have been reported to originate from zoonotic pathogens. Because antibiotics are frequently used to protect livestock from bacterial diseases, the development of antibiotic-resistant strains of epidemic and zoonotic pathogens is now a major concern. Live attenuated and killed vaccines are the only option to control these infectious diseases and this approach has been used since 1890. However, major problems with this approach include high cost and injectable vaccines is impractical for >20 billion poultry animals or fish in aquaculture. Plants offer an attractive and affordable platform for vaccines against animal diseases because of their low cost, and they are free of attenuated pathogens and cold chain requirement. Therefore, several plant-based vaccines against human and animals diseases have been developed recently that undergo clinical and regulatory approval. Plant-based vaccines serve as ideal booster vaccines that could eliminate multiple boosters of attenuated bacteria or viruses, but requirement of injectable priming with adjuvant is a current limitation. So, new approaches like oral vaccines are needed to overcome this challenge. In this review, we discuss the progress made in plant-based vaccines against zoonotic or other animal diseases and future challenges in advancing this field. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Public farms: hygiene and zoonotic agents.

    PubMed

    Heuvelink, A E; Valkenburgh, S M; Tilburg, J J H C; Van Heerwaarden, C; Zwartkruis-Nahuis, J T M; De Boer, E

    2007-10-01

    In three successive years, we visited petting farms (n=132), care farms (n=91), and farmyard campsites (n=84), respectively, and completed a standard questionnaire with the objective of determining the hygienic status of these farms and describing hygiene measures implemented to reduce the risk of transmission of zoonotic agents from the animals to humans. For at least 85% of the farms, the overall impression of hygiene was recorded as good. However, more attention must be paid to: informing visitors on hygiene and handwashing, provision of handwashing facilities, and a footwear cleaning facility. Examination of samples of freshly voided faeces resulted in the detection of Shiga toxin-producing Escherichia coli O157 and/or Salmonella spp. and/or Campylobacter spp. at almost two-thirds (64.9%) of the petting farms, and around half of the care farms (56.0%) and farmyard campsites (45.2%). These data reinforce the need for control measures for both public and private farms to reduce human exposure to livestock faeces and thus the risk of transmission of zoonotic diseases. Public awareness of the risk associated with handling animals or faecal material should be increased.

  12. Differential Expression of Three Members of the Multidomain Adhesion CCp Family in Babesia bigemina, Babesia bovis and Theileria equi

    PubMed Central

    Bastos, Reginaldo G.; Suarez, Carlos E.; Laughery, Jacob M.; Johnson, Wendell C.; Ueti, Massaro W.; Knowles, Donald P.

    2013-01-01

    Members of the CCp protein family have been previously described to be expressed on gametocytes of apicomplexan Plasmodium parasites. Knocking out Plasmodium CCp genes blocks the development of the parasite in the mosquito vector, making the CCp proteins potential targets for the development of a transmission-blocking vaccine. Apicomplexans Babesia bovis and Babesia bigemina are the causative agents of bovine babesiosis, and apicomplexan Theileria equi causes equine piroplasmosis. Bovine babesiosis and equine piroplasmosis are the most economically important parasite diseases that affect worldwide cattle and equine industries, respectively. The recent sequencing of the B. bovis and T. equi genomes has provided the opportunity to identify novel genes involved in parasite biology. Here we characterize three members of the CCp family, named CCp1, CCp2 and CCp3, in B. bigemina, B. bovis and T. equi. Using B. bigemina as an in vitro model, expression of all three CCp genes and proteins was demonstrated in temperature-induced sexual stages. Transcripts for all three CCp genes were found in vivo in blood stages of T. equi, and transcripts for CCp3 were detected in vivo in blood stages of B. bovis. However, no protein expression was detected in T. equi blood stages or B. bovis blood stages or B. bovis tick stages. Collectively, the data demonstrated a differential pattern of expression of three orthologous genes of the multidomain adhesion CCp family by B. bigemina, B. bovis and T. equi. The novel CCp members represent potential targets for innovative approaches to control bovine babesiosis and equine piroplasmosis. PMID:23844089

  13. Molecular and serological detection of Babesia bovis- and Babesiabigemina-infection in bovines and water buffaloes raised jointly in anendemic field

    USDA-ARS?s Scientific Manuscript database

    tBabesia bovis and Babesia bigemina are causative agents of bovine babesiosis, a tick-borne disease of cattlein tropical and subtropical regions. Babesia spp. infection adversely affects cattle health and can be fatalresulting in considerable economic loss worldwide. Under endemic stability conditio...

  14. Zoonotic Malaria – Global Overview and Research and Policy Needs

    PubMed Central

    Ramasamy, Ranjan

    2014-01-01

    The four main Plasmodium species that cause human malaria, Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale, are transmitted between humans by mosquito vectors belonging to the genus Anopheles. It has recently become evident that Plasmodium knowlesi, a parasite that typically infects forest macaque monkeys, can be transmitted by anophelines to cause malaria in humans in Southeast Asia. Plasmodium knowlesi infections are frequently misdiagnosed microscopically as P. malariae. Direct human to human transmission of P. knowlesi by anophelines has not yet been established to occur in nature. Knowlesi malaria must therefore be presently considered a zoonotic disease. Polymerase chain reaction is now the definitive method for differentiating P. knowlesi from P. malariae and other human malaria parasites. The origin of P. falciparum and P. vivax in African apes are examples of ancient zoonoses that may be continuing at the present time with at least P. vivax, and possibly P. malariae and P. ovale. Other non-human primate malaria species, e.g., Plasmodium cynomolgi in Southeast Asia and Plasmodium brasilianum and Plasmodium simium in South America, can be transmitted to humans by mosquito vectors further emphasizing the potential for continuing zoonoses. The potential for zoonosis is influenced by human habitation and behavior as well as the adaptive capabilities of parasites and vectors. There is insufficient knowledge of the bionomics of Anopheles vector populations relevant to the cross-species transfer of malaria parasites and the real extent of malaria zoonoses. Appropriate strategies, based on more research, need to be developed for the prevention, diagnosis, and treatment of zoonotic malaria. PMID:25184118

  15. The Vietnam Initiative on Zoonotic Infections (VIZIONS): A Strategic Approach to Studying Emerging Zoonotic Infectious Diseases.

    PubMed

    Rabaa, Maia A; Tue, Ngo Tri; Phuc, Tran My; Carrique-Mas, Juan; Saylors, Karen; Cotten, Matthew; Bryant, Juliet E; Nghia, Ho Dang Trung; Cuong, Nguyen Van; Pham, Hong Anh; Berto, Alessandra; Phat, Voong Vinh; Dung, Tran Thi Ngoc; Bao, Long Hoang; Hoa, Ngo Thi; Wertheim, Heiman; Nadjm, Behzad; Monagin, Corina; van Doorn, H Rogier; Rahman, Motiur; Tra, My Phan Vu; Campbell, James I; Boni, Maciej F; Tam, Pham Thi Thanh; van der Hoek, Lia; Simmonds, Peter; Rambaut, Andrew; Toan, Tran Khanh; Van Vinh Chau, Nguyen; Hien, Tran Tinh; Wolfe, Nathan; Farrar, Jeremy J; Thwaites, Guy; Kellam, Paul; Woolhouse, Mark E J; Baker, Stephen

    2015-12-01

    The effect of newly emerging or re-emerging infectious diseases of zoonotic origin in human populations can be potentially catastrophic, and large-scale investigations of such diseases are highly challenging. The monitoring of emergence events is subject to ascertainment bias, whether at the level of species discovery, emerging disease events, or disease outbreaks in human populations. Disease surveillance is generally performed post hoc, driven by a response to recent events and by the availability of detection and identification technologies. Additionally, the inventory of pathogens that exist in mammalian and other reservoirs is incomplete, and identifying those with the potential to cause disease in humans is rarely possible in advance. A major step in understanding the burden and diversity of zoonotic infections, the local behavioral and demographic risks of infection, and the risk of emergence of these pathogens in human populations is to establish surveillance networks in populations that maintain regular contact with diverse animal populations, and to simultaneously characterize pathogen diversity in human and animal populations. Vietnam has been an epicenter of disease emergence over the last decade, and practices at the human/animal interface may facilitate the likelihood of spillover of zoonotic pathogens into humans. To tackle the scientific issues surrounding the origins and emergence of zoonotic infections in Vietnam, we have established The Vietnam Initiative on Zoonotic Infections (VIZIONS). This countrywide project, in which several international institutions collaborate with Vietnamese organizations, is combining clinical data, epidemiology, high-throughput sequencing, and social sciences to address relevant one-health questions. Here, we describe the primary aims of the project, the infrastructure established to address our scientific questions, and the current status of the project. Our principal objective is to develop an integrated approach to

  16. Stable transfection of babesia bigemina and babesia bovis using a single plasmid containing homologous and heterologous insertion and gene regulatory sequences

    USDA-ARS?s Scientific Manuscript database

    Bovine babesiosis caused by Babesia bovis and B. bigemina is a severe, often fatal, tick-borne disease of cattle for which improved methods for control are urgently needed. One of our long term goals is to develop effective vaccines based on genetically modfied B. bigemina and B. bovis parasites. Al...

  17. Bushmeat Hunting, Deforestation, and Prediction of Zoonotic Disease

    PubMed Central

    Daszak, Peter; Kilpatrick, A. Marm; Burke, Donald S.

    2005-01-01

    Understanding the emergence of new zoonotic agents requires knowledge of pathogen biodiversity in wildlife, human-wildlife interactions, anthropogenic pressures on wildlife populations, and changes in society and human behavior. We discuss an interdisciplinary approach combining virology, wildlife biology, disease ecology, and anthropology that enables better understanding of how deforestation and associated hunting leads to the emergence of novel zoonotic pathogens. PMID:16485465

  18. A survey of Babesia spp. and Hepatozoon spp. in wild canids in Israel.

    PubMed

    Margalit Levi, Maayan; Nachum-Biala, Yaarit; King, Roni; Baneth, Gad

    2018-03-20

    Babesia spp. and Hepatozoon spp. are apicomplexan parasites that infect a variety of animals, including canids. Their life-cycle includes an invertebrate hematophagous vector as a definitive host and vertebrates as intermediate hosts. The aims of this study were to investigate the prevalence and risk factors for Babesia spp. and Hepatozoon spp. infections in wild golden jackals (Canis aureus) and red foxes (Vulpes vulpes) in Israel and to compare spleen with blood sample polymerase chain reaction (PCR) for the detection of infection. Blood and spleen samples from 109 golden jackals and 21 red foxes were tested by PCR for the detection of Babesia spp. and Hepatozoon spp. using primers for the 18S ribosomal (r) RNA gene. Hepatozoon canis was detected in 50/109 (46%) of the jackals and 9/21 (43%) of the foxes. "Babesia vulpes" (the Babesia microti-like piroplasm) was detected in 4/21 (19%) of the foxes and in none of the jackals. A previously unknown genotype termed Babesia sp. MML related to Babesia lengau (96-97% identity) was detected in 1/109 (1%) of the jackals and 4/21 (19%) of the foxes. Further characterization of this genotype carried out by PCR of the rRNA internal transcribed spacer 2 (ITS2) indicated that it had only 87% identity with the B. lengau ITS2. Sex (male or female), age (juvenile or adult) and geographic zone (North, Central or South Israel) were not found to be significant risk factors for these protozoan infections. The prevalence of "B. vulpes" and Babesia sp. MML infections was significantly higher in foxes compared to jackals (χ 2  = 15.65, df = 1, P < 0.005), while there was no statistically significant difference in the rate of H. canis infection between these two canid species. A fair agreement beyond chance between identification in the blood and spleen of H. canis was found in 21 animals from which both blood and spleen samples were available (k = 0.33). This study describes a high prevalence of H. canis infection in

  19. Nipah virus: transmission of a zoonotic paramyxovirus.

    PubMed

    Clayton, Bronwyn Anne

    2017-02-01

    Nipah virus is a recently-recognised, zoonotic paramyxovirus that causes severe disease and high fatality rates in people. Outbreaks have occurred in Malaysia, Singapore, India and Bangladesh, and a putative Nipah virus was also recently associated with human disease in the Philippines. Worryingly, human-to-human transmission is common in Bangladesh, where outbreaks occur with near-annual frequency. Onward human transmission of Nipah virus in Bangladesh is associated with close contact with clinically-unwell patients or their infectious secretions. While Nipah virus isolates associated with outbreaks of human infection have not resulted in sustained transmission to date, specific exposures carry a high risk of person-to-person transmission, an observation which is supported by recent findings in animal models. Novel paramyxoviruses continue to emerge from wildlife hosts, and represent an ongoing threat to human health globally. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  20. Sarcoptic mange: a zoonotic ectoparasitic skin disease.

    PubMed

    Bandi, Kiran Madhusudhan; Saikumar, Chitralekha

    2013-01-01

    A 56-year old man attended the Dermatology Outpatients Department with the complaint of a localized, extremely itchy, erythematous papular lesion of acute onset on the ventral aspect of the right thigh. The patient was referred to the Microbiology Lab for the microscopic detection of the fungal elements. The KOH mount from the skin scrapings showed no fungal elements, but it showed the mites of Sarcopetes scabiei mange. The Sarcoptic Mange is noteworthy because of the fact that it is a zoonotic disease which can easily be passed on to humans. A close contact with infested pet dogs was considered as the main predisposing factor in this case. The response to the antiscabietic treatment was dramatic.

  1. Sarcoptic Mange: A Zoonotic Ectoparasitic Skin Disease

    PubMed Central

    Bandi, Kiran Madhusudhan; Saikumar, Chitralekha

    2013-01-01

    A 56-year old man attended the Dermatology Outpatients Department with the complaint of a localized, extremely itchy, erythematous papular lesion of acute onset on the ventral aspect of the right thigh. The patient was referred to the Microbiology Lab for the microscopic detection of the fungal elements. The KOH mount from the skin scrapings showed no fungal elements, but it showed the mites of Sarcopetes scabiei mange. The Sarcoptic Mange is noteworthy because of the fact that it is a zoonotic disease which can easily be passed on to humans. A close contact with infested pet dogs was considered as the main predisposing factor in this case. The response to the antiscabietic treatment was dramatic. PMID:23450734

  2. Pathogenic Landscape of Transboundary Zoonotic Diseases in the Mexico–US Border Along the Rio Grande

    PubMed Central

    Esteve-Gassent, Maria Dolores; Pérez de León, Adalberto A.; Romero-Salas, Dora; Feria-Arroyo, Teresa P.; Patino, Ramiro; Castro-Arellano, Ivan; Gordillo-Pérez, Guadalupe; Auclair, Allan; Goolsby, John; Rodriguez-Vivas, Roger Ivan; Estrada-Franco, Jose Guillermo

    2014-01-01

    Transboundary zoonotic diseases, several of which are vector borne, can maintain a dynamic focus and have pathogens circulating in geographic regions encircling multiple geopolitical boundaries. Global change is intensifying transboundary problems, including the spatial variation of the risk and incidence of zoonotic diseases. The complexity of these challenges can be greater in areas where rivers delineate international boundaries and encompass transitions between ecozones. The Rio Grande serves as a natural border between the US State of Texas and the Mexican States of Chihuahua, Coahuila, Nuevo León, and Tamaulipas. Not only do millions of people live in this transboundary region, but also a substantial amount of goods and people pass through it everyday. Moreover, it occurs over a region that functions as a corridor for animal migrations, and thus links the Neotropic and Nearctic biogeographic zones, with the latter being a known foci of zoonotic diseases. However, the pathogenic landscape of important zoonotic diseases in the south Texas–Mexico transboundary region remains to be fully understood. An international perspective on the interplay between disease systems, ecosystem processes, land use, and human behaviors is applied here to analyze landscape and spatial features of Venezuelan equine encephalitis, Hantavirus disease, Lyme Borreliosis, Leptospirosis, Bartonellosis, Chagas disease, human Babesiosis, and Leishmaniasis. Surveillance systems following the One Health approach with a regional perspective will help identifying opportunities to mitigate the health burden of those diseases on human and animal populations. It is proposed that the Mexico–US border along the Rio Grande region be viewed as a continuum landscape where zoonotic pathogens circulate regardless of national borders. PMID:25453027

  3. Pathogenic Landscape of Transboundary Zoonotic Diseases in the Mexico-US Border Along the Rio Grande.

    PubMed

    Esteve-Gassent, Maria Dolores; Pérez de León, Adalberto A; Romero-Salas, Dora; Feria-Arroyo, Teresa P; Patino, Ramiro; Castro-Arellano, Ivan; Gordillo-Pérez, Guadalupe; Auclair, Allan; Goolsby, John; Rodriguez-Vivas, Roger Ivan; Estrada-Franco, Jose Guillermo

    2014-01-01

    Transboundary zoonotic diseases, several of which are vector borne, can maintain a dynamic focus and have pathogens circulating in geographic regions encircling multiple geopolitical boundaries. Global change is intensifying transboundary problems, including the spatial variation of the risk and incidence of zoonotic diseases. The complexity of these challenges can be greater in areas where rivers delineate international boundaries and encompass transitions between ecozones. The Rio Grande serves as a natural border between the US State of Texas and the Mexican States of Chihuahua, Coahuila, Nuevo León, and Tamaulipas. Not only do millions of people live in this transboundary region, but also a substantial amount of goods and people pass through it everyday. Moreover, it occurs over a region that functions as a corridor for animal migrations, and thus links the Neotropic and Nearctic biogeographic zones, with the latter being a known foci of zoonotic diseases. However, the pathogenic landscape of important zoonotic diseases in the south Texas-Mexico transboundary region remains to be fully understood. An international perspective on the interplay between disease systems, ecosystem processes, land use, and human behaviors is applied here to analyze landscape and spatial features of Venezuelan equine encephalitis, Hantavirus disease, Lyme Borreliosis, Leptospirosis, Bartonellosis, Chagas disease, human Babesiosis, and Leishmaniasis. Surveillance systems following the One Health approach with a regional perspective will help identifying opportunities to mitigate the health burden of those diseases on human and animal populations. It is proposed that the Mexico-US border along the Rio Grande region be viewed as a continuum landscape where zoonotic pathogens circulate regardless of national borders.

  4. Evaluation of in vitro inhibitory effect of enoxacin on Babesia and Theileria parasites.

    PubMed

    Omar, Mosaab A; Salama, Akram; Elsify, Ahmed; Rizk, Mohamed Abdo; Al-Aboody, Mohammad Saleh; AbouLaila, Mahmoud; El-Sayed, Shimaa Abd El-Salam; Igarashi, Ikuo

    2016-02-01

    Enoxacin is a broad-spectrum 6-fluoronaphthyridinone antibacterial agent (fluoroquinolones) structurally related to nalidixic acid used mainly in the treatment of urinary tract infections and gonorrhea. Also it has been shown recently that it may have cancer inhibiting effect. The primary antibabesial effect of Enoxacin is due to inhibition of DNA gyrase subunit A, and DNA topoisomerase. In the present study, enoxacin was tested as a potent inhibitor against the in vitro growth of bovine and equine Piroplasms. The in vitro growth of five Babesia species that were tested was significantly inhibited (P < 0.05) by micro molar concentrations of enoxacin (IC50 values = 33.5, 15.2, 7.5 and 23.2 μM for Babesia bovis, Babesia bigemina, Babesia caballi, and Theileria equi, respectively). Enoxacin IC50 values for Babesia and Theileria parasites were satisfactory as the drug is potent antibacterial drug with minimum side effects. Therefore, enoxacin might be used for treatment of Babesiosis and Theileriosis especially in case of mixed infections with bacterial diseases or incase of animal sensitivity against diminazin toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Wide Distribution and Genetic Diversity of Babesia microti in Small Mammals from Yunnan Province, Southwestern China.

    PubMed

    Gao, Zi-Hou; Huang, Tao-Hua; Jiang, Bao-Gui; Jia, Na; Liu, Zheng-Xiang; Shao, Zong-Ti; Jiang, Rui-Ruo; Liu, Hong-Bo; Wei, Ran; Li, Yu-Qiong; Yao, Hong-Wu; von Fricken, Michael E; Jiang, Jia-Fu; Du, Chun-Hong; Cao, Wu-Chun

    2017-10-01

    Babesia, usually found in wild and domestic mammals worldwide, have recently been responsible for emerging malaria-like zoonosis in infected patients. Human B. microti infection has been identified in China, primarily in the Southwest along the Myanmar border but little direct surveillance of B. microti infection in rodents has been carried out here (Yunnan province). In this region, a diverse topographic range combined with tropical moisture sustains a high biodiversity of small mammals, which might play important role on Babesia transmission. Small mammals were captured in 141 sample locations from 18 counties located Yunnan Province, and screened for B. microti-like parasites infection by a nested PCR to target 18S rRNA gene of Babesia, plus directly sequencing for positive samples. Univariate and multivariate forward stepwise logistic regression analysis was used to access the association between infections and some related risk factors. Infection with Babesia microti was confirmed in 2.4% (53/ 2204) of small mammals. Significant differences in prevalence rates of B. microti were observed based on variations in forest, agricultural, and residential landscapes. Furthermore, adult small mammals had higher prevalence rates than younger, pubertal mammals. The near full-length 18S rRNA gene revealed that there were two types of B. microti, Kobe and Otsu, which demonstrate the genetic diversity and regional distribution. There exists a wide distribution and genetic diversity of endemic B. microti in Southwestern China, warranting further investigations and monitoring of clinical disease in individuals presenting with Babesia like symptoms in these areas.

  6. Babesia, Theileria, and Hepatozoon species in ticks infesting animal hosts in Romania.

    PubMed

    Andersson, Martin O; Tolf, Conny; Tamba, Paula; Stefanache, Mircea; Radbea, Gabriel; Rubel, Franz; Waldenström, Jonas; Dobler, Gerhard; Chițimia-Dobler, Lidia

    2017-08-01

    Babesia spp., Theileria spp., and Hepatozoon spp. are tick-transmitted apicomplexan parasites that cause several important diseases in animals. To increase current knowledge about the diversity of tick-transmitted pathogens in Romania, we investigated the occurrence of Babesia spp., Theileria spp., and Hepatozoon spp. in a wide range of tick species infesting animal hosts. We collected 852 ticks from 10 different animal species from 20 counties in Romania. The assessment was based on detection of parasite DNA by PCR. Five different apicomplexan parasite species were detected; among them three different species of Babesia: B. canis, B. microti, and B. ovis. Hepatozoon canis was the most frequently detected parasite, found predominately in Ixodes ricinus ticks collected from domestic dogs. It was also detected in I. ricinus collected from goat, fox, and cat. Furthermore, H. canis was found in Haemaphysalis punctata and Haemaphysalis concinna ticks. In addition, Theileria buffeli was detected in Rhipicephalus bursa ticks collected from cattle.

  7. A molecular epidemiological survey of Babesia, Hepatozoon, Ehrlichia and Anaplasma infections of dogs in Japan

    PubMed Central

    KUBO, Shotaro; TATENO, Morihiro; ICHIKAWA, Yasuaki; ENDO, Yasuyuki

    2015-01-01

    Tick-borne diseases are often encountered in canine clinical practice. In the present study, a molecular epidemiological survey of dogs in Japan was conducted to understand the prevalence and geographical distribution of Babesia spp., Hepatozoon spp., Ehrlichia spp. and Anaplasma spp. Pathogen-derived DNA in blood samples obtained from 722 dogs with a history of exposure to ticks and/or fleas was examined by PCR. The prevalence of Babesia gibsoni, Babesia odocoilei-like species, Hepatozoon canis and Ehrlichia spp./Anaplasma spp. was 2.4% (16/722), 0.1% (1/722), 2.5% (18/722) and 1.5% (11/722), respectively. While B. gibsoni and Ehrlichia spp./Anaplasma spp. were detected in the western part of Japan, H. canis was detected in Tohoku area in addition to western and central parts of Japan. PMID:25947226

  8. Tick Passage Results in Enhanced Attenuation of Babesia bovis

    PubMed Central

    McElwain, Terry F.; Ueti, Massaro W.; Scoles, Glen A.; Reif, Kathryn E.; Lau, Audrey O. T.

    2014-01-01

    Serial blood passage of virulent Babesia bovis in splenectomized cattle results in attenuated derivatives that do not cause neurologic disease. Tick transmissibility can be lost with attenuation, but when retained, attenuated B. bovis can revert to virulence following tick passage. This study provides data showing that tick passage of the partially attenuated B. bovis T2Bo derivative strain further decreased virulence compared with intravenous inoculation of the same strain in infected animals. Ticks that acquired virulent or attenuated parasites by feeding on infected cattle were transmission fed on naive, splenectomized animals. While there was no significant difference between groups in the number of parasites in the midgut, hemolymph, or eggs of replete female ticks after acquisition feeding, animals infected with the attenuated parasites after tick transmission showed no clinical signs of babesiosis, unlike those receiving intravenous challenge with the same attenuated strain prior to tick passage. Additionally, there were significantly fewer parasites in blood and tissues of animals infected with tick-passaged attenuated parasites. Sequencing analysis of select B. bovis genes before and after tick passage showed significant differences in parasite genotypes in both peripheral blood and cerebral samples. These results provide evidence that not only is tick transmissibility retained by the attenuated T2Bo strain, but also it results in enhanced attenuation and is accompanied by expansion of parasite subpopulations during tick passage that may be associated with the change in disease phenotype. PMID:25114111

  9. Genetic diversity of Babesia bovis in virulent and attenuated strains.

    PubMed

    Mazuz, M L; Molad, T; Fish, L; Leibovitz, B; Wolkomirsky, R; Fleiderovitz, L; Shkap, V

    2012-03-01

    The aim of this study was to compare the genetic diversity of the single copy Bv80 gene sequences of Babesia bovis in populations of attenuated and virulent parasites. PCR/ RT-PCR followed by cloning and sequence analyses of 4 attenuated and 4 virulent strains were performed. Multiple fragments in the range of 420 to 744 bp were amplified by PCR or RT-PCR. Cloning of the PCR fragments and sequence analyses revealed the presence of mixed subpopulations in either virulent or attenuated parasites with a total of 19 variants with 12 different sequences that differed in number and type of tandem repeats. High levels of intra- and inter-strain diversity of the Bv80 gene, with the presence of mixed populations of parasites were found in both the virulent field isolates and the attenuated vaccine strains. In addition, during the attenuation process, sequence analyses showed changes in the pattern of the parasite subpopulations. Despite high polymorphism found by sequence analyses, the patterns observed and the number of repeats, order, or motifs found could not discriminate between virulent field isolates and attenuated vaccine strains of the parasite.

  10. Zoonotic diseases associated with reptiles and amphibians: an update.

    PubMed

    Mitchell, Mark A

    2011-09-01

    Reptiles and amphibians are popular as pets. There are increased concerns among public health officials because of the zoonotic potential associated with these animals. Encounters with reptiles and amphibians are also on the rise in the laboratory setting and with wild animals; in both of these practices, there is also an increased likelihood for exposure to zoonotic pathogens. It is important that veterinarians remain current with the literature as it relates to emerging and reemerging zoonotic diseases attributed to reptiles and amphibians so that they can protect themselves, their staff, and their clients from potential problems.

  11. Bat Predation by Cercopithecus Monkeys: Implications for Zoonotic Disease Transmission.

    PubMed

    Tapanes, Elizabeth; Detwiler, Kate M; Cords, Marina

    2016-06-01

    The relationship between bats and primates, which may contribute to zoonotic disease transmission, is poorly documented. We provide the first behavioral accounts of predation on bats by Cercopithecus monkeys, both of which are known to harbor zoonotic disease. We witnessed 13 bat predation events over 6.5 years in two forests in Kenya and Tanzania. Monkeys sometimes had prolonged contact with the bat carcass, consuming it entirely. All predation events occurred in forest-edge or plantation habitat. Predator-prey relations between bats and primates are little considered by disease ecologists, but may contribute to transmission of zoonotic disease, including Ebolavirus.

  12. Strict tropism for CD71+/CD234+ human reticulocytes limits the zoonotic potential of Plasmodium cynomolgi

    PubMed Central

    Kosaisavee, Varakorn; Suwanarusk, Rossarin; Chua, Adeline C. Y.; Kyle, Dennis E.; Malleret, Benoit; Zhang, Rou; Imwong, Mallika; Imerbsin, Rawiwan; Ubalee, Ratawan; Sámano-Sánchez, Hugo; Yeung, Bryan K. S.; Ong, Jessica J. Y.; Lombardini, Eric; Nosten, François; Tan, Kevin S. W.; Bifani, Pablo; Snounou, Georges; Rénia, Laurent

    2017-01-01

    Two malaria parasites of Southeast Asian macaques, Plasmodium knowlesi and P cynomolgi, can infect humans experimentally. In Malaysia, where both species are common, zoonotic knowlesi malaria has recently become dominant, and cases are recorded throughout the region. By contrast, to date, only a single case of naturally acquired P cynomolgi has been found in humans. In this study, we show that whereas P cynomolgi merozoites invade monkey red blood cells indiscriminately in vitro, in humans, they are restricted to reticulocytes expressing both transferrin receptor 1 (Trf1 or CD71) and the Duffy antigen/chemokine receptor (DARC or CD234). This likely contributes to the paucity of detectable zoonotic cynomolgi malaria. We further describe postinvasion morphologic and rheologic alterations in P cynomolgi–infected human reticulocytes that are strikingly similar to those observed for P vivax. These observations stress the value of P cynomolgi as a model in the development of blood stage vaccines against vivax malaria. PMID:28698207

  13. Prion Diseases as Transmissible Zoonotic Diseases

    PubMed Central

    Lee, Jeongmin; Kim, Su Yeon; Hwang, Kyu Jam; Ju, Young Ran; Woo, Hee-Jong

    2013-01-01

    Prion diseases, also called transmissible spongiform encephalopathies (TSEs), lead to neurological dysfunction in animals and are fatal. Infectious prion proteins are causative agents of many mammalian TSEs, including scrapie (in sheep), chronic wasting disease (in deer and elk), bovine spongiform encephalopathy (BSE; in cattle), and Creutzfeldt–Jakob disease (CJD; in humans). BSE, better known as mad cow disease, is among the many recently discovered zoonotic diseases. BSE cases were first reported in the United Kingdom in 1986. Variant CJD (vCJD) is a disease that was first detected in 1996, which affects humans and is linked to the BSE epidemic in cattle. vCJD is presumed to be caused by consumption of contaminated meat and other food products derived from affected cattle. The BSE epidemic peaked in 1992 and decreased thereafter; this decline is continuing sharply owing to intensive surveillance and screening programs in the Western world. However, there are still new outbreaks and/or progression of prion diseases, including atypical BSE, and iatrogenic CJD and vCJD via organ transplantation and blood transfusion. This paper summarizes studies on prions, particularly on prion molecular mechanisms, BSE, vCJD, and diagnostic procedures. Risk perception and communication policies of the European Union for the prevention of prion diseases are also addressed to provide recommendations for appropriate government policies in Korea. PMID:24159531

  14. Zoonotic diseases: health aspects of Canadian geese.

    PubMed

    Dieter, R A; Dieter, R S; Dieter, R A; Gulliver, G

    2001-11-01

    Review zoonotic diseases associated with Canadian geese. Review article: A review of the multiple physical, microbiologic and safety concerns, and methods used in controlling this potential problem. Over the last decade the Canadian goose population (protected by international treaties and protection acts) has increased rapidly such that in many cities they have become a pest rather than an admired wild bird. Their increasing numbers have caused a number of potential healthcare concerns including: physical, bacterial, parasitic, allergic and viral potential problems. The Canadian goose fecal droppings of one per minute have caused falls and the flying geese have caused air traffic accidents. Bacterial concerns, including botulism, salmonella and E. coli have all been reviewed and presented concerns. The viral Newcastle disease may be detected with hemagglutination studies and the Giardia psittaci parasites have been repeatedly found in their droppings. The Cryptosporidium parvum oocytes have been present on stool study. Definite links to human infectious diseases have been difficult to prove. Revision of the current laws and new control programs must be developed.

  15. Zoonotic helminths affecting the human eye

    PubMed Central

    2011-01-01

    Nowaday, zoonoses are an important cause of human parasitic diseases worldwide and a major threat to the socio-economic development, mainly in developing countries. Importantly, zoonotic helminths that affect human eyes (HIE) may cause blindness with severe socio-economic consequences to human communities. These infections include nematodes, cestodes and trematodes, which may be transmitted by vectors (dirofilariasis, onchocerciasis, thelaziasis), food consumption (sparganosis, trichinellosis) and those acquired indirectly from the environment (ascariasis, echinococcosis, fascioliasis). Adult and/or larval stages of HIE may localize into human ocular tissues externally (i.e., lachrymal glands, eyelids, conjunctival sacs) or into the ocular globe (i.e., intravitreous retina, anterior and or posterior chamber) causing symptoms due to the parasitic localization in the eyes or to the immune reaction they elicit in the host. Unfortunately, data on HIE are scant and mostly limited to case reports from different countries. The biology and epidemiology of the most frequently reported HIE are discussed as well as clinical description of the diseases, diagnostic considerations and video clips on their presentation and surgical treatment. Homines amplius oculis, quam auribus credunt Seneca Ep 6,5 Men believe their eyes more than their ears PMID:21429191

  16. Zoonotic Chlamydiaceae Species Associated with Trachoma, Nepal

    PubMed Central

    Rothschild, James; Ruettger, Anke; Kandel, Ram Prasad; Sachse, Konrad

    2013-01-01

    Trachoma is the leading cause of preventable blindness. Commercial assays do not discriminate among all Chlamydiaceae species that might be involved in trachoma. We investigated whether a commercial Micro-ArrayTube could discriminate Chlamydiaceae species in DNA extracted directly from conjunctival samples from 101 trachoma patients in Nepal. To evaluate organism viability, we extracted RNA, reverse transcribed it, and subjected it to quantitative real-time PCR. We found that 71 (70.3%) villagers were infected. ArrayTube sensitivity was 91.7% and specificity was 100% compared with that of real-time PCR. Concordance between genotypes detected by microarray and ompA genotyping was 100%. Species distribution included 54 (76%) single infections with Chlamydia trachomatis, C. psittaci, C. suis, or C. pecorum, and 17 (24%) mixed infections that includied C. pneumoniae. Ocular infections were caused by 5 Chlamydiaceae species. Additional studies of trachoma pathogenesis involving Chlamydiaceae species other than C. trachomatis and their zoonotic origins are needed. PMID:24274654

  17. First detection and molecular identification of Babesia microti in Rattus losea captured from the offshore Kinmen Island of Taiwan.

    PubMed

    Chao, Li-Lian; Yu, Wen-Ching; Shih, Chien-Ming

    2017-02-01

    Babesia microti was firstly detected and identified in brown country rats (Rattus losea, Swinhoe) captured from the offshore Kinmen Island of Taiwan. The prevalence of Babesia infection in 283 rodents was screened by polymerase chain reaction (PCR) assay using a piroplasma-conserved primer set (Piro A/B) and the thirty-seven PCR-positive rodents were further examined by PCR using a species-specific primer set (Bab 1/4) targeting the gene encoding the nuclear small-subunit ribosomal RNA (18S rRNA) of Babesia species. B. microti was detected only in Rattus losea with a total infection rate of 9.9% (28/283). Positivity examined by species-specific PCR (9.9%) is higher than examined by blood smear (4.6%). Sequence and phylogenetic analyses revealed that Babesia species detected in Taiwan were genetically affiliated to the genotypes of B. microti, and can be easily distinguished from other genotypes of Babesia parasites by neighbour-joining and maximum-parsimony methods. Intra- and inter-species analysis also indicate that all these Taiwan species have a lower level of genetic divergence (genetic distance values <0.084) within the genotypes of B. microti, and were genetically more distant to other genotypes (>0.218) of Babesia parasites. This study provides the first evidence of B. microti identified in R. losea in Taiwan, and the high prevalence of Babesia infection in R. losea may imply its possible role served as reservoir host for maintaining an enzoonotic cycle of Babesia transmission in Kinmen Island. The possible vector tick responsible for the transmission of Babesia infection need to be further identified. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Prioritization of zoonotic diseases of public health significance in Vietnam.

    PubMed

    Trang, Do Thuy; Siembieda, Jennifer; Huong, Nguyen Thi; Hung, Pham; Ky, Van Dang; Bandyopahyay, Santanu; Olowokure, Babatunde

    2015-12-30

    Prioritization of zoonotic diseases is critical as it facilitates optimization of resources, greater understanding of zoonotic diseases and implementation of policies promoting multisectoral collaboration. This study aimed to establish strategic priorities for zoonotic diseases in Vietnam taking a key stakeholder approach. Two weeks prior to a workshop on zoonotic diseases a questionnaire was developed and posted to key professionals involved in different areas of zoonotic disease management in Vietnam. Respondents were asked to assess the relative priority of 12 zoonotic diseases using a number of evidence-based criteria, and to provide suggestions to strengthen multisectoral collaboration. A response rate of 69% (51/74) was obtained, and 75% (38/51) respondents worked in non-international Vietnamese organizations. Respondents identified the top five diseases for prioritization in Vietnam as: avian influenza, rabies, Streptococcus suis infection, pandemic influenza and foodborne bacterial diseases. The three criteria most used to rank diseases were severity of disease, outbreak potential and public attention. Avian influenza was ranked as the number one priority zoonotic disease in Vietnam by 57% of the respondents, followed by rabies (18%). Respondents identified coordination mechanisms, information sharing and capacity building as the most important areas for strengthening to enhance multisectoral collaboration. This study is the first systematic and broad-based attempt to prioritize zoonotic diseases of public health significance in Vietnam using key stakeholders, and a comparative and transparent method. There is limited literature for policy makers and planners on this topic and the results of this study can be used to guide decision-making.

  19. Nested PCR detection and phylogenetic analysis of Babesia bovis and Babesia bigemina in cattle from Peri-urban localities in Gauteng Province, South Africa.

    PubMed

    Mtshali, Phillip Senzo; Tsotetsi, Ana Mbokeleng; Thekisoe, Matlhahane Molifi Oriel; Mtshali, Moses Sibusiso

    2014-01-01

    Babesia bovis and Babesia bigemina are tick-borne hemoparasites causing babesiosis in cattle worldwide. This study was aimed at providing information about the occurrence and geographical distribution of B. bovis and B. bigemina species in cattle from Gauteng province, South Africa. A total of 268 blood samples collected from apparently healthy animals in 14 different peri-urban localities were tested using previously established nested PCR assays for the detection of B. bovis and B. bigemina species-specific genes encoding rhoptry-associated protein 1 (RAP-1) and SpeI-AvaI restriction fragment, respectively. Nested PCR assays revealed that the overall prevalence was 35.5% (95% confidence interval [CI]=± 5.73) and 76.1% (95% CI=± 5.11) for B. bovis and B. bigemina, respectively. PCR results were corroborated by sequencing amplicons of randomly selected samples. The neighbor-joining trees were constructed to study the phylogenetic relationship between B. bovis and B. bigemina sequences of randomly selected isolates. Analysis of phylogram inferred with B. bovis RAP-1 sequences indicated a close relationship between our isolates and GenBank strains. On the other hand, a tree constructed with B. bigemina gp45 sequences revealed a high degree of polymorphism among the B. bigemina isolates investigated in this study. Taken together, the results presented in this work indicate the high incidence of Babesia parasites in cattle from previously uncharacterised peri-urban areas of the Gauteng province. These findings suggest that effective preventative and control measures are essential to curtail the spread of Babesia infections among cattle populations in Gauteng.

  20. Seroprevalence of Babesia microti infection in Canadian blood donors.

    PubMed

    O'Brien, Sheila F; Delage, Gilles; Scalia, Vito; Lindsay, Robbin; Bernier, France; Dubuc, Sophie; Germain, Marc; Pilot, Gerry; Yi, Qi-Long; Fearon, Margaret A

    2016-01-01

    Human babesiosis, caused by the intraerythrocytic protozoan parasite Babesia microti, is primarily transmitted by tick bites and is also transmitted by transfusion. Infections have been identified in U.S. blood donors close to Canadian borders. We aimed to assess the risk of transfusion-transmitted babesiosis in Canada by examining infections in ticks and seroprevalence in blood donors. Passive surveillance (receipt of ticks submitted by the public) was used to identify regions for tick drag sampling (active surveillance, 2009-2014). All ticks were tested for B. microti using an indirect immunofluorescent antibody assay (Imugen, Inc.). Between July and December 2013, blood donations from selected sites (southern Manitoba, Ontario, Québec, New Brunswick, and Nova Scotia) near endemic U.S. regions were tested for antibody to B. microti. Donors completed a questionnaire about risk travel and possible tick exposure. Of approximately 12,000 ticks submitted, 14 were B. microti positive (10 in Manitoba, one in Ontario, one in Québec, two in New Brunswick). From active tick surveillance, six of 361 ticks in Manitoba were positive (1.7%), three of 641 (0.5%) in Québec, and none elsewhere. There were 26,260 donors at the selected sites of whom 13,993 (53%) were tested. None were positive for antibody to B. microti. In 2013, 47% of donors visited forested areas in Canada, and 41% traveled to the United States. The data do not suggest that laboratory-based testing is warranted at this time. However, there are indicators that B. microti may be advancing into Canada and ongoing monitoring of tick populations and donor seroprevalence is indicated. © 2015 AABB.

  1. Seroprevalence of Babesia microti in Individuals with Lyme Disease.

    PubMed

    Curcio, Sabino R; Tria, Laurel P; Gucwa, Azad L

    2016-12-01

    Babesiosis is an emerging tick-borne disease (TBD) caused by Babesia microti, an intracellular parasite of red blood cells. Currently, it is the highest ranked pathogen transmitted by blood transfusion. Most healthy individuals infected with B. microti are asymptomatic, but may be at risk for chronic infection. Similar to Lyme disease transmitted by Borrelia burgdorferi, B. microti is spread by Ixodes scapularis ticks. The rate of coinfection with these TBDs in humans is unclear as most studies have focused their prevalence in ticks or rodent reservoirs. In this study, we aimed to determine the seroprevalence of B. microti infection in individuals who tested positive for Lyme disease. Serum samples obtained from 130 subjects in New York were tested by immunofluorescence assay (IFA) for the presence of IgM and IgG antibodies against B. microti. Overall, 26.9% of the serum samples tested were positive for IgM and IgG antibodies against B. microti, suggesting exposure to TBD. Individuals who tested positive for Lyme disease as determined by two-tiered serological testing and the presence of both IgM and IgG antibodies directed against B. burgdorferi, were significantly increased for antibodies directed against B. microti (28.6%; p < 0.05), suggesting the possibility of coinfection with both TBDs. In contrast, the Lyme disease-negative control group had only 6.7% of samples seropositive for B. microti. These findings suggest the need for more extensive studies investigating infection rates with multiple TBDs in areas where they are endemic and further support for the need to implement an FDA-approved screening test for blood products to help prevent transfusion-transmitted babesiosis.

  2. Targeted surface expression of an exogenous antigen in stably transfected babesia bovis

    USDA-ARS?s Scientific Manuscript database

    Babesia bovis is a tick-borne intraerythocytic protozoan responsible for acute disease in cattle which can be controlled by vaccination with attenuated B. bovis strains. Emerging B. bovis transfection technologies may increase the usefulness of these live vaccines. Here we propose using transfected ...

  3. Expression of 6-Cys gene superfamily defines babesia bovis sexual stage development within rhipicephalus microplus

    USDA-ARS?s Scientific Manuscript database

    Babesia bovis, an intra-erythrocytic tick-borne apicomplexan protozoan, is one of the agents of bovine babesiosis. Its life cycle includes sexual reproduction within cattle fever ticks, Rhipicephalus spp. Six B. bovis 6-Cys gene superfamily members were previously identified (A, B, C, D, E, F) and t...

  4. A virulent babesia bovis strain failed to infect white-tailed deer (Odocoileus virginianus)

    USDA-ARS?s Scientific Manuscript database

    Wildlife are an important component in the vector-host-pathogen triangle of livestock diseases, as they maintain biological vectors that transmit pathogens and can serve as reservoirs for such infectious pathogens. Babesia bovis is a tick-borne pathogen, vectored by cattle fever ticks, Rhipicephalus...

  5. Analysis of Babesia bovis-induced gene expression changes in the cattle tick, Rhipicephalus (Boophilus) microplus

    USDA-ARS?s Scientific Manuscript database

    Background: Cattle babesiosis is a tick-borne disease of cattle that has severe economic impact on cattle producers throughout the world's tropical and subtropical countries. The most severe form of the disease is caused by the apicomplexan, Babesia bovis, and transmitted to cattle through the bite ...

  6. Transfected babesia bovis expressing a tick GST as a live vector vaccine

    USDA-ARS?s Scientific Manuscript database

    The Rhipicephalus microplus tick is a notorious blood-feeding ectoparasite of livestock, especially cattle, responsible for massive losses in animal production. It is the main vector for transmission of pathogenic bacteria and parasites, including Babesia bovis, an intraerythrocytic apicomplexan pro...

  7. An impedance spectroscopy method for the detection and evaluation of Babesia bovis antibodies in cattle

    USDA-ARS?s Scientific Manuscript database

    An immunosensor method for diagnosis of Babesia bovis in cattle based on impedance measurement is presented in this study. The method probes the interaction between serum antibodies against B. bovis infected cattle and recombinant protein, RAP-1, with C-terminal obtained from a Portuguese B. bovis s...

  8. Spherical body protein 2 truncated copy 11 as a specific babesia bovis attenuation marker

    USDA-ARS?s Scientific Manuscript database

    Background: Spherical body protein 2 (SBP-2) truncated copies 7, 9 and 11, gene transcripts in Babesia bovis, were recently reported to be significantly up-regulated in two geographically distinct attenuated B. bovis strains. Results: Sequence comparisons between the sbp2t7, 9 and 11 genes among geo...

  9. Geno- and phenotypic characteristics of a transfected babesia bovis 6-Cys-E knockout clonal line

    USDA-ARS?s Scientific Manuscript database

    Babesia bovis is an intra-erythrocytic tick transmitted apicomplexan protozoan parasite. It has a complex life style including asexual replication in the mammalian host and sexual replication occurring in the midgut of host tick vector, typically, Rhipicephalus microplus. Previous evidence showed th...

  10. Epidemiology and molecular phylogeny of Babesia sp. in Little Penguins Eudyptula minor in Australia

    PubMed Central

    Vanstreels, Ralph Eric Thijl; Woehler, Eric J.; Ruoppolo, Valeria; Vertigan, Peter; Carlile, Nicholas; Priddel, David; Finger, Annett; Dann, Peter; Herrin, Kimberly Vinette; Thompson, Paul; Ferreira Junior, Francisco C.; Braga, Érika M.; Hurtado, Renata; Epiphanio, Sabrina; Catão-Dias, José Luiz

    2015-01-01

    Blood parasites are potential threats to the health of penguins and to their conservation and management. Little penguins Eudyptula minor are native to Australia and New Zealand, and are susceptible to piroplasmids (Babesia), hemosporidians (Haemoproteus, Leucocytozoon, Plasmodium) and kinetoplastids (Trypanosoma). We studied a total of 263 wild little penguins at 20 sites along the Australian southeastern coast, in addition to 16 captive-bred little penguins. Babesia sp. was identified in seven wild little penguins, with positive individuals recorded in New South Wales, Victoria and Tasmania. True prevalence was estimated between 3.4% and 4.5%. Only round forms of the parasite were observed, and gene sequencing confirmed the identity of the parasite and demonstrated it is closely related to Babesia poelea from boobies (Sula spp.) and B. uriae from murres (Uria aalge). None of the Babesia-positive penguins presented signs of disease, confirming earlier suggestions that chronic infections by these parasites are not substantially problematic to otherwise healthy little penguins. We searched also for kinetoplastids, and despite targeted sampling of little penguins near the location where Trypanosoma eudyptulae was originally reported, this parasite was not detected. PMID:25853053

  11. Zoonotic chicken toxoplasmosis in some Egyptians governorates.

    PubMed

    Barakat, Ashraf Mohamed; Salem, Lobna Mohamed Ali; El-Newishy, Adel M Abdel-Aziz; Shaapan, Raafat Mohamed; El-Mahllawy, Ehab Kotb

    2012-09-01

    Toxoplasmosis is one of the most common diseases prevalent in the world, caused by a coccidian parasite Toxoplasma gondii which infects humans, animals and birds. Poultry consider reliable human source of food in addition it is considered an intermediate host in transmission of the disease to humans. Trails of isolation of local T. gondii chicken strain through bioassay of the suspected infected chicken tissues in mice was carried out and the isolated strain was confirmed as being T. gondii using Polymerase Chain Reaction (PCR). Seroprevalence of antibodies against T. gondii in chicken sera in six Egyptian governorates were conducted by enzyme linked immune-sorbent assay (ELISA) using the isolated chicken strain antigen. Moreover, comparison between the prevalence rates in different regions of the Egyptian governorates were been estimated. Isolation of local T. gondii chicken strain was accomplished from chicken tissues and confirmed by PCR technique. The total prevalence rate was 68.8% comprised of 59.5, 82.3, 67.1, 62.2, 75 and 50% in El Sharkia, El Gharbia, Kafr El sheikh, Cairo, Quena and Sohag governorates, respectively. The prevalence rates were higher among Free Range (FR) (69.5%) than commercial farm Chickens (C) (68.5%); while, the prevalence rate was less in Upper Egypt than Lower Egypt governorates and Cairo. This study is the first was used antigen from locally isolated T. gondii chicken strain for the diagnosis of chicken toxoplasmosis. The higher seroprevalence particularly in free range chickens (house-reared) refers to the public health importance of chickens as source of zoonotic toxoplasmosis to human.

  12. Retrospective and prospective perspectives on zoonotic brucellosis

    PubMed Central

    Moreno, Edgardo

    2014-01-01

    Members of the genus Brucella are pathogenic bacteria exceedingly well adapted to their hosts. The bacterium is transmitted by direct contact within the same host species or accidentally to secondary hosts, such as humans. Human brucellosis is strongly linked to the management of domesticated animals and ingestion of their products. Since the domestication of ungulates and dogs in the Fertile Crescent and Asia in 12000 and 33000 ya, respectively, a steady supply of well adapted emergent Brucella pathogens causing zoonotic disease has been provided. Likewise, anthropogenic modification of wild life may have also impacted host susceptibility and Brucella selection. Domestication and human influence on wild life animals are not neutral phenomena. Consequently, Brucella organisms have followed their hosts’ fate and have been selected under conditions that favor high transmission rate. The “arm race” between Brucella and their preferred hosts has been driven by genetic adaptation of the bacterium confronted with the evolving immune defenses of the host. Management conditions, such as clustering, selection, culling, and vaccination of Brucella preferred hosts have profound influences in the outcome of brucellosis and in the selection of Brucella organisms. Countries that have controlled brucellosis systematically used reliable smooth live vaccines, consistent immunization protocols, adequate diagnostic tests, broad vaccination coverage and sustained removal of the infected animals. To ignore and misuse tools and strategies already available for the control of brucellosis may promote the emergence of new Brucella variants. The unrestricted use of low-efficacy vaccines may promote a “false sense of security” and works towards selection of Brucella with higher virulence and transmission potential. PMID:24860561

  13. Assessment of Draxxin® (tulathromycin) as an inhibitor of in vitro growth of Babesia bovis, Babesia bigemina and Theileria equi.

    PubMed

    Silva, Marta G; Villarino, Nicolas F; Knowles, Donald P; Suarez, Carlos E

    2018-04-17

    Babesia bovis, Babesia bigemina and Theileria equi are worldwide tick-borne hemoprotozoan that cause diseases characterized by fever, anemia, weight loss and abortion. A common feature of these diseases are transition from acute to chronic phases, in which parasites may persist in the host for life, and becoming a reservoir for tick transmission. The live-attenuated vaccines for B. bovis and B. bigemina are not available for worldwide use due to legal restrictions and other concerns such as potential erythrocyte antigen and pathogen contamination, and a vaccine for T. equi is not available. The use of chemotherapeutics is essential to treat and control these diseases, but several studies have shown the development of drug-resistance by these parasites, and safe and effective alternative drugs are needed. Tulathromycin, a macrolide antibiotic, has proven to be effective against a vast range of bacteria and Plasmodium yoelli, a Babesia and Theileria related intra-erythrocytic apicomplexan. Draxxin ® (tulathromycin) is currently licensed to treat infections that cause respiratory diseases in cattle in several countries. In this study, the activity of Draxxin ® was tested in vitro on cultured B. bovis, B. bigemina and T. equi. Addition of the drug to in vitro cultures resulted in cessation of parasite replication of the three species tested, B. bovis, B. bigemina and T. equi, with estimated IC 50 of 16.7 ± 0.6 nM; 6.2 ± 0.2 nM and 2.4 ± 0.1 nM, respectively, at 72 h. Furthermore, neither parasites nor parasite DNA were detectable in cultures treated with IC 100 , suggesting Draxxin ® is a highly effective anti-Babesia/Theileria drug. Importantly, the IC 50 calculated for Draxxin ® for the Babesia/Theileria parasites tested is lower that the IC 50 calculated for some drugs currently in use to control these parasites. Collectively, the data strongly support in vivo testing of Draxxin ® for the treatment of bovine babesiosis and equine

  14. Molecular detection of Hepatozoon canis and Babesia canis vogeli in domestic dogs from Cuiabá, Brazil.

    PubMed

    Spolidorio, Mariana Granziera; Torres, Mariana de Medeiros; Campos, Wilma Neres da Silva; Melo, Andréia Lima Tomé; Igarashi, Michelle; Amude, Alexandre Mendes; Labruna, Marcelo Bahia; Aguiar, Daniel Moura

    2011-01-01

    The objective of this study was to report for the first time infection by Hepatozoon spp. and Babesia spp. in 10 dogs from the city of Cuiabá, State of Mato Grosso, central-western Brazil. A pair of primers that amplifies a 574 bp fragment of the 18S rRNA of Hepatozoon spp., and a pair of primers that amplifies a 551 bp fragment of the gene 18S rRNA for Babesia spp. were used. Six dogs were positive for Babesia spp., and 9 were positive for Hepatozoon spp. Co‑infection of Babesia spp. and Hepatozoon spp. was seen in 5 dogs. Sequenced samples revealed 100% identity with B. canis vogeli, and H. canis. This is the first molecular detection of H. canis in domestic dogs from Cuiabá. Additionally, it is described for the first time the presence of B. canis vogeli circulating among dogs in Cuiabá.

  15. Awareness, knowledge, and risks of zoonotic diseases among livestock farmers in Punjab.

    PubMed

    Hundal, Jaspal Singh; Sodhi, Simrinder Singh; Gupta, Aparna; Singh, Jaswinder; Chahal, Udeybir Singh

    2016-02-01

    The present study was conducted to assess the awareness, knowledge, and risks of zoonotic diseases among livestock farmers in Punjab. 250 livestock farmers were selected randomly and interviewed with a pretested questionnaire, which contained both open and close ended questions on different aspects of zoonotic diseases, i.e., awareness, knowledge, risks, etc. Knowledge scorecard was developed, and each correct answer was awarded one mark, and each incorrect answer was given zero mark. Respondents were categorized into low (mean - ½ standard deviation [SD]), moderate (mean ± ½ SD), and high knowledge (Mean + ½ SD) category based on the mean and SD. The information about independent variables viz., age, education, and herd size were collected with the help of structured schedule and scales. The data were analyzed by ANOVA, and results were prepared to assess awareness, knowledge, and risks of zoonotic diseases and its relation with independent variables. Majority of the respondents had age up to 40 years (70%), had their qualification from primary to higher secondary level (77.6%), and had their herd size up to 10 animals (79.6%). About 51.2% and 54.0% respondents had the history of abortion and retained placenta, respectively, at their farms. The respondents not only disposed off the infected placenta (35.6%), aborted fetus (39.6%), or feces (56.4%) from a diarrheic animal but also gave intrauterine medication (23.2%) bare-handedly. About 3.6-69.6% respondents consumed uncooked or unpasteurized animal products. About 84.8%, 46.0%, 32.8%, 4.61%, and 92.4% of livestock farmers were aware of zoonotic nature of rabies, brucellosis, tuberculosis, anthrax, and bird flu, respectively. The 55.6%, 67.2%, 52.0%, 64.0%, and 51.2% respondents were aware of the transmission of zoonotic diseases to human being through contaminated milk, meat, air, feed, or through contact with infected animals, respectively. The transmission of rabies through dog bite (98.4%), need of post

  16. [Establishment of the experimental animal model of Babesia microti].

    PubMed

    Lu, Yan; Cai, Yu-Chun; Chen, Shao-Hong; Chen, Jia-Xu; Guo, Jian; Chen, Mu-Xin; Ai, Lin; Chu, Yan-Hong; Chen, Zhuo; Zhou, Xiao-Nong

    2012-12-30

    To establish the experimental animal model for the study of Babesia microti. BALB/c mice, immunosuppressive BALB/c mice, SCID mice and NOD-SCID mice were inoculated with B. microti-infected red blood cells (RBC) by intraperitoneal injection respectively. After inoculation, thin blood smears were prepared every day, stained with Giemsa staining and examined for the presence of parasitemia. Three mice were dissected to examine the infectivity in bone marrow, brain, spleen, heart, lung, kidney and liver tissues. The infection rate of erythrocytes in different tissues was recorded, and the relationship between the infectivity of tissues and infection rate in peripheral blood was analyzed. Blood samples infected with B. microti were preserved in liquid nitrogen with dimethyl sulfoxide (DMSO) for 2 months. The thawed parasitized blood was injected into the BALB/c mice by same route and the parasitemia was monitored. The four kinds of mice were all infected by B. microti with parasitemia. The percentage of parasitized red blood cells from peripheral blood were 82.4% (BALB/c mice, d7), 73.2% (immunosuppressive BALB/c mice, d5), 86.4% (SCID mice, d8) and 72.5% (NOD-SCID mice, d8) at the maximum, respectively. Parasitemia decreased rapidly in BALB/c mice, whereas decreased slowly in immunosuppressive BALB/c mice. Only the parasitemia in SCID mice and NOD-SCID mice decreased significantly and tended to picking up again. The parasites were observed in RBCs from bone marrow, brain, spleen, heart, lung, kidney and liver tissues. The infection rate of erythrocytes in tissues increased with an increase of infection in peripheral blood. After cryopreservation, the parasites proliferated in BALB/c mice. Parasitemia appeared after inoculation with frozen infected blood two days later than that of fresh infected blood. The infection rate reached its peak after inoculation with frozen infected blood one day later than that of fresh infected blood. The experimental animal model of B

  17. Host and viral traits predict zoonotic spillover from mammals

    PubMed Central

    Olival, Kevin J.; Hosseini, Parviez R.; Zambrana-Torrelio, Carlos; Ross, Noam; Bogich, Tiffany L.; Daszak, Peter

    2017-01-01

    The majority of human emerging infectious diseases (EIDs) are zoonotic, with viruses originating in wild mammals of particular concern (e.g. HIV, Ebola, SARS)1–3. Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs4. However, few analytical tools exist to identify which host species likely harbor the next human virus, or which viruses can cross species boundaries5–7. Here we conduct the most comprehensive analysis yet of mammalian host-virus relationships and show that both the total number of viruses that infect a given species, and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy, and human population within a species range – which may reflect human-wildlife contact. We demonstrate for the first time that bats harbor a significantly higher proportion of zoonotic viruses than all other mammalian orders. We identify the taxa and geographic regions with the largest estimated number of ‘missing viruses’ and ‘missing zoonoses’ and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people. PMID:28636590

  18. Host and viral traits predict zoonotic spillover from mammals.

    PubMed

    Olival, Kevin J; Hosseini, Parviez R; Zambrana-Torrelio, Carlos; Ross, Noam; Bogich, Tiffany L; Daszak, Peter

    2017-06-29

    The majority of human emerging infectious diseases are zoonotic, with viruses that originate in wild mammals of particular concern (for example, HIV, Ebola and SARS). Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs. However, few analytical tools exist to identify which host species are likely to harbour the next human virus, or which viruses can cross species boundaries. Here we conduct a comprehensive analysis of mammalian host-virus relationships and show that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy and human population within a species range-which may reflect human-wildlife contact. We demonstrate that bats harbour a significantly higher proportion of zoonotic viruses than all other mammalian orders. We also identify the taxa and geographic regions with the largest estimated number of 'missing viruses' and 'missing zoonoses' and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people.

  19. A PCR-RFLP Assay targeting RPS8 gene for the discrimination between bovine Babesia and Theileria species in China.

    PubMed

    Tian, Zhancheng; Du, Junzheng; Yang, Jifei; Liu, Aihong; Liu, Xiaocui; Liu, Guangyuan; Yin, Hong

    2015-09-17

    Bovine babesiosis and theileriosis is an important hemoprotozoal disease in cattles and yaks in tropical and subtropical regions leading to significant economic losses. In the field, the risk of co-infection between the bovine Babesia and Theileria species is very high. Thus, it is necessary to develop a simple, accurate, rapid and cost-effective method for large-scale epidemic investigation, in particular for the detection of co-infection in field. In this study, DNA sequences of a ribosomal protein S8 (RPS8) gene from eight species of cattle piroplasms in China were used to develop a species-specific PCR-RFLP diagnostic tool. The eight Theileria and Babesia species could be differentiated by digesting the RPS8 PCR product with Mbo I. The sensitivity of the PCR assays was 0.1 pg DNA for Babesia species but 1 pg DNA for Theileria species. The clearly different size of the PCR-RFLP products allowed for a direct discrimination between eight bovine Theileria and Babesia species (T. annulata, T. sinensis, T. sergenti, B. ovata, B. bovis, B. bigemina, B. major and Babesia species Kashi isolate). Our results indicated that the established method based on the RPS8 gene was a reliable molecular diagnostic tool for the simultaneous detection and identification of bovine Babesia and Theileria species in China, which could be applicable for the survey of parasite dynamics, epidemiological studies as well as prevention and control of the disease.

