Sample records for zoonotic infectious agents

  1. Spatiotemporal trends in the discovery of new swine infectious agents.

    PubMed

    Fournié, Guillaume; Kearsley-Fleet, Lianne; Otte, Joachim; Pfeiffer, Dirk Udo

    2015-09-28

    A literature review was conducted to assess the spatiotemporal trend and diversity of infectious agents that were newly found in pigs between 1985 and 2010. We identified 173 new variants from 91 species, of which 73 species had not been previously described in pigs. These new species, of which one third was zoonotic, were taxonomically diverse. They were identified throughout the study period, predominantly in the main pork producing countries, with the rate of discovery of new virus variants doubling within the last 10 years of the study period. Whilst infectious agent species newly detected in high-income countries were more likely to be associated with higher virulence, zoonotic agents prevailed in low- and middle-income countries. Although this trend is influenced by factors conditioning infectious agent detection - diagnostic methods, surveillance efforts, research interests -, it may suggest that different scales and types of production systems promote emergence of certain types of infectious agents. Considering the rapid transformation of the swine industry, concerted efforts are needed for improving our understanding of the factors influencing the emergence of infectious agents. This information then needs to inform the design of risk-based surveillance systems and strategies directly mitigating the risk associated with these factors.

  2. ERAIZDA: a model for holistic annotation of animal infectious and zoonotic diseases.

    PubMed

    Buza, Teresia M; Jack, Sherman W; Kirunda, Halid; Khaitsa, Margaret L; Lawrence, Mark L; Pruett, Stephen; Peterson, Daniel G

    2015-01-01

    There is an urgent need for a unified resource that integrates trans-disciplinary annotations of emerging and reemerging animal infectious and zoonotic diseases. Such data integration will provide wonderful opportunity for epidemiologists, researchers and health policy makers to make data-driven decisions designed to improve animal health. Integrating emerging and reemerging animal infectious and zoonotic disease data from a large variety of sources into a unified open-access resource provides more plausible arguments to achieve better understanding of infectious and zoonotic diseases. We have developed a model for interlinking annotations of these diseases. These diseases are of particular interest because of the threats they pose to animal health, human health and global health security. We demonstrated the application of this model using brucellosis, an infectious and zoonotic disease. Preliminary annotations were deposited into VetBioBase database (http://vetbiobase.igbb.msstate.edu). This database is associated with user-friendly tools to facilitate searching, retrieving and downloading of disease-related information. Database URL: http://vetbiobase.igbb.msstate.edu. © The Author(s) 2015. Published by Oxford University Press.

  3. ERAIZDA: a model for holistic annotation of animal infectious and zoonotic diseases

    PubMed Central

    Buza, Teresia M.; Jack, Sherman W.; Kirunda, Halid; Khaitsa, Margaret L.; Lawrence, Mark L.; Pruett, Stephen; Peterson, Daniel G.

    2015-01-01

    There is an urgent need for a unified resource that integrates trans-disciplinary annotations of emerging and reemerging animal infectious and zoonotic diseases. Such data integration will provide wonderful opportunity for epidemiologists, researchers and health policy makers to make data-driven decisions designed to improve animal health. Integrating emerging and reemerging animal infectious and zoonotic disease data from a large variety of sources into a unified open-access resource provides more plausible arguments to achieve better understanding of infectious and zoonotic diseases. We have developed a model for interlinking annotations of these diseases. These diseases are of particular interest because of the threats they pose to animal health, human health and global health security. We demonstrated the application of this model using brucellosis, an infectious and zoonotic disease. Preliminary annotations were deposited into VetBioBase database (http://vetbiobase.igbb.msstate.edu). This database is associated with user-friendly tools to facilitate searching, retrieving and downloading of disease-related information. Database URL: http://vetbiobase.igbb.msstate.edu PMID:26581408

  4. Seroprevalence of major bovine-associated zoonotic infectious diseases in the Lao People's Democratic Republic.

    PubMed

    Vongxay, Khamphouth; Conlan, James V; Khounsy, Syseng; Dorny, Pierre; Fenwick, Stanley; Thompson, R C Andrew; Blacksell, Stuart D

    2012-10-01

    Bovine-associated zoonotic infectious diseases pose a significant threat to human health in the Lao People's Democratic Republic (Lao PDR). In all, 905 cattle and buffalo serum samples collected in northern Lao PDR in 2006 were used to determine seroprevalence of five major bovine zoonotic infectious diseases that included Taenia saginata cysticercosis, bovine tuberculosis, Q-fever, bovine brucellosis, and bovine leptospirosis. Five enzyme-linked immunosorbent assays (ELISAs) were used to test for the presence of antibodies to the diseases, except Taenia saginata, for which we tested for the presence of Taenia metacestode circulating antigens. The overall highest prevalence was for T. saginata (46.4%), with lower prevalence for Q-fever (4%), leptospirosis (3%), tuberculosis (1%), and brucellosis (0.2%). Although there were no significant differences in the proportion of seroprevalence between sex and age of the animals sampled, there were significant differences between the provincial distributions. Further studies are required to determine the seroprevalence of these infections in other locations in Lao PDR, as well as other animal species including humans, in order to develop effective prevention and control strategies. This is the first study to investigate the prevalence of bovine zoonotic infectious agents in the Lao PDR. Positivity was demonstrated for all diseases investigated, with the highest prevalence for T. saginata antigen and Coxiella burnetti antibodies. For T. saginata, there were significant differences in the provincial distribution. Approximately 16% seroprevalence of Coxiella burnetti was noted in Xayabuly Province; however, there are no clear reasons why this was the case, and further studies are required to determine risk factors associated with this observation.

  5. Emerging zoonotic viral diseases.

    PubMed

    Wang, L-F; Crameri, G

    2014-08-01

    Zoonotic diseases are infectious diseases that are naturally transmitted from vertebrate animals to humans and vice versa. They are caused by all types of pathogenic agents, including bacteria, parasites, fungi, viruses and prions. Although they have been recognised for many centuries, their impact on public health has increased in the last few decades due to a combination of the success in reducing the spread of human infectious diseases through vaccination and effective therapies and the emergence of novel zoonotic diseases. It is being increasingly recognised that a One Health approach at the human-animal-ecosystem interface is needed for effective investigation, prevention and control of any emerging zoonotic disease. Here, the authors will review the drivers for emergence, highlight some of the high-impact emerging zoonotic diseases of the last two decades and provide examples of novel One Health approaches for disease investigation, prevention and control. Although this review focuses on emerging zoonotic viral diseases, the authors consider that the discussions presented in this paper will be equally applicable to emerging zoonotic diseases of other pathogen types.

  6. The Vietnam Initiative on Zoonotic Infections (VIZIONS): A Strategic Approach to Studying Emerging Zoonotic Infectious Diseases.

    PubMed

    Rabaa, Maia A; Tue, Ngo Tri; Phuc, Tran My; Carrique-Mas, Juan; Saylors, Karen; Cotten, Matthew; Bryant, Juliet E; Nghia, Ho Dang Trung; Cuong, Nguyen Van; Pham, Hong Anh; Berto, Alessandra; Phat, Voong Vinh; Dung, Tran Thi Ngoc; Bao, Long Hoang; Hoa, Ngo Thi; Wertheim, Heiman; Nadjm, Behzad; Monagin, Corina; van Doorn, H Rogier; Rahman, Motiur; Tra, My Phan Vu; Campbell, James I; Boni, Maciej F; Tam, Pham Thi Thanh; van der Hoek, Lia; Simmonds, Peter; Rambaut, Andrew; Toan, Tran Khanh; Van Vinh Chau, Nguyen; Hien, Tran Tinh; Wolfe, Nathan; Farrar, Jeremy J; Thwaites, Guy; Kellam, Paul; Woolhouse, Mark E J; Baker, Stephen

    2015-12-01

    The effect of newly emerging or re-emerging infectious diseases of zoonotic origin in human populations can be potentially catastrophic, and large-scale investigations of such diseases are highly challenging. The monitoring of emergence events is subject to ascertainment bias, whether at the level of species discovery, emerging disease events, or disease outbreaks in human populations. Disease surveillance is generally performed post hoc, driven by a response to recent events and by the availability of detection and identification technologies. Additionally, the inventory of pathogens that exist in mammalian and other reservoirs is incomplete, and identifying those with the potential to cause disease in humans is rarely possible in advance. A major step in understanding the burden and diversity of zoonotic infections, the local behavioral and demographic risks of infection, and the risk of emergence of these pathogens in human populations is to establish surveillance networks in populations that maintain regular contact with diverse animal populations, and to simultaneously characterize pathogen diversity in human and animal populations. Vietnam has been an epicenter of disease emergence over the last decade, and practices at the human/animal interface may facilitate the likelihood of spillover of zoonotic pathogens into humans. To tackle the scientific issues surrounding the origins and emergence of zoonotic infections in Vietnam, we have established The Vietnam Initiative on Zoonotic Infections (VIZIONS). This countrywide project, in which several international institutions collaborate with Vietnamese organizations, is combining clinical data, epidemiology, high-throughput sequencing, and social sciences to address relevant one-health questions. Here, we describe the primary aims of the project, the infrastructure established to address our scientific questions, and the current status of the project. Our principal objective is to develop an integrated approach to

  7. Tracking zoonotic pathogens using blood-sucking flies as 'flying syringes'

    PubMed Central

    Bitome-Essono, Paul-Yannick; Ollomo, Benjamin; Arnathau, Céline; Durand, Patrick; Mokoudoum, Nancy Diamella; Yacka-Mouele, Lauriane; Okouga, Alain-Prince; Boundenga, Larson; Mve-Ondo, Bertrand; Obame-Nkoghe, Judicaël; Mbehang-Nguema, Philippe; Njiokou, Flobert; Makanga, Boris; Wattier, Rémi; Ayala, Diego; Ayala, Francisco J; Renaud, Francois; Rougeron, Virginie; Bretagnolle, Francois; Prugnolle, Franck; Paupy, Christophe

    2017-01-01

    About 60% of emerging infectious diseases in humans are of zoonotic origin. Their increasing number requires the development of new methods for early detection and monitoring of infectious agents in wildlife. Here, we investigated whether blood meals from hematophagous flies could be used to identify the infectious agents circulating in wild vertebrates. To this aim, 1230 blood-engorged flies were caught in the forests of Gabon. Identified blood meals (30%) were from 20 vertebrate species including mammals, birds and reptiles. Among them, 9% were infected by different extant malaria parasites among which some belonged to known parasite species, others to new parasite species or to parasite lineages for which only the vector was known. This study demonstrates that using hematophagous flies as ‘flying syringes’ constitutes an interesting approach to investigate blood-borne pathogen diversity in wild vertebrates and could be used as an early detection tool of zoonotic pathogens. DOI: http://dx.doi.org/10.7554/eLife.22069.001 PMID:28347401

  8. Infectious Agents Trigger Trophic Cascades.

    PubMed

    Buck, Julia C; Ripple, William J

    2017-09-01

    Most demonstrated trophic cascades originate with predators, but infectious agents can also cause top-down indirect effects in ecosystems. Here we synthesize the literature on trophic cascades initiated by infectious agents including parasitoids, pathogens, parasitic castrators, macroparasites, and trophically transmitted parasites. Like predators, infectious agents can cause density-mediated and trait-mediated indirect effects through their direct consumptive and nonconsumptive effects respectively. Unlike most predators, however, infectious agents are not fully and immediately lethal to their victims, so their consumptive effects can also trigger trait-mediated indirect effects. We find that the frequency of trophic cascades reported for different consumer types scales with consumer lethality. Furthermore, we emphasize the value of uniting predator-prey and parasite-host theory under a general consumer-resource framework. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Individualistic values are related to an increase in the outbreaks of infectious diseases and zoonotic diseases.

    PubMed

    Morand, Serge; Walther, Bruno A

    2018-03-01

    Collectivist versus individualistic values are important attributes of intercultural variation. Collectivist values favour in-group members over out-group members and may have evolved to protect in-group members against pathogen transmission. As predicted by the pathogen stress theory of cultural values, more collectivist countries are associated with a higher historical pathogen burden. However, if lifestyles of collectivist countries indeed function as a social defence which decreases pathogen transmission, then these countries should also have experienced fewer disease outbreaks in recent times. We tested this novel hypothesis by correlating the values of collectivism-individualism for 66 countries against their historical pathogen burden, recent number of infectious disease outbreaks and zoonotic disease outbreaks and emerging infectious disease events, and four potentially confounding variables. We confirmed the previously established negative relationship between individualism and historical pathogen burden with new data. While we did not find a correlation for emerging infectious disease events, we found significant positive correlations between individualism and the number of infectious disease outbreaks and zoonotic disease outbreaks. Therefore, one possible cost for individualistic cultures may be their higher susceptibility to disease outbreaks. We support further studies into the exact protective behaviours and mechanisms of collectivist societies which may inhibit disease outbreaks.

  10. Zoonotic and infectious disease surveillance in Central America: Honduran feral cats positive for toxoplasma, trypanosoma, leishmania, rickettsia, and Lyme disease.

    PubMed

    McCown, Michael; Grzeszak, Benjamin

    2010-01-01

    A recent zoonotic and infectious disease field surveillance study in Honduras resulted in the discovery of Toxoplasma, Trypanosoma, Leishmania, Rickettsia, and Lyme disease with statistically high prevalence rates in a group of feral cats. All five diseases--Toxoplasmosis, Trypanosomiasis, Leishmaniasis, Rickettsiosis, and Lyme disease--were confirmed in this group of cats having close contact to local civilians and U.S. personnel. These diseases are infectious to other animals and are known to infect humans as well. In the austere Central and South American sites that Special Operations Forces (SOF) medics are deployed, the living conditions and close quarters are prime environments for the potential spread of infectious and zoonotic disease. This study?s findings, as with previous veterinary disease surveillance studies, emphasize the critical need for continual and aggressive surveillance for zoonotic and infectious disease present within animals in specific areas of operation (AO). The importance to SOF is that a variety of animals may be sentinels, hosts, or direct transmitters of disease to civilians and service members. These studies are value-added tools to the U.S. military, specifically to a deploying or already deployed unit. The SOF medic must ensure that this value-added asset is utilized and that the findings are applied to assure Operational Detachment-Alpha (SFOD-A) health and, on a bigger scale, U.S. military force health protection and local civilian health. © 2010.

  11. Infectious Agents in Childhood Leukemia.

    PubMed

    Arellano-Galindo, José; Barrera, Alberto Parra; Jiménez-Hernández, Elva; Zavala-Vega, Sergio; Campos-Valdéz, Guillermina; Xicohtencatl-Cortes, Juan; Ochoa, Sara A; Cruz-Córdova, Ariadnna; Crisóstomo-Vázquez, María Del Pilar; Fernández-Macías, Juan Carlos; Mejía-Aranguré, Juan Manuel

    2017-05-01

    Acute leukemia is the most common pediatric cancer, representing one-third of all cancers that occurs in under 15 year olds, with a varied incidence worldwide. Although a number of advances have increased the knowledge of leukemia pathophysiology, its etiology remains less well understood. The role of infectious agents, such as viruses, bacteria, or parasites, in the pathogenesis of leukemia has been discussed. To date, several cellular mechanisms involving infectious agents have been proposed to cause leukemia following infections. However, although leukemia can be triggered by contact with such agents, they can also be beneficial in developing immune stimulation and protection despite the risk of leukemic clones. In this review, we analyze the proposed hypotheses concerning how infectious agents may play a role in the origin and development of leukemia, as well as in a possible mechanism of protection following infections. We review reported clinical observations associated with vaccination or breastfeeding, that support hypotheses such as early life exposure and the resulting early immune stimulation that lead to protection. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  12. Public farms: hygiene and zoonotic agents.

    PubMed

    Heuvelink, A E; Valkenburgh, S M; Tilburg, J J H C; Van Heerwaarden, C; Zwartkruis-Nahuis, J T M; De Boer, E

    2007-10-01

    In three successive years, we visited petting farms (n=132), care farms (n=91), and farmyard campsites (n=84), respectively, and completed a standard questionnaire with the objective of determining the hygienic status of these farms and describing hygiene measures implemented to reduce the risk of transmission of zoonotic agents from the animals to humans. For at least 85% of the farms, the overall impression of hygiene was recorded as good. However, more attention must be paid to: informing visitors on hygiene and handwashing, provision of handwashing facilities, and a footwear cleaning facility. Examination of samples of freshly voided faeces resulted in the detection of Shiga toxin-producing Escherichia coli O157 and/or Salmonella spp. and/or Campylobacter spp. at almost two-thirds (64.9%) of the petting farms, and around half of the care farms (56.0%) and farmyard campsites (45.2%). These data reinforce the need for control measures for both public and private farms to reduce human exposure to livestock faeces and thus the risk of transmission of zoonotic diseases. Public awareness of the risk associated with handling animals or faecal material should be increased.

  13. Plant-based oral vaccines against zoonotic and non-zoonotic diseases.

    PubMed

    Shahid, Naila; Daniell, Henry

    2016-11-01

    The shared diseases between animals and humans are known as zoonotic diseases and spread infectious diseases among humans. Zoonotic diseases are not only a major burden to livestock industry but also threaten humans accounting for >60% cases of human illness. About 75% of emerging infectious diseases in humans have been reported to originate from zoonotic pathogens. Because antibiotics are frequently used to protect livestock from bacterial diseases, the development of antibiotic-resistant strains of epidemic and zoonotic pathogens is now a major concern. Live attenuated and killed vaccines are the only option to control these infectious diseases and this approach has been used since 1890. However, major problems with this approach include high cost and injectable vaccines is impractical for >20 billion poultry animals or fish in aquaculture. Plants offer an attractive and affordable platform for vaccines against animal diseases because of their low cost, and they are free of attenuated pathogens and cold chain requirement. Therefore, several plant-based vaccines against human and animals diseases have been developed recently that undergo clinical and regulatory approval. Plant-based vaccines serve as ideal booster vaccines that could eliminate multiple boosters of attenuated bacteria or viruses, but requirement of injectable priming with adjuvant is a current limitation. So, new approaches like oral vaccines are needed to overcome this challenge. In this review, we discuss the progress made in plant-based vaccines against zoonotic or other animal diseases and future challenges in advancing this field. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Zoonotic Agents in Small Ruminants Kept on City Farms in Southern Germany

    PubMed Central

    Schilling, Anna-Katarina; Hotzel, Helmut; Methner, Ulrich; Sprague, Lisa D.; Schmoock, Gernot; El-Adawy, Hosny; Ehricht, Ralf; Wöhr, Anna-Caroline; Erhard, Michael

    2012-01-01

    Sheep and goats are popular examples of livestock kept on city farms. In these settings, close contacts between humans and animals frequently occur. Although it is widely accepted that small ruminants can carry numerous zoonotic agents, it is unknown which of these agents actually occur in sheep and goats on city farms in Germany. We sampled feces and nasal liquid of 48 animals (28 goats, 20 sheep) distributed in 7 city farms and on one activity playground in southern Germany. We found that 100% of the sampled sheep and 89.3% of the goats carried Shiga toxin-producing Escherichia coli (STEC). The presence of Staphylococcus spp. in 75% of both sheep and goats could be demonstrated. Campylobacter spp. were detected in 25% and 14.3% of the sheep and goats, respectively. Neither Salmonella spp. nor Coxiella burnetii was found. On the basis of these data, we propose a reasonable hygiene scheme to prevent transmission of zoonotic agents during city farm visits. PMID:22447607

  15. Zoonotic Agents in Feral Pigeons (Columba livia) from Costa Rica: Possible Improvements to Diminish Contagion Risks.

    PubMed

    Torres-Mejía, Ana María; Blanco-Peña, Kinndle; Rodríguez, César; Duarte, Francisco; Jiménez-Soto, Mauricio; Esperón, Fernando

    2018-01-01

    Most studies on zoonotic agents in pigeons have been conducted in the Palearctic region, but the scarcity of data is notorious in the Neotropical region, where these birds can breed all year around and are in close contact with humans. In this study, we used a combination of culture-dependent and culture-independent methods to identify infectious agents in 141 fecal samples from pigeons collected at four urban parks from Costa Rica. Of these we identified 34 positive samples for Salmonella enterica subsp. enterica serovar Braenderup (24.1%), 13 for Chlamydophila psittaci (9.2%), 9 for enteropathogenic Escherichia coli (6.4% eaeA, 0% stx-1 and 0% stx-2), and 2 for Campylobacter jejuni (1.4%). These populations of pigeons pose low risk for healthy adult humans, however, they may pose a health risk to immunocompromised patients or children. This study provides scientific data, which can be incorporated into educational programs aiming to reverse the public attitude toward pigeon feeding and to rationally justify population control efforts.

  16. Infectious Agents and Cancer Epidemiology Research Webinar Series

    Cancer.gov

    Infectious Agents and Cancer Epidemiology Research Webinar Series highlights emerging and cutting-edge research related to infection-associated cancers, shares scientific knowledge about technologies and methods, and fosters cross-disciplinary discussions on infectious agents and cancer epidemiology.

  17. Zoonotic Diseases--Fostering Awareness in Critical Audiences

    ERIC Educational Resources Information Center

    Van Metre, David C.; Morley, Paul S.

    2015-01-01

    Zoonotic diseases are infectious diseases that are shared between humans and other vertebrate animals. Extension professionals often serve as consultants and educators to individuals at high risk of zoonotic diseases, such as participants in 4-H livestock projects. Effective education about zoonotic diseases begins with an awareness of the…

  18. Exposure to infectious agents in dogs in remote coastal British Columbia: Possible sentinels of diseases in wildlife and humans

    PubMed Central

    Bryan, Heather M.; Darimont, Chris T.; Paquet, Paul C.; Ellis, John A.; Goji, Noriko; Gouix, Maëlle; Smits, Judit E.

    2011-01-01

    Ranked among the top threats to conservation worldwide, infectious disease is of particular concern for wild canids because domestic dogs (Canis familiaris) may serve as sources and reservoirs of infection. On British Columbia’s largely undeveloped but rapidly changing central and north coasts, little is known about diseases in wolves (Canis lupus) or other wildlife. However, several threats exist for transfer of diseases among unvaccinated dogs and wolves. To gain baseline data on infectious agents in this area, including those with zoonotic potential, we collected blood and stool samples from 107 dogs in 5 remote communities in May and September 2007. Serology revealed that the dogs had been exposed to canine parvovirus, canine distemper virus, Bordetella bronchiseptica, canine respiratory coronavirus, and Leptospira interrogans. No dogs showed evidence of exposure to Ehrlichia canis, Anaplasma phagocytophilum, Borrelia burgdorferi, Dirofilaria immitis, or Cryptococcus gattii. Of 75 stool samples, 31 contained at least 1 parasitic infection, including Taeniid tapeworms, the nematodes Toxocara canis and Toxascaris leonina, and the protozoans Isospora sp., Giardia sp., Cryptosporidium sp., and Sarcocystis sp. This work provides a sound baseline for future monitoring of infectious agents that could affect dogs, sympatric wild canids, other wildlife, and humans. PMID:21461190

  19. Prevalence of selected infectious disease agents in stray cats in Catalonia, Spain

    PubMed Central

    Ravicini, Sara; Pastor, Josep; Hawley, Jennifer; Brewer, Melissa; Castro-López, Jorge; Beall, Melissa; Lappin, Michael R

    2016-01-01

    Objectives The objective of the current study was to investigate the prevalence rates of the following infectious agents in 116 stray cats in the Barcelona area of Spain: Anaplasma phagocytophilum, Bartonella species, Borrelia burgdorferi, Chlamydia felis, Dirofilaria immitis, Ehrlichia species, feline calicivirus (FCV), feline herpesvirus-1 (FHV-1), feline leukaemia virus (FeLV), feline immunodeficiency virus (FIV), haemoplasmas, Mycoplasma species and Rickettsia species. Methods Serum antibodies were used to estimate the prevalence of exposure to A phagocytophilum, Bartonella species, B burgdorferi, Ehrlichia species and FIV; serum antigens were used to assess for infection by D immitis and FeLV; and molecular assays were used to amplify nucleic acids of Anaplasma species, Bartonella species, C felis, D immitis, Ehrlichia species, FCV, FHV-1, haemoplasmas, Mycoplasma species and Rickettsia species from blood and nasal or oral swabs. Results Of the 116 cats, 63 (54.3%) had evidence of infection by Bartonella species, FeLV, FIV or a haemoplasma. Anaplasma species, Ehrlichia species or Rickettsia species DNA was not amplified from these cats. A total of 18/116 cats (15.5%) were positive for FCV RNA (six cats), Mycoplasma species DNA (six cats), FHV-1 DNA (three cats) or C felis DNA (three cats). Conclusions and relevance This study documents that shelter cats in Catalonia are exposed to many infectious agents with clinical and zoonotic significance, and that flea control is indicated for cats in the region. PMID:28491415

  20. Pathological findings in the red fox (Vulpes vulpes), stone marten (Martes foina) and raccoon dog (Nyctereutes procyonoides), with special emphasis on infectious and zoonotic agents in Northern Germany.

    PubMed

    Lempp, Charlotte; Jungwirth, Nicole; Grilo, Miguel L; Reckendorf, Anja; Ulrich, Arlena; van Neer, Abbo; Bodewes, Rogier; Pfankuche, Vanessa M; Bauer, Christian; Osterhaus, Albert D M E; Baumgärtner, Wolfgang; Siebert, Ursula

    2017-01-01

    Anthropogenic landscape changes contributed to the reduction of availability of habitats to wild animals. Hence, the presence of wild terrestrial carnivores in urban and peri-urban sites has increased considerably over the years implying an increased risk of interspecies spillover of infectious diseases and the transmission of zoonoses. The present study provides a detailed characterisation of the health status of the red fox (Vulpes vulpes), stone marten (Martes foina) and raccoon dog (Nyctereutes procyonoides) in their natural rural and peri-urban habitats in Schleswig-Holstein, Germany between November 2013 and January 2016 with focus on zoonoses and infectious diseases that are potentially threatening to other wildlife or domestic animal species. 79 red foxes, 17 stone martens and 10 raccoon dogs were collected from traps or hunts. In order to detect morphological changes and potential infectious diseases, necropsy and pathohistological work-up was performed. Additionally, in selected animals immunohistochemistry (influenza A virus, parvovirus, feline leukemia virus, Borna disease virus, tick-borne encephalitis, canine adenovirus, Neospora caninum, Toxoplasma gondii and Listeria monocytogenes), next-generation sequencing, polymerase chain reaction (fox circovirus) and serum-neutralisation analysis (canine distemper virus) were performed. Furthermore, all animals were screened for fox rabies virus (immunofluorescence), canine distemper virus (immunohistochemistry) and Aujeszky's disease (virus cultivation). The most important findings included encephalitis (n = 16) and pneumonia (n = 20). None of the investigations revealed a specific cause for the observed morphological alterations except for one animal with an elevated serum titer of 1:160 for canine distemper. Animals displayed macroscopically and/or histopathologically detectable infections with parasites, including Taenia sp., Toxocara sp. and Alaria alata. In summary, wildlife predators carry zoonotic

  1. Pathological findings in the red fox (Vulpes vulpes), stone marten (Martes foina) and raccoon dog (Nyctereutes procyonoides), with special emphasis on infectious and zoonotic agents in Northern Germany

    PubMed Central

    Grilo, Miguel L.; Reckendorf, Anja; Ulrich, Arlena; van Neer, Abbo; Bodewes, Rogier; Pfankuche, Vanessa M.; Bauer, Christian; Osterhaus, Albert D. M. E.; Baumgärtner, Wolfgang; Siebert, Ursula

    2017-01-01

    Anthropogenic landscape changes contributed to the reduction of availability of habitats to wild animals. Hence, the presence of wild terrestrial carnivores in urban and peri-urban sites has increased considerably over the years implying an increased risk of interspecies spillover of infectious diseases and the transmission of zoonoses. The present study provides a detailed characterisation of the health status of the red fox (Vulpes vulpes), stone marten (Martes foina) and raccoon dog (Nyctereutes procyonoides) in their natural rural and peri-urban habitats in Schleswig-Holstein, Germany between November 2013 and January 2016 with focus on zoonoses and infectious diseases that are potentially threatening to other wildlife or domestic animal species. 79 red foxes, 17 stone martens and 10 raccoon dogs were collected from traps or hunts. In order to detect morphological changes and potential infectious diseases, necropsy and pathohistological work-up was performed. Additionally, in selected animals immunohistochemistry (influenza A virus, parvovirus, feline leukemia virus, Borna disease virus, tick-borne encephalitis, canine adenovirus, Neospora caninum, Toxoplasma gondii and Listeria monocytogenes), next-generation sequencing, polymerase chain reaction (fox circovirus) and serum-neutralisation analysis (canine distemper virus) were performed. Furthermore, all animals were screened for fox rabies virus (immunofluorescence), canine distemper virus (immunohistochemistry) and Aujeszky’s disease (virus cultivation). The most important findings included encephalitis (n = 16) and pneumonia (n = 20). None of the investigations revealed a specific cause for the observed morphological alterations except for one animal with an elevated serum titer of 1:160 for canine distemper. Animals displayed macroscopically and/or histopathologically detectable infections with parasites, including Taenia sp., Toxocara sp. and Alaria alata. In summary, wildlife predators carry zoonotic

  2. Chlamydia gallinacea: a widespread emerging Chlamydia agent with zoonotic potential in backyard poultry.

    PubMed

    Li, L; Luther, M; Macklin, K; Pugh, D; Li, J; Zhang, J; Roberts, J; Kaltenboeck, B; Wang, C

    2017-10-01

    Chlamydia gallinacea, a new chlamydial agent, has been reported in four European countries as well as Argentina and China. Experimentally infected chickens with C. gallinacea in previous study showed no clinical signs but had significantly reduced gains in body weight (6·5-11·4%). Slaughterhouse workers exposed to infected chickens have developed atypical pneumonia, indicating C. gallinacea is likely a zoonotic agent. In this study, FRET-PCR confirmed that C. gallinacea was present in 12·4% (66/531) of oral-pharyngeal samples from Alabama backyard poultry. Phylogenetic comparisons based on ompA variable domain showed that 16 sequenced samples represented 14 biotypes. We report for the first time the presence of C. gallinacea in North America, and this warrants further research on the organism's pathogenicity, hosts, transmission, and zoonotic potential.

  3. Infectious disease agents mediate interaction in food webs and ecosystems

    PubMed Central

    Selakovic, Sanja; de Ruiter, Peter C.; Heesterbeek, Hans

    2014-01-01

    Infectious agents are part of food webs and ecosystems via the relationship with their host species that, in turn, interact with both hosts and non-hosts. Through these interactions, infectious agents influence food webs in terms of structure, functioning and stability. The present literature shows a broad range of impacts of infectious agents on food webs, and by cataloguing that range, we worked towards defining the various mechanisms and their specific effects. To explore the impact, a direct approach is to study changes in food-web properties with infectious agents as separate species in the web, acting as additional nodes, with links to their host species. An indirect approach concentrates not on adding new nodes and links, but on the ways that infectious agents affect the existing links across host and non-host nodes, by influencing the ‘quality’ of consumer–resource interaction as it depends on the epidemiological state host involved. Both approaches are natural from an ecological point of view, but the indirect approach may connect more straightforwardly to commonly used tools in infectious disease dynamics. PMID:24403336

  4. Sapronosis: a distinctive type of infectious agent

    USGS Publications Warehouse

    Kuris, Armand M.; Lafferty, Kevin D.; Sokolow, Susanne H.

    2014-01-01

    Sapronotic disease agents have evolutionary and epidemiological properties unlike other infectious organisms. Their essential saprophagic existence prevents coevolution, and no host–parasite virulence trade-off can evolve. However, the host may evolve defenses. Models of pathogens show that sapronoses, lacking a threshold of transmission, cannot regulate host populations, although they can reduce host abundance and even extirpate their hosts. Immunocompromised hosts are relatively susceptible to sapronoses. Some particularly important sapronoses, such as cholera and anthrax, can sustain an epidemic in a host population. However, these microbes ultimately persist as saprophages. One-third of human infectious disease agents are sapronotic, including nearly all fungal diseases. Recognition that an infectious disease is sapronotic illuminates a need for effective environmental control strategies.

  5. (Highly pathogenic) avian influenza as a zoonotic agent.

    PubMed

    Kalthoff, Donata; Globig, Anja; Beer, Martin

    2010-01-27

    Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence by mutation after transmission and adaptation to susceptible gallinaceous poultry. Those so-called highly pathogenic avian influenza viruses (HPAIV) then cause mass die-offs in susceptible birds and lead to tremendous economical losses when poultry is affected. Besides a number of avian influenza virus subtypes that have sporadically infected mammals, the HPAIV H5N1 Asia shows strong zoonotic characteristics and it was transmitted from birds to different mammalian species including humans. Theoretically, pandemic viruses might derive directly from avian influenza viruses or arise after genetic reassortment between viruses of avian and mammalian origin. So far, HPAIV H5N1 already meets two conditions for a pandemic virus: as a new subtype it has been hitherto unseen in the human population and it has infected at least 438 people, and caused severe illness and high lethality in 262 humans to date (August 2009). The acquisition of efficient human-to-human transmission would complete the emergence of a new pandemic virus. Therefore, fighting H5N1 at its source is the prerequisite to reduce pandemic risks posed by this virus. Other influenza viruses regarded as pandemic candidates derive from subtypes H2, H7, and H9 all of which have infected humans in the past. Here, we will give a comprehensive overview on avian influenza viruses in concern to their zoonotic potential. Copyright 2009 Elsevier B.V. All rights reserved.

  6. Ecology of zoonotic infectious diseases in bats: current knowledge and future directions

    USGS Publications Warehouse

    Hayman, D.T.; Bowen, R.A.; Cryan, P.M.; McCracken, G.F.; O'Shea, T.J.; Peel, A.J.; Gilbert, A.; Webb, C.T.; Wood, J.L.

    2013-01-01

    Bats are hosts to a range of zoonotic and potentially zoonotic pathogens. Human activities that increase exposure to bats will likely increase the opportunity for infections to spill over in the future. Ecological drivers of pathogen spillover and emergence in novel hosts, including humans, involve a complex mixture of processes, and understanding these complexities may aid in predicting spillover. In particular, only once the pathogen and host ecologies are known can the impacts of anthropogenic changes be fully appreciated. Cross-disciplinary approaches are required to understand how host and pathogen ecology interact. Bats differ from other sylvatic disease reservoirs because of their unique and diverse lifestyles, including their ability to fly, often highly gregarious social structures, long lifespans and low fecundity rates. We highlight how these traits may affect infection dynamics and how both host and pathogen traits may interact to affect infection dynamics. We identify key questions relating to the ecology of infectious diseases in bats and propose that a combination of field and laboratory studies are needed to create data-driven mechanistic models to elucidate those aspects of bat ecology that are most critical to the dynamics of emerging bat viruses. If commonalities can be found, then predicting the dynamics of newly emerging diseases may be possible. This modelling approach will be particularly important in scenarios when population surveillance data are unavailable and when it is unclear which aspects of host ecology are driving infection dynamics.

  7. Ecology of Zoonotic Infectious Diseases in Bats: Current Knowledge and Future Directions

    PubMed Central

    Hayman, D T S; Bowen, R A; Cryan, P M; McCracken, G F; O’Shea, T J; Peel, A J; Gilbert, A; Webb, C T; Wood, J L N

    2013-01-01

    Bats are hosts to a range of zoonotic and potentially zoonotic pathogens. Human activities that increase exposure to bats will likely increase the opportunity for infections to spill over in the future. Ecological drivers of pathogen spillover and emergence in novel hosts, including humans, involve a complex mixture of processes, and understanding these complexities may aid in predicting spillover. In particular, only once the pathogen and host ecologies are known can the impacts of anthropogenic changes be fully appreciated. Cross-disciplinary approaches are required to understand how host and pathogen ecology interact. Bats differ from other sylvatic disease reservoirs because of their unique and diverse lifestyles, including their ability to fly, often highly gregarious social structures, long lifespans and low fecundity rates. We highlight how these traits may affect infection dynamics and how both host and pathogen traits may interact to affect infection dynamics. We identify key questions relating to the ecology of infectious diseases in bats and propose that a combination of field and laboratory studies are needed to create data-driven mechanistic models to elucidate those aspects of bat ecology that are most critical to the dynamics of emerging bat viruses. If commonalities can be found, then predicting the dynamics of newly emerging diseases may be possible. This modelling approach will be particularly important in scenarios when population surveillance data are unavailable and when it is unclear which aspects of host ecology are driving infection dynamics. PMID:22958281

  8. [Reservation forms of plague infectious agent in Tuva natural focus].

    PubMed

    Bazanova, L P; Innokent'eva, T I

    2012-01-01

    Data characterizing the reservation forms of plague infectious agent in Tuva natural focus are presented in the review. Yersinia pestis was shown to persist most of the year in Citellophilus tesquorum altaicus imago --the main carrier, getting into the animal organism only for a short time. An increased ability to aggregate in autumn and accumulate in clumps of C. tesquorum altaicus females that are more adapted to survive the cold season compared with males promote the persistence of the microorganism. The plague infectious agent in the altered form survives in the organism of females not only the winter period but also longer periods of time that is demonstrated by the facts of detection of it after 646 days of staying in the carrier. Moreover Yersinia pestis can persist for more than 400 days in the substrate of the nest of long-tailed ground squirrel infected by excrements and corpses of plague fleas. The substrate of the nest infected in summer-autumn period of the previous year may determine the primary infection of ground squirrels by plague infectious agent in the next epizootic season. On ground squirrels infected during contact with nest substrate, infection of intact fleas may be possible, and so the initiation of a new cycle of transmission of the infectious agent. Adaptation of the plague infectious agent to unfavorable existence conditions in the carrier is expressed in the changes of its morphology and ultrastructure that is evidenced by the facts of isolation of the infectious agent from corpses of fleas situated in the substrate, in the L-form, as well as results of phase-contrast and electron microscopy of the digestive tract of C. tesquorum altaicus.

  9. Production of infectious dromedary camel hepatitis E virus by a reverse genetic system: Potential for zoonotic infection.

    PubMed

    Li, Tian-Cheng; Zhou, Xianfeng; Yoshizaki, Sayaka; Ami, Yasushi; Suzaki, Yuriko; Nakamura, Tomofumi; Takeda, Naokazu; Wakita, Takaji

    2016-12-01

    The pathogenicity, epidemiology and replication mechanism of dromedary camel hepatitis E virus (DcHEV), a novel hepatitis E virus (HEV), has been unclear. Here we used a reverse genetic system to produce DcHEV and examined the possibility of zoonotic infection. Capped genomic RNA derived from a synthetic DcHEV cDNA was transfected into human hepatocarcinoma cells PLC/PRF/5. The DcHEV capsid protein and RNA were detected by an enzyme-linked immunosorbent assay (ELISA) or RT-qPCR. A neutralization test for DcHEV was carried out by using antisera against HEV-like particles. DcHEV was used to inoculate two cynomolgus monkeys to examine the potential for cross-species infection. The transfection of PLC/PRF/5 cells with capped DcHEV RNA resulted in the production of infectious DcHEV. The genome sequence analysis demonstrated that both nucleotide and amino acid changes accumulated during the passages in PLC/PRF/5 cells. The cynomolgus monkeys showed serological signs of infection when DcHEV was intravenously inoculated. DcHEV was neutralized by not only anti-DcHEV-LPs antibody, but also anti-genotype 1 (G1), G3 and G4 HEV-LPs antibodies. Moreover, the monkeys immunized with DcHEV escaped the G3 HEV challenge, indicating that the serotype of DcHEV is similar to those of other human HEVs. Infectious DcHEV was produced using a reverse genetic system and propagated in PLC/PRF/5 cells. The antigenicity and immunogenicity of DcHEV are similar to those of G1, G3 and G4 HEV. DcHEV was experimentally transmitted to primates, demonstrating the possibility of a zoonotic infection by DcHEV. Dromedary camel hepatitis E virus (DcHEV) was produced by a reverse genetic system and grows well in PLC/PRF/5 cells. Cynomolgus monkeys experimentally infected with DcHEV indicated serological signs of infection, suggesting that DcHEV has the potential to cause zoonotic HEV infection. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  10. Serologic screening for 13 infectious agents in roe deer (Capreolus capreolus) in Flanders

    PubMed Central

    Tavernier, Paul; Sys, Stanislas U.; De Clercq, Kris; De Leeuw, Ilse; Caij, Anne Brigitte; De Baere, Miet; De Regge, Nick; Fretin, David; Roupie, Virginie; Govaerts, Marc; Heyman, Paul; Vanrompay, Daisy; Yin, Lizi; Kalmar, Isabelle; Suin, Vanessa; Brochier, Bernard; Dobly, Alexandre; De Craeye, Stéphane; Roelandt, Sophie; Goossens, Els; Roels, Stefan

    2015-01-01

    Introduction In order to investigate the role of roe deer in the maintenance and transmission of infectious animal and human diseases in Flanders, we conducted a serologic screening in 12 hunting areas. Materials and methods Roe deer sera collected between 2008 and 2013 (n=190) were examined for antibodies against 13 infectious agents, using indirect enzyme-linked immunosorbent assay, virus neutralisation, immunofluorescence, or microagglutination test, depending on the agent. Results and discussion High numbers of seropositives were found for Anaplasma phagocytophilum (45.8%), Toxoplasma gondii (43.2%) and Schmallenberg virus (27.9%), the latter with a distinct temporal distribution pattern following the outbreak in domestic ruminants. Lower antibody prevalence was found for Chlamydia abortus (6.7%), tick-borne encephalitis virus (5.1%), Neospora caninum (4.8%), and Mycobacterium avium subsp paratuberculosis (4.1%). The lowest prevalences were found for Leptospira (1.7%), bovine viral diarrhoea virus 1 (1.3%), and Coxiella burnetii (1.2%). No antibodies were found against Brucella sp., bovine herpesvirus 1, and bluetongue virus. A significant difference in seroprevalence between ages (higher in adults >1 year) was found for N. caninum. Four doubtful reacting sera accounted for a significant difference in seroprevalence between sexes for C. abortus (higher in females). Conclusions Despite the more intensive landscape use in Flanders, the results are consistent with other European studies. Apart from maintaining C. abortus and MAP, roe deer do not seem to play an important role in the epidemiology of the examined zoonotic and domestic animal pathogens. Nevertheless, their meaning as sentinels should not be neglected in the absence of other wild cervid species. PMID:26609692

  11. Infectious causes of reproductive disorders in cattle.

    PubMed

    Yoo, Han Sang

    2010-01-01

    The incidences of reproductive disorders in bovine are increasing over years. This scenario is further aggravating due to more emphasis on selection and rearing of animal for specific commercial purposes which compromises livestock reproduction. Reproductive disorders like infertility and abortions in cattle are major problems in the bovine industry. The reproductive disorders might be caused by several different agents such as physical agents, chemical agents, biological agents, etc. Also, the causative agent and pathogenesis of reproductive disorders are influenced by various factors including environmental factor. The exact causes may not be evident and are often complicated with multiple causative agents. Thus, there is a need for multi-faceted approach to understand correlation of various factors with reproductive performance. Of the agents, infectious biological agents are significant cause of reproductive disorder and are of high priority in the bovine industry. These factors are not only related to the prosperity of bovine industry but are also important from public health point of view because of their zoonotic potentials. Several infectious agents like bacterial, viral, protozoon, chlamydial and fungal agents are known to have direct impact on reproductive health of cattle. These diseases can be arranged and discussed in different groups based on the causative agents.

  12. Infectious Agents as Stimuli of Trained Innate Immunity.

    PubMed

    Rusek, Paulina; Wala, Mateusz; Druszczyńska, Magdalena; Fol, Marek

    2018-02-03

    The discoveries made over the past few years have modified the current immunological paradigm. It turns out that innate immunity cells can mount some kind of immunological memory, similar to that observed in the acquired immunity and corresponding to the defense mechanisms of lower organisms, which increases their resistance to reinfection. This phenomenon is termed trained innate immunity. It is based on epigenetic changes in innate immune cells (monocytes/macrophages, NK cells) after their stimulation with various infectious or non-infectious agents. Many infectious stimuli, including bacterial or fungal cells and their components (LPS, β-glucan, chitin) as well as viruses or even parasites are considered potent inducers of innate immune memory. Epigenetic cell reprogramming occurring at the heart of the phenomenon may provide a useful basis for designing novel prophylactic and therapeutic strategies to prevent and protect against multiple diseases. In this article, we present the current state of art on trained innate immunity occurring as a result of infectious agent induction. Additionally, we discuss the mechanisms of cell reprogramming and the implications for immune response stimulation/manipulation.

  13. Review of Nonfoodborne Zoonotic and Potentially Zoonotic Poultry Diseases.

    PubMed

    Agunos, Agnes; Pierson, F William; Lungu, Bwalya; Dunn, Patricia A; Tablante, Nathaniel

    2016-09-01

    Emerging and re-emerging diseases are continuously diagnosed in poultry species. A few of these diseases are known to cross the species barrier, thus posing a public health risk and an economic burden. We identified and synthesized global evidence for poultry nonfoodborne zoonoses to better understand these diseases in people who were exposed to different poultry-related characteristics (e.g., occupational or nonoccupational, operational types, poultry species, outbreak conditions, health status of flocks). This review builds on current knowledge on poultry zoonoses/potentially zoonotic agents transmitted via the nonfoodborne route. It also identifies research gaps and potential intervention points within the poultry industry to reduce zoonotic transmission by using various knowledge synthesis tools such as systematic review (SR) and qualitative (descriptive) and quantitative synthesis methods (i.e., meta-analysis). Overall, 1663 abstracts were screened and 156 relevant articles were selected for further review. Full articles (in English) were retrieved and critically appraised using routine SR methods. In total, eight known zoonotic diseases were reviewed: avian influenza (AI) virus (n = 85 articles), Newcastle disease virus (n = 8), West Nile virus (WNV, n = 2), avian Chlamydia (n = 24), Erysipelothrix rhusiopathiae (n = 3), methicillin-resistant Staphylococcus aureus (MRSA, n = 15), Ornithonyssus sylvarium (n = 4), and Microsporum gallinae (n = 3). In addition, articles on other viral poultry pathogens (n = 5) and poultry respiratory allergens derived from mites and fungi (n = 7) were reviewed. The level of investigations (e.g., exposure history, risk factor, clinical disease in epidemiologically linked poultry, molecular studies) to establish zoonotic linkages varied across disease agents and across studies. Based on the multiple outcome measures captured in this review, AI virus seems to be the poultry zoonotic pathogen that may have considerable and

  14. Metacommunity and phylogenetic structure determine wildlife and zoonotic infectious disease patterns in time and space.

    PubMed

    Suzán, Gerardo; García-Peña, Gabriel E; Castro-Arellano, Ivan; Rico, Oscar; Rubio, André V; Tolsá, María J; Roche, Benjamin; Hosseini, Parviez R; Rizzoli, Annapaola; Murray, Kris A; Zambrana-Torrelio, Carlos; Vittecoq, Marion; Bailly, Xavier; Aguirre, A Alonso; Daszak, Peter; Prieur-Richard, Anne-Helene; Mills, James N; Guégan, Jean-Francois

    2015-02-01

    The potential for disease transmission at the interface of wildlife, domestic animals and humans has become a major concern for public health and conservation biology. Research in this subject is commonly conducted at local scales while the regional context is neglected. We argue that prevalence of infection at local and regional levels is influenced by three mechanisms occurring at the landscape level in a metacommunity context. First, (1) dispersal, colonization, and extinction of pathogens, reservoir or vector hosts, and nonreservoir hosts, may be due to stochastic and niche-based processes, thus determining distribution of all species, and then their potential interactions, across local communities (metacommunity structure). Second, (2) anthropogenic processes may drive environmental filtering of hosts, nonhosts, and pathogens. Finally, (3) phylogenetic diversity relative to reservoir or vector host(s), within and between local communities may facilitate pathogen persistence and circulation. Using a metacommunity approach, public heath scientists may better evaluate the factors that predispose certain times and places for the origin and emergence of infectious diseases. The multidisciplinary approach we describe fits within a comprehensive One Health and Ecohealth framework addressing zoonotic infectious disease outbreaks and their relationship to their hosts, other animals, humans, and the environment.

  15. Aboriginal and invasive rats of genus Rattus as hosts of infectious agents.

    PubMed

    Kosoy, Michael; Khlyap, Lyudmila; Cosson, Jean-Francois; Morand, Serge

    2015-01-01

    From the perspective of ecology of zoonotic pathogens, the role of the Old World rats of the genus Rattus is exceptional. The review analyzes specific characteristics of rats that contribute to their important role in hosting pathogens, such as host-pathogen relations and rates of rat-borne infections, taxonomy, ecology, and essential factors. Specifically the review addresses recent taxonomic revisions within the genus Rattus that resulted from applications of new genetic tools in understanding relationships between the Old World rats and the infectious agents that they carry. Among the numerous species within the genus Rattus, only three species-the Norway rat (R. norvegicus), the black or roof rat (R. rattus), and the Asian black rat (R. tanezumi)-have colonized urban ecosystems globally for a historically long period of time. The fourth invasive species, R. exulans, is limited to tropical Asia-Pacific areas. One of the points highlighted in this review is the necessity to discriminate the roles played by rats as pathogen reservoirs within the land of their original diversification and in regions where only one or few rat species were introduced during the recent human history.

  16. Animal Husbandry Practices and Perceptions of Zoonotic Infectious Disease Risks among Livestock Keepers in a Rural Parish of Quito, Ecuador

    PubMed Central

    Lowenstein, Christopher; Waters, William F.; Roess, Amira; Leibler, Jessica H.; Graham, Jay P.

    2016-01-01

    Small-scale livestock production plays an essential role as a source of income and nutrition for households in low- and middle-income countries, yet these practices can also increase risk of zoonotic infectious diseases, especially among young children. To mitigate this risk, there is a need to better understand how livestock producers perceive and manage risks of disease transmission. Twenty semistructured, in-depth interviews were conducted with small-scale livestock producers in a semirural parish of Quito, Ecuador. Interviews explored livestock-raising practices, including animal health-care practices and use of antimicrobials, family members' interactions with livestock and other animals, and perceptions of health risk associated with these practices and activities. Interviews were analyzed for common themes. Awareness of zoonotic disease transmission was widespread, yet few study participants considered raising livestock a significant health risk for themselves or their families. Several study households reported handling and consuming meat or poultry from sick or dead animals and using animal waste as a fertilizer on their crops. Households typically diagnosed and treated their sick animals, occasionally seeking treatment advice from employees of local animal feed stores where medications, including antimicrobials, are available over the counter. Despite a basic understanding of zoonotic disease risk, this study identified several factors, such as the handling and consumption of sick and dead animals and purchasing medications for sick animals over the counter, that potentially increase the risk of zoonotic disease transmission as well as the development and spread of antimicrobial resistance. PMID:27928092

  17. ZOONOTIC PARASITES, OUR ENVIROMENT AND CHANGE

    USDA-ARS?s Scientific Manuscript database

    Environmental changes arising from nature and human activity are affecting patterns for the occurrence and significance of many infectious diseases, including zoonotic parasites, which are those naturally transmitted between domestic animals or wildlife and people. As these changes continue, and pe...

  18. Global biogeography of human infectious diseases.

    PubMed

    Murray, Kris A; Preston, Nicholas; Allen, Toph; Zambrana-Torrelio, Carlos; Hosseini, Parviez R; Daszak, Peter

    2015-10-13

    The distributions of most infectious agents causing disease in humans are poorly resolved or unknown. However, poorly known and unknown agents contribute to the global burden of disease and will underlie many future disease risks. Existing patterns of infectious disease co-occurrence could thus play a critical role in resolving or anticipating current and future disease threats. We analyzed the global occurrence patterns of 187 human infectious diseases across 225 countries and seven epidemiological classes (human-specific, zoonotic, vector-borne, non-vector-borne, bacterial, viral, and parasitic) to show that human infectious diseases exhibit distinct spatial grouping patterns at a global scale. We demonstrate, using outbreaks of Ebola virus as a test case, that this spatial structuring provides an untapped source of prior information that could be used to tighten the focus of a range of health-related research and management activities at early stages or in data-poor settings, including disease surveillance, outbreak responses, or optimizing pathogen discovery. In examining the correlates of these spatial patterns, among a range of geographic, epidemiological, environmental, and social factors, mammalian biodiversity was the strongest predictor of infectious disease co-occurrence overall and for six of the seven disease classes examined, giving rise to a striking congruence between global pathogeographic and "Wallacean" zoogeographic patterns. This clear biogeographic signal suggests that infectious disease assemblages remain fundamentally constrained in their distributions by ecological barriers to dispersal or establishment, despite the homogenizing forces of globalization. Pathogeography thus provides an overarching context in which other factors promoting infectious disease emergence and spread are set.

  19. Nucleic acid in-situ hybridization detection of infectious agents

    NASA Astrophysics Data System (ADS)

    Thompson, Curtis T.

    2000-04-01

    Limitations of traditional culture methods and newer polymerase chain reaction (PCR)-based methods for detection and speciation of infectious agents demonstrate the need for more rapid and better diagnostics. Nucleic acid hybridization is a detection technology that has gained wide acceptance in cancer and prenatal cytogenetics. Using a modification of the nucleic acid hybridization technique known as fluorescence in-situ hybridization, infectious agents can be detected in a variety of specimens with high sensitivity and specificity. The specimens derive from all types of human and animal sources including body fluids, tissue aspirates and biopsy material. Nucleic acid hybridization can be performed in less than one hour. The result can be interpreted either using traditional fluorescence microscopy or automated platforms such as micro arrays. This paper demonstrates proof of concept for nucleic acid hybridization detection of different infectious agents. Interpretation within a cytologic and histologic context is possible with fluorescence microscopic analysis, thereby providing confirmatory evidence of hybridization. With careful probe selection, nucleic acid hybridization promises to be a highly sensitive and specific practical diagnostic alternative to culture, traditional staining methods, immunohistochemistry and complicated nucleic acid amplification tests.

  20. Emerging and Neglected Infectious Diseases: Insights, Advances, and Challenges

    PubMed Central

    2017-01-01

    Infectious diseases are a significant burden on public health and economic stability of societies all over the world. They have for centuries been among the leading causes of death and disability and presented growing challenges to health security and human progress. The threat posed by infectious diseases is further deepened by the continued emergence of new, unrecognized, and old infectious disease epidemics of global impact. Over the past three and half decades at least 30 new infectious agents affecting humans have emerged, most of which are zoonotic and their origins have been shown to correlate significantly with socioeconomic, environmental, and ecological factors. As these factors continue to increase, putting people in increased contact with the disease causing pathogens, there is concern that infectious diseases may continue to present a formidable challenge. Constant awareness and pursuance of effective strategies for controlling infectious diseases and disease emergence thus remain crucial. This review presents current updates on emerging and neglected infectious diseases and highlights the scope, dynamics, and advances in infectious disease management with particular focus on WHO top priority emerging infectious diseases (EIDs) and neglected tropical infectious diseases. PMID:28286767

  1. Emerging and Neglected Infectious Diseases: Insights, Advances, and Challenges.

    PubMed

    Nii-Trebi, Nicholas Israel

    2017-01-01

    Infectious diseases are a significant burden on public health and economic stability of societies all over the world. They have for centuries been among the leading causes of death and disability and presented growing challenges to health security and human progress. The threat posed by infectious diseases is further deepened by the continued emergence of new, unrecognized, and old infectious disease epidemics of global impact. Over the past three and half decades at least 30 new infectious agents affecting humans have emerged, most of which are zoonotic and their origins have been shown to correlate significantly with socioeconomic, environmental, and ecological factors. As these factors continue to increase, putting people in increased contact with the disease causing pathogens, there is concern that infectious diseases may continue to present a formidable challenge. Constant awareness and pursuance of effective strategies for controlling infectious diseases and disease emergence thus remain crucial. This review presents current updates on emerging and neglected infectious diseases and highlights the scope, dynamics, and advances in infectious disease management with particular focus on WHO top priority emerging infectious diseases (EIDs) and neglected tropical infectious diseases.

  2. Meta-Analysis of Infectious Agents and Depression

    PubMed Central

    Wang, Xiao; Zhang, Liang; Lei, Yang; Liu, Xia; Zhou, Xinyu; Liu, Yiyun; Wang, Mingju; Yang, Liu; Zhang, Lujun; Fan, Songhua; Xie, Peng

    2014-01-01

    Depression is a debilitating psychiatric disorder and a growing global public health issue. However, the relationships between microbial infections and depression remains uncertain. A computerized literature search of Medline, ISI Web of Knowledge, PsycINFO, and the Cochrane Library was conducted up to May 2013, and 6362 studies were initially identified for screening. Case-control studies detected biomarker of microorganism were included. Based on inclusion and exclusion criteria, 28 studies were finally included to compare the detection of 16 infectious agents in unipolar depressed patients and healthy controls with a positive incident being defined as a positive biochemical marker of microbial infection. A customized form was used for data extraction. Pooled analysis revealed that the majority of the 16 infectious agents were not significantly associated with depression. However, there were statistically significant associations between depression and infection with Borna disease virus, herpes simplex virus-1, varicella zoster virus, Epstein-Barr virus, and Chlamydophila trachomatis. PMID:24681753

  3. Animal Husbandry Practices and Perceptions of Zoonotic Infectious Disease Risks Among Livestock Keepers in a Rural Parish of Quito, Ecuador.

    PubMed

    Lowenstein, Christopher; Waters, William F; Roess, Amira; Leibler, Jessica H; Graham, Jay P

    2016-12-07

    Small-scale livestock production plays an essential role as a source of income and nutrition for households in low- and middle-income countries, yet these practices can also increase risk of zoonotic infectious diseases, especially among young children. To mitigate this risk, there is a need to better understand how livestock producers perceive and manage risks of disease transmission. Twenty semistructured, in-depth interviews were conducted with small-scale livestock producers in a semirural parish of Quito, Ecuador. Interviews explored livestock-raising practices, including animal health-care practices and use of antimicrobials, family members' interactions with livestock and other animals, and perceptions of health risk associated with these practices and activities. Interviews were analyzed for common themes. Awareness of zoonotic disease transmission was widespread, yet few study participants considered raising livestock a significant health risk for themselves or their families. Several study households reported handling and consuming meat or poultry from sick or dead animals and using animal waste as a fertilizer on their crops. Households typically diagnosed and treated their sick animals, occasionally seeking treatment advice from employees of local animal feed stores where medications, including antimicrobials, are available over the counter. Despite a basic understanding of zoonotic disease risk, this study identified several factors, such as the handling and consumption of sick and dead animals and purchasing medications for sick animals over the counter, that potentially increase the risk of zoonotic disease transmission as well as the development and spread of antimicrobial resistance. © The American Society of Tropical Medicine and Hygiene.

  4. One Health in Practice: A Pilot Project for Integrated Care of Zoonotic Infections in Immunocompromised Children and Their Pets in Chile.

    PubMed

    Peña, A; Abarca, K; Weitzel, T; Gallegos, J; Cerda, J; García, P; López, J

    2016-08-01

    Although pets provide physiological and psychological benefits to their owners, they are a potential source of zoonotic infections, especially for vulnerable individuals such as immunocompromised patients. During 1 year, we therefore performed a pilot project, which included 32 immunocompromised Chilean children and their family pets (35 dogs and 9 cats) with the aim of detecting, treating and preventing zoonotic infections. Children were examined by Infectious Diseases paediatricians and demographical and clinical information related to zoonotic infections were recorded. Pets were examined and sampled by veterinarians, who also administered missing routine vaccines and anti-parasitics. During family visits, all members were informed and educated about zoonoses and a satisfaction survey was performed. Visits also included vector control and indoor residual spraying with pyrethroids. Children were re-examined and re-tested according to the findings of their pets, and all detected zoonotic infections were treated both in children and pets. Physical examination revealed abnormalities in 18 dogs (51.4%) and three cats (33.3%). Twenty-eight (63.6%) of the pets were diagnosed with a zoonotic pathogen, and seven (15.9%) with a facultative pathogen. Most zoonotic agents were isolated from the pet's external ear and intestine. Bacteria with the highest pathogenic potential were Campylobacter jejuni and Brucella canis. In two children and their respective pets, the same zoonotic diseases were diagnosed (toxocariasis and giardiasis). Arthropods serving as potential vectors of zoonotic infections were found in 49% of dogs and 44% of cats. The pilot project was positively evaluated by the participating families. Our pilot project confirmed that pets are reservoir for various zoonotic agents in Chile and that the implementation of an integrated multidisciplinary programme was a valuable tool to prevent, diagnose and treat such zoonotic infections in vulnerable patients such as

  5. Invasion and Persistence of Infectious Agents in Fragmented Host Populations

    PubMed Central

    Jesse, Marieke; Mazzucco, Rupert; Dieckmann, Ulf; Heesterbeek, Hans; Metz, Johan A. J.

    2011-01-01

    One of the important questions in understanding infectious diseases and their prevention and control is how infectious agents can invade and become endemic in a host population. A ubiquitous feature of natural populations is that they are spatially fragmented, resulting in relatively homogeneous local populations inhabiting patches connected by the migration of hosts. Such fragmented population structures are studied extensively with metapopulation models. Being able to define and calculate an indicator for the success of invasion and persistence of an infectious agent is essential for obtaining general qualitative insights into infection dynamics, for the comparison of prevention and control scenarios, and for quantitative insights into specific systems. For homogeneous populations, the basic reproduction ratio plays this role. For metapopulations, defining such an ‘invasion indicator’ is not straightforward. Some indicators have been defined for specific situations, e.g., the household reproduction number . However, these existing indicators often fail to account for host demography and especially host migration. Here we show how to calculate a more broadly applicable indicator for the invasion and persistence of infectious agents in a host metapopulation of equally connected patches, for a wide range of possible epidemiological models. A strong feature of our method is that it explicitly accounts for host demography and host migration. Using a simple compartmental system as an example, we illustrate how can be calculated and expressed in terms of the key determinants of epidemiological dynamics. PMID:21980339

  6. Altered Antibody Profiles against Common Infectious Agents in Chronic Disease

    PubMed Central

    Burbelo, Peter D.; Ching, Kathryn H.; Morse, Caryn G.; Alevizos, Ilias; Bayat, Ahmad; Cohen, Jeffrey I.; Ali, Mir A.; Kapoor, Amit; Browne, Sarah K.; Holland, Steven M.; Kovacs, Joseph A.; Iadarola, Michael J.

    2013-01-01

    Despite the important diagnostic value of evaluating antibody responses to individual human pathogens, antibody profiles against multiple infectious agents have not been used to explore health and disease mainly for technical reasons.  We hypothesized that the interplay between infection and chronic disease might be revealed by profiling antibodies against multiple agents. Here, the levels of antibodies against a panel of 13 common infectious agents were evaluated with the quantitative Luciferase Immunoprecipitation Systems (LIPS) in patients from three disease cohorts including those with pathogenic anti-interferon-γ autoantibodies (IFN-γ AAB), HIV and Sjögren’s syndrome (SjS) to determine if their antibody profiles differed from control subjects.  The IFN-γ AAB patients compared to controls demonstrated statistically higher levels of antibodies against VZV (p=0.0003), EBV (p=0.002), CMV (p=0.003), and C. albicans (p=0.03), but lower antibody levels against poliovirus (p=0.04). Comparison of HIV patients with blood donor controls revealed that the patients had higher levels of antibodies against CMV (p=0.0008), HSV-2 (p=0.0008), EBV (p=0.001), and C. albicans (p=0.01), but showed decreased levels of antibodies against coxsackievirus B4 (p=0.0008), poliovirus (p=0.0005),   and HHV-6B (p=0.002). Lastly, SjS patients had higher levels of anti-EBV antibodies (p=0.03), but lower antibody levels against several enteroviruses including a newly identified picornavirus, HCoSV-A (p=0.004), coxsackievirus B4 (p=0.04), and poliovirus (p=0.02). For the IFN-γ AAB and HIV cohorts, principal component analysis revealed unique antibody clusters that showed the potential to discriminate patients from controls.  The results suggest that antibody profiles against these and likely other common infectious agents may yield insight into the interplay between exposure to infectious agents, dysbiosis, adaptive immunity and disease activity. PMID:24312567

  7. A gastrointestinal anti-infectious biotherapeutic agent: the heat-treated Lactobacillus LB

    PubMed Central

    Liévin-Le Moal, Vanessa

    2016-01-01

    Experimental in vitro and in vivo studies support the hypothesis that heat-treated, lyophilized Lactobacillus acidophilus LB cells and concentrated, neutralized spent culture medium conserve the variety of pharmacological, antimicrobial activities of the live probiotic strain against several infectious agents involved in well-established acute and persistent watery diarrhoea and gastritis. Heat-treated cells and heat-stable secreted molecules trigger multiple strain-specific activities explaining the therapeutic efficacy of L. acidophilus LB. This review discusses the current body of knowledge on the antimicrobial mechanisms of action exerted by L. acidophilus LB demonstrated in in vitro and in vivo experimental studies, and the evidence for the therapeutic efficacy of this anti-infectious biotherapeutic agent proved in randomized clinical trials for the treatment of acute and persistent watery diarrhoea associated with several intestinal infectious diseases in humans. PMID:26770268

  8. The kuru infectious agent is a unique geographic isolate distinct from Creutzfeldt–Jakob disease and scrapie agents

    PubMed Central

    Manuelidis, Laura; Chakrabarty, Trisha; Miyazawa, Kohtaro; Nduom, Nana-Aba; Emmerling, Kaitlin

    2009-01-01

    Human sporadic Creutzfeldt–Jakob disease (sCJD), endemic sheep scrapie, and epidemic bovine spongiform encephalopathy (BSE) are caused by a related group of infectious agents. The new U.K. BSE agent spread to many species, including humans, and clarifying the origin, specificity, virulence, and diversity of these agents is critical, particularly because infected humans do not develop disease for many years. As with viruses, transmissible spongiform encephalopathy (TSE) agents can adapt to new species and become more virulent yet maintain fundamentally unique and stable identities. To make agent differences manifest, one must keep the host genotype constant. Many TSE agents have revealed their independent identities in normal mice. We transmitted primate kuru, a TSE once epidemic in New Guinea, to mice expressing normal and ≈8-fold higher levels of murine prion protein (PrP). High levels of murine PrP did not prevent infection but instead shortened incubation time, as would be expected for a viral receptor. Sporadic CJD and BSE agents and representative scrapie agents were clearly different from kuru in incubation time, brain neuropathology, and lymphoreticular involvement. Many TSE agents can infect monotypic cultured GT1 cells, and unlike sporadic CJD isolates, kuru rapidly and stably infected these cells. The geographic independence of the kuru agent provides additional reasons to explore causal environmental pathogens in these infectious neurodegenerative diseases. PMID:19633190

  9. Infectious Agents in Atherosclerotic Cardiovascular Diseases through Oxidative Stress.

    PubMed

    Di Pietro, Marisa; Filardo, Simone; Falasca, Francesca; Turriziani, Ombretta; Sessa, Rosa

    2017-11-18

    Accumulating evidence demonstrates that vascular oxidative stress is a critical feature of atherosclerotic process, potentially triggered by several infectious agents that are considered as risk co-factors for the atherosclerotic cardiovascular diseases (CVDs). C. pneumoniae has been shown to upregulate multiple enzymatic systems capable of producing reactive oxygen species (ROS) such as NADPH oxidase (NOX) and cyclooxygenase in vascular endothelial cells, NOX and cytochrome c oxidase in macrophages as well as nitric oxide synthase and lipoxygenase in platelets contributing to both early and late stages of atherosclerosis. P. gingivalis seems to be markedly involved in the atherosclerotic process as compared to A. actinomycetemcomitans contributing to LDL oxidation and foam cell formation. Particularly interesting is the evidence describing the NLRP3 inflammasome activation as a new molecular mechanism underlying P. gingivalis -induced oxidative stress and inflammation. Amongst viral agents, immunodeficiency virus-1 and hepatitis C virus seem to have a major role in promoting ROS production, contributing, hence, to the early stages of atherosclerosis including endothelial dysfunction and LDL oxidation. In conclusion, oxidative mechanisms activated by several infectious agents during the atherosclerotic process underlying CVDs are very complex and not well-known, remaining, thus, an attractive target for future research.

  10. Zoonotic viruses associated with illegally imported wildlife products

    USGS Publications Warehouse

    Smith, Kristine M.; Anthony, Simon J.; Switzer, William M.; Epstein, Jonathan H.; Seimon, Tracie; Jia, Hongwei; Sanchez, Maria D.; Huynh, Thanh Thao; Galland, G. Gale; Shapiro, Sheryl E.; Sleeman, Jonathan M.; McAloose, Denise; Stuchin, Margot; Amato, George; Kolokotronis, Sergios-Orestis; Lipkin, W. Ian; Karesh, William B.; Daszak, Peter; Marano, Nina

    2012-01-01

    The global trade in wildlife has historically contributed to the emergence and spread of infectious diseases. The United States is the world's largest importer of wildlife and wildlife products, yet minimal pathogen surveillance has precluded assessment of the health risks posed by this practice. This report details the findings of a pilot project to establish surveillance methodology for zoonotic agents in confiscated wildlife products. Initial findings from samples collected at several international airports identified parts originating from nonhuman primate (NHP) and rodent species, including baboon, chimpanzee, mangabey, guenon, green monkey, cane rat and rat. Pathogen screening identified retroviruses (simian foamy virus) and/or herpesviruses (cytomegalovirus and lymphocryptovirus) in the NHP samples. These results are the first demonstration that illegal bushmeat importation into the United States could act as a conduit for pathogen spread, and suggest that implementation of disease surveillance of the wildlife trade will help facilitate prevention of disease emergence.

  11. Molecular Survey of Bacterial Zoonotic Agents in Bats from the Country of Georgia (Caucasus).

    PubMed

    Bai, Ying; Urushadze, Lela; Osikowicz, Lynn; McKee, Clifton; Kuzmin, Ivan; Kandaurov, Andrei; Babuadze, Giorgi; Natradze, Ioseb; Imnadze, Paata; Kosoy, Michael

    2017-01-01

    Bats are important reservoirs for many zoonotic pathogens. However, no surveys of bacterial pathogens in bats have been performed in the Caucasus region. To understand the occurrence and distribution of bacterial infections in these mammals, 218 bats belonging to eight species collected from four regions of Georgia were examined for Bartonella, Brucella, Leptospira, and Yersinia using molecular approaches. Bartonella DNA was detected in 77 (35%) bats from all eight species and was distributed in all four regions. The prevalence ranged 6-50% per bat species. The Bartonella DNA represented 25 unique genetic variants that clustered into 21 lineages. Brucella DNA was detected in two Miniopterus schreibersii bats and in two Myotis blythii bats, all of which were from Imereti (west-central region). Leptospira DNA was detected in 25 (13%) bats that included four M. schreibersii bats and 21 M. blythii bats collected from two regions. The Leptospira sequences represented five genetic variants with one of them being closely related to the zoonotic pathogen L. interrogans (98.6% genetic identity). No Yersinia DNA was detected in the bats. Mixed infections were observed in several cases. One M. blythii bat and one M. schreibersii bat were co-infected with Bartonella, Brucella, and Leptospira; one M. blythii bat and one M. schreibersii bat were co-infected with Bartonella and Brucella; 15 M. blythii bats and three M. schreibersii bats were co-infected with Bartonella and Leptospira. Our results suggest that bats in Georgia are exposed to multiple bacterial infections. Further studies are needed to evaluate pathogenicity of these agents to bats and their zoonotic potential.

  12. Infectious Agents in Atherosclerotic Cardiovascular Diseases through Oxidative Stress

    PubMed Central

    Di Pietro, Marisa; Filardo, Simone; Falasca, Francesca; Turriziani, Ombretta; Sessa, Rosa

    2017-01-01

    Accumulating evidence demonstrates that vascular oxidative stress is a critical feature of atherosclerotic process, potentially triggered by several infectious agents that are considered as risk co-factors for the atherosclerotic cardiovascular diseases (CVDs). C. pneumoniae has been shown to upregulate multiple enzymatic systems capable of producing reactive oxygen species (ROS) such as NADPH oxidase (NOX) and cyclooxygenase in vascular endothelial cells, NOX and cytochrome c oxidase in macrophages as well as nitric oxide synthase and lipoxygenase in platelets contributing to both early and late stages of atherosclerosis. P. gingivalis seems to be markedly involved in the atherosclerotic process as compared to A. actinomycetemcomitans contributing to LDL oxidation and foam cell formation. Particularly interesting is the evidence describing the NLRP3 inflammasome activation as a new molecular mechanism underlying P. gingivalis-induced oxidative stress and inflammation. Amongst viral agents, immunodeficiency virus-1 and hepatitis C virus seem to have a major role in promoting ROS production, contributing, hence, to the early stages of atherosclerosis including endothelial dysfunction and LDL oxidation. In conclusion, oxidative mechanisms activated by several infectious agents during the atherosclerotic process underlying CVDs are very complex and not well-known, remaining, thus, an attractive target for future research. PMID:29156574

  13. Particulate delivery systems for vaccination against bioterrorism agents and emerging infectious pathogens

    PubMed Central

    Fan, Yuchen; Moon, James J.

    2016-01-01

    Bioterrorism agents that can be easily transmitted with high mortality rates and cause debilitating diseases pose major threats to national security and public health. The recent Ebola virus outbreak in West Africa and ongoing Zika virus outbreak in Brazil, now spreading throughout Latin America, are case examples of emerging infectious pathogens that have incited widespread fear and economic and social disruption on a global scale. Prophylactic vaccines would provide effective countermeasures against infectious pathogens and biological warfare agents. However, traditional approaches relying on attenuated or inactivated vaccines have been hampered by their unacceptable levels of reactogenicity and safety issues, whereas subunit antigen-based vaccines suffer from suboptimal immunogenicity and efficacy. In contrast, particulate vaccine delivery systems offer key advantages, including efficient and stable delivery of subunit antigens, co-delivery of adjuvant molecules to bolster immune responses, low reactogenicity due to the use of biocompatible biomaterials, and robust efficiency to elicit humoral and cellular immunity in systemic and mucosal tissues. Thus, vaccine nanoparticles and microparticles are promising platforms for clinical development of biodefense vaccines. In this review, we summarize the current status of research efforts to develop particulate vaccine delivery systems against bioterrorism agents and emerging infectious pathogens. PMID:27038091

  14. Multiple infections of rodents with zoonotic pathogens in Austria.

    PubMed

    Schmidt, Sabrina; Essbauer, Sandra S; Mayer-Scholl, Anne; Poppert, Sven; Schmidt-Chanasit, Jonas; Klempa, Boris; Henning, Klaus; Schares, Gereon; Groschup, Martin H; Spitzenberger, Friederike; Richter, Dania; Heckel, Gerald; Ulrich, Rainer G

    2014-07-01

    Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host-pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans.

  15. Multiple Infections of Rodents with Zoonotic Pathogens in Austria

    PubMed Central

    Schmidt, Sabrina; Essbauer, Sandra S.; Mayer-Scholl, Anne; Poppert, Sven; Schmidt-Chanasit, Jonas; Klempa, Boris; Henning, Klaus; Schares, Gereon; Groschup, Martin H.; Spitzenberger, Friederike; Richter, Dania; Heckel, Gerald

    2014-01-01

    Abstract Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host–pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans. PMID

  16. Zoonotic Viruses Associated with Illegally Imported Wildlife Products

    PubMed Central

    Switzer, William M.; Epstein, Jonathan H.; Seimon, Tracie; Jia, Hongwei; Sanchez, Maria D.; Huynh, Thanh Thao; Galland, G. Gale; Shapiro, Sheryl E.; Sleeman, Jonathan M.; McAloose, Denise; Stuchin, Margot; Amato, George; Kolokotronis, Sergios-Orestis; Lipkin, W. Ian; Karesh, William B.; Daszak, Peter; Marano, Nina

    2012-01-01

    The global trade in wildlife has historically contributed to the emergence and spread of infectious diseases. The United States is the world's largest importer of wildlife and wildlife products, yet minimal pathogen surveillance has precluded assessment of the health risks posed by this practice. This report details the findings of a pilot project to establish surveillance methodology for zoonotic agents in confiscated wildlife products. Initial findings from samples collected at several international airports identified parts originating from nonhuman primate (NHP) and rodent species, including baboon, chimpanzee, mangabey, guenon, green monkey, cane rat and rat. Pathogen screening identified retroviruses (simian foamy virus) and/or herpesviruses (cytomegalovirus and lymphocryptovirus) in the NHP samples. These results are the first demonstration that illegal bushmeat importation into the United States could act as a conduit for pathogen spread, and suggest that implementation of disease surveillance of the wildlife trade will help facilitate prevention of disease emergence. PMID:22253731

  17. The human immune system's response to carcinogenic and other infectious agents transmitted by mosquito vectors.

    PubMed

    Johansson, Olle; Ward, Martin

    2017-01-01

    It has been hypothesised that mosquitoes [Diptera: Culicidae] may play more of a role in certain cancers than is currently appreciated. Research links 33 infectious agents to cancer, 27 of which have a presence in mosquitoes, and that, in addition, mosquito saliva downregulates the immune system. The objective of this paper is to review the literature on the immune system and cancer-causing infectious agents, particularly those present in mosquitoes, with a view to establishing whether such infectious agents can, in the long run, defeat the immune system or be defeated by it. Many of the viruses, bacteria and parasites recognised by the International Agency for Research on Cancer (IARC) as carcinogenic and suspected by others as being involved in cancer have evolved numerous complex ways of avoiding, suppressing or altering the immune system's responses. These features, coupled with the multiplicity and variety of serious infectious agents carried by some species of mosquitoes and the adverse effects on the immune system of mosquito saliva, suggest that post-mosquito bite the immune system is likely to be overwhelmed. In such a situation, immunisation strategies offer little chance of cancer prevention, unless a single or limited number of critical infectious agents can be isolated from the 'mosquito' cocktail. If that proves to be impossible cancer prevention will, therefore, if the hypothesis proves to be correct, rest on the twin strategies of environmentally controlling the mosquito population and humans avoiding being bitten. The latter strategy will involve determining the factors that demark those being bitten from those that are not.

  18. Bushmeat Hunting, Deforestation, and Prediction of Zoonotic Disease

    PubMed Central

    Daszak, Peter; Kilpatrick, A. Marm; Burke, Donald S.

    2005-01-01

    Understanding the emergence of new zoonotic agents requires knowledge of pathogen biodiversity in wildlife, human-wildlife interactions, anthropogenic pressures on wildlife populations, and changes in society and human behavior. We discuss an interdisciplinary approach combining virology, wildlife biology, disease ecology, and anthropology that enables better understanding of how deforestation and associated hunting leads to the emergence of novel zoonotic pathogens. PMID:16485465

  19. Molecular Survey of Bacterial Zoonotic Agents in Bats from the Country of Georgia (Caucasus)

    PubMed Central

    Osikowicz, Lynn; McKee, Clifton; Kuzmin, Ivan; Kandaurov, Andrei; Babuadze, Giorgi; Natradze, Ioseb; Imnadze, Paata; Kosoy, Michael

    2017-01-01

    Bats are important reservoirs for many zoonotic pathogens. However, no surveys of bacterial pathogens in bats have been performed in the Caucasus region. To understand the occurrence and distribution of bacterial infections in these mammals, 218 bats belonging to eight species collected from four regions of Georgia were examined for Bartonella, Brucella, Leptospira, and Yersinia using molecular approaches. Bartonella DNA was detected in 77 (35%) bats from all eight species and was distributed in all four regions. The prevalence ranged 6–50% per bat species. The Bartonella DNA represented 25 unique genetic variants that clustered into 21 lineages. Brucella DNA was detected in two Miniopterus schreibersii bats and in two Myotis blythii bats, all of which were from Imereti (west-central region). Leptospira DNA was detected in 25 (13%) bats that included four M. schreibersii bats and 21 M. blythii bats collected from two regions. The Leptospira sequences represented five genetic variants with one of them being closely related to the zoonotic pathogen L. interrogans (98.6% genetic identity). No Yersinia DNA was detected in the bats. Mixed infections were observed in several cases. One M. blythii bat and one M. schreibersii bat were co-infected with Bartonella, Brucella, and Leptospira; one M. blythii bat and one M. schreibersii bat were co-infected with Bartonella and Brucella; 15 M. blythii bats and three M. schreibersii bats were co-infected with Bartonella and Leptospira. Our results suggest that bats in Georgia are exposed to multiple bacterial infections. Further studies are needed to evaluate pathogenicity of these agents to bats and their zoonotic potential. PMID:28129398

  20. Predicting the characteristics of the aetiological agent for Kawasaki disease from other paediatric infectious diseases in Japan.

    PubMed

    Nagao, Y; Urabe, C; Nakamura, H; Hatano, N

    2016-02-01

    Although Kawasaki disease (KD), which was first reported in the 1960s, is assumed to be infectious, its aetiological agent(s) remains unknown. We compared the geographical distribution of the force of infection and the super-annual periodicity of KD and seven other paediatric infectious diseases in Japan. The geographical distribution of the force of infection, which was estimated as the inverse of the mean patient age, was similar in KD and other paediatric viral infections. This similarity was due to the fact that the force of infection was determined largely by the total fertility rate. This finding suggests that KD shares a transmission route, i.e. sibling-to-sibling infection, with other paediatric infections. The super-annual periodicity, which is positively associated with the sum of an infectious disease's incubation period and infectious period, was much longer for KD and exanthema subitum than other paediatric infectious diseases. The virus for exanthema subitum is known to persist across the host's lifespan, which suggests that the aetiological agent for KD may also be capable of persistent infection. Taken together, these findings suggest that the aetiological agent for KD is transmitted through close contact and persists asymptomatically in most hosts.