  20. Psammomys obesus Cretzschmar, 1828 and zoonotic cutaneous leishmaniasis in Sinai Peninsula, Egypt.

    PubMed

    Morsy, T A; Sabry, A H; Rifaat, M M; Wahba, M M

    1996-08-01

    In the Middle East, the fat sand rat Psammomys obesus is the most important reservoir host of zoonotic cutaneous leishmamiasis (ZCL). It is the most incriminated host in outbreaks. Two P. obesus caught in Wadi El Gedeiret (Al Arish, North Sinai) were found naturally infected with Leishmania major as indicated by enzyme electrophoresis. In Egypt, the already known reservoir hosts are Gerbillus pyramidum I. Geoffroy St. Hilaire, 1825; Meriones crassus Sundevall, 1984 and Meriones sacramenti Thomas, 1922. The hostal role of P. obesus was discussed.

  1. Babesia bovis and Babesia bigemina infection levels estimated by qPCR in Angus cattle from an endemic area of São Paulo state, Brazil.

    PubMed

    Giglioti, R; Oliveira, H N; Santana, C H; Ibelli, A M G; Néo, T A; Bilhassi, T B; Rabelo, M D; Machado, R Z; Brito, L G; Oliveira, M C S

    2016-07-01

    The levels of infection by Babesia bovis and Babesia bigemina were estimated by absolute quantification through the quantitative PCR technique (qPCR). Fifty-one contemporaneous Angus cattle were evaluated on two occasions. The number of standard female Rhipicephalus microplus ticks present on the left side of the body was counted and blood samples were drawn from the tail vein into tubes containing the anticoagulant EDTA. The blood samples were submitted to DNA extraction and used to quantify the number of copies (NC) of DNA from B. bovis and B. bigemina by qPCR. The data on tick count and number of DNA copies were transformed for normalization and analyzed by a mixed model method. A multivariate model with repeated measures of the same animal, including the effects of collection, parasite species and their interaction, was used. The repeatability values were obtained from the matrix of (co)variances and were expressed for each species. The correlations between the counts of different species on the same animal, in the same collection or different collections, were also estimated. The results showed the qPCR could distinguish the two between infection by the two Babesia species. Infection levels by B. bovis and B. bigemina were detected in 100% and 98% of the animals, respectively. Significant differences were found (P<0.05) between the NC of the two Babesia species, B. bovis 1.49±0.07 vs. B. bigemina 0.82±0.06. Low repeatabilities were found for the counts of R. microplus and NC of B. bovis and B. bigemina: 0.05, 0.10 and 0.02, respectively. The correlations between R. microplus count and NC of B. bovis and B. bigemina were both very near zero. However, an association was observed between the NC of the two species, with a correlation coefficient of 0.30 for measures from the same collection. The absence of associations between the quantity of DNA from B. bovis and B. bigemina and the tick counts suggests that the variation of parasitemia by the hemoparasites did

  2. Molecular analysis of Anaplasma phagocytophilum and Babesia divergens in red deer (Cervus elaphus) in Western Austria.

    PubMed

    Cézanne, Rita; Mrowietz, Naike; Eigner, Barbara; Duscher, Georg Gerhard; Glawischnig, Walter; Fuehrer, Hans-Peter

    2017-02-01

    Wild ungulates may act as reservoirs of various vector borne pathogens that can infect humans and domestic animals. In the present study, blood samples from 196 red deer (Cervus elaphus) from Western Austria (Vorarlberg, Tyrol and Salzburg) were collected on filter paper and tested for Anaplasmataceae, Piroplasmida, Rickettsia and filarioid helminths using molecular tools. Babesia divergens was detected in ten (5.1%) and Anaplasma phagocytophilum in three (1.5%) of the 196 samples. Filarioid helminths, Rickettsia spp. and Theileria spp. were not detected. These findings indicate that red deer may serve as reservoirs of Babesia divergens and Anaplasma phagocytophilum in Western Austria. Further investigations are needed to assess the presence of these pathogens in ticks in this geographical region, and the significance of these pathogens in both animals and humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. First report on Babesia vogeli infection in dogs in the Philippines.

    PubMed

    Ybañez, Adrian P; Ybañez, Rochelle Haidee D; Talle, MaxFrancis G; Liu, Mingming; Moumouni, Paul Franck Adjou; Xuan, Xuenan

    2017-02-01

    Babesia vogeli is a tick-borne protozoal pathogen that infects erythrocytes. In Southeast Asia, this pathogen has only been reported in Thailand. In this study, nine dogs presented at three different veterinary clinics in Cebu City, Philippines were found positive for B. vogeli. DNA was extracted from blood samples and tested using a PCR for genus Babesia and a PCR specific for B. vogeli (both based on the 18S rRNA gene). Blood smears (triplicate) from each sample were found negative. All positive amplicons were sequenced and were found to be 99.4% identical to registered B. vogeli sequences at Genbank. Phylogenetic analysis revealed monophyletic grouping of Philippine sequences with the registered A. platys Genbank sequences. This is the first report of B. vogeli infection in dogs in the Philippines. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Molecular phylogeny of Babesia poelea from brown boobies (Sula leucogaster) from Johnston Atoll, Central Pacific

    USGS Publications Warehouse

    Yabsley, Michael J.; Work, Thierry M.; Rameyer, Robert A.

    2006-01-01

    The phylogenetic relationship of avian Babesia with other piroplasms remains unclear, mainly because of a lack of objective criteria such as molecular phylogenetics. In this study, our objective was to sequence the entire 18S, ITS-1, 5.8S, and ITS-2 regions of the rRNA gene and partial ß-tubulin gene of B. poelea, first described from brown boobies (Sula leucogaster) from the central Pacific, and compare them to those of other piroplasms. Phylogenetic analyses of the entire 18S rRNA gene sequence revealed that B. poelea belonged to the clade of piroplasms previously detected in humans, domestic dogs, and wild ungulates in the western United States. The entire ITS-1, 5.8S, ITS-2, and partial ß-tubulin gene sequence shared conserved regions with previously described Babesia and Theileria species. The intron of the ß-tubulin gene was 45 bp. This is the first molecular characterization of an avian piroplasm.

  5. Molecular phylogeny of Babesia poelea from brown boobies (Sula leucogaster) from Johnston Atoll, central Pacific.

    PubMed

    Yabsley, Michael J; Work, Thierry M; Rameyer, Robert A

    2006-04-01

    The phylogenetic relationship of avian Babesia with other piroplasms remains unclear, mainly because of a lack of objective criteria such as molecular phylogenetics. In this study, our objective was to sequence the entire 18S, ITS-1, 5.8S, and ITS-2 regions of the rRNA gene and partial beta-tubulin gene of B. poelea, first described from brown boobies (Sula leucogaster) from the central Pacific, and compare them to those of other piroplasms. Phylogenetic analyses of the entire 18S rRNA gene sequence revealed that B. poelea belonged to the clade of piroplasms previously detected in humans, domestic dogs, and wild ungulates in the western United States. The entire ITS-1, 5.8S, ITS-2, and partial beta-tubulin gene sequence shared conserved regions with previously described Babesia and Theileria species. The intron of the beta-tubulin gene was 45 bp. This is the first molecular characterization of an avian piroplasm.

  6. Animal level risk factors associated with Babesia and Theileria infections in cattle in Egypt.

    PubMed

    Rizk, Mohamed Abdo; Salama, Akram; El-Sayed, Shimaa Abd-El-Salam; Elsify, Ahmed; El-Ashkar, Maged; Ibrahim, Hussam; Youssef, Mohamed; El-Khodery, Sabry

    2017-12-20

    In present study, blood samples were collected randomly from 439 cows at three main regions of Egypt (northern, central and southern). Molecular diagnosis of Babesia and Theileria infections by PCR amplification of DNA (gene) fragments, then cloning and sequencing of the positive samples were conducted. A questionnaire was created to imply the assumed risk factors and logistic regression statistical analysis was carried out to appraise the potential factors on the animal level. The results revealed that 49 (11.16%) and 45 (10.25%) cattle were infected with Babesia and Theileria parasites, respectively. B. bigemina (7.97%) and T. annulata (9.56%) were the most prevalent parasites. For Babesia sp., final multivariate logistic regression analysis showed a significant association between the infection and irregular use of antiprotozoal drugs (P = 0.003; OR: 0.28; 95% CI: 0.12-0.65), management practice (P = 0.029; OR: 6.66; 95% CI: 1.21-36.59) and ecology area (P = 0.006; OR: 5.62; 95% CI: 1.63-19.31). However, for Theileria sp. infection, animal breed (P = 0.003; OR: 0.44; 95% CI: .45-1.00) and irregular use of antiprotozoal drugs (P<0.001; OR: 4.22; 95% CI: 2.62-5.60) were the potential risk factors. The results of the present study declare the prevalent bovine Babesia and Theileria sp. in Egypt based on molecular description. An impression on the potential risk factors associated with infections was obtained. Recognition of the potential risk factors associated with tick borne disease may be helpful to construct the best preventive measures.

  7. Simultaneous Detection of Bovine Theileria and Babesia Species by Reverse Line Blot Hybridization

    PubMed Central

    Gubbels, J. M.; de Vos, A. P.; van der Weide, M.; Viseras, J.; Schouls, L. M.; de Vries, E.; Jongejan, F.

    1999-01-01

    A reverse line blot (RLB) assay was developed for the identification of cattle carrying different species of Theileria and Babesia simultaneously. We included Theileria annulata, T. parva, T. mutans, T. taurotragi, and T. velifera in the assay, as well as parasites belonging to the T. sergenti-T. buffeli-T. orientalis group. The Babesia species included were Babesia bovis, B. bigemina, and B. divergens. The assay employs one set of primers for specific amplification of the rRNA gene V4 hypervariable regions of all Theileria and Babesia species. PCR products obtained from blood samples were hybridized to a membrane onto which nine species-specific oligonucleotides were covalently linked. Cross-reactions were not observed between any of the tested species. No DNA sequences from Bos taurus or other hemoparasites (Trypanosoma species, Cowdria ruminantium, Anaplasma marginale, and Ehrlichia species) were amplified. The sensitivity of the assay was determined at 0.000001% parasitemia, enabling detection of the carrier state of most parasites. Mixed DNAs from five different parasites were correctly identified. Moreover, blood samples from cattle experimentally infected with two different parasites reacted only with the corresponding species-specific oligonucleotides. Finally, RLB was used to screen blood samples collected from carrier cattle in two regions of Spain. T. annulata, T. orientalis, and B. bigemina were identified in these samples. In conclusion, the RLB is a versatile technique for simultaneous detection of all bovine tick-borne protozoan parasites. We recommend its use for integrated epidemiological monitoring of tick-borne disease, since RLB can also be used for screening ticks and can easily be expanded to include additional hemoparasite species. PMID:10325324

  8. Effects of Central Kalimantan plant extracts on intraerythrocytic Babesia gibsoni in culture.

    PubMed

    Subeki; Matsuura, Hideyuki; Yamasaki, Masahiro; Yamato, Osamu; Maede, Yoshimitsu; Katakura, Ken; Suzuki, Mamoru; Trimurningsih; Chairul; Yoshihara, Teruhiko

    2004-07-01

    The inhibitory effects of 45 plant extracts selected from Central Kalimantan, Indonesia on Babesia gibsoni in vitro and their acute toxicity to mice were evaluated. Of these plant extracts studied, Arcangelisia flava, Curcuma zedoaria, Garcinia benthamiana, Lansium domesticum and Peronema canescens were found to have appreciable antibabesial activity with IC50 values from 5.3 to 49.3 microg/ml without acute toxicity in mice at the intraperitoneal dose of 0.7 g/kg of body weight.

  9. A specific DNA probe which identifies Babesia bovis in whole blood.

    PubMed

    Petchpoo, W; Tan-ariya, P; Boonsaeng, V; Brockelman, C R; Wilairat, P; Panyim, S

    1992-05-01

    A genomic library of Babesia bovis DNA from the Mexican strain M was constructed in plasmid pUN121 and cloned in Escherichia coli. Several recombinants which hybridized strongly to radioactively labeled B. bovis genomic DNA in an in situ screening were selected and further analyzed for those which specifically hybridized to B. bovis DNA. It was found that pMU-B1 had the highest sensitivity, detecting 25 pg of purified B. bovis DNA, and 300 parasites in 10 microliters of whole infected blood, or 0.00025% parasitemia. pMU-B1 contained a 6.0 kb B. bovis DNA insert which did not cross-hybridize to Babesia bigemina, Trypanosoma evansi, Plasmodium falciparum, Anaplasma marginale, Boophilus microplus and cow DNA. In the Southern blot analysis of genomic DNA, pMU-B1 could differentiate between two B. bovis geographic isolates, Mexican strain M and Thai isolate TS4. Thus, the pMU-B1 probe will be useful in the diagnosis of Babesia infection in cattle and ticks, and in the differentiation of B. bovis strains.

  10. Actin polymerization mediated by Babesia gibsoni aldolase is required for parasite invasion.

    PubMed

    Goo, Youn-Kyoung; Ueno, Akio; Terkawi, Mohamad Alaa; Aboge, G Oluga; Junya, Yamagishi; Igarashi, Makoto; Kim, Jung-Yeon; Hong, Yeon-Chul; Chung, Dong-Il; Nishikawa, Yoshifumi; Xuan, Xuenan

    2013-09-01

    Host cell invasion by apicomplexan parasites driven by gliding motility and empowered by actin-based movement is essential for parasite survival and pathogenicity. The parasites share a conserved invasion process: actin-based motility led by the coordination of adhesin-cytoskeleton via aldolase. A number of studies of host cell invasion in the Plasmodium species and Toxoplasma gondii have been performed. However, the mechanisms of host cell invasion by Babesia species have not yet been studied. Here, we show that Babesia gibsoni aldolase (BgALD) forms a complex with B. gibsoni thrombospondin-related anonymous protein (BgTRAP) and B. gibsoni actin (BgACT), depending on tryptophan-734 (W-734) in BgTRAP. In addition, actin polymerization is mediated by BgALD. Moreover, cytochalasin D, which disrupts actin polymerization, suppressed B. gibsoni parasite growth and inhibited the host cell invasion by parasites, indicating that actin dynamics are essential for erythrocyte invasion by B. gibsoni. This study is the first molecular approach to determine the invasion mechanisms of Babesia species. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. A PCR-based survey of selected Babesia and Theileria parasites in cattle in Sri Lanka.

    PubMed

    Sivakumar, Thillaiampalam; Kothalawala, Hemal; Abeyratne, Sembukutti Arachchige Eranga; Vimalakumar, Singarayar Caniciyas; Meewewa, Asela Sanjeewa; Hadirampela, Dilhani Thilanka; Puvirajan, Thamotharampillai; Sukumar, Subramaniyam; Kuleswarakumar, Kulanayagam; Chandrasiri, Alawattage Don Nimal; Igarashi, Ikuo; Yokoyama, Naoaki

    2012-11-23

    Hemoprotozoan parasites are responsible for significant economic losses in cattle. We screened Sri Lankan cattle populations for the presence of Babesia bovis, Babesia bigemina, Theileria annulata, and Theileria orientalis, using species-specific PCR assays. Out of 316 samples collected from animals in four different districts of Sri Lanka (Nuwara Eliya, Polonnaruwa, Ampara, and Jaffna), 231 (73.1%) were positive for at least one parasite species. All four parasite species were detected among the study groups from all of the districts surveyed. The first and second commonest hemoprotozoan parasites identified were T. orientalis (53.5%) and B. bigemina (30.1%), respectively. We found that the dry zones (Polonnaruwa, Ampara, and Jaffna) had more Babesia-positive animals than the hill country wet zone (Nuwara Eliya). In contrast, T. orientalis was the predominant species detected in Nuwara Eliya, while infection with T. annulata was more common in the dry zones. In addition, 81 (35.1%) of the 231 positive samples were infected with more than one parasite species. The presence of multiple parasite species among the different cattle populations is of clinical and economic significance. Therefore, island-wide control and prevention programs against bovine babesiosis and theileriosis are needed to minimize the financial burden caused by these parasites. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. A Cysteine Protease Is Critical for Babesia spp. Transmission in Haemaphysalis Ticks

    PubMed Central

    Tsuji, Naotoshi; Miyoshi, Takeharu; Battsetseg, Badger; Matsuo, Tomohide; Xuan, Xuenan; Fujisaki, Kozo

    2008-01-01

    Vector ticks possess a unique system that enables them to digest large amounts of host blood and to transmit various animal and human pathogens, suggesting the existence of evolutionally acquired proteolytic mechanisms. We report here the molecular and reverse genetic characterization of a multifunctional cysteine protease, longipain, from the babesial parasite vector tick Haemaphysalis longicornis. Longipain shares structural similarity with papain-family cysteine proteases obtained from invertebrates and vertebrates. Endogenous longipain was mainly expressed in the midgut epithelium and was specifically localized at lysosomal vacuoles and possibly released into the lumen. Its expression was up-regulated by host blood feeding. Enzymatic functional assays using in vitro and in vivo substrates revealed that longipain hydrolysis occurs over a broad range of pH and temperature. Haemoparasiticidal assays showed that longipain dose-dependently killed tick-borne Babesia parasites, and its babesiacidal effect occurred via specific adherence to the parasite membranes. Disruption of endogenous longipain by RNA interference revealed that longipain is involved in the digestion of the host blood meal. In addition, the knockdown ticks contained an increased number of parasites, suggesting that longipain exerts a killing effect against the midgut-stage Babesia parasites in ticks. Our results suggest that longipain is essential for tick survival, and may have a role in controlling the transmission of tick-transmittable Babesia parasites. PMID:18483546

  13. Molecular and serological detection of Babesia spp. in neotropical and exotic carnivores in Brazilian zoos.

    PubMed

    André, Marcos Rogério; Adania, Cristina Harumi; Teixeira, Rodrigo Hidalgo Friciello; Allegretti, Silmara Marques; Machado, Rosangela Zacarias

    2011-03-01

    Large and small piroplasms have been observed in the blood smears of various wild carnivores, but few studies utilizing molecular characterization have been done. The goal of this present study was to investigate the presence of Babesia sp. by molecular and serologic techniques in exotic and neotropical carnivores maintained in captivity at Brazilian zoos. Blood and sera samples were collected from 146 Brazilian wild felids, 21 exotic felids, 1 genet (Genetta tigrina), 3 European wolves (Canis lupus), and 94 Brazilian wild canids in Brazilian zoos in the São Paulo and Mato Grosso states and in the Federal District. A total of 53 wild felids (31.74%) and 10 wild canids (10.31%) were seropositive for Babesia canis by Indirect Fluorescent Antibody Test (IFAT). Antibodies were detected in ocelots, little-spotted cats, margays, pampas cats, jaguars, pumas, jaguarundis, crab-eating foxes, and bush dogs. Babesia sp. DNA, with high similarity to B. leo, was detected in one pampas cat and one genet.

  14. Zoonotic Potential and Molecular Epidemiology of Giardia Species and Giardiasis†

    PubMed Central

    Feng, Yaoyu; Xiao, Lihua

    2011-01-01

    Summary: Molecular diagnostic tools have been used recently in assessing the taxonomy, zoonotic potential, and transmission of Giardia species and giardiasis in humans and animals. The results of these studies have firmly established giardiasis as a zoonotic disease, although host adaptation at the genotype and subtype levels has reduced the likelihood of zoonotic transmission. These studies have also identified variations in the distribution of Giardia duodenalis genotypes among geographic areas and between domestic and wild ruminants and differences in clinical manifestations and outbreak potentials of assemblages A and B. Nevertheless, our efforts in characterizing the molecular epidemiology of giardiasis and the roles of various animals in the transmission of human giardiasis are compromised by the lack of case-control and longitudinal cohort studies and the sampling and testing of humans and animals living in the same community, the frequent occurrence of infections with mixed genotypes and subtypes, and the apparent heterozygosity at some genetic loci for some G. duodenalis genotypes. With the increased usage of multilocus genotyping tools, the development of next-generation subtyping tools, the integration of molecular analysis in epidemiological studies, and an improved understanding of the population genetics of G. duodenalis in humans and animals, we should soon have a better appreciation of the molecular epidemiology of giardiasis, the disease burden of zoonotic transmission, the taxonomy status and virulences of various G. duodenalis genotypes, and the ecology of environmental contamination. PMID:21233509

  15. Intestinal protozoan parasites with zoonotic potential in birds.

    PubMed

    Marietto-Gonçalves, G A; Fernandes, T M; Silva, R J; Lopes, R S; Andreatti Filho, R L

    2008-10-01

    The aim of this study was to evaluate the occurrence of potentially zoonotic intestinal protozoan infections in exotic and wildlife Brazilian birds. Fecal samples from 207 birds of 45 species were examined. Infections by Balantidium sp., Entamoeba sp., and Blastocystis sp. were observed in 17 individuals (8.2%) of Gnorimopsar chopi, Oryzoborus angolensis, Sporophila caerulescens, Ramphastos toco, Aratinga leucophtalmus, and Pavo cristatus.

  16. Overview of zoonotic infections from fish and shellfish

    USDA-ARS?s Scientific Manuscript database

    Zoonosis refers to diseases that can be transferred from animals, whether wild or domesticated, to humans. Zoonotic infections can be divided into: 1) topically acquired infection caused by contact with aquatic animals or their products and 2) food borne infection caused by eating raw or undercooked...

  17. Environmental Factors and Zoonotic Pathogen Ecology in Urban Exploiter Species.

    PubMed

    Rothenburger, Jamie L; Himsworth, Chelsea H; Nemeth, Nicole M; Pearl, David L; Jardine, Claire M

    2017-09-01

    Knowledge of pathogen ecology, including the impacts of environmental factors on pathogen and host dynamics, is essential for determining the risk that zoonotic pathogens pose to people. This review synthesizes the scientific literature on environmental factors that influence the ecology and epidemiology of zoonotic microparasites (bacteria, viruses and protozoa) in globally invasive urban exploiter wildlife species (i.e., rock doves [Columba livia domestica], European starlings [Sturnus vulgaris], house sparrows [Passer domesticus], Norway rats [Rattus norvegicus], black rats [R. rattus] and house mice [Mus musculus]). Pathogen ecology, including prevalence and pathogen characteristics, is influenced by geographical location, habitat, season and weather. The prevalence of zoonotic pathogens in mice and rats varies markedly over short geographical distances, but tends to be highest in ports, disadvantaged (e.g., low income) and residential areas. Future research should use epidemiological approaches, including random sampling and robust statistical analyses, to evaluate a range of biotic and abiotic environmental factors at spatial scales suitable for host home range sizes. Moving beyond descriptive studies to uncover the causal factors contributing to uneven pathogen distribution among wildlife hosts in urban environments may lead to targeted surveillance and intervention strategies. Application of this knowledge to urban maintenance and planning may reduce the potential impacts of urban wildlife-associated zoonotic diseases on people.

  18. The raccoon dog (Nyctereutes procyonoides) and the raccoon (Procyon lotor)-their role and impact of maintaining and transmitting zoonotic diseases in Austria, Central Europe.

    PubMed

    Duscher, Tanja; Hodžić, Adnan; Glawischnig, Walter; Duscher, Georg G

    2017-04-01

    The neozoan species raccoon dog (Nyctereutes procyonoides) and raccoon (Procyon lotor) are widespread in Europe and potential vectors of many diseases that can threaten human and domestic animal health. Facing a further spread of these species, it is important to know about (i) pathogens imported and/or (ii) pathogens acquired in the new habitat. Thus, we investigated the parasite fauna of wild raccoon dogs and raccoons from Austria, at the edge of their new distribution range. The eight examined raccoons were nearly free of pathogens including Baylisascaris procyonis, and thus assumed to have a low epidemiological impact, so far. Out of ten raccoon dog specimens, we found one from western Austria to be infected with Echinococcus multilocularis and another three from the eastern wetland regions to harbour adults of Alaria alata. Furthermore, we detected Babesia cf. microti in five of eight raccoon dogs all over Austria but none of our samples were tested positive for Trichinella spp. Nevertheless, the raccoon dog seems to be a relevant host, at least for the zoonotic pathogens E. multilocularis and A. alata, and we suggest to further monitor the raccoon dogs parasite fauna.

  19. Critical analysis of vector-borne infections in dogs: Babesia vogeli, Babesia gibsoni, Ehrlichia canis and Hepatozoon canis in Punjab, India.

    PubMed

    Singla, Lachhman Das; Sumbria, Deepak; Mandhotra, Ajay; Bal, M S; Kaur, Paramjit

    2016-12-01

    There are few published studies on various vector borne diseases of dogs in India and most depict clinical infection in dogs, diagnosed by observation of the haemopathogens in stained blood smears. This study provides the first report regarding molecular confirmation and ancestral relationship analysis of blood smears positive cases of assorted haemopathogens in Punjab province of India. On blood smear examination, haemopathogens were observed in 124 out of 778 (15.95%, 95% CI: 13.53- 18.68) blood smears. Further polymerase chain reactions (PCR) was used on bloods smear positive cases to validate the results. Out of 778 blood samples, Babesia gibsoni was most common parasite infecting dogs (15.04%, 95% CI: 12.7-17.72), followed by Ehrlichia canis (0.39%, 95% CI: 0.0-1.13), infection of Babesia vogeli and Hepatozoon canis was same (0.26%, 95% CI: 0.0-0.9). Among various risk factors studied (age, sex, season), prevalence of infection was non-significantly higher in 1-2 year of age group (19.88%, 95% CI: 14.45-26.71), regarding sex same prevalence was recorded (15.94%), and chances of infection was highest in pre-monsoon i.e. summer (18.26%, 95% CI: 14.49-22.76). Phylogenetic analysis revealed ancestral background of Ludhiana isolates of B. vogeli, B. gibsoni, H. canis, and E. canis with the isolates of Philippines, Mongolia and Tunisia.

  20. The babesia bovis hap2 gene is not required for blood stage replication, but expressed upon in vitro sexual stage induction

    USDA-ARS?s Scientific Manuscript database

    Babesia bovis, is a tick borne apicomplexan parasite responsible for important cattle losses globally. Babesia parasites have a complex life cycle including asexual replication in the mammalian host and sexual reproduction in the tick vector. Novel control strategies aimed at limiting transmission o...

  1. Detection of Babesia canis rossi, B. canis vogeli, and Hepatozoon canis in Dogs in a Village of Eastern Sudan by Using a Screening PCR and Sequencing Methodologies

    PubMed Central

    Oyamada, Maremichi; Davoust, Bernard; Boni, Mickaël; Dereure, Jacques; Bucheton, Bruno; Hammad, Awad; Itamoto, Kazuhito; Okuda, Masaru; Inokuma, Hisashi

    2005-01-01

    Babesia and Hepatozoon infections of dogs in a village of eastern Sudan were analyzed by using a single PCR and sequencing. Among 78 dogs, 5 were infected with Babesia canis rossi and 2 others were infected with B. canis vogeli. Thirty-three dogs were positive for Hepatozoon. Hepatozoon canis was detected by sequence analysis. PMID:16275954

  2. Detection of Babesia canis rossi, B. canis vogeli, and Hepatozoon canis in dogs in a village of eastern Sudan by using a screening PCR and sequencing methodologies.

    PubMed

    Oyamada, Maremichi; Davoust, Bernard; Boni, Mickaël; Dereure, Jacques; Bucheton, Bruno; Hammad, Awad; Itamoto, Kazuhito; Okuda, Masaru; Inokuma, Hisashi

    2005-11-01

    Babesia and Hepatozoon infections of dogs in a village of eastern Sudan were analyzed by using a single PCR and sequencing. Among 78 dogs, 5 were infected with Babesia canis rossi and 2 others were infected with B. canis vogeli. Thirty-three dogs were positive for Hepatozoon. Hepatozoon canis was detected by sequence analysis.

  3. Babesia bovis expresses Bbo-6cys-E, a member of a novel gene family that is homologous to the 6-cys family of Plasmodium

    USDA-ARS?s Scientific Manuscript database

    A novel Babesia bovis gene family encoding proteins with similarities to the Plasmodium 6cys protein family was identified by TBLASTN searches of the Babesia bovis genome using the sequence of the P. falciparum PFS230 protein as query, and was termed Bbo-6cys gene family. The Bbo-cys6 gene family co...

  4. Immunomolecular characterization of MIC-1, a novel antigen in babesia bigemina, which contains conserved and immunodominant B-cell epitopes that induce neutralizing antibodies

    USDA-ARS?s Scientific Manuscript database

    Babesia bigemina in one the most prevalent species causing bovine babesiosis around the world. Antigens involved in host cell invasion are vaccine targets for this disease but are largely unknown for this species. The invasion process of Babesia spp. into erythrocytes involves various membrane prote...

  5. The prevalence and impact of Babesia canis and Theileria sp. in free-ranging grey wolf (Canis lupus) populations in Croatia.

    PubMed

    Beck, Ana; Huber, Doroteja; Polkinghorne, Adam; Kurilj, Andrea Gudan; Benko, Valerija; Mrljak, Vladimir; Reljić, Slaven; Kusak, Josip; Reil, Irena; Beck, Relja

    2017-04-04

    Babesia spp. and Theileria spp. are important emerging causes of disease in dogs. Alongside these domesticated hosts, there is increasing recognition that these piroplasms can also be found in a range of wild animals with isolated reports describing the presence of these pathogen in foxes (Vulpes vulpes) and captive grey wolves (Canis lupus). The prevalence and impact of these infections in free-ranging populations of canids are unknown. To gain a better insight into the epidemiology and pathogenesis of piroplasm infections in free-ranging grey wolves, pathological and molecular investigations into captive and free-ranging grey wolves in Croatia were performed. The carcasses of 107 free-ranging wolves and one captive wolf were the subjects of post-mortem investigations and sampling for molecular studies. A blood sample from one live captured wolf for telemetric tracking was also used for molecular analysis. PCR amplification targeting the 18S RNA gene revealed that 21 of 108 free-ranging wolves and one captive animal were positive for Theileria/Babesia DNA. Subsequent sequencing of a fragment of the 18S RNA gene revealed that 7/22 animals were positive for Babesia canis while the other amplified sequence were found to be identical with corresponding 18S rDNA sequences of Theileria capreoli isolated from wild deer (15/22). Haematological and cytological analysis revealed the presence of signet-ring shaped or pear-shaped piroplasms in several animals with the overall parasite burden in all positive animals assessed to be very low. Pathological investigation of the captive animal revealed fatal septicemia as a likely outcome of hemolytic anaemia. There was little or no evidence of hemolytic disease consistent with babesiosis in other animals. Importantly, the presence of B. canis in free-ranging grey wolves has not been described before but has been reported in a single fox and domestic dogs only. That B. canis infections cause disease in dogs but have little impact

  6. An Invasive Vector of Zoonotic Disease Sustained by Anthropogenic Resources: The Raccoon Dog in Northern Europe

    PubMed Central

    Süld, Karmen; Valdmann, Harri; Laurimaa, Leidi; Soe, Egle; Davison, John; Saarma, Urmas

    2014-01-01

    The raccoon dog (Nyctereutes procyonoides) is an introduced species in Europe with a continually expanding range. Since the species is capable of affecting local ecosystems and is a vector for a number of severe zoonotic diseases, it is important to understand its food habits. Raccoon dog diet was studied in Estonia by examining the contents of 223 stomach samples collected during the coldest period of the year, August to March, in 2010–2012. The most frequently consumed food categories were anthropogenic plants (e.g. cereals, fruits; FO = 56.1%) and carrion (e.g. carcasses of artiodactyls and carnivores; FO = 48.4%). Carrion was also the only food category that was consumed significantly more frequently by raccoon dogs exhibiting symptoms of sarcoptic mange than by uninfected animals. Small mammals, which represent intermediate hosts for the zoonotic tapeworm Echinococcus multilocularis, were more commonly recorded in samples also containing anthropogenic plants than expected by chance. Comparison of raccoon dog and red fox (Vulpes vulpes) diet in Estonia revealed higher overlap than found elsewhere in Europe, with ‘carrion’ and ‘anthropogenic plants’ making up the bulk of both species’ diet; however, raccoon dogs were more omnivorous than red foxes. Our results suggest that while the use of most food categories reflects the phenology of natural food sources, ‘anthropogenic plants’ and ‘carrion’ provide an essential resource for raccoon dogs during the coldest period of the year, with the latter resource especially important for individuals infected with sarcoptic mange. Since both of these food categories and small mammals are often found at supplementary feeding sites for wild boar (Sus scrofa), this game management practice may facilitate high densities of mesocarnivores and promote the spread of some severe zoonotic diseases, including alveolar echinococcosis, trichinellosis, rabies and sarcoptic mange. PMID:24852942

  7. Host-Nonspecific Iron Acquisition Systems and Virulence in the Zoonotic Serovar of Vibrio vulnificus

    PubMed Central

    Pajuelo, David; Lee, Chung-Te; Roig, Francisco J.; Lemos, Manuel L.; Hor, Lien-I

    2014-01-01

    The zoonotic serovar of Vibrio vulnificus (known as biotype 2 serovar E) is the etiological agent of human and fish vibriosis. The aim of the present work was to discover the role of the vulnibactin- and hemin-dependent iron acquisition systems in the pathogenicity of this zoonotic serovar under the hypothesis that both are host-nonspecific virulence factors. To this end, we selected three genes for three outer membrane receptors (vuuA, a receptor for ferric vulnibactin, and hupA and hutR, two hemin receptors), obtained single and multiple mutants as well as complemented strains, and tested them in a series of in vitro and in vivo assays, using eels and mice as animal models. The overall results confirm that hupA and vuuA, but not hutR, are host-nonspecific virulence genes and suggest that a third undescribed host-specific plasmid-encoded system could also be used by the zoonotic serovar in fish. hupA and vuuA were expressed in the internal organs of the animals in the first 24 h of infection, suggesting that they may be needed to achieve the population size required to trigger fatal septicemia. vuuA and hupA were sequenced in strains representative of the genetic diversity of this species, and their phylogenies were reconstructed by multilocus sequence analysis of selected housekeeping and virulence genes as a reference. Given the overall results, we suggest that both genes might form part of the core genes essential not only for disease development but also for the survival of this species in its natural reservoir, the aquatic environment. PMID:24478087

  8. An invasive vector of zoonotic disease sustained by anthropogenic resources: the raccoon dog in northern Europe.

    PubMed

    Süld, Karmen; Valdmann, Harri; Laurimaa, Leidi; Soe, Egle; Davison, John; Saarma, Urmas

    2014-01-01

    The raccoon dog (Nyctereutes procyonoides) is an introduced species in Europe with a continually expanding range. Since the species is capable of affecting local ecosystems and is a vector for a number of severe zoonotic diseases, it is important to understand its food habits. Raccoon dog diet was studied in Estonia by examining the contents of 223 stomach samples collected during the coldest period of the year, August to March, in 2010-2012. The most frequently consumed food categories were anthropogenic plants (e.g. cereals, fruits; FO = 56.1%) and carrion (e.g. carcasses of artiodactyls and carnivores; FO = 48.4%). Carrion was also the only food category that was consumed significantly more frequently by raccoon dogs exhibiting symptoms of sarcoptic mange than by uninfected animals. Small mammals, which represent intermediate hosts for the zoonotic tapeworm Echinococcus multilocularis, were more commonly recorded in samples also containing anthropogenic plants than expected by chance. Comparison of raccoon dog and red fox (Vulpes vulpes) diet in Estonia revealed higher overlap than found elsewhere in Europe, with 'carrion' and 'anthropogenic plants' making up the bulk of both species' diet; however, raccoon dogs were more omnivorous than red foxes. Our results suggest that while the use of most food categories reflects the phenology of natural food sources, 'anthropogenic plants' and 'carrion' provide an essential resource for raccoon dogs during the coldest period of the year, with the latter resource especially important for individuals infected with sarcoptic mange. Since both of these food categories and small mammals are often found at supplementary feeding sites for wild boar (Sus scrofa), this game management practice may facilitate high densities of mesocarnivores and promote the spread of some severe zoonotic diseases, including alveolar echinococcosis, trichinellosis, rabies and sarcoptic mange.

  9. Detection of Zoonotic Enteropathogens in Children and Domestic Animals in a Semirural Community in Ecuador.

    PubMed

    Vasco, Karla; Graham, Jay P; Trueba, Gabriel

    2016-07-15

    Animals are important reservoirs of zoonotic enteropathogens, and transmission to humans occurs more frequently in low- and middle-income countries (LMICs), where small-scale livestock production is common. In this study, we investigated the presence of zoonotic enteropathogens in stool samples from 64 asymptomatic children and 203 domestic animals of 62 households in a semirural community in Ecuador between June and August 2014. Multilocus sequence typing (MLST) was used to assess zoonotic transmission of Campylobacter jejuni and atypical enteropathogenic Escherichia coli (aEPEC), which were the most prevalent bacterial pathogens in children and domestic animals (30.7% and 10.5%, respectively). Four sequence types (STs) of C. jejuni and four STs of aEPEC were identical between children and domestic animals. The apparent sources of human infection were chickens, dogs, guinea pigs, and rabbits for C. jejuni and pigs, dogs, and chickens for aEPEC. Other pathogens detected in children and domestic animals were Giardia lamblia (13.1%), Cryptosporidium parvum (1.1%), and Shiga toxin-producing E. coli (STEC) (2.6%). Salmonella enterica was detected in 5 dogs and Yersinia enterocolitica was identified in 1 pig. Even though we identified 7 enteric pathogens in children, we encountered evidence of active transmission between domestic animals and humans only for C. jejuni and aEPEC. We also found evidence that C. jejuni strains from chickens were more likely to be transmitted to humans than those coming from other domestic animals. Our findings demonstrate the complex nature of enteropathogen transmission between domestic animals and humans and stress the need for further studies. We found evidence that Campylobacter jejuni, Giardia, and aEPEC organisms were the most common zoonotic enteropathogens in children and domestic animals in a region close to Quito, the capital of Ecuador. Genetic analysis of the isolates suggests transmission of some genotypes of C. jejuni and a

  10. Detection of Zoonotic Enteropathogens in Children and Domestic Animals in a Semirural Community in Ecuador

    PubMed Central

    Vasco, Karla; Graham, Jay P.

    2016-01-01

    ABSTRACT Animals are important reservoirs of zoonotic enteropathogens, and transmission to humans occurs more frequently in low- and middle-income countries (LMICs), where small-scale livestock production is common. In this study, we investigated the presence of zoonotic enteropathogens in stool samples from 64 asymptomatic children and 203 domestic animals of 62 households in a semirural community in Ecuador between June and August 2014. Multilocus sequence typing (MLST) was used to assess zoonotic transmission of Campylobacter jejuni and atypical enteropathogenic Escherichia coli (aEPEC), which were the most prevalent bacterial pathogens in children and domestic animals (30.7% and 10.5%, respectively). Four sequence types (STs) of C. jejuni and four STs of aEPEC were identical between children and domestic animals. The apparent sources of human infection were chickens, dogs, guinea pigs, and rabbits for C. jejuni and pigs, dogs, and chickens for aEPEC. Other pathogens detected in children and domestic animals were Giardia lamblia (13.1%), Cryptosporidium parvum (1.1%), and Shiga toxin-producing E. coli (STEC) (2.6%). Salmonella enterica was detected in 5 dogs and Yersinia enterocolitica was identified in 1 pig. Even though we identified 7 enteric pathogens in children, we encountered evidence of active transmission between domestic animals and humans only for C. jejuni and aEPEC. We also found evidence that C. jejuni strains from chickens were more likely to be transmitted to humans than those coming from other domestic animals. Our findings demonstrate the complex nature of enteropathogen transmission between domestic animals and humans and stress the need for further studies. IMPORTANCE We found evidence that Campylobacter jejuni, Giardia, and aEPEC organisms were the most common zoonotic enteropathogens in children and domestic animals in a region close to Quito, the capital of Ecuador. Genetic analysis of the isolates suggests transmission of some genotypes

  11. Views from many worlds: unsettling categories in interdisciplinary research on endemic zoonotic diseases

    PubMed Central

    Waldman, Linda

    2017-01-01

    Interdisciplinary research on zoonotic disease has tended to focus on ‘risk’ of disease transmission as a conceptual common denominator. With reference to endemic zoonoses at the livestock–human interface, we argue for considering a broader sweep of disciplinary insights from anthropology and other social sciences in interdisciplinary dialogue, in particular cross-cultural perspectives on human–animal engagement. We consider diverse worldviews where human–animal encounters are perceived of in terms of the kinds of social relations they generate, and the notion of culture is extended to the ‘natural’ world. This has implications for how animals are valued, treated and prioritized. Thinking differently with and about animals and about species' boundaries could enable ways of addressing zoonotic diseases which have closer integration with people's own cultural norms. If we can bring this kind of knowledge into One Health debates, we find ourselves with a multiplicity of worldviews, where bounded categories such as human:animal and nature:culture cannot be assumed. This might in turn influence our scientific ways of seeing our own disciplinary cultures, and generate novel ways of understanding zoonoses and constructing solutions. This article is part of the themed issue ‘One Health for a changing world: zoonoses, ecosystems and human well-being’. PMID:28584178

  12. Road Killed Carnivores Illustrate the Status of Zoonotic Helminthes in Caspian Sea Littoral of Iran

    PubMed Central

    VAFAE ESLAHI, Aida; KIA, Eshrat Beigom; MOBEDI, Iraj; SHARIFDINI, Meysam; BADRI, Milad; MOWLAVI, Gholamreza

    2017-01-01

    Background: Carnivore carcasses on the roads can be regarded as study materials in parasitology and eco-epidemiology. Stray carnivores such as dogs and cats are known to harbor so many different pathogens like zoonotic helminthes. The current investigation, apparent the status of the helminthic parasites found in road killed carnivores from different parts of Guilan Province north of Iran. Methods: Fifty road killed carnivores including 27 stray dogs (Canis familiaris), 11 golden jackals (Canis aureus) and 12 stray cats (Felis catus) were collected from 21 locations of Guilan Province, during Apr to Nov 2015. Internal organs of the carcasses, including digestive tract, heart, kidneys, lungs, liver, skin, eyes as well as muscles were carefully inspected and sampled for helminthological investigation. Results: About 80% of the 50 carnivores, (stray dogs 77.77%, golden jackals 81.81%, and stray cats 91.66%) were found naturally infected with helminthic parasites. Dipylidum caninum, Toxocara cati, Toxocara canis, Toxascaris leonine, Ancylostoma caninum, Ancylostoma tubaeforme, Dirofilaria immitis, Dioctophyma renale, Dipylidum caninum, Echinococcus granulosus, Mesocestoides spp., Taenia hydatigena, Taenia hydatigera, Joyuxiella spp., Spirometra spp. are reported herein. Conclusion: The prevalent occurrence of zoonotic helminthes such as T. canis, T. cati, T. leonina, E. granulosus, D. immitis and D. renale in stray carnivores should be considered as a public health hazard, specifically within a vast tourism area like Guilan Province. PMID:28761483

  13. Road Killed Carnivores Illustrate the Status of Zoonotic Helminthes in Caspian Sea Littoral of Iran.

    PubMed

    Vafae Eslahi, Aida; Kia, Eshrat Beigom; Mobedi, Iraj; Sharifdini, Meysam; Badri, Milad; Mowlavi, Gholamreza

    2017-01-01

    Carnivore carcasses on the roads can be regarded as study materials in parasitology and eco-epidemiology. Stray carnivores such as dogs and cats are known to harbor so many different pathogens like zoonotic helminthes. The current investigation, apparent the status of the helminthic parasites found in road killed carnivores from different parts of Guilan Province north of Iran. Fifty road killed carnivores including 27 stray dogs ( Canis familiaris ), 11 golden jackals ( Canis aureus ) and 12 stray cats ( Felis catus ) were collected from 21 locations of Guilan Province, during Apr to Nov 2015. Internal organs of the carcasses, including digestive tract, heart, kidneys, lungs, liver, skin, eyes as well as muscles were carefully inspected and sampled for helminthological investigation. About 80% of the 50 carnivores, (stray dogs 77.77%, golden jackals 81.81%, and stray cats 91.66%) were found naturally infected with helminthic parasites. Dipylidum caninum , Toxocara cati , Toxocara canis , Toxascaris leonine , Ancylostoma caninum , Ancylostoma tubaeforme , Dirofilaria immitis , Dioctophyma renale , Dipylidum caninum , Echinococcus granulosus , Mesocestoides spp ., Taenia hydatigena, Taenia hydatigera , Joyuxiella spp. , Spirometra spp. are reported herein. The prevalent occurrence of zoonotic helminthes such as T. canis , T. cati , T. leonina , E. granulosus , D. immitis and D. renale in stray carnivores should be considered as a public health hazard, specifically within a vast tourism area like Guilan Province.

  14. Molecular Detection and Characterization of Zoonotic and Veterinary Pathogens in Ticks from Northeastern China

    PubMed Central

    Wei, Feng; Song, Mingxin; Liu, Huanhuan; Wang, Bo; Wang, Shuchao; Wang, Zedong; Ma, Hongyu; Li, Zhongyu; Zeng, Zheng; Qian, Jun; Liu, Quan

    2016-01-01

    Tick-borne diseases are considered as emerging infectious diseases in humans and animals in China. In this study, Ixodes persulcatus (n = 1699), Haemaphysalis concinna (n = 412), Haemaphysalis longicornis (n = 390), Dermacentor nuttalli (n = 253), and Dermacentor silvarum (n = 204) ticks were collected by flagging from northeastern China, and detected for infection with Anaplasma, Ehrlichia, Babesia, and Hepatozoon spp. by using nested polymerase chain reaction assays and sequencing analysis. Anaplasma phagocytophilum was detected in all tick species, i.e., I. persulcatus (9.4%), H. longicornis (1.9%), H. concinna (6.5%), D. nuttalli (1.7%), and D. silvarum (2.3%); Anaplasma bovis was detected in H. longicornis (0.3%) and H. concinna (0.2%); Ehrlichia muris was detected in I. persulcatus (2.5%) and H. concinna (0.2%); Candidatus Neoehrlichia mikurensis was only detected in I. persulcatus (0.4%). The Ehrlichia variant (GenBank access number KU921424), closely related to Ehrlichia ewingii, was found in H. longicornis (0.8%) and H. concinna (0.2%). I. persulcatus was infected with Babesia venatorum (1.2%), Babesia microti (0.6%), and Babesia divergens (0.6%). Additionally, four Babesia sequence variants (GenBank access numbers 862303–862306) were detected in I. persulcatus, H. longicornis, and H. concinna, which belonged to the clusters formed by the parasites of dogs, sheep, and cattle (B. gibsoni, B. motasi, and B. crassa). Two Hepatozoon spp. (GenBank access numbers KX016028 and KX016029) associated with hepatozoonosis in Japanese martens were found in the collected ticks (0.1–3.1%). These findings showed the genetic variability of Anaplasma, Ehrlichia, Babesia, and Hepatozoon spp. circulating in ticks in northeastern China, highlighting the necessity for further research of these tick-associated pathogens and their role in human and animal diseases. PMID:27965644

  15. Hepatitis E Virus: Foodborne, Waterborne and Zoonotic Transmission

    PubMed Central

    Yugo, Danielle M.; Meng, Xiang-Jin

    2013-01-01

    Hepatitis E virus (HEV) is responsible for epidemics and endemics of acute hepatitis in humans, mainly through waterborne, foodborne, and zoonotic transmission routes. HEV is a single-stranded, positive-sense RNA virus classified in the family Hepeviridae and encompasses four known Genotypes (1–4), at least two new putative genotypes of mammalian HEV, and one floating genus of avian HEV. Genotypes 1 and 2 HEVs only affect humans, while Genotypes 3 and 4 are zoonotic and responsible for sporadic and autochthonous infections in both humans and several other animal species worldwide. HEV has an ever-expanding host range and has been identified in numerous animal species. Swine serve as a reservoir species for HEV transmission to humans; however, it is likely that other animal species may also act as reservoirs. HEV poses an important public health concern with cases of the disease definitively linked to handling of infected pigs, consumption of raw and undercooked animal meats, and animal manure contamination of drinking or irrigation water. Infectious HEV has been identified in numerous sources of concern including animal feces, sewage water, inadequately-treated water, contaminated shellfish and produce, as well as animal meats. Many aspects of HEV pathogenesis, replication, and immunological responses remain unknown, as HEV is an extremely understudied but important human pathogen. This article reviews the current understanding of HEV transmission routes with emphasis on food and environmental sources and the prevalence of HEV in animal species with zoonotic potential in humans. PMID:24071919

  16. Mapping the zoonotic niche of Lassa fever in Africa

    PubMed Central

    Mylne, Adrian Q. N.; Pigott, David M.; Longbottom, Joshua; Shearer, Freya; Duda, Kirsten A.; Messina, Jane P.; Weiss, Daniel J.; Moyes, Catherine L.; Golding, Nick; Hay, Simon I.

    2015-01-01

    Background Lassa fever is a viral haemorrhagic illness responsible for disease outbreaks across West Africa. It is a zoonosis, with the primary reservoir species identified as the Natal multimammate mouse, Mastomys natalensis. The host is distributed across sub-Saharan Africa while the virus' range appears to be restricted to West Africa. The majority of infections result from interactions between the animal reservoir and human populations, although secondary transmission between humans can occur, particularly in hospital settings. Methods Using a species distribution model, the locations of confirmed human and animal infections with Lassa virus (LASV) were used to generate a probabilistic surface of zoonotic transmission potential across sub-Saharan Africa. Results Our results predict that 37.7 million people in 14 countries, across much of West Africa, live in areas where conditions are suitable for zoonotic transmission of LASV. Four of these countries, where at-risk populations are predicted, have yet to report any cases of Lassa fever. Conclusions These maps act as a spatial guide for future surveillance activities to better characterise the geographical distribution of the disease and understand the anthropological, virological and zoological interactions necessary for viral transmission. Combining this zoonotic niche map with detailed patient travel histories can aid differential diagnoses of febrile illnesses, enabling a more rapid response in providing care and reducing the risk of onward transmission. PMID:26085474

  17. Mapping the zoonotic niche of Lassa fever in Africa.

    PubMed

    Mylne, Adrian Q N; Pigott, David M; Longbottom, Joshua; Shearer, Freya; Duda, Kirsten A; Messina, Jane P; Weiss, Daniel J; Moyes, Catherine L; Golding, Nick; Hay, Simon I

    2015-08-01

    Lassa fever is a viral haemorrhagic illness responsible for disease outbreaks across West Africa. It is a zoonosis, with the primary reservoir species identified as the Natal multimammate mouse, Mastomys natalensis. The host is distributed across sub-Saharan Africa while the virus' range appears to be restricted to West Africa. The majority of infections result from interactions between the animal reservoir and human populations, although secondary transmission between humans can occur, particularly in hospital settings. Using a species distribution model, the locations of confirmed human and animal infections with Lassa virus (LASV) were used to generate a probabilistic surface of zoonotic transmission potential across sub-Saharan Africa. Our results predict that 37.7 million people in 14 countries, across much of West Africa, live in areas where conditions are suitable for zoonotic transmission of LASV. Four of these countries, where at-risk populations are predicted, have yet to report any cases of Lassa fever. These maps act as a spatial guide for future surveillance activities to better characterise the geographical distribution of the disease and understand the anthropological, virological and zoological interactions necessary for viral transmission. Combining this zoonotic niche map with detailed patient travel histories can aid differential diagnoses of febrile illnesses, enabling a more rapid response in providing care and reducing the risk of onward transmission. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  18. Zoonotic intestinal parasites of carnivores: A systematic review in Iran

    PubMed Central

    Sarvi, Shahabeddin; Daryani, Ahmad; Sharif, Mehdi; Rahimi, Mohammad Taghi; Kohansal, Mohammad Hasan; Mirshafiee, Siavash; Siyadatpanah, Abolghasem; Hosseini, Seyed-Abdollah; Gholami, Shirzad

    2018-01-01

    Aim: Parasitic infections, especially of the zoonotic-parasitic type, are the most important health, economic, and social problems in developing countries, including Iran. The aim of this study was to review systematically the available data on gastrointestinal parasites of carnivores in Iran and their ability to infect humans. Materials and Methods: Studies reporting intestinal parasites of carnivores were systematically collected from nine electronic English and Persian databases and Proceedings of Iranian parasitology and veterinary congresses published between 1997 and 2015. A total of 26 studies issued from 1997 to 2015 met the eligibility criteria. Results: The pooled proportion of intestinal parasites of carnivores was estimated as 80.4% (95% confidence interval=70.2-88.8%). The overall prevalence of gastrointestinal parasites in dogs, cats, foxes, and jackals were 57.89%, 90.62%, 89.17%, and 97.32%, respectively. Dipylidium caninum (20.45%), Toxocara spp. (18.81%), Taenia hydatigena (15.28%), Mesocestoides lineatus (11.83%), Echinococcus granulosus (10%), and Toxascaris leonina (8.69%) were the most frequently observed parasites. Conclusion: High prevalence rates of zoonotic intestinal parasites of carnivores particularly Echinococcus spp. and Toxocara spp. increase the risk of acquiring zoonotic infections such as cystic hydatid, alveolar cysts, and visceral or ocular larva migrants in Iranian people. Therefore, it is essential for public health centers to develop more effective control strategies to decrease infections rates in carnivores’ populations. PMID:29479158

  19. Zoonotic diseases associated with free-roaming cats.

    PubMed

    Gerhold, R W; Jessup, D A

    2013-05-01

    Free-roaming cat populations have been identified as a significant public health threat and are a source for several zoonotic diseases including rabies, toxoplasmosis, cutaneous larval migrans because of various nematode parasites, plague, tularemia and murine typhus. Several of these diseases are reported to cause mortality in humans and can cause other important health issues including abortion, blindness, pruritic skin rashes and other various symptoms. A recent case of rabies in a young girl from California that likely was transmitted by a free-roaming cat underscores that free-roaming cats can be a source of zoonotic diseases. Increased attention has been placed on trap-neuter-release (TNR) programmes as a viable tool to manage cat populations. However, some studies have shown that TNR leads to increased immigration of unneutered cats into neutered populations as well as increased kitten survival in neutered groups. These compensatory mechanisms in neutered groups leading to increased kitten survival and immigration would confound rabies vaccination campaigns and produce naïve populations of cats that can serve as source of zoonotic disease agents owing to lack of immunity. This manuscript is a review of the various diseases of free-roaming cats and the public health implications associated with the cat populations. © 2012 Blackwell Verlag GmbH.

  20. Species loss on spatial patterns and composition of zoonotic parasites

    PubMed Central

    Harris, Nyeema C.; Dunn, Robert R.

    2013-01-01

    Species loss can result in the subsequent loss of affiliate species. Though largely ignored to date, these coextinctions can pose threats to human health by altering the composition, quantity and distribution of zoonotic parasites. We simulated host extinctions from more than 1300 host–parasite associations for 29 North American carnivores to investigate changes in parasite composition and species richness. We also explored the geography of zoonotic parasite richness under three carnivore composition scenarios and examined corresponding levels of human exposure. We found that changes in parasite assemblages differed among parasite groups. Because viruses tend to be generalists, the proportion of parasites that are viruses increased as more carnivores went extinct. Coextinction of carnivore parasites is unlikely to be common, given that few specialist parasites exploit hosts of conservation concern. However, local extirpations of widespread carnivore hosts can reduce overall zoonotic richness and shift distributions of parasite-rich areas. How biodiversity influences disease risks remains the subject of debate. Our results make clear that hosts vary in their contribution to human health risks. As a consequence, so too does the loss (or gain) of particular hosts. Anticipating changes in host composition in future environments may help inform parasite conservation and disease mitigation efforts. PMID:24068356

  1. Gastrointestinal parasites of cats in Brazil: frequency and zoonotic risk.

    PubMed

    Monteiro, Maria Fernanda Melo; Ramos, Rafael Antonio Nascimento; Calado, Andréa Maria Campos; Lima, Victor Fernando Santana; Ramos, Ingrid Carla do Nascimento; Tenório, Rodrigo Ferreira Lima; Faustino, Maria Aparecida da Glória; Alves, Leucio Câmara

    2016-04-12

    Gastrointestinal helminths are considered to be the most common parasites affecting cats worldwide. Correct diagnosis of these parasites in animals living in urban areas is pivotal, especially considering the zoonotic potential of some species (e.g. Ancylostoma sp. and Toxocara sp.). In this study, a copromicroscopic survey was conducted using fecal samples (n = 173) from domestic cats living in the northeastern region of Brazil. Samples were examined through the FLOTAC technique and the overall results showed positivity of 65.31% (113/173) among the samples analyzed. Coinfections were observed in 46.01% (52/113) of the positive samples. The most common parasites detected were Ancylostoma sp., Toxocara cati, Strongyloides stercoralis, Trichuris sp., Dipylidium caninum and Cystoisospora sp. From an epidemiological point of view, these findings are important, especially considering that zoonotic parasites (e.g. Ancylostoma sp. and Toxocara sp.) were the nematodes most frequently diagnosed in this study. Therefore, the human population living in close contact with cats is at risk of infection caused by the zoonotic helminths of these animals. In addition, for the first time the FLOTAC has been used to diagnosing gastrointestinal parasites of cats in Brazil.

  2. Lobomycosis: risk of zoonotic transmission from dolphins to humans.

    PubMed

    Reif, John S; Schaefer, Adam M; Bossart, Gregory D

    2013-10-01

    Lobomycosis, a fungal disease of the skin and subcutaneous tissues caused by Lacazia loboi, is sometimes referred to as a zoonotic disease because it affects only specific delphinidae and humans; however, the evidence that it can be transferred directly to humans from dolphins is weak. Dolphins have also been postulated to be responsible for an apparent geographic expansion of the disease in humans. Morphological and molecular differences between the human and dolphin organisms, differences in geographic distribution of the diseases between dolphins and humans, the existence of only a single documented case of presumed zoonotic transmission, and anecdotal evidence of lack of transmission to humans following accidental inoculation of tissue from infected dolphins do not support the hypothesis that dolphins infected with L. loboi represent a zoonotic hazard for humans. In addition, the lack of human cases in communities adjacent to coastal estuaries with a high prevalence of lobomycosis in dolphins, such as the Indian River Lagoon in Florida (IRL), suggests that direct or indirect transmission of L. loboi from dolphins to humans occurs rarely, if at all. Nonetheless, attention to personal hygiene and general principals of infection control are always appropriate when handling tissues from an animal with a presumptive diagnosis of a mycotic or fungal disease.

  3. Molecular detection of Babesia rossi and Hepatozoon sp. in African wild dogs (Lycaon pictus) in South Africa.

    PubMed

    Matjila, Paul Tshepo; Leisewitz, Andrew L; Jongejan, Frans; Bertschinger, Henk J; Penzhorn, Barend L

    2008-10-20

    Blood specimens from wild dogs (n=301) were obtained from De Wildt Cheetah and Wildlife Centre (Pretoria) and five game reserves (4 in the North-West Province and 1 in Limpopo Province), South Africa. Specimens were screened for Babesia, Theileria, Hepatozoon and Ehrlichia/Anaplasma species using PCR and Reverse Line Blot (RLB) assays. Positive results were obtained in 18 (6%) wild dogs. Sixteen specimens were found positive for Babesia rossi and two dogs were Hepatozoon sp. positive. It appears that these tick-borne pathogens are not widely distributed in wild dog populations.

  4. Development of multiplex polymerase chain reaction for detection of Ehrlichia canis, Babesia spp and Hepatozoon canis in canine blood.

    PubMed

    Kledmanee, Kan; Suwanpakdee, Sarin; Krajangwong, Sakranmanee; Chatsiriwech, Jarin; Suksai, Parut; Suwannachat, Pongpun; Sariya, Ladawan; Buddhirongawatr, Ruangrat; Charoonrut, Phingphol; Chaichoun, Kridsada

    2009-01-01

    A multiplex polymerase chain reaction (PCR) has been developed for simultaneous detection of canine blood parasites, Ehrlichia canis, Babesia spp and Hepatozoon canis, from blood samples in a single reaction. The multiplex PCR primers were specific to E. canis VirB9, Babesia spp 16S rRNA and H. canis 16S rRNA genes. Specificity of the amplicons was confirmed by DNA sequencing. The assay was evaluated using normal canine and infected blood samples, which were detected by microscopic examination. This multiplex PCR offers scope for simultaneous detection of three important canine blood parasites and should be valuable in monitoring parasite infections in dogs and ticks.

  5. [Ultrastructure and cytochemistry of the pellicle and apical complexes of the kinete of Babesia bigemina and Babesia ovis in the hemolymph and oavry of the tick].

    PubMed

    Weber, G

    1980-02-01

    The term kinete is used in this paper for the cigar-shaped, motile development stages (VERMICULE") OF Babesia occurring intra- and extracellularly in hemolymph and overy (including oocytes) of vectors, hard ticks (Ixodoidea). The structure of, and cytochemical activities of hydrolases (acid phosphatase, nonspecific esterase) in the pellicle and the apical complex was studied at the fine-structural level in kinetes of Babesia bigemina Smith & Kilborne, in hemolympho of female Boophilus microplus Canestrini. The cytochemistry of acid hydrolases was studied also in kinetes of Babesia ovis (Babès) Starcovici, in hemolymph and ovary of Rhipicephalus bursa Canestrini & Fanzago. The pellicle of the B. bigemina kinetes is composted of 3 membranes (pellicular complex): an outer membrane, approximately 8 nm thick (the plasmalemma) and 2 innder ones, each approximately nm thick, lying closely together. The outer membrane appears to be covered by a structureless coat, 3 nm thick. The space between the inner double membrane and the plasmalemma is 7.5 nm. The whole pellicular complex is 30 nm in diameter. The 2 inner pellicular membranes appear to be derived from the endoplasmic reticulum (ER) for the following reasons: (a) a layer of hydrolase-active material is enclosed by these membranes; (b) in the spheroid parasite stages which transform from kinetes inside hemocytes, the inner double membrane is apparently replaced by an ER cisterna; (c) the thickness of each of the inner pellicular membranes is approximately the same as that of the ER membrane. There are circular openings in the pellicular double membrane with average diameters of 100 nm; despite some similarity to micropores, they have a specific structure. The term Intrapellikularfenster (IPF) (intrapellicular windows) or pseudomicropores is proposed for these pellicular differentiations. The margin of an IPF is formed by the 2 inner membranes folding into each other; cytoplasmic, electron-dense material is accumulated

  6. Comparative Bioinformatics Analysis of Transcription Factor Genes Indicates Conservation of Key Regulatory Domains among Babesia bovis, Babesia microti, and Theileria equi.

    PubMed

    Alzan, Heba F; Knowles, Donald P; Suarez, Carlos E

    2016-11-01

    Apicomplexa tick-borne hemoparasites, including Babesia bovis, Babesia microti, and Theileria equi are responsible for bovine and human babesiosis and equine theileriosis, respectively. These parasites of vast medical, epidemiological, and economic impact have complex life cycles in their vertebrate and tick hosts. Large gaps in knowledge concerning the mechanisms used by these parasites for gene regulation remain. Regulatory genes coding for DNA binding proteins such as members of the Api-AP2, HMG, and Myb families are known to play crucial roles as transcription factors. Although the repertoire of Api-AP2 has been defined and a HMG gene was previously identified in the B. bovis genome, these regulatory genes have not been described in detail in B. microti and T. equi. In this study, comparative bioinformatics was used to: (i) identify and map genes encoding for these transcription factors among three parasites' genomes; (ii) identify a previously unreported HMG gene in B. microti; (iii) define a repertoire of eight conserved Myb genes; and (iv) identify AP2 correlates among B. bovis and the better-studied Plasmodium parasites. Searching the available transcriptome of B. bovis defined patterns of transcription of these three gene families in B. bovis erythrocyte stage parasites. Sequence comparisons show conservation of functional domains and general architecture in the AP2, Myb, and HMG proteins, which may be significant for the regulation of common critical parasite life cycle transitions in B. bovis, B. microti, and T. equi. A detailed understanding of the role of gene families encoding DNA binding proteins will provide new tools for unraveling regulatory mechanisms involved in B. bovis, B. microti, and T. equi life cycles and environmental adaptive responses and potentially contributes to the development of novel convergent strategies for improved control of babesiosis and equine piroplasmosis.

  7. Babesia canis and other tick-borne infections in dogs in Central Poland.

    PubMed

    Welc-Faleciak, Renata; Rodo, Anna; Siński, Edward; Bajer, Anna

    2009-12-23

    Vector-borne infections constitute increasing health problem in dogs worldwide, including sled dogs, dramatically decreasing the fitness of working dogs and even leading to death. In the period 2006-2008 eighty-two blood samples were collected from eight sled dog kennels in Central Poland. The prevalence of four vector-borne infections (Babesia canis, Bartonella sp., Anaplasma/Ehrlichia and Borrelia burgdorferi) was estimated in 82 sled dogs using PCR and nested PCR for diagnosis and the same methods were used to identify the vector-borne pathogens in 26 dogs presenting at veterinary clinics with symptoms of vector-borne diseases. None of four studied vector-borne pathogens was detected in samples originating from veterinary clinics. Among the remaining 82 dogs B. canis infections were confirmed in three dogs undergoing treatment for babesiosis. The DNA of tick-borne pathogens was also found among 22 (27.8%) of the 79 apparently healthy dogs, including 20 cases of B. canis infection (25.3%), one case of B. burgdorferi s.l. infection and one case of Anaplasma phagocytophilum infection. No evidence of Bartonella spp. and Ehrlichia canis infections were found in this set of samples. Sequencing of a Babesia fragment of 18S rDNA amplified from acute (n=5) and asymptomatic (n=5) cases revealed that all isolates were identical to the Babesia canis canis sequence, originally isolated from Dermacentor reticulatus ticks in Poland. A range of factors was shown to affect the distribution of babesiosis in sled dogs. The data are also discussed in respect to the health risk factors generated by asymptomatic B. canis infections and the efficiency of chemoprophylaxis measures taken by sled dog owners.

  8. Clofazimine Inhibits the Growth of Babesia and Theileria Parasites In Vitro and In Vivo.

    PubMed

    Tuvshintulga, Bumduuren; AbouLaila, Mahmoud; Davaasuren, Batdorj; Ishiyama, Aki; Sivakumar, Thillaiampalam; Yokoyama, Naoaki; Iwatsuki, Masato; Otoguro, Kazuhiko; Ōmura, Satoshi; Igarashi, Ikuo

    2016-05-01

    The present study evaluated the growth-inhibitory effects of clofazimine, currently used for treating leprosy, against Babesia bovis, B. bigemina, B. caballi, and Theileria equi in in vitro culture and against Babesia microti in mice. The 50% inhibitory concentrations (IC50s) of clofazimine against the in vitro growth of B. bovis, B. bigemina, B. caballi, and T. equi were 4.5, 3, 4.3, and 0.29 μM, respectively. In mice infected with B. microti, treatment with 20 mg/kg of body weight of clofazimine administered orally resulted in a significantly lower peak parasitemia (5.3%) than that in the control group (45.9%), which was comparable to the subcutaneous administration of 25 mg/kg diminazene aceturate, the most widely used treatment for animal piroplasmosis. Although slight anemia was observed in both clofazimine- and diminazene aceturate-treated infected mice, the level and duration of anemia were lower and shorter, respectively, than those in untreated infected mice. Using blood transfusions and PCR, we also examined whether clofazimine completely killed B. microti On day 40 postinfection, when blood analysis was performed, parasites were not found in blood smears; however, the DNA of B. microti was detected in the blood of clofazimine-treated animals and in several tissues of clofazimine- and diminazene aceturate-treated mice by PCR. The growth of parasites was observed in mice after blood transfusions from clofazimine-treated mice. In conclusion, clofazimine showed excellent inhibitory effects against Babesia and Theileria in vitro and in vivo, and further study on clofazimine is required for the future development of a novel chemotherapy with high efficacy and safety against animal piroplasmosis and, possibly, human babesiosis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Genetic characterization of Babesia and Theileria parasites in water buffaloes in Sri Lanka.

    PubMed

    Sivakumar, Thillaiampalam; Tattiyapong, Muncharee; Fukushi, Shintaro; Hayashida, Kyoko; Kothalawala, Hemal; Silva, Seekkuge Susil Priyantha; Vimalakumar, Singarayar Caniciyas; Kanagaratnam, Ratnam; Meewewa, Asela Sanjeewa; Suthaharan, Kalpana; Puvirajan, Thamotharampillai; de Silva, Weligodage Kumarawansa; Igarashi, Ikuo; Yokoyama, Naoaki

    2014-02-24

    Water buffaloes are thought to be the reservoir hosts for several hemoprotozoan parasites that infect cattle. In the present study, we surveyed Sri Lankan bred water buffaloes for infections with Babesia bovis, Babesia bigemina, Theileria annulata, and Theileria orientalis using parasite-specific PCR assays. When 320 blood-derived DNA samples from water buffaloes reared in three different districts (Polonnaruwa, Mannar, and Mullaitivu) of Sri Lanka were PCR screened, B. bovis, B. bigemina, and T. orientalis were detected. While T. orientalis was the predominant parasite (82.5%), low PCR-positive rates were observed for B. bovis (1.9%) and B. bigemina (1.6%). Amplicons of the gene sequences of the Rhoptry Associated Protein-1 (RAP-1) of B. bovis, the Apical Membrane Antigen-1 (AMA-1) of B. bigemina, and the Major Piroplasm Surface Protein (MPSP) of T. orientalis were compared with those characterized previously in Sri Lankan cattle. While the B. bigemina AMA-1 sequences from water buffaloes shared high identity values with those from cattle, B. bovis RAP-1 sequences from water buffaloes diverged genetically from those of cattle. For T. orientalis, none of the MPSP sequence types reported previously in Sri Lankan cattle (types 1, 3, 5, and 7) were detected in the water buffaloes, and the MPSP sequences analyzed in the present study belonged to types N1 or N2. In summary, in addition to reporting the first PCR-based survey of Babesia and Theileria parasites in water buffaloes in Sri Lanka, the present study found that the predominant variants of water buffalo-derived B. bovis RAP-1 and T. orientalis MPSP sequences were different from those previously described from cattle in this country. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Clofazimine Inhibits the Growth of Babesia and Theileria Parasites In Vitro and In Vivo

    PubMed Central

    Tuvshintulga, Bumduuren; AbouLaila, Mahmoud; Davaasuren, Batdorj; Ishiyama, Aki; Sivakumar, Thillaiampalam; Yokoyama, Naoaki; Iwatsuki, Masato; Otoguro, Kazuhiko; Ōmura, Satoshi

    2016-01-01

    The present study evaluated the growth-inhibitory effects of clofazimine, currently used for treating leprosy, against Babesia bovis, B. bigemina, B. caballi, and Theileria equi in in vitro culture and against Babesia microti in mice. The 50% inhibitory concentrations (IC50s) of clofazimine against the in vitro growth of B. bovis, B. bigemina, B. caballi, and T. equi were 4.5, 3, 4.3, and 0.29 μM, respectively. In mice infected with B. microti, treatment with 20 mg/kg of body weight of clofazimine administered orally resulted in a significantly lower peak parasitemia (5.3%) than that in the control group (45.9%), which was comparable to the subcutaneous administration of 25 mg/kg diminazene aceturate, the most widely used treatment for animal piroplasmosis. Although slight anemia was observed in both clofazimine- and diminazene aceturate-treated infected mice, the level and duration of anemia were lower and shorter, respectively, than those in untreated infected mice. Using blood transfusions and PCR, we also examined whether clofazimine completely killed B. microti. On day 40 postinfection, when blood analysis was performed, parasites were not found in blood smears; however, the DNA of B. microti was detected in the blood of clofazimine-treated animals and in several tissues of clofazimine- and diminazene aceturate-treated mice by PCR. The growth of parasites was observed in mice after blood transfusions from clofazimine-treated mice. In conclusion, clofazimine showed excellent inhibitory effects against Babesia and Theileria in vitro and in vivo, and further study on clofazimine is required for the future development of a novel chemotherapy with high efficacy and safety against animal piroplasmosis and, possibly, human babesiosis. PMID:26883713

  11. Molecular detection of Theileria, Babesia, and Hepatozoon spp. in ixodid ticks from Palestine.

    PubMed

    Azmi, Kifaya; Ereqat, Suheir; Nasereddin, Abedelmajeed; Al-Jawabreh, Amer; Baneth, Gad; Abdeen, Ziad

    2016-07-01

    Ixodid ticks transmit various infectious agents that cause disease in humans and livestock worldwide. A cross-sectional survey on the presence of protozoan pathogens in ticks was carried out to assess the impact of tick-borne protozoa on domestic animals in Palestine. Ticks were collected from herds with sheep, goats and dogs in different geographic districts and their species were determined using morphological keys. The presence of piroplasms and Hepatozoon spp. was determined by PCR amplification of a 460-540bp fragment of the 18S rRNA gene followed by RFLP or DNA sequencing. A PCR-RFLP method based on the 18S rRNA was used in order to detect and to identify Hepatozoon, Babesia and Theileria spp. A total of 516 ticks were collected from animals in six Palestinian localities. Five tick species were found: Rhipicephalus sanguineus sensu lato, Rhipicephalus turanicus, Rhipicephalus bursa, Haemaphysalis parva and Haemaphysalis adleri. PCR-based analyses of the ticks revealed Theileria ovis (5.4%), Hepatozoon canis (4.3%), Babesia ovis (0.6%), and Babesia vogeli (0.4%). Theileria ovis was significantly associated with ticks from sheep and with R. turanicus ticks (p<0.01). H. canis was detected only in R. sanguineus s.l. and was significantly associated with ticks from dogs (p<0.01). To our knowledge, this is the first report describing the presence of these pathogens in ticks collected from Palestine. Communicating these findings with health and veterinary professionals will increase their awareness, and contribute to improved diagnosis and treatment of tick-borne diseases. Copyright © 2016. Published by Elsevier GmbH.

  12. Tick vitellogenin receptor reveals critical role in oocyte development and transovarial transmission of Babesia parasite.

    PubMed

    Boldbaatar, Damdinsuren; Battsetseg, Badgar; Matsuo, Tomohide; Hatta, Takeshi; Umemiya-Shirafuji, Rika; Xuan, Xuenan; Fujisaki, Kozo

    2008-08-01

    A cDNA encoding the vitellogenin receptor of the ixodid tick, Haemaphysalis longicornis Neumann (HlVgR) was cloned and characterized. The full-length cDNA is 5631 bp, including an intact ORF encoding an expected protein with 1782 amino acids. The deduced amino acid sequence of the HlVgR cDNA revealed two ligand-binding domains with four class A cysteine-rich repeats in the first domain and eight in the second domain similar to those of insect VgRs. The immunoblot analysis detected approximately 197 kDa protein in both tick ovary and egg. The developmental expression profile demonstrated that HlVgR mRNA exists throughout the ovarian development, and the transcriptional level is especially high in the previtellogenic period. Immuno electron microscopy analysis demonstrated that the localization of HlVgR is detected on the external surface of oocyte plasma membrane. RNAi showed that eggs of HlVgR dsRNA-injected adult ticks had not developed into fully mature oocytes and laid abnormal eggs. The Babesia parasite DNA was not detected in the eggs of HlVgR dsRNA-injected tick that fed on Babesia gibsoni infected dog, whereas it was detected in the eggs of PBS-injected ticks and noninjected ticks. Expression of HlVgR was increased by the vitellogenic hormone 20-hydroxyecdysone. These results indicate that HlVgR, which is produced by the developing oocytes, is essential for Vg uptake, egg development in the H. longicornis tick, and transovarial transmission of Babesia parasites.

  13. Distribution patterns of Babesia gibsoni infection in hunting dogs from nine Japanese islands.

    PubMed

    El-Dakhly, Khaled Mohamed; Goto, Minami; Noishiki, Kaori; El-Nahass, El-Shaymaa; Sakai, Hiroki; Yanai, Tokuma; Takashima, Yasuhiro

    2015-04-01

    Canine babesiosis constitutes a major global veterinary medical problem caused by tick-borne hemoparasites Babesia gibsoni and Babesia canis. Babesia gibsoni induces more severe clinical signs and is mainly transmitted by the ixodid Haemaphysalis longicornis. In Japan, B. gibsoni is primarily found in the western districts, with few records in the eastern parts. The aim of the current investigation was to evaluate distribution patterns of B. gibsoni infection in 9 Japanese islands and peninsulas using direct microscopy and PCR. Therefore, 196 hunting dogs were randomly sampled during the period from March to September 2011. Ages and sexes of dogs were identified. Direct microscopy of Giemsa-stained blood smear revealed pear-shaped piroplasms of B. gibsoni in 3 (1.6%) dogs. PCR was done initially with the universal primer set (B18S-F and B18S-R) amplifying the 1,665-bp portion of the 18S rRNA gene, followed by the specific primer set (Bg18F1 and Bg18R2) amplifying 2,363-bp fragments of the same gene. Accordingly, 84 (42.9%) and 8 (4.1%) dogs were positive, respectively. The current investigation shows that canine babesiosis was recorded in all islands except for Sado Island, Atsumi Peninsula, and Tanegashima Island. The highest infection rate was detected in the main island of Okinawa, while the lowest was on Ishigaki Island. Both sexes were non-significantly infected. However, the diversity of infection in islands was significantly different (P < 0.05). Although B. gibsoni has been previously found in western and eastern Japan, the present work highlights the prevalence of infection in many Japanese districts, including islands and peninsulas, giving realistic data that can facilitate treatment and control.

  14. Validate or falsify: Lessons learned from a microscopy method claimed to be useful for detecting Borrelia and Babesia organisms in human blood.

    PubMed

    Aase, Audun; Hajdusek, Ondrej; Øines, Øivind; Quarsten, Hanne; Wilhelmsson, Peter; Herstad, Tove K; Kjelland, Vivian; Sima, Radek; Jalovecka, Marie; Lindgren, Per-Eric; Aaberge, Ingeborg S

    2016-01-01

    A modified microscopy protocol (the LM-method) was used to demonstrate what was interpreted as Borrelia spirochetes and later also Babesia sp., in peripheral blood from patients. The method gained much publicity, but was not validated prior to publication, which became the purpose of this study using appropriate scientific methodology, including a control group. Blood from 21 patients previously interpreted as positive for Borrelia and/or Babesia infection by the LM-method and 41 healthy controls without known history of tick bite were collected, blinded and analysed for these pathogens by microscopy in two laboratories by the LM-method and conventional method, respectively, by PCR methods in five laboratories and by serology in one laboratory. Microscopy by the LM-method identified structures claimed to be Borrelia- and/or Babesia in 66% of the blood samples of the patient group and in 85% in the healthy control group. Microscopy by the conventional method for Babesia only did not identify Babesia in any samples. PCR analysis detected Borrelia DNA in one sample of the patient group and in eight samples of the control group; whereas Babesia DNA was not detected in any of the blood samples using molecular methods. The structures interpreted as Borrelia and Babesia by the LM-method could not be verified by PCR. The method was, thus, falsified. This study underlines the importance of doing proper test validation before new or modified assays are introduced.

  15. Predicting Zoonotic Risk of Influenza A Viruses from Host Tropism Protein Signature Using Random Forest

    PubMed Central

    Eng, Christine L. P.; Tong, Joo Chuan; Tan, Tin Wee

    2017-01-01

    Influenza A viruses remain a significant health problem, especially when a novel subtype emerges from the avian population to cause severe outbreaks in humans. Zoonotic viruses arise from the animal population as a result of mutations and reassortments, giving rise to novel strains with the capability to evade the host species barrier and cause human infections. Despite progress in understanding interspecies transmission of influenza viruses, we are no closer to predicting zoonotic strains that can lead to an outbreak. We have previously discovered distinct host tropism protein signatures of avian, human and zoonotic influenza strains obtained from host tropism predictions on individual protein sequences. Here, we apply machine learning approaches on the signatures to build a computational model capable of predicting zoonotic strains. The zoonotic strain prediction model can classify avian, human or zoonotic strains with high accuracy, as well as providing an estimated zoonotic risk. This would therefore allow us to quickly determine if an influenza virus strain has the potential to be zoonotic using only protein sequences. The swift identification of potential zoonotic strains in the animal population using the zoonotic strain prediction model could provide us with an early indication of an imminent influenza outbreak. PMID:28587080

  16. Predicting Zoonotic Risk of Influenza A Viruses from Host Tropism Protein Signature Using Random Forest.

    PubMed

    Eng, Christine L P; Tong, Joo Chuan; Tan, Tin Wee

    2017-05-25

    Influenza A viruses remain a significant health problem, especially when a novel subtype emerges from the avian population to cause severe outbreaks in humans. Zoonotic viruses arise from the animal population as a result of mutations and reassortments, giving rise to novel strains with the capability to evade the host species barrier and cause human infections. Despite progress in understanding interspecies transmission of influenza viruses, we are no closer to predicting zoonotic strains that can lead to an outbreak. We have previously discovered distinct host tropism protein signatures of avian, human and zoonotic influenza strains obtained from host tropism predictions on individual protein sequences. Here, we apply machine learning approaches on the signatures to build a computational model capable of predicting zoonotic strains. The zoonotic strain prediction model can classify avian, human or zoonotic strains with high accuracy, as well as providing an estimated zoonotic risk. This would therefore allow us to quickly determine if an influenza virus strain has the potential to be zoonotic using only protein sequences. The swift identification of potential zoonotic strains in the animal population using the zoonotic strain prediction model could provide us with an early indication of an imminent influenza outbreak.

  17. Molecular and Parasitological Survey of Bovine Piroplasms in the Black Sea Region, Including the First Report of Babesiosis Associated with Babesia divergens in Turkey.

    PubMed

    Aktas, M; Ozubek, S

    2015-11-01

    Clinical cases of babesiosis were evaluated, and the frequency of bovine Babesia and Theileria parasites was determined in cattle. Blood samples and thin blood smears were collected from 23 cattle exhibiting clinical signs of babesiosis. In addition, tick and blood samples were collected from 100 apparently healthy cattle cograzing from the same area. Egg masses obtained from fully engorged female ticks were included. DNA isolated from blood and tick samples was screened for Babesia and Theileria by reverse line blot assay. Piroplasms compatible with Babesia spp. were observed microscopically for symptomatic cattle as circular, oval, elongated, or pear-shaped bodies. Parasitemia ranged from 0.08 to 0.9% for Babesia bovis, 2.5 to 15.4% for Babesia bigemina, and 7.4% for Babesia divergens. Reverse line blot showed positivity in 13 (13%) of the sampled clinically normal cattle and revealed the presence of three Babesia species. Babesia bovis was the most prevalent (9/100, 9%), followed by Babesia occultans (3/100, 3%) and B. bigemina (1/100, 1%). One animal infected with B. bigemina was also infected with B. bovis. The single animal infected with B. divergens showed symptoms of babesiosis. Ticks were identified as Rhipicephalus annulatus, Rhipicephalus turanicus, and Ixodes ricinus. One female R. annulatus and its egg mass were infected with B. bigemina. Neither Theileria annulata nor Theileria buffeli/orientalis infections were observed in cattle or ticks. This is the first report of clinical babesiosis caused by B. divergens in cattle from Turkey. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Molecular analysis of the rRNA genes of Babesia spp and Ehrlichia canis detected in dogs from RibeirÃo Preto, Brazil

    PubMed Central

    Oliveira, L.P.; Cardozo, G.P.; Santos, E.V.; Mansur, M.A.B.; Donini, I.A.N.; Zissou, V.G.; Roberto, P.G.; Marins, M.

    2009-01-01

    The partial DNA sequences of the 18S rRNA gene of Babesia canis and the 16S rRNA gene of Ehrlichia canis detected in dogs from Ribeirão Preto, Brazil, were compared to sequences from other strains deposited in GenBank. The E. canis strain circulating in Ribeirão Preto is identical to other strains previously detected in the region, whereas the subspecies Babesia canis vogeli is the main Babesia strain circulating in dogs from Ribeirão Preto. PMID:24031351

  19. Sustainable control of zoonotic pathogens in wildlife: how to be fair to wild animals?

    PubMed

    Artois, M; Blancou, J; Dupeyroux, O; Gilot-Fromont, E

    2011-12-01

    Wildlife may harbour infectious pathogens that are of zoonotic concern. However, culling such reservoir populations to mitigate or control the transmission of these pathogens to humans has proved disappointingly inefficient. Alternatives are still in an experimental stage of development. They include vaccination, medication, contraception and environmental manipulation, including fencing and biosecurity measures. This review examines the general concepts involved in the control of wildlife diseases and presents relevant case studies. Since wildlife disease control inevitably involves interfering with wildlife ecology, this is a complex goal whose attempts at realisation should be supervised by a scientific organisation. Most approaches within natural ecosystems should first be carefully tested in trials that are progressively extended to a larger scale. Finally, all measures that aim to prevent infection in humans (such as personal hygiene or vaccination) or that encourage us to avoid infectious contacts with wildlife should be recommended.

  20. The Ovarian transcriptome of the cattle tick, Rhipicephalus (Boophilus) microplus, feeding upon a bovine host infected with Babesia bovis

    USDA-ARS?s Scientific Manuscript database

    Background: Cattle babesiosis is a tick-borne disease of cattle with the most severe form of the disease caused by the apicomplexan, Babesia bovis. Babesiosis is transmitted to cattle through the bite of infected cattle ticks of the genus Rhipicephalus. The most prevalent species is Rhipicephalus (B...

  1. Comparisons of the topographic characteristics and electrical charge distributions among Babesia-infected erythrocytes and extraerythrocytic merozoites using AFM

    USDA-ARS?s Scientific Manuscript database

    Tick-borne Babesia parasites are responsible for costly diseases worldwide. Improved control and prevention tools are urgently needed, but development of such tools is limited by numerous gaps in knowledge of the parasite-host relationships. We hereby used atomic force microscopy (AFM) and Kelvin pr...

  2. Assessment of theileria equi and babesia caballi infections in equine populations in Egypt by molecular, serological and hematological approaches

    USDA-ARS?s Scientific Manuscript database

    Background: Equine piroplasmosis caused by Theileria equi, Babesia caballi, or both, cause significant economic losses in the equine industry and remains uncontrolled in Egypt. Methods: T. equi and B. caballi infections were assessed in blood from 88 horses and 51 donkeys from different localities ...

  3. Molecular characterization of Babesia and Theileria species in ticks collected in the outskirt of Monte Romano, Lazio Region, Central Italy.

    PubMed

    Toma, Luciano; Di Luca, Marco; Mancini, Fabiola; Severini, Francesco; Mariano, Carmela; Nicolai, Giancarlo; Laghezza Masci, Valentina; Ciervo, Alessandra; Fausto, Anna Maria; Cacciò, Simone Mario

    2017-01-01

    In 2012-2013, an investigation was carried out in the Viterbo province, Lazio region, on ticks and tick-borne Apicomplexan protozoa of the Babesia and Theileria genera. This followed the reporting of high density of ticks by soldiers operating in a military shooting range, and the signaling by owners and local veterinary authorities of several cases of babesiosis among cattle. A total of 422 ticks were collected from 35 heads, whereas 96 ticks were collected by dragging. Ticks were identified as Rhipicephalus (Boophilus) annulatus Say (n = 373), Rhipicephalus bursa Canestrini & Fanzago (n = 63), Rhipicephalus sanguineus/turanicus (n = 32), Hyalomma marginatum Koch (n = 49) and Dermacentor marginatus Sulzer, 1776 (n = 1). A randomly selected sample of ticks (235 from animals and 36 by dragging) was analyzed using molecular methods to detect species of Babesia and Theileria. In total, 11 ticks collected from animals (4.7%) and two ticks (5.5%) collected by dragging were positive. Sequencing of PCR products of the small subunit ribosomal RNA gene revealed Babesia caballi (n = 2), Babesia bigemina (n = 3), Theileria sergenti/buffeli/orientalis (n = 7) and Theileria equi (n = 1). None of the detected species has been associated with human infection.

  4. Validation of a Competitive Enzyme-Linked Immunosorbent Assay for Detection of Babesia bigemina Antibodies in Cattle

    USDA-ARS?s Scientific Manuscript database

    A competitive ELISA (cELISA) based on a broadly conserved, species-specific, B-cell epitope within the C-terminus of Babesia bigemina rhoptry-associated protein-1a was validated for international use. Receiver Operating Characteristic (ROC) analysis revealed 16% inhibition as the threshold for a neg...

  5. Optimization of a Fluorescence-Based Assay for Large-Scale Drug Screening against Babesia and Theileria Parasites

    PubMed Central

    Terkawi, Mohamed Alaa; Youssef, Mohamed Ahmed; El Said, El Said El Shirbini; Elsayed, Gehad; El-Khodery, Sabry; El-Ashker, Maged; Elsify, Ahmed; Omar, Mosaab; Salama, Akram; Yokoyama, Naoaki; Igarashi, Ikuo

    2015-01-01

    A rapid and accurate assay for evaluating antibabesial drugs on a large scale is required for the discovery of novel chemotherapeutic agents against Babesia parasites. In the current study, we evaluated the usefulness of a fluorescence-based assay for determining the efficacies of antibabesial compounds against bovine and equine hemoparasites in in vitro cultures. Three different hematocrits (HCTs; 2.5%, 5%, and 10%) were used without daily replacement of the medium. The results of a high-throughput screening assay revealed that the best HCT was 2.5% for bovine Babesia parasites and 5% for equine Babesia and Theileria parasites. The IC50 values of diminazene aceturate obtained by fluorescence and microscopy did not differ significantly. Likewise, the IC50 values of luteolin, pyronaridine tetraphosphate, nimbolide, gedunin, and enoxacin did not differ between the two methods. In conclusion, our fluorescence-based assay uses low HCT and does not require daily replacement of culture medium, making it highly suitable for in vitro large-scale drug screening against Babesia and Theileria parasites that infect cattle and horses. PMID:25915529

  6. Optimization of a Fluorescence-Based Assay for Large-Scale Drug Screening against Babesia and Theileria Parasites.

    PubMed

    Rizk, Mohamed Abdo; El-Sayed, Shimaa Abd El-Salam; Terkawi, Mohamed Alaa; Youssef, Mohamed Ahmed; El Said, El Said El Shirbini; Elsayed, Gehad; El-Khodery, Sabry; El-Ashker, Maged; Elsify, Ahmed; Omar, Mosaab; Salama, Akram; Yokoyama, Naoaki; Igarashi, Ikuo

    2015-01-01

    A rapid and accurate assay for evaluating antibabesial drugs on a large scale is required for the discovery of novel chemotherapeutic agents against Babesia parasites. In the current study, we evaluated the usefulness of a fluorescence-based assay for determining the efficacies of antibabesial compounds against bovine and equine hemoparasites in in vitro cultures. Three different hematocrits (HCTs; 2.5%, 5%, and 10%) were used without daily replacement of the medium. The results of a high-throughput screening assay revealed that the best HCT was 2.5% for bovine Babesia parasites and 5% for equine Babesia and Theileria parasites. The IC50 values of diminazene aceturate obtained by fluorescence and microscopy did not differ significantly. Likewise, the IC50 values of luteolin, pyronaridine tetraphosphate, nimbolide, gedunin, and enoxacin did not differ between the two methods. In conclusion, our fluorescence-based assay uses low HCT and does not require daily replacement of culture medium, making it highly suitable for in vitro large-scale drug screening against Babesia and Theileria parasites that infect cattle and horses.

  7. Molecular detection and characterization of potentially new Babesia and Theileria species/variants in wild felids from Kenya.

    PubMed

    Githaka, Naftaly; Konnai, Satoru; Kariuki, Edward; Kanduma, Esther; Murata, Shiro; Ohashi, Kazuhiko

    2012-10-01

    Piroplasms frequently infect domestic and wild carnivores. At present, there is limited information on the occurrence and molecular identity of these tick-borne parasites in wild felids in Kenya. In 2009, a pair of captive lions (Panthare leo) was diagnosed with suspected babesiosis and mineral deficiency at an animal orphanage on the outskirts of Nairobi, Kenya. Blood smears indicated presences of haemoparasites in the erythrocytes, however, no further investigations were conducted to identify the infecting agent. The animals recovered completely following diet supplementation and treatment with anti-parasite drug. In this report, we extracted and detected parasite DNA from the two lions and seven other asymptomatic feline samples; two leopards (Panthera pardus) and five cheetahs (Acinonyx jubatus). Reverse line blot with probes specific for Babesia spp. of felines indicated the presence of new Babesia species or genotypes in the lions and leopards, and unknown Theileria sp. in the cheetahs. Phylogenetic analyses using partial sequences of 18S ribosomal RNA (18S rRNA) gene showed that the parasite infecting the lions belong to the Babesia canis complex, and the parasite variant detected in the leopards clusters in a clade bearing other Babesia spp. reported in wild felids from Africa. The cheetah isolates falls in the Theileria sensu stricto group. Our findings indicate the occurrence of potentially new species or genotypes of piroplams in all three feline species. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Evaluation of the growth-inhibitory effect of trifluralin analogues on in vitro cultured babesia bovis parasites

    USDA-ARS?s Scientific Manuscript database

    Babesia bovis caused bovine babesiosis is a world tick borne hemoprotozoan disease leading to fever, anemia, weight losses and ultimately death. Several babesicidal drugs that have been in use in cattle for years have proven to be partially ineffective and the development of alternative highly speci...

  9. High-Quality Draft Genome Sequence of Babesia divergens, the Etiological Agent of Cattle and Human Babesiosis

    PubMed Central

    Cuesta, Isabel; González, Luis M.; Estrada, Karel; Grande, Ricardo; Zaballos, Ángel; Lobo, Cheryl A.; Barrera, Jorge

    2014-01-01

    Babesia divergens causes significant morbidity and mortality in cattle and splenectomized or immunocompromised individuals. Here, we present a 10.7-Mb high-quality draft genome of this parasite close to chromosome resolution that will enable comparative genome analyses and synteny studies among related parasites. PMID:25395649

  10. Expression and strain variation of the novel “Small Open Reading Frame” 3 (smorf) multigene family in Babesia bovis

    USDA-ARS?s Scientific Manuscript database

    Small open reading frame (smorf) genes comprise the second largest Babesia bovis multigene family. All known 44 variant smorf genes are located in close chromosomal proximity to ves1 genes, which encode proteins that mediate cytoadhesion and contribute to immune evasion. In this study, we characte...

  11. Evidence Supporting Zoonotic Transmission of Cryptosporidium spp. in Wisconsin▿

    PubMed Central

    Feltus, Dawn C.; Giddings, Catherine W.; Schneck, Brianna L.; Monson, Timothy; Warshauer, David; McEvoy, John M.

    2006-01-01

    Cryptosporidium hominis and Cryptosporidium parvum are the primary species of Cryptosporidium that infect humans. C. hominis has an anthroponotic transmission cycle, while C. parvum is zoonotic, infecting cattle and other ruminants, in addition to humans. Most cryptosporidiosis outbreaks in the United States have been caused by C. hominis, and this species is often reported as the primary cause of cryptosporidiosis in this country. However, outbreaks account for only 10% of the overall cryptosporidiosis cases, and there are few data on the species that cause sporadic cases. The present study identified the species/genotypes and subgenotypes of Cryptosporidium in 49 cases of sporadic cryptosporidiosis in Wisconsin during the period from 2003 to 2005. The species/genotype of isolates was determined by PCR restriction fragment length polymorphism analysis of the 18S rRNA and Cryptosporidium oocyst wall protein genes. The C. parvum and C. hominis isolates were subgenotyped by sequence analysis of the GP60 gene. Forty-four of 49 isolates were identified as C. parvum, and 1 was identified as C. hominis. Of the remaining isolates, one was identified as being of the cervine genotype, one was identified as being a cervine genotype variant, and two were identified as being of a novel human genotype, previously reported as W17. Nine different subgenotypes were identified within the C. parvum species, and two of these were responsible for 60% of the cases. In this study we found that most sporadic cases of cryptosporidiosis in Wisconsin are caused by zoonotic Cryptosporidium species, indicating that zoonotic transmission could be more frequently associated with sporadic cases in the United States. PMID:17005736

  12. Evidence supporting zoonotic transmission of Cryptosporidium spp. in Wisconsin.

    PubMed

    Feltus, Dawn C; Giddings, Catherine W; Schneck, Brianna L; Monson, Timothy; Warshauer, David; McEvoy, John M

    2006-12-01

    Cryptosporidium hominis and Cryptosporidium parvum are the primary species of Cryptosporidium that infect humans. C. hominis has an anthroponotic transmission cycle, while C. parvum is zoonotic, infecting cattle and other ruminants, in addition to humans. Most cryptosporidiosis outbreaks in the United States have been caused by C. hominis, and this species is often reported as the primary cause of cryptosporidiosis in this country. However, outbreaks account for only 10% of the overall cryptosporidiosis cases, and there are few data on the species that cause sporadic cases. The present study identified the species/genotypes and subgenotypes of Cryptosporidium in 49 cases of sporadic cryptosporidiosis in Wisconsin during the period from 2003 to 2005. The species/genotype of isolates was determined by PCR restriction fragment length polymorphism analysis of the 18S rRNA and Cryptosporidium oocyst wall protein genes. The C. parvum and C. hominis isolates were subgenotyped by sequence analysis of the GP60 gene. Forty-four of 49 isolates were identified as C. parvum, and 1 was identified as C. hominis. Of the remaining isolates, one was identified as being of the cervine genotype, one was identified as being a cervine genotype variant, and two were identified as being of a novel human genotype, previously reported as W17. Nine different subgenotypes were identified within the C. parvum species, and two of these were responsible for 60% of the cases. In this study we found that most sporadic cases of cryptosporidiosis in Wisconsin are caused by zoonotic Cryptosporidium species, indicating that zoonotic transmission could be more frequently associated with sporadic cases in the United States.

  13. Seroprevalence of seven zoonotic infections in Nunavik, Quebec (Canada).

    PubMed

    Messier, V; Lévesque, B; Proulx, J-F; Rochette, L; Serhir, B; Couillard, M; Ward, B J; Libman, M D; Dewailly, E; Déry, S

    2012-03-01

    In Nunavik, common practices and food habits such as consumption of raw meat and untreated water place the Inuit at risk for contracting zoonotic diseases. The aim of this study was to determine the seroprevalence of seven zoonotic infections among the permanent residents of Nunavik. The study was conducted in the fall 2004 as part of the Nunavik Health Survey. Blood samples from adults aged 18-74 years (n = 917) were collected and analysed for the presence of antibodies against Trichinella spp., Toxocara canis, Echinococcus granulosus, Brucella spp., Coxiella burnetii, Leptospira spp. and Francisella tularensis. Information on sociodemographic characteristics, traditional activities, drinking water supply and nutrition was gathered using english/inuktitut bilingual questionnaires. The chi-squared test was used to evaluate associations between seropositivity and other measured variables. Statistically significant variables were included in a multivariate logistic regression model to control for confounding factors. Estimated seroprevalences were 8.3% for E. granulosus, 3.9% for T. canis, 5.9% for Leptospira spp. and 18.9% for F. tularensis. Seroprevalence was ≤ 1% for Trichinella spiralis, Brucella spp. and C. burnetii. For most infections, seropositivity tended to increase with age. In multivariate analyses, seroprevalence was positively (i.e. directly) associated with age and residence in the Ungava coast area for F. tularensis; age and residence in the Hudson coast area for T. canis; female gender, lower level of schooling and frequent cleaning of water reservoirs for E. granulosus. No risk factor for Leptospira spp. infection was identified. No associations were detected with regards to food habits or environmental exposures. A small but significant portion of the Nunavik population has serologic evidence of exposure to at least one of the pathogenic microorganisms investigated. Further studies are needed to better understand the mechanisms for transmission

  14. Babesia canis and tick-borne encephalitis virus (TBEV) co-infection in a sled dog.

    PubMed

    Bajer, Anna; Rodo, Anna; Bednarska, Malgorzata; Mierzejewska, Ewa; Welc-Falęciak, Renata

    2013-01-01

    Sporting dogs, including sled dogs, are particularly prone to tick-borne infection either due to training/racing in forest areas or through visits to endemic areas. The aim was to present tick-borne infections in a 6-dog racing team after a race in Estonia. On the 4th day after return to Poland, the first dog presented with babesiosis symptoms and was diagnosed and treated accordingly. Next morning, the dog showed neurological symptoms and was diagnosed with tick-borne encephalitis (TBE). Diagnosis was confirmed by a high level of IgG antibodies (922 IU/ml), detected in serum 3 months later. The second dog presented with babesiosis symptoms on the 7th day after return. Babesia DNA was extracted from blood, amplified and sequenced to answer the question of whether the dogs became infected during the race in Estonia or in Poland. Sequencing of a fragment of Babesia 18S rDNA revealed that these two isolates were identical to one another and closely related to the B. canis sequence originally isolated from the dog and Dermacentor reticulatus ticks in Poland. Thus, this is the first confirmed case of B.canis and TBEV co-infection and first confirmed case of TBE in a dog in Poland.

  15. A quantitative PCR assay for the detection and quantification of Babesia bovis and B. bigemina.

    PubMed

    Buling, A; Criado-Fornelio, A; Asenzo, G; Benitez, D; Barba-Carretero, J C; Florin-Christensen, M

    2007-06-20

    The haemoparasites Babesia bovis and Babesia bigemina affect cattle over vast areas of the tropics and temperate parts of the world. Microscopic examination of blood smears allows the detection of clinical cases of babesiosis, but this procedure lacks sensitivity when parasitaemia levels are low. In addition, differentiating between similar haemoparasites can be very difficult. Molecular diagnostic procedures can, however, overcome these problems. This paper reports a quantitative PCR (qPCR) assay involving the use of SYBR Green. Based on the amplification of a small fragment of the cytochrome b gene, this method shows both high sensitivity and specificity, and allows quantification of parasite DNA. In tests, reproducible quantitative results were obtained over the range of 0.1 ng to 0.1 fg of parasite DNA. Melting curve analysis differentiated between B. bovis and B. bigemina. To assess the performance of the new qPCR procedure it was used to screen for babesiosis in 40 cows and 80 horses. B. bigemina was detected in five cows (three of these were also found to be positive by standard PCR techniques targeting the 18S rRNA gene). In addition, B. bovis was detected in one horse and B. bigemina in two horses using the proposed method, while none was found positive by ribosomal standard PCR. The sequences of the B. bigemina cytochrome b and 18S rRNA genes were completely conserved in isolates from Spain and Argentina, while those of B. bovis showed moderate polymorphism.

  16. Molecular detection and genetic diversity of Babesia gibsoni in dogs in Bangladesh.

    PubMed

    Terao, Masashi; Akter, Shirin; Yasin, Md Golam; Nakao, Ryo; Kato, Hirotomo; Alam, Mohammad Zahangir; Katakura, Ken

    2015-04-01

    Babesia gibsoni is a tick-borne hemoprotozoan parasite of dogs that often causes fever and hemolytic illness. Detection of B. gibsoni has been predominantly reported in Asian countries, including Japan, Korea, Taiwan, Malaysia, Bangladesh and India. The present study shows the first molecular characterization of B. gibsoni detected from dogs in Bangladesh. Blood samples were collected on FTA® Elute cards from 50 stray dogs in Mymensingh District in Bangladesh. DNA eluted from the cards was subjected to nested PCR for the 18S rRNA gene of Babesia species. Approximately 800bp PCR products were detected in 15 of 50 dogs (30%). Based on restriction fragment length polymorphism (RFLP) and direct sequencing of the PCR products, all parasite isolates were identified as B. gibsoni. Furthermore, the BgTRAP (B. gibsoni thrombospondin-related adhesive protein) gene fragments were detected in 13 of 15 18S rRNA gene PCR positive blood samples. Phylogenetic analysis of the BgTRAP gene revealed that B. gibsoni parasites in Bangladesh formed a cluster, which was genetically different from other Asian B. gibsoni isolates. In addition, tandem repeat analysis of the BgTRAP gene clearly showed considerable genetic variation among Bangladeshi isolates. These results suggested that B. gibsoni parasites in a different genetic clade are endemic in dogs in Bangladesh. Further studies are required to elucidate the origin, distribution, vector and pathogenesis of B. gibsoni parasites circulating in dogs in Bangladesh. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Microscopic and Molecular Detection of Theileria (Babesia) Equi Infection in Equids of Kurdistan Province, Iran.

    PubMed

    Habibi, Gholamreza; Esmaeilnia, Kasra; Hablolvarid, Mohammad Hasan; Afshari, Asghar; Zamen, Mohsen; Bozorgi, Soghra

    2016-01-01

    Equine piroplasmosis (EP) is the cause of persistent tick-borne infection with no symptoms, but the most important problem of EP is due to the persistent carrier state. Carrier animals to Babesia (Theileria) equi (Laveran 1901) and B. caballi (Nuttall, 1910) infestation could be identified by extremely sensitive PCR-based method. The purpose of this study was to identify the causative agents of equine piroplasmosis based on molecular and microscopic assays in equids from Kurdistan Province, Iran. Thirty one horse and mule blood samples were used with history of living in Kurdistan Province of Iran. The blood specimens were utilized for T. equi and B. caballi DNA identification by PCR and Giemsa stained smears for microscopic observation. The results clearly showed the presence of B. (Theileria) equi DNA in 30 of 31 blood samples (96.77%), but the microscopic examination revealed the 3 of 31 positive Babesia like organisms in the red blood cells (9.67%). The obtained results demonstrated the presence of hidden B. (Theileria) equi infection in horses with previous habitance in Kurdistan Province of Iran. The carrier animals became a main source of infection and can transmit the disease. Therefore, hidden infection might be considered as a health threatening and limiting factor in animals used in therapeutic antisera research and production centers.

  18. Coinfection of sheep with Anaplasma, Theileria and Babesia species in the Kurdistan Region, Iraq.

    PubMed

    Renneker, S; Abdo, J; Bakheit, M A; Kullmann, B; Beyer, D; Ahmed, J; Seitzer, U

    2013-11-01

    Infections of small ruminants with Anaplasma, Theileria and Babesia species are widely distributed in the old world and are of great economic impact. In Iraq, data on disease occurrence in sheep caused by above-mentioned infectious agents are scarce. This study provides information on various haemoparasitic agents infecting sheep in the Kurdistan Region, Iraq, using molecular diagnostic tools. Altogether, 195 samples originating from three governorates in the Kurdistan Region, namely Duhok, Erbil and Sulaimaniya, were analysed. The following pathogens were identified: Anaplasma ovis (62.6%), Theileria ovis (14.35%), T. lestoquardi (7.7%), T. uilenbergi (5.6%) and Babesia ovis (1.5%). T. uilenbergi is detected for the first time in Iraq. Coinfection of sheep with different pathogens could be observed in this study, and it was found that 45 of 195 (23%) of the samples contained more than one pathogen. Even triple-positive samples were identified in 3% of the investigated animals. In conclusion, we confirm the coinfection of sheep with various haemoparasitic pathogen species in the Kurdistan Region of Iraq. Further investigations are needed to reveal the epidemiology of the diseases, the respective tick vectors, and, in the case of coinfection, pathogens' interaction and possible cross-protection. © 2013 Blackwell Verlag GmbH.

  19. Babesia vesperuginis, a neglected piroplasmid: new host and geographical records, and phylogenetic relations.

    PubMed

    Corduneanu, Alexandra; Hrazdilová, Kristýna; Sándor, Attila D; Matei, Ioana Adriana; Ionică, Angela Monica; Barti, Levente; Ciocănău, Marius-Alexandru; Măntoiu, Dragoş Ștefan; Coroiu, Ioan; Hornok, Sándor; Fuehrer, Hans-Peter; Leitner, Natascha; Bagó, Zoltán; Stefke, Katharina; Modrý, David; Mihalca, Andrei Daniel

    2017-12-06

    Babesia spp. are hemoparasites which infect the red blood cells of a large variety of mammals. In bats, the only known species of the genus is Babesia vesperuginis. However, except a few old reports, the host range and geographical distribution of this bat parasite have been poorly studied. This study aimed to investigate the presence of piroplasms in tissues of bats collected in four different countries from eastern and central Europe: Austria, Czech Republic, Hungary and Romania. A total of 461 bat carcasses (24 species) were collected between 2001 and 2016 from caves, mines and buildings. PCR was performed using specific primers targeting a portion of the 18S rDNA nuclear gene and cytochrome c oxidase subunit 1 mitochondrial gene, followed by sequencing. The results of this study show for the first time the presence of B. vesperuginis in bats in central and eastern Europe. The phylogenetic analysis of the 18S rDNA nuclear gene revealed no variability between the sequences and the phylogenetic analysis of the cox1 mitochondrial gene proved that B. vesperuginis could be divided into two subclades. Our study showed a broad geographical distribution of B. vesperuginis in European bats, reporting its presence in five new host species (M. cf. alcathoe, M. bechsteinii, M. myotis, Pi. nathusii and V. murinus) and three new countries.

  20. Ticks circulate Anaplasma, Ehrlichia, Babesia and Theileria parasites in North of Iran.

    PubMed

    Bekloo, Ahmad Jafar; Bakhshi, Hasan; Soufizadeh, Ayoub; Sedaghat, Mohammad Mehdi; Bekloo, Romina Jafar; Ramzgouyan, Maryam Roya; Chegeni, Asadollah Hosseini; Faghihi, Faezeh; Telmadarraiy, Zakkyeh

    2017-12-15

    Ticks serve as important vectors of some pathogens of medical importance all over the world and identification of their rate of infection plays an important role for further control of diseases. In the current study, we investigated on ticks collected from north of Iran where raising and caring livestock are the main task of the people in order to find evidences of infection of Babesia, Theileria, Anaplasma and Ehrlichia microbial agents. Totally, 609 hard tick species from two genera Hyalomma and Rhipicephalus including; Hy. scupense, Hy. dromedarii, Hy. rufipes, Hy. marginatum, Hy. asiaticum, Hy. anatolicum, R. bursa, R. sanguineus and R. turanicus were identified. Molecular analysis revealed the presence of Anaplasma, Ehrlichia, Babesia and Theileria microorganism agents in all collected tick species except Hy. asiaticum and R. turanicus. To the best of our knowledge, this is the first report on identification of B. occultans in Hyalomma anatolicum and B. ovis in Hyalomma sp in Iran. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Microscopic and Molecular Detection of Theileria (Babesia) Equi Infection in Equids of Kurdistan Province, Iran

    PubMed Central

    HABIBI, Gholamreza; ESMAEILNIA, Kasra; HABLOLVARID, Mohammad Hasan; AFSHARI, Asghar; ZAMEN, Mohsen; BOZORGI, Soghra

    2016-01-01

    Background: Equine piroplasmosis (EP) is the cause of persistent tick-borne infection with no symptoms, but the most important problem of EP is due to the persistent carrier state. Carrier animals to Babesia (Theileria) equi (Laveran 1901) and B. caballi (Nuttall, 1910) infestation could be identified by extremely sensitive PCR-based method. The purpose of this study was to identify the causative agents of equine piroplasmosis based on molecular and microscopic assays in equids from Kurdistan Province, Iran. Methods: Thirty one horse and mule blood samples were used with history of living in Kurdistan Province of Iran. The blood specimens were utilized for T. equi and B. caballi DNA identification by PCR and Giemsa stained smears for microscopic observation. Results: The results clearly showed the presence of B. (Theileria) equi DNA in 30 of 31 blood samples (96.77%), but the microscopic examination revealed the 3 of 31 positive Babesia like organisms in the red blood cells (9.67%). Conclusion: The obtained results demonstrated the presence of hidden B. (Theileria) equi infection in horses with previous habitance in Kurdistan Province of Iran. The carrier animals became a main source of infection and can transmit the disease. Therefore, hidden infection might be considered as a health threatening and limiting factor in animals used in therapeutic antisera research and production centers. PMID:27095973

  2. The Babesia divergens Asia Lineage Is Maintained through Enzootic Cycles between Ixodes persulcatus and Sika Deer in Hokkaido, Japan.

    PubMed

    Zamoto-Niikura, Aya; Tsuji, Masayoshi; Qiang, Wei; Morikawa, Shigeru; Hanaki, Ken-Ichi; Holman, Patricia J; Ishihara, Chiaki

    2018-04-01

    Parasites of the Babesia divergens Asia lineage, which are closely related to B. divergens in Europe and Babesia sp. strain MO1 in the United States, were recently reported in sika deer ( Cervus nippon ) in eastern Japan. To identify the tick vector(s) for this parasite, we conducted a field survey in Hokkaido, Japan, where the infection rate in sika deer is the highest in the country. A specific PCR system which detects and discriminates between lineages within B. divergens and between those lineages and Babesia venatorum showed that Ixodes persulcatus (11/822), but not sympatric Ixodes ovatus (0/595) or Haemaphysalis sp. (0/163) ticks, carried B. divergens Asia lineage. Genomic DNA was archived from salivary glands of partially engorged I. persulcatus females and three isolates of B. divergens Asia lineage were newly described. The 18S rRNA gene sequence of the isolates formed the Asia lineage cluster with those previously described in sika deer isolates. One salivary gland also contained parasites of Babesia microti U.S. lineage, which were subsequently isolated in a hamster in vivo B. venatorum (strain Etb5) was also detected in one I. persulcatus tick. The 18S rRNA sequence of Etb5 was 99.7% identical to that of B. venatorum (AY046575) and was phylogenetically positioned in a taxon composed of B. venatorum isolates from Europe, China, and Russia. The geographical distribution of I. persulcatus is consistent with that of B. divergens in sika deer in Japan. These results suggest that I. persulcatus is a principal vector for B. divergens in Japan and Eurasia, where I. persulcatus is predominantly distributed. IMPORTANCE The Babesia divergens Asia lineage of parasites closely related to B. divergens in Europe and Babesia sp. MO1 in the United States was recently reported in Cervus nippon in eastern Japan. In this study, specific PCR for the Asia lineage identified 11 positives in 822 host-seeking Ixodes persulcatus ticks, a principal vector for many tick

  3. Prevalence of ticks and tick-borne pathogens: Babesia and Borrelia species in ticks infesting cats of Great Britain.

    PubMed

    Davies, Saran; Abdullah, Swaid; Helps, Chris; Tasker, Séverine; Newbury, Hannah; Wall, Richard

    2017-09-15

    In a study of tick and tick-borne pathogen prevalence, between May and October 2016, 278 veterinary practices in Great Britain examined 1855 cats. Six-hundred and one cats were found to have attached ticks. The most frequently recorded tick species was Ixodes ricinus (57.1%), followed by Ixodes hexagonus (41.4%) and Ixodes trianguliceps (1.5%). Male cats, 4-6 years of age living in rural areas were most likely to be carrying a tick; hair length and tick treatment history had no significant association with attachment. For cats that were parasitized by ticks in large urban areas, I. hexagonus was the most frequent species recorded. Molecular analysis was possible for 541 individual tick samples, others were too damaged for analysis; Babesia spp., and Borrelia burgdorferi sensu lato were identified in 1.1% (n=6) and 1.8% (n=10) of these, respectively. Babesia spp. included Babesia vulpes sp. nov./Babesia microti-like (n=4) in I. hexagonus and Babesia venatorum (n=2) in I. ricinus. Borrelia burgdorferi s.l. species included Borrelia garinii (n=6) and Borrelia afzelii (n=4). The majority of B. burgorferi s.l. cases were found in I. ricinus, with B. afzelii in one I. hexagonus nymph. No Borrelia or Babesia spp. were present in I. trianguliceps. To determine a true prevalence for ticks on cats, practices that only submitted questionnaires from cats with ticks and practices that submitted fewer than 5 returns per week were removed; amongst those considered to have adhered strictly to the collection protocol, feline tick prevalence amongst cats that had access to the outdoors was 6.6%. These results show that ticks can be found on cats throughout Great Britain, which harbour a range of species of Babesia and B. burgdorferi s.l. and that cats, particularly in green spaces within urban areas, may form an important host for I. hexagonus, a known vector of pathogens. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Kyasanur Forest Disease (KFD): Rare Disease of Zoonotic Origin.

    PubMed

    Muraleedharan, M

    2016-09-01

    Kyasanur forest disease (KFD) is a rare tick borne zoonotic disease that causes acute febrile hemorrhagic illness in humans and monkeys especially in southern part of India. The disease is caused by highly pathogenic KFD virus (KFDV) which belongs to member of the genus Flavivirus and family Flaviviridae. The disease is transmitted to monkeys and humans by infective tick Haemaphysalisspinigera. Seasonal outbreaks are expected to occur during the months of January to June. The aim of this paper is to briefly summarize the epidemiology, mode of transmission of KFD virus, clinical findings, diagnosis, treatment, control and prevention of the disease..

  5. Climate change and zoonotic infections in the Russian Arctic

    PubMed Central

    Revich, Boris; Tokarevich, Nikolai; Parkinson, Alan J.

    2012-01-01

    Climate change in the Russian Arctic is more pronounced than in any other part of the country. Between 1955 and 2000, the annual average air temperature in the Russian North increased by 1.2°C. During the same period, the mean temperature of upper layer of permafrost increased by 3°C. Climate change in Russian Arctic increases the risks of the emergence of zoonotic infectious diseases. This review presents data on morbidity rates among people, domestic animals and wildlife in the Russian Arctic, focusing on the potential climate related emergence of such diseases as tick-borne encephalitis, tularemia, brucellosis, leptospirosis, rabies, and anthrax. PMID:22868189

  6. Zoonotic Hepatitis E Virus: Classification, Animal Reservoirs and Transmission Routes

    PubMed Central

    Doceul, Virginie; Bagdassarian, Eugénie; Demange, Antonin; Pavio, Nicole

    2016-01-01

    During the past ten years, several new hepatitis E viruses (HEVs) have been identified in various animal species. In parallel, the number of reports of autochthonous hepatitis E in Western countries has increased as well, raising the question of what role these possible animal reservoirs play in human infections. The aim of this review is to present the recent discoveries of animal HEVs and their classification within the Hepeviridae family, their zoonotic and species barrier crossing potential, and possible use as models to study hepatitis E pathogenesis. Lastly, this review describes the transmission pathways identified from animal sources. PMID:27706110

  7. Zoonotic Cryptosporidium Species in Animals Inhabiting Sydney Water Catchments

    PubMed Central

    Zahedi, Alireza; Monis, Paul; Aucote, Sarah; King, Brendon; Paparini, Andrea; Jian, Fuchun; Yang, Rongchang; Oskam, Charlotte; Ball, Andrew; Robertson, Ian; Ryan, Una

    2016-01-01

    Cryptosporidium is one of the most common zoonotic waterborne parasitic diseases worldwide and represents a major public health concern of water utilities in developed nations. As animals in catchments can shed human-infectious Cryptosporidium oocysts, determining the potential role of animals in dissemination of zoonotic Cryptosporidium to drinking water sources is crucial. In the present study, a total of 952 animal faecal samples from four dominant species (kangaroos, rabbits, cattle and sheep) inhabiting Sydney’s drinking water catchments were screened for the presence of Cryptosporidium using a quantitative PCR (qPCR) and positives sequenced at multiple loci. Cryptosporidium species were detected in 3.6% (21/576) of kangaroos, 7.0% (10/142) of cattle, 2.3% (3/128) of sheep and 13.2% (14/106) of rabbit samples screened. Sequence analysis of a region of the 18S rRNA locus identified C. macropodum and C. hominis in 4 and 17 isolates from kangaroos respectively, C. hominis and C. parvum in 6 and 4 isolates respectively each from cattle, C. ubiquitum in 3 isolates from sheep and C. cuniculus in 14 isolates from rabbits. All the Cryptosporidium species identified were zoonotic species with the exception of C. macropodum. Subtyping using the 5’ half of gp60 identified C. hominis IbA10G2 (n = 12) and IdA15G1 (n = 2) in kangaroo faecal samples; C. hominis IbA10G2 (n = 4) and C. parvum IIaA18G3R1 (n = 4) in cattle faecal samples, C. ubiquitum subtype XIIa (n = 1) in sheep and C. cuniculus VbA23 (n = 9) in rabbits. Additional analysis of a subset of samples using primers targeting conserved regions of the MIC1 gene and the 3’ end of gp60 suggests that the C. hominis detected in these animals represent substantial variants that failed to amplify as expected. The significance of this finding requires further investigation but might be reflective of the ability of this C. hominis variant to infect animals. The finding of zoonotic Cryptosporidium species in these

  8. Neglected zoonotic helminths: Hymenolepis nana, Echinococcus canadensis and Ancylostoma ceylanicum.

    PubMed

    Thompson, R C A

    2015-05-01

    The majority of helminth parasites that are considered by WHO to be the cause of 'neglected diseases' are zoonotic. In terms of their impact on human health, the role of animal reservoirs and polyparasitism are both emerging issues in understanding the epidemiology of a number of these zoonoses. As such, Hymenolepis (Rodentolepis) nana, Echinococcus canadensis and Ancylostoma ceylanicum all qualify for consideration. They have been neglected and there is increasing evidence that all three parasite infections deserve more attention in terms of their impact on public health as well as their control. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  9. [Current situation of endemic status, prevention and control of neglected zoonotic diseases in China].

    PubMed

    Liu, Lu; Zhu, Hong-Run; Yang, Guo-Jing

    2013-06-01

    Neglected zoonotic diseases not only threaten the health of human, especially to the livestock keepers in poverty-stricken areas but also cause great economic losses to the animal husbandry. This paper reviews the current situation of the endemic status, prevention and control of neglected zoonotic diseases existing in China including rabies, bovine tuberculosis, brucellosis, anthrax, leptospirosis, echinococcosis, cysticercosis, leishmaniasis and fascioliasis, so as to provide the basic information for better controlling, even eliminating, the neglected zoonotic diseases in China.

  10. Molecular identification of Theileria and Babesia in sheep and goats in the Black Sea Region in Turkey.

    PubMed

    Aydin, Mehmet Fatih; Aktas, Munir; Dumanli, Nazir

    2013-08-01

    This study was carried out to investigate presence and distribution of Theileria and Babesia species via microscopic examination and reverse line blotting (RLB) techniques in sheep and goats in the Black Sea region of Turkey. For this purpose, 1,128 blood samples (869 sheep and 259 goats) were collected by active surveillance from sheep and goats in different provinces of various cities in the region in the years 2010 and 2011. Smears were prepared from the blood samples, stained with Giemsa, and examined under the light microscope for Theileria and Babesia piroplasms. The genomic DNAs were extracted from blood samples. The length of 360-430-bp fragment in the variable V4 region of 18S SSU rRNA gene of Theileria and Babesia species was amplified using the gDNAs. The polymerase chain reaction products were hybridized to the membrane-connected species-specific probes. A total of 38 animals (3.37%) including 34 sheep (3.91%) and 4 goats (1.54%) were found to be positive for Theileria spp. piroplasms in microscopic examination of smears while Babesia spp. piroplasm could not detected. Infection rates were 34.64% in sheep, 10.04% in goats, and totally 28.99% for Theileria ovis while 0.58% in sheep and totally 0.44% for Babesia ovis. However, Theileria sp. OT3 was detected in 2.65% of sheep and 2.04% of all animals; besides Theileria sp., MK had 0.58% prevalence in sheep and 0.77% in goats, with a total 0.62% with RLB. Although T. ovis and Theileria sp. MK were determined in both sheep and goats, B. ovis and Theileria sp. OT3 were observed only in the sheep. These results provide the first detailed molecular data for sheep and goat theileriosis and babesiosis in the region.

  11. Molecular identification of Theileria and Babesia in ticks collected from sheep and goats in the Black Sea region of Turkey.