  1. IDENTIFICATION, ISOLATION AND CHARACTERIZATION OF THE INFECTIOUS HEPATITIS (HEPATITIS A) AGENT

    EPA Science Inventory

    The research program has the overall objective of combining the techniques of electron microscopy, ultracentrifugation, column chromatography, tissue culture and serology to identify, isolate and characterize the etiologic agent of infectious hepatitis, to propagate it in cell cu...

  2. Host and viral traits predict zoonotic spillover from mammals.

    PubMed

    Olival, Kevin J; Hosseini, Parviez R; Zambrana-Torrelio, Carlos; Ross, Noam; Bogich, Tiffany L; Daszak, Peter

    2017-06-29

    The majority of human emerging infectious diseases are zoonotic, with viruses that originate in wild mammals of particular concern (for example, HIV, Ebola and SARS). Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs. However, few analytical tools exist to identify which host species are likely to harbour the next human virus, or which viruses can cross species boundaries. Here we conduct a comprehensive analysis of mammalian host-virus relationships and show that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy and human population within a species range-which may reflect human-wildlife contact. We demonstrate that bats harbour a significantly higher proportion of zoonotic viruses than all other mammalian orders. We also identify the taxa and geographic regions with the largest estimated number of 'missing viruses' and 'missing zoonoses' and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people.

  3. The baseline characteristics and interim analyses of the high-risk sentinel cohort of the Vietnam Initiative on Zoonotic InfectiONS (VIZIONS)

    PubMed Central

    Carrique-Mas, Juan J.; Tue, Ngo T.; Bryant, Juliet E.; Saylors, Karen; Cuong, Nguyen V.; Hoa, Ngo T.; An, Nguyen N.; Hien, Vo B.; Lao, Pham V.; Tu, Nguyen C.; Chuyen, Nguyen K.; Chuc, Nguyen T.K.; Tan, Dinh V.; Duong, Hoang Van V.; Toan, Tran K.; Chi, Nguyen T.Y.; Campbell, James; Rabaa, Maia A.; Nadjm, Behzad; Woolhouse, Mark; Wertheim, Heiman; Thwaites, Guy; Baker, Stephen

    2015-01-01

    The Vietnam Initiative for Zoonotic Infections (VIZIONS) includes community-based ‘high-risk sentinel cohort’ (HRSC) studies investigating individuals at risk of zoonotic infection due to occupational or residential exposure to animals. A total of 852 HRSC members were recruited between March 2013 and August 2014 from three provinces (Ha Noi, Dak Lak, and Dong Thap). The most numerous group (72.8%) corresponded to individuals living on farms, followed by slaughterers (16.3%) and animal health workers (8.5%). Nasal/pharyngeal and rectal swabs were collected from HRSC members at recruitment and after notifying illness. Exposure to exotic animals (including wild pigs, porcupine, monkey, civet, bamboo rat and bat) was highest for the Dak Lak cohort (53.7%), followed by Ha Noi (13.7%) and Dong Thap (4.0%). A total of 26.8% of individuals reported consumption of raw blood over the previous year; 33.6% slaughterers reported no use of protective equipment at work. Over 686 person-years of observation, 213 episodes of suspect infectious disease were notified, equivalent of 0.35 reports per person-year. Responsive samples were collected from animals in the farm cohort. There was noticeable time and space clustering of disease episodes suggesting that the VIZIONS set up is also suitable for the formal epidemiological investigation of disease outbreaks. PMID:26659094

  4. CONTEMPORARY PERSPECTIVES ON INFECTIOUS DISEASE AGENTS IN SEWAGE SLUDGE AND MANURE

    EPA Science Inventory

    The USEPA and the USDA convened a three-day Workshop on Emerging Infectious Disease Agents and Issues Associated with Sewage Sludge, Animal Manures, and Other Organic By-Products on June 4-6, 2001 in Cincinnati, Ohio. The purpose of the workshop was to review and discuss the effe...

  5. Host and viral traits predict zoonotic spillover from mammals

    PubMed Central

    Olival, Kevin J.; Hosseini, Parviez R.; Zambrana-Torrelio, Carlos; Ross, Noam; Bogich, Tiffany L.; Daszak, Peter

    2017-01-01

    The majority of human emerging infectious diseases (EIDs) are zoonotic, with viruses originating in wild mammals of particular concern (e.g. HIV, Ebola, SARS)1–3. Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs4. However, few analytical tools exist to identify which host species likely harbor the next human virus, or which viruses can cross species boundaries5–7. Here we conduct the most comprehensive analysis yet of mammalian host-virus relationships and show that both the total number of viruses that infect a given species, and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy, and human population within a species range – which may reflect human-wildlife contact. We demonstrate for the first time that bats harbor a significantly higher proportion of zoonotic viruses than all other mammalian orders. We identify the taxa and geographic regions with the largest estimated number of ‘missing viruses’ and ‘missing zoonoses’ and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people. PMID:28636590

  6. Bovine origin Staphylococcus aureus: A new zoonotic agent?

    PubMed

    Rao, Relangi Tulasi; Jayakumar, Kannan; Kumar, Pavitra

    2017-10-01

    The study aimed to assess the nature of animal origin Staphylococcus aureus strains. The study has zoonotic importance and aimed to compare virulence between two different hosts, i.e., bovine and ovine origin. Conventional polymerase chain reaction-based methods used for the characterization of S. aureus strains and chick embryo model employed for the assessment of virulence capacity of strains. All statistical tests carried on R program, version 3.0.4. After initial screening and molecular characterization of the prevalence of S. aureus found to be 42.62% in bovine origin samples and 28.35% among ovine origin samples. Meanwhile, the methicillin-resistant S. aureus prevalence is found to be meager in both the hosts. Among the samples, only 6.8% isolates tested positive for methicillin resistance. The biofilm formation quantified and the variation compared among the host. A Welch two-sample t -test found to be statistically significant, t=2.3179, df=28.103, and p=0.02795. Chicken embryo model found effective to test the pathogenicity of the strains. The study helped to conclude healthy bovines can act as S. aureus reservoirs. Bovine origin S. aureus strains are more virulent than ovine origin strains. Bovine origin strains have high probability to become zoonotic pathogen. Further, gene knock out studies may be conducted to conclude zoonocity of the bovine origin strains.

  7. Bovine origin Staphylococcus aureus: A new zoonotic agent?

    PubMed Central

    Rao, Relangi Tulasi; Jayakumar, Kannan; Kumar, Pavitra

    2017-01-01

    Aim: The study aimed to assess the nature of animal origin Staphylococcus aureus strains. The study has zoonotic importance and aimed to compare virulence between two different hosts, i.e., bovine and ovine origin. Materials and Methods: Conventional polymerase chain reaction-based methods used for the characterization of S. aureus strains and chick embryo model employed for the assessment of virulence capacity of strains. All statistical tests carried on R program, version 3.0.4. Results: After initial screening and molecular characterization of the prevalence of S. aureus found to be 42.62% in bovine origin samples and 28.35% among ovine origin samples. Meanwhile, the methicillin-resistant S. aureus prevalence is found to be meager in both the hosts. Among the samples, only 6.8% isolates tested positive for methicillin resistance. The biofilm formation quantified and the variation compared among the host. A Welch two-sample t-test found to be statistically significant, t=2.3179, df=28.103, and p=0.02795. Chicken embryo model found effective to test the pathogenicity of the strains. Conclusion: The study helped to conclude healthy bovines can act as S. aureus reservoirs. Bovine origin S. aureus strains are more virulent than ovine origin strains. Bovine origin strains have high probability to become zoonotic pathogen. Further, gene knock out studies may be conducted to conclude zoonocity of the bovine origin strains. PMID:29184376

  8. Gryphon: A Hybrid Agent-Based Modeling and Simulation Platform for Infectious Diseases

    NASA Astrophysics Data System (ADS)

    Yu, Bin; Wang, Jijun; McGowan, Michael; Vaidyanathan, Ganesh; Younger, Kristofer

    In this paper we present Gryphon, a hybrid agent-based stochastic modeling and simulation platform developed for characterizing the geographic spread of infectious diseases and the effects of interventions. We study both local and non-local transmission dynamics of stochastic simulations based on the published parameters and data for SARS. The results suggest that the expected numbers of infections and the timeline of control strategies predicted by our stochastic model are in reasonably good agreement with previous studies. These preliminary results indicate that Gryphon is able to characterize other future infectious diseases and identify endangered regions in advance.

  9. Screening and Monitoring for Infectious Complications When Immunosuppressive Agents Are Studied in the Treatment of Autoimmune Disorders.

    PubMed

    Loechelt, Brett J; Green, Michael; Gottlieb, Peter A; Blumberg, Emily; Weinberg, Adriana; Quinlan, Scott; Baden, Lindsey R

    2015-09-01

    Significant progress has been made in the development, investigation, and clinical application of immunosuppressive agents to treat a variety of autoimmune disorders. The expansion of clinical applications of these new agents requires the performance of large multicenter clinical trials. These large clinical trials are particularly important as one considers these agents for the treatment of type 1 diabetes, which although autoimmune in its pathogenesis, is not classically treated as an autoimmune disorder. Although these agents hold promise for amelioration or cure of this disease, they have the potential to facilitate infectious complications. There are limited data regarding the prospective assessment of infectious risks with these agents in trials of this nature. Pediatric subjects may be at greater risk due to the higher likelihood of primary infection. A subgroup of experts associated with TrialNet (a National Institutes of Health [NIH]-funded Type 1 diabetes mellitus research network) with expertise in infectious diseases, immunology, and diagnostics developed an approach for screening and monitoring of immunosuppression-associated infections for prospective use in clinical trials. The goals of these recommendations are to provide a structured approach to monitor for infections, to identify specific laboratory testing and surveillance methods, and to consider therapies for treatment of these potential complications. Prospective evaluations of these infectious risks allow for greater scientific rigor in the evaluation of risk, which must be balanced with the potential benefits of these therapies. Our experience supports an important role for investigators with expertise in infections in immunocompromised individuals in protocol development of immunosuppressive trials in type 1diabetes and potentially other autoimmune diseases.

  10. Zoonotic helminth infections with particular emphasis on fasciolosis and other trematodiases

    PubMed Central

    Robinson, Mark W.; Dalton, John P.

    2009-01-01

    Zoonotic infections are among the most common on earth and are responsible for >60 per cent of all human infectious diseases. Some of the most important and well-known human zoonoses are caused by worm or helminth parasites, including species of nematodes (trichinellosis), cestodes (cysticercosis, echinococcosis) and trematodes (schistosomiasis). However, along with social, epidemiological and environmental changes, together with improvements in our ability to diagnose helminth infections, several neglected parasite species are now fast-becoming recognized as important zoonotic diseases of humans, e.g. anasakiasis, several fish-borne trematodiasis and fasciolosis. In the present review, we discuss the current disease status of these primary helminth zoonotic infections with particular emphasis on their diagnosis and control. Advances in molecular biology, proteomics and the release of helminth genome-sequencing project data are revolutionizing parasitology research. The use of these powerful experimental approaches, and their potential benefits to helminth biology are also discussed in relation to the future control of helminth infections of animals and humans. PMID:19687044

  11. Serosurveillance of infectious agents in equines of the Central Valley of Costa Rica.

    PubMed

    Jiménez, D; Romero-Zuñiga, J J; Dolz, G

    2014-01-01

    Blood samples from 181 equines from the Central Valley of Costa Rica were collected in the year 2012 to determine the presence of antibodies against selected infectious agents in horses and to determine the risk factors associated with these agents. The presence of antibodies against Equine Infectious Anemia Virus (EIAV), Equine Herpes Virus 1 and 4 (EHV-1 and EHV-4), West Nile Virus (WNV), Influenza A Virus (IAV), Equine Viral Arteritis Virus (EVAV), Babesia caballi, Theileria equi, Neospora caninum and Chlamydia abortus was determined using commercial assays, and risk factors associated with seropositivity to the different infectious agents was established. The most seroprevalent agent detected was EHV-4 (96.7%), followed by WNV (44.2%), and IAV (41.8%). Horses >3 years, used for work or sports, and with access to pastures, had significantly increased probability to be seropositive to WNV, whereas horses used for breeding and recreational purposes, being stabled, and without access to pastures, had significantly greater probability to be seropositive to IAV. Seroprevalence to B. caballi (19.9%) was lower than to T. equi (38.1%). For B. caballi, access to pastures was determined as a risk factor, whereas being older than 3 years was established as a risk factor for T. equi. Low seroprevalences were determined for EHV-1 (5.0%), EVAV (5.0%), C. abortus (4.8%), and N. caninum (4.4%). Mares having history of abortion were more likely to be seropositive to EHV-1, whereas horses >3 years, used for work and sports, and mares having multiple parturitions, were more likely to be seropositive to N. caninum. None of the horses were seropositive to EIAV. Earlier, only diseases caused by EIAV, WNV and piroplasmosis were reported in Costa Rica. The present study however, determined the presence of carriers for EHV-1, EHV-4, and EIAV.

  12. Serosurveillance of infectious agents in equines of the Central Valley of Costa Rica

    PubMed Central

    Jiménez, D.; Romero-Zuñiga, J.J.; Dolz, G.

    2014-01-01

    Blood samples from 181 equines from the Central Valley of Costa Rica were collected in the year 2012 to determine the presence of antibodies against selected infectious agents in horses and to determine the risk factors associated with these agents. The presence of antibodies against Equine Infectious Anemia Virus (EIAV), Equine Herpes Virus 1 and 4 (EHV-1 and EHV-4), West Nile Virus (WNV), Influenza A Virus (IAV), Equine Viral Arteritis Virus (EVAV), Babesia caballi, Theileria equi, Neospora caninum and Chlamydia abortus was determined using commercial assays, and risk factors associated with seropositivity to the different infectious agents was established. The most seroprevalent agent detected was EHV-4 (96.7%), followed by WNV (44.2%), and IAV (41.8%). Horses >3 years, used for work or sports, and with access to pastures, had significantly increased probability to be seropositive to WNV, whereas horses used for breeding and recreational purposes, being stabled, and without access to pastures, had significantly greater probability to be seropositive to IAV. Seroprevalence to B. caballi (19.9%) was lower than to T. equi (38.1%). For B. caballi, access to pastures was determined as a risk factor, whereas being older than 3 years was established as a risk factor for T. equi. Low seroprevalences were determined for EHV-1 (5.0%), EVAV (5.0%), C. abortus (4.8%), and N. caninum (4.4%). Mares having history of abortion were more likely to be seropositive to EHV-1, whereas horses >3 years, used for work and sports, and mares having multiple parturitions, were more likely to be seropositive to N. caninum. None of the horses were seropositive to EIAV. Earlier, only diseases caused by EIAV, WNV and piroplasmosis were reported in Costa Rica. The present study however, determined the presence of carriers for EHV-1, EHV-4, and EIAV. PMID:26623349

  13. An assessment of false positive rates for malaria rapid diagnostic tests caused by non-Plasmodium infectious agents and immunological factors.

    PubMed

    Gatton, Michelle L; Ciketic, Sadmir; Barnwell, John W; Cheng, Qin; Chiodini, Peter L; Incardona, Sandra; Bell, David; Cunningham, Jane; González, Iveth J

    2018-01-01

    Malaria rapid diagnostic tests (RDTs) can produce false positive (FP) results in patients with human African trypanosomiasis and rheumatoid factor (RF), but specificity against other infectious agents and immunological factors is largely unknown. Low diagnostic specificity caused by cross-reactivity may lead to over-estimates of the number of malaria cases and over-use of antimalarial drugs, at the cost of not diagnosing and treating the true underlying condition. Data from the WHO Malaria RDT Product Testing Programme was analysed to assess FP rates of 221 RDTs against four infectious agents (Chagas, dengue, Leishmaniasis and Schistosomiasis) and four immunological factors (anti-nuclear antibody, human anti-mouse antibody (HAMA), RF and rapid plasma regain). Only RDTs with a FP rate against clean negative samples less than 10% were included. Paired t-tests were used to compare product-specific FP rates on clean negative samples and samples containing non-Plasmodium infectious agents and immunological factors. Forty (18%) RDTs showed no FP results against any tested infectious agent or immunological factor. In the remaining RDTs significant and clinically relevant increases in FP rates were observed for samples containing HAMA and RF (P<0.001). There were significant correlations between product-matched FP rates for RF and HAMA on all RDT test bands (P<0.001), and FP rates for each infectious agent and immunological factor were also correlated between test bands of combination RDTs (P≤0.002). False positive results against non-Plasmodium infectious agents and immunological factors does not appear to be a universal property of malaria RDTs. However, since many malaria RDTs have elevated FP rates against HAMA and RF positive samples practitioners may need to consider the possibility of false positive results for malaria in patients with conditions that stimulate HAMA or RF.

  14. Modelling risk aversion to support decision-making for controlling zoonotic livestock diseases.

    PubMed

    van Asseldonk, M A P M; Bergevoet, R H M; Ge, L

    2013-12-01

    Zoonotic infectious livestock diseases are becoming a significant burden for both animal and human health and are rapidly gaining the attention of decision-makers who manage public health programmes. If control decisions have only monetary components, governments are generally regarded as being risk-neutral and the intervention strategy with the highest expected benefit (lowest expected net costs) should be preferred. However, preferences will differ and alternative intervention plans will prevail if (human) life and death outcomes are involved. A rational decision framework must therefore consider risk aversion in the decision-maker and controversial values related to public health. In the present study, risk aversion and its impact on both the utility for the monetary component and the utility for the non-monetary component is shown to be an important element when dealing with emerging zoonotic infectious livestock diseases and should not be ignored in the understanding and support of decision-making. The decision framework was applied to several control strategies for the reduction of human cases of brucellosis (Brucella melitensis) originating from sheep in Turkey.

  15. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special?

    PubMed Central

    Luis, Angela D.; Hayman, David T. S.; O'Shea, Thomas J.; Cryan, Paul M.; Gilbert, Amy T.; Pulliam, Juliet R. C.; Mills, James N.; Timonin, Mary E.; Willis, Craig K. R.; Cunningham, Andrew A.; Fooks, Anthony R.; Rupprecht, Charles E.; Wood, James L. N.; Webb, Colleen T.

    2013-01-01

    Bats are the natural reservoirs of a number of high-impact viral zoonoses. We present a quantitative analysis to address the hypothesis that bats are unique in their propensity to host zoonotic viruses based on a comparison with rodents, another important host order. We found that bats indeed host more zoonotic viruses per species than rodents, and we identified life-history and ecological factors that promote zoonotic viral richness. More zoonotic viruses are hosted by species whose distributions overlap with a greater number of other species in the same taxonomic order (sympatry). Specifically in bats, there was evidence for increased zoonotic viral richness in species with smaller litters (one young), greater longevity and more litters per year. Furthermore, our results point to a new hypothesis to explain in part why bats host more zoonotic viruses per species: the stronger effect of sympatry in bats and more viruses shared between bat species suggests that interspecific transmission is more prevalent among bats than among rodents. Although bats host more zoonotic viruses per species, the total number of zoonotic viruses identified in bats (61) was lower than in rodents (68), a result of there being approximately twice the number of rodent species as bat species. Therefore, rodents should still be a serious concern as reservoirs of emerging viruses. These findings shed light on disease emergence and perpetuation mechanisms and may help lead to a predictive framework for identifying future emerging infectious virus reservoirs. PMID:23378666

  16. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special?

    USGS Publications Warehouse

    Luis, Angela D.; Hayman, David T.S.; O'Shea, Thomas J.; Cryan, Paul M.; Gilbert, Amy T.; Pulliam, Juliet R.C.; Mills, James N.; Timonin, Mary E.; Willis, Craig K.R.; Cunningham, Andrew A.; Fooks, Anthony R.; Rupprecht, Charles E.; Wood, James L.N.; Webb, Colleen T.

    2013-01-01

    Bats are the natural reservoirs of a number of high-impact viral zoonoses. We present a quantitative analysis to address the hypothesis that bats are unique in their propensity to host zoonotic viruses based on a comparison with rodents, another important host order. We found that bats indeed host more zoonotic viruses per species than rodents, and we identified life-history and ecological factors that promote zoonotic viral richness. More zoonotic viruses are hosted by species whose distributions overlap with a greater number of other species in the same taxonomic order (sympatry). Specifically in bats, there was evidence for increased zoonotic viral richness in species with smaller litters (one young), greater longevity and more litters per year. Furthermore, our results point to a new hypothesis to explain in part why bats host more zoonotic viruses per species: the stronger effect of sympatry in bats and more viruses shared between bat species suggests that interspecific transmission is more prevalent among bats than among rodents. Although bats host more zoonotic viruses per species, the total number of zoonotic viruses identified in bats (61) was lower than in rodents (68), a result of there being approximately twice the number of rodent species as bat species. Therefore, rodents should still be a serious concern as reservoirs of emerging viruses. These findings shed light on disease emergence and perpetuation mechanisms and may help lead to a predictive framework for identifying future emerging infectious virus reservoirs.

  17. Investigation of zoonotic infections among Auckland Zoo staff: 1991-2010.

    PubMed

    Forsyth, M B; Morris, A J; Sinclair, D A; Pritchard, C P

    2012-12-01

    Investigation was undertaken to assess the occurrence of zoonotic infection among staff at Auckland Zoological Park, New Zealand, in 1991, 2002 and 2010. Serial cross-sectional health surveys in 1991, 2002 and 2010 comprising a health questionnaire, and serological, immunological and microbiological analysis for a range of potential zoonotic infections were performed. Laboratory results for zoo animals were also reviewed for 2004-2010 to assess the occurrence of potential zoonotic infections. Veterinary clinic, animal handler, grounds, maintenance and administrative staff participated in the surveys, with 49, 42 and 46 participants in the 1991, 2002 and 2010 surveys, respectively (29% of total zoo staff in 2010). A small number of staff reported work-related infections, including erysipelas (1), giardiasis (1) and campylobacteriosis (1). The seroprevalence of antibodies to hepatitis A virus and Toxoplasma gondii closely reflected those in the Auckland community. No carriage of hepatitis B virus (HBV) was detected, and most of those with anti-HBV antibodies had been vaccinated. Few staff had serological evidence of past leptospiral infection. Three veterinary clinic staff had raised Chlamydophila psittaci antibodies, all < 1 : 160 indicating past exposure. Two staff (in 1991) had asymptomatic carriage of Giardia lamblia and one person (in 2010) had a dermatophyte infection. After 1991, positive tests indicating exposure to Mycobacterium tuberculosis were < 10%, comparable to the general New Zealand population. Zoo animals had infections with potential zoonotic agents, including G. lamblia, Salmonella spp., Campylobacter spp. and T. gondii, although the occurrence was low. Zoonotic agents pose an occupational risk to zoo workers. While there was evidence of some zoonotic transmission at Auckland Zoo, this was uncommon and risks appear to be adequately managed under current policies and procedures. Nevertheless, ongoing assessment of risk factors is needed as

  18. Screening and Monitoring for Infectious Complications When Immunosuppressive Agents Are Studied in the Treatment of Autoimmune Disorders

    PubMed Central

    Loechelt, Brett J.; Green, Michael; Gottlieb, Peter A.; Blumberg, Emily; Weinberg, Adriana; Quinlan, Scott; Baden, Lindsey R.

    2015-01-01

    Significant progress has been made in the development, investigation, and clinical application of immunosuppressive agents to treat a variety of autoimmune disorders. The expansion of clinical applications of these new agents requires the performance of large multicenter clinical trials. These large clinical trials are particularly important as one considers these agents for the treatment of type 1 diabetes, which although autoimmune in its pathogenesis, is not classically treated as an autoimmune disorder. Although these agents hold promise for amelioration or cure of this disease, they have the potential to facilitate infectious complications. There are limited data regarding the prospective assessment of infectious risks with these agents in trials of this nature. Pediatric subjects may be at greater risk due to the higher likelihood of primary infection. A subgroup of experts associated with TrialNet (a National Institutes of Health [NIH]-funded Type 1 diabetes mellitus research network) with expertise in infectious diseases, immunology, and diagnostics developed an approach for screening and monitoring of immunosuppression-associated infections for prospective use in clinical trials. The goals of these recommendations are to provide a structured approach to monitor for infections, to identify specific laboratory testing and surveillance methods, and to consider therapies for treatment of these potential complications. Prospective evaluations of these infectious risks allow for greater scientific rigor in the evaluation of risk, which must be balanced with the potential benefits of these therapies. Our experience supports an important role for investigators with expertise in infections in immunocompromised individuals in protocol development of immunosuppressive trials in type 1diabetes and potentially other autoimmune diseases. PMID:26336066

  19. Infectious Agents As Markers of Human Migration toward the Amazon Region of Brazil

    PubMed Central

    Ishak, Ricardo; Machado, Luiz F. A.; Cayres-Vallinoto, Izaura; Guimarães Ishak, Marluísa de O.; Vallinoto, Antonio C. R.

    2017-01-01

    Infectious agents are common companions of humans and since ancient times they follow human migration on their search for a better place to live. The study of paleomicrobiology was significantly improved in its accuracy of measurement with the constant development of better methods to detect and analyze nucleic acids. Human tissues are constantly used to trace ancient infections and the association of anthropological evidences are important to confirm the microbiological information. Infectious agents which establish human persistent infections are particularly useful to trace human migrations. In the present article, the evidence of infection by viral agents such as human T-lymphotropic virus 1, human T-lymphotropic virus 2, human herpes virus-8, JC virus, and a bacterium, Chlamydia trachomatis, was described using different methodologies for their detection. Their presence was further used as biomarkers associated with anthropological and other relevant information to trace human migration into the Amazon region of Brazil. The approach also evidenced their microbiological origin, emergence, evolution, and spreading. The information obtained confirms much of the archeological information available tracing ancient and more recent human migration into this particular geographical region. In this article, the paleomicrobiological information on the subject was summarized and reviewed. PMID:28912770

  20. Distinct seasonal infectious agent profiles in life-history variants of juvenile Fraser River Chinook salmon: An application of high-throughput genomic screening.

    PubMed

    Tucker, Strahan; Li, Shaorong; Kaukinen, Karia H; Patterson, David A; Miller, Kristina M

    2018-01-01

    Disease-causing infectious agents are natural components of ecosystems and considered a major selective force driving the evolution of host species. However, knowledge of the presence and abundance of suites of infectious agents in wild populations has been constrained by our ability to easily screen for them. Using salmon as a model, we contrasted seasonal pathogenic infectious agents in life history variants of juvenile Chinook salmon from the Fraser River system (N = 655), British Columbia (BC), through the application of a novel high-throughput quantitative PCR monitoring platform. This included freshwater hatchery origin fish and samples taken at sea between ocean entry in spring and over-winter residence in coastal waters. These variants currently display opposite trends in productivity, with yearling stocks generally in decline and sub-yearling stocks doing comparatively well. We detected the presence of 32 agents, 21 of which were at >1% prevalence. Variants carried a different infectious agent profile in terms of (1) diversity, (2) origin or transmission environment of infectious agents, and (3) prevalence and abundance of individual agents. Differences in profiles tended to reflect differential timing and residence patterns through freshwater, estuarine and marine habitats. Over all seasons, individual salmon carried an average of 3.7 agents. Diversity changed significantly, increasing upon saltwater entrance, increasing through the fall and decreasing slightly in winter. Diversity varied between life history types with yearling individuals carrying 1.3-times more agents on average. Shifts in prevalence and load over time were examined to identify agents with the greatest potential for impact at the stock level; those displaying concurrent decrease in prevalence and load truncation with time. Of those six that had similar patterns in both variants, five reached higher prevalence in yearling fish while only one reached higher prevalence in sub

  1. Distinct seasonal infectious agent profiles in life-history variants of juvenile Fraser River Chinook salmon: An application of high-throughput genomic screening

    PubMed Central

    Li, Shaorong; Kaukinen, Karia H.; Patterson, David A.; Miller, Kristina M.

    2018-01-01

    Disease-causing infectious agents are natural components of ecosystems and considered a major selective force driving the evolution of host species. However, knowledge of the presence and abundance of suites of infectious agents in wild populations has been constrained by our ability to easily screen for them. Using salmon as a model, we contrasted seasonal pathogenic infectious agents in life history variants of juvenile Chinook salmon from the Fraser River system (N = 655), British Columbia (BC), through the application of a novel high-throughput quantitative PCR monitoring platform. This included freshwater hatchery origin fish and samples taken at sea between ocean entry in spring and over-winter residence in coastal waters. These variants currently display opposite trends in productivity, with yearling stocks generally in decline and sub-yearling stocks doing comparatively well. We detected the presence of 32 agents, 21 of which were at >1% prevalence. Variants carried a different infectious agent profile in terms of (1) diversity, (2) origin or transmission environment of infectious agents, and (3) prevalence and abundance of individual agents. Differences in profiles tended to reflect differential timing and residence patterns through freshwater, estuarine and marine habitats. Over all seasons, individual salmon carried an average of 3.7 agents. Diversity changed significantly, increasing upon saltwater entrance, increasing through the fall and decreasing slightly in winter. Diversity varied between life history types with yearling individuals carrying 1.3-times more agents on average. Shifts in prevalence and load over time were examined to identify agents with the greatest potential for impact at the stock level; those displaying concurrent decrease in prevalence and load truncation with time. Of those six that had similar patterns in both variants, five reached higher prevalence in yearling fish while only one reached higher prevalence in sub

  2. The role of feral mammals on wildlife infectious disease prevalence in two nature reserves within Mexico City limits.

    PubMed

    Suzán, Gerardo; Ceballos, Gerardo

    2005-09-01

    Wild and feral medium-sized mammals were live trapped at two natural protected areas within the Mexico City limits to determine antibody prevalence for the most common infectious diseases (rabies, toxoplasmosis, and canine parvovirus) in dogs and cats. Mammals were trapped during the dry (March-April) and rainy seasons (July-August) of 1996 and 1997. A total of 68 individuals were captured, representing 8 species: opossums (Didelphis virginiana), ringtails (Bassariscus astutus), spotted skunks (Spilogale gracilis), weasels (Mustela frenata), rock squirrels (Spermophilus variegatus), Mexican gray squirrels (Sciurus aureogaster), feral cats (Felis catus), and feral dogs (Canis familiaris). There was marked seroprevalence for parvovirus (86.6%) and lower seroprevalences for both toxoplasma (23.9%) and rabies (17.9%). There were no significant prevalence differences among mammals in both protected areas, which were of contrasting size and isolation (i.e., small and isolated versus large and nonisolated). We suggest that high seroprevalence of these three infectious agents in wild mammals is a result of the high densities of feral dogs and cats in the two areas sampled. Feral dogs are able to maintain the infectious agents in these localities regardless of the protected area size and isolation. However, the native mammals of the small and isolated reserve are more vulnerable to infectious diseases because of small population size and genetic bottlenecks. Our results indicate that natural areas in and around Mexico City are a refugium for latent infectious agents, several of which are zoonotic. These findings suggest that conservation measures, such as eradication of feral mammals and vaccination programs, in the protected areas and surrounding areas could be beneficial.

  3. Prion Diseases as Transmissible Zoonotic Diseases

    PubMed Central

    Lee, Jeongmin; Kim, Su Yeon; Hwang, Kyu Jam; Ju, Young Ran; Woo, Hee-Jong

    2013-01-01

    Prion diseases, also called transmissible spongiform encephalopathies (TSEs), lead to neurological dysfunction in animals and are fatal. Infectious prion proteins are causative agents of many mammalian TSEs, including scrapie (in sheep), chronic wasting disease (in deer and elk), bovine spongiform encephalopathy (BSE; in cattle), and Creutzfeldt–Jakob disease (CJD; in humans). BSE, better known as mad cow disease, is among the many recently discovered zoonotic diseases. BSE cases were first reported in the United Kingdom in 1986. Variant CJD (vCJD) is a disease that was first detected in 1996, which affects humans and is linked to the BSE epidemic in cattle. vCJD is presumed to be caused by consumption of contaminated meat and other food products derived from affected cattle. The BSE epidemic peaked in 1992 and decreased thereafter; this decline is continuing sharply owing to intensive surveillance and screening programs in the Western world. However, there are still new outbreaks and/or progression of prion diseases, including atypical BSE, and iatrogenic CJD and vCJD via organ transplantation and blood transfusion. This paper summarizes studies on prions, particularly on prion molecular mechanisms, BSE, vCJD, and diagnostic procedures. Risk perception and communication policies of the European Union for the prevention of prion diseases are also addressed to provide recommendations for appropriate government policies in Korea. PMID:24159531

  4. Self-disseminating vaccines for emerging infectious diseases.

    PubMed

    Murphy, Aisling A; Redwood, Alec J; Jarvis, Michael A

    2016-01-01

    Modern human activity fueled by economic development is profoundly altering our relationship with microorganisms. This altered interaction with microbes is believed to be the major driving force behind the increased rate of emerging infectious diseases from animals. The spate of recent infectious disease outbreaks, including Ebola virus disease and Middle East respiratory syndrome, emphasize the need for development of new innovative tools to manage these emerging diseases. Disseminating vaccines are one such novel approach to potentially interrupt animal to human (zoonotic) transmission of these pathogens.

  5. Disease ecology and the global emergence of zoonotic pathogens.

    PubMed

    Wilcox, Bruce A; Gubler, Duane J

    2005-09-01

    The incidence and frequency of epidemic transmission of zoonotic diseases, both known and newly recognized, has increased dramatically in the past 30 years. It is thought that this dramatic disease emergence is primarily the result of the social, demographic, and environmental transformation that has occurred globally since World War II. However, the causal linkages have not been elucidated. Investigating emerging zoonotic pathogens as an ecological phenomenon can provide significant insights as to why some of these pathogens have jumped species and caused major epidemics in humans. A review of concepts and theory from biological ecology and of causal factors in disease emergence previously described suggests a general model of global zoonotic disease emergence. The model links demographic and societal factors to land use and land cover change whose associated ecological factors help explain disease emergence. The scale and magnitude of these changes are more significant than those associated with climate change, the effects of which are largely not yet understood. Unfortunately, the complex character and non-linear behavior of the human-natural systems in which host-pathogen systems are embedded makes specific incidences of disease emergence or epidemics inherently difficult to predict. Employing a complex systems analytical approach, however, may show how a few key ecological variables and system properties, including the adaptive capacity of institutions, explains the emergence of infectious diseases and how an integrated, multi-level approach to zoonotic disease control can reduce risk.

  6. Host-directed therapies for infectious diseases: current status, recent progress, and future prospects.

    PubMed

    Zumla, Alimuddin; Rao, Martin; Wallis, Robert S; Kaufmann, Stefan H E; Rustomjee, Roxana; Mwaba, Peter; Vilaplana, Cris; Yeboah-Manu, Dorothy; Chakaya, Jeremiah; Ippolito, Giuseppe; Azhar, Esam; Hoelscher, Michael; Maeurer, Markus

    2016-04-01

    Despite extensive global efforts in the fight against killer infectious diseases, they still cause one in four deaths worldwide and are important causes of long-term functional disability arising from tissue damage. The continuing epidemics of tuberculosis, HIV, malaria, and influenza, and the emergence of novel zoonotic pathogens represent major clinical management challenges worldwide. Newer approaches to improving treatment outcomes are needed to reduce the high morbidity and mortality caused by infectious diseases. Recent insights into pathogen-host interactions, pathogenesis, inflammatory pathways, and the host's innate and acquired immune responses are leading to identification and development of a wide range of host-directed therapies with different mechanisms of action. Host-directed therapeutic strategies are now becoming viable adjuncts to standard antimicrobial treatment. Host-directed therapies include commonly used drugs for non-communicable diseases with good safety profiles, immunomodulatory agents, biologics (eg monoclonal antibodies), nutritional products, and cellular therapy using the patient's own immune or bone marrow mesenchymal stromal cells. We discuss clinically relevant examples of progress in identifying host-directed therapies as adjunct treatment options for bacterial, viral, and parasitic infectious diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Is there any association between Sarcoidosis and infectious agents?: a systematic review and meta-analysis.

    PubMed

    Esteves, Tiago; Aparicio, Gloria; Garcia-Patos, Vicente

    2016-11-28

    During the last few years, investigators have debated the role that infectious agents may have in sarcoidosis pathogenesis. With the emergence of new molecular biology techniques, several studies have been conducted; therefore, we performed a meta-analysis in order to better explain this possible association. This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement from the Cochrane collaboration guidelines. Four different databases (Medline, Scopus, Web of Science, and Cochrane Collaboration) were searched for all original articles published from 1980 to 2015. The present meta-analysis included case-control studies that reported the presence of microorganisms in samples of patients with sarcoidosis using culture methods or molecular biology techniques. We used a random effects or a fixed-effect model to calculate the odds ratio (OR) and 95% confidence intervals (CI). Sensitivity and subgroup analyses were performed in order to explore the heterogeneity among studies. Fifty-eight studies qualified for the purpose of this analysis. The present meta-analysis, the first, to our knowledge, in evaluation of all infectious agents proposed to be associated with sarcoidosis and involving more than 6000 patients in several countries, suggests an etiological link between Propionibacterium acnes and sarcoidosis, with an OR of 18.80 (95% CI 12.62, 28.01). We also found a significant association between sarcoidosis and mycobacteria, with an OR of 6.8 (95% CI 3.73, 12.39). Borrelia (OR 4.82; 95% CI 0.98, 23.81), HHV-8 (OR 1.47; 95% CI 0.02, 110.06) as well as Rickettsia helvetica, Chlamydia pneumoniae, Epstein-barr virus and Retrovirus, although suggested by previous investigations, were not associated with sarcoidosis. This meta-analysis suggests that some infectious agents can be associated with sarcoidosis. What seems clear is that more than one infectious agent might be implicated in the

  8. Infectious agents identified in aborted swine fetuses in a high-density breeding area: a three-year study.

    PubMed

    Salogni, Cristian; Lazzaro, Massimiliano; Giacomini, Enrico; Giovannini, Stefano; Zanoni, Mariagrazia; Giuliani, Matteo; Ruggeri, Jessica; Pozzi, Paolo; Pasquali, Paolo; Boniotti, Maria Beatrice; Alborali, Giovanni Loris

    2016-09-01

    Reproductive failure in sows is one of the most important factors affecting pig breeding. Many reproductive disorders are linked to both environmental factors and infectious agents. The goal of our study was to determine the presence of pathogens that are known to cause abortion, considering a set of conditioning factors, such as seasonality and pregnancy period. A large number of aborted fetuses (1,625 fetuses from 140 farms) from a high-density breeding area in northern Italy was analyzed for a period of 3 years. The pigs were diagnosed based on direct (culture, PCR) or indirect (enzyme-linked immunosorbent assay) evidence. An infectious etiologic agent was found in 323 of 549 cases of abortion (58.8%). These included viral agents (Porcine circovirus-2, 138/323; Porcine reproductive and respiratory syndrome virus, 108/323; porcine parvovirus, 20/323; pseudorabies virus, 6/323; and Encephalomyocarditis virus, 3/323) and bacteria (Escherichia coli, 64/323; Streptococcus sp., 63/323; Staphylococcus sp., 5/323; Pasteurella sp., 3/323; Shigella sp., 1/323; and Yersinia sp., 1/323). This study describes the prevalence of infectious agents involved in reproductive failure in a high-density swine population. The data can be useful to swine breeders, practitioners, and medical specialists in monitoring animal health and in supervising the breeding process. © 2016 The Author(s).

  9. Facts, myths and hypotheses on the zoonotic nature of Mycobacterium avium subspecies paratuberculosis.

    PubMed

    Atreya, Raja; Bülte, Michael; Gerlach, Gerald-F; Goethe, Ralph; Hornef, Mathias W; Köhler, Heike; Meens, Jochen; Möbius, Petra; Roeb, Elke; Weiss, Siegfried

    2014-10-01

    Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of paratuberculosis (Johne's disease [JD]), a chronic granulomatous enteritis in ruminants. JD is one of the most widespread bacterial diseases of domestic animals with significant economic impact. The histopathological picture of JD resembles that of Crohn's disease (CD), a human chronic inflammatory bowel disease of still unresolved aetiology. An aetiological relevance of MAP for CD has been proposed. This and the ambiguity of other published epidemiological findings raise the question whether MAP represents a zoonotic agent. In this review, we will discuss evidence that MAP has zoonotic capacity. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Interaction of microbial agents with the immune system during infectious disease.

    PubMed

    Frøland, S S

    1984-01-01

    Research during the last years has revealed a considerable complexity of the immune system. It is clear that immunological reactions depend on extensive and only partly clarified interactions between a number of different cell types (e.g. B lymphocytes, plasma cells, T cell subpopulations, cytotoxic K and NK cells, monocytic cells, neutrophilic and eosinophilic granulocytes) and their molecular products (e.g. immunoglobulins, lymphokines and interleukins). These components further interact with the complement system, as well as with immunologically nonspecific components like acute phase proteins (e.g. C-reactive protein) and with other pathophysiological phenomena occurring during infections, e.g. the fever response. The application of these observations from basic and experimental immunology to the investigation of antimicrobial immune reactions is still only in its beginning, but has already resulted in new concepts of clinical value for the understanding of infectious diseases. The present paper briefly describes certain aspects of the immune response to infections with various microbial agents, with particular emphasis on reactions of clinical importance. In addition to B and T cell reactions, possible antimicrobial functions of K cells and NK cells are discussed, and the possible importance in infectious disease of various T cell subpopulations, particularly T suppressor cells, is discussed. Lastly, various escape mechanisms are mentioned whereby certain microbial agents may evade elimination by the immune response of the host.

  11. Latest developments on Streptococcus suis: an emerging zoonotic pathogen: part 2.

    PubMed

    Segura, Mariela; Zheng, Han; de Greeff, Astrid; Gao, George F; Grenier, Daniel; Jiang, Yongqiang; Lu, Chengping; Maskell, Duncan; Oishi, Kazunori; Okura, Masatoshi; Osawa, Ro; Schultsz, Constance; Schwerk, Christian; Sekizaki, Tsutomu; Smith, Hilde; Srimanote, Potjanee; Takamatsu, Daisuke; Tang, Jiaqi; Tenenbaum, Tobias; Tharavichitkul, Prasit; Hoa, Ngo Thi; Valentin-Weigand, Peter; Wells, Jerry M; Wertheim, Heiman; Zhu, Baoli; Xu, Jianguo; Gottschalk, Marcelo

    2014-01-01

    First International Workshop on Streptococcus suis, Beijing, China, 12-13 August 2013. This second and final chapter of the report on the First International Workshop on Streptococcus suis follows on from Part 1, published in the April 2014, volume 9, issue 4 of Future Microbiology. S. suis is a swine pathogen and a zoonotic agent afflicting people in close contact with infected pigs or pork meat. Although sporadic cases of human infections had been reported worldwide, deadly S. suis outbreaks emerged in Asia. The severity of the disease underscores the lack of knowledge on the virulence and zoonotic evolution of this human-infecting agent. The pathogenesis of the infection, interactions with host cells and new avenues for treatments were among the topics discussed during the First International Workshop on S. suis (China 2013).

  12. Antimicrobial resistance in zoonotic nontyphoidal Salmonella: an alarming trend?

    PubMed

    Michael, G B; Schwarz, S

    2016-12-01

    Zoonotic bacteria of the genus Salmonella have acquired various antimicrobial resistance properties over the years. The corresponding resistance genes are commonly located on plasmids, transposons, gene cassettes, or variants of the Salmonella Genomic Islands SGI1 and SGI2. Human infections by nontyphoidal Salmonella isolates mainly result from ingestion of contaminated food. The two predominantly found Salmonella enterica subsp. enterica serovars in the USA and in Europe are S. Enteritidis and S. Typhimurium. Many other nontyphoidal Salmonella serovars have been implicated in foodborne Salmonella outbreaks. Summary reports of the antimicrobial susceptibility patterns of nontyphoidal Salmonella isolates over time suggest a moderate to low level of antimicrobial resistance and multidrug-resistance. However, serovar-specific analyses showed in part a steady state, a continuous decline, or a recent increase in resistance to certain antimicrobial agents. Resistance to critically important antimicrobial agents, e.g. third-generation cephalosporins and (fluoro)quinolones is part of many monitoring programmes and the corresponding results confirm that extended-spectrum β-lactamases are still rarely found in nontyphoidal Salmonella serovars, whereas resistance to (fluoro)quinolones is prevalent at variable frequencies among different serovars from humans and animals in different countries. Although it is likely that nontyphoidal Salmonella isolates from animals represent a reservoir for resistance determinants, it is mostly unknown where and when Salmonella isolates acquired resistance properties and which exchange processes have happened since then. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  13. Hepatitis E Virus: Foodborne, Waterborne and Zoonotic Transmission

    PubMed Central

    Yugo, Danielle M.; Meng, Xiang-Jin

    2013-01-01

    Hepatitis E virus (HEV) is responsible for epidemics and endemics of acute hepatitis in humans, mainly through waterborne, foodborne, and zoonotic transmission routes. HEV is a single-stranded, positive-sense RNA virus classified in the family Hepeviridae and encompasses four known Genotypes (1–4), at least two new putative genotypes of mammalian HEV, and one floating genus of avian HEV. Genotypes 1 and 2 HEVs only affect humans, while Genotypes 3 and 4 are zoonotic and responsible for sporadic and autochthonous infections in both humans and several other animal species worldwide. HEV has an ever-expanding host range and has been identified in numerous animal species. Swine serve as a reservoir species for HEV transmission to humans; however, it is likely that other animal species may also act as reservoirs. HEV poses an important public health concern with cases of the disease definitively linked to handling of infected pigs, consumption of raw and undercooked animal meats, and animal manure contamination of drinking or irrigation water. Infectious HEV has been identified in numerous sources of concern including animal feces, sewage water, inadequately-treated water, contaminated shellfish and produce, as well as animal meats. Many aspects of HEV pathogenesis, replication, and immunological responses remain unknown, as HEV is an extremely understudied but important human pathogen. This article reviews the current understanding of HEV transmission routes with emphasis on food and environmental sources and the prevalence of HEV in animal species with zoonotic potential in humans. PMID:24071919

  14. Francisella tularensis Molecular Typing Using Differential Insertion Sequence Amplification

    DTIC Science & Technology

    2011-08-01

    16 May 2011 Tularemia is a potentially fatal disease that is caused by the highly infectious and zoonotic pathogen Francisella tularensis. Despite...and characterizations of tularemia source outbreaks. Francisella tularensis is a facultative intracellular bacterium and the causative agent of the...zoonotic disease tularemia ( 10). This Gram-negative microbe is highly infectious, with as few as 10 organisms being capable of causing disease in

  15. The evolution of infectious agents in relation to sex in animals and humans: brief discussions of some individual organisms

    PubMed Central

    Reed, David L.; Currier, Russell W.; Walton, Shelley F.; Conrad, Melissa; Sullivan, Steven A.; Carlton, Jane M.; Read, Timothy D.; Severini, Alberto; Tyler, Shaun; Eberle, R.; Johnson, Welkin E.; Silvestri, Guido; Clarke, Ian N.; Lagergård, Teresa; Lukehart, Sheila A.; Unemo, Magnus; Shafer, William M.; Beasley, R. Palmer; Bergström, Tomas; Norberg, Peter; Davison, Andrew J.; Sharp, Paul M.; Hahn, Beatrice H.; Blomberg, Jonas

    2013-01-01

    The following series of concise summaries addresses the evolution of infectious agents in relation to sex in animals and humans from the perspective of three specific questions: (1) what have we learned about the likely origin and phylogeny, up to the establishment of the infectious agent in the genital econiche, including the relative frequency of its sexual transmission; (2) what further research is needed to provide additional knowledge on some of these evolutionary aspects; and (3) what evolutionary considerations might aid in providing novel approaches to the more practical clinical and public health issues facing us currently and in the future? PMID:21824167

  16. Police exposure to infectious agents: an audit of protective policies.

    PubMed

    Jessop, A B; Del Buono, F; Solomon, G; Mullen-Fortino, M; Rogers, J M

    2014-10-01

    As first responders, police officers may be exposed to infectious agents such as hepatitis viruses and human immunodeficiency virus. Their risk of infection by these viruses can be reduced with training, monitoring and, with some viruses, vaccination. To examine infection prevention policies and practices among police departments and determine provision of vaccination and infection prevention education programmes. A questionnaire sent to all police departments in five counties of south-eastern Pennsylvania to capture information about department size, immunization policies and practices, record keeping, infection prevention education and monitoring of exposures. Ninety-six of 168 departments responded (57%). Among these, policies requiring pre-employment physical examinations were almost universal (95%). Vaccination policies were less common with <15% requiring and 50% recommending hepatitis, tetanus or influenza vaccination for officers. Few departments took action to provide (2%) or cover the cost (21%) of vaccination. Fewer than 12% maintained vaccination records. Education about the risk of infectious agents was offered by 60% of the responding departments, but often just once at the start of employment. Fewer than half of the departments had systems to collect exposure information. Police departments have opportunities to improve policies and practices for infection prevention and control. Accurate documentation of vaccination status is essential to ensure provision of appropriate post-exposure assessment and treatment. Better reporting of exposure will improve understanding of the infection transmission risk, enhancing the ability to offer targeted education and services to officers. © The Author 2014. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Emerging and re-emerging infectious diseases in Iran

    PubMed Central

    Parhizgari, Najmeh; Gouya, Mohammad Mehdi; Mostafavi, Ehsan

    2017-01-01

    Despite development of preventive and controlling strategies regarding infectious diseases, they are still considered as one of the most significant leading causes of morbidity and mortality, worldwide. Changes in humans’ demographics and behaviors, microbial and ecological alterations, agricultural development, international travels and susceptibility to infectious diseases have resulted in increased reports of emerging infectious diseases (EIDs) and reemerging infectious diseases (RIDs) in various geographical areas. Because of the various types of geographic properties in Iran, substantial climatic variability, as well as unstable political situations and poor public health conditions in some of neighboring countries, EIDs and RIDs are serious public health problems; among them, zoonotic and drug resistant diseases are the most significant. Hence, this review provides an overview of the significant bacterial, viral and fungal EIDs and RIDs in Iran regarding their epidemiological aspects. PMID:29225752

  18. Role of infectious agents in the carcinogenesis of brain and head and neck cancers

    PubMed Central

    2013-01-01

    This review concentrates on tumours that are anatomically localised in head and neck regions. Brain cancers and head and neck cancers together account for more than 873,000 cases annually worldwide, with an increasing incidence each year. With poor survival rates at late stages, brain and head and neck cancers represent serious conditions. Carcinogenesis is a multi-step process and the role of infectious agents in this progression has not been fully identified. A major problem with such research is that the role of many infectious agents may be underestimated due to the lack of or inconsistency in experimental data obtained globally. In the case of brain cancer, no infection has been accepted as directly oncogenic, although a number of viruses and parasites are associated with the malignancy. Our analysis of the literature showed the presence of human cytomegalovirus (HCMV) in distinct types of brain tumour, namely glioblastoma multiforme (GBM) and medulloblastoma. In particular, there are reports of viral protein in up to 100% of GBM specimens. Several epidemiological studies reported associations of brain cancer and toxoplasmosis seropositivity. In head and neck cancers, there is a distinct correlation between Epstein-Barr virus (EBV) and nasopharyngeal carcinoma (NPC). Considering that almost every undifferentiated NPC is EBV-positive, virus titer levels can be measured to screen high-risk populations. In addition there is an apparent association between human papilloma virus (HPV) and head and neck squamous cell carcinoma (HNSCC); specifically, 26% of HNSCCs are positive for HPV. HPV type 16 was the most common type detected in HNSCCs (90%) and its dominance is even greater than that reported in cervical carcinoma. Although there are many studies showing an association of infectious agents with cancer, with various levels of involvement and either a direct or indirect causative effect, there is a scarcity of articles covering the role of infection in

  19. Infectious Mononucleosis

    PubMed Central

    Joncas, J.

    1967-01-01

    A short review of past and recent works pertinent to the etiology and pathogenesis of infectious mononucleosis is presented. Epidemiological studies have led to the elaboration of hypotheses concerning the etiology, the length of the incubation period and the mode of transmission of the disease. An unusual type of infectious mononucleosis of rickettsial origin has been reported by Japanese workers. Studies of accidental and experimental transmission suggest that more than one agent may give rise to the same disease. Isolation attempts in tissue cultures have been unrewarding except for the uncovering of possible agents by interference and immunofluorescence. The atypical lymphocyte is the site of increased RNA and DNA synthesis. It does not seem to be involved in antibody synthesis. The heterophile agglutinins and other mononucleosis-associated antibodies apparently account for only part of the excess 19S antibody material found in mononucleosis sera. The origin and function of these antibodies and of the atypical lymphocyte are the subject of speculation. The final elucidation of the pathogenesis of the disease and the confirmation of the reviewed hypotheses are all dependent on the eventual discovery of the elusive etiological agent(s) of infectious mononucleosis. PMID:5336955

  20. Impact of globalization and animal trade on infectious disease ecology.

    PubMed

    Marano, Nina; Arguin, Paul M; Pappaioanou, Marguerite

    2007-12-01

    The articles on rabies and Marburg virus featured in this month's Emerging Infectious Diseases (EID) zoonoses issue illustrate common themes. Both discuss zoonotic diseases with serious health implications for humans, and both have a common reservoir, the bat. These articles, and the excitement generated by this year's recognition of World Rabies Day on September 8, also described in this issue, remind us how globalization has had an impact on the worldwide animal trade. This worldwide movement of animals has increased the potential for the translocation of zoonotic diseases, which pose serious risks to human and animal health.

  1. Zoonotic diseases associated with free-roaming cats.

    PubMed

    Gerhold, R W; Jessup, D A

    2013-05-01

    Free-roaming cat populations have been identified as a significant public health threat and are a source for several zoonotic diseases including rabies, toxoplasmosis, cutaneous larval migrans because of various nematode parasites, plague, tularemia and murine typhus. Several of these diseases are reported to cause mortality in humans and can cause other important health issues including abortion, blindness, pruritic skin rashes and other various symptoms. A recent case of rabies in a young girl from California that likely was transmitted by a free-roaming cat underscores that free-roaming cats can be a source of zoonotic diseases. Increased attention has been placed on trap-neuter-release (TNR) programmes as a viable tool to manage cat populations. However, some studies have shown that TNR leads to increased immigration of unneutered cats into neutered populations as well as increased kitten survival in neutered groups. These compensatory mechanisms in neutered groups leading to increased kitten survival and immigration would confound rabies vaccination campaigns and produce naïve populations of cats that can serve as source of zoonotic disease agents owing to lack of immunity. This manuscript is a review of the various diseases of free-roaming cats and the public health implications associated with the cat populations. © 2012 Blackwell Verlag GmbH.

  2. Infectious diseases and their outbreaks in Asia-Pacific: biodiversity and its regulation loss matter.

    PubMed

    Morand, Serge; Jittapalapong, Sathaporn; Suputtamongkol, Yupin; Abdullah, Mohd Tajuddin; Huan, Tan Boon

    2014-01-01

    Despite increasing control measures, numerous parasitic and infectious diseases are emerging, re-emerging or causing recurrent outbreaks particularly in Asia and the Pacific region, a hot spot of both infectious disease emergence and biodiversity at risk. We investigate how biodiversity affects the distribution of infectious diseases and their outbreaks in this region, taking into account socio-economics (population size, GDP, public health expenditure), geography (latitude and nation size), climate (precipitation, temperature) and biodiversity (bird and mammal species richness, forest cover, mammal and bird species at threat). We show, among countries, that the overall richness of infectious diseases is positively correlated with the richness of birds and mammals, but the number of zoonotic disease outbreaks is positively correlated with the number of threatened mammal and bird species and the number of vector-borne disease outbreaks is negatively correlated with forest cover. These results suggest that, among countries, biodiversity is a source of pathogens, but also that the loss of biodiversity or its regulation, as measured by forest cover or threatened species, seems to be associated with an increase in zoonotic and vector-borne disease outbreaks.

  3. Optimizing agent-based transmission models for infectious diseases.

    PubMed

    Willem, Lander; Stijven, Sean; Tijskens, Engelbert; Beutels, Philippe; Hens, Niel; Broeckhove, Jan

    2015-06-02

    Infectious disease modeling and computational power have evolved such that large-scale agent-based models (ABMs) have become feasible. However, the increasing hardware complexity requires adapted software designs to achieve the full potential of current high-performance workstations. We have found large performance differences with a discrete-time ABM for close-contact disease transmission due to data locality. Sorting the population according to the social contact clusters reduced simulation time by a factor of two. Data locality and model performance can also be improved by storing person attributes separately instead of using person objects. Next, decreasing the number of operations by sorting people by health status before processing disease transmission has also a large impact on model performance. Depending of the clinical attack rate, target population and computer hardware, the introduction of the sort phase decreased the run time from 26% up to more than 70%. We have investigated the application of parallel programming techniques and found that the speedup is significant but it drops quickly with the number of cores. We observed that the effect of scheduling and workload chunk size is model specific and can make a large difference. Investment in performance optimization of ABM simulator code can lead to significant run time reductions. The key steps are straightforward: the data structure for the population and sorting people on health status before effecting disease propagation. We believe these conclusions to be valid for a wide range of infectious disease ABMs. We recommend that future studies evaluate the impact of data management, algorithmic procedures and parallelization on model performance.

  4. Constructing rigorous and broad biosurveillance networks for detecting emerging zoonotic outbreaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Mac; Moore, Leslie; McMahon, Benjamin

    Determining optimal surveillance networks for an emerging pathogen is difficult since it is not known beforehand what the characteristics of a pathogen will be or where it will emerge. The resources for surveillance of infectious diseases in animals and wildlife are often limited and mathematical modeling can play a supporting role in examining a wide range of scenarios of pathogen spread. We demonstrate how a hierarchy of mathematical and statistical tools can be used in surveillance planning help guide successful surveillance and mitigation policies for a wide range of zoonotic pathogens. The model forecasts can help clarify the complexities ofmore » potential scenarios, and optimize biosurveillance programs for rapidly detecting infectious diseases. Using the highly pathogenic zoonotic H5N1 avian influenza 2006-2007 epidemic in Nigeria as an example, we determined the risk for infection for localized areas in an outbreak and designed biosurveillance stations that are effective for different pathogen strains and a range of possible outbreak locations. We created a general multi-scale, multi-host stochastic SEIR epidemiological network model, with both short and long-range movement, to simulate the spread of an infectious disease through Nigerian human, poultry, backyard duck, and wild bird populations. We chose parameter ranges specific to avian influenza (but not to a particular strain) and used a Latin hypercube sample experimental design to investigate epidemic predictions in a thousand simulations. We ranked the risk of local regions by the number of times they became infected in the ensemble of simulations. These spatial statistics were then complied into a potential risk map of infection. Finally, we validated the results with a known outbreak, using spatial analysis of all the simulation runs to show the progression matched closely with the observed location of the farms infected in the 2006-2007 epidemic.« less

  5. Constructing Rigorous and Broad Biosurveillance Networks for Detecting Emerging Zoonotic Outbreaks

    PubMed Central

    Brown, Mac; Moore, Leslie; McMahon, Benjamin; Powell, Dennis; LaBute, Montiago; Hyman, James M.; Rivas, Ariel; Jankowski, Mark; Berendzen, Joel; Loeppky, Jason; Manore, Carrie; Fair, Jeanne

    2015-01-01

    Determining optimal surveillance networks for an emerging pathogen is difficult since it is not known beforehand what the characteristics of a pathogen will be or where it will emerge. The resources for surveillance of infectious diseases in animals and wildlife are often limited and mathematical modeling can play a supporting role in examining a wide range of scenarios of pathogen spread. We demonstrate how a hierarchy of mathematical and statistical tools can be used in surveillance planning help guide successful surveillance and mitigation policies for a wide range of zoonotic pathogens. The model forecasts can help clarify the complexities of potential scenarios, and optimize biosurveillance programs for rapidly detecting infectious diseases. Using the highly pathogenic zoonotic H5N1 avian influenza 2006-2007 epidemic in Nigeria as an example, we determined the risk for infection for localized areas in an outbreak and designed biosurveillance stations that are effective for different pathogen strains and a range of possible outbreak locations. We created a general multi-scale, multi-host stochastic SEIR epidemiological network model, with both short and long-range movement, to simulate the spread of an infectious disease through Nigerian human, poultry, backyard duck, and wild bird populations. We chose parameter ranges specific to avian influenza (but not to a particular strain) and used a Latin hypercube sample experimental design to investigate epidemic predictions in a thousand simulations. We ranked the risk of local regions by the number of times they became infected in the ensemble of simulations. These spatial statistics were then complied into a potential risk map of infection. Finally, we validated the results with a known outbreak, using spatial analysis of all the simulation runs to show the progression matched closely with the observed location of the farms infected in the 2006-2007 epidemic. PMID:25946164

  6. Constructing rigorous and broad biosurveillance networks for detecting emerging zoonotic outbreaks

    DOE PAGES

    Brown, Mac; Moore, Leslie; McMahon, Benjamin; ...

    2015-05-06

    Determining optimal surveillance networks for an emerging pathogen is difficult since it is not known beforehand what the characteristics of a pathogen will be or where it will emerge. The resources for surveillance of infectious diseases in animals and wildlife are often limited and mathematical modeling can play a supporting role in examining a wide range of scenarios of pathogen spread. We demonstrate how a hierarchy of mathematical and statistical tools can be used in surveillance planning help guide successful surveillance and mitigation policies for a wide range of zoonotic pathogens. The model forecasts can help clarify the complexities ofmore » potential scenarios, and optimize biosurveillance programs for rapidly detecting infectious diseases. Using the highly pathogenic zoonotic H5N1 avian influenza 2006-2007 epidemic in Nigeria as an example, we determined the risk for infection for localized areas in an outbreak and designed biosurveillance stations that are effective for different pathogen strains and a range of possible outbreak locations. We created a general multi-scale, multi-host stochastic SEIR epidemiological network model, with both short and long-range movement, to simulate the spread of an infectious disease through Nigerian human, poultry, backyard duck, and wild bird populations. We chose parameter ranges specific to avian influenza (but not to a particular strain) and used a Latin hypercube sample experimental design to investigate epidemic predictions in a thousand simulations. We ranked the risk of local regions by the number of times they became infected in the ensemble of simulations. These spatial statistics were then complied into a potential risk map of infection. Finally, we validated the results with a known outbreak, using spatial analysis of all the simulation runs to show the progression matched closely with the observed location of the farms infected in the 2006-2007 epidemic.« less

  7. Zoonotic risks from small ruminants.

    PubMed

    Ganter, M

    2015-12-14

    Zoonoses are infections that spread naturally between species (sometimes by a vector) from animals to other animal species or to humans or from humans to animals. Most of the zoonoses diagnosed in sheep and goats are transmitted by close contact of man with these animals and are, more often, occupational diseases that principally affect breeders, veterinarians and/or slaughterhouse workers. Some other diseases have an airborne transmission and affect the population in the vicinity of sheep/goat farms. Due to the fact that small ruminants are almost the only remaining animals which are migrating in industrialised countries, there is a severe risk for transmitting the diseases. Some other zoonotic diseases are foodborne diseases, which are mainly transmitted from animals to humans and to other animal species by contaminated food and water. Within the last decade central Europe was threatened by some new infections, e.g., bluetongue disease and schmallenberg disease, which although not of zoonotic interest, are caused by pathogens transmitted by vectors. Causal agents of both diseases have found highly effective indigenous vectors. In the future, climate change may possibly modify conditions for the vectors and influence their distribution and competence. By this, other vector-borne zoonotic infections may propagate into former disease free countries. Changes in human behaviour in consummation and processing of food, in animal housing and management may also influence future risks for zoonosis. Monitoring, prevention and control measures are proposed to limit further epidemics and to enable the containment of outbreaks. Measures depend mainly on the damage evoked or anticipated by the disease, the local situation, and the epidemiology of the zoonoses, the presence of the infective agent in wild and other animals, as well as the resistance of the causal microorganisms in the environment and the possibility to breed sheep and goats which are resistant to specific

  8. Prevalence of selected zoonotic and vector-borne agents in dogs and cats in Costa Rica.

    PubMed

    Scorza, Andrea V; Duncan, Colleen; Miles, Laura; Lappin, Michael R

    2011-12-29

    To estimate the prevalence of enteric parasites and selected vector-borne agents of dogs and cats in San Isidro de El General, Costa Rica, fecal and serum samples were collected from animals voluntarily undergoing sterilization. Each fecal sample was examined for parasites by microscopic examination after fecal flotation and for Giardia and Cryptosporidium using an immunofluorescence assay (IFA). Giardia and Cryptosporidium IFA positive samples were genotyped after PCR amplification of specific DNA if possible. The seroprevalence rates for the vector-borne agents (Dirofilaria immitis, Borrelia burgdorferi, Ehrlichia canis, and Anaplasma phagocytophilum) were estimated based on results from a commercially available ELISA. Enteric parasites were detected in samples from 75% of the dogs; Ancylostoma caninum, Trichuris vulpis, Giardia, and Toxocara canis were detected. Of the cats, 67.5% harbored Giardia spp., Cryptosporidium spp., Ancylostoma tubaeforme, or Toxocara cati. Both Cryptosporidium spp. isolates that could be sequenced were Cryptosporidium parvum (one dog isolate and one cat isolate). Of the Giardia spp. isolates that were successfully sequenced, the 2 cat isolates were assemblage A and the 2 dog isolates were assemblage D. D. immitis antigen and E. canis antibodies were identified in 2.3% and 3.5% of the serum samples, respectively. The prevalence of enteric zoonotic parasites in San Isidro de El General in Costa Rica is high in companion animals and this information should be used to mitigate public health risks. Copyright © 2011. Published by Elsevier B.V.

  9. The Infectious Pathogenesis Of Prostate Cancer

    DTIC Science & Technology

    2011-04-01

    agents in the genesis of inflammation. For prostate cancer, several lines of evidence point to a role of infections as important agents , although no...specific infection has consistently been identified. In this project, we are examining two specific infectious agents with respect to prostate cancer: T...Infectious agents are likely targets involved in the initiation and exacerbation of chronic inflammation, and infections can lead to increased risk of

  10. [Emerging infectious agents].

    PubMed

    Chidiac, C; Ferry, T

    2016-11-01

    Emergence of many emerging or re-emerging infectious diseases have occurred over the past decade, some of which are major public threat. SARS, MERS-CoV, highly pathogenic avian influenza A(H5N1), Ebola virus disease have raised concerns because of their virulence, their mortality, and/or their modality of transmission, or their impact on maternofoetal transmission (Zika virus). The witness of these emergences have conducted health authorities to have policies and plans and to imagine new organizations for health systems in order to identify any case of highly communicable virulent disease for immediate isolation, and adequate management. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. A review of infectious agents in polar bears (Ursus maritimus) and their long-term ecological relevance

    USGS Publications Warehouse

    Fagre, Anna C.; Patyk, Kelly A.; Nol, Pauline; Atwood, Todd C.; Hueffer, Karsten; Duncan, Colleen G.

    2015-01-01

    Disease was a listing criterion for the polar bear (Ursus maritimus) as threatened under the Endangered Species Act in 2008; it is therefore important to evaluate the current state of knowledge and identify any information gaps pertaining to diseases in polar bears. We conducted a systematic literature review focused on infectious agents and associated health impacts identified in polar bears. Overall, the majority of reports in free-ranging bears concerned serosurveys or fecal examinations with little to no information on associated health effects. In contrast, most reports documenting illness or pathology referenced captive animals and diseases caused by etiologic agents not representative of exposure opportunities in wild bears. As such, most of the available infectious disease literature has limited utility as a basis for development of future health assessment and management plans. Given that ecological change is a considerable risk facing polar bear populations, future work should focus on cumulative effects of multiple stressors that could impact polar bear population dynamics.

  12. A Review of Infectious Agents in Polar Bears (Ursus maritimus) and Their Long-Term Ecological Relevance.

    PubMed

    Fagre, Anna C; Patyk, Kelly A; Nol, Pauline; Atwood, Todd; Hueffer, Karsten; Duncan, Colleen

    2015-09-01

    Disease was a listing criterion for the polar bear (Ursus maritimus) as threatened under the Endangered Species Act in 2008; it is therefore important to evaluate the current state of knowledge and identify any information gaps pertaining to diseases in polar bears. We conducted a systematic literature review focused on infectious agents and associated health impacts identified in polar bears. Overall, the majority of reports in free-ranging bears concerned serosurveys or fecal examinations with little to no information on associated health effects. In contrast, most reports documenting illness or pathology referenced captive animals and diseases caused by etiologic agents not representative of exposure opportunities in wild bears. As such, most of the available infectious disease literature has limited utility as a basis for development of future health assessment and management plans. Given that ecological change is a considerable risk facing polar bear populations, future work should focus on cumulative effects of multiple stressors that could impact polar bear population dynamics.

  13. Information to prevent human exposure to disease agents associated with wildlife—U.S. Geological Survey circulars on zoonotic disease

    USGS Publications Warehouse

    Meteyer, Carol U.; Moede Rogall, Gail

    2018-03-05

    The U.S. Geological Survey in collaboration with the U.S. Fish and Wildlife Service and others have published reports with information about geographic distribution, specific pathogens, disease ecology, and strategies to avoid exposure and infection for a selection of zoonotic diseases. Zoonotic diseases are diseases that can be passed from animals to humans, such as rabies and plague. This summary factsheet highlights the reports on plague, bat rabies, and raccoon roundworm with links to all seven zoonotic diseases covered in this series.

  14. Wildlife reservoirs for vector-borne canine, feline and zoonotic infections in Austria

    PubMed Central

    Duscher, Georg G.; Leschnik, Michael; Fuehrer, Hans-Peter; Joachim, Anja

    2014-01-01

    Austria's mammalian wildlife comprises a large variety of species, acting and interacting in different ways as reservoir and intermediate and definitive hosts for different pathogens that can be transmitted to pets and/or humans. Foxes and other wild canids are responsible for maintaining zoonotic agents, e.g. Echinococcus multilocularis, as well as pet-relevant pathogens, e.g. Hepatozoon canis. Together with the canids, and less commonly felids, rodents play a major role as intermediate and paratenic hosts. They carry viruses such as tick-borne encephalitis virus (TBEV), bacteria including Borrelia spp., protozoa such as Toxoplasma gondii, and helminths such as Toxocara canis. The role of wild ungulates, especially ruminants, as reservoirs for zoonotic disease on the other hand seems to be negligible, although the deer filaroid Onchocerca jakutensis has been described to infect humans. Deer may also harbour certain Anaplasma phagocytophilum strains with so far unclear potential to infect humans. The major role of deer as reservoirs is for ticks, mainly adults, thus maintaining the life cycle of these vectors and their distribution. Wild boar seem to be an exception among the ungulates as, in their interaction with the fox, they can introduce food-borne zoonotic agents such as Trichinella britovi and Alaria alata into the human food chain. PMID:25830102

  15. Climate change and zoonotic infections in the Russian Arctic

    PubMed Central

    Revich, Boris; Tokarevich, Nikolai; Parkinson, Alan J.

    2012-01-01

    Climate change in the Russian Arctic is more pronounced than in any other part of the country. Between 1955 and 2000, the annual average air temperature in the Russian North increased by 1.2°C. During the same period, the mean temperature of upper layer of permafrost increased by 3°C. Climate change in Russian Arctic increases the risks of the emergence of zoonotic infectious diseases. This review presents data on morbidity rates among people, domestic animals and wildlife in the Russian Arctic, focusing on the potential climate related emergence of such diseases as tick-borne encephalitis, tularemia, brucellosis, leptospirosis, rabies, and anthrax. PMID:22868189

  16. Biological agents: investigation into leprosy and other infectious diseases before indication*

    PubMed Central

    Antônio, João Roberto; Soubhia, Rosa Maria Cordeiro; Paschoal, Vania Del Arco; Amarante, Carolina Forte; Travolo, Ana Regina Franchi

    2013-01-01

    Biological agents are widely used for various immune-mediated diseases, with remarkable effectiveness in the treatment of rheumatoid arthritis (RA), psoriasis, psoriatic arthritis, ankylosing spondylitis and Crohn's disease. However, attention needs to be drawn to the adverse effects of these therapies and the risk of reactivating underlying granulomatous infectious diseases such as tuberculosis, leprosy, syphilis, leishmaniasis, among others. The objective of this paper is to describe a case of leprosy in a patient with RA using anti-TNF alfa, demonstrating the need for systematic investigation of skin lesions suggestive of leprosy in patients who require rheumatoid arthritis therapeutic treatment, especially in endemic regions like Brazil. PMID:24346871

  17. Human Mycobacterium bovis infection in the United Kingdom: Incidence, risks, control measures and review of the zoonotic aspects of bovine tuberculosis.

    PubMed

    de la Rua-Domenech, Ricardo

    2006-03-01

    Amongst the members of the Mycobacterium tuberculosis complex (MTBC), M. tuberculosis is mainly a human pathogen, whereas M. bovis has a broad host range and is the principal agent responsible for tuberculosis (TB) in domestic and wild mammals. M. bovis also infects humans, causing zoonotic TB through ingestion, inhalation and, less frequently, by contact with mucous membranes and broken skin. Zoonotic TB is indistinguishable clinically or pathologically from TB caused by M. tuberculosis. Differentiation between the causative organisms may only be achieved by sophisticated laboratory methods involving bacteriological culture of clinical specimens, followed by typing of isolates according to growth characteristics, biochemical properties, routine resistance to pyrazinamide (PZA) and specific non-commercial nucleic acid techniques. All this makes it difficult to accurately estimate the proportion of human TB cases caused by M. bovis infection, particularly in developing countries. Distinguishing between the various members of the MTBC is essential for epidemiological investigation of human cases and, to a lesser degree, for adequate chemotherapy of the human TB patient. Zoonotic TB was formerly an endemic disease in the UK population, usually transmitted to man by consumption of raw cows' milk. Human infection with M. bovis in the UK has been largely controlled through pasteurization of cows' milk and systematic culling of cattle reacting to compulsory tuberculin tests. Nowadays the majority of the 7000 cases of human TB annually reported in the UK are due to M. tuberculosis acquired directly from an infectious person. In the period 1990-2003, between 17 and 50 new cases of human M. bovis infection were confirmed every year in the UK. This represented between 0.5% and 1.5% of all the culture-confirmed TB cases, a proportion similar to that of other industrialized countries. Most cases of zoonotic TB diagnosed in the UK are attributed to (i) reactivation of long

  18. Infectious agents is a risk factor for myxomatous mitral valve degeneration: A case control study.

    PubMed

    Tiveron, Marcos Gradim; Pomerantzeff, Pablo Maria Alberto; de Lourdes Higuchi, Maria; Reis, Marcia Martins; de Jesus Pereira, Jaqueline; Kawakami, Joyce Tieko; Ikegami, Renata Nishiyama; de Almeida Brandao, Carlos Manuel; Jatene, Fabio Biscegli

    2017-04-21

    The etiology of myxomatous mitral valve degeneration (MVD) is not fully understood and may depend on time or environmental factors for which the interaction of infectious agents has not been documented. The purpose of the study is to analyze the effect of Mycoplasma pneumoniae (Mp), Chlamydophila pneumoniae (Cp) and Borrelia burgdorferi (Bb) on myxomatous mitral valve degeneration pathogenesis and establish whether increased in inflammation and collagen degradation in myxomatous mitral valve degeneration etiopathogenesis. An immunohistochemical test was performed to detect the inflammatory cells (CD20, CD45, CD68) and Mp, Bb and MMP9 antigens in two groups. The in situ hybridization was performed to detect Chlamydophila pneumoniae and the bacteria study was performed using transmission electron microscopy. Group 1 (n = 20), surgical specimen composed by myxomatous mitral valve degeneration, and group 2 (n = 20), autopsy specimen composed by normal mitral valve. The data were analyzed using SigmaStat version 20 (SPSS Inc., Chicago, IL, USA). The groups were compared using Student's t test, Mann-Whitney test. A correlation analysis was performed using Spearman's correlation test. P values lower than 0.05 were considered statistically significant. By immunohistochemistry, there was a higher inflammatory cells/mm2 for CD20 and CD45 in group 1, and CD68 in group 2. Higher number of Mp and Cp antigens was observed in group 1 and more Bb antigens was detected in group 2. The group 1 exhibited a positive correlation between the Bb and MVD percentage, between CD45 and Mp, and between MMP9 with Mp. These correlations were not observed in the group 2. Electron microscopy revealed the presence of structures compatible with microorganisms that feature Borrelia and Mycoplasma characteristics. The presence of infectious agents, inflammatory cells and collagenases in mitral valves appear to contribute to the pathogenesis of MVD. Mycoplasma pneumoniae was strongly related with

  19. Infectious agent screening in canine blood donors in the United Kingdom.

    PubMed

    Crawford, K; Walton, J; Lewis, D; Tasker, S; Warman, S M

    2013-08-01

    Transfusion of blood products is an important component of veterinary emergency medicine. Donors must be carefully selected to minimise risk of transmission of blood-borne infectious agents. This study was devised to assess the prevalence of such agents in healthy, non-travelled UK dogs screened as prospective donors. Ethylenediaminetetraacetic acid blood samples from dogs donating blood between August 2007 and January 2012 were screened by polymerase chain reaction for haemotropic mycoplasmas, Bartonella, Babesia, Leishmania, Ehrlichia and Anaplasma spp. Dogs with positive or inconclusive results underwent repeat polymerase chain reaction testing. Four of 262 dogs had positive or inconclusive results at initial screening. Repeat polymerase chain reaction testing in each dog was negative, and none of the dogs developed clinical signs of disease. The positive results on initial screening may have represented false positives from sample contamination or amplification of non-target DNA. It is also possible that dogs were infected at initial sampling but successfully cleared infection before repeat testing. The low number of positive results obtained suggests that prevalence of these agents in a population of healthy UK dogs is low and that use of blood products is unlikely to represent a significant risk of transmission of these diseases. © 2013 British Small Animal Veterinary Association.

  20. The prevalence of infectious agents in patients with systemic sclerosis.

    PubMed

    Bilgin, Hüseyin; Kocabaş, Hilal; Keşli, Recep

    2015-01-01

    Systemic sclerosis (SSc) is an autoimmune disease characterized by microvascular injury, excessive extracellular matrix deposition, and fibrosis in the skin and internal organs. Bacterial and viral infectious agents have been suspected to be contributing factors in the development and progression of the pathologic features of SSc. In this study, 30 SSc patients who were admitted to the rheumatology unit of the Konya Training and Research Hospital and 30 healthy controls were included. The presence of 9 different antibodies (IgM and IgG) against Helicobacter pylori, cytomegalovirus (CMV), Epstein-Barr virus (EBV), and parvovirus B19 were investigated in sera samples obtained from the 60 participants using an enzyme-linked immunosorbent assay method. The characteristics of current and past infections with H. pylori, CMV, EBV, and parvovirus B19 were evaluated by determining the seropositivity of the tested bacterial and viral agents. The prevalences of H. pylori, CMV, EBV, and parvovirus B19 were determined to be higher in patients with SSc than in the control group. SSc is associated with a higher rate of certain infections, which deserves further investigation in order to assess the role of infections in disease etiology/pathogenesis.

  1. The global one health paradigm: challenges and opportunities for tackling infectious diseases at the human, animal, and environment interface in low-resource settings.

    PubMed

    Gebreyes, Wondwossen A; Dupouy-Camet, Jean; Newport, Melanie J; Oliveira, Celso J B; Schlesinger, Larry S; Saif, Yehia M; Kariuki, Samuel; Saif, Linda J; Saville, William; Wittum, Thomas; Hoet, Armando; Quessy, Sylvain; Kazwala, Rudovick; Tekola, Berhe; Shryock, Thomas; Bisesi, Michael; Patchanee, Prapas; Boonmar, Sumalee; King, Lonnie J

    2014-01-01

    Zoonotic infectious diseases have been an important concern to humankind for more than 10,000 years. Today, approximately 75% of newly emerging infectious diseases (EIDs) are zoonoses that result from various anthropogenic, genetic, ecologic, socioeconomic, and climatic factors. These interrelated driving forces make it difficult to predict and to prevent zoonotic EIDs. Although significant improvements in environmental and medical surveillance, clinical diagnostic methods, and medical practices have been achieved in the recent years, zoonotic EIDs remain a major global concern, and such threats are expanding, especially in less developed regions. The current Ebola epidemic in West Africa is an extreme stark reminder of the role animal reservoirs play in public health and reinforces the urgent need for globally operationalizing a One Health approach. The complex nature of zoonotic diseases and the limited resources in developing countries are a reminder that the need for implementation of Global One Health in low-resource settings is crucial. The Veterinary Public Health and Biotechnology (VPH-Biotec) Global Consortium launched the International Congress on Pathogens at the Human-Animal Interface (ICOPHAI) in order to address important challenges and needs for capacity building. The inaugural ICOPHAI (Addis Ababa, Ethiopia, 2011) and the second congress (Porto de Galinhas, Brazil, 2013) were unique opportunities to share and discuss issues related to zoonotic infectious diseases worldwide. In addition to strong scientific reports in eight thematic areas that necessitate One Health implementation, the congress identified four key capacity-building needs: (1) development of adequate science-based risk management policies, (2) skilled-personnel capacity building, (3) accredited veterinary and public health diagnostic laboratories with a shared database, and (4) improved use of existing natural resources and implementation. The aim of this review is to highlight

  2. The Global One Health Paradigm: Challenges and Opportunities for Tackling Infectious Diseases at the Human, Animal, and Environment Interface in Low-Resource Settings

    PubMed Central

    Gebreyes, Wondwossen A.; Dupouy-Camet, Jean; Newport, Melanie J.; Oliveira, Celso J. B.; Schlesinger, Larry S.; Saif, Yehia M.; Kariuki, Samuel; Saif, Linda J.; Saville, William; Wittum, Thomas; Hoet, Armando; Quessy, Sylvain; Kazwala, Rudovick; Tekola, Berhe; Shryock, Thomas; Bisesi, Michael; Patchanee, Prapas; Boonmar, Sumalee; King, Lonnie J.