    PubMed

    Aydin, Mehmet Fatih; Aktas, Munir; Dumanli, Nazir

    2015-01-01

    A molecular survey was undertaken in the Black Sea region of Turkey to determine the presence of Theileria and Babesia species of medical and veterinary importance. The ticks were removed from sheep and goats, pooled according to species and locations, and analyzed by PCR-based reverse line blot (RLB) and sequencing. A total of 2241 ixodid ticks belonging to 5 genus and 12 species were collected and divided into 310 pools. Infection rates were calculated as the maximum likelihood estimation (MLE) with 95% confidence intervals (CI). Of the 310 pools tested, 46 (14.83%) were found to be infected with Theileria or Babesia species, and the overall MLE of the infection rate was calculated as 2.27% (CI 1.67-2.99). The MLE of the infection rates were calculated as 0.691% (CI 0.171-1.78) in Haemaphysalis parva, 1.47% (CI 0.081-6.37) in Rhipicephalus sanguineus, 1.84% (CI 0.101-7.87) in Ixodes ricinus, 2.86% (CI 1.68-4.48) in Rhipicephalus turanicus, 5.57% (CI 0.941-16.3) in Hyalomma marginatum, and 6.2% (CI 4.02-9.02) in Rhipicephalus bursa. Pathogens identified in ticks included Theileria ovis, Babesia ovis, Babesia bigemina, and Babesia microti. Most tick pools were infected with a single pathogen. However, five pools displayed mixed infections with T. ovis and B. ovis. This study provides the first molecular evidence for the presence of B. microti in ticks in Turkey.

  12. Molecular detection of Theileria spp. and Babesia spp. in sheep and ixodid ticks from the northeast of Iran.

    PubMed

    Razmi, Gholamreza; Pourhosseini, Moslem; Yaghfouri, Saeed; Rashidi, Ahmad; Seidabadi, Mohsen

    2013-02-01

    Theilerioses and babesioses are important diseases in Iranian sheep. The present study was undertaken to identify and classify/specify Theileria spp. and Babesia spp. in sheep and vector ticks. Investigation was carried out from 2009 to 2011 in the Khorasan Razavi Province, Iran. In total, 302 sheep originating from 60 different flocks were clinically examined and their blood collected. In addition, from the same flocks, ixodid ticks were sampled. Stained blood smears were microscopically examined for the presence of Theileria and Babesia organisms, and a semi-nested PCR was used for subsequent molecular specification. From the ticks, salivary glands and uterus were isolated and subsequently analyzed by semi-nested PCR. Piroplasm organisms were observed in 29% of the blood smears with low parasitemia, whereas 65% of the blood samples yielded positive PCR findings. The presence of Theileria ovis (55.6%), Theileria lestoquardi, and mixed infection with Theileria spp. and Babesia ovis were detected by semi-nested PCR in 0.3%, 5.6%, and 0.99%, respectively. In total, 429 ixodid ticks were collected from different areas of the province. The most prevalent ticks were Rhipicephalus turanicus (n = 376; 87.6% of the total), followed by Hyalomma marginatum turanicum (n = 30; 7.0%), Dermacentor raskemensis (n = 12; 2.8%), Hyalomma anatolicum anatolicum (n = 7; 1.6%), Dermacentor marginatus (n = 2; 0.5%), Rhipicephalus bursa (n = 1; 0.2%), and Haemaphysalis sp. (n = 1; 0.2%). Of the positive R. turanicus samples, 5 (5.7%) were infected with T. ovis and 2 (2.9%) with T. lestoquardi. Neither Babesia ovis nor Babesia motasi infection was detected in salivary glands or uterine samples of the ticks. The results also suggest that R. turanicus could be the vector responsible for transmission of the 2 Theileria species.

  13. Nature

    NASA Astrophysics Data System (ADS)

    Heinhorst, Sabine; Cannon, Gordon

    1997-01-01

    The fact that two of the original articles by this year's Nobel laureates were published in Nature bears witness to the pivotal role of this journal in documenting pioneering discoveries in all areas of science. The prize for Physiology or Medicine was awarded to immunologists Peter C. Doherty (University of Tennessee) and Rolf M. Zinkernagel (University of Zurich, Switzerland), honoring work that, in the 1970s, laid the foundation for our current understanding of the way in which our immune system differentiates between healthy cells and virus-infected ones that are targeted for destruction (p 465 in the October 10 issue of vol. 383). Three researchers share the Chemistry award for their discovery of C60 buckminsterfullerenes. The work by Robert Curl, Richard Smalley (both at Rice University), and Harry Kroto (University of Sussex, UK) has led to a burst of new approaches to materials development and in carbon chemistry (p 561 of the October 17 issue of vol. 383). This year's Nobel prize in physics went to three U.S. researchers, Douglas Osheroff (Stanford University) and David M. Lee and Robert C. Richardson (Cornell University), who were honored for their work on superfluidity, a frictionless liquid state, of supercooled 3He (p 562 of the October 17 issue of vol. 383).

  14. Modification of host erythrocyte membranes by trypsin and chymotrypsin treatments and effects on the in vitro growth of bovine and equine Babesia parasites.

    PubMed

    Okamura, Masashi; Yokoyama, Naoaki; Takabatake, Noriyuki; Okubo, Kazuhiro; Ikehara, Yuzuru; Igarashi, Ikuo

    2007-02-01

    In the present study, we investigated the effects of protease pretreatments of host erythrocytes (RBC) on the in vitro growth of bovine Babesia parasites (Babesia bovis and B. bigemina) and equine Babesia parasites (B. equi and B. caballi). The selected proteases, trypsin and chymotrypsin, clearly modified several membrane proteins of both bovine and equine RBC, as demonstrated by SDS-PAGE analysis; however, the protease treatments also modified the sialic acid content exclusively in bovine RBC, as demonstrated by lectin blot analysis. An in vitro growth assay using the protease-treated RBC showed that the trypsin-treated bovine RBC, but not the chymotrypsin-treated ones, significantly reduced the growth of B. bovis and B. bigemina as compared to the control. In contrast, the growth of B. equi and B. caballi was not affected by any of these proteases. Thus, the bovine, but not the equine, Babesia parasites require the trypsin-sensitive membrane (sialoglyco) proteins to infect the RBC.

  15. European bats as carriers of viruses with zoonotic potential.

    PubMed

    Kohl, Claudia; Kurth, Andreas

    2014-08-13

    Bats are being increasingly recognized as reservoir hosts of highly pathogenic and zoonotic emerging viruses (Marburg virus, Nipah virus, Hendra virus, Rabies virus, and coronaviruses). While numerous studies have focused on the mentioned highly human-pathogenic bat viruses in tropical regions, little is known on similar human-pathogenic viruses that may be present in European bats. Although novel viruses are being detected, their zoonotic potential remains unclear unless further studies are conducted. At present, it is assumed that the risk posed by bats to the general public is rather low. In this review, selected viruses detected and isolated in Europe are discussed from our point of view in regard to their human-pathogenic potential. All European bat species and their roosts are legally protected and some European species are even endangered. Nevertheless, the increasing public fear of bats and their viruses is an obstacle to their protection. Educating the public regarding bat lyssaviruses might result in reduced threats to both the public and the bats.

  16. Optimal sampling strategies for detecting zoonotic disease epidemics.

    PubMed

    Ferguson, Jake M; Langebrake, Jessica B; Cannataro, Vincent L; Garcia, Andres J; Hamman, Elizabeth A; Martcheva, Maia; Osenberg, Craig W

    2014-06-01

    The early detection of disease epidemics reduces the chance of successful introductions into new locales, minimizes the number of infections, and reduces the financial impact. We develop a framework to determine the optimal sampling strategy for disease detection in zoonotic host-vector epidemiological systems when a disease goes from below detectable levels to an epidemic. We find that if the time of disease introduction is known then the optimal sampling strategy can switch abruptly between sampling only from the vector population to sampling only from the host population. We also construct time-independent optimal sampling strategies when conducting periodic sampling that can involve sampling both the host and the vector populations simultaneously. Both time-dependent and -independent solutions can be useful for sampling design, depending on whether the time of introduction of the disease is known or not. We illustrate the approach with West Nile virus, a globally-spreading zoonotic arbovirus. Though our analytical results are based on a linearization of the dynamical systems, the sampling rules appear robust over a wide range of parameter space when compared to nonlinear simulation models. Our results suggest some simple rules that can be used by practitioners when developing surveillance programs. These rules require knowledge of transition rates between epidemiological compartments, which population was initially infected, and of the cost per sample for serological tests.

  17. Structural drivers of vulnerability to zoonotic disease in Africa

    PubMed Central

    Bukachi, Salome; Mangwanya, Lindiwe; Scoones, Ian

    2017-01-01

    This paper argues that addressing the underlying structural drivers of disease vulnerability is essential for a ‘One Health’ approach to tackling zoonotic diseases in Africa. Through three case studies—trypanosomiasis in Zimbabwe, Ebola and Lassa fever in Sierra Leone and Rift Valley fever in Kenya—we show how political interests, commercial investments and conflict and securitization all generate patterns of vulnerability, reshaping the political ecology of disease landscapes, influencing traditional coping mechanisms and affecting health service provision and outbreak responses. A historical, political economy approach reveals patterns of ‘structural violence’ that reinforce inequalities and marginalization of certain groups, increasing disease risks. Addressing the politics of One Health requires analysing trade-offs and conflicts between interests and visions of the future. For all zoonotic diseases economic and political dimensions are ultimately critical and One Health approaches must engage with these factors, and not just end with an ‘anti-political’ focus on institutional and disciplinary collaboration. This article is part of the themed issue ‘One Health for a changing world: zoonoses, ecosystems and human well-being’. PMID:28584177

  18. Zoonotic parapoxviruses detected in symptomatic cattle in Bangladesh.

    PubMed

    Lederman, Edith; Khan, Salah Uddin; Luby, Stephen; Zhao, Hui; Braden, Zachary; Gao, JinXin; Karem, Kevin; Damon, Inger; Reynolds, Mary; Li, Yu

    2014-11-19

    Application of molecular diagnostic methods to the determination of etiology in suspected poxvirus-associated infections of bovines is important both for the diagnosis of the individual case and to form a more complete understanding of patterns of strain occurrence and spread. The objective of this study was to identify and characterize bovine-associated zoonotic poxviruses in Bangladesh which are relevant to animal and human health. Investigators from the International Center Diarrhoeal Disease Research (icddr,b), the US Centers for Disease Control and Prevention (CDC), and the Bangladesh Department of Livestock Services traveled to three districts in Bangladesh-Siranjganj, Rangpur and Bhola-to collect diagnostic specimens from dairy cattle and buffalo that had symptoms consistent with poxvirus-associated infections. Bovine papular stomatitis virus (BPSV) DNA was obtained from lesion material (teat) and an oral swab collected from an adult cow and calf (respectively) from a dairy production farm in Siranjganj. Pseudocowpox virus (PCPV) DNA signatures were obtained from a scab and oral swab collected from a second dairy cow and her calf from Rangpur. We report the first detection of zoonotic poxviruses from Bangladesh and show phylogenetic comparisons between the Bangladesh viruses and reference strains based on analyses of the B2L and J6R loci (vaccinia orthologs). Understanding the range and diversity of different species and strains of parapoxvirus will help to spotlight unusual patterns of occurrence that could signal events of significance to the agricultural and public health sectors.

  19. Mapping the zoonotic niche of Ebola virus disease in Africa

    PubMed Central

    Pigott, David M; Golding, Nick; Mylne, Adrian; Huang, Zhi; Henry, Andrew J; Weiss, Daniel J; Brady, Oliver J; Kraemer, Moritz UG; Smith, David L; Moyes, Catherine L; Bhatt, Samir; Gething, Peter W; Horby, Peter W; Bogoch, Isaac I; Brownstein, John S; Mekaru, Sumiko R; Tatem, Andrew J; Khan, Kamran; Hay, Simon I

    2014-01-01

    Ebola virus disease (EVD) is a complex zoonosis that is highly virulent in humans. The largest recorded outbreak of EVD is ongoing in West Africa, outside of its previously reported and predicted niche. We assembled location data on all recorded zoonotic transmission to humans and Ebola virus infection in bats and primates (1976–2014). Using species distribution models, these occurrence data were paired with environmental covariates to predict a zoonotic transmission niche covering 22 countries across Central and West Africa. Vegetation, elevation, temperature, evapotranspiration, and suspected reservoir bat distributions define this relationship. At-risk areas are inhabited by 22 million people; however, the rarity of human outbreaks emphasises the very low probability of transmission to humans. Increasing population sizes and international connectivity by air since the first detection of EVD in 1976 suggest that the dynamics of human-to-human secondary transmission in contemporary outbreaks will be very different to those of the past. DOI: http://dx.doi.org/10.7554/eLife.04395.001 PMID:25201877

  20. Transmission and epidemiology of zoonotic protozoal diseases of companion animals.

    PubMed

    Esch, Kevin J; Petersen, Christine A

    2013-01-01

    Over 77 million dogs and 93 million cats share our households in the United States. Multiple studies have demonstrated the importance of pets in their owners' physical and mental health. Given the large number of companion animals in the United States and the proximity and bond of these animals with their owners, understanding and preventing the diseases that these companions bring with them are of paramount importance. Zoonotic protozoal parasites, including toxoplasmosis, Chagas' disease, babesiosis, giardiasis, and leishmaniasis, can cause insidious infections, with asymptomatic animals being capable of transmitting disease. Giardia and Toxoplasma gondii, endemic to the United States, have high prevalences in companion animals. Leishmania and Trypanosoma cruzi are found regionally within the United States. These diseases have lower prevalences but are significant sources of human disease globally and are expanding their companion animal distribution. Thankfully, healthy individuals in the United States are protected by intact immune systems and bolstered by good nutrition, sanitation, and hygiene. Immunocompromised individuals, including the growing number of obese and/or diabetic people, are at a much higher risk of developing zoonoses. Awareness of these often neglected diseases in all health communities is important for protecting pets and owners. To provide this awareness, this review is focused on zoonotic protozoal mechanisms of virulence, epidemiology, and the transmission of pathogens of consequence to pet owners in the United States.

  1. Structural drivers of vulnerability to zoonotic disease in Africa.

    PubMed

    Dzingirai, Vupenyu; Bukachi, Salome; Leach, Melissa; Mangwanya, Lindiwe; Scoones, Ian; Wilkinson, Annie

    2017-07-19

    This paper argues that addressing the underlying structural drivers of disease vulnerability is essential for a 'One Health' approach to tackling zoonotic diseases in Africa. Through three case studies-trypanosomiasis in Zimbabwe, Ebola and Lassa fever in Sierra Leone and Rift Valley fever in Kenya-we show how political interests, commercial investments and conflict and securitization all generate patterns of vulnerability, reshaping the political ecology of disease landscapes, influencing traditional coping mechanisms and affecting health service provision and outbreak responses. A historical, political economy approach reveals patterns of 'structural violence' that reinforce inequalities and marginalization of certain groups, increasing disease risks. Addressing the politics of One Health requires analysing trade-offs and conflicts between interests and visions of the future. For all zoonotic diseases economic and political dimensions are ultimately critical and One Health approaches must engage with these factors, and not just end with an 'anti-political' focus on institutional and disciplinary collaboration.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.

  2. Zoonotic Transmission of Waterborne Disease: A Mathematical Model.

    PubMed

    Waters, Edward K; Hamilton, Andrew J; Sidhu, Harvinder S; Sidhu, Leesa A; Dunbar, Michelle

    2016-01-01

    Waterborne parasites that infect both humans and animals are common causes of diarrhoeal illness, but the relative importance of transmission between humans and animals and vice versa remains poorly understood. Transmission of infection from animals to humans via environmental reservoirs, such as water sources, has attracted attention as a potential source of endemic and epidemic infections, but existing mathematical models of waterborne disease transmission have limitations for studying this phenomenon, as they only consider contamination of environmental reservoirs by humans. This paper develops a mathematical model that represents the transmission of waterborne parasites within and between both animal and human populations. It also improves upon existing models by including animal contamination of water sources explicitly. Linear stability analysis and simulation results, using realistic parameter values to describe Giardia transmission in rural Australia, show that endemic infection of an animal host with zoonotic protozoa can result in endemic infection in human hosts, even in the absence of person-to-person transmission. These results imply that zoonotic transmission via environmental reservoirs is important.

  3. Zoonotic echinostome infections in free-grazing ducks in Thailand.

    PubMed

    Saijuntha, Weerachai; Duenngai, Kunyarat; Tantrawatpan, Chairat

    2013-12-01

    Free-grazing ducks play a major role in the rural economy of Eastern Asia in the form of egg and meat production. In Thailand, the geographical location, tropical climate conditions and wetland areas of the country are suitable for their husbandry. These environmental factors also favor growth, multiplication, development, survival, and spread of duck parasites. In this study, a total of 90 free-grazing ducks from northern, central, and northeastern regions of Thailand were examined for intestinal helminth parasites, with special emphasis on zoonotic echinostomes. Of these, 51 (56.7%) were infected by one or more species of zoonotic echinostomes, Echinostoma revolutum, Echinoparyphium recurvatum, and Hypoderaeum conoideum. Echinostomes found were identified using morphological criteria when possible. ITS2 sequences were used to identify juvenile and incomplete worms. The prevalence of infection was relatively high in each region, namely, north, central, and northeast region was 63.2%, 54.5%, and 55.3%, respectively. The intensity of infection ranged up to 49 worms/infected duck. Free-grazing ducks clearly play an important role in the life cycle maintenance, spread, and transmission of these medically important echinostomes in Thailand.

  4. Transmission and Epidemiology of Zoonotic Protozoal Diseases of Companion Animals

    PubMed Central

    Esch, Kevin J.

    2013-01-01

    Over 77 million dogs and 93 million cats share our households in the United States. Multiple studies have demonstrated the importance of pets in their owners' physical and mental health. Given the large number of companion animals in the United States and the proximity and bond of these animals with their owners, understanding and preventing the diseases that these companions bring with them are of paramount importance. Zoonotic protozoal parasites, including toxoplasmosis, Chagas' disease, babesiosis, giardiasis, and leishmaniasis, can cause insidious infections, with asymptomatic animals being capable of transmitting disease. Giardia and Toxoplasma gondii, endemic to the United States, have high prevalences in companion animals. Leishmania and Trypanosoma cruzi are found regionally within the United States. These diseases have lower prevalences but are significant sources of human disease globally and are expanding their companion animal distribution. Thankfully, healthy individuals in the United States are protected by intact immune systems and bolstered by good nutrition, sanitation, and hygiene. Immunocompromised individuals, including the growing number of obese and/or diabetic people, are at a much higher risk of developing zoonoses. Awareness of these often neglected diseases in all health communities is important for protecting pets and owners. To provide this awareness, this review is focused on zoonotic protozoal mechanisms of virulence, epidemiology, and the transmission of pathogens of consequence to pet owners in the United States. PMID:23297259

  5. Research Options for Controlling Zoonotic Disease in India, 2010–2015

    PubMed Central

    Sekar, Nitin; Shah, Naman K.; Abbas, Syed Shahid; Kakkar, Manish

    2011-01-01

    Background Zoonotic infections pose a significant public health challenge for low- and middle-income countries and have traditionally been a neglected area of research. The Roadmap to Combat Zoonoses in India (RCZI) initiative conducted an exercise to systematically identify and prioritize research options needed to control zoonoses in India. Methods and Findings Priority setting methods developed by the Child Health and Nutrition Research Initiative were adapted for the diversity of sectors, disciplines, diseases and populations relevant for zoonoses in India. A multidisciplinary group of experts identified priority zoonotic diseases and knowledge gaps and proposed research options to address key knowledge gaps within the next five years. Each option was scored using predefined criteria by another group of experts. The scores were weighted using relative ranks among the criteria based upon the feedback of a larger reference group. We categorized each research option by type of research, disease targeted, factorials, and level of collaboration required. We analysed the research options by tabulating them along these categories. Seventeen experts generated four universal research themes and 103 specific research options, the majority of which required a high to medium level of collaboration across sectors. Research options designated as pertaining to ‘social, political and economic’ factorials predominated and scored higher than options focussing on ecological, genetic and biological, or environmental factors. Research options related to ‘health policy and systems’ scored highest while those related to ‘research for development of new interventions’ scored the lowest. Conclusions We methodically identified research themes and specific research options incorporating perspectives of a diverse group of stakeholders. These outputs reflect the diverse nature of challenges posed by zoonoses and should be acceptable across diseases, disciplines, and sectors

  6. Research options for controlling zoonotic disease in India, 2010-2015.

    PubMed

    Sekar, Nitin; Shah, Naman K; Abbas, Syed Shahid; Kakkar, Manish

    2011-02-25

    Zoonotic infections pose a significant public health challenge for low- and middle-income countries and have traditionally been a neglected area of research. The Roadmap to Combat Zoonoses in India (RCZI) initiative conducted an exercise to systematically identify and prioritize research options needed to control zoonoses in India. Priority setting methods developed by the Child Health and Nutrition Research Initiative were adapted for the diversity of sectors, disciplines, diseases and populations relevant for zoonoses in India. A multidisciplinary group of experts identified priority zoonotic diseases and knowledge gaps and proposed research options to address key knowledge gaps within the next five years. Each option was scored using predefined criteria by another group of experts. The scores were weighted using relative ranks among the criteria based upon the feedback of a larger reference group. We categorized each research option by type of research, disease targeted, factorials, and level of collaboration required. We analysed the research options by tabulating them along these categories. Seventeen experts generated four universal research themes and 103 specific research options, the majority of which required a high to medium level of collaboration across sectors. Research options designated as pertaining to 'social, political and economic' factorials predominated and scored higher than options focussing on ecological, genetic and biological, or environmental factors. Research options related to 'health policy and systems' scored highest while those related to 'research for development of new interventions' scored the lowest. We methodically identified research themes and specific research options incorporating perspectives of a diverse group of stakeholders. These outputs reflect the diverse nature of challenges posed by zoonoses and should be acceptable across diseases, disciplines, and sectors. The identified research options capture the need for

  7. Serosurvey for Zoonotic Viral and Bacterial Pathogens Among Slaughtered Livestock in Egypt

    PubMed Central

    Horton, Katherine C.; Wasfy, Momtaz; Samaha, Hamed; Abdel-Rahman, Bassem; Safwat, Sameh; Abdel Fadeel, Moustafa; Mohareb, Emad; Dueger, Erica

    2015-01-01

    Introduction Zoonotic diseases are an important cause of human morbidity and mortality. Animal populations at locations with high risk of transmission of zoonotic pathogens offer an opportunity to study viral and bacterial pathogens of veterinary and public health concern. Methods Blood samples were collected from domestic and imported livestock slaughtered at the Muneeb abattoir in central Egypt in 2009. Samples were collected from cattle (n = 161), buffalo (n = 153), sheep (n = 174), and camels (n = 10). Samples were tested for antibodies against Leptospira spp. by a microscopy agglutination test, Coxiella burnetii by enzyme immunoassay, Brucella spp. by standard tube agglutination, and Rift Valley Fever virus (RVFV), Crimean–Congo hemorrhagic fever virus (CCHFV), sandfly fever Sicilian virus (SFSV), and sandfly fever Naples virus (SFNV) by enzyme-linked immunosorbent assay. Results Antibodies against Leptospira spp. were identified in 64 (40%) cattle, 45 (29%) buffalo, 71 (41%) sheep, and five (50%) camels; antibodies against C. burnetii in six (4%) buffalo, 14 (8%) sheep, and seven (70%) camels; and antibodies against Brucella spp. in 12 (8%) cattle, one (1%) buffalo, seven (4%) sheep, and one (10%) camel. Antibodies against RVFV were detected in two (1%) cattle and five (3%) buffalo, and antibodies against CCHFV in one (1%) cow. No antibodies against SFSV or SFNV were detected in any species. Discussion Results indicate that livestock have been exposed to a number of pathogens, although care must be taken with interpretation. It is not possible to determine whether antibodies against Leptospira spp. and RVFV in cattle and buffalo are due to prior vaccination or natural exposure. Similarly, antibodies identified in animals less than 6 months of age may be maternal antibodies transferred through colostrum rather than evidence of prior exposure. Results provide baseline evidence to indicate that surveillance within animal populations may be a useful tool to

  8. Zoonotic pathogens from feral swine that pose a significant threat to public health.

    PubMed

    Brown, V R; Bowen, R A; Bosco-Lauth, A M

    2018-06-01

    The natural fecundity of suids, great ability to adapt to new habitats and desire for local hunting opportunities leading to translocation of feral pigs to regions where they are not yet established have all been instrumental in the home range expansion of feral swine. Feral swine populations in the United States continue to expand, wreaking havoc on agricultural lands, further compromising threatened and endangered species, and posing a microbiological threat to humans, domestic livestock and companion animals. This manuscript thoroughly reviews zoonotic diseases of concern including brucellosis, bovine tuberculosis, leptospirosis, enteric pathogens, both Salmonella spp. and shiga toxin-producing Escherichia coli, and hepatitis E. These pathogens are not a comprehensive list of microbes that are capable of infecting both humans and feral swine, but rather have been selected as they are known to infect US feral swine, direct transmission between wild suids and humans has previously been documented, or they have been shown to be readily transmitted during processing or consumption of feral swine pork. Humans that interact directly or indirectly with feral swine are at much higher risk for the development of a number of zoonotic pathogens. Numerous case reports document transmission events from feral swine and wild boar to humans, and the resulting diseases may be mild and self-limiting, chronic or fatal. Individuals that interact with feral swine should take preventative measures to minimize the risk of disease transmission and all meat should be thoroughly cooked. Additionally, public health campaigns to increase knowledge of the risks associated with feral swine are imperative. © 2018 Blackwell Verlag GmbH.

  9. Susceptibility of Pigs to Zoonotic Hepatitis E Virus Genotype 3 Isolated from a Wild Boar.

    PubMed

    Thiry, D; Rose, N; Mauroy, A; Paboeuf, F; Dams, L; Roels, S; Pavio, N; Thiry, E

    2017-10-01

    In Europe, zoonotic hepatitis E virus (HEV) genotype 3 strains mainly circulate in humans, swine and wild boar. The aim of this study was to investigate the potential transmission of a wild boar originating HEV strain (WbHEV) to swine by intravenous or oral inoculation and to study the consequences of infection of a WbHEV strain, a WbHEV strain previously passaged in a pig and a swine HEV strain after oral inoculation. Firstly, an intravenous infection was performed for which five piglets were divided into two groups with three pigs inoculated with a WbHEV field strain and two pigs inoculated with a HEV-negative swine liver homogenate. All pigs were necropsied 8, 9 and 10 days post-inoculation. Secondly, an oral infection of 56 days was performed on 12 piglets divided into four groups inoculated with a WbHEV strain, a WbHEV strain previously passaged in swine, a swine HEV strain or a HEV-negative swine liver homogenate. After intravenous inoculation, HEV RNA was detected in serum, bile, liver, spleen, duodenum, jejunum, colon, lung, gastro-hepatic lymph nodes and faeces in all infected piglets. After oral inoculation, HEV RNA was detected in serum, bile, liver, gastro-hepatic lymph nodes and faeces. Most of HEV-inoculated pigs became seropositive at day 15. This study provides experimental evidence of early viral spread throughout the organism after intravenous infection with a WbHEV strain and supports the notion that such a zoonotic strain could be transmitted via the natural faecal-oral route of infection between wild boar and pigs but also between pigs. © 2016 Blackwell Verlag GmbH.

  10. An epidemiological survey of bovine Babesia and Theileria parasites in cattle, buffaloes, and sheep in Egypt.

    PubMed

    Elsify, Ahmed; Sivakumar, Thillaiampalam; Nayel, Mohammed; Salama, Akram; Elkhtam, Ahmed; Rizk, Mohamed; Mosaab, Omar; Sultan, Khaled; Elsayed, Shimaa; Igarashi, Ikuo; Yokoyama, Naoaki

    2015-02-01

    Cattle, buffaloes, and sheep are the main sources of meat and milk in Egypt, but their productivity is thought to be greatly reduced by hemoprotozoan parasitic diseases. In this study, we analyzed the infection rates of Babesia bovis, Babesia bigemina, Theileria annulata, and Theileria orientalis, using parasite-specific PCR assays in blood-DNA samples sourced from cattle (n=439), buffaloes (n=50), and sheep (n=105) reared in Menoufia, Behera, Giza, and Sohag provinces of Egypt. In cattle, the positive rates of B. bovis, B. bigemina, T. annulata, and T. orientalis were 3.18%, 7.97%, 9.56%, and 0.68%, respectively. On the other hand, B. bovis and T. orientalis were the only parasites detected in buffaloes and each of these parasites was only found in two individual DNA samples (both 2%), while one (0.95%) and two (1.90%) of the sheep samples were positive for B. bovis and B. bigemina, respectively. Sequence analysis showed that the B. bovis Rhoptry Associated Protein-1 and the B. bigemina Apical Membrane Antigen-1 genes were highly conserved among the samples, with 99.3-100% and 95.3-100% sequence identity values, respectively. In contrast, the Egyptian T. annulata merozoite surface antigen-1 gene sequences were relatively diverse (87.8-100% identity values), dispersing themselves across several clades in the phylogenetic tree containing sequences from other countries. Additionally, the T. orientalis Major Piroplasm Surface Protein (MPSP) gene sequences were classified as types 1 and 2. This is the first report of T. orientalis in Egypt, and of type 2 MPSP in buffaloes. Detection of MPSP type 2, which is considered a relatively virulent genotype, suggests that T. orientalis infection may have veterinary and economic significance in Egypt. In conclusion, the present study, which analyzed multiple species of Babesia and Theileria parasites in different livestock animals, may shed an additional light on the epidemiology of hemoprotozoan parasites in Egypt. Copyright

  11. Landscape characteristics influence helminth infestations in a peri-domestic rodent--implications for possible zoonotic disease.

    PubMed

    Froeschke, Götz; Matthee, Sonja

    2014-08-26

    Anthropogenic habitat change often results in altered landscapes that can provide new environments where hosts, parasites and pathogens can interact. The latter can have implications for human and animal health when in close proximity to developed areas. We recorded the helminth species richness and level of infestation in the peri-domestic rodent, Rhabdomys pumilio, in three different human linked landscapes. The aim was, to investigate the potential of R. pumilio to act as a reservoir host for zoonotic helminths and to compare the effect of anthropogenic habitat change on its parasite infestation patterns. Rodents (n = 518) were trapped in natural areas (nature reserves) and in three human linked landscapes (crop, livestock and urban fragments). Gastrointestinal parasite burdens were recovered and helminths identified from each animal. Generalized linear models were applied to investigate the effect of different landscape types on helminth infestation. Rhabdomys pumilio was the most abundant rodent species within each landscape type. Eight helminths species were recovered and overall helminth prevalence was 86.68%. Mean helminth species richness, prevalence and abundance were significantly higher in crop fragments compared to natural landscapes and overall lower for nematodes in livestock and urban areas. Cestode prevalence showed a tendency to be elevated at anthropogenic linked landscape types. Host parameters and parasite infestations were strongly influenced by landscape characteristics. Resource-rich landscapes (crop fragments) provide favorable conditions for helminth infestations, while landscapes that are more closely associated with humans (livestock and urban landscapes) pose a larger risk by zoonotic species.

  12. Evaluation of immunochromatographic test (ICT) strips for the serological detection of Babesia bovis and Babesia bigemina infection in cattle from Western Java, Indonesia.

    PubMed

    Guswanto, Azirwan; Allamanda, Puttik; Mariamah, Euis Siti; Munkjargal, Tserendorf; Tuvshintulga, Bumduuren; Takemae, Hitoshi; Sivakumar, Thillaiampalam; AbouLaila, Mahmoud; Terkawi, Mohamad Alaa; Ichikawa-Seki, Madoka; Nishikawa, Yoshifumi; Yokoyama, Naoaki; Igarashi, Ikuo

    2017-05-30

    Three types of immunochromatographic test (ICT) strips were prepared for the detection of an antibody response against spherical body protein 4 (SBP-4) of Babesia bovis (bovICT), C-terminal-truncated rhoptry-associated protein 1 (rRAP1/CT17) of B. bigemina (bigICT), and the combination of both proteins (dual-ICT). The evaluation of their performance was conducted using a confirmed positive and negative serum panel for B. bovis and B. bigemina. Together with ELISA, the ICT strips were applied to determine the seroprevalence of bovine babesiosis in Western Java, Indonesia. Among 991 serum samples, 28.4%, 25.3%, and 24.5% of cattle were detected to be seropositive to B. bovis infection using ELISA, bovICT, and dual-ICT, respectively. B. bigemina seropositive was detected in 27.1%, 24.2%, and 22.8% of samples using ELISA, bigICT, and dual-ICT, respectively. The comparison of ICT strips and ELISA results using field serum samples showed good agreement with Kappa values >0.7 between all methods The application of ICT strips is preferable in the field situations where rapid diagnosis is required. Furthermore, the data showed the current seroprevalence of bovine babesiosis in Western Java, Indonesia, and efficient control strategies are needed to reduce economic losses due to the disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Modeling risk of occupational zoonotic influenza infection in swine workers.

    PubMed

    Paccha, Blanca; Jones, Rachael M; Gibbs, Shawn; Kane, Michael J; Torremorell, Montserrat; Neira-Ramirez, Victor; Rabinowitz, Peter M

    2016-08-01

    Zoonotic transmission of influenza A virus (IAV) between swine and workers in swine production facilities may play a role in the emergence of novel influenza strains with pandemic potential. Guidelines to prevent transmission of influenza to swine workers have been developed but there is a need for evidence-based decision-making about protective measures such as respiratory protection. A mathematical model was applied to estimate the risk of occupational IAV exposure to swine workers by contact and airborne transmission, and to evaluate the use of respirators to reduce transmission.  The Markov model was used to simulate the transport and exposure of workers to IAV in a swine facility. A dose-response function was used to estimate the risk of infection. This approach is similar to methods previously used to estimate the risk of infection in human health care settings. This study uses concentration of virus in air from field measurements collected during outbreaks of influenza in commercial swine facilities, and analyzed by polymerase chain reaction.  It was found that spending 25 min working in a barn during an influenza outbreak in a swine herd could be sufficient to cause zoonotic infection in a worker. However, this risk estimate was sensitive to estimates of viral infectivity to humans. Wearing an excellent fitting N95 respirator reduced this risk, but with high aerosol levels the predicted risk of infection remained high under certain assumptions.  The results of this analysis indicate that under the conditions studied, swine workers are at risk of zoonotic influenza infection. The use of an N95 respirator could reduce such risk. These findings have implications for risk assessment and preventive programs targeting swine workers. The exact level of risk remains uncertain, since our model may have overestimated the viability or infectivity of IAV. Additionally, the potential for partial immunity in swine workers associated with repeated low

  14. Molecular epidemiology of bovine Babesia spp. and Theileria orientalis parasites in beef cattle from northern and northeastern Thailand.

    PubMed

    Jirapattharasate, Charoonluk; Adjou Moumouni, Paul Franck; Cao, Shinuo; Iguchi, Aiko; Liu, Mingming; Wang, Guanbo; Zhou, Mo; Vudriko, Patrick; Changbunjong, Tanasak; Sungpradit, Sivapong; Ratanakorn, Parntep; Moonarmart, Walasinee; Sedwisai, Poonyapat; Weluwanarak, Thekhawet; Wongsawang, Witsanu; Suzuki, Hiroshi; Xuan, Xuenan

    2016-02-01

    Beef cattle production represents the largest cattle population in Thailand. Their productivity is constrained by tick-borne diseases such as babesiosis and theileriosis. In this study, we determined the prevalence of Babesia bigemina, Babesia bovis and Theileria orientalis using polymerase chain reaction (PCR). The genetic markers that were used for detection of the above parasites were sequenced to determine identities and similarity for Babesia spp. and genetic diversity of T. orientalis. Furthermore the risk factors for the occurrence of the above protozoan parasites in beef cattle from northern and northeastern parts of Thailand were assessed. A total of 329 blood samples were collected from beef cattle in 6 provinces. The study revealed that T. orientalis was the most prevalent (30.1%) parasite in beef cattle followed by B. bigemina (13.1%) and B. bovis (5.5%). Overall, 78.7% of the cattle screened were infected with at least one of the above parasites. Co-infection with Babesia spp. and T. orientalis was 30.1%. B. bigemina and T. orientalis were the most prevalent (15.1%) co-infection although triple infection with the three parasites was observed in 3.0% of the samples. Sequencing analysis revealed that B. bigemina RAP1 gene and B. bovis SBP2 gene were conserved among the parasites from different cattle samples. Phylogenetic analysis showed that the T. orientalis MPSP gene from parasites isolated from cattle in north and northeast Thailand was classified into types 5 and 7 as reported previously. Lack of tick control program was the universal risk factor of the occurrence of Babesia spp. and T. orientalis infection in beef cattle in northern and northeastern Thailand. We therefore recommend training of farmers on appropriate tick control strategies and further research on potential vectors for T. orientalis and elucidate the effect of co-infection with Babesia spp. on the pathogenicity of T. orientalis infection on beef in northern and northeastern Thailand

  15. Molecular identification of different Theileria and Babesia species infecting sheep in Sudan.

    PubMed

    El Imam, Ahmed H; Hassan, Shawgi M; Gameel, Ahmed A; El Hussein, Abdelrahim M; Taha, Khalid M; Oosthuizen, Marinda C

    2016-01-01

    The epidemiological aspects of sheep piroplasmosis in Sudan are poorly studied, and further investigations using sensitive and precise techniques are required. In this study, the Reverse Line Blot (RLB) hybridization assay was used to detect and simultaneously differentiate between Theileria and Babesia species. DNA was extracted from blood collected on filter paper (n=219) from apparently healthy sheep from six different geographical localities in Sudan. Results indicated that Theileria ovis (88.6%), T. separata (20.1%), T. lestoquardi (16.4%) and T. annulata (16.4%) DNA could be detected in the blood samples. Single and mixed Theileria infections were detected in 74 (33.8%) and 124 (56.6%) respectively and T. ovis being the most prevalent species in the country. T. ovis and T. separata were reported for the first time in sheep in Sudan.

  16. Transient transfection of intraerythrocytic Babesia gibsoni using elongation factor-1 alpha promoter.

    PubMed

    Liu, Mingming; Asada, Masahito; Cao, Shinuo; Adjou Moumouni, Paul Franck; Vudriko, Patrick; Efstratiou, Artemis; Hakimi, Hassan; Masatani, Tatsunori; Sunaga, Fujiko; Kawazu, Shin-Ichiro; Yamagishi, Junya; Xuan, Xuenan

    2017-09-01

    The development of gene manipulation techniques has been reported in many protozoan parasites over the past few years. However, these techniques have not yet been established for Babesia gibsoni. Here, we report for the first time, the successful transient transfection of B. gibsoni. The plasmid containing the firefly luciferase reporter gene (pBS-ELA) was transfected into B. gibsoni by an AMAXA 4D Nucleofector™ device. Transfection using program FA113 and Lonza buffer SF showed the highest luciferase expression. Twenty micrograms of plasmid produced the highest relative transfection efficiency. The fluorescent protein-expressing parasites were determined by GFP-containing plasmid (pBS-EGA) at 48 and 72h post transfection. This finding is the first step towards a stable transfection method for B. gibsoni, which may contribute to a better understanding of the biology of the parasite. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Successful therapeutic management of concurrent subclinical Eimeria leukarti and Babesia (Theileria) equi infection in a mare.

    PubMed

    Sudan, Vikrant; Sharma, R L; Gupta, S R; Borah, M K

    2013-10-01

    The occurrence of Eimeria leukarti infection in equine is being sporadically documented despite its cosmopolitan prevalence. A Marwari mare, aged 3 years and 6 months and owned by a socio-economically weaker class of labourer of royal families, was suffering from non specific enteric disorders. Detailed systemic clinical examination of mare confirmed subclinical enteric infection with E. leukarti and piroplasms of Babesia (Theileria) equi in the circulating erythrocytes. She was therapeutically managed with synchronous administration of specific and supportive therapy with success. Non specific clinical manifestations of the disease in equines, its debatable pathogenic significance, predisposing immunosuppressive impact of concurrent B. (T.) equi in circulating erythrocytes and probable reasons for under reporting of the disease in equines, etc. have been discussed.

  18. Babesia canis vogeli, Ehrlichia canis, and Anaplasma platys infection in a dog.

    PubMed

    Al Izzi, Salah; Martin, Donald S; Chan, Roxanne Y Y; Leutenegger, Christian M

    2013-12-01

    A 12-month-old male neutered mixed breed dog was presented with a history of diarrhea, lethargy, emaciation, polydypsia, and sniffling. Physical examination findings included pale mucous membranes, increased heart and respiratory rates, and normal rectal temperature (38°C). Hematologic abnormalities included anemia and thrombocytopenia. Biochemical abnormalities included hypoalbuminemia, hyperbilirubinemia, and elevated ALP and ALT activities. A SNAP 4Dx test result was positive for Ehrlichia canis. Babesia canis vogeli organisms were found in the peripheral blood films, while morulae of E canis were not seen. Real-time polymerase chain reaction testing confirmed the presence of both B c vogeli and E canis organisms, and also was positive for Anaplasma platys infection. The dog recovered following treatment with doxycycline and imidocarb dipropionate, with normal hematology and biochemical profiles. © 2013 American Society for Veterinary Clinical Pathology.

  19. Zoonotic viruses associated with illegally imported wildlife products

    USGS Publications Warehouse

    Smith, Kristine M.; Anthony, Simon J.; Switzer, William M.; Epstein, Jonathan H.; Seimon, Tracie; Jia, Hongwei; Sanchez, Maria D.; Huynh, Thanh Thao; Galland, G. Gale; Shapiro, Sheryl E.; Sleeman, Jonathan M.; McAloose, Denise; Stuchin, Margot; Amato, George; Kolokotronis, Sergios-Orestis; Lipkin, W. Ian; Karesh, William B.; Daszak, Peter; Marano, Nina

    2012-01-01

    The global trade in wildlife has historically contributed to the emergence and spread of infectious diseases. The United States is the world's largest importer of wildlife and wildlife products, yet minimal pathogen surveillance has precluded assessment of the health risks posed by this practice. This report details the findings of a pilot project to establish surveillance methodology for zoonotic agents in confiscated wildlife products. Initial findings from samples collected at several international airports identified parts originating from nonhuman primate (NHP) and rodent species, including baboon, chimpanzee, mangabey, guenon, green monkey, cane rat and rat. Pathogen screening identified retroviruses (simian foamy virus) and/or herpesviruses (cytomegalovirus and lymphocryptovirus) in the NHP samples. These results are the first demonstration that illegal bushmeat importation into the United States could act as a conduit for pathogen spread, and suggest that implementation of disease surveillance of the wildlife trade will help facilitate prevention of disease emergence.

  20. Zoonotic potential of emerging paramyxoviruses: knowns and unknowns

    PubMed Central

    Thibault, Patricia A; Watkinson, Ruth E; Moreira-Soto, Andres; Drexler, Jan Felix; Lee, Benhur

    2017-01-01

    The risk of spillover of enzootic paramyxoviruses, and the susceptibility of recipient human and domestic animal populations, are defined by a broad collection of ecological and molecular factors that interact in ways that are not yet fully understood. Nipah and Hendra viruses were the first highly-lethal zoonotic paramyxoviruses discovered in modern times, but other paramyxoviruses from multiple genera are present in bats and other reservoirs that have unknown potential to spill over into humans. We outline our current understanding of paramyxovirus reservoir hosts and the ecological factors that may drive spillover, and we explore the molecular barriers to spillover that emergent paramyxoviruses may encounter. By outlining what is known about enzootic paramyxovirus receptor usage, mechanisms of innate immune evasion, and other host-specific interactions, we highlight the breadth of unexplored avenues that may be important in understanding paramyxovirus emergence. PMID:28433050

  1. Zoonotic Viruses Associated with Illegally Imported Wildlife Products

    PubMed Central

    Switzer, William M.; Epstein, Jonathan H.; Seimon, Tracie; Jia, Hongwei; Sanchez, Maria D.; Huynh, Thanh Thao; Galland, G. Gale; Shapiro, Sheryl E.; Sleeman, Jonathan M.; McAloose, Denise; Stuchin, Margot; Amato, George; Kolokotronis, Sergios-Orestis; Lipkin, W. Ian; Karesh, William B.; Daszak, Peter; Marano, Nina

    2012-01-01

    The global trade in wildlife has historically contributed to the emergence and spread of infectious diseases. The United States is the world's largest importer of wildlife and wildlife products, yet minimal pathogen surveillance has precluded assessment of the health risks posed by this practice. This report details the findings of a pilot project to establish surveillance methodology for zoonotic agents in confiscated wildlife products. Initial findings from samples collected at several international airports identified parts originating from nonhuman primate (NHP) and rodent species, including baboon, chimpanzee, mangabey, guenon, green monkey, cane rat and rat. Pathogen screening identified retroviruses (simian foamy virus) and/or herpesviruses (cytomegalovirus and lymphocryptovirus) in the NHP samples. These results are the first demonstration that illegal bushmeat importation into the United States could act as a conduit for pathogen spread, and suggest that implementation of disease surveillance of the wildlife trade will help facilitate prevention of disease emergence. PMID:22253731

  2. PERFORMANCE EVALUATION OF A PROTOTYPE ARCHITECT ANTIBODY ASSAY FOR BABESIA MICROTI.

    PubMed

    Cheng, Kevin; Coller, Kelly E; Marohnic, Christopher C; Pfeiffer, Zachary A; Fino, James R; Elsing, Randee R; Bergsma, Janet; Marcinkus, Marilee A; Kar, Alak K; Gumbs, Orlando H; Otis, Kathy S; Fishpaugh, Jeffrey; Schultz, Phillip W; Pope, Mark R; Narvaez, Alfredo R; Wong, Susan J; Madison-Antenucci, Susan; Leary, Thomas P; Dawson, George J

    2018-05-09

    The tick-borne protozoan Babesia microti is responsible for more than 200 cases of transfusion-transmitted babesiosis (TTB) infection in the United States over the last 30 years. Measures to mitigate the risk of TTB include nucleic acid testing (NAT) and B. microti antibody testing. A fully automated prototype B. microti antibody test was developed on the ARCHITECT instrument. The specificity was determined to be 99.98% in volunteer blood donors (n=28,740) from areas considered as low endemic for B. microti The sensitivity of the prototype test was studied in experimentally-infected macaques; a total of 128 samples were detected compared to 125 with the indirect fluorescent antibody test (IFA), additionally, 83 (89.2%) of the PCR positive samples were detected compared to 81 (87.1%) using the IFA test. All PCR positive samples that tested negative in the prototype antibody test were pre-seroconversion period samples. Following seroconversion, periods of intermittent parasitemia occurred; 17 PCR negative samples drawn in-between PCR positive bleed dates, tested positive both by the prototype test (robust reactivity) and IFA (marginal reactivity) prior to the administration of therapeutic drugs, indicating that the PCR test failed to detect samples from persistently infected macaques. The prototype assay detected 56 of 58 (96.6%) human subjects diagnosed with clinical babesiosis by both PCR and IFA testing. Overall, the prototype anti-babesia assay provides a highly sensitive and specific test for the diagnosis of B. microti infection. While PCR is preferred for detection of window period parasitemia, antibody tests detect infected subjects during periods of low level parasitemia. Copyright © 2018 Cheng et al.

  3. Babesia lengau associated with cerebral and haemolytic babesiosis in two domestic cats.

    PubMed

    Bosman, Anna-Mari; Oosthuizen, Marinda C; Venter, Estelle H; Steyl, Johan C A; Gous, Tertius A; Penzhorn, Barend L

    2013-05-01

    Although reported sporadically from various countries, feline babesiosis appears to be a significant clinical entity only in South Africa, where Babesia felis is usually incriminated as the causative agent. Babesia lengau, recently described from asymptomatic cheetahs, has now possibly been incriminated as the causative agent in two severe clinical cases in domestic cats. Both cats were euthanised in extremis. While typical feline babesiosis in South Africa is an afebrile disease with a chronic manifestation, there was acute onset of severe clinical signs in both cats and their body temperatures were above the normal range when they were presented for treatment. Haemolytic anaemia was confirmed in one case. To our knowledge, this is the first report of cerebral babesiosis in cats.On reverse line blot 18S rDNA PCR products obtained from both cats showed positive hybridization profiles with the B. lengau species-specific probe. The two partial parasite 18S rRNA gene sequences obtained, showed high sequence similarity (99.9%) to B. lengau. In a representative tree constructed by the neighbor-joining method using the two-parameter model of Kimura the two obtained partial 18S rDNA sequences and that of B. lengau formed a monophyletic group with B. conradae and sequences previously isolated from humans and wildlife in the western USA. All clinical cases of feline babesiosis in South Africa are not necessarily caused by B. felis. Other piroplasms, e.g. B. lengau, may be incriminated in clinical cases, especially those occurring outside the known endemic area.

  4. Epidemiology of Babesia, Anaplasma and Trypanosoma species using a new expanded reverse line blot hybridization assay.

    PubMed

    Paoletta, Martina Soledad; López Arias, Ludmila; de la Fournière, Sofía; Guillemi, Eliana Carolina; Luciani, Carlos; Sarmiento, Néstor Fabián; Mosqueda, Juan; Farber, Marisa Diana; Wilkowsky, Silvina Elizabeth

    2018-02-01

    Vector-borne hemoparasitic infections are a major problem that affects livestock industries worldwide, particularly in tropical and subtropical regions. In this work, a reverse line blot (RLB) hybridization assay was developed for the simultaneous detection and identification of Anaplasma, Babesia and bovine trypanosomes, encompassing in this way the most relevant hemoparasites that affect cattle. A total of 186 bovine blood samples collected from two different ecoepidemiological regions of northeast Argentina, with and without tick control, were analyzed with this new RLB. High diversity of parasites, such as Babesia bovis, B. bigemina, Anaplasma marginale and three different Trypanosoma species, was found. High rates of coinfections were also detected, and significant differences were observed not only in the prevalence of parasites but also in the level of coinfections between the two analyzed areas. Regarding the Trypanosoma genus, we provide molecular evidence of the presence of T. vivax and T. theileri for the first time in Argentina. Besides, since the RLB is a prospective tool, it allowed the identification of a yet unknown bovine trypanosome which could not be assigned to any of the bovine species known so far. In the present study we provide new insights on the prevalence of several pathogens that directly impact on livestock production in Argentina. The RLB assay developed here allows to identify simultaneously numerous pathogenic species which can also be easily expanded to detect other blood borne pathogens. These characteristics make the RLB hybridization assay an essential tool for epidemiological survey of all vector-borne pathogens. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Detection of Babesia bovis carrier cattle by using polymerase chain reaction amplification of parasite DNA.

    PubMed Central

    Fahrimal, Y; Goff, W L; Jasmer, D P

    1992-01-01

    Carrier cattle infected with Babesia bovis are difficult to detect because of the low numbers of parasites that occur in peripheral blood. However, diagnosis of low-level infections with the parasite is important for evaluating the efficacies of vaccines and in transmission and epidemiological studies. We used the polymerase chain reaction (PCR) to amplify a portion of the apocytochrome b gene from the parasite and tested the ability of this method to detect carrier cattle. The target sequence is associated with a 7.4-kb DNA element in undigested B. bovis genomic DNA (as shown previously), and the amplified product was detected by Southern and dot blot hybridization. The assay was specific for B. bovis, since no amplification was detected with Babesia bigemina, Trypanosoma brucei, Anaplasma marginale, or leukocyte DNA. The target sequence was amplified in DNA from B. bovis Mexico, Texas, and Australia S and L strains, demonstrating the applicability of the method to strains from different geographic regions. The sensitivity of the method ranged from 1 to 10 infected erythrocytes extracted from 0.5 ml of blood. This sensitivity was about 1,000 times greater than that from the use of unamplified parasite DNA. By the PCR method, six B. bovis carrier cattle were detected 86% of the time (range, 66 to 100%) when they were tested 11 times, while with microscopic examination of thick blood smears, the same carrier cattle were detected only 36% of the time (range, 17 to 66%). The method provides a useful diagnostic tool for detecting B. bovis carrier cattle, and the sensitivity is significantly improved over that of current methods. The results also suggest that characteristics of the apocytchrome b gene may make this a valuable target DNA for PCR-based detection of other hemoparasites. Images PMID:1624551

  6. A Review of the Current Status of Relevant Zoonotic Pathogens in Wild Swine (Sus scrofa) Populations: Changes Modulating the Risk of Transmission to Humans.

    PubMed

    Ruiz-Fons, F

    2017-02-01

    Many wild swine populations in different parts of the World have experienced an unprecedented demographic explosion that may result in increased exposure of humans to wild swine zoonotic pathogens. Interactions between humans and wild swine leading to pathogen transmission could come from different ways, being hunters and game professionals the most exposed to acquiring infections from wild swine. However, increasing human settlements in semi-natural areas, outdoor activities, socio-economic changes and food habits may increase the rate of exposure to wild swine zoonotic pathogens and to potentially emerging pathogens from wild swine. Frequent and increasing contact rate between humans and wild swine points to an increasing chance of zoonotic pathogens arising from wild swine to be transmitted to humans. Whether this frequent contact could lead to new zoonotic pathogens emerging from wild swine to cause human epidemics or emerging disease outbreaks is difficult to predict, and assessment should be based on thorough epidemiologic surveillance. Additionally, several gaps in knowledge on wild swine global population dynamics trends and wild swine-zoonotic pathogen interactions should be addressed to correctly assess the potential role of wild swine in the emergence of diseases in humans. In this work, viruses such as hepatitis E virus, Japanese encephalitis virus, Influenza virus and Nipah virus, and bacteria such as Salmonella spp., Shiga toxin-producing Escherichia coli, Campylobacter spp. and Leptospira spp. have been identified as the most prone to be transmitted from wild swine to humans on the basis of geographic spread in wild swine populations worldwide, pathogen circulation rates in wild swine populations, wild swine population trends in endemic areas, susceptibility of humans to infection, transmissibility from wild swine to humans and existing evidence of wild swine-human transmission events. © 2015 Blackwell Verlag GmbH.

  7. Multiple Infections of Rodents with Zoonotic Pathogens in Austria

    PubMed Central

    Schmidt, Sabrina; Essbauer, Sandra S.; Mayer-Scholl, Anne; Poppert, Sven; Schmidt-Chanasit, Jonas; Klempa, Boris; Henning, Klaus; Schares, Gereon; Groschup, Martin H.; Spitzenberger, Friederike; Richter, Dania; Heckel, Gerald

    2014-01-01

    Abstract Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host–pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans. PMID

  8. Multiple infections of rodents with zoonotic pathogens in Austria.

    PubMed

    Schmidt, Sabrina; Essbauer, Sandra S; Mayer-Scholl, Anne; Poppert, Sven; Schmidt-Chanasit, Jonas; Klempa, Boris; Henning, Klaus; Schares, Gereon; Groschup, Martin H; Spitzenberger, Friederike; Richter, Dania; Heckel, Gerald; Ulrich, Rainer G

    2014-07-01

    Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host-pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans.

  9. Public health significance of zoonotic tapeworms in Korea.

    PubMed

    Moon, J R

    1976-06-01

    Through an epidemiological review on the zoonotic tapeworms in Korea, the frequency and severity of the zoonoses have been recognized. Taeniasis and human cysticercosis are of importance to the public health in Korea. The frequency of taeniasis is 0.3% to 12.7% discovered by stool examination and 4.5% to 38.0% discovered by questionaire survey. Taeniasis occurs more frequently in males than in females and, especially, in both sexes in the age-group of 20 to 49. T. saginata is more common that T. solium. No case of human cysticercosis caused by T.saginata has been reported in Korea. To the contrary, human cysticercosis caused by T. solium has been reported frequently during the 1960's. The severity of human cysticercosis is a significant problem of public health in Korea. Old data on bovine cysticercosis in the 1920's and 1930's are not useful for present control measures. Systematic surveys on bovine and swine cysticercosis as well as taeniasis and human cysticercosis are needed in Korea. Cases of sparganosis have been reported frequently during the past 15 years. Most of the 34 cases of sparganosis reported involved the eating of raw snakes and frogs. Most of the cases occurred in older males. Sparganosis in snakes, frogs, chickens, and swine has been reported in Korea. Human infection of Hymenolepis nana ranged from 0.2% to 1.4% discovered by stool examination. A few cases of adult worm collections of Diphyllobothrium latum and Hymenolepis diminuta have been reported in Korea. Two cases of human hydatid disease have been reported in Korea. No study on the disease in domestic animals is available. No case of human infection with dog tapeworm has been reported, even though it is highly prevalent in the indigenous dogs in Korea. I recommend that further study on the zoonotic tapeworms be conducted epidemiologically in Korea to get basic data for the public health programming.

  10. Multisectoral prioritization of zoonotic diseases in Uganda, 2017: A One Health perspective

    PubMed Central

    Bulage, Lilian; Kihembo, Christine; Nantima, Noelina; Monje, Fred; Ndumu, Deo; Sentumbwe, Juliet; Mbolanyi, Betty; Aruho, Robert; Kaboyo, Winyi; Mutonga, David; Basler, Colin; Paige, Sarah; Barton Behravesh, Casey

    2018-01-01

    Background Zoonotic diseases continue to be a public health burden globally. Uganda is especially vulnerable due to its location, biodiversity, and population. Given these concerns, the Ugandan government in collaboration with the Global Health Security Agenda conducted a One Health Zoonotic Disease Prioritization Workshop to identify zoonotic diseases of greatest national concern to the Ugandan government. Materials and methods The One Health Zoonotic Disease Prioritization tool, a semi-quantitative tool developed by the U.S. Centers for Disease Control and Prevention, was used for the prioritization of zoonoses. Workshop participants included voting members and observers representing multiple government and non-governmental sectors. During the workshop, criteria for prioritization were selected, and questions and weights relevant to each criterion were determined. We used a decision tree to provide a ranked list of zoonoses. Participants then established next steps for multisectoral engagement for the prioritized zoonoses. A sensitivity analysis demonstrated how criteria weights impacted disease prioritization. Results Forty-eight zoonoses were considered during the workshop. Criteria selected to prioritize zoonotic diseases were (1) severity of disease in humans in Uganda, (2) availability of effective control strategies, (3) potential to cause an epidemic or pandemic in humans or animals, (4) social and economic impacts, and (5) bioterrorism potential. Seven zoonotic diseases were identified as priorities for Uganda: anthrax, zoonotic influenza viruses, viral hemorrhagic fevers, brucellosis, African trypanosomiasis, plague, and rabies. Sensitivity analysis did not indicate significant changes in zoonotic disease prioritization based on criteria weights. Discussion One Health approaches and multisectoral collaborations are crucial to the surveillance, prevention, and control strategies for zoonotic diseases. Uganda used such an approach to identify zoonoses of

  11. An Evaluation of Quantitative PCR Assays (TaqMan® and SYBR Green) for the Detection of Babesia bigemina and Babesia bovis, and a Novel Fluorescent-ITS1-PCR Capillary Electrophoresis Method for Genotyping B. bovis Isolates

    PubMed Central

    Zhang, Bing; Sambono, Jacqueline L.; Morgan, Jess A. T.; Venus, Bronwyn; Rolls, Peter; Lew-Tabor, Ala E.

    2016-01-01

    Babesia spp. are tick-transmitted haemoparasites causing tick fever in cattle. In Australia, economic losses to the cattle industry from tick fever are estimated at AUD$26 Million per annum. If animals recover from these infections, they become immune carriers. Here we describe a novel multiplex TaqMan qPCR targeting cytochrome b genes for the identification of Babesia spp. The assay shows high sensitivity, specificity and reproducibility, and allows quantification of parasite DNA from Babesia bovis and B. bigemina compared to standard PCR assays. A previously published cytochrome b SYBR Green qPCR was also tested in this study, showing slightly higher sensitivity than the Taqman qPCRs but requires melting curve analysis post-PCR to confirm specificity. The SYBR Green assays were further evaluated using both diagnostic submissions and vaccinated cattle (at 7, 9, 11 and 14 days post-inoculation) showed that B. bigemina can be detected more frequently than B. bovis. Due to fewer circulating parasites, B. bovis detection in carrier animals requires higher DNA input. Preliminary data for a novel fluorescent PCR genotyping based on the Internal Transcribed Spacer 1 region to detect vaccine and field alleles of B. bovis are described. This assay is capable of detecting vaccine and novel field isolate alleles in a single sample. PMID:29056732

  12. RPS8—a New Informative DNA Marker for Phylogeny of Babesia and Theileria Parasites in China

    PubMed Central

    Tian, Zhan-Cheng; Liu, Guang-Yuan; Yin, Hong; Luo, Jian-Xun; Guan, Gui-Quan; Luo, Jin; Xie, Jun-Ren; Shen, Hui; Tian, Mei-Yuan; Zheng, Jin-feng; Yuan, Xiao-song; Wang, Fang-fang

    2013-01-01

    Piroplasmosis is a serious debilitating and sometimes fatal disease. Phylogenetic relationships within piroplasmida are complex and remain unclear. We compared the intron–exon structure and DNA sequences of the RPS8 gene from Babesia and Theileria spp. isolates in China. Similar to 18S rDNA, the 40S ribosomal protein S8 gene, RPS8, including both coding and non-coding regions is a useful and novel genetic marker for defining species boundaries and for inferring phylogenies because it tends to have little intra-specific variation but considerable inter-specific difference. However, more samples are needed to verify the usefulness of the RPS8 (coding and non-coding regions) gene as a marker for the phylogenetic position and detection of most Babesia and Theileria species, particularly for some closely related species. PMID:24244571

  13. A molecular study of tick-borne haemoprotozoan parasites (Theileria and Babesia) in small ruminants in Northern Tunisia.