    2014-01-01

    Zoonotic infectious diseases have been an important concern to humankind for more than 10,000 years. Today, approximately 75% of newly emerging infectious diseases (EIDs) are zoonoses that result from various anthropogenic, genetic, ecologic, socioeconomic, and climatic factors. These interrelated driving forces make it difficult to predict and to prevent zoonotic EIDs. Although significant improvements in environmental and medical surveillance, clinical diagnostic methods, and medical practices have been achieved in the recent years, zoonotic EIDs remain a major global concern, and such threats are expanding, especially in less developed regions. The current Ebola epidemic in West Africa is an extreme stark reminder of the role animal reservoirs play in public health and reinforces the urgent need for globally operationalizing a One Health approach. The complex nature of zoonotic diseases and the limited resources in developing countries are a reminder that the need for implementation of Global One Health in low-resource settings is crucial. The Veterinary Public Health and Biotechnology (VPH-Biotec) Global Consortium launched the International Congress on Pathogens at the Human-Animal Interface (ICOPHAI) in order to address important challenges and needs for capacity building. The inaugural ICOPHAI (Addis Ababa, Ethiopia, 2011) and the second congress (Porto de Galinhas, Brazil, 2013) were unique opportunities to share and discuss issues related to zoonotic infectious diseases worldwide. In addition to strong scientific reports in eight thematic areas that necessitate One Health implementation, the congress identified four key capacity-building needs: (1) development of adequate science-based risk management policies, (2) skilled-personnel capacity building, (3) accredited veterinary and public health diagnostic laboratories with a shared database, and (4) improved use of existing natural resources and implementation. The aim of this review is to highlight

  3. Infectious agents and inflammation in donated hearts and dilated cardiomyopathies related to cardiovascular diseases, Chagas' heart disease, primary and secondary dilated cardiomyopathies.

    PubMed

    Mangini, Sandrigo; Higuchi, Maria de Lourdes; Kawakami, Joyce Tiyeko; Reis, Marcia Martins; Ikegami, Renata Nishiyama; Palomino, Suely Aparecida Pinheiro; Pomerantzeff, Pablo Maria Alberto; Fiorelli, Alfredo Inácio; Marcondes-Braga, Fabiana Goulart; Bacal, Fernando; Ferreira, Sílvia Moreira Ayub; Issa, Victor Sarli; Souza, Germano Emílio Conceição; Chizzola, Paulo Roberto; Bocchi, Edimar Alcides

    2015-01-15

    Clinical and experimental conflicting data have questioned the relationship between infectious agents, inflammation and dilated cardiomyopathy (DCM). The aim of this study was to determine the frequency of infectious agents and inflammation in endomyocardial biopsy (EMB) specimens from patients with idiopathic DCM, explanted hearts from different etiologies, including Chagas' disease, compared to donated hearts. From 2008 to 2011, myocardial samples from 29 heart donors and 55 patients with DCMs from different etiologies were studied (32 idiopathic, 9 chagasic, 6 ischemic and 8 other specific etiologies). Inflammation was investigated by immunohistochemistry and infectious agents by immunohistochemistry, molecular biology, in situ hybridization and electron microscopy. There were no differences regarding the presence of macrophages, expression of HLA class II and ICAM-I in donors and DCM. Inflammation in Chagas' disease was predominant. By immunohistochemistry, in donors, there was a higher expression of antigens of enterovirus and Borrelia, hepatitis B and C in DCMs. By molecular biology, in all groups, the positivity was elevated to microorganisms, including co-infections, with a higher positivity to adenovirus and HHV6 in donors towards DCMs. This study was the first to demonstrate the presence of virus in the heart tissue of chagasic DCM. The presence of inflammation and infectious agents is frequent in donated hearts, in the myocardium of patients with idiopathic DCM, myocardial dysfunction related to cardiovascular diseases, and primary and secondary cardiomyopathies, including Chagas' disease. The role of co-infection in Chagas' heart disease physiopathology deserves to be investigated in future studies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Nontherapeutic Use of Antimicrobial Agents in Animal Agriculture: Implications for Pediatrics.

    PubMed

    Paulson, Jerome A; Zaoutis, Theoklis E

    2015-12-01

    Antimicrobial resistance is one of the most serious threats to public health globally and threatens our ability to treat infectious diseases. Antimicrobial-resistant infections are associated with increased morbidity, mortality, and health care costs. Infants and children are affected by transmission of susceptible and resistant food zoonotic pathogens through the food supply, direct contact with animals, and environmental pathways. The overuse and misuse of antimicrobial agents in veterinary and human medicine is, in large part, responsible for the emergence of antibiotic resistance. Approximately 80% of the overall tonnage of antimicrobial agents sold in the United States in 2012 was for animal use, and approximately 60% of those agents are considered important for human medicine. Most of the use involves the addition of low doses of antimicrobial agents to the feed of healthy animals over prolonged periods to promote growth and increase feed efficiency or at a range of doses to prevent disease. These nontherapeutic uses contribute to resistance and create new health dangers for humans. This report describes how antimicrobial agents are used in animal agriculture, reviews the mechanisms of how such use contributes to development of resistance, and discusses US and global initiatives to curb the use of antimicrobial agents in agriculture. Copyright © 2015 by the American Academy of Pediatrics.

  5. Zoonotic bacterial meningitis in human adults.

    PubMed

    van Samkar, Anusha; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2016-09-13

    To describe the epidemiology, etiology, clinical characteristics, treatment, outcome, and prevention of zoonotic bacterial meningitis in human adults. We identified 16 zoonotic bacteria causing meningitis in adults. Zoonotic bacterial meningitis is uncommon compared to bacterial meningitis caused by human pathogens, and the incidence has a strong regional distribution. Zoonotic bacterial meningitis is mainly associated with animal contact, consumption of animal products, and an immunocompromised state of the patient. In a high proportion of zoonotic bacterial meningitis cases, CSF analysis showed only a mildly elevated leukocyte count. The recommended antibiotic therapy differs per pathogen, and the overall mortality is low. Zoonotic bacterial meningitis is uncommon but is associated with specific complications. The suspicion should be raised in patients with bacterial meningitis who have recreational or professional contact with animals and in patients living in regions endemic for specific zoonotic pathogens. An immunocompromised state is associated with a worse prognosis. Identification of risk factors and underlying disease is necessary to improve treatment. © 2016 American Academy of Neurology.

  6. Genomic Dissection of an Icelandic Epidemic of Respiratory Disease in Horses and Associated Zoonotic Cases

    PubMed Central

    Björnsdóttir, Sigríður; Harris, Simon R.; Svansson, Vilhjálmur; Gunnarsson, Eggert; Sigurðardóttir, Ólöf G.; Gammeljord, Kristina; Steward, Karen F.; Newton, J. Richard; Robinson, Carl; Charbonneau, Amelia R. L.

    2017-01-01

    ABSTRACT Iceland is free of the major infectious diseases of horses. However, in 2010 an epidemic of respiratory disease of unknown cause spread through the country’s native horse population of 77,000. Microbiological investigations ruled out known viral agents but identified the opportunistic pathogen Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) in diseased animals. We sequenced the genomes of 257 isolates of S. zooepidemicus to differentiate epidemic from endemic strains. We found that although multiple endemic clones of S. zooepidemicus were present, one particular clone, sequence type 209 (ST209), was likely to have been responsible for the epidemic. Concurrent with the epidemic, ST209 was also recovered from a human case of septicemia, highlighting the pathogenic potential of this strain. Epidemiological investigation revealed that the incursion of this strain into one training yard during February 2010 provided a nidus for the infection of multiple horses that then transmitted the strain to farms throughout Iceland. This study represents the first time that whole-genome sequencing has been used to investigate an epidemic on a national scale to identify the likely causative agent and the link to an associated zoonotic infection. Our data highlight the importance of national biosecurity to protect vulnerable populations of animals and also demonstrate the potential impact of S. zooepidemicus transmission to other animals, including humans. PMID:28765219

  7. Climate change and infectious diseases in the Arctic: establishment of a circumpolar working group

    PubMed Central

    Parkinson, Alan J.; Evengard, Birgitta; Semenza, Jan C.; Ogden, Nicholas; Børresen, Malene L.; Berner, Jim; Brubaker, Michael; Sjöstedt, Anders; Evander, Magnus; Hondula, David M.; Menne, Bettina; Pshenichnaya, Natalia; Gounder, Prabhu; Larose, Tricia; Revich, Boris; Hueffer, Karsten; Albihn, Ann

    2014-01-01

    The Arctic, even more so than other parts of the world, has warmed substantially over the past few decades. Temperature and humidity influence the rate of development, survival and reproduction of pathogens and thus the incidence and prevalence of many infectious diseases. Higher temperatures may also allow infected host species to survive winters in larger numbers, increase the population size and expand their habitat range. The impact of these changes on human disease in the Arctic has not been fully evaluated. There is concern that climate change may shift the geographic and temporal distribution of a range of infectious diseases. Many infectious diseases are climate sensitive, where their emergence in a region is dependent on climate-related ecological changes. Most are zoonotic diseases, and can be spread between humans and animals by arthropod vectors, water, soil, wild or domestic animals. Potentially climate-sensitive zoonotic pathogens of circumpolar concern include Brucella spp., Toxoplasma gondii, Trichinella spp., Clostridium botulinum, Francisella tularensis, Borrelia burgdorferi, Bacillus anthracis, Echinococcus spp., Leptospira spp., Giardia spp., Cryptosporida spp., Coxiella burnetti, rabies virus, West Nile virus, Hantaviruses, and tick-borne encephalitis viruses. PMID:25317383

  8. Neglected zoonotic helminths: Hymenolepis nana, Echinococcus canadensis and Ancylostoma ceylanicum.

    PubMed

    Thompson, R C A

    2015-05-01

    The majority of helminth parasites that are considered by WHO to be the cause of 'neglected diseases' are zoonotic. In terms of their impact on human health, the role of animal reservoirs and polyparasitism are both emerging issues in understanding the epidemiology of a number of these zoonoses. As such, Hymenolepis (Rodentolepis) nana, Echinococcus canadensis and Ancylostoma ceylanicum all qualify for consideration. They have been neglected and there is increasing evidence that all three parasite infections deserve more attention in terms of their impact on public health as well as their control. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  9. Beyond bushmeat: Animal contact, injury, and zoonotic disease risk in western Uganda

    PubMed Central

    Paige, Sarah B.; Frost, Simon D.W.; Gibson, Mhairi A.; Holland, James; Shankar, Anupama; Switzer, William M.; Ting, Nelson

    2014-01-01

    Zoonotic pathogens cause an estimated 70% of emerging and re-emerging infectious diseases in humans. In sub-Saharan Africa, bushmeat hunting and butchering is considered the primary risk factor for human-wildlife contact and zoonotic disease transmission, particularly for the transmission of simian retroviruses. However, hunting is only one of many activities in sub-Saharan Africa that bring people and wildlife into contact. Here, we examine human-animal interaction in western Uganda, identifying patterns of injuries from animals and contact with nonhuman primates. Additionally, we identify individual-level risk factors associated with contact. Nearly 20% (246/ 1,240) of participants reported either being injured by an animal or having contact with a primate over their lifetimes. The majority (51.7%) of injuries were dog bites that healed with no long term medical consequences. The majority (76.8%) of 125 total primate contacts involved touching a carcass; however, butchering (20%), hunting (10%), and touching a live primate (10%) were also reported. Red colobus (Piliocolobus rufomitratus tephrosceles) accounted for most primate contact events. Multivariate logistic regression indicated that men who live adjacent to forest fragments are at elevated risk of animal contact and specifically primate contact. Our results provide a useful comparison to West and Central Africa where “bushmeat hunting” is the predominant paradigm for human-wildlife contact and zoonotic disease transmission. PMID:24845574

  10. Beyond bushmeat: animal contact, injury, and zoonotic disease risk in Western Uganda.

    PubMed

    Paige, Sarah B; Frost, Simon D W; Gibson, Mhairi A; Jones, James Holland; Shankar, Anupama; Switzer, William M; Ting, Nelson; Goldberg, Tony L

    2014-12-01

    Zoonotic pathogens cause an estimated 70% of emerging and re-emerging infectious diseases in humans. In sub-Saharan Africa, bushmeat hunting and butchering is considered the primary risk factor for human-wildlife contact and zoonotic disease transmission, particularly for the transmission of simian retroviruses. However, hunting is only one of many activities in sub-Saharan Africa that bring people and wildlife into contact. Here, we examine human-animal interaction in western Uganda, identifying patterns of injuries from animals and contact with nonhuman primates. Additionally, we identify individual-level risk factors associated with contact. Nearly 20% (246/1,240) of participants reported either being injured by an animal or having contact with a primate over their lifetimes. The majority (51.7%) of injuries were dog bites that healed with no long-term medical consequences. The majority (76.8%) of 125 total primate contacts involved touching a carcass; however, butchering (20%), hunting (10%), and touching a live primate (10%) were also reported. Red colobus (Piliocolobus rufomitratus tephrosceles) accounted for most primate contact events. Multivariate logistic regression indicated that men who live adjacent to forest fragments are at elevated risk of animal contact and specifically primate contact. Our results provide a useful comparison to West and Central Africa where "bushmeat hunting" is the predominant paradigm for human-wildlife contact and zoonotic disease transmission.

  11. Richard Bradley: a unified, living agent theory of the cause of infectious diseases of plants, animals, and humans in the first decades of the 18th century.

    PubMed

    Santer, Melvin

    2009-01-01

    During the years 1714 to 1721, Richard Bradley, who was later to become the first Professor of Botany at Cambridge University, proposed a unified, unique, living agent theory of the cause of infectious diseases of plants and animals and the plague of humans. Bradley's agents included microscopic organisms, revealed by the studies of Robert Hooke and Antony van Leeuwenhoek. His theory derived from his experimental studies of plants and their diseases and from microscopic observation of animalcules in different naturally occurring and artificial environments. He concluded that there was a microscopic world of "insects" that lived and reproduced under the appropriate conditions, and that infectious diseases of plants were caused by such "insects." Since there are structural and functional similarities between plants and animals, Bradley concluded that microscopic organisms caused human and animal infectious diseases as well. However, his living agent cause of infectious diseases was not accepted by the contemporary scientific society.

  12. Lurking in the Shadows: Emerging Rodent Infectious Diseases

    PubMed Central

    Besselsen, David G.; Franklin, Craig L.; Livingston, Robert S.; Riley, Lela K.

    2013-01-01

    Rodent parvoviruses, Helicobacter spp., murine norovirus, and several other previously unknown infectious agents have “emerged” in laboratory rodents relatively recently. These agents have been discovered serendipitously or through active investigation of atypical serology results, cell culture contamination, unexpected histopathology, or previously unrecognized clinical disease syndromes. The potential research impact of these agents is not fully known. Infected rodents have demonstrated immunomodulation, tumor suppression, clinical disease (particularly in immunodeficient rodents), and histopathology. Perturbations of organismal and cellular physiology also likely occur. These agents posed unique challenges to laboratory animal resource programs once discovered; it was necessary to develop specific diagnostic assays and an understanding of their epidemiology and transmission routes before attempting eradication, and then evaluate eradication methods for efficacy. Even then management approaches varied significantly, from apathy to total exclusion, and such inconsistency has hindered the sharing and transfer of rodents among institutions, particularly for genetically modified rodent models that may not be readily available. As additional infectious agents are discovered in laboratory rodents in coming years, much of what researchers have learned from experiences with the recently identified pathogens will be applicable. This article provides an overview of the discovery, detection, and research impact of infectious agents recently identified in laboratory rodents. We also discuss emerging syndromes for which there is a suspected infectious etiology, and the unique challenges of managing newly emerging infectious agents. PMID:18506061

  13. HIGHLIGHTS, INSIGHTS, AND PERSPECTIVES ON INFECTIOUS DISEASE AGENTS IN SEWAGE SLUDGE AND ANIMAL MANURE IN THE U.S.

    EPA Science Inventory

    The purpose of this chapter is: 1) Highlight the core principles and findings from the Workshop on Emerging Infectious Disease Agents and Issues Associated With Sewage Sludge, Animal Manures and Other Organic By-Products held June 4-6, 2001, Cincinnati, Ohio, so that all readers,...

  14. Recent advances in rapid and ultrasensitive biosensors for infectious agents: lesson from Bacillus anthracis diagnostic sensors.

    PubMed

    Kim, Joungmok; Yoon, Moon-Young

    2010-06-01

    Here, we review the cumulative efforts to develop rapid and ultrasensitive diagnostic systems, especially for the infectious agent, Bacillus anthracis, as a model system. This Minireview focuses on demonstrating the features of various probes for target molecule detection and recent methods of signal generation within the biosensors. Also, we discuss the possibility of using peptides as next-generation probe molecules.

  15. Land-Use Change and Emerging Infectious Disease on an Island Continent

    PubMed Central

    McFarlane, Rosemary A.; Sleigh, Adrian C.; McMichael, Anthony J.

    2013-01-01

    A more rigorous and nuanced understanding of land-use change (LUC) as a driver of emerging infectious disease (EID) is required. Here we examine post hunter-gatherer LUC as a driver of infectious disease in one biogeographical region with a compressed and documented history—continental Australia. We do this by examining land-use and native vegetation change (LUCC) associations with infectious disease emergence identified through a systematic (1973–2010) and historical (1788–1973) review of infectious disease literature of humans and animals. We find that 22% (20) of the systematically reviewed EIDs are associated with LUCC, most frequently where natural landscapes have been removed or replaced with agriculture, plantations, livestock or urban development. Historical clustering of vector-borne, zoonotic and environmental disease emergence also follows major periods of extensive land clearing. These advanced stages of LUCC are accompanied by changes in the distribution and density of hosts and vectors, at varying scales and chronology. This review of infectious disease emergence in one continent provides valuable insight into the association between accelerated global LUC and concurrent accelerated infectious disease emergence. PMID:23812027

  16. Consensus summary of aerosolized antimicrobial agents: application of guideline criteria. Insights from the Society of Infectious Diseases Pharmacists.

    PubMed

    Le, Jennifer; Ashley, Elizabeth Dodds; Neuhauser, Melinda M; Brown, Jack; Gentry, Chris; Klepser, Michael E; Marr, Ann Marie; Schiller, Daryl; Schwiesow, Joshua N; Tice, Sally; VandenBussche, Heather L; Wood, G Christopher

    2010-06-01

    Aerosolized delivery of antimicrobial agents is an attractive option for management of pulmonary infections, as this is an ideal method of providing high local drug concentrations while minimizing systemic exposure. With the paucity of consensus regarding the safety, efficacy, and means with which to use aerosolized antimicrobials, a task force was created by the Society of Infectious Diseases Pharmacists to critically review and evaluate the literature on the use of aerosolized antiinfective agents. This article summarizes key findings and statements for preventing or treating a variety of infectious diseases, including cystic fibrosis, bronchiecstasis, hospital-acquired pneumonia, fungal infections, nontuberculosis mycobacterial infection, and Pneumocystis jiroveci pneumonia. Our intention was to provide guidance for clinicians on the use of aerosolized antibiotics through evidence-based pharmacotherapy. Further research with well-designed clinical trials is necessary to elucidate the optimal dosage and duration of therapy and, of equal importance, to appreciate the true risks associated with the use of aerosolized delivery systems.

  17. The landscape configuration of zoonotic transmission of Ebola virus disease in West and Central Africa: interaction between population density and vegetation cover.

    PubMed

    Walsh, Michael G; Haseeb, Ma

    2015-01-01

    Ebola virus disease (EVD) is an emerging infectious disease of zoonotic origin that has been responsible for high mortality and significant social disruption in West and Central Africa. Zoonotic transmission of EVD requires contact between susceptible human hosts and the reservoir species for Ebolaviruses, which are believed to be fruit bats. Nevertheless, features of the landscape that may facilitate such points of contact have not yet been adequately identified. Nor have spatial dependencies between zoonotic EVD transmission and landscape structures been delineated. This investigation sought to describe the spatial relationship between zoonotic EVD transmission events, or spillovers, and population density and vegetation cover. An inhomogeneous Poisson process model was fitted to all precisely geolocated zoonotic transmissions of EVD in West and Central Africa. Population density was strongly associated with spillover; however, there was significant interaction between population density and green vegetation cover. In areas of very low population density, increasing vegetation cover was associated with a decrease in risk of zoonotic transmission, but as population density increased in a given area, increasing vegetation cover was associated with increased risk of zoonotic transmission. This study showed that the spatial dependencies of Ebolavirus spillover were associated with the distribution of population density and vegetation cover in the landscape, even after controlling for climate and altitude. While this is an observational study, and thus precludes direct causal inference, the findings do highlight areas that may be at risk for zoonotic EVD transmission based on the spatial configuration of important features of the landscape.

  18. Early detection of emerging zoonotic diseases with animal morbidity and mortality monitoring.

    PubMed

    Bisson, Isabelle-Anne; Ssebide, Benard J; Marra, Peter P

    2015-03-01

    Diseases transmitted between animals and people have made up more than 50% of emerging infectious diseases in humans over the last 60 years and have continued to arise in recent months. Yet, public health and animal disease surveillance programs continue to operate independently. Here, we assessed whether recent emerging zoonotic pathogens (n = 143) are known to cause morbidity or mortality in their animal host and if so, whether they were first detected with an animal morbidity/mortality event. We show that although sick or dead animals are often associated with these pathogens (52%), only 9% were first detected from an animal morbidity or mortality event prior to or concurrent with signs of illness in humans. We propose that an animal morbidity and mortality reporting program will improve detection and should be an essential component of early warning systems for zoonotic diseases. With the use of widespread low-cost technology, such a program could engage both the public and professionals and be easily tested and further incorporated as part of surveillance efforts by public health officials.

  19. Determination of buoyant density and sensitivity to chloroform and freon for the etiological agent of infectious salmonid anaemia

    USGS Publications Warehouse

    Christie, K.E.; Hjeltnes, B.; Uglenes , I.; Winton, J.R.

    1993-01-01

    Plasma was collected from Atlantic salmon Salrno salar with acute infectious salmon anaemia (ISA) and used to challenge Atlantic salmon parr by intraperitoneal injection. Treatment of plasma with the lipid solvent, chloroform, showed that the etiological agent of ISA contained essential lipids, probably as a viral envelope. Some infectivity remained following treatment with freon. Injection challenges using fractions from equilibrium density gradient centrifugation of plasma from fish with acute ISA revealed a band of infectivity in the range 1.184 to 1.262 g cm-3. The band was believed to conta~n both complete ISA-virus particles and infectious particles lacking a complete envelope, nucleocapsid or genome. Density gradient centrifugation of infectious plasma for enrichment of the putative ISA virus appeared to offer a suitable method for obtaining virus-specific nucleic acid for use in the construction of cDNA libraries. 

  20. Application of a micro-aerosolized disinfectant to clear Mycoplasma gallisepticum from contaminated facilities

    USDA-ARS?s Scientific Manuscript database

    Infectious agents and their associated diseases can be significant barriers in the production of poultry and zoonotic agents associated with poultry flocks can ultimately endanger consumers. To this end, poultry producers employ a variety of strategies to minimize associated risks. Disinfectants a...

  1. Comparison of Infectious Agents Susceptibility to Photocatalytic Effects of Nanosized Titanium and Zinc Oxides: A Practical Approach

    NASA Astrophysics Data System (ADS)

    Bogdan, Janusz; Zarzyńska, Joanna; Pławińska-Czarnak, Joanna

    2015-08-01

    Nanotechnology contributes towards a more effective eradication of pathogens that have emerged in hospitals, veterinary clinics, and food processing plants and that are resistant to traditional drugs or disinfectants. Since new methods of pathogens eradication must be invented and implemented, nanotechnology seems to have become the response to that acute need. A remarkable achievement in this field of science was the creation of self-disinfecting surfaces that base on advanced oxidation processes (AOPs). Thus, the phenomenon of photocatalysis was practically applied. Among the AOPs that have been most studied in respect of their ability to eradicate viruses, prions, bacteria, yeasts, and molds, there are the processes of TiO2/UV and ZnO/UV. Titanium dioxide (TiO2) and zinc oxide (ZnO) act as photocatalysts, after they have been powdered to nanoparticles. Ultraviolet (UV) radiation is an agent that determines their excitation. Methods using photocatalytic properties of nanosized TiO2 and ZnO prove to be highly efficient in inactivation of infectious agents. Therefore, they are being applied on a growing scale. AOP-based disinfection is regarded as a very promising tool that might help overcome problems in food hygiene and public health protection. The susceptibility of infectious agents to photocatalylic processes can be generally arranged in the following order: viruses > prions > Gram-negative bacteria > Gram-positive bacteria > yeasts > molds.

  2. Molecular survey of infectious agents associated with bovine respiratory disease in a beef cattle feedlot in southern Brazil.

    PubMed

    Headley, Selwyn A; Okano, Werner; Balbo, Luciana C; Marcasso, Rogério A; Oliveira, Thalita E; Alfieri, Alice F; Negri Filho, Luiz C; Michelazzo, Mariana Z; Rodrigues, Silvio C; Baptista, Anderson L; Saut, João Paulo E; Alfieri, Amauri A

    2018-03-01

    We investigated the occurrence of infectious pathogens during an outbreak of bovine respiratory disease (BRD) in a beef cattle feedlot in southern Brazil that has a high risk of developing BRD. Nasopharyngeal swabs were randomly collected from steers ( n = 23) and assessed for the presence of infectious agents of BRD by PCR and/or RT-PCR assays. These included: Histophilus somni, Mannheimia haemolytica, Pasteurella multocida, Mycoplasma bovis, bovine respiratory syncytial virus (BRSV), bovine coronavirus (BCoV), bovine viral diarrhea virus (BVDV), bovine alphaherpesvirus 1 (BoHV-1), and bovine parainfluenza virus 3 (BPIV-3). Pulmonary sections of one steer that died with clinical BRD were submitted for pathology and molecular testing. The frequencies of the pathogens identified from the nasopharyngeal swabs were: H. somni 39% (9 of 23), BRSV 35% (8 of 23), BCoV 22% (5 of 23), and M. haemolytica 13% (3 of 23). PCR or RT-PCR assays did not identify P. multocida, M. bovis, BoHV-1, BVDV, or BPIV-3 from the nasopharyngeal swabs. Single and concomitant associations of infectious agents of BRD were identified. Fibrinous bronchopneumonia was diagnosed in one steer that died; samples were positive for H. somni and M. haemolytica by PCR. H. somni, BRSV, and BCoV are important disease pathogens of BRD in feedlot cattle in Brazil, but H. somni and BCoV are probably under-reported.

  3. Participation of women and children in hunting activities in Sierra Leone and implications for control of zoonotic infections

    PubMed Central

    Kandeh, Martin; Dawson, Michael; Ansumana, Rashid; Sahr, Foday; Kelly, Ann H.; Brown, Hannah

    2017-01-01

    The emergence of infectious diseases of zoonotic origin highlights the need to understand social practices at the animal-human interface. This study provides a qualitative account of interactions between humans and wild animals in predominantly Mende villages of southern Sierra Leone. We conducted fieldwork over 4 months including participant and direct observations, semi-structured interviews (n = 47), spontaneously occurring focus group discussions (n = 12), school essays and informal interviews to describe behaviours that may serve as pathways for zoonotic infection. In this region, hunting is the primary form of contact with wild animals. We describe how these interactions are shaped by socio-cultural contexts, including opportunities to access economic resources and by social obligations and constraints. Our research suggests that the potential for exposure to zoonotic pathogens is more widely distributed across different age, gender and social groups than previously appreciated. We highlight the role of children in hunting, an age group that has previously not been discussed in the context of hunting. The breadth of the "at risk" population forces reconsideration of how we conceptualize, trace and monitor pathogen exposure. PMID:28749933

  4. Nipah virus: transmission of a zoonotic paramyxovirus.

    PubMed

    Clayton, Bronwyn Anne

    2017-02-01

    Nipah virus is a recently-recognised, zoonotic paramyxovirus that causes severe disease and high fatality rates in people. Outbreaks have occurred in Malaysia, Singapore, India and Bangladesh, and a putative Nipah virus was also recently associated with human disease in the Philippines. Worryingly, human-to-human transmission is common in Bangladesh, where outbreaks occur with near-annual frequency. Onward human transmission of Nipah virus in Bangladesh is associated with close contact with clinically-unwell patients or their infectious secretions. While Nipah virus isolates associated with outbreaks of human infection have not resulted in sustained transmission to date, specific exposures carry a high risk of person-to-person transmission, an observation which is supported by recent findings in animal models. Novel paramyxoviruses continue to emerge from wildlife hosts, and represent an ongoing threat to human health globally. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  5. sourceR: Classification and source attribution of infectious agents among heterogeneous populations

    PubMed Central

    French, Nigel

    2017-01-01

    Zoonotic diseases are a major cause of morbidity, and productivity losses in both human and animal populations. Identifying the source of food-borne zoonoses (e.g. an animal reservoir or food product) is crucial for the identification and prioritisation of food safety interventions. For many zoonotic diseases it is difficult to attribute human cases to sources of infection because there is little epidemiological information on the cases. However, microbial strain typing allows zoonotic pathogens to be categorised, and the relative frequencies of the strain types among the sources and in human cases allows inference on the likely source of each infection. We introduce sourceR, an R package for quantitative source attribution, aimed at food-borne diseases. It implements a Bayesian model using strain-typed surveillance data from both human cases and source samples, capable of identifying important sources of infection. The model measures the force of infection from each source, allowing for varying survivability, pathogenicity and virulence of pathogen strains, and varying abilities of the sources to act as vehicles of infection. A Bayesian non-parametric (Dirichlet process) approach is used to cluster pathogen strain types by epidemiological behaviour, avoiding model overfitting and allowing detection of strain types associated with potentially high “virulence”. sourceR is demonstrated using Campylobacter jejuni isolate data collected in New Zealand between 2005 and 2008. Chicken from a particular poultry supplier was identified as the major source of campylobacteriosis, which is qualitatively similar to results of previous studies using the same dataset. Additionally, the software identifies a cluster of 9 multilocus sequence types with abnormally high ‘virulence’ in humans. sourceR enables straightforward attribution of cases of zoonotic infection to putative sources of infection. As sourceR develops, we intend it to become an important and flexible

  6. Infectious prions and proteinopathies.

    PubMed

    Barron, Rona M

    2017-01-02

    Transmissible spongiform encephalopathies (TSEs) are caused by an infectious agent that is thought to consist of only misfolded and aggregated prion protein (PrP). Unlike conventional micro-organisms, the agent spreads and propagates by binding to and converting normal host PrP into the abnormal conformer, increasing the infectious titre. Synthetic prions, composed of refolded fibrillar forms of recombinant PrP (rec-PrP) have been generated to address whether PrP aggregates alone are indeed infectious prions. In several reports, the development of TSE disease has been described following inoculation and passage of rec-PrP fibrils in transgenic mice and hamsters. However in studies described here we show that inoculation of rec-PrP fibrils does not always cause clinical TSE disease or increased infectious titre, but can seed the formation of PrP amyloid plaques in PrP-P101L knock-in transgenic mice (101LL). These data are reminiscent of the "prion-like" spread of misfolded protein in other models of neurodegenerative disease following inoculation of transgenic mice with pre-formed amyloid seeds. Protein misfolding, even when the protein is PrP, does not inevitably lead to the development of an infectious TSE disease. It is possible that most in vivo and in vitro produced misfolded PrP is not infectious and that only a specific subpopulation is associated with infectivity and neurotoxicity.

  7. Rodent reservoirs of future zoonotic diseases

    PubMed Central

    Han, Barbara A.; Schmidt, John Paul; Bowden, Sarah E.; Drake, John M.

    2015-01-01

    The increasing frequency of zoonotic disease events underscores a need to develop forecasting tools toward a more preemptive approach to outbreak investigation. We apply machine learning to data describing the traits and zoonotic pathogen diversity of the most speciose group of mammals, the rodents, which also comprise a disproportionate number of zoonotic disease reservoirs. Our models predict reservoir status in this group with over 90% accuracy, identifying species with high probabilities of harboring undiscovered zoonotic pathogens based on trait profiles that may serve as rules of thumb to distinguish reservoirs from nonreservoir species. Key predictors of zoonotic reservoirs include biogeographical properties, such as range size, as well as intrinsic host traits associated with lifetime reproductive output. Predicted hotspots of novel rodent reservoir diversity occur in the Middle East and Central Asia and the Midwestern United States. PMID:26038558

  8. Expanding the Hygiene Hypothesis: Early Exposure to Infectious Agents Predicts Delayed-Type Hypersensitivity to Candida among Children in Kilimanjaro

    PubMed Central

    Wander, Katherine; O'Connor, Kathleen; Shell-Duncan, Bettina

    2012-01-01

    Background Multiple lines of evidence suggest that infections in early life prevent the development of pathological immune responses to allergens and autoantigens (the hygiene hypothesis). Early infections may also affect later immune responses to pathogen antigen. Methods To evaluate an association between early infections and immune responses to pathogen antigen, delayed-type hypersensitivity (DTH) to Candida albicans was evaluated among 283 2- to 7-year-old children in Kilimanjaro, Tanzania. A questionnaire and physical examination were used to characterize variables reflecting early exposure to infectious agents (family size, house construction materials, BCG vaccination, hospitalization history). Logistic regression was used to evaluate the association between early exposure to infectious agents and DTH to C. albicans. Results Triceps skinfold thickness (OR: 1.11; 95% CI: 1.01, 1.22) and age (OR: 1.27; 95% CI: 1.04, 1.55) were positively associated with DTH to C. albicans. Adjusted for age and sex, large family size (OR: 2.81; 95% CI: 1.04, 7.61), BCG vaccination scar (OR: 3.10; 95% CI: 1.10, 8.71), and hospitalization during infancy with an infectious disease (OR: 4.67; 95% CI: 1.00, 21.74) were positively associated with DTH to C. albicans. Conclusions Early life infections were positively associated with later DTH to C. albicans. This result supports an expansion of the hygiene hypothesis to explain not only pathological immune responses to allergens, but also appropriate immune responses to pathogens. Immune system development may be responsive to early infections as an adaptive means to tailor reactivity to the local infectious disease ecology. PMID:22616000

  9. Zoonotic Cryptosporidium Species in Animals Inhabiting Sydney Water Catchments

    PubMed Central

    Zahedi, Alireza; Monis, Paul; Aucote, Sarah; King, Brendon; Paparini, Andrea; Jian, Fuchun; Yang, Rongchang; Oskam, Charlotte; Ball, Andrew; Robertson, Ian; Ryan, Una

    2016-01-01

    Cryptosporidium is one of the most common zoonotic waterborne parasitic diseases worldwide and represents a major public health concern of water utilities in developed nations. As animals in catchments can shed human-infectious Cryptosporidium oocysts, determining the potential role of animals in dissemination of zoonotic Cryptosporidium to drinking water sources is crucial. In the present study, a total of 952 animal faecal samples from four dominant species (kangaroos, rabbits, cattle and sheep) inhabiting Sydney’s drinking water catchments were screened for the presence of Cryptosporidium using a quantitative PCR (qPCR) and positives sequenced at multiple loci. Cryptosporidium species were detected in 3.6% (21/576) of kangaroos, 7.0% (10/142) of cattle, 2.3% (3/128) of sheep and 13.2% (14/106) of rabbit samples screened. Sequence analysis of a region of the 18S rRNA locus identified C. macropodum and C. hominis in 4 and 17 isolates from kangaroos respectively, C. hominis and C. parvum in 6 and 4 isolates respectively each from cattle, C. ubiquitum in 3 isolates from sheep and C. cuniculus in 14 isolates from rabbits. All the Cryptosporidium species identified were zoonotic species with the exception of C. macropodum. Subtyping using the 5’ half of gp60 identified C. hominis IbA10G2 (n = 12) and IdA15G1 (n = 2) in kangaroo faecal samples; C. hominis IbA10G2 (n = 4) and C. parvum IIaA18G3R1 (n = 4) in cattle faecal samples, C. ubiquitum subtype XIIa (n = 1) in sheep and C. cuniculus VbA23 (n = 9) in rabbits. Additional analysis of a subset of samples using primers targeting conserved regions of the MIC1 gene and the 3’ end of gp60 suggests that the C. hominis detected in these animals represent substantial variants that failed to amplify as expected. The significance of this finding requires further investigation but might be reflective of the ability of this C. hominis variant to infect animals. The finding of zoonotic Cryptosporidium species in these

  10. A systematic review of community-based interventions for emerging zoonotic infectious diseases in Southeast Asia

    PubMed Central

    Halton, Kate; Sarna, Mohinder; Barnett, Adrian; Leonardo, Lydia; Graves, Nicholas

    2013-01-01

    Executive Summary Background Southeast Asia has been at the epicentre of recent epidemics of emerging and re-emerging zoonotic diseases. Community-based surveillance and control interventions have been heavily promoted but the most effective interventions have not been identified. Objectives This review evaluated evidence for the effectiveness of community-based surveillance interventions at monitoring and identifying emerging infectious disease; the effectiveness of community-based control interventions at reducing rates of emerging infectious disease; and contextual factors that influence intervention effectiveness. Inclusion criteria Participants Communities in Brunei, Cambodia, Indonesia, Laos, Malaysia, Myanmar, the Philippines, Singapore, Thailand and Viet Nam. Types of intervention(s) Non-pharmaceutical, non-vaccine, and community-based surveillance or prevention and control interventions targeting rabies, Nipah virus, dengue, SARS or avian influenza. Types of outcomes Primary outcomes: measures: of infection or disease; secondary outcomes: measures of intervention function. Types of studies Original quantitative studies published in English. Search strategy Databases searched (1980 to 2011): PubMed, CINAHL, ProQuest, EBSCOhost, Web of Science, Science Direct, Cochrane database of systematic reviews, WHOLIS, British Development Library, LILACS, World Bank (East Asia), Asian Development Bank. Methodological quality Two independent reviewers critically appraised studies using standard Joanna Briggs Institute instruments. Disagreements were resolved through discussion. Data extraction A customised tool was used to extract quantitative data on intervention(s), populations, study methods, and primary and secondary outcomes; and qualitative contextual information or narrative evidence about interventions. Data synthesis Data was synthesised in a narrative summary with the aid of tables. Meta-analysis was used to statistically pool quantitative results. Results

  11. Selected Pathogens of Concern to Industrial Food Processors: Infectious, Toxigenic, Toxico-Infectious, Selected Emerging Pathogenic Bacteria

    NASA Astrophysics Data System (ADS)

    Behling, Robert G.; Eifert, Joseph; Erickson, Marilyn C.; Gurtler, Joshua B.; Kornacki, Jeffrey L.; Line, Erick; Radcliff, Roy; Ryser, Elliot T.; Stawick, Bradley; Yan, Zhinong

    This chapter, written by several contributing authors, is devoted to discussing selected microbes of contemporary importance. Microbes from three categories are described by the following: (1) infectious invasive agents like Salmonella, Listeria monocytogenes, and Campylobacter; (2) toxigenic pathogens such as Staphylococcus aureus, Bacillus cereus, and Clostridium botulinum; and (3) toxico-infectious agents like enterohemorrhagic Escherichia coli and Clostridium perfringens. In addition, emerging pathogens, like Cronobacter (Enterobacter) sakazakii, Arcobacter spp., and Mycobacterium avium subspecies paratuberculosis are also described.

  12. Infectious diseases in competitive sports.

    PubMed

    Goodman, R A; Thacker, S B; Solomon, S L; Osterholm, M T; Hughes, J M

    1994-03-16

    Participation in competitive sports is popular and widely encouraged throughout the United States. Reports of infectious disease outbreaks among competitive athletes and recent publicity regarding infectious disease concerns in sports underscore the need to better characterize the occurrence of these problems. To identify reports of infectious diseases in sports, we performed a comprehensive search of the medical literature (MEDLINE) and newspaper databases in two on-line services (NEXIS and DIALOG PAPERS). Articles selected from the literature review included those describing cases or outbreaks of disease in which exposure to an infectious agent was likely to have occurred during training for competitive sports or during actual competition. Articles from the newspaper review included reports of outbreaks, exposures, or preventive measures that directly or indirectly involved teams or spectators. The literature review identified 38 reports of infectious disease outbreaks or other instances of transmission through person-to-person (24 reports), common-source (nine reports), or airborne (five reports) routes; the newspaper search identified 28 reports. Infectious agents included predominantly viruses but also a variety of fungi and gram-positive and gram-negative bacteria. Our findings indicate that strategies to prevent transmission of infectious diseases in sports must recognize risks at three levels: the individual athlete, the team, and spectators or others who may become exposed to infectious diseases as a result of sports-related activities. Team physicians and others who are responsible for the health of athletes should be especially familiar with the features of infectious diseases that occur in sports and measures for the prevention of these problems.

  13. The role of infectious disease in marine communities: chapter 5

    USGS Publications Warehouse

    Lafferty, Kevin D.; Harvell, C. Drew

    2014-01-01

    Marine ecologists recognize that infectious diseases play and important role in ocean ecosystems. This role may have increased in some host taxa over time (Ward and Lafferty 2004). We begin this chapter by introducing infectious agents and their relationships with their hosts in marine systems. We then put infectious disease agents with their hosts in marine systems. We then put infectious disease agents in the perspective of marine biodiversity and discuss the various factors that affect parasites. Specifically, we introduce some basin epidemiological concepts, including the effects of stress and free-living diversity on parasites. Following this, we give brief consideration to communities of parasites within their hosts, particularly as these can lead to general insights into community ecology. We also give examples of how infectious diseases affect host populations, scaling up to marine communities. Finally, we present examples of marine infectious disease that impair conservation and fisheries.

  14. Ectoparasites and other epifaunistic arthropods of sympatric cotton mice and golden mice: comparisons and implications for vector-borne zoonotic diseases.

    PubMed

    Durden, Lance A; Polur, Ram N; Nims, Todd; Banks, Craig W; Oliver, James H

    2004-12-01

    Ectoparasite and epifaunistic arthropod biodiversity and infestation parameters were compared between 2 sympatric small rodent species, the cotton mouse (Peromyscus gossypinus (Le Conte)) and golden mouse (Ochrotomys nuttalli (Harlan)), in southern Georgia from 1992 to 2003. Because the cotton mouse is known to be a reservoir of more vector-borne zoonotic pathogens than the golden mouse, we hypothesized that it would be parasitized by more ectoparasites that are known to be vectors of these pathogens. Cotton mice (n = 202) were parasitized by 19 species of arthropods, whereas golden mice (n = 46) were parasitized by 12 species. Eleven species of arthropods were recovered from both host species, whereas 7 were recorded only from cotton mice, and 1 species only from golden mice. Infestation prevalences (percent of mice parasitized) were significantly higher for 1 species of arthropod (the tropical rat mite Ornithonyssus bacoti (Hirst)) infesting cotton mice and for 4 species (the flea Peromyscopsylla scotti Fox and the mites Glycyphagus hypudaei Koch, Androlaelaps casalis (Berlese), and Androlaelaps fahrenholzi (Berlese)) infesting golden mice. Mean intensities (mean per infested mouse) were significantly higher for 2 species (the flea Orchopeas leucopus (Baker) and the blacklegged tick Ixodes scapularis Say) infesting cotton mice and for 2 species (G. hypudaei and A. fahrenholzi) infesting golden mice. Ectoparasites that are known to be vectors of zoonotic pathogens were significantly more common on cotton mice than on golden mice. These ectoparasites included the rhopalopsyllid flea Polygenis gwyni (Fox), a vector of the agent of murine typhus; I. scapularis, the principal vector of the agents of Lyme borreliosis, human granulocytic ehrlichiosis, and human babesiosis; and O. bacoti, a laboratory vector of several zoonotic pathogens. However, 2 species of ixodid ticks that can transmit zoonotic pathogens were recovered from both host species. These were the American

  15. Lessons from the Ebola Outbreak: Action Items for Emerging Infectious Disease Preparedness and Response.

    PubMed

    Jacobsen, Kathryn H; Aguirre, A Alonso; Bailey, Charles L; Baranova, Ancha V; Crooks, Andrew T; Croitoru, Arie; Delamater, Paul L; Gupta, Jhumka; Kehn-Hall, Kylene; Narayanan, Aarthi; Pierobon, Mariaelena; Rowan, Katherine E; Schwebach, J Reid; Seshaiyer, Padmanabhan; Sklarew, Dann M; Stefanidis, Anthony; Agouris, Peggy

    2016-03-01

    As the Ebola outbreak in West Africa wanes, it is time for the international scientific community to reflect on how to improve the detection of and coordinated response to future epidemics. Our interdisciplinary team identified key lessons learned from the Ebola outbreak that can be clustered into three areas: environmental conditions related to early warning systems, host characteristics related to public health, and agent issues that can be addressed through the laboratory sciences. In particular, we need to increase zoonotic surveillance activities, implement more effective ecological health interventions, expand prediction modeling, support medical and public health systems in order to improve local and international responses to epidemics, improve risk communication, better understand the role of social media in outbreak awareness and response, produce better diagnostic tools, create better therapeutic medications, and design better vaccines. This list highlights research priorities and policy actions the global community can take now to be better prepared for future emerging infectious disease outbreaks that threaten global public health and security.

  16. Detection of Zoonotic Pathogens and Characterization of Novel Viruses Carried by Commensal Rattus norvegicus in New York City

    PubMed Central

    Bhat, Meera; Firth, Matthew A.; Williams, Simon H.; Frye, Matthew J.; Simmonds, Peter; Conte, Juliette M.; Ng, James; Garcia, Joel; Bhuva, Nishit P.; Lee, Bohyun; Che, Xiaoyu; Quan, Phenix-Lan; Lipkin, W. Ian

    2014-01-01

    ABSTRACT Norway rats (Rattus norvegicus) are globally distributed and concentrate in urban environments, where they live and feed in closer proximity to human populations than most other mammals. Despite the potential role of rats as reservoirs of zoonotic diseases, the microbial diversity present in urban rat populations remains unexplored. In this study, we used targeted molecular assays to detect known bacterial, viral, and protozoan human pathogens and unbiased high-throughput sequencing to identify novel viruses related to agents of human disease in commensal Norway rats in New York City. We found that these rats are infected with bacterial pathogens known to cause acute or mild gastroenteritis in people, including atypical enteropathogenic Escherichia coli, Clostridium difficile, and Salmonella enterica, as well as infectious agents that have been associated with undifferentiated febrile illnesses, including Bartonella spp., Streptobacillus moniliformis, Leptospira interrogans, and Seoul hantavirus. We also identified a wide range of known and novel viruses from groups that contain important human pathogens, including sapoviruses, cardioviruses, kobuviruses, parechoviruses, rotaviruses, and hepaciviruses. The two novel hepaciviruses discovered in this study replicate in the liver of Norway rats and may have utility in establishing a small animal model of human hepatitis C virus infection. The results of this study demonstrate the diversity of microbes carried by commensal rodent species and highlight the need for improved pathogen surveillance and disease monitoring in urban environments. PMID:25316698

  17. Interdisciplinary approaches to zoonotic disease

    PubMed Central

    Goodwin, Robin; Schley, David; Lai, Ka-Man; Ceddia, Graziano M.; Barnett, Julie; Cook, Nigel

    2012-01-01

    Zoonotic infections are on the increase worldwide, but most research into the biological, environmental and life science aspects of these infections has been conducted in separation. In this review we bring together contemporary research in these areas to suggest a new, symbiotic framework which recognises the interaction of biological, economic, psychological, and natural and built environmental drivers in zoonotic infection and transmission. In doing so, we propose that some contemporary debates in zoonotic research could be resolved using an expanded framework which explicitly takes into account the combination of motivated and habitual human behaviour, environmental and biological constraints, and their interactions. PMID:24470951

  18. Zoonotic infections among employees from Great Smoky Mountains and Rocky Mountain National Parks, 2008-2009.

    PubMed

    Adjemian, Jennifer; Weber, Ingrid B; McQuiston, Jennifer; Griffith, Kevin S; Mead, Paul S; Nicholson, William; Roche, Aubree; Schriefer, Martin; Fischer, Marc; Kosoy, Olga; Laven, Janeen J; Stoddard, Robyn A; Hoffmaster, Alex R; Smith, Theresa; Bui, Duy; Wilkins, Patricia P; Jones, Jeffery L; Gupton, Paige N; Quinn, Conrad P; Messonnier, Nancy; Higgins, Charles; Wong, David

    2012-11-01

    U.S. National Park Service employees may have prolonged exposure to wildlife and arthropods, placing them at increased risk of infection with endemic zoonoses. To evaluate possible zoonotic risks present at both Great Smoky Mountains (GRSM) and Rocky Mountain (ROMO) National Parks, we assessed park employees for baseline seroprevalence to specific zoonotic pathogens, followed by evaluation of incident infections over a 1-year study period. Park personnel showed evidence of prior infection with a variety of zoonotic agents, including California serogroup bunyaviruses (31.9%), Bartonella henselae (26.7%), spotted fever group rickettsiae (22.2%), Toxoplasma gondii (11.1%), Anaplasma phagocytophilum (8.1%), Brucella spp. (8.9%), flaviviruses (2.2%), and Bacillus anthracis (1.5%). Over a 1-year study period, we detected incident infections with leptospirosis (5.7%), B. henselae (5.7%), spotted fever group rickettsiae (1.5%), T. gondii (1.5%), B. anthracis (1.5%), and La Crosse virus (1.5%) in staff members at GRSM, and with spotted fever group rickettsiae (8.5%) and B. henselae (4.3%) in staff at ROMO. The risk of any incident infection was greater for employees who worked as resource managers (OR 7.4; 95% CI 1.4,37.5; p=0.02), and as law enforcement rangers/rescue crew (OR 6.5; 95% CI 1.1,36.5; p=0.03), relative to those who worked primarily in administration or management. The results of this study increase our understanding of the pathogens circulating within both parks, and can be used to inform the development of effective guidelines and interventions to increase visitor and staff awareness and help prevent exposure to zoonotic agents.

  19. Molecular survey on zoonotic tick-borne bacteria and chlamydiae in feral pigeons (Columba livia domestica).

    PubMed

    Ebani, Valentina Virginia; Bertelloni, Fabrizio; Mani, Paolo

    2016-04-01

    To determine the presence of zoonotic tick-borne bacteria in feral pigeons (Columba livia domestica) from urban areas. Spleen samples from 84 feral pigeons, found dead with traumatic injuries in urban areas, were examined by PCR to detect DNA of Anaplasma phagocytophilum, Bartonella spp., Borrelia burgdorferi sensu lato, Coxiella burnetii, Rickettsia spp., and Chlamydophila spp. Twenty (23.8%) pigeons were infected by tick-borne agents, in particular 2 (2.38%) animals resulted positive for Bartonella spp., 5 (5.95%) for C. burnetii, 5 (5.95%) for Rickettsia spp., 13 (15.47%) for B. burgdorferi sensu lato. All birds scored negative for A. phagocytophilum. Moreover, 17 (20.23%) pigeons were positive for Chlamydophila spp. and among them 10 (11.9%) for Chlamydophila psittaci. Mixed infections by two or three agents were detected in 8 (9.52%) animals. Feral pigeons living in urban and periurban areas are a hazard for the human health as source of several pathogens. The obtained results confirm pigeons as reservoirs of chlamydial agents and suggest that they may be involved in the epidemiology of zoonotic tick-borne infections too. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  20. Starting from the bench--prevention and control of foodborne and zoonotic diseases.

    PubMed

    Vongkamjan, Kitiya; Wiedmann, Martin

    2015-02-01

    Foodborne diseases are estimated to cause around 50 million disease cases and 3000 deaths a year in the US. Worldwide, food and waterborne diseases are estimated to cause more than 2 million deaths per year. Lab-based research is a key component of efforts to prevent and control foodborne diseases. Over the last two decades, molecular characterization of pathogen isolates has emerged as a key component of foodborne and zoonotic disease prevention and control. Characterization methods have evolved from banding pattern-based subtyping methods to sequenced-based approaches, including full genome sequencing. Molecular subtyping methods not only play a key role for characterizing pathogen transmission and detection of disease outbreaks, but also allow for identification of clonal pathogen groups that show distinct transmission characteristics. Importantly, the data generated from molecular characterization of foodborne pathogens also represent critical inputs for epidemiological and modeling studies. Continued and enhanced collaborations between infectious disease related laboratory sciences and epidemiologists, modelers, and other quantitative scientists will be critical to a One-Health approach that delivers societal benefits, including improved surveillance systems and prevention approaches for zoonotic and foodborne pathogens. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Non-malignant disease mortality in meat workers: a model for studying the role of zoonotic transmissible agents in non-malignant chronic diseases in humans.

    PubMed

    Johnson, E S; Zhou, Y; Sall, M; Faramawi, M El; Shah, N; Christopher, A; Lewis, N

    2007-12-01

    Current research efforts have mainly concentrated on evaluating the role of substances present in animal food in the aetiology of chronic diseases in humans, with relatively little attention given to evaluating the role of transmissible agents that are also present. Meat workers are exposed to a variety of transmissible agents present in food animals and their products. This study investigates mortality from non-malignant diseases in workers with these exposures. A cohort mortality study was conducted between 1949 and 1989, of 8520 meat workers in a union in Baltimore, Maryland, who worked in manufacturing plants where animals were killed or processed, and who had high exposures to transmissible agents. Mortality in meat workers was compared with that in a control group of 6081 workers in the same union, and also with the US general population. Risk was estimated by proportional mortality and standardised mortality ratios (SMRs) and relative SMR. A clear excess of mortality from septicaemia, subarachnoid haemorrhage, chronic nephritis, acute and subacute endocarditis, functional diseases of the heart, and decreased risk of mortality from pre-cerebral, cerebral artery stenosis were observed in meat workers when compared to the control group or to the US general population. The authors hypothesise that zoonotic transmissible agents present in food animals and their products may be responsible for the occurrence of some cases of circulatory, neurological and other diseases in meat workers, and possibly in the general population exposed to these agents.

  2. Non-malignant disease mortality in meat workers: a model for studying the role of zoonotic transmissible agents in non-malignant chronic diseases in humans

    PubMed Central

    Johnson, E S; Zhou, Y; Sall, M; Faramawi, M El; Shah, N; Christopher, A; Lewis, N

    2007-01-01

    Background Current research efforts have mainly concentrated on evaluating the role of substances present in animal food in the aetiology of chronic diseases in humans, with relatively little attention given to evaluating the role of transmissible agents that are also present. Meat workers are exposed to a variety of transmissible agents present in food animals and their products. This study investigates mortality from non-malignant diseases in workers with these exposures. Methods A cohort mortality study was conducted between 1949 and 1989, of 8520 meat workers in a union in Baltimore, Maryland, who worked in manufacturing plants where animals were killed or processed, and who had high exposures to transmissible agents. Mortality in meat workers was compared with that in a control group of 6081 workers in the same union, and also with the US general population. Risk was estimated by proportional mortality and standardised mortality ratios (SMRs) and relative SMR. Results A clear excess of mortality from septicaemia, subarachnoid haemorrhage, chronic nephritis, acute and subacute endocarditis, functional diseases of the heart, and decreased risk of mortality from pre-cerebral, cerebral artery stenosis were observed in meat workers when compared to the control group or to the US general population. Conclusions The authors hypothesise that zoonotic transmissible agents present in food animals and their products may be responsible for the occurrence of some cases of circulatory, neurological and other diseases in meat workers, and possibly in the general population exposed to these agents. PMID:17604337

  3. Sustainable control of zoonotic pathogens in wildlife: how to be fair to wild animals?

    PubMed

    Artois, M; Blancou, J; Dupeyroux, O; Gilot-Fromont, E

    2011-12-01

    Wildlife may harbour infectious pathogens that are of zoonotic concern. However, culling such reservoir populations to mitigate or control the transmission of these pathogens to humans has proved disappointingly inefficient. Alternatives are still in an experimental stage of development. They include vaccination, medication, contraception and environmental manipulation, including fencing and biosecurity measures. This review examines the general concepts involved in the control of wildlife diseases and presents relevant case studies. Since wildlife disease control inevitably involves interfering with wildlife ecology, this is a complex goal whose attempts at realisation should be supervised by a scientific organisation. Most approaches within natural ecosystems should first be carefully tested in trials that are progressively extended to a larger scale. Finally, all measures that aim to prevent infection in humans (such as personal hygiene or vaccination) or that encourage us to avoid infectious contacts with wildlife should be recommended.

  4. Virus-like infectious agent (VLIA) is a novel pathogenic mycoplasma: Mycoplasma incognitus.

    PubMed

    Lo, S C; Shih, J W; Newton, P B; Wong, D M; Hayes, M M; Benish, J R; Wear, D J; Wang, R Y

    1989-11-01

    The newly recognized pathogenic virus-like infectious agent (VLIA), originally reported in patients with AIDS but also known to be pathogenic in previously healthy non-AIDS patients and in non-human primates, was cultured in cell-free conditions using a modified SP-4 medium and classified as a member of the order Mycoplasmatales, class Mollicutes. The infectious microorganism is tentatively referred to as Mycoplasma incognitus. M. incognitus has the unique biochemical properties of utilizing glucose both aerobically and anaerobically, as well as having the ability to metabolize arginine. Among all known human mycoplasmas, these specific biochemical characteristics were found previously only in a rarely isolated species, M. fermentans. In comparison with M. fermentans, M. incognitus appears to be even more fastidious in cultivation requirements and fails to grow in all tested mycoplasma media other than modified SP-4 medium. In addition, M. incognitus grows much more slowly, has a smaller spherical particle size and occasional filamentous morphology, and forms only irregular and very small colonies with diffuse edges on agar plates. Antigenic analysis using polyclonal and monoclonal antibodies and DNA analysis of sequence homology and restriction enzyme mappings in M. incognitus, M. orale, M. hyorhinis, M. hominis, M. pneumoniae, M. fermentans, M. arginini, M. genitalium, M. salivarium, Ureaplasma urealyticum, and Acholeplasma laidlawii revealed that M. incognitus is distinct from other mycoplasmas, but is most closely related to M. fermentans.

  5. Exposure of free-ranging maned wolves (Chrysocyon brachyurus) to infectious and parasitic disease agents in the Noël Kempff Mercado National Park, Bolivia.

    PubMed

    Deem, Sharon L; Emmons, Louise H

    2005-06-01

    Maned wolves (Chrysocyon brachyurus) are neotropic mammals, listed as a CITES Appendix II species, with a distribution south of the Amazon forest from Bolivia, through northern Argentina and Paraguay and into eastern Brazil and northern Uruguay. Primary threats to the survival of free-ranging maned wolves include habitat loss, road kills, and shooting by farmers. An additional threat to the conservation of maned wolves is the risk of morbidity and mortality due to infectious and parasitic diseases. Captive maned wolves are susceptible to, and die from, common infectious diseases of domestic dogs (Canis familiaris) including canine distemper virus (CDV), canine parvovirus (CPV), rabies virus, and canine adenovirus (CAV). Results from this study show that free-ranging maned wolves in a remote area of Bolivia have been exposed to multiple infectious and parasitic agents of domestic carnivores, including CAV, CDV, CPV, canine coronavirus, rabies virus, Leptospira interrogans spp., Toxoplasma gondii, and Dirofilaria immitis, and may be at increased risk for disease due to these agents.

  6. Chronic disease mortality associated with infectious agents: A comparative cohort study of migrants from the Former Soviet Union in Israel and Germany

    PubMed Central

    Ott, Jördis J; Paltiel, Ari M; Winkler, Volker; Becher, Heiko

    2008-01-01

    Background Prevalence of infectious diseases in migrant populations has been addressed in numerous studies. However, information is sparse on their mortality due to chronic diseases that are aetiologically associated with an infectious agent. This study investigates mortality related to infectious diseases with a specific focus on cancers of possibly infectious origin in voluntary migrants from the Former Soviet Union residing in Israel and in Germany. Methods Both groups of migrants arrived from the Former Soviet Union in their destination countries between 1990 and 2001. Population-based data on migrants in Israel were obtained from the Israel Central Bureau of Statistics. Data for migrants in Germany were obtained from a representative sample of all migrants from the Former Soviet Union in Germany. Cause of death information was available until 2003 for the Israeli cohort and until 2005 for the German cohort. Standardized mortality ratios were calculated relative to the destination country for selected causes of death for which infectious agents may be causally involved. Multivariate Poisson regression was applied to assess differences in mortality by length of residence in the host country. Results Both in Israel and in Germany these migrants have lower overall mortality than the population in their destination countries. However, they have significantly elevated mortality from viral hepatitis and from stomach and liver cancer when compared to the destination populations. Regression analysis shows that in Israel stomach cancer mortality is significantly higher among migrants at shorter durations of residence when compared to durations of more than nine years. Conclusion Higher mortality from cancers associated with infection and from viral hepatitis among migrants from the Former Soviet Union might result from higher prevalence of infections which were acquired in earlier years of life. The results highlight new challenges posed by diseases of infectious origin

  7. A Quantitative Approach to the Prioritization of Zoonotic Diseases in North America: A Health Professionals’ Perspective

    PubMed Central

    Ng, Victoria; Sargeant, Jan M.

    2013-01-01

    Background Currently, zoonoses account for 58% to 61% of all communicable diseases causing illness in humans globally and up to 75% of emerging human pathogens. Although the impact of zoonoses on animal health and public health in North America is significant, there has been no published research involving health professionals on the prioritization of zoonoses in this region. Methodology/Principal Findings We used conjoint analysis (CA), a well-established quantitative method in market research, to identify the relative importance of 21 key characteristics of zoonotic diseases for their prioritization in Canada and the US. Relative importance weights from the CA were used to develop a point-scoring system to derive a recommended list of zoonoses for prioritization in Canada and the US. Study participants with a background in epidemiology, public health, medical sciences, veterinary sciences and infectious disease research were recruited to complete the online survey (707 from Canada and 764 from the US). Hierarchical Bayes models were fitted to the survey data to derive CA-weighted scores for disease criteria. Scores were applied to 62 zoonotic diseases to rank diseases in order of priority. Conclusions/Significance We present the first zoonoses prioritization exercise involving health professionals in North America. Our previous study indicated individuals with no prior knowledge in infectious diseases were capable of producing meaningful results with acceptable model fits (79.4%). This study suggests health professionals with some knowledge in infectious diseases were capable of producing meaningful results with better-fitted models than the general public (83.7% and 84.2%). Despite more similarities in demographics and model fit between the combined public and combined professional groups, there was more uniformity across priority lists between the Canadian public and Canadian professionals and between the US public and US professionals. Our study suggests that

  8. Infectious burden and atherosclerosis: A clinical issue

    PubMed Central

    Sessa, Rosa; Pietro, Marisa Di; Filardo, Simone; Turriziani, Ombretta

    2014-01-01

    Atherosclerotic cardiovascular diseases, chronic inflammatory diseases of multifactorial etiology, are the leading cause of death worldwide. In the last decade, more infectious agents, labeled as “infectious burden”, rather than any single pathogen, have been showed to contribute to the development of atherosclerosis through different mechanisms. Some microorganisms, such as Chlamydia pneumoniae (C. pneumoniae), human cytomegalovirus, etc. may act directly on the arterial wall contributing to endothelial dysfunction, foam cell formation, smooth muscle cell proliferation, platelet aggregation as well as cytokine, reactive oxygen specie, growth factor, and cellular adhesion molecule production. Others, such as Helicobacter pylori (H. pylori), influenza virus, etc. may induce a systemic inflammation which in turn may damage the vascular wall (e.g., by cytokines and proteases). Moreover, another indirect mechanism by which some infectious agents (such as H. pylori, C. pneumoniae, periodontal pathogens, etc.) may play a role in the pathogenesis of atherosclerosis is molecular mimicry. Given the complexity of the mechanisms by which each microorganism may contribute to atherosclerosis, defining the interplay of more infectious agents is far more difficult because the pro-atherogenic effect of each pathogen might be amplified. Clearly, continued research and a greater awareness will be helpful to improve our knowledge on the complex interaction between the infectious burden and atherosclerosis. PMID:25032197

  9. Zoonotic Infections Among Employees from Great Smoky Mountains and Rocky Mountain National Parks, 2008–2009

    PubMed Central

    Weber, Ingrid B.; McQuiston, Jennifer; Griffith, Kevin S.; Mead, Paul S.; Nicholson, William; Roche, Aubree; Schriefer, Martin; Fischer, Marc; Kosoy, Olga; Laven, Janeen J.; Stoddard, Robyn A.; Hoffmaster, Alex R.; Smith, Theresa; Bui, Duy; Wilkins, Patricia P.; Jones, Jeffery L.; Gupton, Paige N.; Quinn, Conrad P.; Messonnier, Nancy; Higgins, Charles; Wong, David

    2012-01-01

    Abstract U.S. National Park Service employees may have prolonged exposure to wildlife and arthropods, placing them at increased risk of infection with endemic zoonoses. To evaluate possible zoonotic risks present at both Great Smoky Mountains (GRSM) and Rocky Mountain (ROMO) National Parks, we assessed park employees for baseline seroprevalence to specific zoonotic pathogens, followed by evaluation of incident infections over a 1-year study period. Park personnel showed evidence of prior infection with a variety of zoonotic agents, including California serogroup bunyaviruses (31.9%), Bartonella henselae (26.7%), spotted fever group rickettsiae (22.2%), Toxoplasma gondii (11.1%), Anaplasma phagocytophilum (8.1%), Brucella spp. (8.9%), flaviviruses (2.2%), and Bacillus anthracis (1.5%). Over a 1-year study period, we detected incident infections with leptospirosis (5.7%), B. henselae (5.7%), spotted fever group rickettsiae (1.5%), T. gondii (1.5%), B. anthracis (1.5%), and La Crosse virus (1.5%) in staff members at GRSM, and with spotted fever group rickettsiae (8.5%) and B. henselae (4.3%) in staff at ROMO. The risk of any incident infection was greater for employees who worked as resource managers (OR 7.4; 95% CI 1.4,37.5; p=0.02), and as law enforcement rangers/rescue crew (OR 6.5; 95% CI 1.1,36.5; p=0.03), relative to those who worked primarily in administration or management. The results of this study increase our understanding of the pathogens circulating within both parks, and can be used to inform the development of effective guidelines and interventions to increase visitor and staff awareness and help prevent exposure to zoonotic agents. PMID:22835153

  10. Data-model fusion to better understand emerging pathogens and improve infectious disease forecasting.

    PubMed

    LaDeau, Shannon L; Glass, Gregory E; Hobbs, N Thompson; Latimer, Andrew; Ostfeld, Richard S

    2011-07-01

    Ecologists worldwide are challenged to contribute solutions to urgent and pressing environmental problems by forecasting how populations, communities, and ecosystems will respond to global change. Rising to this challenge requires organizing ecological information derived from diverse sources and formally assimilating data with models of ecological processes. The study of infectious disease has depended on strategies for integrating patterns of observed disease incidence with mechanistic process models since John Snow first mapped cholera cases around a London water pump in 1854. Still, zoonotic and vector-borne diseases increasingly affect human populations, and methods used to successfully characterize directly transmitted diseases are often insufficient. We use four case studies to demonstrate that advances in disease forecasting require better understanding of zoonotic host and vector populations, as well of the dynamics that facilitate pathogen amplification and disease spillover into humans. In each case study, this goal is complicated by limited data, spatiotemporal variability in pathogen transmission and impact, and often, insufficient biological understanding. We present a conceptual framework for data-model fusion in infectious disease research that addresses these fundamental challenges using a hierarchical state-space structure to (1) integrate multiple data sources and spatial scales to inform latent parameters, (2) partition uncertainty in process and observation models, and (3) explicitly build upon existing ecological and epidemiological understanding. Given the constraints inherent in the study of infectious disease and the urgent need for progress, fusion of data and expertise via this type of conceptual framework should prove an indispensable tool.

  11. Experimental Evidence for Reduced Rodent Diversity Causing Increased Hantavirus Prevalence

    PubMed Central

    Suzán, Gerardo; Marcé, Erika; Giermakowski, J. Tomasz; Mills, James N.; Ceballos, Gerardo; Ostfeld, Richard S.; Armién, Blas; Pascale, Juan M.; Yates, Terry L.

    2009-01-01

    Emerging and re-emerging infectious diseases have become a major global environmental problem with important public health, economic, and political consequences. The etiologic agents of most emerging infectious diseases are zoonotic, and anthropogenic environmental changes that affect wildlife communities are increasingly implicated in disease emergence and spread. Although increased disease incidence has been correlated with biodiversity loss for several zoonoses, experimental tests in these systems are lacking. We manipulated small-mammal biodiversity by removing non-reservoir species in replicated field plots in Panama, where zoonotic hantaviruses are endemic. Both infection prevalence of hantaviruses in wild reservoir (rodent) populations and reservoir population density increased where small-mammal species diversity was reduced. Regardless of other variables that affect the prevalence of directly transmitted infections in natural communities, high biodiversity is important in reducing transmission of zoonotic pathogens among wildlife hosts. Our results have wide applications in both conservation biology and infectious disease management. PMID:19421313

  12. Agricultural pathogen decontamination technology-reducing the threat of infectious agent spread.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betty, Rita G.; Bieker, Jill Marie; Tucker, Mark David

    Outbreaks of infectious agricultural diseases, whether natural occurring or introduced intentionally, could have catastrophic impacts on the U.S. economy. Examples of such agricultural pathogens include foot and mouth disease (FMD), avian influenza (AI), citrus canker, wheat and soy rust, etc. Current approaches to mitigate the spread of agricultural pathogens include quarantine, development of vaccines for animal diseases, and development of pathogen resistant crop strains in the case of plant diseases. None of these approaches is rapid, and none address the potential persistence of the pathogen in the environment, which could lead to further spread of the agent and damage aftermore » quarantine is lifted. Pathogen spread in agricultural environments commonly occurs via transfer on agricultural equipment (transportation trailers, tractors, trucks, combines, etc.), having components made from a broad range of materials (galvanized and painted steel, rubber tires, glass and Plexiglas shields, etc), and under conditions of heavy organic load (mud, soil, feces, litter, etc). A key element of stemming the spread of an outbreak is to ensure complete inactivation of the pathogens in the agricultural environment and on the equipment used in those environments. Through the combination of enhanced agricultural pathogen decontamination chemistry and a validated inactivation verification methodology, important technologies for incorporation as components of a robust response capability will be enabled. Because of the potentially devastating economic impact that could result from the spread of infectious agricultural diseases, the proposed capability components will promote critical infrastructure protection and greater border and food supply security. We investigated and developed agricultural pathogen decontamination technologies to reduce the threat of infectious-agent spread, and thus enhance agricultural biosecurity. Specifically, enhanced detergency versions of the

  13. Rare fungal infectious agents: a lurking enemy

    PubMed Central

    Skiada, Anna; Pavleas, Ioannis; Drogari-Apiranthitou, Maria

    2017-01-01

    In the expanding population of immunocompromised patients and those treated in intensive care units, rare fungal infectious agents have emerged as important pathogens, causing invasive infections associated with high morbidity and mortality. These infections may present either as de novo or as breakthrough invasive infections in high-risk patients with hematologic malignancies receiving prophylactic or empirical antifungal therapy or in patients with central venous catheters. Diagnosis and treatment are challenging. Physicians should have a high index of suspicion because early diagnosis is of paramount importance. Conventional diagnostic methods such as cultures and histopathology are still essential, but rapid and more specific molecular techniques for both detection and identification of the infecting pathogens are being developed and hopefully will lead to early targeted treatment. The management of invasive fungal infections is multimodal. Reversal of risk factors, if feasible, should be attempted. Surgical debridement is recommended in localized mold infections. The efficacy of various antifungal drugs is not uniform. Amphotericin B is active against most yeasts, except Trichosporon, as well as against Mucorales, Fusarium, and some species of Paecilomyces and dimorphic fungi. The use of voriconazole is suggested for the treatment of trichosporonosis and scedosporiosis. Combination treatment, though recommended as salvage therapy in some infections, is controversial in most cases. Despite the use of available antifungals, mortality remains high. The optimization of molecular-based techniques, with expansion of reference libraries and the possibility for direct detection of resistance mechanisms, is awaited with great interest in the near future. Further research is necessary, however, in order to find the best ways to confront and destroy these lurking enemies. PMID:29152230

  14. [Fascioliasis and brucellosis in same patient].

    PubMed

    Deveci, Özcan; Aslan, Emel; Tekin, Alicem; Toka Özer, Türkan; Tekin, Recep; Bozkurt, Fatma; Çetinçakmak, Mehmet Guli

    2014-01-01

    Brucellosis is a zoonotic infectious disease that can affect many organs and systems and leads to very different clinical circumstances. Brucellosis is rare in association with various infectious agents. Fascioliasis is a zoonotic disease caused by Fasciola hepatica, popularly referred to as a large leaf-shaped liver fluke. This case is a 39-year-old male patient, and his complaints began a week ago, which were chills, fever, abdominal pain, nausea, vomiting, weakness, sweating, and widespread pain. The patient was considered brucellosis in the preliminary diagnosis. Rose Bengal test and Wright test (1/640) were detected as positive. Due to patients having elevated liver enzymes, abdominal ultrasound was taken. A liver lesion was seen with abdominal ultrasound. So, abdominal computed tomography (CT) was taken. The CT result report came in the form that at the left lobe of the liver segment 2, largely necrosis that showed no contrast enhancement, approximately 61x63 mm in size (compatible with fascioliasis) is viewed. The patient's IHA test results, required for fascioliasis, were detected as 1/320 positive. Especially for zoonotic diseases in areas with high endemicity, it should be considered that more than one infectious agent can be present together in high-risk patients.

  15. Infectious particles, stress, and induced prion amyloids

    PubMed Central

    2013-01-01

    Transmissible encephalopathies (TSEs) are believed by many to arise by spontaneous conversion of host prion protein (PrP) into an infectious amyloid (PrP-res, PrPSc) without nucleic acid. Many TSE agents reside in the environment, with infection controlled by public health measures. These include the disappearance of kuru with the cessation of ritual cannibalism, the dramatic reduction of epidemic bovine encephalopathy (BSE) by removal of contaminated feed, and the lack of endemic scrapie in geographically isolated Australian sheep with susceptible PrP genotypes. While prion protein modeling has engendered an intense focus on common types of protein misfolding and amyloid formation in diverse organisms and diseases, the biological characteristics of infectious TSE agents, and their recognition by the host as foreign entities, raises several fundamental new directions for fruitful investigation such as: (1) unrecognized microbial agents in the environmental metagenome that may cause latent neurodegenerative disease, (2) the evolutionary social and protective functions of different amyloid proteins in diverse organisms from bacteria to mammals, and (3) amyloid formation as a beneficial innate immune response to stress (infectious and non-infectious). This innate process however, once initiated, can become unstoppable in accelerated neuronal aging. PMID:23633671

  16. Vaccine Development against Zoonotic Hepatitis E Virus: Open Questions and Remaining Challenges

    PubMed Central

    Nan, Yuchen; Wu, Chunyan; Zhao, Qin; Sun, Yani; Zhang, Yan-Jin; Zhou, En-Min

    2018-01-01

    Hepatitis E virus (HEV) is a fecal-orally transmitted foodborne viral pathogen that causes acute hepatitis in humans and is responsible for hepatitis E outbreaks worldwide. Since the discovery of HEV as a zoonotic agent, this virus has been isolated from a variety of hosts with an ever-expanding host range. Recently, a subunit HEV vaccine developed for the prevention of human disease was approved in China, but is not yet available to the rest of the world. Meanwhile, notable progress and knowledge has been made and revealed in recent years to better understand HEV biology and infection, including discoveries of quasi-enveloped HEV virions and of a new function of the HEV-ORF3 product. However, the impact of these new findings on the development of a protective vaccine against zoonotic HEV infection requires further discussion. In this review, hallmark characteristics of HEV zoonosis, the history of HEV vaccine development, and recent discoveries in HEV virology are described. Moreover, special attention is focused on quasi-enveloped HEV virions and the potential role of the HEV-ORF3 product as antibody-neutralization target on the surface of quasi-enveloped HEV virions to provide new insights for the future development of improved vaccines against zoonotic HEV infection. PMID:29520257

  17. Vaccine Development against Zoonotic Hepatitis E Virus: Open Questions and Remaining Challenges.

    PubMed

    Nan, Yuchen; Wu, Chunyan; Zhao, Qin; Sun, Yani; Zhang, Yan-Jin; Zhou, En-Min

    2018-01-01

    Hepatitis E virus (HEV) is a fecal-orally transmitted foodborne viral pathogen that causes acute hepatitis in humans and is responsible for hepatitis E outbreaks worldwide. Since the discovery of HEV as a zoonotic agent, this virus has been isolated from a variety of hosts with an ever-expanding host range. Recently, a subunit HEV vaccine developed for the prevention of human disease was approved in China, but is not yet available to the rest of the world. Meanwhile, notable progress and knowledge has been made and revealed in recent years to better understand HEV biology and infection, including discoveries of quasi-enveloped HEV virions and of a new function of the HEV-ORF3 product. However, the impact of these new findings on the development of a protective vaccine against zoonotic HEV infection requires further discussion. In this review, hallmark characteristics of HEV zoonosis, the history of HEV vaccine development, and recent discoveries in HEV virology are described. Moreover, special attention is focused on quasi-enveloped HEV virions and the potential role of the HEV-ORF3 product as antibody-neutralization target on the surface of quasi-enveloped HEV virions to provide new insights for the future development of improved vaccines against zoonotic HEV infection.

  18. Zoonotic encephalitides caused by arboviruses: transmission and epidemiology of alphaviruses and flaviviruses

    PubMed Central

    Balasuriya, Udeni B. R.; Lee, Chong-kyo

    2014-01-01

    In this review, we mainly focus on zoonotic encephalitides caused by arthropod-borne viruses (arboviruses) of the families Flaviviridae (genus Flavivirus) and Togaviridae (genus Alphavirus) that are important in both humans and domestic animals. Specifically, we will focus on alphaviruses (Eastern equine encephalitis virus, Western equine encephalitis virus, Venezuelan equine encephalitis virus) and flaviviruses (Japanese encephalitis virus and West Nile virus). Most of these viruses were originally found in tropical regions such as Africa and South America or in some regions in Asia. However, they have dispersed widely and currently cause diseases around the world. Global warming, increasing urbanization and population size in tropical regions, faster transportation and rapid spread of arthropod vectors contribute in continuous spreading of arboviruses into new geographic areas causing reemerging or resurging diseases. Most of the reemerging arboviruses also have emerged as zoonotic disease agents and created major public health issues and disease epidemics. PMID:24427764

  19. Zoonotic encephalitides caused by arboviruses: transmission and epidemiology of alphaviruses and flaviviruses.

    PubMed

    Go, Yun Young; Balasuriya, Udeni B R; Lee, Chong-Kyo

    2014-01-01

    In this review, we mainly focus on zoonotic encephalitides caused by arthropod-borne viruses (arboviruses) of the families Flaviviridae (genus Flavivirus) and Togaviridae (genus Alphavirus) that are important in both humans and domestic animals. Specifically, we will focus on alphaviruses (Eastern equine encephalitis virus, Western equine encephalitis virus, Venezuelan equine encephalitis virus) and flaviviruses (Japanese encephalitis virus and West Nile virus). Most of these viruses were originally found in tropical regions such as Africa and South America or in some regions in Asia. However, they have dispersed widely and currently cause diseases around the world. Global warming, increasing urbanization and population size in tropical regions, faster transportation and rapid spread of arthropod vectors contribute in continuous spreading of arboviruses into new geographic areas causing reemerging or resurging diseases. Most of the reemerging arboviruses also have emerged as zoonotic disease agents and created major public health issues and disease epidemics.

  20. Zoonotic diseases: health aspects of Canadian geese.

    PubMed

    Dieter, R A; Dieter, R S; Dieter, R A; Gulliver, G

    2001-11-01

    Review zoonotic diseases associated with Canadian geese. Review article: A review of the multiple physical, microbiologic and safety concerns, and methods used in controlling this potential problem. Over the last decade the Canadian goose population (protected by international treaties and protection acts) has increased rapidly such that in many cities they have become a pest rather than an admired wild bird. Their increasing numbers have caused a number of potential healthcare concerns including: physical, bacterial, parasitic, allergic and viral potential problems. The Canadian goose fecal droppings of one per minute have caused falls and the flying geese have caused air traffic accidents. Bacterial concerns, including botulism, salmonella and E. coli have all been reviewed and presented concerns. The viral Newcastle disease may be detected with hemagglutination studies and the Giardia psittaci parasites have been repeatedly found in their droppings. The Cryptosporidium parvum oocytes have been present on stool study. Definite links to human infectious diseases have been difficult to prove. Revision of the current laws and new control programs must be developed.