    PubMed

    M'ghirbi, Youmna; Ros-García, Amaia; Iribar, Pilar; Rhaim, Adel; Hurtado, Ana; Bouattour, Ali

    2013-11-15

    In this study, the frequency of Theileria and Babesia species in sheep and goats was assessed via reverse line blotting (RLB). A total of 263 apparently healthy sheep and goats, from 16 randomly selected flocks located in 9 localities situated in 3 bioclimatic zones in Tunisia, were investigated for the blood protozoans. RLB hybridization with polymerase chain reaction detected only Theileria ovis in sheep and goats, accounting for 22.4% (95% confidence interval [CI]: 17.6-27.1%) positive samples. The infection rate in sheep (28.1%; 95% CI: 23.8-32.3%) was higher than in goats (4.7%; 95% CI: -10.9 to 20.4%). Neither Babesia nor mixed infections were detected. Only two Ixodid tick species (Rhipicephalus turanicus and Rhipicephalus bursa) were collected from the examined sheep and goats in 5 localities. R. turanicus was the dominant species (95.5%) collected mainly in the humid zone, while apparently rare in the sub-humid zone. R. bursa was the only species collected in the semi-arid area. RLB analysis identified six different piroplasms in ticks, with an overall prevalence of 31.5% (95% CI: 28.1-34.9%). Twenty percent (95% CI: 14.4-25.5%) of the collected ticks tested positive for Theileria spp., 3% (95% CI: -5.6 to 11.6%) for Babesia spp. and 0.9% (95% CI: -8.1 to 9.9%) of the ticks harbored both genera; several of these species are not known to occur in small ruminants. This is the first report on the detection of Theileria and Babesia species DNA in small ruminants and ticks in Tunisia. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Infection of Domestic Dogs in Peru by Zoonotic Bartonella Species: A Cross-Sectional Prevalence Study of 219 Asymptomatic Dogs

    PubMed Central

    Diniz, Pedro Paulo V. P.; Morton, Bridget A.; Tngrian, Maryam; Kachani, Malika; Barrón, Eduardo A.; Gavidia, Cesar M.; Gilman, Robert H.; Angulo, Noelia P.; Brenner, Elliott C.; Lerner, Richard; Chomel, Bruno B.

    2013-01-01

    Bartonella species are emerging infectious organisms transmitted by arthropods capable of causing long-lasting infection in mammalian hosts. Among over 30 species described from four continents to date, 15 are known to infect humans, with eight of these capable of infecting dogs as well. B. bacilliformis is the only species described infecting humans in Peru; however, several other Bartonella species were detected in small mammals, bats, ticks, and fleas in that country. The objective of this study was to determine the serological and/or molecular prevalence of Bartonella species in asymptomatic dogs in Peru in order to indirectly evaluate the potential for human exposure to zoonotic Bartonella species. A convenient sample of 219 healthy dogs was obtained from five cities and three villages in Peru. EDTA-blood samples were collected from 205 dogs, whereas serum samples were available from 108 dogs. The EDTA-blood samples were screened by PCR followed by nucleotide sequencing for species identification. Antibodies against B. vinsonii berkhoffii and B. rochalimae were detected by IFA (cut-off of 1∶64). Bartonella DNA was detected in 21 of the 205 dogs (10%). Fifteen dogs were infected with B. rochalimae, while six dogs were infected with B. v. berkhoffii genotype III. Seropositivity for B. rochalimae was detected in 67 dogs (62%), and for B. v. berkhoffii in 43 (40%) of the 108 dogs. Reciprocal titers ≥1∶256 for B. rochalimae were detected in 19% of dogs, and for B. v. berkhoffii in 6.5% of dogs. This study identifies for the first time a population of dogs exposed to or infected with zoonotic Bartonella species, suggesting that domestic dogs may be the natural reservoir of these zoonotic organisms. Since dogs are epidemiological sentinels, Peruvian humans may be exposed to infections with B. rochalimae or B. v. berkhoffii. PMID:24040427

  15. Survey of Ehrlichia canis, Babesia spp. and Hepatozoon spp. in dogs from a semiarid region of Brazil.

    PubMed

    Rotondano, Tereza Emmanuelle de Farias; Almeida, Herta Karyanne Araújo; Krawczak, Felipe da Silva; Santana, Vanessa Lira; Vidal, Ivana Fernandes; Labruna, Marcelo Bahia; de Azevedo, Sérgio Santos; Ade lmeida, Alzira Maria Paiva; de Melo, Marcia Almeida

    2015-01-01

    This study assessed the occurrence of Ehrlichia spp., Babesia spp. and Hepatozoon spp. infections in 100 tick-harboring dogs from a semiarid region of the State of Paraíba, Northeastern Brazil. Blood samples and ticks were collected from the animals, and a questionnaire was submitted to dog owners to obtain general data. Blood samples were used to perform hemogram, direct blood smear and immunological and molecular hemoparasite detection. The 1,151 ticks collected were identified as Rhipicephalus sanguineus; direct smears revealed E. canis-like morulae in the monocytes of 4% (4/100) of the non-vaccinated female dogs, and 34% and 25% of the dogs tested positive for Ehrlichia canis by indirect immunofluorescence assay (IFA) and polymerase chain reaction (PCR), respectively. Blood smear examination revealed Babesia-suggestive merozoites in the erythrocytes of 2% (2/100) of the animals. Babesia vogeli was detected by PCR in ten animals (10%) and was correlated with young age (p = 0.007) and thrombocytopenia (p = 0.01). None of the animals showed Hepatozoon spp. positivity. These results indicate that E. canis is the main tick-borne canine pathogen in the study area and provide the first report of B. vogeli infection in dogs from Paraiba State.

  16. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction.

    PubMed

    Jackson, Andrew P; Otto, Thomas D; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B; Moussa, Ehab; Nair, Mridul; Reid, Adam J; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A; Weir, William; Wastling, Jonathan M; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R; Pain, Arnab

    2014-06-01

    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5' ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Molecular and serologic evidence for Babesia bovis-like parasites in white-tailed deer (Odocoileus virginianus) in south Texas.

    PubMed

    Ramos, Christina M; Cooper, Susan M; Holman, Patricia J

    2010-09-20

    The current study was undertaken to determine if white-tailed deer in south Texas harbor Babesia bovis, a causative agent of bovine babesiosis. Blood samples from free-ranging white-tailed deer (Odocoileus virginianus) on two ranches in LaSalle and Webb Counties were screened for B. bovis and other hemoparasites by the polymerase chain reaction (PCR) to detect the piroplasm 18S rDNA. Serology was conducted on selected samples to detect antibody activity to B. bovis by the immunofluorescent antibody test (IFAT). PCR revealed that 16% of the LaSalle County samples and 4% of the Webb County samples were positive for B. bovis. Five of the LaSalle County and the two Webb County B. bovis 18S rDNA amplicons were cloned and sequenced. The resulting clones shared 99% identity to B. bovis 18S rRNA gene sequences derived from cattle isolates. Weak seroreactivity to B. bovis was shown by the IFAT. The samples were also screened for additional hemoparasites of deer including Theileria cervi, Babesia odocoilei and other Babesia spp. A genotypically unique Theileria sp. was found, along with T. cervi and B. odocoilei. The finding of putative B. bovis in white-tailed deer necessitates further study to determine if deer may act as a transient host or even a reservoir of infection for B. bovis pathogenic to cattle.

  18. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host–parasite interaction

    PubMed Central

    Jackson, Andrew P.; Otto, Thomas D.; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B.; Moussa, Ehab; Nair, Mridul; Reid, Adam J.; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A.; Weir, William; Wastling, Jonathan M.; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R.; Pain, Arnab

    2014-01-01

    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5′ ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. PMID:24799432

  19. Interactions between the intestinal flagellates Giardia muris and Spironucleus muris and the blood parasites Babesia microti, Plasmodium yoelii and Plasmodium berghei in mice.

    PubMed

    Brett, S J; Cox, F E

    1982-08-01

    In mice infected with the intestinal flagellates Giardia muris or Spironucleus muris, together with the blood parasites Babesia microti or Plasmodium yoelii, there is a temporary decrease of flagellate cyst output coincident with the peak of the blood parasite infections, followed by a rapid return to normal levels. This decrease in cyst output is correlated with decreased numbers of trophozoites in the small intestine. The effect on S. muris is more marked than that on G. muris. Neither blood parasites has any effect on the total duration of the flagellate infection and the flagellates do not affect the blood parasites. In mice infected with G. muris or S. muris and P. berghei there is also a decrease in cyst output but this is less apparent than in infections with B. microti or P. yoelii because of the fatal nature of the P. berghei infection. It is suggested that the decrease in cyst output is probably due to changes in the contents of the small intestine or to non-specific immunological factors rather than to specific immunological changes.

  20. The response of the pituitary-adrenal and pituitary-thyroidal axes to the plasma glucose perturbations in Babesia canis rossi babesiosis.

    PubMed

    Schoeman, J P; Herrtage, M E

    2007-12-01

    This prospective, cross-sectional, interventional study was designed to determine the association between the hormones of the pituitary-adrenal and pituitary-thyroid axes and other clinical parameters with the blood glucose perturbations in dogs with naturally occurring Babesia canis rossi babesiosis. Thirty-six dogs with canine babesiosis were studied. Blood samples were obtained from the jugular vein in each dog prior to treatment at admission to hospital and serum endogenous adrenocorticotrophic hormone (ACTH), pre-ACTH cortisol, thyroxine, free thyroxine and TSH concentrations were measured. Immediately thereafter each dog was injected intravenously with 5 microg/kg of ACTH (tetracosactrin). A 2nd blood sample was taken 1 hour later for serum post-ACTH cortisol measurement. Three patient groups were recruited: hypoglycaemic dogs (glucose < 3.3 mmol/l, n = 12); normoglycaemic dogs (glucose 3.3-5.5 mmol/l, n = 12); hyperglycaemic dogs (glucose > 5.5 mmol/l, n = 12). Basal and post-ACTH serum cortisol concentrations were significantly higher in hypoglycaemic dogs, whereas body temperature, serum thyroxine and free thyroxine were significantly lower in hypoglycaemic dogs. Haematocrit was significantly lower in both hypo-and hyperglycaemic dogs compared with normoglycaemic dogs. Low blood glucose concentrations were significantly associated with high basal and post-ACTH cortisol concentrations and with low serum thyroxine and free thyroxine concentrations in dogs suffering from B. canis rossi babesiosis.

  1. Competitive Enzyme-Linked Immunosorbent Assay Based on a Rhoptry-Associated Protein 1 Epitope Specifically Identifies Babesia bovis-Infected Cattle

    PubMed Central

    Goff, Will L.; McElwain, Terry F.; Suarez, Carlos E.; Johnson, Wendell C.; Brown, Wendy C.; Norimine, Junzo; Knowles, Donald P.

    2003-01-01

    The competitive enzyme-linked immunosorbent assay (cELISA) format has proven to be an accurate, reliable, easily standardized, and high-throughput method for detecting hemoparasite infections. In the present study, a species-specific, broadly conserved, and tandemly repeated B-cell epitope within the C terminus of the rhoptry-associated protein 1 of the hemoparasite Babesia bovis was cloned and expressed as a histidine-tagged thioredoxin fusion peptide and used as antigen in a cELISA. The assay was optimized with defined negative and positive bovine sera, where positive sera inhibited the binding of the epitope-specific monoclonal antibody BABB75A4. The cELISA accurately differentiated animals with B. bovis-specific antibodies from uninfected animals and from animals with antibodies against other tick-borne hemoparasites (98.7% specificity). In addition, B. bovis-specific sera from Australia, Argentina, Bolivia, Puerto Rico, and Morocco inhibited the binding of BABB75A4, confirming conservation of the epitope. The assay first detected experimentally infected animals between 13 and 17 days postinfection, and with sera from naturally infected carrier cattle, was comparable to indirect immunofluorescence (98.3% concordance). The assay appears to have the characteristics necessary for an epidemiologic and disease surveillance tool. PMID:12522037

  2. Prevention and Control of Fish-borne Zoonotic Trematodes in Fish Nurseries, Vietnam

    PubMed Central

    Madsen, Henry; Murrell, K. Darwin; Van, Phan Thi; Thu, Ha Nguyen Thi; Do, Dung Trung; Thi, Lan Anh Nguyen; Manh, Hung Nguyen; Dalsgaard, Anders

    2012-01-01

    Worldwide, >18 million persons were infected with fish-borne zoonotic trematodes in 2002. To evaluate the effectiveness of interventions for reducing prevalence and intensity of fish-borne zoonotic trematode infections in juvenile fish, we compared transmission rates at nurseries in the Red River Delta, northern Vietnam. Rates were significantly lower for nurseries that reduced snail populations and trematode egg contamination in ponds than for nurseries that did not. These interventions can be used in the development of programs for sustained control of zoonotic trematodes in farmed fish. PMID:22932069

  3. Occupational health and safety in small animal veterinary practice: Part I--nonparasitic zoonotic diseases.

    PubMed

    Weese, J S; Peregrine, A S; Armstrong, J

    2002-08-01

    Zoonotic diseases are an ever-present concern in small animal veterinary practice and are often overlooked. A variety of nonparasitic zoonotic diseases may be encountered in small animal practice, including cat scratch disease (bartonellosis), cat bite abscesses, rabies, leptospirosis, methicillin-resistant Staphylococcus aureus, Clostridium difficile-associated diarrhea, salmonellosis, avian chlamydiosis, campylobacteriosis, dermatophytosis, and blastomycosis. These may cause human disease ranging from mild and self-limiting to fatal. The risk of development of a zoonotic disease can be lessened by early recognition of infected animals, proper animal handling, basic biosecurity precautions, and, most importantly, personal hygiene.

  4. Prevention and control of fish-borne zoonotic trematodes in fish nurseries, Vietnam.

    PubMed

    Hedegaard Clausen, Jesper; Madsen, Henry; Murrell, K Darwin; Van, Phan Thi; Thu, Ha Nguyen Thi; Do, Dung Trung; Nguyen Thi, Lan Anh; Nguyen Manh, Hung; Dalsgaard, Anders

    2012-09-01

    Worldwide, >18 million persons were infected with fish-borne zoonotic trematodes in 2002. To evaluate the effectiveness of interventions for reducing prevalence and intensity of fish-borne zoonotic trematode infections in juvenile fish, we compared transmission rates at nurseries in the Red River Delta, northern Vietnam. Rates were significantly lower for nurseries that reduced snail populations and trematode egg contamination in ponds than for nurseries that did not. These interventions can be used in the development of programs for sustained control of zoonotic trematodes in farmed fish.

  5. Modeling spatial risk of zoonotic cutaneous leishmaniasis in Central Iran.

    PubMed

    Shiravand, Babak; Tafti, Abbas Ali Dehghani; Hanafi-Bojd, Ahmad Ali; Almodaresi, S Ali; Mirzaei, Masoud; Abai, Mohammad Reza

    2018-06-18

    Zoonotic Cutaneous Leishmaniasis (ZCL) is one of the endemic diseases in central part of Iran. The aim of this cross-sectional study was to find the areas with a higher risk of infection considering the distribution of vector, reservoir hosts and human infection. Passive data recorded the positive cases of cutaneous leishmaniasis in Yazd province health center were collected for 10 years, from 2007 to 2016 at the County level. Considering all earlier studies conducted in Yazd province, records of Phlebotomus papatasi, the main vector of ZCL, and Rhombomys opimus, the main reservoir of ZCL, were collected and entered in a database. ArcGIS and MaxEnt model were used to map and predict the best ecological niches for both vector and reservoir. The most cumulative incidence of the disease was found to be in Khatam County, south of Yazd province. The area under curve (AUC) for R. opimus and P. papatasi was 0.955 and 0.914, respectively. We found higher presence probability of both vector and reservoir in central and eastern parts of the province. The jackknife test indicated that temperature and normalized difference vegetation index (NDVI) had the most effect on the model for the vector and reservoir, respectively. The areas with higher presence probability for the reservoirs and vectors were considered having the higher potential for ZCL transmission. These findings can be used to prevent and control the disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Human and Animal Dirofilariasis: the Emergence of a Zoonotic Mosaic

    PubMed Central

    Siles-Lucas, Mar; Morchón, Rodrigo; González-Miguel, Javier; Mellado, Isabel; Carretón, Elena; Montoya-Alonso, Jose Alberto

    2012-01-01

    Summary: Dirofilariasis represents a zoonotic mosaic, which includes two main filarial species (Dirofilaria immitis and D. repens) that have adapted to canine, feline, and human hosts with distinct biological and clinical implications. At the same time, both D. immitis and D. repens are themselves hosts to symbiotic bacteria of the genus Wolbachia, the study of which has resulted in a profound shift in the understanding of filarial biology, the mechanisms of the pathologies that they produce in their hosts, and issues related to dirofilariasis treatment. Moreover, because dirofilariasis is a vector-borne transmitted disease, their distribution and infection rates have undergone significant modifications influenced by global climate change. Despite advances in our knowledge of D. immitis and D. repens and the pathologies that they inflict on different hosts, there are still many unknown aspects of dirofilariasis. This review is focused on human and animal dirofilariasis, including the basic morphology, biology, protein composition, and metabolism of Dirofilaria species; the climate and human behavioral factors that influence distribution dynamics; the disease pathology; the host-parasite relationship; the mechanisms involved in parasite survival; the immune response and pathogenesis; and the clinical management of human and animal infections. PMID:22763636

  7. Genetic blueprint of the zoonotic pathogen Toxocara canis

    PubMed Central

    Zhu, Xing-Quan; Korhonen, Pasi K.; Cai, Huimin; Young, Neil D.; Nejsum, Peter; von Samson-Himmelstjerna, Georg; Boag, Peter R.; Tan, Patrick; Li, Qiye; Min, Jiumeng; Yang, Yulan; Wang, Xiuhua; Fang, Xiaodong; Hall, Ross S.; Hofmann, Andreas; Sternberg, Paul W.; Jex, Aaron R.; Gasser, Robin B.

    2015-01-01

    Toxocara canis is a zoonotic parasite of major socioeconomic importance worldwide. In humans, this nematode causes disease (toxocariasis) mainly in the under-privileged communities in developed and developing countries. Although relatively well studied from clinical and epidemiological perspectives, to date, there has been no global investigation of the molecular biology of this parasite. Here we use next-generation sequencing to produce a draft genome and transcriptome of T. canis to support future biological and biotechnological investigations. This genome is 317 Mb in size, has a repeat content of 13.5% and encodes at least 18,596 protein-coding genes. We study transcription in a larval, as well as adult female and male stages, characterize the parasite’s gene-silencing machinery, explore molecules involved in development or host–parasite interactions and predict intervention targets. The draft genome of T. canis should provide a useful resource for future molecular studies of this and other, related parasites. PMID:25649139

  8. Decontamination of High-risk Animal and Zoonotic Pathogens

    PubMed Central

    Menrath, Andrea; Tomuzia, Katharina; Braeunig, Juliane; Appel, Bernd

    2013-01-01

    Preparedness for the decontamination of affected environments, premises, facilities, and products is one prerequisite for an immediate response to an animal disease outbreak. Various information sources provide recommendations on how to proceed in an outbreak situation to eliminate biological contaminants and to stop the spread of the disease. In order to facilitate the identification of the right decontamination strategy, we present an overview of relevant references for a collection of pathogenic agents. The choice of pathogens is based on a survey of lists containing highly pathogenic agents and/or biological agents considered to be potential vehicles for deliberate contamination of food, feed, or farm animals. European legislation and guidelines from national and international institutions were screened to find decontamination protocols for each of the agents. Identified recommendations were evaluated with regard to their area of application, which could be facilities and equipment, wastes, food, and other animal products. The requirements of a disinfectant for large-scale incidents were gathered, and important characteristics (eg, inactivating spectrum, temperature range, toxicity to environment) of the main recommended disinfectants were summarized to assist in the choice of a suitable and efficient approach in a crisis situation induced by a specific high-risk animal or zoonotic pathogen. The literature search revealed numerous relevant recommendations but also legal gaps for certain diseases, such as Q fever or brucellosis, and legal difficulties for the use of recommended disinfectants. A lack of information about effective disinfectants was identified for some agents. PMID:23971795

  9. Decontamination of high-risk animal and zoonotic pathogens.

    PubMed

    Frentzel, Hendrik; Menrath, Andrea; Tomuzia, Katharina; Braeunig, Juliane; Appel, Bernd

    2013-09-01

    Preparedness for the decontamination of affected environments, premises, facilities, and products is one prerequisite for an immediate response to an animal disease outbreak. Various information sources provide recommendations on how to proceed in an outbreak situation to eliminate biological contaminants and to stop the spread of the disease. In order to facilitate the identification of the right decontamination strategy, we present an overview of relevant references for a collection of pathogenic agents. The choice of pathogens is based on a survey of lists containing highly pathogenic agents and/or biological agents considered to be potential vehicles for deliberate contamination of food, feed, or farm animals. European legislation and guidelines from national and international institutions were screened to find decontamination protocols for each of the agents. Identified recommendations were evaluated with regard to their area of application, which could be facilities and equipment, wastes, food, and other animal products. The requirements of a disinfectant for large-scale incidents were gathered, and important characteristics (eg, inactivating spectrum, temperature range, toxicity to environment) of the main recommended disinfectants were summarized to assist in the choice of a suitable and efficient approach in a crisis situation induced by a specific high-risk animal or zoonotic pathogen. The literature search revealed numerous relevant recommendations but also legal gaps for certain diseases, such as Q fever or brucellosis, and legal difficulties for the use of recommended disinfectants. A lack of information about effective disinfectants was identified for some agents.

  10. Zoonotic Cutaneous Leishmaniasis Prevalence Among Farmers in Central Tunisia, 2014.

    PubMed

    Bellali, Hedia; Chemak, Fraj; Nouiri, Issam; Ben Mansour, Dorra; Ghrab, Jamila; Chahed, Mohamed Kouni

    2017-01-01

    Zoonotic cutaneous leishmaniasis (ZCL) is endemic in central Tunisia and is more prevalent in rural agricultural areas. The aim of this work was to determine ZCL prevalence among farmers and to test their availability to take ownership of the problem and participate actively to fight and address the disease. A sample of farmers from Sidi Bouzid, central Tunisia, was selected randomly. Farmers were interviewed using a standardized questionnaire about ZCL lesion occurrence, its date of onset among family members, and the farmers' availability to contribute to fighting this disease. ZCL occurred in at least one of the family members of 38.5% interviewed farmers. The disease was endemic with recurrent epidemics every 4 or 5 years. ZCL among farmers was associated with irrigation management. With regard to ZCL preventive measures, the majority of farmers agreed and expressed willingness to collaborate (93.1%), to follow health care facilities instructions (73.1%), and to join the nongovernmental organization (NGO) (56.9%). However, they did not agree to reduce irrigation activities mainly at night, to live far from their irrigated fields, or to sleep out of their houses at night. ZCL is more prevalent in farmers engaged in irrigation activities. Farmers are not agreeable to reducing their activity to avoid exposure to the sand fly bites. Thus, population involvement and commitment is required to implement effective control measures to fight and address ZCL.

  11. Update on Baylisascariasis, a Highly Pathogenic Zoonotic Infection

    PubMed Central

    Morassutti, Alessandra Loureiro; Kazacos, Kevin R.

    2016-01-01

    SUMMARY Baylisascaris procyonis, the raccoon roundworm, infects a wide range of vertebrate animals, including humans, in which it causes a particularly severe type of larva migrans. It is an important cause of severe neurologic disease (neural larva migrans [NLM]) but also causes ocular disease (OLM; diffuse unilateral subacute neuroretinitis [DUSN]), visceral larva migrans (VLM), and covert/asymptomatic infections. B. procyonis is common and widespread in raccoons, and there is increasing recognition of human disease, making a clinical consideration of baylisascariasis important. This review provides an update for this disease, especially its clinical relevance and diagnosis, and summarizes the clinical cases of human NLM and VLM known to date. Most diagnosed patients have been young children less than 2 years of age, although the number of older patients diagnosed in recent years has been increasing. The recent development of recombinant antigen-based serodiagnostic assays has aided greatly in the early diagnosis of this infection. Patients recovering with fewer severe sequelae have been reported in recent years, reinforcing the current recommendation that early treatment with albendazole and corticosteroids should be initiated at the earliest suspicion of baylisascariasis. Considering the seriousness of this zoonotic infection, greater public and medical awareness is critical for the prevention and early treatment of human cases. PMID:26960940

  12. A framework for the study of zoonotic disease emergence and its drivers: spillover of bat pathogens as a case study

    PubMed Central

    Wood, James L. N.; Leach, Melissa; Waldman, Linda; MacGregor, Hayley; Fooks, Anthony R.; Jones, Kate E.; Restif, Olivier; Dechmann, Dina; Hayman, David T. S.; Baker, Kate S.; Peel, Alison J.; Kamins, Alexandra O.; Fahr, Jakob; Ntiamoa-Baidu, Yaa; Suu-Ire, Richard; Breiman, Robert F.; Epstein, Jonathan H.; Field, Hume E.; Cunningham, Andrew A.

    2012-01-01

    Many serious emerging zoonotic infections have recently arisen from bats, including Ebola, Marburg, SARS-coronavirus, Hendra, Nipah, and a number of rabies and rabies-related viruses, consistent with the overall observation that wildlife are an important source of emerging zoonoses for the human population. Mechanisms underlying the recognized association between ecosystem health and human health remain poorly understood and responding appropriately to the ecological, social and economic conditions that facilitate disease emergence and transmission represents a substantial societal challenge. In the context of disease emergence from wildlife, wildlife and habitat should be conserved, which in turn will preserve vital ecosystem structure and function, which has broader implications for human wellbeing and environmental sustainability, while simultaneously minimizing the spillover of pathogens from wild animals into human beings. In this review, we propose a novel framework for the holistic and interdisciplinary investigation of zoonotic disease emergence and its drivers, using the spillover of bat pathogens as a case study. This study has been developed to gain a detailed interdisciplinary understanding, and it combines cutting-edge perspectives from both natural and social sciences, linked to policy impacts on public health, land use and conservation. PMID:22966143

  13. Zoonotic viral diseases and the frontier of early diagnosis, control and prevention.

    PubMed

    Heeney, J L

    2006-11-01

    Public awareness of the human health risks of zoonotic infections has grown in recent years. Currently, concern of H5N1 flu transmission from migratory bird populations has increased with foci of fatal human cases. This comes on the heels of other major zoonotic viral epidemics in the last decade. These include other acute emerging or re-emerging viral diseases such as severe acute respiratory syndrome (SARS), West-Nile virus, Ebola virus, monkeypox, as well as the more inapparent insidious slow viral and prion diseases. Virus infections with zoonotic potential can become serious killers once they are able to establish the necessary adaptations for efficient human-to-human transmission under circumstances sufficient to reach epidemic proportions. The monitoring and early diagnosis of these potential risks are overlapping frontiers of human and veterinary medicine. Here, current viral zoonotics and evolving threats are reviewed.

  14. Initial Identification and Characterization of an Emerging Zoonotic Influenza Prior to Pandemic Spread

    DTIC Science & Technology

    2010-11-01

    equally closely strains of both H1N2 influenza A virus of swine origin and H3N2 influenza A virus of avian origin. The expected matches for each of...Naval Health Research Center Initial Identification and Characterization of an Emerging Zoonotic Influenza Virus Prior to Pandemic Spread...10.1128/JCM.01336-10 PMCID: PMC3020883 Initial Identification and Characterization of an Emerging Zoonotic Influenza Virus Prior to Pandemic

  15. Distinct Host Tropism Protein Signatures to Identify Possible Zoonotic Influenza A Viruses.

    PubMed

    Eng, Christine L P; Tong, Joo Chuan; Tan, Tin Wee

    2016-01-01

    Zoonotic influenza A viruses constantly pose a health threat to humans as novel strains occasionally emerge from the avian population to cause human infections. Many past epidemic as well as pandemic strains have originated from avian species. While most viruses are restricted to their primary hosts, zoonotic strains can sometimes arise from mutations or reassortment, leading them to acquire the capability to escape host species barrier and successfully infect a new host. Phylogenetic analyses and genetic markers are useful in tracing the origins of zoonotic infections, but there are still no effective means to identify high risk strains prior to an outbreak. Here we show that distinct host tropism protein signatures can be used to identify possible zoonotic strains in avian species which have the potential to cause human infections. We have discovered that influenza A viruses can now be classified into avian, human, or zoonotic strains based on their host tropism protein signatures. Analysis of all influenza A viruses with complete proteome using the host tropism prediction system, based on machine learning classifications of avian and human viral proteins has uncovered distinct signatures of zoonotic strains as mosaics of avian and human viral proteins. This is in contrast with typical avian or human strains where they show mostly avian or human viral proteins in their signatures respectively. Moreover, we have found that zoonotic strains from the same influenza outbreaks carry similar host tropism protein signatures characteristic of a common ancestry. Our results demonstrate that the distinct host tropism protein signature in zoonotic strains may prove useful in influenza surveillance to rapidly identify potential high risk strains circulating in avian species, which may grant us the foresight in anticipating an impending influenza outbreak.

  16. Toward a Mechanistic Understanding of Environmentally Forced Zoonotic Disease Emergence: Sin Nombre Hantavirus

    PubMed Central

    Carver, Scott; Mills, James N.; Parmenter, Cheryl A.; Parmenter, Robert R.; Richardson, Kyle S.; Harris, Rachel L.; Douglass, Richard J.; Kuenzi, Amy J.; Luis, Angela D.

    2015-01-01

    Understanding the environmental drivers of zoonotic reservoir and human interactions is crucial to understanding disease risk, but these drivers are poorly predicted. We propose a mechanistic understanding of human–reservoir interactions, using hantavirus pulmonary syndrome as a case study. Crucial processes underpinning the disease's incidence remain poorly studied, including the connectivity among natural and peridomestic deer mouse host activity, virus transmission, and human exposure. We found that disease cases were greatest in arid states and declined exponentially with increasing precipitation. Within arid environments, relatively rare climatic conditions (e.g., El Niño) are associated with increased rainfall and reservoir abundance, producing more frequent virus transmission and host dispersal. We suggest that deer mice increase their occupancy of peridomestic structures during spring–summer, amplifying intraspecific transmission and human infection risk. Disease incidence in arid states may increase with predicted climatic changes. Mechanistic approaches incorporating reservoir behavior, reservoir–human interactions, and pathogen spillover could enhance our understanding of global hantavirus ecology, with applications to other directly transmitted zoonoses. PMID:26955081

  17. Zoonotic pathogens in Atlantic Forest wild rodents in Brazil: Bartonella and Coxiella infections.

    PubMed

    Rozental, Tatiana; Ferreira, Michelle Santos; Guterres, Alexandro; Mares-Guia, Maria Angélica; Teixeira, Bernardo R; Gonçalves, Jonathan; Bonvicino, Cibele Rodrigues; D'Andrea, Paulo Sergio; de Lemos, Elba Regina Sampaio

    2017-04-01

    Zoonotic pathogens comprise a significant and increasing fraction of all emerging and re-emerging infectious diseases that plague humans. Identifying host species is one of the keys to controlling emerging infectious diseases. From March 2007 until April 2012, we collected a total of 131 wild rodents in eight municipalities of Rio de Janeiro, Brazil. We investigated these rodents for infection with Coxiella burnetii, Bartonella spp. and Rickettsia spp. In total, 22.1% (29/131) of the rodents were infected by at least one pathogen; co-infection was detected in 1.5% (2/131) of rodents. Coxiella burnetii was detected in 4.6% (6/131) of the wild animals, 17.6% of the rodents harbored Bartonella spp. No cases of Rickettsia were identified. Bartonella doshiae and Bartonella vinsonii were the species found on the wild mammals. This report is the first to note C. burnetii, B. doshiae and B. vinsonii natural infections in Atlantic Forest wild rodents in Brazil. Our work highlights the potential risk of transmission to humans, since most of the infected specimens belong to generalist species that live near human dwellings. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Zoonotic importance of canine scabies and dermatophytosis in relation to knowledge level of dog owners.

    PubMed

    Raval, Heli S; Nayak, J B; Patel, B M; Bhadesiya, C M

    2015-06-01

    The present study was undertaken to understand the zoonotic importance of canine scabies and dermatophytosis with special reference to the knowledge level of dog owners in urban areas of Gujarat. The study was carried out in randomly selected 120 dog owners of 3 urban cities (viz., Ahmedabad, Anand and Vadodara) of Gujarat state, India. Dog owners (i.e., respondents) were subjected to a detailed interview regarding the zoonotic importance of canine scabies and dermatophytosis in dogs. Ex-post-facto research design was selected because of the independent variables of the selected respondent population for the study. The crucial method used in collecting data was a field survey to generate null hypothesis (Ho1). Available data was subjected to statistical analysis. The three independent variables, viz., extension contact (r=0.522**), mass-media exposure (r=0.205*) and management orientation (r=0.264**) had significant relationship with knowledge of dog owners about zoonotic diseases. Other independent variables, viz., education, experience in dog keeping and housing space were observed to have negative and non-significant relationship with knowledge of dog owners about zoonotic diseases. Extension contact, exposure to extension mass-media, management orientation and innovation proneness among dog owners of 3 urban cities of Gujarat state had significant relationship with knowledge of dog owners on zoonotic aspects of canine scabies and dermatophytosis. Data provided new insights on the present status of zoonotic disease-awareness, which would be an aid to plan preventive measures.

  19. Prevalence and molecular characterization of Theileria equi and Babesia caballi in jereed horses in Erzurum, Turkey.

    PubMed

    Guven, Esin; Avcioglu, Hamza; Deniz, Ahmet; Balkaya, İbrahim; Abay, Ugur; Yavuz, Şevki; Akyüz, Muzaffer

    2017-03-01

    Equine piroplasmosis (EP) is a hemoprotozoan tick-borne disease with worldwide distribution that is caused by Theileria equi and Babesia caballi. There are studies reporting the presence of equine piroplasmosis in Turkey but the situation in Erzurum is unknown. The aim of the current study was to determine the situation of equine piroplasmosis in jeered horses in Erzurum. Between April and August 2015, a total of 125 Arabian horse were examined and blood samples were collected. At the time of sampling, animals were also examined for tick infestations and clinical signs. Besides microscopic examination of Giemsastained blood smears, multiplex PCR performed with species specific primers partially amplifying the 18S rRNA gene of B. caballi and T. equi. During the microscopic examination of blood smears, T. equi piroplasms were found in 6 (4.8%) samples. In total, 11 (8.8%) T. equi DNA were detected with multiplex PCR. B. caballi piroplasms or DNA were not obtained. BLAST analysis of the sequenced T. equi samples (GenBank: KU921661-KU921667) indicated 98.8-100% identity to each other, and 100% similarity to T. equi isolates in South Africa, Iran, China, Sudan, India, Mongolia, Trinidad, Kenya, Spain, Serbia, Bosnia and Herzegovina and Turkey (Bursa). The results of our study indicate that T. equi occurs more frequently than B. caballi in the study area. To the authors' knowledge, this is the first report of the molecular detection of equine piroplasmosis in jeered horses in Erzurum, Turkey.

  20. Seroprevalence of Theileria equi and Babesia caballi in horses in Spain

    PubMed Central

    Montes Cortés, Maria Guadalupe; Fernández-García, José Luis; Habela Martínez-Estéllez, Miguel Ángel

    2017-01-01

    Equine piroplasmoses are enzootic parasitic diseases distributed worldwide with high incidence in tropical and subtropical regions. In Spain, there is insufficient epidemiological data about equine piroplasmoses. The main aim of the present study was therefore to estimate the prevalence of Theileria equi and Babesia caballi in five regions and obtain information about the risk factors. This study was conducted in the central and south-western regions of Spain, using indirect fluorescence antibody testing (IFAT) in 3,100 sera samples from apparently healthy horses of different ages, breeds, coat colours, genders and geographical locations. The overall seroprevalence was 52%, consisting of 44% seropositive for T. equi and 21% for B. caballi. There was a significant association between age (p < 0.0001), breed (p < 0.004), geographical location (p < 0.0001) and the seroprevalence, but neither the coat colour nor the gender was significantly associated with prevalence. In addition, it was proved that most of the geographic areas showed a moderate to high prevalence. The statistical κ value was used to compare the results obtained by the IFAT and the competitive enzyme-linked immunosorbent assay (cELISA) utilised to test some samples (n = 108) and showed a higher concordance for T. equi (κ = 0.68) than for B. caballi (κ = 0.22). Consequently, this revealed the importance of developing an appropriate technique to detect each haemoparasite. PMID:28497743

  1. Cholinesterases as markers of the inflammatory process associated oxidative stress in cattle infected by Babesia bigemina.

    PubMed

    Doyle, Rovaina L; Da Silva, Aleksandro S; Oliveira, Camila B; França, Raqueli T; Carvalho, Fabiano B; Abdalla, Fátima H; Costa, Pauline; Klafke, Guilherme M; Martins, João R; Tonin, Alexandre A; Castro, Verônica S P; Santos, Franklin G B; Lopes, Sonia T A; Andrade, Cinthia M

    2016-06-01

    The objective of this study was to assess the influence of an asymptomatic experimental infection by Babesia bigemina on cholinesterase's as markers of the inflammatory process and biomarkers of oxidative imbalance. For this purpose, eight naive animals were used, as follows: four as controls or uninfected; and four infected with an attenuated strain of B. bigemina. Blood samples were collected on days 0, 7 and 11 post-inoculation (PI). Parasitemia was determined by blood smear evaluation, showing that the infection by B. bigemina resulted in mean 0.725 and 0.025% on day 7 and 11 PI, respectively, as well as mild anemia. The activities of acetylcholinesterase, butyrylcholinesterase and catalase were lower, while levels of thiobarbituric acid reactive substances and superoxide dismutase activity were higher in infected animals, when compared with the control group. This attenuated strain of B. bigemina induced an oxidative stress condition, as well as it reduces the cholinesterasés activity in infected and asymptomatic cattle. Therefore, this decrease of cholinesterase in infection by B. bigemina purpose is to inhibit inflammation, for thereby increasing acetylcholine levels, potent anti-inflammatory molecules. Copyright © 2016. Published by Elsevier Ltd.

  2. [A Duplex PCR Method for Detection of Babesia caballi and Theileria equi].

    PubMed

    Zhang, Yang; Zhang, Yu-ting; Wang, Zhen-bao; Bolati; Li, Hai; Bayinchahan

    2015-04-01

    To develop a duplex PCR assay for detection of Babesia caballi and Theileria equi. Two pairs of primers were designed according to the BC48 gene of B. caballi and 18 s rRNA gene of T. equi, and a duplex PCR assay was developed by the optimization of reaction conditions. The specificity, sensitivity and reliability of the method were tested. The horse blood samples of suspected cases were collected from Yili region, and detected by the duplex PCR, microspopy, conventional PCR, and fluorescence quantitative PCR, and the results were compared. Using the duplex PCR assay, the specific fragments of 155 bp and 280 bp were amplified from DNA samples of B. caballi and T. equi, respectively. No specific fragment was amplified from DNA samples of B. bigemina, Theilerdia annulata, Theilerdia sergenti, Toxoplasma gondii, Neospora caninum, and Trypanosoma evansi. The limit of detection was 4.85 x 10(5) copies/L for B. caballi DNA and 4.85 x 10(4) copies/µl for T. equi DNA, respectively. Among the 24 blood samples, 11 were found B. caballi-positive by the duplex PCR assay, and 18 were T. equi-positive. The coincidence rate of microscopy, conventional PCR, and fluorescence quantitative PCR with duplex PCR was 91.7% (22/24), 95.8% (23/24), and 95.8% (23/24), respectively. A duplex PCR assay for simultaneous detection of B. caballi and T. equi is established.

  3. Human Babesiosis Caused by Babesia duncani Has Widespread Distribution across Canada.

    PubMed

    Scott, John D; Scott, Catherine M

    2018-05-17

    Human babesiosis caused by Babesia duncani is an emerging infectious disease in Canada. This malaria-like illness is brought about by a protozoan parasite infecting red blood cells. Currently, controversy surrounds which tick species are vectors of B. duncani. Since the availability of a serological or molecular test in Canada for B. duncani has been limited, we conducted a seven-year surveillance study (2011⁻2017) to ascertain the occurrence and geographic distribution of B. duncani infection country-wide. Surveillance case data for human B. duncani infections were collected by contacting physicians and naturopathic physicians in the United States and Canada who specialize in tick-borne diseases. During the seven-year period, 1119 cases were identified. The presence of B. duncani infections was widespread across Canada, with the highest occurrence in the Pacific coast region. Patients with human babesiosis may be asymptomatic, but as this parasitemia progresses, symptoms range from mild to fatal. Donors of blood, plasma, living tissues, and organs may unknowingly be infected with this piroplasm and are contributing to the spread of this zoonosis. Our data show that greater awareness of human babesiosis is needed in Canada, and the imminent threat to the security of the Canadian blood supply warrants further investigation. Based on our epidemiological findings, human babesiosis should be a nationally notifiable disease in Canada. Whenever a patient has a tick bite, health practitioners must watch for B. duncani infections, and include human babesiosis in their differential diagnosis.

  4. Infections by Babesia caballi and Theileria equi in Jordanian equids: epidemiology and genetic diversity.

    PubMed

    Qablan, Moneeb A; Oborník, Miroslav; Petrželková, Klára J; Sloboda, Michal; Shudiefat, Mustafa F; Hořín, Petr; Lukeš, Julius; Modrý, David

    2013-08-01

    Microscopic diagnosis of equine piroplasmoses, caused by Theileria equi and Babesia caballi, is hindered by low parasitaemia during the latent phase of the infections. However, this constraint can be overcome by the application of PCR followed by sequencing. Out of 288 animals examined, the piroplasmid DNA was detected in 78 (27·1%). Multiplex PCR indicated that T. equi (18·8%) was more prevalent than B. caballi (7·3%), while mixed infections were conspicuously absent. Sequences of 69 PCR amplicons obtained by the 'catch-all' PCR were in concordance with those amplified by the multiplex strategy. Computed minimal adequate model analyses for both equine piroplasmid species separately showed a significant effect of host species and age in the case of T. equi, while in the B. caballi infections only the correlation with host sex was significant. Phylogenetic analyses inferred the occurrence of three genotypes of T. equi and B. caballi. Moreover, a novel genotype C of B. caballi was identified. The dendrogram based on obtained sequences of T. equi revealed possible speciation events. The infections with T. equi and B. caballi are enzootic in all ecozones of Jordan and different genotypes circulate wherever dense horse population exists.

  5. The contribution of B-cell proliferation to spleen enlargement in Babesia microti-infected mice.

    PubMed Central

    Inchley, C J

    1987-01-01

    Flow cytofluorimetric analysis showed that B-cell proliferation makes a major contribution to the enlargement and increased cellularity of the spleen, which are characteristic of Babesia microti infections in mice. Expansion of the B-cell population was accompanied by modulation of the cell surface, which affected most B lymphocytes, and which was detected as a reduction in the density of surface immunoglobulin. This effect was noted as early as Day 7, shortly after the appearance of parasites in the circulation and the onset of gross spleen changes. In contrast to the results for B cells, the frequency of splenic T cells declined, and when the data were transformed into absolute numbers it became clear that only limited T-cell proliferation had occurred. There was no evidence to suggest that the balance of T-cell subsets was shifted in favour of suppressor T cells. The relationships of these results to reports of immunosuppression by this parasite are discussed. Images Figure 2 Figure 5 PMID:3493207

  6. In vitro cultivation and cryopreservation of Babesia bigemina sporokinetes in hemocytes of Rhipicephalus microplus.

    PubMed

    de Rezende, Jania; Rangel, Charles P; McIntosh, Douglas; Silveira, Júlia A G; Cunha, Nathalie C; Ramos, Carlos A N; Fonseca, Adivaldo H

    2015-09-15

    Cultures of tick hemocytes represent alternative cell lines for the isolation and cultivation of a variety of hemoparasites. The present study reports the development and evaluation of methods for the in vitro culture and maintenance of sporokinetes of Babesia bigemina in association with hemocytes of the tick Rhipicephalus microplus. Hemolymph, from engorged females infected with B. bigemina sporokinetes, was incubated at 28 °C in L15 culture medium supplemented with 40% fetal bovine serum. Adherence of hemocytes to flask surfaces and the development of B. bigemina sporokinetes commenced on the first day of cultivation. The protozoa demonstrated clear motility and the capacity to adhere to hemocyte membranes for up to 25 days, at which time the hemocytes began to show signs of degeneration. Examination of Giemsa stained hemocyte cultures, revealed the presence of pyriformis forms, as well as mature and immature sporokinetes with dark red nuclei, centralized or near the apical extremities. Sporokinetes harvested from culture supernatants were cryopreserved in liquid nitrogen. Inoculation of parasite-free hemocyte cultures with defrosted sporokinetes, demonstrated the viability and interaction of the protozoa with the hemocytes over 21 days. Cultured hemocytes of R. microplus hold potential for development as a tool in the study of host parasite interactions and as a substrate for the in vitro maintenance of B. bigemina sporokinetes. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Urinary creatinine to serum creatinine ratio and renal failure index in dogs infected with Babesia canis.

    PubMed

    Zygner, Wojciech; Gójska-Zygner, Olga; Wesołowska, Agnieszka; Wędrychowicz, Halina

    2013-09-01

    Urinary creatinine to serum creatinine (UCr/SCr) ratio and renal failure index (RFI) are useful indices of renal damage. Both UCr/SCr ratio and RFI are used in differentiation between prerenal azotaemia and acute tubular necrosis. In this work the authors calculated the UCr/SCr ratio and RFI in dogs infected with Babesia canis and the values of these indices in azotaemic dogs infected with the parasite. The results of this study showed significantly lower UCr/SCr ratio in dogs infected with B. canis than in healthy dogs. Moreover, in azotaemic dogs infected with B. canis the UCr/SCr ratio was significantly lower and the RFI was significantly higher than in non-azotaemic dogs infected with B. canis. The calculated correlation between RFI and duration of the disease before diagnosis and treatment was high, positive and statistically significant (r = 0.89, p < 0.001). The results of this study showed that during the course of canine babesiosis caused by B. canis in Poland acute tubular necrosis may develop.

  8. Parasitological and molecular diagnostic of a clinical Babesia caballi outbreak in Southern Romania.

    PubMed

    Ionita, Mariana; Nicorescu, Isabela Madalina; Pfister, Kurt; Mitrea, Ioan Liviu

    2018-05-15

    Equine piroplasmosis (EP) is a tick-borne disease of equids caused by Babesia caballi and/or Theileria equi, which is endemic in many tropical and temperate areas of the world. However, clinical outbreaks of EP in Romania during the last decades have not been reported Therefore, the aim of this paper is (i) to describe a clinical B. caballi outbreak in horses on several farms in Southern Romania using a diagnostic and therapeutic approach and (ii) the molecular diagnostic of EP in an endemic area of Romania. In the first case, a 10-month-old stallion male was presented with lethargy, anorexia, fever (40.9 °C), pale mucosal/mucous/membranes and a marked anemia. In the subsequent weeks, three horses from other farms located in the same area, displayed similar clinical signs. B. caballi was diagnosed in all the horses based on Giemsa-stained blood smears and the diagnosis was further confirmed by polymerase chain reaction (PCR), using a single-round and multiplex PCR and sequencing. All four horses were treated with imidocarb dipropionate, at a dose rate of 2.2 mg/kg body weight (two injections at 48 h apart), and all horses clinically recovered within 24-48 h, post-treatment. This report presents the first molecularly characterized B. caballi outbreak in Romania in clinically affected horses, confirmed by DNA sequencing.

  9. Evaluation of selected antiprotozoal drugs in the Babesia microti-hamster model.

    PubMed Central

    Marley, S E; Eberhard, M L; Steurer, F J; Ellis, W L; McGreevy, P B; Ruebush, T K

    1997-01-01

    The presently used therapy for Babesia microti infections, a combination of quinine and clindamycin, does not always result in parasitologic cures. To identify possible alternative chemotherapeutic agents for such infections, we screened, in the hamster-B. microti system, 12 antiprotozoal drugs that have either recently been released for human use or were in experimental stages of development at the Walter Reed Army Institute of Research for the treatment of malaria and leishmaniasis. Several well-recognized antimalarial drugs, such as mefloquine, halofantrine, artesunate, and artelenic acid, exhibited little or no effect on parasitemia. Two 8-aminoquinolines, WR006026 [8-(6-diethylaminohexylamino)-6-methoxy-4-methylquinoline dihydrochloride] and WR238605 [8-[(4-amino-1-methylbutyl)amino]-2,6-dimethoxy-4-methyl-5 -(3-trifluoromethylphenoxy-7) quinoline succinate], produced clearance of patent parasitemia. Furthermore, blood from infected hamsters treated with WR238605 via an intramuscular injection failed to infect naive hamsters on subpassage, thus producing a parasitologic cure. These two compounds merit further screening in other systems and may prove useful in treating human babesiosis. PMID:8980761

  10. Avian Influenza A Viruses: Evolution and Zoonotic Infection.

    PubMed

    Kim, Se Mi; Kim, Young-Il; Pascua, Philippe Noriel Q; Choi, Young Ki

    2016-08-01

    Although efficient human-to-human transmission of avian influenza virus has yet to be seen, in the past two decades avian-to-human transmission of influenza A viruses has been reported. Influenza A/H5N1, in particular, has repeatedly caused human infections associated with high mortality, and since 1998 the virus has evolved into many clades of variants with significant antigenic diversity. In 2013, three (A/H7N9, A/H6N1, and A/H10N8) novel avian influenza viruses (AIVs) breached the animal-human host species barrier in Asia. In humans, roughly 35% of A/H7N9-infected patients succumbed to the zoonotic infection, and two of three A/H10N8 human infections were also lethal; however, neither of these viruses cause influenza-like symptoms in poultry. While most of these cases were associated with direct contact with infected poultry, some involved sustained human-to-human transmission. Thus, these events elicited concern regarding potential AIV pandemics. This article reviews the human incursions associated with AIV variants and the potential role of pigs as an intermediate host that may hasten AIV evolution. In addition, we discuss the known influenza A virus virulence and transmission factors and their evaluation in animal models. With the growing number of human AIV infections, constant vigilance for the emergence of novel viruses is of utmost importance. In addition, careful characterization and pathobiological assessment of these novel variants will help to identify strains of particular concern for future pandemics. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  11. Zoonotic disease risk perceptions in the British veterinary profession.

    PubMed

    Robin, Charlotte; Bettridge, Judy; McMaster, Fiona

    2017-01-01

    In human and veterinary medicine, reducing the risk of occupationally-acquired infections relies on effective infection prevention and control practices (IPCs). In veterinary medicine, zoonoses present a risk to practitioners, yet little is known about how these risks are understood and how this translates into health protective behaviour. This study aimed to explore risk perceptions within the British veterinary profession and identify motivators and barriers to compliance with IPCs. A cross-sectional study was conducted using veterinary practices registered with the Royal College of Veterinary Surgeons. Here we demonstrate that compliance with IPCs is influenced by more than just knowledge and experience, and understanding of risk is complex and multifactorial. Out of 252 respondents, the majority were not concerned about the risk of zoonoses (57.5%); however, a considerable proportion (34.9%) was. Overall, 44.0% of respondents reported contracting a confirmed or suspected zoonoses, most frequently dermatophytosis (58.6%). In veterinary professionals who had previous experience of managing zoonotic cases, time or financial constraints and a concern for adverse animal reactions were not perceived as barriers to use of personal protective equipment (PPE). For those working in large animal practice, the most significant motivator for using PPE was concerns over liability. When assessing responses to a range of different "infection control attitudes", veterinary nurses tended to have a more positive perspective, compared with veterinary surgeons. Our results demonstrate that IPCs are not always adhered to, and factors influencing motivators and barriers to compliance are not simply based on knowledge and experience. Educating veterinary professionals may help improve compliance to a certain extent, however increased knowledge does not necessarily equate to an increase in risk-mitigating behaviour. This highlights that the construction of risk is complex and

  12. Molecular biological identification of Babesia, Theileria, and Anaplasma species in cattle in Egypt using PCR assays, gene sequence analysis and a novel DNA microarray.

    PubMed

    El-Ashker, Maged; Hotzel, Helmut; Gwida, Mayada; El-Beskawy, Mohamed; Silaghi, Cornelia; Tomaso, Herbert

    2015-01-30

    In this preliminary study, a novel DNA microarray system was tested for the diagnosis of bovine piroplasmosis and anaplasmosis in comparison with microscopy and PCR assay results. In the Dakahlia Governorate, Egypt, 164 cattle were investigated for the presence of piroplasms and Anaplasma species. All investigated cattle were clinically examined. Blood samples were screened for the presence of blood parasites using microscopy and PCR assays. Seventy-one animals were acutely ill, whereas 93 were apparently healthy. In acutely ill cattle, Babesia/Theileria species (n=11) and Anaplasma marginale (n=10) were detected. Mixed infections with Babesia/Theileria spp. and A. marginale were present in two further cases. A. marginale infections were also detected in apparently healthy subjects (n=23). The results of PCR assays were confirmed by DNA sequencing. All samples that were positive by PCR for Babesia/Theileria spp. gave also positive results in the microarray analysis. The microarray chips identified Babesia bovis (n=12) and Babesia bigemina (n=2). Cattle with babesiosis were likely to have hemoglobinuria and nervous signs when compared to those with anaplasmosis that frequently had bloody feces. We conclude that clinical examination in combination with microscopy are still very useful in diagnosing acute cases of babesiosis and anaplasmosis, but a combination of molecular biological diagnostic assays will detect even asymptomatic carriers. In perspective, parallel detection of Babesia/Theileria spp. and A. marginale infections using a single microarray system will be a valuable improvement. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Infections and Coinfections of Questing Ixodes ricinus Ticks by Emerging Zoonotic Pathogens in Western Switzerland

    PubMed Central

    Lommano, Elena; Bertaiola, Luce; Dupasquier, Christèle

    2012-01-01

    In Europe, Ixodes ricinus is the vector of many pathogens of medical and veterinary relevance, among them Borrelia burgdorferi sensu lato and tick-borne encephalitis virus, which have been the subject of numerous investigations. Less is known about the occurrence of emerging tick-borne pathogens like Rickettsia spp., Babesia spp., “Candidatus Neoehrlichia mikurensis,” and Anaplasma phagocytophilum in questing ticks. In this study, questing nymph and adult I. ricinus ticks were collected at 11 sites located in Western Switzerland. A total of 1,476 ticks were analyzed individually for the simultaneous presence of B. burgdorferi sensu lato, Rickettsia spp., Babesia spp., “Candidatus Neoehrlichia mikurensis,” and A. phagocytophilum. B. burgdorferi sensu lato, Rickettsia spp., and “Candidatus Neoehrlichia mikurensis” were detected in ticks at all sites with global prevalences of 22.5%, 10.2%, and 6.4%, respectively. Babesia- and A. phagocytophilum-infected ticks showed a more restricted geographic distribution, and their prevalences were lower (1.9% and 1.5%, respectively). Species rarely reported in Switzerland, like Borrelia spielmanii, Borrelia lusitaniae, and Rickettsia monacensis, were identified. Infections with more than one pathogenic species, involving mostly Borrelia spp. and Rickettsia helvetica, were detected in 19.6% of infected ticks. Globally, 34.2% of ticks were infected with at least one pathogen. The diversity of tick-borne pathogens detected in I. ricinus in this study and the frequency of coinfections underline the need to take them seriously into consideration when evaluating the risks of infection following a tick bite. PMID:22522688

  14. Investigation of zoonotic infections among Auckland Zoo staff: 1991-2010.

    PubMed

    Forsyth, M B; Morris, A J; Sinclair, D A; Pritchard, C P

    2012-12-01

    Investigation was undertaken to assess the occurrence of zoonotic infection among staff at Auckland Zoological Park, New Zealand, in 1991, 2002 and 2010. Serial cross-sectional health surveys in 1991, 2002 and 2010 comprising a health questionnaire, and serological, immunological and microbiological analysis for a range of potential zoonotic infections were performed. Laboratory results for zoo animals were also reviewed for 2004-2010 to assess the occurrence of potential zoonotic infections. Veterinary clinic, animal handler, grounds, maintenance and administrative staff participated in the surveys, with 49, 42 and 46 participants in the 1991, 2002 and 2010 surveys, respectively (29% of total zoo staff in 2010). A small number of staff reported work-related infections, including erysipelas (1), giardiasis (1) and campylobacteriosis (1). The seroprevalence of antibodies to hepatitis A virus and Toxoplasma gondii closely reflected those in the Auckland community. No carriage of hepatitis B virus (HBV) was detected, and most of those with anti-HBV antibodies had been vaccinated. Few staff had serological evidence of past leptospiral infection. Three veterinary clinic staff had raised Chlamydophila psittaci antibodies, all < 1 : 160 indicating past exposure. Two staff (in 1991) had asymptomatic carriage of Giardia lamblia and one person (in 2010) had a dermatophyte infection. After 1991, positive tests indicating exposure to Mycobacterium tuberculosis were < 10%, comparable to the general New Zealand population. Zoo animals had infections with potential zoonotic agents, including G. lamblia, Salmonella spp., Campylobacter spp. and T. gondii, although the occurrence was low. Zoonotic agents pose an occupational risk to zoo workers. While there was evidence of some zoonotic transmission at Auckland Zoo, this was uncommon and risks appear to be adequately managed under current policies and procedures. Nevertheless, ongoing assessment of risk factors is needed as

  15. An ELISA for the early diagnosis of acute canine babesiosis detecting circulating antigen of large Babesia spp.

    PubMed

    Eichenberger, Ramon M; Štefanić, Saša; Naucke, Torsten J; Šarkūnas, Mindaugas; Zamokas, Gintaras; Grimm, Felix; Deplazes, Peter

    2017-08-30

    Babesia canis is the predominant Babesia species in dogs in Europe and is responsible for a severe and fatal disease. An increase in global pet tourism and a widening of the geographic distribution of the tick vector has led to the emergence of infections in areas where previously only imported cases have been reported. Due to the potential for rapid and serious disease progression, direct parasite detection by stained blood smears and light microscopy or DNA-based methods have traditionally been used for the diagnosis of acute infections. This study describes the production of a murine monoclonal antibody ('mAb BcFIII 7/1/2') that reacts to a 65kDa corpuscular epitope present in B. canis-infected erythrocytes and can be used in an ELISA to detect circulating Babesia antigen during acute infections. The sensitivity of the ELISA was 100% (95%CI: 84.5-100) as determined using blood lysate samples from 27 dogs with acute B. canis infections. Sensitivity was reduced to 53.8% in 13 patent Babesia vogeli infections (95%CI: 26.1-79.6) based on the current test design using convalescent serum from a B. canis-infected dog. The specificity was determined to be 86.4% (95%CI: 64-96.4) using 22 samples from healthy canine blood donors. In the course of acute B. canis infections, the ELISA showed a positive result at the same time as a positive PCR result was recorded. This was 24-48h before parasites could be detected by light microscopy. Convalescent samples collected from 6 B. canis-infected dogs at least 14days post treatment resulted in negative ELISA reactions. The hyper-acute to acute phase of a B. canis infection represents an emergency situation with high mortality. To increase the chances of survival, a fast and accurate diagnosis and immediate treatment is required. The current study demonstrates the opportunity of an early and specific detection of acute infections by an AgELISA that is potentially translatable to a rapid diagnostic test design. Copyright © 2017

  16. A new method for isolation of the intraerythrocytic stages of Plasmodium and Babesia from their host cells.

    PubMed

    Sobolewski, B; Mackenstedt, U; Mehlhorn, H

    1993-01-01

    A new method for the isolation of intraerythrocytic stages of Plasmodium berghei and Babesia divergens from red blood cells is described. The technique is based on hydrodynamic forces occurring in a flow channel containing a turbulent liquid current, which are capable of rupturing infected erythrocytes and removing their plasma membrane from the parasites' surface. The temperature and the concentration of cells were revealed as factors influencing the hydrodynamic forces. About 90% of the intact and apparently infectious parasites of both species were isolated from the lysed erythrocytes.

  17. A Review of Zoonotic Infection Risks Associated with the Wild Meat Trade in Malaysia.

    PubMed

    Cantlay, Jennifer Caroline; Ingram, Daniel J; Meredith, Anna L

    2017-06-01

    The overhunting of wildlife for food and commercial gain presents a major threat to biodiversity in tropical forests and poses health risks to humans from contact with wild animals. Using a recent survey of wildlife offered at wild meat markets in Malaysia as a basis, we review the literature to determine the potential zoonotic infection risks from hunting, butchering and consuming the species offered. We also determine which taxa potentially host the highest number of pathogens and discuss the significant disease risks from traded wildlife, considering how cultural practices influence zoonotic transmission. We identify 51 zoonotic pathogens (16 viruses, 19 bacteria and 16 parasites) potentially hosted by wildlife and describe the human health risks. The Suidae and the Cervidae families potentially host the highest number of pathogens. We conclude that there are substantial gaps in our knowledge of zoonotic pathogens and recommend performing microbial food safety risk assessments to assess the hazards of wild meat consumption. Overall, there may be considerable zoonotic risks to people involved in the hunting, butchering or consumption of wild meat in Southeast Asia, and these should be considered in public health strategies.

  18. Interventions to reduce zoonotic and pandemic risks from avian influenza in Asia

    PubMed Central

    Peiris, Malik; Cowling, Benjamin J.; Wu, Joseph T.; Feng, Luzhao; Guan, Yi; Yu, Hongjie; Leung, Gabriel M.

    2017-01-01

    Summary Novel influenza viruses continue to emerge posing zoonotic and potentially pandemic threats, avian influenza A/H7N9 being the most recent example. While closure of live poultry markets in mainland China was effective at aborting A/H7N9 outbreaks temporarily, they are difficult to sustain, given the current poultry production and marketing systems in China. We summarise interventions taken in mainland China to date. We provide evidence for other more sustainable but effective interventions in the live poultry market (LPM) systems that reduce risk of zoonotic influenza including “rest days” in LPM and banning live poultry in markets overnight. On the longer term, separation of live ducks and geese from terrestrial poultry in LPM systems can reduce the risk of emergence of zoonotic, epizootic (and potentially pandemic) viruses at source. Given evidence that A/H7N9 is now endemic in over half of the provinces in mainland China, and will continue to cause recurrent zoonotic disease in the winter months, such interventions should receive high priority in China as well as other Asian countries which are at risk of introduction of A/H7N9 through cross-border poultry movements. Such generic measures are likely to reduce current as well as future threats from zoonotic influenza. PMID:26654122

  19. Seroprevalence of Babesia caballi and Theileria equi in five draught equine populated metropolises of Punjab, Pakistan.

    PubMed

    Hussain, Muhammad Hammad; Saqib, Muhammad; Raza, Fahad; Muhammad, Ghulam; Asi, Muhammad Nadeem; Mansoor, Muhammad Khalid; Saleem, Muhammad; Jabbar, Abdul

    2014-05-28

    Equine piroplasmosis (EP) caused by intraerythrocytic parasites (Theileria equi and Babesia caballi) is an emerging equine disease of world-wide distribution. In Pakistan, the prevalence and incidence of EP are unknown. In order to obtain the first insights into the prevalence of the disease, a total of 430 equids, including 33 mules, 65 horses and 332 donkeys, aging from ≤ 5 to ≥ 10 years of either sex, from five metropolises of Punjab, Pakistan, were serologically tested for the presence of antibodies directed against B. caballi and T. equi, using a competitive enzyme-linked immunosorbent assay (cELISA). Out of 430 equid serum samples tested, 226 (52.6%, 95% CI 47.7-57.4) were found cELISA positive for EP (T. equi and/or B. caballi infections). The overall seroprevalence of EP was 41.2% (95% CI 36.5-46.0) for T. equi and 21.6% (95% CI 17.8-25.8) for B. caballi. A small proportion of equids (10.2%, 95% CI 7.5-13.5) was seropositive for both T. equi and B. caballi. Seroprevalence of T. equi was significantly higher (P<0.01) in equines from the metropolis of Lahore (66.7%, 95% CI 54.3-77.6) and in horses (56.9%, 95% CI 44.0-69.2). Multivariable logistic regression model analysis indicated that factors associated with prevalence of EP were being an equine species kept in metropolis Lahore (OR=4.24, 95% CI 2.28-7.90), horse (OR=2.82, 95% CI 1.53-5.20) and male equids (OR=1.81, 95% CI 1.15-2.86). Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Gliding Motility of Babesia bovis Merozoites Visualized by Time-Lapse Video Microscopy

    PubMed Central

    Asada, Masahito; Goto, Yasuyuki; Yahata, Kazuhide; Yokoyama, Naoaki; Kawai, Satoru; Inoue, Noboru; Kaneko, Osamu; Kawazu, Shin-ichiro

    2012-01-01

    Background Babesia bovis is an apicomplexan intraerythrocytic protozoan parasite that induces babesiosis in cattle after transmission by ticks. During specific stages of the apicomplexan parasite lifecycle, such as the sporozoites of Plasmodium falciparum and tachyzoites of Toxoplasma gondii, host cells are targeted for invasion using a unique, active process termed “gliding motility”. However, it is not thoroughly understood how the merozoites of B. bovis target and invade host red blood cells (RBCs), and gliding motility has so far not been observed in the parasite. Methodology/Principal Findings Gliding motility of B. bovis merozoites was revealed by time-lapse video microscopy. The recorded images revealed that the process included egress of the merozoites from the infected RBC, gliding motility, and subsequent invasion into new RBCs. The gliding motility of B. bovis merozoites was similar to the helical gliding of Toxoplasma tachyzoites. The trails left by the merozoites were detected by indirect immunofluorescence assay using antiserum against B. bovis merozoite surface antigen 1. Inhibition of gliding motility by actin filament polymerization or depolymerization indicated that the gliding motility was driven by actomyosin dependent process. In addition, we revealed the timing of breakdown of the parasitophorous vacuole. Time-lapse image analysis of membrane-stained bovine RBCs showed formation and breakdown of the parasitophorous vacuole within ten minutes of invasion. Conclusions/Significance This is the first report of the gliding motility of B. bovis. Since merozoites of Plasmodium parasites do not glide on a substrate, the gliding motility of B. bovis merozoites is a notable finding. PMID:22506073

  1. Evidence for extensive genetic diversity and substructuring of the Babesia bovis metapopulation.

    PubMed

    Flores, D A; Minichiello, Y; Araujo, F R; Shkap, V; Benítez, D; Echaide, I; Rolls, P; Mosqueda, J; Pacheco, G M; Petterson, M; Florin-Christensen, M; Schnittger, L

    2013-11-01

    Babesia bovis is a tick-transmitted haemoprotozoan and a causative agent of bovine babesiosis, a cattle disease that causes significant economic loss in tropical and subtropical regions. A panel of nineteen micro- and minisatellite markers was used to estimate population genetic parameters of eighteen parasite isolates originating from different continents, countries and geographic regions including North America (Mexico, USA), South America (Argentina, Brazil), the Middle East (Israel) and Australia. For eleven of the eighteen isolates, a unique haplotype was inferred suggesting selection of a single genotype by either in vitro cultivation or amplification in splenectomized calves. Furthermore, a high genetic diversity (H = 0.780) over all marker loci was estimated. Linkage disequilibrium was observed in the total study group but also in sample subgroups from the Americas, Brazil, and Israel and Australia. In contrast, corresponding to their more confined geographic origin, samples from Israel and Argentina were each found to be in equilibrium suggestive of random mating and frequent genetic exchange. The genetic differentiation (F(ST)) of the total study group over all nineteen loci was estimated by analysis of variance (Θ) and Nei's estimation of heterozygosity (G(ST')) as 0.296 and 0.312, respectively. Thus, about 30% of the genetic diversity of the parasite population is associated with genetic differences between parasite isolates sampled from the different geographic regions. The pairwise similarity of multilocus genotypes (MLGs) was assessed and a neighbour-joining dendrogram generated. MLGs were found to cluster according to the country/continent of origin of isolates, but did not distinguish the attenuated from the pathogenic parasite state. The distant geographic origin of the isolates studied allows an initial glimpse into the large extent of genetic diversity and differentiation of the B. bovis population on a global scale. © 2013 Blackwell Verlag

  2. Genetic diversity and antigenicity variation of Babesia bovis merozoite surface antigen-1 (MSA-1) in Thailand.

    PubMed

    Tattiyapong, Muncharee; Sivakumar, Thillaiampalam; Takemae, Hitoshi; Simking, Pacharathon; Jittapalapong, Sathaporn; Igarashi, Ikuo; Yokoyama, Naoaki

    2016-07-01

    Babesia bovis, an intraerythrocytic protozoan parasite, causes severe clinical disease in cattle worldwide. The genetic diversity of parasite antigens often results in different immune profiles in infected animals, hindering efforts to develop immune control methodologies against the B. bovis infection. In this study, we analyzed the genetic diversity of the merozoite surface antigen-1 (msa-1) gene using 162 B. bovis-positive blood DNA samples sourced from cattle populations reared in different geographical regions of Thailand. The identity scores shared among 93 msa-1 gene sequences isolated by PCR amplification were 43.5-100%, and the similarity values among the translated amino acid sequences were 42.8-100%. Of 23 total clades detected in our phylogenetic analysis, Thai msa-1 gene sequences occurred in 18 clades; seven among them were composed of sequences exclusively from Thailand. To investigate differential antigenicity of isolated MSA-1 proteins, we expressed and purified eight recombinant MSA-1 (rMSA-1) proteins, including an rMSA-1 from B. bovis Texas (T2Bo) strain and seven rMSA-1 proteins based on the Thai msa-1 sequences. When these antigens were analyzed in a western blot assay, anti-T2Bo cattle serum strongly reacted with the rMSA-1 from T2Bo, as well as with three other rMSA-1 proteins that shared 54.9-68.4% sequence similarity with T2Bo MSA-1. In contrast, no or weak reactivity was observed for the remaining rMSA-1 proteins, which shared low sequence similarity (35.0-39.7%) with T2Bo MSA-1. While demonstrating the high genetic diversity of the B. bovis msa-1 gene in Thailand, the present findings suggest that the genetic diversity results in antigenicity variations among the MSA-1 antigens of B. bovis in Thailand. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Diversity of Babesia bovis merozoite surface antigen genes in the Philippines.

    PubMed

    Tattiyapong, Muncharee; Sivakumar, Thillaiampalam; Ybanez, Adrian Patalinghug; Ybanez, Rochelle Haidee Daclan; Perez, Zandro Obligado; Guswanto, Azirwan; Igarashi, Ikuo; Yokoyama, Naoaki

    2014-02-01

    Babesia bovis is the causative agent of fatal babesiosis in cattle. In the present study, we investigated the genetic diversity of B. bovis among Philippine cattle, based on the genes that encode merozoite surface antigens (MSAs). Forty-one B. bovis-positive blood DNA samples from cattle were used to amplify the msa-1, msa-2b, and msa-2c genes. In phylogenetic analyses, the msa-1, msa-2b, and msa-2c gene sequences generated from Philippine B. bovis-positive DNA samples were found in six, three, and four different clades, respectively. All of the msa-1 and most of the msa-2b sequences were found in clades that were formed only by Philippine msa sequences in the respective phylograms. While all the msa-1 sequences from the Philippines showed similarity to those formed by Australian msa-1 sequences, the msa-2b sequences showed similarity to either Australian or Mexican msa-2b sequences. In contrast, msa-2c sequences from the Philippines were distributed across all the clades of the phylogram, although one clade was formed exclusively by Philippine msa-2c sequences. Similarities among the deduced amino acid sequences of MSA-1, MSA-2b, and MSA-2c from the Philippines were 62.2-100, 73.1-100, and 67.3-100%, respectively. The present findings demonstrate that B. bovis populations are genetically diverse in the Philippines. This information will provide a good foundation for the future design and implementation of improved immunological preventive methodologies against bovine babesiosis in the Philippines. The study has also generated a set of data that will be useful for futher understanding of the global genetic diversity of this important parasite. © 2013.

  4. Genotypic diversity of merozoite surface antigen 1 of Babesia bovis within an endemic population.

    PubMed

    Lau, Audrey O T; Cereceres, Karla; Palmer, Guy H; Fretwell, Debbie L; Pedroni, Monica J; Mosqueda, Juan; McElwain, Terry F

    2010-08-01

    Multiple genetically distinct strains of a pathogen circulate and compete for dominance within populations of animal reservoir hosts. Understanding the basis for genotypic strain structure is critical for predicting how pathogens respond to selective pressures and how shifts in pathogen population structure can lead to disease outbreaks. Evidence from related Apicomplexans such as Plasmodium, Toxoplasma, Cryptosporidium and Theileria suggests that various patterns of population dynamics exist, including but not limited to clonal, oligoclonal, panmictic and epidemic genotypic strain structures. In Babesia bovis, genetic diversity of variable merozoite surface antigen (VMSA) genes has been associated with disease outbreaks, including in previously vaccinated animals. However, the extent of VMSA diversity within a defined population in an endemic area has not been examined. We analyzed genotypic diversity and temporal change of MSA-1, a member of the VMSA family, in individual infected animals within a reservoir host population. Twenty-eight distinct MSA-1 genotypes were identified within the herd. All genotypically distinct MSA-1 sequences clustered into three groups based on sequence similarity. Two thirds of the animals tested changed their dominant MSA-1 genotypes during a 6-month period. Five animals within the population contained multiple genotypes. Interestingly, the predominant genotypes within those five animals also changed over the 6-month sampling period, suggesting ongoing transmission or emergence of variant MSA-1 genotypes within the herd. This study demonstrated an unexpected level of diversity for a single copy gene in a haploid genome, and illustrates the dynamic genotype structure of B. bovis within an individual animal in an endemic region. Co-infection with multiple diverse MSA-1 genotypes provides a basis for more extensive genotypic shifts that characterizes outbreak strains.

  5. Using msa-2b as a molecular marker for genotyping Mexican isolates of Babesia bovis.

    PubMed

    Genis, Alma D; Perez, Jocelin; Mosqueda, Juan J; Alvarez, Antonio; Camacho, Minerva; Muñoz, Maria de Lourdes; Rojas, Carmen; Figueroa, Julio V

    2009-12-01

    Variable merozoite surface antigens of Babesia bovis are exposed glycoproteins having a role in erythrocyte invasion. Members of this gene family include msa-1 and msa-2 (msa-2c, msa-2a(1), msa-2a(2) and msa-2b). To determine the sequence variation among B. bovis Mexican isolates using msa-2b as a genetic marker, PCR amplicons corresponding to msa-2b were cloned and plasmids carrying the corresponding inserts were purified and sequenced. Comparative analysis of nucleotide and deduced amino acid sequences revealed distinct degrees of variability and identity among the coding gene sequences obtained from 16 geographically different Mexican B. bovis isolates and a reference strain. Clustal-W multiple alignments of the MSA-2b deduced amino acid sequences performed with the 17 B. bovis Mexican isolates, revealed the identification of three genotypes with a distinct set each of amino acid residues present at the variable region: Genotype I represented by the MO7 strain (in vitro culture-derived from the Mexico isolate) as well as RAD, Chiapas-1, Tabasco and Veracruz-3 isolates; Genotype II, represented by the Jalisco, Mexico and Veracruz-2 isolates; and Genotype III comprising the sequences from most of the isolates studied, Tamaulipas-1, Chiapas-2, Guerrero-1, Nayarit, Quintana Roo, Nuevo Leon, Tamaulipas-2, Yucatan and Guerrero-2. Moreover, these three genotypes could be discriminated against each other by using a PCR-RFLP approach. The results suggest that occurrence of indels within the variable region of msa-2b sequences can be useful markers for identifying a particular genotype present in field populations of B. bovis isolated from infected cattle in Mexico.

  6. Molecular detection and genetic diversity of Babesia gibsoni in dogs in India.

    PubMed

    Singh, M N; Raina, O K; Sankar, M; Rialch, Ajayta; Tigga, M N; Kumar, G Ravi; Banerjee, P S

    2016-07-01

    Babesia gibsoni is a tick borne intraerythrocytic protozoan parasite causing piroplasmosis in dogs and has been predominantly reported in Asian countries, including Japan, Korea, Taiwan, Malaysia, Bangladesh and India. The present communication is the first evidence on the genetic diversity of B. gibsoni of dogs in India. Blood samples were collected from 164 dogs in north and northeast states of India and 13 dogs (7.9%) were found positive for B. gibsoni infection by microscopic examination of blood smears. Molecular confirmation of these microscopic positive cases for B. gibsoni was carried out by 18S rRNA nested-PCR, followed by sequencing. Nested-PCR for the 18S rRNA gene was also carried out on microscopically B. gibsoni negative samples that detected a higher percentage of dogs (28.6%) infected with B. gibsoni. Genetic diversity in B. gibsoni in India was determined by studying B. gibsoni thrombospondin-related adhesive protein (BgTRAP) gene fragments (855bp) in 19 isolates from four north and northeast states of India. Phylogenetic analysis of the BgTRAP gene revealed that B. gibsoni parasite in India and Bangladesh formed a distinct cluster away from other Asian B. gibsoni isolates available from Japan, Taiwan and Korea. In addition, tandem repeat analysis of the BgTRAP gene clearly showed considerable genetic variation among Indian isolates that was shared by B. gibsoni isolates of Bangladesh. These results suggested that B. gibsoni parasites in a different genetic clade are endemic in dogs in India and Bangladesh. Further studies are required for better understanding of the genetic diversity of B. gibsoni prevalent in India and in its neighbouring countries. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Sensitive multiplex PCR assay to differentiate Lyme spirochetes and emerging pathogens Anaplasma phagocytophilum and Babesia microti.

    PubMed

    Chan, Kamfai; Marras, Salvatore A E; Parveen, Nikhat

    2013-12-20

    The infection with Borrelia burgdorferi can result in acute to chronic Lyme disease. In addition, coinfection with tick-borne pathogens, Babesia species and Anaplasma phagocytophilum has been increasing in endemic regions of the USA and Europe. The currently used serological diagnostic tests are often difficult to interpret and, moreover, antibodies against the pathogens persist for a long time making it difficult to confirm the cure of the disease. In addition, these tests cannot be used for diagnosis of early disease state before the adaptive immune response is established. Since nucleic acids of the pathogens do not persist after the cure, DNA-based diagnostic tests are becoming highly useful for detecting infectious diseases. In this study, we describe a real-time multiplex PCR assay to detect the presence of B. burgdorferi, B. microti and A. phagocytophilum simultaneously even when they are present in very low copy numbers. Interestingly, this quantitative PCR technique is also able to differentiate all three major Lyme spirochete species, B. burgdorferi, B. afzelii, and B. garinii by utilizing a post-PCR denaturation profile analysis and a single molecular beacon probe. This could be very useful for diagnosis and discrimination of various Lyme spirochetes in European countries where all three Lyme spirochete species are prevalent. As proof of the principle for patient samples, we detected the presence of low number of Lyme spirochetes spiked in the human blood using our assay. Finally, our multiplex assay can detect all three tick-borne pathogens in a sensitive and specific manner irrespective of the level of each pathogen present in the sample. We anticipate that this novel diagnostic method will be able to simultaneously diagnose early to chronic stages of Lyme disease, babesiosis and anaplasmosis using the patients' blood samples. Real-time quantitative PCR using specific primers and molecular beacon probes for the selected amplicon described in this study

  8. Riboflavin and ultraviolet light reduce the infectivity of Babesia microti in whole blood.

    PubMed

    Tonnetti, Laura; Thorp, Aaron M; Reddy, Heather L; Keil, Shawn D; Goodrich, Raymond P; Leiby, David A

    2013-04-01

    Babesia microti is the parasite most frequently transmitted by blood transfusion in the United States. Previous work demonstrated the efficacy of riboflavin (RB) and ultraviolet (UV) light to inactivate B.microti in apheresis plasma and platelet units. In this study we investigated the effectiveness of RB and UV light to reduce the levels of B.microti in whole blood (WB). WB units were spiked with B. microti-infected hamster blood. Spearman-Karber methods were used to calculate infectivity of each sample in terms of hamster infectious dose 50% (HID50 ) value. After RB addition, the units were illuminated with 80 J/mLRBC UV light. Two samples were collected: one before illumination and one after illumination. The samples were serially diluted and dilutions injected into a group of five naive hamsters. Four weeks postinoculation (PI), blood was collected from the animals and evaluated by microscopic observation. One pilot study showed a good dose response in the animals and demonstrated that sample infectivity could be calculated in terms of an HID50 . Three additional replicates were performed in the same manner as the pilot study, but with fewer dilutions. Infectivity values were consistent between the experiments and were used to calculate log reduction. The posttreatment reduction of B. microti for all the experiments was more than 5 log. The data collected indicate that use of RB and UV is able to decrease the parasite load in WB units thus reducing the risk of transfusion-transmitted B. microti from blood components containing B. microti-infected RBCs. © 2012 American Association of Blood Banks.

  9. Sensitive multiplex PCR assay to differentiate Lyme spirochetes and emerging pathogens Anaplasma phagocytophilum and Babesia microti

    PubMed Central

    2013-01-01

    Background The infection with Borrelia burgdorferi can result in acute to chronic Lyme disease. In addition, coinfection with tick-borne pathogens, Babesia species and Anaplasma phagocytophilum has been increasing in endemic regions of the USA and Europe. The currently used serological diagnostic tests are often difficult to interpret and, moreover, antibodies against the pathogens persist for a long time making it difficult to confirm the cure of the disease. In addition, these tests cannot be used for diagnosis of early disease state before the adaptive immune response is established. Since nucleic acids of the pathogens do not persist after the cure, DNA-based diagnostic tests are becoming highly useful for detecting infectious diseases. Results In this study, we describe a real-time multiplex PCR assay to detect the presence of B. burgdorferi, B. microti and A. phagocytophilum simultaneously even when they are present in very low copy numbers. Interestingly, this quantitative PCR technique is also able to differentiate all three major Lyme spirochete species, B. burgdorferi, B. afzelii, and B. garinii by utilizing a post-PCR denaturation profile analysis and a single molecular beacon probe. This could be very useful for diagnosis and discrimination of various Lyme spirochetes in European countries where all three Lyme spirochete species are prevalent. As proof of the principle for patient samples, we detected the presence of low number of Lyme spirochetes spiked in the human blood using our assay. Finally, our multiplex assay can detect all three tick-borne pathogens in a sensitive and specific manner irrespective of the level of each pathogen present in the sample. We anticipate that this novel diagnostic method will be able to simultaneously diagnose early to chronic stages of Lyme disease, babesiosis and anaplasmosis using the patients’ blood samples. Conclusion Real-time quantitative PCR using specific primers and molecular beacon probes for the selected

  10. Transfection of babesia bovis by double selection with WR99210 and blasticidin-S and its application for functional analysis of thioredoxin peroxidase-1

    USDA-ARS?s Scientific Manuscript database

    Genetic manipulation is an essential technique to analyze gene function; however, limited methods are available for Babesia bovis, a causative pathogen of the globally important cattle disease, bovine babesiosis. To date, two stable transfection systems have been developed for B. bovis, using select...

  11. A novel modified-indirect ELISA based on spherical body protein 4 for detecting antibody during acute and long-term infections with diverse babesia bovis strains

    USDA-ARS?s Scientific Manuscript database

    Background: Cattle persistently infected with Babesia bovis are reservoirs for intra- and inter-herd transmission. Since B. bovis is considered a persistent infection, developing a reliable, high-throughput assay that detects antibody during all stages of the infection could be pivotal for establish...

  12. A review of simulation modelling approaches used for the spread of zoonotic influenza viruses in animal and human populations.

    PubMed

    Dorjee, S; Poljak, Z; Revie, C W; Bridgland, J; McNab, B; Leger, E; Sanchez, J

    2013-09-01

    Increasing incidences of emerging and re-emerging diseases that are mostly zoonotic (e.g. severe acute respiratory syndrome, avian influenza H5N1, pandemic influenza) has led to the need for a multidisciplinary approach to tackling these threats to public and animal health. Accordingly, a global movement of 'One-Health/One-Medicine' has been launched to foster collaborative efforts amongst animal and human health officials and researchers to address these problems. Historical evidence points to the fact that pandemics caused by influenza A viruses remain a major zoonotic threat to mankind. Recently, a range of mathematical and computer simulation modelling methods and tools have increasingly been applied to improve our understanding of disease transmission dynamics, contingency planning and to support policy decisions on disease outbreak management. This review provides an overview of methods, approaches and software used for modelling the spread of zoonotic influenza viruses in animals and humans, particularly those related to the animal-human interface. Modelling parameters used in these studies are summarized to provide references for future work. This review highlights the limited application of modelling research to influenza in animals and at the animal-human interface, in marked contrast to the large volume of its research in human populations. Although swine are widely recognized as a potential host for generating novel influenza viruses, and that some of these viruses, including pandemic influenza A/H1N1 2009, have been shown to be readily transmissible between humans and swine, only one study was found related to the modelling of influenza spread at the swine-human interface. Significant gaps in the knowledge of frequency of novel viral strains evolution in pigs, farm-level natural history of influenza infection, incidences of influenza transmission between farms and between swine and humans are clearly evident. Therefore, there is a need to direct

  13. The first evidence for vertical transmission of Babesia canis in a litter of Central Asian Shepherd dogs.

    PubMed

    Mierzejewska, Ewa J; Welc-Falęciak, Renata; Bednarska, Małgorzata; Rodo, Anna; Bajer, Anna

    2014-01-01

    Tick-borne infections constitute an increasing health problem in dogs and may lead to death, especially in young or elderly individuals. Canine babesiosis constitutes a serious health problem in dogs worldwide. The aim of the study was to verify the probability of vertical transmission of Babesia canis between the bitch and the pups. In Autumn 2011, cases of babesiosis were diagnosed in a litter of 6-week-old puppies of a Central Asian Shepherd dog. Immediately following the first case of infection, blood samples were collected from all the pups in the litter (n=10) and from the female. Detection of Babesia infection was performed by molecular and microscopical techniques. The presence of B. canis DNA was detected using PCR in three pups, presenting at the time or 24-48 hours later with babesiosis symptoms, and in their asymptomatic mother. The isolates derived from the pups and the female - 520 bp 18S rRNA gene fragment - were compared and analyzed. All isolates from the pups and their mother were identical and showed 100% homology with B. canis group B (EU622793), supporting the same source of infection. Additionally, the USG of the peritoneal cavity was performed in the female, presenting evidence for splenomegaly. On the basis of (1) the same timing of three pup cases; (2) the identical B. canis sequences derived from all positive dogs; (3) evident splenomegaly in the asymptomatic female, this provides the first evidence of the vertical transmission of this piroplasm in dogs.

  14. Effects of dihydroorotate dehydrogenase (DHODH) inhibitors on the growth of Theileria equi and Babesia caballi in vitro.

    PubMed

    Kamyingkird, Ketsarin; Cao, Shinuo; Tuvshintulga, Bumduuren; Salama, Akram; Mousa, Ahmed Abdelmoniem; Efstratiou, Artemis; Nishikawa, Yoshifumi; Yokoyama, Naoaki; Igarashi, Ikuo; Xuan, Xuenan

    2017-05-01

    Theileria equi and Babesia caballi are the causative agents of equine piroplasmosis (EP), which affects equine production in various parts of the world. However, a safe and effective drug is not currently available for treatment of EP. Dihydroorotate dehydrogenase (DHODH) is the fourth enzyme in the de novo pyrimidine synthesis pathway and has been known as a novel drug target for several apicomplexan protozoan parasites. In this study, we evaluated four DHODH inhibitors; atovaquone (ATV), leflunomide (LFN), brequinar (Breq), and 7-hydroxy-5-[1,2,4] triazolo [1,5,a] pyrimidine (TAZ) on the growth of T. equi and B. caballi in vitro and compared them to diminacene aceturate (Di) as the control drug. The growth of T. equi and B. caballi was significantly hindered by all inhibitors except TAZ. The half maximal inhibitory concentration (IC 50 ) of ATV, LFN, Breq and Di against T. equi was approximately 0.028, 109, 11 and 40 μM, respectively, whereas the IC 50 of ATV, LFN, Breq and Di against B. caballi was approximately 0.128, 193, 5.2 and 16.2 μM, respectively. Using bioinformatics and Western blot analysis, we showed that TeDHODH was similar to other Babesia parasite DHODHs, and confirmed that targeting DHODHs could be useful for the development of novel chemotherapeutics for treatment of EP. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A molecular survey of Theileria and Babesia parasites in cattle, with a note on the distribution of ticks in Tunisia.

    PubMed

    M'ghirbi, Y; Hurtado, A; Barandika, J F; Brandika, J; Khlif, K; Ketata, Z; Bouattour, A

    2008-07-01

    Between October and November 2006, a total of 278 bovine blood samples were examined, and 104 (37.4%) were positive for piroplasms by microscopy. A reverse line blot hybridisation with polymerase chain reaction detected Theileria annulata, T. buffeli, Babesia bovis and B. bigemina in cattle accounting for 48.6% of positive samples. The most frequently found species was T. buffeli, which was present in 39.2% of the samples. T. annulata was found in 48 samples (17.3%). Babesia infections were less frequently detected: B. bovis was found in 6.8% of the samples and B. bigemina in 4.3%. Mixed infections were detected in 45 samples, accounting for seven different combinations of species. Seven Ixodid tick species (Boophilus annulatus, Ixodes ricinus, Hyalomma marginatum, Hyalomma excavatum, Hyalomma detritum, Haemaphysalis punctata and Haemaphysalis sulcata) were collected from examined cattle in the 23 visited farms. I. ricinus was the dominant species (36%), mainly collected in the humid zone, while it seemed to be very rare in the semi-arid zone (where only 15 specimens were collected), whereas B. annulatus was the most commonly collected species in the sub-humid area (68.5% of ticks collected in this zone).

  16. Differential protein expression in ovaries of uninfected and Babesia-infected southern cattle ticks, Rhipicephalus (Boophilus) microplus.

    PubMed

    Rachinsky, Anna; Guerrero, Felix D; Scoles, Glen A

    2007-12-01

    We used gel electrophoresis and mass spectrometry to investigate differences in protein expression in ovarian tissues from Babesia bovis-infected and uninfected southern cattle tick, Rhipicephalus (Boophilus) microplus. Soluble and membrane proteins were extracted from ovaries of adult female ticks, and analyzed by isoelectric focusing (IEF) and one-dimensional or two-dimensional (2-D) gel electrophoresis. Protein patterns were analyzed for differences in expression between infected and uninfected ticks. 2-D separation of proteins revealed a number of proteins that appeared to be up- or down-regulated in response to infection with Babesia, in particular membrane/membrane-associated proteins and proteins in a low molecular mass range between 6 and 36kDa. A selection of differentially expressed proteins was subjected to analysis by capillary-HPLC-electrospray tandem mass spectrometry (HPLC-ESI-MS/MS). Among the ovarian proteins that were up-regulated in infected ticks were calreticulin, two myosin subunits, an endoplasmic reticulum protein, a peptidyl-prolyl cis-trans isomerase (PPIase), a cytochrome c oxidase subunit, a glutamine synthetase, and a family of Kunitz-type serine protease inhibitors. Among the down-regulated ovarian proteins were another PPIase, a hemoglobin subunit, and a lysozyme. This study is part of an ongoing effort to establish a proteome database that can be utilized to investigate specific proteins involved in successful pathogen transmission.

  17. Genome-wide analysis of gene expression and protein secretion of Babesia canis during virulent infection identifies potential pathogenicity factors.

    PubMed

    Eichenberger, Ramon M; Ramakrishnan, Chandra; Russo, Giancarlo; Deplazes, Peter; Hehl, Adrian B

    2017-06-13

    Infections of dogs with virulent strains of Babesia canis are characterized by rapid onset and high mortality, comparable to complicated human malaria. As in other apicomplexan parasites, most Babesia virulence factors responsible for survival and pathogenicity are secreted to the host cell surface and beyond where they remodel and biochemically modify the infected cell interacting with host proteins in a very specific manner. Here, we investigated factors secreted by B. canis during acute infections in dogs and report on in silico predictions and experimental analysis of the parasite's exportome. As a backdrop, we generated a fully annotated B. canis genome sequence of a virulent Hungarian field isolate (strain BcH-CHIPZ) underpinned by extensive genome-wide RNA-seq analysis. We find evidence for conserved factors in apicomplexan hemoparasites involved in immune-evasion (e.g. VESA-protein family), proteins secreted across the iRBC membrane into the host bloodstream (e.g. SA- and Bc28 protein families), potential moonlighting proteins (e.g. profilin and histones), and uncharacterized antigens present during acute crisis in dogs. The combined data provides a first predicted and partially validated set of potential virulence factors exported during fatal infections, which can be exploited for urgently needed innovative intervention strategies aimed at facilitating diagnosis and management of canine babesiosis.

  18. Molecular Survey of Zoonotic Agents in Rodents and Other Small Mammals in Croatia

    PubMed Central

    Tadin, Ante; Tokarz, Rafal; Markotić, Alemka; Margaletić, Josip; Turk, Nenad; Habuš, Josipa; Svoboda, Petra; Vucelja, Marko; Desai, Aaloki; Jain, Komal; Ian Lipkin, W.

    2016-01-01

    Croatia is a focus for many rodent-borne zoonosis. Here, we report a survey of 242 rodents and small mammals, including 43 Myodes glareolus, 131 Apodemus flavicollis, 53 Apodemus agrarius, three Apodemus sylvaticus, six Sorex araneus, four Microtus arvalis, one Microtus agrestis, and one Muscardinus avellanarius, collected at eight sites in Croatia over an 8-year period. Multiplex MassTag polymerase chain reaction (PCR) was used for detection of Borrelia, Rickettsia, Bartonella, Babesia, Ehrlichia, Anaplasma, Francisella tularensis, and Coxiella burnetii. Individual PCR assays were used for detection of Leptospira, lymphocytic choriomeningitis virus, orthopoxviruses, flaviviruses, hantaviruses, and Toxoplasma gondii. Of the rodents, 52 (21.5%) were infected with Leptospira, 9 (3.7%) with Borrelia miyamotoi, 5 (2%) with Borrelia afzelii, 29 (12.0%) with Bartonella, 8 (3.3%) with Babesia microti, 2 (0.8%) with Ehrlichia, 4 (1.7%) with Anaplasma, 2 (0.8%) with F. tularensis, 43 (17.8%) with hantaviruses, and 1 (0.4%) with an orthopoxvirus. Other agents were not detected. Multiple infections were found in 32 rodents (13.2%): dual infections in 26 rodents (10.7%), triple infections in four rodents (2.9%), and quadruple infections in two rodents (0.8%). Our findings indicate that rodents in Croatia harbor a wide range of bacteria and viruses that are pathogenic to humans. PMID:26711522

  19. A zoonotic human infection with simian malaria, Plasmodium knowlesi, in Central Kalimantan, Indonesia.

    PubMed

    Setiadi, Wuryantari; Sudoyo, Herawati; Trimarsanto, Hidayat; Sihite, Boy Adventus; Saragih, Riahdo Juliarman; Juliawaty, Rita; Wangsamuda, Suradi; Asih, Puji Budi Setia; Syafruddin, Din

    2016-04-16

    The Indonesian archipelago is endemic for malaria. Although Plasmodium falciparum and P. vivax are the most common causes for malaria cases, P. malariae and P. ovale are also present in certain regions. Zoonotic case of malaria had just became the attention of public health communities after the Serawak study in 2004. However, zoonotic case in Indonesia is still under reported; only one published report of knowlesi malaria in South Kalimantan in 2010. A case of Plasmodium knowlesi infection in a worker from a charcoal mining company in Central Kalimantan, Indonesia was described. The worker suffered from fever following his visit to a lowland forest being cut and converted into a new mining location. This study confirmed a zoonotic infection using polymerase chain reaction amplification and Sanger sequencing of plasmodial DNA encoding the mitochondrial cytochrome c oxidase subunit I (mtCOI).

  20. Prioritizing Zoonotic Diseases: Differences in Perspectives Between Human and Animal Health Professionals in North America.

    PubMed

    Ng, V; Sargeant, J M

    2016-05-01

    Zoonoses pose a significant burden of illness in North America. Zoonoses represent an additional threat to public health because the natural reservoirs are often animals, particularly wildlife, thus eluding control efforts such as quarantine, vaccination and social distancing. As there are limited resources available, it is necessary to prioritize diseases in order to allocate resources to those posing the greatest public health threat. Many studies have attempted to prioritize zoonoses, but challenges exist. This study uses a quantitative approach, conjoint analysis (CA), to overcome some limitations of traditional disease prioritization exercises. We used CA to conduct a zoonoses prioritization study involving a range of human and animal health professionals across North America; these included epidemiologists, public health practitioners, research scientists, physicians, veterinarians, laboratory technicians and nurses. A total of 699 human health professionals (HHP) and 585 animal health professionals (AHP) participated in this study. We used CA to prioritize 62 zoonotic diseases using 21 criteria. Our findings suggest CA can be used to produce reasonable criteria scores for disease prioritization. The fitted models were satisfactory for both groups with a slightly better fit for AHP compared to HHP (84.4% certainty fit versus 83.6%). Human-related criteria were more influential for HHP in their decision to prioritize zoonoses, while animal-related criteria were more influential for AHP resulting in different disease priority lists. While the differences were not statistically significant, a difference of one or two ranks could be considered important for some individuals. A potential solution to address the varying opinions is discussed. The scientific framework for disease prioritization presented can be revised on a regular basis by updating disease criteria to reflect diseases as they evolve over time; such a framework is of value allowing diseases of

  1. Brucella canis Is an Intracellular Pathogen That Induces a Lower Proinflammatory Response than Smooth Zoonotic Counterparts

    PubMed Central

    Chacón-Díaz, Carlos; Altamirano-Silva, Pamela; González-Espinoza, Gabriela; Medina, María-Concepción; Alfaro-Alarcón, Alejandro; Bouza-Mora, Laura; Jiménez-Rojas, César; Wong, Melissa; Barquero-Calvo, Elías; Rojas, Norman; Guzmán-Verri, Caterina

    2015-01-01

    Canine brucellosis caused by Brucella canis is a disease of dogs and a zoonotic risk. B. canis harbors most of the virulence determinants defined for the genus, but its pathogenic strategy remains unclear since it has not been demonstrated that this natural rough bacterium is an intracellular pathogen. Studies of B. canis outbreaks in kennel facilities indicated that infected dogs displaying clinical signs did not present hematological alterations. A virulent B. canis strain isolated from those outbreaks readily replicated in different organs of mice for a protracted period. However, the levels of tumor necrosis factor alpha, interleukin-6 (IL-6), and IL-12 in serum were close to background levels. Furthermore, B. canis induced lower levels of gamma interferon, less inflammation of the spleen, and a reduced number of granulomas in the liver in mice than did B. abortus. When the interaction of B. canis with cells was studied ex vivo, two patterns were observed, a predominant scattered cell-associated pattern of nonviable bacteria and an infrequent intracellular replicative pattern of viable bacteria in a perinuclear location. The second pattern, responsible for the increase in intracellular multiplication, was dependent on the type IV secretion system VirB and was seen only if the inoculum used for cell infections was in early exponential phase. Intracellular replicative B. canis followed an intracellular trafficking route undistinguishable from that of B. abortus. Although B. canis induces a lower proinflammatory response and has a stealthier replication cycle, it still displays the pathogenic properties of the genus and the ability to persist in infected organs based on the ability to multiply intracellularly. PMID:26438796

  2. A systematic review of zoonotic enteric parasitic diseases among nomadic and pastoral people

    PubMed Central

    Davaasuren, Anu; Baasandagva, Uyanga; Gray, Gregory C.

    2017-01-01

    Introduction Zoonotic enteric parasites are ubiquitous and remain a public health threat to humans due to our close relationship with domestic animals and wildlife, inadequate water, sanitation, and hygiene practices and diet. While most communities are now sedentary, nomadic and pastoral populations still exist and experience unique exposure risks for acquiring zoonotic enteric parasites. Through this systematic review we sought to summarize published research regarding pathogens present in nomadic populations and to identify the risk factors for their infection. Methods Using systematic review guidelines set forth by PRISMA, research articles were identified, screened and summarized based on exclusion criteria for the documented presence of zoonotic enteric parasites within nomadic or pastoral human populations. A total of 54 articles published between 1956 and 2016 were reviewed to determine the pathogens and exposure risks associated with the global transhumance lifestyle. Results The included articles reported more than twenty different zoonotic enteric parasite species and illustrated several risk factors for nomadic and pastoralist populations to acquire infection including; a) animal contact, b) food preparation and diet, and c) household characteristics. The most common parasite studied was Echinococcosis spp. and contact with dogs was recognized as a leading risk factor for zoonotic enteric parasites followed by contact with livestock and/or wildlife, water, sanitation, and hygiene barriers, home slaughter of animals, environmental water exposures, household member age and sex, and consumption of unwashed produce or raw, unprocessed, or undercooked milk or meat. Conclusion Nomadic and pastoral communities are at risk of infection with a variety of zoonotic enteric parasites due to their living environment, cultural and dietary traditions, and close relationship to animals. Global health efforts aimed at reducing the transmission of these animal

  3. Zoonotic importance of canine scabies and dermatophytosis in relation to knowledge level of dog owners

    PubMed Central

    Raval, Heli S.; Nayak, J. B.; Patel, B. M.; Bhadesiya, C. M.

    2015-01-01

    Aim: The present study was undertaken to understand the zoonotic importance of canine scabies and dermatophytosis with special reference to the knowledge level of dog owners in urban areas of Gujarat. Materials and Methods: The study was carried out in randomly selected 120 dog owners of 3 urban cities (viz., Ahmedabad, Anand and Vadodara) of Gujarat state, India. Dog owners (i.e., respondents) were subjected to a detailed interview regarding the zoonotic importance of canine scabies and dermatophytosis in dogs. Ex-post-facto research design was selected because of the independent variables of the selected respondent population for the study. The crucial method used in collecting data was a field survey to generate null hypothesis (Ho1). Available data was subjected to statistical analysis. Results: The three independent variables, viz., extension contact (r=0.522**), mass-media exposure (r=0.205*) and management orientation (r=0.264**) had significant relationship with knowledge of dog owners about zoonotic diseases. Other independent variables, viz., education, experience in dog keeping and housing space were observed to have negative and non-significant relationship with knowledge of dog owners about zoonotic diseases. Conclusion: Extension contact, exposure to extension mass-media, management orientation and innovation proneness among dog owners of 3 urban cities of Gujarat state had significant relationship with knowledge of dog owners on zoonotic aspects of canine scabies and dermatophytosis. Data provided new insights on the present status of zoonotic disease-awareness, which would be an aid to plan preventive measures. PMID:27065644

  4. A systematic review of zoonotic enteric parasitic diseases among nomadic and pastoral people.

    PubMed

    Barnes, Amber N; Davaasuren, Anu; Baasandagva, Uyanga; Gray, Gregory C

    2017-01-01

    Zoonotic enteric parasites are ubiquitous and remain a public health threat to humans due to our close relationship with domestic animals and wildlife, inadequate water, sanitation, and hygiene practices and diet. While most communities are now sedentary, nomadic and pastoral populations still exist and experience unique exposure risks for acquiring zoonotic enteric parasites. Through this systematic review we sought to summarize published research regarding pathogens present in nomadic populations and to identify the risk factors for their infection. Using systematic review guidelines set forth by PRISMA, research articles were identified, screened and summarized based on exclusion criteria for the documented presence of zoonotic enteric parasites within nomadic or pastoral human populations. A total of 54 articles published between 1956 and 2016 were reviewed to determine the pathogens and exposure risks associated with the global transhumance lifestyle. The included articles reported more than twenty different zoonotic enteric parasite species and illustrated several risk factors for nomadic and pastoralist populations to acquire infection including; a) animal contact, b) food preparation and diet, and c) household characteristics. The most common parasite studied was Echinococcosis spp. and contact with dogs was recognized as a leading risk factor for zoonotic enteric parasites followed by contact with livestock and/or wildlife, water, sanitation, and hygiene barriers, home slaughter of animals, environmental water exposures, household member age and sex, and consumption of unwashed produce or raw, unprocessed, or undercooked milk or meat. Nomadic and pastoral communities are at risk of infection with a variety of zoonotic enteric parasites due to their living environment, cultural and dietary traditions, and close relationship to animals. Global health efforts aimed at reducing the transmission of these animal-to-human pathogens must incorporate a One Health

  5. Detection and molecular characterization of Babesia, Theileria, and Hepatozoon species in hard ticks collected from Kagoshima, the southern region in Japan.

    PubMed

    Masatani, Tatsunori; Hayashi, Kei; Andoh, Masako; Tateno, Morihiro; Endo, Yasuyuki; Asada, Masahito; Kusakisako, Kodai; Tanaka, Tetsuya; Gokuden, Mutsuyo; Hozumi, Nodoka; Nakadohzono, Fumiko; Matsuo, Tomohide

    2017-06-01

    To reveal the distribution of tick-borne parasites, we established a novel nested polymerase chain reaction (PCR) system to detect the most common agents of tick-borne parasitic diseases, namely Babesia, Theileria, and Hepatozoon parasites. We collected host-seeking or animal-feeding ticks in Kagoshima Prefecture, the southernmost region of Kyusyu Island in southwestern Japan. Twenty of the total of 776 tick samples displayed a specific band of the appropriate size (approximately 1.4-1.6kbp) for the 18S rRNA genes in the novel nested PCR (20/776: 2.58%). These PCR products have individual sequences of Babesia spp. (from 8 ticks), Theileria spp. (from 9 ticks: one tick sample including at least two Theileria spp. sequences), and Hepatozoon spp. (from 3 ticks). Phylogenetic analyses revealed that these sequences were close to those of undescribed Babesia spp. detected in feral raccoons in Japan (5 sequences; 3 sequences being identical), Babesia gibsoni-like parasites detected in pigs in China (3 sequences; all sequences being identical), Theileria spp. detected in sika deer in Japan and China (10 sequences; 2 sequences being identical), Hepatozoon canis (one sequence), and Hepatozoon spp. detected in Japanese martens in Japan (two sequences). In summary, we showed that various tick-borne parasites exist in Kagoshima, the southern region in Japan by using the novel nested PCR system. These including undescribed species such as Babesia gibsoni-like parasites previously detected in pigs in China. Importantly, our results revealed new combinations of ticks and protozoan parasites in southern Japan. The results of this study will aid in the recognition of potential parasitic animal diseases caused by tick-borne parasites. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Detection of a large unnamed Babesia piroplasm originally identified in dogs in North Carolina in a dog with no history of travel to that state.

    PubMed

    Holman, Patricia J; Backlund, Brianna B; Wilcox, Angela L; Stone, Richard; Stricklin, Andrew L; Bardin, Kendall E

    2009-10-01

    A 12-year-old 46-kg (101.2-lb) sexually intact male Labrador Retriever was evaluated because of lymphadenomegaly. The dog resided in Texas, and its travel history included many southeastern and eastern shore states but not North Carolina. Following evaluation of the dog, a diagnosis of stage IVa intermediate- to large-cell lymphoma was made. A cyclophosphamide-hydroxydaunorubicin (doxorubicin)-vincristine-prednisone chemotherapy protocol was initiated. One week after the first chemotherapeutic treatment, a routine blood smear evaluation revealed single and paired intraerythrocytic large piroplasms that resembled Babesia canis. Via molecular testing, the organism was identified as a Babesia sp that had been detected previously in dogs in North Carolina. The dog was administered imidocarb diproprionate (7 mg/kg [3.2 mg/lb], IM) on 2 occasions (3-week interval). At 1, 4, 15, and 50 weeks after the second treatment, blood samples were analyzed specifically for the North Carolina Babesia sp via PCR assay; the result of each assay was positive. Because of the morphologic similarity of the large piroplasm detected in dogs in North Carolina to B canis, molecular testing of large piroplasms detected in dogs is needed to definitively identify the infective Babesia sp. In the dog of this report, the infection was not eliminated following treatment with imidocarb diproprionate, which may have been a result of the immunocompromised state of the dog or the drug's ineffectiveness against this parasite. If imidocarb diproprionate is ineffective against the North Carolina Babesia sp, treated dogs may act as reservoirs of infection.

  7. Capacity building efforts and perceptions for wildlife surveillance to detect zoonotic pathogens: comparing stakeholder perspectives.

    PubMed

    Schwind, Jessica S; Goldstein, Tracey; Thomas, Kate; Mazet, Jonna A K; Smith, Woutrina A

    2014-07-04

    The capacity to conduct zoonotic pathogen surveillance in wildlife is critical for the recognition and identification of emerging health threats. The PREDICT project, a component of United States Agency for International Development's Emerging Pandemic Threats program, has introduced capacity building efforts to increase zoonotic pathogen surveillance in wildlife in global 'hot spot' regions where zoonotic disease emergence is likely to occur. Understanding priorities, challenges, and opportunities from the perspectives of the stakeholders is a key component of any successful capacity building program. A survey was administered to wildlife officials and to PREDICT-implementing in-country project scientists in 16 participating countries in order to identify similarities and differences in perspectives between the groups regarding capacity needs for zoonotic pathogen surveillance in wildlife. Both stakeholder groups identified some human-animal interfaces (i.e. areas of high contact between wildlife and humans with the potential risk for disease transmission), such as hunting and markets, as important for ongoing targeting of wildlife surveillance. Similarly, findings regarding challenges across stakeholder groups showed some agreement in that a lack of sustainable funding across regions was the greatest challenge for conducting wildlife surveillance for zoonotic pathogens (wildlife officials: 96% and project scientists: 81%). However, the opportunity for improving zoonotic pathogen surveillance capacity identified most frequently by wildlife officials as important was increasing communication or coordination among agencies, sectors, or regions (100% of wildlife officials), whereas the most frequent opportunities identified as important by project scientists were increasing human capacity, increasing laboratory capacity, and the growing interest or awareness regarding wildlife disease or surveillance programs (all identified by 69% of project scientists). A One

  8. Enterocytozoon bieneusi in sika deer (Cervus nippon) and red deer (Cervus elaphus): deer specificity and zoonotic potential of ITS genotypes.

    PubMed

    Zhao, Wei; Zhang, Weizhe; Wang, Rongjun; Liu, Weishi; Liu, Aiqin; Yang, Dong; Yang, Fengkun; Karim, Md Robiul; Zhang, Longxian

    2014-11-01

    As the most common cause of the human microsporidiosis, Enterocytozoon bieneusi has been found in a wide variety of animal hosts. Deers are the ruminant mammals living in a variety of biomes, and the distribution of deer species differ by geography. To understand the prevalence of natural infection of E. bieneusi in deer and to assess their epidemiological role in the transmission of microsporidiosis caused by E. bieneusi, 91 fecal specimens were collected from 86 sika deers and five red deers in the northeast of China. By PCR and sequencing of the internal transcribed spacer (ITS) region of the ribosomal RNA (rRNA) gene of E. bieneusi, an average infection rate of 31.9% (29/91) was observed in deer, with 32.6% (28/86) for sika deer, and 20% (1/5) for red deer. Six ITS genotypes were identified: one known genotype BEB6 (n = 20) and five novel genotypes HLJD-I to HLJD-IV (one each) and HLJD-V (n = 5). A phylogenetic analysis based on a neighbor-joining tree of the ITS gene sequences of E. bieneusi indicated that genotypes HLJD-II and HLJD-III fell into group 1 of zoonotic potential, while the other genotypes (BEB6, HLJD-I, HLJD-IV, HLJD-V) were clustered into so-called bovine-specific group 2. This is the first report of E. bieneusi in deer in China. The observation of genotype BEB6 in humans previously and in deer here and also the findings of the two novel genotypes (HLJD-II to HLJ-III) belonging to potential zoonotic group 1 suggested the possibility of deer in the transmission of E. bieneusi to humans.

  9. Using Modelling to Disentangle the Relative Contributions of Zoonotic and Anthroponotic Transmission: The Case of Lassa Fever

    PubMed Central

    Lo Iacono, Giovanni; Cunningham, Andrew A.; Fichet-Calvet, Elisabeth; Garry, Robert F.; Grant, Donald S.; Khan, Sheik Humarr; Leach, Melissa; Moses, Lina M.; Schieffelin, John S.; Shaffer, Jeffrey G.; Webb, Colleen T.; Wood, James L. N.

    2015-01-01

    Background Zoonotic infections, which transmit from animals to humans, form the majority of new human pathogens. Following zoonotic transmission, the pathogen may already have, or may acquire, the ability to transmit from human to human. With infections such as Lassa fever (LF), an often fatal, rodent-borne, hemorrhagic fever common in areas of West Africa, rodent-to-rodent, rodent-to-human, human-to-human and even human-to-rodent transmission patterns are possible. Indeed, large hospital-related outbreaks have been reported. Estimating the proportion of transmission due to human-to-human routes and related patterns (e.g. existence of super-spreaders), in these scenarios is challenging, but essential for planned interventions. Methodology/Principal Findings Here, we make use of an innovative modeling approach to analyze data from published outbreaks and the number of LF hospitalized patients to Kenema Government Hospital in Sierra Leone to estimate the likely contribution of human-to-human transmission. The analyses show that almost of the cases at KGH are secondary cases arising from human-to-human transmission. However, we found much of this transmission is associated with a disproportionally large impact of a few individuals (‘super-spreaders’), as we found only of human cases result in an effective reproduction number (i.e. the average number of secondary cases per infectious case) , with a maximum value up to . Conclusions/Significance This work explains the discrepancy between the sizes of reported LF outbreaks and a clinical perception that human-to-human transmission is low. Future assessment of risks of LF and infection control guidelines should take into account the potentially large impact of super-spreaders in human-to-human transmission. Our work highlights several neglected topics in LF research, the occurrence and nature of super-spreading events and aspects of social behavior in transmission and detection. PMID:25569707

  10. Using modelling to disentangle the relative contributions of zoonotic and anthroponotic transmission: the case of lassa fever.

    PubMed

    Lo Iacono, Giovanni; Cunningham, Andrew A; Fichet-Calvet, Elisabeth; Garry, Robert F; Grant, Donald S; Khan, Sheik Humarr; Leach, Melissa; Moses, Lina M; Schieffelin, John S; Shaffer, Jeffrey G; Webb, Colleen T; Wood, James L N

    2015-01-01

    Zoonotic infections, which transmit from animals to humans, form the majority of new human pathogens. Following zoonotic transmission, the pathogen may already have, or may acquire, the ability to transmit from human to human. With infections such as Lassa fever (LF), an often fatal, rodent-borne, hemorrhagic fever common in areas of West Africa, rodent-to-rodent, rodent-to-human, human-to-human and even human-to-rodent transmission patterns are possible. Indeed, large hospital-related outbreaks have been reported. Estimating the proportion of transmission due to human-to-human routes and related patterns (e.g. existence of super-spreaders), in these scenarios is challenging, but essential for planned interventions. Here, we make use of an innovative modeling approach to analyze data from published outbreaks and the number of LF hospitalized patients to Kenema Government Hospital in Sierra Leone to estimate the likely contribution of human-to-human transmission. The analyses show that almost [Formula: see text] of the cases at KGH are secondary cases arising from human-to-human transmission. However, we found much of this transmission is associated with a disproportionally large impact of a few individuals ('super-spreaders'), as we found only [Formula: see text] of human cases result in an effective reproduction number (i.e. the average number of secondary cases per infectious case) [Formula: see text], with a maximum value up to [Formula: see text]. This work explains the discrepancy between the sizes of reported LF outbreaks and a clinical perception that human-to-human transmission is low. Future assessment of risks of LF and infection control guidelines should take into account the potentially large impact of super-spreaders in human-to-human transmission. Our work highlights several neglected topics in LF research, the occurrence and nature of super-spreading events and aspects of social behavior in transmission and detection.

  11. Mammal decline, linked to invasive Burmese python, shifts host use of vector mosquito towards reservoir hosts of a zoonotic disease.

    PubMed

    Hoyer, Isaiah J; Blosser, Erik M; Acevedo, Carolina; Thompson, Anna Carels; Reeves, Lawrence E; Burkett-Cadena, Nathan D

    2017-10-01

    Invasive apex predators have profound impacts on natural communities, yet the consequences of these impacts on the transmission of zoonotic pathogens are unexplored. Collapse of large- and medium-sized mammal populations in the Florida Everglades has been linked to the invasive Burmese python, Python bivittatus Kuhl. We used historic and current data to investigate potential impacts of these community effects on contact between the reservoir hosts (certain rodents) and vectors of Everglades virus, a zoonotic mosquito-borne pathogen that circulates in southern Florida. The percentage of blood meals taken from the primary reservoir host, the hispid cotton rat, Sigmodon hispidus Say and Ord, increased dramatically (422.2%) from 1979 (14.7%) to 2016 (76.8%), while blood meals from deer, raccoons and opossums decreased by 98.2%, reflecting precipitous declines in relative abundance of these larger mammals, attributed to python predation. Overall species diversity of hosts detected in Culex cedecei blood meals from the Everglades declined by 40.2% over the same period ( H (1979) = 1.68, H (2016) = 1.01). Predictions based upon the dilution effect theory suggest that increased relative feedings upon reservoir hosts translate into increased abundance of infectious vectors, and a corresponding upsurge of Everglades virus occurrence and risk of human exposure, although this was not tested in the current study. This work constitutes the first indication that an invasive predator can increase contact between vectors and reservoirs of a human pathogen and highlights unrecognized indirect impacts of invasive predators. © 2017 The Author(s).

  12. Screening for Babesia microti in the U.S. Blood Supply.

    PubMed

    Moritz, Erin D; Winton, Colleen S; Tonnetti, Laura; Townsend, Rebecca L; Berardi, Victor P; Hewins, Mary-Ellen; Weeks, Karen E; Dodd, Roger Y; Stramer, Susan L

    2016-12-08

    Babesia microti, a tickborne intraerythrocytic parasite that can be transmitted by means of blood transfusion, is responsible for the majority of cases of transfusion-transmitted babesiosis in the United States. However, no licensed test exists for screening for B. microti in donated blood. We assessed data from a large-scale, investigational product-release screening and donor follow-up program. From June 2012 through September 2014, we performed arrayed fluorescence immunoassays (AFIAs) for B. microti antibodies and real-time polymerase-chain-reaction (PCR) assays for B. microti DNA on blood-donation samples obtained in Connecticut, Massachusetts, Minnesota, and Wisconsin. We determined parasite loads with the use of quantitative PCR testing and assessed infectivity by means of the inoculation of hamsters and the subsequent examination for parasitemia. Donors with test-reactive samples were followed. Using data on cases of transfusion-transmitted babesiosis, we compared the proportions of screened versus unscreened donations that were infectious. Of 89,153 blood-donation samples tested, 335 (0.38%) were confirmed to be positive, of which 67 (20%) were PCR-positive; 9 samples were antibody-negative (i.e., 1 antibody-negative sample per 9906 screened samples), representing 13% of all PCR-positive samples. PCR-positive samples were identified all through the year; antibody-negative infections occurred from June through September. Approximately one third of the red-cell samples from PCR-positive or high-titer AFIA-positive donations infected hamsters. Follow-up showed DNA clearance in 86% of the donors but antibody seroreversion in 8% after 1 year. In Connecticut and Massachusetts, no reported cases of transfusion-transmitted babesiosis were associated with screened donations (i.e., 0 cases per 75,331 screened donations), as compared with 14 cases per 253,031 unscreened donations (i.e., 1 case per 18,074 unscreened donations) (odds ratio, 8.6; 95% confidence interval

  13. Genetic diversity of merozoite surface antigens in Babesia bovis detected from Sri Lankan cattle.

    PubMed

    Sivakumar, Thillaiampalam; Okubo, Kazuhiro; Igarashi, Ikuo; de Silva, Weligodage Kumarawansa; Kothalawala, Hemal; Silva, Seekkuge Susil Priyantha; Vimalakumar, Singarayar Caniciyas; Meewewa, Asela Sanjeewa; Yokoyama, Naoaki

    2013-10-01

    Babesia bovis, the causative agent of severe bovine babesiosis, is endemic in Sri Lanka. The live attenuated vaccine (K-strain), which was introduced in the early 1990s, has been used to immunize cattle populations in endemic areas of the country. The present study was undertaken to determine the genetic diversity of merozoite surface antigens (MSAs) in B. bovis isolates from Sri Lankan cattle, and to compare the gene sequences obtained from such isolates against those of the K-strain. Forty-four bovine blood samples isolated from different geographical regions of Sri Lanka and judged to be B. bovis-positive by PCR screening were used to amplify MSAs (MSA-1, MSA-2c, MSA-2a1, MSA-2a2, and MSA-2b), AMA-1, and 12D3 genes from parasite DNA. Although the AMA-1 and 12D3 gene sequences were highly conserved among the Sri Lankan isolates, the MSA gene sequences from the same isolates were highly diverse. Sri Lankan MSA-1, MSA-2c, MSA-2a1, MSA-2a2, and MSA-2b sequences clustered within 5, 2, 4, 1, and 9 different clades in the gene phylograms, respectively, while the minimum similarity values among the deduced amino acid sequences of these genes were 36.8%, 68.7%, 80.3%, 100%, and 68.3%, respectively. In the phylograms, none of the Sri Lankan sequences fell within clades containing the respective K-strain sequences. Additionally, the similarity values for MSA-1 and MSA-2c were 40-61.8% and 90.9-93.2% between the Sri Lankan isolates and the K-strain, respectively, while the K-strain MSA-2a/b sequence shared 64.5-69.8%, 69.3%, and 70.5-80.3% similarities with the Sri Lankan MSA-2a1, MSA-2a2, and MSA-2b sequences, respectively. The present study has shown that genetic diversity among MSAs of Sri Lankan B. bovis isolates is very high, and that the sequences of field isolates diverged genetically from the K-strain. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Transfected Babesia bovis Expressing a Tick GST as a Live Vector Vaccine

    PubMed Central

    Oldiges, Daiane P.; Laughery, Jacob M.; Tagliari, Nelson Junior; Leite Filho, Ronaldo Viana; Davis, William C.; da Silva Vaz, Itabajara; Termignoni, Carlos; Knowles, Donald P.; Suarez, Carlos E.