  1. WORKSHOP ON EMERGING INFECTIOUS DISEASE AGENTS AND ISSUES ASSOCIATED WITH ANIMAL MANURES, BIOSOLIDS, AND OTHER SIMILAR BY-PRODUCTS: THE REST OF THE STORY

    EPA Science Inventory

    This presentation will:

    Discuss the purpose of the workshop
    Discussion publication of "Contemporary Perspectives on Infectious Disease Agents in Sewage Sludge and Manure.
    Present Table of Contents
    Discuss summary
    Discuss synthesis document

  2. Evaluation of bovine abortion cases and tissue suitability for identification of infectious agents in California diagnostic laboratory cases from 2007 to 2012.

    PubMed

    Clothier, K; Anderson, M

    2016-03-15

    Establishing a definitive cause of bovine abortion is a challenging problem faced by veterinary practitioners and diagnosticians. Detection of an infectious or noninfectious source for abortion may facilitate interventions that mitigate future fetal loss in the herd. The purposes of this study were to identify the most common causes of bovine abortion in cases submitted to the California Animal Health and Food Safety Laboratory System, Davis (CAHFS) from 2007 to 2013 and to determine if detection of infectious pathogens differed with the fetal tissue evaluated. Records of 665 bovine abortion cases of 709 animals were reviewed for pathologic diagnoses, test methods used to identify causative conditions, and which tissues yielded successful identification of infectious agents associated with abortion. Over 58% of abortions were attributed to an infectious cause and 46.9% had an infectious agent identified. The most common infectious conditions were Epizootic Bovine Abortion (EBA) (16.2% of all fetuses), other fetal bacterial infections (14.7% of all fetuses), and Neospora caninum (9.3% of all fetuses.) The bacterium associated with EBA (currently named Pajaroellobacter abortibovis) was most commonly identified by immunohistochemistry (IHC) in lymphoid organs (thymus and spleen); N. caninum IHC was most frequently positive in brain, kidney, and placenta. In cases of pathogenic and opportunistic bacterial infections, abomasal samples yielded a significantly greater proportion of definitive aerobic culture results than lung or liver tissues. Direct fluorescent antibody test results for Bovine Viral Diarrhea Virus testing were identical between lung and kidney tissues and nearly identical (96.0%) for Bovine Herpesvirus I. Noninfectious abortive conditions included fetal stress (10.5%), dystocia (3.9%), congenital defects (3.3%), toxicological or mineral problems (1.8%), and death of the cow (1.1%). Just over 20% of the aborted fetuses had no gross or histopathological

  3. The serological screening of deceased tissue donors within the English Blood Service for infectious agents--a review of current outcomes and a more effective strategy for the future.

    PubMed

    Kitchen, A D; Gillan, H L

    2010-04-01

    The overall effectiveness of the NHSBT screening programme for infectious agents in deceased tissue donors is examined and evaluated in terms of current outcomes and how to improve upon these outcomes. The screening results and any subsequent confirmatory results from a total of 1659 samples from NHSBT deceased donors referred to NTMRL for screening for infectious agents were included in the analysis. Overall 1566/1659 (94.4%) of the samples were screen negative. A total of 93 were repeat reactive on screening for one or more of the mandatory markers screened for, of which only 12 (13%) were subsequently confirmed to be positive on confirmatory testing. The majority of the repeat reactive samples were demonstrating non-specific reactivity with the screening assays in use. Overall, the NHSBT screening programme for infectious agents in deceased tissue donors is very effective with a relatively low overall loss of donors because of non-specific reactivity. However, unnecessary loss of tissue products is not acceptable, and although this programme compares favourably with the outcomes of other such programmes, the confirmatory results obtained demonstrate both the need and the potential for improving the outcomes. This is particularly important as one donor may donate more than one product, and can be achieved very easily with a change to the screening algorithm followed, using the confirmatory data obtained to support and validate this change. CONTENTS SUMMARY: Critical analysis of the NHSBT screening programme for infectious agents in deceased tissue donors and a strategy involving the design and use of a different screening algorithm to improve these outcomes.

  4. Generation of improved humanized mouse models for human infectious diseases

    PubMed Central

    Brehm, Michael A.; Wiles, Michael V.; Greiner, Dale L.; Shultz, Leonard D.

    2014-01-01

    The study of human-specific infectious agents has been hindered by the lack of optimal small animal models. More recently development of novel strains of immunodeficient mice has begun to provide the opportunity to utilize small animal models for the study of many human-specific infectious agents. The introduction of a targeted mutation in the IL2 receptor common gamma chain gene (IL2rgnull) in mice already deficient in T and B cells led to a breakthrough in the ability to engraft hematopoietic stem cells, as well as functional human lymphoid cells and tissues, effectively creating human immune systems in immunodeficient mice. These humanized mice are becoming increasingly important as pre-clinical models for the study of human immunodeficiency virus-1 (HIV-1) and other human-specific infectious agents. However, there remain a number of opportunities to further improve humanized mouse models for the study of human-specific infectious agents. This is being done by the implementation of innovative technologies, which collectively will accelerate the development of new models of genetically modified mice, including; i) modifications of the host to reduce innate immunity, which impedes human cell engraftment; ii) genetic modification to provide human-specific growth factors and cytokines required for optimal human cell growth and function; iii) and new cell and tissue engraftment protocols. The development of “next generation” humanized mouse models continues to provide exciting opportunities for the establishment of robust small animal models to study the pathogenesis of human-specific infectious agents, as well as for testing the efficacy of therapeutic agents and experimental vaccines. PMID:24607601

  5. Prioritization of Zoonotic Diseases in Kenya, 2015

    PubMed Central

    Bitek, Austine; Osoro, Eric; Pieracci, Emily G.; Muema, Josephat; Mwatondo, Athman; Kungu, Mathew; Nanyingi, Mark; Gharpure, Radhika; Njenga, Kariuki; Thumbi, Samuel M.

    2016-01-01

    Introduction Zoonotic diseases have varying public health burden and socio-economic impact across time and geographical settings making their prioritization for prevention and control important at the national level. We conducted systematic prioritization of zoonotic diseases and developed a ranked list of these diseases that would guide allocation of resources to enhance their surveillance, prevention, and control. Methods A group of 36 medical, veterinary, and wildlife experts in zoonoses from government, research institutions and universities in Kenya prioritized 36 diseases using a semi-quantitative One Health Zoonotic Disease Prioritization tool developed by Centers for Disease Control and Prevention with slight adaptations. The tool comprises five steps: listing of zoonotic diseases to be prioritized, development of ranking criteria, weighting criteria by pairwise comparison through analytical hierarchical process, scoring each zoonotic disease based on the criteria, and aggregation of scores. Results In order of importance, the participants identified severity of illness in humans, epidemic/pandemic potential in humans, socio-economic burden, prevalence/incidence and availability of interventions (weighted scores assigned to each criteria were 0.23, 0.22, 0.21, 0.17 and 0.17 respectively), as the criteria to define the relative importance of the diseases. The top five priority diseases in descending order of ranking were anthrax, trypanosomiasis, rabies, brucellosis and Rift Valley fever. Conclusion Although less prominently mentioned, neglected zoonotic diseases ranked highly compared to those with epidemic potential suggesting these endemic diseases cause substantial public health burden. The list of priority zoonotic disease is crucial for the targeted allocation of resources and informing disease prevention and control programs for zoonoses in Kenya. PMID:27557120

  6. Survey of tick-borne zoonotic viruses in wild deer in Hokkaido, Japan.

    PubMed

    Uchida, Leo; Hayasaka, Daisuke; Ngwe Tun, Mya Myat; Morita, Kouichi; Muramatsu, Yasukazu; Hagiwara, Katsuro

    2018-04-19

    Tick-borne encephalitis (TBE) and severe fever with thrombocytopenia syndrome (SFTS) are both tick-borne zoonotic diseases caused by TBE virus (TBEV) and SFTS phlebovirus (SFTSV). In 2016, a second domestic TBE case was reported in Hokkaido, Japan, after an absence of 23 years. We conducted IgG ELISA for TBEV and SFTSV on 314 deer (Cervus nippon yesoensis) serum samples collected from 3 places in Hokkaido. There were 7 seropositive samples for TBEV but none for SFTSV by ELISA. The specificity of the 7 positive samples was confirmed by neutralization tests against TBEV, and 5 sera showed 320 to 640 of 50% focus reduction endpoint titers. Our results provide information about the infectious status of TBEV in wild deer in Hokkaido, Japan.

  7. Decontamination of High-risk Animal and Zoonotic Pathogens

    PubMed Central

    Menrath, Andrea; Tomuzia, Katharina; Braeunig, Juliane; Appel, Bernd

    2013-01-01

    Preparedness for the decontamination of affected environments, premises, facilities, and products is one prerequisite for an immediate response to an animal disease outbreak. Various information sources provide recommendations on how to proceed in an outbreak situation to eliminate biological contaminants and to stop the spread of the disease. In order to facilitate the identification of the right decontamination strategy, we present an overview of relevant references for a collection of pathogenic agents. The choice of pathogens is based on a survey of lists containing highly pathogenic agents and/or biological agents considered to be potential vehicles for deliberate contamination of food, feed, or farm animals. European legislation and guidelines from national and international institutions were screened to find decontamination protocols for each of the agents. Identified recommendations were evaluated with regard to their area of application, which could be facilities and equipment, wastes, food, and other animal products. The requirements of a disinfectant for large-scale incidents were gathered, and important characteristics (eg, inactivating spectrum, temperature range, toxicity to environment) of the main recommended disinfectants were summarized to assist in the choice of a suitable and efficient approach in a crisis situation induced by a specific high-risk animal or zoonotic pathogen. The literature search revealed numerous relevant recommendations but also legal gaps for certain diseases, such as Q fever or brucellosis, and legal difficulties for the use of recommended disinfectants. A lack of information about effective disinfectants was identified for some agents. PMID:23971795

  8. Decontamination of high-risk animal and zoonotic pathogens.

    PubMed

    Frentzel, Hendrik; Menrath, Andrea; Tomuzia, Katharina; Braeunig, Juliane; Appel, Bernd

    2013-09-01

    Preparedness for the decontamination of affected environments, premises, facilities, and products is one prerequisite for an immediate response to an animal disease outbreak. Various information sources provide recommendations on how to proceed in an outbreak situation to eliminate biological contaminants and to stop the spread of the disease. In order to facilitate the identification of the right decontamination strategy, we present an overview of relevant references for a collection of pathogenic agents. The choice of pathogens is based on a survey of lists containing highly pathogenic agents and/or biological agents considered to be potential vehicles for deliberate contamination of food, feed, or farm animals. European legislation and guidelines from national and international institutions were screened to find decontamination protocols for each of the agents. Identified recommendations were evaluated with regard to their area of application, which could be facilities and equipment, wastes, food, and other animal products. The requirements of a disinfectant for large-scale incidents were gathered, and important characteristics (eg, inactivating spectrum, temperature range, toxicity to environment) of the main recommended disinfectants were summarized to assist in the choice of a suitable and efficient approach in a crisis situation induced by a specific high-risk animal or zoonotic pathogen. The literature search revealed numerous relevant recommendations but also legal gaps for certain diseases, such as Q fever or brucellosis, and legal difficulties for the use of recommended disinfectants. A lack of information about effective disinfectants was identified for some agents.

  9. Surveillance of infectious diseases in the Arctic.

    PubMed

    Bruce, M; Zulz, T; Koch, A

    2016-08-01

    This study reviews how social and environmental issues affect health in Arctic populations and describes infectious disease surveillance in Arctic Nations with a special focus on the activities of the International Circumpolar Surveillance (ICS) project. We reviewed the literature over the past 2 decades looking at Arctic living conditions and their effects on health and Arctic surveillance for infectious diseases. In regards to other regions worldwide, the Arctic climate and environment are extreme. Arctic and sub-Arctic populations live in markedly different social and physical environments compared to those of their more southern dwelling counterparts. A cold northern climate means people spending more time indoors, amplifying the effects of household crowding, smoking and inadequate ventilation on the person-to-person spread of infectious diseases. The spread of zoonotic infections north as the climate warms, emergence of antibiotic resistance among bacterial pathogens, the re-emergence of tuberculosis, the entrance of HIV into Arctic communities, the specter of pandemic influenza or the sudden emergence and introduction of new viral pathogens pose new challenges to residents, governments and public health authorities of all Arctic countries. ICS is a network of hospitals, public health agencies, and reference laboratories throughout the Arctic working together for the purposes of collecting, comparing and sharing of uniform laboratory and epidemiological data on infectious diseases of concern and assisting in the formulation of prevention and control strategies (Fig. 1). In addition, circumpolar infectious disease research workgroups and sentinel surveillance systems for bacterial and viral pathogens exist. The ICS system is a successful example of collaborative surveillance and research in an extreme environment. Published by Elsevier Ltd.

  10. Gordon Wilson Lecture: Infectious Disease Causes of Cancer: Opportunities for Prevention and Treatment.

    PubMed

    Howley, Peter M

    2015-01-01

    The role of infectious agents in cancer is generally underappreciated. However, approximately 20% of human cancers are caused by infectious agents and as such they rank second only to tobacco as a potentially preventable cause in humans. Specific viruses, parasites, and bacteria have been linked to specific human cancers. The infectious etiology for these specific cancers provides opportunities for prevention and treatment.

  11. Infectious diseases affect marine fisheries and aquaculture economics

    USGS Publications Warehouse

    Lafferty, Kevin D.; Harvell, C. Drew; Conrad, Jonathan M.; Friedman, Carolyn S.; Kent, Michael L.; Kuris, Armand M.; Powell, Eric N.; Rondeau, Daniel; Saksida, Sonja M.

    2015-01-01

    Seafood is a growing part of the economy, but its economic value is diminished by marine diseases. Infectious diseases are common in the ocean, and here we tabulate 67 examples that can reduce commercial species' growth and survivorship or decrease seafood quality. These impacts seem most problematic in the stressful and crowded conditions of aquaculture, which increasingly dominates seafood production as wild fishery production plateaus. For instance, marine diseases of farmed oysters, shrimp, abalone, and various fishes, particularly Atlantic salmon, cost billions of dollars each year. In comparison, it is often difficult to accurately estimate disease impacts on wild populations, especially those of pelagic and subtidal species. Farmed species often receive infectious diseases from wild species and can, in turn, export infectious agents to wild species. However, the impact of disease export on wild fisheries is controversial because there are few quantitative data demonstrating that wild species near farms suffer more from infectious diseases than those in other areas. The movement of exotic infectious agents to new areas continues to be the greatest concern.

  12. Infectious Diseases Affect Marine Fisheries and Aquaculture Economics

    NASA Astrophysics Data System (ADS)

    Lafferty, Kevin D.; Harvell, C. Drew; Conrad, Jon M.; Friedman, Carolyn S.; Kent, Michael L.; Kuris, Armand M.; Powell, Eric N.; Rondeau, Daniel; Saksida, Sonja M.

    2015-01-01

    Seafood is a growing part of the economy, but its economic value is diminished by marine diseases. Infectious diseases are common in the ocean, and here we tabulate 67 examples that can reduce commercial species' growth and survivorship or decrease seafood quality. These impacts seem most problematic in the stressful and crowded conditions of aquaculture, which increasingly dominates seafood production as wild fishery production plateaus. For instance, marine diseases of farmed oysters, shrimp, abalone, and various fishes, particularly Atlantic salmon, cost billions of dollars each year. In comparison, it is often difficult to accurately estimate disease impacts on wild populations, especially those of pelagic and subtidal species. Farmed species often receive infectious diseases from wild species and can, in turn, export infectious agents to wild species. However, the impact of disease export on wild fisheries is controversial because there are few quantitative data demonstrating that wild species near farms suffer more from infectious diseases than those in other areas. The movement of exotic infectious agents to new areas continues to be the greatest concern.

  13. Infectious diseases affect marine fisheries and aquaculture economics.

    PubMed

    Lafferty, Kevin D; Harvell, C Drew; Conrad, Jon M; Friedman, Carolyn S; Kent, Michael L; Kuris, Armand M; Powell, Eric N; Rondeau, Daniel; Saksida, Sonja M

    2015-01-01

    Seafood is a growing part of the economy, but its economic value is diminished by marine diseases. Infectious diseases are common in the ocean, and here we tabulate 67 examples that can reduce commercial species' growth and survivorship or decrease seafood quality. These impacts seem most problematic in the stressful and crowded conditions of aquaculture, which increasingly dominates seafood production as wild fishery production plateaus. For instance, marine diseases of farmed oysters, shrimp, abalone, and various fishes, particularly Atlantic salmon, cost billions of dollars each year. In comparison, it is often difficult to accurately estimate disease impacts on wild populations, especially those of pelagic and subtidal species. Farmed species often receive infectious diseases from wild species and can, in turn, export infectious agents to wild species. However, the impact of disease export on wild fisheries is controversial because there are few quantitative data demonstrating that wild species near farms suffer more from infectious diseases than those in other areas. The movement of exotic infectious agents to new areas continues to be the greatest concern.

  14. The Infectious Pathogenesis of Prostate Cancer

    DTIC Science & Technology

    2010-03-01

    of cancers, including prostate. Infections are important agents in the genesis of inflammation. For prostate cancer, several lines of evidence point...to a role of infections as important agents , although no specific infection has consistently been identified. In this project, we are examining two...specific infectious agents with respect to prostate cancer: T vaginalis, the most common non-viral sexually transmitted infection, and the recently

  15. 75 FR 24835 - Infectious Diseases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ...., severe acute respiratory syndrome (SARS), 2009 H1N1 pandemic influenza], compliance with routine... infectious agents, radiation and chemicals. The Bureau of Labor Statistics (BLS) reports that for 2008, the...

  16. Economic growth, urbanization, globalization, and the risks of emerging infectious diseases in China: A review.

    PubMed

    Wu, Tong; Perrings, Charles; Kinzig, Ann; Collins, James P; Minteer, Ben A; Daszak, Peter

    2017-02-01

    Three interrelated world trends may be exacerbating emerging zoonotic risks: income growth, urbanization, and globalization. Income growth is associated with rising animal protein consumption in developing countries, which increases the conversion of wild lands to livestock production, and hence the probability of zoonotic emergence. Urbanization implies the greater concentration and connectedness of people, which increases the speed at which new infections are spread. Globalization-the closer integration of the world economy-has facilitated pathogen spread among countries through the growth of trade and travel. High-risk areas for the emergence and spread of infectious disease are where these three trends intersect with predisposing socioecological conditions including the presence of wild disease reservoirs, agricultural practices that increase contact between wildlife and livestock, and cultural practices that increase contact between humans, wildlife, and livestock. Such an intersection occurs in China, which has been a "cradle" of zoonoses from the Black Death to avian influenza and SARS. Disease management in China is thus critical to the mitigation of global zoonotic risks.

  17. A Framework to Reduce Infectious Disease Risk from Urban Poultry in the United States

    PubMed Central

    Tobin, Molly R.; Goldshear, Jesse L.; Price, Lance B.; Graham, Jay P.

    2015-01-01

    Objectives Backyard poultry ownership is increasingly common in U.S. cities and is regulated at the local level. Human contact with live poultry is a well-known risk for infection with zoonotic pathogens, notably Salmonella, yet the ability of local jurisdictions to reduce the risk of infectious disease transmission from poultry to humans is unstudied. We reviewed urban poultry ordinances in the United States and reported Salmonella outbreaks from backyard poultry to identify regulatory gaps in preventing zoonotic pathogen transmission. Based on this analysis, we propose regulatory guidelines for U.S. cities to reduce infectious disease risk from backyard poultry ownership. Methods We assessed local ordinances in the 150 most populous U.S. jurisdictions for content related to noncommercial poultry ownership using online resources and communications with government officials. We also performed a literature review using publicly available data sources to identify human infectious disease outbreaks caused by contact with backyard poultry. Results Of the cities reviewed, 93% (n=139) permit poultry in some capacity. Most urban poultry ordinances share common characteristics focused on reducing nuisance to neighbors. Ordinances do not address many pathways of transmission relevant to poultry-to-human transmission of pathogens, such as manure management. Conclusions To reduce the risk of pathogen exposure from backyard poultry, urban ordinances should incorporate the following seven components: limited flock size, composting of manure in sealed containers, prohibition of slaughter, required veterinary care to sick birds, appropriate disposal of dead birds, annual permits linked to consumer education, and a registry of poultry owners. PMID:26346104

  18. Gene Therapy for Infectious Diseases

    PubMed Central

    Bunnell, Bruce A.; Morgan, Richard A.

    1998-01-01

    Gene therapy is being investigated as an alternative treatment for a wide range of infectious diseases that are not amenable to standard clinical management. Approaches to gene therapy for infectious diseases can be divided into three broad categories: (i) gene therapies based on nucleic acid moieties, including antisense DNA or RNA, RNA decoys, and catalytic RNA moieties (ribozymes); (ii) protein approaches such as transdominant negative proteins and single-chain antibodies; and (iii) immunotherapeutic approaches involving genetic vaccines or pathogen-specific lymphocytes. It is further possible that combinations of the aforementioned approaches will be used simultaneously to inhibit multiple stages of the life cycle of the infectious agent. PMID:9457428

  19. Does biodiversity protect humans against infectious disease?

    PubMed

    Wood, Chelsea L; Lafferty, Kevin D; DeLeo, Giulio; Young, Hillary S; Hudson, Peter J; Kuris, Armand M

    2014-04-01

    Control of human infectious disease has been promoted as a valuable ecosystem service arising from the conservation of biodiversity. There are two commonly discussed mechanisms by which biodiversity loss could increase rates of infectious disease in a landscape. First, loss of competitors or predators could facilitate an increase in the abundance of competent reservoir hosts. Second, biodiversity loss could disproportionately affect non-competent, or less competent reservoir hosts, which would otherwise interfere with pathogen transmission to human populations by, for example, wasting the bites of infected vectors. A negative association between biodiversity and disease risk, sometimes called the "dilution effect hypothesis," has been supported for a few disease agents, suggests an exciting win-win outcome for the environment and society, and has become a pervasive topic in the disease ecology literature. Case studies have been assembled to argue that the dilution effect is general across disease agents. Less touted are examples in which elevated biodiversity does not affect or increases infectious disease risk for pathogens of public health concern. In order to assess the likely generality of the dilution effect, we review the association between biodiversity and public health across a broad variety of human disease agents. Overall, we hypothesize that conditions for the dilution effect are unlikely to be met for most important diseases of humans. Biodiversity probably has little net effect on most human infectious diseases but, when it does have an effect, observation and basic logic suggest that biodiversity will be more likely to increase than to decrease infectious disease risk.

  20. Infectious optic neuropathies: a clinical update

    PubMed Central

    Kahloun, Rim; Abroug, Nesrine; Ksiaa, Imen; Mahmoud, Anis; Zeghidi, Hatem; Zaouali, Sonia; Khairallah, Moncef

    2015-01-01

    Different forms of optic neuropathy causing visual impairment of varying severity have been reported in association with a wide variety of infectious agents. Proper clinical diagnosis of any of these infectious conditions is based on epidemiological data, history, systemic symptoms and signs, and the pattern of ocular findings. Diagnosis is confirmed by serologic testing and polymerase chain reaction in selected cases. Treatment of infectious optic neuropathies involves the use of specific anti-infectious drugs and corticosteroids to suppress the associated inflammatory reaction. The visual prognosis is generally good, but persistent severe vision loss with optic atrophy can occur. This review presents optic neuropathies caused by specific viral, bacterial, parasitic, and fungal diseases. PMID:28539795

  1. The Infectious Pathogenesis of Prostate Cancer

    DTIC Science & Technology

    2008-03-01

    Press, 2002:385. 11. Sutcliffe S, Giovannucci E, Alderete JF, et al. Plasma antibodies against Trichomonas vaginalis and subsequent risk of...consistently been identified. In this project, we are examining two specific infectious agents with respect to prostate cancer: T vaginalis , the...of the newly identified XMRV virus in prostate carcinogenesis and progression; 2-) To characterize the role of the infectious protozoa T. vaginalis

  2. Emerging infectious diseases at the beginning of the 21st century.

    PubMed

    Lashley, Felissa R

    2006-01-31

    The emergence and re-emergence of infectious diseases involves many interrelated factors. Global interconnectedness continues to increase with international travel and trade; economic, political, and cultural interactions; and human-to-human and animal-to-human interactions. These interactions include the accidental and deliberate sharing of microbial agents and antimicrobial resistance and allow the emergence of new and unrecognized microbial disease agents. As the 21st century begins, already new agents have been identified, and new outbreaks have occurred. Solutions to limiting the spread of emerging infectious diseases will require cooperative efforts among many disciplines and entities worldwide. This article defines emerging infectious diseases, summarizes historical background, and discusses factors that contribute to emergence. Seven agents that have made a significant appearance, particularly in the 21st century, are reviewed, including: Ebola and Marburg hemorrhagic fevers, human monkeypox, bovine spongiform encephalopathy, severe acute respiratory syndrome (SARS), West Nile virus, and avian influenza. The article provides for each agent a brief historical background, case descriptions, and health care implications.

  3. Zoonotic Hookworm FAQs

    MedlinePlus

    ... when exposed skin comes in contact with contaminated soil or sand. The larvae in the contaminated soil or sand will burrow into the skin and ... measures to avoid skin contact with sand or soil will prevent infection with zoonotic hookworms. Travelers to ...

  4. Zoonotic pathogens in Atlantic Forest wild rodents in Brazil: Bartonella and Coxiella infections.

    PubMed

    Rozental, Tatiana; Ferreira, Michelle Santos; Guterres, Alexandro; Mares-Guia, Maria Angélica; Teixeira, Bernardo R; Gonçalves, Jonathan; Bonvicino, Cibele Rodrigues; D'Andrea, Paulo Sergio; de Lemos, Elba Regina Sampaio

    2017-04-01

    Zoonotic pathogens comprise a significant and increasing fraction of all emerging and re-emerging infectious diseases that plague humans. Identifying host species is one of the keys to controlling emerging infectious diseases. From March 2007 until April 2012, we collected a total of 131 wild rodents in eight municipalities of Rio de Janeiro, Brazil. We investigated these rodents for infection with Coxiella burnetii, Bartonella spp. and Rickettsia spp. In total, 22.1% (29/131) of the rodents were infected by at least one pathogen; co-infection was detected in 1.5% (2/131) of rodents. Coxiella burnetii was detected in 4.6% (6/131) of the wild animals, 17.6% of the rodents harbored Bartonella spp. No cases of Rickettsia were identified. Bartonella doshiae and Bartonella vinsonii were the species found on the wild mammals. This report is the first to note C. burnetii, B. doshiae and B. vinsonii natural infections in Atlantic Forest wild rodents in Brazil. Our work highlights the potential risk of transmission to humans, since most of the infected specimens belong to generalist species that live near human dwellings. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Rift Valley fever: a mosquito-borne emerging disease

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever (RVF) (Bunyaviridae: Phlebovirus) is mosquito-borne zoonotic emerging infectious viral disease caused by RVF virus (RVFV) that presents significant threats to global public health and agriculture in Africa and the Middle East. RVFV is listed as a select agent with significant conce...

  6. Buffalo, Bush Meat, and the Zoonotic Threat of Brucellosis in Botswana

    PubMed Central

    Alexander, Kathleen Anne; Blackburn, Jason Kenna; Vandewalle, Mark Eric; Pesapane, Risa; Baipoledi, Eddie Kekgonne; Elzer, Phil H.

    2012-01-01

    Background Brucellosis is a zoonotic disease of global importance infecting humans, domestic animals, and wildlife. Little is known about the epidemiology and persistence of brucellosis in wildlife in Southern Africa, particularly in Botswana. Methods Archived wildlife samples from Botswana (1995–2000) were screened with the Rose Bengal Test (RBT) and fluorescence polarization assay (FPA) and included the African buffalo (247), bushbuck (1), eland (5), elephant (25), gemsbok (1), giraffe (9), hartebeest (12), impala (171), kudu (27), red lechwe (10), reedbuck (1), rhino (2), springbok (5), steenbok (2), warthog (24), waterbuck (1), wildebeest (33), honey badger (1), lion (43), and zebra (21). Human case data were extracted from government annual health reports (1974–2006). Findings Only buffalo (6%, 95% CI 3.04%–8.96%) and giraffe (11%, 95% CI 0–38.43%) were confirmed seropositive on both tests. Seropositive buffalo were widely distributed across the buffalo range where cattle density was low. Human infections were reported in low numbers with most infections (46%) occurring in children (<14 years old) and no cases were reported among people working in the agricultural sector. Conclusions Low seroprevalence of brucellosis in Botswana buffalo in a previous study in 1974 and again in this survey suggests an endemic status of the disease in this species. Buffalo, a preferred source of bush meat, is utilized both legally and illegally in Botswana. Household meat processing practices can provide widespread pathogen exposure risk to family members and the community, identifying an important source of zoonotic pathogen transmission potential. Although brucellosis may be controlled in livestock populations, public health officials need to be alert to the possibility of human infections arising from the use of bush meat. This study illustrates the need for a unified approach in infectious disease research that includes consideration of both domestic and wildlife

  7. Parasitic, fungal and prion zoonoses: an expanding universe of candidates for human disease.

    PubMed

    Akritidis, N

    2011-03-01

    Zoonotic infections have emerged as a burden for millions of people in recent years, owing to re-emerging or novel pathogens often causing outbreaks in the developing world in the presence of inadequate public health infrastructure. Among zoonotic infections, those caused by parasitic pathogens are the ones that affect millions of humans worldwide, who are also at risk of developing chronic disease. The present review discusses the global effect of protozoan pathogens such as Leishmania sp., Trypanosoma sp., and Toxoplasma sp., as well as helminthic pathogens such as Echinococcus sp., Fasciola sp., and Trichinella sp. The zoonotic aspects of agents that are not essentially zoonotic are also discussed. The review further focuses on the zoonotic dynamics of fungal pathogens and prion diseases as observed in recent years, in an evolving environment in which novel patient target groups have developed for agents that were previously considered to be obscure or of minimal significance. © 2011 The Author. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  8. Prophylaxis of post-ERC infectious complications in patients with biliary obstruction by adding antimicrobial agents into ERC contrast media- a single center retrospective study.

    PubMed

    Wobser, Hella; Gunesch, Agnetha; Klebl, Frank

    2017-01-13

    Patients with biliary obstruction are at high risk to develop septic complications after endoscopic retrograde cholangiography (ERC). We evaluated the benefits of local application of antimicrobial agents into ERC contrast media in preventing post-ERC infectious complications in a high-risk study population. Patients undergoing ERC at our tertiary referral center were retrospectively included. Addition of vancomycin, gentamicin and fluconazol into ERC contrast media was evaluated in a case-control design. Outcomes comprised infectious complications within 3 days after ERC. In total, 84 ERC cases were analyzed. Primarily indications for ERC were sclerosing cholangitis (75%) and malignant stenosis (9.5%). Microbial testing of collected bile fluid in the treatment group was positive in 91.4%. Detected organisms were sensitive to the administered antimicrobials in 93%. The use of antimicrobials in contrast media was associated with a significant decrease in post-ERC infectious complications compared to non-use (14.3% vs. 33.3%; odds ratio [OR]: 0.33, 95% confidence interval [CI]: 0.114-0.978). After adjusting for the variables acute cholangitis prior to ERC and incomplete biliary drainage, the beneficial effect of intraductal antibiotic prophylaxis was even more evident (OR = 0.153; 95% CI: 0.039-0.598, p = 0.007). Patients profiting most obviously from intraductal antimicrobials were those with secondary sclerosing cholangitis. Local application of a combination of antibiotic and antimycotic agents to ERC contrast media efficiently reduced post-ERC infectious events in patients with biliary obstruction. This is the first study that evaluates ERC-related infectious complications in patients with secondary sclerosing cholangitis. Our first clinical results should now be prospectively evaluated in a larger patient cohort to improve the safety of ERC, especially in patients with secondary sclerosing cholangitis.

  9. High prevalence of intestinal zoonotic parasites in dogs from Belgrade, Serbia--short communication.

    PubMed

    Nikolić, Aleksandra; Dimitrijević, Sanda; Katić-Radivojević, Sofija; Klun, Ivana; Bobrć, Branko; Djurković-Djaković, Olgica

    2008-09-01

    To identify areas of risk for canine-related zoonoses in Serbia, the aim of this study was to provide baseline knowledge about intestinal parasites in 151 dogs (65 household pets, 75 stray and 11 military working dogs) from Belgrade. The following parasites, with their respective prevalences, were detected: Giardia duodenalis (14.6%), Ancylostomatidae (24.5%), Toxocara canis (30.5%), Trichuris vulpis (47.0%) and Taenia-type helminths (6.6%). Of all examined dogs, 75.5% (114/151) were found to harbour at least one parasite species. Of these, mixed infections with up to four species per dog occurred in 44.7% (51/114). Infections with all detected species were significantly higher (p < 0.05) in military working (100%) and stray dogs (93.3%) versus household pets (50.8%). Among all parasites, agents with zoonotic potential including Giardia, Ancylostomatidae and Toxocara were detected in 58.3% (88/151) of all examined dogs with a significant difference (p < 0.05) among the subgroups (100%, 62.7% and 46.2% for military working dogs, stray dogs and household pets, respectively). The high prevalence of zoonotic parasites registered in the dog population from a highly urban area in south-eastern Europe indicates a potential risk to human health. Thus, veterinarians should play an important role in helping to prevent or minimise zoonotic transmission.

  10. Infectious mononucleosis.

    PubMed

    Cozad, J

    1996-03-01

    Infectious mononucleosis is an acute, self-limiting, nonneoplastic lymphoreticular proliferative disorder characterized by peripheral lymphocytosis and circulating atypical lymphocytes. Epstein-Barr virus is the causative agent in 90% of cases. Highest incidence is in the 15- to 25-year-old age-group, with 1% to 3% of all college students in the United States affected each year. Clinical manifestations vary according to age at presentation. Incubation period is 4 to 7 weeks. Diagnosis is primarily made with the monospot test but may include throat culture and complete blood count with differential. Cytomegalovirus and human immunodeficiency virus are among the many other conditions that may present initially as infectious mononucleosis. Treatment is supportive with prevention of complications as the goal; good personal hygiene and avoidance of contact sports should be stressed.

  11. [Oxidative stress and infectious pathology].

    PubMed

    Romero Alvira, D; Guerrero Navarro, L; Gotor Lázaro, M A; Roche Collado, E

    1995-03-01

    Pathogenic organism can be considered as pro-oxidant agents because they produce cell death and tissue damage. In addition organism can be eliminated by specific cell defense mechanism which utilize in part, reactive oxygen radicals formed by oxidative stress responses. The cause of the necessarily defense process results in cell damage thereby leading to development of inflammation, a characteristic oxidative stress situation. This fact shows the duality of oxidative stress in infections and inflammation: oxygen free radicals protect against microorganism attack and can produce tissue damage during this protection to trigger inflammation. Iron, a transition metal which participates generating oxygen free radicals, displays also this duality in infection. We suggest also that different infectious pathologies, such as sickle cell anemia/malaria and AIDS, may display in part this duality. In addition, it should be noted that oxidative damage observed in infectious diseases is mostly due the inflammatory response than to the oxidative potential of the pathogenic agent, this last point is exemplified in cases of respiratory distress and in glomerulonephritis. This review analyzes these controversial facts of infectious pathology in relation with oxidative stress.

  12. Surveillance and diagnosis of zoonotic foodborne parasites.

    PubMed

    Zolfaghari Emameh, Reza; Purmonen, Sami; Sukura, Antti; Parkkila, Seppo

    2018-01-01

    Foodborne parasites are a source of human parasitic infection. Zoonotic infections of humans arise from a variety of domestic and wild animals, including sheep, goats, cattle, camels, horses, pigs, boars, bears, felines, canids, amphibians, reptiles, poultry, and aquatic animals such as fishes and shrimp. Therefore, the implementation of efficient, accessible, and controllable inspection policies for livestock, fisheries, slaughterhouses, and meat processing and packaging companies is highly recommended. In addition, more attention should be paid to the education of auditors from the quality control (QC) and assurance sectors, livestock breeders, the fishery sector, and meat inspection veterinarians in developing countries with high incidence of zoonotic parasitic infections. Furthermore, both the diagnosis of zoonotic parasitic infections by inexpensive, accessible, and reliable identification methods and the organization of effective control systems with sufficient supervision of product quality are other areas to which more attention should be paid. In this review, we present some examples of successful inspection policies and recent updates on present conventional, serologic, and molecular diagnostic methods for zoonotic foodborne parasites from both human infection and animal-derived foods.

  13. Rodents as potential couriers for bioterrorism agents.

    PubMed

    Lõhmus, Mare; Janse, Ingmar; van de Goot, Frank; van Rotterdam, Bart J

    2013-09-01

    Many pathogens that can cause major public health, economic, and social damage are relatively easily accessible and could be used as biological weapons. Wildlife is a natural reservoir for many potential bioterrorism agents, and, as history has shown, eliminating a pathogen that has dispersed among wild fauna can be extremely challenging. Since a number of wild rodent species live close to humans, rodents constitute a vector for pathogens to circulate among wildlife, domestic animals, and humans. This article reviews the possible consequences of a deliberate spread of rodentborne pathogens. It is relatively easy to infect wild rodents with certain pathogens or to release infected rodents, and the action would be difficult to trace. Rodents can also function as reservoirs for diseases that have been spread during a bioterrorism attack and cause recurring disease outbreaks. As rats and mice are common in both urban and rural settlements, deliberately released rodentborne infections have the capacity to spread very rapidly. The majority of pathogens that are listed as potential agents of bioterrorism by the Centers for Disease Control and Prevention and the National Institute of Allergy and Infectious Diseases exploit rodents as vectors or reservoirs. In addition to zoonotic diseases, deliberately released rodentborne epizootics can have serious economic consequences for society, for example, in the area of international trade restrictions. The ability to rapidly detect introduced diseases and effectively communicate with the public in crisis situations enables a quick response and is essential for successful and cost-effective disease control.

  14. Infectious agents and amyotrophic lateral sclerosis: another piece of the puzzle of motor neuron degeneration.

    PubMed

    Castanedo-Vazquez, David; Bosque-Varela, Pilar; Sainz-Pelayo, Arancha; Riancho, Javier

    2018-05-29

    Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disease affecting motor neurons (MN). This fatal disease is characterized by progressive muscle wasting and lacks an effective treatment. ALS pathogenesis has not been elucidated yet. In a small proportion of ALS patients, the disease has a familial origin, related to mutations in specific genes, which directly result in MN degeneration. By contrast, the vast majority of cases are though to be sporadic, in which genes and environment interact leading to disease in genetically predisposed individuals. Lately, the role of the environment has gained relevance in this field and an extensive list of environmental conditions have been postulated to be involved in ALS. Among them, infectious agents, particularly viruses, have been suggested to play an important role in the pathogenesis of the disease. These agents could act by interacting with some crucial pathways in MN degeneration, such as gene processing, oxidative stress or neuroinflammation. In this article, we will review the main studies about the involvement of microorganisms in ALS, subsequently discussing their potential pathogenic effect and integrating them as another piece in the puzzle of ALS pathogenesis.

  15. Comparing national infectious disease surveillance systems: China and the Netherlands.

    PubMed

    Vlieg, Willemijn L; Fanoy, Ewout B; van Asten, Liselotte; Liu, Xiaobo; Yang, Jun; Pilot, Eva; Bijkerk, Paul; van der Hoek, Wim; Krafft, Thomas; van der Sande, Marianne A; Liu, Qi-Yong

    2017-05-08

    Risk assessment and early warning (RAEW) are essential components of any infectious disease surveillance system. In light of the International Health Regulations (IHR)(2005), this study compares the organisation of RAEW in China and the Netherlands. The respective approaches towards surveillance of arboviral disease and unexplained pneumonia were analysed to gain a better understanding of the RAEW mode of operation. This study may be used to explore options for further strengthening of global collaboration and timely detection and surveillance of infectious disease outbreaks. A qualitative study design was used, combining data retrieved from the literature and from semi-structured interviews with Chinese (5 national-level and 6 provincial-level) and Dutch (5 national-level) experts. The results show that some differences exist such as in the use of automated electronic components of the early warning system in China ('CIDARS'), compared to a more limited automated component in the Netherlands ('barometer'). Moreover, RAEW units in the Netherlands focus exclusively on infectious diseases, while China has a broader 'all hazard' approach (including for example chemical incidents). In the Netherlands, veterinary specialists take part at the RAEW meetings, to enable a structured exchange/assessment of zoonotic signals. Despite these differences, the main conclusion is that for the two infections studied, the early warning system in China and the Netherlands are remarkably similar considering their large differences in infectious disease history, population size and geographical setting. Our main recommendations are continued emphasis on international corporation that requires insight into national infectious disease surveillance systems, the usage of a One Health approach in infectious disease surveillance, and further exploration/strengthening of a combined syndromic and laboratory surveillance system.

  16. Infectious and non-infectious neurologic complications in heart transplant recipients.

    PubMed

    Muñoz, Patricia; Valerio, Maricela; Palomo, Jesús; Fernández-Yáñez, Juan; Fernández-Cruz, Ana; Guinea, Jesús; Bouza, Emilio

    2010-05-01

    Neurologic complications are important causes of morbidity and mortality in heart transplant (HT) recipients. New immunomodulating agents have improved survival rates, although some have been associated with a high rate of neurologic complications (infectious and non-infectious). We conducted this study to analyze the frequency of these complications, before and after the use of daclizumab induction therapy. We reviewed all neurologic complications in our HT cohort, comparing infectious with non-infectious complications over 2 periods of time in which different induction therapies were used (316 patients with OKT3 or antithymocyte globulin from 1988 to 2002, and 68 patients with daclizumab from 2003 to 2006). Neurologic complications were found in 75/384 patients (19.5%) with a total of 78 episodes. Non-infectious complications accounted for 68% of the 78 episodes of neurologic complications. A total of 51 patients and 53 episodes were detailed as follows: 25 episodes of stroke (25 of 78 total episodes, 32%; 19 ischemic, 6 hemorrhagic); 7 neuropathies; 6 seizures; 4 episodes of transient ischemic attack (TIA); 3 anoxic encephalopathy; 2 each brachial plexus palsy and metabolic encephalopathy; and 1 each myoclonia, central nervous system (CNS) lymphoma, subdural hematoma, and Cotard syndrome. Mean time to presentation of stroke, TIA, and encephalopathy was 1 day (range, 1-19 d) posttransplant. Mortality rate among non-infectious complications was 12/53 (22.6%). Infectious complications accounted for 32% of the 78 total episodes. We found 25 episodes in 24 patients: 17 herpes zoster (median, 268 d after HT), 3 CNS aspergillosis (median, 90 d after HT), 1 CNS toxoplasmosis and tuberculosis (51 d after HT), 1 pneumococcal meningitis (402 d after HT), and 2 Listeria meningitis (median, 108 d after HT). The 3 patients with CNS aspergillosis died. The mortality rate among patients with infectious neurologic complications was 12% (42.8% if the CNS was involved). When we

  17. Protocol for developing a Database of Zoonotic disease Research in India (DoZooRI).

    PubMed

    Chatterjee, Pranab; Bhaumik, Soumyadeep; Chauhan, Abhimanyu Singh; Kakkar, Manish

    2017-12-10

    Zoonotic and emerging infectious diseases (EIDs) represent a public health threat that has been acknowledged only recently although they have been on the rise for the past several decades. On an average, every year since the Second World War, one pathogen has emerged or re-emerged on a global scale. Low/middle-income countries such as India bear a significant burden of zoonotic and EIDs. We propose that the creation of a database of published, peer-reviewed research will open up avenues for evidence-based policymaking for targeted prevention and control of zoonoses. A large-scale systematic mapping of the published peer-reviewed research conducted in India will be undertaken. All published research will be included in the database, without any prejudice for quality screening, to broaden the scope of included studies. Structured search strategies will be developed for priority zoonotic diseases (leptospirosis, rabies, anthrax, brucellosis, cysticercosis, salmonellosis, bovine tuberculosis, Japanese encephalitis and rickettsial infections), and multiple databases will be searched for studies conducted in India. The database will be managed and hosted on a cloud-based platform called Rayyan. Individual studies will be tagged based on key preidentified parameters (disease, study design, study type, location, randomisation status and interventions, host involvement and others, as applicable). The database will incorporate already published studies, obviating the need for additional ethical clearances. The database will be made available online, and in collaboration with multisectoral teams, domains of enquiries will be identified and subsequent research questions will be raised. The database will be queried for these and resulting evidence will be analysed and published in peer-reviewed journals. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise

  18. Prioritization of zoonotic diseases of public health significance in Vietnam.

    PubMed

    Trang, Do Thuy; Siembieda, Jennifer; Huong, Nguyen Thi; Hung, Pham; Ky, Van Dang; Bandyopahyay, Santanu; Olowokure, Babatunde

    2015-12-30

    Prioritization of zoonotic diseases is critical as it facilitates optimization of resources, greater understanding of zoonotic diseases and implementation of policies promoting multisectoral collaboration. This study aimed to establish strategic priorities for zoonotic diseases in Vietnam taking a key stakeholder approach. Two weeks prior to a workshop on zoonotic diseases a questionnaire was developed and posted to key professionals involved in different areas of zoonotic disease management in Vietnam. Respondents were asked to assess the relative priority of 12 zoonotic diseases using a number of evidence-based criteria, and to provide suggestions to strengthen multisectoral collaboration. A response rate of 69% (51/74) was obtained, and 75% (38/51) respondents worked in non-international Vietnamese organizations. Respondents identified the top five diseases for prioritization in Vietnam as: avian influenza, rabies, Streptococcus suis infection, pandemic influenza and foodborne bacterial diseases. The three criteria most used to rank diseases were severity of disease, outbreak potential and public attention. Avian influenza was ranked as the number one priority zoonotic disease in Vietnam by 57% of the respondents, followed by rabies (18%). Respondents identified coordination mechanisms, information sharing and capacity building as the most important areas for strengthening to enhance multisectoral collaboration. This study is the first systematic and broad-based attempt to prioritize zoonotic diseases of public health significance in Vietnam using key stakeholders, and a comparative and transparent method. There is limited literature for policy makers and planners on this topic and the results of this study can be used to guide decision-making.

  19. Dembo polymerase chain reaction technique for detection of bovine abortion, diarrhea, and respiratory disease complex infectious agents in potential vectors and reservoirs.

    PubMed

    Rahpaya, Sayed Samim; Tsuchiaka, Shinobu; Kishimoto, Mai; Oba, Mami; Katayama, Yukie; Nunomura, Yuka; Kokawa, Saki; Kimura, Takashi; Kobayashi, Atsushi; Kirino, Yumi; Okabayashi, Tamaki; Nonaka, Nariaki; Mekata, Hirohisa; Aoki, Hiroshi; Shiokawa, Mai; Umetsu, Moeko; Morita, Tatsushi; Hasebe, Ayako; Otsu, Keiko; Asai, Tetsuo; Yamaguchi, Tomohiro; Makino, Shinji; Murata, Yoshiteru; Abi, Ahmad Jan; Omatsu, Tsutomu; Mizutani, Tetsuya

    2018-05-31

    Bovine abortion, diarrhea, and respiratory disease complexes, caused by infectious agents, result in high and significant economic losses for the cattle industry. These pathogens are likely transmitted by various vectors and reservoirs including insects, birds, and rodents. However, experimental data supporting this possibility are scarce. We collected 117 samples and screened them for 44 bovine abortive, diarrheal, and respiratory disease complex pathogens by using Dembo polymerase chain reaction (PCR), which is based on TaqMan real-time PCR. Fifty-seven samples were positive for at least one pathogen, including bovine viral diarrhea virus, bovine enterovirus, Salmonella enterica ser. Dublin, Salmonella enterica ser. Typhimurium, and Neospora caninum ; some samples were positive for multiple pathogens. Bovine viral diarrhea virus and bovine enterovirus were the most frequently detected pathogens, especially in flies, suggesting an important role of flies in the transmission of these viruses. Additionally, we detected the N. caninum genome from a cockroach sample for the first time. Our data suggest that insects (particularly flies), birds, and rodents are potential vectors and reservoirs of abortion, diarrhea, and respiratory infectious agents, and that they may transmit more than one pathogen at the same time.

  20. Examining the differences in format and characteristics of zoonotic virus surveillance data on state agency websites.

    PubMed

    Scotch, Matthew; Baarson, Brittany; Beard, Rachel; Lauder, Robert; Varman, Aarthi; Halden, Rolf U

    2013-04-26

    Zoonotic viruses are infectious organisms transmittable between animals and humans. Agencies of public health, agriculture, and wildlife conduct surveillance of zoonotic viruses and often report data on their websites. However, the format and characteristics of these data are not known. To describe and compare the format and characteristics of statistics of zoonotic viruses on state public health, agriculture, and wildlife agency websites. For each state, we considered the websites of that state's public health, agriculture, and wildlife agency. For each website, we noted the presence of any statistics for zoonotic viruses from 2000-2012. We analyzed the data using numerous categories including type of statistic, temporal and geographic level of detail, and format. We prioritized our analysis within each category based on assumptions of individuals' preferences for extracting and analyzing data from websites. Thus, if two types of data (such as city and state-level) were present for a given virus in a given year, we counted the one with higher priority (city). External links from agency sites to other websites were not considered. From 2000-2012, state health departments had the most extensive virus data, followed by agriculture, and then wildlife. We focused on the seven viruses that were common across the three agencies. These included rabies, West Nile virus, eastern equine encephalitis, St. Louis encephalitis, western equine encephalitis, influenza, and dengue fever. Simple numerical totals were most often used to report the data (89% for public health, 81% for agriculture, and 82% for wildlife), and proportions were not different (chi-square P=.15). Public health data were most often presented yearly (66%), while agriculture and wildlife agencies often described cases as they occurred (Fisher's Exact test P<.001). Regarding format, public health agencies had more downloadable PDF files (68%), while agriculture (61%) and wildlife agencies (46%) presented data

  1. The spread of zoonoses and other infectious diseases through the international trade of animals and animal products.

    PubMed

    Seimenis, Aristarhos M

    2008-01-01

    For trade purposes, ever increasing quantities of food animals and animal products that are transported more rapidly than ever before are contributing to the spread of zoonoses and are creating threats on a permanent basis. Most countries in south-eastern Europe, the Mediterranean and the Middle East are increasing imports of food animals and meat and products of animal origin. They can become potential sources of zoonotic and other infectious diseases if controls are not performed under the most effective conditions. Developing countries with their organisational weakness are particularly vulnerable to fraudulent international trade practices of animals and animal products. To prevent such risks, the World Trade Organization, the World Organisation for Animal Health and their member countries support the measures stipulated in the Sanitary and Phytosanitary Agreement which targets the liberalisation of trade in animals and animal products under specific conditions while protecting public health and national economies. Vigilance must be exercised and appropriate inspection made at points of entry by veterinary and other authorities to ensure the strict implementation of international and national regulations. National legislation, appropriate infrastructures and the respect of international regulations can become barriers to avoid animal trade, contributing to the spread of zoonotic and other infectious diseases.

  2. [Pet ownership and health status of pets from immunocompromised children, with emphasis in zoonotic diseases].

    PubMed

    Abarca V, Katia; López Del P, Javier; Peña D, Anamaría; López G, J Carlos

    2011-06-01

    To characterize pet ownership and pet health status in families of immunocompromised (IS) children, with emphasis in zoonotic diseases. Families of IS children from two hospitals in Santiago, Chile, were interviewed and their pets were evaluated by veterinary examination, coproparasitologic and skin dermatophytes test. In specific cases, other laboratory tests were performed in IS children or their relatives. 47 out of 70 contacted families had pets, 42 participated in the study. Several risk factors for IS children were observed, as having a turtle as a pet and to clean cat or turtle faeces. Lack of adequate veterinary control, immunizations and deparasitation of pets were observed. Some animals showed zoonotic diseases or agents, as Brucella canis, Cryptosporidium sp, Giardia intestinalis, Toxocara canis and scabies. 44% of dogs had ticks and 37% had fleas, both potential vectors of infections. Our results suggest that policies to provide safer pet contact in IS children are needed.

  3. Using White-tailed Deer (Odocoileus virginianus) in Infectious Disease Research

    PubMed Central

    Palmer, Mitchell V; Cox, Rebecca J; Waters, W Ray; Thacker, Tyler C; Whipple, Diana L

    2017-01-01

    Between 1940 and 2004, more than 335 emerging infectious disease events were reported in the scientific literature. The majority (60%) of these events involved zoonoses, most of which (72%) were of wildlife origin or had an epidemiologically important wildlife host. Because this trend of increasing emerging diseases likely will continue, understanding the pathogenesis, transmission, and diagnosis of these diseases in the relevant wildlife host is paramount. Achieving this goal often requires using wild animals as research subjects, which are vastly different from the traditional livestock or laboratory animals used by most universities and institutions. Using wildlife in infectious disease research presents many challenges but also provides opportunities to answer questions impossible to address by using traditional models. Cervid species, especially white-tailed deer (Odocoileus virginianus), elk (Cervus canadensis), and red deer (Cervus elaphus), are hosts or sentinels for several important pathogens, some of which are zoonotic. The long history of infectious disease research using white-tailed deer, conducted at ever-increasing levels of sophisticated biosecurity, demonstrates that this type of research can be conducted safely and that valuable insights can be gained. The greatest challenges to using wildlife in infectious disease research include animal source, facility design, nutrition, animal handling, and enrichment and other practices that both facilitate animal care and enhance animal wellbeing. The study of Mycobacterium bovis infection in white-tailed deer at the USDA's National Animal Disease Center serves to illustrate one approach to address these challenges. PMID:28724483

  4. Occupational Risks and Exposures Among Wildlife Health Professionals.

    PubMed

    Garland-Lewis, Gemina; Whittier, Christopher; Murray, Suzan; Trufan, Sally; Rabinowitz, Peter M

    2017-03-01

    Most emerging infectious diseases are zoonotic in origin, with wildlife a frequent source of zoonotic disease events. Although individuals with extensive wildlife contact may be at the greatest risk of contracting novel infectious agents, the occupational risk of those working closely with wildlife has not been well studied. This study assessed the occupational exposures among wildlife health professionals working in multiple countries worldwide. An occupational risk survey of past and present exposures was developed and administered online in a confidential manner to wildlife workers recruited through an ongoing international wildlife pathogen surveillance project. Surveys were completed by 71 participants in 14 countries. Significant lifetime exposures reported included bites from bats and rodents and touching dead animals. Completion of training in occupational safety was reported by 75% of respondents. While gloves were used for most tasks, use of N95 respirators and other personal protective equipment varied by task. Eighty percent of workers reported rabies vaccination. Some respondents indicated interest in enhanced occupational health services targeting their unique needs. Wildlife workers represent an occupational population at risk of zoonotic infection and injury. Enhanced occupational health services targeting wildlife workers could reduce the risk and sequelae of zoonotic exposure and infection.

  5. The Microbial Rosetta Stone Database: A compilation of global and emerging infectious microorganisms and bioterrorist threat agents

    PubMed Central

    Ecker, David J; Sampath, Rangarajan; Willett, Paul; Wyatt, Jacqueline R; Samant, Vivek; Massire, Christian; Hall, Thomas A; Hari, Kumar; McNeil, John A; Büchen-Osmond, Cornelia; Budowle, Bruce

    2005-01-01

    Background Thousands of different microorganisms affect the health, safety, and economic stability of populations. Many different medical and governmental organizations have created lists of the pathogenic microorganisms relevant to their missions; however, the nomenclature for biological agents on these lists and pathogens described in the literature is inexact. This ambiguity can be a significant block to effective communication among the diverse communities that must deal with epidemics or bioterrorist attacks. Results We have developed a database known as the Microbial Rosetta Stone. The database relates microorganism names, taxonomic classifications, diseases, specific detection and treatment protocols, and relevant literature. The database structure facilitates linkage to public genomic databases. This paper focuses on the information in the database for pathogens that impact global public health, emerging infectious organisms, and bioterrorist threat agents. Conclusion The Microbial Rosetta Stone is available at . The database provides public access to up-to-date taxonomic classifications of organisms that cause human diseases, improves the consistency of nomenclature in disease reporting, and provides useful links between different public genomic and public health databases. PMID:15850481

  6. Heterologous Prime-Boost Immunisation Regimens Against Infectious Diseases

    DTIC Science & Technology

    2006-08-01

    of these cells by boosting. DNA vaccines are good priming agents since they are internalised by antigen presenting cells and can induce antigen...presentation via both MHC class I and class II, thereby inducing both cytotoxic T lymphocytes and type 1-helper T lymphocytes. Successful boosting agents ...assessing prime-boost vaccine combinations for protection against infectious agents . • In a number of prime - boost studies, the inclusion of growth

  7. A survey for potentially zoonotic gastrointestinal parasites in domestic cavies in Cameroon (Central Africa).

    PubMed

    Meutchieye, Felix; Kouam, Marc K; Miegoué, Emile; Nguafack, Terence T; Tchoumboué, Joseph; Téguia, Alexis; Théodoropoulos, Georgios

    2017-06-26

    Farm animals are usually suspected to transmit infections to humans. Domestic cavies (Cavia porcellus) are hosts to a variety of pathogens, some of which are zoonotic. Several parasites including the protozoa Giardia spp. and Cryptosporidium spp. may be causative agents of gastrointestinal disorders in domestic cavies and humans. The aim of the study was to investigate the occurrence of potentially zoonotic protozoa as well as any potential zoonotic gastrointestinal parasite in domestic cavies raised under a semi extensive system in the rural areas of Cameroon. Giardia/Cryptosporidium antigens were detected in 12.90% of cavies. Helminthe eggs were found in 1.52% of animals. The prevalence of Paraspidodera uncinata, Heligmosomoides polygyrus (also known as Nematospiroides dubius) and Trichuris sp. was 1% (4/397), 0.3% (1/397), and 0.3% (1/397), respectively. Presence of Giardia/Cryptosporidium was unrelated to the occurrence of diarrhea, as none of the positive samples was from a diarrheic individual. Domestic cavies are hosts of Giardia/Cryptosporidium and appear as potential source of human giardiasis, cryptosporidiosis and infection with H. polygyrus in Cameroon. In keeping with the One Health Initiative, veterinarians and medical doctors should collaborate to address the problem of Giardia and Cryptosporidium infection in cavies and cavy breeders both in Cameroon and other countries with a similar cavy breeding system. Follow-up studies are required to further taxonomically characterize these cavy parasites and to determine their routes of transmission to humans.

  8. Zoonotic diseases associated with reptiles and amphibians: an update.

    PubMed

    Mitchell, Mark A

    2011-09-01

    Reptiles and amphibians are popular as pets. There are increased concerns among public health officials because of the zoonotic potential associated with these animals. Encounters with reptiles and amphibians are also on the rise in the laboratory setting and with wild animals; in both of these practices, there is also an increased likelihood for exposure to zoonotic pathogens. It is important that veterinarians remain current with the literature as it relates to emerging and reemerging zoonotic diseases attributed to reptiles and amphibians so that they can protect themselves, their staff, and their clients from potential problems.

  9. Biosecurity reference : CFR-listed agent and toxin summaries.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, Natalie Beth

    This reference document provides summary information on the animal, plant, zoonotic, and human pathogens and toxins regulated and categorized by 9 CFR 331 and 7 CFR 121, 'Agricultural Bioterrorism Protection Act of 2002; Possession, Use and Transfer of Biological Agents and Toxins,' and 42 CFR 73, 'Possession, Use, and Transfer of Select Agents and Toxins.' Summary information includes, at a minimum, a description of the agent and its associated symptoms; often additional information is provided on the diagnosis, treatment, geographic distribution, transmission, control and eradication, and impacts on public health.

  10. Multisectoral prioritization of zoonotic diseases in Uganda, 2017: A One Health perspective

    PubMed Central

    Bulage, Lilian; Kihembo, Christine; Nantima, Noelina; Monje, Fred; Ndumu, Deo; Sentumbwe, Juliet; Mbolanyi, Betty; Aruho, Robert; Kaboyo, Winyi; Mutonga, David; Basler, Colin; Paige, Sarah; Barton Behravesh, Casey

    2018-01-01

    Background Zoonotic diseases continue to be a public health burden globally. Uganda is especially vulnerable due to its location, biodiversity, and population. Given these concerns, the Ugandan government in collaboration with the Global Health Security Agenda conducted a One Health Zoonotic Disease Prioritization Workshop to identify zoonotic diseases of greatest national concern to the Ugandan government. Materials and methods The One Health Zoonotic Disease Prioritization tool, a semi-quantitative tool developed by the U.S. Centers for Disease Control and Prevention, was used for the prioritization of zoonoses. Workshop participants included voting members and observers representing multiple government and non-governmental sectors. During the workshop, criteria for prioritization were selected, and questions and weights relevant to each criterion were determined. We used a decision tree to provide a ranked list of zoonoses. Participants then established next steps for multisectoral engagement for the prioritized zoonoses. A sensitivity analysis demonstrated how criteria weights impacted disease prioritization. Results Forty-eight zoonoses were considered during the workshop. Criteria selected to prioritize zoonotic diseases were (1) severity of disease in humans in Uganda, (2) availability of effective control strategies, (3) potential to cause an epidemic or pandemic in humans or animals, (4) social and economic impacts, and (5) bioterrorism potential. Seven zoonotic diseases were identified as priorities for Uganda: anthrax, zoonotic influenza viruses, viral hemorrhagic fevers, brucellosis, African trypanosomiasis, plague, and rabies. Sensitivity analysis did not indicate significant changes in zoonotic disease prioritization based on criteria weights. Discussion One Health approaches and multisectoral collaborations are crucial to the surveillance, prevention, and control strategies for zoonotic diseases. Uganda used such an approach to identify zoonoses of

  11. Black and gold howler monkeys (Alouatta caraya) as sentinels of ecosystem health: patterns of zoonotic protozoa infection relative to degree of human-primate contact.

    PubMed

    Kowalewski, Martin M; Salzer, Johanna S; Deutsch, Joseph C; Raño, Mariana; Kuhlenschmidt, Mark S; Gillespie, Thomas R

    2011-01-01

    Exponential expansion of human populations and human activities within primate habitats has resulted in high potential for pathogen exchange creating challenges for biodiversity conservation and global health. Under such conditions, resilient habitat generalists such as black and gold howler monkeys (Alouatta caraya) may act as effective sentinels to overall ecosystem health and alert us to impending epidemics in the human population. To better understand this potential, we examined noninvasively collected fecal samples from black and gold howler monkeys from remote, rural, and village populations in Northern Argentina. We examined all samples (n=90) for the zoonotic protozoa Cryptosporidium sp. and Giardia sp. via immunofluorescent antibody (IFA) detection. All samples were negative for Cryptosporidium sp. The prevalence of Giardia sp. was significantly higher at the rural site (67%) compared with the remote forest (57%) and village (40%) sites. A lack of Cryptosporidium sp. in all samples examined suggests that this pathogen is not a natural component of the howler parasite communities at these sites and that current land-use patterns and livestock contact are not exposing Argentine howler monkeys to this pathogen. High prevalence of Giardia sp. at all sites suggests that howler monkeys may serve as a viable reservoir for Giardia. Significantly higher prevalence of Giardia sp. at the rural site, where primate-livestock contact is highest, suggests the presence of multiple Giardia clades or increased exposure to Giardia through repeated zoonotic transmission among nonhuman primates, livestock, and/or people. These results highlight the need for future research into the epidemiology, cross-species transmission ecology, and clinical consequences of Giardia and other infectious agents not only in humans and livestock, but also in the wild animals that share their environments. © 2010 Wiley-Liss, Inc.

  12. Framework for Infectious Disease Analysis: A comprehensive and integrative multi-modeling approach to disease prediction and management.

    PubMed

    Erraguntla, Madhav; Zapletal, Josef; Lawley, Mark

    2017-12-01

    The impact of infectious disease on human populations is a function of many factors including environmental conditions, vector dynamics, transmission mechanics, social and cultural behaviors, and public policy. A comprehensive framework for disease management must fully connect the complete disease lifecycle, including emergence from reservoir populations, zoonotic vector transmission, and impact on human societies. The Framework for Infectious Disease Analysis is a software environment and conceptual architecture for data integration, situational awareness, visualization, prediction, and intervention assessment. Framework for Infectious Disease Analysis automatically collects biosurveillance data using natural language processing, integrates structured and unstructured data from multiple sources, applies advanced machine learning, and uses multi-modeling for analyzing disease dynamics and testing interventions in complex, heterogeneous populations. In the illustrative case studies, natural language processing from social media, news feeds, and websites was used for information extraction, biosurveillance, and situation awareness. Classification machine learning algorithms (support vector machines, random forests, and boosting) were used for disease predictions.

  13. Fascioliasis: An Ongoing Zoonotic Trematode Infection.

    PubMed

    Nyindo, Mramba; Lukambagire, Abdul-Hamid

    2015-01-01

    Zoonotic trematode infections are an area of the neglected tropical diseases that have become of major interest to global and public health due to their associated morbidity. Human fascioliasis is a trematode zoonosis of interest in public health. It affects approximately 50 million people worldwide and over 180 million are at risk of infection in both developed and underdeveloped countries. The one health paradigm is an area that seeks to address the problem of zoonotic infections through a comprehensive and sustainable approach. This review attempts to address the major challenges in managing human and animal fascioliasis with valuable insights gained from the one health paradigm to global health and multidisciplinary integration.

  14. Cocirculation of infectious diseases on networks

    NASA Astrophysics Data System (ADS)

    Miller, Joel C.

    2013-06-01

    We consider multiple diseases spreading in a static configuration model network. We make standard assumptions that infection transmits from neighbor to neighbor at a disease-specific rate and infected individuals recover at a disease-specific rate. Infection by one disease confers immediate and permanent immunity to infection by any disease. Under these assumptions, we find a simple, low-dimensional ordinary differential equations model which captures the global dynamics of the infection. The dynamics depend strongly on initial conditions. Although we motivate this Rapid Communication with infectious disease, the model may be adapted to the spread of other infectious agents such as competing political beliefs, or adoption of new technologies if these are influenced by contacts. As an example, we demonstrate how to model an infectious disease which can be prevented by a behavior change.

  15. Prevalence of enteric pathogens in dogs of north-central Colorado.

    PubMed

    Hackett, Tim; Lappin, Michael R

    2003-01-01

    To evaluate the prevalence of enteric pathogens in dogs of north-central Colorado, fecal samples were obtained from client-owned dogs presented to the Veterinary Teaching Hospital at Colorado State University for evaluation of acute small-bowel, large-bowel, or mixed-bowel diarrhea (n=71) and from age-matched, client-owned, healthy dogs (n=59). Infectious agents potentially associated with gastrointestinal disease were detected in 34 of 130 (26.1%) fecal samples. Agents with zoonotic potential were detected in feces from 21 (16.2%) of 130 dogs and included Giardia spp. (5.4%), Cryptosporidium parvum (3.8%), Toxocara canis (3.1%), Salmonella spp. (2.3%), Ancylostoma caninum (0.8%), and Campylobacter jejuni (0.8%). Positive test results occurred in dogs with or without gastrointestinal signs of disease. Dogs, particularly those in homes of immunocompromised humans, should be evaluated for enteric zoonotic agents.

  16. Hazard Analysis of Critical Control Points Assessment as a Tool to Respond to Emerging Infectious Disease Outbreaks

    PubMed Central

    Edmunds, Kelly L.; Hunter, Paul R.; Few, Roger; Bell, Diana J.

    2013-01-01

    Highly pathogenic avian influenza virus (HPAI) strain H5N1 has had direct and indirect economic impacts arising from direct mortality and control programmes in over 50 countries reporting poultry outbreaks. HPAI H5N1 is now reported as the most widespread and expensive zoonotic disease recorded and continues to pose a global health threat. The aim of this research was to assess the potential of utilising Hazard Analysis of Critical Control Points (HACCP) assessments in providing a framework for a rapid response to emerging infectious disease outbreaks. This novel approach applies a scientific process, widely used in food production systems, to assess risks related to a specific emerging health threat within a known zoonotic disease hotspot. We conducted a HACCP assessment for HPAI viruses within Vietnam’s domestic poultry trade and relate our findings to the existing literature. Our HACCP assessment identified poultry flock isolation, transportation, slaughter, preparation and consumption as critical control points for Vietnam’s domestic poultry trade. Introduction of the preventative measures highlighted through this HACCP evaluation would reduce the risks posed by HPAI viruses and pressure on the national economy. We conclude that this HACCP assessment provides compelling evidence for the future potential that HACCP analyses could play in initiating a rapid response to emerging infectious diseases. PMID:23967294

  17. Current diagnosis and management of infectious mononucleosis.

    PubMed

    Vouloumanou, Evridiki K; Rafailidis, Petros I; Falagas, Matthew E

    2012-01-01

    Infectious mononucleosis is a common, usually self-limited disease. However, infectious mononucleosis may present with severe manifestations. Complications may also occur. Consequently, diagnostic and treatment issues regarding infectious mononucleosis are of major importance. In this review, we focus on the evaluation of articles providing diagnosis and treatment data for infectious mononucleosis, published during the past 2 years. Twelve studies, deriving from extended search in PubMed, were included. Nine studies provided diagnosis data. The evaluated diagnostic methods were real-time PCR (RT-PCR), IgM/IgG antibodies measured with different assays [measurement of Epstein-Barr virus viral load (EBV-VL) in peripheral blood, neutrophil/lymphocyte/monocyte counts, C-reactive protein values, and monospot test]. The sensitivities reported for RT-PCR were high. The available treatment data were scarce (three studies). Two of them suggested that antivirals (mainly acyclovir and valacyclovir) may have a role in the treatment of infectious mononucleosis with complications, whereas the remaining study presented novel potential therapeutic patents including 5-substituted uracyle, azacytosine derivatives, and peptides inhibiting EBV-mediated membrane fusion. RT-PCR and measurement of EBV-VL may provide useful tools for the early diagnosis of infectious mononucleosis in cases with inconclusive serological results. Antiviral agents may provide a useful treatment option in patients with severe infectious mononucleosis.

  18. Bat flight and zoonotic viruses

    USGS Publications Warehouse

    O'Shea, Thomas J.; Cryan, Paul M.; Cunningham, Andrew A.; Fooks, Anthony R.; Hayman, David T.S.; Luis, Angela D.; Peel, Alison J.; Plowright, Raina K.; Wood, James L.N.

    2014-01-01

    Bats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. We hypothesize that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals. On an evolutionary scale, this host–virus interaction might have resulted in the large diversity of zoonotic viruses in bats, possibly through bat viruses adapting to be more tolerant of the fever response and less virulent to their natural hosts.

  19. Predicting Zoonotic Risk of Influenza A Viruses from Host Tropism Protein Signature Using Random Forest.

    PubMed

    Eng, Christine L P; Tong, Joo Chuan; Tan, Tin Wee

    2017-05-25

    Influenza A viruses remain a significant health problem, especially when a novel subtype emerges from the avian population to cause severe outbreaks in humans. Zoonotic viruses arise from the animal population as a result of mutations and reassortments, giving rise to novel strains with the capability to evade the host species barrier and cause human infections. Despite progress in understanding interspecies transmission of influenza viruses, we are no closer to predicting zoonotic strains that can lead to an outbreak. We have previously discovered distinct host tropism protein signatures of avian, human and zoonotic influenza strains obtained from host tropism predictions on individual protein sequences. Here, we apply machine learning approaches on the signatures to build a computational model capable of predicting zoonotic strains. The zoonotic strain prediction model can classify avian, human or zoonotic strains with high accuracy, as well as providing an estimated zoonotic risk. This would therefore allow us to quickly determine if an influenza virus strain has the potential to be zoonotic using only protein sequences. The swift identification of potential zoonotic strains in the animal population using the zoonotic strain prediction model could provide us with an early indication of an imminent influenza outbreak.

  20. Fascioliasis: An Ongoing Zoonotic Trematode Infection

    PubMed Central

    Nyindo, Mramba; Lukambagire, Abdul-Hamid

    2015-01-01

    Zoonotic trematode infections are an area of the neglected tropical diseases that have become of major interest to global and public health due to their associated morbidity. Human fascioliasis is a trematode zoonosis of interest in public health. It affects approximately 50 million people worldwide and over 180 million are at risk of infection in both developed and underdeveloped countries. The one health paradigm is an area that seeks to address the problem of zoonotic infections through a comprehensive and sustainable approach. This review attempts to address the major challenges in managing human and animal fascioliasis with valuable insights gained from the one health paradigm to global health and multidisciplinary integration. PMID:26417603

  1. Use of Bioclimatic Factors to Determine Potential Niche of Vaccinia Virus, an Emerging and Zoonotic Pathogen

    NASA Astrophysics Data System (ADS)

    Quiner, C. A.; Nakazawa, Y.

    2017-12-01

    Emerging and understudied pathogens often lack information that most commonly used analytical tools require, such as negative controls or baseline data making public health control of emerging pathogens challenging. In lieu of opportunities to collect more data from larger outbreaks or formal epidemiological studies, new analytical strategies, merging case data with publically available datasets, can be used to understand transmission patterns and drivers of disease emergence. Zoonotic infections with Vaccinia virus (VACV) were first reported in Brazil in 1999, VACV is an emerging zoonotic Orthopoxvirus, which primarily infects dairy cattle and farmers in close contact with infected cows. Prospective studies of emerging pathogens could provide critical data that would inform public health planning and response to outbreaks. By using the location of 87-recorded outbreaks and publicly available bioclimatic data we demonstrate one such approach. Using an Ecological Niche Model (ENM), we identify the environmental conditions under which VACV outbreaks have occurred, and determine additional locations in two affected South American countries that may be susceptible to transmission. Further, we show how suitability for the virus responds to different levels of various environmental factors and highlight the most important climatic factors in determining its transmission. The final ENM predicted all areas where Brazilian outbreaks occurred, two out of five Colombian outbreaks and identified new regions within Brazil that are suitable for transmission based on bioclimatic factors. Further, the most important factors in determining transmission suitability are precipitation of the wettest quarter, annual precipitation, mean temperature of the coldest quarter and mean diurnal range. The analyses here provide a means by which to study patterns of an emerging infectious disease, and regions that are potentially at risk for it, in spite of the paucity of critical data. Policy

  2. The Preventive Control of Zoonotic Visceral Leishmaniasis: Efficacy and Economic Evaluation

    PubMed Central

    Wu, Jianhong; Massad, Eduardo

    2017-01-01

    Zoonotic Visceral Leishmaniasis (ZVL) is one of the world's deadliest and neglected infectious diseases, according to World Health Organization. This disease is one of major human and veterinary medical significance. The sandfly and the reservoir in urban areas remain among the major challenges for the control activities. In this paper, we evaluated five control strategies (positive dog elimination, insecticide impregnated dog collar, dog vaccination, dog treatment, and sandfly population control), considering disease control results and cost-effectiveness. We elaborated a mathematical model based on a set of differential equations in which three populations were represented (human, dog, and sandfly). Humans and dogs were divided into susceptible, latent, clinically ill, and recovery categories. Sandflies were divided into noninfected, infected, and infective. As the main conclusions, the insecticide impregnated dog collar was the strategy that presented the best combination between disease control and cost-effectiveness. But, depending on the population target, the control results and cost-effectiveness of each strategy may differ. More and detailed studies are needed, specially one which optimizes the control considering more than one strategy in activity. PMID:28588642

  3. The Preventive Control of Zoonotic Visceral Leishmaniasis: Efficacy and Economic Evaluation.

    PubMed

    Shimozako, Helio Junji; Wu, Jianhong; Massad, Eduardo

    2017-01-01

    Zoonotic Visceral Leishmaniasis (ZVL) is one of the world's deadliest and neglected infectious diseases, according to World Health Organization. This disease is one of major human and veterinary medical significance. The sandfly and the reservoir in urban areas remain among the major challenges for the control activities. In this paper, we evaluated five control strategies (positive dog elimination, insecticide impregnated dog collar, dog vaccination, dog treatment, and sandfly population control), considering disease control results and cost-effectiveness. We elaborated a mathematical model based on a set of differential equations in which three populations were represented (human, dog, and sandfly). Humans and dogs were divided into susceptible, latent, clinically ill, and recovery categories. Sandflies were divided into noninfected, infected, and infective. As the main conclusions, the insecticide impregnated dog collar was the strategy that presented the best combination between disease control and cost-effectiveness. But, depending on the population target, the control results and cost-effectiveness of each strategy may differ. More and detailed studies are needed, specially one which optimizes the control considering more than one strategy in activity.

  4. Experts' Perceptions on China's Capacity to Manage Emerging and Re-emerging Zoonotic Diseases in an Era of Climate Change.

    PubMed

    Hansen, A; Xiang, J; Liu, Q; Tong, M X; Sun, Y; Liu, X; Chen, K; Cameron, S; Hanson-Easey, S; Han, G-S; Weinstein, P; Williams, C; Bi, P

    2017-11-01

    Zoonotic diseases transmitted by arthropods and rodents are a major public health concern in China. However, interventions in recent decades have helped lower the incidence of several diseases despite the country's large, frequently mobile population and socio-economic challenges. Increasing globalization, rapid urbanization and a warming climate now add to the complexity of disease control and prevention and could challenge China's capacity to respond to threats of emerging and re-emerging zoonoses. To investigate this notion, face-to-face interviews were conducted with 30 infectious disease experts in four cities in China. The case study diseases under discussion were malaria, dengue fever and haemorrhagic fever with renal syndrome, all of which may be influenced by changing meteorological conditions. Data were analysed using standard qualitative techniques. The study participants viewed the current disease prevention and control system favourably and were optimistic about China's capacity to manage climate-sensitive diseases in the future. Several recommendations emerged from the data including the need to improve health literacy in the population regarding the transmission of infectious diseases and raising awareness of the health impacts of climate change amongst policymakers and health professionals. Participants thought that research capacity could be strengthened and human resources issues for front-line staff should be addressed. It was considered important that authorities are well prepared in advance for outbreaks such as dengue fever in populous subtropical areas, and a prompt and coordinated response is required when outbreaks occur. Furthermore, health professionals need to remain skilled in the identification of diseases for which incidence is declining, so that re-emerging or emerging trends can be rapidly identified. Recommendations such as these may be useful in formulating adaptation plans and capacity building for the future control and

  5. Infectious disease in cervids of North America: data, models, and management challenges.

    PubMed

    Conner, Mary Margaret; Ebinger, Michael Ryan; Blanchong, Julie Anne; Cross, Paul Chafee

    2008-01-01

    Over the past two decades there has been a steady increase in the study and management of wildlife diseases. This trend has been driven by the perception of an increase in emerging zoonotic diseases and the recognition that wildlife can be a critical factor for controlling infectious diseases in domestic animals. Cervids are of recent concern because, as a group, they present a number of unique challenges. Their close ecological and phylogenetic relationship to livestock species places them at risk for receiving infections from, and reinfecting livestock. In addition, cervids are an important resource; revenue from hunting and viewing contribute substantially to agency budgets and local economies. A comprehensive coverage of infectious diseases in cervids is well beyond the scope of this chapter. In North America alone there are a number of infectious diseases that can potentially impact cervid populations, but for most of these, management is not feasible or the diseases are only a potential or future concern. We focus this chapter on three diseases that are of major management concern and the center of most disease research for cervids in North America: bovine tuberculosis, chronic wasting disease, and brucellosis. We discuss the available data and recent advances in modeling and management of these diseases.

  6. Bat Predation by Cercopithecus Monkeys: Implications for Zoonotic Disease Transmission.

    PubMed

    Tapanes, Elizabeth; Detwiler, Kate M; Cords, Marina

    2016-06-01

    The relationship between bats and primates, which may contribute to zoonotic disease transmission, is poorly documented. We provide the first behavioral accounts of predation on bats by Cercopithecus monkeys, both of which are known to harbor zoonotic disease. We witnessed 13 bat predation events over 6.5 years in two forests in Kenya and Tanzania. Monkeys sometimes had prolonged contact with the bat carcass, consuming it entirely. All predation events occurred in forest-edge or plantation habitat. Predator-prey relations between bats and primates are little considered by disease ecologists, but may contribute to transmission of zoonotic disease, including Ebolavirus.

  7. [Emerging infectious diseases: complex, unpredictable processes].

    PubMed

    Guégan, Jean-François

    2016-01-01

    In the light of a double approach, at first empirical, later theoretical and comparative, illustrated by the example of the Buruli ulcer and its mycobacterial agent Mycobacterium ulcerans on which I focused my research activity these last ten years by studying determinants and factors of emerging infectious or parasitic diseases, the complexity of events explaining emerging diseases will be presented. The cascade of events occurring at various levels of spatiotemporal scales and organization of life, which lead to the numerous observed emergences, nowadays requires better taking into account the interactions between host(s), pathogen(s) and the environment by including the behavior of both individuals and the population. In numerous research studies on emerging infectious diseases, microbial hazard is described rather than infectious disease risk, the latter resulting from the confrontation between an association of threatening phenomena, or hazards, and a susceptible population. Beyond, the theme of emerging infectious diseases and its links with global environmental and societal changes leads to reconsider some well-established knowledge in infectiology and parasitology. © Société de Biologie, 2017.

  8. Predicting Zoonotic Risk of Influenza A Viruses from Host Tropism Protein Signature Using Random Forest

    PubMed Central

    Eng, Christine L. P.; Tong, Joo Chuan; Tan, Tin Wee

    2017-01-01

    Influenza A viruses remain a significant health problem, especially when a novel subtype emerges from the avian population to cause severe outbreaks in humans. Zoonotic viruses arise from the animal population as a result of mutations and reassortments, giving rise to novel strains with the capability to evade the host species barrier and cause human infections. Despite progress in understanding interspecies transmission of influenza viruses, we are no closer to predicting zoonotic strains that can lead to an outbreak. We have previously discovered distinct host tropism protein signatures of avian, human and zoonotic influenza strains obtained from host tropism predictions on individual protein sequences. Here, we apply machine learning approaches on the signatures to build a computational model capable of predicting zoonotic strains. The zoonotic strain prediction model can classify avian, human or zoonotic strains with high accuracy, as well as providing an estimated zoonotic risk. This would therefore allow us to quickly determine if an influenza virus strain has the potential to be zoonotic using only protein sequences. The swift identification of potential zoonotic strains in the animal population using the zoonotic strain prediction model could provide us with an early indication of an imminent influenza outbreak. PMID:28587080

  9. Wildlife Trade and Human Health in Lao PDR: An Assessment of the Zoonotic Disease Risk in Markets.

    PubMed

    Greatorex, Zoe F; Olson, Sarah H; Singhalath, Sinpakone; Silithammavong, Soubanh; Khammavong, Kongsy; Fine, Amanda E; Weisman, Wendy; Douangngeun, Bounlom; Theppangna, Watthana; Keatts, Lucy; Gilbert, Martin; Karesh, William B; Hansel, Troy; Zimicki, Susan; O'Rourke, Kathleen; Joly, Damien O; Mazet, Jonna A K

    2016-01-01

    Although the majority of emerging infectious diseases can be linked to wildlife sources, most pathogen spillover events to people could likely be avoided if transmission was better understood and practices adjusted to mitigate risk. Wildlife trade can facilitate zoonotic disease transmission and represents a threat to human health and economies in Asia, highlighted by the 2003 SARS coronavirus outbreak, where a Chinese wildlife market facilitated pathogen transmission. Additionally, wildlife trade poses a serious threat to biodiversity. Therefore, the combined impacts of Asian wildlife trade, sometimes termed bush meat trade, on public health and biodiversity need assessing. From 2010 to 2013, observational data were collected in Lao PDR from markets selling wildlife, including information on volume, form, species and price of wildlife; market biosafety and visitor origin. The potential for traded wildlife to host zoonotic diseases that pose a serious threat to human health was then evaluated at seven markets identified as having high volumes of trade. At the seven markets, during 21 observational surveys, 1,937 alive or fresh dead mammals (approximately 1,009 kg) were observed for sale, including mammals from 12 taxonomic families previously documented to be capable of hosting 36 zoonotic pathogens. In these seven markets, the combination of high wildlife volumes, high risk taxa for zoonoses and poor biosafety increases the potential for pathogen presence and transmission. To examine the potential conservation impact of trade in markets, we assessed the status of 33,752 animals observed during 375 visits to 93 markets, under the Lao PDR Wildlife and Aquatic Law. We observed 6,452 animals listed by Lao PDR as near extinct or threatened with extinction. The combined risks of wildlife trade in Lao PDR to human health and biodiversity highlight the need for a multi-sector approach to effectively protect public health, economic interests and biodiversity.

  10. Wildlife Trade and Human Health in Lao PDR: An Assessment of the Zoonotic Disease Risk in Markets

    PubMed Central

    Singhalath, Sinpakone; Silithammavong, Soubanh; Khammavong, Kongsy; Fine, Amanda E.; Weisman, Wendy; Douangngeun, Bounlom; Theppangna, Watthana; Keatts, Lucy; Gilbert, Martin; Karesh, William B.; Hansel, Troy; Zimicki, Susan; O’Rourke, Kathleen; Joly, Damien O.; Mazet, Jonna A. K.

    2016-01-01

    Although the majority of emerging infectious diseases can be linked to wildlife sources, most pathogen spillover events to people could likely be avoided if transmission was better understood and practices adjusted to mitigate risk. Wildlife trade can facilitate zoonotic disease transmission and represents a threat to human health and economies in Asia, highlighted by the 2003 SARS coronavirus outbreak, where a Chinese wildlife market facilitated pathogen transmission. Additionally, wildlife trade poses a serious threat to biodiversity. Therefore, the combined impacts of Asian wildlife trade, sometimes termed bush meat trade, on public health and biodiversity need assessing. From 2010 to 2013, observational data were collected in Lao PDR from markets selling wildlife, including information on volume, form, species and price of wildlife; market biosafety and visitor origin. The potential for traded wildlife to host zoonotic diseases that pose a serious threat to human health was then evaluated at seven markets identified as having high volumes of trade. At the seven markets, during 21 observational surveys, 1,937 alive or fresh dead mammals (approximately 1,009 kg) were observed for sale, including mammals from 12 taxonomic families previously documented to be capable of hosting 36 zoonotic pathogens. In these seven markets, the combination of high wildlife volumes, high risk taxa for zoonoses and poor biosafety increases the potential for pathogen presence and transmission. To examine the potential conservation impact of trade in markets, we assessed the status of 33,752 animals observed during 375 visits to 93 markets, under the Lao PDR Wildlife and Aquatic Law. We observed 6,452 animals listed by Lao PDR as near extinct or threatened with extinction. The combined risks of wildlife trade in Lao PDR to human health and biodiversity highlight the need for a multi-sector approach to effectively protect public health, economic interests and biodiversity. PMID:27008628

  11. Viral and vector zoonotic exploitation of a homo-sociome memetic complex.

    PubMed

    Rupprecht, C E; Burgess, G W

    2015-05-01

    As most newly characterized emerging infectious diseases are considered to be zoonotic, a modern pre-eminence ascribed within this classification lies clearly within the viral taxonomic realm. In particular, RNA viruses deserve special concern given their documented impact on conservation biology, veterinary medicine and public health, with an unprecedented ability to promote an evolutionary host-pathogen arms race from the ultimate infection and immunity perspective. However, besides the requisite molecular/gross anatomical and physiological bases for infectious diseases to transmit from one host to another, both viral pathogens and their reservoirs/vectors exploit a complex anthropological, cultural, historical, psychological and social suite that specifically defines the phylodynamics within Homo sapiens, unlike any other species. Some of these variables include the ecological benefits of living in groups, decisions on hunting and foraging behaviours and dietary preferences, myths and religious doctrines, health economics, travel destinations, population planning, political decisions on agricultural product bans and many others, in a homo-sociome memetic complex. Taken to an extreme, such complexities elucidate the underpinnings of explanations as to why certain viral zoonoses reside in neglected people, places and things, whereas others are chosen selectively and prioritized for active mitigation. Canine-transmitted rabies serves as one prime example of how a neglected viral zoonosis may transition to greater attention on the basis of renewed advocacy, social media, local champions and vested international community engagement. In contrast, certain bat-associated and arboviral diseases suffer from basic ignorance and perpetuated misunderstanding of fundamental reservoir and vector ecology tenets, translated into failed control policies that only exacerbate the underlying environmental conditions of concern. Beyond applied biomedical knowledge, epidemiological

  12. Epidemiology of infectious diseases transmitted by drinking water in developed countries.

    PubMed

    Hartemann, P; Newman, R; Foliguet, J M

    1986-01-01

    Research on the epidemiology of infectious diseases attributable to drinking water, common in the US during the past 20 years at least, is not yet really widespread in France. The role played by water in the transmission of certain infectious agents was important in European countries during past centuries but at present the incidence of waterborne diseases can be considered as very low. The absence of well-established data is due to the difficulty in reporting correctly a few minor outbreaks in a situation of very low endemicity. After a survey of the reported outbreaks, this paper deals with risk assessment of waterborne diseases in developed countries as well as special problems linked with proving transmission via water and with the nature of the infectious agents, and the development of monitoring methods for increasing our knowledge of this epidemiology.

  13. Bat Flight and Zoonotic Viruses

    PubMed Central

    Cryan, Paul M.; Cunningham, Andrew A.; Fooks, Anthony R.; Hayman, David T.S.; Luis, Angela D.; Peel, Alison J.; Plowright, Raina K.; Wood, James L.N.

    2014-01-01

    Bats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. We hypothesize that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals. On an evolutionary scale, this host–virus interaction might have resulted in the large diversity of zoonotic viruses in bats, possibly through bat viruses adapting to be more tolerant of the fever response and less virulent to their natural hosts. PMID:24750692

  14. Bartonella spp. - a chance to establish One Health concepts in veterinary and human medicine.

    PubMed

    Regier, Yvonne; O Rourke, Fiona; Kempf, Volkhard A J

    2016-05-10

    Infectious diseases remain a remarkable health threat for humans and animals. In the past, the epidemiology, etiology and pathology of infectious agents affecting humans and animals have mostly been investigated in separate studies. However, it is evident, that combined approaches are needed to understand geographical distribution, transmission and infection biology of "zoonotic agents". The genus Bartonella represents a congenial example of the synergistic benefits that can arise from such combined approaches: Bartonella spp. infect a broad variety of animals, are linked with a constantly increasing number of human diseases and are transmitted via arthropod vectors. As a result, the genus Bartonella is predestined to play a pivotal role in establishing a One Health concept combining veterinary and human medicine.

  15. How urbanization affects the epidemiology of emerging infectious diseases

    PubMed Central

    Neiderud, Carl-Johan

    2015-01-01

    The world is becoming more urban every day, and the process has been ongoing since the industrial revolution in the 18th century. The United Nations now estimates that 3.9 billion people live in urban centres. The rapid influx of residents is however not universal and the developed countries are already urban, but the big rise in urban population in the next 30 years is expected to be in Asia and Africa. Urbanization leads to many challenges for global health and the epidemiology of infectious diseases. New megacities can be incubators for new epidemics, and zoonotic diseases can spread in a more rapid manner and become worldwide threats. Adequate city planning and surveillance can be powerful tools to improve the global health and decrease the burden of communicable diseases. PMID:26112265

  16. [Parasitic zoonotic disease agents in human and animal drinking water].

    PubMed

    Karanis, P

    2000-08-01

    Human- and veterinary important parasites of the subkingdom of protozoans and helminths infect humans and animals by ingestion of parasites in contaminated water. The parasites are excreted from the body of infected humans, livestock, zoo animals, companion animals or wild animals in the feces. Recreational waters, agricultural practices and wild animals serve as vehicles of transmission of the parasites in the water supplies. The following topics are addressed: a) the life cycles of parasitic diseases-causing agents with proven or potential transmission via water b) the development and the current research status of the analytical techniques for the detection of parasitic diseases-causing agents from water c) the occurrence of Cryptosporidium and Giardia in surface water supplies and in treated water d) the possible water sources and transmission ways of the parasites into the water supplies e) the behaviour and the possibilities for the removal or elimination of the parasites by water treatment.

  17. The efficacy of the direct clinical intervention for infectious diseases by a pediatric infectious disease specialist in the pediatric ward of a tertiary medical facility without a pediatric antimicrobial stewardship program.

    PubMed

    Hoshina, T; Yamamoto, N; Ogawa, M; Nakamoto, T; Kusuhara, K

    2017-08-01

    Antimicrobial stewardship programs (ASPs) have been introduced in most hospital complexes; however, they are not always useful for pediatric patients. The aim of this study is to investigate the efficacy of direct clinical intervention for infectious diseases by a pediatric infectious disease specialist in a tertiary medical facility without pediatric ASP. This retrospective study included 1,821 patients who were hospitalized in the pediatric ward of a large metropolitan hospital from 2010 to 2015. The clinical course, the use of intravenous antimicrobial agents and the results of a microbiological analysis were compared between the period after the beginning of direct intervention by the specialist (post-intervention period) and the previous period (pre-intervention period). In the post-intervention period, the proportion of the patients who received intravenous antimicrobial agents, the number of antimicrobial agents used for each episode, and the proportion of episodes in which an antimicrobial agent was re-administrated were significantly lower (P = 0.006, P = 0.004, P = 0.036, respectively), and the duration of antimicrobial treatment was significantly shorter (P < 0.001). In addition, narrower spectrum antimicrobial agents were used, and the incidence of meropenem-sensitive Pseudomonas aeruginosa significantly increased (P = 0.037) in the post-intervention period. There was no change of mortality between the two periods. Direct clinical intervention by a pediatric infectious diseases specialist is useful for the treatment of infectious diseases in the pediatric ward of a tertiary medical facility without a pediatric ASP. The creation of a pediatric ASP is recommended in hospital complexes.

  18. The role of wild canids and felids in spreading parasites to dogs and cats in Europe. Part I: Protozoa and tick-borne agents.

    PubMed

    Otranto, Domenico; Cantacessi, Cinzia; Pfeffer, Martin; Dantas-Torres, Filipe; Brianti, Emanuele; Deplazes, Peter; Genchi, Claudio; Guberti, Vittorio; Capelli, Gioia

    2015-09-30

    Over the last few decades, the world has witnessed radical changes in climate, landscape, and ecosystems. These events, together with other factors such as increasing illegal wildlife trade and changing human behaviour towards wildlife, are resulting into thinning boundaries between wild canids and felids and their domestic counterparts. As a consequence, the epidemiology of diseases caused by a number of infectious agents is undergoing profound readjustements, as pathogens adapt to new hosts and environments. Therefore, there is a risk for diseases of wildlife to spread to domestic carnivores and vice versa, and for zoonotic agents to emerge or re-emerge in human populations. Hence, the identification of the hazards arising from the co-habitation of these species is critical in order to plan and develop adequate control strategies against these pathogens. In the first of this two-part article, we review the role that wild canids and felids may play in the transmission of protozoa and arthropod-borne agents to dogs and cats in Europe, and provide an account of how current and future progress in our understanding of the ecology and epidemiology of parasites, as well as of host-parasite interactions, can assist efforts aimed at controlling parasite transmission. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Overview of Zoonotic Diseases in Turkey: The One Health Concept and Future Threats.

    PubMed

    İnci, Abdullah; Doğanay, Mehmet; Özdarendeli, Aykut; Düzlü, Önder; Yıldırım, Alparslan

    2018-03-01

    Zoonotic infections are globally important diseases and lead to huge economic losses in both low- and middle-income and high-income countries. Global warming, environmental and ecological changes, illegal movement of animals and humans, regional civil wars, and poverty are predisposing factors for the emergence of zoonotic infections and their distribution worldwide; they are also a big threat for the future. In addition, environmental pollution and antimicrobial resistance are immense serious threats and dangers to prevent and control zoonotic infections. The natural location of Turkey allows many emerged or re-emerged infections with zoonotic characteristics by animal movements, such as bird immigrations, and by human movements due to civil wars as seen with regional refugees. Numerous zoonotic diseases, including 37 bacterial, 13 fungal, 29 viral, 28 parasitic (3 trematodes, 7 cestodes, 10 nematodes, and 8 protozoan), and totally 107 infections, have been reported from Turkey to date. Additionally, many ectoparasitic zoonoses within 15 different arthropod groups and one leech infestation have been reported from Turkey to date. The "One Health" initiative is particularly relevant for developing strategies to combat zoonotic diseases. In this article, we review the occurrence of zoonotic diseases in man and animals in Turkey in the light of the "One Health" perspective.

  20. Distinct Host Tropism Protein Signatures to Identify Possible Zoonotic Influenza A Viruses.

    PubMed

    Eng, Christine L P; Tong, Joo Chuan; Tan, Tin Wee

    2016-01-01

    Zoonotic influenza A viruses constantly pose a health threat to humans as novel strains occasionally emerge from the avian population to cause human infections. Many past epidemic as well as pandemic strains have originated from avian species. While most viruses are restricted to their primary hosts, zoonotic strains can sometimes arise from mutations or reassortment, leading them to acquire the capability to escape host species barrier and successfully infect a new host. Phylogenetic analyses and genetic markers are useful in tracing the origins of zoonotic infections, but there are still no effective means to identify high risk strains prior to an outbreak. Here we show that distinct host tropism protein signatures can be used to identify possible zoonotic strains in avian species which have the potential to cause human infections. We have discovered that influenza A viruses can now be classified into avian, human, or zoonotic strains based on their host tropism protein signatures. Analysis of all influenza A viruses with complete proteome using the host tropism prediction system, based on machine learning classifications of avian and human viral proteins has uncovered distinct signatures of zoonotic strains as mosaics of avian and human viral proteins. This is in contrast with typical avian or human strains where they show mostly avian or human viral proteins in their signatures respectively. Moreover, we have found that zoonotic strains from the same influenza outbreaks carry similar host tropism protein signatures characteristic of a common ancestry. Our results demonstrate that the distinct host tropism protein signature in zoonotic strains may prove useful in influenza surveillance to rapidly identify potential high risk strains circulating in avian species, which may grant us the foresight in anticipating an impending influenza outbreak.

  1. Infectious mononucleosis hepatitis in young adults: two case reports.

    PubMed

    Kang, Min-Jung; Kim, Tae-Hun; Shim, Ki-Nam; Jung, Sung-Ae; Cho, Min-Sun; Yoo, Kwon; Chung, Kyu Won

    2009-12-01

    Infectious mononucleosis due to Epstein-Barr virus (EBV) infection sometimes causes acute hepatitis, which is usually self-limiting with mildly elevated transaminases, but rarely with jaundice. Primary EBV infection in children is usually asymptomatic, but in a small number of healthy individuals, typically young adults, EBV infection results in a clinical syndrome of infectious mononucleosis with hepatitis, with typical symptoms of fever, pharyngitis, lymphadenopathy, and hepatosplenomegaly. EBV is rather uncommonly confirmed as an etiologic agent of acute hepatitis in adults. Here, we report two cases: the first case with acute hepatitis secondary to infectious mononucleosis and a second case, with acute hepatitis secondary to infectious mononucleosis concomitantly infected with hepatitis A. Both cases involved young adults presenting with fever, pharyngitis, lymphadenopathy, hepatosplenomegaly, and atypical lymphocytosis confirmed by serologic tests, liver biopsy and electron microscopic study.

  2. Host-Nonspecific Iron Acquisition Systems and Virulence in the Zoonotic Serovar of Vibrio vulnificus

    PubMed Central

    Pajuelo, David; Lee, Chung-Te; Roig, Francisco J.; Lemos, Manuel L.; Hor, Lien-I

    2014-01-01

    The zoonotic serovar of Vibrio vulnificus (known as biotype 2 serovar E) is the etiological agent of human and fish vibriosis. The aim of the present work was to discover the role of the vulnibactin- and hemin-dependent iron acquisition systems in the pathogenicity of this zoonotic serovar under the hypothesis that both are host-nonspecific virulence factors. To this end, we selected three genes for three outer membrane receptors (vuuA, a receptor for ferric vulnibactin, and hupA and hutR, two hemin receptors), obtained single and multiple mutants as well as complemented strains, and tested them in a series of in vitro and in vivo assays, using eels and mice as animal models. The overall results confirm that hupA and vuuA, but not hutR, are host-nonspecific virulence genes and suggest that a third undescribed host-specific plasmid-encoded system could also be used by the zoonotic serovar in fish. hupA and vuuA were expressed in the internal organs of the animals in the first 24 h of infection, suggesting that they may be needed to achieve the population size required to trigger fatal septicemia. vuuA and hupA were sequenced in strains representative of the genetic diversity of this species, and their phylogenies were reconstructed by multilocus sequence analysis of selected housekeeping and virulence genes as a reference. Given the overall results, we suggest that both genes might form part of the core genes essential not only for disease development but also for the survival of this species in its natural reservoir, the aquatic environment. PMID:24478087

  3. Zoonotic Focus of Plague, Algeria

    PubMed Central

    Bitam, Idir; Baziz, Belkacem; Rolain, Jean-Marc; Belkaid, Miloud

    2006-01-01

    After an outbreak of human plague, 95 Xenopsylla cheopis fleas from Algeria were tested for Yersinia pestis with PCR methods. Nine fleas were definitively confirmed to be infected with Y. pestis biovar orientalis. Our results demonstrate the persistence of a zoonotic focus of Y. pestis in Algeria. PMID:17326957

  4. Changing Patterns of Emerging Zoonotic Diseases in Wildlife, Domestic Animals, and Humans Linked to Biodiversity Loss and Globalization.

    PubMed

    Aguirre, A Alonso

    2017-12-15

    The fundamental human threats to biodiversity including habitat destruction, globalization, and species loss have led to ecosystem disruptions altering infectious disease transmission patterns, the accumulation of toxic pollutants, and the invasion of alien species and pathogens. To top it all, the profound role of climate change on many ecological processes has affected the inability of many species to adapt to these relatively rapid changes. This special issue, "Zoonotic Disease Ecology: Effects on Humans, Domestic Animals and Wildlife," explores the complex interactions of emerging infectious diseases across taxa linked to many of these anthropogenic and environmental drivers. Selected emerging zoonoses including RNA viruses, Rift Valley fever, trypanosomiasis, Hanta virus infection, and other vector-borne diseases are discussed in detail. Also, coprophagous beetles are proposed as important vectors in the transmission and maintenance of infectious pathogens. An overview of the impacts of climate change in emerging disease ecology within the context of Brazil as a case study is provided. Animal Care and Use Committee requirements were investigated, concluding that ecology journals have low rates of explicit statements regarding the welfare and wellbing of wildlife during experimental studies. Most of the solutions to protect biodiversity and predicting and preventing the next epidemic in humans originating from wildlife are oriented towards the developed world and are less useful for biodiverse, low-income economies. We need the development of regional policies to address these issues at the local level.

  5. Infectious diseases in dogs rescued during dogfighting investigations

    PubMed Central

    Cannon, S.H.; Levy, J.K.; Kirk, S.K.; Crawford, P.C.; Leutenegger, C.M.; Shuster, J.J.; Liu, J.; Chandrashekar, R.

    2017-01-01

    Dogs used for dogfighting often receive minimal preventive health care, and the potential for spread of infectious diseases is high. The purpose of this study was to describe the prevalence of infectious diseases in dogs rescued from fighting operations to guide medical protocols for their immediate and long-term care. A total of 269 pit bull-type dogs were seized in a multi-state investigation. Fleas were present on most dogs, but few ticks were observed. Testing performed at intake included packed cell volume (PCV), serology and PCR for vector-borne pathogens, and fecal analysis. The most common infections were Babesia gibsoni (39%), ‘Candidatus Mycoplasma haematoparvum’ (32%), Mycoplasma haemocanis (30%), Dirofilaria immitis (12%), and Ancylostoma (23%). Anemia was associated with B. gibsoni infection (63% of infected dogs, Odds ratio=2.5, P<0.001), but not with hemotropic mycoplasmas or Ancylostoma. Pit bull heritage and dogfighting are known risk factors for B. gibsoni infection, possibly via blood transmission from bites and vertical transmission. Hemotropic mycoplasmas have a similar risk pattern. Empirical care for dogs from dogfighting cases should include broad-spectrum internal and external parasiticides and monitoring for anemia. Dogfighting case responders should be prepared for mass screening and treatment of B. gibsoni and heartworm infections and should implement protocols to prevent transmission of infectious and zoonotic diseases in the shelter and following adoption. Former fighting dogs and dogs with possible dog bite scars should not be used as blood donors due to the risk of vector-borne pathogens that can escape detection and for which curative treatment is difficult to document. PMID:27056107

  6. Infectious diseases in dogs rescued during dogfighting investigations.

    PubMed

    Cannon, S H; Levy, J K; Kirk, S K; Crawford, P C; Leutenegger, C M; Shuster, J J; Liu, J; Chandrashekar, R

    2016-05-01

    Dogs used for dogfighting often receive minimal preventive health care, and the potential for spread of infectious diseases is high. The purpose of this study was to describe the prevalence of infectious diseases in dogs rescued from fighting operations to guide medical protocols for their immediate and long-term care. A total of 269 pit bull-type dogs were seized in a multi-state investigation. Fleas were present on most dogs, but few ticks were observed. Testing performed at intake included packed cell volume (PCV), serology and PCR for vector-borne pathogens, and fecal analysis. The most common infections were Babesia gibsoni (39%), 'Candidatus Mycoplasma haematoparvum' (32%), Mycoplasma haemocanis (30%), Dirofilaria immitis (12%), and Ancylostoma (23%). Anemia was associated with B. gibsoni infection (63% of infected dogs, odds ratio = 2.5, P <0.001), but not with hemotropic mycoplasmas or Ancylostoma. Pit bull heritage and dogfighting are known risk factors for B. gibsoni infection, possibly via blood transmission from bites and vertical transmission. Hemotropic mycoplasmas have a similar risk pattern. Empirical care for dogs from dogfighting cases should include broad-spectrum internal and external parasiticides and monitoring for anemia. Dogfighting case responders should be prepared for mass screening and treatment of B. gibsoni and heartworm infections and should implement protocols to prevent transmission of infectious and zoonotic diseases in the shelter and following adoption. Former fighting dogs and dogs with possible dog bite scars should not be used as blood donors due to the risk of vector-borne pathogens that can escape detection and for which curative treatment is difficult to document. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A Quantitative Prioritisation of Human and Domestic Animal Pathogens in Europe

    PubMed Central

    McIntyre, K. Marie; Setzkorn, Christian; Hepworth, Philip J.; Morand, Serge; Morse, Andrew P.; Baylis, Matthew

    2014-01-01

    Disease or pathogen risk prioritisations aid understanding of infectious agent impact within surveillance or mitigation and biosecurity work, but take significant development. Previous work has shown the H-(Hirsch-)index as an alternative proxy. We present a weighted risk analysis describing infectious pathogen impact for human health (human pathogens) and well-being (domestic animal pathogens) using an objective, evidence-based, repeatable approach; the H-index. This study established the highest H-index European pathogens. Commonalities amongst pathogens not included in previous surveillance or risk analyses were examined. Differences between host types (humans/animals/zoonotic) in pathogen H-indices were explored as a One Health impact indicator. Finally, the acceptability of the H-index proxy for animal pathogen impact was examined by comparison with other measures. 57 pathogens appeared solely in the top 100 highest H-indices (1) human or (2) animal pathogens list, and 43 occurred in both. Of human pathogens, 66 were zoonotic and 67 were emerging, compared to 67 and 57 for animals. There were statistically significant differences between H-indices for host types (humans, animal, zoonotic), and there was limited evidence that H-indices are a reasonable proxy for animal pathogen impact. This work addresses measures outlined by the European Commission to strengthen climate change resilience and biosecurity for infectious diseases. The results include a quantitative evaluation of infectious pathogen impact, and suggest greater impacts of human-only compared to zoonotic pathogens or scientific under-representation of zoonoses. The outputs separate high and low impact pathogens, and should be combined with other risk assessment methods relying on expert opinion or qualitative data for priority setting, or could be used to prioritise diseases for which formal risk assessments are not possible because of data gaps. PMID:25136810

  8. Excretion of infectious hepatitis E virus into milk in cows imposes high risks of zoonosis.

    PubMed

    Huang, Fen; Li, Yunlong; Yu, Wenhai; Jing, Shenrong; Wang, Jue; Long, Feiyan; He, Zhanlong; Yang, Chenchen; Bi, Yanhong; Cao, Wentao; Liu, Chengbo; Hua, Xiuguo; Pan, Qiuwei

    2016-08-01

    Hepatitis E virus (HEV) represents the main cause of acute hepatitis worldwide. HEV infection in immunocompromised patients involves a high risk for the development of chronic hepatitis. Because HEV is recognized as a zoonotic pathogen, it is currently believed that swine is the primary reservoir. However, this is not sufficient to justify the strikingly high seroprevalence of HEV in both developing and Western countries. Thus, this study aimed to identify new zoonotic sources that bear a high risk of transmission to humans. We collected fecal, blood, and milk samples of cows in a typical rural region of Yunnan Province in southwest China, where mixed farming of domestic animals is a common practice. HEV RNA was quantified by quantitative real-time polymerase chain reaction, and the whole genome was sequenced. HEV infectivity was assessed in rhesus macaques. We found a high prevalence of active HEV infection in cows as determined by viral RNA positivity in fecal samples. Surprisingly, we discovered that HEV is excreted into milk that is produced by infected cows. Phylogenetic analysis revealed that all HEV isolates from cow/milk belong to genotype 4 and subtype 4h. Gavage with HEV-contaminated raw and even pasteurized milk resulted in active infection in rhesus macaques. Importantly, a short period of boiling, but not pasteurization, could completely inactivate HEV. Infectious HEV-contaminated cow milk is recognized as a new zoonotic source that bears a high risk of transmission to humans; these results call attention to understanding and establishing proper measurement and control of HEV zoonotic transmission, particularly in the setting of mixed farming of domestic animals. (Hepatology 2016;64:350-359). © 2016 by the American Association for the Study of Liver Diseases.

  9. The common zoonotic protozoal diseases causing abortion.

    PubMed

    Shaapan, Raafat Mohamed

    2016-12-01

    Toxoplasmosis, neosporosis, sarcosporidiosis (sarcocystosis) and trypanosomiasis are the common zoonotic protozoal diseases causing abortion which caused by single-celled protozoan parasites; Toxoplasma gondii, Neospora caninum , Sarcocystis spp and Trypanosoma evansi, respectively. Toxoplasmosis is generally considered the most important disease that causing abortion of both pregnant women and different female animals throughout the world, about third of human being population had antibodies against T. gondii . The infection can pass via placenta, causing encephalitis, chorio-retinitis, mental retardation and loss of vision in congenitally-infected children and stillbirth or mummification of the aborted fetuses of livestock. Neosporosis is recognized as a major cause of serious abortion in varieties of wild and domestic animals around the world particularly cattle, the disease cause serious economic losses among dairy and beef cattle due to decrease in milk and meat production. While unlike toxoplasmosis, neosporosis is not recognized as a human pathogen and evidence to date shows that neosporosis is only detected by serology in the human population. Sarcosporidiosis also can cause abortion in animals particularly cattle, buffaloes and sheep with acute infection through high dose of infection with sarcocysts. On the other hand, humans have been reported as final and intermediate host for sarcosporidiosis but not represent a serious health problem. Trypanosomiasis by T. evansi cause dangerous infection among domestic animals in tropical and subtropical areas. Several cases of abortion had been recorded in cattle and buffaloes infected with T. evansi while, a single case of human infection was reported in India. Trichomoniasis and babesiosis abortion occurs with non-zoonotic Trichomonas and Babesia species while the zoonotic species had not been incriminated in induction of abortion in both animals and man. The current review article concluded that there is still

  10. An infectious bat chimeric influenza virus harboring the entry machinery of a influenza A virus

    PubMed Central

    Juozapaitis, Mindaugas; Moreira, Étori Aguiar; Mena, Ignacio; Giese, Sebastian; Riegger, David; Pohlmann, Anne; Höper, Dirk; Zimmer, Gert; Beer, Martin; García-Sastre, Adolfo; Schwemmle, Martin

    2017-01-01

    In 2012 the complete genomic sequence of a new and potentially harmful influenza A-like virus from bats (H17N10) was identified. However, infectious influenza virus was neither isolated from infected bats nor reconstituted, impeding further characterization of this virus. Here we show the generation of an infectious chimeric virus containing six out of the eight bat virus genes, with the remaining two genes encoding the HA and NA proteins of a prototypic influenza A virus. This engineered virus replicates well in a broad range of mammalian cell cultures, human primary airway epithelial cells and mice, but poorly in avian cells and chicken embryos without further adaptation. Importantly, the bat chimeric virus is unable to reassort with other influenza A viruses. Although our data do not exclude the possibility of zoonotic transmission of bat influenza viruses into the human population, they indicate that multiple barriers exist that makes this an unlikely event. PMID:25055345

  11. Infectious Mononucleosis Hepatitis in Young Adults: Two Case Reports

    PubMed Central

    Kang, Min-Jung; Kim, Tae-Hun; Shim, Ki-Nam; Jung, Sung-Ae; Cho, Min-Sun; Yoo, Kwon

    2009-01-01

    Infectious mononucleosis due to Epstein-Barr virus (EBV) infection sometimes causes acute hepatitis, which is usually self-limiting with mildly elevated transaminases, but rarely with jaundice. Primary EBV infection in children is usually asymptomatic, but in a small number of healthy individuals, typically young adults, EBV infection results in a clinical syndrome of infectious mononucleosis with hepatitis, with typical symptoms of fever, pharyngitis, lymphadenopathy, and hepatosplenomegaly. EBV is rather uncommonly confirmed as an etiologic agent of acute hepatitis in adults. Here, we report two cases: the first case with acute hepatitis secondary to infectious mononucleosis and a second case, with acute hepatitis secondary to infectious mononucleosis concomitantly infected with hepatitis A. Both cases involved young adults presenting with fever, pharyngitis, lymphadenopathy, hepatosplenomegaly, and atypical lymphocytosis confirmed by serologic tests, liver biopsy and electron microscopic study. PMID:19949739

  12. Infectious Agents in Bovine Red Meat and Milk and Their Potential Role in Cancer and Other Chronic Diseases.

    PubMed

    Zur Hausen, Harald; Bund, Timo; de Villiers, Ethel-Michele

    2017-01-01

    Red meat and dairy products have frequently been suggested to represent risk factors for certain cancers, chronic neurodegenerative diseases, and autoimmune and cardiovascular disorders. This review summarizes the evidence and investigates the possible involvement of infectious factors in these diseases. The isolation of small circular single-stranded DNA molecules from serum and dairy products of Eurasian Aurochs (Bos taurus)-derived cattle, obviously persisting as episomes in infected cells, provides the basis for further investigations. Gene expression of these agents in human cells has been demonstrated, and frequent infection of humans is implicated by the detection of antibodies in a high percentage of healthy individuals. Epidemiological observations suggest their relationship to the development multiple sclerosis, to heterophile antibodies, and to N-glycolylneuraminic acid (Neu5Gc) containing cell surface receptors.

  13. Genotype-dependent Molecular Evolution of Sheep Bovine Spongiform Encephalopathy (BSE) Prions in Vitro Affects Their Zoonotic Potential*

    PubMed Central

    Krejciova, Zuzana; Barria, Marcelo A.; Jones, Michael; Ironside, James W.; Jeffrey, Martin; González, Lorenzo; Head, Mark W.

    2014-01-01

    Prion diseases are rare fatal neurological conditions of humans and animals, one of which (variant Creutzfeldt-Jakob disease) is known to be a zoonotic form of the cattle disease bovine spongiform encephalopathy (BSE). What makes one animal prion disease zoonotic and others not is poorly understood, but it appears to involve compatibility between the prion strain and the host prion protein sequence. Concerns have been raised that the United Kingdom sheep flock may have been exposed to BSE early in the cattle BSE epidemic and that serial BSE transmission in sheep might have resulted in adaptation of the agent, which may have come to phenotypically resemble scrapie while maintaining its pathogenicity for humans. We have modeled this scenario in vitro. Extrapolation from our results suggests that if BSE were to infect sheep in the field it may, with time and in some sheep genotypes, become scrapie-like at the molecular level. However, the results also suggest that if BSE in sheep were to come to resemble scrapie it would lose its ability to affect humans. PMID:25100723

  14. Bedbugs and Infectious Diseases

    PubMed Central

    Blanc, Véronique; Del Giudice, Pascal; Levy-Bencheton, Anna; Chosidow, Olivier; Marty, Pierre; Brouqui, Philippe

    2011-01-01

    Bedbugs are brown and flat hematophagous insects. The 2 cosmopolite species, Cimex lectularius and Cimex hemipterus, feed on humans and/or domestic animals, and recent outbreaks have been reported in occidental countries. Site assessment for bedbug eradication is complex but can be assured, despite emerging insecticide resistance, by hiring a pest-control manager. The common dermatological presentation of bites is an itchy maculopapular wheal. Urticarial reactions and anaphylaxis can also occur. Bedbugs are suspected of transmitting infectious agents, but no report has yet demonstrated that they are infectious disease vectors. We describe 45 candidate pathogens potentially transmitted by bedbugs, according to their vectorial capacity, in the wild, and vectorial competence, in the laboratory. Because of increasing demands for information about effective control tactics and public health risks of bedbugs, continued research is needed to identify new pathogens in wild Cimex species (spp) and insecticide resistance. PMID:21288844

  15. Marine infectious disease ecology

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2017-01-01

    To put marine disease impacts in context requires a broad perspective on the roles infectious agents have in the ocean. Parasites infect most marine vertebrate and invertebrate species, and parasites and predators can have comparable biomass density, suggesting they play comparable parts as consumers in marine food webs. Although some parasites might increase with disturbance, most probably decline as food webs unravel. There are several ways to adapt epidemiological theory to the marine environment. In particular, because the ocean represents a three-dimensional moving habitat for hosts and parasites, models should open up the spatial scales at which infective stages and host larvae travel. In addition to open recruitment and dimensionality, marine parasites are subject to fishing, filter feeders, dosedependent infection, environmental forcing, and death-based transmission. Adding such considerations to marine disease models will make it easier to predict which infectious diseases will increase or decrease in a changing ocean.

  16. Microbiology and Epidemiology of Infectious Spinal Disease

    PubMed Central

    Jeong, Se-Jin; Youm, Jin-Young; Kim, Hyun-Woo; Ha, Ho-Gyun; Yi, Jin-Seok

    2014-01-01

    blood count and C-reactive protein levels were higher in PSI compared to TSI (p<0.05). Etiological agents were identified in 53.3%, and the most effective method for identification of etiological agents was tissue culture (50.0%). Staphyococcus aureus was the most commonly isolated infective agent associated with pyogenic spondylitis, followed by E. coli. Surgical treatment was performed in 31.5% of pyogenic spondylitis and in 35.0% of tuberculous spondylitis cases. Conclusion Many previous studies in Korea usually reported that tuberculous spondylitis is the predominant infection. However, in our study, the number of pyogenic infection was 3 times greater than that of tuberculous spinal disease. Etiological agents were identified in a half of all infectious spinal disease. For better outcomes, we should try to identify the causative microorganism before antibiotic therapy and make every effort to improve the result of culture and biopsy. PMID:25289121

  17. Prevention and control of fish-borne zoonotic trematodes in fish nurseries, Vietnam.

    PubMed

    Hedegaard Clausen, Jesper; Madsen, Henry; Murrell, K Darwin; Van, Phan Thi; Thu, Ha Nguyen Thi; Do, Dung Trung; Nguyen Thi, Lan Anh; Nguyen Manh, Hung; Dalsgaard, Anders

    2012-09-01

    Worldwide, >18 million persons were infected with fish-borne zoonotic trematodes in 2002. To evaluate the effectiveness of interventions for reducing prevalence and intensity of fish-borne zoonotic trematode infections in juvenile fish, we compared transmission rates at nurseries in the Red River Delta, northern Vietnam. Rates were significantly lower for nurseries that reduced snail populations and trematode egg contamination in ponds than for nurseries that did not. These interventions can be used in the development of programs for sustained control of zoonotic trematodes in farmed fish.

  18. Genes indicative of zoonotic and swine pathogens are persistent in stream water and sediment following a swine manure spill

    USGS Publications Warehouse

    Haack, Sheridan K.; Duris, Joseph W.; Kolpin, Dana W.; Fogarty, Lisa R.; Johnson, Heather E.; Gibson, Kristen E.; Focazio, Michael J.; Schwab, Kellogg J.; Hubbard, Laura E.; Foreman, William T.

    2015-01-01

    Manure spills to streams are relatively frequent, but no studies have characterized stream contamination with zoonotic and veterinary pathogens, or fecal chemicals, following a spill. We tested stream water and sediment over 25 days and downstream for 7.6 km for: fecal indicator bacteria (FIB); the fecal indicator chemicals cholesterol and coprostanol; 20 genes for zoonotic and swine-specific bacterial pathogens by presence/absence polymerase chain reaction (PCR) for viable cells; one swine-specific Escherichia coli toxin gene (STII) by quantitative PCR (qPCR); and nine human and animal viruses by qPCR, or reverse-transcriptase qPCR. Twelve days post-spill, and 4.2 km downstream, water concentrations of FIB, cholesterol, and coprostanol were 1-2 orders of magnitude greater than those detected before, or above, the spill, and genes indicating viable zoonotic or swine-infectious Escherichia coli, were detected in water or sediment. STII increased from undetectable before, or above the spill, to 105 copies/100 mL water 12 days post-spill. Thirteen of 14 water (8/9 sediment) samples had viable STII-carrying cells post-spill. Eighteen days post-spill porcine adenovirus and teschovirus were detected 5.6 km downstream. Sediment FIB concentrations (per gram wet weight) were greater than in water, and sediment was a continuous reservoir of genes and chemicals post-spill. Constituent concentrations were much lower, and detections less frequent, in a runoff event (200 days post-spill) following manure application, although the swine-associated STII and stx2e genes were detected. Manure spills are an underappreciated pathway for livestock-derived contaminants to enter streams, with persistent environmental outcomes, and the potential for human and veterinary health consequences.

  19. Infection of Domestic Dogs in Peru by Zoonotic Bartonella Species: A Cross-Sectional Prevalence Study of 219 Asymptomatic Dogs

    PubMed Central

    Diniz, Pedro Paulo V. P.; Morton, Bridget A.; Tngrian, Maryam; Kachani, Malika; Barrón, Eduardo A.; Gavidia, Cesar M.; Gilman, Robert H.; Angulo, Noelia P.; Brenner, Elliott C.; Lerner, Richard; Chomel, Bruno B.

    2013-01-01

    Bartonella species are emerging infectious organisms transmitted by arthropods capable of causing long-lasting infection in mammalian hosts. Among over 30 species described from four continents to date, 15 are known to infect humans, with eight of these capable of infecting dogs as well. B. bacilliformis is the only species described infecting humans in Peru; however, several other Bartonella species were detected in small mammals, bats, ticks, and fleas in that country. The objective of this study was to determine the serological and/or molecular prevalence of Bartonella species in asymptomatic dogs in Peru in order to indirectly evaluate the potential for human exposure to zoonotic Bartonella species. A convenient sample of 219 healthy dogs was obtained from five cities and three villages in Peru. EDTA-blood samples were collected from 205 dogs, whereas serum samples were available from 108 dogs. The EDTA-blood samples were screened by PCR followed by nucleotide sequencing for species identification. Antibodies against B. vinsonii berkhoffii and B. rochalimae were detected by IFA (cut-off of 1∶64). Bartonella DNA was detected in 21 of the 205 dogs (10%). Fifteen dogs were infected with B. rochalimae, while six dogs were infected with B. v. berkhoffii genotype III. Seropositivity for B. rochalimae was detected in 67 dogs (62%), and for B. v. berkhoffii in 43 (40%) of the 108 dogs. Reciprocal titers ≥1∶256 for B. rochalimae were detected in 19% of dogs, and for B. v. berkhoffii in 6.5% of dogs. This study identifies for the first time a population of dogs exposed to or infected with zoonotic Bartonella species, suggesting that domestic dogs may be the natural reservoir of these zoonotic organisms. Since dogs are epidemiological sentinels, Peruvian humans may be exposed to infections with B. rochalimae or B. v. berkhoffii. PMID:24040427

  20. One Health, emerging infectious diseases and wildlife: two decades of progress?

    PubMed

    Cunningham, Andrew A; Daszak, Peter; Wood, James L N

    2017-07-19

    Infectious diseases affect people, domestic animals and wildlife alike, with many pathogens being able to infect multiple species. Fifty years ago, following the wide-scale manufacture and use of antibiotics and vaccines, it seemed that the battle against infections was being won for the human population. Since then, however, and in addition to increasing antimicrobial resistance among bacterial pathogens, there has been an increase in the emergence of, mostly viral, zoonotic diseases from wildlife, sometimes causing fatal outbreaks of epidemic proportions. Concurrently, infectious disease has been identified as an increasing threat to wildlife conservation. A synthesis published in 2000 showed common anthropogenic drivers of disease threats to biodiversity and human health, including encroachment and destruction of wildlife habitat and the human-assisted spread of pathogens. Almost two decades later, the situation has not changed and, despite improved knowledge of the underlying causes, little has been done at the policy level to address these threats. For the sake of public health and wellbeing, human-kind needs to work better to conserve nature and preserve the ecosystem services, including disease regulation, that biodiversity provides while also understanding and mitigating activities which lead to disease emergence. We consider that holistic, One Health approaches to the management and mitigation of the risks of emerging infectious diseases have the greatest chance of success.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.

  1. Zoonotic viral diseases and the frontier of early diagnosis, control and prevention.

    PubMed

    Heeney, J L

    2006-11-01

    Public awareness of the human health risks of zoonotic infections has grown in recent years. Currently, concern of H5N1 flu transmission from migratory bird populations has increased with foci of fatal human cases. This comes on the heels of other major zoonotic viral epidemics in the last decade. These include other acute emerging or re-emerging viral diseases such as severe acute respiratory syndrome (SARS), West-Nile virus, Ebola virus, monkeypox, as well as the more inapparent insidious slow viral and prion diseases. Virus infections with zoonotic potential can become serious killers once they are able to establish the necessary adaptations for efficient human-to-human transmission under circumstances sufficient to reach epidemic proportions. The monitoring and early diagnosis of these potential risks are overlapping frontiers of human and veterinary medicine. Here, current viral zoonotics and evolving threats are reviewed.

  2. Enteric protozoa of cats and their zoonotic potential-a field study from Austria.

    PubMed

    Hinney, Barbara; Ederer, Christina; Stengl, Carina; Wilding, Katrin; Štrkolcová, Gabriela; Harl, Josef; Flechl, Eva; Fuehrer, Hans-Peter; Joachim, Anja

    2015-05-01

    Domestic cats can be infected with a variety of enteric protozoa. Genotyping of protozoan species, especially Giardia as the most common, can improve assessment of their relevance as zoonotic agents. For an overview on the occurrence of feline enteric protozoa, 298 faecal samples of cats from private households, catteries and animal shelters in Austria were collected. All samples were examined by flotation and using a rapid test for Giardia (FASTest). For the detection of Tritrichomonas blagburni, freshly voided faeces (n = 40) were processed using a commercial culturing system (InPouch TF-Feline). Genotyping was done at the β-giardin gene loci (each sample) and triosephosphate isomerase gene loci (positive samples) for Giardia and at the 18S rRNA gene (positive samples) for Cryptosporidium. Thirty-seven samples (12.4%) were positive for Giardia by flotation and/or using a rapid test. Cryptosporidium was present in 1.7%, Cystoisospora in 4.0%, Sarcocystis in 0.3% and T. blagburni in 2.5% of the samples. Genotyping revealed Giardia cati, the potentially zoonotic Giardia duodenalis and Cryptosporidium felis. Most of the infected cats had no diarrhoea. Cats from shelters were significantly more often infected than owned cats (p = 0.01). When comparing Giardia detection methods, the rapid test had a higher sensitivity than flotation. Polymerase chain reaction (PCR) results were mostly independent from the other two tests.

  3. Prevention and Control of Fish-borne Zoonotic Trematodes in Fish Nurseries, Vietnam

    PubMed Central

    Madsen, Henry; Murrell, K. Darwin; Van, Phan Thi; Thu, Ha Nguyen Thi; Do, Dung Trung; Thi, Lan Anh Nguyen; Manh, Hung Nguyen; Dalsgaard, Anders

    2012-01-01

    Worldwide, >18 million persons were infected with fish-borne zoonotic trematodes in 2002. To evaluate the effectiveness of interventions for reducing prevalence and intensity of fish-borne zoonotic trematode infections in juvenile fish, we compared transmission rates at nurseries in the Red River Delta, northern Vietnam. Rates were significantly lower for nurseries that reduced snail populations and trematode egg contamination in ponds than for nurseries that did not. These interventions can be used in the development of programs for sustained control of zoonotic trematodes in farmed fish. PMID:22932069

  4. Waterborne zoonotic helminthiases.

    PubMed

    Nithiuthai, Suwannee; Anantaphruti, Malinee T; Waikagul, Jitra; Gajadhar, Alvin

    2004-12-09

    This review deals with waterborne zoonotic helminths, many of which are opportunistic parasites spreading directly from animals to man or man to animals through water that is either ingested or that contains forms capable of skin penetration. Disease severity ranges from being rapidly fatal to low-grade chronic infections that may be asymptomatic for many years. The most significant zoonotic waterborne helminthic diseases are either snail-mediated, copepod-mediated or transmitted by faecal-contaminated water. Snail-mediated helminthiases described here are caused by digenetic trematodes that undergo complex life cycles involving various species of aquatic snails. These diseases include schistosomiasis, cercarial dermatitis, fascioliasis and fasciolopsiasis. The primary copepod-mediated helminthiases are sparganosis, gnathostomiasis and dracunculiasis, and the major faecal-contaminated water helminthiases are cysticercosis, hydatid disease and larva migrans. Generally, only parasites whose infective stages can be transmitted directly by water are discussed in this article. Although many do not require a water environment in which to complete their life cycle, their infective stages can certainly be distributed and acquired directly through water. Transmission via the external environment is necessary for many helminth parasites, with water and faecal contamination being important considerations. Human behaviour, particularly poor hygiene, is a major factor in the re-emergence, and spread of parasitic infections. Also important in assessing the risk of infection by water transmission are human habits and population density, the prevalence of infection in them and in alternate animal hosts, methods of treating sewage and drinking water, and climate. Disease prevention methods, including disease surveillance, education and improved drinking water treatment are described.

  5. Contact structure, mobility, environmental impact and behaviour: the importance of social forces to infectious disease dynamics and disease ecology.

    PubMed

    Arthur, Ronan F; Gurley, Emily S; Salje, Henrik; Bloomfield, Laura S P; Jones, James H

    2017-05-05

    Human factors, including contact structure, movement, impact on the environment and patterns of behaviour, can have significant influence on the emergence of novel infectious diseases and the transmission and amplification of established ones. As anthropogenic climate change alters natural systems and global economic forces drive land-use and land-cover change, it becomes increasingly important to understand both the ecological and social factors that impact infectious disease outcomes for human populations. While the field of disease ecology explicitly studies the ecological aspects of infectious disease transmission, the effects of the social context on zoonotic pathogen spillover and subsequent human-to-human transmission are comparatively neglected in the literature. The social sciences encompass a variety of disciplines and frameworks for understanding infectious diseases; however, here we focus on four primary areas of social systems that quantitatively and qualitatively contribute to infectious diseases as social-ecological systems. These areas are social mixing and structure, space and mobility, geography and environmental impact, and behaviour and behaviour change. Incorporation of these social factors requires empirical studies for parametrization, phenomena characterization and integrated theoretical modelling of social-ecological interactions. The social-ecological system that dictates infectious disease dynamics is a complex system rich in interacting variables with dynamically significant heterogeneous properties. Future discussions about infectious disease spillover and transmission in human populations need to address the social context that affects particular disease systems by identifying and measuring qualitatively important drivers.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'. © 2017 The Author(s).

  6. Contact structure, mobility, environmental impact and behaviour: the importance of social forces to infectious disease dynamics and disease ecology

    PubMed Central

    Gurley, Emily S.

    2017-01-01

    Human factors, including contact structure, movement, impact on the environment and patterns of behaviour, can have significant influence on the emergence of novel infectious diseases and the transmission and amplification of established ones. As anthropogenic climate change alters natural systems and global economic forces drive land-use and land-cover change, it becomes increasingly important to understand both the ecological and social factors that impact infectious disease outcomes for human populations. While the field of disease ecology explicitly studies the ecological aspects of infectious disease transmission, the effects of the social context on zoonotic pathogen spillover and subsequent human-to-human transmission are comparatively neglected in the literature. The social sciences encompass a variety of disciplines and frameworks for understanding infectious diseases; however, here we focus on four primary areas of social systems that quantitatively and qualitatively contribute to infectious diseases as social–ecological systems. These areas are social mixing and structure, space and mobility, geography and environmental impact, and behaviour and behaviour change. Incorporation of these social factors requires empirical studies for parametrization, phenomena characterization and integrated theoretical modelling of social–ecological interactions. The social–ecological system that dictates infectious disease dynamics is a complex system rich in interacting variables with dynamically significant heterogeneous properties. Future discussions about infectious disease spillover and transmission in human populations need to address the social context that affects particular disease systems by identifying and measuring qualitatively important drivers. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289265

  7. An infectious bat-derived chimeric influenza virus harbouring the entry machinery of an influenza A virus.

    PubMed

    Juozapaitis, Mindaugas; Aguiar Moreira, Étori; Mena, Ignacio; Giese, Sebastian; Riegger, David; Pohlmann, Anne; Höper, Dirk; Zimmer, Gert; Beer, Martin; García-Sastre, Adolfo; Schwemmle, Martin

    2014-07-23

    In 2012, the complete genomic sequence of a new and potentially harmful influenza A-like virus from bats (H17N10) was identified. However, infectious influenza virus was neither isolated from infected bats nor reconstituted, impeding further characterization of this virus. Here we show the generation of an infectious chimeric virus containing six out of the eight bat virus genes, with the remaining two genes encoding the haemagglutinin and neuraminidase proteins of a prototypic influenza A virus. This engineered virus replicates well in a broad range of mammalian cell cultures, human primary airway epithelial cells and mice, but poorly in avian cells and chicken embryos without further adaptation. Importantly, the bat chimeric virus is unable to reassort with other influenza A viruses. Although our data do not exclude the possibility of zoonotic transmission of bat influenza viruses into the human population, they indicate that multiple barriers exist that makes this an unlikely event.

  8. Environmental Factors and Zoonotic Pathogen Ecology in Urban Exploiter Species.

    PubMed

    Rothenburger, Jamie L; Himsworth, Chelsea H; Nemeth, Nicole M; Pearl, David L; Jardine, Claire M

    2017-09-01

    Knowledge of pathogen ecology, including the impacts of environmental factors on pathogen and host dynamics, is essential for determining the risk that zoonotic pathogens pose to people. This review synthesizes the scientific literature on environmental factors that influence the ecology and epidemiology of zoonotic microparasites (bacteria, viruses and protozoa) in globally invasive urban exploiter wildlife species (i.e., rock doves [Columba livia domestica], European starlings [Sturnus vulgaris], house sparrows [Passer domesticus], Norway rats [Rattus norvegicus], black rats [R. rattus] and house mice [Mus musculus]). Pathogen ecology, including prevalence and pathogen characteristics, is influenced by geographical location, habitat, season and weather. The prevalence of zoonotic pathogens in mice and rats varies markedly over short geographical distances, but tends to be highest in ports, disadvantaged (e.g., low income) and residential areas. Future research should use epidemiological approaches, including random sampling and robust statistical analyses, to evaluate a range of biotic and abiotic environmental factors at spatial scales suitable for host home range sizes. Moving beyond descriptive studies to uncover the causal factors contributing to uneven pathogen distribution among wildlife hosts in urban environments may lead to targeted surveillance and intervention strategies. Application of this knowledge to urban maintenance and planning may reduce the potential impacts of urban wildlife-associated zoonotic diseases on people.

  9. Molecular screening for bacteria and protozoa in great cormorants (Phalacrocorax carbo sinensis) nesting in Slovakia, central Europe.

    PubMed

    Víchová, Bronislava; Reiterová, Katarína; Špilovská, Silvia; Blaňarová, Lucia; Hurníková, Zuzana; Turčeková, Ĺudmila

    2016-09-01

    This study brings the data about the occurrence of bacterial and protozoan pathogens in 32 great cormorants (Phalacrocorax carbo sinensis), representing approximately 20% of the population nesting in the surroundings of water basin Liptovská Mara (northern part of Central Slovakia). A survey revealed the presence of tick-borne bacteria Anaplasma phagocytophilum (6.25%) and parasitic protozoa Toxoplasma gondii (3.1%). These data indicate an infectious status of the great cormorant population nesting in Slovakia; they might suggest a degree of environmental contamination by infectious agents and demonstrate the role of migratory seabirds in the circulation and dispersal of pathogens with zoonotic potential.

  10. Emerging & re-emerging infections in India: An overview

    PubMed Central

    Dikid, T.; Jain, S.K.; Sharma, A.; Kumar, A.; Narain, J.P.

    2013-01-01

    The incidence of emerging infectious diseases in humans has increased within the recent past or threatens to increase in the near future. Over 30 new infectious agents have been detected worldwide in the last three decades; 60 per cent of these are of zoonotic origin. Developing countries such as India suffer disproportionately from the burden of infectious diseases given the confluence of existing environmental, socio-economic, and demographic factors. In the recent past, India has seen outbreaks of eight organisms of emerging and re-emerging diseases in various parts of the country, six of these are of zoonotic origin. Prevention and control of emerging infectious diseases will increasingly require the application of sophisticated epidemiologic and molecular biologic technologies, changes in human behaviour, a national policy on early detection of and rapid response to emerging infections and a plan of action. WHO has made several recommendations for national response mechanisms. Many of these are in various stages of implementation in India. However, for a country of size and population of India, the emerging infections remain a real and present danger. A meaningful response must approach the problem at the systems level. A comprehensive national strategy on infectious diseases cutting across all relevant sectors with emphasis on strengthened surveillance, rapid response, partnership building and research to guide public policy is needed. PMID:24056553

  11. Emerging & re-emerging infections in India: an overview.

    PubMed

    Dikid, T; Jain, S K; Sharma, A; Kumar, A; Narain, J P

    2013-01-01

    The incidence of emerging infectious diseases in humans has increased within the recent past or threatens to increase in the near future. Over 30 new infectious agents have been detected worldwide in the last three decades; 60 per cent of these are of zoonotic origin. Developing countries such as India suffer disproportionately from the burden of infectious diseases given the confluence of existing environmental, socio-economic, and demographic factors. In the recent past, India has seen outbreaks of eight organisms of emerging and re-emerging diseases in various parts of the country, six of these are of zoonotic origin. Prevention and control of emerging infectious diseases will increasingly require the application of sophisticated epidemiologic and molecular biologic technologies, changes in human behaviour, a national policy on early detection of and rapid response to emerging infections and a plan of action. WHO has made several recommendations for national response mechanisms. Many of these are in various stages of implementation in India. However, for a country of size and population of India, the emerging infections remain a real and present danger. A meaningful response must approach the problem at the systems level. A comprehensive national strategy on infectious diseases cutting across all relevant sectors with emphasis on strengthened surveillance, rapid response, partnership building and research to guide public policy is needed.

  12. Population bottlenecks during the infectious cycle of the Lyme disease spirochete Borrelia burgdorferi.

    PubMed

    Rego, Ryan O M; Bestor, Aaron; Stefka, Jan; Rosa, Patricia A

    2014-01-01

    Borrelia burgdorferi is a zoonotic pathogen whose maintenance in nature depends upon an infectious cycle that alternates between a tick vector and mammalian hosts. Lyme disease in humans results from transmission of B. burgdorferi by the bite of an infected tick. The population dynamics of B. burgdorferi throughout its natural infectious cycle are not well understood. We addressed this topic by assessing the colonization, dissemination and persistence of B. burgdorferi within and between the disparate mammalian and tick environments. To follow bacterial populations during infection, we generated seven isogenic but distinguishable B. burgdorferi clones, each with a unique sequence tag. These tags resulted in no phenotypic changes relative to wild type organisms, yet permitted highly sensitive and specific detection of individual clones by PCR. We followed the composition of the spirochete population throughout an experimental infectious cycle that was initiated with a mixed inoculum of all clones. We observed heterogeneity in the spirochete population disseminating within mice at very early time points, but all clones displayed the ability to colonize most mouse tissues by 3 weeks of infection. The complexity of clones subsequently declined as murine infection persisted. Larval ticks typically acquired a reduced and variable number of clones relative to what was present in infected mice at the time of tick feeding, and maintained the same spirochete population through the molt to nymphs. However, only a random subset of infectious spirochetes was transmitted to naïve mice when these ticks next fed. Our results clearly demonstrate that the spirochete population experiences stochastic bottlenecks during both acquisition and transmission by the tick vector, as well as during persistent infection of its murine host. The experimental system that we have developed can be used to further explore the forces that shape the population of this vector-borne bacterial pathogen

  13. Veterinary public health capacity-building in India: a grim reflection of the developing world's underpreparedness to address zoonotic risks.

    PubMed

    Kakkar, Manish; Abbas, Syed Shahid; Kumar, Ashok; Hussain, Mohammad Akhtar; Sharma, Kavya; Bhatt, Purvi Mehta; Zodpey, Sanjay

    2013-01-01

    Veterinary public health (VPH) is ideally suited to promote convergence between human, animal and environmental sectors. Recent zoonotic and emerging infectious disease events have given rise to increasing calls for efforts to build global VPH capacities. However, even with their greater vulnerability to such events, including their economic and livelihood impacts, the response from low-and middle-income countries such as India has been suboptimal, thereby elevating global health risks. Addressing risks effectively at the human-animal interface in these countries will require a clear vision, consistent policies, strategic approach and sustained political commitment to reform and refine the current VPH capacity-building efforts. Only then can the discipline serve its goal of disease prevention, poverty alleviation and support for sustainable livelihoods through improvements in human and animal health.

  14. Mortality Surveillance for Infectious Diseases in the U.S. Department of Defense (1998-2013).

    PubMed

    Potter, Robert N; Tremaine, Ladd A; Gaydos, Joel C

    2017-03-01

    The Mortality Surveillance Division (MSD) of the U.S. Armed Forces Medical Examiner System was established in 1998 to improve surveillance for all military deaths although emphasizing deaths from infectious diseases. Establishment of the MSD was part of the 1997 Department of Defense initiative to improve surveillance and response for emerging infectious diseases. Before 1998, mortality surveillance was limited to compiling information from death certificates, a system that provided limited useful information and lacked the timeliness needed to take meaningful action to address emerging infectious disease threats. The MSD was tasked to quickly identify all infectious disease deaths and the infecting agents. The system developed by the MSD staff identified deaths in near real-time and immediately notified military Public Health authorities of situations that warranted an investigation. Autopsy, medical, and investigative reports were collected. Testing specimens for agent identification was encouraged. The data and information collected were archived in the MSD-developed Medical Mortality Registry (MMR), a database that included all active duty Service Member deaths and contained manner and cause of death with medical, demographic, circumstantial, and diagnostic information. The MMR was the only comprehensive, autopsy-based source for mortality information on active duty military deaths. During 1998-2013, 217 (1.3%) infectious disease deaths were identified among 16,192 noncombat deaths. Of the 217 deaths, 29.5% were classified as respiratory, 18.0% cardiac, 15.2% blood borne, 12.9% nervous system, and 12.4% sepsis. A pathogen was identified for 64.5%. Agents of military interest identified included Neisseria meningitidis, influenza viruses, adenoviruses, and malaria. Neisseria meningitidis was identified in 10 fatal cases; grouping of the agent was done for eight cases. Four were group B, two were C, and two were Y. All eight had been immunized with a quadrivalent

  15. Multilocus Sequence Typing of Bartonella henselae in the United Kingdom Indicates that Only a Few, Uncommon Sequence Types Are Associated with Zoonotic Disease▿†

    PubMed Central

    Chaloner, Gemma L.; Harrison, Timothy G.; Coyne, Karen P.; Aanensen, David M.; Birtles, Richard J.

    2011-01-01

    Bartonella henselae is one of the most common zoonotic agents acquired from companion animals (cats) in industrialized countries. Nonetheless, although the prevalence of infections in cats is high, the number of human cases reported is relatively low. One hypothesis for this discrepancy is that B. henselae strains vary in their zoonotic potential. To test this hypothesis, we employed structured sampling to explore the population structure of B. henselae in the United Kingdom and to determine the distribution of strains associated with zoonotic disease within this structure. A total of 118 B. henselae strains were delineated into 12 sequence types (STs) using multilocus sequence typing. We observed that most (85%) of the zoonosis-associated strains belonged to only three genotypes, i.e., ST2, ST5, and ST8. Conversely, most (74%) of the feline isolates belonged to ST4, ST6, and ST7. The difference in host association of ST2, ST5, and ST8 (zoonosis associated) and ST6 (feline) was statistically significant (P < 0.05), indicating that a few, uncommon STs were responsible for the majority of symptomatic human infections. PMID:21471345

  16. Limited yield of diagnoses of intrahepatic infectious causes of canine granulomatous hepatitis from archival liver tissue.

    PubMed

    Hutchins, Rae G; Breitschwerdt, Edward B; Cullen, John M; Bissett, Sally A; Gookin, Jody L

    2012-09-01

    Canine granulomatous hepatitis is an uncommon morphologic diagnosis that has been associated with a variety of diseases, including a number of systemic infectious etiologies. Formalin-fixed, paraffin-embedded (FFPE) tissues are typically the only source of liver tissue remaining for additional testing for the presence of infectious disease within granulomas. It is unclear if the more common infectious culprits of granulomatous hepatitis can be identified from such specimens. The aim of the current study was to retrospectively investigate archival FFPE liver tissue from dogs with granulomatous hepatitis for the presence of infectious agents. Semiquantitative analysis of copper accumulation in liver specimens was also performed. Medical records were examined for recorded evidence of systemic infectious disease diagnosis. Formalin-fixed, paraffin-embedded liver was prospectively evaluated for infectious agents via differential staining techniques (n = 13), eubacterial fluorescent in situ hybridization (n = 11), and Bartonella polymerase chain reaction assays (n = 15). An infectious cause of granulomatous hepatitis was not identified within liver tissue from any dog using these diagnostic methodologies. Six out of 25 (24%) dogs were diagnosed with concurrent systemic or localized bacterial infections at the time of presentation. Nine out of 17 (53%) dogs had excessive hepatic copper accumulation when evaluated by a semiquantitative histologic grading scheme or quantitative copper analysis. As definitive infectious causes of granulomatous hepatitis were not identified within archival liver biopsy samples, it was concluded that investigation of infectious etiologies within FFPE liver specimens using these diagnostic approaches may be of low yield.

  17. 78 FR 732 - Disease, Disability, and Injury Prevention and Control Special Emphasis Panel (SEP): Initial Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ... announced below concerns Identification, Surveillance, and Control of Vector-Borne and Zoonotic Infectious... in response to ``Identification, Surveillance, and Control of Vector- Borne and Zoonotic Infectious... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Disease...

  18. Zoonotic Poxviruses Associated with Companion Animals

    PubMed Central

    Tack, Danielle M.; Reynolds, Mary G.

    2011-01-01

    Simple Summary Contemporary enthusiasm for the ownership of exotic animals and hobby livestock has created an opportunity for the movement of poxviruses—such as monkeypox, cowpox, and orf—outside their traditional geographic range bringing them into contact with atypical animal hosts and groups of people not normally considered at risk. It is important that pet owners and practitioners of human and animal medicine develop a heightened awareness for poxvirus infections and understand the risks that can be associated with companion animals and livestock. This article reviews the epidemiology and clinical features of zoonotic poxviruses that are most likely to affect companion animals. Abstract Understanding the zoonotic risk posed by poxviruses in companion animals is important for protecting both human and animal health. The outbreak of monkeypox in the United States, as well as current reports of cowpox in Europe, point to the fact that companion animals are increasingly serving as sources of poxvirus transmission to people. In addition, the trend among hobbyists to keep livestock (such as goats) in urban and semi-urban areas has contributed to increased parapoxvirus exposures among people not traditionally considered at high risk. Despite the historic notoriety of poxviruses and the diseases they cause, poxvirus infections are often missed. Delays in diagnosing poxvirus-associated infections in companion animals can lead to inadvertent human exposures. Delays in confirming human infections can result in inappropriate treatment or prolonged recovery. Early recognition of poxvirus-associated infections and application of appropriate preventive measures can reduce the spread of virus between companion animals and their owners. This review will discuss the epidemiology and clinical features associated with the zoonotic poxvirus infections most commonly associated with companion animals. PMID:26486622

  19. Zoonotic infections in Alaska: disease prevalence, potential impact of climate change and recommended actions for earlier disease detection, research, prevention and control.

    PubMed

    Hueffer, Karsten; Parkinson, Alan J; Gerlach, Robert; Berner, James

    2013-01-01

    Over the last 60 years, Alaska's mean annual temperature has increased by 1.6°C, more than twice the rate of the rest of the United States. As a result, climate change impacts are more pronounced here than in other regions of the United States. Warmer temperatures may allow some infected host animals to survive winters in larger numbers, increase their population and expand their range of habitation thus increasing the opportunity for transmission of infection to humans. Subsistence hunting and gathering activities may place rural residents of Alaska at a greater risk of acquiring zoonotic infections than urban residents. Known zoonotic diseases that occur in Alaska include brucellosis, toxoplasmosis, trichinellosis, giardiasis/cryptosporidiosis, echinococcosis, rabies and tularemia. Actions for early disease detection, research and prevention and control include: (1) determining baseline levels of infection and disease in both humans and host animals; (2) conducting more research to understand the ecology of infection in the Arctic environment; (3) improving active and passive surveillance systems for infection and disease in humans and animals; (4) improving outreach, education and communication on climate-sensitive infectious diseases at the community, health and animal care provider levels; and (5) improving coordination between public health and animal health agencies, universities and tribal health organisations.

  20. Zoonotic infections in Alaska: disease prevalence, potential impact of climate change and recommended actions for earlier disease detection, research, prevention and control

    PubMed Central

    Hueffer, Karsten; Parkinson, Alan J.; Gerlach, Robert

    2013-01-01

    Over the last 60 years, Alaska's mean annual temperature has increased by 1.6°C, more than twice the rate of the rest of the United States. As a result, climate change impacts are more pronounced here than in other regions of the United States. Warmer temperatures may allow some infected host animals to survive winters in larger numbers, increase their population and expand their range of habitation thus increasing the opportunity for transmission of infection to humans. Subsistence hunting and gathering activities may place rural residents of Alaska at a greater risk of acquiring zoonotic infections than urban residents. Known zoonotic diseases that occur in Alaska include brucellosis, toxoplasmosis, trichinellosis, giardiasis/cryptosporidiosis, echinococcosis, rabies and tularemia. Actions for early disease detection, research and prevention and control include: (1) determining baseline levels of infection and disease in both humans and host animals; (2) conducting more research to understand the ecology of infection in the Arctic environment; (3) improving active and passive surveillance systems for infection and disease in humans and animals; (4) improving outreach, education and communication on climate-sensitive infectious diseases at the community, health and animal care provider levels; and (5) improving coordination between public health and animal health agencies, universities and tribal health organisations. PMID:23399790

  1. Zoonotic potential of Enterocytozoon genotypes in humans and pigs in Thailand.

    PubMed

    Prasertbun, Rapeepun; Mori, Hirotake; Pintong, Ai-Rada; Sanyanusin, Suparut; Popruk, Supaluk; Komalamisra, Chalit; Changbunjong, Tanasak; Buddhirongawatr, Ruangrat; Sukthana, Yaowalark; Mahittikorn, Aongart

    2017-01-15

    Enterocytozoon bieneusi is an opportunistic intestinal pathogen infecting humans and a variety of animals. Its mode of transmission and zoonotic potential are not completely understood. E. bieneusi has been frequently identified in pigs. The objective of our study was to investigate E. bieneusi in pigs and humans in Western and Central Thailand to determine its presence, genetic diversity, and zoonotic potential. A total of 277 human and 210 pig faecal samples were collected and analysed. E. bieneusi was found in 5.4% and 28.1% of human and pig samples, respectively, by nested PCR. Genotyping based on the internal transcribed spacer regions of the small subunit ribosomal RNA demonstrated three known genotypes (D, H, PigEb10) and eight novel genotypes (TMH1-8) in humans, and five known genotypes (D, EbpA, EbpC, H, O) and 11 novel genotypes (TMP1-11) in pigs. All known genotypes identified in humans and pigs had zoonotic potential. Further studies are needed to evaluate zoonotic risk of novel genotypes, as pigs may play an important role in the transmission of E. bieneusi. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Antiviral agents for infectious mononucleosis (glandular fever).

    PubMed

    De Paor, Muireann; O'Brien, Kirsty; Fahey, Tom; Smith, Susan M

    2016-12-08

    Infectious mononucleosis (IM) is a clinical syndrome, usually caused by the Epstein Barr virus (EPV), characterised by lymphadenopathy, fever and sore throat. Most cases of symptomatic IM occur in older teenagers or young adults. Usually IM is a benign self-limiting illness and requires only symptomatic treatment. However, occasionally the disease course can be complicated or prolonged and lead to decreased productivity in terms of school or work. Antiviral medications have been used to treat IM, but the use of antivirals for IM is controversial. They may be effective by preventing viral replication which helps to keep the virus inactive. However, there are no guidelines for antivirals in IM. To assess the effects of antiviral therapy for infectious mononucleosis (IM). We searched the Cochrane Central Register of Controlled Trials (CENTRAL, Issue 3, March 2016), which contains the Cochrane Acute Respiratory Infections (ARI) Group's Specialised Register, MEDLINE (1946 to 15 April 2016), Embase (1974 to 15 April 2016), CINAHL (1981 to 15 April 2016), LILACS (1982 to 15 April 2016) and Web of Science (1955 to 15 April 2016). We searched the World Health Organization (WHO) International Clinical Trials Registry Platform and ClinicalTrials.gov for completed and ongoing trials. We included randomised controlled trials (RCTs) comparing antivirals versus placebo or no treatment in IM. We included trials of immunocompetent participants of any age or sex with clinical and laboratory-confirmed diagnosis of IM, who had symptoms for up to 14 days. Our primary outcomes were time to clinical recovery and adverse events and side effects of medication. Secondary outcomes included duration of abnormal clinical examination, complications, viral shedding, health-related quality of life, days missing from school or work and economic outcomes. Two review authors independently assessed studies for inclusion, assessed the included studies' risk of bias and extracted data using a

  3. Molecular epidemiology and multilocus sequence analysis of potentially zoonotic Giardia spp. from humans and dogs in Jamaica.

    PubMed

    Lee, Mellesia F; Cadogan, Paul; Eytle, Sarah; Copeland, Sonia; Walochnik, Julia; Lindo, John F

    2017-01-01

    Giardia spp. are the causative agents of intestinal infections in a wide variety of mammals including humans and companion animals. Dogs may be reservoirs of zoonotic Giardia spp.; however, the potential for transmission between dogs and humans in Jamaica has not been studied. Conventional PCR was used to screen 285 human and 225 dog stool samples for Giardia targeting the SSU rDNA gene followed by multilocus sequencing of the triosephosphate isomerase (tpi), glutamate dehydrogenase (gdh), and β-giardin (bg) genes. Prevalence of human infections based on PCR was 6.7 % (19/285) and canine infections 19.6 % (44/225). Nested PCR conducted on all 63 positive samples revealed the exclusive presence of assemblage A in both humans and dogs. Sub-assemblage A-II was responsible for 79.0 % (15/19) and 70.5 % (31/44) of the infections in humans and dogs, respectively, while sub-assemblage A-I was identified at a rate of 15.8 % (3/19) and 29.5 % (13/44) in humans and dogs, respectively. The predominance of a single circulating assemblage among both humans and dogs in Jamaica suggests possible zoonotic transmission of Giardia infections.

  4. 42 CFR 73.3 - HHS select agents and toxins.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... been genetically modified. (d) HHS select agents or toxins that meet any of the following criteria are... Recombinant Organisms: (1) Nucleic acids that can produce infectious forms of any of the select agent viruses...

  5. Interventions to reduce zoonotic and pandemic risks from avian influenza in Asia

    PubMed Central

    Peiris, Malik; Cowling, Benjamin J.; Wu, Joseph T.; Feng, Luzhao; Guan, Yi; Yu, Hongjie; Leung, Gabriel M.

    2017-01-01

    Summary Novel influenza viruses continue to emerge posing zoonotic and potentially pandemic threats, avian influenza A/H7N9 being the most recent example. While closure of live poultry markets in mainland China was effective at aborting A/H7N9 outbreaks temporarily, they are difficult to sustain, given the current poultry production and marketing systems in China. We summarise interventions taken in mainland China to date. We provide evidence for other more sustainable but effective interventions in the live poultry market (LPM) systems that reduce risk of zoonotic influenza including “rest days” in LPM and banning live poultry in markets overnight. On the longer term, separation of live ducks and geese from terrestrial poultry in LPM systems can reduce the risk of emergence of zoonotic, epizootic (and potentially pandemic) viruses at source. Given evidence that A/H7N9 is now endemic in over half of the provinces in mainland China, and will continue to cause recurrent zoonotic disease in the winter months, such interventions should receive high priority in China as well as other Asian countries which are at risk of introduction of A/H7N9 through cross-border poultry movements. Such generic measures are likely to reduce current as well as future threats from zoonotic influenza. PMID:26654122

  6. Simultaneous acute deep vein thrombosis and acute brucellosis. A case report.

    PubMed

    Salihi, Salih; Andaç, Şeyda; Kalender, Mehmet; Yıldırım, Onur; İmre, Ayfer

    2016-06-01

    Brucellosis is a zoonotic disease common in developing countries. Vascular complications, including arterial and venous, associated with Brucella infection have rarely been reported. A case of deep venous thrombosis (DVT) developing after a diagnosis of acute brucellosis in a young milkman is presented. A 26-year-old man presented with pain in the right leg. The patient's medical history included a diagnosis of brucellosis in our hospital where he had presented with complaints of weakness and fever. Peripheral venous Doppler ultrasound showed DVT, and the patient was treated with anticoagulants. The patient was discharged with warfarin therapy and anti-brucellosis treatment. Although rare, some infectious agents may cause vascular pathologies. Patients presenting with symptoms of DVT or similar vascular pathologies should be assessed for infectious agents, particularly in those coming from Brucella-endemic areas.

  7. Postexposure management of healthcare personnel to infectious diseases.

    PubMed

    Bader, Mazen S; Brooks, Annie A; Srigley, Jocelyn A

    2015-01-01

    Healthcare personnel (HCP) are at risk of exposure to various pathogens through their daily tasks and may serve as a reservoir for ongoing disease transmission in the healthcare setting. Management of HCP exposed to infectious agents can be disruptive to patient care, time-consuming, and costly. Exposure of HCP to an infectious source should be considered an urgent medical concern to ensure timely management and administration of postexposure prophylaxis, if available and indicated. Infection control and occupational health departments should be notified for management of exposed HCP, identification of all contacts of the index case, and application of immediate infection control measures for the index case and exposed HCP, if indicated. This article reviews the main principles of postexposure management of HCP to infectious diseases, in general, and to certain common infections, in particular, categorized by their route of transmission, in addition to primary prevention of these infections.

  8. Endemic infectious diseases and biological warfare during the Gulf War: a decade of analysis and final concerns.

    PubMed

    Hyams, K C; Riddle, J; Trump, D H; Graham, J T

    2001-11-01

    Infectious diseases were one of the first health threats confronted by Coalition troops deployed to the Arabian desert in August 1990. On the basis of experiences in World War II, the major endemic infectious disease risks were thought to be sandfly fever, cutaneous leishmaniasis, diarrheal disease, and malaria. Although there was active surveillance, no case of sandfly fever and few other endemic infectious diseases were identified among over 500,000 U.S., British, and Canadian ground troops. In addition, there was no diagnosis of biological warfare (BW) exposure, and BW agents were not detected in clinical, environmental, or veterinary samples. The most common infectious disease problems were those associated with crowding (acute upper respiratory infections) and reduced levels of sanitation (travelers-type diarrhea). Only one endemic infectious disease has been confirmed as causing chronic health problems: visceral Leishmania tropica infection (viscerotropic leishmaniasis). However, this protozoan infection was diagnosed in only 12 U.S. veterans, and no new cases have been identified during the last 8 years. Infectious diseases were not a serious problem for Gulf War troops because of extensive preventive medicine efforts and favorable weather and geographic factors. Moreover, it is unlikely that an endemic infectious disease or a BW agent could cause chronic health problems and remain undetected over a 10-year period.

  9. Model of two infectious diseases in nettle caterpillar population

    NASA Astrophysics Data System (ADS)

    Firdausi, F. Z.; Nuraini, N.

    2016-04-01

    Palm oil is a vital commodity to the economy of Indonesia. The area of oil palm plantations in Indonesia has increased from year to year. However, the effectiveness of palm oil production is reduced by pest infestation. One of the pest which often infests oil palm plantations is nettle caterpillar. The pest control used in this study is biological control, viz. biological agents given to oil palm trees. This paper describes a mathematical model of two infectious diseases in nettle caterpillar population. The two infectious diseases arise due to two biological agents, namely Bacillus thuringiensis bacterium and parasite which usually attack nettle caterpillars. The derivation of the model constructed in this paper is obtained from ordinary differential equations without time delay. The equilibrium points are analyzed. Two of three equilibrium points are stable if the Routh-Hurwitz criteria are fulfilled. In addition, this paper also presents the numerical simulation of the model which has been constructed.