    2016-01-01

    The Rhipicephalus microplus tick is a notorious blood-feeding ectoparasite of livestock, especially cattle, responsible for massive losses in animal production. It is the main vector for transmission of pathogenic bacteria and parasites, including Babesia bovis, an intraerythrocytic apicomplexan protozoan parasite responsible for bovine Babesiosis. This study describes the development and testing of a live B. bovis vaccine expressing the protective tick antigen glutathione-S-transferase from Haemaphysalis longicornis (HlGST). The B. bovis S74-T3B parasites were electroporated with a plasmid containing the bidirectional Ef-1α (elongation factor 1 alpha) promoter of B. bovis controlling expression of two independent genes, the selectable marker GFP-BSD (green fluorescent protein–blasticidin deaminase), and HlGST fused to the MSA-1 (merozoite surface antigen 1) signal peptide from B. bovis. Electroporation followed by blasticidin selection resulted in the emergence of a mixed B. bovis transfected line (termed HlGST) in in vitro cultures, containing parasites with distinct patterns of insertion of both exogenous genes, either in or outside the Ef-1α locus. A B. bovis clonal line termed HlGST-Cln expressing intracellular GFP and HlGST in the surface of merozoites was then derived from the mixed parasite line HlGST using a fluorescent activated cell sorter. Two independent calf immunization trials were performed via intravenous inoculation of the HlGST-Cln and a previously described control consisting of an irrelevant transfected clonal line of B. bovis designated GFP-Cln. The control GFP-Cln line contains a copy of the GFP-BSD gene inserted into the Ef-1α locus of B. bovis in an identical fashion as the HIGST-Cln parasites. All animals inoculated with the HlGST-Cln and GFP-Cln transfected parasites developed mild babesiosis. Tick egg fertility and fully engorged female tick weight was reduced significantly in R. microplus feeding on HlGST-Cln-immunized calves

  15. Zoonotic potential of Enterocytozoon genotypes in humans and pigs in Thailand.

    PubMed

    Prasertbun, Rapeepun; Mori, Hirotake; Pintong, Ai-Rada; Sanyanusin, Suparut; Popruk, Supaluk; Komalamisra, Chalit; Changbunjong, Tanasak; Buddhirongawatr, Ruangrat; Sukthana, Yaowalark; Mahittikorn, Aongart

    2017-01-15

    Enterocytozoon bieneusi is an opportunistic intestinal pathogen infecting humans and a variety of animals. Its mode of transmission and zoonotic potential are not completely understood. E. bieneusi has been frequently identified in pigs. The objective of our study was to investigate E. bieneusi in pigs and humans in Western and Central Thailand to determine its presence, genetic diversity, and zoonotic potential. A total of 277 human and 210 pig faecal samples were collected and analysed. E. bieneusi was found in 5.4% and 28.1% of human and pig samples, respectively, by nested PCR. Genotyping based on the internal transcribed spacer regions of the small subunit ribosomal RNA demonstrated three known genotypes (D, H, PigEb10) and eight novel genotypes (TMH1-8) in humans, and five known genotypes (D, EbpA, EbpC, H, O) and 11 novel genotypes (TMP1-11) in pigs. All known genotypes identified in humans and pigs had zoonotic potential. Further studies are needed to evaluate zoonotic risk of novel genotypes, as pigs may play an important role in the transmission of E. bieneusi. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Dynamics of a Global Zoonotic Research Network Over 33 Years (1980-2012).

    PubMed

    Hossain, Liaquat; Karimi, Faezeh; Wigand, Rolf T

    2015-10-01

    The increasing rate of outbreaks in humans of zoonotic diseases requires detailed examination of the education, research, and practice of animal health and its connection to human health. This study investigated the collaboration network of different fields engaged in conducting zoonotic research from a transdisciplinary perspective. Examination of the dynamics of this network for a 33-year period from 1980 to 2012 is presented through the development of a large scientometric database from Scopus. In our analyses we compared several properties of these networks, including density, clustering coefficient, giant component, and centrality measures over time. We also elicited patterns in different fields of study collaborating with various other fields for zoonotic research. We discovered that the strongest collaborations across disciplines are formed among the fields of medicine; biochemistry, genetics, and molecular biology; immunology and microbiology; veterinary; agricultural and biological sciences; and social sciences. Furthermore, the affiliation network is growing overall in terms of collaborative research among different fields of study such that more than two-thirds of all possible collaboration links among disciplines have already been formed. Our findings indicate that zoonotic research scientists in different fields (human or animal health, social science, earth and environmental sciences, engineering) have been actively collaborating with each other over the past 11 years.

  17. Level of awareness regarding some zoonotic diseases, among dog owners of ithaca, new york.

    PubMed

    Sandhu, Gursimrat Kaur; Singh, Devinder

    2014-01-01

    Worldwide, dogs and cats are the two most common household companion animals. Because of this, they can be direct or indirect source of many human infections. Fortunately, most of these zoonotic infections can be clinically prevented by appropriate prophylactic interventions. Present kind of cross-sectional study, for the first time, was conducted in city of Ithaca, New York. People visiting local animal hospitals, dog parks, library and shoppers at Walmart supermarket were personally interviewed and a pre-tested questionnaire was got filled from every individual. The collected data were analyzed for percentage proportions using Microsoft Excel(®) and the results had been presented in graphical as well as tabulated forms. Out of 100 participants responding to the request for participation, gender-wise, 45% of the participants were male while 55% of the participants were females. Demographically, 50% participants lived in rural, 35% in urban while 15% participants lived in suburban areas. Educational background of the participants ranged from High school pass-outs to Graduates. Participants were aware about the zoonotic potential of leptospirosis, giardiasis, rabies, hookworms, coccidiosis, lyme disease, roundworms, toxoplasma, leishmaniasis, salmonellosis and ringworm disease. Knowledge gaps in the sampled population, in terms of lack of awareness about zoonotic diseases vectored by mosquitoes, ticks and fleas; practice of not doing regular deworming and prophylactic control of fleas and ticks on pet dogs; and lack of practice among physicians to discuss zoonotic canine diseases with their clients were revealed by this study.

  18. Level of Awareness Regarding Some Zoonotic Diseases, Among Dog Owners of Ithaca, New York

    PubMed Central

    Sandhu, Gursimrat Kaur; Singh, Devinder

    2014-01-01

    Objectives: Worldwide, dogs and cats are the two most common household companion animals. Because of this, they can be direct or indirect source of many human infections. Fortunately, most of these zoonotic infections can be clinically prevented by appropriate prophylactic interventions. Materials and Methods: Present kind of cross-sectional study, for the first time, was conducted in city of Ithaca, New York. People visiting local animal hospitals, dog parks, library and shoppers at Walmart supermarket were personally interviewed and a pre-tested questionnaire was got filled from every individual. The collected data were analyzed for percentage proportions using Microsoft Excel® and the results had been presented in graphical as well as tabulated forms. Results: Out of 100 participants responding to the request for participation, gender-wise, 45% of the participants were male while 55% of the participants were females. Demographically, 50% participants lived in rural, 35% in urban while 15% participants lived in suburban areas. Educational background of the participants ranged from High school pass-outs to Graduates. Conclusions: Participants were aware about the zoonotic potential of leptospirosis, giardiasis, rabies, hookworms, coccidiosis, lyme disease, roundworms, toxoplasma, leishmaniasis, salmonellosis and ringworm disease. Knowledge gaps in the sampled population, in terms of lack of awareness about zoonotic diseases vectored by mosquitoes, ticks and fleas; practice of not doing regular deworming and prophylactic control of fleas and ticks on pet dogs; and lack of practice among physicians to discuss zoonotic canine diseases with their clients were revealed by this study. PMID:25657956

  19. Legal aspects of public health: difficulties in controlling vector-borne and zoonotic diseases in Brazil.

    PubMed

    Mendes, Marcílio S; de Moraes, Josué

    2014-11-01

    In recent years, vector-borne and zoonotic diseases have become a major challenge for public health. Dengue fever and leptospirosis are the most important communicable diseases in Brazil based on their prevalence and the healthy life years lost from disability. The primary strategy for preventing human exposure to these diseases is effective insect and rodent control in and around the home. However, health authorities have difficulties in controlling vector-borne and zoonotic diseases because residents often refuse access to their homes. This study discusses aspects related to the activities performed by Brazilian health authorities to combat vector-borne and zoonotic diseases, particularly difficulties in relation to the legal aspect, which often impede the quick and effective actions of these professionals. How might it be possible to reconcile the need to preserve public health and the rule on the inviolability of the home, especially in the case of abandoned properties or illegal residents and the refusal of residents to allow the health authority access? Do residents have the right to hinder the performance of health workers even in the face of a significant and visible focus of disease transmission? This paper argues that a comprehensive legal plan aimed at the control of invasive vector-borne and zoonotic diseases including synanthropic animals of public health importance should be considered. In addition, this paper aims to bridge the gap between lawyers and public health professionals and to facilitate communication between them. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. ERAIZDA: a model for holistic annotation of animal infectious and zoonotic diseases.

    PubMed

    Buza, Teresia M; Jack, Sherman W; Kirunda, Halid; Khaitsa, Margaret L; Lawrence, Mark L; Pruett, Stephen; Peterson, Daniel G

    2015-01-01

    There is an urgent need for a unified resource that integrates trans-disciplinary annotations of emerging and reemerging animal infectious and zoonotic diseases. Such data integration will provide wonderful opportunity for epidemiologists, researchers and health policy makers to make data-driven decisions designed to improve animal health. Integrating emerging and reemerging animal infectious and zoonotic disease data from a large variety of sources into a unified open-access resource provides more plausible arguments to achieve better understanding of infectious and zoonotic diseases. We have developed a model for interlinking annotations of these diseases. These diseases are of particular interest because of the threats they pose to animal health, human health and global health security. We demonstrated the application of this model using brucellosis, an infectious and zoonotic disease. Preliminary annotations were deposited into VetBioBase database (http://vetbiobase.igbb.msstate.edu). This database is associated with user-friendly tools to facilitate searching, retrieving and downloading of disease-related information. Database URL: http://vetbiobase.igbb.msstate.edu. © The Author(s) 2015. Published by Oxford University Press.

  1. ERAIZDA: a model for holistic annotation of animal infectious and zoonotic diseases

    PubMed Central

    Buza, Teresia M.; Jack, Sherman W.; Kirunda, Halid; Khaitsa, Margaret L.; Lawrence, Mark L.; Pruett, Stephen; Peterson, Daniel G.

    2015-01-01

    There is an urgent need for a unified resource that integrates trans-disciplinary annotations of emerging and reemerging animal infectious and zoonotic diseases. Such data integration will provide wonderful opportunity for epidemiologists, researchers and health policy makers to make data-driven decisions designed to improve animal health. Integrating emerging and reemerging animal infectious and zoonotic disease data from a large variety of sources into a unified open-access resource provides more plausible arguments to achieve better understanding of infectious and zoonotic diseases. We have developed a model for interlinking annotations of these diseases. These diseases are of particular interest because of the threats they pose to animal health, human health and global health security. We demonstrated the application of this model using brucellosis, an infectious and zoonotic disease. Preliminary annotations were deposited into VetBioBase database (http://vetbiobase.igbb.msstate.edu). This database is associated with user-friendly tools to facilitate searching, retrieving and downloading of disease-related information. Database URL: http://vetbiobase.igbb.msstate.edu PMID:26581408

  2. Human Pulmonary Infection by the Zoonotic Metastrongylus salmi Nematode. The First Reported Case in the Americas

    PubMed Central

    Calvopina, Manuel; Caballero, Henry; Morita, Tatsushi; Korenaga, Masataka

    2016-01-01

    Pulmonary metastrongylosis, a zoonotic disease found primarily in pigs, is caused by eight different species of the cosmopolitan nematode Metastrongylus genus. To date, only four human cases have been reported, all from Europe. Herein, a severe case of pulmonary infection caused by Metastrongylus salmi in an Ecuadorian man, with successful treatment with ivermectin, is described. PMID:27382078

  3. Effect of lysozyme or antibiotics on fecal zoonotic pathogens in nursery pigs

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine the effect of lysozyme and antibiotics on zoonotic pathogen shedding in feces from nursery pigs housed without and with an indirect disease challenge. Two replicates of 600 pigs each were weaned and randomly assigned to one of 24 pens in either a nursery...

  4. Effect of lysozyme or antibiotics on fecal zoonotic pathogens in nursery pigs

    USDA-ARS?s Scientific Manuscript database

    Lysozyme is a 1,4-ß-N-acetylmuramidase that has antimicrobial properties. The objective of this study was to determine the effect of lysozyme and antibiotics on zoonotic pathogen shedding in feces in nursery pigs housed without and with an indirect disease challenge. Two replicates of 600 pigs eac...

  5. [New insight into bacterial zoonotic pathogens posing health hazards to humans].

    PubMed

    Ciszewski, Marcin; Czekaj, Tomasz; Szewczyk, Eligia Maria

    2014-01-01

    This article presents the problem of evolutionary changes of zoonotic pathogens responsible for human diseases. Everyone is exposed to the risk of zoonotic infection, particularly employees having direct contact with animals, i.e. veterinarians, breeders, butchers and workers of animal products' processing industry. The article focuses on pathogens monitored by the European Centre for Disease Prevention and Control (ECDC), which has been collecting statistical data on zoonoses from all European Union countries for 19 years and publishing collected data in annual epidemiological reports. Currently, the most important 11 pathogens responsible for causing human zoonotic diseases are being monitored, of which seven are bacteria: Salmonella spp., Campylobacter spp., Listeria monocytogenes, Mycobacterium bovis, Brucella spp., Coxiella burnetti and Verotoxin-producing E. coli (VTEC)/Shiga-like toxin producing E. coli (STEC). As particularly important are considered foodborne pathogens. The article also includes new emerging zoonotic bacteria, which are not currently monitored by ECDC but might pose a serious epidemiological problem in a foreseeable future: Streptococcus iniae, S. suis, S. dysgalactiae and staphylococci: Staphylococcus intermedius, S. pseudintermedius. Those species have just crossed the animal-human interspecies barrier. The exact mechanism of this phenomenon remains unknown, it is connected, however, with genetic variability, capability to survive in changing environment. These abilities derive from DNA rearrangement and horizontal gene transfer between bacterial cells. Substantial increase in the number of scientific publications on this subject, observed over the last few years, illustrates the importance of the problem.

  6. Adaptive pathways of zoonotic influenza viruses: from exposure to establishment in humans.

    PubMed

    Reperant, Leslie A; Kuiken, Thijs; Osterhaus, Albert D M E

    2012-06-22

    Human influenza viruses have their ultimate origin in avian reservoirs and may adapt, either directly or after passage through another mammalian species, to circulate independently in the human population. Three sets of barriers must be crossed by a zoonotic influenza virus before it can become a human virus: animal-to-human transmission barriers; virus-cell interaction barriers; and human-to-human transmission barriers. Adaptive changes allowing zoonotic influenza viruses to cross these barriers have been studied extensively, generating key knowledge for improved pandemic preparedness. Most of these adaptive changes link acquired genetic alterations of the virus to specific adaptation mechanisms that can be screened for, both genetically and phenotypically, as part of zoonotic influenza virus surveillance programs. Human-to-human transmission barriers are only sporadically crossed by zoonotic influenza viruses, eventually triggering a worldwide influenza outbreak or pandemic. This is the most devastating consequence of influenza virus cross-species transmission. Progress has been made in identifying some of the determinants of influenza virus transmissibility. However, interdisciplinary research is needed to further characterize these ultimate barriers to the development of influenza pandemics, at both the level of the individual host and that of the population. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Awareness and practices regarding zoonotic influenza prevention in Romanian swine workers.

    PubMed

    Rabinowitz, Peter M; Huang, Eileen; Paccha, Blanca; Vegso, Sally; Gurzau, Anca

    2013-12-01

    Swine workers may play a key role in transmission of zoonotic influenza viruses. At the same time, little is known about the extent and effectiveness of influenza prevention programs for these at-risk workers. To characterize practices and attitudes regarding zoonotic influenza transmission among swine workers in Romania. We conducted a convenience survey of swine workers in Romania. The confidential survey included questions about awareness of zoonotic influenza risk, work tasks performed, flu vaccination status, and reported influenza-like illness. A total of 103 workers at seven farms completed the survey. The percentage of workers reporting concern about either contracting influenza from pigs or giving influenza to pigs was 78% and 70%, respectively. Although 60% of workers reported having a sick-leave policy at work, only 7% of workers reported receiving seasonal influenza vaccination during the past flu season. Only 5% of the workers reported flu-like illness during the past year while 3% of workers reported that pigs appeared sick with influenza over the same time period. The majority of workers reported using protective overalls and rubber boots during swine work, with lower rates of use of gloves. Reported use of respiratory protection was rare, and use of any personal protective equipment did not differ when pigs appeared ill. Despite awareness and concern regarding zoonotic influenza, Romanian swine workers report low rates of influenza vaccine or respiratory protection. As part of global pandemic influenza preparedness, enhanced prevention programs for swine workers should address such gaps. © 2013 Blackwell publishing Ltd.

  8. Rare but evolutionarily consequential outcrossing in a highly inbred zoonotic parasite

    USDA-ARS?s Scientific Manuscript database

    Recurrent self-mating can result in nearly clonal propagation of biological lineages, but even occasional outcrossing can serve to redistribute variation in future generations, providing cohesion among regional populations. The zoonotic parasite Trichinella spiralis has been suspected to undergo fr...

  9. A survey for potentially zoonotic gastrointestinal parasites of dogs and pigs in Cambodia.

    PubMed

    Inpankaew, Tawin; Murrell, K Darwin; Pinyopanuwat, Nongnuch; Chhoun, Chamnan; Khov, Kuong; Sem, Tharin; Sorn, San; Muth, Sinuon; Dalsgaard, Anders

    2015-12-01

    There is little information available on parasites of zoonotic significance in Cambodia. In 2011, in an effort to obtain data on potentially zoonotic gastrointestinal parasites in domestic animals, 50 dogs and 30 pigs residing in 38 households located in Ang Svay Check village, Takeo province, Cambodia were examined for parasites from faecal samples. The samples were processed using the formalin-ethyl acetate concentration technique (FECT). Hookworms were the most common zoonotic parasite found in dogs (80.0%) followed by Echinostomes (18.0%). While, in pigs, Fasciolopsis buski was the most common zoonotic parasite (30.0%) followed by Ascaris suum (13.3%). This study provides baseline data on gastrointestinal parasites in dogs and pigs from Cambodia and underscores the importance of domestic animals as reservoir hosts for human parasites for Cambodian veterinary and public health agencies. Follow-up studies are required to further taxonomically characterize these dog and pig parasites and to determine their role in human parasites in this community.

  10. Human Pulmonary Infection by the Zoonotic Metastrongylus salmi Nematode. The First Reported Case in the Americas.

    PubMed

    Calvopina, Manuel; Caballero, Henry; Morita, Tatsushi; Korenaga, Masataka

    2016-10-05

    Pulmonary metastrongylosis, a zoonotic disease found primarily in pigs, is caused by eight different species of the cosmopolitan nematode Metastrongylus genus. To date, only four human cases have been reported, all from Europe. Herein, a severe case of pulmonary infection caused by Metastrongylus salmi in an Ecuadorian man, with successful treatment with ivermectin, is described. © The American Society of Tropical Medicine and Hygiene.

  11. Molecular detection and genetic diversity of bovine Babesia spp., Theileria orientalis, and Anaplasma marginale in beef cattle in Thailand.

    PubMed

    Jirapattharasate, Charoonluk; Adjou Moumouni, Paul Franck; Cao, Shinuo; Iguchi, Aiko; Liu, Mingming; Wang, Guanbo; Zhou, Mo; Vudriko, Patrick; Efstratiou, Artemis; Changbunjong, Tanasak; Sungpradit, Sivapong; Ratanakorn, Parntep; Moonarmart, Walasinee; Sedwisai, Poonyapat; Weluwanarak, Thekhawet; Wongsawang, Witsanu; Suzuki, Hiroshi; Xuan, Xuenan

    2017-02-01

    Babesia spp., Theileria orientalis, and Anaplasma marginale are significant tick-borne pathogens that affect the health and productivity of cattle in tropical and subtropical areas. In this study, we used PCR to detect the presence of Babesia bovis, Babesia bigemina, and T. orientalis in 279 beef cattle from Western Thailand and A. marginale in 608 beef cattle from the north, northeastern, and western regions. The PCRs were performed using species-specific primers based on the B. bovis spherical body protein 2 (BboSBP2), B. bigemina rhoptry-associated protein 1a (BbiRAP-1a), T. orientalis major piroplasm surface protein (ToMPSP), and A. marginale major surface protein 4 (AmMSP4) genes. To determine the genetic diversity of the above parasites, amplicons of B. bovis and B. bigemina ITS1-5.8s rRNA gene-ITS2 regions (B. bovis ITS, B. bigemina ITS), ToMPSP, and AmMSP4 genes were sequenced for phylogenetic analysis. PCR results revealed that the prevalence of B. bovis, B. bigemina, T. orientalis, and A. marginale in the Western region was 11.1, 12.5, 7.8, and 39.1 %, respectively. Coinfections of two or three parasites were observed in 17.9 % of the animals sampled. The study revealed that the prevalence of A. marginale in the western region was higher than in the north and northeastern regions (7 %). Sequence analysis showed the BboSBP2 gene to be more conserved than B. bovis ITS in the different isolates and, similarly, the BbiRAP-1a was more conserved than B. bigemina ITS. In the phylogenetic analysis, T. orientalis MPSP sequences were classified into types 3, 5, and 7 as previously reported. A. marginale MSP4 gene sequences shared high identity and similarity with each other and clustered with isolates from other countries. This study provides information on the prevalence and genetic diversity of tick-borne pathogens in beef cattle and highlights the need for effective strategies to control these pathogens in Thailand.

  12. Identification of candidate vaccine antigens of bovine hemoparasites Theileria parva and Babesia bovis by use of helper T cell clones.

    PubMed

    Brown, W C; Zhao, S; Logan, K S; Grab, D J; Rice-Ficht, A C

    1995-03-01

    Current vaccines for bovine hemoparasites utilize live attenuated organisms or virulent organisms administered concurrently with antiparasitic drugs. Although such vaccines can be effective, for most hemoparasites the mechanisms of acquired resistance to challenge infection with heterologous parasite isolates have not been clearly defined. Selection of potentially protective antigens has traditionally made use of antibodies to identify immunodominant proteins. However, numerous studies have indicated that induction of high antibody titers neither predicts the ability of an antigen to confer protective immunity nor correlates with protection. Because successful parasites have evolved antibody evasion tactics, alternative strategies to identify protective immunogens should be used. Through the elaboration of cytokines, T helper 1-(Th1)-like T cells and macrophages mediate protective immunity against many intracellular parasites, and therefore most likely play an important role in protective immunity against bovine hemoparasites. CD4+ T cell clones specific for soluble or membrane antigens of either Theileria parva schizonts or Babesia bovis merozoites were therefore employed to identify parasite antigens that elicit strong Th cell responses in vitro. Soluble cytosolic parasite antigen was fractionated by gel filtration, anion exchange chromatography or hydroxylapatite chromatography, or a combination thereof, and fractions were tested for the ability to induce proliferation of Th cell clones. This procedure enabled the identification of stimulatory fractions containing T. parva proteins of approximately 10 and 24 kDa. Antisera raised against the purified 24 kDa band reacted with a native schizont protein of approximately 30 kDa. Babesia bovis-specific Th cell clones tested against fractionated soluble Babesia bovis merozoite antigen revealed the presence of at least five distinct antigenic epitopes. Proteins separated by gel filtration revealed four patterns of

  13. The infection of questing Dermacentor reticulatus ticks with Babesia canis and Anaplasma phagocytophilum in the Chernobyl exclusion zone.

    PubMed

    Karbowiak, Grzegorz; Vichová, Bronislavá; Slivinska, Kateryna; Werszko, Joanna; Didyk, Julia; Peťko, Branislav; Stanko, Michal; Akimov, Igor

    2014-08-29

    Tick occurrence was studied in the Chernobyl exclusion zone (CEZ) during the August-October 2009-2012. Dermacentor reticulatus ticks were collected using the flagging method and then screened for infection with Anaplasma phagocytophilum and Babesia canis by a PCR method incorporating specific primers and sequence analysis. The prevalence of infection with B. canis canis and A. phagocytophilum was found to be 3.41% and 25.36%, respectively. The results present the first evidence of B. canis canis and A. phagocytophilum in questing D. reticulatus ticks from the Chernobyl exclusion zone. They also reveal the presence of tick-borne disease foci in areas with no human activity, and confirm that they can be maintained in areas after a nuclear disaster with radioactive contamination. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Coinfection by the tick-borne pathogens Babesia microti and Borrelia burgdorferi: ecological, epidemiological and clinical consequences

    PubMed Central

    Diuk-Wasser, Maria A.; Vannier, Edouard

    2015-01-01

    Ixodes ticks maintain a large and diverse array of human pathogens in the enzootic cycle, including Borrelia burgdorferi and Babesia microti. Despite the poor ecological fitness of B. microti, babesiosis has recently emerged in areas endemic for Lyme disease. Studies in ticks, reservoir hosts and humans indicate that coinfection with B. burgdorferi and B. microti is common, promotes transmission and emergence of B. microti in the enzootic cycle, and causes greater disease severity and duration in humans. These integrative studies may serve as a paradigm for the study of other vector-borne coinfections. Identifying ecological drivers of pathogen emergence and host factors that fuel disease severity will help guide the design of effective curative and prevention strategies. PMID:26613664

  15. Babesia microti real-time polymerase chain reaction testing of Connecticut blood donors: potential implications for screening algorithms.

    PubMed

    Johnson, Stephanie T; Van Tassell, Eric R; Tonnetti, Laura; Cable, Ritchard G; Berardi, Victor P; Leiby, David A

    2013-11-01

    Babesia microti, an intraerythrocytic parasite, has been implicated in transfusion transmission. B. microti seroprevalence in Connecticut (CT) blood donors is approximately 1%; however, it is not known what percentage of donors is parasitemic and poses a risk for transmitting infection. Therefore, we determined the prevalence of demonstrable B. microti DNA in donors from a highly endemic area of CT and compared observed rates with concurrent immunofluorescence assay (IFA) testing results. Blood samples from consenting donors in southeastern CT were collected from mid-August through early October 2009 and tested by IFA for immunoglobulin G antibodies and real-time polymerase chain reaction (PCR) for B. microti DNA. IFA specificity was determined using blood donor samples collected in northwestern Vermont (VT), an area nonendemic for Babesia. Of 1002 CT donors, 25 (2.5%) were IFA positive and three (0.3%) were real-time PCR positive. Among the three real-time PCR-positive donors, two were also IFA positive, while one was IFA negative and may represent a window period infection. The two IFA- and real-time PCR-positive donors appeared to subsequently clear infection. The other real-time PCR-positive donor did not provide follow-up samples. Of 1015 VT donors tested by IFA, only one (0.1%) was positive, but may have acquired infection during travel to an endemic area. We prospectively identified several real-time PCR-positive blood donors, including an IFA-negative real-time PCR-positive donor, in an area highly endemic for B. microti. These results suggest the need to include nucleic acid testing in planned mitigation strategies for B. microti. © 2013 American Association of Blood Banks.

  16. The impact of illegal waste sites on a transmission of zoonotic viruses.

    PubMed

    Duh, Darja; Hasic, Sandra; Buzan, Elena

    2017-07-20

    Illegal waste disposal impacts public health and causes aesthetic and environmental pollution. Waste disposed in places without permitted and controlled facilities can provide a ready source of nutrition and shelter for rodents and thus promote the spread of their ecto- and endoparasites. The presence of two distinct zoonotic viruses, lymphocytic choriomeningitis virus (LCMV) and tick-borne encephalitis virus (TBEV), was searched at illegal waste sites. The aim of this study was to determine the prevalence of infection with both viruses in rodents and to discuss the virus-rodent relations in such environments. Rodents sampled between October 2011 and April 2013 at 7 locations in the Istrian peninsula, were identified morphologically and genetically to minimize misidentification. Serological and molecular techniques were used to determine seroprevalence of infection in rodents and to detect viral RNAs. Serological testing was performed by immune fluorescence assay for detection of LCMV and TBEV specific antibodies. Real-time RT PCR was used for the detection of LCMV nucleoprotein gene and TBEV 3' non-coding region. Data were statistically analysed using SPSS statistic v2.0. Out of 82 rodent sera tested, the presence of LCMV antibodies was demonstrated in 24.93%. The highest prevalence of LCMV infection was found in commensal Mus musculus (47.37%), followed by 11.53%, 19.04% and 25% prevalence of infection in A. agrarius, A. flavicolis and A. sylvaticus, respectively. The highest prevalence of infection in rodents (53.33%) was found in locations with large waste sites and high anthropogenic influence. LCMV seroprevalence was significantly lower in rodents sampled from natural habitats. Viral nucleic acids were screened in 46 samples but yielded no amplicons of LCMV or TBEV. In addition, TBEV specific antibodies were not detected. Illegal waste sites have considerable impact on the area where they are located. Results have shown that the transmission of human

  17. Examining the differences in format and characteristics of zoonotic virus surveillance data on state agency websites.

    PubMed

    Scotch, Matthew; Baarson, Brittany; Beard, Rachel; Lauder, Robert; Varman, Aarthi; Halden, Rolf U

    2013-04-26

    Zoonotic viruses are infectious organisms transmittable between animals and humans. Agencies of public health, agriculture, and wildlife conduct surveillance of zoonotic viruses and often report data on their websites. However, the format and characteristics of these data are not known. To describe and compare the format and characteristics of statistics of zoonotic viruses on state public health, agriculture, and wildlife agency websites. For each state, we considered the websites of that state's public health, agriculture, and wildlife agency. For each website, we noted the presence of any statistics for zoonotic viruses from 2000-2012. We analyzed the data using numerous categories including type of statistic, temporal and geographic level of detail, and format. We prioritized our analysis within each category based on assumptions of individuals' preferences for extracting and analyzing data from websites. Thus, if two types of data (such as city and state-level) were present for a given virus in a given year, we counted the one with higher priority (city). External links from agency sites to other websites were not considered. From 2000-2012, state health departments had the most extensive virus data, followed by agriculture, and then wildlife. We focused on the seven viruses that were common across the three agencies. These included rabies, West Nile virus, eastern equine encephalitis, St. Louis encephalitis, western equine encephalitis, influenza, and dengue fever. Simple numerical totals were most often used to report the data (89% for public health, 81% for agriculture, and 82% for wildlife), and proportions were not different (chi-square P=.15). Public health data were most often presented yearly (66%), while agriculture and wildlife agencies often described cases as they occurred (Fisher's Exact test P<.001). Regarding format, public health agencies had more downloadable PDF files (68%), while agriculture (61%) and wildlife agencies (46%) presented data

  18. Comparison between conventional and molecular methods for diagnosis of bovine babesiosis (Babesia bovis infection) in tick infested cattle in upper Egypt.

    PubMed

    Al-Hosary, Amira A T

    2017-03-01

    Ticks and tick-borne diseases are the main problems affecting the livestock production in Egypt. Bovine babesiosis has adverse effects on the animal health and production. A comparison of Giemsa stained blood smears, polymerase chain reaction (PCR) and nested PCR (nPCR) assays for detection of Babesia bovis infection in Egyptian Baladi cattle ( Bos taurus ) in reference to reverse line blot was carried out. The sensitivity of PCR and nested PCR (nPCR) assays were 65 and 100 % respectively. Giemsa stained blood smears showed the lowest sensitivity (30 %). According to these results using of PCR and nPCR target for B. bovis , [BBOV-IV005650 (BV5650)] gene are suitable for diagnosis of B. bovis infection. The 18Ss rRNA partial sequence confirmed that all the positive samples were Babesia bovis and all of them were deposited in the GenBank databases (Accession No: KM455548, KM455549 and KM455550).

  19. Information to prevent human exposure to disease agents associated with wildlife—U.S. Geological Survey circulars on zoonotic disease

    USGS Publications Warehouse

    Meteyer, Carol U.; Moede Rogall, Gail

    2018-03-05

    The U.S. Geological Survey in collaboration with the U.S. Fish and Wildlife Service and others have published reports with information about geographic distribution, specific pathogens, disease ecology, and strategies to avoid exposure and infection for a selection of zoonotic diseases. Zoonotic diseases are diseases that can be passed from animals to humans, such as rabies and plague. This summary factsheet highlights the reports on plague, bat rabies, and raccoon roundworm with links to all seven zoonotic diseases covered in this series.

  20. Zoonotic Parasites of Sheltered and Stray Dogs in the Era of the Global Economic and Political Crisis.

    PubMed

    Otranto, Domenico; Dantas-Torres, Filipe; Mihalca, Andrei D; Traub, Rebecca J; Lappin, Michael; Baneth, Gad

    2017-10-01

    Sheltered and stray dogs, exposed to zoonotic parasites, including protozoa, helminths, and arthropods, may represent a major threat to public health. Resources for addressing health problems in these animals are not on the priority list of veterinary and public health authorities. Thus, dogs continue to represent an important reservoir for zoonotic parasites. In this article, we review the importance of sheltered and stray dogs as reservoirs of zoonotic parasites in different parts of the world, especially in the context of the current global political and economic crisis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Piroplasms in brown hyaenas (Parahyaena brunnea) and spotted hyaenas (Crocuta crocuta) in Namibia and South Africa are closely related to Babesia lengau.

    PubMed

    Burroughs, Richard E J; Penzhorn, Barend L; Wiesel, Ingrid; Barker, Nancy; Vorster, Ilse; Oosthuizen, Marinda C

    2017-02-01

    The objective of our study was identification and molecular characterization of piroplasms and rickettsias occurring in brown (Parahyaena brunnea) and spotted hyaenas (Crocuta crocuta) from various localities in Namibia and South Africa. Whole blood (n = 59) and skin (n = 3) specimens from brown (n = 15) and spotted hyaenas (n = 47) were screened for the presence of Babesia, Theileria, Ehrlichia and Anaplasma species using the reverse line blot (RLB) hybridization technique. PCR products of 52/62 (83.9%) of the specimens hybridized only with the Theileria/Babesia genus-specific probes and not with any of the species-specific probes, suggesting the presence of a novel species or variant of a species. No Ehrlichia and/or Anaplasma species DNA could be detected. A parasite 18S ribosomal RNA gene of brown (n = 3) and spotted hyaena (n = 6) specimens was subsequently amplified and cloned, and the recombinants were sequenced. Homologous sequence searches of databases indicated that the obtained sequences were most closely related to Babesia lengau, originally described from cheetahs (Acinonyx jubatus). Observed sequence similarities were subsequently confirmed by phylogenetic analyses which showed that the obtained hyaena sequences formed a monophyletic group with B. lengau, B abesia conradae and sequences previously isolated from humans and wildlife in the western USA. Within the B. lengau clade, the obtained sequences and the published B. lengau sequences were grouped into six distinct groups, of which groups I to V represented novel B. lengau genotypes and/or gene variants. We suggest that these genotypes cannot be classified as new Babesia species, but rather as variants of B. lengau. This is the first report of occurrence of piroplasms in brown hyaenas.

  2. Infections and risk factors for livestock with species of Anaplasma, Babesia and Brucella under semi-nomadic rearing in Karamoja Region, Uganda.

    PubMed

    Lolli, Chiara; Marenzoni, Maria Luisa; Strona, Paolo; Lappo, Pier Giorgio; Etiang, Patrick; Diverio, Silvana

    2016-03-01

    A survey was conducted to estimate the prevalence of Anaplasma, Babesia and Brucella spp. infections in cattle, goats and sheep in the Karamoja Region of Uganda and to identify possible risk factors existing in this semi-nomadic and pastoral area. Low cost laboratory tests were used to diagnose infections (Rose Bengal test for Brucella spp. antibodies and direct microscopic examination for Anaplasma and Babesia spp.). Multivariable logistic regression models were applied to identify possible risk factors linked to gender, animal species, age (only for cattle) and districts. A total of 3935 cattle, 729 goats and 306 sheep of five districts of the Karamoja Region were tested. Seroprevalence for Brucella was 9.2 % (CI, 95 %: 8.4-10), for Anaplasma 19.5 % (CI 95 %: 18.4-20.6) and for Babesia 16 % (CI 95 %: 15-17.1). Significant differences in infections prevalence were observed against risk factors associated with districts and species. Cattle were the species with higher risk of the infections. Female gender was identified as at risk only for Brucella spp. infection. Cattle more than one year old had greater likelihood to be Brucella seropositive. Co-infections of Anaplasma and Babesia spp. were statistically associated, especially in goats and sheep. Further studies to identify risk factors related to host species and geographical districts are needed. The influence on the semi-nomadic agro-pastoral system in Karamoja of animal raids and animal mixing should be further investigated. Findings were important to sensitize Karamojong undertaking measures on infection control, especially on cattle, which are their main source of food.

  3. A retrospective study of Babesia macropus associated with morbidity and mortality in eastern grey kangaroos (Macropus giganteus) and agile wallabies (Macropus agilis)

    PubMed Central

    Donahoe, Shannon L.; Peacock, Christopher S.; Choo, Ace Y.L.; Cook, Roger W.; O'Donoghue, Peter; Crameri, Sandra; Vogelnest, Larry; Gordon, Anita N.; Scott, Jenni L.; Rose, Karrie

    2015-01-01

    This is a retrospective study of 38 cases of infection by Babesia macropus, associated with a syndrome of anaemia and debility in hand-reared or free-ranging juvenile eastern grey kangaroos (Macropus giganteus) from coastal New South Wales and south-eastern Queensland between 1995 and 2013. Infection with B. macropus is recorded for the first time in agile wallabies (Macropus agilis) from far north Queensland. Animals in which B. macropus infection was considered to be the primary cause of morbidity had marked anaemia, lethargy and neurological signs, and often died. In these cases, parasitised erythrocytes were few or undetectable in peripheral blood samples but were sequestered in large numbers within small vessels of visceral organs, particularly in the kidney and brain, associated with distinctive clusters of extraerythrocytic organisms. Initial identification of this piroplasm in peripheral blood smears and in tissue impression smears and histological sections was confirmed using transmission electron microscopy and molecular analysis. Samples of kidney, brain or blood were tested using PCR and DNA sequencing of the 18S ribosomal RNA and heat shock protein 70 gene using primers specific for piroplasms. The piroplasm detected in these samples had 100% sequence identity in the 18S rRNA region with the recently described Babesia macropus in two eastern grey kangaroos from New South Wales and Queensland, and a high degree of similarity to an unnamed Babesia sp. recently detected in three woylies (Bettongia penicillata ogilbyi) in Western Australia. PMID:26106576

  4. A retrospective study of Babesia macropus associated with morbidity and mortality in eastern grey kangaroos (Macropus giganteus) and agile wallabies (Macropus agilis).

    PubMed

    Donahoe, Shannon L; Peacock, Christopher S; Choo, Ace Y L; Cook, Roger W; O'Donoghue, Peter; Crameri, Sandra; Vogelnest, Larry; Gordon, Anita N; Scott, Jenni L; Rose, Karrie

    2015-08-01

    This is a retrospective study of 38 cases of infection by Babesia macropus, associated with a syndrome of anaemia and debility in hand-reared or free-ranging juvenile eastern grey kangaroos (Macropus giganteus) from coastal New South Wales and south-eastern Queensland between 1995 and 2013. Infection with B. macropus is recorded for the first time in agile wallabies (Macropus agilis) from far north Queensland. Animals in which B. macropus infection was considered to be the primary cause of morbidity had marked anaemia, lethargy and neurological signs, and often died. In these cases, parasitised erythrocytes were few or undetectable in peripheral blood samples but were sequestered in large numbers within small vessels of visceral organs, particularly in the kidney and brain, associated with distinctive clusters of extraerythrocytic organisms. Initial identification of this piroplasm in peripheral blood smears and in tissue impression smears and histological sections was confirmed using transmission electron microscopy and molecular analysis. Samples of kidney, brain or blood were tested using PCR and DNA sequencing of the 18S ribosomal RNA and heat shock protein 70 gene using primers specific for piroplasms. The piroplasm detected in these samples had 100% sequence identity in the 18S rRNA region with the recently described Babesia macropus in two eastern grey kangaroos from New South Wales and Queensland, and a high degree of similarity to an unnamed Babesia sp. recently detected in three woylies (Bettongia penicillata ogilbyi) in Western Australia.

  5. Evaluation of the presence and zoonotic transmission of Chlamydia suis in a pig slaughterhouse.

    PubMed

    De Puysseleyr, Kristien; De Puysseleyr, Leentje; Dhondt, Hendrik; Geens, Tom; Braeckman, Lutgart; Morré, Servaas A; Cox, Eric; Vanrompay, Daisy

    2014-10-30

    A significant number of studies on pig farms and wild boars worldwide, demonstrate the endemic presence of Chlamydia suis in pigs. However, the zoonotic potential of this pathogen, phylogenetically closely related to Chlamydia trachomatis, is still uninvestigated. Therefore, this study aims to examine the zoonotic transmission in a Belgian pig abattoir. Presence of Chlamydia suis in pigs, contact surfaces, air and employees was assessed using a Chlamydia suis specific real-time PCR and culture. Furthermore, Chlamydia suis isolates were tested for the presence of the tet(C) gene. Chlamydia suis bacteria could be demonstrated in samples from pigs, the air and contact surfaces. Moreover, eye swabs of two employees were positive for Chlamydia suis by both PCR and culture. The tet(C) gene was absent in both human Chlamydia suis isolates and no clinical signs were reported. These findings suggest the need for further epidemiological and clinical research to elucidate the significance of human ocular Chlamydia suis infections.

  6. Chlamydia gallinacea: a widespread emerging Chlamydia agent with zoonotic potential in backyard poultry.

    PubMed

    Li, L; Luther, M; Macklin, K; Pugh, D; Li, J; Zhang, J; Roberts, J; Kaltenboeck, B; Wang, C

    2017-10-01

    Chlamydia gallinacea, a new chlamydial agent, has been reported in four European countries as well as Argentina and China. Experimentally infected chickens with C. gallinacea in previous study showed no clinical signs but had significantly reduced gains in body weight (6·5-11·4%). Slaughterhouse workers exposed to infected chickens have developed atypical pneumonia, indicating C. gallinacea is likely a zoonotic agent. In this study, FRET-PCR confirmed that C. gallinacea was present in 12·4% (66/531) of oral-pharyngeal samples from Alabama backyard poultry. Phylogenetic comparisons based on ompA variable domain showed that 16 sequenced samples represented 14 biotypes. We report for the first time the presence of C. gallinacea in North America, and this warrants further research on the organism's pathogenicity, hosts, transmission, and zoonotic potential.

  7. Phylogeographic Evidence for 2 Genetically Distinct Zoonotic Plasmodium knowlesi Parasites, Malaysia.

    PubMed

    Yusof, Ruhani; Ahmed, Md Atique; Jelip, Jenarun; Ngian, Hie Ung; Mustakim, Sahlawati; Hussin, Hani Mat; Fong, Mun Yik; Mahmud, Rohela; Sitam, Frankie Anak Thomas; Japning, J Rovie-Ryan; Snounou, Georges; Escalante, Ananias A; Lau, Yee Ling

    2016-08-01

    Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia.

  8. Parasitic diseases of zoonotic importance in humans of northeast India, with special reference to ocular involvement.

    PubMed

    Das, Dipankar; Islam, Saidul; Bhattacharjee, Harsha; Deka, Angshuman; Yambem, Dinakumar; Tahiliani, Prerana Sushil; Deka, Panna; Bhattacharyya, Pankaj; Deka, Satyen; Das, Kalyan; Bharali, Gayatri; Deka, Apurba; Paul, Rajashree

    2014-01-01

    Parasitic zoonotic diseases are prevalent in India, including the northeastern states. Proper epidemiological data are lacking from this part of the country on zoonotic parasitic diseases, and newer diseases are emerging in the current scenario. Systemic manifestation of such diseases as cysticercosis, paragonimiasis, hydatidosis, and toxoplasmosis are fairly common. The incidence of acquired toxoplasmal infection is showing an increasing trend in association with acquired immunodeficiency syndrome. Among the ocular parasitic diseases, toxoplasmosis, cysticercosis, toxocariasis, dirofilariasis, gnathostomiasis, hydatidosis, amebiasis, giardiasis, etc, are the real problems that are seen in this subset of the population. Therefore, proper coordination between various medical specialities, including veterinary science and other governing bodies, is needed for better and more effective strategic planning to control zoonoses.

  9. Updates to the zoonotic niche map of Ebola virus disease in Africa

    PubMed Central

    Pigott, David M; Millear, Anoushka I; Earl, Lucas; Morozoff, Chloe; Han, Barbara A; Shearer, Freya M; Weiss, Daniel J; Brady, Oliver J; Kraemer, Moritz UG; Moyes, Catherine L; Bhatt, Samir; Gething, Peter W; Golding, Nick; Hay, Simon I

    2016-01-01

    As the outbreak of Ebola virus disease (EVD) in West Africa is now contained, attention is turning from control to future outbreak prediction and prevention. Building on a previously published zoonotic niche map (Pigott et al., 2014), this study incorporates new human and animal occurrence data and expands upon the way in which potential bat EVD reservoir species are incorporated. This update demonstrates the potential for incorporating and updating data used to generate the predicted suitability map. A new data portal for sharing such maps is discussed. This output represents the most up-to-date estimate of the extent of EVD zoonotic risk in Africa. These maps can assist in strengthening surveillance and response capacity to contain viral haemorrhagic fevers. DOI: http://dx.doi.org/10.7554/eLife.16412.001 PMID:27414263

  10. [Pet ownership and health status of pets from immunocompromised children, with emphasis in zoonotic diseases].

    PubMed

    Abarca V, Katia; López Del P, Javier; Peña D, Anamaría; López G, J Carlos

    2011-06-01

    To characterize pet ownership and pet health status in families of immunocompromised (IS) children, with emphasis in zoonotic diseases. Families of IS children from two hospitals in Santiago, Chile, were interviewed and their pets were evaluated by veterinary examination, coproparasitologic and skin dermatophytes test. In specific cases, other laboratory tests were performed in IS children or their relatives. 47 out of 70 contacted families had pets, 42 participated in the study. Several risk factors for IS children were observed, as having a turtle as a pet and to clean cat or turtle faeces. Lack of adequate veterinary control, immunizations and deparasitation of pets were observed. Some animals showed zoonotic diseases or agents, as Brucella canis, Cryptosporidium sp, Giardia intestinalis, Toxocara canis and scabies. 44% of dogs had ticks and 37% had fleas, both potential vectors of infections. Our results suggest that policies to provide safer pet contact in IS children are needed.

  11. The zoonotic implications of pentastomiasis in the royal python (python regius).

    PubMed

    Ayinmode, Ab; Adedokun, Ao; Aina, A; Taiwo, V

    2010-09-01

    Pentastomes are worm-like endoparasites of the phylum Pentastomida found principally in the respiratory tract of reptiles, birds, and mammals. They cause a zoonotic disease known as pentastomiasis in humans and other mammals. The autopsy of a Nigerian royal python (Python regius) revealed two yellowish-white parasites in the lungs, tissue necrosis and inflammatory lesions. The parasite was confirmed to be Armillifer spp (Pentastomid); this is the first recorded case of pentastomiasis in the royal python (Python regius) in Nigeria. This report may be an alert of the possibility of on-going zoonotic transmission of pentastomiasis from snake to man, especially in the sub-urban/rural areas of Nigeria and other West African countries where people consume snake meat.

  12. Zoonotic encephalitides caused by arboviruses: transmission and epidemiology of alphaviruses and flaviviruses

    PubMed Central

    Balasuriya, Udeni B. R.; Lee, Chong-kyo

    2014-01-01

    In this review, we mainly focus on zoonotic encephalitides caused by arthropod-borne viruses (arboviruses) of the families Flaviviridae (genus Flavivirus) and Togaviridae (genus Alphavirus) that are important in both humans and domestic animals. Specifically, we will focus on alphaviruses (Eastern equine encephalitis virus, Western equine encephalitis virus, Venezuelan equine encephalitis virus) and flaviviruses (Japanese encephalitis virus and West Nile virus). Most of these viruses were originally found in tropical regions such as Africa and South America or in some regions in Asia. However, they have dispersed widely and currently cause diseases around the world. Global warming, increasing urbanization and population size in tropical regions, faster transportation and rapid spread of arthropod vectors contribute in continuous spreading of arboviruses into new geographic areas causing reemerging or resurging diseases. Most of the reemerging arboviruses also have emerged as zoonotic disease agents and created major public health issues and disease epidemics. PMID:24427764

  13. Latest developments on Streptococcus suis: an emerging zoonotic pathogen: part 2.

    PubMed

    Segura, Mariela; Zheng, Han; de Greeff, Astrid; Gao, George F; Grenier, Daniel; Jiang, Yongqiang; Lu, Chengping; Maskell, Duncan; Oishi, Kazunori; Okura, Masatoshi; Osawa, Ro; Schultsz, Constance; Schwerk, Christian; Sekizaki, Tsutomu; Smith, Hilde; Srimanote, Potjanee; Takamatsu, Daisuke; Tang, Jiaqi; Tenenbaum, Tobias; Tharavichitkul, Prasit; Hoa, Ngo Thi; Valentin-Weigand, Peter; Wells, Jerry M; Wertheim, Heiman; Zhu, Baoli; Xu, Jianguo; Gottschalk, Marcelo

    2014-01-01

    First International Workshop on Streptococcus suis, Beijing, China, 12-13 August 2013. This second and final chapter of the report on the First International Workshop on Streptococcus suis follows on from Part 1, published in the April 2014, volume 9, issue 4 of Future Microbiology. S. suis is a swine pathogen and a zoonotic agent afflicting people in close contact with infected pigs or pork meat. Although sporadic cases of human infections had been reported worldwide, deadly S. suis outbreaks emerged in Asia. The severity of the disease underscores the lack of knowledge on the virulence and zoonotic evolution of this human-infecting agent. The pathogenesis of the infection, interactions with host cells and new avenues for treatments were among the topics discussed during the First International Workshop on S. suis (China 2013).

  14. Phylogeographic Evidence for 2 Genetically Distinct Zoonotic Plasmodium knowlesi Parasites, Malaysia

    PubMed Central

    Yusof, Ruhani; Ahmed, Md Atique; Jelip, Jenarun; Ngian, Hie Ung; Mustakim, Sahlawati; Hussin, Hani Mat; Fong, Mun Yik; Mahmud, Rohela; Sitam, Frankie Anak Thomas; Japning, J. Rovie-Ryan; Snounou, Georges; Escalante, Ananias A.

    2016-01-01

    Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia. PMID:27433965

  15. Zoonotic helminths parasites in the digestive tract of feral dogs and cats in Guangxi, China.

    PubMed

    Fang, Fang; Li, Jian; Huang, Tengfei; Guillot, Jacques; Huang, Weiyi

    2015-08-16

    In Guangxi, a province of southern China, an important number of dogs and cats roam freely in rural settings, and the presence of these animals in proximity of people may represent a risk of parasitic zoonoses. The objective of the present study was to investigate the presence and identify gastrointestinal helminths in feral carnivores in Guangxi province. Therefore, post mortem examination was performed in 40 dogs and in 39 cats. The Gastrointestinal helminths were found in all the necropsied dogs and in 37 out of 39 cats. Fifteen species were identified including 7 trematodes, 3 cestodes and 5 nematodes. Most of them may be responsible for zoonotic infections. Major zoonotic gastrointestinal helminths, including liver and intestinal flukes, Toxocara spp., and Ancylostoma spp., are present in feral dogs and cats in Guangxi, and may represent a significant risk for public health.

  16. [The raccoon roundworm (Baylisascaris procyonis)--no zoonotic risk for Brandenburg?].

    PubMed

    Schwarz, Sabine; Sutor, Astrid; Mattis, Roswitha; Conraths, Franz Josef

    2015-01-01

    The aim of the present study was to investigate the presence of the raccoon roundworm (Baylisascaris [B.] procyonis), a dangerous zoonotic pathogen for humans, in raccoons living in the federal state of Brandenburg, Germany. In the years 2008 to 2013, a total of 762 raccoons, dating from hunting bags, were examined for intestinal helminths. No raccoon roundworm specimen was detected, but 27 samples were positive for Mesocestoides spp. Earlier studies had proved the presence of B. procyonis in Hesse and since 2005 the parasite has also been found in the western part of Saxony-Anhalt. The migration ability of raccoons may promote a further distribution of this parasite and could increase the risk for zoonotic infections in humans.

  17. Zoonotic encephalitides caused by arboviruses: transmission and epidemiology of alphaviruses and flaviviruses.

    PubMed

    Go, Yun Young; Balasuriya, Udeni B R; Lee, Chong-Kyo

    2014-01-01

    In this review, we mainly focus on zoonotic encephalitides caused by arthropod-borne viruses (arboviruses) of the families Flaviviridae (genus Flavivirus) and Togaviridae (genus Alphavirus) that are important in both humans and domestic animals. Specifically, we will focus on alphaviruses (Eastern equine encephalitis virus, Western equine encephalitis virus, Venezuelan equine encephalitis virus) and flaviviruses (Japanese encephalitis virus and West Nile virus). Most of these viruses were originally found in tropical regions such as Africa and South America or in some regions in Asia. However, they have dispersed widely and currently cause diseases around the world. Global warming, increasing urbanization and population size in tropical regions, faster transportation and rapid spread of arthropod vectors contribute in continuous spreading of arboviruses into new geographic areas causing reemerging or resurging diseases. Most of the reemerging arboviruses also have emerged as zoonotic disease agents and created major public health issues and disease epidemics.

  18. [Present status of zoonotic hemorrhagic fevers of South America].

    PubMed

    Chastel, C

    1993-01-01

    Since 1958, the geographical distribution of Argentine hemorrhagic fever (AHF) has especially extended non only into the province of Buenos Aires but also towards the provinces of Santa Fe and Cordoba, leading to an estimated population at risk of about 1.2 M inhabitants. Recent epidemiological field studies has confirmed the major role of Calomys musculinus and C. laucha rodents in both transmission to man and conservation of Junin virus in nature. However, the human infection may result essentially from contacts with infected C. musculinus. Clinical condition of patients with AHF was greatly improved using AHF convalescent plasma and additional administration of vidarabin may still improve the results of treatment. A live attenuated vaccine, Candid No 1, is presently under evaluation in endemic foci of AHF. On the contrary Bolivian hemorrhagic fever (BHV) appears at present quite silent. A new disease resembling both AHF and BHF, the Venezuelan hemorrhagic fever, appeared in 1989 in the rural areas of central Llanos of Venezuela. The mortality was very high, reaching 23% or more among severely ill patients. The wild small rodents responsible for the disease were identified as Sigmodon alstoni and Zygotontomys brevicauda. Recent extension of agricultural practices and massive immigration may probably explain the recent emergence of this new viral zoonosis.

  19. Helminthic eosinophilic meningitis: emerging zoonotic diseases in the South.

    PubMed

    Diaz, James H

    2008-01-01

    Today most emerging infectious diseases, such as West Nile virus and severe acute respiratory syndrome (SARS), arise in the natural environment as zoonoses and are often imported into the United States (US). The most common helminthic infections that can cause eosinophilic meningitis (EoM) in the US, neuroangiostrongyliasis and baylisascariasis, share many of the characteristics of emerging infectious diseases. Neuroangiostrongyliasis, a rodent zoonosis caused by the rat lungworm, Angiostrongylus cantonensis, is now endemic in the US following the importation of infected rats on container ships and African land snails, the parasite's intermediate hosts, as biological controls and exotic pets. Baylisascariasis, a raccoon zoonosis, caused by the raccoon roundworm, Baylisascaris procyonis, has extended its US distribution range from suburban neighborhoods in the northern US to the Southeast and West Coast since the 1980s. Both A. cantonensis and B. procyonis are now enzootic in Louisiana and have caused EoM in humans. This review analyzes scientific articles selected by MEDLINE search, 1966-2008, in order to assess the evolving epidemiology of EoM in the US, and specifically in Louisiana; and to alert Louisiana clinicians to populations at increased risk of helminthic EoM as a result of age, ethnicity, lifestyle, food choices, location of permanent residence, or recent travel in the Americas or Caribbean. Most parasitic diseases causing EoM are no longer confined to tropical countries; they are now endemic in the US and in Louisiana and more cases may be anticipated.

  20. Household Animal and Human Medicine Use and Animal Husbandry Practices in Rural Bangladesh: Risk Factors for Emerging Zoonotic Disease and Antibiotic Resistance.

    PubMed

    Roess, A A; Winch, P J; Akhter, A; Afroz, D; Ali, N A; Shah, R; Begum, N; Seraji, H R; El Arifeen, S; Darmstadt, G L; Baqui, A H

    2015-11-01

    Animal antimicrobial use and husbandry practices increase risk of emerging zoonotic disease and antibiotic resistance. We surveyed 700 households to elicit information on human and animal medicine use and husbandry practices. Households that owned livestock (n = 265/459, 57.7%) reported using animal treatments 630 times during the previous 6 months; 57.6% obtained medicines, including antibiotics, from drug sellers. Government animal healthcare providers were rarely visited (9.7%), and respondents more often sought animal health care from pharmacies and village doctors (70.6% and 11.9%, respectively), citing the latter two as less costly and more successful based on past performance. Animal husbandry practices that could promote the transmission of microbes from animals to humans included the following: the proximity of chickens to humans (50.1% of households reported that the chickens slept in the bedroom); the shared use of natural bodies of water for human and animal bathing (78.3%); the use of livestock waste as fertilizer (60.9%); and gender roles that dictate that females are the primary caretakers of poultry and children (62.8%). In the absence of an effective animal healthcare system, villagers must depend on informal healthcare providers for treatment of their animals. Suboptimal use of antimicrobials coupled with unhygienic animal husbandry practices is an important risk factor for emerging zoonotic disease and resistant pathogens. © 2015 Blackwell Verlag GmbH.

  1. Prevalence and characterization of multidrug-resistant zoonotic Enterobacter spp. in poultry of Bangladesh.

    PubMed

    Nandi, Shuvro Prokash; Sultana, Munawar; Hossain, M Anwar

    2013-05-01

    Poultry and poultry products are major contributors of zoonotic pathogens. Limited data are available on Enterobacter spp. as a potent zoonotic pathogen in poultry. The present study is a first endeavor on the emergence of multidrug-resistant zoonotic Enterobacter spp. and its prevalence arising from poultry in Bangladesh. Cloacal swabs from poultry samples of five different farms at Savar, Dhaka, Bangladesh were collected and from 106 isolates, 18 presumptive Enterobacter spp. were obtained. Antibiogram using 19 used antibiotics belonging to 15 major groups revealed that all of the 18 isolates were completely resistant to penicillin and rifampicin, but differed in their drug resistance pattern against ampicillin (94.4%), clindamycin (94.4%), erythromycin (94.4%), vancomycin (88.9%), sulfonamides (72.2%), imipenem (66.6%), streptomycin (55.6%), nitrofurantoin (33.3%), doxycycline (33.3%), tetracyclines (33.3%), cefepime (11.1%), and gentamicin (5.6%). All Enterobacter spp. were found to be plasmid free, implying that multidrug-resistant properties are chromosomal borne. The vanA and sulI were detected by polymerase chain reaction assay in 17 and 13 isolates, respectively. Amplified ribosomal DNA restriction analysis and randomly amplified polymorphic DNA distributed the 18 multidrug-resistant Enterobacter spp. into three genotypes. Phylogenetic analysis of the representatives of the three genotypes using partial 16S rRNA gene sequence (approximately 900 bp) showed that the genotypically diverse groups belonged to Enterobacter hormaechei, E. cloacae, and E. cancerogenus, respectively. The clinical significance of the close relative Enterobacter spp. is indicative of their zoonotic potential. Therefore, urgent intervention is required to limit the emergence and spread of these bacteria in poultry feed as well as prudent use of antibiotics among poultry farmers in Bangladesh.

  2. Zoonotic Infections Among Employees from Great Smoky Mountains and Rocky Mountain National Parks, 2008–2009

    PubMed Central

    Weber, Ingrid B.; McQuiston, Jennifer; Griffith, Kevin S.; Mead, Paul S.; Nicholson, William; Roche, Aubree; Schriefer, Martin; Fischer, Marc; Kosoy, Olga; Laven, Janeen J.; Stoddard, Robyn A.; Hoffmaster, Alex R.; Smith, Theresa; Bui, Duy; Wilkins, Patricia P.; Jones, Jeffery L.; Gupton, Paige N.; Quinn, Conrad P.; Messonnier, Nancy; Higgins, Charles; Wong, David

    2012-01-01

    Abstract U.S. National Park Service employees may have prolonged exposure to wildlife and arthropods, placing them at increased risk of infection with endemic zoonoses. To evaluate possible zoonotic risks present at both Great Smoky Mountains (GRSM) and Rocky Mountain (ROMO) National Parks, we assessed park employees for baseline seroprevalence to specific zoonotic pathogens, followed by evaluation of incident infections over a 1-year study period. Park personnel showed evidence of prior infection with a variety of zoonotic agents, including California serogroup bunyaviruses (31.9%), Bartonella henselae (26.7%), spotted fever group rickettsiae (22.2%), Toxoplasma gondii (11.1%), Anaplasma phagocytophilum (8.1%), Brucella spp. (8.9%), flaviviruses (2.2%), and Bacillus anthracis (1.5%). Over a 1-year study period, we detected incident infections with leptospirosis (5.7%), B. henselae (5.7%), spotted fever group rickettsiae (1.5%), T. gondii (1.5%), B. anthracis (1.5%), and La Crosse virus (1.5%) in staff members at GRSM, and with spotted fever group rickettsiae (8.5%) and B. henselae (4.3%) in staff at ROMO. The risk of any incident infection was greater for employees who worked as resource managers (OR 7.4; 95% CI 1.4,37.5; p=0.02), and as law enforcement rangers/rescue crew (OR 6.5; 95% CI 1.1,36.5; p=0.03), relative to those who worked primarily in administration or management. The results of this study increase our understanding of the pathogens circulating within both parks, and can be used to inform the development of effective guidelines and interventions to increase visitor and staff awareness and help prevent exposure to zoonotic agents. PMID:22835153

  3. Zoonotic helminths of urban brown rats (Rattus norvegicus) in the UK: neglected public health considerations?

    PubMed

    McGarry, J W; Higgins, A; White, N G; Pounder, K C; Hetzel, U

    2015-02-01

    Urban brown rats (Rattus norvegicus) carry microbial human pathogens but their role as reservoir hosts for helminths of public health importance is less well known. In this study, 42 brown rats trapped on Merseyside were subject to thorough combined helminthological and pathohistological post-mortem examination. Eggs of the rodent-borne zoonotic nematode Calodium hepaticum were initially detected in histological sections of the livers of 9.5% of rats, but overall diagnostic sensitivity increased to 16.6% when entire liver tissue was disrupted and the resulting filtrates were examined for released eggs. In their rat host, mainly trapped inside the dockland, infections with C. hepaticum were associated with a chronic multifocal pyogranulomatous hepatitis with intralesional eggs and peripheral fibrosis. Mean intensity of hepatic C. hepaticum egg infections was 1041 eggs. This is the first report of C. hepaticum in an urban brown rat population in the UK and provides original data for liver egg burdens in this abundant commensal rodent. The zoonotic cestode Rodentolepis nana had a prevalence of infection of 14.3%. Rodent-specific, non-zoonotic helminths found were the spiruroid Mastophorus muris (16.0%) in the stomach, the trichuroid Trichosomoides crassicauda in the urinary bladder (31.0%); the ascarid Heterakis spumosa was the commonest helminth of the large intestine (76.2%). Many millions of brown rats inhabit cities and rural areas of the UK, and the infective stages of the zoonotic worm species, particularly C. hepaticum, are likely to be widely distributed in the environment presenting a threat to public health. © 2014 Blackwell Verlag GmbH.