  10. General principles for the treatment of non-infectious uveitis.

    PubMed

    Díaz-Llopis, Manuel; Gallego-Pinazo, Roberto; García-Delpech, Salvador; Salom-Alonso, David

    2009-09-01

    Ocular inflammatory disorders constitute a sight-threatening group of diseases that might be managed according to their severity. Their treatment guidelines experience constant changes with new agents that improve the results obtained with former drugs. Nowadays we can make use of a five step protocol in which topical, periocular and systemic corticosteroids remain as the main therapy for non infectious uveitis. In addition, immunosuppresive drugs can be added in order to enhance the anti-inflammatory effects and to develop the role of corticosteroid-saving agents. These can be organized in four other steps: Cyclosporine and Methotrexate in a second one; Azathioprine, Mycophenolate Mofetil and Tacrolimus in a third step; biological anti-TNF drugs in fourth position; and a theoretical last one with Cyclophosphamide and Chlorambucil. In the present review we go through the main characteristics and complications of all these treatments and make a rational of this five-step treatment protocol for non infectious posterior uveitis.

  11. [Current situation of endemic status, prevention and control of neglected zoonotic diseases in China].

    PubMed

    Liu, Lu; Zhu, Hong-Run; Yang, Guo-Jing

    2013-06-01

    Neglected zoonotic diseases not only threaten the health of human, especially to the livestock keepers in poverty-stricken areas but also cause great economic losses to the animal husbandry. This paper reviews the current situation of the endemic status, prevention and control of neglected zoonotic diseases existing in China including rabies, bovine tuberculosis, brucellosis, anthrax, leptospirosis, echinococcosis, cysticercosis, leishmaniasis and fascioliasis, so as to provide the basic information for better controlling, even eliminating, the neglected zoonotic diseases in China.

  12. Atypical infectious mononucleosis in a patient receiving tumor necrosis factor alpha inhibitory treatment.

    PubMed

    Sari, Ismail; Birlik, Merih; Akar, Servet; Onen, Fatos; Kargi, Aydanur; Akkoc, Nurullah

    2009-05-01

    The objective is to report a case of atypical acute infectious mononucleosis in a juvenile ankylosing spondylitis patient who was treated with infliximab. A 20-year-old man was hospitalized for the evaluation of lymphadenopathy and systemic symptoms. His symptoms developed at the eighth week of the infliximab treatment and he required hospitalization. Lymph node biopsy was performed and he was diagnosed as atypical infectious mononucleosis (absence of fever, pharyngitis, lymphocytosis and negative atypical lymphocytosis on blood smear). Infections have become major concerns in patients treated with TNF-blocking agents. In theoretical base, it is not surprising as TNF-alpha has a crucial role in the body's defense against both bacterial and viral invasion. Blocking the action of TNF may also change the course of the disease and could lead to a delay in the diagnosis. TNF-alpha-blocking treatment may mask the typical symptoms of infectious mononucleosis and atypical cases should be included in the differential diagnosis of lymphadenopathy in patients receiving anti-TNF-alpha agents.

  13. Epidemic spreading induced by diversity of agents' mobility.

    PubMed

    Zhou, Jie; Chung, Ning Ning; Chew, Lock Yue; Lai, Choy Heng

    2012-08-01

    In this paper, we study the impact of the preference of an individual for public transport on the spread of infectious disease, through a quantity known as the public mobility. Our theoretical and numerical results based on a constructed model reveal that if the average public mobility of the agents is fixed, an increase in the diversity of the agents' public mobility reduces the epidemic threshold, beyond which an enhancement in the rate of infection is observed. Our findings provide an approach to improve the resistance of a society against infectious disease, while preserving the utilization rate of the public transportation system.

  14. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Soluble immune effector molecules [II]: agents targeting interleukins, immunoglobulins and complement factors).

    PubMed

    Winthrop, K L; Mariette, X; Silva, J T; Benamu, E; Calabrese, L H; Dumusc, A; Smolen, J S; Aguado, J M; Fernández-Ruiz, M

    2018-06-01

    The present review is part of the ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies. To review, from an Infectious Diseases perspective, the safety profile of agents targeting interleukins, immunoglobulins and complement factors and to suggest preventive recommendations. Computer-based MEDLINE searches with MeSH terms pertaining to each agent or therapeutic family. Patients receiving interleukin-1 (IL-1) -targeted (anakinra, canakinumab or rilonacept) or IL-5-targeted (mepolizumab) agents have a moderate risk of infection and no specific prevention strategies are recommended. The use of IL-6/IL-6 receptor-targeted agents (tocilizumab and siltuximab) is associated with a risk increase similar to that observed with anti-tumour necrosis factor-α agents. IL-12/23-targeted agents (ustekinumab) do not seem to pose a meaningful risk of infection, although screening for latent tuberculosis infection may be considered and antiviral prophylaxis should be given to hepatitis B surface antigen-positive patients. Therapy with IL-17-targeted agents (secukinumab, brodalumab and ixekizumab) may result in the development of mild-to-moderate mucocutaneous candidiasis. Pre-treatment screening for Strongyloides stercoralis and other geohelminths should be considered in patients who come from areas where these are endemic who are receiving IgE-targeted agents (omalizumab). C5-targeted agents (eculizumab) are associated with a markedly increased risk of infection due to encapsulated bacteria, particularly Neisseria spp. Meningococcal vaccination and chemoprophylaxis must be administered 2-4 weeks before initiating eculizumab. Patients with high-risk behaviours and their partners should also be screened for gonococcal infection. Preventive strategies are particularly encouraged to minimize the occurrence of neisserial infection associated with eculizumab. Copyright © 2018 European Society of Clinical

  15. [The real place of infectious pathology in overall population morbidity].

    PubMed

    Sergiev, V P; Drynov, I D; Malyshev, N A

    1999-01-01

    The statistical decrease of the proportion of infections in the structure of morbidity of the population reflects the existing classification of diseases when only acute diseases are classified with the group "infectious and parasitic diseases". The proportion of diseases caused by infective agents remains constantly high. According to WHO data, such diseases make up one-third of all diseases in the world. In Moscow the proportion of infectious diseases in all diseases registered among the inhabitants of this big city fluctuated within 36.1% and 49.7% during the period of 1926-1997.

  16. Infectious disease prevalence in a feral cat population on Prince Edward Island, Canada

    PubMed Central

    Stojanovic, Vladimir; Foley, Peter

    2011-01-01

    Ninety-six feral cats from Prince Edward Island were used to determine the prevalence of selected infectious agents. The prevalence rates were 5.2% for feline immunodeficiency virus, 3.1% for feline leukemia virus, 3.1% for Mycoplasma haemofelis, 8.4% for Candidatus Mycoplasma haemominutum, 2.1% for Bartonella spp. and 29.8% for exposure to Toxoplasma gondii. Oocysts of T. gondii were detected in 1.3% of the fecal samples that were collected. Gender and retroviral status of the cats were significantly correlated with hemoplasma infections. Use of a flea comb showed that 9.6% of the cats had fleas; however, flea infestation was not associated with any of the infectious agents. PMID:22379197

  17. Public health significance of zoonotic Cryptosporidium species in wildlife: Critical insights into better drinking water management.

    PubMed

    Zahedi, Alireza; Paparini, Andrea; Jian, Fuchun; Robertson, Ian; Ryan, Una

    2016-04-01

    Cryptosporidium is an enteric parasite that is transmitted via the faecal-oral route, water and food. Humans, wildlife and domestic livestock all potentially contribute Cryptosporidium to surface waters. Human encroachment into natural ecosystems has led to an increase in interactions between humans, domestic animals and wildlife populations. Increasing numbers of zoonotic diseases and spill over/back of zoonotic pathogens is a consequence of this anthropogenic disturbance. Drinking water catchments and water reservoir areas have been at the front line of this conflict as they can be easily contaminated by zoonotic waterborne pathogens. Therefore, the epidemiology of zoonotic species of Cryptosporidium in free-ranging and captive wildlife is of increasing importance. This review focuses on zoonotic Cryptosporidium species reported in global wildlife populations to date, and highlights their significance for public health and the water industry.

  18. "Nanoantibiotics": a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era.

    PubMed

    Huh, Ae Jung; Kwon, Young Jik

    2011-12-10

    Despite the fact that we live in an era of advanced and innovative technologies for elucidating underlying mechanisms of diseases and molecularly designing new drugs, infectious diseases continue to be one of the greatest health challenges worldwide. The main drawbacks for conventional antimicrobial agents are the development of multiple drug resistance and adverse side effects. Drug resistance enforces high dose administration of antibiotics, often generating intolerable toxicity, development of new antibiotics, and requests for significant economic, labor, and time investments. Recently, nontraditional antibiotic agents have been of tremendous interest in overcoming resistance that is developed by several pathogenic microorganisms against most of the commonly used antibiotics. Especially, several classes of antimicrobial nanoparticles (NPs) and nanosized carriers for antibiotics delivery have proven their effectiveness for treating infectious diseases, including antibiotics resistant ones, in vitro as well as in animal models. This review summarizes emerging efforts in combating against infectious diseases, particularly using antimicrobial NPs and antibiotics delivery systems as new tools to tackle the current challenges in treating infectious diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Causal Inference Regarding Infectious Aetiology of Chronic Conditions: A Systematic Review

    PubMed Central

    Orrskog, Sofia; Medin, Emma; Tsolova, Svetla; Semenza, Jan C.

    2013-01-01

    Background The global burden of disease has shifted from communicable diseases in children to chronic diseases in adults. This epidemiologic shift varies greatly by region, but in Europe, chronic conditions account for 86% of all deaths, 77% of the disease burden, and up to 80% of health care expenditures. A number of risk factors have been implicated in chronic diseases, such as exposure to infectious agents. A number of associations have been well established while others remain uncertain. Methods and Findings We assessed the body of evidence regarding the infectious aetiology of chronic diseases in the peer-reviewed literature over the last decade. Causality was assessed with three different criteria: First, the total number of associations documented in the literature between each infectious agent and chronic condition; second, the epidemiologic study design (quality of the study); third, evidence for the number of Hill's criteria and Koch's postulates that linked the pathogen with the chronic condition. We identified 3136 publications, of which 148 were included in the analysis. There were a total of 75 different infectious agents and 122 chronic conditions. The evidence was strong for five pathogens, based on study type, strength and number of associations; they accounted for 60% of the associations documented in the literature. They were human immunodeficiency virus, hepatitis C virus, Helicobacter pylori, hepatitis B virus, and Chlamydia pneumoniae and were collectively implicated in the aetiology of 37 different chronic conditions. Other pathogens examined were only associated with very few chronic conditions (≤3) and when applying the three different criteria of evidence the strength of the causality was weak. Conclusions Prevention and treatment of these five pathogens lend themselves as effective public health intervention entry points. By concentrating research efforts on these promising areas, the human, economic, and societal burden arising from

  20. [Bartonella henselae, an ubiquitous agent of proteiform zoonotic disease].

    PubMed

    Edouard, S; Raoult, D

    2010-06-01

    Bartonella henselae is the causative agent of cat scratch disease, a human infection usually characterized by persistent regional lymphadenopathy. It is transmitted to humans by cat scratches or bites. Cats are the major reservoir for this bacterium thus B. henselae has a worldwide distribution. The bacterial pathogenicity may bay emphasized by the immune status of the infected host. Angiomatosis or hepatic peliosis are the most frequent clinical manifestations in immunocompromised patients. B. henselae is also responsible for endocarditis in patients with valvular diseases, and may induce various clinical presentations such as: bacteriemia, retinitis, musculoskeletal disorders, hepatic or splenic diseases, encephalitis, or myocarditis. Several diagnostic tools are available; they may be combined and adapted to every clinical setting. B. henselae is a fastidious bacterium; its diagnosis is mainly made by PCR and blood tests. No treatment is required for the benign form of cat scratch disease. For more severe clinical presentations, the treatment must be adapted to every clinical presentation.

  1. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Agents targeting lymphoid or myeloid cells surface antigens [II]: CD22, CD30, CD33, CD38, CD40, SLAMF-7 and CCR4).

    PubMed

    Drgona, L; Gudiol, C; Lanini, S; Salzberger, B; Ippolito, G; Mikulska, M

    2018-03-20

    The present review is part of the ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies. To review, from an Infectious Diseases perspective, the safety profile of agents targeting CD22, CD30, CD33, CD38, CD40, SLAMF-7 and CCR4 and to suggest preventive recommendations. Computer-based MEDLINE searches with MeSH terms pertaining to each agent or therapeutic family. The risk and spectrum of infections in patients receiving CD22-targeted agents (i.e. inotuzumab ozogamicin) are similar to those observed with anti-CD20 antibodies. Anti-Pneumocystis prophylaxis and monitoring for cytomegalovirus (CMV) infection is recommended for patients receiving CD30-targeted agents (brentuximab vedotin). Due to the scarcity of data, the risk posed by CD33-targeted agents (gemtuzumab ozogamicin) cannot be assessed. Patients receiving CD38-targeted agents (i.e. daratumumab) face an increased risk of varicella-zoster virus (VZV) infection. Therapy with CD40-targeted agents (lucatumumab or dacetuzumab) is associated with opportunistic infections similar to those observed in hyper-IgM syndrome, and prevention strategies (including anti-Pneumocystis prophylaxis and pre-emptive therapy for CMV infection) are warranted. SLAMF-7 (CD319)-targeted agents (elotuzumab) induce lymphopenia and increase the risk of infection (particularly due to VZV). The impact of CCR4-targeted agents (mogamulizumab) on infection susceptibility is difficult to distinguish from the effect of underlying diseases and concomitant therapies. However, anti-Pneumocystis and anti-herpesvirus prophylaxis and screening for chronic hepatitis B virus (HBV) infection are recommended. Specific management strategies should be put in place to reduce the risk and/or the severity of infectious complications associated to the reviewed agents. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All

  2. Zoonotic Potential and Molecular Epidemiology of Giardia Species and Giardiasis†

    PubMed Central

    Feng, Yaoyu; Xiao, Lihua

    2011-01-01

    Summary: Molecular diagnostic tools have been used recently in assessing the taxonomy, zoonotic potential, and transmission of Giardia species and giardiasis in humans and animals. The results of these studies have firmly established giardiasis as a zoonotic disease, although host adaptation at the genotype and subtype levels has reduced the likelihood of zoonotic transmission. These studies have also identified variations in the distribution of Giardia duodenalis genotypes among geographic areas and between domestic and wild ruminants and differences in clinical manifestations and outbreak potentials of assemblages A and B. Nevertheless, our efforts in characterizing the molecular epidemiology of giardiasis and the roles of various animals in the transmission of human giardiasis are compromised by the lack of case-control and longitudinal cohort studies and the sampling and testing of humans and animals living in the same community, the frequent occurrence of infections with mixed genotypes and subtypes, and the apparent heterozygosity at some genetic loci for some G. duodenalis genotypes. With the increased usage of multilocus genotyping tools, the development of next-generation subtyping tools, the integration of molecular analysis in epidemiological studies, and an improved understanding of the population genetics of G. duodenalis in humans and animals, we should soon have a better appreciation of the molecular epidemiology of giardiasis, the disease burden of zoonotic transmission, the taxonomy status and virulences of various G. duodenalis genotypes, and the ecology of environmental contamination. PMID:21233509

  3. A survey for potentially zoonotic gastrointestinal parasites of dogs and pigs in Cambodia.

    PubMed

    Inpankaew, Tawin; Murrell, K Darwin; Pinyopanuwat, Nongnuch; Chhoun, Chamnan; Khov, Kuong; Sem, Tharin; Sorn, San; Muth, Sinuon; Dalsgaard, Anders

    2015-12-01

    There is little information available on parasites of zoonotic significance in Cambodia. In 2011, in an effort to obtain data on potentially zoonotic gastrointestinal parasites in domestic animals, 50 dogs and 30 pigs residing in 38 households located in Ang Svay Check village, Takeo province, Cambodia were examined for parasites from faecal samples. The samples were processed using the formalin-ethyl acetate concentration technique (FECT). Hookworms were the most common zoonotic parasite found in dogs (80.0%) followed by Echinostomes (18.0%). While, in pigs, Fasciolopsis buski was the most common zoonotic parasite (30.0%) followed by Ascaris suum (13.3%). This study provides baseline data on gastrointestinal parasites in dogs and pigs from Cambodia and underscores the importance of domestic animals as reservoir hosts for human parasites for Cambodian veterinary and public health agencies. Follow-up studies are required to further taxonomically characterize these dog and pig parasites and to determine their role in human parasites in this community.

  4. Understanding Neuropsychiatric Diseases, Analyzing the Peptide Sharing between Infectious Agents and the Language-Associated NMDA 2A Protein.

    PubMed

    Lucchese, Guglielmo

    2016-01-01

    Language disorders and infections may occur together and often concur, to a different extent and via different modalities, in characterizing brain pathologies, such as schizophrenia, autism, epilepsies, bipolar disorders, frontotemporal neurodegeneration, and encephalitis, inter alia. The biological mechanism(s) that might channel language dysfunctions and infections into etiological pathways connected to neuropathologic sequelae are unclear. Searching for molecular link(s) between language disorders and infections, the present study explores the language-associated NMDA 2A subunit for peptide sharing with pathogens that have been described in concomitance with neuropsychiatric diseases. It was found that a vast peptide commonality links the human glutamate ionotropic receptor NMDA 2A subunit to infectious agents. Such a link expands to and interfaces with neuropsychiatric disorders in light of the specific allocation of NMDA 2A gene expression in brain areas related to language functions. The data hint at a possible pathologic scenario based on anti-pathogen immune responses cross-reacting with NMDA 2A in the brain.

  5. Enhancing the role of veterinary vaccines reducing zoonotic diseases of humans: Linking systems biology with vaccine development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Leslie G.; Khare, Sangeeta; Lawhon, Sara D.

    The aim of research on infectious diseases is their prevention, and brucellosis and salmonellosis as such are classic examples of worldwide zoonoses for application of a systems biology approach for enhanced rational vaccine development. When used optimally, vaccines prevent disease manifestations, reduce transmission of disease, decrease the need for pharmaceutical intervention, and improve the health and welfare of animals, as well as indirectly protecting against zoonotic diseases of people. Advances in the last decade or so using comprehensive systems biology approaches linking genomics, proteomics, bioinformatics, and biotechnology with immunology, pathogenesis and vaccine formulation and delivery are expected to enable enhancedmore » approaches to vaccine development. The goal of this paper is to evaluate the role of computational systems biology analysis of host:pathogen interactions (the interactome) as a tool for enhanced rational design of vaccines. Systems biology is bringing a new, more robust approach to veterinary vaccine design based upon a deeper understanding of the host pathogen interactions and its impact on the host's molecular network of the immune system. A computational systems biology method was utilized to create interactome models of the host responses to Brucella melitensis (BMEL), Mycobacterium avium paratuberculosis (MAP), Salmonella enterica Typhimurium (STM), and a Salmonella mutant (isogenic *sipA, sopABDE2) and linked to the basis for rational development of vaccines for brucellosis and salmonellosis as reviewed by Adams et al. and Ficht et al. [1,2]. A bovine ligated ileal loop biological model was established to capture the host gene expression response at multiple time points post infection. New methods based on Dynamic Bayesian Network (DBN) machine learning were employed to conduct a comparative pathogenicity analysis of 219 signaling and metabolic pathways and 1620 gene ontology (GO) categories that defined the host

  6. Lymph nodes fine needle cytology in the diagnosis of infectious diseases: clinical settings.

    PubMed

    Natella, Valentina; Cozzolino, Immacolata; Sosa Fernandez, Laura Virginia; Vigliar, Elena

    2012-01-01

    Lymph node reactive hyperplasia, caused by specific infectious etiologic factors, represents the most frequent cause of enlarged peripheral lymph nodes. The main infectious agents are viruses, pyogenic bacteria, mycobacteria, fungi and protozoa that may determine unspecific or specific pathological entities, such as cat-scratch disease, toxoplasmosis or infectious mononucleosis. Lymph node fine needle cytology (FNC) is a safe, simple, cost-effective and efficient technique that quickly provides information about the cell population and the nature of the process. FNC can also provide suitable material for ancillary techniques, such as flow cytometry, immunocytochemistry, molecular biology and microbiological examinations. This study focuses on the cytological features of benign lymphadenopathy of infectious origin and their possible contribution to the clinical setting definition of corresponding patients.

  7. A Review of Zoonotic Infection Risks Associated with the Wild Meat Trade in Malaysia.

    PubMed

    Cantlay, Jennifer Caroline; Ingram, Daniel J; Meredith, Anna L

    2017-06-01

    The overhunting of wildlife for food and commercial gain presents a major threat to biodiversity in tropical forests and poses health risks to humans from contact with wild animals. Using a recent survey of wildlife offered at wild meat markets in Malaysia as a basis, we review the literature to determine the potential zoonotic infection risks from hunting, butchering and consuming the species offered. We also determine which taxa potentially host the highest number of pathogens and discuss the significant disease risks from traded wildlife, considering how cultural practices influence zoonotic transmission. We identify 51 zoonotic pathogens (16 viruses, 19 bacteria and 16 parasites) potentially hosted by wildlife and describe the human health risks. The Suidae and the Cervidae families potentially host the highest number of pathogens. We conclude that there are substantial gaps in our knowledge of zoonotic pathogens and recommend performing microbial food safety risk assessments to assess the hazards of wild meat consumption. Overall, there may be considerable zoonotic risks to people involved in the hunting, butchering or consumption of wild meat in Southeast Asia, and these should be considered in public health strategies.

  8. Prion Diseases: Update on Mad Cow Disease, Variant Creutzfeldt-Jakob Disease, and the Transmissible Spongiform Encephalopathies.

    PubMed

    Janka, Jacqueline; Maldarelli, Frank

    2004-08-01

    Transmissible spongiform encephalopathies (TSEs) are a group of progressive, fatal neurodegenerative disorders that share a common spongiform histopathology. TSEs may be transmitted in a sporadic, familial, iatrogenic, or zoonotic fashion. The putative infectious agent of TSE, the prion, represents a novel paradigm of infectious disease with disease transmission in the absence of nucleic acid. Several small but spectacular epidemics of TSEs in man have prompted widespread public health and food safety concerns. Although TSEs affect a comparatively small number of individuals, prion research has revealed fascinating insights of direct relevance to common illnesses. This paper reviews recent advances that have shed new light on the nature of prions and TSEs.

  9. An integrated study of human and animal infectious disease in the Lake Victoria crescent small-holder crop-livestock production system, Kenya.

    PubMed

    Fèvre, Eric M; de Glanville, William A; Thomas, Lian F; Cook, Elizabeth A J; Kariuki, Samuel; Wamae, Claire N

    2017-06-30

    The neglected zoonotic diseases (NZD) are an understudied group that are a major cause of illness throughout the developing world. In general, little is known about the prevalence and burden of NZDs in affected communities, particularly in relation to other infectious diseases with which they are often co-endemic. We describe the design and descriptive epidemiological outputs from an integrated study of human and animal zoonotic and non-zoonotic disease in a rural farming community in western Kenya. This cross-sectional survey involved 2113 people, their cattle (n = 983) and pigs (n = 91). People and animals were tested for infection or exposure to a wide range of zoonotic and non-zoonotic pathogens. Prevalence estimates, with adjustment for the complex study design, were derived. Evidence for spatial clustering in exposure or infection was identified using the spatial scan statistic. There was a high prevalence of human parasitism in the community, particularly with hookworm (Ancylostoma duodenale or Necator americanus) (36.3% (95% CI 32.8-39.9)), Entamoeba histolytica/dispar (30.1% (95% CI 27.5-32.8)), and Plasmodium falciparum (29.4% (95% CI 26.8-32.0)). Human infection with Taenia spp. was also prevalent (19.7% (95% CI 16.7-22.7)), while exposure to other zoonotic pathogens was comparatively rarer (Brucella spp., 0.6% (95% CI 0.2-0.9); Coxiella burnetii, 2.2% (95% CI 1.5-2.9); Rift Valley fever, 0.5% (95% CI 0.2-0.8)). A low prevalence of exposure to Brucella spp. was observed in cattle (0.26% (95% CI 0-0.56). This was higher for Rift Valley fever virus (1.4% (95% CI 0.5-2.22)) and C. burnetii (10.0% (95% CI 7.7-12.2)). The prevalence of Taenia spp. cysticercosis was 53.5% (95% CI 48.7-58.3) in cattle and 17.2% (95% CI 9.1-25.3) in pigs. Mycobacterium bovis infection was found in 2.2% of cattle (95% CI 1.3-3.2), while the prevalence of infection with Mycobacterium spp. was 8.2% (95% CI 6.8-9.6) in people. Zoonotic infections in people and animals occur in

  10. Infectious microbial diseases and host defense responses in Sydney rock oysters

    PubMed Central

    Raftos, David A.; Kuchel, Rhiannon; Aladaileh, Saleem; Butt, Daniel

    2014-01-01

    Aquaculture has long been seen as a sustainable solution to some of the world's growing food shortages. However, experience over the past 50 years indicates that infectious diseases caused by viruses, bacteria, and eukaryotes limit the productivity of aquaculture. In extreme cases, these types of infectious agents threaten the viability of entire aquaculture industries. This article describes the threats from infectious diseases in aquaculture and then focuses on one example (QX disease in Sydney rock oysters) as a case study. QX appears to be typical of many emerging diseases in aquaculture, particularly because environmental factors seem to play a crucial role in disease outbreaks. Evidence is presented that modulation of a generic subcellular stress response pathway in oysters is responsible for both resistance and susceptibility to infectious microbes. Understanding and being able to manipulate this pathway may be the key to sustainable aquaculture. PMID:24795701

  11. Occupational health and safety in small animal veterinary practice: Part I--nonparasitic zoonotic diseases.

    PubMed

    Weese, J S; Peregrine, A S; Armstrong, J

    2002-08-01

    Zoonotic diseases are an ever-present concern in small animal veterinary practice and are often overlooked. A variety of nonparasitic zoonotic diseases may be encountered in small animal practice, including cat scratch disease (bartonellosis), cat bite abscesses, rabies, leptospirosis, methicillin-resistant Staphylococcus aureus, Clostridium difficile-associated diarrhea, salmonellosis, avian chlamydiosis, campylobacteriosis, dermatophytosis, and blastomycosis. These may cause human disease ranging from mild and self-limiting to fatal. The risk of development of a zoonotic disease can be lessened by early recognition of infected animals, proper animal handling, basic biosecurity precautions, and, most importantly, personal hygiene.

  12. Rapid Detection and Identification of a Pathogen's DNA Using Phi29 DNA Polymerase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Y.; Dunn, J.; Gao, S.

    2008-10-31

    Zoonotic pathogens including those transmitted by insect vectors are some of the most deadly of all infectious diseases known to mankind. A number of these agents have been further weaponized and are widely recognized as being potentially significant biothreat agents. We describe a novel method based on multiply-primed rolling circle in vitro amplification for profiling genomic DNAs to permit rapid, cultivation-free differential detection and identification of circular plasmids in infectious agents. Using Phi29 DNA polymerase and a two-step priming reaction we could reproducibly detect and characterize by DNA sequencing circular DNA from Borrelia burgdorferi B31 in DNA samples containing asmore » little as 25 pg of Borrelia DNA amongst a vast excess of human DNA. This simple technology can ultimately be adapted as a sensitive method to detect specific DNA from both known and unknown pathogens in a wide variety of complex environments.« less

  13. Avian diversity and West Nile virus: Testing associations between biodiversity and infectious disease risk

    USGS Publications Warehouse

    Ezenwa, V.O.; Godsey, M.S.; King, R.J.; Guptill, S.C.

    2006-01-01

    The emergence of several high profile infectious diseases in recent years has focused attention on our need to understand the ecological factors contributing to the spread of infectious diseases. West Nile virus (WNV) is a mosquito-borne zoonotic disease that was first detected in the United States in 1999. The factors accounting for variation in the prevalence of WNV are poorly understood, but recent ideas suggesting links between high biodiversity and reduced vector-borne disease risk may help account for distribution patterns of this disease. Since wild birds are the primary reservoir hosts for WNV, we tested associations between passerine (Passeriform) bird diversity, non-passerine (all other orders) bird diversity and virus infection rates in mosquitoes and humans to examine the extent to which bird diversity is associated with WNV infection risk. We found that non-passerine species richness (number of non-passerine species) was significantly negatively correlated with both mosquito and human infection rates, whereas there was no significant association between passerine species richness and any measure of infection risk. Our findings suggest that non-passerine diversity may play a role in dampening WNV amplification rates in mosquitoes, minimizing human disease risk. ?? 2005 The Royal Society.

  14. Avian diversity and West Nile virus: testing associations between biodiversity and infectious disease risk.

    USGS Publications Warehouse

    Ezenwa, V.O.; Godsey, M.S.; King, R.J.; Guptill, S.C.

    2006-01-01

    The emergence of several high profile infectious diseases in recent years has focused attention on our need to understand the ecological factors contributing to the spread of infectious diseases. West Nile virus (WNV) is a mosquito-borne zoonotic disease that was first detected in the United States in 1999. The factors accounting for variation in the prevalence of WNV are poorly understood, but recentideas suggesting links between high biodiversity and reduced vector-borne disease risk may help account for distribution patterns of this disease. Since wild birds are the primary reservoir hosts for WNV, we tested associations between passerine (Passeriform) bird diversity, non-passerine (all other orders) bird diversity and virus infection rates in mosquitoes and humans to examine the extent to which bird diversity is associated with WNV infection risk. We found t h at non-passerine species richness (number of non-passerine species) was significantly negatively correlated with both mosquito and human infection rates, whereas there was no significant association between passerine species richness and any measure of infection risk. Our findings suggest that non-passerine diversity may play a role in dampening WNV amplification rates in mosquitoes, minimizing human disease risk.

  15. Multi-agent systems in epidemiology: a first step for computational biology in the study of vector-borne disease transmission.

    PubMed

    Roche, Benjamin; Guégan, Jean-François; Bousquet, François

    2008-10-15

    Computational biology is often associated with genetic or genomic studies only. However, thanks to the increase of computational resources, computational models are appreciated as useful tools in many other scientific fields. Such modeling systems are particularly relevant for the study of complex systems, like the epidemiology of emerging infectious diseases. So far, mathematical models remain the main tool for the epidemiological and ecological analysis of infectious diseases, with SIR models could be seen as an implicit standard in epidemiology. Unfortunately, these models are based on differential equations and, therefore, can become very rapidly unmanageable due to the too many parameters which need to be taken into consideration. For instance, in the case of zoonotic and vector-borne diseases in wildlife many different potential host species could be involved in the life-cycle of disease transmission, and SIR models might not be the most suitable tool to truly capture the overall disease circulation within that environment. This limitation underlines the necessity to develop a standard spatial model that can cope with the transmission of disease in realistic ecosystems. Computational biology may prove to be flexible enough to take into account the natural complexity observed in both natural and man-made ecosystems. In this paper, we propose a new computational model to study the transmission of infectious diseases in a spatially explicit context. We developed a multi-agent system model for vector-borne disease transmission in a realistic spatial environment. Here we describe in detail the general behavior of this model that we hope will become a standard reference for the study of vector-borne disease transmission in wildlife. To conclude, we show how this simple model could be easily adapted and modified to be used as a common framework for further research developments in this field.

  16. Advances in Integrative Nanomedicine for Improving Infectious Disease Treatment in Public Health.

    PubMed

    Bell, Iris R; Schwartz, Gary E; Boyer, Nancy N; Koithan, Mary; Brooks, Audrey J

    2013-04-01

    Infectious diseases present public health challenges worldwide. An emerging integrative approach to treating infectious diseases is using nanoparticle (NP) forms of traditional and alternative medicines. Advantages of nanomedicine delivery methods include better disease targeting, especially for intracellular pathogens, ability to cross membranes and enter cells, longer duration drug action, reduced side effects, and cost savings from lower doses. We searched Pubmed articles in English with keywords related to nanoparticles and nanomedicine. Nanotechnology terms were also combined with keywords for drug delivery, infectious diseases, herbs, antioxidants, homeopathy, and adaptation. NPs are very small forms of material substances, measuring 1-100 nanometers along at least one dimension. Compared with bulk forms, NPs' large ratio of surface-area-to-volume confers increased reactivity and adsorptive capacity, with unique electromagnetic, chemical, biological, and quantum properties. Nanotechnology uses natural botanical agents for green manufacturing of less toxic NPs. Nanoparticle herbs and nutriceuticals can treat infections via improved bioavailability and antiinflammatory, antioxidant, and immunomodulatory effects. Recent studies demonstrate that homeopathic medicines may contain source and/or silica nanoparticles because of their traditional manufacturing processes. Homeopathy, as a form of nanomedicine, has a promising history of treating epidemic infectious diseases, including malaria, leptospirosis and HIV/AIDS, in addition to acute upper respiratory infections. Adaptive changes in the host's complex networks underlie effects. Nanomedicine is integrative, blending modern technology with natural products to reduce toxicity and support immune function. Nanomedicine using traditional agents from alternative systems of medicine can facilitate progress in integrative public health approaches to infectious diseases.

  17. Advances in Integrative Nanomedicine for Improving Infectious Disease Treatment in Public Health

    PubMed Central

    Bell, Iris R.; Schwartz, Gary E.; Boyer, Nancy N.; Koithan, Mary; Brooks, Audrey J.

    2012-01-01

    Introduction Infectious diseases present public health challenges worldwide. An emerging integrative approach to treating infectious diseases is using nanoparticle (NP) forms of traditional and alternative medicines. Advantages of nanomedicine delivery methods include better disease targeting, especially for intracellular pathogens, ability to cross membranes and enter cells, longer duration drug action, reduced side effects, and cost savings from lower doses. Methods We searched Pubmed articles in English with keywords related to nanoparticles and nanomedicine. Nanotechnology terms were also combined with keywords for drug delivery, infectious diseases, herbs, antioxidants, homeopathy, and adaptation. Results NPs are very small forms of material substances, measuring 1–100 nanometers along at least one dimension. Compared with bulk forms, NPs’ large ratio of surface-area-to-volume confers increased reactivity and adsorptive capacity, with unique electromagnetic, chemical, biological, and quantum properties. Nanotechnology uses natural botanical agents for green manufacturing of less toxic NPs. Discussion Nanoparticle herbs and nutriceuticals can treat infections via improved bioavailability and antiinflammatory, antioxidant, and immunomodulatory effects. Recent studies demonstrate that homeopathic medicines may contain source and/or silica nanoparticles because of their traditional manufacturing processes. Homeopathy, as a form of nanomedicine, has a promising history of treating epidemic infectious diseases, including malaria, leptospirosis and HIV/AIDS, in addition to acute upper respiratory infections. Adaptive changes in the host’s complex networks underlie effects. Conclusions Nanomedicine is integrative, blending modern technology with natural products to reduce toxicity and support immune function. Nanomedicine using traditional agents from alternative systems of medicine can facilitate progress in integrative public health approaches to infectious

  18. Virus like particle-based vaccines against emerging infectious disease viruses.

    PubMed

    Liu, Jinliang; Dai, Shiyu; Wang, Manli; Hu, Zhihong; Wang, Hualin; Deng, Fei

    2016-08-01

    Emerging infectious diseases are major threats to human health. Most severe viral disease outbreaks occur in developing regions where health conditions are poor. With increased international travel and business, the possibility of eventually transmitting infectious viruses between different countries is increasing. The most effective approach in preventing viral diseases is vaccination. However, vaccines are not currently available for numerous viral diseases. Virus-like particles (VLPs) are engineered vaccine candidates that have been studied for decades. VLPs are constructed by viral protein expression in various expression systems that promote the selfassembly of proteins into structures resembling virus particles. VLPs have antigenicity similar to that of the native virus, but are non-infectious as they lack key viral genetic material. VLP vaccines have attracted considerable research interest because they offer several advantages over traditional vaccines. Studies have shown that VLP vaccines can stimulate both humoral and cellular immune responses, which may offer effective antiviral protection. Here we review recent developments with VLP-based vaccines for several highly virulent emerging or re-emerging infectious diseases. The infectious agents discussed include RNA viruses from different virus families, such as the Arenaviridae, Bunyaviridae, Caliciviridae, Coronaviridae, Filoviridae, Flaviviridae, Orthomyxoviridae, Paramyxoviridae, and Togaviridae families.

  19. The Possible Role of Transplacentally-Acquired Antibodies to Infectious Agents, With Molecular Mimicry to Nervous System Sialic Acid Epitopes, as Causes of Neuromental Disorders: Prevention and Vaccine Implications

    PubMed Central

    Nahmias, André J.; Nahmias, Susanne Beckman; Danielsson, Dan

    2006-01-01

    Proof of causality of most neuromental disorders (NMD's) is largely unavailable. Lessons from four-decade investigations of the epidemiology, immunology, pathogenesis, prevention and therapy of perinatal infectious agents, which invade directly the nervous system, have led us to propose a new indirect effect hypothesis: maternal transplacentally-acquired antibodies, to agents with epitope molecular mimicry with the developing nervous system, can cross the fetus/infant's blood–nervous system barriers to cause NMD's, clinically manifest years later.Further rationale is provided by relevant evolutionary/developmental (EVO–DEVO) considerations—applicable also to some vaccines. The hypothesis is being tested in: (a) older pregnancy studies with available maternal and newborn sera, and follow-up of the progeny for NMD's; and (b) NMD registry individuals linked to their stored newborn blood spots. Preliminary results support a possible role for schizophrenia of high-tittered antibodies to some agents (toxoplasma, influenza and herpes simplex type 2 virus).A model that includes likely genetic and postnatal influences is schematized and a list of putative agents and factors, based on varying rationales, is tabulated. In case pilot studies are confirmed, the identified agent(s) and antibodies would need to be tested in new prospectively enrolled pregnant women, so as to establish further risk factors leading to possible preventive modalities. PMID:17162360

  20. Myalgic encephalomyelitis, chronic fatigue syndrome: An infectious disease.

    PubMed

    Underhill, R A

    2015-12-01

    The etiology of myalgic encephalomyelitis also known as chronic fatigue syndrome or ME/CFS has not been established. Controversies exist over whether it is an organic disease or a psychological disorder and even the existence of ME/CFS as a disease entity is sometimes denied. Suggested causal hypotheses have included psychosomatic disorders, infectious agents, immune dysfunctions, autoimmunity, metabolic disturbances, toxins and inherited genetic factors. Clinical, immunological and epidemiological evidence supports the hypothesis that: ME/CFS is an infectious disease; the causal pathogen persists in patients; the pathogen can be transmitted by casual contact; host factors determine susceptibility to the illness; and there is a population of healthy carriers, who may be able to shed the pathogen. ME/CFS is endemic globally as sporadic cases and occasional cluster outbreaks (epidemics). Cluster outbreaks imply an infectious agent. An abrupt flu-like onset resembling an infectious illness occurs in outbreak patients and many sporadic patients. Immune responses in sporadic patients resemble immune responses in other infectious diseases. Contagion is shown by finding secondary cases in outbreaks, and suggested by a higher prevalence of ME/CFS in sporadic patients' genetically unrelated close contacts (spouses/partners) than the community. Abortive cases, sub-clinical cases, and carrier state individuals were found in outbreaks. The chronic phase of ME/CFS does not appear to be particularly infective. Some healthy patient-contacts show immune responses similar to patients' immune responses, suggesting exposure to the same antigen (a pathogen). The chronicity of symptoms and of immune system changes and the occurrence of secondary cases suggest persistence of a causal pathogen. Risk factors which predispose to developing ME/CFS are: a close family member with ME/CFS; inherited genetic factors; female gender; age; rest/activity; previous exposure to stress or toxins

  1. Awareness, knowledge, and risks of zoonotic diseases among livestock farmers in Punjab.

    PubMed

    Hundal, Jaspal Singh; Sodhi, Simrinder Singh; Gupta, Aparna; Singh, Jaswinder; Chahal, Udeybir Singh

    2016-02-01

    The present study was conducted to assess the awareness, knowledge, and risks of zoonotic diseases among livestock farmers in Punjab. 250 livestock farmers were selected randomly and interviewed with a pretested questionnaire, which contained both open and close ended questions on different aspects of zoonotic diseases, i.e., awareness, knowledge, risks, etc. Knowledge scorecard was developed, and each correct answer was awarded one mark, and each incorrect answer was given zero mark. Respondents were categorized into low (mean - ½ standard deviation [SD]), moderate (mean ± ½ SD), and high knowledge (Mean + ½ SD) category based on the mean and SD. The information about independent variables viz., age, education, and herd size were collected with the help of structured schedule and scales. The data were analyzed by ANOVA, and results were prepared to assess awareness, knowledge, and risks of zoonotic diseases and its relation with independent variables. Majority of the respondents had age up to 40 years (70%), had their qualification from primary to higher secondary level (77.6%), and had their herd size up to 10 animals (79.6%). About 51.2% and 54.0% respondents had the history of abortion and retained placenta, respectively, at their farms. The respondents not only disposed off the infected placenta (35.6%), aborted fetus (39.6%), or feces (56.4%) from a diarrheic animal but also gave intrauterine medication (23.2%) bare-handedly. About 3.6-69.6% respondents consumed uncooked or unpasteurized animal products. About 84.8%, 46.0%, 32.8%, 4.61%, and 92.4% of livestock farmers were aware of zoonotic nature of rabies, brucellosis, tuberculosis, anthrax, and bird flu, respectively. The 55.6%, 67.2%, 52.0%, 64.0%, and 51.2% respondents were aware of the transmission of zoonotic diseases to human being through contaminated milk, meat, air, feed, or through contact with infected animals, respectively. The transmission of rabies through dog bite (98.4%), need of post

  2. Impact of El Niño Southern Oscillation on infectious disease hospitalization risk in the United States.

    PubMed

    Fisman, David N; Tuite, Ashleigh R; Brown, Kevin A

    2016-12-20

    Although the global climate is changing at an unprecedented rate, links between weather and infectious disease have received little attention in high income countries. The "El Niño Southern Oscillation" (ENSO) occurs irregularly and is associated with changing temperature and precipitation patterns. We studied the impact of ENSO on infectious diseases in four census regions in the United States. We evaluated infectious diseases requiring hospitalization using the US National Hospital Discharge Survey (1970-2010) and five disease groupings that may undergo epidemiological shifts with changing climate: (i) vector-borne diseases, (ii) pneumonia and influenza, (iii) enteric disease, (iv) zoonotic bacterial disease, and (v) fungal disease. ENSO exposure was based on the Multivariate ENSO Index. Distributed lag models, with adjustment for seasonal oscillation and long-term trends, were used to evaluate the impact of ENSO on disease incidence over lags of up to 12 mo. ENSO was associated more with vector-borne disease [relative risk (RR) 2.96, 95% confidence interval (CI) 1.03-8.48] and less with enteric disease (0.73, 95% CI 0.62-0.87) in the Western region; the increase in vector-borne disease was attributable to increased risk of rickettsioses and tick-borne infectious diseases. By contrast, ENSO was associated with more enteric disease in non-Western regions (RR 1.12, 95% CI 1.02-1.15). The periodic nature of ENSO may make it a useful natural experiment for evaluation of the impact of climatic shifts on infectious disease risk. The impact of ENSO suggests that warmer temperatures and extreme variation in precipitation events influence risks of vector-borne and enteric disease in the United States.

  3. A Unified Framework for the Infection Dynamics of Zoonotic Spillover and Spread.

    PubMed

    Lo Iacono, Giovanni; Cunningham, Andrew A; Fichet-Calvet, Elisabeth; Garry, Robert F; Grant, Donald S; Leach, Melissa; Moses, Lina M; Nichols, Gordon; Schieffelin, John S; Shaffer, Jeffrey G; Webb, Colleen T; Wood, James L N

    2016-09-01

    A considerable amount of disease is transmitted from animals to humans and many of these zoonoses are neglected tropical diseases. As outbreaks of SARS, avian influenza and Ebola have demonstrated, however, zoonotic diseases are serious threats to global public health and are not just problems confined to remote regions. There are two fundamental, and poorly studied, stages of zoonotic disease emergence: 'spillover', i.e. transmission of pathogens from animals to humans, and 'stuttering transmission', i.e. when limited human-to-human infections occur, leading to self-limiting chains of transmission. We developed a transparent, theoretical framework, based on a generalization of Poisson processes with memory of past human infections, that unifies these stages. Once we have quantified pathogen dynamics in the reservoir, with some knowledge of the mechanism of contact, the approach provides a tool to estimate the likelihood of spillover events. Comparisons with independent agent-based models demonstrates the ability of the framework to correctly estimate the relative contributions of human-to-human vs animal transmission. As an illustrative example, we applied our model to Lassa fever, a rodent-borne, viral haemorrhagic disease common in West Africa, for which data on human outbreaks were available. The approach developed here is general and applicable to a range of zoonoses. This kind of methodology is of crucial importance for the scientific, medical and public health communities working at the interface between animal and human diseases to assess the risk associated with the disease and to plan intervention and appropriate control measures. The Lassa case study revealed important knowledge gaps, and opportunities, arising from limited knowledge of the temporal patterns in reporting, abundance of and infection prevalence in, the host reservoir.

  4. Global climate change and infectious diseases.

    PubMed Central

    Shope, R

    1991-01-01

    The effects of global climate change on infectious diseases are hypothetical until more is known about the degree of change in temperature and humidity that will occur. Diseases most likely to increase in their distribution and severity have three-factor (agent, vector, and human being) and four-factor (plus vertebrate reservoir host) ecology. Aedes aegypti and Aedes albopictus mosquitoes may move northward and have more rapid metamorphosis with global warming. These mosquitoes transmit dengue virus, and Aedes aegypti transmits yellow fever virus. The faster metamorphosis and a shorter extrinsic incubation of dengue and yellow fever viruses could lead to epidemics in North America. Vibrio cholerae is harbored persistently in the estuaries of the U.S. Gulf Coast. Over the past 200 years, cholera has become pandemic seven times with spread from Asia to Europe, Africa, and North America. Global warming may lead to changes in water ecology that could enhance similar spread of cholera in North America. Some other infectious diseases such as LaCrosse encephalitis and Lyme disease are caused by agents closely dependent on the integrity of their environment. These diseases may become less prominent with global warming because of anticipated modification of their habitats. Ecological studies will help us to understand more fully the possible consequences of global warming. New and more effective methods for control of vectors will be needed. PMID:1820262

  5. Lobomycosis: risk of zoonotic transmission from dolphins to humans.

    PubMed

    Reif, John S; Schaefer, Adam M; Bossart, Gregory D

    2013-10-01

    Lobomycosis, a fungal disease of the skin and subcutaneous tissues caused by Lacazia loboi, is sometimes referred to as a zoonotic disease because it affects only specific delphinidae and humans; however, the evidence that it can be transferred directly to humans from dolphins is weak. Dolphins have also been postulated to be responsible for an apparent geographic expansion of the disease in humans. Morphological and molecular differences between the human and dolphin organisms, differences in geographic distribution of the diseases between dolphins and humans, the existence of only a single documented case of presumed zoonotic transmission, and anecdotal evidence of lack of transmission to humans following accidental inoculation of tissue from infected dolphins do not support the hypothesis that dolphins infected with L. loboi represent a zoonotic hazard for humans. In addition, the lack of human cases in communities adjacent to coastal estuaries with a high prevalence of lobomycosis in dolphins, such as the Indian River Lagoon in Florida (IRL), suggests that direct or indirect transmission of L. loboi from dolphins to humans occurs rarely, if at all. Nonetheless, attention to personal hygiene and general principals of infection control are always appropriate when handling tissues from an animal with a presumptive diagnosis of a mycotic or fungal disease.

  6. Capacity building efforts and perceptions for wildlife surveillance to detect zoonotic pathogens: comparing stakeholder perspectives.

    PubMed

    Schwind, Jessica S; Goldstein, Tracey; Thomas, Kate; Mazet, Jonna A K; Smith, Woutrina A

    2014-07-04

    The capacity to conduct zoonotic pathogen surveillance in wildlife is critical for the recognition and identification of emerging health threats. The PREDICT project, a component of United States Agency for International Development's Emerging Pandemic Threats program, has introduced capacity building efforts to increase zoonotic pathogen surveillance in wildlife in global 'hot spot' regions where zoonotic disease emergence is likely to occur. Understanding priorities, challenges, and opportunities from the perspectives of the stakeholders is a key component of any successful capacity building program. A survey was administered to wildlife officials and to PREDICT-implementing in-country project scientists in 16 participating countries in order to identify similarities and differences in perspectives between the groups regarding capacity needs for zoonotic pathogen surveillance in wildlife. Both stakeholder groups identified some human-animal interfaces (i.e. areas of high contact between wildlife and humans with the potential risk for disease transmission), such as hunting and markets, as important for ongoing targeting of wildlife surveillance. Similarly, findings regarding challenges across stakeholder groups showed some agreement in that a lack of sustainable funding across regions was the greatest challenge for conducting wildlife surveillance for zoonotic pathogens (wildlife officials: 96% and project scientists: 81%). However, the opportunity for improving zoonotic pathogen surveillance capacity identified most frequently by wildlife officials as important was increasing communication or coordination among agencies, sectors, or regions (100% of wildlife officials), whereas the most frequent opportunities identified as important by project scientists were increasing human capacity, increasing laboratory capacity, and the growing interest or awareness regarding wildlife disease or surveillance programs (all identified by 69% of project scientists). A One

  7. The control of helminths: nonreplicating infectious agents of man.

    PubMed

    Warren, K S

    1981-01-01

    In the early part of the 20th century the basic strategy for the cost effective control of helminth diseases was established during a major global hookworm campaign. For schistosomiasis, the most important of present day helminth diseases, the methodology has had to be rediscovered slowly and laboriously. Presently, it is not in use in any large scale programs and is continually being criticized. What is particularly ironic is that this method of control is a logical approach given the unique biology of the helminth infections. The crux of the matter is that helminths are different from all other infectious agents including bacteria, viruses, fungi, and protozoa. Focus in this discussion of the control of helminths is on the following: major helminth infections; hookworm; schistosomiasis; and control of other major helminth infections. The 1st great attempt at control of a major helminth infection globally was initiated by the Rockefeller Foundation in 1913. Hookworm infection exists with the establishment of a single worm in the body, but hookworm disease occurs only when infection is heavy enough to result in clinical manifestations. The majority of people with hookworm have light infections without disease. Most of these facts were known early in the Rockefeller Foundation hookworm campaign and were used to develop an optimal, cost effective means of control. The targeting of treatment and use of single doses to markedly reduce the intensity of infection rather than multiple doses to achieve a cure is particularly poignant in that in 1925 the treatment of choice for hookworm was carbon tetrachloride. In the past decade a small number of workers have come to an understanding of the ecology of schistosomiasis and of cost effectiveness means for its control that are essentially identical to those reached by colleagues over 50 years ago. The concept of mass chemotherapy targeted toward that part of the population with the greatest prevalence and intensity of

  8. Immunopharmacotherapy of non-infectious uveitis: where do we stand?

    PubMed

    Agrawal, Rupesh; Lee, Cecilia; Phatak, Sumita; Pavesio, Carlos

    2014-12-01

    With ever-evolving concept of personalised medicine backed up with specific biomarkers for ocular inflammatory disease, there is a sudden surge of using biologics in non-infectious recalcitrant posterior uveitis. Have we understood these biologic agents enough to embark on this long enduring journey with the patient to optimise control of intraocular inflammation? On the other hand, there is still a strong inhibition of using these novel agents in management of uveitis even at tertiary referral centres. Immunopharmacotherapy of non-infectious uveitis poses a significant conundrum for both physicians and patients as it is like a two-edged sword effective to control inflammation but at the same time potentially toxic, suspected of causing long-term adverse effects. Systemic immunosuppressive therapy is used in a substantial number of most vision-threatening ocular inflammatory diseases. There is lack of randomised control trials establishing the safety of this therapy and our current practice pattern is based on retrospective studies and personal experience in using this treatment modality. This overview will highlight on the current dilemma faced by the clinicians in opting for steroid-sparing immunosuppressive therapy.

  9. Age-specific infectious period shapes dynamics of pneumonia in bighorn sheep.

    PubMed

    Plowright, Raina K; Manlove, Kezia R; Besser, Thomas E; Páez, David J; Andrews, Kimberly R; Matthews, Patrick E; Waits, Lisette P; Hudson, Peter J; Cassirer, E Frances

    2017-10-01

    Superspreading, the phenomenon where a small proportion of individuals contribute disproportionately to new infections, has profound effects on disease dynamics. Superspreading can arise through variation in contacts, infectiousness or infectious periods. The latter has received little attention, yet it drives the dynamics of many diseases of critical public health, livestock health and conservation concern. Here, we present rare evidence of variation in infectious periods underlying a superspreading phenomenon in a free-ranging wildlife system. We detected persistent infections of Mycoplasma ovipneumoniae, the primary causative agent of pneumonia in bighorn sheep (Ovis canadensis), in a small number of older individuals that were homozygous at an immunologically relevant genetic locus. Interactions among age-structure, genetic composition and infectious periods may drive feedbacks in disease dynamics that determine the magnitude of population response to infection. Accordingly, variation in initial conditions may explain divergent population responses to infection that range from recovery to catastrophic decline and extirpation. © 2017 John Wiley & Sons Ltd/CNRS.

  10. Infectious disease outbreaks in competitive sports, 2005-2010.

    PubMed

    Collins, Cathal James; O'Connell, Brian

    2012-01-01

    Old, evolving, and new infectious agents continually threaten the participation of competitors in sports. To provide an update of the medical literature on infectious disease outbreaks in sport for the last 5 years (May 2005-November 2010). A total of 21 outbreaks or clusters were identified. Methicillin-resistant Staphylococcus aureus (n = 7, 33%; mainly community acquired) and tinea (trichophytosis: n = 6, 29%) were the most common pathogens responsible for outbreaks. Skin and soft tissue was the most common site of infection (n = 15, 71%). The majority of outbreaks reported occurred in close-contact sports, mainly combat sports (ie, wrestling, judo) and American football. Twelve outbreaks (57%) involved high school or collegiate competitors. Common community outbreak pathogens, such as influenza virus and norovirus, have received little attention.

  11. Detection and characterization of infectious Hepatitis E virus from commercial pig livers sold in local grocery stores in the USA.

    PubMed

    Feagins, A R; Opriessnig, T; Guenette, D K; Halbur, P G; Meng, X-J

    2007-03-01

    Hepatitis E virus (HEV) is a zoonotic pathogen of which pigs are reservoirs. To determine the presence of HEV RNA in commercial pig livers sold in local grocery stores in the USA, 127 packages of commercial pig liver were purchased and tested by a universal RT-PCR assay capable of detecting all four known HEV genotypes. Among the 127 livers tested, 14 were positive for HEV RNA. Sequence and phylogenetic analyses revealed that the 14 isolates all belonged to genotype 3. An animal study was subsequently conducted in pigs to determine whether the PCR-positive pig livers still contained infectious virus. The results showed that pigs inoculated with two of the three PCR-positive pig-liver homogenates became infected, as evidenced by the detection of faecal virus shedding, viraemia and seroconversion. The data demonstrated that commercial pig livers sold in grocery stores are contaminated by HEV and that the contaminating virus remains infectious, thus raising a public-health concern for food-borne HEV infection.

  12. Dynamics of a Global Zoonotic Research Network Over 33 Years (1980-2012).

    PubMed

    Hossain, Liaquat; Karimi, Faezeh; Wigand, Rolf T

    2015-10-01

    The increasing rate of outbreaks in humans of zoonotic diseases requires detailed examination of the education, research, and practice of animal health and its connection to human health. This study investigated the collaboration network of different fields engaged in conducting zoonotic research from a transdisciplinary perspective. Examination of the dynamics of this network for a 33-year period from 1980 to 2012 is presented through the development of a large scientometric database from Scopus. In our analyses we compared several properties of these networks, including density, clustering coefficient, giant component, and centrality measures over time. We also elicited patterns in different fields of study collaborating with various other fields for zoonotic research. We discovered that the strongest collaborations across disciplines are formed among the fields of medicine; biochemistry, genetics, and molecular biology; immunology and microbiology; veterinary; agricultural and biological sciences; and social sciences. Furthermore, the affiliation network is growing overall in terms of collaborative research among different fields of study such that more than two-thirds of all possible collaboration links among disciplines have already been formed. Our findings indicate that zoonotic research scientists in different fields (human or animal health, social science, earth and environmental sciences, engineering) have been actively collaborating with each other over the past 11 years.

  13. Adaptive pathways of zoonotic influenza viruses: from exposure to establishment in humans.

    PubMed

    Reperant, Leslie A; Kuiken, Thijs; Osterhaus, Albert D M E

    2012-06-22

    Human influenza viruses have their ultimate origin in avian reservoirs and may adapt, either directly or after passage through another mammalian species, to circulate independently in the human population. Three sets of barriers must be crossed by a zoonotic influenza virus before it can become a human virus: animal-to-human transmission barriers; virus-cell interaction barriers; and human-to-human transmission barriers. Adaptive changes allowing zoonotic influenza viruses to cross these barriers have been studied extensively, generating key knowledge for improved pandemic preparedness. Most of these adaptive changes link acquired genetic alterations of the virus to specific adaptation mechanisms that can be screened for, both genetically and phenotypically, as part of zoonotic influenza virus surveillance programs. Human-to-human transmission barriers are only sporadically crossed by zoonotic influenza viruses, eventually triggering a worldwide influenza outbreak or pandemic. This is the most devastating consequence of influenza virus cross-species transmission. Progress has been made in identifying some of the determinants of influenza virus transmissibility. However, interdisciplinary research is needed to further characterize these ultimate barriers to the development of influenza pandemics, at both the level of the individual host and that of the population. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. BioWar: A City-Scale Multi-Agent Network Model of Weaponized Biological Attacks

    DTIC Science & Technology

    2004-01-01

    Simplex Encephalitis Hypertensive Heart Disease Hypovolemic Shock Immune Deficiency Syndrome Acquired Aids Infectious Mononucleosis Malaria...mitigation and recovery strategies. Models developed for the spread of infectious diseases in human populations can be harnessed for the predicting the...Restaurant s Eating location University Post secondary education institutions Military Military bases Indiv infectious idual a ) agents each tick

  15. Recent advances in molecular medicine techniques for the diagnosis, prevention, and control of infectious diseases.

    PubMed

    França, R F O; da Silva, C C; De Paula, S O

    2013-06-01

    In recent years we have observed great advances in our ability to combat infectious diseases. Through the development of novel genetic methodologies, including a better understanding of pathogen biology, pathogenic mechanisms, advances in vaccine development, designing new therapeutic drugs, and optimization of diagnostic tools, significant infectious diseases are now better controlled. Here, we briefly describe recent reports in the literature concentrating on infectious disease control. The focus of this review is to describe the molecular methods widely used in the diagnosis, prevention, and control of infectious diseases with regard to the innovation of molecular techniques. Since the list of pathogenic microorganisms is extensive, we emphasize some of the major human infectious diseases (AIDS, tuberculosis, malaria, rotavirus, herpes virus, viral hepatitis, and dengue fever). As a consequence of these developments, infectious diseases will be more accurately and effectively treated; safe and effective vaccines are being developed and rapid detection of infectious agents now permits countermeasures to avoid potential outbreaks and epidemics. But, despite considerable progress, infectious diseases remain a strong challenge to human survival.

  16. Managing the Navy’s Infectious Medical Waste

    DTIC Science & Technology

    1992-08-04

    pasteur pipetes, broken glass, scalpel blades) which have come into contact with infectious agents during use in patient care or in medical , research...concerned patients with a responsible method of disposal of their syringes. 4.8 Proposed Federal Legislation On June 22, 1992, American Medical News reported...disposal point for non- medically related wastes which required special handling. These wastes included such items as confiscated marijuana , sensitive

  17. Evolution, revolution and heresy in the genetics of infectious disease susceptibility

    PubMed Central

    Hill, Adrian V. S.

    2012-01-01

    Infectious pathogens have long been recognized as potentially powerful agents impacting on the evolution of human genetic diversity. Analysis of large-scale case–control studies provides one of the most direct means of identifying human genetic variants that currently impact on susceptibility to particular infectious diseases. For over 50 years candidate gene studies have been used to identify loci for many major causes of human infectious mortality, including malaria, tuberculosis, human immunodeficiency virus/acquired immunodeficiency syndrome, bacterial pneumonia and hepatitis. But with the advent of genome-wide approaches, many new loci have been identified in diverse populations. Genome-wide linkage studies identified a few loci, but genome-wide association studies are proving more successful, and both exome and whole-genome sequencing now offer a revolutionary increase in power. Opinions differ on the extent to which the genetic component to common disease susceptibility is encoded by multiple high frequency or rare variants, and the heretical view that most infectious diseases might even be monogenic has been advocated recently. Review of findings to date suggests that the genetic architecture of infectious disease susceptibility may be importantly different from that of non-infectious diseases, and it is suggested that natural selection may be the driving force underlying this difference. PMID:22312051

  18. Zoonotic importance of canine scabies and dermatophytosis in relation to knowledge level of dog owners.

    PubMed

    Raval, Heli S; Nayak, J B; Patel, B M; Bhadesiya, C M

    2015-06-01

    The present study was undertaken to understand the zoonotic importance of canine scabies and dermatophytosis with special reference to the knowledge level of dog owners in urban areas of Gujarat. The study was carried out in randomly selected 120 dog owners of 3 urban cities (viz., Ahmedabad, Anand and Vadodara) of Gujarat state, India. Dog owners (i.e., respondents) were subjected to a detailed interview regarding the zoonotic importance of canine scabies and dermatophytosis in dogs. Ex-post-facto research design was selected because of the independent variables of the selected respondent population for the study. The crucial method used in collecting data was a field survey to generate null hypothesis (Ho1). Available data was subjected to statistical analysis. The three independent variables, viz., extension contact (r=0.522**), mass-media exposure (r=0.205*) and management orientation (r=0.264**) had significant relationship with knowledge of dog owners about zoonotic diseases. Other independent variables, viz., education, experience in dog keeping and housing space were observed to have negative and non-significant relationship with knowledge of dog owners about zoonotic diseases. Extension contact, exposure to extension mass-media, management orientation and innovation proneness among dog owners of 3 urban cities of Gujarat state had significant relationship with knowledge of dog owners on zoonotic aspects of canine scabies and dermatophytosis. Data provided new insights on the present status of zoonotic disease-awareness, which would be an aid to plan preventive measures.

  19. [New insight into bacterial zoonotic pathogens posing health hazards to humans].

    PubMed

    Ciszewski, Marcin; Czekaj, Tomasz; Szewczyk, Eligia Maria

    2014-01-01

    This article presents the problem of evolutionary changes of zoonotic pathogens responsible for human diseases. Everyone is exposed to the risk of zoonotic infection, particularly employees having direct contact with animals, i.e. veterinarians, breeders, butchers and workers of animal products' processing industry. The article focuses on pathogens monitored by the European Centre for Disease Prevention and Control (ECDC), which has been collecting statistical data on zoonoses from all European Union countries for 19 years and publishing collected data in annual epidemiological reports. Currently, the most important 11 pathogens responsible for causing human zoonotic diseases are being monitored, of which seven are bacteria: Salmonella spp., Campylobacter spp., Listeria monocytogenes, Mycobacterium bovis, Brucella spp., Coxiella burnetti and Verotoxin-producing E. coli (VTEC)/Shiga-like toxin producing E. coli (STEC). As particularly important are considered foodborne pathogens. The article also includes new emerging zoonotic bacteria, which are not currently monitored by ECDC but might pose a serious epidemiological problem in a foreseeable future: Streptococcus iniae, S. suis, S. dysgalactiae and staphylococci: Staphylococcus intermedius, S. pseudintermedius. Those species have just crossed the animal-human interspecies barrier. The exact mechanism of this phenomenon remains unknown, it is connected, however, with genetic variability, capability to survive in changing environment. These abilities derive from DNA rearrangement and horizontal gene transfer between bacterial cells. Substantial increase in the number of scientific publications on this subject, observed over the last few years, illustrates the importance of the problem.

  20. Gastrointestinal parasites of cats in Brazil: frequency and zoonotic risk.

    PubMed

    Monteiro, Maria Fernanda Melo; Ramos, Rafael Antonio Nascimento; Calado, Andréa Maria Campos; Lima, Victor Fernando Santana; Ramos, Ingrid Carla do Nascimento; Tenório, Rodrigo Ferreira Lima; Faustino, Maria Aparecida da Glória; Alves, Leucio Câmara

    2016-04-12

    Gastrointestinal helminths are considered to be the most common parasites affecting cats worldwide. Correct diagnosis of these parasites in animals living in urban areas is pivotal, especially considering the zoonotic potential of some species (e.g. Ancylostoma sp. and Toxocara sp.). In this study, a copromicroscopic survey was conducted using fecal samples (n = 173) from domestic cats living in the northeastern region of Brazil. Samples were examined through the FLOTAC technique and the overall results showed positivity of 65.31% (113/173) among the samples analyzed. Coinfections were observed in 46.01% (52/113) of the positive samples. The most common parasites detected were Ancylostoma sp., Toxocara cati, Strongyloides stercoralis, Trichuris sp., Dipylidium caninum and Cystoisospora sp. From an epidemiological point of view, these findings are important, especially considering that zoonotic parasites (e.g. Ancylostoma sp. and Toxocara sp.) were the nematodes most frequently diagnosed in this study. Therefore, the human population living in close contact with cats is at risk of infection caused by the zoonotic helminths of these animals. In addition, for the first time the FLOTAC has been used to diagnosing gastrointestinal parasites of cats in Brazil.

  1. Evidence for the role of infectious disease in species extinction and endangerment

    USGS Publications Warehouse

    Smith, Katherine F.; Sax, Dov F.; Lafferty, Kevin D.

    2006-01-01

    Infectious disease is listed among the top five causes of global species extinctions. However, the majority of available data supporting this contention is largely anecdotal. We used the IUCN Red List of Threatened and Endangered Species and literature indexed in the ISI Web of Science to assess the role of infectious disease in global species loss. Infectious disease was listed as a contributing factor in <4% of species extinctions known to have occurred since 1500 (833 plants and animals) and as contributing to a species' status as critically endangered in <8% of cases (2852 critically endangered plants and animals). Although infectious diseases appear to play a minor role in global species loss, our findings underscore two important limitations in the available evidence: uncertainty surrounding the threats to species survival and a temporal bias in the data. Several initiatives could help overcome these obstacles, including rigorous scientific tests to determine which infectious diseases present a significant threat at the species level, recognition of the limitations associated with the lack of baseline data for the role of infectious disease in species extinctions, combining data with theory to discern the circumstances under which infectious disease is most likely to serve as an agent of extinction, and improving surveillance programs for the detection of infectious disease. An evidence-based understanding of the role of infectious disease in species extinction and endangerment will help prioritize conservation initiatives and protect global biodiversity.

  2. Coarse-resolution Ecology of Etiological Agent, Vector, and Reservoirs of Zoonotic Cutaneous Leishmaniasis in Libya.

    PubMed

    Samy, Abdallah M; Annajar, Badereddin B; Dokhan, Mostafa Ramadhan; Boussaa, Samia; Peterson, A Townsend

    2016-02-01

    Cutaneous leishmaniasis ranks among the tropical diseases least known and most neglected in Libya. World Health Organization reports recognized associations of Phlebotomus papatasi, Psammomys obesus, and Meriones spp., with transmission of zoonotic cutaneous leishmaniasis (ZCL; caused by Leishmania major) across Libya. Here, we map risk of ZCL infection based on occurrence records of L. major, P. papatasi, and four potential animal reservoirs (Meriones libycus, Meriones shawi, Psammomys obesus, and Gerbillus gerbillus). Ecological niche models identified limited risk areas for ZCL across the northern coast of the country; most species associated with ZCL transmission were confined to this same region, but some had ranges extending to central Libya. All ENM predictions were significant based on partial ROC tests. As a further evaluation of L. major ENM predictions, we compared predictions with 98 additional independent records provided by the Libyan National Centre for Disease Control (NCDC); all of these records fell inside the belt predicted as suitable for ZCL. We tested ecological niche similarity among vector, parasite, and reservoir species and could not reject any null hypotheses of niche similarity. Finally, we tested among possible combinations of vector and reservoir that could predict all recent human ZCL cases reported by NCDC; only three combinations could anticipate the distribution of human cases across the country.

  3. Coarse-resolution Ecology of Etiological Agent, Vector, and Reservoirs of Zoonotic Cutaneous Leishmaniasis in Libya

    PubMed Central

    Samy, Abdallah M.; Annajar, Badereddin B.; Dokhan, Mostafa Ramadhan; Boussaa, Samia; Peterson, A. Townsend

    2016-01-01

    Abstract Cutaneous leishmaniasis ranks among the tropical diseases least known and most neglected in Libya. World Health Organization reports recognized associations of Phlebotomus papatasi, Psammomys obesus, and Meriones spp., with transmission of zoonotic cutaneous leishmaniasis (ZCL; caused by Leishmania major) across Libya. Here, we map risk of ZCL infection based on occurrence records of L. major, P. papatasi, and four potential animal reservoirs (Meriones libycus, Meriones shawi, Psammomys obesus, and Gerbillus gerbillus). Ecological niche models identified limited risk areas for ZCL across the northern coast of the country; most species associated with ZCL transmission were confined to this same region, but some had ranges extending to central Libya. All ENM predictions were significant based on partial ROC tests. As a further evaluation of L. major ENM predictions, we compared predictions with 98 additional independent records provided by the Libyan National Centre for Disease Control (NCDC); all of these records fell inside the belt predicted as suitable for ZCL. We tested ecological niche similarity among vector, parasite, and reservoir species and could not reject any null hypotheses of niche similarity. Finally, we tested among possible combinations of vector and reservoir that could predict all recent human ZCL cases reported by NCDC; only three combinations could anticipate the distribution of human cases across the country. PMID:26863317

  4. 9 CFR 121.3 - VS select agents and toxins.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... genetically modified. (d) VS select agents or toxins that meet any of the following criteria are excluded from... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS POSSESSION, USE, AND... recombinant organisms: (1) Nucleic acids that can produce infectious forms of any of the select agent viruses...

  5. Taking forward a 'One Health' approach for turning the tide against the Middle East respiratory syndrome coronavirus and other zoonotic pathogens with epidemic potential.

    PubMed

    Zumla, Alimuddin; Dar, Osman; Kock, Richard; Muturi, Matthew; Ntoumi, Francine; Kaleebu, Pontiano; Eusebio, Macete; Mfinanga, Sayoki; Bates, Matthew; Mwaba, Peter; Ansumana, Rashid; Khan, Mishal; Alagaili, Abdulaziz N; Cotten, Matthew; Azhar, Esam I; Maeurer, Markus; Ippolito, Giuseppe; Petersen, Eskild

    2016-06-01

    The appearance of novel pathogens of humans with epidemic potential and high mortality rates have threatened global health security for centuries. Over the past few decades new zoonotic infectious diseases of humans caused by pathogens arising from animal reservoirs have included West Nile virus, Yellow fever virus, Ebola virus, Nipah virus, Lassa Fever virus, Hanta virus, Dengue fever virus, Rift Valley fever virus, Crimean-Congo haemorrhagic fever virus, severe acute respiratory syndrome coronavirus, highly pathogenic avian influenza viruses, Middle East Respiratory Syndrome Coronavirus, and Zika virus. The recent Ebola Virus Disease epidemic in West Africa and the ongoing Zika Virus outbreak in South America highlight the urgent need for local, regional and international public health systems to be be more coordinated and better prepared. The One Health concept focuses on the relationship and interconnectedness between Humans, Animals and the Environment, and recognizes that the health and wellbeing of humans is intimately connected to the health of animals and their environment (and vice versa). Critical to the establishment of a One Health platform is the creation of a multidisciplinary team with a range of expertise including public health officers, physicians, veterinarians, animal husbandry specialists, agriculturalists, ecologists, vector biologists, viral phylogeneticists, and researchers to co-operate, collaborate to learn more about zoonotic spread between animals, humans and the environment and to monitor, respond to and prevent major outbreaks. We discuss the unique opportunities for Middle Eastern and African stakeholders to take leadership in building equitable and effective partnerships with all stakeholders involved in human and health systems to take forward a 'One Health' approach to control such zoonotic pathogens with epidemic potential. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  6. Zoonotic Leprosy in the Southeastern United States

    PubMed Central

    Sharma, Rahul; Singh, Pushpendra; Loughry, W.J.; Lockhart, J. Mitchell; Inman, W. Barry; Duthie, Malcolm S.; Pena, Maria T.; Marcos, Luis A.; Scollard, David M.; Cole, Stewart T.

    2015-01-01

    Nine-banded armadillos (Dasypus novemcinctus) are naturally infected with Mycobacterium leprae and have been implicated in zoonotic transmission of leprosy. Early studies found this disease mainly in Texas and Louisiana, but armadillos in the southeastern United States appeared to be free of infection. We screened 645 armadillos from 8 locations in the southeastern United States not known to harbor enzootic leprosy for M. leprae DNA and antibodies. We found M. leprae–infected armadillos at each location, and 106 (16.4%) animals had serologic/PCR evidence of infection. Using single-nucleotide polymorphism variable number tandem repeat genotyping/genome sequencing, we detected M. leprae genotype 3I-2-v1 among 35 armadillos. Seven armadillos harbored a newly identified genotype (3I-2-v15). In comparison, 52 human patients from the same region were infected with 31 M. leprae types. However, 42.3% (22/52) of patients were infected with 1 of the 2 M. leprae genotype strains associated with armadillos. The geographic range and complexity of zoonotic leprosy is expanding. PMID:26583204

  7. Microbiological survey of mice (Mus musculus) purchased from commercial pet shops in Kanagawa and Tokyo, Japan.

    PubMed

    Hayashimoto, Nobuhito; Morita, Hanako; Ishida, Tomoko; Uchida, Ritsuki; Tanaka, Mai; Ozawa, Midori; Yasuda, Masahiko; Itoh, Toshio

    2015-01-01

    Information regarding the prevalence of infectious agents in mice in pet shops in Japan is scarce. This information is particularly useful for minimizing the risk of potential transmission of infections to laboratory mice. Therefore, we surveyed infectious agents in mice from pet shops in Kanagawa and Tokyo, Japan. The survey was conducted in 28 mice from 5 pet shops to screen for 47 items (17 viruses, 22 bacteria and fungi, 10 parasites) using culture tests, serology, PCR, and microscopy. The most common viral agent detected was murine norovirus (17 mice; 60.7%), followed by Theiler's murine encephalomyelitis virus (13 mice; 46.4%), and mouse hepatitis virus (12 mice; 42.8%). The most common agent amongst the bacteria and fungi was Pasteurella pneumotropica (10 mice; 35.7%), followed by Helicobacter ganmani and Pneumocystis murina (8 mice; 28.5%, for both). Tritrichomonas muris was the most common parasite (19 mice; 67.8%), followed by Spironucleus muris (13 mice; 46.4%), Aspiculuris tetraptera, and Syphacia obvelata (8 mice each; 28.5%). Remarkably, a zoonotic agent, Hymenolepis nana, was found in 7 mice (25%). Given these results, we suggest that the workers in laboratory animal facilities should recognize again the potential risks of mice outside of the laboratory animal facilities as an infectious source, and avoid keeping mice as pets or as feed for carnivorous reptiles as much as possible for risk management.

  8. Mapping the zoonotic niche of Lassa fever in Africa

    PubMed Central

    Mylne, Adrian Q. N.; Pigott, David M.; Longbottom, Joshua; Shearer, Freya; Duda, Kirsten A.; Messina, Jane P.; Weiss, Daniel J.; Moyes, Catherine L.; Golding, Nick; Hay, Simon I.

    2015-01-01

    Background Lassa fever is a viral haemorrhagic illness responsible for disease outbreaks across West Africa. It is a zoonosis, with the primary reservoir species identified as the Natal multimammate mouse, Mastomys natalensis. The host is distributed across sub-Saharan Africa while the virus' range appears to be restricted to West Africa. The majority of infections result from interactions between the animal reservoir and human populations, although secondary transmission between humans can occur, particularly in hospital settings. Methods Using a species distribution model, the locations of confirmed human and animal infections with Lassa virus (LASV) were used to generate a probabilistic surface of zoonotic transmission potential across sub-Saharan Africa. Results Our results predict that 37.7 million people in 14 countries, across much of West Africa, live in areas where conditions are suitable for zoonotic transmission of LASV. Four of these countries, where at-risk populations are predicted, have yet to report any cases of Lassa fever. Conclusions These maps act as a spatial guide for future surveillance activities to better characterise the geographical distribution of the disease and understand the anthropological, virological and zoological interactions necessary for viral transmission. Combining this zoonotic niche map with detailed patient travel histories can aid differential diagnoses of febrile illnesses, enabling a more rapid response in providing care and reducing the risk of onward transmission. PMID:26085474

  9. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus

    PubMed Central

    Das, Sanchita; Rundell, Mark S.; Mirza, Aashiq H.; Pingle, Maneesh R.; Shigyo, Kristi; Garrison, Aura R.; Paragas, Jason; Smith, Scott K.; Olson, Victoria A.; Larone, Davise H.; Spitzer, Eric D.; Barany, Francis; Golightly, Linnie M.

    2015-01-01

    CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus). PMID:26381398

  10. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus.

    PubMed

    Das, Sanchita; Rundell, Mark S; Mirza, Aashiq H; Pingle, Maneesh R; Shigyo, Kristi; Garrison, Aura R; Paragas, Jason; Smith, Scott K; Olson, Victoria A; Larone, Davise H; Spitzer, Eric D; Barany, Francis; Golightly, Linnie M

    2015-01-01

    CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus).

  11. Infectious Causes of Encephalitis and Meningoencephalitis in Thailand, 2003–2005

    PubMed Central

    Campbell, Angela P.; Supawat, Krongkaew; Liamsuwan, Sahas; Chotpitayasunondh, Tawee; Laptikulthum, Somsak; Viriyavejakul, Akravudh; Tantirittisak, Tasanee; Tunlayadechanont, Supoch; Visudtibhan, Anannit; Vasiknanonte, Punnee; Janjindamai, Supachai; Boonluksiri, Pairoj; Rajborirug, Kiatsak; Watanaveeradej, Veerachai; Khetsuriani, Nino; Dowell, Scott F.

    2015-01-01

    Acute encephalitis is a severe neurologic syndrome. Determining etiology from among ≈100 possible agents is difficult. To identify infectious etiologies of encephalitis in Thailand, we conducted surveillance in 7 hospitals during July 2003–August 2005 and selected patients with acute onset of brain dysfunction with fever or hypothermia and with abnormalities seen on neuroimages or electroencephalograms or with cerebrospinal fluid pleocytosis. Blood and cerebrospinal fluid were tested for >30 pathogens. Among 149 case-patients, median age was 12 (range 0–83) years, 84 (56%) were male, and 15 (10%) died. Etiology was confirmed or probable for 54 (36%) and possible or unknown for 95 (64%). Among confirmed or probable etiologies, the leading pathogens were Japanese encephalitis virus, enteroviruses, and Orientia tsutsugamushi. No samples were positive for chikungunya, Nipah, or West Nile viruses; Bartonella henselae; or malaria parasites. Although a broad range of infectious agents was identified, the etiology of most cases remains unknown. PMID:25627940

  12. A systematic review of zoonotic enteric parasitic diseases among nomadic and pastoral people

    PubMed Central

    Davaasuren, Anu; Baasandagva, Uyanga; Gray, Gregory C.

    2017-01-01

    Introduction Zoonotic enteric parasites are ubiquitous and remain a public health threat to humans due to our close relationship with domestic animals and wildlife, inadequate water, sanitation, and hygiene practices and diet. While most communities are now sedentary, nomadic and pastoral populations still exist and experience unique exposure risks for acquiring zoonotic enteric parasites. Through this systematic review we sought to summarize published research regarding pathogens present in nomadic populations and to identify the risk factors for their infection. Methods Using systematic review guidelines set forth by PRISMA, research articles were identified, screened and summarized based on exclusion criteria for the documented presence of zoonotic enteric parasites within nomadic or pastoral human populations. A total of 54 articles published between 1956 and 2016 were reviewed to determine the pathogens and exposure risks associated with the global transhumance lifestyle. Results The included articles reported more than twenty different zoonotic enteric parasite species and illustrated several risk factors for nomadic and pastoralist populations to acquire infection including; a) animal contact, b) food preparation and diet, and c) household characteristics. The most common parasite studied was Echinococcosis spp. and contact with dogs was recognized as a leading risk factor for zoonotic enteric parasites followed by contact with livestock and/or wildlife, water, sanitation, and hygiene barriers, home slaughter of animals, environmental water exposures, household member age and sex, and consumption of unwashed produce or raw, unprocessed, or undercooked milk or meat. Conclusion Nomadic and pastoral communities are at risk of infection with a variety of zoonotic enteric parasites due to their living environment, cultural and dietary traditions, and close relationship to animals. Global health efforts aimed at reducing the transmission of these animal

  13. A systematic review of zoonotic enteric parasitic diseases among nomadic and pastoral people.

    PubMed

    Barnes, Amber N; Davaasuren, Anu; Baasandagva, Uyanga; Gray, Gregory C

    2017-01-01

    Zoonotic enteric parasites are ubiquitous and remain a public health threat to humans due to our close relationship with domestic animals and wildlife, inadequate water, sanitation, and hygiene practices and diet. While most communities are now sedentary, nomadic and pastoral populations still exist and experience unique exposure risks for acquiring zoonotic enteric parasites. Through this systematic review we sought to summarize published research regarding pathogens present in nomadic populations and to identify the risk factors for their infection. Using systematic review guidelines set forth by PRISMA, research articles were identified, screened and summarized based on exclusion criteria for the documented presence of zoonotic enteric parasites within nomadic or pastoral human populations. A total of 54 articles published between 1956 and 2016 were reviewed to determine the pathogens and exposure risks associated with the global transhumance lifestyle. The included articles reported more than twenty different zoonotic enteric parasite species and illustrated several risk factors for nomadic and pastoralist populations to acquire infection including; a) animal contact, b) food preparation and diet, and c) household characteristics. The most common parasite studied was Echinococcosis spp. and contact with dogs was recognized as a leading risk factor for zoonotic enteric parasites followed by contact with livestock and/or wildlife, water, sanitation, and hygiene barriers, home slaughter of animals, environmental water exposures, household member age and sex, and consumption of unwashed produce or raw, unprocessed, or undercooked milk or meat. Nomadic and pastoral communities are at risk of infection with a variety of zoonotic enteric parasites due to their living environment, cultural and dietary traditions, and close relationship to animals. Global health efforts aimed at reducing the transmission of these animal-to-human pathogens must incorporate a One Health

  14. Zoonotic importance of canine scabies and dermatophytosis in relation to knowledge level of dog owners

    PubMed Central

    Raval, Heli S.; Nayak, J. B.; Patel, B. M.; Bhadesiya, C. M.

    2015-01-01

    Aim: The present study was undertaken to understand the zoonotic importance of canine scabies and dermatophytosis with special reference to the knowledge level of dog owners in urban areas of Gujarat. Materials and Methods: The study was carried out in randomly selected 120 dog owners of 3 urban cities (viz., Ahmedabad, Anand and Vadodara) of Gujarat state, India. Dog owners (i.e., respondents) were subjected to a detailed interview regarding the zoonotic importance of canine scabies and dermatophytosis in dogs. Ex-post-facto research design was selected because of the independent variables of the selected respondent population for the study. The crucial method used in collecting data was a field survey to generate null hypothesis (Ho1). Available data was subjected to statistical analysis. Results: The three independent variables, viz., extension contact (r=0.522**), mass-media exposure (r=0.205*) and management orientation (r=0.264**) had significant relationship with knowledge of dog owners about zoonotic diseases. Other independent variables, viz., education, experience in dog keeping and housing space were observed to have negative and non-significant relationship with knowledge of dog owners about zoonotic diseases. Conclusion: Extension contact, exposure to extension mass-media, management orientation and innovation proneness among dog owners of 3 urban cities of Gujarat state had significant relationship with knowledge of dog owners on zoonotic aspects of canine scabies and dermatophytosis. Data provided new insights on the present status of zoonotic disease-awareness, which would be an aid to plan preventive measures. PMID:27065644

  15. Tularemia, a re-emerging infectious disease in Iran and neighboring countrie

    PubMed Central

    Zargar, Afsaneh; Maurin, Max; Mostafavi, Ehsan

    2015-01-01

    OBJECTIVES: Tularemia is a zoonotic disease transmitted by direct contact with infected animals and through arthropod bites, inhalation of contaminated aerosols, ingestion of contaminated meat or water, and skin contact with any infected material. It is widespread throughout the northern hemisphere, including Iran and its neighbors to the north, northeast, and northwest. METHODS: In this paper, the epidemiology of tularemia as a re-emerging infectious disease in the world with a focus on Iran and the neighboring countries is reviewed. RESULTS: In Iran, positive serological tests were first reported in 1973, in wildlife and domestic livestock in the northwestern and southeastern parts of the country. The first human case was reported in 1980 in the southwest of Iran, and recent studies conducted among at-risk populations in the western, southeastern, and southwestern parts of Iran revealed seroprevalences of 14.4, 6.52, and 6%, respectively. CONCLUSIONS: Several factors may explain the absence of reported tularemia cases in Iran since 1980. Tularemia may be underdiagnosed in Iran because Francisella tularensis subspecies holarctica is likely to be the major etiological agent and usually causes mild to moderately severe disease. Furthermore, tularemia is not a disease extensively studied in the medical educational system in Iran, and empirical therapy may be effective in many cases. Finally, it should be noted that laboratories capable of diagnosing tularemia have only been established in the last few years. Since both recent and older studies have consistently found tularemia antibodies in humans and animals, the surveillance of this disease should receive more attention. In particular, it would be worthwhile for clinical researchers to confirm tularemia cases more often by isolating F. tularensis from infected humans and animals. PMID:25773439

  16. Global climate change and infectious diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shope, R.

    1991-12-01

    The effects of global climate change on infectious diseases are hypothetical until more is known about the degree of change in temperature and humidity that will occur. Diseases most likely to increase in their distribution and severity have three-factor (agent, vector, and human being) and four-factor (plus vertebrate reservoir host) ecology. Aedes aegypti and Aedes albopictus mosquitoes may move northward and have more rapid metamorphosis with global warming. These mosquitoes transmit dengue virus, and Aedes aegypti transmits yellow fever virus. The faster metamorphosis and a shorter extrinsic incubation of dengue and yellow fever viruses could lead to epidemics in Northmore » America. Vibrio cholera is harbored persistently in the estuaries of the U.S. Gulf Coast. Over the past 200 years, cholera has become pandemic seven times with spread from Asia to Europe, Africa, and North America. Global warming may lead to changes in water ecology that could enhance similar spread of cholera in North America. Some other infectious diseases such as LaCrosse encephalitis and Lyme disease are caused by agents closely dependent on the integrity of their environment. These diseases may become less prominent with global warming because of anticipated modification of their habitats. Ecological studies will help as to understand more fully the possible consequences of global warming. New and more effective methods for control of vectors will be needed. 12 refs., 1 tab.« less

  17. A Unified Framework for the Infection Dynamics of Zoonotic Spillover and Spread

    PubMed Central

    Cunningham, Andrew A.; Fichet-Calvet, Elisabeth; Garry, Robert F.; Grant, Donald S.; Leach, Melissa; Moses, Lina M.; Nichols, Gordon; Schieffelin, John S.; Shaffer, Jeffrey G.; Webb, Colleen T.; Wood, James L. N.

    2016-01-01

    A considerable amount of disease is transmitted from animals to humans and many of these zoonoses are neglected tropical diseases. As outbreaks of SARS, avian influenza and Ebola have demonstrated, however, zoonotic diseases are serious threats to global public health and are not just problems confined to remote regions. There are two fundamental, and poorly studied, stages of zoonotic disease emergence: ‘spillover’, i.e. transmission of pathogens from animals to humans, and ‘stuttering transmission’, i.e. when limited human-to-human infections occur, leading to self-limiting chains of transmission. We developed a transparent, theoretical framework, based on a generalization of Poisson processes with memory of past human infections, that unifies these stages. Once we have quantified pathogen dynamics in the reservoir, with some knowledge of the mechanism of contact, the approach provides a tool to estimate the likelihood of spillover events. Comparisons with independent agent-based models demonstrates the ability of the framework to correctly estimate the relative contributions of human-to-human vs animal transmission. As an illustrative example, we applied our model to Lassa fever, a rodent-borne, viral haemorrhagic disease common in West Africa, for which data on human outbreaks were available. The approach developed here is general and applicable to a range of zoonoses. This kind of methodology is of crucial importance for the scientific, medical and public health communities working at the interface between animal and human diseases to assess the risk associated with the disease and to plan intervention and appropriate control measures. The Lassa case study revealed important knowledge gaps, and opportunities, arising from limited knowledge of the temporal patterns in reporting, abundance of and infection prevalence in, the host reservoir. PMID:27588425

  18. Awareness and practices regarding zoonotic influenza prevention in Romanian swine workers.

    PubMed

    Rabinowitz, Peter M; Huang, Eileen; Paccha, Blanca; Vegso, Sally; Gurzau, Anca

    2013-12-01

    Swine workers may play a key role in transmission of zoonotic influenza viruses. At the same time, little is known about the extent and effectiveness of influenza prevention programs for these at-risk workers. To characterize practices and attitudes regarding zoonotic influenza transmission among swine workers in Romania. We conducted a convenience survey of swine workers in Romania. The confidential survey included questions about awareness of zoonotic influenza risk, work tasks performed, flu vaccination status, and reported influenza-like illness. A total of 103 workers at seven farms completed the survey. The percentage of workers reporting concern about either contracting influenza from pigs or giving influenza to pigs was 78% and 70%, respectively. Although 60% of workers reported having a sick-leave policy at work, only 7% of workers reported receiving seasonal influenza vaccination during the past flu season. Only 5% of the workers reported flu-like illness during the past year while 3% of workers reported that pigs appeared sick with influenza over the same time period. The majority of workers reported using protective overalls and rubber boots during swine work, with lower rates of use of gloves. Reported use of respiratory protection was rare, and use of any personal protective equipment did not differ when pigs appeared ill. Despite awareness and concern regarding zoonotic influenza, Romanian swine workers report low rates of influenza vaccine or respiratory protection. As part of global pandemic influenza preparedness, enhanced prevention programs for swine workers should address such gaps. © 2013 Blackwell publishing Ltd.

  19. Overview of zoonotic infections from fish and shellfish

    USDA-ARS?s Scientific Manuscript database

    Zoonosis refers to diseases that can be transferred from animals, whether wild or domesticated, to humans. Zoonotic infections can be divided into: 1) topically acquired infection caused by contact with aquatic animals or their products and 2) food borne infection caused by eating raw or undercooked...

  20. Infectious bursal disease in New Brunswick.

    PubMed

    Ide, P R; Stevenson, R G

    1973-10-01

    A flock of four week old chickens experienced a disease of sudden onset in which the only symptoms were those of depression shortly before death, and in which the predominant histological lesion was necrosis of lymphocytes in the bursa of Fabricius.A virus, designated strain Sk-1, was isolated from pooled bursal tissue of affected birds and was serologically identified as a strain of the infectious bursal agent. This virus was chloroform resistant, did not hemagglutinate guinea pig or chicken erythrocytes and did not produce a cytopathic effect in chick embryo tissue cultures. Equivocal results were obtained in filtration studies but the agent was less than 100nm in diameter. Four week old chicks inoculated with strain Sk-1 developed microscopic lesions in the bursa of Fabricius which were similar to those seen in the original field specimens. Inoculated chick embryos exhibited characteristic macroscopic lesions and necrosis of vascular tissue was a common histological change.A limited serological survey of local poultry flocks indicated that infection by this agent had occurred in four of the ten flocks examined.

  1. QUANTITATIVE RISK ASSESSMENT FOR MICROBIAL AGENTS

    EPA Science Inventory

    Compared to chemical risk assessment, the process for microbial agents and infectious disease is more complex because of host factors and the variety of settings in which disease transmission can occur. While the National Academy of Science has established a paradigm for performi...

  2. [The raccoon roundworm (Baylisascaris procyonis)--no zoonotic risk for Brandenburg?].

    PubMed

    Schwarz, Sabine; Sutor, Astrid; Mattis, Roswitha; Conraths, Franz Josef

    2015-01-01

    The aim of the present study was to investigate the presence of the raccoon roundworm (Baylisascaris [B.] procyonis), a dangerous zoonotic pathogen for humans, in raccoons living in the federal state of Brandenburg, Germany. In the years 2008 to 2013, a total of 762 raccoons, dating from hunting bags, were examined for intestinal helminths. No raccoon roundworm specimen was detected, but 27 samples were positive for Mesocestoides spp. Earlier studies had proved the presence of B. procyonis in Hesse and since 2005 the parasite has also been found in the western part of Saxony-Anhalt. The migration ability of raccoons may promote a further distribution of this parasite and could increase the risk for zoonotic infections in humans.

  3. Initial Identification and Characterization of an Emerging Zoonotic Influenza Prior to Pandemic Spread

    DTIC Science & Technology

    2010-11-01

    equally closely strains of both H1N2 influenza A virus of swine origin and H3N2 influenza A virus of avian origin. The expected matches for each of...Naval Health Research Center Initial Identification and Characterization of an Emerging Zoonotic Influenza Virus Prior to Pandemic Spread...10.1128/JCM.01336-10 PMCID: PMC3020883 Initial Identification and Characterization of an Emerging Zoonotic Influenza Virus Prior to Pandemic

  4. Enhancing the role of veterinary vaccines reducing zoonotic diseases of humans: linking systems biology with vaccine development.

    PubMed

    Adams, L Garry; Khare, Sangeeta; Lawhon, Sara D; Rossetti, Carlos A; Lewin, Harris A; Lipton, Mary S; Turse, Joshua E; Wylie, Dennis C; Bai, Yu; Drake, Kenneth L

    2011-09-22

    The aim of research on infectious diseases is their prevention, and brucellosis and salmonellosis as such are classic examples of worldwide zoonoses for application of a systems biology approach for enhanced rational vaccine development. When used optimally, vaccines prevent disease manifestations, reduce transmission of disease, decrease the need for pharmaceutical intervention, and improve the health and welfare of animals, as well as indirectly protecting against zoonotic diseases of people. Advances in the last decade or so using comprehensive systems biology approaches linking genomics, proteomics, bioinformatics, and biotechnology with immunology, pathogenesis and vaccine formulation and delivery are expected to enable enhanced approaches to vaccine development. The goal of this paper is to evaluate the role of computational systems biology analysis of host:pathogen interactions (the interactome) as a tool for enhanced rational design of vaccines. Systems biology is bringing a new, more robust approach to veterinary vaccine design based upon a deeper understanding of the host-pathogen interactions and its impact on the host's molecular network of the immune system. A computational systems biology method was utilized to create interactome models of the host responses to Brucella melitensis (BMEL), Mycobacterium avium paratuberculosis (MAP), Salmonella enterica Typhimurium (STM), and a Salmonella mutant (isogenic ΔsipA, sopABDE2) and linked to the basis for rational development of vaccines for brucellosis and salmonellosis as reviewed by Adams et al. and Ficht et al. [1,2]. A bovine ligated ileal loop biological model was established to capture the host gene expression response at multiple time points post infection. New methods based on Dynamic Bayesian Network (DBN) machine learning were employed to conduct a comparative pathogenicity analysis of 219 signaling and metabolic pathways and 1620 gene ontology (GO) categories that defined the host's biosignatures

  5. Species loss on spatial patterns and composition of zoonotic parasites

    PubMed Central

    Harris, Nyeema C.; Dunn, Robert R.

    2013-01-01

    Species loss can result in the subsequent loss of affiliate species. Though largely ignored to date, these coextinctions can pose threats to human health by altering the composition, quantity and distribution of zoonotic parasites. We simulated host extinctions from more than 1300 host–parasite associations for 29 North American carnivores to investigate changes in parasite composition and species richness. We also explored the geography of zoonotic parasite richness under three carnivore composition scenarios and examined corresponding levels of human exposure. We found that changes in parasite assemblages differed among parasite groups. Because viruses tend to be generalists, the proportion of parasites that are viruses increased as more carnivores went extinct. Coextinction of carnivore parasites is unlikely to be common, given that few specialist parasites exploit hosts of conservation concern. However, local extirpations of widespread carnivore hosts can reduce overall zoonotic richness and shift distributions of parasite-rich areas. How biodiversity influences disease risks remains the subject of debate. Our results make clear that hosts vary in their contribution to human health risks. As a consequence, so too does the loss (or gain) of particular hosts. Anticipating changes in host composition in future environments may help inform parasite conservation and disease mitigation efforts. PMID:24068356

  6. Mammal decline, linked to invasive Burmese python, shifts host use of vector mosquito towards reservoir hosts of a zoonotic disease.

    PubMed

    Hoyer, Isaiah J; Blosser, Erik M; Acevedo, Carolina; Thompson, Anna Carels; Reeves, Lawrence E; Burkett-Cadena, Nathan D

    2017-10-01

    Invasive apex predators have profound impacts on natural communities, yet the consequences of these impacts on the transmission of zoonotic pathogens are unexplored. Collapse of large- and medium-sized mammal populations in the Florida Everglades has been linked to the invasive Burmese python, Python bivittatus Kuhl. We used historic and current data to investigate potential impacts of these community effects on contact between the reservoir hosts (certain rodents) and vectors of Everglades virus, a zoonotic mosquito-borne pathogen that circulates in southern Florida. The percentage of blood meals taken from the primary reservoir host, the hispid cotton rat, Sigmodon hispidus Say and Ord, increased dramatically (422.2%) from 1979 (14.7%) to 2016 (76.8%), while blood meals from deer, raccoons and opossums decreased by 98.2%, reflecting precipitous declines in relative abundance of these larger mammals, attributed to python predation. Overall species diversity of hosts detected in Culex cedecei blood meals from the Everglades declined by 40.2% over the same period ( H (1979) = 1.68, H (2016) = 1.01). Predictions based upon the dilution effect theory suggest that increased relative feedings upon reservoir hosts translate into increased abundance of infectious vectors, and a corresponding upsurge of Everglades virus occurrence and risk of human exposure, although this was not tested in the current study. This work constitutes the first indication that an invasive predator can increase contact between vectors and reservoirs of a human pathogen and highlights unrecognized indirect impacts of invasive predators. © 2017 The Author(s).

  7. Nitric oxide induced by Indian ginseng root extract inhibits Infectious Bursal Disease virus in chicken embryo fibroblasts in vitro.

    PubMed

    Ganguly, Bhaskar; Umapathi, Vijaypillai; Rastogi, Sunil Kumar

    2018-01-01

    Infectious Bursal Disease is a severe viral disease of chicken responsible for serious economic losses to poultry farmers. The causative agent, Infectious Bursal Disease virus, is inhibited by nitric oxide. Root extract of the Indian ginseng, Withania somnifera , inhibits Infectious Bursal Disease virus in vitro. Also, Withania somnifera root extract is known to induce nitric oxide production in vitro. Therefore, the present study was undertaken to determine if the inhibitory activity of Withania somnifera against Infectious Bursal Disease virus was based on the production of nitric oxide. We show that besides other mechanisms, the inhibition of Infectious Bursal Disease virus by Withania somnifera involves the production of nitric oxide. Our results also highlight the paradoxical role of nitric oxide in the pathogenesis of Infectious Bursal Disease.

  8. Vaccine Efficacy in Senescent Mice Challenged with Recombinant SARS-CoV Bearing Epidemic and Zoonotic Spike Variants

    PubMed Central

    Deming, Damon; Sheahan, Timothy; Heise, Mark; Yount, Boyd; Davis, Nancy; Sims, Amy; Suthar, Mehul; Harkema, Jack; Whitmore, Alan; Pickles, Raymond; West, Ande; Donaldson, Eric; Curtis, Kristopher; Johnston, Robert; Baric, Ralph

    2006-01-01

    Background In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) was identified as the etiological agent of severe acute respiratory syndrome, a disease characterized by severe pneumonia that sometimes results in death. SARS-CoV is a zoonotic virus that crossed the species barrier, most likely originating from bats or from other species including civets, raccoon dogs, domestic cats, swine, and rodents. A SARS-CoV vaccine should confer long-term protection, especially in vulnerable senescent populations, against both the 2003 epidemic strains and zoonotic strains that may yet emerge from animal reservoirs. We report the comprehensive investigation of SARS vaccine efficacy in young and senescent mice following homologous and heterologous challenge. Methods and Findings Using Venezuelan equine encephalitis virus replicon particles (VRP) expressing the 2003 epidemic Urbani SARS-CoV strain spike (S) glycoprotein (VRP-S) or the nucleocapsid (N) protein from the same strain (VRP-N), we demonstrate that VRP-S, but not VRP-N vaccines provide complete short- and long-term protection against homologous strain challenge in young and senescent mice. To test VRP vaccine efficacy against a heterologous SARS-CoV, we used phylogenetic analyses, synthetic biology, and reverse genetics to construct a chimeric virus (icGDO3-S) encoding a synthetic S glycoprotein gene of the most genetically divergent human strain, GDO3, which clusters among the zoonotic SARS-CoV. icGD03-S replicated efficiently in human airway epithelial cells and in the lungs of young and senescent mice, and was highly resistant to neutralization with antisera directed against the Urbani strain. Although VRP-S vaccines provided complete short-term protection against heterologous icGD03-S challenge in young mice, only limited protection was seen in vaccinated senescent animals. VRP-N vaccines not only failed to protect from homologous or heterologous challenge, but resulted in enhanced immunopathology with

  9. Ticks and Tick-Borne Infections: Complex Ecology, Agents, and Host Interactions.

    PubMed

    Wikel, Stephen K

    2018-06-20

    Ticks transmit the most diverse array of infectious agents of any arthropod vector. Both ticks and the microbes they transmit are recognized as significant threats to human and veterinary public health. This article examines the potential impacts of climate change on the distribution of ticks and the infections they transmit; the emergence of novel tick-borne pathogens, increasing geographic range and incidence of tick-borne infections; and advances in the characterization of tick saliva mediated modulation of host defenses and the implications of those interactions for transmission, establishment, and control of tick infestation and tick-borne infectious agents.

  10. A zoonotic human infection with simian malaria, Plasmodium knowlesi, in Central Kalimantan, Indonesia.

    PubMed

    Setiadi, Wuryantari; Sudoyo, Herawati; Trimarsanto, Hidayat; Sihite, Boy Adventus; Saragih, Riahdo Juliarman; Juliawaty, Rita; Wangsamuda, Suradi; Asih, Puji Budi Setia; Syafruddin, Din

    2016-04-16

    The Indonesian archipelago is endemic for malaria. Although Plasmodium falciparum and P. vivax are the most common causes for malaria cases, P. malariae and P. ovale are also present in certain regions. Zoonotic case of malaria had just became the attention of public health communities after the Serawak study in 2004. However, zoonotic case in Indonesia is still under reported; only one published report of knowlesi malaria in South Kalimantan in 2010. A case of Plasmodium knowlesi infection in a worker from a charcoal mining company in Central Kalimantan, Indonesia was described. The worker suffered from fever following his visit to a lowland forest being cut and converted into a new mining location. This study confirmed a zoonotic infection using polymerase chain reaction amplification and Sanger sequencing of plasmodial DNA encoding the mitochondrial cytochrome c oxidase subunit I (mtCOI).

  11. Using Modelling to Disentangle the Relative Contributions of Zoonotic and Anthroponotic Transmission: The Case of Lassa Fever

    PubMed Central

    Lo Iacono, Giovanni; Cunningham, Andrew A.; Fichet-Calvet, Elisabeth; Garry, Robert F.; Grant, Donald S.; Khan, Sheik Humarr; Leach, Melissa; Moses, Lina M.; Schieffelin, John S.; Shaffer, Jeffrey G.; Webb, Colleen T.; Wood, James L. N.

    2015-01-01

    Background Zoonotic infections, which transmit from animals to humans, form the majority of new human pathogens. Following zoonotic transmission, the pathogen may already have, or may acquire, the ability to transmit from human to human. With infections such as Lassa fever (LF), an often fatal, rodent-borne, hemorrhagic fever common in areas of West Africa, rodent-to-rodent, rodent-to-human, human-to-human and even human-to-rodent transmission patterns are possible. Indeed, large hospital-related outbreaks have been reported. Estimating the proportion of transmission due to human-to-human routes and related patterns (e.g. existence of super-spreaders), in these scenarios is challenging, but essential for planned interventions. Methodology/Principal Findings Here, we make use of an innovative modeling approach to analyze data from published outbreaks and the number of LF hospitalized patients to Kenema Government Hospital in Sierra Leone to estimate the likely contribution of human-to-human transmission. The analyses show that almost of the cases at KGH are secondary cases arising from human-to-human transmission. However, we found much of this transmission is associated with a disproportionally large impact of a few individuals (‘super-spreaders’), as we found only of human cases result in an effective reproduction number (i.e. the average number of secondary cases per infectious case) , with a maximum value up to . Conclusions/Significance This work explains the discrepancy between the sizes of reported LF outbreaks and a clinical perception that human-to-human transmission is low. Future assessment of risks of LF and infection control guidelines should take into account the potentially large impact of super-spreaders in human-to-human transmission. Our work highlights several neglected topics in LF research, the occurrence and nature of super-spreading events and aspects of social behavior in transmission and detection. PMID:25569707

  12. Using modelling to disentangle the relative contributions of zoonotic and anthroponotic transmission: the case of lassa fever.

    PubMed

    Lo Iacono, Giovanni; Cunningham, Andrew A; Fichet-Calvet, Elisabeth; Garry, Robert F; Grant, Donald S; Khan, Sheik Humarr; Leach, Melissa; Moses, Lina M; Schieffelin, John S; Shaffer, Jeffrey G; Webb, Colleen T; Wood, James L N

    2015-01-01

    Zoonotic infections, which transmit from animals to humans, form the majority of new human pathogens. Following zoonotic transmission, the pathogen may already have, or may acquire, the ability to transmit from human to human. With infections such as Lassa fever (LF), an often fatal, rodent-borne, hemorrhagic fever common in areas of West Africa, rodent-to-rodent, rodent-to-human, human-to-human and even human-to-rodent transmission patterns are possible. Indeed, large hospital-related outbreaks have been reported. Estimating the proportion of transmission due to human-to-human routes and related patterns (e.g. existence of super-spreaders), in these scenarios is challenging, but essential for planned interventions. Here, we make use of an innovative modeling approach to analyze data from published outbreaks and the number of LF hospitalized patients to Kenema Government Hospital in Sierra Leone to estimate the likely contribution of human-to-human transmission. The analyses show that almost [Formula: see text] of the cases at KGH are secondary cases arising from human-to-human transmission. However, we found much of this transmission is associated with a disproportionally large impact of a few individuals ('super-spreaders'), as we found only [Formula: see text] of human cases result in an effective reproduction number (i.e. the average number of secondary cases per infectious case) [Formula: see text], with a maximum value up to [Formula: see text]. This work explains the discrepancy between the sizes of reported LF outbreaks and a clinical perception that human-to-human transmission is low. Future assessment of risks of LF and infection control guidelines should take into account the potentially large impact of super-spreaders in human-to-human transmission. Our work highlights several neglected topics in LF research, the occurrence and nature of super-spreading events and aspects of social behavior in transmission and detection.

  13. Mapping the zoonotic niche of Lassa fever in Africa.

    PubMed

    Mylne, Adrian Q N; Pigott, David M; Longbottom, Joshua; Shearer, Freya; Duda, Kirsten A; Messina, Jane P; Weiss, Daniel J; Moyes, Catherine L; Golding, Nick; Hay, Simon I

    2015-08-01

    Lassa fever is a viral haemorrhagic illness responsible for disease outbreaks across West Africa. It is a zoonosis, with the primary reservoir species identified as the Natal multimammate mouse, Mastomys natalensis. The host is distributed across sub-Saharan Africa while the virus' range appears to be restricted to West Africa. The majority of infections result from interactions between the animal reservoir and human populations, although secondary transmission between humans can occur, particularly in hospital settings. Using a species distribution model, the locations of confirmed human and animal infections with Lassa virus (LASV) were used to generate a probabilistic surface of zoonotic transmission potential across sub-Saharan Africa. Our results predict that 37.7 million people in 14 countries, across much of West Africa, live in areas where conditions are suitable for zoonotic transmission of LASV. Four of these countries, where at-risk populations are predicted, have yet to report any cases of Lassa fever. These maps act as a spatial guide for future surveillance activities to better characterise the geographical distribution of the disease and understand the anthropological, virological and zoological interactions necessary for viral transmission. Combining this zoonotic niche map with detailed patient travel histories can aid differential diagnoses of febrile illnesses, enabling a more rapid response in providing care and reducing the risk of onward transmission. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  14. [Infectious mononucleosis: etiology, immunological variants, methods of correction].

    PubMed

    Gordeets, A V; Savina, O G; Beniova, S N; Chernikova, A A

    2011-01-01

    Clinical options of infectious mononucleosis course depending on infecting agent etiology are presented for Epstein-Barr virus (EBV), cytomegalovirus (CMV), mono and mixed forms of the disease. Examined cytokine profiles demonstrate analogous changes of serum cytokines in the acute stage of the disease irrespective of etiological factors. Data show that it is important and useful clinically and immunologically to include immunomodulators--in particular, cycloferon--info a complex therapy of different types of mononucleosis.

  15. Ecology and genetic structure of zoonotic Anisakis spp. from adriatic commercial fish species.

    PubMed

    Mladineo, Ivona; Poljak, Vedran

    2014-02-01

    Consumption of raw or thermally inadequately treated fishery products represents a public health risk, with the possibility of propagation of live Anisakis larvae, the causative agent of the zoonotic disease anisakidosis, or anisakiasis. We investigated the population dynamics of Anisakis spp. in commercially important fish-anchovies (Anisakis), sardines (Sardina pilchardus), European hake (Merluccius merluccius), whiting (Merlangius merlangus), chub mackerel (Scomber japonicus), and Atlantic bluefin tuna (Thunnus thynnus)-captured in the main Adriatic Sea fishing ground. We observed a significant difference in the numbers of parasite larvae (1 to 32) in individual hosts and between species, with most fish showing high or very high Anisakis population indices. Phylogenetic analysis confirmed that commercial fish in the Adriatic Sea are parasitized by Anisakis pegreffii (95.95%) and Anisakis simplex sensu stricto (4.05%). The genetic structure of A. pegreffii in demersal, pelagic, and top predator hosts was unstructured, and the highest frequency of haplotype sharing (n = 10) was between demersal and pelagic fish.

  16. Serosurvey of infectious disease agents of carnivores in captive red pandas (Ailurus fulgens) in China.

    PubMed

    Qin, Qin; Wei, Fuwen; Li, Ming; Dubovi, Edward J; Loeffler, I Kati

    2007-03-01

    The future of the endangered red panda (Ailurusfulgens) depends in part on the development of protective measures against infectious diseases. The present study is a first step toward improved understanding of infectious diseases in the species' home regions. Serum samples obtained from 73 red pandas in 10 captive facilities in southwest, east, and northeast China from October to December 2004 were tested for antibodies against nine common infectious pathogens of carnivores. Antibody titers against canine distemper virus (CDV), canine parvovirus (CPV), and canine adenovirus (CAV) in the three facilities in which red pandas were vaccinated were highly variable. The CAV titer in one vaccinated red panda was high enough to suggest infection with the field virus following vaccination. Together with anecdotal reports of vaccine-associated morbidity and mortality, our results suggest that the Chinese vaccine is not suitable for this species. In the seven unvaccinated groups, CDV titers were low and occurred in 20-100% of the animals; antibody titers against CPV were found in seven of eight areas. Only one of 61 and two of 61 unvaccinated red pandas had CAV and canine coronavirus titers, respectively, and these titers were all low. Positive titers to Toxoplasma gondii were found in four locations (33-94% seropositive); the titers in 52% of seropositive individuals were of a magnitude consistent with active disease in other species (1:1,024 to > or = 1:4,096). One red panda in each of three locations was seropositive for Neospora caninum. Antibodies against canine herpesvirus and Brucella canis were not detected in any of the samples. Only one of the 73 red pandas had a weak positive influenza A titer. The results of this study emphasize the need for research on and protection against infectious diseases of red pandas and other endangered species in China.

  17. Evaluation of oxfendazole in the treatment of zoonotic Onchocerca lupi infection in dogs

    PubMed Central

    Colella, Vito; Maia, Carla; Pereira, André; Gonçalves, Nuno; Caruso, Marta; Martin, Coralie; Cardoso, Luís; Campino, Lenea; Scandale, Ivan

    2018-01-01

    The genus Onchocerca encompasses parasitic nematodes including Onchocerca volvulus, causative agent of river blindness in humans, and the zoonotic Onchocerca lupi infecting dogs and cats. In dogs, O. lupi adult worms cause ocular lesions of various degrees while humans may bear the brunt of zoonotic onchocercosis with patients requiring neurosurgical intervention because of central nervous system localization of nematodes. Though the zoonotic potential of O. lupi has been well recognized from human cases in Europe, the United States and the Middle East, a proper therapy for curing this parasitic infection in dogs is lacking. To evaluate the efficacy of oxfendazole, 11 out of the 21 client-owned dogs (21/123; 17.1%) positive for skin-dwelling O. lupi microfilariae (mfs), were enrolled in the efficacy study and were treated with oxfendazole (50 mg/kg) per OS once a day for 5 (G2) or 10 (G3) consecutive days or were left untreated (G1). The efficacy of oxfendazole in the reduction of O. lupi mfs was evaluated by microfilarial count and by assessing the percentage of mfs reduction and mean microfilaricidal efficacy, whereas the efficacy in the reduction of ocular lesions was evaluated by ultrasound imaging. All dogs where subjected to follow-ups at 30 (D30), 90 (D90) and 180 (D180) days post-treatment. The percentage of reduction of mfs was 78% for G2 and 12.5% for G3 at D180. The mean microfilaricidal efficacy of oxfendazole in the treatment of canine onchocercosis by O. lupi at D30, D90 and D180 was 41%, 81% and 90%, in G2 and 40%, 65% and 70%, in G3, respectively. Retrobulbar lesions did not reduce from D0 to D180 in control group (dogs in G1), whereas all treated dogs (in G2 and G3) had slightly decreased ocular lesions. Percentage of reduction of ocular lesions by ultrasound examination was 50% and 47.5% in G2 and G3 at D180, respectively. Despite the decrease in ocular lesions in all treated dogs (G2 and G3), oxfendazole was ineffective in reducing ocular lesions

  18. [Infectious Mononucleosis and Cholestatic Hepatitis: A Rare Association].

    PubMed

    Salgado, Catarina; Garcia, Ana Margarida; Rúbio, Catarina; Cunha, Florbela

    2017-12-29

    Infectious mononucleosis is one of the major clinical manifestations of Epstein-Barr virus infection. In this syndrome, elevation of liver transaminase levels is common but cholestasis is rare, with few cases described in the literature. We present the case of a 14-year-old female adolescent, admitted to the Emergency Room with fever, odynophagia and cervical adenomegaly. She was treated with amoxicillin and two days later he presented with jaundice. The analytical evaluation was compatible with cholestatic hepatitis and abdominal ultrasound revealed hepatosplenomegaly without dilatation of the bile ducts. The diagnosis of Epstein-Barr virus infection was confirmed by the presence of serological markers. This case aims to raise awareness of a rare manifestation of a common infectious agent and, consequently, to the inclusion of acute Epstein-Barr virus infection in the differential diagnosis of pediatric cholestatic hepatitis.

  19. Seroconversion for infectious pathogens among UK military personnel deployed to Afghanistan, 2008-2011.

    PubMed

    Newman, Edmund N C; Johnstone, Penelope; Bridge, Hannah; Wright, Deborah; Jameson, Lisa; Bosworth, Andrew; Hatch, Rebecca; Hayward-Karlsson, Jenny; Osborne, Jane; Bailey, Mark S; Green, Andrew; Ross, David; Brooks, Tim; Hewson, Roger

    2014-12-01

    Military personnel are at high risk of contracting vector-borne and zoonotic infections, particularly during overseas deployments, when they may be exposed to endemic or emerging infections not prevalent in their native countries. We conducted seroprevalence testing of 467 UK military personnel deployed to Helmand Province, Afghanistan, during 2008-2011 and found that up to 3.1% showed seroconversion for infection with Rickettsia spp., Coxiella burnetii, sandfly fever virus, or hantavirus; none showed seroconversion for infection with Crimean-Congo hemorrhagic fever virus. Most seroconversions occurred in personnel who did not report illness, except for those with hantavirus (70% symptomatic). These results indicate that many exposures to infectious pathogens, and potentially infections resulting from those exposures, may go unreported. Our findings reinforce the need for continued surveillance of military personnel and for education of health care providers to help recognize and prevent illnesses and transmission of pathogens during and after overseas deployments.

  20. Hantavirus infection: a global zoonotic challenge.

    PubMed

    Jiang, Hong; Zheng, Xuyang; Wang, Limei; Du, Hong; Wang, Pingzhong; Bai, Xuefan

    2017-02-01

    Hantaviruses are comprised of tri-segmented negative sense single-stranded RNA, and are members of the Bunyaviridae family. Hantaviruses are distributed worldwide and are important zoonotic pathogens that can have severe adverse effects in humans. They are naturally maintained in specific reservoir hosts without inducing symptomatic infection. In humans, however, hantaviruses often cause two acute febrile diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). In this paper, we review the epidemiology and epizootiology of hantavirus infections worldwide.

  1. Immunosuppressive Treatment of Non-infectious Uveitis: History and Current Choices.

    PubMed

    Zhao, Chan; Zhang, Meifen

    2017-04-10

    Non-infectious uveitis is one of the leading causes of preventable blindness worldwide. Long-term immunosuppressive treatment is generally required to achieve durable control of inflammation in posterior and panuveitis. Although systemic corticosteroids have been the gold standard of immunosup- pressive treatment for uveitis since first introduced in 1950s, its side effects of long-term use often warrant an adjuvant treatment to reduce the dosage/duration of corticosteroids needed to maintain disease control. Conventional immunosuppressive drugs, classified into alkylating agent, antimetabolites and T cell inhibitors, have been widely used as corticosteroid-sparing agents, each with characteristic safety/tolerance profiles on different uveitis entities. Recently, biologic agents, which target specific molecules in immunopathogenesis of uveitis, have gained great interest as alternative treatments for refractory uveitis based on their favorable safety and effectiveness in a variety of uveitis entities. However, lack of large randomized controlled clinical trials, concerns about efficacy and safety of long-term usage, and economic burden are limiting the use of biologics in non-infectious uveitis. Local administration of immunosuppressive drugs (from corticosteroids to biologics) through intraocular drug delivery systems represent another direction for drug development and is now under intense investigation, but more evidences are needed to support their use as regular alternative treatments for uveitis. With the numerous choices belonging to different treatment modalities (conventional immunosuppressive agents, biologics and local drug delivery systems) on hand, the practice patterns have been reported to vary greatly from center to center. Factors influence uveitis specialists' choices of immunosuppressive agents may be complex and may include personal familiarity, treatment availability, safety/tolerability, effectiveness, patient compliance, cost concerns and

  2. Parkinson's disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation.

    PubMed Central

    Liu, Bin; Gao, Hui-Ming; Hong, Jau-Shyong

    2003-01-01

    Idiopathic Parkinson's disease (PD) is a devastating movement disorder characterized by selective degeneration of the nigrostriatal dopaminergic pathway. Neurodegeneration usually starts in the fifth decade of life and progresses over 5-10 years before reaching the fully symptomatic disease state. Despite decades of intense research, the etiology of sporadic PD and the mechanism underlying the selective neuronal loss remain unknown. However, the late onset and slow-progressing nature of the disease has prompted the consideration of environmental exposure to agrochemicals, including pesticides, as a risk factor. Moreover, increasing evidence suggests that early-life occurrence of inflammation in the brain, as a consequence of either brain injury or exposure to infectious agents, may play a role in the pathogenesis of PD. Most important, there may be a self-propelling cycle of inflammatory process involving brain immune cells (microglia and astrocytes) that drives the slow yet progressive neurodegenerative process. Deciphering the molecular and cellular mechanisms governing those intricate interactions would significantly advance our understanding of the etiology and pathogenesis of PD and aid the development of therapeutic strategies for the treatment of the disease. PMID:12826478

  3. Zoonotic intestinal parasites of carnivores: A systematic review in Iran

    PubMed Central

    Sarvi, Shahabeddin; Daryani, Ahmad; Sharif, Mehdi; Rahimi, Mohammad Taghi; Kohansal, Mohammad Hasan; Mirshafiee, Siavash; Siyadatpanah, Abolghasem; Hosseini, Seyed-Abdollah; Gholami, Shirzad

    2018-01-01

    Aim: Parasitic infections, especially of the zoonotic-parasitic type, are the most important health, economic, and social problems in developing countries, including Iran. The aim of this study was to review systematically the available data on gastrointestinal parasites of carnivores in Iran and their ability to infect humans. Materials and Methods: Studies reporting intestinal parasites of carnivores were systematically collected from nine electronic English and Persian databases and Proceedings of Iranian parasitology and veterinary congresses published between 1997 and 2015. A total of 26 studies issued from 1997 to 2015 met the eligibility criteria. Results: The pooled proportion of intestinal parasites of carnivores was estimated as 80.4% (95% confidence interval=70.2-88.8%). The overall prevalence of gastrointestinal parasites in dogs, cats, foxes, and jackals were 57.89%, 90.62%, 89.17%, and 97.32%, respectively. Dipylidium caninum (20.45%), Toxocara spp. (18.81%), Taenia hydatigena (15.28%), Mesocestoides lineatus (11.83%), Echinococcus granulosus (10%), and Toxascaris leonina (8.69%) were the most frequently observed parasites. Conclusion: High prevalence rates of zoonotic intestinal parasites of carnivores particularly Echinococcus spp. and Toxocara spp. increase the risk of acquiring zoonotic infections such as cystic hydatid, alveolar cysts, and visceral or ocular larva migrants in Iranian people. Therefore, it is essential for public health centers to develop more effective control strategies to decrease infections rates in carnivores’ populations. PMID:29479158

  4. Zoonotic Transmission of Waterborne Disease: A Mathematical Model.

    PubMed

    Waters, Edward K; Hamilton, Andrew J; Sidhu, Harvinder S; Sidhu, Leesa A; Dunbar, Michelle

    2016-01-01

    Waterborne parasites that infect both humans and animals are common causes of diarrhoeal illness, but the relative importance of transmission between humans and animals and vice versa remains poorly understood. Transmission of infection from animals to humans via environmental reservoirs, such as water sources, has attracted attention as a potential source of endemic and epidemic infections, but existing mathematical models of waterborne disease transmission have limitations for studying this phenomenon, as they only consider contamination of environmental reservoirs by humans. This paper develops a mathematical model that represents the transmission of waterborne parasites within and between both animal and human populations. It also improves upon existing models by including animal contamination of water sources explicitly. Linear stability analysis and simulation results, using realistic parameter values to describe Giardia transmission in rural Australia, show that endemic infection of an animal host with zoonotic protozoa can result in endemic infection in human hosts, even in the absence of person-to-person transmission. These results imply that zoonotic transmission via environmental reservoirs is important.

  5. Shared Bacterial and Viral Respiratory Agents in Bighorn Sheep (Ovis canadensis), Domestic Sheep (Ovis aries), and Goats (Capra hircus) in Montana

    PubMed Central

    Miller, David S.; Weiser, Glen C.; Aune, Keith; Roeder, Brent; Atkinson, Mark; Anderson, Neil; Roffe, Thomas J.; Keating, Kim A.; Chapman, Phillip L.; Kimberling, Cleon; Rhyan, Jack; Clarke, P. Ryan

    2011-01-01

    Transmission of infectious agents from livestock reservoirs has been hypothesized to cause respiratory disease outbreaks in bighorn sheep (Ovis canadensis), and land management policies intended to limit this transmission have proven controversial. This cross-sectional study compares the infectious agents present in multiple populations of bighorn sheep near to and distant from their interface with domestic sheep (O. aries) and domestic goat (Capra hircus) and provides critical baseline information needed for interpretations of cross-species transmission risks. Bighorn sheep and livestock shared exposure to Pasteurellaceae, viral, and endoparasite agents. In contrast, although the impact is uncertain, Mycoplasma sp. was isolated from livestock but not bighorn sheep. These results may be the result of historic cross-species transmission of agents that has resulted in a mosaic of endemic and exotic agents. Future work using longitudinal and multiple population comparisons is needed to rigorously establish the risk of outbreaks from cross-species transmission of infectious agents. PMID:22195293

  6. Shared Bacterial and Viral Respiratory Agents in Bighorn Sheep (Ovis canadensis), Domestic Sheep (Ovis aries), and Goats (Capra hircus) in Montana.

    PubMed

    Miller, David S; Weiser, Glen C; Aune, Keith; Roeder, Brent; Atkinson, Mark; Anderson, Neil; Roffe, Thomas J; Keating, Kim A; Chapman, Phillip L; Kimberling, Cleon; Rhyan, Jack; Clarke, P Ryan

    2011-01-01

    Transmission of infectious agents from livestock reservoirs has been hypothesized to cause respiratory disease outbreaks in bighorn sheep (Ovis canadensis), and land management policies intended to limit this transmission have proven controversial. This cross-sectional study compares the infectious agents present in multiple populations of bighorn sheep near to and distant from their interface with domestic sheep (O. aries) and domestic goat (Capra hircus) and provides critical baseline information needed for interpretations of cross-species transmission risks. Bighorn sheep and livestock shared exposure to Pasteurellaceae, viral, and endoparasite agents. In contrast, although the impact is uncertain, Mycoplasma sp. was isolated from livestock but not bighorn sheep. These results may be the result of historic cross-species transmission of agents that has resulted in a mosaic of endemic and exotic agents. Future work using longitudinal and multiple population comparisons is needed to rigorously establish the risk of outbreaks from cross-species transmission of infectious agents.

  7. Shared bacterial and viral respiratory agents in bighorn sheep (Ovis canadensis), domestic sheep (Ovis aries), and goats (Capra hircus) in Montana

    USGS Publications Warehouse

    Miller, David S.; Weiser, Glen C.; Aune, Keith; Roeder, Brent; Atkinson, Mark; Anderson, Neil; Roffe, Thomas J.; Keating, Kim A.; Chapman, Phillip L.; Kimberling, Cleon; Rhyan, Jack C.; Clarke, P. Ryan

    2011-01-01

    Transmission of infectious agents from livestock reservoirs has been hypothesized to cause respiratory disease outbreaks in bighorn sheep (Ovis canadensis), and land management policies intended to limit this transmission have proven controversial. This cross-sectional study compares the infectious agents present in multiple populations of bighorn sheep near to and distant from their interface with domestic sheep (O. aries) and domestic goat (Capra hircus) and provides critical baseline information needed for interpretations of cross-species transmission risks. Bighorn sheep and livestock shared exposure to Pasteurellaceae, viral, and endoparasite agents. In contrast, although the impact is uncertain, Mycoplasma sp. was isolated from livestock but not bighorn sheep. These results may be the result of historic cross-species transmission of agents that has resulted in a mosaic of endemic and exotic agents. Future work using longitudinal and multiple population comparisons is needed to rigorously establish the risk of outbreaks from cross-species transmission of infectious agents.

  8. [Infectious diseases research].

    PubMed

    Carratalà, Jordi; Alcamí, José; Cordero, Elisa; Miró, José M; Ramos, José Manuel

    2008-12-01

    There has been a significant increase in research activity into infectious diseases in Spain in the last few years. The Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) currently has ten study groups, with the cooperation of infectious diseases specialists and microbiologists from different centres, with significant research activity. The program of Redes Temáticas de Investigación Cooperativa en Salud (Special Topics Cooperative Health Research Networks) is an appropriate framework for the strategic coordination of research groups from the Spanish autonomous communities. The Spanish Network for Research in Infectious Diseases (REIPI) and the Network for Research in AIDS (RIS) integrate investigators in Infectious Diseases from multiple groups, which continuously perform important research projects. Research using different experimental models in infectious diseases, in numerous institutions, is an important activity in our country. The analysis of the recent scientific production in Infectious Diseases shows that Spain has a good position in the context of the European Union. The research activity in Infectious Diseases carried out in our country is a great opportunity for the training of specialists in this area of knowledge.

  9. Streptococcus suis, an important pig pathogen and emerging zoonotic agent—an update on the worldwide distribution based on serotyping and sequence typing

    PubMed Central

    Goyette-Desjardins, Guillaume; Auger, Jean-Philippe; Xu, Jianguo; Segura, Mariela; Gottschalk, Marcelo

    2014-01-01

    Streptococcus suis is an important pathogen causing economic problems in the pig industry. Moreover, it is a zoonotic agent causing severe infections to people in close contact with infected pigs or pork-derived products. Although considered sporadic in the past, human S. suis infections have been reported during the last 45 years, with two large outbreaks recorded in China. In fact, the number of reported human cases has significantly increased in recent years. In this review, we present the worldwide distribution of serotypes and sequence types (STs), as determined by multilocus sequence typing, for pigs (between 2002 and 2013) and humans (between 1968 and 2013). The methods employed for S. suis identification and typing, the current epidemiological knowledge regarding serotypes and STs and the zoonotic potential of S. suis are discussed. Increased awareness of S. suis in both human and veterinary diagnostic laboratories and further establishment of typing methods will contribute to our knowledge of this pathogen, especially in regions where complete and/or recent data is lacking. More research is required to understand differences in virulence that occur among S. suis strains and if these differences can be associated with specific serotypes or STs. PMID:26038745

  10. Inpatient infectious disease consultations requested by surgeons at a comprehensive cancer center.

    PubMed

    Kawamura, Ichiro; Kurai, Hanako

    2015-10-01

    The aim of this study was to describe the value of infectious disease specialist consultations for surgeons at comprehensive cancer centers. A total of 151 cancer surgery inpatients were retrospectively assessed during a 12-month period. We focused on the characteristics of the infectious disease consultations from surgical departments: the referring surgical divisions, the referral phases, and the reasons for the infectious disease consultations. Three-quarters of all consultation requests were made after the day of surgery. Approximately, 60 % of these requests were made within 30 days after surgery for cancer. The reasons for the infectious disease consultations could be classified into three categories: diagnosis and management (54 %), management of established infections (44 %), and surgical antimicrobial prophylaxis (3 %). The most requested reason for consultations was the diagnosis and management of fever or elevated inflammatory markers of unknown etiology. Among the management of established infections, the antimicrobial management of surgical site infections was most frequently requested. Many surgeons would prefer infectious disease specialists to assume a more direct role in the care of difficult or perplexing cases (such as fevers of unknown origin) while also maintaining a traditional relationship in which the consultant recommends antimicrobial agents during a perioperative period. Particularly at cancer centers where oncology specialists account for a significant proportion of the providers, the knowledge and skill of infectious disease physicians are valued.

  11. Emerging Pathogens: Challenges and Successes of Molecular Diagnostics

    PubMed Central

    Dong, Jianli; Olano, Juan P.; McBride, Jere W.; Walker, David H.

    2008-01-01

    More than 50 emerging and reemerging pathogens have been identified during the last 40 years. Until 1992 when the Institute of Medicine issued a report that defined emerging infectious diseases, medicine had been complacent about such infectious diseases despite the alarm bells of infections with human immunodeficiency virus. Molecular tools have proven useful in discovering and characterizing emerging viruses and bacteria such as Sin Nombre virus (hantaviral pulmonary syndrome), hepatitis C virus, Bartonella henselae (cat scratch disease, bacillary angiomatosis), and Anaplasma phagocytophilum (human granulocytotropic anaplasmosis). The feasibility of applying molecular diagnostics to dangerous, fastidious, and uncultivated agents for which conventional tests do not yield timely diagnoses has achieved proof of concept for many agents, but widespread use of cost-effective, validated commercial assays has yet to occur. This review presents representative emerging viral respiratory infections, hemorrhagic fevers, and hepatitides, as well as bacterial and parasitic zoonotic, gastrointestinal, and pulmonary infections. Agent characteristics, epidemiology, clinical manifestations, and diagnostic methods are tabulated for another 22 emerging viruses and five emerging bacteria. The ongoing challenge to the field of molecular diagnostics is to apply contemporary knowledge to facilitate agent diagnosis as well as to further discoveries of novel pathogens. PMID:18403608

  12. Zoonotic intestinal parasites and vector-borne pathogens in Italian shelter and kennel dogs.

    PubMed

    Traversa, Donato; Di Cesare, Angela; Simonato, Giulia; Cassini, Rudi; Merola, Carmine; Diakou, Anastasia; Halos, Lénaïg; Beugnet, Frederic; Frangipane di Regalbono, Antonio

    2017-04-01

    This study investigated the presence of zoonotic parasites and vector-borne pathogens in dogs housed in kennels and shelters from four sites of Italy. A total of 150 adoptable dogs was examined with different microscopic, serological and molecular methods. Overall 129 dogs (86%) were positive for one or more parasites and/or pathogens transmitted by ectoparasites. Forty-eight (32%) were positive for one infection, while 81 (54%) for more than one pathogen. The most common zoonotic helminths recorded were hookworms, roundworms and Capillaria aerophila, followed by mosquito-borne Dirofilaria spp. and Dipylidium caninum. One hundred and thirteen (77.9%), 6 (4.1%) and 2 (1.4%) dogs were positive for Rickettsia spp., Leishmania infantum and Anaplasma spp., respectively. The results show that dogs living in rescue facilities from the studied areas may be infected by many zoonotic internal parasites and vector-borne pathogens, and that control measures should be implemented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Zoonotic Parasites of Sheltered and Stray Dogs in the Era of the Global Economic and Political Crisis.

    PubMed

    Otranto, Domenico; Dantas-Torres, Filipe; Mihalca, Andrei D; Traub, Rebecca J; Lappin, Michael; Baneth, Gad

    2017-10-01

    Sheltered and stray dogs, exposed to zoonotic parasites, including protozoa, helminths, and arthropods, may represent a major threat to public health. Resources for addressing health problems in these animals are not on the priority list of veterinary and public health authorities. Thus, dogs continue to represent an important reservoir for zoonotic parasites. In this article, we review the importance of sheltered and stray dogs as reservoirs of zoonotic parasites in different parts of the world, especially in the context of the current global political and economic crisis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Executive summary of imported infectious diseases after returning from foreign travel: Consensus document of the Spanish Society for Infectious Diseases and Clinical Microbiology (SEIMC).

    PubMed

    Pérez-Arellano, José Luis; Górgolas-Hernández-Mora, Miguel; Salvador, Fernando; Carranza-Rodríguez, Cristina; Ramírez-Olivencia, Germán; Martín-Echeverría, Esteban; Rodríguez-Guardado, Azucena; Norman, Francesca; Velasco-Tirado, Virginia; Zubero-Sulibarría, Zuriñe; Rojo-Marcos, Gerardo; Muñoz-Gutierrez, José; Ramos-Rincón, José Manuel; Sánchez-Seco-Fariñas, M Paz; Velasco-Arribas, María; Belhassen-García, Moncef; Lago-Nuñez, Mar; Cañas García-Otero, Elías; López-Vélez, Rogelio

    2018-03-01

    In a global world, knowledge of imported infectious diseases is essential in daily practice, both for the microbiologist-parasitologist and the clinician who diagnoses and treats infectious diseases in returned travelers. Tropical and subtropical countries where there is a greater risk of contracting an infectious disease are among the most frequently visited tourist destinations. The SEIMC considers it appropriate to produce a consensus document that will be useful to primary care physicians as well as specialists in internal medicine, infectious diseases and tropical medicine who help treat travelers returning from tropical and sub-tropical areas with infections. Preventive aspects of infectious diseases and infections imported by immigrants are explicitly excluded here, since they have been dealt with in other SEIMC documents. Various types of professionals (clinicians, microbiologists, and parasitologists) have helped produce this consensus document by evaluating the available evidence-based data in order to propose a series of key facts about individual aspects of the topic. The first section of the document is a summary of some of the general aspects concerning the general assessment of travelers who return home with potential infections. The main second section contains the key facts (causative agents, diagnostic procedures and therapeutic measures) associated with the major infectious syndromes affecting returned travelers [gastrointestinal syndrome (acute or persistent diarrhea); febrile syndrome with no obvious source of infection; localized cutaneous lesions; and respiratory infections]. Finally, the characteristics of special traveler subtypes, such as pregnant women and immunocompromised travelers, are described. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  15. [Microorganism test systems and antibiograms useful for the proper use of antibacterial agents].

    PubMed

    Takahashi, Shunji

    2010-07-01

    Antimicrobial agents are used for the accurate diagnosis of infectious diseases and effective implementation of antibacterial chemotherapy. The role of microbiological technologists is to provide data from microorganism tests useful for rapid infection treatment. Gram strain can be used to observe microorganisms and neutrophils from specimens of a patient. It is also possible to estimate the kinds of microorganism. If bacterial infectious disease is negative, there is no need for antibacterial chemotherapy. The applied dose of antibacterial agents is different in every hospital. Also, there is a difference in the percentage antibacterial agent susceptibility of isolates. Antibiograms must be created to investigate local factors. For empiric therapy, antibiograms are useful when choosing antibacterial agents showing marked efficacy against the clinical isolate. Microorganism test systems which are useful for the proper use of antibacterial agents are necessary to facilitate safe antibacterial chemotherapy and prevent the development of resistant bacteria. We report a microorganism test system employed at the Sapporo City General Hospital.

  16. The zoonotic implications of pentastomiasis in the royal python (python regius).

    PubMed

    Ayinmode, Ab; Adedokun, Ao; Aina, A; Taiwo, V

    2010-09-01

    Pentastomes are worm-like endoparasites of the phylum Pentastomida found principally in the respiratory tract of reptiles, birds, and mammals. They cause a zoonotic disease known as pentastomiasis in humans and other mammals. The autopsy of a Nigerian royal python (Python regius) revealed two yellowish-white parasites in the lungs, tissue necrosis and inflammatory lesions. The parasite was confirmed to be Armillifer spp (Pentastomid); this is the first recorded case of pentastomiasis in the royal python (Python regius) in Nigeria. This report may be an alert of the possibility of on-going zoonotic transmission of pentastomiasis from snake to man, especially in the sub-urban/rural areas of Nigeria and other West African countries where people consume snake meat.

  17. Considerations for Infectious Disease Research Studies Using Animals

    PubMed Central

    Colby, Lesley A; Quenee, Lauriane E; Zitzow, Lois A

    2017-01-01

    Animal models are vital in understanding the transmission and pathogenesis of infectious organisms and the host immune response to infection. In addition, animal models are essential in vaccine and therapeutic drug development and testing. Prior to selecting an animal model to use when studying an infectious agent, the scientific team must determine that sufficient in vitro and ex vivo data are available to justify performing research in an animal model, that ethical considerations are addressed, and that the data generated from animal work will add useful information to the body of scientific knowledge. Once it is established that an animal should be used, the questions become ‘Which animal model is most suitable?’ and ‘Which experimental design issues should be considered?’ The answers to these questions take into account numerous factors, including scientific, practical, welfare, and regulatory considerations, which are the focus of this article. PMID:28662751

  18. Rates of abnormalities and infectious agents in cervical smears from female inmates in Texas: comparison with private and university clinic patients.

    PubMed

    Logrono, R; Wong, J Y

    1999-09-01

    Inmates are generally considered a high-risk population for gynecologic neoplasia and sexually transmitted diseases. Cervical smears from prisoners of the Texas Department of Corrections (TDC) were expected initially to have higher rates of cellular abnormalities and infectious agents than do smears from the general population. The cytologic findings from 25,522 TDC gynecologic smears were compared with those of 6883 cases from The University of Texas Medical Branch (UTMB) affiliated physician private clinics, and with 56,178 from the UTMB hospital clinics. The period of study was from September 1995 to February 1998. This study revealed a 5.23% higher rate of abnormalities for TDC gynecologic smears as compared with that for the private clinic smears. However, the TDC rate of abnormalities was unexpectedly 1.08% lower than that for the UTMB clinic smears. These unexpected findings were probably the result of a more selected high-risk population referred to the UTMB clinics. The TDC smears showed also the highest incidence of trichomoniasis.

  19. Infectious disease

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.

    1990-01-01

    This is a collection of viewgraphs on the Johnson Space Center's work on infectious disease. It addresses their major concern over outbreaks of infectious disease that could jeopardize the health, safety and/or performance of crew members engaged in long duration space missions. The Antarctic environment is seen as an analogous location on Earth and a good place to carry out such infectious disease studies and methods for proposed studies as suggested.

  20. Using multitype branching processes to quantify statistics of disease outbreaks in zoonotic epidemics

    NASA Astrophysics Data System (ADS)

    Singh, Sarabjeet; Schneider, David J.; Myers, Christopher R.

    2014-03-01

    Branching processes have served as a model for chemical reactions, biological growth processes, and contagion (of disease, information, or fads). Through this connection, these seemingly different physical processes share some common universalities that can be elucidated by analyzing the underlying branching process. In this work we focus on coupled branching processes as a model of infectious diseases spreading from one population to another. An exceedingly important example of such coupled outbreaks are zoonotic infections that spill over from animal populations to humans. We derive several statistical quantities characterizing the first spillover event from animals to humans, including the probability of spillover, the first passage time distribution for human infection, and disease prevalence in the animal population at spillover. Large stochastic fluctuations in those quantities can make inference of the state of the system at the time of spillover difficult. Focusing on outbreaks in the human population, we then characterize the critical threshold for a large outbreak, the distribution of outbreak sizes, and associated scaling laws. These all show a strong dependence on the basic reproduction number in the animal population and indicate the existence of a novel multicritical point with altered scaling behavior. The coupling of animal and human infection dynamics has crucial implications, most importantly allowing for the possibility of large human outbreaks even when human-to-human transmission is subcritical.

  1. European bats as carriers of viruses with zoonotic potential.

    PubMed

    Kohl, Claudia; Kurth, Andreas

    2014-08-13

    Bats are being increasingly recognized as reservoir hosts of highly pathogenic and zoonotic emerging viruses (Marburg virus, Nipah virus, Hendra virus, Rabies virus, and coronaviruses). While numerous studies have focused on the mentioned highly human-pathogenic bat viruses in tropical regions, little is known on similar human-pathogenic viruses that may be present in European bats. Although novel viruses are being detected, their zoonotic potential remains unclear unless further studies are conducted. At present, it is assumed that the risk posed by bats to the general public is rather low. In this review, selected viruses detected and isolated in Europe are discussed from our point of view in regard to their human-pathogenic potential. All European bat species and their roosts are legally protected and some European species are even endangered. Nevertheless, the increasing public fear of bats and their viruses is an obstacle to their protection. Educating the public regarding bat lyssaviruses might result in reduced threats to both the public and the bats.

  2. Physical and chemical properties of the transmissible mink encephalopathy agent.

    PubMed

    Marsh, R F; Hanson, R P

    1969-02-01

    The size of the transmissible mink encephalopathy (TME) agent is estimated to be less than 50 nm on the basis of its passage through membrane filters. The agent is sensitive to ether, relatively resistant to 10% Formalin, resistant to ultraviolet irradiation, and susceptible to proteolytic digestion with Pronase. Attempts to extract an infectious nucleic acid fraction with hot phenol were unsuccessful. The results of these studies indicate that the TME agent has biochemical properties which are similar to those described for the transmissible agent of scrapie.

  3. [Comparative study of infectious diseases in immigrant children from various countries].

    PubMed

    Huerga Aramburu, H; López-Vélez, R

    2004-01-01

    Immigrants have a higher risk of contracting some infectious diseases. The aim of this study was to determine and compare the morbidity profile of immigrant children according to their country of origin. We performed a descriptive study of all immigrants aged less than 14 years old who attended the Tropical Medicine Unit of the Ramon y Cajal Hospital in Madrid between 1989 and 2001. A total of 170 children were included (73 % from Africa, 19 % from Latin America, and 5 % from Asia). Seventy-five percent had at least one infectious disease (78 % of Africans and 62 % of Latin Americans) and 27 % were co-infected (> 2 pathogenic agents). The proportion of healthy children was higher (p < 0.05) among Latin Americans (21 %) than among Africans (9 %). The most frequent infectious diseases were malaria (35 %), intestinal parasites (48 %), filariasis (23 %), and viral hepatitis (19 %). Malaria, filariasis and hepatitis were more frequent in Africans than in Americans (p < 0.05). Other helminthic infections (15 %) were more frequent in Americans. In both groups intestinal parasites and tuberculosis (6 %) were prevalent. Of the 36 (21 %) asymptomatic children, 53 % had at least one infectious disease. The most frequently diagnosed diseases in Africans were intestinal parasitosis (35 %), malaria (7 %), cured hepatitis B (15 %), filariasis (12 %) and superficial mycosis (4 %). The most frequent infectious diseases in Latin Americans were intestinal parasitosis (38 %) and visceral toxocariasis (25 %). Infectious diseases and co-infections are frequent in immigrant children, even in those who are asymptomatic. We propose screening of certain infectious diseases in these children according to their country of origin and their length of residence in Spain.

  4. Isolation of an agent causing bilirubinemia and jaundice in raccoons

    USGS Publications Warehouse

    Kilham, L.; Herman, C.M.

    1954-01-01

    An infectious agent, which appears to be a virus (RJV) has been isolated from the liver of a wild raccoon which has led to a highly fatal type of disease characterized by conjunctivitis and an elevated serum bilirubin frequently accompanied by jaundice on inoculation of raccoons. Ferrets also appear to be susceptible to infections with this agent.

  5. Biocontained Carcass Composting for Control of Infectious Disease Outbreak in Livestock

    PubMed Central

    Reuter, Tim; Xu, Weiping; Alexander, Trevor W.; Gilroyed, Brandon H.; Inglis, G. Douglas; Larney, Francis J.; Stanford, Kim; McAllister, Tim A.

    2010-01-01

    Intensive livestock production systems are particularly vulnerable to natural or intentional (bioterrorist) infectious disease outbreaks. Large numbers of animals housed within a confined area enables rapid dissemination of most infectious agents throughout a herd. Rapid containment is key to controlling any infectious disease outbreak, thus depopulation is often undertaken to prevent spread of a pathogen to the larger livestock population. In that circumstance, a large number of livestock carcasses and contaminated manure are generated that require rapid disposal. Composting lends itself as a rapid-response disposal method for infected carcasses as well as manure and soil that may harbor infectious agents. We designed a bio-contained mortality composting procedure and tested its efficacy for bovine tissue degradation and microbial deactivation. We used materials available on-farm or purchasable from local farm supply stores in order that the system can be implemented at the site of a disease outbreak. In this study, temperatures exceeded 55°C for more than one month and infectious agents implanted in beef cattle carcasses and manure were inactivated within 14 days of composting. After 147 days, carcasses were almost completely degraded. The few long bones remaining were further degraded with an additional composting cycle in open windrows and the final mature compost was suitable for land application. Duplicate compost structures (final dimensions 25 m x 5 m x 2.4 m; L x W x H) were constructed using barley straw bales and lined with heavy black silage plastic sheeting. Each was loaded with loose straw, carcasses and manure totaling ~95,000 kg. A 40-cm base layer of loose barley straw was placed in each bunker, onto which were placed 16 feedlot cattle mortalities (average weight 343 kg) aligned transversely at a spacing of approximately 0.5 m. For passive aeration, lengths of flexible, perforated plastic drainage tubing (15 cm diameter) were placed between

  6. Biocontained carcass composting for control of infectious disease outbreak in livestock.

    PubMed

    Reuter, Tim; Xu, Weiping; Alexander, Trevor W; Gilroyed, Brandon H; Inglis, G Douglas; Larney, Francis J; Stanford, Kim; McAllister, Tim A

    2010-05-06

    Intensive livestock production systems are particularly vulnerable to natural or intentional (bioterrorist) infectious disease outbreaks. Large numbers of animals housed within a confined area enables rapid dissemination of most infectious agents throughout a herd. Rapid containment is key to controlling any infectious disease outbreak, thus depopulation is often undertaken to prevent spread of a pathogen to the larger livestock population. In that circumstance, a large number of livestock carcasses and contaminated manure are generated that require rapid disposal. Composting lends itself as a rapid-response disposal method for infected carcasses as well as manure and soil that may harbor infectious agents. We designed a bio-contained mortality composting procedure and tested its efficacy for bovine tissue degradation and microbial deactivation. We used materials available on-farm or purchasable from local farm supply stores in order that the system can be implemented at the site of a disease outbreak. In this study, temperatures exceeded 55 degrees C for more than one month and infectious agents implanted in beef cattle carcasses and manure were inactivated within 14 days of composting. After 147 days, carcasses were almost completely degraded. The few long bones remaining were further degraded with an additional composting cycle in open windrows and the final mature compost was suitable for land application. Duplicate compost structures (final dimensions 25 m x 5 m x 2.4 m; L x W x H) were constructed using barley straw bales and lined with heavy black silage plastic sheeting. Each was loaded with loose straw, carcasses and manure totaling approximately 95,000 kg. A 40-cm base layer of loose barley straw was placed in each bunker, onto which were placed 16 feedlot cattle mortalities (average weight 343 kg) aligned transversely at a spacing of approximately 0.5 m. For passive aeration, lengths of flexible, perforated plastic drainage tubing (15 cm diameter) were

  7. Visible-light-responsive ZnCuO nanoparticles: benign photodynamic killers of infectious protozoans

    PubMed Central

    Nadhman, Akhtar; Nazir, Samina; Khan, Malik Ihsanullah; Ayub, Attiya; Muhammad, Bakhtiar; Khan, Momin; Shams, Dilawar Farhan; Yasinzai, Masoom

    2015-01-01

    Human beings suffer from several infectious agents such as viruses, bacteria, and protozoans. Recently, there has been a great interest in developing biocompatible nanostructures to deal with infectious agents. This study investigated benign ZnCuO nanostructures that were visible-light-responsive due to the resident copper in the lattice. The nanostructures were synthesized through a size-controlled hot-injection process, which was adaptable to the surface ligation processes. The nanostructures were then characterized through transmission electron microscopy, X-ray diffraction, diffused reflectance spectroscopy, Rutherford backscattering, and photoluminescence analysis to measure crystallite nature, size, luminescence, composition, and band-gap analyses. Antiprotozoal efficiency of the current nanoparticles revealed the photodynamic killing of Leishmania protozoan, thus acting as efficient metal-based photosensitizers. The crystalline nanoparticles showed good biocompatibility when tested for macrophage toxicity and in hemolysis assays. The study opens a wide avenue for using toxic material in resident nontoxic forms as an effective antiprotozoal treatment. PMID:26604755

  8. Socio-demographic study on extent of knowledge, awareness, attitude, and risks of zoonotic diseases among livestock owners in Puducherry region

    PubMed Central

    Rajkumar, K.; Bhattacharya, A.; David, S.; Balaji, S. Hari; Hariharan, R.; Jayakumar, M.; Balaji, N.

    2016-01-01

    Aim: This study was conducted to assess the extent of knowledge, awareness, attitude, and risks of zoonotic diseases among livestock owners in Puducherry region. Materials and Methods: A total of 250 livestock farmers were selected randomly from eight revenue villages. And each farmer was interviewed with a questionnaire containing both open- and close-ended questions on various aspects of zoonotic diseases, a total of 49 questionnaires were framed to assess the source and transmission of infection to the farmers and to test their knowledge and awareness about zoonotic diseases. The data collected were analyzed by chi-square test using software Graph pad prism, and results were used to assess the relationship between education level and zoonotic disease awareness; risk of zoonotic diseases and its relation with independent variables. Results: The present survey analysis represents that most of the respondents are belonging to the age group of 41-60 years. About 42.8% of respondents’ household having a graduate. The most of the respondent are small-scale farmers and their monthly income was less than Rs. 10,000. About 61.2% of farmers were keeping their animal shed clean. About 29.6% of the respondents were ignorant about cleaning the dog bitten wound. Only 16.4% of respondents knew that diseases in animals can be transmitted to humans. Only 4.8%, 3.6%, 6.8%, and 22.4% of respondents knew about the zoonotic potential of diseases such as brucellosis, tuberculosis (TB), anthrax, and avian flu, respectively. Only 18% of the respondents were aware about zoonotic diseases from cattle. Regarding the list of zoonotic diseases contracted, 37.7% reported respiratory infection, 31.1% digestive disturbances, 15.5% had dermatological problem, and 15.5% reported indiscrete disease such as fever, body pain, and headache joint pain. From the respondent got the zoonotic disease (n=45), 51.2% of the respondent reported chronic infection and 48.8% of the respondent reported acute

  9. Current perspectives in transfusion-transmitted infectious diseases: emerging and re-emerging infections.

    PubMed

    Stramer, S L

    2014-07-01

    In August 2009, a group from the AABB (Stramer et al., Transfusion 2009;99:1S-29S, Emerging Infectious Disease Agents and their Potential Threat to Transfusion Safety; http://www.aabb.org/resources/bct/eid/Pages/default.aspx) published a Supplement to Transfusion that reviewed emerging infectious disease (EID) agents that pose a real or theoretical threat to transfusion safety, but for which an existing effective intervention is lacking. The necessary attributes for transfusion transmission were outlined including: presence of the agent in blood during the donor's asymptomatic phase, the agent's survival/persistence in blood during processing/storage, and lastly that the agent must be recognized as responsible for a clinically apparent outcome in at least a proportion of recipients who become infected. Without these attributes, agents are not considered as a transfusion-transmission threat and were excluded. Sixty-eight such agents were identified with enough evidence/likelihood of transfusion transmission (e.g., blood phase) and potential for clinical disease to warrant further consideration. In the Supplement, Fact Sheets (FS) were published providing information on: agent classification; disease agent's importance; clinical syndromes/diseases caused; transmission modes (including vectors/reservoirs); likelihood of transfusion transmission, and if proven to be transfusion-transmitted, information on known cases; the feasibility/predicted success of interventions for donor screening (questioning) and tests available for diagnostics/ adapted for donor screening; and finally, the efficacy, if known, of inactivation methods for plasma-derived products. The Supplement included a separate section on pathogen reduction using published data. Agents were prioritized relative to their scientific/epidemiologic threat and their perceived threat to the community including concerns expressed by the regulators of blood. Agents given the highest priority due to a known

  10. Immunotherapy for Infectious Diseases: Past, Present, and Future.

    PubMed

    Manohar, Akshay; Ahuja, Jasmine; Crane, John K

    2015-01-01

    Passive immunotherapy for established infections, as opposed to active immunization to prevent disease, remains a tiny niche in the world of antimicrobial therapies. Many of the passive immunotherapies currently available are directed against bacterial toxins, such as botulism, or are intended for agents of bioterrorism such as anthrax, which fortunately has remained rare. The emergence of Ebola virus and multi-drug resistant pathogens, however, may breathe new life into the immunotherapy field as researchers seek non-antibiotic interventions for infectious diseases.

  11. The role of native birds and other wildlife on the emergence of zoonotic diseases

    USGS Publications Warehouse

    Friend, Milton; McLean, Robert G.; Burroughs, T.; Knobler, S.; Lederberg, J.

    2001-01-01

    Wildlife can be an important source of transmission of infectious disease to humans. One potential transmission route involves hunting and fishing, both common activities in the United States and worldwide. For example, during 1996, approximately 11 million Americans, about 40 percent of the total population 16 years of age and older, took part in some recreational activity relating to wildlife and fish. Another potential route of infection focuses on urban and suburban environments. These locations are of special concern because of their increasing role as wildlife habitat, the greater interface between humans and wildlife that takes place within those environments, the paucity of knowledge about disease in those wildlife populations, and the general lack of orderly management for wildlife within those environments. In the wild, several trends are contributing to the growing importance of zoonotic diseases. First, the spectrum of infectious diseases affecting wildlife today is greater than at any time during the previous century. Second, the occurrence of infectious diseases has changed, from sporadic, self-limiting outbreaks that generally resulted in minor losses to frequently occurring events that generally result in major losses of wildlife. Third, disease emergence has occurred on a worldwide scale in a broad spectrum of wildlife species and habitats. Given the scope of the problem, current disease surveillance efforts are inadequate. Few state wildlife agencies allocate personnel and resources to address wildlife disease, despite their statutory responsibility for managing nonmigratory wildlife. Some state agencies provide minimal support for regional programs based at universities. At the federal level, the primary surveillance effort is conducted by the National Wildlife Health Center, operated by the U.S. Geological Survey. Outside of government, some veterinary schools, agriculture diagnostic laboratories, and other programs provide additional

  12. 7 CFR 331.3 - PPQ select agents and toxins.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (b) of this section that have been genetically modified. (d) Select agents or toxins that meet any of..., and recombinant and/or synthetic organisms: (1) Nucleic acids that can produce infectious forms of any...

  13. 7 CFR 331.3 - PPQ select agents and toxins.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (b) of this section that have been genetically modified. (d) Select agents or toxins that meet any of..., and recombinant and/or synthetic organisms: (1) Nucleic acids that can produce infectious forms of any...

  14. History and Practice: Antibodies in Infectious Diseases.

    PubMed

    Hey, Adam

    2015-04-01

    Antibodies and passive antibody therapy in the treatment of infectious diseases is the story of a treatment concept which dates back more than 120 years, to the 1890s, when the use of serum from immunized animals provided the first effective treatment options against infections with Clostridium tetani and Corynebacterium diphtheriae. However, after the discovery of penicillin by Fleming in 1928, and the subsequent introduction of the much cheaper and safer antibiotics in the 1930s, serum therapy was largely abandoned. However, the broad and general use of antibiotics in human and veterinary medicine has resulted in the development of multi-resistant strains of bacteria with limited to no response to existing treatments and the need for alternative treatment options. The combined specificity and flexibility of antibody-based treatments makes them very valuable tools for designing specific antibody treatments to infectious agents. These attributes have already caused a revolution in new antibody-based treatments in oncology and inflammatory diseases, with many approved products. However, only one monoclonal antibody, palivizumab, for the prevention and treatment of respiratory syncytial virus, is approved for infectious diseases. The high cost of monoclonal antibody therapies, the need for parallel development of diagnostics, and the relatively small markets are major barriers for their development in the presence of cheap antibiotics. It is time to take a new and revised look into the future to find appropriate niches in infectious diseases where new antibody-based treatments or combinations with existing antibiotics, could prove their value and serve as stepping stones for broader acceptance of the potential for and value of these treatments.

  15. Pathogenic Landscape of Transboundary Zoonotic Diseases in the Mexico-US Border Along the Rio Grande.

    PubMed

    Esteve-Gassent, Maria Dolores; Pérez de León, Adalberto A; Romero-Salas, Dora; Feria-Arroyo, Teresa P; Patino, Ramiro; Castro-Arellano, Ivan; Gordillo-Pérez, Guadalupe; Auclair, Allan; Goolsby, John; Rodriguez-Vivas, Roger Ivan; Estrada-Franco, Jose Guillermo

    2014-01-01

    Transboundary zoonotic diseases, several of which are vector borne, can maintain a dynamic focus and have pathogens circulating in geographic regions encircling multiple geopolitical boundaries. Global change is intensifying transboundary problems, including the spatial variation of the risk and incidence of zoonotic diseases. The complexity of these challenges can be greater in areas where rivers delineate international boundaries and encompass transitions between ecozones. The Rio Grande serves as a natural border between the US State of Texas and the Mexican States of Chihuahua, Coahuila, Nuevo León, and Tamaulipas. Not only do millions of people live in this transboundary region, but also a substantial amount of goods and people pass through it everyday. Moreover, it occurs over a region that functions as a corridor for animal migrations, and thus links the Neotropic and Nearctic biogeographic zones, with the latter being a known foci of zoonotic diseases. However, the pathogenic landscape of important zoonotic diseases in the south Texas-Mexico transboundary region remains to be fully understood. An international perspective on the interplay between disease systems, ecosystem processes, land use, and human behaviors is applied here to analyze landscape and spatial features of Venezuelan equine encephalitis, Hantavirus disease, Lyme Borreliosis, Leptospirosis, Bartonellosis, Chagas disease, human Babesiosis, and Leishmaniasis. Surveillance systems following the One Health approach with a regional perspective will help identifying opportunities to mitigate the health burden of those diseases on human and animal populations. It is proposed that the Mexico-US border along the Rio Grande region be viewed as a continuum landscape where zoonotic pathogens circulate regardless of national borders.

  16. Non-Clostridium perfringens infectious agents producing necrotic enteritis-like lesions in poultry.

    PubMed

    Uzal, F A; Sentíes-Cué, C G; Rimoldi, G; Shivaprasad, H L

    2016-06-01

    Necrotic enteritis (NE) produced by Clostridium perfringens is amongst the most prevalent enteric diseases of chickens and turkeys. However, several other bacterial, parasitic and viral agents can cause clinical signs, gross and microscopic lesions in poultry very similar to those of NE and the diseases produced by those agents need to be differentiated from NE. The main differential diagnoses for C. perfringens NE include bacterial (Clostridium colinum, Clostridium sordellii, Clostridium difficile, Pasteurella multocida, Brachyspira spp.), parasitic (Eimeria spp., Histomonas meleagridis) and viral (Duck Herpesvirus type 1, Avian Paramyxovirus type 1) diseases. Confirmation of the diagnosis of these diseases requires identification of the aetiological agents by morphological, cultural and/or molecular methods.

  17. Intestinal protozoan parasites with zoonotic potential in birds.

    PubMed

    Marietto-Gonçalves, G A; Fernandes, T M; Silva, R J; Lopes, R S; Andreatti Filho, R L

    2008-10-01

    The aim of this study was to evaluate the occurrence of potentially zoonotic intestinal protozoan infections in exotic and wildlife Brazilian birds. Fecal samples from 207 birds of 45 species were examined. Infections by Balantidium sp., Entamoeba sp., and Blastocystis sp. were observed in 17 individuals (8.2%) of Gnorimopsar chopi, Oryzoborus angolensis, Sporophila caerulescens, Ramphastos toco, Aratinga leucophtalmus, and Pavo cristatus.

  18. Evidence Supporting Zoonotic Transmission of Cryptosporidium spp. in Wisconsin▿

    PubMed Central

    Feltus, Dawn C.; Giddings, Catherine W.; Schneck, Brianna L.; Monson, Timothy; Warshauer, David; McEvoy, John M.