  4. Zoonotic infections among employees from Great Smoky Mountains and Rocky Mountain National Parks, 2008-2009.

    PubMed

    Adjemian, Jennifer; Weber, Ingrid B; McQuiston, Jennifer; Griffith, Kevin S; Mead, Paul S; Nicholson, William; Roche, Aubree; Schriefer, Martin; Fischer, Marc; Kosoy, Olga; Laven, Janeen J; Stoddard, Robyn A; Hoffmaster, Alex R; Smith, Theresa; Bui, Duy; Wilkins, Patricia P; Jones, Jeffery L; Gupton, Paige N; Quinn, Conrad P; Messonnier, Nancy; Higgins, Charles; Wong, David

    2012-11-01

    U.S. National Park Service employees may have prolonged exposure to wildlife and arthropods, placing them at increased risk of infection with endemic zoonoses. To evaluate possible zoonotic risks present at both Great Smoky Mountains (GRSM) and Rocky Mountain (ROMO) National Parks, we assessed park employees for baseline seroprevalence to specific zoonotic pathogens, followed by evaluation of incident infections over a 1-year study period. Park personnel showed evidence of prior infection with a variety of zoonotic agents, including California serogroup bunyaviruses (31.9%), Bartonella henselae (26.7%), spotted fever group rickettsiae (22.2%), Toxoplasma gondii (11.1%), Anaplasma phagocytophilum (8.1%), Brucella spp. (8.9%), flaviviruses (2.2%), and Bacillus anthracis (1.5%). Over a 1-year study period, we detected incident infections with leptospirosis (5.7%), B. henselae (5.7%), spotted fever group rickettsiae (1.5%), T. gondii (1.5%), B. anthracis (1.5%), and La Crosse virus (1.5%) in staff members at GRSM, and with spotted fever group rickettsiae (8.5%) and B. henselae (4.3%) in staff at ROMO. The risk of any incident infection was greater for employees who worked as resource managers (OR 7.4; 95% CI 1.4,37.5; p=0.02), and as law enforcement rangers/rescue crew (OR 6.5; 95% CI 1.1,36.5; p=0.03), relative to those who worked primarily in administration or management. The results of this study increase our understanding of the pathogens circulating within both parks, and can be used to inform the development of effective guidelines and interventions to increase visitor and staff awareness and help prevent exposure to zoonotic agents.

  5. Emergence of zoonotic arboviruses by animal trade and migration

    PubMed Central

    2010-01-01

    Arboviruses are transmitted in nature exclusively or to a major extend by arthropods. They belong to the most important viruses invading new areas in the world and their occurrence is strongly influenced by climatic changes due to the life cycle of the transmitting vectors. Several arboviruses have emerged in new regions of the world during the last years, like West Nile virus (WNV) in the Americas, Usutu virus (USUV) in Central Europe, or Rift Valley fever virus (RVFV) in the Arabian Peninsula. In most instances the ways of introduction of arboviruses into new regions are not known. Infections acquired during stays in the tropics and subtropics are diagnosed with increasing frequency in travellers returning from tropical countries, but interestingly no attention is paid on accompanying pet animals or the hematophagous ectoparasites that may still be attached to them. Here we outline the known ecology of the mosquito-borne equine encephalitis viruses (WEEV, EEEV, and VEEV), WNV, USUV, RVFV, and Japanese Encephalitis virus, as well as Tick-Borne Encephalitis virus and its North American counterpart Powassan virus, and will discuss the most likely mode that these viruses could expand their respective geographical range. All these viruses have a different epidemiology as different vector species, reservoir hosts and virus types have adapted to promiscuous and robust or rather very fine-balanced transmission cycles. Consequently, these viruses will behave differently with regard to the requirements needed to establish new endemic foci outside their original geographical ranges. Hence, emphasis is given on animal trade and suitable ecologic conditions, including competent vectors and vertebrate hosts. PMID:20377873

  6. Probable Zoonotic Leprosy in the Southern United States

    PubMed Central

    Truman, Richard W.; Singh, Pushpendra; Sharma, Rahul; Busso, Philippe; Rougemont, Jacques; Paniz-Mondolfi, Alberto; Kapopoulou, Adamandia; Brisse, Sylvain; Scollard, David M.; Gillis, Thomas P.; Cole, Stewart T.

    2011-01-01

    BACKGROUND In the southern region of the United States, such as in Louisiana and Texas, there are autochthonous cases of leprosy among native-born Americans with no history of foreign exposure. In the same region, as well as in Mexico, wild armadillos are infected with Mycobacterium leprae. METHODS Whole-genome resequencing of M. leprae from one wild armadillo and three U.S. patients with leprosy revealed that the infective strains were essentially identical. Comparative genomic analysis of these strains and M. leprae strains from Asia and Brazil identified 51 single-nucleotide polymorphisms and an 11-bp insertion–deletion. We genotyped these polymorphic sites, in combination with 10 variable-number tandem repeats, in M. leprae strains obtained from 33 wild armadillos from five southern states, 50 U.S. outpatients seen at a clinic in Louisiana, and 64 Venezuelan patients, as well as in four foreign reference strains. RESULTS The M. leprae genotype of patients with foreign exposure generally reflected their country of origin or travel history. However, a unique M. leprae genotype (3I-2-v1) was found in 28 of the 33 wild armadillos and 25 of the 39 U.S. patients who resided in areas where exposure to armadillo-borne M. leprae was possible. This genotype has not been reported elsewhere in the world. CONCLUSIONS Wild armadillos and many patients with leprosy in the southern United States are infected with the same strain of M. leprae. Armadillos are a large natural reservoir for M. leprae, and leprosy may be a zoonosis in the region. (Funded by the National Institute of Allergy and Infectious Diseases and others.) PMID:21524213

  7. Prevalence of gastrointestinal helminth parasites of zoonotic significance in dogs and cats in lower Northern Thailand.

    PubMed

    Pumidonming, Wilawan; Salman, Doaa; Gronsang, Dulyatad; Abdelbaset, Abdelbaset E; Sangkaeo, Khamphon; Kawazu, Shin-Ichiro; Igarashi, Makoto

    2017-01-10

    Gastrointestinal zoonotic helminths of dogs and cats have a public health concern worldwide. We investigated the prevalence of gastrointestinal helminths of zoonotic significance in dogs and cats in lower Northern Thailand and utilized molecular tools for species identification of hookworms and Opisthorchis viverrini. Fecal samples of 197 dogs and 180 cats were collected. Overall prevalence of infection using microscopy was 40.1% in dogs and 33.9% in cats. Helminth infection found in both dogs and cats included hookworms, Spirometra spp., Taenia spp., Toxocara spp., O. viverrini, Strongyloides spp. and Trichuris spp. Hookworms were the most common helminth in dogs, while Spirometra spp. were the most prevalent in cats. Among hookworm infection in dogs and cats, Ancylostoma ceylanicum was the most prevalent hookworm, being 82.1% in hookworm infected dogs and 95.8% in hookworm infected cats. Mixed-infection due to hookworms and Spirometra spp. was the most dominant in both dogs and cats. Our finding showed that zoonotic helminth infection is highly prevalent in dogs and cats in the lower Northern area of Thailand.

  8. Zoonotic intestinal parasites and vector-borne pathogens in Italian shelter and kennel dogs.

    PubMed

    Traversa, Donato; Di Cesare, Angela; Simonato, Giulia; Cassini, Rudi; Merola, Carmine; Diakou, Anastasia; Halos, Lénaïg; Beugnet, Frederic; Frangipane di Regalbono, Antonio

    2017-04-01

    This study investigated the presence of zoonotic parasites and vector-borne pathogens in dogs housed in kennels and shelters from four sites of Italy. A total of 150 adoptable dogs was examined with different microscopic, serological and molecular methods. Overall 129 dogs (86%) were positive for one or more parasites and/or pathogens transmitted by ectoparasites. Forty-eight (32%) were positive for one infection, while 81 (54%) for more than one pathogen. The most common zoonotic helminths recorded were hookworms, roundworms and Capillaria aerophila, followed by mosquito-borne Dirofilaria spp. and Dipylidium caninum. One hundred and thirteen (77.9%), 6 (4.1%) and 2 (1.4%) dogs were positive for Rickettsia spp., Leishmania infantum and Anaplasma spp., respectively. The results show that dogs living in rescue facilities from the studied areas may be infected by many zoonotic internal parasites and vector-borne pathogens, and that control measures should be implemented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Beyond bushmeat: Animal contact, injury, and zoonotic disease risk in western Uganda

    PubMed Central

    Paige, Sarah B.; Frost, Simon D.W.; Gibson, Mhairi A.; Holland, James; Shankar, Anupama; Switzer, William M.; Ting, Nelson

    2014-01-01

    Zoonotic pathogens cause an estimated 70% of emerging and re-emerging infectious diseases in humans. In sub-Saharan Africa, bushmeat hunting and butchering is considered the primary risk factor for human-wildlife contact and zoonotic disease transmission, particularly for the transmission of simian retroviruses. However, hunting is only one of many activities in sub-Saharan Africa that bring people and wildlife into contact. Here, we examine human-animal interaction in western Uganda, identifying patterns of injuries from animals and contact with nonhuman primates. Additionally, we identify individual-level risk factors associated with contact. Nearly 20% (246/ 1,240) of participants reported either being injured by an animal or having contact with a primate over their lifetimes. The majority (51.7%) of injuries were dog bites that healed with no long term medical consequences. The majority (76.8%) of 125 total primate contacts involved touching a carcass; however, butchering (20%), hunting (10%), and touching a live primate (10%) were also reported. Red colobus (Piliocolobus rufomitratus tephrosceles) accounted for most primate contact events. Multivariate logistic regression indicated that men who live adjacent to forest fragments are at elevated risk of animal contact and specifically primate contact. Our results provide a useful comparison to West and Central Africa where “bushmeat hunting” is the predominant paradigm for human-wildlife contact and zoonotic disease transmission. PMID:24845574

  10. Vaccine Development against Zoonotic Hepatitis E Virus: Open Questions and Remaining Challenges.

    PubMed

    Nan, Yuchen; Wu, Chunyan; Zhao, Qin; Sun, Yani; Zhang, Yan-Jin; Zhou, En-Min

    2018-01-01

    Hepatitis E virus (HEV) is a fecal-orally transmitted foodborne viral pathogen that causes acute hepatitis in humans and is responsible for hepatitis E outbreaks worldwide. Since the discovery of HEV as a zoonotic agent, this virus has been isolated from a variety of hosts with an ever-expanding host range. Recently, a subunit HEV vaccine developed for the prevention of human disease was approved in China, but is not yet available to the rest of the world. Meanwhile, notable progress and knowledge has been made and revealed in recent years to better understand HEV biology and infection, including discoveries of quasi-enveloped HEV virions and of a new function of the HEV-ORF3 product. However, the impact of these new findings on the development of a protective vaccine against zoonotic HEV infection requires further discussion. In this review, hallmark characteristics of HEV zoonosis, the history of HEV vaccine development, and recent discoveries in HEV virology are described. Moreover, special attention is focused on quasi-enveloped HEV virions and the potential role of the HEV-ORF3 product as antibody-neutralization target on the surface of quasi-enveloped HEV virions to provide new insights for the future development of improved vaccines against zoonotic HEV infection.

  11. Vaccine Development against Zoonotic Hepatitis E Virus: Open Questions and Remaining Challenges

    PubMed Central

    Nan, Yuchen; Wu, Chunyan; Zhao, Qin; Sun, Yani; Zhang, Yan-Jin; Zhou, En-Min

    2018-01-01

    Hepatitis E virus (HEV) is a fecal-orally transmitted foodborne viral pathogen that causes acute hepatitis in humans and is responsible for hepatitis E outbreaks worldwide. Since the discovery of HEV as a zoonotic agent, this virus has been isolated from a variety of hosts with an ever-expanding host range. Recently, a subunit HEV vaccine developed for the prevention of human disease was approved in China, but is not yet available to the rest of the world. Meanwhile, notable progress and knowledge has been made and revealed in recent years to better understand HEV biology and infection, including discoveries of quasi-enveloped HEV virions and of a new function of the HEV-ORF3 product. However, the impact of these new findings on the development of a protective vaccine against zoonotic HEV infection requires further discussion. In this review, hallmark characteristics of HEV zoonosis, the history of HEV vaccine development, and recent discoveries in HEV virology are described. Moreover, special attention is focused on quasi-enveloped HEV virions and the potential role of the HEV-ORF3 product as antibody-neutralization target on the surface of quasi-enveloped HEV virions to provide new insights for the future development of improved vaccines against zoonotic HEV infection. PMID:29520257

  12. High prevalence of intestinal zoonotic parasites in dogs from Belgrade, Serbia--short communication.

    PubMed

    Nikolić, Aleksandra; Dimitrijević, Sanda; Katić-Radivojević, Sofija; Klun, Ivana; Bobrć, Branko; Djurković-Djaković, Olgica

    2008-09-01

    To identify areas of risk for canine-related zoonoses in Serbia, the aim of this study was to provide baseline knowledge about intestinal parasites in 151 dogs (65 household pets, 75 stray and 11 military working dogs) from Belgrade. The following parasites, with their respective prevalences, were detected: Giardia duodenalis (14.6%), Ancylostomatidae (24.5%), Toxocara canis (30.5%), Trichuris vulpis (47.0%) and Taenia-type helminths (6.6%). Of all examined dogs, 75.5% (114/151) were found to harbour at least one parasite species. Of these, mixed infections with up to four species per dog occurred in 44.7% (51/114). Infections with all detected species were significantly higher (p < 0.05) in military working (100%) and stray dogs (93.3%) versus household pets (50.8%). Among all parasites, agents with zoonotic potential including Giardia, Ancylostomatidae and Toxocara were detected in 58.3% (88/151) of all examined dogs with a significant difference (p < 0.05) among the subgroups (100%, 62.7% and 46.2% for military working dogs, stray dogs and household pets, respectively). The high prevalence of zoonotic parasites registered in the dog population from a highly urban area in south-eastern Europe indicates a potential risk to human health. Thus, veterinarians should play an important role in helping to prevent or minimise zoonotic transmission.

  13. Zoonotic helminth infections with particular emphasis on fasciolosis and other trematodiases

    PubMed Central

    Robinson, Mark W.; Dalton, John P.

    2009-01-01

    Zoonotic infections are among the most common on earth and are responsible for >60 per cent of all human infectious diseases. Some of the most important and well-known human zoonoses are caused by worm or helminth parasites, including species of nematodes (trichinellosis), cestodes (cysticercosis, echinococcosis) and trematodes (schistosomiasis). However, along with social, epidemiological and environmental changes, together with improvements in our ability to diagnose helminth infections, several neglected parasite species are now fast-becoming recognized as important zoonotic diseases of humans, e.g. anasakiasis, several fish-borne trematodiasis and fasciolosis. In the present review, we discuss the current disease status of these primary helminth zoonotic infections with particular emphasis on their diagnosis and control. Advances in molecular biology, proteomics and the release of helminth genome-sequencing project data are revolutionizing parasitology research. The use of these powerful experimental approaches, and their potential benefits to helminth biology are also discussed in relation to the future control of helminth infections of animals and humans. PMID:19687044

  14. Zoonotic pathogens isolated from wild animals and environmental samples at two California wildlife hospitals.

    PubMed

    Siembieda, Jennifer L; Miller, Woutrina A; Byrne, Barbara A; Ziccardi, Michael H; Anderson, Nancy; Chouicha, Nadira; Sandrock, Christian E; Johnson, Christine K

    2011-03-15

    To determine types and estimate prevalence of potentially zoonotic enteric pathogens shed by wild animals admitted to either of 2 wildlife hospitals and to characterize distribution of these pathogens and of aerobic bacteria in a hospital environment. Cross-sectional study. Fecal samples from 338 animals in 2 wildlife hospitals and environmental samples from 1 wildlife hospital. Fecal samples were collected within 24 hours of hospital admission. Environmental samples were collected from air and surfaces. Samples were tested for zoonotic pathogens via culture techniques and biochemical analyses. Prevalence of pathogen shedding was compared among species groups, ages, sexes, and seasons. Bacterial counts were determined for environmental samples. Campylobacter spp, Vibrio spp, Salmonella spp, Giardia spp, and Cryptosporidium spp (alone or in combination) were detected in 105 of 338 (31%) fecal samples. Campylobacter spp were isolated only from birds. Juvenile passerines were more likely to shed Campylobacter spp than were adults; prevalence increased among juvenile passerines during summer. Non-O1 serotypes of Vibrio cholerae were isolated from birds; during an oil-spill response, 9 of 10 seabirds screened were shedding this pathogen, which was also detected in environmental samples. Salmonella spp and Giardia spp were isolated from birds and mammals; Cryptosporidium spp were isolated from mammals only. Floors of animal rooms had higher bacterial counts than did floors with only human traffic. Potentially zoonotic enteric pathogens were identified in samples from several species admitted to wildlife hospitals, indicating potential for transmission if prevention is not practiced.

  15. Wildlife reservoirs for vector-borne canine, feline and zoonotic infections in Austria

    PubMed Central

    Duscher, Georg G.; Leschnik, Michael; Fuehrer, Hans-Peter; Joachim, Anja

    2014-01-01

    Austria's mammalian wildlife comprises a large variety of species, acting and interacting in different ways as reservoir and intermediate and definitive hosts for different pathogens that can be transmitted to pets and/or humans. Foxes and other wild canids are responsible for maintaining zoonotic agents, e.g. Echinococcus multilocularis, as well as pet-relevant pathogens, e.g. Hepatozoon canis. Together with the canids, and less commonly felids, rodents play a major role as intermediate and paratenic hosts. They carry viruses such as tick-borne encephalitis virus (TBEV), bacteria including Borrelia spp., protozoa such as Toxoplasma gondii, and helminths such as Toxocara canis. The role of wild ungulates, especially ruminants, as reservoirs for zoonotic disease on the other hand seems to be negligible, although the deer filaroid Onchocerca jakutensis has been described to infect humans. Deer may also harbour certain Anaplasma phagocytophilum strains with so far unclear potential to infect humans. The major role of deer as reservoirs is for ticks, mainly adults, thus maintaining the life cycle of these vectors and their distribution. Wild boar seem to be an exception among the ungulates as, in their interaction with the fox, they can introduce food-borne zoonotic agents such as Trichinella britovi and Alaria alata into the human food chain. PMID:25830102

  16. Zoonotic Cryptosporidium Species and Enterocytozoon bieneusi Genotypes in HIV-Positive Patients on Antiretroviral Therapy

    PubMed Central

    Wang, Lin; Zhang, Hongwei; Zhao, Xudong; Zhang, Longxian; Zhang, Guoqing; Guo, Meijin; Liu, Lili; Xiao, Lihua

    2013-01-01

    Molecular diagnostic tools have been used increasingly in the characterization of the transmission of cryptosporidiosis and microsporidiosis in developing countries. However, few studies have examined the distribution of Cryptosporidium species and Enterocytozoon bieneusi genotypes in AIDS patients receiving antiretroviral therapy. In the present study, 683 HIV-positive patients in the National Free Antiretroviral Therapy Program in China and 683 matched HIV-negative controls were enrolled. Cryptosporidium species and subtypes and Enterocytozoon bieneusi genotypes were detected and differentiated by PCR and DNA sequencing. The infection rates were 1.5% and 0.15% for Cryptosporidium and 5.7% and 4.2% for E. bieneusi in HIV-positive and HIV-negative participants, respectively. The majority (8/11) of Cryptosporidium cases were infections by zoonotic species, including Cryptosporidium meleagridis (5), Cryptosporidium parvum (2), and Cryptosporidium suis (1). Prevalent E. bieneusi genotypes detected, including EbpC (39), D (12), and type IV (7), were also potentially zoonotic. The common occurrence of EbpC was a feature of E. bieneusi transmission not seen in other areas. Contact with animals was a risk factor for both cryptosporidiosis and microsporidiosis. The results suggest that zoonotic transmission was significant in the epidemiology of both diseases in rural AIDS patients in China. PMID:23224097

  17. Community-based surveillance of zoonotic parasites in a 'One Health' world: A systematic review.

    PubMed

    Schurer, J M; Mosites, E; Li, C; Meschke, S; Rabinowitz, P

    2016-12-01

    The One Health (OH) concept provides an integrated framework for observing and improving health issues involving human, animal, and environmental factors, and has been applied in particular to zoonotic disease problems. We conducted a systematic review of English and Chinese language peer-reviewed and grey literature databases to identify zoonotic endoparasite research utilizing an OH approach in community-based settings. Our review identified 32 articles where specimens collected simultaneously from all three OH domains (people, animals, and the environment) were assessed for endoparasite infection or exposure. Study sites spanned 23 countries, and research teams brought together an average of seven authors from two countries. Surveillance of blood-borne and gastrointestinal protozoa were most frequently reported (19 of 32; 59%), followed by trematodes, nematodes, and cestodes. Laboratory techniques varied greatly between studies, and only 16 identified parasites using Polymerase Chain Reaction (PCR) in all three OH domains. Our review identified important gaps in parasitology research operating under an OH framework. We recommend that investigators working in the realm of zoonotic disease strive to evaluate all three OH domains by integrating modern molecular tools as well as techniques provided by economists and social scientists.

  18. Beyond bushmeat: animal contact, injury, and zoonotic disease risk in Western Uganda.

    PubMed

    Paige, Sarah B; Frost, Simon D W; Gibson, Mhairi A; Jones, James Holland; Shankar, Anupama; Switzer, William M; Ting, Nelson; Goldberg, Tony L

    2014-12-01

    Zoonotic pathogens cause an estimated 70% of emerging and re-emerging infectious diseases in humans. In sub-Saharan Africa, bushmeat hunting and butchering is considered the primary risk factor for human-wildlife contact and zoonotic disease transmission, particularly for the transmission of simian retroviruses. However, hunting is only one of many activities in sub-Saharan Africa that bring people and wildlife into contact. Here, we examine human-animal interaction in western Uganda, identifying patterns of injuries from animals and contact with nonhuman primates. Additionally, we identify individual-level risk factors associated with contact. Nearly 20% (246/1,240) of participants reported either being injured by an animal or having contact with a primate over their lifetimes. The majority (51.7%) of injuries were dog bites that healed with no long-term medical consequences. The majority (76.8%) of 125 total primate contacts involved touching a carcass; however, butchering (20%), hunting (10%), and touching a live primate (10%) were also reported. Red colobus (Piliocolobus rufomitratus tephrosceles) accounted for most primate contact events. Multivariate logistic regression indicated that men who live adjacent to forest fragments are at elevated risk of animal contact and specifically primate contact. Our results provide a useful comparison to West and Central Africa where "bushmeat hunting" is the predominant paradigm for human-wildlife contact and zoonotic disease transmission.

  19. A survey for potentially zoonotic gastrointestinal parasites in domestic cavies in Cameroon (Central Africa).

    PubMed

    Meutchieye, Felix; Kouam, Marc K; Miegoué, Emile; Nguafack, Terence T; Tchoumboué, Joseph; Téguia, Alexis; Théodoropoulos, Georgios

    2017-06-26

    Farm animals are usually suspected to transmit infections to humans. Domestic cavies (Cavia porcellus) are hosts to a variety of pathogens, some of which are zoonotic. Several parasites including the protozoa Giardia spp. and Cryptosporidium spp. may be causative agents of gastrointestinal disorders in domestic cavies and humans. The aim of the study was to investigate the occurrence of potentially zoonotic protozoa as well as any potential zoonotic gastrointestinal parasite in domestic cavies raised under a semi extensive system in the rural areas of Cameroon. Giardia/Cryptosporidium antigens were detected in 12.90% of cavies. Helminthe eggs were found in 1.52% of animals. The prevalence of Paraspidodera uncinata, Heligmosomoides polygyrus (also known as Nematospiroides dubius) and Trichuris sp. was 1% (4/397), 0.3% (1/397), and 0.3% (1/397), respectively. Presence of Giardia/Cryptosporidium was unrelated to the occurrence of diarrhea, as none of the positive samples was from a diarrheic individual. Domestic cavies are hosts of Giardia/Cryptosporidium and appear as potential source of human giardiasis, cryptosporidiosis and infection with H. polygyrus in Cameroon. In keeping with the One Health Initiative, veterinarians and medical doctors should collaborate to address the problem of Giardia and Cryptosporidium infection in cavies and cavy breeders both in Cameroon and other countries with a similar cavy breeding system. Follow-up studies are required to further taxonomically characterize these cavy parasites and to determine their routes of transmission to humans.

  20. Pathogenic landscape of transboundary zoonotic diseases in the Mexico-U.S. border along the Rio Grande

    USDA-ARS?s Scientific Manuscript database

    Transboundary zoonotic diseases, several of which are vector borne, can maintain a dynamic focus and have pathogens circulating in geographic regions encircling multiple geopolitical boundaries. Global change is intensifying transboundary problems, including the spatial variation of the risk and inc...

  1. Identification of unique B virus (Macacine Herpesvirus 1) epitopes of zoonotic and macaque isolates using monoclonal antibodies

    PubMed Central

    Vasireddi, Mugdha; Patrusheva, Irina; Seoh, Hyuk-Kyu; Filfili, Chadi N.; Wildes, Martin J.; Oh, Jay

    2017-01-01

    Our overall aim is to develop epitope-based assays for accurate differential diagnosis of B virus zoonotic infections in humans. Antibodies to cross-reacting epitopes on human-simplexviruses continue to confound the interpretation of current assays where abundant antibodies exist from previous infections with HSV types 1 and 2. To find B virus-specific epitopes we cloned ten monoclonal antibodies (mAbs) from the hybridomas we produced. Our unique collection of rare human sera from symptomatic and asymptomatic patients infected with B virus was key to the evaluation and identification of the mAbs as reagents in competition ELISAs (mAb-CE). The analysis of the ten mAbs revealed that the target proteins for six mAbs was glycoprotein B of which two are reactive to simian simplexviruses and not to human simplexviruses. Two mAbs reacted specifically with B virus glycoprotein D, and two other mAbs were specific to VP13/14 and gE-gI complex respectively. The mAbs specific to VP13/14 and gE-gI are strain specific reacting with B virus isolates from rhesus and Japanese macaques and not with isolates from cynomolgus and pigtail macaques. The mAb-CE revealed that a high proportion of naturally B virus infected rhesus macaques and two symptomatic humans possess antibodies to epitopes of VP13/14 protein and on the gE-gI complex. The majority of sera from B virus infected macaques and simplexvirus-infected humans competed with the less specific mAbs. These experiments produced a novel panel of mAbs that enabled B virus strain identification and confirmation of B virus infected macaques by the mAb-CE. For human sera the mAb-CE could be used only for selected cases due to the selective B virus strain-specificity of the mAbs against VP13/14 and gE/gI. To fully accomplish our aim to provide reagents for unequivocal differential diagnosis of zoonotic B virus infections, additional mAbs with a broader range of specificities is critical. PMID:28783746

  2. Molecular identification of tick-borne pathogens infecting cattle in Mymensingh district of Bangladesh reveals emerging species of Anaplasma and Babesia.

    PubMed

    Roy, B C; Krücken, J; Ahmed, J S; Majumder, S; Baumann, M P; Clausen, P-H; Nijhof, A M

    2018-04-01

    Tick-borne diseases are considered a major hindrance to the health and productive performance of cattle in Bangladesh. To elucidate the epidemiology of tick-borne pathogens (TBPs) in local cattle, a cross-sectional study was performed in the 12 subdistricts (Upazilas) of Mymensingh district in Bangladesh. Blood samples and ticks were collected from 384 clinically healthy cattle kept by 135 farmers from 96 randomly selected villages. DNA extracted from the blood samples was subsequently screened by polymerase chain reaction (PCR) and a Reverse Line Blot (RLB) hybridization assay using an in-house prepared chemiluminescence solution for the presence of Anaplasma, Ehrlichia, Rickettsia, Babesia and Theileria spp. A total of 2,287 ticks were collected from 232 infested cattle (60.4%, 232/384) and identified morphologically as Rhipicephalus (Boophilus) microplus (n = 1,432, 62.6%) and Haemaphysalis bispinosa (n = 855; 37.4%). The RLB results demonstrated that the majority of the cattle (62.2%) were infected with at least one TBP. Theileria orientalis infections were most common (212/384, 55.2%) followed by infections with Anaplasma bovis (137/384, 35.67%), Anaplasma marginale (16/384, 4.17%), Babesia bigemina (4/384, 1.04%) and Babesia bovis (2/384, 0.52%). A previously uncharacterized Anaplasma sp. (Anaplasma sp. Mymensingh) and Babesia sp. (Babesia sp. Mymensingh), which are genetically closely related to Anaplasma platys and B. bigemina, were detected in 50 of 384 (13.0%) and 1 of 384 (0.3%) of the blood samples, respectively. Key risk factors for the occurrence of T. orientalis, A. marginale and Anaplasma sp. Mymensingh were identified. In conclusion, this study revealed that cattle in Mymensingh district are mainly infested with R. microplus and H. bispinosa ticks and may carry multiple TBPs. In addition, two previously uncharacterized pathogens were detected in the bovine blood samples. The pathogenicity of these species remains to be determined. © 2017

  3. Zoonotic parasites in fecal samples and fur from dogs and cats in The Netherlands.

    PubMed

    Overgaauw, Paul A M; van Zutphen, Linda; Hoek, Denise; Yaya, Felix O; Roelfsema, Jeroen; Pinelli, Elena; van Knapen, Frans; Kortbeek, Laetitia M

    2009-07-07

    Pets may carry zoonotic pathogens for which owners are at risk. The aim of the study is to investigate whether healthy pets harbour zoonotic parasitic infections and to make an inventory of the interactions between pet-owners and their companion animals in The Netherlands. Fecal and hair samples were collected from healthy household dogs and cats in Dutch veterinary practices. Owners were interviewed about interaction with their pets. The samples were investigated by microscopy, ELISA, and PCR. From 159 households, 152 dogs (D) and 60 cats (C), information and samples were collected and examination for several zoonotic parasites was performed. Toxocara eggs were found in 4.4% (D) and 4.6% (C) of the fecal samples and in 12.2% (D) and 3.4% (C) of the fur samples. The median epg in the fur was 17 (D) and 28 (C) and none of these eggs were viable. From 15.2% of the dog and 13.6% of the cat feces Giardia was isolated. One canine and one feline Giardia isolate was a zoonotic assemblage A (12%). Cryptosporidium sp. were present in 8.7% (D) and 4.6% (C) of the feces. Fifty percent of the owners allow the pet to lick their faces. Sixty percent of the pets visit the bedroom; 45-60% (D-C) are allowed on the bed, and 18-30% (D-C) sleep with the owner in bed. Six percent of the pets always sleep in the bedroom. Of the cats, 45% are allowed to jump onto the kitchen sink. Nearly 39% of the dog owners never clean up the feces of their dog. Fifteen percent of the dog owners and 8% of the cat owners always wash their hands after contact with the animals. Close physical contact between owners and their pets is common and poses an increased risk of transmission of zoonotic pathogens. Education of owners by the vet, specifically about hygiene and potential risks, is required.

  4. Molecular detection and genetic identification of Babesia bigemina, Theileria annulata, Theileria orientalis and Anaplasma marginale in Turkey.

    PubMed

    Zhou, Mo; Cao, Shinuo; Sevinc, Ferda; Sevinc, Mutlu; Ceylan, Onur; Moumouni, Paul Franck Adjou; Jirapattharasate, Charoonluk; Liu, Mingming; Wang, Guanbo; Iguchi, Aiko; Vudriko, Patrick; Suzuki, Hiroshi; Xuan, Xuenan

    2016-02-01

    Babesia spp., Theileria spp. and Anaplasma spp. are significant tick-borne pathogens of livestock globally. In this study, we investigated the presence and distribution of Babesia bigemina, Theileria annulata, Theileria orientalis and Anaplasma marginale in cattle from 6 provinces of Turkey using species-specific PCR assays. The PCR were conducted using the primers based on the B. bigemina rhoptry-associated protein 1a (BbiRAP-1a), T. annulata merozoite surface antigen-1 (Tams-1), T. orientalis major piroplasm surface protein (ToMPSP) and A. marginale major surface protein 4 (AmMSP4) genes, respectively. Fragments of B. bigemina internal transcribed spacer (BbiITS), T. annulata internal transcribed spacer (TaITS), ToMPSP and AmMSP4 genes were sequenced for phylogenetic analysis. PCR results revealed that the overall infections of A. marginale, T. annulata, B. bigemina and T. orientalis were 29.1%, 18.9%, 11.2% and 5.6%, respectively. The co-infection of two or three pathogens was detected in 29/196 (15.1%) of the cattle samples. The results of sequence analysis indicated that BbiRAP-1a, BbiITS, Tams-1, ToMPSP and AmMSP4 were conserved among the Turkish samples, with 99.76%, 99-99.8%, 99.34-99.78%, 96.9-99.61% and 99.42-99.71% sequence identity values, respectively. In contrast, the Turkish TaITS gene sequences were relatively diverse with 92.3-96.63% identity values. B. bigemina isolates from Turkey were found in the same clade as the isolates from other countries in phylogenetic analysis. On the other hand, phylogenetic analysis based on T. annulata ITS sequences revealed significant differences in the genotypes of T. annulata isolates from Turkey. Additionally, the T. orientalis isolates from Turkish samples were classified as MPSP type 3 genotype. This is the first report of type 3 MPSP in Turkey. Moreover, AmMSP4 isolates from Turkey were found in the same clade as the isolates from other countries. This study provides important data for understanding the

  5. Engaging research with policy and action: what are the challenges of responding to zoonotic disease in Africa?

    PubMed

    Bardosh, Kevin Louis; Scoones, Jake Cornwall; Grace, Delia; Kalema-Zikusoka, Gladys; Jones, Kate E; de Balogh, Katinka; Waltner-Toews, David; Bett, Bernard; Welburn, Susan C; Mumford, Elizabeth; Dzingirai, Vupenyu

    2017-07-19

    Zoonotic diseases will maintain a high level of public policy attention in the coming decades. From the spectre of a global pandemic to anxieties over agricultural change, urbanization, social inequality and threats to natural ecosystems, effectively preparing and responding to endemic and emerging diseases will require technological, institutional and social innovation. Much current discussion emphasizes the need for a 'One Health' approach: bridging disciplines and sectors to tackle these complex dynamics. However, as attention has increased, so too has an appreciation of the practical challenges in linking multi-disciplinary, multi-sectoral research with policy, action and impact. In this commentary paper, we reflect on these issues with particular reference to the African sub-continent. We structure the themes of our analysis on the existing literature, expert opinion and 11 interviews with leading One Health scholars and practitioners, conducted at an international symposium in 2016. We highlight a variety of challenges in research and knowledge production, in the difficult terrain of implementation and outreach, and in the politicized nature of decision-making and priority setting. We then turn our attention to a number of strategies that might help reconfigure current pathways and accepted norms of practice. These include: (i) challenging scientific expertise; (ii) strengthening national multi-sectoral coordination; (iii) building on what works; and (iv) re-framing policy narratives. We argue that bridging the research-policy-action interface in Africa, and better connecting zoonoses, ecosystems and well-being in the twenty-first century, will ultimately require greater attention to the democratization of science and public policy.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.

  6. Engaging research with policy and action: what are the challenges of responding to zoonotic disease in Africa?

    PubMed Central

    Scoones, Jake Cornwall; Kalema-Zikusoka, Gladys; de Balogh, Katinka; Bett, Bernard; Welburn, Susan C.; Mumford, Elizabeth

    2017-01-01

    Zoonotic diseases will maintain a high level of public policy attention in the coming decades. From the spectre of a global pandemic to anxieties over agricultural change, urbanization, social inequality and threats to natural ecosystems, effectively preparing and responding to endemic and emerging diseases will require technological, institutional and social innovation. Much current discussion emphasizes the need for a ‘One Health’ approach: bridging disciplines and sectors to tackle these complex dynamics. However, as attention has increased, so too has an appreciation of the practical challenges in linking multi-disciplinary, multi-sectoral research with policy, action and impact. In this commentary paper, we reflect on these issues with particular reference to the African sub-continent. We structure the themes of our analysis on the existing literature, expert opinion and 11 interviews with leading One Health scholars and practitioners, conducted at an international symposium in 2016. We highlight a variety of challenges in research and knowledge production, in the difficult terrain of implementation and outreach, and in the politicized nature of decision-making and priority setting. We then turn our attention to a number of strategies that might help reconfigure current pathways and accepted norms of practice. These include: (i) challenging scientific expertise; (ii) strengthening national multi-sectoral coordination; (iii) building on what works; and (iv) re-framing policy narratives. We argue that bridging the research-policy-action interface in Africa, and better connecting zoonoses, ecosystems and well-being in the twenty-first century, will ultimately require greater attention to the democratization of science and public policy. This article is part of the themed issue ‘One Health for a changing world: zoonoses, ecosystems and human well-being’. PMID:28584180

  7. Role of India's wildlife in the emergence and re-emergence of zoonotic pathogens, risk factors and public health implications.

    PubMed

    Singh, B B; Gajadhar, A A

    2014-10-01

    Evolving land use practices have led to an increase in interactions at the human/wildlife interface. The presence and poor knowledge of zoonotic pathogens in India's wildlife and the occurrence of enormous human populations interfacing with, and critically linked to, forest ecosystems warrant attention. Factors such as diverse migratory bird populations, climate change, expanding human population and shrinking wildlife habitats play a significant role in the emergence and re-emergence of zoonotic pathogens from India's wildlife. The introduction of a novel Kyasanur forest disease virus (family flaviviridae) into human populations in 1957 and subsequent occurrence of seasonal outbreaks illustrate the key role that India's wild animals play in the emergence and reemergence of zoonotic pathogens. Other high priority zoonotic diseases of wildlife origin which could affect both livestock and humans include influenza, Nipah, Japanese encephalitis, rabies, plague, leptospirosis, anthrax and leishmaniasis. Continuous monitoring of India's extensively diverse and dispersed wildlife is challenging, but their use as indicators should facilitate efficient and rapid disease-outbreak response across the region and occasionally the globe. Defining and prioritizing research on zoonotic pathogens in wildlife are essential, particularly in a multidisciplinary one-world one-health approach which includes human and veterinary medical studies at the wildlife-livestock-human interfaces. This review indicates that wild animals play an important role in the emergence and re-emergence of zoonotic pathogens and provides brief summaries of the zoonotic diseases that have occurred in wild animals in India. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Gut transcriptome of replete adult female cattle ticks, Rhipicephalus (Boophilus) microplus, feeding upon a Babesia bovis-infected bovine host.

    PubMed

    Heekin, Andrew M; Guerrero, Felix D; Bendele, Kylie G; Saldivar, Leo; Scoles, Glen A; Dowd, Scot E; Gondro, Cedric; Nene, Vishvanath; Djikeng, Appolinaire; Brayton, Kelly A

    2013-09-01

    As it feeds upon cattle, Rhipicephalus (Boophilus) microplus is capable of transmitting a number of pathogenic organisms, including the apicomplexan hemoparasite Babesia bovis, a causative agent of bovine babesiosis. The R. microplus female gut transcriptome was studied for two cohorts: adult females feeding on a bovine host infected with B. bovis and adult females feeding on an uninfected bovine. RNA was purified and used to generate a subtracted cDNA library from B. bovis-infected female gut, and 4,077 expressed sequence tags (ESTs) were sequenced. Gene expression was also measured by a microarray designed from the publicly available R. microplus gene index: BmiGI Version 2. We compared gene expression in the tick gut from females feeding upon an uninfected bovine to gene expression in tick gut from females feeding upon a splenectomized bovine infected with B. bovis. Thirty-three ESTs represented on the microarray were expressed at a higher level in female gut samples from the ticks feeding upon a B. bovis-infected calf compared to expression levels in female gut samples from ticks feeding on an uninfected calf. Forty-three transcripts were expressed at a lower level in the ticks feeding upon B. bovis-infected female guts compared with expression in female gut samples from ticks feeding on the uninfected calf. These array data were used as initial characterization of gene expression associated with the infection of R. microplus by B. bovis.

  9. Molecular detection of Ehrlichia canis, Hepatozoon canis and Babesia canis vogeli in stray dogs in Mahasarakham province, Thailand.

    PubMed

    Piratae, Supawadee; Pimpjong, Kiattisak; Vaisusuk, Kotchaphon; Chatan, Wasupon

    2015-01-01

    Canine tick borne diseases showing distribution worldwide have caused morbidity and mortality in dogs. This study observed the mainly tick borne pathogens described for dogs in Thailand, Ehrlichia canis, Hepatozoon canis and Babesia canis vogeli. From May to July 2014, blood samples were collected from 79 stray dogs from 7 districts of Mahasarakham province to molecular surveyed for 16s rRNA gene of E. canis and 18s rRNA gene of H. canis and B. canis vogeli. Twenty eight (35.44%) of stray dogs showed the infection with tick borne pathogens. The prevalence of E. canis infection was the highest with 21.5% (17/79). DNA of H. canis and B. canis vogeli were detected at the prevalence of 10.1% (8/79) and 6.3% (5/79), respectively. Co-infection between E. canis and B. canis vogeli were identified in 2 (2.5%) dogs. The results indicated that a wide range of tick borne pathogens are circulation in the canine population in Mahasarakham province. This study is the first report on prevalence of E. canis, H. canis and B. canis vogeli in stray dogs in Mahasarakham, a province in northern part of Thailand. This data providing is important to understand the prevalence of E. canis, H. canis and B. canis vogeli infection in stray dogs in this region, which will assist in the management of these blood parasite.

  10. Molecular detection of Dirofilaria immitis, Hepatozoon canis, Babesia spp., Anaplasma platys and Ehrlichia canis in dogs on Costa Rica.

    PubMed

    Wei, Lanjing; Kelly, Patrick; Ackerson, Kate; El-Mahallawy, Heba S; Kaltenboeck, Bernhard; Wang, Chengming

    2014-03-01

    Although vector-borne diseases are important causes of morbidity and mortality in dogs in tropical areas, there is little information on these conditions in Costa Rica. In PCRs of blood from dogs in Costa Rica, we did not detect DNAs of Rickettsia (R.) felis and Coxiella (C.) burnetii but we did find evidence of infection with Dirofilaria (D.) immitis (9/40, 22.5%), Hepatozoon (H.) canis (15/40, 37.5%), Babesia spp. (10/40, 25%; 2 with B. gibsoni and 8 with B. vogeli), Anaplasma (A.) platys (3/40, 7.5%) and Ehrlichia (E.) canis (20/40, 50%). Nine dogs (22.5%) were free of any vector-borne pathogens while 14 (35%) were infected with a single pathogen, 11 (27.5%) with two, 4 (10%) with three, 1 (2.5%) with four, and 1 (2.5%) with five pathogens. Dogs in Costa Rica are commonly infected with vector-borne agents.

  11. A global map of genetic diversity in Babesia microti reveals strong population structure and identifies variants associated with clinical relapse

    PubMed Central

    Lemieux, Jacob E.; Tran, Alice D.; Freimark, Lisa; Schaffner, Stephen F.; Goethert, Heidi; Andersen, Kristian G.; Bazner, Suzane; Li, Amy; McGrath, Graham; Sloan, Lynne; Vannier, Edouard; Milner, Dan; Pritt, Bobbi; Rosenberg, Eric; Telford, Sam; Bailey, Jeffrey A.; Sabeti, Pardis C.

    2017-01-01

    Human babesiosis caused by Babesia microti is an emerging tick-borne zoonosis of increasing importance due to rising incidence and expanding geographic range1. Infection with this organism, an intraerythrocytic parasite of the phylum Apicomplexa, causes a febrile syndrome similar to malaria2. Relapsing disease is common among immunocompromised and asplenic individuals3,4, and drug resistance has recently been reported5. To investigate the origin and genetic diversity of this parasite, we sequenced the complete genomes of 42 B. microti samples from around the world, including deep coverage of clinical infections at endemic sites in the continental United States. Samples from the continental US segregate into a Northeast lineage and a Midwest lineage, with subsequent divergence of subpopulations along geographic lines. We identify parasite variants that associate with relapsing disease, including amino acid substitutions in the atovaquone-binding regions of cytochrome b (cytb) and the azithromycin-binding region of ribosomal protein subunit L4 (rpl4). Our results shed light on the origin, diversity, and evolution of B. microti, suggest possible mechanisms for clinical relapse, and create the foundation for further research on this emerging pathogen. PMID:27572973

  12. A global map of genetic diversity in Babesia microti reveals strong population structure and identifies variants associated with clinical relapse.

    PubMed

    Lemieux, Jacob E; Tran, Alice D; Freimark, Lisa; Schaffner, Stephen F; Goethert, Heidi; Andersen, Kristian G; Bazner, Suzane; Li, Amy; McGrath, Graham; Sloan, Lynne; Vannier, Edouard; Milner, Dan; Pritt, Bobbi; Rosenberg, Eric; Telford, Sam; Bailey, Jeffrey A; Sabeti, Pardis C

    2016-06-13

    Human babesiosis caused by Babesia microti is an emerging tick-borne zoonosis of increasing importance due to its rising incidence and expanding geographic range(1). Infection with this organism, an intraerythrocytic parasite of the phylum Apicomplexa, causes a febrile syndrome similar to malaria(2). Relapsing disease is common among immunocompromised and asplenic individuals(3,4) and drug resistance has recently been reported(5). To investigate the origin and genetic diversity of this parasite, we sequenced the complete genomes of 42 B. microti samples from around the world, including deep coverage of clinical infections at endemic sites in the continental USA. Samples from the continental USA segregate into a Northeast lineage and a Midwest lineage, with subsequent divergence of subpopulations along geographic lines. We identify parasite variants that associate with relapsing disease, including amino acid substitutions in the atovaquone-binding regions of cytochrome b (cytb) and the azithromycin-binding region of ribosomal protein subunit L4 (rpl4). Our results shed light on the origin, diversity and evolution of B. microti, suggest possible mechanisms for clinical relapse, and create the foundation for further research on this emerging pathogen.

  13. Roles of CD4+ T Cells and Gamma Interferon in Protective Immunity against Babesia microti Infection in Mice

    PubMed Central

    Igarashi, Ikuo; Suzuki, Reiko; Waki, Seiji; Tagawa, Yoh-Ichi; Seng, Seyha; Tum, Sothyra; Omata, Yoshitaka; Saito, Atsushi; Nagasawa, Hideyuki; Iwakura, Yohichiro; Suzuki, Naoyoshi; Mikami, Takeshi; Toyoda, Yutaka

    1999-01-01

    Babesia microti produces a self-limiting infection in mice, and recovered mice are resistant to reinfection. In the present study, the role of T cells in protective immunity against challenge infection was examined. BALB/c mice which recovered from primary infection showed strong protective immunity against challenge infection. In contrast, nude mice which failed to control the primary infection and were cured with an antibabesial drug did not show protection against challenge infection. Treatment of immune mice with anti-CD4 monoclonal antibody (MAb) diminished the protective immunity against challenge infection, but treatment with anti-CD8 MAb had no effect on the protection. Transfer of CD4+ T-cell-depleted spleen cells resulted in higher parasitemia than transfer of CD8+ T-cell-depleted spleen cells. A high level of gamma interferon (IFN-γ), which was produced by CD4+ T cells, was observed for the culture supernatant of spleen cells from immune mice, and treatment of immune mice with anti-IFN-γ MAb partially reduced the protection. Moreover, no protection against challenge infection was found in IFN-γ-deficient mice. On the other hand, treatment of immune mice with MAbs against interleukin-2 (IL-2), IL-4, or tumor necrosis factor alpha did not affect protective immunity. These results suggest essential requirements for CD4+ T cells and IFN-γ in protective immunity against challenge infection with B. microti. PMID:10417185

  14. Detection of Babesia caballi and Theileria equi in Blood from Equines from Four Indigenous Communities in Costa Rica.

    PubMed

    Posada-Guzmán, María Fernanda; Dolz, Gaby; Romero-Zúñiga, Juan José; Jiménez-Rocha, Ana Eugenia

    2015-01-01

    A cross-sectional study was carried out in four indigenous communities of Costa Rica to detect presence and prevalence of Babesia caballi and Theileria equi and to investigate factors associated with presence of these hemoparasites. General condition of horses (n = 285) was evaluated, and hematocrits and hemoglobin were determined from blood samples of 130 horses, which were also analyzed using blood smears, nested polymerase chain reaction (PCR), and immunosorbent assay (c-ELISA). The general condition of the horses (n = 285) in terms of their body and coat was between regular and poor, and hematocrit and hemoglobin average values were low (19% and 10.65 g/dL, resp.). Erythrocyte inclusions were observed in 32 (24.6%) of the samples. Twenty-six samples (20.0%) gave positive results for B. caballi and 60 (46.2%) for T. equi; 10 horses (7.7%) showed mixed infection, when analyzed by PCR. Using c-ELISA, it was found that 90 (69.2%) horses had antibodies against B. caballi and 115 (88.5%) against T. equi, while 81 (62.3%) showed mixed reactions. There were no factors associated with the presence of B. caballi and T. equi. These results contrast with results previously obtained in equines in the Central Valley of Costa Rica.

  15. Detection of Babesia caballi and Theileria equi in Blood from Equines from Four Indigenous Communities in Costa Rica

    PubMed Central

    Posada-Guzmán, María Fernanda; Romero-Zúñiga, Juan José; Jiménez-Rocha, Ana Eugenia

    2015-01-01

    A cross-sectional study was carried out in four indigenous communities of Costa Rica to detect presence and prevalence of Babesia caballi and Theileria equi and to investigate factors associated with presence of these hemoparasites. General condition of horses (n = 285) was evaluated, and hematocrits and hemoglobin were determined from blood samples of 130 horses, which were also analyzed using blood smears, nested polymerase chain reaction (PCR), and immunosorbent assay (c-ELISA). The general condition of the horses (n = 285) in terms of their body and coat was between regular and poor, and hematocrit and hemoglobin average values were low (19% and 10.65 g/dL, resp.). Erythrocyte inclusions were observed in 32 (24.6%) of the samples. Twenty-six samples (20.0%) gave positive results for B. caballi and 60 (46.2%) for T. equi; 10 horses (7.7%) showed mixed infection, when analyzed by PCR. Using c-ELISA, it was found that 90 (69.2%) horses had antibodies against B. caballi and 115 (88.5%) against T. equi, while 81 (62.3%) showed mixed reactions. There were no factors associated with the presence of B. caballi and T. equi. These results contrast with results previously obtained in equines in the Central Valley of Costa Rica. PMID:26649225

  16. A field survey for the seroprevalence of Theileria equi and Babesia caballi in donkeys from Nuu Division, Kenya.

    PubMed

    Oduori, David O; Onyango, Solomon C; Kimari, Joseph N; MacLeod, Ewan T

    2015-07-01

    Equine piroplasmosis is one of the most significant tick-borne disease of equids. The prevalence of this disease in donkeys of semi-arid Kenya remains largely unexplored. The primary objective of this study was to demonstrate the extent to which donkeys in Nuu division, Kenya have been exposed to the haemoprotozoans Babesia caballi and Theileria equi, the causative agents of equine piroplasmosis. The study also assessed the effect of age and sex on seroprevalence. A stratified sampling approach was used and three hundred and fourteen donkeys were sampled across nine sub-locations in Nuu division, Mwingi district. Serodiagnosis was via competitive inhibition enzyme linked immunosorbent assays (cELISA). The seroprevalence of T. equi was 81.2% (95% CI: 76.4-85.4). There was no significant difference in sub-location seropositivity, gender seropositivity or age related seropositivity. Antibodies against B. caballi were not detected (95% CI: 0-1.2). Findings from this study suggest that T. equi infection is endemic in Nuu division, Mwingi where it exists in a state of endemic stability. Existence of the infection should be communicated to animal health practitioners and donkey owning communities in the area. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Molecular Survey of Bacterial Zoonotic Agents in Bats from the Country of Georgia (Caucasus).

    PubMed

    Bai, Ying; Urushadze, Lela; Osikowicz, Lynn; McKee, Clifton; Kuzmin, Ivan; Kandaurov, Andrei; Babuadze, Giorgi; Natradze, Ioseb; Imnadze, Paata; Kosoy, Michael

    2017-01-01

    Bats are important reservoirs for many zoonotic pathogens. However, no surveys of bacterial pathogens in bats have been performed in the Caucasus region. To understand the occurrence and distribution of bacterial infections in these mammals, 218 bats belonging to eight species collected from four regions of Georgia were examined for Bartonella, Brucella, Leptospira, and Yersinia using molecular approaches. Bartonella DNA was detected in 77 (35%) bats from all eight species and was distributed in all four regions. The prevalence ranged 6-50% per bat species. The Bartonella DNA represented 25 unique genetic variants that clustered into 21 lineages. Brucella DNA was detected in two Miniopterus schreibersii bats and in two Myotis blythii bats, all of which were from Imereti (west-central region). Leptospira DNA was detected in 25 (13%) bats that included four M. schreibersii bats and 21 M. blythii bats collected from two regions. The Leptospira sequences represented five genetic variants with one of them being closely related to the zoonotic pathogen L. interrogans (98.6% genetic identity). No Yersinia DNA was detected in the bats. Mixed infections were observed in several cases. One M. blythii bat and one M. schreibersii bat were co-infected with Bartonella, Brucella, and Leptospira; one M. blythii bat and one M. schreibersii bat were co-infected with Bartonella and Brucella; 15 M. blythii bats and three M. schreibersii bats were co-infected with Bartonella and Leptospira. Our results suggest that bats in Georgia are exposed to multiple bacterial infections. Further studies are needed to evaluate pathogenicity of these agents to bats and their zoonotic potential.

  18. Buffalo, Bush Meat, and the Zoonotic Threat of Brucellosis in Botswana

    PubMed Central

    Alexander, Kathleen Anne; Blackburn, Jason Kenna; Vandewalle, Mark Eric; Pesapane, Risa; Baipoledi, Eddie Kekgonne; Elzer, Phil H.

    2012-01-01

    Background Brucellosis is a zoonotic disease of global importance infecting humans, domestic animals, and wildlife. Little is known about the epidemiology and persistence of brucellosis in wildlife in Southern Africa, particularly in Botswana. Methods Archived wildlife samples from Botswana (1995–2000) were screened with the Rose Bengal Test (RBT) and fluorescence polarization assay (FPA) and included the African buffalo (247), bushbuck (1), eland (5), elephant (25), gemsbok (1), giraffe (9), hartebeest (12), impala (171), kudu (27), red lechwe (10), reedbuck (1), rhino (2), springbok (5), steenbok (2), warthog (24), waterbuck (1), wildebeest (33), honey badger (1), lion (43), and zebra (21). Human case data were extracted from government annual health reports (1974–2006). Findings Only buffalo (6%, 95% CI 3.04%–8.96%) and giraffe (11%, 95% CI 0–38.43%) were confirmed seropositive on both tests. Seropositive buffalo were widely distributed across the buffalo range where cattle density was low. Human infections were reported in low numbers with most infections (46%) occurring in children (<14 years old) and no cases were reported among people working in the agricultural sector. Conclusions Low seroprevalence of brucellosis in Botswana buffalo in a previous study in 1974 and again in this survey suggests an endemic status of the disease in this species. Buffalo, a preferred source of bush meat, is utilized both legally and illegally in Botswana. Household meat processing practices can provide widespread pathogen exposure risk to family members and the community, identifying an important source of zoonotic pathogen transmission potential. Although brucellosis may be controlled in livestock populations, public health officials need to be alert to the possibility of human infections arising from the use of bush meat. This study illustrates the need for a unified approach in infectious disease research that includes consideration of both domestic and wildlife

  19. Seroprevalence of major bovine-associated zoonotic infectious diseases in the Lao People's Democratic Republic.

    PubMed

    Vongxay, Khamphouth; Conlan, James V; Khounsy, Syseng; Dorny, Pierre; Fenwick, Stanley; Thompson, R C Andrew; Blacksell, Stuart D

    2012-10-01

    Bovine-associated zoonotic infectious diseases pose a significant threat to human health in the Lao People's Democratic Republic (Lao PDR). In all, 905 cattle and buffalo serum samples collected in northern Lao PDR in 2006 were used to determine seroprevalence of five major bovine zoonotic infectious diseases that included Taenia saginata cysticercosis, bovine tuberculosis, Q-fever, bovine brucellosis, and bovine leptospirosis. Five enzyme-linked immunosorbent assays (ELISAs) were used to test for the presence of antibodies to the diseases, except Taenia saginata, for which we tested for the presence of Taenia metacestode circulating antigens. The overall highest prevalence was for T. saginata (46.4%), with lower prevalence for Q-fever (4%), leptospirosis (3%), tuberculosis (1%), and brucellosis (0.2%). Although there were no significant differences in the proportion of seroprevalence between sex and age of the animals sampled, there were significant differences between the provincial distributions. Further studies are required to determine the seroprevalence of these infections in other locations in Lao PDR, as well as other animal species including humans, in order to develop effective prevention and control strategies. This is the first study to investigate the prevalence of bovine zoonotic infectious agents in the Lao PDR. Positivity was demonstrated for all diseases investigated, with the highest prevalence for T. saginata antigen and Coxiella burnetti antibodies. For T. saginata, there were significant differences in the provincial distribution. Approximately 16% seroprevalence of Coxiella burnetti was noted in Xayabuly Province; however, there are no clear reasons why this was the case, and further studies are required to determine risk factors associated with this observation.

  20. MARTX Toxin in the Zoonotic Serovar of Vibrio vulnificus Triggers an Early Cytokine Storm in Mice

    PubMed Central

    Murciano, Celia; Lee, Chung-Te; Fernández-Bravo, Ana; Hsieh, Tsung-Han; Fouz, Belén; Hor, Lien-I; Amaro, Carmen

    2017-01-01

    Vibrio vulnificus biotype 2-serovar E is a zoonotic clonal complex that can cause death by sepsis in humans and fish. Unlike other biotypes, Bt2 produces a unique type of MARTXVv (Multifunctional-Autoprocessive-Repeats-in-Toxin; RtxA13), which is encoded by a gene duplicated in the pVvBt2 plasmid and chromosome II. In this work, we analyzed the activity of this toxin and its role in human sepsis by performing in vitro, ex vivo, and in vivo assays. First, we demonstrated that the ACD domain, present exclusively in this toxin variant, effectively has an actin-cross-linking activity. Second, we determined that the whole toxin caused death of human endotheliocytes and monocytes by lysis and apoptosis, respectively. Finally, we tested the hypothesis that RtxA13 contributes to human death caused by this zoonotic serovar by triggering an early cytokine storm in blood. To this end, we used a Bt2-SerE strain (R99) together with its rtxA13 deficient mutant, and a Bt1 strain (YJ016) producing RtxA11 (the most studied MARTXVv) together with its rtxA11 deficient mutant, as controls. Our results showed that RtxA13 was essential for virulence, as R99ΔΔrtxA13 was completely avirulent in our murine model of infection, and that R99, but not strain YJ016, induced an early, strong and dysregulated immune response involving the up-regulation of a high number of genes. This dysregulated immune response was directly linked to RtxA13. Based on these results and those obtained ex vivo (human blood), we propose a model of infection for the zoonotic serovar of V. vulnificus, in which RtxA13 would act as a sepsis-inducing toxin. PMID:28775962

  1. The zoonotic potential of Clostridium difficile from small companion animals and their owners.

    PubMed

    Rabold, Denise; Espelage, Werner; Abu Sin, Muna; Eckmanns, Tim; Schneeberg, Alexander; Neubauer, Heinrich; Möbius, Nadine; Hille, Katja; Wieler, Lothar H; Seyboldt, Christian; Lübke-Becker, Antina

    2018-01-01

    Clostridium difficile infections (CDI) in humans range from asymptomatic carriage to life-threatening intestinal disease. Findings on C. difficile in various animal species and an overlap in ribotypes (RTs) suggest potential zoonotic transmission. However, the impact of animals for human CDI remains unclear. In a large-scale survey we collected 1,447 fecal samples to determine the occurrence of C. difficile in small companion animals (dogs and cats) and their owners and to assess potential epidemiological links within the community. The Germany-wide survey was conducted from July 2012-August 2013. PCR ribotyping, Multilocus VNTR Analysis (MLVA) and PCR detection of toxin genes were used to characterize isolated C. difficile strains. A database was defined and logistic regression used to identify putative factors associated with fecal shedding of C. difficile. In total, 1,418 samples met the inclusion criteria. The isolation rates for small companion animals and their owners within the community were similarly low with 3.0% (25/840) and 2.9% (17/578), respectively. PCR ribotyping revealed eight and twelve different RTs in animals and humans, respectively, whereas three RTs were isolated in both, humans and animals. RT 014/0, a well-known human hospital-associated lineage, was predominantly detected in animal samples. Moreover, the potentially highly pathogenic RTs 027 and 078 were isolated from dogs. Even though, C. difficile did not occur simultaneously in animals and humans sharing the same household. The results of the epidemiological analysis of factors associated with fecal shedding of C. difficile support the hypothesis of a zoonotic potential. Molecular characterization and epidemiological analysis revealed that the zoonotic risk for C. difficile associated with dogs and cats within the