    2006-01-01

    Cryptosporidium hominis and Cryptosporidium parvum are the primary species of Cryptosporidium that infect humans. C. hominis has an anthroponotic transmission cycle, while C. parvum is zoonotic, infecting cattle and other ruminants, in addition to humans. Most cryptosporidiosis outbreaks in the United States have been caused by C. hominis, and this species is often reported as the primary cause of cryptosporidiosis in this country. However, outbreaks account for only 10% of the overall cryptosporidiosis cases, and there are few data on the species that cause sporadic cases. The present study identified the species/genotypes and subgenotypes of Cryptosporidium in 49 cases of sporadic cryptosporidiosis in Wisconsin during the period from 2003 to 2005. The species/genotype of isolates was determined by PCR restriction fragment length polymorphism analysis of the 18S rRNA and Cryptosporidium oocyst wall protein genes. The C. parvum and C. hominis isolates were subgenotyped by sequence analysis of the GP60 gene. Forty-four of 49 isolates were identified as C. parvum, and 1 was identified as C. hominis. Of the remaining isolates, one was identified as being of the cervine genotype, one was identified as being a cervine genotype variant, and two were identified as being of a novel human genotype, previously reported as W17. Nine different subgenotypes were identified within the C. parvum species, and two of these were responsible for 60% of the cases. In this study we found that most sporadic cases of cryptosporidiosis in Wisconsin are caused by zoonotic Cryptosporidium species, indicating that zoonotic transmission could be more frequently associated with sporadic cases in the United States. PMID:17005736

  19. Evidence supporting zoonotic transmission of Cryptosporidium spp. in Wisconsin.

    PubMed

    Feltus, Dawn C; Giddings, Catherine W; Schneck, Brianna L; Monson, Timothy; Warshauer, David; McEvoy, John M

    2006-12-01

    Cryptosporidium hominis and Cryptosporidium parvum are the primary species of Cryptosporidium that infect humans. C. hominis has an anthroponotic transmission cycle, while C. parvum is zoonotic, infecting cattle and other ruminants, in addition to humans. Most cryptosporidiosis outbreaks in the United States have been caused by C. hominis, and this species is often reported as the primary cause of cryptosporidiosis in this country. However, outbreaks account for only 10% of the overall cryptosporidiosis cases, and there are few data on the species that cause sporadic cases. The present study identified the species/genotypes and subgenotypes of Cryptosporidium in 49 cases of sporadic cryptosporidiosis in Wisconsin during the period from 2003 to 2005. The species/genotype of isolates was determined by PCR restriction fragment length polymorphism analysis of the 18S rRNA and Cryptosporidium oocyst wall protein genes. The C. parvum and C. hominis isolates were subgenotyped by sequence analysis of the GP60 gene. Forty-four of 49 isolates were identified as C. parvum, and 1 was identified as C. hominis. Of the remaining isolates, one was identified as being of the cervine genotype, one was identified as being a cervine genotype variant, and two were identified as being of a novel human genotype, previously reported as W17. Nine different subgenotypes were identified within the C. parvum species, and two of these were responsible for 60% of the cases. In this study we found that most sporadic cases of cryptosporidiosis in Wisconsin are caused by zoonotic Cryptosporidium species, indicating that zoonotic transmission could be more frequently associated with sporadic cases in the United States.

  20. Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment

    ERIC Educational Resources Information Center

    Cooper, Robert C.

    1975-01-01

    The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)

  1. Assessing gut microbiota perturbations during the early phase of infectious diarrhea in Vietnamese children

    PubMed Central

    Florez de Sessions, Paola; Jie, Song; Pham Thanh, Duy; Thompson, Corinne N.; Nguyen Ngoc Minh, Chau; Chu, Collins Wenhan; Tran, Tuan-Anh; Thomson, Nicholas R.; Thwaites, Guy E.; Rabaa, Maia A.; Hibberd, Martin; Baker, Stephen

    2018-01-01

    ABSTRACT Diarrheal diseases remain the second most common cause of mortality in young children in developing countries. Efforts have been made to explore the impact of diarrhea on bacterial communities in the human gut, but a thorough understanding has been impeded by inadequate resolution in bacterial identification and the examination of only few etiological agents. Here, by profiling an extended region of the 16S rRNA gene in the fecal microbiome, we aimed to elucidate the nature of gut microbiome perturbations during the early phase of infectious diarrhea caused by various etiological agents in Vietnamese children. Fecal samples from 145 diarrheal cases with a confirmed infectious etiology before antimicrobial therapy and 54 control subjects were analyzed. We found that the diarrheal fecal microbiota could be robustly categorized into 4 microbial configurations that either generally resembled or were highly divergent from a healthy state. Factors such as age, nutritional status, breastfeeding, and the etiology of the infection were significantly associated with these microbial community structures. We observed a consistent elevation of Fusobacterium mortiferum, Escherichia, and oral microorganisms in all diarrheal fecal microbiome configurations, proposing similar mechanistic interactions, even in the absence of global dysbiosis. We additionally found that Bifidobacterium pseudocatenulatum was significantly depleted during dysenteric diarrhea regardless of the etiological agent, suggesting that further investigations into the use of this species as a dysentery-orientated probiotic therapy are warranted. Our findings contribute to the understanding of the complex influence of infectious diarrhea on gut microbiome and identify new opportunities for therapeutic interventions. PMID:28767339

  2. Assessing gut microbiota perturbations during the early phase of infectious diarrhea in Vietnamese children.

    PubMed

    The, Hao Chung; Florez de Sessions, Paola; Jie, Song; Pham Thanh, Duy; Thompson, Corinne N; Nguyen Ngoc Minh, Chau; Chu, Collins Wenhan; Tran, Tuan-Anh; Thomson, Nicholas R; Thwaites, Guy E; Rabaa, Maia A; Hibberd, Martin; Baker, Stephen

    2018-01-02

    Diarrheal diseases remain the second most common cause of mortality in young children in developing countries. Efforts have been made to explore the impact of diarrhea on bacterial communities in the human gut, but a thorough understanding has been impeded by inadequate resolution in bacterial identification and the examination of only few etiological agents. Here, by profiling an extended region of the 16S rRNA gene in the fecal microbiome, we aimed to elucidate the nature of gut microbiome perturbations during the early phase of infectious diarrhea caused by various etiological agents in Vietnamese children. Fecal samples from 145 diarrheal cases with a confirmed infectious etiology before antimicrobial therapy and 54 control subjects were analyzed. We found that the diarrheal fecal microbiota could be robustly categorized into 4 microbial configurations that either generally resembled or were highly divergent from a healthy state. Factors such as age, nutritional status, breastfeeding, and the etiology of the infection were significantly associated with these microbial community structures. We observed a consistent elevation of Fusobacterium mortiferum, Escherichia, and oral microorganisms in all diarrheal fecal microbiome configurations, proposing similar mechanistic interactions, even in the absence of global dysbiosis. We additionally found that Bifidobacterium pseudocatenulatum was significantly depleted during dysenteric diarrhea regardless of the etiological agent, suggesting that further investigations into the use of this species as a dysentery-orientated probiotic therapy are warranted. Our findings contribute to the understanding of the complex influence of infectious diarrhea on gut microbiome and identify new opportunities for therapeutic interventions.

  3. Role of India's wildlife in the emergence and re-emergence of zoonotic pathogens, risk factors and public health implications.

    PubMed

    Singh, B B; Gajadhar, A A

    2014-10-01

    Evolving land use practices have led to an increase in interactions at the human/wildlife interface. The presence and poor knowledge of zoonotic pathogens in India's wildlife and the occurrence of enormous human populations interfacing with, and critically linked to, forest ecosystems warrant attention. Factors such as diverse migratory bird populations, climate change, expanding human population and shrinking wildlife habitats play a significant role in the emergence and re-emergence of zoonotic pathogens from India's wildlife. The introduction of a novel Kyasanur forest disease virus (family flaviviridae) into human populations in 1957 and subsequent occurrence of seasonal outbreaks illustrate the key role that India's wild animals play in the emergence and reemergence of zoonotic pathogens. Other high priority zoonotic diseases of wildlife origin which could affect both livestock and humans include influenza, Nipah, Japanese encephalitis, rabies, plague, leptospirosis, anthrax and leishmaniasis. Continuous monitoring of India's extensively diverse and dispersed wildlife is challenging, but their use as indicators should facilitate efficient and rapid disease-outbreak response across the region and occasionally the globe. Defining and prioritizing research on zoonotic pathogens in wildlife are essential, particularly in a multidisciplinary one-world one-health approach which includes human and veterinary medical studies at the wildlife-livestock-human interfaces. This review indicates that wild animals play an important role in the emergence and re-emergence of zoonotic pathogens and provides brief summaries of the zoonotic diseases that have occurred in wild animals in India. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Climate change and infectious diseases in North America: the road ahead.

    PubMed

    Greer, Amy; Ng, Victoria; Fisman, David

    2008-03-11

    Global climate change is inevitable--the combustion of fossil fuels has resulted in a buildup of greenhouse gases within the atmosphere, causing unprecedented changes to the earth's climate. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change suggests that North America will experience marked changes in weather patterns in coming decades, including warmer temperatures and increased rainfall, summertime droughts and extreme weather events (e.g., tornadoes and hurricanes). Although these events may have direct consequences for health (e.g., injuries and displacement of populations due to thermal stress), they are also likely to cause important changes in the incidence and distribution of infectious diseases, including vector-borne and zoonotic diseases, water-and food-borne diseases and diseases with environmental reservoirs (e.g., endemic fungal diseases). Changes in weather patterns and ecosystems, and health consequences of climate change will probably be most severe in far northern regions (e.g., the Arctic). We provide an overview of the expected nature and direction of such changes, which pose current and future challenges to health care providers and public health agencies.

  5. Climate change and infectious diseases in North America: the road ahead

    PubMed Central

    Greer, Amy; Ng, Victoria; Fisman, David

    2008-01-01

    Global climate change is inevitable — the combustion of fossil fuels has resulted in a buildup of greenhouse gases within the atmosphere, causing unprecedented changes to the earth's climate. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change suggests that North America will experience marked changes in weather patterns in coming decades, including warmer temperatures and increased rainfall, summertime droughts and extreme weather events (e.g., tornadoes and hurricanes). Although these events may have direct consequences for health (e.g., injuries and displacement of populations due to thermal stress), they are also likely to cause important changes in the incidence and distribution of infectious diseases, including vector-borne and zoonotic diseases, water-and food-borne diseases and diseases with environmental reservoirs (e.g., endemic fungal diseases). Changes in weather patterns and ecosystems, and health consequences of climate change will probably be most severe in far northern regions (e.g., the Arctic). We provide an overview of the expected nature and direction of such changes, which pose current and future challenges to health care providers and public health agencies. PMID:18332386

  6. Emerging infectious diseases of wildlife: a critical perspective.

    PubMed

    Tompkins, Daniel M; Carver, Scott; Jones, Menna E; Krkošek, Martin; Skerratt, Lee F

    2015-04-01

    We review the literature to distinguish reports of vertebrate wildlife disease emergence with sufficient evidence, enabling a robust assessment of emergence drivers. For potentially emerging agents that cannot be confirmed, sufficient data on prior absence (or a prior difference in disease dynamics) are frequently lacking. Improved surveillance, particularly for neglected host taxa, geographical regions and infectious agents, would enable more effective management should emergence occur. Exposure to domestic sources of infection and human-assisted exposure to wild sources were identified as the two main drivers of emergence across host taxa; the domestic source was primary for fish while the wild source was primary for other taxa. There was generally insufficient evidence for major roles of other hypothesized drivers of emergence. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Microbial glycolipoprotein-capped silver nanoparticles as emerging antibacterial agents against cholera.

    PubMed

    Gahlawat, Geeta; Shikha, Sristy; Chaddha, Baldev Singh; Chaudhuri, Saumya Ray; Mayilraj, Shanmugam; Choudhury, Anirban Roy

    2016-02-01

    With the increased number of cholera outbreaks and emergence of multidrug resistance in Vibrio cholerae strains it has become necessary for the scientific community to devise and develop novel therapeutic approaches against cholera. Recent studies have indicated plausibility of therapeutic application of metal nano-materials. Among these, silver nanoparticles (AgNPs) have emerged as a potential antimicrobial agent to combat infectious diseases. At present nanoparticles are mostly produced using physical or chemical techniques which are toxic and hazardous. Thus exploitation of microbial systems could be a green eco-friendly approach for the synthesis of nanoparticles having similar or even better antimicrobial activity and biocompatibility. Hence, it would be worth to explore the possibility of utilization of microbial silver nanoparticles and their conjugates as potential novel therapeutic agent against infectious diseases like cholera. The present study attempted utilization of Ochrobactrum rhizosphaerae for the production of AgNPs and focused on investigating their role as antimicrobial agents against cholera. Later the exopolymer, purified from the culture supernatant, was used for the synthesis of spherical shaped AgNPs of around 10 nm size. Further the exopolymer was characterized as glycolipoprotein (GLP). Antibacterial activity of the novel GLP-AgNPs conjugate was evaluated by minimum inhibitory concentration, XTT reduction assay, scanning electron microscopy (SEM) and growth curve analysis. SEM studies revealed that AgNPs treatment resulted in intracellular contents leakage and cell lysis. The potential of microbially synthesized nanoparticles, as novel therapeutic agents, is still relatively less explored. In fact, the present study first time demonstrated that a glycolipoprotein secreted by the O. rhizosphaerae strain can be exploited for production of AgNPs which can further be employed to treat infectious diseases. Although this type of polymer has

  8. Infectious Disease Specialist: What Is an Infectious Disease Specialist?

    MedlinePlus

    ... More: Facts about ID Infectious Diseases Society of America 1300 Wilson Boulevard Suite 300 Arlington, VA 22209 | ... Us © Copyright IDSA 2018 Infectious Diseases Society of America Full Site Mobile Site

  9. Perspectives on emerging zoonotic disease research and capacity building in Canada

    PubMed Central

    Stephen, Craig; Artsob, Harvey; Bowie, William R; Drebot, Michael; Fraser, Erin; Leighton, Ted; Morshed, Muhammad; Ong, Corinne; Patrick, David

    2004-01-01

    Zoonoses are fundamental determinants of community health. Preventing, identifying and managing these infections must be a central public health focus. Most current zoonoses research focuses on the interface of the pathogen and the clinically ill person, emphasizing microbial detection, mechanisms of pathogenicity and clinical intervention strategies, rather than examining the causes of emergence, persistence and spread of new zoonoses. There are gaps in the understanding of the animal determinants of emergence and the capacity to train highly qualified individuals; these are major obstacles to preventing new disease threats. The ability to predict the emergence of zoonoses and their resulting public health and societal impacts are hindered when insufficient effort is devoted to understanding zoonotic disease epidemiology, and when zoonoses are not examined in a manner that yields fundamental insight into their origin and spread. Emerging infectious disease research should rest on four pillars: enhanced communications across disciplinary and agency boundaries; the assessment and development of surveillance and disease detection tools; the examination of linkages between animal health determinants of human health outcomes; and finally, cross-disciplinary training and research. A national strategy to predict, prevent and manage emerging diseases must have a prominent and explicit role for veterinary and biological researchers. An integrated health approach would provide decision makers with a firmer foundation from which to build evidence-based disease prevention and control plans that involve complex human/animal/environmental systems, and would serve as the foundation to train and support the new cadre of individuals ultimately needed to maintain and apply research capacity in this area. PMID:18159512

  10. Perspectives on emerging zoonotic disease research and capacity building in Canada.

    PubMed Central

    Stephen, Craig; Artsob, Harvey; Bowie, William R.; Drebot, Michael; Fraser, Erin; Leighton, Ted; Morshed, Muhammad; Ong, Corinne; Patrick, David

    2005-01-01

    Zoonoses are fundamental determinants of community health. Preventing, identifying and managing these infections must be a central public health focus. Most current zoonoses research focuses on the interface of the pathogen and the clinically ill person, emphasizing microbial detection, mechanisms of pathogenicity and clinical intervention strategies, rather than examining the causes of emergence, persistence and spread of new zoonoses. There are gaps in the understanding of the animal determinants of emergence and the capacity to train highly qualified individuals; these are major obstacles to preventing new disease threats. The ability to predict the emergence of zoonoses and their resulting public health and societal impacts are hindered when insufficient effort is devoted to understanding zoonotic disease epidemiology, and when zoonoses are not examined in a manner that yields fundamental insight into their origin and spread. Emerging infectious disease research should rest on four pillars: enhanced communications across disciplinary and agency boundaries; the assessment and development of surveillance and disease detection tools; the examination of linkages between animal health determinants of human health outcomes; and finally, cross-disciplinary training and research. A national strategy to predict, prevent and manage emerging diseases must have a prominent and explicit role for veterinary and biological researchers. An integrated health approach would provide decision makers with a firmer foundation from which to build evidence-based disease prevention and control plans that involve complex human/animal/environmental systems, and would serve as the foundation to train and support the new cadre of individuals ultimately needed to maintain and apply research capacity in this area. PMID:15759832

  11. Thermal inactivation of infectious hematopoietic necrosis and infectious pancreatic necrosis virus

    USGS Publications Warehouse

    Gosting, L.; Gould, R.W.

    1981-01-01

    A plaque assay was used to follow the inactivation kinetics of infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus in cell culture media at various temperatures. Inactivation of infectious hematopoietic necrosis virus in a visceral organ slurry was compared with that in culture media.

  12. A Comprehensive Review of Common Bacterial, Parasitic and Viral Zoonoses at the Human-Animal Interface in Egypt

    PubMed Central

    El-Adawy, Hosny; Abdelwhab, Elsayed M.

    2017-01-01

    Egypt has a unique geographical location connecting the three old-world continents Africa, Asia and Europe. It is the country with the highest population density in the Middle East, Northern Africa and the Mediterranean basin. This review summarizes the prevalence, reservoirs, sources of human infection and control regimes of common bacterial, parasitic and viral zoonoses in animals and humans in Egypt. There is a gap of knowledge conerning the epidemiology of zoonotic diseases at the human-animal interface in different localities in Egypt. Some zoonotic agents are “exotic” for Egypt (e.g., MERS-CoV and Crimean-Congo hemorrhagic fever virus), others are endemic (e.g., Brucellosis, Schistosomiasis and Avian influenza). Transboundary transmission of emerging pathogens from and to Egypt occurred via different routes, mainly importation/exportation of apparently healthy animals or migratory birds. Control of the infectious agents and multidrug resistant bacteria in the veterinary sector is on the frontline for infection control in humans. The implementation of control programs significantly decreased the prevalence of some zoonoses, such as schistosomiasis and fascioliasis, in some localities within the country. Sustainable awareness, education and training targeting groups at high risk (veterinarians, farmers, abattoir workers, nurses, etc.) are important to lessen the burden of zoonotic diseases among Egyptians. There is an urgent need for collaborative surveillance and intervention plans for the control of these diseases in Egypt. PMID:28754024

  13. A Comprehensive Review of Common Bacterial, Parasitic and Viral Zoonoses at the Human-Animal Interface in Egypt.

    PubMed

    Helmy, Yosra A; El-Adawy, Hosny; Abdelwhab, Elsayed M

    2017-07-21

    Egypt has a unique geographical location connecting the three old-world continents Africa, Asia and Europe. It is the country with the highest population density in the Middle East, Northern Africa and the Mediterranean basin. This review summarizes the prevalence, reservoirs, sources of human infection and control regimes of common bacterial, parasitic and viral zoonoses in animals and humans in Egypt. There is a gap of knowledge conerning the epidemiology of zoonotic diseases at the human-animal interface in different localities in Egypt. Some zoonotic agents are "exotic" for Egypt (e.g., MERS-CoV and Crimean-Congo hemorrhagic fever virus), others are endemic (e.g., Brucellosis, Schistosomiasis and Avian influenza). Transboundary transmission of emerging pathogens from and to Egypt occurred via different routes, mainly importation/exportation of apparently healthy animals or migratory birds. Control of the infectious agents and multidrug resistant bacteria in the veterinary sector is on the frontline for infection control in humans. The implementation of control programs significantly decreased the prevalence of some zoonoses, such as schistosomiasis and fascioliasis, in some localities within the country. Sustainable awareness, education and training targeting groups at high risk (veterinarians, farmers, abattoir workers, nurses, etc.) are important to lessen the burden of zoonotic diseases among Egyptians. There is an urgent need for collaborative surveillance and intervention plans for the control of these diseases in Egypt.

  14. Development of imaging techniques to study the pathogenesis of biosafety level 2/3 infectious agents

    PubMed Central

    Rella, Courtney E.; Ruel, Nancy; Eugenin, Eliseo A.

    2015-01-01

    Despite significant advances in microbiology and molecular biology over the last decades, several infectious diseases remain global concerns, resulting in the death of millions of people worldwide each year. According to the Center for Disease Control (CDC) in 2012, there were 34 million people infected with HIV, 8.7 million new cases of tuberculosis, 500 million cases of hepatitis, and 50–100 million people infected with dengue. Several of these pathogens, despite high incidence, do not have reliable clinical detection methods. New or improved protocols have been generated to enhance detection and quantitation of several pathogens using high-end microscopy (light, confocal, and STORM microscopy) and imaging software. In the current manuscript, we discuss these approaches and the theories behind these methodologies. Thus, advances in imaging techniques will open new possibilities to discover therapeutic interventions to reduce or eliminate the devastating consequences of infectious diseases. PMID:24990818

  15. Pathogenic Landscape of Transboundary Zoonotic Diseases in the Mexico–US Border Along the Rio Grande

    PubMed Central

    Esteve-Gassent, Maria Dolores; Pérez de León, Adalberto A.; Romero-Salas, Dora; Feria-Arroyo, Teresa P.; Patino, Ramiro; Castro-Arellano, Ivan; Gordillo-Pérez, Guadalupe; Auclair, Allan; Goolsby, John; Rodriguez-Vivas, Roger Ivan; Estrada-Franco, Jose Guillermo

    2014-01-01

    Transboundary zoonotic diseases, several of which are vector borne, can maintain a dynamic focus and have pathogens circulating in geographic regions encircling multiple geopolitical boundaries. Global change is intensifying transboundary problems, including the spatial variation of the risk and incidence of zoonotic diseases. The complexity of these challenges can be greater in areas where rivers delineate international boundaries and encompass transitions between ecozones. The Rio Grande serves as a natural border between the US State of Texas and the Mexican States of Chihuahua, Coahuila, Nuevo León, and Tamaulipas. Not only do millions of people live in this transboundary region, but also a substantial amount of goods and people pass through it everyday. Moreover, it occurs over a region that functions as a corridor for animal migrations, and thus links the Neotropic and Nearctic biogeographic zones, with the latter being a known foci of zoonotic diseases. However, the pathogenic landscape of important zoonotic diseases in the south Texas–Mexico transboundary region remains to be fully understood. An international perspective on the interplay between disease systems, ecosystem processes, land use, and human behaviors is applied here to analyze landscape and spatial features of Venezuelan equine encephalitis, Hantavirus disease, Lyme Borreliosis, Leptospirosis, Bartonellosis, Chagas disease, human Babesiosis, and Leishmaniasis. Surveillance systems following the One Health approach with a regional perspective will help identifying opportunities to mitigate the health burden of those diseases on human and animal populations. It is proposed that the Mexico–US border along the Rio Grande region be viewed as a continuum landscape where zoonotic pathogens circulate regardless of national borders. PMID:25453027

  16. A Survey of Zoonotic Pathogens Carried by Non-Indigenous Rodents at the Interface of the Wet Tropics of North Queensland, Australia.

    PubMed

    Chakma, S; Picard, J; Duffy, R; Constantinoiu, C; Gummow, B

    2017-02-01

    In 1964, Brucella was isolated from rodents trapped in Wooroonooran National Park (WNP), in Northern Queensland, Australia. Genotyping of bacterial isolates in 2008 determined that they were a novel Brucella species. This study attempted to reisolate this species of Brucella from rodents living in the boundary area adjacent to WNP and to establish which endo- and ecto-parasites and bacterial agents were being carried by non-indigenous rodents at this interface. Seventy non-indigenous rodents were trapped [Mus musculus (52), Rattus rattus (17) and Rattus norvegicus (1)], euthanized and sampled on four properties adjacent to the WNP in July 2012. Organ pools were screened by culture for Salmonella, Leptospira and Brucella species, real-time PCR for Coxiella burnetii and conventional PCR for Leptospira. Collected ecto- and endo-parasites were identified using morphological criteria. The percentage of rodents carrying pathogens were Leptospira (40%), Salmonella choleraesuis ssp. arizonae (14.29%), ectoparasites (21.42%) and endoparasites (87%). Brucella and C. burnetii were not identified, and it was concluded that their prevalences were below 12%. Two rodent-specific helminthic species, namely Syphacia obvelata (2.86%) and Nippostrongylus brasiliensis (85.71%), were identified. The most prevalent ectoparasites belonged to Laelaps spp. (41.17%) followed by Polyplax spp. (23.53%), Hoplopleura spp. (17.65%), Ixodes holocyclus (17.64%) and Stephanocircus harrisoni (5.88%), respectively. These ectoparasites, except S. harrisoni, are known to transmit zoonotic pathogens such as Rickettsia spp. from rat to rat and could be transmitted to humans by other arthropods that bite humans. The high prevalence of pathogenic Leptospira species is of significant public health concern. This is the first known study of zoonotic agents carried by non-indigenous rodents living in the Australian wet-tropical forest interface. © 2015 Blackwell Verlag GmbH.

  17. Particularities in diagnosis and treatment for infectious endocarditis in children.

    PubMed

    Luca, Alina Costina; Begezsan, Isabela Ioana; Iordache, C

    2012-01-01

    Infectious endocarditis (IE) represents a rare pathology in children, but with lethal potential. The goal of the therapy is fast and total eradication of the infection. To study particularities in diagnosis and treatment for infectious endocarditis in children. Children with infectious endocarditis hospitalized between January 2007 - February 2012 in the Cardiology Department of the ,,Sfânta Maria" Children Emergency Hospital of lasi have been included in the study. The patients are aged between 23 days and 16 years, the average age being 4 years old. At approximately 88% of the patients (14 cases), the endocardial damage appeared in the pre-existent valvular lesions, specially mitral and aortal. As associated congenital malformations, the patients prevailingly presented ventricular septal defect, mitral valve prolapse, arterial canal persistence, aortic stenosis, coarctation of the aorta. Blood cultures were collected and the most frequent identified etiological agents were: Staphylococcus coagulase-positive, Streptococcus mitis, Staphylococcus speciae coagulase-negative, Staphylococcus haemolyticus, Streptococcus bovis, Escherichia coli, for which the antibiogram showed sensitivity for beta-lactam, cephalosporins, glycopeptides, trimethoprim-sulfamethoxazole, rifampicin, quinolone, lincosamides, oxazolidinones, and thus specific treatment was set up according to the antibiogram. The infectious endocarditis is a serious disease that affects young age too, leading towards exitus in some cases. Diagnostic imaging and early blood cultures are of relevance in order to intervene promptly. The treatment must be targeted and applied as fast as possible.

  18. Understanding and Managing Zoonotic Risk in the New Livestock Industries

    PubMed Central

    Waage, Jeff; Barnett, Tony; Pfeiffer, Dirk U.; Rushton, Jonathan; Rudge, James W.; Loevinsohn, Michael E.; Scoones, Ian; Smith, Richard D.; Cooper, Ben S.; White, Lisa J.; Goh, Shan; Horby, Peter; Wren, Brendan; Gundogdu, Ozan; Woods, Abigail; Coker, Richard J.

    2013-01-01

    Background: In many parts of the world, livestock production is undergoing a process of rapid intensification. The health implications of this development are uncertain. Intensification creates cheaper products, allowing more people to access animal-based foods. However, some practices associated with intensification may contribute to zoonotic disease emergence and spread: for example, the sustained use of antibiotics, concentration of animals in confined units, and long distances and frequent movement of livestock. Objectives: Here we present the diverse range of ecological, biological, and socioeconomic factors likely to enhance or reduce zoonotic risk, and identify ways in which a comprehensive risk analysis may be conducted by using an interdisciplinary approach. We also offer a conceptual framework to guide systematic research on this problem. Discussion: We recommend that interdisciplinary work on zoonotic risk should take into account the complexity of risk environments, rather than limiting studies to simple linear causal relations between risk drivers and disease emergence and/or spread. In addition, interdisciplinary integration is needed at different levels of analysis, from the study of risk environments to the identification of policy options for risk management. Conclusion: Given rapid changes in livestock production systems and their potential health implications at the local and global level, the problem we analyze here is of great importance for environmental health and development. Although we offer a systematic interdisciplinary approach to understand and address these implications, we recognize that further research is needed to clarify methodological and practical questions arising from the integration of the natural and social sciences. PMID:23665854

  19. Seroprevalence of seven zoonotic infections in Nunavik, Quebec (Canada).

    PubMed

    Messier, V; Lévesque, B; Proulx, J-F; Rochette, L; Serhir, B; Couillard, M; Ward, B J; Libman, M D; Dewailly, E; Déry, S

    2012-03-01

    In Nunavik, common practices and food habits such as consumption of raw meat and untreated water place the Inuit at risk for contracting zoonotic diseases. The aim of this study was to determine the seroprevalence of seven zoonotic infections among the permanent residents of Nunavik. The study was conducted in the fall 2004 as part of the Nunavik Health Survey. Blood samples from adults aged 18-74 years (n = 917) were collected and analysed for the presence of antibodies against Trichinella spp., Toxocara canis, Echinococcus granulosus, Brucella spp., Coxiella burnetii, Leptospira spp. and Francisella tularensis. Information on sociodemographic characteristics, traditional activities, drinking water supply and nutrition was gathered using english/inuktitut bilingual questionnaires. The chi-squared test was used to evaluate associations between seropositivity and other measured variables. Statistically significant variables were included in a multivariate logistic regression model to control for confounding factors. Estimated seroprevalences were 8.3% for E. granulosus, 3.9% for T. canis, 5.9% for Leptospira spp. and 18.9% for F. tularensis. Seroprevalence was ≤ 1% for Trichinella spiralis, Brucella spp. and C. burnetii. For most infections, seropositivity tended to increase with age. In multivariate analyses, seroprevalence was positively (i.e. directly) associated with age and residence in the Ungava coast area for F. tularensis; age and residence in the Hudson coast area for T. canis; female gender, lower level of schooling and frequent cleaning of water reservoirs for E. granulosus. No risk factor for Leptospira spp. infection was identified. No associations were detected with regards to food habits or environmental exposures. A small but significant portion of the Nunavik population has serologic evidence of exposure to at least one of the pathogenic microorganisms investigated. Further studies are needed to better understand the mechanisms for transmission

  20. Structural drivers of vulnerability to zoonotic disease in Africa.

    PubMed

    Dzingirai, Vupenyu; Bukachi, Salome; Leach, Melissa; Mangwanya, Lindiwe; Scoones, Ian; Wilkinson, Annie

    2017-07-19

    This paper argues that addressing the underlying structural drivers of disease vulnerability is essential for a 'One Health' approach to tackling zoonotic diseases in Africa. Through three case studies-trypanosomiasis in Zimbabwe, Ebola and Lassa fever in Sierra Leone and Rift Valley fever in Kenya-we show how political interests, commercial investments and conflict and securitization all generate patterns of vulnerability, reshaping the political ecology of disease landscapes, influencing traditional coping mechanisms and affecting health service provision and outbreak responses. A historical, political economy approach reveals patterns of 'structural violence' that reinforce inequalities and marginalization of certain groups, increasing disease risks. Addressing the politics of One Health requires analysing trade-offs and conflicts between interests and visions of the future. For all zoonotic diseases economic and political dimensions are ultimately critical and One Health approaches must engage with these factors, and not just end with an 'anti-political' focus on institutional and disciplinary collaboration.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.

  1. Structural drivers of vulnerability to zoonotic disease in Africa

    PubMed Central

    Bukachi, Salome; Mangwanya, Lindiwe; Scoones, Ian

    2017-01-01

    This paper argues that addressing the underlying structural drivers of disease vulnerability is essential for a ‘One Health’ approach to tackling zoonotic diseases in Africa. Through three case studies—trypanosomiasis in Zimbabwe, Ebola and Lassa fever in Sierra Leone and Rift Valley fever in Kenya—we show how political interests, commercial investments and conflict and securitization all generate patterns of vulnerability, reshaping the political ecology of disease landscapes, influencing traditional coping mechanisms and affecting health service provision and outbreak responses. A historical, political economy approach reveals patterns of ‘structural violence’ that reinforce inequalities and marginalization of certain groups, increasing disease risks. Addressing the politics of One Health requires analysing trade-offs and conflicts between interests and visions of the future. For all zoonotic diseases economic and political dimensions are ultimately critical and One Health approaches must engage with these factors, and not just end with an ‘anti-political’ focus on institutional and disciplinary collaboration. This article is part of the themed issue ‘One Health for a changing world: zoonoses, ecosystems and human well-being’. PMID:28584177

  2. A research capacity strengthening project for infectious diseases in Honduras: experience and lessons learned.

    PubMed

    Sanchez, Ana Lourdes; Canales, Maritza; Enriquez, Lourdes; Bottazzi, Maria Elena; Zelaya, Ada Argentina; Espinoza, Vilma Esther; Fontecha, Gustavo Adolfo

    2013-08-07

    In Honduras, research capacity strengthening (RCS) has not received sufficient attention, but an increase in research competencies would enable local scientists to advance knowledge and contribute to national priorities, including the Millennium Development Goals (MDGs). This project aimed at strengthening research capacity in infectious diseases in Honduras, focusing on the School of Microbiology of the National Autonomous University of Honduras (UNAH). The primary objective was the creation of a research-based graduate program for the continued training of researchers. Parallel objectives included institutional strengthening and the facilitation of partnerships and networks. Based on a multi-stakeholder consultation, an RCS workplan was designed and undertaken from 2007 to 2012. Due to unexpected adverse circumstances, the first 2 years were heavily dedicated to implementing the project's flagship, an MSc program in infectious and zoonotic diseases (MEIZ). In addition, infrastructure improvements and demand-driven continuing education opportunities were facilitated; biosafety and research ethics knowledge and practices were enhanced, and networks fostering collaborative work were created or expanded. The project coincided with the peak of UNAH's radical administrative reform and an unprecedented constitutional crisis. Challenges notwithstanding, in September 2009, MEIZ admitted the first cohort of students, all of whom undertook MDG-related projects graduating successfully by 2012. Importantly, MEIZ has been helpful in expanding the School of Microbiology's traditional etiology-based, disciplinary model to infectious disease teaching and research. By fulfilling its objectives, the project contributed to a stronger research culture upholding safety and ethical values at the university. The resources and strategic vision afforded by the project enhanced UNAH's overall research capacity and its potential contribution to the MDGs. Furthermore, increased research

  3. A research capacity strengthening project for infectious diseases in Honduras: experience and lessons learned

    PubMed Central

    Sanchez, Ana Lourdes; Canales, Maritza; Enriquez, Lourdes; Bottazzi, Maria Elena; Zelaya, Ada Argentina; Espinoza, Vilma Esther; Fontecha, Gustavo Adolfo

    2013-01-01

    Background In Honduras, research capacity strengthening (RCS) has not received sufficient attention, but an increase in research competencies would enable local scientists to advance knowledge and contribute to national priorities, including the Millennium Development Goals (MDGs). Objective This project aimed at strengthening research capacity in infectious diseases in Honduras, focusing on the School of Microbiology of the National Autonomous University of Honduras (UNAH). The primary objective was the creation of a research-based graduate program for the continued training of researchers. Parallel objectives included institutional strengthening and the facilitation of partnerships and networks. Methods Based on a multi-stakeholder consultation, an RCS workplan was designed and undertaken from 2007 to 2012. Due to unexpected adverse circumstances, the first 2 years were heavily dedicated to implementing the project's flagship, an MSc program in infectious and zoonotic diseases (MEIZ). In addition, infrastructure improvements and demand-driven continuing education opportunities were facilitated; biosafety and research ethics knowledge and practices were enhanced, and networks fostering collaborative work were created or expanded. Results The project coincided with the peak of UNAH's radical administrative reform and an unprecedented constitutional crisis. Challenges notwithstanding, in September 2009, MEIZ admitted the first cohort of students, all of whom undertook MDG-related projects graduating successfully by 2012. Importantly, MEIZ has been helpful in expanding the School of Microbiology's traditional etiology-based, disciplinary model to infectious disease teaching and research. By fulfilling its objectives, the project contributed to a stronger research culture upholding safety and ethical values at the university. Conclusions The resources and strategic vision afforded by the project enhanced UNAH's overall research capacity and its potential contribution

  4. Seroconversion for Infectious Pathogens among UK Military Personnel Deployed to Afghanistan, 2008–2011

    PubMed Central

    Johnstone, Penelope; Bridge, Hannah; Wright, Deborah; Jameson, Lisa; Bosworth, Andrew; Hatch, Rebecca; Hayward-Karlsson, Jenny; Osborne, Jane; Bailey, Mark S.; Green, Andrew; Ross, David; Brooks, Tim; Hewson, Roger

    2014-01-01

    Military personnel are at high risk of contracting vector-borne and zoonotic infections, particularly during overseas deployments, when they may be exposed to endemic or emerging infections not prevalent in their native countries. We conducted seroprevalence testing of 467 UK military personnel deployed to Helmand Province, Afghanistan, during 2008–2011 and found that up to 3.1% showed seroconversion for infection with Rickettsia spp., Coxiella burnetii, sandfly fever virus, or hantavirus; none showed seroconversion for infection with Crimean-Congo hemorrhagic fever virus. Most seroconversions occurred in personnel who did not report illness, except for those with hantavirus (70% symptomatic). These results indicate that many exposures to infectious pathogens, and potentially infections resulting from those exposures, may go unreported. Our findings reinforce the need for continued surveillance of military personnel and for education of health care providers to help recognize and prevent illnesses and transmission of pathogens during and after overseas deployments. PMID:25418685

  5. Level of awareness regarding some zoonotic diseases, among dog owners of ithaca, new york.

    PubMed

    Sandhu, Gursimrat Kaur; Singh, Devinder

    2014-01-01

    Worldwide, dogs and cats are the two most common household companion animals. Because of this, they can be direct or indirect source of many human infections. Fortunately, most of these zoonotic infections can be clinically prevented by appropriate prophylactic interventions. Present kind of cross-sectional study, for the first time, was conducted in city of Ithaca, New York. People visiting local animal hospitals, dog parks, library and shoppers at Walmart supermarket were personally interviewed and a pre-tested questionnaire was got filled from every individual. The collected data were analyzed for percentage proportions using Microsoft Excel(®) and the results had been presented in graphical as well as tabulated forms. Out of 100 participants responding to the request for participation, gender-wise, 45% of the participants were male while 55% of the participants were females. Demographically, 50% participants lived in rural, 35% in urban while 15% participants lived in suburban areas. Educational background of the participants ranged from High school pass-outs to Graduates. Participants were aware about the zoonotic potential of leptospirosis, giardiasis, rabies, hookworms, coccidiosis, lyme disease, roundworms, toxoplasma, leishmaniasis, salmonellosis and ringworm disease. Knowledge gaps in the sampled population, in terms of lack of awareness about zoonotic diseases vectored by mosquitoes, ticks and fleas; practice of not doing regular deworming and prophylactic control of fleas and ticks on pet dogs; and lack of practice among physicians to discuss zoonotic canine diseases with their clients were revealed by this study.

  6. Development of imaging techniques to study the pathogenesis of biosafety level 2/3 infectious agents.

    PubMed

    Rella, Courtney E; Ruel, Nancy; Eugenin, Eliseo A

    2014-12-01

    Despite significant advances in microbiology and molecular biology over the last decades, several infectious diseases remain global concerns, resulting in the death of millions of people worldwide each year. According to the Center for Disease Control (CDC) in 2012, there were 34 million people infected with HIV, 8.7 million new cases of tuberculosis, 500 million cases of hepatitis, and 50-100 million people infected with dengue. Several of these pathogens, despite high incidence, do not have reliable clinical detection methods. New or improved protocols have been generated to enhance detection and quantitation of several pathogens using high-end microscopy (light, confocal, and STORM microscopy) and imaging software. In the current manuscript, we discuss these approaches and the theories behind these methodologies. Thus, advances in imaging techniques will open new possibilities to discover therapeutic interventions to reduce or eliminate the devastating consequences of infectious diseases. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. Metal oxide nanoparticles as antimicrobial agents: a promise for the future.

    PubMed

    Raghunath, Azhwar; Perumal, Ekambaram

    2017-02-01

    Microbial infectious diseases are a global threat to human health. Excess and improper use of antibiotics has created antimicrobial-resistant microbes that can defy clinical treatment. The hunt for safe and alternate antimicrobial agents is on in order to overcome such resistant micro-organisms, and the birth of nanotechnology offers promise to combat infectious organisms. Over the past two decades, metal oxide nanoparticles (MeO-NPs) have become an attractive alternative source to combat microbes that are highly resistant to various classes of antibiotics. Their vast array of physicochemical properties enables MeO-NPs to act as antimicrobial agents through various mechanisms. Apart from exhibiting antimicrobial properties, MeO-NPs also serve as carriers of drugs, thus barely providing a chance for micro-organisms to develop resistance. These immense multiple properties exhibited by MeO-NPs will have an impact on the treatment of deadly infectious diseases. This review discusses the mechanisms of action of MeO-NPs against micro-organisms, safety concerns, challenges and future perspectives. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  8. High-resolution structure of infectious prion protein: the final frontier

    PubMed Central

    Diaz-Espinoza, Rodrigo; Soto, Claudio

    2014-01-01

    Prions are the proteinaceous infectious agents responsible for the transmission of prion diseases. The main or sole component of prions is the misfolded prion protein (PrPSc), which is able to template the conversion of the host’s natively folded form of the protein (PrPC). The detailed mechanism of prion replication and the high-resolution structure of PrPSc are unknown. The currently available information on PrPSc structure comes mostly from low-resolution biophysical techniques, which have resulted in quite divergent models. Recent advances in the production of infectious prions, using very pure recombinant protein, offer new hope for PrPSc structural studies. This review highlights the importance of, challenges for and recent progress toward elucidating the elusive structure of PrPSc, arguably the major pending milestone to reach in understanding prions. PMID:22472622

  9. Epidemiological characteristics of infectious hematopoietic necrosis virus (IHNV): a review.

    PubMed

    Dixon, Peter; Paley, Richard; Alegria-Moran, Raul; Oidtmann, Birgit

    2016-06-10

    Infectious hematopoietic necrosis virus (IHNV, Rhabdoviridae), is the causative agent of infectious hematopoietic necrosis (IHN), a disease notifiable to the World Organisation for Animal Health, and various countries and trading areas (including the European Union). IHNV is an economically important pathogen causing clinical disease and mortalities in a wide variety of salmonid species, including the main salmonid species produced in aquaculture, Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). We reviewed the scientific literature on IHNV on a range of topics, including geographic distribution; host range; conditions required for infection and clinical disease; minimum infectious dose; subclinical infection; shedding of virus by infected fish; transmission via eggs; diagnostic tests; pathogen load and survival of IHNV in host tissues. This information is required for a range of purposes including import risk assessments; parameterisation of disease models; for surveillance planning; and evaluation of the chances of eradication of the pathogen to name just a few. The review focuses on issues that are of relevance for the European context, but many of the data summarised have relevance to IHN globally. Examples for application of the information is presented and data gaps highlighted.

  10. Prevalence and characterization of multidrug-resistant zoonotic Enterobacter spp. in poultry of Bangladesh.

    PubMed

    Nandi, Shuvro Prokash; Sultana, Munawar; Hossain, M Anwar

    2013-05-01

    Poultry and poultry products are major contributors of zoonotic pathogens. Limited data are available on Enterobacter spp. as a potent zoonotic pathogen in poultry. The present study is a first endeavor on the emergence of multidrug-resistant zoonotic Enterobacter spp. and its prevalence arising from poultry in Bangladesh. Cloacal swabs from poultry samples of five different farms at Savar, Dhaka, Bangladesh were collected and from 106 isolates, 18 presumptive Enterobacter spp. were obtained. Antibiogram using 19 used antibiotics belonging to 15 major groups revealed that all of the 18 isolates were completely resistant to penicillin and rifampicin, but differed in their drug resistance pattern against ampicillin (94.4%), clindamycin (94.4%), erythromycin (94.4%), vancomycin (88.9%), sulfonamides (72.2%), imipenem (66.6%), streptomycin (55.6%), nitrofurantoin (33.3%), doxycycline (33.3%), tetracyclines (33.3%), cefepime (11.1%), and gentamicin (5.6%). All Enterobacter spp. were found to be plasmid free, implying that multidrug-resistant properties are chromosomal borne. The vanA and sulI were detected by polymerase chain reaction assay in 17 and 13 isolates, respectively. Amplified ribosomal DNA restriction analysis and randomly amplified polymorphic DNA distributed the 18 multidrug-resistant Enterobacter spp. into three genotypes. Phylogenetic analysis of the representatives of the three genotypes using partial 16S rRNA gene sequence (approximately 900 bp) showed that the genotypically diverse groups belonged to Enterobacter hormaechei, E. cloacae, and E. cancerogenus, respectively. The clinical significance of the close relative Enterobacter spp. is indicative of their zoonotic potential. Therefore, urgent intervention is required to limit the emergence and spread of these bacteria in poultry feed as well as prudent use of antibiotics among poultry farmers in Bangladesh.

  11. Circulating microRNAs as Potential Biomarkers of Infectious Disease

    PubMed Central

    Correia, Carolina N.; Nalpas, Nicolas C.; McLoughlin, Kirsten E.; Browne, John A.; Gordon, Stephen V.; MacHugh, David E.; Shaughnessy, Ronan G.

    2017-01-01

    microRNAs (miRNAs) are a class of small non-coding endogenous RNA molecules that regulate a wide range of biological processes by post-transcriptionally regulating gene expression. Thousands of these molecules have been discovered to date, and multiple miRNAs have been shown to coordinately fine-tune cellular processes key to organismal development, homeostasis, neurobiology, immunobiology, and control of infection. The fundamental regulatory role of miRNAs in a variety of biological processes suggests that differential expression of these transcripts may be exploited as a novel source of molecular biomarkers for many different disease pathologies or abnormalities. This has been emphasized by the recent discovery of remarkably stable miRNAs in mammalian biofluids, which may originate from intracellular processes elsewhere in the body. The potential of circulating miRNAs as biomarkers of disease has mainly been demonstrated for various types of cancer. More recently, however, attention has focused on the use of circulating miRNAs as diagnostic/prognostic biomarkers of infectious disease; for example, human tuberculosis caused by infection with Mycobacterium tuberculosis, sepsis caused by multiple infectious agents, and viral hepatitis. Here, we review these developments and discuss prospects and challenges for translating circulating miRNA into novel diagnostics for infectious disease. PMID:28261201

  12. Zoonotic parasites in fecal samples and fur from dogs and cats in The Netherlands.

    PubMed

    Overgaauw, Paul A M; van Zutphen, Linda; Hoek, Denise; Yaya, Felix O; Roelfsema, Jeroen; Pinelli, Elena; van Knapen, Frans; Kortbeek, Laetitia M

    2009-07-07

    Pets may carry zoonotic pathogens for which owners are at risk. The aim of the study is to investigate whether healthy pets harbour zoonotic parasitic infections and to make an inventory of the interactions between pet-owners and their companion animals in The Netherlands. Fecal and hair samples were collected from healthy household dogs and cats in Dutch veterinary practices. Owners were interviewed about interaction with their pets. The samples were investigated by microscopy, ELISA, and PCR. From 159 households, 152 dogs (D) and 60 cats (C), information and samples were collected and examination for several zoonotic parasites was performed. Toxocara eggs were found in 4.4% (D) and 4.6% (C) of the fecal samples and in 12.2% (D) and 3.4% (C) of the fur samples. The median epg in the fur was 17 (D) and 28 (C) and none of these eggs were viable. From 15.2% of the dog and 13.6% of the cat feces Giardia was isolated. One canine and one feline Giardia isolate was a zoonotic assemblage A (12%). Cryptosporidium sp. were present in 8.7% (D) and 4.6% (C) of the feces. Fifty percent of the owners allow the pet to lick their faces. Sixty percent of the pets visit the bedroom; 45-60% (D-C) are allowed on the bed, and 18-30% (D-C) sleep with the owner in bed. Six percent of the pets always sleep in the bedroom. Of the cats, 45% are allowed to jump onto the kitchen sink. Nearly 39% of the dog owners never clean up the feces of their dog. Fifteen percent of the dog owners and 8% of the cat owners always wash their hands after contact with the animals. Close physical contact between owners and their pets is common and poses an increased risk of transmission of zoonotic pathogens. Education of owners by the vet, specifically about hygiene and potential risks, is required.

  13. Editorial: Biological Engagement Programs: Reducing Threats and Strengthening Global Health Security Through Scientific Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fair, Jeanne M.

    It is often said about infectious diseases that a “threat anywhere is a threat everywhere,” and the recent outbreaks of Ebola in West Africa and Zika virus in South America have proven that pathogens know no borders. Not only are they transboundary, pathogens do not discriminate who they infect. In addition to the natural increase in emerging zoonotic infectious diseases worldwide due to changing environmental conditions and globalization, the use of infectious diseases as warfare agents is a threat in today’s world. Early detection remains one of the best ways to prevent small outbreaks becoming epidemics and pandemics. We findmore » that an accurate diagnosis, detection, and reporting of diseases are important components of mitigating outbreaks, and biosurveillance remains the top tool in our toolbox. And while vaccines have been important for controlling more common infectious virus diseases, they are less feasible for less common diseases, emerging pathogens, and rapidly evolving microbes. Furthermore, due to globalization and increased travel, emigration, and migration, biosurveillance is critical throughout the world, not just in pockets of more developed regions.« less

  14. Editorial: Biological Engagement Programs: Reducing Threats and Strengthening Global Health Security Through Scientific Collaboration

    DOE PAGES

    Fair, Jeanne M.

    2017-07-12

    It is often said about infectious diseases that a “threat anywhere is a threat everywhere,” and the recent outbreaks of Ebola in West Africa and Zika virus in South America have proven that pathogens know no borders. Not only are they transboundary, pathogens do not discriminate who they infect. In addition to the natural increase in emerging zoonotic infectious diseases worldwide due to changing environmental conditions and globalization, the use of infectious diseases as warfare agents is a threat in today’s world. Early detection remains one of the best ways to prevent small outbreaks becoming epidemics and pandemics. We findmore » that an accurate diagnosis, detection, and reporting of diseases are important components of mitigating outbreaks, and biosurveillance remains the top tool in our toolbox. And while vaccines have been important for controlling more common infectious virus diseases, they are less feasible for less common diseases, emerging pathogens, and rapidly evolving microbes. Furthermore, due to globalization and increased travel, emigration, and migration, biosurveillance is critical throughout the world, not just in pockets of more developed regions.« less

  15. [Sir Arthur Conan Doyle, Sherlock Holmes and infectious diseases].

    PubMed

    Ledermann D, Walter

    2010-10-01

    Besides a pleasant author of best sellers, Sir Arthur Conan Doyle was a medical doctor, writing excellent short stories about the exercise of his profession in England. However, even he mentions The British Medical Journal and The Lancet in the Sherlock Holmes's stories, when in the plot introduces infectious diseases, Conan Doyle ignores important discoveries in the field of tetanus. Anyway, the appearing of infectious diseases in the adventures of the detective are rare: one mention of tetanus, another of leprosy and- the most analyzed in medical literature a case of murder by inoculation of bacteria, probably the agent of melioidosis. Also he makes his hero discovers the toxic actions of a medusa and a transplant of solid organ. Little for a physician and less for an author who also wrote science fiction: it seems that the history of the great medical discoveries at the end of nineteenth century and beginning of the twentieth has passed by his side.., and he just couldn't see it.

  16. The etiologic role of infectious antigens in sarcoidosis pathogenesis

    PubMed Central

    Celada, Lindsay J.; Hawkins, Charlene; Drake, Wonder P.

    2015-01-01

    Sarcoidosis is a granulomatous disease of unknown etiology, characterized by a Th1 immunophenotype, most commonly involving the lung, skin, lymph node and eyes. Molecular and immunologic studies continue to strengthen the association of sarcoidosis with infectious antigens, particularly those derived from Propionibacterium and Mycobacterium species. Independent studies report the presence of microbial nucleic acids and proteins within sarcoidosis specimens. Complementary immunologic studies also support the role of infectious agents in sarcoidosis pathogenesis. Th-1 immune responses directed against mycobacterial virulence factors have been detected within sarcoidosis diagnostic bronchoalveolar lavage (BAL). Th1 and Th17 immune responses against propionibacteria have also been reported. More recently, case reports and clinical trials from Japanese, European and American investigators have emerged regarding the efficacy of antimicrobials against Propionibacterium and Mycobacterium species on pulmonary and cutaneous sarcoidosis. While these clinical investigations are not conclusive, they support increasing efforts to identify novel therapeutics, such as antimicrobials, that will impact the observed increase in sarcoidosis morbidity and mortality. PMID:26593133

  17. Regulation of Inflammatory Pathways in Cancer and Infectious Disease of the Cervix

    PubMed Central

    Adefuye, Anthonio; Sales, Kurt

    2012-01-01

    Cervical cancer is one of the leading gynaecological malignancies worldwide. It is an infectious disease of the cervix, associated with human papillomavirus infection (HPV), infection with bacterial agents such as Chlamydia trachomatis and Neisseria gonorrhoea as well as human immunodeficiency virus (HIV). Furthermore, it is an AIDS-defining disease with an accelerated mortality in HIV-infected women with cervical cancer. With the introduction of robust vaccination strategies against HPV in the developed world, it is anticipated that the incidence of cervical cancer will decrease in the coming years. However, vaccination has limited benefit for women already infected with high-risk HPV, and alternative therapeutic intervention strategies are needed for these women. Many pathological disorders, including cervical cancer, are characterised by the exacerbated activation and maintenance of inflammatory pathways which are considered to be regulated by infectious agents. In cervical cancer, hyperactivation of these inflammatory pathways and regulation of immune infiltrate into tissues can potentially play a role not only in tumorigenesis but also in HIV infection. In this paper we will discuss the contribution of inflammatory pathways to cervical cancer progression and HIV infection and the role of HIV in cervical cancer progression. PMID:24278714

  18. Rare but evolutionarily consequential outcrossing in a highly inbred zoonotic parasite

    USDA-ARS?s Scientific Manuscript database

    Recurrent self-mating can result in nearly clonal propagation of biological lineages, but even occasional outcrossing can serve to redistribute variation in future generations, providing cohesion among regional populations. The zoonotic parasite Trichinella spiralis has been suspected to undergo fr...

  19. Infectious diseases in cinema: virus hunters and killer microbes.

    PubMed

    Pappas, Georgios; Seitaridis, Savvas; Akritidis, Nikolaos; Tsianos, Epaminondas

    2003-10-01

    The world of infectious diseases has been rarely presented in the cinema with accuracy. Apart from random biographies of scientists and retellings of stories about great epidemics from the past, most films focus on the dangers presented by outbreaks of unknown agents that originate from acts of bioterrorism, from laboratory accidents, or even from space. We review these films and underline the possible effect that they have on the public's perception of infection--a perception that, when misguided, could prove to be problematic in times of epidemics.

  20. Level of Awareness Regarding Some Zoonotic Diseases, Among Dog Owners of Ithaca, New York

    PubMed Central

    Sandhu, Gursimrat Kaur; Singh, Devinder

    2014-01-01

    Objectives: Worldwide, dogs and cats are the two most common household companion animals. Because of this, they can be direct or indirect source of many human infections. Fortunately, most of these zoonotic infections can be clinically prevented by appropriate prophylactic interventions. Materials and Methods: Present kind of cross-sectional study, for the first time, was conducted in city of Ithaca, New York. People visiting local animal hospitals, dog parks, library and shoppers at Walmart supermarket were personally interviewed and a pre-tested questionnaire was got filled from every individual. The collected data were analyzed for percentage proportions using Microsoft Excel® and the results had been presented in graphical as well as tabulated forms. Results: Out of 100 participants responding to the request for participation, gender-wise, 45% of the participants were male while 55% of the participants were females. Demographically, 50% participants lived in rural, 35% in urban while 15% participants lived in suburban areas. Educational background of the participants ranged from High school pass-outs to Graduates. Conclusions: Participants were aware about the zoonotic potential of leptospirosis, giardiasis, rabies, hookworms, coccidiosis, lyme disease, roundworms, toxoplasma, leishmaniasis, salmonellosis and ringworm disease. Knowledge gaps in the sampled population, in terms of lack of awareness about zoonotic diseases vectored by mosquitoes, ticks and fleas; practice of not doing regular deworming and prophylactic control of fleas and ticks on pet dogs; and lack of practice among physicians to discuss zoonotic canine diseases with their clients were revealed by this study. PMID:25657956

  1. A novel zoonotic genotype related to Echinococcus granulosus sensu stricto from southern Ethiopia.

    PubMed

    Wassermann, Marion; Woldeyes, Daniel; Gerbi, Banchwosen Mechal; Ebi, Dennis; Zeyhle, Eberhard; Mackenstedt, Ute; Petros, Beyene; Tilahun, Getachew; Kern, Peter; Romig, Thomas

    2016-09-01

    Complete mitochondrial and two nuclear gene sequences of a novel genotype (GOmo) related to Echinococcus granulosus sensu stricto are described from a metacestode isolate retrieved from a human patient in southwestern Ethiopia. Phylogenetically, the genotype is positioned within the E. granulosus sensu stricto/Echinococcus felidis cluster, but cannot easily be allocated to either species. Based on different mitochondrial DNA markers, it is closest to the haplotype cluster that currently defines the species E. granulosus sensu stricto (which includes variants showing the widely cited G1, G2 and G3 sequences), but is clearly not part of this cluster. Pairwise distances between GOmo and E. granulosus sensu stricto are in the range of those between the most distant members of the Echinococcus canadensis complex (G6-10) that were recently proposed as separate species. At this stage, we prefer to list GOmo informally as a genotype rather than giving it any taxonomic rank because our knowledge rests on a single isolate from a dead-end host (human), and its lifecycle is unknown. According to data on molecularly characterised Echinococcus isolates from this region, GOmo has never been found in the usual livestock species that carry cystic echinococcosis and the possibility of a wildlife source of this newly recognised zoonotic agent cannot be excluded. The discovery of GOmo adds complexity to the already diverse array of cystic echinococcosis agents in sub-Saharan Africa and challenges hypotheses on the biogeographical origin of the E. granulosus sensu stricto clade. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  2. High density of Leishmania major and rarity of other mammals' Leishmania in zoonotic cutaneous leishmaniasis foci, Iran.

    PubMed

    Bordbar, Ali; Parvizi, Parviz

    2014-03-01

    Only Leishmania major is well known as a causative agent of zoonotic cutaneous leishmaniasis (ZCL) in Iran. Our objective was to find Leishmania parasites circulating in reservoir hosts, sand flies and human simultaneously. Sand flies, rodents and prepared smears of humans were sampled. DNA of Leishmania parasites was extracted, and two fragments of ITS-rDNA gene amplified by PCR. RFLP and sequencing were employed to identify Leishmania parasites. Leishmania major and L. turanica were identified unequivocally by targeting and sequencing ITS-rDNA from humans, rodents and sand flies. The new Leishmania species close to gerbilli (GenBank Accession Nos. EF413076; EF413087) was discovered only in sand flies. Based on parasite detection of ITS-rDNA in main and potential reservoir hosts and vectors and humans, we conclude that at least two Leishmania species are common in the Turkmen Sahra ZCL focus. Phylogenetic analysis proved that the new Leishmania is closely related to Leishmania mammal parasites (Leishmania major, Leishmania turanica, Leishmania gerbilli). Its role as a principal agent of ZCL is unknown because it was found only in sand flies. Our findings shed new light on the transmission cycles of several Leishmania parasites in sand flies, reservoir hosts and humans. © 2014 John Wiley & Sons Ltd.

  3. Antimicrobial peptides: Possible anti-infective agents.

    PubMed

    Lakshmaiah Narayana, Jayaram; Chen, Jyh-Yih

    2015-10-01

    Multidrug-resistant bacterial, fungal, viral, and parasitic infections are major health threats. The Infectious Diseases Society of America has expressed concern on the decrease of pharmaceutical companies working on antibiotic research and development. However, small companies, along with academic research institutes, are stepping forward to develop novel therapeutic methods to overcome the present healthcare situation. Among the leading alternatives to current drugs are antimicrobial peptides (AMPs), which are abundantly distributed in nature. AMPs exhibit broad-spectrum activity against a wide variety of bacteria, fungi, viruses, and parasites, and even cancerous cells. They also show potential immunomodulatory properties, and are highly responsive to infectious agents and innate immuno-stimulatory molecules. In recent years, many AMPs have undergone or are undergoing clinical development, and a few are commercially available for topical and other applications. In this review, we outline selected anion and cationic AMPs which are at various stages of development, from preliminary analysis to clinical drug development. Moreover, we also consider current production methods and delivery tools for AMPs, which must be improved for the effective use of these agents. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Governance and One Health: Exploring the Impact of Federalism and Bureaucracy on Zoonotic Disease Detection and Reporting.

    PubMed

    Allen, Heather A

    2015-05-13

    The merits of One Health have been thoroughly described in the literature, but how One Health operates in the United States federal system of government is rarely discussed or analyzed. Through a comparative case-study approach, this research explores how federalism, bureaucratic behavior, and institutional design in the United States may influence zoonotic disease outbreak detection and reporting, a key One Health activity. Using theoretical and empirical literature, as well as a survey/interview instrument for individuals directly involved in a past zoonotic disease outbreak, the impacts of governance are discussed. As predicted in the theoretical literature, empirical findings suggest that federalism, institutional design, and bureaucracy may play a role in facilitating or impeding zoonotic disease outbreak detection and reporting. Regulatory differences across states as well as compartmentalization of information within agencies may impede disease detection. However, the impact may not always be negative: bureaucracies can also be adaptive; federalism allows states important opportunities for innovation. While acknowledging there are many other factors that also matter in zoonotic disease detection and reporting, this research is one of the first attempts to raise awareness in the literature and stimulate discussion on the intersection of governance and One Health.

  5. Governance and One Health: Exploring the Impact of Federalism and Bureaucracy on Zoonotic Disease Detection and Reporting

    PubMed Central

    Allen, Heather A.

    2015-01-01

    The merits of One Health have been thoroughly described in the literature, but how One Health operates in the United States federal system of government is rarely discussed or analyzed. Through a comparative case-study approach, this research explores how federalism, bureaucratic behavior, and institutional design in the United States may influence zoonotic disease outbreak detection and reporting, a key One Health activity. Using theoretical and empirical literature, as well as a survey/interview instrument for individuals directly involved in a past zoonotic disease outbreak, the impacts of governance are discussed. As predicted in the theoretical literature, empirical findings suggest that federalism, institutional design, and bureaucracy may play a role in facilitating or impeding zoonotic disease outbreak detection and reporting. Regulatory differences across states as well as compartmentalization of information within agencies may impede disease detection. However, the impact may not always be negative: bureaucracies can also be adaptive; federalism allows states important opportunities for innovation. While acknowledging there are many other factors that also matter in zoonotic disease detection and reporting, this research is one of the first attempts to raise awareness in the literature and stimulate discussion on the intersection of governance and One Health. PMID:29061932

  6. Isolation of a zoonotic pathogen Kluyvera ascorbata from Egyptian fruit-bat Rousettus aegyptiacus.

    PubMed

    Han, Jee Eun; Gomez, Dennis K; Kim, Ji Hyung; Choresca, Casiano H; Shin, Sang Phil; Park, Se Chang

    2010-01-01

    The Egyptian fruit-bat Rousettus aegyptiacus which had been raised at the private commercial aquarium in Seoul, Korea for indoor exhibition was found dead and submitted to College of Veterinary Medicine, Seoul National University for postmortem examination. A pure bacterium of Kluyvera ascorbata was isolated from the blood specimen. The isolation of K. ascorbata from fruit bat is very important, because it is the most infectious agent of the genus Kluyvera that cause serious diseases to animals and human. Fruit-bats which are distributed in pet shops through black-market in Korea although unproven become popular pet nowadays. This situation enhances chance of zoonosis. This paper describes the first isolation of K. ascorbata from the Egyptian fruit-bat.

  7. Zoonotic echinostome infections in free-grazing ducks in Thailand.

    PubMed

    Saijuntha, Weerachai; Duenngai, Kunyarat; Tantrawatpan, Chairat

    2013-12-01

    Free-grazing ducks play a major role in the rural economy of Eastern Asia in the form of egg and meat production. In Thailand, the geographical location, tropical climate conditions and wetland areas of the country are suitable for their husbandry. These environmental factors also favor growth, multiplication, development, survival, and spread of duck parasites. In this study, a total of 90 free-grazing ducks from northern, central, and northeastern regions of Thailand were examined for intestinal helminth parasites, with special emphasis on zoonotic echinostomes. Of these, 51 (56.7%) were infected by one or more species of zoonotic echinostomes, Echinostoma revolutum, Echinoparyphium recurvatum, and Hypoderaeum conoideum. Echinostomes found were identified using morphological criteria when possible. ITS2 sequences were used to identify juvenile and incomplete worms. The prevalence of infection was relatively high in each region, namely, north, central, and northeast region was 63.2%, 54.5%, and 55.3%, respectively. The intensity of infection ranged up to 49 worms/infected duck. Free-grazing ducks clearly play an important role in the life cycle maintenance, spread, and transmission of these medically important echinostomes in Thailand.

  8. Antibiotic-Induced Rash in Patients With Infectious Mononucleosis.

    PubMed

    Thompson, Dennis F; Ramos, Carroll L

    2017-02-01

    To provide an extensive review of case reports, epidemiological data, and the underlying mechanism of antibiotic-induced skin rash in patients with concurrent infectious mononucleosis (IM). A MEDLINE literature search inclusive of the dates 1946 to June 2016 was performed using the search terms anti-bacterial agents and infectious mononucleosis. EMBASE (1980 to June 2016) was searched using the terms mononucleosis and antibiotic agent and drug eruption. References of all relevant articles were reviewed for additional citations and information. We selected English-language, primary literature, review articles, and mechanistic articles that addressed antibiotic-induced skin rash in patients with concurrent IM. We assessed all case reports available for causality utilizing a modified Naranjo nomogram specifically designed for this subject. We assembled the available epidemiological data into tables to identify trends in incidence rates over the years. We identified 17 case reports of antibiotic-associated rash in patients with IM. The median Naranjo score was 6 (range = 1 to 8). The top 3 reported drugs were ampicillin, azithromycin, and amoxicillin. Incidence of this adverse effect was higher in the 1960s (55.6%, 45%, and 33%) than in 2013 (33% and 15%). The mechanism most commonly proposed is a transient virus-mediated immune alteration that sets the stage for loss of antigenic tolerance and the development of a reversible, delayed-type hypersensitivity reaction to the antibiotic. A reassessment of the long-held belief of the high incidence (80%-100%) of antibiotic-induced skin rash in patients with IM seems prudent. Additional studies will be necessary to clarify this issue.

  9. Phylogeographic Evidence for 2 Genetically Distinct Zoonotic Plasmodium knowlesi Parasites, Malaysia.

    PubMed

    Yusof, Ruhani; Ahmed, Md Atique; Jelip, Jenarun; Ngian, Hie Ung; Mustakim, Sahlawati; Hussin, Hani Mat; Fong, Mun Yik; Mahmud, Rohela; Sitam, Frankie Anak Thomas; Japning, J Rovie-Ryan; Snounou, Georges; Escalante, Ananias A; Lau, Yee Ling

    2016-08-01

    Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia.

  10. Phylogeographic Evidence for 2 Genetically Distinct Zoonotic Plasmodium knowlesi Parasites, Malaysia

    PubMed Central

    Yusof, Ruhani; Ahmed, Md Atique; Jelip, Jenarun; Ngian, Hie Ung; Mustakim, Sahlawati; Hussin, Hani Mat; Fong, Mun Yik; Mahmud, Rohela; Sitam, Frankie Anak Thomas; Japning, J. Rovie-Ryan; Snounou, Georges; Escalante, Ananias A.

    2016-01-01

    Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia. PMID:27433965

  11. Genetic diversity and phylogeography of highly zoonotic Echinococcus granulosus genotype G1 in the Americas (Argentina, Brazil, Chile and Mexico) based on 8279bp of mtDNA.

    PubMed

    Laurimäe, Teivi; Kinkar, Liina; Andresiuk, Vanessa; Haag, Karen Luisa; Ponce-Gordo, Francisco; Acosta-Jamett, Gerardo; Garate, Teresa; Gonzàlez, Luis Miguel; Saarma, Urmas

    2016-11-01

    Echinococcus granulosus is a taeniid cestode and the etiological agent of an infectious zoonotic disease known as cystic echinococcosis (CE) or hydatid disease. CE is a serious public health concern in many parts of the world, including the Americas, where it is highly endemic in many regions. Echinococcus granulosus displays high intraspecific genetic variability and is divided into multiple genotypes (G1-G8, G10) with differences in their biology and etiology. Of these, genotype G1 is responsible for the majority of human and livestock infections and has the broadest host spectrum. However, despite the high significance to the public and livestock health, the data on genetic variability and regional genetic differences of genotype G1 in America are scarce. The aim of this study was to evaluate the genetic variability and phylogeography of G1 in several countries in America by sequencing a large portion of the mitochondrial genome. We analysed 8279bp of mtDNA for 52 E. granulosus G1 samples from sheep, cattle and pigs collected in Argentina, Brazil, Chile and Mexico, covering majority of countries in the Americas where G1 has been reported. The phylogenetic network revealed 29 haplotypes and a high haplotype diversity (Hd=0.903). The absence of phylogeographic segregation between different regions in America suggests the importance of animal transportation in shaping the genetic structure of E. granulosus G1. In addition, our study revealed many highly divergent haplotypes, indicating a long and complex evolutionary history of E. granulosus G1 in the Americas. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Detection, Isolation and Characterization of an Agent from Febrile Patients in Malaysia Serologically Reactive with Rickettsia sennetsu.

    DTIC Science & Technology

    1983-12-01

    sennetsu by inoculating mice with the blood and bone marrow homogenates of a patient suffering from "Japanese infectious mononucleosis ." Tanaka and...Rickettsia sennetsu in Cell Culture System. Jpn. J. Microbiol. 9:75-86. Misao, T., and Kobayashi, Y. 1954. Studies on Infectious Mononucleosis . I...Isolation of Etiologic Agent from Blood, Bone Marrow and Lymph Node of a Patient with Infectious Mononucleosis by Using Mice. Tokyo Iji Shinshi 71:683-686

  13. Airborne pathogens from dairy manure aerial irrigation and the human health risk

    USGS Publications Warehouse

    Borchardt, Mark A.; Burch, Tucker R

    2016-01-01

    Dairy manure, like the fecal excrement from any domesticated or wild animal, can contain pathogens capable of infecting humans and causing illness or even death. Pathogens in dairy manure can be broadly divided into categories of taxonomy or infectiousness. Dividing by taxonomy there are three pathogen groups in dairy manure: viruses (e.g., bovine rotavirus), bacteria (e.g., Salmonella species), and protozoa (e.g., Cryptosporidium parvum). There are two categories of infectiousness for pathogens found in animals: those that are zoonotic and those that are not. A zoonotic pathogen is one that can infect both human and animal hosts. Some zoonotic pathogens found in dairy manure cause illness in both hosts (e.g., Salmonella) while other zoonotic pathogens, like Escherichia coli O157:H7, (enterohemorrhagic E. coli (EHEC)) cause illness only in humans. As a general rule, the gastrointestinal viruses found in dairy manure are not zoonotic. While there are exceptions (e.g., rare reports of bovine rotavirus infecting children), for the most part the viruses in dairy manure are not a human health concern. The primary concerns are the zoonotic bacteria and protozoa in dairy manure.

  14. Legal aspects of public health: difficulties in controlling vector-borne and zoonotic diseases in Brazil.

    PubMed

    Mendes, Marcílio S; de Moraes, Josué

    2014-11-01

    In recent years, vector-borne and zoonotic diseases have become a major challenge for public health. Dengue fever and leptospirosis are the most important communicable diseases in Brazil based on their prevalence and the healthy life years lost from disability. The primary strategy for preventing human exposure to these diseases is effective insect and rodent control in and around the home. However, health authorities have difficulties in controlling vector-borne and zoonotic diseases because residents often refuse access to their homes. This study discusses aspects related to the activities performed by Brazilian health authorities to combat vector-borne and zoonotic diseases, particularly difficulties in relation to the legal aspect, which often impede the quick and effective actions of these professionals. How might it be possible to reconcile the need to preserve public health and the rule on the inviolability of the home, especially in the case of abandoned properties or illegal residents and the refusal of residents to allow the health authority access? Do residents have the right to hinder the performance of health workers even in the face of a significant and visible focus of disease transmission? This paper argues that a comprehensive legal plan aimed at the control of invasive vector-borne and zoonotic diseases including synanthropic animals of public health importance should be considered. In addition, this paper aims to bridge the gap between lawyers and public health professionals and to facilitate communication between them. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Updates to the zoonotic niche map of Ebola virus disease in Africa

    PubMed Central

    Pigott, David M; Millear, Anoushka I; Earl, Lucas; Morozoff, Chloe; Han, Barbara A; Shearer, Freya M; Weiss, Daniel J; Brady, Oliver J; Kraemer, Moritz UG; Moyes, Catherine L; Bhatt, Samir; Gething, Peter W; Golding, Nick; Hay, Simon I

    2016-01-01

    As the outbreak of Ebola virus disease (EVD) in West Africa is now contained, attention is turning from control to future outbreak prediction and prevention. Building on a previously published zoonotic niche map (Pigott et al., 2014), this study incorporates new human and animal occurrence data and expands upon the way in which potential bat EVD reservoir species are incorporated. This update demonstrates the potential for incorporating and updating data used to generate the predicted suitability map. A new data portal for sharing such maps is discussed. This output represents the most up-to-date estimate of the extent of EVD zoonotic risk in Africa. These maps can assist in strengthening surveillance and response capacity to contain viral haemorrhagic fevers. DOI: http://dx.doi.org/10.7554/eLife.16412.001 PMID:27414263

  16. Optimal sampling strategies for detecting zoonotic disease epidemics.

    PubMed

    Ferguson, Jake M; Langebrake, Jessica B; Cannataro, Vincent L; Garcia, Andres J; Hamman, Elizabeth A; Martcheva, Maia; Osenberg, Craig W

    2014-06-01

    The early detection of disease epidemics reduces the chance of successful introductions into new locales, minimizes the number of infections, and reduces the financial impact. We develop a framework to determine the optimal sampling strategy for disease detection in zoonotic host-vector epidemiological systems when a disease goes from below detectable levels to an epidemic. We find that if the time of disease introduction is known then the optimal sampling strategy can switch abruptly between sampling only from the vector population to sampling only from the host population. We also construct time-independent optimal sampling strategies when conducting periodic sampling that can involve sampling both the host and the vector populations simultaneously. Both time-dependent and -independent solutions can be useful for sampling design, depending on whether the time of introduction of the disease is known or not. We illustrate the approach with West Nile virus, a globally-spreading zoonotic arbovirus. Though our analytical results are based on a linearization of the dynamical systems, the sampling rules appear robust over a wide range of parameter space when compared to nonlinear simulation models. Our results suggest some simple rules that can be used by practitioners when developing surveillance programs. These rules require knowledge of transition rates between epidemiological compartments, which population was initially infected, and of the cost per sample for serological tests.

  17. Mapping the zoonotic niche of Ebola virus disease in Africa

    PubMed Central

    Pigott, David M; Golding, Nick; Mylne, Adrian; Huang, Zhi; Henry, Andrew J; Weiss, Daniel J; Brady, Oliver J; Kraemer, Moritz UG; Smith, David L; Moyes, Catherine L; Bhatt, Samir; Gething, Peter W; Horby, Peter W; Bogoch, Isaac I; Brownstein, John S; Mekaru, Sumiko R; Tatem, Andrew J; Khan, Kamran; Hay, Simon I

    2014-01-01

    Ebola virus disease (EVD) is a complex zoonosis that is highly virulent in humans. The largest recorded outbreak of EVD is ongoing in West Africa, outside of its previously reported and predicted niche. We assembled location data on all recorded zoonotic transmission to humans and Ebola virus infection in bats and primates (1976–2014). Using species distribution models, these occurrence data were paired with environmental covariates to predict a zoonotic transmission niche covering 22 countries across Central and West Africa. Vegetation, elevation, temperature, evapotranspiration, and suspected reservoir bat distributions define this relationship. At-risk areas are inhabited by 22 million people; however, the rarity of human outbreaks emphasises the very low probability of transmission to humans. Increasing population sizes and international connectivity by air since the first detection of EVD in 1976 suggest that the dynamics of human-to-human secondary transmission in contemporary outbreaks will be very different to those of the past. DOI: http://dx.doi.org/10.7554/eLife.04395.001 PMID:25201877

  18. First evidence of infectious hematopoietic necrosis virus (IHNV) in the Netherlands.

    PubMed

    Haenen, O L M; Schuetze, H; Cieslak, M; Oldenburg, S; Spierenburg, M A H; Roozenburg-Hengst, I; Voorbergen-Laarman, M; Engelsma, M Y; Olesen, N J

    2016-08-01

    In spring 2008, infectious hematopoietic necrosis virus (IHNV) was detected for the first time in the Netherlands. The virus was isolated from rainbow trout, Oncorhynchus mykiss (Walbaum), from a put-and-take fishery with angling ponds. IHNV is the causative agent of a serious fish disease, infectious hematopoietic necrosis (IHN). From 2008 to 2011, we diagnosed eight IHNV infections in rainbow trout originating from six put-and-take fisheries (symptomatic and asymptomatic fish), and four IHNV infections from three rainbow trout farms (of which two were co-infected by infectious pancreatic necrosis virus, IPNV), at water temperatures between 5 and 15 °C. At least one farm delivered trout to four of these eight IHNV-positive farms. Mortalities related to IHNV were mostly <40%, but increased to nearly 100% in case of IHNV and IPNV co-infection. Subsequent phylogenetic analysis revealed that these 12 isolates clustered into two different monophyletic groups within the European IHNV genogroup E. One of these two groups indicates a virus-introduction event by a German trout import, whereas the second group indicates that IHNV was already (several years) in the Netherlands before its discovery in 2008. © 2016 John Wiley & Sons Ltd.

  19. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Soluble immune effector molecules [I]: anti-tumor necrosis factor-α agents).

    PubMed

    Baddley, J W; Cantini, F; Goletti, D; Gómez-Reino, J J; Mylonakis, E; San-Juan, R; Fernández-Ruiz, M; Torre-Cisneros, J

    2018-06-01

    The present review is part of the ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies. To review, from an Infectious Diseases perspective, the safety profile of agents targeting tumour necrosis factor-α (TNF-α) and to suggest preventive recommendations. Computer-based MEDLINE searches with MeSH terms pertaining to each agent or therapeutic family. Preclinical and clinical evidence indicate that anti-TNF-α therapy (infliximab, adalimumab, golimumab, certolizumab pegol and etanercept) is associated with a two-to four-fold increase in the risk of active tuberculosis and other granulomatous conditions (mostly resulting from the reactivation of a latent infection). In addition, it may lead to the occurrence of other serious infections (bacterial, fungal, opportunistic and certain viral infections). These associated risks seem to be lower for etanercept than other agents. Screening for latent tuberculosis infection should be performed before starting anti-TNF-α therapy, followed by anti-tuberculosis therapy if appropriate. Screening for chronic hepatitis B virus (HBV) infection is also recommended, and antiviral prophylaxis may be warranted for hepatitis B surface antigen-positive individuals. No benefit is expected from the use of antibacterial, anti-Pneumocystis or antifungal prophylaxis. Pneumococcal and age-appropriate antiviral vaccinations (i.e. influenza) should be administered. Live-virus vaccines (i.e. varicella-zoster virus or measles-mumps-rubella) may be contraindicated in people receiving anti-TNF-α therapy, although additional data are needed before definitive recommendations can be made. Prevention measures should be implemented to reduce the risk of latent tuberculosis or HBV reactivation among individuals receiving anti-TNF-α therapy. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  20. Community-based surveillance of zoonotic parasites in a 'One Health' world: A systematic review.

    PubMed

    Schurer, J M; Mosites, E; Li, C; Meschke, S; Rabinowitz, P

    2016-12-01

    The One Health (OH) concept provides an integrated framework for observing and improving health issues involving human, animal, and environmental factors, and has been applied in particular to zoonotic disease problems. We conducted a systematic review of English and Chinese language peer-reviewed and grey literature databases to identify zoonotic endoparasite research utilizing an OH approach in community-based settings. Our review identified 32 articles where specimens collected simultaneously from all three OH domains (people, animals, and the environment) were assessed for endoparasite infection or exposure. Study sites spanned 23 countries, and research teams brought together an average of seven authors from two countries. Surveillance of blood-borne and gastrointestinal protozoa were most frequently reported (19 of 32; 59%), followed by trematodes, nematodes, and cestodes. Laboratory techniques varied greatly between studies, and only 16 identified parasites using Polymerase Chain Reaction (PCR) in all three OH domains. Our review identified important gaps in parasitology research operating under an OH framework. We recommend that investigators working in the realm of zoonotic disease strive to evaluate all three OH domains by integrating modern molecular tools as well as techniques provided by economists and social scientists.